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Editorial

Editorial: Special Issue “Unmanned Aerial Vehicle
(UAV)-Enabled Wireless Communications and Networking”
Margot Deruyck

Department of Information Technology, IMEC-Ghent University-WAVES, 9052 Ghent, Belgium;
margot.deruyck@ugent.be

In the last decade, the behavior of mobile data users has completely changed. We are
no longer limited to our own house if we want to share pictures, make a video call, stream
music or video, or game. In fact, nowadays, we can do all those things in the park, bus,
or train, actually wherever we are. With the upcoming next generation standard—the 5th
Generation or 5G—not only will significantly higher data rates will be offered, but also an
ever larger spectrum of applications and services to the mobile users and platforms, all with
heterogeneous requirements. Besides serving users, 5G will also bring many opportunities
to the industry. This means that 5G will be serving a massive density of nodes which
can either be human-held or machine-type; a tendency we currently already see in the
emerging Internet of Things (IoT) and its applications. The above-mentioned evolution
will of course also have its repercussions on the network itself. The future wireless network
will be characterized by a high degree of flexibility compared with the past, allowing
them to adapt smoothly, autonomously, and efficiently to the quickly changing traffic
demand evolutions both in time and space. The networks of today are designed to cope
with average or peak traffic predictions and the offered capacity on a local scale is highly
dependent on the density of the infrastructure equipment in a considered area. Adding
mobile infrastructure or UABSs (Unmanned Aerial Base Stations)—i.e., a base station
mounted on a UAV (Unmanned Aerial Vehicle) or drone—would provide a huge added
value to the network.

One of the key challenge of designing such a UAV-based network is a proper allocation
of both the UAV’s location and network resources. Ref. [1] proposed a fast and practical al-
gorithm for UAV relay networks to provide the optimal solution for the number of transmit
time slots and the UAV relay location in a sequential manner. The transmit power at the
base station and the UAV was determined in advanced based on the availability of channel
state information (CSI). Simulation results demonstrated that the proposed algorithms can
significantly reduce the computational effort and complexity to determine the optimal UAV
location. Ref. [2] formulated the uplink resource allocation problem for a NOMA (Non-
Orthogonal Multiple Access)-IoT based UAV network with the objective of maximizing the
system throughput while minimizing the delay of IoT applications. Power allocation was
investigated to achieve fairness between the users. The algorithm achieved a 31.8% delay
improvement, 99.7% reliability increase, and 50.8% fairness enhancement when compared
with the maximum channel quality indicator CQI) algorithm, allowing the algorithm to be
used for URLLC (Ultra-Reliable Low-Latency Communication) applications. Due to the
large-scale deployment of UAVs in UAV-based networks, also the shortage of spectrum is a
realistic threat for the roll-out of these networks. Ref. [3] proposed a cooperative spectrum
sensing scheme for cognitive UAV networks based on a CHMM (Continuous Hidden
Markov Model) with a novel SNR (Signal-to-Noise Ratio) estimation method.

Another typical use case for UAV-aided networks—besides offering an extra degree
of flexibility in the network—is to extend the network’s coverage in isolated or rural
areas. Ref. [4] comprehensively surveyed the user of three platforms to deliver broadband
services to remote and low-income areas: UAVs, APs (Altitude Platforms), and LEO (Low
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Earth Orbit) satellites. The UAVs are considered as a noteworthy solution since their
efficient maneuverability can solve rural coverage issues or not-spots. Ref. [5] investigated
six different routing algorithms for this kind of applications. A time-dependent variant
of the Dijkstra’s algorithm which determines the fastest route by taking into account
the time when the message reaches the node and the time allocated for data transfer
was developed for a DTN (Delay Tolerant Network) of drones flying in an aerial area
divided either into squares or into equilateral triangles. Their simulation results showed
a better performance of the proposed time-dependent Dijkstra algorithm compared with
state-of-the art routing protocols. One step further than extending the coverage of an
existing network is to provide wireless communication in areas hit by a natural disaster.
Ref. [6] jointly addressed the transmission power selection, data-rate maximization, and
interference mitigation problems for such a scenario. Considering all these conflicting
parameters, the problem was investigated as a budget-constrained multi-player multi-
armed bandit problem. The whole process was carried out in a decentralized manner,
where no information was exchanged between UAVs. To achieve this, two power-budget-
aware algorithms were proposed to realize the selection of the transmission power value
efficiently. Both algorithms showed outstanding performance over random power value
selection in terms of achievable data rate. UAVs have also showed their added value
for the enhancement of wireless communication in millimeter-wave bands. Typically,
antenna arrays have been employed for this purpose. However, many beam-forming
methods for improving communication quality are based on channel estimation, which
are resource-intensive due to the complexity of channel estimation in practice. Ref. [7]
formulated a MIMO (Massive Input Massive Output) blind beamforming problem at the
receivers for UAV-assisted communications in which channel estimation was omitted
to save resources. An analytical method, called ACMA (Analytical Constant Modulus
Algorithm), was introduced relying only on data received by the antenna. ACMA could
achieve good signal recovery accuracy, a reasonable sum rate, and acceptable complexity.

Many challenges related to the design of UAV networks in general, such as, for ex-
ample, spectrum sharing/coexistence, are computationally very challenging and hence
an excellent case to apply machine learning and AI (Artificial Intelligence) on. Ref. [8]
proposed a multi-agent DQL (Deep Q-learning)-based transmission power control algo-
rithm to minimize the outage probability while satisfying the interference requirement of
an interfered system. To deal with the potential risk of action-value overestimation from
the DQL, they developed even a DDQL (Double DQL). The proposed DQL power control
algorithm performed equal or close to the optimal exhaustive search algorithm for varying
positions of the interfered system. With a similar performance by the DDQL power control
yields the same performance, the authors concluded that the actional value overestimation
did not adversely affect the quality of the learned power control policy. Besides using
machine learning to actual develop the network, it can also be applied in properly predict-
ing the user demand. Ref. [9] proposed a UAV positioning algorithm with the objective
of extending an existing network and balancing the traffic load. To properly predict the
users and their movement, the performance of various state-of-the-art machine learning
algorithms was investigated. Random Forest and Gradient Boosting presented both the
best performance, with Random Forest having a better prediction and training time.

The use of UAVs in wireless communication networks—whether it is to provide extra
flexibility, extend the coverage or cover isolated, rural, or post-disasters areas—makes
the network more vulnerable for security issues. Ref. [10] proposed a security model
applying cooperative friendly jamming using artificial noise and drone mobility to prevent
eavesdropping and improve security. Ref. [11] developed two dynamic selection techniques
which identify the most effective classifier for the detection of GPS (Global Positioning
System) spoofing attacks.

It might be clear that using UAVs for wireless communication and networks can
provide a tremendous added value. The scenarios here presented are only a fraction of
what we can achieve by UAV-aided communication. A nice overview of what is possible
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was provided in ref. [12], along with the recent advances and challenges that are brought
by the recent research trends.
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Abstract: In this paper, to enhance the spectrum utilization in cognitive unmanned aerial vehicle
networks (CUAVNs), we propose a cooperative spectrum sensing scheme based on a continuous
hidden Markov model (CHMM) with a novel signal-to-noise ratio (SNR) estimation method. First, to
exploit the Markov property in the spectrum state, we model the spectrum states and the correspond-
ing fusion values as a hidden Markov model. A spectrum prediction is obtained by combining the
parameters of CHMM and a preliminary sensing result (obtained from a clustered heterogeneous
two-stage-fusion scheme), and this prediction can further guide the sensing detection procedure.
Then, we analyze the detection performance of the proposed scheme by deriving its closed-formed
expressions. Furthermore, considering imperfect SNR estimation in practical applications, we design
a novel SNR estimation scheme which is inspired by the reconstruction of the signal on graphs to
enhance the proposed CHMM-based sensing scheme with practical SNR estimation. Simulation
results demonstrate the proposed CHMM-based cooperative spectrum sensing scheme outperforms
the ones without CHMM, and the CHMM-based sensing scheme with the proposed SNR estimator
can outperform the existing algorithm considerably.

Keywords: cognitive UAV networks; clustered two-stage-fusion cooperative spectrum sensing;
continuous hidden Markov model; SNR estimation

1. Introduction

With the advantage of high flexibility and low deployment cost, unmanned aerial
vehicles (UAVs) have been widely used in military communications, weather monitoring,
emergency rescue [1] and some other UAV-assisted Internet of Things (IoT) applications [2].
The large-scale deployment of UAVs has exacerbated the shortage of spectrum resources.
However, the existing spectrum allocation strategies cannot effectively use the scarce
spectrum resources, which becomes the bottleneck for enhancing the communication per-
formance of UAVs [3]. Cognitive radio (CR) is proposed to solve the problem, which
improves the spectrum efficiency by perceiving spectrum holes and providing secondary
UAVs with opportunities to reuse idle spectrum. Thus, CR can further guide the spectrum
utilization in cognitive unmanned aerial vehicle networks (CUAVNs), including the re-
source allocation for low-latency communications [4], high-quality services with limited
resources [5], maximum achievable throughput [6], and optimal power allocation. To
enable CUAVNs, accurate spectrum sensing attaches great importance.

With the development of UAVs, spectrum sensing in unmanned aerial vehicle net-
works (UAVNs) has attracted attention from both academia and industry. The detection
performance is enhanced by using multiple secondary UAVs in [7,8]. Authors in [3,9]
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Sensors 2022, 22, 2620

consider the combination of UAVs and terrestrial communication equipment for air-ground-
integrated spectrum sensing. The heterogeneity of spatial information is further taken into
account by using the 3D [10], so as to improve the spectrum sensing detection performance.
The above studies introduce information from multiple users and spatial dimensions to
improve the spectrum utilization of CUAVNs. However, they do not consider the temporal
information of the spectrum, which affects the detection performance of UAVNs. Exploring
the temporal correlation of spectrum states by focusing on the Markov property is an
effective and novel idea to enhance the detection probability [11].

Another concern is that knowledge of the signal-to-noise ratio (SNR) is required before
spectrum sensing [12], e.g., energy detection and cyclostationary feature detection. Therein,
it is assumed that SNR is perfectly known. However, UAVs need to move across a large
area in lots of applications, and the links between two UAVs that are far apart frequently
break and reestablish [13], which degrades the sensing performance and the spectrum
utilization. Besides, large flying areas, unstable links, and dynamic network topologies
lead to variable SNRs in CUAVNs, which makes the assumption of pre-known SNRs no
longer applicable, bringing new challenges for sensing in UAVNs.

To overcome these problems, we propose a continuous hidden Markov model (CHMM)
based sensing scheme with a novel space smoothing second- and fourth-order moments
(SS-M2M4) SNR estimator. Note that the true states of the unauthorized spectrum are
not observable, however, the sensing results originating from the unobservable spectrum
states can be easily obtained. Therefore, a hidden Markov chain model fits well with the
spectrum sensing procedure. To fully exploit the temporal information and further enhance
the detection performance, we combine the spectrum sensing scheme with CHMM. To the
best of our knowledge, our work is the first to consider the continuous hidden Markov
model in non-centralized CUANs. Moreover, we further provide theoretical analysis of the
detection probability and the false alarm probability, while previous works mainly focus on
numerical simulations. Besides, for generalized estimation and higher accuracy, based on a
general SNR estimation method of a second- and fourth- moments (M2M4) estimator [14],
we propose a SS-M2M4 SNR estimator. The SNR smoothness of the neighboring CUAVs has
been taken into account, enlightened by the smoothness of the graph signal [15]. Compared
to the widely-used M2M4 estimator, our proposed SNR estimator achieves more accurate
estimation. With the SNR provided by the proposed estimator, our CHMM-based spectrum
sensing scheme can achieve a high detection probability. Our contributions are summarized
as follows:

• We propose a spectrum sensing scheme based on a continuous hidden Markov model
in CUAVNs to obtain better sensing performance.

• We derive the closed-form detection probability and false alarm probability expres-
sions of the proposed CHMM-based spectrum sensing.

• Considering the fading similarity within the neighboring CUAVs in practical appli-
cations, we propose an SNR estimation scheme based on signal smoothness, which
reduces the SNR estimation error effectively, and further enhances the performance of
CHMM-based cooperative spectrum sensing.

The remainder of this paper is organized as follows. Section 2 discusses the related
work. Section 3 introduces the system model. In Section 4, the CHMM based spectrum
sensing scheme is proposed. In Section 5, the closed-form detection probability and false
alarm probability expressions of the proposed method are derived. In Section 6, we
design a novel SNR estimator to enhance the proposed CHMM-based spectrum sensing
scheme with a more accurate SNR. The simulation results are presented to evaluate the
proposed algorithms in Section 7. Section 8 concludes the work and discusses the possible
future work.
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2. Related Work
2.1. Hidden Markov Model (HMM) Based Spectrum Sensing

Hidden Markov model (HMM) based spectrum sensing means using the HMM to
model the spectrum sensing procedure. As the HMM has a hidden layer and an observable
layer, it fits well with the sensing procedure whose spectrum states are unknown but
the receiver can be obtained. Exploring the Markov property of the spectrum states is an
effective way to enhance the sensing performance [11]. Compared with deep learning based
spectrum sensing [16,17], CHMM-based spectrum sensing has a stronger interpretability
and smaller delay, and the initial probability distribution can be used to calculate the initial
spectrum utilization. In addition, the obtained parameters can also be used for digital
twinning of the communication system. It has been validated that the spectrum state can
be modeled as a Markov chain by analyzing real-world measurements [18]. A hidden
Markov model based scheme [19] is proposed to predict the arrival of the primary user
(PU). Authors in [20] evaluate the reliability of HMM based cooperative spectrum sensing
in cognitive radio networks, in the presence of random malfunctioning of secondary user
nodes participating in the process. Occupancy prediction schemes based on a discrete
hidden Markov model (DHMM) and a continuous hidden Markov model are investigated
in [21–24], respectively. Authors in [21,22] adopt DHMM to model the spectrum sensing
procedure, which do not make full use of the information obtained by the receiver. Authors
in [23,24] use CHMM to model the sensing procedure of CUAVNs. However, they do
not consider the dynamicity of UAVs, which is an important characteristic of the UAV
networks [25]. Besides, centralized spectrum sensing methods in [23,24] do not work well
in CUAVNs since the global fusion center is usually unreachable to secondary CUAVs.
Thus, in this paper, we propose a CHMM-based spectrum sensing method to enhance the
spectrum utilization in CUANs.

2.2. SNR Estimation

SNR estimation refers to the calculation of SNR by using signal information [14].
Various algorithms require SNR estimation for optimal performance if the SNR is not
constant, such as linear diversity combining techniques and Viterbi algorithms with soft-
decision [14]. Note that the knowledge of SNR is also required for typical commonly-used
spectrum sensing [12]. However, in practical UAV applications, it is difficult to obtain
accurate SNR. Conventionally, SNR estimators require knowledge of the signal or the
channel, such as the maximum likelihood (ML) SNR estimator [26] and particle swarm
optimization (PSO) SNR estimator, based on parameters of hardwares or channels [27]. In
addition, there exist estimators designed for specific signals or specific feature spectrum
sensing methods, such as the SNR estimator [28] for M-ary amplitude phase shift keying
(M-APSK) modulated signals, the SNR estimator for signal with Polar code [29], and the
estimator for eigenvalue-based spectrum detectors [30]. Lacking the prior knowledge
of the signal/channel and design for specific signals/sensing methods make it hard to
generally adopt the above estimators to various CUAVNs. Besides, some scholars have
paid attention to deep learning based SNR estimation methods, such as the convolutional
neural networks (CNN)—long short term memory (LSTM) based SNR estimators [31]
and the CNN-based SNR estimators designed for UAVNs [32]. However, in the spectrum
sensing of CUAVNs, the deep learning based methods are too complicated and take more
time, leading to the sensing term being missed. Taking all the above into consideration, we
design a generalized and low-complexity SNR estimator named SS-M2M4. Based on the
proposed SNR estimator, the CHMM-based spectrum sensing method can further enhance
detection performance.

3. System Model

In order to detect whether the authorized spectrum of PU is occupied, a spectrum
sensing method is adopted by multiple UAVs [3,33]. In this paper, we propose a CHMM-
based spectrum sensing method with consideration of the imperfect SNR estimation to
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enhance the detection probability. The overview of this unified scheme is shown in Figure 1.
First, to obtain the single-time spectrum sensing fusion result, we adopt the max-min
distance clustering algorithm [34] and heterogeneous two-stage-fusion spectrum sensing
scheme [35], which are described in Sections 3.1 and 3.2, respectively. Then, to fully
take advantage of the temporal correlation of the spectrum states, we propose a CHMM-
based spectrum sensing method, which will be introduced in Section 4. Considering the
imperfect SNR estimation in practical applications, we propose a novel SNR estimator
shown in Section 6 to offer the sensing scheme more desirable SNRs. Finally, combining the
CHMM-based spectrum sensing and the proposed SNR estimator, we propose the unified
CHMM-based spectrum sensing scheme with advanced SNR estimator.

Figure 1. The unified framework of the CHMM-based spectrum sensing scheme with the SS-M2M4
estimator.

3.1. Clustering Method

Considering the fusion delay brought by distributed cooperative spectrum sensing
(DCSS), and to further provide the proposed SS-M2M4 SNR estimator with graph topology,
a max-min distance clustering algorithm [34] is adopted. It divides CUAVs with similar
position and mobility into the same cluster, and selects the one with the highest trust value
in each cluster as the cluster head. Thus, we can adopt intra-cluster centralized cooperative
spectrum sensing. Due to the similar locations, the UAVs in the same cluster have similar
SNRs, which facilitates the SNR estimation. The cluster heads are less than the number
of the CUAVs, so the fusion delay will be reduced and, therefore, we adopt inter-cluster
distributed cooperative spectrum sensing.

3.2. Heterogeneous Two-Stage-Fusion Spectrum Sensing

To further improve the sensing performance in CUAVNs, a heterogeneous cooperative
spectrum sensing scheme is employed with the clustering outcome, as shown in Figure 2.
A symbol table of the notations is shown in Table 1.

8
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Figure 2. Heterogeneous Two-Stage-Fusion.

Table 1. Notations.

Notation Description Notatiom Description

a the amplitude of the transmitted
signal Ti

the likelihood ratio test statistic
of the ith cluster

fc
the carrier frequency of the

transmitted signal Tij

the cyclostationary detection
statistics or energy detection

statistics

ϕ
the carrier phase offset of the

transmitted signal ωij weight of TEij

M the number of sampling point ρi weight of TCi

α
the cyclic frequency of the

received signal γCi the SNR of the ith cluster head

TC

the test statistic for the
first-order cyclostationary

detection
γEij

the SNR of the jth node in the
ith cluster

TE
the test statistic for energy

detector L the Laplacian matrix of the
cluster heads topology

Tic the statistics of the ith cluster αl step size

TCi

the cyclostationary detection
statistics of the ith cluster head d maximum node degree of the

cluster graph

TEij

the energy detection statistics of
the jth the node in the ith cluster δhi

the weight of the ith cluster head

K the number of CUAVs in the ith
cluster T∗ the final consensus

KE
the number of cluster members

in the ith cluster W the consensus weight matrix

9
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3.2.1. Heterogeneous Spectrum Sensing Based on Clustering

To be specific, in the sensing state, a heterogeneous cooperative spectrum sensing
scheme [36] is used according to the clustering result. Here, the "heterogeneous” means two
different detection schemes: energy detection and cyclostationary detection [36]. Cluster
heads adopt cyclostationary detection, while other secondary UAVs in the same cluster
adopt energy detection. Cyclostationary feature detection is adopted to the cluster head,
since it has great detection accuracy and can maintain good performance even in environ-
ments with low SNR. The cluster members (CMs) adopt energy detection, since it is simple
to implement and does not require prior knowledge of the channels. Similarly to [36], we
assume that the transmitted signal of the primary user is a sinusoidal signal, in which the
n-th sample is expressed as

s(n) = aej2π fcn+ϕ. (1)

where a is the amplitude, fc is the carrier frequency, and ϕ is the carrier phase offset. The
received signal of the cluster heads is written as

yC(n) =

{
ω(n) H0

s(n) + ω(n) H1
, (2)

where ω(n) denotes the additive Gaussian noise with zero mean and unit variance. H0
indicates that the spectrum is absent, while H1 indicates that the spectrum is occupied. The
test statistic for the first-order cyclostationary detection [36] is expressed as

TC = | 1
M

M

∑
n=1

yC(n)e
−j2παn|, (3)

where α is the cyclic frequency, M denotes the number of sampling point. The received
signal yE(n) of the CUAV cluster member is modeled as the same as yC(n)

yE(n) =

{
ω(n), H0

s(n) + ω(n), H1
. (4)

The test statistic for the energy detector [36] is expressed as

TE =
1
M

M

∑
n=1
|yE(n)|2, (5)

where M denotes the number of sampling points. Let Tic = [TCi , TEi1 , TEi2 , . . . , TEiKE
] denotes

the vector of the statistics from the ith cluster, TCi is the cyclostationary detection statistics
of the ith cluster head, and its distribution [36] can be expressed as

TCi ∼




FN (

√
2

πM , π−2
πM ), H0

FN (ζi, 2γCi +
1
M − ζ2

i ), H1
, (6)

where ζi =
√

2
πM e−MγCi +

√
2γCi (1 − 2Q(

√
2MγCi )), γCi denotes the SNR of the ith

cluster head, and FN is the folded normal distribution [37]. TEij is the energy detection
statistics of the jth the node in the ith cluster. When M is large enough, TEij approximatively
follows normal distribution according to the central limit theorem [38], but slightly different
to [38], our TEij is 1/M times the energy detection statistics in [38], thus the our SNR is

10
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M times the SNR in [38], and we assume the energy of the received signal is 1. Thus, the
distribution of TEij can be expressed as

TEij ∼




N (γEij

−1,
2γEij

−2

M ), H0

N (1 + γ−1
Eij

,
2(γ−2

Eij
+2γEij

−1)

M ), H1

, (7)

where γEij is the SNR of the jth node in the ith cluster.

3.2.2. Two-Stage-Fusion

In the fusion duration, we adopt a two-stage-fusion scheme [34], which includes the
intra-cluster fusion stage and the inter-cluster fusion stage. The CUAV cluster members
adopt energy detection, and we apply high-accuracy centralized soft fusion in the intra-
cluster since the performance of energy detection is somewhat not precise. In the intra-
cluster fusion stage, according to the assumption that the observations are independent,
we can attain the likelihood ratio test (LRT) [36] of the ith cluster

Ti =
K

∏
j=1

P[Tij|H1]

P[Tij|H0]

=
KE

∏
j=1

P[TEij |H1]

P[TEij |H0]
× P[TCi|H1]

P[TCi|H0]
, (8)

there are K CUAVs, KE CMs in the ith cluster, where KE = K− 1. Tij denotes cyclostationary
detection statistics or energy detection statistics, P[Tij|H1] and P[Tij|H0] represent the
probability density under hypotheses H1 and H0, respectively. According to the TEij , TCi ,
the LRT in Equation (8) can be simplified [36] as

Ti =
KE

∑
j=1

ωijTEij + ρiTCi. (9)

where ωij =
γEij

2(1+γEij
)
, and ρi =

√
2M2γCi .

As for the inter-cluster fusion stage, considering the good sensing performance of
cyclostationary detection and the large distance between the cluster heads, distributed
consensus-based fusion [38] is performed. Each cluster head communicates with its neigh-
bouring cluster heads to exchange information, and the exchange process is iteratively
done. The initial information (which is the intra-cluster fusion result) of the ith cluster
head is denoted as Ti(0). Then, according to the network topology, these cluster heads
repeatedly iterate until Ti(k) covers a common value. The consensus-based scheme [38] is

Ti(k + 1) = WTi(k). (10)

where W = I− α∆−1L, and L is the Laplacian matrix of the cluster heads topology. α
is the step size, and it satisfies 0 < α < d−1, d is maximum node degree of the graph.
∆ = diag{δh1 , δh2 , . . . , δhn}, where δhi [38] is the weight according to the channel condition
of the ith cluster head, and it satisfies δhi

≥ 1. The cluster heads communicate with their
own neighbors, then a final consensus [38] is reached as

T∗ = lim
k→∞

T(k) =
∑n

i=1 δhi
Ti(0)

∑n
hi=1

δhi

. (11)

11
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4. Continuous Hidden Markov Model Based Spectrum Sensing

To fully take advantage of the temporal correlation of the spectrum states, we propose
a CHMM-based spectrum sensing scheme as shown in Figure 3. Firstly, hidden HMM and
CHMM are introduced, and the suitability regarding the spectrum states as a continuous
hidden Markov model are analyzed. Then, the model is trained with the forward-back
algorithm and Baum–Welch algorithm. The prediction obtained according to CHMM
model is used to assist the sensing.

4.1. Hidden Markov Model

The hidden Markov model is a double stochastic process with a hidden layer and
an observable layer. The hidden process is an unobservable Markov chain, which can be
obtained through the observed states.

The true states of the spectrum are not observable but the sensing results can be easily
obtained. Therefore, the hidden Markov chain model fits well with the PU spectrum state.
For HMM, there are three basic problems that need to be solved, i.e., the evaluation problem
that computes the probability of the observed fusion result sequence, the learning problem
that adjusts the model parameters to maximize the probability of the observed sequence,
and the predication problem that calculates the most likely hidden spectrum state sequence
according to the observation sequence and model parameters.

In order to avoid the distortion caused by the discretization of continuous variables in
the cluster heads, we consider the continuous HMM, which replaces the discrete observa-
tion states with continuous characteristics. With more specific spectrum information, we
can obtain better detection performance.

Figure 3. CHMM-based Spectrum Sensing.

4.2. Continuous Hidden Markov Model of Spectrum States

The PU spectrum state at time instant t is given by xt, and it can be 0 or 1, where 0
represents spectrum absence, 1 denotes spectrum occupancy. The sequence of the PU states
X = (x1, x2, . . . , xt) can be seen as the hidden Markov chain. ot is the fusion value of the
heterogeneous two-fusion-stage spectrum sensing at time instant t, and O = (o1, o2, . . . , ot)
is the observable layer. The hidden Markov chain and the observable layer constitute a
continuous hidden Markov model, which can be formulated as λ = (π, A, µ, Σ, C) [39],
where π represents the initial probability vector of the hidden spectrum state, A is the tran-
sition matrix of the two states. The continuous hidden Markov model can be represented

12
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in Figure 4. µ, Σ, C are the parameters of the observation probability distribution. The
Gaussian mixture model (GMM) is used to model the probability, as the Gaussian process
has good adaptability in dealing with complex regression problems and classification. Thus,
the observation probability in state i according to the GMM can be written as

bi(o) =
M

∑
m=1

CimN(o, µim, Σim), i = 0, 1, (12)

which is composed of M Gaussian mixtures. i denotes the spectrum state. Cim is the
proportion of the mth mixture coefficient in state i, o denotes the fusion result calculated by
the clustered heterogeneous two-fusion-stage scheme, µim and Σim represent the mean and
the covariance of mth mixture in state i, respectively.

Figure 4. Continuous hidden Markov model.

To employ the continuous hidden Markov model to cognitive UAV networks, the
forward-backward algorithm and Baum–Welch algorithm are utilized to solve the evalu-
ation problem and the training problem, respectively. As for the prediction problem, the
Viterbi algorithm is utilized.

4.3. Evaluation Process and Learning Process of Continuous Hidden Markov Model

For the evaluation problem, the forward-back algorithm is used to calculate the
probability of the observed fusion value sequence, and it can be divided into two parts: the
forward algorithm and backward algorithm. For a given λ and the spectrum state at time
t, the forward quantity αt(i) is the joint probability of sequence O from the initial time to
time t, and the state in Si at time t, βt(i) is the joint probability of sequence from time t + 1
to the final time and the state in Si at time t. The forward and backward quantities [39] are
defined as

αt(i) = P(o1, o2, . . . , ot, qt = Si|λ), (13)

βt(i) = P(ot+1, ot+2, . . . , oT |qt = Si, λ), (14)

with the initializations

α1(i) = πibi(o1), i = 0, 1, (15)

βT(i) = 1, i = 0, 1. (16)

The forward and backward quantities can be calculated by

αt(j) = [
2

∑
i=1

αt(i)ai,j]bj(ot), t = 1, 2, . . . , T, j = 0, 1, (17)

βt(i) =
2

∑
j=1

ai,jbj(ot+1)βt+1(j), t = T − 1, T − 2, . . . , 1, i = 0, 1. (18)

13
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Then, combining the forward and backward algorithm, we can get the forward-
backward algorithm, then the probability of the observed fusion result sequence O with
the given model parameters λ is obtained [39] as

P(O|λ) =
2

∑
i=1

αt(i)βt(i). (19)

To solve the learning problem, the Baum–Welch algorithm is adopted, which is one
of the expectation–maximization algorithms and uses the forward-backward algorithm in
each expectation process. Before using this algorithm, we need to define three parameters:
γt(i), ξt(i, j) and γt(j, m). γt(i) denotes the probability of the ith spectrum state at time t,
ξt(i, j) denotes the probability that at time t the spectrum state is Si and at time t + 1 the
spectrum state is Sj, γt(j, m) denotes the probability of the mth Gaussian mixture of state
Sj at time t . γt(i), ξt(i, j) and γt(j, m) can be calculated [39] as follows:

γt(i) =
αt(i)βt(i)

∑2
i=1 αt(i)βt(i)

, (20)

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

∑2
i=1 ∑2

j=1 αt(i)aijbj(ot+1)βt+1(j)
, (21)

γt(j, m) =
αt(j)βt(j)

∑2
i=1 αt(i)βt(i)

· cj,mN(ot, µj,m, Σj,m)

∑2
n=1 N(ot, µj,m, Σj,m)

. (22)

When enough training data are provided, that is, the sequences of fusion results
obtained from the heterogeneous two-stage-fusion sensing scheme and corresponding
spectrum states, the Baum–Welch algorithm offers a way to train the model, outputting
good CHMM parameters. In specific, initial model parameters are first selected according
to the spectrum condition. Second, αt(i), βt+1(j), γt(i), ξt(i, j) and γt(j, m) are calculated.
Third, the parameters are updated according to Appendix A. The forward-backward
procedure and the updating procedure are repeated until the probability of the observation
sequence P(O|λ) satisfies the convergence condition or the increments of parameters are
less than threshold. Finally, we can obtain the trained model parameters λ = (π, A, µ, Σ, C).

4.4. Predication of Spectrum State with CHMM

In this section, we adopt the Viterbi algorithm to solve the predication problem.
With the learned model parameters and the observed sequence of fusion results, we can
calculate the joint probability of the observed sequence. The real spectrum state sequence
is calculated [39] as

P(O, X|λ) = P(O|X, λ)P(X, λ)

= πx1 bx1(o1)ax1x2 bx2(o2)axT−1xT bxT (oT), (23)

where xt denotes the spectrum state at time t, axtxt+1 represents the transition probability
from state xt to xt+1, bxt(ot) denotes the observation probability of ot, when the real
spectrum state is xt. Then, select the sequence with the maximum probability as the
prediction sequence

X = argmax
allX

P(O, X|λ). (24)

Next, we can get the prediction xT and the prediction sequence X, and compare the
predication result X with the real state sequence to get the prediction accuracy Pr. When
the prediction is “busy”, Pr can denote the probability that the spectrum is really occupied
at time T, 1− Pr can denote the probability that the spectrum is really absent at time T.
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Similarly, when the prediction is “idle”, the probability of occupancy is 1− Pr, and the
probability of absence is Pr.

Combining the prediction accuracy of cluster heads with the fusion result of the
detectors, we can get a new false alarm probability and detection probability. There are
mainly two kinds of predictions: busy and idle. When the prediction is “busy”, we multiply
the fusion result T by ε (ε > 1). Similarly, when the prediction result is “idle”, we multiply
the fusion value by η (η < 1). Then we obtain the final fusion statistic adjusted by the
prediction. After that, we compare the final fusion statistic with the threshold. When the
fusion statistic is larger than the threshold, the decision is “busy” and vice versa. Thus, the
final detection probability PD can be calculated as

PD = Pr · Pd(εT) + (1− Pr) · Pd(ηT). (25)

5. Analysis of Detection Performance for CHMM-Based Spectrum Sensing

Under H1 means the spectrum is occupied. When the sampling points are large
enough, TEij approximately follows normal distribution, as does TCj (which will be ex-
plained in Section 7.1). Thus, when the spectrum is occupied, the fusion result can be
calculated as

T =
n

∑
i=1

δhi
(

KiE

∑
j=1

ωijTEij + ρiTCi)

=
n

∑
i=1

KiE

∑
j=1

δhi
ωijTEij +

n

∑
i=1

δhi
ρiTCi, (26)

where n is the number of clusters, δhi is the weight according to the channel condition of the
ith cluster head, KiE is the number of cluster members (CMs) in the ith cluster. According

to [36], the weight can be simplified as ωij = γEij

/
2(1 + γEij), and ρi =

√
2M2γCi . The

fusion result T is an approximately normally distributed random variable with mean µT
and variance σT

2, the mean and the variance are expressed as

µT =
n

∑
i=1

KiE

∑
j=1

δhi
ωij(1 + γEij

−1) +
n

∑
i=1

δhi
ρi

√
2γCi

=
n

∑
i=1

KiE

∑
j=1

δhi

2
+

n

∑
i=1

2Mδhi
γCi, (27)

and

σT
2 =

n

∑
i=1

KiE

∑
j=1

δhi
2(1 + 2γEij)

2M(1 + γEij)
2 +

n

∑
i=1

2Mδhi
2γCi

2. (28)

Then we can obtain the final detection probability PD of the CUAVNs,

PD = Pr ·Q(
λT
ε − µT

σT
) + (1− Pr) ·Q(

λT
η − µT

σT
), (29)

where λT is the threshold.
Under H0, when M is large enough, TEij approximately follows normal distribution,

and the probability density TCij can be approximately represented as

f (TC,i) =
2√

2πσTC,i

exp

{
− TC,i

2

2σTC,i
2

}
. (30)
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The probability density of the fusion result T can be represented as

f (T) =
n√

2πσ2
exp

{
− (T − γ)2

2σ2

}
× er f c

(
σC(T − γ)√

2σE2σ2

)
, (31)

where γ = ∑n
i=1 ∑KE

j=1 δhi

/
{2(1 + γEij)}, σ2 = σE

2 + σC
2, σC

2 = ∑n
i=1 2Mδhi

2γCi ,

σE
2 = ∑n

i=1 ∑KE
j=1 δhi

2/{2M(1 + γEij)
2}. The proof of f (T) is shown in Appendix B.

The false alarm probability can be calculated as follows, where F(T) =
∫ T

0 f (x)dx,

PF = Pr · (1− F(ηT)) + (1− Pr) · (1− F(εT))

= 1− PrF(ηT)− (1− Pr)F(εT). (32)

6. CHMM-Based Spectrum Sensing with Practical SNR Estimation

The above work is based on the assumption that the SNR is perfectly known, i.e., we
use a perfectly-known SNR when calculating the fusion weight, detection probability and
false alarm probability. In this section, we further consider the scenario that the SNR is not
perfectly known, and design a novel SNR estimation algorithm: space smoothing-based
M2M4 (SS-M2M4), which modifies M2M4 with spatial smoothness, a technique that is used
in the field of signal reconstruction in graphs. This algorithm can provide a more accurate
SNR for the proposed CHMM-based spectrum sensing method.

6.1. Typical SNR Estimator

M2M4 is one of the most widely used blind estimators [14]. M2 and M4 represent the
second and the fourth moment of yn, respectively, where yn refers to the samples of the
received signal. M2 and M4 can be calculated as follows [14]

M2 = E{yny∗n}, (33)

M4 = E{(yny∗n)
2}. (34)

Then with second-order moments and fourth-order moments, we can estimate SNR
as follows,

p̂ =

√
2M2

2 −M4

M2 −
√

2M2
2 −M4

. (35)

In practice, the second and fourth moments are usually calculated by their own
time averages:

M2 =
1
M

M

∑
n=0

yn
2, (36)

M4 =
1
M

M

∑
n=0

yn
4. (37)

6.2. SS-M2M4 SNR Estimation Algorithm

In CUAVNs, the CUAVs within the same cluster are close to each other, and thus,
their large-scale fading and shadow fading are generally similar [40]. Therefore, their
SNRs are correlated. However, the M2M4 algorithm estimates these SNRs individually,
ignoring the spatial correlation among the SNRs of those neighbouring users. CUAVNs
have their own topology, and the SNR estimation problem can be naturally modeled as
graph signal processing problems. Therefore, we propose a novel SNR estimation algorithm
as shown in Algorithm 1, which considers the smoothness between neighbors [15]. Firstly,
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the M2M4 algorithm is applied to calculate the SNR of each CUAV, and the estimation result
can be represented as p0 = {p01, p02, . . . , p0N}. After that, to ensure that the secondary
CUAVs that are close to each other are in the same cluster, the max–min distance clustering
algorithm described in Section 3.1 is adopted. Based on the clustering result, we consider
each cluster as a new graph, and then correct the original SNR to get the final estimated
SNR p̂ = { p̂1, p̂2, . . . , p̂N} by Equation (42).

The problem of estimating p̂ from the original SNR p0 can be modeled as the following
optimization problem,

min
p̂

1
2
‖ p0 − p̂ ‖2

2 +
ρ

2
‖ Hp̂ ‖2, (38)

where H is a high-pass graph filter, and ρ is the regularization parameter. The first term pe-
nalizes the error of the estimated graph signal, the second term encourages the smoothness
of the estimated SNR. Similar to [15], we set H = L1/2, where L is the Laplacian matrix, so
that ‖ Hp̂ ‖2

2 = p̂TLp̂. The smoothness of the estimated graph signal can be characterized
by the graph Laplacian quadratic form

S(p̂) = p̂TLp̂. (39)

It can be written as

S(p̂) = ∑
(i,j∈ε)

Wij( p̂j − p̂i)
2, (40)

where ε is the set of edges. The smaller the function value S(p̂) is, the smoother the SNR
difference of the cluster, especially when neighboring CUAVs connected by an edge with a
large weight have similar values [15]. We can then represent the optimization problem as

min
p̂

1
2
‖ p0 − p̂ ‖2

2 +
ρ

2
p̂TLp̂. (41)

To get the best estimated SNRs, we take the derivation of the formula, and get the
optimal solution as

p̂ = (1 + ρL)−1p0. (42)

Algorithm 1 Space smoothing-based M2M4 SNR estimation algorithm
1: Input: The received signal sample of each CUAV {yi1, yi2, . . . , yin}.
2: Output: The SNR of all the N CUAVs p̂ = {p1, p2, . . . , pN}.
Step 1: M2M4 SNR Estimation

3: Calculate SNR of all the CUAVs with the traditional M2M4 algorithm in Section 6.1,

obtain {p01, p02, . . . , p0N}.
Step 2: Space Smoothing

4: Adopt the Max-Min distance clustering algorithm, obtain the clustering result.

5: With the clustering result, calculate the SNR of CUAVs in each cluster by Equation (34),

then obtain the final estimated SNR p̂ = { p̂1, p̂2, . . . , p̂N}.
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6.3. CHMM-Based Spectrum Sensing with SS-M2M4 SNR Estimation

The estimated SNRs can provide better SNR information for the CHMM-based spec-
trum sensing procedure, and thus we can obtain more accurate fusion weight in a heteroge-
nous two-stage-fusion stage. Therefore, the CHMM-based spectrum sensing scheme with
estimated SNRs achieves a higher detection probability, and the utilization of spectrum
sensing can be further enhanced.

The proposed continuous hidden Markov model based spectrum sensing with space
smoothing M2M4 SNR estimator can achieve good detection performance in CUAVNs,
since it has some advantages over the existing HMM-based spectrum sensing method and
the existing SNR estimators. The proposed method can either achieve better performance
or be more suitable for UAV applications. The characteristics of these existed methods
compared to the proposed method are summarized in Table 2.

Table 2. The characteristics of the existing methods.

Methods Characteristics Examples

DHMM-based spectrum
sensing

Errors caused by quantization
degrade detection

performance

Suguna et al. [21], Eltom
et al. [22]

CHMM-based spectrum
sensing

Centralized spectrum sensing
and lack of dynamicity, not

suitable for CUAVNs

Halaseh et al. [23], Cheng
et al. [24]

Deep learning-based
spectrum sensing

Poor interpretability and
missing of the sensing term
caused by the large delay

Xie et al. [16], Xie et al. [17]

SNR estimator with
pre-knowledge

Hard to get pre-knowledge of
channel in UAVs applications

Raza et al. [26], Manesh
et al. [27]

SNR estimator designed for
specific signals

Not generalized for UAVs
applications He et al. [28], Chen et al. [29]

Deep learning-based SNR
estimator

Missing of the sensing term
caused by the long estimation

time
Ngo et al. [31], Yang et al. [32]

7. Evaluation and Numerical Results

In this section, the validity of the approximation of folded normal distribution is
firstly presented. Then, the detection performance of the proposed CHMM-based spectrum
sensing scheme is evaluated by comparing with the non-CHMM ones. Next, we verify the
effectiveness of the proposed SS-M2M4 estimator and further demonstrate the performance
of the unified CHMM-based spectrum sensing with the SS-M2M4 estimator. Finally, we
further consider mutipath effects in CUAVNs, and verify the effectiveness of the proposed
scheme under the Rice channel.

7.1. Approximation of Folded Normal Distribution

The cluster heads adopt cyclostationary detection to sense the primary spectrum.
Under the hypotheses H1, the cyclostationary detection statistic x follows the folded normal
distribution, which can be represented as

f (x) =
1√

2π 1
M

exp

{
(x−√2γ)2

2 1
M

}
+

1√
2π 1

M

exp

{
(x +

√
2γ)2

2 1
M

}
, x > 0. (43)

Figure 5 shows the probability density function of the cyclostationary feature under
hypotheses H1 when SNR = −15 dB, M = 2048. As shown in Figure 5, the folded normal
distribution mainly coincides with the normal distribution. When x is less than 0.0025,
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which is already 10.8σ away from the mean, the two distributions start diverging. In fact,
the two terms of folded normal distribution f (x) can be seen as two normal distributions
with opposite means and the same variance. In spectrum sensing, when the channel is
occupied, the mean

√
2γ is away from 0, and it is much larger than the variance. Thus,

when x > 0, the second term of f (x) contributes little to the folded normal distribution.
Therefore, in CUAVNs, folded normal distribution can be seen as its first term, that is, a
normal distribution in the positive axis.

Figure 5. Approximation of folded distribution.

7.2. Performance of CHMM-Based Spectrum Sensing with Perfect SNR Estimation

In the simulations, the number of secondary CUAVs is set to 20. The CUAVs move
according to the random walk mobility model [34], in which the maximum velocity of the
CUAVs is 36km/h, and the sensing time is 20 µs. The range of the SNR in our CUAVNs is
set as [−15, −3] dB according to [32,33,41]. Locations of secondary nodes lead to different
SNRs, we assume that the maximum distance from the transmitter to the secondary UAV
is about 1.5 to 2 times the minimum [1]. According to the large-scale fading calculation
formula [40], assuming that the fading coefficient is 2, we can obtain 5 dB as a SNR range
in our simulation, in other words, the maximum SNR difference of secondary users is
within the range of 5 dB. We assume that all secondary CUAVs experience additive white
Gaussian noise.

According to [42], the spectrum utilization rate below 3G (The Federal Communi-
cations Commission (FCC) of the United States and the European Union (EU) have set
2.4 GHz and 5.8 GHz as the band of civil UAVs. The EU also allocates 433 MHz and
863–870 MHz to UAVs. Similarly, China has set 840.5–845 MHz, 1438–1444 MHz and
2408–2440 MHz as that for UAVs. Compared to 5.8 GHz, more UAVs work on lower bands,
below 3 GHz, thus the dilemma of spectrum scarcity is more serious on the below-3G
bands) in Berkeley is about 0.3, therefore, we set the initial distribution of the spectrum
state distribution as π = (0.7, 0.3)T , that is to say, the probability of spectrum presence is
0.3, and the probability of spectrum absence is 0.7. We assume a 1st order Markov chain,
and the spectrum state at time t is known, where the distribution is either (1, 0)T or (0, 1)T .
As stated before, the spectrum utilization is around 0.3, the transition probability of absence
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to presence is thus set as 0.25, and in the same way, the transition probability of presence to
presence is set as 0.35. Therefore, the transition matrix is A = [0.75, 0.25; 0.65, 0.35]. Next,
we use MATLAB to generate a spectrum state sequence with a length of 8000 under the
parameters above. According to each single spectrum state (hidden state) and different
clustering results, the simulated energy detection statistics TEij and cyclostationary statistics
TC,i are obtained, respectively. Then corresponding observation values ot are calculated
according to the two-step-fusion method.

Figures 6 and 7 show the received operating curve (ROC) of the CHMM-based sens-
ing method and non-CHMM-based ones under the AWGN channel with 20 CUAVs. In
Figure 6, the soft–soft represents the heterogeneous two-stage sensing scheme represented
in Section 2.2, in which both the intra-cluster fusion stage and the inter-cluster fusion
stage adopt a soft combining rule [43]. It can be observed from Figure 6 that the soft–soft
heterogeneous sensing scheme with CHMM predication outperforms the non-predication
one (soft–soft). Due to CHMM avoiding the distortion caused by the discretization of
DHMM, the proposed CHMM-based sensing scheme can further improve the detection
probability compared with the DHMM-based soft–soft scheme, which adopts DHMM to
model the sensing procedure. What stands out in Figure 6 is the achieved high detection
probability of 0.91 when false alarm probability is around 0.1. A higher PD with small PF
indicates that the proposed algorithm can offer the secondary CUAVs more opportunities
to access the spectrum and maintain tolerable interruption to the primary user.
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Figure 6. ROC of CHMM soft–soft scheme (the proposed CHMM-based heterogeneous two-stage
fusion sensing scheme), DHMM soft–soft scheme and non-CHMM soft–soft scheme.

0 0.2 0.4 0.6 0.8 1

False Alarm Probability P
F

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

te
c
ti
o

n
 P

ro
b

a
b

ili
ty

 P
D

Soft-Or

CHMM Soft-Or

Or-Or

CHMM Or-Or
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In addition, we also simulate the soft–or and or–or schemes [36] to verify the univer-
sality of the CHMM model for spectrum sensing in Figure 7, where soft–or means a soft
combining rule at the intra-cluster fusion stage and/or a combining rule [43] at the inter-
cluster fusion stage. Similarly, or–or means an or combining rule at both the intra-cluster
fusion stage and the inter-cluster fusion stage. As shown in Figure 7, in addition to the
good detection performance offered by the heterogeneous soft–soft scheme, the proposed
CHMM can also achieve obvious improvement when it is implemented into the other two
fusion schemes: or–or and soft–or. Then, with the help of a better sensing performance, the
spectrum efficiency and throughput can be further improved.

7.3. Performance of CHMM-Based Spectrum Sensing with SS-M2M4 SNR Estimator

In this section, the simulation evaluation of our proposed SS-M2M4 in comparison
with the existing M2M4 algorithm is presented. The simulation results with SNR in
[−15, −3] are shown in Figure 8. Note that the SNR = −15 dB represents the SNR range
from [−15, −10]. Similarly, −3 dB represents the range [−3, 2]. MSE is used to measure
the effect of SNR estimation, and the calculation scheme of MSE is given as

MSE =
1
N

N

∑
i=1

(pi − p̂i)
2, (44)

where p̂i represents the estimated SNR of the ith CUAV, pi represents the actual SNR of the
ith CUAV. Figure 8 shows that the proposed scheme offers a good SNR error decrease. It can
be seen that Figure 8 also shows that the proposed scheme can improve the performance of
SNR estimation up to 3dB (when a 2.3× 10−3 MSE is required, the M2M4 estimator needs
the actual SNR to be −6 dB, but SS-M2M4 only needs it to be −9 dB). An accurate SNR
estimator can further help the CUAV get a better detection performance. Consequently,
it is reasonable to expect good detection performance when the CHMM-based spectrum
sensing adopts the novel SNR estimation algorithm.
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Figure 8. MSE of SS-M2M4 estimator and M2M4 estimator.

Figure 9 shows the CHMM-based spectrum sensing with the SS-M2M4 estimator
significantly outperforming the original ones, which either do not use the CHMM model
(spectrum sensing + SS-M2M4 SNR estimator) or employ the M2M4 estimator (CHMM
spectrum sensing + M2M4 SNR estimator), or neither (spectrum sensing + M2M4 SNR
estimator). Specifically, when the false alarm is 0.1, the unified scheme achieves a detection
probability of 0.95, while the CHMM-based spectrum sensing with the original SNR
estimator (CHMM spectrum sensing + M2M4 SNR estimator) can only achieve around
0.82. Besides, the unified scheme can further enhance the detection performance compared
with the DHMM-based spectrum sensing with the proposed SS-M2M4 (DHMM spectrum
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sensing + SS-M2M4 SNR estimator), and the DHMM-based spectrum sensing with the
proposed SNR estimator can also outperform the DHMM-based spectrum sensing with
the original SNR estimator (DHMM spectrum sensing + M2M4 SNR estimator). In other
words, the proposed SNR estimator has a universality to a different spectrum sensing
method and the unified scheme can utilize the spectrum more efficiently and maintain a
tiny interference to the primary user.
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Figure 9. Detection probability versus false alarm probability.

7.4. Performance of CHMM-Based Spectrum Sensing with SS-M2M4 SNR Estimator under
Rice Channel

In the above simulation, we assume the AWGN channel and verify the effectiveness of
the proposed scheme under the AWGN channel. In this section, we have further considered
the Rice channel when mutipath effects have been introduced in UAV applications [44].
The simulation of the proposed scheme under the Rice channel is shown in Figure 10,
according to [44], we set the Rician factor as K = 10. Figure 10 shows that even under the
Rice channel, the proposed method (Rice CHMM sensing+SS-M2M4 estimator) can obtain
better performance compared with DHMM-based spectrum sensing with the proposed
SS-M2M4 SNR estimator (Rice DHMM sensing + SS-M2M4 estimator), CHMM-based
spectrum sensing with M2M4 SNR estimator (Rice CHMM sensing+M2M4 estimator), and
other methods. Although the detection probability under the Rice channel is lower than that
under the AWGN channel, the proposed scheme can also achieve better performance than
other schemes under the Rice channel, in other words, our scheme is effective in CUANs.
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Figure 10. Detection probability versus false alarm probability under the Rice channel.
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8. Conclusions

In this paper, we consider modeling primary user states as a Markov chain, and
propose a spectrum sensing scheme based on a continuous hidden Markov model with
perfect SNR estimation. We derive the detection probability and false alarm probability of
the heterogenous-fusion clustered CUAVNs. Taking the similarity of the SNRs of CUAVs
in the same cluster into account, we propose a space smoothing based SNR estimator
for sensing in CUAVNs to offer a more accurate SNR to the proposed sensing method.
Simulation results show that the unified CHMM-based sensing scheme with the proposed
SNR estimator enhances the sensing performance considerably.

The work can be further extended in the following aspects in our future research. First,
in the proposed CHMM based spectrum sensing method, the hidden spectrum chain is
modeled by first-order Markov chain, and it has not made full use of the existing historical
information. In the future research, the high-order Markov chain can be used to model
the spectrum sensing process to further improve the accuracy of prediction. Second, in
this paper, we considered cognitive UAV networks with a single primary user. Recently,
cognitive UAV networks with multi primary users [33] have been proposed to enhance the
spectrum utilization. Thus, we can explore our work in multi-PUs CUAVNs in the future.
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Appendix A. Formulas of the Updated CHMM Parameters

The parameters of the CHMM [39] λ = (π, A, µ, Σ, C) can be updated with parameters
γt(i), ξt(i, j) and γt(j, m) as follows

πi = γt(i), (A1)

aij =
∑T−1

t=1 δt(i, j)

∑T−1
t=1 γt(i)

, (A2)

cj,m =
∑T

t=1 γt(j, m)

∑T
t=1 ∑2

n=1 γt(j, n)
, (A3)

µj,m =
∑T

t=1 γt(j, m)ot

∑T
t=1 γt(j, m)

, (A4)

Σj,m =
∑T

t=1 γt(j, m)(ot − µj,m)(ot − µj,m)
T

∑T
t=1 γt(j, m)

. (A5)

Appendix B. Proof of Distribution of the Fusion Value

In this section, we derive the distribution of the fusion result T, where T = TE +
TC. To obtain the fusion result T, we first add the energy detection result TEij and the
cyclostationary detection result TCi , respectively, and then calculate the summation of the
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two different detection results. When M is large enough, the sum of the energy detection
TE follows normal distribution written as

f (TE) =
1√

2πσE2
e
− (TE−γ)2

2σE
2 , (A6)

where mean γ = ∑n
i=1 ∑KE

j=1 δhi
/{2(1 + γEij)}, variance σE

2 = ∑n
i=1 ∑KE

j=1 δhi
2/

{2M(1 + γEij)
2}. To obtain the distribution which the sum of cyclostationary detection

follows, we do the following derivation. For simplicity, x denotes one cyclostationary detec-
tion result TCi , y denotes another cyclostationary detection result TCj , and the distribution
of x and y can be represent as

f (x) =
2√
2πσ

e−
x2

2σ2 , (A7)

f (y) =
2√
2πσ

e−
y2

2σ2 , (A8)

with the same mean 0 and the same variance σ2 = 2
M , z = ax + by is defined as the sum of

x and y, we can derive the distribution of z as

f (z) =
∫ +∞

0

1
a

fx

(
z− by

a

)
fy(y)dy

=
∫ +∞

0

1
a

2√
2πσ

exp



−

( z−by
a )

2

2σ2





2√
2πσ

exp
{
− y2

2σ2

}
dy

=

(
2√

2aπσ

)2
exp



−

z2

a2+b2

2σ2




∫ +∞

0
exp



−

(
√

a2 + b2y− bz√
a2+b2 )

2

2a2σ2



dy

=

(
2√

2aπσ

)2 ∫ +∞

− bz√
2a
√

a2+b2σ

exp
{
−t2

}
dt
√

2aσ√
a2 + b2

exp
{
− z2

2(a2 + b2)σ2

}

=

(
2√

2aπσ

)2 √2aσ√
a2 + b2

exp
{
− z2

2(a2 + b2)σ2

} ∫ +∞

−∞
exp

{
−t2

}
dt

=
4√

2π(a2 + b2)σ2
exp

{
− z2

2(a2 + b2)σ2

}
, (A9)

where t =

√
a2+b2y− bz√

a2+b2√
2aσ

, y =

√
2aσt+ bz√

a2+b2√
a2+b2 . From the above proof, we can conclude

that the distribution of z is similar with x and y, but there exist some differences: the
coefficient has doubled, the variance is the sum of σx and σy. Thus TC follows the
following distribution

f (TC) =
2n√

2πσC
2

exp

{
− TC

2

2σC
2

}
. (A10)

After obtaining the distribution of cyclostationary detection, we can further derive the
distribution of the fusion result T as follows,
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f (T) =
∫ +∞

0
fTE(T − TC) fTC (TC)dTC

=
2n√

2πσE2
√

2πσC
2

∫ +∞

0
exp

{
−TC

2

2σ2
C

}
exp{− (T − TC − γ)2

2σE2 }dTC

=
2n

2π
√

σE2σ2
C

exp

{
− (T − γ)2

2σ2

} ∫ +∞

0
exp





−
[
σTC − σC

2(T−γ)
σ

]2

2σE2σC
2





dTC

=
2n

2π
√

σE2σ2
C

exp

{
− (T − γ)2

2σ2

}
2
√

σE2σC
2

σ

∫ +∞

0
exp

{
−t2

}
dt

=
n√

2πσ2
exp

{
− (T − γ)2

2σ2

}
er f c

(
σC(T − γ)√

2σE2σ2

)
, (A11)

where n is number of the clusters, t =

[√
σE2 + σC

2TC − σC
2(T−γ)√
σE2+σC

2

]
/
√

2σE2σC
2, σC

2 =

∑n
i=1 2Mδhi

2γCi , σ2 = σE
2 + σC

2. Finally, the distribution of the fusion result T under
hypotheses H0 can be obtained as

f (T) =
n√

2πσ2
exp

{
− (T − γ)2

2σ2

}
er f c

(
σC(T − γ)√

2σE2σ2

)
. (A12)

References
1. Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.-H.; Debbah, M. A tutorial on UAVs for wireless networks: Applications, challenges,

and open problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [CrossRef]
2. Kumar, K.; Kumar, S.; Kaiwartya, O.; Sikandar, A.; Kharel, R.; Mauri, J.L. Internet of unmanned aerial vehicles: QoS provisioning

in aerial ad-hoc networks. Sensors 2020, 20, 3160. [CrossRef]
3. Shen, F.; Ding, G.; Wang, Z.; Wu, Q. UAV-based 3D spectrum sensing in spectrum- heterogeneous networks. IEEE Trans. Veh.

Technol. 2019, 68, 5711–5722. [CrossRef]
4. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Low-latency federated learning and blockchain for edge association in

digital twin empowered 6G networks. IEEE Trans. Ind. Inform. 2020, 17, 5098–5107. [CrossRef]
5. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Communication-efficient federated learning and permissioned blockchain

for digital twin edge networks. IEEE Internet Things J. 2021, 8, 2276–2288. [CrossRef]
6. Liu, X.; Zheng, K.; Chi, K.; Zhu, Y.-H. Cooperative spectrum sensing optimization in energy-harvesting cognitive radio networks.

IEEE Trans. Wirel. Commun. 2020, 19, 7663–7676. [CrossRef]
7. Chen, X.; Feng, Z.; Wei, Z.; Gao, F.; Yuan, X. Performance of joint sensing-communication cooperative sensing UAV network.

IEEE Trans. Veh. Technol. 2020, 69, 15545–15556. [CrossRef]
8. Chen, H.; Wang, Z.; Zhang, L. Collaborative spectrum sensing for illegal drone detection: A deep learning-based image

classification perspective. China Commun. 2020, 17, 81–92. [CrossRef]
9. Chen, H.; Kung, H.T.; Vlah, D.; Hague, D.; Muccio, M.; Poland, B. Collaborative compressive spectrum sensing in a UAV

environment. In Proceedings of the 2011 Military Communications Conference, Baltimore, MD, USA, 7–10 November 2011;
pp. 142–148.

10. Shang, B.; Liu, L.; Rao, R.M.; Marojevic, V.; Reed, J.H. 3D spectrum sharing for hybrid D2D and UAV networks. IEEE Trans.
Commun. 2020, 68, 5375–5389. [CrossRef]

11. Zhao, Y.; Hong, Z.; Luo, Y.; Wang, G.; Pu, L. Prediction-based spectrum management in cognitive radio networks. IEEE Syst. J.
2018, 12, 3303–3314. [CrossRef]

12. Tandra, R.; Sahai, A. SNR walls for signal detection. IEEE J. Sel. Top. Signal Process. 2008, 2, 4–17. [CrossRef]
13. Xu, W.; Li, X.; Lee, C.; Pan, M.; Feng, Z. Joint sensing duration adaptation, user matching, and power allocation for cognitive

OFDM-NOMA systems. IEEE Trans. Wirel. Commun. 2018, 17, 1269–1282. [CrossRef]
14. Pauluzzi, D.R.; Beaulieu, N.C. A comparison of SNR estimation techniques in the AWGN channel. In Proceedings of the IEEE

Pacific Rim Conference on Communications, Computers, and Signal Processing, Victoria, BC, Canada, 17–19 May 1995; pp. 36–39.
15. Qiu, K.; Mao, X.; Shen, X.; Wang, X.; Li, T.; Gu, Y. Time-varying graph signal reconstruction. IEEE J. Sel. Top. Signal Process. 2017,

11, 870–883 [CrossRef]
16. Xie, J.; Fang, J.; Liu, C.; Li, X. Deep learning-based spectrum sensing in cognitive radio: A CNN-LSTM approach. IEEE Commun.

Lett. 2020, 24, 196–2200. [CrossRef]

25



Sensors 2022, 22, 2620

17. Xie, J.; Fang, J.; Liu, C.; Yang, L. Unsupervised deep spectrum sensing: A variational auto-encoder based approach. IEEE Trans.
Veh. Technol. 2020, 69, 5307–5319. [CrossRef]

18. Ghosh, C.; Cordeiro, C.; Agrawal, D.P.; Rao, M.B. Markov chain existence and hidden Markov models in spectrum sensing. In
Proceedings of the 2009 IEEE International Conference on Pervasive Computing and Communications, Galveston, TX, USA, 9–13
March 2009; pp. 1–6.

19. Santana, G.M.D.; Cristo, R.S.; Diguet, J.-P.; Dezan, C.; Diana, O.P.M.; Kalinka, B.R.L.J.C. A Case Study of Primary User Arrival
Prediction Using the Energy Detector and the Hidden Markov Model in Cognitive Radio Networks. In Proceedings of the 2019
IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1195–1198.

20. Soumya, D.; Tamaghna, A. Faulty node detection in HMM-based cooperative spectrum sensing for cognitive radio networks.
Comput. J. 2018, 61, 1469–1478.

21. Suguna, R.; Rathinasabapathy, V. Spectrum sensing in cognitive radio enabled wireless sensor networks using discrete Markov
model. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli,
India, 13–14 December 2018; pp. 442–447.

22. Eltom, H.; Kandeepan, S.; Liang, Y.-C.; Evans, R.J. Cooperative soft fusion for HMM-based spectrum occupancy prediction. IEEE
Commun. Lett. 2018, 22, 2144–2147. [CrossRef]

23. Halaseh, R.A.; Dahlhaus, D. Continuous hidden Markov model based interference-aware cognitive radio spectrum occupancy
prediction. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Valencia, Spain, 4–8 September 2016; pp. 1–6.

24. Cheng, H.; Mark, B.L.; Ephraim, Y.; Chen, C.-H. Multiband spectrum sensing with non-exponential channel occupancy times.
In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021;
pp. 1–6.

25. Kumar, K.; Kumar, S.; Kaiwartya, O.; Kashyap, P.K.; Lloret, J.; Song, H. Drone assisted flying ad-Hoc networks: mobility and
service oriented modeling using Neuro-fuzzy. Ad Hoc Netw. 2020, 106, 10242. [CrossRef]

26. Raza, M.A.; Hussain, A. Maximum likelihood SNR estimation of hyper cubic signals over Gaussian channel. IEEE Commun. Lett.
2016, 20, 45–48. [CrossRef]

27. Manesh, M.R.; Quadri, A.; Subramaniam, S.; Kaabouch, N. An optimized SNR estimation technique using particle swarm
optimization algorithm. In Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference
(CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–6.

28. He, R.; Yang, D.; Wang, H.; Kuang, J.; Wen, X. A code-aided and moment-based joint SNR estimation for M-APSK over AWGN
Channels. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia,
4–7 June 2017; pp. 1–6.

29. Chen, C.; Wu, J.; Wang, C.; Miao, X.; Bu, X. On a new SNR estimation approach with Polar codes. In Proceedings of the 2021 IEEE
4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing,
China, 18–20 June 2021; pp. 727–732.

30. Sharma, S.K.; Chatzinotas, S.; Ottersten, B. SNR estimation for multi-dimensional cognitive receiver under correlated chan-
nel/noise. IEEE Trans. Wirel. Commun. 2013, 12, 6392–6405. [CrossRef]

31. Ngo, T.; Kelley, B.; Rad, P. Deep learning based prediction of signal-to-noise ratio (SNR) for LTE and 5G systems. In Proceedings
of the 2020 8th International Conference on Wireless Networks and Mobile Communications (WINCOM), Reims, France,
27–29 October 2020; pp. 1–6.

32. Yang, Y.; Jing, X.; Mu, J.; Gao, H. SNR estimation of UAV control signal based on convolutional neural network. In Proceedings
of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China, 28 June–2 July 2021;
pp. 780–784.

33. Shang, B.; Marojevic, V.; Yi, Y.; Abdalla, A.S.; Liu, L. Spectrum sharing for UAV communications: spatial spectrum sensing and
open issues. IEEE Veh. Technol. Mag. 2020, 12, 104–112. [CrossRef]

34. Nie, R.; Xu, W.; Zhang, Z.; Zhang, P.; Pan, M.; Lin, J. Max-Min distance clustering based distributed cooperative spectrum sensing
in cognitive UAV networks. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC),
Shanghai, China, 20–24 May 2019; pp. 1–6.

35. Nie, R. Research on Spectrum Sensing Scheme in UAV Networks. Master’s Thesis, Beijing University of Posts and Telecommuni-
cations, Beijing, China, 2020.

36. Ejaz, W.; Hattab, G.; Cherif, N.; Ibnkahla, M.; Abdelkefi, F.; Siala, M. Cooperative spectrum sensing with heterogeneous devices:
Hard combining versus soft combining. IEEE Syst. J. 2018, 12, 981–992. [CrossRef]

37. Tsagris, M.; Beneki, C.; Hassani, H. On the folded normal distribution. Mathematics 2014, 2, 12–28. [CrossRef]
38. Zhang, W.; Guo, Y.; Liu, H.; Chen, Y.; Wang, Z.; Mitola, J., III. Distributed consensus-based weight design for cooperative spectrum

sensing. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 54–64. [CrossRef]
39. Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286.

[CrossRef]
40. Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005.

26



Sensors 2022, 22, 2620

41. Tan, Z.; Nguyen, A.H.T.; Khong, A.W.H. An efficient dilated convolutional neural network for UAV noise reduction at low input
SNR. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), Lanzhou, China, 18–21 November 2019; pp. 1885–1892.

42. Yang, J. Spatial Channel Characterization for Cognitive Radios. Master’s Thesis, University of California, Berkeley, CA, USA,
2004.

43. Sharma, G.; Sharma, R. Performance comparison of hard and soft fusion techniques for energy efficient CSS in cognitive radio. In
Proceedings of the 2018 International Conference on Advanced Computation and Telecommunication (ICACAT), Bhopal, India,
28–29 December 2018; pp. 1–4.

44. Goddemeier, N.; Wietfeld, C. Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model. In
Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–5.

27





Citation: Jo, S.; Yang, W.; Choi, H.K.;

Noh, E.; Jo, H.-S.; Park, J. Deep

Q-Learning-Based Transmission

Power Control of a High Altitude

Platform Station with Spectrum

Sharing. Sensors 2022, 22, 1630.

https://doi.org/10.3390/s22041630

Academic Editor: Margot Deruyck

Received: 12 January 2022

Accepted: 18 February 2022

Published: 19 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Q-Learning-Based Transmission Power Control of a High
Altitude Platform Station with Spectrum Sharing
Seongjun Jo 1, Wooyeol Yang 1, Haing Kun Choi 2, Eonsu Noh 3, Han-Shin Jo 1,* and Jaedon Park 3,*

1 Department of Electronic Engineering, Hanbat National University, Daejeon 34158, Korea;
30211176@edu.hanbat.ac.kr (S.J.); 30211173@edu.hanbat.ac.kr (W.Y.)

2 TnB Radio Tech., Seoul 08504, Korea; radioeng@tnbrt.com
3 Agency for Defense Development, Daejeon 34186, Korea; nes@add.re.kr
* Correspondence: hsjo@hanbat.ac.kr (H.-S.J.); jaedon2@add.re.kr (J.P.)

Abstract: A High Altitude Platform Station (HAPS) can facilitate high-speed data communication
over wide areas using high-power line-of-sight communication; however, it can significantly interfere
with existing systems. Given spectrum sharing with existing systems, the HAPS transmission
power must be adjusted to satisfy the interference requirement for incumbent protection. However,
excessive transmission power reduction can lead to severe degradation of the HAPS coverage. To
solve this problem, we propose a multi-agent Deep Q-learning (DQL)-based transmission power
control algorithm to minimize the outage probability of the HAPS downlink while satisfying the
interference requirement of an interfered system. In addition, a double DQL (DDQL) is developed
to prevent the potential risk of action-value overestimation from the DQL. With a proper state,
reward, and training process, all agents cooperatively learn a power control policy for achieving a
near-optimal solution. The proposed DQL power control algorithm performs equal or close to the
optimal exhaustive search algorithm for varying positions of the interfered system. The proposed
DQL and DDQL power control yields the same performance, which indicates that the actional value
overestimation does not adversely affect the quality of the learned policy.

Keywords: Deep Q-learning (DQL); Double Deep Q-learning (DDQL); dynamic spectrum
sharing; High Altitude Platform Station (HAPS); cellular communications; power control;
interference management

1. Introduction

A High Altitude Platform Station (HAPS) is a network node operating in the strato-
sphere at an altitude of approximately 20 km. The International Telecommunication Union
(ITU) defines a HAPS in Article 1.66A as “A station on an object at an altitude of 20 to
50 km and a specified, nominal, fixed point relative to the Earth”. Various studies have
been performed on HAPS in recent years, and the commercial applications of HAPS have
significantly increased [1]. In addition, the HAPS has potential as a significant component
of wireless network architectures [2]. It is also an essential component of next-generation
wireless networks, with considerable potential as a wireless access platform for future
wireless communication systems [3–5].

Because the HAPS is located at high altitudes ranging from 20 to 50 km, the HAPS-
to-ground propagation generally experiences lower path loss and a higher line-of-sight
probability than typical ground-to-ground propagation. Thus, the HAPS can provide
a high data rate for wide coverage; however, it is likely to interfere with various other
terrestrial services, e.g., fixed, mobile, and radiolocation. The World Radiocommunica-
tion Conference 2019 (WRC-19) adopted a HAPS as the IMT Base Station (HIBS) in the
frequency bands below 2.7 GHz previously identified for IMT by Resolution 247 [6], which
addresses the potential interference of HAPS with an existing service. In such a situation,

Sensors 2022, 22, 1630. https://doi.org/10.3390/s22041630 https://www.mdpi.com/journal/sensors29



Sensors 2022, 22, 1630

if the existing service is not safe from HAPS interference, the two systems cannot coexist.
Therefore, the HAPS transmitter is requested to reduce its transmission power to satisfy
the interference–to–noise ratio (INR) requirement for protecting the receiver of the existing
service. However, if the HAPS transmission power is excessively reduced, the signal–to–
interference–plus–noise ratio (SINR) of the HAPS downlink decreases; thus, the outage
probability may exceed the desired level. Herein, a HAPS transmission power control
algorithm is proposed that aims to minimize the outage probability of the HAPS downlink
while satisfying the INR requirement for protecting incumbents.

1.1. Related Works

Studies have been performed on improving the performance of HAPS. In [7], resource
allocation for an Orthogonal Frequency Division Multiple Access (OFDMA)-based HAPS
system that uses multicasting in the downlink to maximize the number of user terminals by
maximizing the radio resources was studied. The authors of [8] proposed a wireless channel
allocation algorithm for a HAPS 5G massive multiple-input multiple-output (MIMO)
communication system based on reinforcement learning. Combining Q-learning and
backpropagation neural networks allows the algorithm to learn intelligently for varying
channel load and block conditions. In [9], a criterion for determining the minimum distance
in a mobile user access system was derived, and a channel allocation approach based on
predicted changes in the number of users and the call volume was proposed.

Additionally, spectrum sharing studies on HAPS have been performed. In [10], a
spectrum sharing study was conducted to share a fixed service using a HAPS with other
services in the 31/28-GHz band. Interference mitigation techniques were introduced, e.g.,
increasing the minimum operational elevation angle or improving the antenna radiation
pattern to facilitate sharing with other services. In addition, the possibility of dynamic
channel allocation was analyzed. In [11], sharing between a HAPS and a fixed service in
the 5.8-GHz band was investigated using a coexistence methodology based on a spectrum
emission mask.

In contrast to previous studies in which HAPS communication improvement and spec-
trum sharing were dealt with separately, in the present study, a combination of spectrum
sharing with other systems and HAPS downlink coverage improvement is considered. In
this regard, this study is more advanced than previous HAPS-related studies.

Deep Q-learning (DQL) is a reinforcement learning algorithm that applies deep neural
networks to reinforcement learning to solve complex problems in the real world. DQL
is widely used in various fields, including UAV, drone, and HAPS. In [12], the optimal
UAV-BS trajectory was presented using a DQL for optimal placement of UAVs, and the
author of [13] used a DQL to determine the optimal link between two UAV nodes. In [14],
a DQL is used to find the optimal flight parameters for the collision-free trajectory of the
UAV. In [15], two-hop communication was considered to optimize the drone base station
trajectory and improve network performance, and a DQL was used to solve the joint two-
hop communication scenario. In [16], a DQL was used for multiple-HAPS coordination
for communications area coverage. A Double Deep Q-learning (DDQL) is an algorithm
developed to prevent the overestimation of a DQL and shows better performance than the
DQL in various fields [17].

1.2. Contributions

The contributions of the present study are as follows. (1) For the first time, a multia-
gent DQL was used to improve the HAPS outage performance and solve the problem of
spectrum sharing with existing services. (2) We defined the power control optimization
problem to minimize the outage probability of the HAPS downlink under the interference
constraint for protecting the existing system. The state and reward for the training agent
were designed to consider the objective function and constraints of the optimization prob-
lem. (3) Because the HAPS has a multicell structure, the number of power combinations
increases exponentially as the number of cells (Ncell) and power levels increase linearly.
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Thus, the optimal exhaustive search method requires an impractically long computation
time to solve the multicell power optimization problem. The proposed DQL algorithm
performs comparably to an optimal exhaustive search with a feasible computation time.
(4) Even for varying positions of the interfered system, the proposed DQL produces a
proper power control policy, maintaining stable performance. (5) Comparing the proposed
DQL algorithm with the DDQL algorithm shows no performance degradation due to
overestimation in the proposed DQL. The remainder of this paper is organized as follows.

Section 2 presents the system model, including the system deployment model, HAPS
model, interfered system model, and path loss model. In Section 3, the downlink SINR and
INR are calculated. In Section 4, a DQL-based HAPS power control algorithm is proposed.
Section 5 presents the simulation results, and Section 6 concludes the paper.

2. System Model
2.1. System Deployment Model

HAPS communication networks are assumed to consist of a single HAPS, multi-
ple ground user equipment (UE) devices (referred to as UEs hereinafter), and a ground
interfered receiver. The HAPS, UE, and interfered receiver are distributed in the three-
dimensional Cartesian coordinate system, as shown in Figure 1. The coordinates of the
HAPS antenna and the interfered receiver antenna are (0, 0, hHAPS) and (X, Y, hV), respec-
tively. The NUE UE devices with an antenna height of hUE are uniformly distributed within
the circular HAPS area.
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2.2. HAPS Model

We modeled the HAPS cell deployment and system parameters with reference to the
working document for a HAPS coexistence study performed in preparation for WRC-23 [18].
As shown in Figure 2, a single HAPS serves multiple cells that consist of one 1st layer cell
denoted as Cell_1 and six 2nd layer cells denoted as Cell_2 to Cell_7. The six cells of the 2nd
layer are arranged at intervals of 60◦ in the horizontal direction. Figure 3 presents a typical
HAPS antenna design for seven-cell structures [4], where seven phased-array antennas
conduct beamforming toward the ground to form seven cells, as shown in Figure 2. The 1st
layer cell has an antenna tilt of 90◦, i.e., perpendicular to the ground; the 2nd layer cell has
an antenna tilt of 23◦.

The antenna pattern of the HAPS was designed using the antenna gain formula pre-
sented in Recommendation ITU-R M.2101 [19]. The transmitting antenna gain is calculated
as the sum of the gain of a single element and the beamforming gain of a multi-antenna
array. The single element antenna gain is determined by the azimuth angle (φ) and the
elevation angle (θ) between the transmitter and receiver and is calculated as follows:

AE(φ, θ) = GE,max −min{−[AE,H(φ) + AE,v(θ)], Am} , (1)
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where GE,max represents the maximum antenna gain of a single element, AE,H(φ) represents
the horizontal radiation pattern calculated using Equation (2), and AE,v(θ) represents the
vertical radiation pattern calculated using Equation (3).

AE,H(φ) = −min

[
12
(

φ

φ3dB

)2
, Am

]
(2)

Here, φ3dB represents the horizontal 3 dB beamwidth of a single element, and Am
represents the front-to-back ratio.
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AE,V(θ) = −min

[
12
(

θ − 90
θ3dB

)2
, SLAv

]
(3)

Here, θ3dB represents the vertical 3 dB bandwidth of a single element, and SLAv
represents the front-to-back ratio.

The transmitting antenna gain of the HAPS is calculated using the antenna arrange-
ment and spacing, as well as the target beamforming direction. The gain for beam i is
calculated as follows:

AA,Beami(θ, φ) = AE(θ, φ) + 10 log10

(∣∣∣∑NH
m=1 ∑NV

n=1 wi,n,m · vn,m

∣∣∣
2
)

, (4)

where NH and NV represent the number of antennas in the horizontal and vertical direc-
tions, respectively. vn,m is the superposition vector that overlaps the beams of the antenna
elements, which is calculated using Equation (5), and wi,n,m is the weight that directs the
antenna element in the beamforming direction, which is calculated using Equation (6).

n = 1, 2, . . . NV ; m = 1, 2, . . . NH

vn,m = exp
(√
−1 · 2π

(
(n− 1) · dV

λ · cos(θ) + (m− 1) · dH
λ · sin(θ) · sin(φ)

)) (5)

Here, dH and dV represent the intervals between the horizontal and vertical antenna
arrays, respectively, and λ represents the wavelength.

wi,n,m = 1√
NH NV

exp
(√
−1

·2π
(
(n− 1) · dV

λ · sin(θi,etilt)− (m− 1) · dH
λ · cos(θi,etilt)

·sin(φi,escan)))

(6)

Here, φi,escan and θi,etilt represent the φ and θ of the main beam direction, respectively.
The 1st layer cell of the HAPS uses a 2 × 2 antenna array, and the 2nd layer cell uses a

4 × 2 antenna array. Figure 4 shows the antenna pattern of the 1st layer cell, and Figure 5
shows the antenna pattern of the 2nd layer cell.
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2.3. Interfered System Model

Various interfered systems, e.g., fixed, mobile, and radiolocation services, can be
considered for the interference scenario involving a HAPS. We adopted a ground IMT base
station (BS) for the interfered system, referring to the potential interference scenario [6].
The antenna pattern of the interfered system was applied by referring to Recommendation
ITU-R F.1336 [20]. The receiving antenna gain is calculated as follows:

G(φ, θ) = G0 + Ghr(xh) + R·Gvr(xv), (7)

where G0 represents the maximum gain in the azimuth plane; Ghr(xh) represents the relative
reference antenna gain in the azimuth plane in the normalized direction of (xh, 0), which is
calculated using Equation (8); and Gvr(xv) represents the relative reference antenna gain
in the elevation plane in the normalized direction of (0, xv), which is calculated using
Equation (9). R represents the horizontal gain compression ratio when the azimuth angle is
shifted from 0◦ to φ, which is calculated using Equation (10).

Ghr(xh) = −12x2
h f or xh ≤ 0.5

Ghr(xh) = −12x(2−kh)
h − λkh f or 0.5 < xh

Ghr(xh) ≥ G180

(8)

Gvr(xv) = −12x2
v f or xv < xk

Gvr(xv) = −15 + 10 log(x−1.5
v + kv) f or xk ≤ xv < 4

Gvr(xv) = −λkv − 3− C log(xv) f or 4 ≤ xv < 90/θ3
Gvr(xv) = G180 f or xv ≥ 90/θ3

(9)

R =
Ghr(xh)− Ghr(180◦/φ3)

Ghr(0)− Ghr(180◦/φ3)
(10)

Here, xh and λkh are given by Equations (11) and (12), respectively; φ3 represents the 3
dB beamwidth in the azimuth plane; and kh is an azimuth pattern adjustment factor based
on the leaked power. The relative minimum gain G180 was calculated using Equation (13).

xh = |φ |/φ3 (11)
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λkh = 3
(

1− 0.5−kh
)

(12)

G180 = −15 + 10 log(1 + 8ka)− 15 log
(

180◦

θ3

)
(13)

Returning to Equation (9), xv is given by Equation (14), and the 3-dB beamwidth in
the elevation plane θ3 is calculated using Equation (15), where G0 represents the maximum
gain in the azimuth plane. In addition, xk is calculated using Equation (16), where kv is an
elevation pattern adjustment factor based on the leaked power. λkv was calculated using
Equation (17), and the attenuation inclination factor C was calculated using Equation (18).
Figure 6 shows the antenna pattern of the interfered system calculated using Equation (7),
which is the pattern for a typical terrestrial BS with a broad beamwidth in the azimuth
plane but a narrow beamwidth in the elevation plane.

xv = |θ |/θ3 (14)

θ3 = 107.6× 10−0.1G0 (15)

xk =
√

1.33− 0.33kv (16)

λkv = 12− C log(4)− 10 log
(

4−1.5 + kv

)
(17)

C =

10 log

( (
180◦

θ3

)1.5
· (4−1.5+kv)

1+8kp

)

log
(

22.5◦
θ3

) (18)
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2.4. Path Loss Model

The path loss model of Recommendation ITU-R P.619 [21] was applied to the working
document for the HAPS coexistence study performed in preparation for WRC-23 [22].
The total path loss that occurs when the HAPS signal reaches the UE and the IMT BS is
expressed as follows:

Lp = FSL + Axp + Ag + Abs, (19)
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where FSL represents the free-space path loss calculated using Equation (20), which occurs
in a straight path from a transmitting antenna to a receiving antenna in a vacuum state, and
Axp is assumed to be 3 dB for depolarization attenuation. Ag represents the attenuation
loss due to atmospheric gases. Abs represents the resistive loss due to the spread of the
antenna beam as the beam spreads attenuation. Ag and Abs were calculated using the
formulae in P.619.

FSL = 92.45 + 20 log( f ·d) (20)

Here, f represents the carrier frequency (in GHz), and d represents the distance (in
km) between the transmitter and receiver.

3. Calculation of Downlink SINR and INR
3.1. Calculation of Downlink SINR

The signal received by the UE from the HAPS transmission for the ith cell (Cell_i) is
calculated as follows:

SCell_i = PCell_i + GCell_i + Gp + Gr,UE − Lp − Lohm, (21)

where PCell_i represents the HAPS transmission power for Cell_i, GCell_i represents the
transmitting antenna gain of Cell_i, Gp represents the polarization gain, Gr,UE represents
the receiving antenna gain, and Lohm represents the ohmic loss. The UE receives signals
from all Ncell cells and considers the remaining signals (except for the strongest Cell j
signal) as interference. Equation (22) is used to calculate the signal and interference, and
the receiver noise is calculated using Equation (23).

j = argmax
i

SCell_i

SHAPS = SCell_j

IHAPS,UE = 10 log(∑Ncell
i = 1
i 6= j

10
SCell_i

10 )

(22)

N = 10 log(k× T × BW) + N f (23)

Here, k and T represent the Boltzmann constant and noise temperature, respectively,
and BW represents the channel bandwidth. N f represents the noise figure. Finally, the
downlink SINR is calculated as follows:

η = 10 log


 10

SHAPS
10

10
IHAPS,UE

10 + 10
N
10


. (24)

3.2. Calculation of INR

The interference power received by the interfered receiver from the HAPS transmitter
servicing Cell i is calculated as follows:

ICell_i = PCell_i + GCell_i + Gp + Gr,V − Lp − Lohm, (25)

where Gr,V represents the antenna gain of the interfered receiver. The aggregated interfer-
ence power at the interfered receiver is calculated as follows:

IHAPS,V = 10 log

(
Ncell

∑
i=1

10
ICell_i

10

)
. (26)

Finally, after converting the aggregated interference into INR form in accordance with
Equation (27) and comparing it with the protection criteria (INRth) of the interfered receiver,
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it is possible to check whether the interfered receiver is protected from the interference of
the HAPS.

INR = IHAPS,V − N (27)

4. DQL-Based HAPS Transmission Power Control Algorithm
4.1. Problem Formulation

To satisfy the INRth of the interfered system, the transmission power of the HAPS
must be reduced. However, as the power of the HAPS is reduced, the η of the UE decreases,
and the outage probability Pout increases. Thus, the objective of this study was to find a
HAPS transmission power set for each cell, i.e., P = {PCell_i|i = 1, · · · , Ncell}, that satisfies
the INRth of the interfered system while minimizing Pout. The optimization problem of the
HAPS transmission power can be formulated as follows:

min
P

Pout =
NUE,o(P)

NUE

s.t. C1 : INR ≤ INRth
C2 : Pmin ≤ PCelli ≤ Pmax ∀i ∈ {1, · · · , Ncell},

(28)

where NUE,o(P) represents the number of UEs that do not satisfy the minimum required
SINR ηo for a given HAPS transmission power set P.

4.2. Proposed Algorithm

To control the HAPS transmission power, it is necessary to independently determine
the power level of each cell. Accordingly, the total number of HAPS transmission power
sets increases exponentially to NNcell

p as the number of selectable powers Np increases
linearly. Although an exhaustive search algorithm can be used to find optimal solutions,
this incurs excessive complexity and a long computation time. To solve this problem, we
propose a DQL-based power optimization algorithm that can find a near-optimal P with
low complexity. In the proposed DQL model, each agent functions as the power controller
of a cell; accordingly, the number of agents is Ncell .

The agent—the subject of learning—learns a deep neural network called Deep Q
Network (DQN) and selects an action using this network. DQL is an improved Q-learning
method. Q-learning is a method for selecting the best action in a specific state through
the Q-table of a state-action pair. As the state–action space grows in Q-learning, creating
a Q-table and finding the best policy become highly complex. In addition, the use of
Q-learning is limited because learning in the Q-table format becomes more complex when
multiple agents are used. In contrast, a DQL is a promising way to solve the curse of
dimensionality by approximating a Q function using a deep neural network instead of a
Q-table. The proposed algorithm uses a method in which each agent learns a policy based
on its observation and action while treating all other agents as part of the environment to
solve the multiple-agent problem.

The basic DQL parameters (state, action, and reward) are presented below. Each agent
learns the policy independently using the training data at each timestep t. The state space
of the mth agent comprises a set of (Ncell − 1) interferences that the agent provides to UEs
located at the centers of other cells and the agent’s interference to the interfered receiver,
which is expressed as

St = {Iv, {IUE_i|i = 1, · · · , Ncell , and i 6= m}}. (29)

Two power sets configure the action space of an agent: A1 = {29, 31, 33, 35, 37} and
A2 = {26, 28, 30, 32, 34} (unit: dBm). The agent of Cell_1 in the 1st layer cell selects an
action from A1, and the agents of the 2nd layer cell select an action from A2. All agent
actions are initialized to the minimum power value to minimize the interference to the
interfered receiver at the beginning of the learning process. The reward is calculated
as follows. First, because the interfered receiver must be safe from HAPS interference,
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an agent receives a fixed rt of −100 (deficient value) for INR > INRth. In contrast, for
INR ≤ INRth, an agent receives rt computed according to the lower 5% downlink SINR of
each cell {η̂i|i = 1, 2, · · · , Ncell} and the required SINR ηo. The reward can be expressed
as

rt =

{
r1, t + r2, t f or INR ≤ INRth

rt = −100 otherwise,
, (30)

where
r1,t = 10·(∑(η̂i − ηo)) f or η̂i ≥ ηo

r2,t = ∑(η̂i + ηo) f or η̂i < ηo.
(31)

Figure 7 shows the structure of the proposed DQL-based HAPS transmission power
control algorithm. Each agent learns its DQN, and one DQN consists of the main network,
target network, and replay memory. The main network estimates the Q-value Q(s, a; w)
corresponding to the state–action pair through a deep neural network with a weight
w. The main network consists of an input layer composed of seven neurons, a hidden
layer consisting of 24 neurons, and an output layer consisting of five neurons. It is a
fully connected network. w is updated every t in the direction that minimizes the loss
function L(w) = E

[(
yj −Q(s, a; w)

)2
]
. The target network calculates the target value

yj = rj + γmax
a′

Q̂(s′, a′; w−), where γ is the discount factor; s′ and a′ denotes the state and

action, respectively, in the next step; and Q̂(s′, a′; w−) is the Q-value estimated through
the target network with weight w−. The agent’s transition tuple (st, at, rt, st+1) is piled in
the replay memory, from which a minibatch (size of 512 tuples) are randomly sampled at
each step. The minibatch data are used to compute the target value yj. In a DQL, learning
is stabilized, and the learning performance is improved through replay memory and a
separate target network [23].
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Algorithm 1 describes the proposed DQL-based HAPS transmission power control
algorithm. For DQN training, N was set as 100,000, and the minibatch size was set as 512.
M was set as 500, and T was set as 10. The Adam optimizer was used to minimize L(w),
and the learning rate and γ were 0.01 and 0.995, respectively. An ε-greedy policy was used
to balance exploration and exploitation; ε was initially set as 1 and was reduced by 0.01 for
every episode.

Algorithm 1. Training Process for the DQL-Based HAPS Power Control Algorithm

1: Initialize the replay memory D to capacity N
2: Initialize the Q-function with random weights w
3: Initialize the target Q̂-function with the same weights: w− = w
4: for episode = 1, M do
5: Initialize action a0 = min

a
A

6: for timestep = 1, T do
7: if t = 1
8: Calculate st via Equations (21) and (25)
9: end if
10: With probability, select a random action at
11: Otherwise, select at = argmax

a
Q(st, a; w)

12: Assign the selected power to the mth cell and compute INR and η

13: Observe the reward rt and st+1
14: Store the experience in (st, at, rt, st+1) in D
15: Sample a random minibatch of experiences from D
16: Set yj = rj + γmax

a′
Q̂
(
s′, a′; w−

)

17: Perform optimization via L(w) and update w
18: Update the target network Q̂ with w− = w every 4 steps
19: end for
20: end for

A DDQL is a reinforcement learning algorithm to improve performance degradation
due to the overestimation of the DQL. Action-value can be overestimated by the maxi-
mization step in line 16 of Algorithm 1. Therefore, the DDQL calculates the target value as

yj = rj + γQ̂

(
s′, argmax

a′
Q(s′, a′; w); w−

)
to eliminate the maximization step. The DDQL-

based HAPS power control algorithm proceeds the same way as Algorithm 1 except for
calculating the target value.

5. Simulation Results
5.1. Simulation Configuration

The simulation was conducted using MATLAB for three positions of the interfered
receiver, and the learning order of the agent was randomly set for each t. Subsequently,
the simulation proceeded according to Algorithm 1. When all M episodes were finished,
the simulation ended, and the set Pc composed of the power selected by each agent was
calculated as the simulation result. Finally, the performance of the simulation was verified
by comparing Pc with the optimal power set P∗ obtained via an exhaustive search algo-
rithm considering all NNcell

p cases. The total elapsed time of the DQL and exhaustive search
was about 7500 s and 21,000 s, respectively. The total elapsed time of the exhaustive search
increased exponentially with the rise of N, but the DQL did not. Therefore, the computa-
tional efficiency of the DQL is more remarkable as the number of cells and power levels
increase. In this simulation, performance comparison with the DDQL was additionally
performed to check performance degradation due to overestimation of the DQL.
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We applied the HAPS parameters and interfered system parameters, referring to the
working document for the HAPS coexistence study performed in preparation for WRC-
23 [18,24]. The simulation parameters of the two systems are presented in Tables 1 and 2,
respectively.

Table 1. HAPS system parameters.

Parameter Value

Center frequency ( f ) 2545 MHz

Channel bandwidth (BW ) 20 MHz

Area radius 90 km

Altitude (hHAPS ) 20 km

Number of cells (Ncell ) 7

Antenna pattern Recommendation ITU-R M.2101

Element gain (GE,max ) 8 dBi

Horizontal/vertical 3 dB beamwidth of
single element 65◦ for both H/V

Antenna array configuration
(Row × column)

2 × 2 elements (1st layer cell)
4 × 2 elements (2nd layer cell)

Ohmic losses (Lohm) 2 dB

Antenna tilt 90◦ (1st layer cell)
23◦ (2nd layer cell)

Antenna polarization Linear/±45◦

Number of distributed UEs (NUE ) 1000

UE height 1.5 m

UE antenna gain −3 dBi

Minimum required SINR (ηo ) −10 dB

Table 2. Interfered system (IMT BS) parameters.

Parameter Value

Center frequency ( f ) 2545 MHz

Channel bandwidth (BW ) 20 MHz

Noise figure
(

N f ) 5 dB

Antenna height (hV) 20 m

Antenna tilt 10◦

Antenna pattern

Recommendation ITU-R F.1336 (recommends
3.1)

ka = 0.7
kp = 0.7
kh = 0.7
kv = 0.3

Horizontal 3 dB beamwidth: 65◦

Vertical 3 dB beamwidth is determined from
the horizontal beamwidth equations in

Recommendation ITU-R F.1336.
Vertical beam widths of actual antennas may

also be used when available.
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Table 2. Cont.

Parameter Value

Antenna polarization Linear/±45◦

Maximum antenna gain (G0) 16 dBi

Protection criteria ( INRth ) −6 dB

5.2. Numerical Analysis

Figure 8 shows the SINR maps obtained using Pmax = {37, 34, 34, 34, 34, 34, 34}
and Pmin = {29, 26, 26, 26, 26, 26, 26} for all cells, that is, with no power control. We
considered the three positions of the interfered receiver that do not satisfy the INRth of
−6 dB for the use of Pmax. In addition, the three locations were designed considering the
representative interference power, which can accurately reflect the operating characteristics
of the proposed power control algorithm. Interfered receiver 1©was located in the main
beam direction for Cell_3 and received the highest interference from Cell_3. Therefore,
the minimum power use of only Cell_3 satisfied an INRth of −6 dB. Interfered receiver 2©
was placed on the boundary between Cell_3 and Cell_4 and thus received equal (and the
strongest) interference from these two cells. Interfered receiver 3© was located in the main
beam direction for Cell_3, as the interfered receiver. However, the minimum power use of
only Cell_3 could not satisfy the INRth of −6 dB, and at least one other cell had to use less
than the maximum power.
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Table 3 presents the INR and Pout for Pmax and Pmin with varying interfered receiver
locations. The results confirm that the Pout and INR had a tradeoff relationship. The
same Pout is shown regardless of the interference receiver position because of the absence
of power control. Next, we compared the simulation results of the optimal exhaustive
search and the proposed DQL-based power control algorithm for the three positions of the
interfered receiver.
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Table 3. INR and Pout for the interfered receiver locations.

Interfered
Receiver Location (km) INR for Pmax (dB) INR for Pmin (dB) Pout for Pmax (%) Pout for Pmin (%)

1© 100, 0, 0.02 −3.01 −11.01 0 43.7

2© 77.9, 45, 0.02 −4.08 −12.08 0 43.7

3© 65.8, 0, 0.02 1.81 −6.19 0 43.7

5.2.1. Simulation Results for Interfered Receiver 1©
Figure 9 shows the SINR map based on the Pc acquired using the proposed DQL-

based power control algorithm for interfered receiver 1©. Table 4 presents a performance
comparison of the P∗ values obtained via an exhaustive search and Pc and a comparison
of DQL and DDQL results. As shown, Pc was equal to the optimal value P∗, providing
the same Pout and INR performance. Because the interfered receiver was located in the
azimuth main beam direction of Cell_3, the power of Cell_3 significantly affected the
interfered receiver. Even though all other cells used the maximum power, their interference
was negligible. Therefore, all the cells except for Cell_3 used the maximum power for
minimizing Pout, as shown in Table 4.
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Table 4. Performance comparison for interfered receiver 1©.

PCell_1 (dBm) PCell_2 (dBm) PCell_3 (dBm) PCell_4 (dBm) PCell_5 (dBm) PCell_6 (dBm) PCell_7 (dBm) INR (dB) Pout (%)

Optimal 37 34 30 34 34 34 34 –6.93 0.6

DQL 37 34 30 34 34 34 34 –6.93 0.6

DDQL 37 34 30 34 34 34 34 -6.93 0.6

Figure 10 presents the INR and pout for each learning episode. As shown, the INR
and pout converged to the optimal values of the exhaustive search algorithm as the number
of learning episodes increased. The INR started at −11.01 dB, which was the value for the
use of Pmin, as shown in Table 3, and converged to the optimal value of −6.93 dB. Similarly,
pout started at 43.7% and converged to 0.6%. A large variance due to frequent exploration
was observed at the beginning of the learning, but it gradually decreased and converged as
the learning progressed. Figure 11 presents the cumulative and average rewards for each
learning episode. As shown, the reward rapidly increased and then gradually converged at
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approximately 300 episodes, indicating that the proposed DQL training process allowed
the agent to learn the power control algorithm quickly and stably.
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We compared the learning results of the DQL and DDQL. Even when the DDQL is
used, the results are the same as in Table 4 and Figures 10 and 11, which shows that the
overestimation of the DQL did not occur. As a result, it was confirmed that performance
degradation due to overestimation did not happen, and sufficient learning is possible only
with DQL.

5.2.2. Simulation Results for Interfered Receiver 2©
Figure 12 shows the SINR map based on Pc acquired using the proposed DQL-based

power control algorithm for interfered receiver 2©. Table 5 presents a performance com-
parison of the P∗ values obtained via an exhaustive search and Pc and a comparison of
the DQL and DDQL results. As shown, Pc was equal to the optimal value P∗, providing
the same Pout and INR performance. The interfered receiver was located on the boundary
between Cell_3 and Cell_4 and, thus, received equal (and the strongest) interference from
these two cells. In addition, even though all the cells other than Cell_3 and Cell_4 used the
maximum power, their interference was marginal. Therefore, in the optimal power control,
Cell_3 and Cell_4 reduced the power required to satisfy the INRth, whereas all the other
cells used the maximum power for minimizing Pout, as shown in Table 5.
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DDQL. Even when the DDQL was used, the results were the same as in Table 5 and Fig-
ures 13 and 14, verifying that the desired learning is attainable with the DQL only. 

Figure 12. SINR map based on the Pc obtained using the proposed DQL-based power control
algorithm for the interfered receiver 2©.

Table 5. Performance comparison for interfered receiver 2©.

PCell_1 (dBm) PCell_2 (dBm) PCell_3 (dBm) PCell_4 (dBm) PCell_5 (dBm) PCell_6 (dBm) PCell_7 (dBm) INR (dB) Pout (%)

Optimal 37 34 32 32 34 34 34 −6.08 0.2

DQL 37 34 32 32 34 34 34 −6.08 0.2

DDQL 37 34 32 32 34 34 34 −6.08 0.2

As shown in Figure 13, the INR and pout converged to the optimal values of the
exhaustive search algorithm. Similar to the case of receiver 1©, as the learning progressed,
the INR converged from −12.08 to −6.08 dB, and the pout converged from 43.7% to 0.2%.
Figure 14 shows that the reward gradually converged at approximately 300 episodes,
indicating that the proposed DQL training process allowed the agent to quickly and stably
learn the power control algorithm. We compared the learning results of the DQL and
DDQL. Even when the DDQL was used, the results were the same as in Table 5 and
Figures 13 and 14, verifying that the desired learning is attainable with the DQL only.
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and a comparison of the DQL and DDQL results. Although the 𝑝௢௨௧  of 𝑷௖  was 0.6% 
higher than that of 𝑷∗, it corresponded to the third-smallest value among the 78,125 val-
ues generated by the exhaustive search algorithm. In summary, the proposed power con-
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44



Sensors 2022, 22, 1630

Sensors 2022, 22, 1630 17 of 21 
 

 

  
(a) (b) 

Figure 13. (a) 𝐼𝑁𝑅 and (b) 𝑝௢௨௧ for each learning episode for interfered receiver ②. 

 
Figure 14. Reward for each learning episode for interfered receiver ②. 

5.2.3. Simulation Results for Interfered Receiver ③ 
Figure 15 shows the SINR map based on 𝑷௖  obtained using the proposed DQL-

based power control algorithm for interfered receiver ③. The interfered receiver was lo-
cated in the azimuth main lobe direction of 𝐶𝑒𝑙𝑙_3. It was closer to the HAPS than the 
receiver considered in Section 5.2.1 and was more severely affected by 𝐶𝑒𝑙𝑙_3; 𝐼𝑁𝑅௧௛ was 
not satisfied even for the minimum power of 𝐶𝑒𝑙𝑙_3. Thus, the optimal power control 
adjusted the power of 𝐶𝑒𝑙𝑙_2 and 𝐶𝑒𝑙𝑙_4, which caused the second-most interference. Ta-
ble 6 presents a comparison of the 𝑷∗ values obtained using an exhaustive search and 𝑷௖ 
and a comparison of the DQL and DDQL results. Although the 𝑝௢௨௧  of 𝑷௖  was 0.6% 
higher than that of 𝑷∗, it corresponded to the third-smallest value among the 78,125 val-
ues generated by the exhaustive search algorithm. In summary, the proposed power con-
trol algorithm achieved outstanding performance close to the optimal value. 

Figure 14. Reward for each learning episode for interfered receiver 2©.

5.2.3. Simulation Results for Interfered Receiver 3©
Figure 15 shows the SINR map based on Pc obtained using the proposed DQL-based

power control algorithm for interfered receiver 3©. The interfered receiver was located
in the azimuth main lobe direction of Cell_3. It was closer to the HAPS than the receiver
considered in Section 5.2.1 and was more severely affected by Cell_3; INRth was not
satisfied even for the minimum power of Cell_3. Thus, the optimal power control adjusted
the power of Cell_2 and Cell_4, which caused the second-most interference. Table 6
presents a comparison of the P∗ values obtained using an exhaustive search and Pc and a
comparison of the DQL and DDQL results. Although the pout of Pc was 0.6% higher than
that of P∗, it corresponded to the third-smallest value among the 78,125 values generated
by the exhaustive search algorithm. In summary, the proposed power control algorithm
achieved outstanding performance close to the optimal value.
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Table 6. Performance comparison for interfered receiver 3©.

PCell 1(dBm) PCell 2(dBm) PCell 3(dBm) PCell 4 (dBm) PCell 5 (dBm) PCell 6 (dBm) PCell 7 (dBm) INR (dB) Pout (%)

Optimal 37 34 26 32 34 34 34 −6.02 5.1

DQL 37 32 26 32 34 34 34 −6.06 5.7

DDQL 37 32 26 32 34 34 34 −6.06 5.7
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As shown in Figure 16, the INR and pout converged to the optimal values of the ex-
haustive search algorithm, with slight gaps. Similar to the results presented in Section 5.2.1,
as the learning progressed, the INR converged from −6.19 to −6.06 dB, and the pout con-
verged from 43.7% to 5.7%. Figure 17 shows the cumulative and average rewards for each
learning episode. The reward exhibited no noticeable improvement until approximately
130 episodes, after which it rapidly increased and then gradually converged at approxi-
mately 350 episodes. This is because to satisfy the INRth, more agents had to take action,
and the actions had to be more diverse. Nonetheless, the proposed DQL training process
allowed the agent to learn the power control algorithm quickly and stably. We compared
the learning results of the DQL and DDQL. Even when the DDQL was used, the results
were the same as in Table 6 and Figures 16 and 17, verifying that the desired learning is
attainable with the DQL only.
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communication in spectrum sharing with multiple interference systems. Since the increase 
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6. Conclusions

This paper proposed a DQL-based transmission power control algorithm for multicell
HAPS communication that involved spectrum sharing with existing services. The pro-
posed algorithm aimed to find a solution to the power control optimization problem for
minimizing the outage probability of the HAPS downlink under the interference constraint
to protect existing systems. We compared the solution with the optimal solution acquired
using the exhaustive search algorithm. The simulation results confirmed that the proposed
algorithm was comparable to the optimal exhaustive search.

Future work will include various power levels and expanding to multiple-HAPS
communication in spectrum sharing with multiple interference systems. Since the increase
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in the power level could reveal a value-based algorithm’s limit, it is preferred to apply
the policy-based algorithm. Given that multiple-HAPS communication could lead to
the non-stationarity problem of multiagent reinforcement learning, its solution would be
worth studying.
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Abstract: One of the main targets of future 5G cellular networks is enlarging the Internet of Things
(IoT) devices’ connectivity while facing the challenging requirements of the available bandwidth,
power and the restricted delay limits. Unmanned aerial vehicles (UAVs) have been recently used as
aerial base stations (BSs) to empower the line of sight (LoS), throughput and coverage of wireless
networks. Moreover, non-orthogonal multiple access (NOMA) has become a bright multiple access
technology. In this paper, NOMA is combined with UAV for establishing a high-capacity IoT uplink
multi-application network, where the resource allocation problem is formulated with the objective of
maximizing the system throughput while minimizing the delay of IoT applications. Moreover, power
allocation was investigated to achieve fairness between users. The results show the superiority of
the proposed algorithm, which achieves 31.8% delay improvement, 99.7% reliability increase and
50.8% fairness enhancement when compared to the maximum channel quality indicator (max CQI)
algorithm in addition to preserving the system sum rate, spectral efficiency and complexity. Con-
sequently, the proposed algorithm can be efficiently used in ultra-reliable low-latency communica-
tion (URLLC).

Keywords: internet of things; non-orthogonal multiple access; resource allocation; ultra reliable low
latency communication; unmanned aerial vehicles; uplink transmission

1. Introduction

Due to their mobility and flexibility, unmanned aerial vehicles (UAVs)—also called
drones—have become popular and have a wide range of applications. These applications
include—though are not confined to—monitoring the environment, fertilizing and dusting
crops, searching for mines, police monitoring, and operations of rescue. UAVs have
received great attention thanks to its lower cost, high mobility, wide coverage and ease
of deployment and flexibility [1]. These applications are not restricted to industrial and
civilian fields only, but can also be extended to military applications [2].

In the near future, UAVs will be highly deployed in many applications in wireless
networks, especially 5G networks, to serve ultra-reliable low-latency communication
(URLLC) [3]. UAVs can present either in a single-UAV or multi-UAV system [4]. UAVs
can be utilized as airborne base stations and flying relays to provide LoS connections to
improve the coverage and power consumption for IoT devices. The recent era will witness
billions of connections of Internet of Things (IoT) devices that will be served simultane-
ously [5]. Smart mobiles, vehicles, home appliances, and sensors are examples of these IoT
devices [6].

The fifth generation (5G) network is intended to provide coverage for high-density
devices with various applications of diverse quality of service (QoS) requirements [7].
Non-orthogonal multiple access (NOMA) is a promising multiple access technology which
can face the challenging requirements of high throughput and low latency accompanied
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with the traffic of IoT devices. The basic concept of NOMA lies in the ability of NOMA
to serve numerous users simultaneously over the same resource block (RB) to increase
the spectrum efficiency [8]. However, due to simultaneous transmission, interference
occurs between users sharing the same RB, so that successive interference cancellation
(SIC) is used to detect the signal [9]. The exploitation of UAVs combined with NOMA is
used to support the required massive connections of IoT devices and also provide long
transmission range for IoT devices with limited transmission power capabilities. UAVs
can easily overpass the IoT nodes, collect the information data and then transmit them
to the data center or the other IoT devices [4]. IoT is accommodating numerous various
applications with extremely precise performance requirements. Delay is one of the essential
key metrics and one of the biggest challenges facing IoT applications [10]. In this paper,
the UAV as a base station was exploited with NOMA to support URLLC IoT network
with devices of different applications; each application has its own traffic parameters and
delay requirements. A resource and power allocation scheme was proposed to manage the
different QoS requirements for each application in uplink networks achieving high spectral
efficiency, fairness and data rate as well as improving the delay and reliability.

The main contributions of this research are listed as follows:

• The uplink NOMA-based transmission system utilizing the UAV as a base station
is modeled. Then, the resource allocation problem is formulated with the aim of
maximizing the sum rate, taking into consideration the different delay requirements
to serve URLLC applications.

• The proposed scheduler allocates resources jointly in both time domain and frequency
domain based on the IoT devices parameters. Delay limits and priority are used by
time domain; then the buffer status report (BSR) and channel quality indicator (CQI)
control the frequency domain scheduler decision to allocate resources. In addition, a
power allocation scheme is proposed to achieve fairness between the users allocated
the same RB regardless of the different channel conditions.

• Unlike the previous works, the novelty of the presented algorithm lies in its ability to
consider both the strict delay requirements of IoT devices and the system throughput
while ensuring high reliability and fairness, where simulations are performed to
evaluate the proposed scheduling algorithm performance. The results demonstrate
the effectiveness of the proposed algorithm to serve URLLC traffic with restricted
delay limits, due to the significant enhancement in delay, reliability and fairness, in
addition to maximizing the sum data rate and spectral efficiency while achieving the
same system complexity when compared to the maximum channel quality indicator
(max CQI) algorithm.

2. Related Works

This section presents the state-of-the-art in resources scheduling in uplink 5G net-
works, UAV communication, and NOMA-based URLLC systems. Resource allocation and
scheduling techniques in uplink 5G networks have been studied in many research papers
presented in this literature. In [8], the authors proposed two resource allocation algorithms;
the first one is the local rate maximization (LRM) in which the subcarrier is allocated to
the user which gives the maximum rate on the chosen subcarrier. The second approach
is global objective maximization (GOM) in which the allocated subcarrier is that which
achieves maximum increase in the objective function.

A weighted sum rate maximization problem is modeled in [11], then a subcarrier
allocation scheme which is based on iterative water-filling (IWF) algorithm is introduced.
Its main idea is to initially begin with all devices allocated to all subchannels then remove
the subchannel-device pair which gives the worst gain and power; repeatedly doing so
until it meets the constraint that L devices are allocated to each subchannel [11]. The authors
in [12] came up with a many-to-many matching model, where each subchannel forms a
preference list based on the system throughput and each user creates its own preference
list based on the received power. Iterative addition or substitution processes for the users
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to the subchannels are performed; for the purpose of enhancing the system performance
until there is no more enhancement [12]. Reference [13] shows a two-sided matching and
swapping technique, where firstly, each device forms its preference list based on channel
gain and data rate, then each subchannel receives requests from the demanding devices
and chooses the L devices with the highest energy efficiency. Then swapping operations
are performed if and only if it is accompanied by an enhancement in energy efficiency [13].
UAV cellular networks were investigated with 5G technologies in [14,15] considering the
channel model but the resource allocation problem was not inspected. In [16], backscatter
communication technology, which is based on reflecting the incident wireless signals for
the purpose of data collection, is investigated. The mobility of UAVs is exploited for
maximizing the energy efficiency while optimizing the backscatter devices allocation and
UAV trajectory [16]. The authors in [17] proposed NOMA scheme with index modulation
to reduce the effect of contention, interference and collision in grant-free access. However,
the system throughput was not considered. The authors in [18] used resource slicing and
presented two user clustering mechanisms to meet the delay constraints of time stringent
applications in uplink NOMA. NOMA technology is used in [19] and the resources are
classified into shared and private. If the transmission and delay requirements of users
cannot be achieved by the shared resources, then the private resources can be used [19].
Unlike the studies, the proposed algorithm is the first to consider the restricted delay limits
of the IoT devices in addition to throughput maximization which makes the proposed
algorithm suitable for URLLC applications.

The following sections in the rest of the paper are organized as follows. In Section 3,
the system model is illustrated for the uplink of IoT devices served by UAV using NOMA
access technique. Section 4 shows the problem formulation with the purpose of delay
minimization and maximizing the network sum rate. Section 5 demonstrates the delay-rate
optimization scheduling algorithm and the fairness optimization power allocation algo-
rithm. Section 6 shows the performance evaluation of the proposed algorithm through the
simulation results. Finally, the conclusion of the presented work is discussed in Section 7.

3. System Model

As shown in Figure 1, a UAV-assisted IoT network is considered where the UAV serves
as an aerial base station, all IoT devices are served by a UAV that covers a cell with radius
Rc. The UAV is located at 3D coordinates (xUAV, yUAV, hUAV); assume that (xUAV = 0,
yUAV = 0, hUAV); i.e., the UAV is at the center of the cell with altitude hUAV; such that
(hmin ≤ hUAV ≤ hmax) where hmin and hmax are the minimum and maximum allowable
heights of the UAV. Assume that there are N ground IoT devices; each device is equipped
with a single antenna. These devices are distributed randomly in the cell covered by the
UAV; each device is located at (xi, yi) where i = {1, 2, . . . , N}. Each IoT device has a packet
arrival rate λi and transmits minimum rate Ri with delay limit Di. Each IoT device has a
transmitted power Pi (Pmin,i ≤ Pi ≤ Pmax,i) where Pmin,i and Pmax,i are the minimum and
maximum transmitted power of IoT device i respectively. Path loss between IoT device i to
the UAV expresses the large-scale fading component which is given by

PLi =
A

1 + ae−b (θi−a)
+ Bi, (1)

A = ηLOS − ηNLOS, (2)

Bi = 20 log10(di) + 20 log10

(
4π fc

c

)
+ ηNLOS, (3)

where fc is the carrier frequency, c is the light speed, ηLOS, ηNLOS, a, b are constants related
to the propagation environment either urban, suburban, dense urban or high-rise urban
environments. Considering air to ground (A2G) communication between the UAV and the
ground IoT devices, thus, each device can have line of sight (LoS) view or non-line of sight
(NLoS) view with respect to the aerial base station with certain probability. NLoS occurs
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when the propagation path is partially or fully obscured by physical obstacles. The LoS
probability or NLoS probability are highly dependent on the device location, environment
and the elevation angle between the device and the UAV, as illustrated in Figure 1. PrLoSi ,
PrNLoSi are the probabilities of IoT device i having LoS link or having non-line of sight
(NLoS) link respectively between the UAV and IoT device, which could be calculated as [20]

PrLoSi =
1

1 + aexp(−b[θi − a])
, (4)

PrNLoSi = 1− PrLoSi (5)

where θi is the elevation angle (measured in “degree”) between IoT device i and the UAV
as illustrated in Figure 1; it can be calculated as

θi =
180
π

sin−1
(

hUAV
di

)
(6)

di is the distance between the IoT device i at (xi, yi) and the UAV located at (xUAV , yUAV ,
hUAV) is

di =

√
(xUAV − xi)

2 + (yUAV − yi)
2 + (hUAV)

2 (7)
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The UAV uses the NOMA access technique to communicate with the IoT devices.
Assume that the total bandwidth allocated to the UAV is B, which is divided equally into
K orthogonal subcarriers. Let bk,i(t) is the subcarriers assignment index, where bk,i(t) = 1
means that subcarrier k is allocated to device i, otherwise bk,i(t) = 0. There are maximum
L IoT devices allowed to be scheduled over a single subcarrier at the same time and each
IoT device gets exactly one subcarrier for simplicity. IoT devices can give preferences for
the resource blocks, and their preferences are considered based on their channel quality
indicator (CQI) [22] which depends on the channel quality between the UAV and IoT
devices. The signal to noise plus interference ratio (SNIR) of IoT device i on subcarrier k is
modeled as

Γk,i(t) =
bk,i(t)pk,i(t)

∣∣gk,i(t)
∣∣2

∑N
f=1, |gk, f (t)|2<|gk,i(t)|2

bk, f (t)pk, f (t)
∣∣∣gk, f (t)

∣∣∣
2
+ σ2

, (8)

gk,i(t) is the channel gain between the UAV and IoT device i on subcarrier k. gk,i(t) which
is invariant in one time slot but varies over different time slots, can be modeled as:

gk,i(t) =
√

PLk,ihk,i(t), (9)
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where hk,i(t) is the small scale fading of complex Gaussian distribution given by
hk,i(t)∼ CN(0,σ2). URLLC uses short packets to ensure low latency transmission, so Shan-
non capacity, which acts as the upper bound in terms of data rate, can no longer be applied.
Consequently, the user data rate at finite blocklength transmission [23] is given by

Rk,i(t) = log2(1 + Γk,i(t))−
√

Vk,i

m
Q−1(ε) (10)

where, the decoding error probability ε [24] is given by

ε = Q
(

ln 2
√

m
V

(
log2 (1 + Γ)− D

m

))
, (11)

Such that the Q function and V are defined respectively as

Q(x) =
1√
2π

∫ ∞

x
e
−t2

2 dt (12)

Vk,i = 1− (1 + Γk,i)
−2 (13)

where D states the packet size, and m represents the blocklength of the channel.
The sum rate can be calculated as

Rsum =
K

∑
k=1

∑N
i=1 Rk,i(t), (14)

Assume that packet arrival of the IoT device i follows a Poisson process with the
average arrival rate as λi packets per second. The average service rate of the same IoT
device is assumed to be µi packets per second. Both λi and µi are statistically identical and
independent distributed. The queuing system model of the IoT device is shown in Figure 2.
Then, the average delay dav,i, which is based on the M/M/1 queuing model [25], can be
given by the following formula:

dav,i =
Si

Rav,i − Siλi
(15)

where Si and Rav,i are the packet size and the average rate of IoT device i respectively.
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Rav,i can be given as the rate of device i averaged over time as follows:

Rav,i =
1
T

Tslots

∑
t=1

K

∑
k=1

Rk,i(t)bk,i(t), (16)

where Tslots represents the total number of time slots.

4. Problem Formulation

The main objective is to maximize the sum data rate of all users while achieving
minimum device delay through selecting the assignment index bk,i at every time slot.
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Hence, the resource allocation problem is formulated with data rate maximization objective
function as follows:

Max
{bk,i(t)}

K

∑
k=1

∑N
i=1 Rk,i(t) (17)

s.t. C1 :
K

∑
k=1

bk,i(t)Rk,i(t) ≥ Rmin,i (18)

C2 :
K

∑
k=1

bk,i(t)pk,i(t) ≤ Pmax (19)

C3 : bk,i(t) ∈ {0, 1} (20)

C4 :
K

∑
k=1

bk,i(t)pk,i(t) ≥ 0 (21)

C5 :
N

∑
i=1

bk,i(t) ≤ L (22)

C6 : dav,i < Di (23)

C7 : hmin < hUAV < hmax (24)

where Pmax is the maximum available transmission power of the IoT device. C1 is the
minimum required data rate for all users to ensure QoS. C2 means that any IoT device
transmit power cannot exceed Pmax. C3 and C4 are the constraints of the assignment matrix
bk,i and power pk,i. C5 mentions that one subcarrier cannot be allocated to more than L
users at the same time. C6 is the delay constraint, states that the average delay of the device
i (dav,i) should not exceed the delay limit requirement Di. C7 is the UAV height constraint
between the minimum and maximum allowable altitudes.

The optimization problem is non-convex due to the coupled variables bk,i and pk,i in
(20) and (21). Hence, the proposed algorithm uses a linear weighted utility function to
overcome the complexity of the optimization problem (17).

5. Proposed Algorithm

The optimization problem is non-convex due to the coupled variables bk,i and pk,i in
(20) and (21). To find a simplified solution, the proposed scheduler in this section exploits
the convexity property of the sub-problems [27] for the main non-convex problem (17). In
addition, the proposed algorithm makes use of the resource element structure in NOMA
which takes one subcarrier in frequency and one time symbol known as transmission
time interval (TTI) [28], as demonstrated in Figure 3. Hence, the proposed algorithm
operates in two domains, as illustrated in Figure 4. The first is delay minimization to
guarantee the delay requirement of each IoT device which is performed by a time domain
packet scheduler (TDPS). The second domain is rate maximization to increase the spectral
efficiency and maximize the system sum rate which is performed by a frequency domain
packet scheduler (FDPS).
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The optimum height of the UAV should be calculated to solve constraint C7. The
optimal UAV elevation angle θoptimum was derived for each environment in [29] to cover a
circular cell of certain radius in A2G communication independent of the multiple access
technique used. Thus, according to [30]; the values of θoptimum given by (25) for UAV
placement corresponding to each environment either suburban, urban, dense urban or
high-rise urban environments are illustrated in Table 1. Thus, the optimum UAV altitude
hoptimum to cover a cell of radius Rc can be given by

θoptimum = tan−1
(hoptimum

Rc

)
(25)

Table 1. Values of optimal elevation angle of each environment.

Environment θoptimum

Suburban 20.34◦

Urban 42.44◦

Dense urban 54.62◦

High-rise urban 75.52◦

5.1. Time Domain Packet Scheduling (TDPS)

The main function of TDPS is to select a certain number of IoT devices to be scheduled
in the next TTI; this process should guarantee that there are no devices exceed their
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maximum delay limits by minimizing the average delay. Hence, the optimization problem
for time domain scheduling can be formulated using (15) as

min dav,i =
Si

Rav,i − Siλi
, (26)

The device selection criteria in TDPS is based on a weighted delay metric which
is essentially needed to prioritize the devices requests. The metric function is based on
delay [31] to satisfy the delay constraint C6. The UAV uses the information in the BSR to
compute the metric function for each requesting device. This metric aims to order the IoT
devices requests to control the TDPS decision. The metric considers average delay and
buffer status reports [32] as follows:

Mi = αj wi,jdav,i (27)

where αj states the priority of each traffic group, where the TDPS categorizes stations
according to their delay limits into j groups, and wi,j is the traffic weight of user i in traffic
class j, this weight can be calculated as

wi,j =
qi,j

bl
, (28)

where qi,j is the queue size of user i in traffic group j, and bl is the buffer length to avoid
buffer overflow of the IoT device.

After grouping and calculating metric for the IoT devices that send scheduling requests.
The TDPS selects maximum Nmax = KL devices to be scheduled in the next TTI, since there
are L devices can be scheduled over the same resource block according to constraint C5
(22). Consider N_sel to be the number of chosen IoT devices to be scheduled. The rejected
users send scheduling requests in the next TTI.

5.2. Frequency Domain Packet Scheduling (FDPS)

The main purpose of FDPS is allocating resources for IoT devices based on channel
conditions (CQI) to increase spectral efficiency [32]. FDPS allocates resources to the IoT
devices chosen by TDPS. Thus, the optimization problem of FDPS could be formulated as

Max
{bk,l(t)}

K

∑
k=1

∑N_sel
l=1 Rk,l(t) (29)

s.t C1 : ∑K
k=1 bk,l(t)Rk,l(t) ≥ Rmin,l (30)

C3 : bk,l(t) ∈ {0, 1} (31)

C5 :
N_sel

∑
l=1

bk,l(t) ≤ L (32)

In the proposed algorithm in FDPS each of the selected users prioritizes the RBs, where
each IoT device sorts the RBs in descending order of CQI. The CQI value is an indication
for the channel quality of each user on each subchannel. CQI value ranges from 0 to 15. The
higher the value, the better the channel quality and vice versa. The CQI value is determined
according to the estimated value of SINR [33]. Therefore, a preference matrix is formed
containing the CQI values of all users on all RBs such that CQIi,k is the CQI value of user i
on RB k; where the rows correspond to the IoT devices and the columns are related to the
RBs. Each IoT device’s preferences (CQI values) are listed in a row in this matrix; such that
a higher CQI value indicates that the IoT device prefers this RB.
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A weighted preference matrix is then formed which is based on the weighted metrics
(27) computed in TDPS and the preferences determined in FDPS, and can be given by

fobj = Diag(M1xN_sel ) CQIN_sel xK (33)

where M1xN_sel is a row vector of the metrics of the selected devices and CQIN_sel xK is
the preference matrix which contains the CQI values of the selected devices on all RBs.
Hence, the problem in (29) can be easily modified to

Max
{bk,l(t)}

− Diag
(

M1xNsel

)
CQINsel xKbk,l(t) (34)

s.t C3 : bk,l(t) ∈ {0, 1} (35)

C5 :
N_sel

∑
l=1

bk,l(t) ≤ L (36)

The problem in (34) can be solved using binary integer programming which is used to
solve the constrained problem to maximize fobj The algorithm (Algorithm 1) to find the
optimum allocation matrix is listed in detail as shown in the pseudo code.

Algorithm 1. Joint Delay-Rate Optimization Scheduler

Input: T, K, N, λ, Pmin & Pmax, j, L
Output: {s}bk,i

1: Initialize: Nmax = L * K
2: Step 1: chooses the Nmax devices with the highest metrics in TDPS.
3: Arrange IoT devices in j groups according to the application type.
4: For Ts = 1 to Ts = T do
5: R = IoT devices send scheduling requests
6: If R =< Nmax go to Label
7: else, do
8: For i = 1 to i = R do
9: Compute the weight of device i (27):

Mi = αi wi,jdav,i
10: End for
11: Arrange IoT devices of each group in descending order of the weight (Mi)
12: Choose the N_max nodes which have the maximum weight to be scheduled in this TTI.
13: Label:

Choose the R nodes to be scheduled in this TTI.
14: End If
15: N_sel = the selected nodes to be scheduled
16: Step 2: assign each IoT device a resource block
17: For i = 1 to i = N_sel do
18: Form the preference matrix for each device i to all available RBs based on the CQI value.
19: Form the objective function which is the weighted preference matrix fobj.
20: Initialize k̂ = 1, correspondingly set fmax = fobj.

21: if a solution k̀ε
{

kεK
∣∣∣ fobj

〉
fmax

}
can be found: update k̂ = k̀, and fmax = fobj.

22: End for
23: Delay of the scheduled nodes is cleared, but that of waiting nodes is incremented.
24: Rejected nodes send scheduling requests in the next TTI.
25: End For

In the Joint Delay-Rate Optimization Scheduler, the UAV receives scheduling requests
in every TTI. In TDPS, the UAV classifies the requests to groups according to the application.
Then, the metric function is computed for all requesting devices using (27). The scheduler
selects N_sel devices with the highest metrics. Then, in FDPS, the RBs allocated to each IoT
device are chosen with the objective to maximize the weighted preference matrix in (33).
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5.3. Power Allocation Algorithm

The Uplink power allocation scheme is used to ensure fair data rates between users
sharing the same RB [34]. Consider two users share the same RB, if gk,n > gk, f then according
to (8) the SNIR of near and far users respectively are given as

Γk,n(t) =
pk,n(t)

∣∣gk,n(t)
∣∣2

pk, f (t)
∣∣∣gk, f (t)

∣∣∣
2
+ σ2

(37)

Γk, f (t) =
pk, f (t)

∣∣∣gk, f (t)
∣∣∣
2

σ2 , (38)

Assuming that the UAV will decode the signal of the nearest user first then decode the
signal of the far user using SIC. To achieve fair data rates for both users, then,

pk,n(t)
∣∣gk,n(t)

∣∣2

pk, f (t)
∣∣∣gk, f (t)

∣∣∣
2
+ σ2

pk, f (t)
∣∣∣gk, f (t)

∣∣∣
2

σ2 , (39)

Let
∣∣gk,n(t)

∣∣2 = gN as the gain of the near user and
∣∣∣gk, f (t)

∣∣∣
2
= gF as the gain of the

far user. Thus, the power allocation coefficients aN and aF of the near and the far users
respectively can be derived as

aN PmaxgN

aFPgF + σ2 =
aFPmaxgF

σ2 , (40)

Let ρ = Pmax/σ2, then divide both sides by σ2

aNρgN
aFρgF + 1

=
aFρgF

1
, (41)

g2
F ρ2a2

F +(gF + gN )ρaF − ρgN = 0 (42)

aF =
−(gN + gF)±

√
(gN + gF)

2 + 4ρg2
FgN

2g2
F ρ

(43)

where 0 < aN < 0.5 because aF > aN and aN + aF = 1.

6. Simulation Results

In this section, simulation is introduced to evaluate the proposed algorithm perfor-
mance. Consider a single UAV covering a cell of radius Rc = 1 km; assuming a suburban
environment. An aerial UAV is centered and placed at the optimum height of the cell
according to the values in Table 1. Consider IoT devices (N = 300) randomly deployed in
the cell, IoT devices are supporting different applications, assuming there are 4 groups
of IoT devices each has its unique traffic parameters. The maximum transmit power of
each IoT device is 27 dBm and the minimum transmit power is 20 dBm. Unless stated, it is
assumed that the system total available bandwidth B = 1.4 MHz consisting of 6 RBs. The
noise power density σ2 =−174 dBm/Hz. The main simulation parameters are summarized
in Table 2.

To verify the efficiency of the proposed scheduler; the proposed algorithm is compared
with the maximum CQI scheduling algorithm. According to [35], the best CQI algorithm
shows its superiority in the achieved sum rate and spectral efficiency. The idea of the best
CQI is based on scheduling the N_sel nodes which have the maximum CQI regardless of
any other parameters.
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Table 2. Simulation parameters.

Symbol Description Value

a Environment Constant 4.88
b Environment Constant 0.43

ηLOS Line of sight Environment Constant 0.1
ηNLOS Non-Line of sight Environment Constant 21

θoptimum Optimal elevation angle 20.34◦

σ2 Noise power density −174
U Number of UAVs 1

Pmin IoT device minimum power 100 mW–20 dBm
Pmax IoT device maximum power 500 mW–27 dBm
Rc Radius of the cell 1 km

TTI Time slot 1 ms
Simulation time 1 s

Dlimit Maximum delay limit {10, 20, 30, 40} ms
λ Arrival rate per group {100, 250, 600, 400} (packets/s)
N Total number of devices 300
D Packet size 100 bits
m Channel blocklength 100 symbols

Figure 5 shows the percentage of IoT devices that exceeds the delay limit, and as
clearly seen the proposed algorithm outperforms the maximum CQI and the gap increases
with the time, until it reaches a certain point at which the percentage of devices exceeding
the delay limit saturates in both algorithms. This is due to its receiving large requests and
scheduling N_sel nodes only in each TTI while rejecting the rest of nodes. The percentage
of devices exceeding the delay tolerance saturates in the proposed algorithm to nearly 30%
but around 44% in maximum CQI. The proposed algorithm gives priority to the nodes of
the maximum buffer and least delay tolerance, resulting in 31.8% delay improvement.
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To evaluate the fairness of the proposed algorithm; the formula of Jain’s fairness index
in [8] is used, which is given by

Jain’s fairness index =

(
∑K

k=1 Rk

)2

K ∑K
k=1 R2

k

(44)
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where Rk represents the rate of user k and K is the total number of users. The fairness
index values are confined between 0 and 1 such that the maximum value is achieved when
the users have equal data rates. As obviously seen in Figure 6, the proposed algorithm
is significantly fairer than the best CQI, since scheduling is performed sequentially from
all groups, in addition to the fair power allocation algorithm used unlike the best CQI;
resulting in 50.8% fairness enhancement at 300 users.
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In Figure 7, the relationship between the transmitted power of the IoT devices and
the sum rate is shown. As expected, the sum rate of the maximum CQI is greater than the
proposed algorithm by only 1.6%; therefore, they still have a very close performance. By
increasing the IoT device’s maximum power, the sum rate is nearly the same and does not
change; this is due to the slight increase in the device’s maximum power that it does not
affect the sum rate.
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Figure 8 shows a comparison between the proposed algorithm and the best CQI in
the achieved sum rate versus the number of users at different bandwidths; in case of 6, 10
and 25 resource blocks. They achieved nearly the same performance, which proves the
superiority of the proposed algorithm. As the number of users increases, the sum rate
increases to a certain saturation point after which the sum rate is almost constant due to
scheduling the maximum number of users Nmax in every TTI achieving almost the same
sum rate. It can be noticed that the sum rate in case of 25 RBs outperforms that in case of
6 RBs and 10 RBs, while it is the least in the case of 6 RBs. It is observed that the saturation
point is shifted to the right as the number of RBs increases, meaning that as the number of
RBs increases, the sum rate saturates at larger number of users.
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Figure 9 shows the achieved sum rate versus the bandwidth (number of RBs) with
maximum 2 users allocated to the resource block. The spectral efficiency of the proposed
algorithm is almost closer to that of the maximum CQI, which verifies the efficiency of the
proposed algorithm in terms of spectral efficiency.

The results obtained in Figures 7–9, show the excellence of the proposed algorithm in
terms of spectral efficiency and sum rate. This is because the proposed algorithm cannot
exceed the best CQI which represents the upper bound in throughput and spectral efficiency.
However, the proposed algorithm records a very close performance.

Figure 10 shows the spectral efficiency versus the maximum power of the IoT devices
comparing the performance of both the proposed resource allocation algorithm and the
best CQI once using the proposed power allocation and once using distance-based power
allocation. As can be clearly seen, the proposed power allocation outperforms the dis-
tance=based power allocation. Moreover, as expected, the maximum CQI is superior in
terms of spectral efficiency which is on average 41.2 bps/Hz followed by the proposed
algorithm which achieves very close performance, nearly 40.5 bps/Hz and about 1.69%
decrease only.

To evaluate the reliability of the algorithms, the relationship between the packet size
and probability of decoding error is shown in Figure 11. As expected, as the packet size
increases, the probability of error increases in both algorithms. However, the probability of
error ε in the proposed algorithm is significantly lower than that of the max CQI, where at
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packet size = 1000 bits, ε is about 8.5× 10−11 and 4.2× 10−8 in the proposed algorithm and
the max CQI respectively, resulting in nearly 99.7% performance improvement.
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The computational complexity of both the proposed algorithm and the best CQI is
O(KN) which means that they have linear complexity in the number of users and number
of RBs. However, in [36], resource allocation for uplink multi carrier NOMA is developed
using graph theory with complexity O

(
KN3). The shortest processing time (SPT) strategy

is presented in [37] for uplink NOMA with complexity O
(

N2). Thus, the proposed
algorithm has a worthy complexity improvement.

7. Conclusions

In this paper, an uplink NOMA resource allocation algorithm is proposed for a UAV-
IoT-based communication network serving a large number of IoT devices of different
applications. The optimization problem is formulated under constraints with the objective
to maximize the data rate and minimize the delay. The scheduler works in time domain to
optimize the delay, and in frequency domain to optimize the data rate. The power allocation
is used to ensure fair data rates between users allocated the same RB. The simulation results
show that the proposed algorithm significantly enhances the system fairness, delay and
reliability, in addition to achieving a spectral efficiency and sum rate that are nearly closer
to the system upper bound.
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Abstract: Threats of eavesdropping and information leakages have increased sharply owing to ad-
vancements in wireless communication technology. In particular, the Internet of Things (IoT) has
become vulnerable to sniffing or jamming attacks because broadcast communication is usually con-
ducted in open-network environments. Although improved security protocols have been proposed
to overcome the limitations of wireless-communication technology and to secure safe communication
channels, they are difficult to apply to mobile communication networks and IoT because complex
hardware is required. Hence, a novel security model with a lighter weight and greater mobility is
needed. In this paper, we propose a security model applying cooperative friendly jamming using
artificial noise and drone mobility, which are autonomous moving objects, and we demonstrate
the prevention of eavesdropping and improved security through simulations and field tests. The
Cooperative Friendly Jamming Techniques for Drone-based Mobile Secure Zone (CFJ-DMZ) can set
a secure zone in a target area to support a safe wireless mobile communication network through
friendly jamming, which can effectively reduce eavesdropping threats. According to the experimental
results, the average information leakage rate of the eavesdroppers in CFJ-DMZ-applied scenarios
was less than or equal to 3%, an average improvement of 92% over conventional methods.

Keywords: IoT; RF radio communication; Wi-Fi direct; D2D; drone-based mobile secure zone; friendly
jamming; mobility

1. Introduction

Wireless communication network technology is evolving to meet the needs of users
who want to use high-speed, high-capacity multimedia content without the limitations of
location and time. However, cases of information leakage have been continually occurring
owing to the fundamental limitations of wireless communication, which is vulnerable to
eavesdropping [1]. To solve this problem, protocols and mechanisms have been proposed
that improve the security or secure safe communication channels within the time, frequency,
and space domains [2]. However, conventional wireless secure communication methods
require complex hardware, which reduces the energy efficiency and data transmission
performance, limiting the application to highly reliable wireless autonomous moving
objects that exchange confidential information [3,4].

Among wireless network technologies, the Internet of Things (IoT) has become an
essential element in all industries and everyday life, and accordingly, security vulnerabilities
of wireless networks have become a larger issue [5]. Most IoT devices are light in weight
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with specifications that are insufficient to apply to regular personal computers or mobile
devices. The existing communication systems are vulnerable to side-channel attacks,
which are attacks that utilize physical information generated from the physical layer.
Thus, the security protocol key can be leaked and encryption can be disabled. As they
communicate in open network environments, they are easily exposed to security threats
such as eavesdropping. This vulnerability can be exploited to easily collect confidential
information [6].

To improve the security in IoT environments that are easily exposed to security threats,
security architectures should be designed by considering the light weight and mobility
of mobile IoT devices [7]. In this paper, we proposed Cooperative Friendly Jamming
Techniques for Drone-based Mobile Secure Zone (CFJ-DMZ) to enhance the security in
wireless communication environments for drones, which are IoT devices that can move
autonomously while exchanging information with other surrounding devices. As eaves-
dropping is a passive attack that leaves no evidence of attacks, it is impossible to detect
eavesdroppers in a wireless communication environment. Therefore, in this paper, a
proactive prevention method was proposed to reduce the eavesdropping probability of
unspecified potential eavesdroppers. The CFJ-DMZ uses the mobility and artificial inter-
ference of autonomous moving objects to form a secure zone, which guarantees safe data
communication in the wireless communication environment of mobile IoT and flexibly
controls the zone to be protected, effectively mitigating eavesdropping threats.

To evaluate the proposed CFJ-DMZ, we implemented a network simulation model and
validated its performance. In the network simulation model, the transmission node moves
to near the receiving node, and safe short-range device-to-device (D2D) communication
is then conducted in the secure zone formed through a cooperative jammer drone. Here,
three drones communicate with each other and create a locally secure zone based on the
boundary of the artificial interference signal reaching range to protect the confidentiality of
communication between nodes.

The main contributions of this paper are as follows:

• A cooperative friendly jamming technique is proposed to flexibly form a secure zone
for confidential communication of lightweight mobile devices.

• The effect of the proposed CFJ-DMZ is analyzed through simulation and proved
through field test in the implemented test bed.

The remainder of this paper is organized as follows. Section 2 introduces studies
on conventional wireless communication security technologies and major studies on the
wireless communication security of autonomous moving objects. Section 3 then describes
the security performance criteria of friendly jamming and the friendly jamming model.
Section 4 proposes a CFJ-DMZ model, and Section 5 validates the security performance of
the proposed model through simulations and field experiments. Finally, Section 6 provides
some concluding remarks and describes future research directions.

2. Related Work
2.1. Introduction to Friendly Jamming

Wyner defined the concept of security capacity in a study on eavesdropping channels
and proved that security can be achieved according to the information theory perspective
when the quality is poorer in the eavesdropper’s channel than in the legitimate receiver [8].
Security channel capacity (secrecy capacity) is defined as the difference in the channel
capacity between a legitimate sender and a legitimate receiver and the channel capacity
between a legitimate sender and an eavesdropper. If this value is negative, the security
channel capacity is zero, which means that no information can be safely sent. Here, signals
and artificial interference can be generated and sent to improve the channel quality of the
receiver and deteriorate the channel quality of the eavesdropper. Various studies have
been conducted for this, including jamming, beamforming jamming, relay jamming, and
friendly jamming techniques for improvements in wireless security. It has recently been
proven that if a beam is formed using multiple antennas for jamming signals that can
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reduce the eavesdropping performance of malicious eavesdroppers, the communication
security and reliability between legitimate communicators can be significantly improved.
However, beamforming technology that uses multiple antennas or a massive antenna is
complex and requires a large power consumption, making it difficult to use in IoT or mobile
devices [9,10].

2.2. Friendly Jamming Security Model

Various studies are underway on friendly jamming security techniques applying
jamming signals for security purposes [11–18]. A friendly jamming technique is a method
of emitting friendly artificial interference signals to prevent malicious eavesdroppers from
overhearing when the sender communicates with a legitimate receiver. A jammer is used
to protect the wireless communication network and send messages with confidentially,
allowing legitimate senders to communicate in a secure manner. In friendly jamming
security technique research, security metrics are defined to demonstrate the effectiveness
and validity of jamming. Friendly jamming security techniques include a method of using
anti-jamming that automatically arranges multiple friendly jammers to deliver information
safely between moving objects in a mobile communication network [16–18].

2.3. Friendly Jamming Security Model for Mobility Environment

Research is underway for friendly jamming security models using multiple unmanned
aerial vehicles (UAVs) in mobile communication networks. The Friendly UAV Jamming
(Fri-UJ) method has shown that the eavesdropping probability decreases as the number of
jammers deployed near the protection zone increases because the signal to interference and
noise ratio (SINR) of the eavesdropping device drops through the transmitted signals of the
jammers [19]. In addition, there is a study that proved its effectiveness by applying Fri-UJ
to IoT technology in the medical field [20]. However, using the Fri-UJ, as the number of
UAVs increases, the number of jammers increases, thereby increasing the loss cost, and in
practice, making it difficult to install an infinite number of jammers. Therefore, research is
required to compare, analyze, and propose an effective friendly jamming model in a mobile
communication environment based on the size of the secure zone, the number of jammers,
and the security efficiency relative to cost.

In addition, research on location optimization considering the mobility of UAVs is
being conducted. The location of the drone is important in order to reduce the waiting time
and delay of the user or improve the quality of the service provided to users [21]. In [22],
the disturbance power intensity and power trajectory path that occur when protecting
legitimate nodes located on the ground using friendly jamming signals were studied.
At that time, it was calculated by estimating the location of the eavesdropper, but the
applicability is low because it is difficult to determine the location of the eavesdropper in
the actual situations. Accordingly, in [23], randomness was modeled without identifying
the location of the eavesdropper. At that time, in order to maximize the secret ratio of
several legitimate receivers, the area was determined using the signal-to-noise ratio (SNR).
However, as the confidentiality of the receiver in the security area is not guaranteed equally,
some devices have a high potential for eavesdropping. In addition, when the optimal
location is determined, only some factors change depending on the situation, so the area is
not flexible and the mobility of UAVs cannot be utilized. In the case of battery usage, it is
inefficient because jamming signals must be transmitted all the time.

Table 1 shows a summary of prior studies related to friendly jamming. In the table
header, “Paper Title” refers to the title of the study, and “Research Topic” refers to the
keywords of the study. “Number of Jammers” refers to the number of jammers used in the
model: Here, “single” indicates that the model used one jammer, and “multiple” indicates
that the model used two or more jammers. In addition, “Main Idea” refers to the model
proposed in each paper, and “Limitation” refers to those analysis results that are a limitation
of the indicated study. The models in the prior studies are inefficient and inflexible in terms
of creating a secure zone for secure wireless communication because they consume large
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amounts of power and have no mobility. In this study, however, we proposed a model
that creates an efficient and flexible secure zone by using only three drones that transmit
friendly jamming signals, and we demonstrated the effectiveness of the model through
simulations and field experiments.

Table 1. Comparison of prior studies on friendly jamming.

Paper Title Research Topic Number of
Jammers Main Idea Limitation

UAV-enabled friendly
jamming scheme to secure

industrial Internet of Things
[19]

Eavesdropping,
Internet of Things,
unmanned aerial

vehicles

Multiple

Unmanned aerial
vehicles (UAV)-enabled

friendly jamming
scheme

Need to study the optimal
number of jammers

A jamming approach to
enhance enterprise Wi-Fi
secrecy through spatial

access control [16]

Eavesdropping,
Wi-Fi networks Multiple

Defensive jamming
approach in Wi-Fi

networks secured by
the WPA2 enterprise

mode

Need to study friendly
jamming techniques in a

mobile environment

Achieving physical layer
security with massive

MIMO beamforming [17]

Antenna arrays,
beamforming,

cylindrical arrays,
massive MIMO

Single
Beamforming with

large cylindrical
antenna arrays

Need to study appropriate
node placement

Friendly jammer against an
adaptive eavesdropper

in a relay-aided network [14]

Relay-aided
single-input

single-output network,
adaptive

eavesdropping,
outage probability

Single

Simulations for
improvement in the
secrecy capacity and
SOP performances

owing to the presence
of friendly jamming

Need to study improved
security for confident

communication of nodes that
want protection,

and optimal number of
jammers

Friendly jamming for
wireless secrecy [12]

Cooperative jamming,
jamming coverage,
jamming efficiency,

eavesdropping

Single

Cooperative/friendly
jamming on the secrecy
outage probability of a

quasi-static wiretap
fading channel

Need to study friendly
jamming techniques in a

mobile environment,
and the optimal number of

jammers

3. Friendly Jamming Technique

Equation (1) shows the information leakage rate (ILR) metrics defined for use as
performance evaluation metrics of friendly jamming. The relationship between the bit
error rate (BER) and friendly jamming was defined using the ILR. If the BER exceeds 0.5,
then the ILR is 0, indicating that it is impossible to extract information because the BIR is
high [24–26]. By contrast, if the BER is less than or equal to 0.5, then information extraction
is possible, and ILR has a value greater than or equal to 0. As the ILR increases, the security
decreases, indicating that more information can be extracted.

ILR = 0, if BER > 0.5ILR = 1− BER
0.5

, if BER ≤ 0.5 (1)

Figure 1 shows the network configuration for verifying the security performance of
friendly jamming. Figure 1a shows a friendly jamming technique model, which uses an
open channel to send data (h∗sd) to the sender node (Source, S) or receiver node (Destination,
D) that uses a single antenna. Here, the eavesdropping device (Eve, E) also receives the
data (h∗se). A drone (Jammer, J) located near the source node transmits friendly jamming
signals (h∗je) to form a jamming zone. The eavesdropping quality of the eavesdropping
device in the friendly jamming zone deteriorates as an effect of jamming, reducing the
possibility of eavesdropping.
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Figure 1. Network configuration for friendly jamming: (a) friendly jamming model and (b) CFJ-
DMZ model.

4. CFJ-DMZ Model

This section introduces the CFJ-DMZ model that forms a secure zone by using the
mobility of devices and the friendly jamming method. Three drones transmit jamming
signals to the outside of the secure zone. These cooperative jamming signals reduce the
eavesdropping probability of eavesdroppers and facilitate secure communication in the
secure zone.

Figure 1b shows the CFJ-DMZ model proposed in this paper. The CFJ-DMZ network
consists of a source node (S), destination node (D), arbitrary eavesdropper (E), and three
friendly jamming drones (J). The drones transmit jamming signals after forming a secure
zone, as shown in Figure 1b. The source and destination nodes communicate D2D inside
the secure zone. As it is difficult to use a multi-antenna communication interface for low-
power lightweight drones, we considered a communication method using a single antenna
in this study.

Figure 2 shows the flowchart of a scenario for the CFJ-DMZ model, which consists of
three stages.
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Figure 2. Simulation flow chart.

In the first stage, three drones are used to form a secure zone. When D2D communica-
tion is determined, the receiver (D) delivers its location coordinate information using GPS
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to the sender (D). In addition, S sends the determined location information to D and moves
to the determined location, and D uses the arriving coordinate information of S and the
current coordinate information of D to calculate the locations of the drones (J). Moreover, D
creates a virtual circle around its position. Here, given that the maximum transmittable
distance according to the strength of the transmitted jamming signals of J is x, the radius of
the circle is as shown in Equation (2):

Radius =
2
3

√
3x (2)

Here, D selects three arbitrary points to make an equilateral triangle on the virtual
circle created by centering on the position of D and sending the selected location to J. Each
J moves to the received location. The J that arrives at each location moves to D until their
respective jamming signals are no longer caught while transmitting to adjust the size of
the secure zone. After the secure zone is created, J stops sending the jamming signals and
waits until S arrives at the final target coordinates.

The second stage is the jamming signal transmission stage. After arriving at the final
target coordinates, S sends the jamming signal transmission start time and the jamming
signal transmission maintenance time to both D and J. The three units of J transmit jamming
signals simultaneously based on the time information, and S and D can send secure data
during the jamming signal transmission maintenance time. As such, J sends jamming
signals only when communication is made according to the data transmission time. If
jamming signals are continuously transmitted irrespective of the data transmission, the
security inside the secure zone improves. However, continuous jamming signals interfere
with the communication of other nearby transmitting and receiving objects [27]. Further-
more, it is inefficient to transmit jamming signals continuously in terms of energy. In the
CFJ-DMZ, J therefore sends jamming signals only when S and D are communicating to
minimize the effects of such signals on other nearby sender and receiver nodes and to use
their batteries efficiently. In addition, it is assumed that the secure zone is formed only
when the legitimate nodes exchange confidential information with the help of surrounding
UAVs used for other purposes. Therefore, the cost of friendly jamming drones for CFJ-DMZ
was not considered in this paper. On the other hand, very small control logic can be added
to friendly jamming drones and the ground user’s hardware to implement the proposed
method, but it is assumed that the added hardware cost is trivial.

Finally, S and D communicate inside the secure zone formed by the jamming-signal
transmission of J. Here, because the distance between S and D is close, the transmission
signal strength of S is reduced. The three units of J transmit cooperative jamming signals. As
a result, the probability of success of the eavesdroppers decreases, improving the security
of D2D communication in the secure zone.

In this study, we conducted simulations and field experiments to prove the security of
the CFJ-DMZ model. Octave was used for the simulations, and Raspberry Pi 3 was used in
the field experiments. Section 5 discusses the security verification process and results. The
experiments were focused on proving the security improvement inside the secure zone.
Therefore, as a part of the process under the CFJ-DMZ scenario, we assumed that the source
node has moved and that the friendly jamming drones have completed moving to form a
secure zone.

5. Experiment
5.1. Simulation
5.1.1. Effect of Friendly Jamming

The CFJ-DMZ model proposed in this paper uses three drones as friendly jammers
to protect the confidentiality of D2D communication. At this time, the three drones are
theoretically the smallest number to make a two-dimensional space, and they protect the
communication of the two legitimate nodes by forming a cost-performance effective secure
zone. The jamming effect on the eavesdropper is affected by the distance between the
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source node and the eavesdropper (Source − Eve distance, dSE) and the distance between
the jamming drones and the eavesdropper (Drone − Eve distance, dDE). Figure 3 shows
the BER of the eavesdropper according to changes in dSE and dDE measured using the
simulation. The BER of the eavesdropper was measured by changing each distance from
1 to 100 m. As a result, we found that when dDE is shorter than dSE, the BER of the
eavesdropper increases, reducing the communication quality of the eavesdropper.
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5.1.2. Evaluation Environments

The evaluation simulator was implemented using Octave v.6.1. The simulation was
conducted in a PC environment with the Windows 10 operating system, 8 GB of RAM, and
an Intel i5-7200U CPU. In the simulation, a free space of 200 m × 200 m was formed, and
the location of nodes was randomly arranged to prove the effectiveness of the CFJ-DMZ.
The experimental environment was set as a free space that did not take into account the
influence of air or other radio waves. In addition, the maximum transmission power of
the transmitting node, receiving node, and friendly jamming drone in the simulation was
24 dBm each.

We configured four experimental settings to measure the leaked amount of information
according to the mobility of the device and the friendly jamming technique. Figure 4 shows
each experimental configuration.

After measuring the locations of the source node (S) and destination node (D), the
locations of three drones (J) were calculated. The blue circles in Figure 4b,d represent the
range in the cooperative jamming signals. A total of six eavesdropping nodes (eve1–6)
were created, and the eavesdropping nodes (E) were located at arbitrary coordinates. The
locations of the eavesdroppers were the same in all experiments for an effective comparison
between the experiments. Table 2 shows a summary of the location of each node. In the
simulation experiments, the distance from the source node to the destination source was
set to 48.413 m in Figure 4a,b and to 2 m in Figure 4c,d.
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Table 2. Location of each node in simulation.

Node Source in
Figure 4a,b

Source in
Figure 4c,d Destiantion eve1 eve2 eve3 eve4 eve5 eve6

Location (127.42,
60.1) (102, 100) (100, 100) (23, 146) (101, 125) (155, 22) (149, 89) (73,71) (101, 47)

The test cases of the experimental settings in Figure 4 can be summarized as shown in
Table 3. In the table, “mobility” refers to with or without movement of the source node.
If the mobility is O, it indicates a case in which the source node sends information after
moving to near the destination node. If the mobility is X, it indicates a case in which the
source node sends information without moving to near the destination node. When the
source node has mobility, and the distance between the source and destination nodes is
close, the transmission signal strength of the source node is reduced. “Friendly jamming”
refers to whether the friendly jamming technique of the drone is used. If friendly jamming
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is O, it indicates a case in which the drones transmit cooperative jamming signals when
sending information. If it is X, it indicates a case in which friendly jamming signals are not
transmitted. “Source-Destination distance” refers to the distance between the source and
destination nodes. The CFJ-DMZ model corresponds to Figure 4d in which both mobility
and friendly jamming occur.

Table 3. Environment setting of Figure 4.

Case Figure 4a Figure 4b Figure 4c Figure 4d

Mobility X X O O
friendly jamming X O X O

Source-Destination distance (m) 48.413 48.413 2 2

The design process of the simulation is as follows. First, it is assumed that there is a
channel h∗sd in the form of a complex conjugate between the source and destination nodes. It
is also assumed that Ps at the transmitter and the receiver, and the maximum transmission
power of Pj of the friendly jamming drones, are both 24 (dBm). Under these assumptions,
the following equations are defined to measure the BER at each object.

First, the signal that the destination node receives from the source node in Equation (3)
can be expressed based on the distance between the source and destination nodes (h∗sd),
the distance between the jammer drones and the destination node (h∗jd), the maximum
transmission power of the receiver (Ps), the maximum transmission power of the jammer
drones (Pj), and the noise (nd) [28]:

ye = G
√

Psh∗sds +
√

Pj h∗jdq + nd (3)

where the channel coefficient h is shown by Equation (4). In addition, d is the distance
between the two communication nodes, e is a uniformly distributed random number a + bi,
and c is the path loss exponent.

h = (d)
−c
2 e (4)

The amplification scale vector G can be shown through Equation (5), where N refers
to the Gaussian noise.

G =
1√

Ps
∣∣h∗sd

∣∣2 + N
(5)

Finally, the signal received by the eavesdropper in Equation (6) can be represented by
the distance between the source node and the eavesdropper (h∗se), the distance between the
jammer drones and the eavesdropper (h∗je), the maximum transmission power of the receiver
(Ps), the maximum transmission power of the jammer drones (Pj), and the noise (nd).

ye = G
√

Psh∗se +
√

Pjh∗jeq + ne (6)

For the BER of the eavesdropper node in each experiment, we used an average of
1000 times, as shown in Equation (7). In Figure 4a,c, where there is no jamming signal,
G
√

Pjh∗je ∗ JamSymbols is calculated as zero.

ye = G
√

Psh∗se ∗ TrsutSymbols + G
√

Pjh∗je ∗ JamSymbols (7)

Table 4 shows the definitions of the parameters used in the simulation pseudo-code,
and Algorithm 1 shows the simulation pseudo-code itself. The detailed operating principle
of Algorithm 1 is as follows.
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Table 4. Defined parameters for pseudo-code.

Notation Remark

c Channel coefficient for free-space path loss
e Randomized complex number

hse Channel coefficient for free-space path loss of distance between source and eve

hsd
Channel coefficient for free-space path loss of distance between source and

destination
hje Channel coefficient for free-space path loss of distance between jammer and eve
G Scaling factor of amplification based on the distance source and destination

Algorithm 1. Pseudo-code for BER measurement of eve.

1: Drone1toEveDistatnce ← Distance between Drone1 and Eve
2: Drone2toEveDistatnce ← Distance between Drone2 and Eve
3: Drone3toEveDistatnce ← Distance between Drone3 and Eve
4: CalculateJEDistance ← Calculate the distance o f the cloest drone f rom eve
5: jeDistance← The distance between one jammer and the eavesdropper a f f ected by the jammers
6: maxLoop ← 1000
7: c ← path loss exponent
8: procedure MeasureEveBER (Nbits, c, seDistance, sdDistance, jeDistance, Pt, Pj)
9: f or 1 to maxLoop
10: e ← randomComplexNumber(Nbits)
11: hse ← seDistance−

c
2 ∗ e

12: hsd ← sdDistance−
c
2 ∗ e

13: hje ← jeDistance−
c
2

14: G ← 1√(
pt|hsd |2

)

15: SignalBits ← Generate randomly Signal Bits o f Nbits at 0, 1
16: SignalSymbols ← Mapping SignalBits to SignalSymbol in the f orm o f complex number
17: JamBits ← Generate randomly JAmming Symbol o f Nbits at 0, 1
18: JamSymbols ← Mapping JamBits to JamSymbol in the f orm o f complex number
19 eveRecieveSymbol ← G ∗ √Pt ∗ hse ∗ SignalSymbols +

√
Pj ∗ hje ∗ JamSymbols

20: eveRecieveDemappedBits ← Demapping eveRecieve Symbol to Bits

21: MeasureBER ← Sum(SignalBits 6=eveRecieveDemapped Bits)
Nbits

,
Calculate BER with comparision between Signal Bits and eveRecieve Demapped Bits

22: average BER ← Take average f or the BER results o f each loop so the BER has minimized the bias
23: end f or
24: end procedure

In line 1–5, the distance between the jamming drones and eves is measured, and the
measured distance is used for the influence of jammer on eve. Line 6 refers to the number
of simulation repetitions, and the average BER is evaluated by repeating 1000 times. The c
of line 7 is the path loss index and is used to evaluate the channel coefficient. Line 8–24 is a
function of calculating the average BER of the eavesdropper and is repeatedly performed
by a value specified in line 6. This function receives the size of data to be transmitted, the
path loss index, the maximum source power of jammer, and the distance between source
node and eavesdropper, source node and destination node, and jammer and receiver as
parameters. The e of line 10 is a random number in the form of a complex number and is
used to evaluate the channel coefficient. In line 11–13, channel coefficients are calculated
using c and e. The G of line 14 is a scaling coefficient amplified according to the distance
between the source node and the destination node. In line 15–16, 0 and 1 are randomly
generated as the size of the data to be transmitted and then mapped in a complex number
form. In line 17–18, data to be used as jamming signals are randomly generated and then
mapped in complex number form. Line 19 refers to a signal received by the eavesdropper,
and line 20 refers to the bit formed as signals. In line 21, the BER is calculated using the
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bits sent by the source node and the bits received by eve. In line 22, the average BER
is evaluated.

5.1.3. Results of Simulation

The source node transmitted 100,000 SignalSymbol data, and the BER was measured
for the destination node and the eavesdroppers. The average BER was obtained by repeat-
ing the simulation 1000 times. In every case, the average BER of the destination node was
0, which means that all data sent by the source node were received. Figure 5 shows a graph
that applies the average BER results of the eavesdroppers to the ILR metrics defined in
Section 3.
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In Figure 4a, the ILR of every eavesdropper is 1. Therefore, if the devices have no
mobility and the friendly-jamming technique is not used, the eavesdropping probability of
the eavesdroppers is high.

In Figure 4b, the characteristics of Wang’s Friendly UAV Jamming model (Fri-UJ) [19]
are included. Fri-UJ reduces the eavesdropping probability by using multiple UAVs
as jammers to transmit friendly jamming signals in a mobile communication network
environment. However, unlike CFJ-DMZ, the mobility of the source node is not considered.
At this time, the ILR of eve2 and eve5, which are within the cooperative jamming signal
range of the drones, is 0.754 and 0.960, respectively. The ILR of the eavesdroppers outside
the cooperative jamming signal range of the drones is 1. Therefore, if the friendly jamming
technique is used without the mobility of the devices, the eavesdropping probability of
eavesdroppers is high.

In Figure 4c, the ILR of every eavesdropper is 1. As the distance between the source
and destination nodes is close, the signal strength of the source node is reduced. However,
it does not have a significant impact on the communication quality of the eavesdroppers,
because the simulation environment is a free space. Therefore, if the devices have mobility
but the friendly jamming technique is not used, the eavesdropping probability of the
eavesdroppers is high.

In Figure 4d, which is the case of the CFJ-DMZ model, the ILR of eve2 and eve5,
which are within the cooperative jamming signal range of the drones, is 0.024 and 0.014,
respectively. Furthermore, the ILR of the eavesdroppers outside the cooperative jamming
signal range of the drones is close to zero, and the average ILR of all eavesdroppers is 0.03.
Therefore, when the mobility of the devices and the friendly-jamming technique are used
together, the communication quality of the eavesdropper decreases. Compared to Figure 4b
that includes the characteristics of Fri-UJ, the average ILR is reduced by 92%, and compared
to Figure 4a,c, the average ILR is reduced by 97%, facilitating secure communication in the
secure zone.
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5.2. Field Experiment
5.2.1. Effect of Friendly Jamming

In this section, we conducted experiments using Raspberry Pi. The friendly jamming
drones and the eavesdroppers were also implemented using Raspberry Pi. In the commu-
nication between Raspberry Pi devices, packets were sent using the D2D communication
method. The source node became the AP using the host mode, and the destination node
was connected to the AP of the source node. The maximum transmission power of each
node was 24 dBm. Jamming signals were generated using the Ping of Death method.

For the data, a string “1” consisting of a total of 256 bits was used, and as the preamble
bits for synchronization, a string “a” consisting of 128 bits was used. Figure 6 shows how
the preamble bits were processed. If “a” with less than 64 bits is received, it corresponds
to a case in which the ILR is less than 0.5. Therefore, the data received through the
corresponding packet are all processed as an unanalyzable state. If “a” with 64 or more
bits is received, the number of error bits is obtained after removing the preamble data. The
number of error bits is calculated by adding the number of lost bits and the number of
unmatched bits. The number of lost bits is calculated by subtracting the number of receiving
bits from the number of sending bits, and the number of unmatched bits is calculated by
counting 1 after the sequential Xor. The BER of the destination node and the eavesdroppers
is obtained using the error bits.
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First, the friendly jamming model of Figure 1a was implemented to verify the effec-
tiveness of the jamming signals. One jamming drone node was deployed based on the
locations of the source and destination nodes.

The transmitted data of the source node, and the BER of both the destination node and
the eavesdroppers, were measured. Table 5 shows the average BER obtained by repeatedly
applying the model of Figure 1a 1000 times. The average BER of the destination node is
zero. In other words, the destination node can communicate normally with the source node
because it is unaffected by the jamming signals. The average BER of the eavesdroppers
located around the drone nodes (eve3, eve4, and eve5) is 0.975, 0.992, and 0.938, respectively,
showing a result close to 1. This experimental result shows that the legitimate destination
node can safely deliver information while reducing the amount of information leaked to
the surrounding eavesdroppers by friendly jamming. Furthermore, the average BER of
the eavesdroppers that are not located around the drones (eve1, eve2, and eve6) is 0.389,
0.012, and 0.562, respectively, demonstrating relatively low values. Therefore, if the friendly
jamming technique is used, the eavesdropping probability of the eavesdroppers decreases,
improving the communication security.

Table 5. Results of friendly jamming (field experiment).

Node Destination Node eve1 eve2 eve3 eve4 eve5 eve6

BER metric 0 0.389 0.012 0.975 0.992 0.938 0.562

5.2.2. Experimental Settings

The field experiment was executed using Raspberry Pi 3 Model B+. The experiment
was conducted in an empty lot of 50 m × 50 m with a Quad-core 64-bit ARMv8 CPU and
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1 GB of RAM. At this time, the empty lot was used to minimize the influence of other radio
waves. The maximum transmission power of Raspberry Pi is 24 dBm, so the maximum
transmission power of the source node, receiving node, and friendly jamming drone used
in the experiment is 24 dBm each. The field experiments were conducted under the same
environmental configuration as used in the simulations. That is, the devices were placed
according to the experimental settings of Figure 4. Similar to the simulations, to achieve an
effective comparison between the experiments, the locations of the eavesdropper were the
same in every experiment. Furthermore, considering the signal ranges of the source node
and the jamming nodes, we placed the eavesdroppers at the locations where the effects of
the signals received according to the experimental environment were the same as those
received by the eavesdroppers during the simulations.

5.2.3. Experiment Results

The BERs of the destination node and the eavesdroppers, respectively, were measured
when the source node sent the data. The average BER was obtained by measuring the
BER 1000 times repeatedly. In every case, the average BER of the destination node was 0,
which means that the data sent by the source node were all received. Figure 7 shows a
graph applying the average BER results of the eavesdroppers to the ILR metrics defined in
Section 3.
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In Figure 4a, the ILR of the eavesdroppers, except for eve1 and eve3, is 1. The
ILR of eve1 and eve3 is 0.639 and 0.819, respectively. Therefore, if the devices have no
mobility and the friendly jamming technique is not used, the eavesdropping probability
of the eavesdroppers is high. Furthermore, it was found that, as the distance between
the eavesdropper and the source node increases, the eavesdropping probability of the
eavesdropper decreases.

In Figure 4b, the ILR of every eavesdropper decreases because the cooperative jamming
signals affect the communication quality of the eavesdroppers. The ILR of both eve2
and eve5, which are within the cooperative jamming signal range of the drones, is zero.
However, the ILR of the eavesdroppers outside the cooperative jamming signal range of the
drones is greater than or equal to 0.5. Therefore, if the friendly jamming technique is used
without the mobility of the devices, the eavesdropping probability of the eavesdroppers
outside the cooperative jamming signal range is high.

In Figure 4c, the transmission signal strength is reduced because the distance between
the source and destination nodes is close. As a result, the ILR of eve1 and eve3 is 0.180 and
0.121, respectively. However, the ILR of eve2, eve4, eve5, and eve6, which are relatively
close to the source node, is 0.732, 0.380, 0.433, and 0.338, respectively. Although the ILR of
every eavesdropper decreases compared to that of Figure 4a, the ILR of some eavesdroppers
is high. Therefore, if the devices have mobility but the friendly jamming technique is not
used, the eavesdropping probability of the eavesdroppers is high.
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In Figure 4d, which is the case of the CFJ-DMZ model, the ILR of every eavesdropper
is zero. In other words, when the mobility of the devices and the friendly jamming
technique are used together, the communication quality of the eavesdroppers decreases,
reducing the eavesdropping probability. Therefore, secure communication is facilitated in
the secure zone.

5.3. Evaluation

The results obtained from the simulations and the field experiments are as follows.
Based on the ILR of eve1 and eve3 in Field Experiment Figure 4a, it was found that as
the distance between the source node and the eavesdropper increases, the communication
quality of the eavesdropper deteriorates.

Furthermore, based on the ILR of eve5 and eve6 in Figure 4b, it was found that as the
eavesdropper reaches closer to the friendly jamming drones, the communication quality of
the eavesdropper deteriorates.

A comparison of the average ILR of the eavesdroppers between Figure 4a–d shows the
effect of the device mobility. It can be seen that when the source node moves to the receiving
node to reduce the distance between the two devices and decreases the transmission signal
strength, the communication quality of the eavesdroppers deteriorates.

In Figure 4d, where the mobility of the devices and the friendly jamming technique
are used together, the average ILR of the eavesdroppers is 0.03 in the simulation results
and zero in the field experiment results. This means that the CFJ-DMZ model can reduce
the communication quality of eavesdroppers to reduce the eavesdropping probability in
the zone where the possibility of eavesdropping is high. Therefore, the communication
security in the secure zone improves.

6. Conclusions

In this paper, we proposed the CFJ-DMZ method, which improves the security of wire-
less communication by using the mobility of mobile IoT devices and jamming signals, and
we verified its effectiveness in drone communication environments. The drones conducting
the cooperative friendly jamming move to locations where a secure D2D communication
will be performed and transmit jamming signals to form a secure zone. The formed secure
zone can effectively prevent eavesdropping and is flexible because the location and size
can be easily changed. Furthermore, because jamming signals are transmitted only when
the data transmitter and receiver communicate, the effect of the jamming signals on other
source and destination nodes is minimized, and the batteries are efficiently used. Through
the CFJ-DMZ model-applied simulations and fields tests, the BER of the eavesdropping de-
vices was measured, which confirmed that the receiving performance of the eavesdroppers
deteriorated, reducing the normal packet reception rate. Furthermore, we defined the ILR
as a metric for a security performance evaluation and confirmed experimentally that the
information leakage decreased with the proposed scheme.

By integrating it with IoT networking environments across future social systems, in-
cluding logistics, delivery, and unmanned moving objects, the proposed CFJ-DMZ method
can be used not only for military drone communications but also as a model that can
actually be commercialized. As a limitation of this study, the effects of jamming were
examined in two-dimensional planes. To consider the intrinsic emission characteristics of
RF, the effectiveness of the CFJ-DMZ method should also be verified in three dimensions.
Furthermore, low latency is important for the proposed method to be applied to real-time
systems, not only for delay-tolerant applications. However, in this study, time complexity
could not be analyzed, and the study was conducted from the perspective of an information
leakage ratio to verify whether confidential communication is possible using the proposed
method. Therefore, experiments and verifications are required for various environments,
including a case in which an eavesdropper enters the secure zone formed by the drones. In
follow-up studies, we will make improvements on this limitation by applying actual envi-
ronmental parameters to mathematical models and simulation models for assessment of
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time and resource complexity. Based on these studies, we expect to design a more advanced
security architecture and increase the level of security in confidential and complex zones.
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Glossary/Nomenclature/Abbreviations
The table summarizes the notation used in the paper.

Nation Meaning
CFJ-DMZ Cooperative Friendly Jamming Techniques for Drone-based Mobile Secure Zone
IoT Internet of Things
D2D Device to Device
UAV Unmanned Aerial Vehicle
Fri-UJ Friendly UAV Jamming
SINR Signal to Interference and Noise Ratio
ILR Information Leakage Rate
BER Bit Error Rate
S Source
D Destination
E Eve
J Jammer
dSE Source-Eve distance
dDE Drone-Eve distance
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Abstract: Unmanned aerial vehicles are prone to several cyber-attacks, including Global Positioning
System spoofing. Several techniques have been proposed for detecting such attacks. However, the
recurrence and frequent Global Positioning System spoofing incidents show a need for effective
security solutions to protect unmanned aerial vehicles. In this paper, we propose two dynamic
selection techniques, Metric Optimized Dynamic selector and Weighted Metric Optimized Dynamic
selector, which identify the most effective classifier for the detection of such attacks. We develop a one-
stage ensemble feature selection method to identify and discard the correlated and low importance
features from the dataset. We implement the proposed techniques using ten machine-learning models
and compare their performance in terms of four evaluation metrics: accuracy, probability of detection,
probability of false alarm, probability of misdetection, and processing time. The proposed techniques
dynamically choose the classifier with the best results for detecting attacks. The results indicate
that the proposed dynamic techniques outperform the existing ensemble models with an accuracy
of 99.6%, a probability of detection of 98.9%, a probability of false alarm of 1.56%, a probability of
misdetection of 1.09%, and a processing time of 1.24 s.

Keywords: unmanned aerial vehicles; global positioning system; GPS spoofing attacks; detection
techniques; machine learning; dynamic selection; hyperparameter tuning

1. Introduction

The use of unmanned aerial vehicles (UAVs) in military and civilian applications
has exponentially increased over the last decade. Military applications include inspection
and patrol, surveillance, reconnaissance, area mapping, and strike and rescue missions.
Civilian applications include multimedia shooting, agricultural monitoring, meteorologi-
cal monitoring, disaster detection, traffic control, cargo transportation, delivery services,
and emergency rescue. Middle and long-distance applications rely heavily on Global
Positioning Systems (GPSs) for navigation and precise positioning tasks [1].

Huge technical advances in the design, control, and automation have been made over
the last two decades; however, the security aspect of UAVs has been largely overlooked [2].
UAVs can be subject to several cyber-attacks, such as GPS spoofing and jamming, which can
impact the safety of civilians and airspace. Several UAV security incidents were reported
during warfare and conflicts in Iran, Ukraine, and Iraq. During these attacks, malicious
users transmitted fake GPS signals with incorrect positional and timing data that could be
easily detected, resulting in erroneous navigation. These signals are similar to those from
by satellites and are indistinguishable from authentic GPS signals.

A number of techniques have been proposed to detect GPS spoofing attacks. These
methods can be classified into three categories [3]: cryptography-based, signal processing
methods, and external UAV characteristics. Cryptography techniques encrypt the GPS
signals, which require a key to decrypt [4]. Techniques under the second category extract
spatial and geometrical characteristics, or physical layer characteristics, such as angle-of-
arrival, signal strength, signal phase, and discontinuities from legitime GPS signals. The
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third category is based on external UAV characteristics, such as speed and acceleration, that
that can be measured by the sensors of the UAV flight control system, such as barometer,
inertial measurement unit (IMU), and compass.

These GPS spoofing detection methods have some drawbacks that limit their ap-
plication. For instance, cryptographic methods are not practical for civil applications as they
require encryption/decryption keys (GPS signals have to be unencrypted for these applica-
tions). Methods based on signal processing or external characteristics of UAVs may require
additional hardware (sensors or antenna) or auxiliary equipment, apply changes to the
interface specifications, or need extensive signal processing capabilities, which adversely
affect real-time system performance or require additional communication overhead.

Inertial navigation systems (INS) techniques require continuous inertial sensor cali-
bration as the error in position estimates and their covariance continuously grow without
bounds. For the detection of GPS spoofing attacks, these techniques can be only used
when the quality of sensors with respect of size and cost is high. Therefore, using such
detection techniques for small drones is not possible [5]. In addition, using sensors, such as
gyroscope and accelerator, also involves some limitations in detecting GPS spoofing attacks.
For example, the accelerator can only measure changes in the velocity [6]. Furthermore,
this sensor cannot measure the rotation around its own axis of movement. Therefore, it
has to be used with a gyroscope to measure angular velocities. The accelerator is also
sensitive to temperature, which makes it difficult for it to perform properly in different
environmental situations of UAVs. Moreover, Gyroscope is a sensor that does not measure
linear motion in any direction or any static angle of orientation [7]. Therefore, as these two
sensors are the two main components of INS and IMU-based techniques, and based on
their drawbacks, they cannot be used in detecting GPS spoofing attacks on UAVs [8].

Several studies based on traditional machine learning (ML) techniques have been
proposed to classify and detect GPS spoofing attacks on UAVs. Examples of such techniques
include artificial neural networks [2] and tree models [9]. Such models provide effective
solutions for detecting these in the detection of GPS spoofing. Such models provide
effective solutions in the detection of GPS spoofing [10].

Ensemble learning techniques are considered as one of the main developments in
machine learning in the past decade as they perform better than traditional machine
learning methods [11]. Examples of ensemble models that have been proposed for detecting
cyber-attacks are bagging, boosting, and stacking [12]. The stacking classifiers apply
meta-learning algorithms to select the best combinations of the base machine learning
algorithms. The bagging methods use a combination of repetitive techniques to generate
several sets from the original data and evaluate the performance simultaneously. In
Boosting algorithms, the weight of observation is adjusted based on the last classification.
Therefore, these three ensemble techniques can provide a better performance than a single
conventional machine learning (ML) model. However, these models deal with some
limitations, such as the difficulty of interpreting outputs and low or high rates of bias,
which may lead to under or over-fitting issues.

Therefore, a holistic solution that can easily interpret and perform better than any
single conventional ML model in detecting GPS spoofing attacks is known as multiple
classifier systems (MCS). In this technique, a pool of classifiers is competing to provide the
best prediction for a data sample, and the final result belongs to the most efficient base
classifier. One example of MCS approach is the dynamic classifier selection (DCS) [13],
which focuses on learning methods that automatically choose a subset of techniques in the
prediction process. DCS focuses on fitting several ML classifiers on a training dataset and
choosing the model that provides the best result in the prediction process based on specific
proposed factors.

In this work, we propose two dynamic-based selection methods that detect GPS
spoofing attacks on UAVs: Metric-Optimized Dynamic (MOD) selection and Weighted-
Metric-Optimized Dynamic (WMOD) selection. We implement ten well-known supervised
machine learning classifiers in both the proposed methods. These models are Support
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Vector Machine, Naive Bayes, Decision Tree, K Nearest Neighbor, Linear Discriminative
Analysis, Random Forest, Artificial Neural Network, Logistic Regression, Elastic Net, and
AdaBoost. The two proposed classifier selection methods are trained and tested using
a dataset with 13 GPS signals features built from real-time experiments and MATLAB
attack simulations. The evaluation is conducted in terms of probability of detection (Pd),
probability of false alarm (Pf a), probability of misdetection (Pmd), accuracy( ACC), and
processing time.

The contributions of this paper are:

• A one-stage ensemble feature selection technique to identify correlated and low
importance features simultaneously.

• Two dynamic-based selection methods, MOD and WMOD, for efficient detection of
spoofing signals.

• Performance comparison of the MOD and WMOD dynamic methods with bagging,
boosting, and stacking-based ensemble models for validating the proposed techniques.

The remainder of this paper is organized as follows: Section 2 reviews the related
works, while Section 3 illustrates the proposed architecture. Section 4 describes the materi-
als applied in this work and highlights the methodology of the study. Section 5 discusses
the simulation results. A conclusion is presented in Section 6.

2. Related Work

Several studies have been performed on GPS spoofing detection and mitigation
methods. For instance, the authors of [7] proposed a GPS spoofing detection method
that depends on the acceleration error calculated by estimating the acceleration from the
GPS receiver and the acceleration measured from the IMU. In [9], the authors used IMU
measurements (angle, velocity, and acceleration) and GPS data (longitude and latitude)
in a two-step method that applies the XGBoost model and a Genetic Algorithm, to detect
GPS-spoofing attacks. XGBoost was applied to learn the relationship between the IMU
and GPS data, while the Genetic Algorithm was applied to tune the training parameters.
An approach based on an artificial neural network was proposed in [2] to detect GPS
spoofing signals. Several features, such as pseudo-range, doppler shift, and signal-to-noise
ratio (SNR), were used to perform the GPS signal classification. Different neural network
configurations were analyzed and tested. The proposed method revealed an acceptable
efficiency in terms of probability of detection and probability of false alarm.

In [14], the authors proposed an anti-spoofing model that used linear regression to
predict and model the optimal UAV route to its destination and used Long Short-Term
Memory in the trajectory prediction. The model provides more than one detection scheme
for GPS spoofing signals to improve UAV flight security and sensitivity to deception signal
detection. Simulation experiments have determined that this method could enhance the
ability to resist GPS spoofing without increasing hardware costs. Another GPS spoofing
detection method was proposed in [15], based on the vision sensor combined with a UAV’s
sensors, monocular camera, and IMU. This method used vision sensors combined with
IMU data to detect GPS spoofing. Another vision-based UAV spoofing detection method
that utilized Visual Odometry was presented in [16], which uses the UAV camera since fake
GPS signals would not alter its images. The UAV relative trajectory can be extracted from
images using Visual Odometry. This extracted trajectory is compared with flight trajectory
information obtained from GPS positions, to detect the spoofed signals.

In [17], the authors proposed a GPS spoofing-detection framework that needs minimal
prior configuration and applies information fusion. The real-time detection scheme derives
the current UAV location from IMU and compares it to the location information received
by the GPS receiver to determine if the UAV system was experiencing a GPS spoofing
attack. In [18], the authors proposed a new algorithm to handle GPS spoofing attacks
that caused unknown sudden system state variable changes. The compensation of the
GPS spoofing effect was manipulated using a prediction discrepancy based on a particle
filter algorithm. The proposed algorithm decreases the effects of GPS spoofing errors and
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estimates the true position of the UAV in the presence of GPS spoofing attacks. In [19], the
authors proposed a spoofing detection and classification algorithm based on Least Absolute
Shrinkage and Selection Operator. They used some signal processing techniques to observe
the decomposition of two code-phase values for authentic and spoofed signals using a
certain threshold to mitigate false alarms. The proposed method achieves a promising
detection error rate for a spoofer attack in nominal signal-to-noise ratio conditions.

In [20], the authors proposed a methodology that consists of several ML models with
a set of values for K-folds where voting techniques are integrated to choose the learning
model that achieves the highest accuracy. In [21], a hardware-based solution was proposed
to detect GPS spoofing attacks. The authors demonstrated a simple method to detect
hijacking based on gyroscopes measurements and GPS data. A switching mode resilient
detection and estimation framework for GPS spoofing attacks has been studied in [22]. The
authors tried to address the sensor drift issue by keeping the estimation errors to remain in
a tolerable region with high probability.

Machine learning methods do not require additional hardware, which may be attrac-
tive for small civilian UAVs. For instance, in [23], the authors proposed an approach to
detect UAV GPS spoofing attacks based on the analysis of state estimation using Support
Vector Machine. The proposed method detects GPS spoofing attacks to some extent; how-
ever, the system experienced performance degradation during long attacks due to the
interaction with the GPS sensor, especially with the Micro-Electro-Mechanical Systems
sensors. In [24], a GPS spoofing detection method was proposed that leverages the up-
link received signal strength measurements collected from base stations to identify the
adaptive trustable residence area, which represents the trust region within which the UAV
GPS position should be located to be classified as authentic or non-spoofed. In [3], the
authors proposed a method for GPS spoofing attack detection based on a machine learning
algorithm, Long Short-Term Memory, and compared the results to a method based on
specifically designed UAV flight paths. This method can detect attacks well when the flight
trajectory is not complicated. Table 1 provides a summary of existing studies in literature
with their advantages and limitations.

Table 1. Existing Literature on Detecting GPS Spoofing on UAVs.

Category Approach Advantages Limitations

External UAV
characteristics

Acceleration error [7]

• Uses magnitude
acceleration error to
provide better
performance

• Depends on
accelerator error.
• Pre-defined
probability of false
alarm.

IMU-based [9]

• Provides a detection
rate of 96.3% and 100%
in hijacked and
non-hijacked cases.

• Only detects attacks
with similar
behaviors during
training.

IMU-based [25]

• In best cases,
detection rate of
98.6%,within 8 s when
the system is under
attack.
• Provides a precision
of 97%, a recall of 97%,
and F1-score of 97%.

• In worse cases, the
detection of GPS
spoofing attacks can
table over 28 s after
the UAV started its
mission.
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Table 1. Cont.

Category Approach Advantages Limitations

Gyroscopes
measurement- based

[21]

• Easy to be
implemented in any
drone.

• Needs motion
sensors (gyro-scopes
and accelerators for
detection. These are
power hungry.

Artificial
Intelligence Method

Artificial Neural
Network-based [2]

• Provides an accuracy
of 98.3%, a probability
of detection of 99.2%, a
probability of
misdetection of 2.6%,
and probability of false
alarm of 0.8%.

• Uses a dataset with
only 5 features and
very limited samples.

Linear
regression-based and

long short term
memory [14]

• Works effectively in a
case of UAV flying
along the specified rout

• Lack of
optimization methods
from the perspective
of UAV sensor
integrated navigation
and UAV attitude
control.

Prediction-
discrepancy
based [18]

• Reduces the effects of
GPS spoofing errors
and estimates the true
position of the UAV in
the presence of GPS
spoofing attacks.

• Evaluated only
based on accuracy
and redundancy.

Least Absolute
Shrinkage and

Selection
Operator [19]

• Provides a 0.3%
detection error rate for
a spoofing attack in
nominal signal-to-noise
ratio conditions and an
authentic-over-spoofer
power of 3 dB.

• Uses a public old
dataset, namely, Texas
spoofing test battery
as benchmark,
• Lack of using
common evaluation
metrics, such as the
probability of
misdetection.

K-learning based [20]

• Provides an accuracy
of 99%, a precision of
98%, a recall of 99%,
and F-score of 98%.

• Uses only Shimmer
and Jitter as features
in the dataset.

Resilient State
Estimation [22]

• Addresses the sensor
drift problem.

• Evaluated only
based on estimated
error, and statistics of
attacks.

Support Vector
machine [23]

• Improves the
performance in case of
using magnetometer
sensors.

• Performance
degradation during
long attacks.

5G-assisted position
monitoring [24]

• A detection rate of
95%, and F1-score of
88%.

• Lacks of several
evaluation metrics.
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Table 1. Cont.

Category Approach Advantages Limitations

Long-Short Term
Memory [3]

• A comprehensive
comparison with
encryption-based
detection techniques in
terms of detection rate
and time cost.

• Detection rate of
78% and a time cost
of 3s.
• Detection rate is
high when the flight
trajectory is not
complicated.

Signal Processing

Vision-based [15]

• Detects spoofing
attacks with an average
of 5s based on several
parameters.

• Only applied when
the attacker is visible.

Vision-based [16]

• Detects spoofing in
the long-range UAV
flights when the
changes in UAV flight
direction is larger than
3°and in the
incremental UAV
spoofing with the
redirection rate of 1°.

• Only applied when
the attacker is visible.

Although many spoofing detection techniques have been proposed in the literature,
spoofers are continually evolving to produce new GPS spoofing attacks that are hard to
detect, which increases the necessity to develop new mechanisms to prevent this kind of
attack. Ensemble learning techniques can be a practical solution to address the limitations
of the existing methods. In literature, there are no studies to investigate the performance of
such approaches in detecting GPS spoofing attacks targeting UAVs; however, ensemble
approaches, namely, bagging, boosting, and stacking, have been frequently utilized in
detecting cyber-attacks in wireless communication systems. For instance, in [26], the
authors proposed a stacked-based ensemble model to classify and detect attacks on wireless
networks. The proposed approach consists of several base learning methods, namely,
Support Vector Machine, Decision Tree, Random Forest, and Artificial Neural Network. The
stacking approach outperforms the base learners. In [27], the authors compared different
ensemble models, namely, bagging, boosting, and stacking, for predicting received signal
power on UAVs. Their results demonstrate that the stacking model, including Support
Vector Machine, Artificial Neural Network, and Gaussian Process, outperformed other
base classifiers.

Dynamic classifier selection methods have been recently proposed as ensemble ap-
proaches that select the best performance ML model among all base models. To the best of
our knowledge, no studies proposed such a technique for classifying and detecting GPS
spoofing attacks on UAVs. Therefore, to fill the existing gap, two dynamic-based selection
methods are proposed that use ten machine learning models. These methods select the
ML method that provides best results to detect the presence or absence of an attack. To
validate our proposed techniques and demonstrate that they provide optimal results, we
compared our proposed methods with the three most known ensemble models, namely,
bagging, boosting, and stacking, with our proposed techniques.

3. Proposed Architecture

The proposed system architecture is shown in Figure 1. This system consists of three
phases: dataset building, data pre-processing and feature selection, and training and
classification. For the dataset building, real-time experiments were conducted to collect real
GPS signals, while attacks were generated through simulations. Features were identified
and extracted from the real GPS signals, and the attack simulated signals [10]. The features
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for all samples are included in a dataset to be pre-processed. The second phase is the
data pre-processing and feature selection, which focuses on missing value imputation,
categorical data encoding, feature scaling, identifying correlated features, and discarding
low importance features. In this study, we use feature scaling and transfer categorical
feature values to numerical values to avoid any bias in the corresponding dataset.

Two feature selection techniques are applied: Spearman Correlation and Information
Gain. The ensemble feature selection can simultaneously identify the correlated and low
importance features and discard them from the corresponding dataset [28]. The primary
aim of using ensemble feature selection is to decrease the dimensionality of the dataset
and identify the most important features [29] that can enhance the performance of the
proposed model.

For the training, testing, and classification phases, we implement ten traditional ML
techniques: Support Vector Machine, Naive Bayes, Decision Tree, K Nearest Neighbor,
Linear Discriminative Analysis, Random Forest, Artificial Neural Network, Logistic Regres-
sion, Elastic Net, and AdaBoost. To get the optimal results of each model, a hyperparameter
tuning technique, Bayesian optimization, is used.

Two dynamic methods are implemented for detecting GPS spoofing attacks targeting
UAVs. The proposed methods dynamically choose the classifier that achieves the best
results for the considered performance metrics. Incoming signals are classified as authentic
or spoofed in the prediction phase, and their probabilities is evaluated.

Figure 1. Overview of the Proposed Architecture.
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4. Methodology

In the following, we discuss the dataset, data pre-processing, feature selection, de-
scription of the proposed models, and hyperparameter tuning that are used in this study,
as follows:

4.1. Dataset

In this study, the used dataset was built in the work described was implemented
in [10] . Real-time experiments and simulations were conducted to collect a dataset of
authentic and spoofed signals at different dates in several locations. The hardware used
in the implementation consisted of a universal software radio peripheral (USRP), a front-
end active GPS antenna, and an I5-4300U laptop with 8 G RAM running with Ubuntu
16.04.7 LTS version. GPS attacks were simulated using MATLAB by considering three
types of spoofing attacks with different complexity levels: simplistic, intermediate, and
sophisticated. Each of these attacks impacts specific features of the GPS signals, such as
Doppler Shift Measurement, Receiver Time, and Pseudo Range. In simplistic spoofing
attacks, a fake GPS signals, which was unsynchronized with the authentic signals, was
generated. In this case, higher Doppler Shift measurements were out of the normal range
of ±20 Hz, leading to a signal drift. In this type of attacs, GPS spoofing signals are also
transmitted at a higher power level, compared to that of authentic GPS signals, resulting in
a higher Signal-to-Noise Ratio value.

In intermediate spoofing attacks, the attacker has a knowledge of UAV position. The
intermediate attacker is able to control of the generated GPS signals. In this type of attack,
the Doppler Shift Measurements and Pseudo Range values are kept within the normal
ranges. In sophisticated attacks, the spoofer gains control over several channels of multiple
synchronized antennas. This type of attack is the most threatening spoofing attack, due to
the effect of multipath signals and the motion of the satellites and receiver.

Thirteen features were extracted from various receiver stages, starting from the track-
ing loop to the observable block. The extracted features from the received GPS signals with
their short descriptions are listed in Table 2 . The corresponding dataset is balanced and
contains 10,055 samples, of which 5028 are authentic signals and the remaining are equally
divided between the three types of GPS spoofing attack signals. A sample of dataset is
presented in Figure 2.

Figure 2. Sample of Dataset.

4.2. Data Pre-Processing

The dataset was previously pre-processed by identifying and removing any null,
unknown, and noisy values during the missing value identification step [30]. The next step
is to encode any categorical values to numerical values. There are only two categorical data
values in our dataset, which represent the signals as attack or normal. For this purpose,
we encode normal signals as 0 and spoofed signals as 1. Afterward, feature scaling is
performed by applying normalization and standardization methods. Normalization can
re-scale the values into ranges between 0 and 1. In this study, we use the power transformer
technique based on the Yeo-Johnson transformer. Unlike other techniques, this method can
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handle positive, negative, and zero data values. We also applied a simple standardization
technique, which re-scaled the values to a mean of 0 and a standard deviation of 1.

Table 2. List of Features.

Feature Abbreviation Description

Satellite Vehicle Number PRN Identifying uniquely each satellite in or-
bit.

Doppler Shift Measurement DO

Difference in the frequency of a GPS re-
ceiver moving relatively to its source.
Difference in the frequency of a GPS re-
ceiver moving relatively to its source.

Pseudo Range PD Difference between the transmission and
the reception time.

Receiver Time RX Time of transmission of the navigation
messages.

Decoded Time Information TOW Information regarding the reception
time of a subframe.

Carrier Phase Shift CP
Beat frequency difference between the
received carrier and a receiver-generated
carrier replica.

Prompt Correlator PC
Happens when the replica signal gener-
ated from the receiver is compatible with
the incoming signals.

Late Correlator Output LC Occurrs at the 1/2 chip spacing after the
prompt correlator.

Early Correlator Output EC Happens at the 1/2 chip spacing before
the prompt correlator.

Prompt In-phase Prompt PIP In-phase component of the Prompt cor-
relator amplitude.

Prompt Quadrature Prompt PQP Quadrature component of the prompt
correlator amplitude.

Carrier Loop Doppler Measurements TCD Doppler shift that is measured during
the correlation stage.

Signal to Noise Ratio CN0
Doppler shift that is measured during
the correlation stage. Ratio of the power
signal to noise.

4.3. Feature Selection

Ensemble feature selection techniques are widely used to enhance the robustness of
feature selection techniques. These techniques are classified into two categories, namely,
homogeneous and heterogeneous. In homogeneous ensemble feature selection, the same
method is used with different sizes of training data, while heterogeneous ensemble fea-
ture selection mostly focuses on different feature selection methods with similar training
datasets. This study employs a heterogeneous ensemble feature selection technique using
two traditional feature selection techniques, namely, Spearman’s Correlation and Infor-
mation Gain. The goal of selecting these two feature-selection techniques is to remove
correlated and unimportant features from the given dataset.
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Spearman Correlation [31] primarily calculates the association and direction between
each two features by calculating the score τ given by:

τ = 1−
6

n
∑

i=1
(di)

2

n(n2 − 1)
(1)

where di is the difference between the two ranks of each observation, i is the index of the
observation, and n is the number of observations. A feature is correlated if it attains a coef-
ficient over 0.9. We consequently removed a feature from each pair of correlated features.

We also used the information-gain feature-selection technique, called mutual infor-
mation [32], for feature importance to estimate the gain of each variable in terms of the
target variable. The information gain, also known as entropy, is calculated for every feature;
features with high entropy are selected as important features, and those with low entropy
values are considered of low importance. Any feature that achieves an entropy less than
0.1 is discarded from the dataset in this work.

4.4. Hyperparameter Tuning

Several types of tuning techniques have been proposed in the literature; however,
Bayesian optimization has emerged as an effective approach, outperforming other tech-
niques such as random search and grid search since grid search suffers from the curse
of dimensionality and random search is not suitable for training complex models [33–35].
Bayesian optimization can provide a practical solution to optimize functions using a com-
putationally cheap surrogate model [36]. This approach can offer robust solutions for
optimizing the black-box functions, applying a non-parametric Gaussian process to sim-
ulate unknown functions. A surrogate utility function, also known as the acquisition
function, is another main component of Bayesian optimization, which is defined as a way
to improve the optimality of the underlying function [37]. In this study, considering the
benefits of Bayesian Optimization and shortcomings of other techniques, we employ this
technique for optimization tuning.

4.5. Description of the Proposed Methods

Dynamic classifier selection techniques consist of a pool of homogenous or hetero-
geneous base classifiers. Homogenous classifiers are defined as using a set of classifiers
that are of the same type built upon various data. In contrast, heterogeneous classifiers are
designed using a group of classifiers belonging to various types built upon same data. In
this work, we employed a set of heterogeneous base classifiers: Support Vector Machine
(SVM), Naive Bayes (NB), Decision Tree (DT), K Nearest Neighbor (KNN), Linear Discrimi-
native Analysis (LDA), Random Forest (RF), Artificial Neural Network (ANN), Logistic
Regression (LR), Elastic Net (EN), and AdaBoost. The primary reason behind selecting
heterogeneous classifiers is to increase the final model diversity without changing any
model parameters [38].

We propose two dynamic selection methods for detecting GPS spoofing attacks on
UAVs: MOD and WMOD classifiers, as shown in Figure 3. These methods focus on
evaluating the ML models in terms of the probability of detection Pd, probability of false
alarm Pf a, probability of misdetection Pmd, and accuracy ACC. Figure 3a depicts the M
base models and K performance metrics, i represents the base model index, and j represents
the performance metric index. We initially calculate the performance metrics (Ki,j) for
every base model Mi to find the optimal results; then,we determine the count (Ki,j) where
Mi achieves the best results for every base model Mi. As a model achieves higher Pdand
ACC values and lower Pf a and Pmd values, the model is considered better at detecting
GPS spoofing attacks; therefore, the model with higher Pd and ACC, and lower Pmd and
Pf a, will be selected for the final incoming GPS spoofing signal detection. This concept is
implemented in the proposed MOD classifier approach since the algorithm will identify
the model with the highest number of best metrics, using Max(Ki,j) for final detection.
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MOD classifier is simpler to implement compared to other approaches, does not need
extensive processing, does not require additional hardware, and has low time complexity.
This classifier heavily depends on the selected base algorithm, which achieves the best
metrics. As a result, no additional cost of processing or computational complexity was
added to the overall algorithm. However, if two base models achieve the same number of
best metrics , the MOD classifier will select one of the two classifiers trivially as the best
model, in some cases when two base models achieve the same number of best metrics.
To address this issue, we propose another approach: WMOD classifier. WMOD classifier,
shown in Figure 3b, assigns a weight, w, for each performance metric to calculate a score
using sum (wi,j) for each base model. In this model, a weight is assigned to each of
the selected metrics based on their importance. We consider the importance of accuracy
higher than the importance of Pd, Pf a, and Pmd. Therefore, we assign a weight of 0.4 for
accuracy, while other metrics, such as Pd, Pf a, and Pmd, have each a weight of 0.2. We have
to determine the count (Ki,j) for every model Mi, where Mi obtains the highest weights
according to the defined weights. The model that achieves the best score is used for the
final detection of any incoming signal.

Figure 3. Flowcharts of the Proposed Dynamic Selection Methods.

5. Results

We ran our simulation on intel core i7-10750H, CPU of 2.60 GHz, and 16.0 GB memory.
We used four evaluation metrics to assess the proposed model’s efficiency: the probability of
detection (Pd), probability of false alarm (Pf a), probability of misdetection (Pmd), accuracy
(ACC), and processing time. These metrics were calculated using the following equations:

Pd =
TP

TP + FN
(2)

Pf a =
FP

TF + FN
(3)

Pmd =
FN

TN + FP
(4)

ACC =
TP + TN

TP + TN + FP + FN
(5)
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where TP is the number of corrected predicted malicious flows, TN is the number of
predicted normal flows, FP is the number of incorrectly predicted malicious flows, and
FN is the number of incorrectly predicted normal flows.The processing time is defined
as a time to train and test the classifiers. This metric highly depends on the ML model
and dataset size. A three-fold cross-validation technique was applied to train 80% of the
data and test 20% of the remaining dataset. The simulation analysis for the proposed
dynamic methods was compared with the ten base selected classifiers in terms of the
selected evaluation metrics.

Figure 4a,b show the results of the ensemble feature selection techniques, Spearman’s
Correlation and Information Gain, respectively. We discarded one feature of each pair of
correlated features with a mutual coefficient > 0.9 as well as features of low importance
with scores < 0.1 from the corresponding dataset. As one can see in Figure 4a, two pairs
of features have a high correlation; the first pair, DO and TCD, has a correlation of 95%,
and the second pair, TOW and RX, has a correlation of 94%. In addition, DO has a higher
importance than TCD, and TOW has a higher importance than RX. Therefore, TCD and RX
were discarded from the dataset. The remaining features are the relevant features selected
to classify GPS signals.

Figure 4. Importance of Features based on Ensemble Feature Selection: Spearman’s Correlation
Coefficient and Information Gain.

Table 3 provides the parameter setting and best parameter results obtained after ap-
plying the Bayesian Optimization algorithm. As can be seen, we specify several parameter
settings with multiple values to check the optimality of every ML model. The parame-
ter setting for every ML model is selected based on the provided values in Scikit-learn.
Scikit-learn tool is a simple and efficient library that provides the suitable implementation
for training, testing , and validating ML models, along with parameter settings for every
ML model. The lists of setting parameters are provided in the table. These values are
applied to achieve the best performance for each of the individual models. For instance, the
activation function in the NN model is set to identity, logistic, tanh, or relu, and our selected
tuning technique identifies Tanh as the activation function that guarantees the highest
performance for the NN model. The NN model also has other parameters, including solver
and alpha, that are required to be provided by tuning technique to achieve optimal results.
In addition, the NB model consists of a parameter, namely, var_smoothing. This parameter
is set to several values, provided in Scikit-learn tool. The Bayesian optimization technique
identifies 1 × 10−3 as a hyperparameter, among other values, that ensures the best possible
performance for the NB model. The same observations can be seen for the other selected
models. To this end, these best parameters are used in training the selected models to
ensure the optimality of the results.
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Table 3. Parameter Setting Results.

Model Parameter Setting Best Parameters

SVM C = [0.1, 1, 10, 100], C = 10,
degree = [1, 2, 3, 4, 5], degree = 5,
gamma = [1, 0.1, 0.01, 0.001, 0.0001]. gamma = 0.1.

NB var_smoothing = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,
1e-9, 1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15]. var_smoothing = 1e-3.

DT Criterion = [‘gini’, ‘entropy’], criterion = ‘entropy’,
Splitter = [‘best’, ‘random’], splitter = ‘best’,
max_features = [‘auto’, ‘sqrt’, ‘log2’], max_features = ‘auto’,
max_depth = range (1, 32). max_depth = 26.0.

RF n_estimators = [10, 100, 1000, 10,000], n_estimators = 1000,
max_depth = range (10, 200), max depth = 110,
min_samples_split = range (2, 10). min_samples_split = 2.

KNN n_neighbors = range (1, 20), n_neighbors = 6,
p = range (1, 10). p = 1.0.

LDA Solver = [‘svd’,‘lsqr’]. solver = ‘lsqr’.

NN Activation = [‘identity’, ‘logistic’, ‘tanh’, ‘relu’], activation = ‘tanh’,
Solver = [‘lbfgs’, ‘sgd’, ‘adam’], solver = ‘lbfgs’
Alpha = linspace(0.0001, 0.5, num = 50). alpha = 0.0409,

LR l1_ratio = linspace(0.0001, 1, num = 50), l1_ratio = 0.0001,
C = [0.1, 1, 10, 100], C = 100.0,
Solver = [‘newton-cg’, ‘sag’, ‘lbfgs’]. solver = ‘lbfgs’.

EN l1_ratio = linspace(0.0001, 1, num = 50), l1_ratio = 0.190,
alpha = linspace(0.0001, 2, num = 50), alpha = 0.1409,
selection = [“random", “cyclic"]. selection = ‘cyclic’.

AD n_estimators = [10, 100, 1000, 10,000]. n_estimators = 100.

Ten ML models are used with their best parameters’ values in implementing the
proposed dynamic classifiers. WMOD is proposed to handle a limitation of MOD. Such
limitation occurs when two ML classifiers have the same number of metrics with the best
results; therefore, two classifiers are selected as optimal. To address this issue, WMOD is
proposed to return only the model with the best metric results.

Figure 5a provides the results of the proposed methods and the three ensemble models
in terms of accuracy. As one can observe, the proposed MOD and WMOD dynamic methods
provide the best results in terms of accuracy in comparison with bagging, boosting, and
stacking-based ensemble models. As shown, the MOD and WMOD classifiers both have
an accuracy of 99.8%. The stacking classifier has an accuracy of 99.7%, followed by bagging
and boosting classifiers. Bagging model has an accuracy of 99.6%, while the boosting-based
ensemble has the lowest accuracy of 99.56% compared to the other classifiers.

Figure 5b presents the results of the five models in terms of probability of detection.
As can be seen, the proposed dynamic methods outperform the three ensemble models
in terms of probability of detection with a slight difference. MOD and WMOD have the
highest probability of detection of 99.9%, followed by the stacking, bagging, and boosting
models. The stacking model has a probability of detection of 99.8%, bagging model has
a probability of detection of 99.6%, and the boosting model has the lowest probability of
detection of 99.35%.
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Figure 5. Evaluation results of the selected methods in terms of accuracy, probability of detection,
probability of misdetection, probability of false alarm, and processing time.

Figure 5c illustrates the results of the proposed dynamic selection methods and the
three ensemble models in terms of the probability of misdetection. As one can observe,
MOD and WMOD have an acceptable probability of misdetection; however, the lowest
probability of misdetection belongs to the stacking model. The proposed dynamic selection
methods have a probability of misdetection of 1.56%, while the stacking model has a
probability of misdetection of 1.4%. The other two ensemble models, bagging and boosting,
also provide acceptable probability of misdetection results of 1.67% and 1.76%, respectively.

Figure 5d provides the results of the 5 models in terms of the probability of false alarm.
As can be seen, MOD and WMOD have the lowest and best probability of false alarm
compared to the other ensemble models. These methods have a probability of false alarm
of 1.09%, the bagging classifier has a probability of false alarm of 1.2%, and the stacking
and boosting have a probability of false alarm of 1.6% and 1.64%, respectively.

Figure 5e provides the results of the selected models in terms of their processing time.
As one can see, the MOD and WMOD classifiers require a processing time of 1.24 s, which
is considered much lower in comparison with other techniques, such as bagging, boosting,
and stacking. The bagging classifier has a processing time of 1.321 s, while the boosting
classifier achieves a processing time of 1.987 s. The stacking classifier has a processing time
of 5.432 s, which is significantly higher than MOD and WMOD.

The number of false positives ( fp) is another important factor in evaluating models that
compares the number of false positively predicted samples to total number of samples that
are negatively predicted. Figure 6 provides the number of false positive for the highlighted
methods. As one can observe, the MOD and WMOD provides the best number of false
positives, followed by bagging, stacking, and boosting. The proposed dynamic selection
methods have a number of false positives of 10.9 per second. In contrast, the bagging
classifier has a number of false positives of 12 per secondm and the stacking and boosting
classifiers have a number of false positives of 16 and 16.4 per second.
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Figure 6. Number of False Positives for the Proposed Dynamic Selection Methods: MOD and WMOD
Against the Classical Ensemble Techniques.

Table 4 provides the results of the proposed dynamic selection methods and the
ensemble techniques, namely, bagging, boosting, and stacking. This table shows that
MOD and WMOD have the best results in terms of accuracy, probability of detection, and
probability of misdetection. In contrast, the stacking model provides the best result in
terms of the probability of misdetection. It can be noticed that the proposed methods,
MOD and WMOD, provide a probability of misdetection of 1.56%, which is higher than the
stacking model by 0.16% considered as an insignificant difference. In contrast, the stacking
model has a probability of false alarm of 1.6%, which is 0.51% higher than the probability
of false alarm of these proposed methods. In addition, this stacking model has an accuracy
of 99.7% and a probability of detection of 99.8%, which are 0.1% lower than the accuracy
and probability of detection of the proposed dynamic selection methods.

As one can observe, the processing time of the proposed classifiers is 1.24 s, which is
significantly lower than that of the other ensemble approaches. The bagging classifier has
a processing time of 2.321 s, which is 1.081 s higher than that of MOD and WMOD. The
boosting classifier has a processing time of 1.511 s, which is 0.271 s higher than that of the
proposed classifiers. The stacking classifier has the worst processing time, which is 4.41 s
higher than the processing time of MOD and WMOD.

To shed more light on the effectiveness of the proposed methods, we calculate the
number of false positives ( fp) for MOD and WMOD, followed by bagging, stacking,
and boosting. The proposed methods provide a number of false positives of 10.9 per
second, which is 1.1 lower than the bagging classifier, 5.5 lower than the boosting classifier,
and 5.1 lower than the stacking classifier. To conclude, our proposed classifiers provide
higher accuracy and probability of detection, and lower probability of misdetection, false
alarm processing time, and the number of false alarms compared to the other classical
ensemble techniques.

Table 4. Evaluation Results of the Proposed Dynamic Selection Methods and Ensemble Models.

Methods
Metrics

ACC (%) Pd (%) Pmd (%) Pf a (%) Processing Time (s) fp (s)

MOD 99.8 99.9 1.56 1.09 1.24 10.9

WMOD 99.8 99.9 1.56 1.09 1.24 10.9

Bagging 99.6 99.6 1.76 1.2 2.321 12

Boosting 99.56 99.35 1.67 1.64 1.511 16.4

Stacking 99.7 99.8 1.4 1.6 5.65 16

In short, the key insights can be summarized as follows:
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• Ensemble feature selection removes the correlated and low importance features and
decreases computational power and time.

• MOD and WMOD methods dynamically select one best classifier between the imple-
mented ML models.

• The proposed dynamic methods can choose the best metric among the implemented
models based on the considered metrics, which means such methods can be easily ex-
tended to include additional metrics that can significantly enhance the selection criteria.

• Comparison of the ensemble models with the proposed dynamic methods shows that
the two dynamic methods can achieve good results in detecting GPS spoofing attacks
on UAVs.

6. Conclusions

Interest in detecting GPS spoofing attacks on UAVs has increased significantly in the
last decade, leading to considerable progress in different technologies. Several techniques
have been proposed to identify and detect these vulnerabilities; however, this field of study
still needs to address several challenges and limitations, such as high misdetection and false
alarm rates. In this work, we used a one-stage heterogeneous ensemble feature selection
to discard correlated and low importance features from the considered dataset using
Spearman Correlation and Information Gain. As a result, two features, RX and TCD, were
discarded from the given dataset. We implemented two dynamic selection methods, MOD
and WMOD, which dynamically selected the best ML model among the ten implemented.
However, MOD has a limitation when two ML classifiers have the same number of metrics
with the best results. WMOD addresses this limitation and perfectly optimizes the selection
criteria. The results show that MOD and WMOD have an accuracy of 99.6%, a probability
of detection of 98.9%, a probability of false alarm of 1.56%, a probability of misdetection
of 1.09%, and a processing time of 1.24%. These results outperform those of the existing
ensemble learning models.
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Abstract: Modern wireless networks are notorious for being very dense, uncoordinated, and selfish,
especially with greedy user needs. This leads to a critical scarcity problem in spectrum resources.
The Dynamic Spectrum Access system (DSA) is considered a promising solution for this scarcity
problem. With the aid of Unmanned Aerial Vehicles (UAVs), a post-disaster surveillance system
is implemented using Cognitive Radio Network (CRN). UAVs are distributed in the disaster area
to capture live images of the damaged area and send them to the disaster management center.
CRN enables UAVs to utilize a portion of the spectrum of the Electronic Toll Collection (ETC) gates
operating in the same area. In this paper, a joint transmission power selection, data-rate maximization,
and interference mitigation problem is addressed. Considering all these conflicting parameters, this
problem is investigated as a budget-constrained multi-player multi-armed bandit (MAB) problem.
The whole process is done in a decentralized manner, where no information is exchanged between
UAVs. To achieve this, two power-budget-aware PBA-MAB) algorithms, namely upper confidence
bound (PBA-UCB (MAB) algorithm and Thompson sampling (PBA-TS) algorithm, were proposed to
realize the selection of the transmission power value efficiently. The proposed PBA-MAB algorithms
show outstanding performance over random power value selection in terms of achievable data rate.

Keywords: unmanned aerial vehicles; dynamic spectrum access; quality of service; reinforcement
learning; multi-armed bandit

1. Introduction

The fast development of UAVs, which are commonly known as drones, has received
much attention in various domains [1,2]. Recently, UAVs have been leveraged for future
civil applications although their usage was restricted to military applications only during
the last few years. This is considered a promising direction since UAVs have unique
properties that can support this goal. UAVs are capable of various functions as they are
able to fly, are maneuverable, and are easy to deploy. Hence, UAVs can handle different
tasks as delivery services, traffic monitoring, aerial photography, disaster management,
rescue operations, and wireless communications [1,2]. In recent years, major disasters have
occurred around the world such as the great Tohoku earthquake and tsunami, which hit
Japan in 2011; Hurricane Sandy on the northeastern coast of the USA in 2012; the Nepal
earthquake in 2015, the massive explosion in the port of Beirut, Lebanon, in 2020; and the
global wildfires in North America and Europe in 2021. All these natural disasters caused
terrible damage to infrastructure and loss of human lives. The first few hours after the
disaster are considered the golden relief time to provide support and emergency aid to save
these precious lives. Therefore, this paper focuses on wireless communications applications

Sensors 2021, 21, 7855. https://doi.org/10.3390/s21237855 https://www.mdpi.com/journal/sensors101



Sensors 2021, 21, 7855

for UAVs to support a post-disaster area surveillance system. Specifically, UAVs can fly
over the post-disaster areas to collect live photos of the current situation and send this
collected information to a disaster management center to be analyzed. This will enable
rescue teams to get information promptly about the actual situation in the affected area,
which will enhance their response time [3].

On the other hand, and due to the persistent increase in demand for mobile services,
spectrum resources are becoming more and more scarce [4]. Therefore, it is expected that
future mobile networks will host a modern communications technology that supports
unsurpassed networking architecture and energy-efficient devices. To realize these novel
concepts, new fundamental challenges have appeared on the surface. Unlike wired commu-
nications systems, due to the national spectrum regulations and the hardware limitation,
the wireless world has limited links to distribute. Consequently, it will be mandatory
for the traditional regulation of the spectrum to have a fundamental reform so that it
can allow more efficient use of spectrum resources. Spectrum inefficiency has become a
major concern; hence it is imperative to search for an effective solution to deal with the
resource allocation problems from the spectrum and power-efficiency points of view. This
solution should achieve three main goals. Firstly, it should be amenable to the distributed
implementation. Secondly, it should be capable of dealing with the uncertainty caused by
the lack of information. Thirdly, it should deal with users’ selfishness. One of the most
promising solutions is the DSA system [5], which can be implemented as a CRN [6]. A DSA
system has the ability to enhance the spectrum utilization efficiency [7]. Hence, CRN allows
unlicensed Secondary Users (SUs) to coexist with the licensed Primary Users (PUs) in the
licensed band without causing any harmful impact on PUs in terms of different Quality
of Services (QoS) aspects. In other words, SUs can utilize a portion of the licensed PUs
spectrum under certain QoS constraints [6]. Therefore, to enhance the network efficiency,
SUs’ spectrum utilization should be maximized while keeping an eye on the QoS level of
the high-priority traffic, i.e., the PUs traffic, to avoid any services interruption to the highly
prioritized data transmission.

The concept of this resource allocation issue is considered a challenging problem for
two reasons. First, the resource allocation process can be made with a large number of
orthogonal communication dimensions such as time, frequency, code, space, and antenna
direction [8]. Second, in order to enhance the spectrum utilization, QoS for both PUs and
SUs should be maximized. To achieve this, there are different conflicting parameters that
need to be jointly optimized as transmitted power, channel occupation, total throughput,
and mutual interference level between simultaneous users. Therefore, for a certain number
of PUs and SUs, there are indispensable targets for the optimization algorithm such as the
interference threshold for each PU, the channel state information, and the geographical lo-
cation for both of PUs and SUs. Moreover, this optimization scenario can be decentralized,;
in other words, there is no need to deploy a fusion center to collect enough information
from the environment and complete the optimization process to the end. Since energy
levels are not observed in general, and both PUs and SUs form a distributed network, it
can benefit from that distribution to sense the available energy at each node. From this
point of view, the design of an efficient future wireless network needs to deal with the
uncertainty of information besides different users’ competition and selfishness. Hence, it
becomes mandatory to search for a powerful mathematical tool that can deal with such
unprecedented network problems.

Machine learning (ML) algorithms, more precisely reinforcement learning (RL) algo-
rithms, are leveraged to deal with these kinds of optimization problems [9]. The reason
behind selecting RL algorithms is their capability to achieve tremendous results in general-
ization and efficiency, leading to their capability to tackle real-life problems, and especially
in field of wireless communications [9]. Furthermore, RL algorithms are able to deal with
conflicting optimization parameters of the resource allocation problem for the DSA sys-
tem [10]. Without prior information about the environment, an agent can learn to enhance
its future actions based on its past experience. MAB algorithms are considered one of such
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RL algorithms. MAB algorithms can be described as a set of actions (arms) of a bandit
machine that each arm leads to a certain reward [11]. A player needs to maximize their
accumulated reward over the playing epoch by choosing one arm to pull in each playing
round. Moreover, this player has no idea about the reward behind each arm. So, this
instantaneous reward behind each arm is revealed once the player decides to select this
arm. Therefore, for this hidden setting, the player may lose some reward in each trial due
to not selecting the arm that leads to the highest reward value instead of the chosen arm.
This loss is denoted by regret [12]. Thus, each player should select a sequence of arms to
pull to maximize their total reward over horizon, in other words, to minimize their total
regret over horizon. This is a common dilemma faces MAB algorithms and it is called the
exploration–exploitation trade off [13–15].

Over the last decade, with the rapid increase in the number of natural disasters
occurring throughout the world, there has become an urgent need to develop a smart post-
disaster surveillance system. This smart system should operate in a fully decentralized
manner, i.e., without having a controlling center, to speed up collection and analysis of data
for a post-disaster area to enhance the performance and reduce the response time of the
rescue operations. DSA systems are considered a rich topic that was deeply investigated in
the early 2000s for some quite old applications such as analog TV white spaces, especially
in the Very High Frequency (VHF) and the Ultra High Frequency (UHF) bands [16]. Hence,
we aimed to refurbish the well-known DSA system by exploiting the benefit of using ML
algorithms as a modern optimization tool. Furthermore, UAVs, which are capable of flying
and capturing high-resolution videos using attached cameras, were leveraged recently to
support various applications in the civilian life. All these ideas motivated us to develop a
smart and cheap post-disaster surveillance system by combining the advantages of DSA
system, UAVs, and ML algorithms. In addition, this system is presented as unconventional
method to solve the spectrum scarcity problem. In this way, DSA-system-aided ML
algorithms can open the gate to unprecedented applications in the field of UAVs wireless
communication networks.

In this paper, we aim to design and evaluate a spectrum allocation for a DSA system
using MAB algorithms to support a post-disaster surveillance system. From a MAB
perspective, UAVs, which are considered SU transmitters, will act as the player who aims
to maximize their long-term reward, i.e., data rate. Furthermore, this player is constrained
by a limited power budget. On the other hand, different transmitting power levels will
act as arms of the bandit machine. The MAB algorithm is considered the most suitable
algorithm for our optimization problem as it can deal with online optimization problems
without any prior information about the environment except the player’s observations of
the achieved reward while playing. Our paper adapts two different MAB algorithms, the
Upper Confidence Bound (UCB) [15] and Thompson Sampling (TS) [17], to address such an
optimization problem. In this paper, a modified version of MAB algorithms is proposed to
treat our optimization problem. This is called the Power-Budget-Aware PBA-MAB (MAB)
algorithm. The key idea behind the PBA-MAB algorithm is to include the available power
budget for each UAV in the decision-making process when choosing the most appropriate
transmitting power value.

From the point of view of the DSA system, the SU network, which consists of UAVs
and temporary base stations, shared the spectrum resources as a CRN with the PU network,
which consists of highway Electronic Toll Collection (ETC) gates and cars passing these
ETC gates, under certain QoS constrains. Hence, SU transmitters are allowed to send
their data without causing a harmful interference to the most precious data of the PU
network. It should be mentioned that our design allows both the PU network and the
SU network to coexist at the same time under a certain signal-to-interference-plus-noise
ratio (SINR) threshold. Furthermore, we need to utilize the multi-objective formulation.
Given the location of each PU and the power budget of each SU, we seek to design for a
joint optimization problem considering different conflicting objects such as interference
coordination, sum-rate maximization, and total number of active SUs in the network,
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subject to QoS constraints for both PUs and SUs. Despite the adversarial problem definition
and the selfish behavior of each UAV toward achieving its maximum data rate, modified
MAB algorithms learn how to select the most suitable action over time to enhance the
overall system performance as discussed in [18–20] and illustrated in our paper. The main
contributions of this paper can be summarized in the following points:

• The selection of the transmitted power value for UAVs aiding a post-disaster area
surveillance system is formulated as an optimization problem aiming to maximize the
achievable data rate while considering the limited available power budget for each
UAV. This is done in a decentralized manner as there is no exchange of information
among UAVs.

• Integrating the post-disaster surveillance system as a CRN is considered an uncon-
ventional solution for the spectrum scarcity problem. Furthermore, it can reduce the
overhead cost of renting dedicated frequency channels for post-disaster surveillance
operations, while they are rarely used just when a disaster occurs.

• Despite the nature of original MAB algorithms to maximize the long-term reward, i.e.,
the achieved data rate, MAB algorithms are modified to take into account the limited
power budget for transmission. Therefore, the selection of the transmitted power not
only aims to maximize the data rate for the current channel but also considers the
remaining power budget to maximize the data rate for the next available channel.

The rest of the paper is organized as follows. Section 2 overviews the related work.
Section 3 introduces the system model and the power value selection optimization problem.
Section 4 introduces proposed PBA-MAB algorithms and how these algorithms can deal
with this kind of optimization problem. Section 5 gives simulation and analysis of the
proposed optimization scenario. Finally, we summarize the result and point out the future
research in Section 6.

2. Related Works

Since the early 21th century, the idea of DSA gained increasing attention, especially
in the US and Europe, due to the spectrum congestion [21]. An overview of the ma-
jor technical and regularity issues of DSA systems was presented in [21]. The authors
of [22] introduced the concept of multi-dimensional spectrum sensing and discussed the
challenges associated with it. They developed prediction algorithms based on the past
multi-dimensional spectrum utilization information to predict the future usage of the
spectrum. With the aid of the DSA system, CRN can be established to support different
applications as public safety, smart grid, broadband cellular, and medical applications.
Ref. [23] discussed some challenges that faced the practical application toward this idea.
An overview of CRN design layers, such as the physical layer (PHY), the medium-access
control layer (MAC), and the network layer, is presented in [24]. Furthermore, the authors
showed how these layers can interact with each other. The authors of [25] investigated the
throughput improvements in a CRN using different channel selection techniques such as
frequency hopping, frequency tracking, and frequency coding. Ref. [26] investigated the
CRN formed by the incorporating radio capabilities of a Wireless Sensor Network (WSN).
It addressed both advantages and limitations of CRN for WSN in conjunction with the
existing applications and techniques. A continuous-time Markov chain model is imple-
mented in [27] for a DSA system in an open spectrum wireless network. The authors of [28]
examined how CRN devices can find an available spectrum channel under different system
capabilities, spectrum policies, and environmental conditions. They defined this problem
as a “rendezvous” problem. With the aid of RL algorithms, the authors of [29] proposed a
framework for Internet of Things (IoT) devices to capture and model the traffic behavior
of short-time spectrum occupancy in order to determine the existing interference in the
shared bands. In [30], a novel information and energy cooperation method were introduced
for cognitive Heterogeneous Networks (HetNets). This method aimed to enhance energy
efficiency by solving an energy efficiency maximization problem with respect to joint time
allocation and power control. The authors of [31] proposed an enhanced fusion center rule
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for soft decision cooperative spectrum sensing using energy detection to mitigate the noise
uncertainty effect and to enhance the sensing performance of CRNs.

In recent years, there have been research efforts for using UAVs to support post-
disaster area applications. In [32], the authors used UAVs with conjunction with cellular
network and WSN to aid disaster management applications. A genetic algorithm was used
in [33] for UAV location optimization to enhance the overall coverage and data rate of
the wireless network. The authors of [34] proposed an effective method to support rescue
operations in locating victims of a natural disaster. This was done with the aid of lidar and
infrared depth cameras attached to UAVs to build a detecting system independent of the
illumination intensity. A video recorder and a geolocation module attached to UAV were
used in [35] to search for survivors in a post-disaster area. In [36], the authors examined
flying communication services using Wi-Fi, video camera, and web servers attached to
UAVs. They aimed to enable affected users after a disaster to use their smartphones for tex-
ting and video communication in real-time. The authors of [37] proposed a mobility model
based on self-deployment of an aerial ad hoc network based on the Jaccard dissimilarity
metric for a post-disaster area. The software simulation integrates the mobility of victims
and generate a corresponding UAVs mobility model to trace those victims. In [38], authors
proposed an energy efficient task scheduling for the collected data by UAVs from ground
IoT network to support a disaster management system.

In [39], UAVs were used as on-demand airborne relays to connect remote users with a
cellular BS when they were separated by vast obstacles. Furthermore, UAVs can be used in
WSNs to distribute and collect information in both of Control Plane (CP) and Data Plane
(DP) from wireless sensors deployed on the ground level [40,41]. UAVs are being used to
assist the management and control of Vehicle Ad hoc NETworks (VANETs) and extend
its coverage [42]. All the above existing research works assume a full awareness of the
network parameters, which is not the case of our paper, where there is no information
change among UAVs while trying to maximize the achievable data rate, as the network is
fully decentralized.

On the other hand, RL algorithms have become a promising optimization technique
for solving chronic UAV problems that have occurred as a result of integrating UAVs in
wireless communication applications. RL algorithms are well known for their capability
to achieve near optimal results in generalization and efficiency. Therefore, they are used
to tackle real-time problems in the field of wireless communications. Detailed discussion
about different MAB algorithms can be found in [43,44]. It has been shown in several works
that MAB algorithms can be adapted to tackle such problems related to DSA systems. The
authors of [45] proposed MAB learning algorithms for CRN, and particularly for spectrum
sensing in a DSA system in licensed bands [7]. Different MAB algorithms, such as UCB and
TS, have been used to improve the spectrum access in unlicensed Wi-Fi networks [45,46].
The authors of [47] considered a set of policies for multiple-user-independent and identical
distributed (iid) and rested MAB problems with the assumption that each SU declares
its action to others, e.g., the selected channel, which is considered a strong constraint. A
disputed learning and spectrum access policy for iid rewards is discussed in [48], and
it was proven that this policy has a logarithmic order regret. In [49], the decentralized
learning for DSA system with multiple SUs spectrum access has been studied. The authors
of [50] proposed a modified MAB algorithm to solve the gateway selection in UAV wireless
network for post-disaster area applications. These algorithms are considering the battery
life while searching for the most suitable gateway UAV to maximize the total system
throughput. A dynamic wireless channel selection based on the MAB algorithm with
laser chaos time sequence is proposed in [51]. The adaptive channel selection achieved
a higher throughput using four channels Wireless Local Area Network (WLAN) based
on IEEE802.11a system. The authors of [52] proposed a simple and powerful tug-of-war
MAB algorithm. Since this algorithm is very simple, it can be applied in wireless network
selection for devices with small processing capabilities as IoT devices and smartphones.
Ref. [53] studied the millimeter-wave (mmWave) two-hop relaying as a single-player MAB
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problem in order to enable one relay probing while maximizing the achievable spectral
efficiency. This was done by using modified versions of MAB algorithms. The authors
of [54] studied the problem of joint neighbor discovery and selection in mmWave device to
device (D2D) networks using a stochastic budget-constraint MAB algorithm.

3. System Model

This section discusses the network architecture of the post-disaster area surveillance
system using UAVs and the used channel model for transmitting the collected data.

3.1. Post-Disaster Area Surveillance System Architecture

Figure 1 shows a simplified version of the system architecture of the UAV wireless
network in a metropolitan post-disaster area. Since the first few hours after the occurrence
of the natural disaster (such as flood or earthquake) are considered the golden relief
time to save human lives, as discussed in the introduction section, UAVs should collect
pivotal information about victims in the damaged area using an attached high-definition
camera. The collected data can be further analyzed by the disaster management center
to identify victim’s exact location, number, age, gender, and injury status. On the other
hand, temporary base stations are deployed in the disaster area to collect this information
from surveillance UAVs and send them to the disaster management center to aid rescue
teams. These temporary base stations are used as charging stations for UAVs. Furthermore,
they are considered the starting flying points. UAVs fly over the disaster area to capture
live photos of certain points at the damaged area. The way in which these temporary base
stations transmit the collected data to the disaster management center, and the method for
selecting surveillance points, are outside the scope of this paper. Moreover, we assumed
in this paper that the different locations in the affected area have the same weight of
importance, so these points were chosen on random bases.

ETC gate

SU Tx

SU Rx

Figure 1. UAV surveillance-system-assisted DSA for a metropolitan post-disaster area.

On the other hand, our system aims to build this surveillance system using CRN.
Therefore, the SU network, which is represented by UAVs and temporary base stations,
will utilize the same frequency band of the PU network. The PU network is represented
by ETC gates and bypassing vehicles in a nearby highway. In this way, we aimed to
reduce the cost of reserving dedicated channels for surveillance system while it is being
used during the time of natural disasters only. Each UAV collects and sends data to its
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corresponding temporary base station. Furthermore, each UAV should not deal harmful
interference to the transmitted data between ETC gates and vehicles on the nearby highway.
It should be mentioned that our optimization problem design is considered a soft-spectrum
allocation. The difference between conventional spectrum allocation that have been studied
in [55,56] and our optimization problem is that the conventional optimization problem
treats the spectrum allocation as a hard allocation problem; i.e., no two users (PU and
SU) can share same channels at the same time. However, our design introduces other
orthogonal dimensions of the threshold to enable more than one user to coexist at the
same frequency band if their QoS constraints are not violated. Furthermore, for the sake
of generalization, we supposed that all PU channels, which connect every ETC gate and
nearby vehicles which are passing this ETC gate, are always active and occupied with the
PU network traffic. In this way, we considered the worst-case design scenario in which the
QoS constraints should be carefully verified during the optimization process.

3.2. Problem Formulation

In the following, our design employs the physical model proposed in [57], which
provides a path-loss model to realize the communication environment. It is assumed UAVs
can communicate to temporary base station via air-to-air wireless communication link.
Basically, this type of link can be called a Line of Sight (LoS) wireless communication
link. Since the design is built using CRN, which shares the spectrum between PU network
and SU network, this shared frequency band is split into Q independent sub-bands, and
each sub-band has a bandwidth W in Hertz. Each primary and secondary transmitter
receiver pair, referred to as primary and secondary users, is numbered by indices ψ ∈ Ψ =
{PU1, . . . , PUΨ} and ω ∈ Ω = {SU1, . . . , SUΩ}. Hence, at any time r, the general path-loss
formula between any transmitter α and any receiver β can be expressed by:

Lαβ,q(r) =
GTx,αGRx,β

dξ
αβ

(
c

4π fq(r)

)2
(1)

where GTx,α and GRx,β are the transmit and receive antenna gains, respectively, dαβ is
the distance between α transmitter and β receiver, c is the speed of light, fq(r) is the
carrier frequency of sub-band q, and ξ is the attenuation constant for the LoS wireless
communication link. For the current design, it is assumed that the pass loss is the dominant
loss factor for the received power. Hence, the effect of multi-path fading and shadowing is
ignored. Furthermore, we assumed the transmitted signal is affected by an Additive White
Gaussian Noise (AWGN) channel with zero mean and N0 variance. Therefore, the SINR of
SU ω in carrier q at time r can be given by:

γω,q(r) =
pω,q(r)Lωω,q(r)

N0 + ∑λ∈Ψ∪Φ,λ 6=ω pλ,q(r)Lλω,q(r)
(2)

where pω,q(r) and pλ,q(r) denote the transmitted power of the ω-th SU and the λ-th PU or
SU, respectively. For a successful established communication link, the SINR should satisfy
a condition that the achievable SINR must be greater than the threshold SINR, which is
given by γω,q(r) > γωTH,q(r). Under these assumptions, the achievable data rate can be
calculated by:

Rω,q(r) =





W
Q
∑

q=1
log2

(
1 + γω,q(r)

)
, if γω,q(r) > γωTH,q(r)

0, otherwise
(3)

where W is the bandwidth of the communication channel.
Since the data rate is measured from the receiver side, we assumed this value is

reported to the SU transmitter through a feedback channel. The concept behind this
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assumption comes from how modern communication systems are supposed to offer high
flexibility in different ways. One of these ways is to split user and control planes to
support software defined networking applications to allow flexible placement of processing
function between different network nodes [58]. For PUs, it is assumed that they operate in
a narrowband network, which means a pre-determined power value is assigned to each
PU. This design criterion is suitable when licensed users have to operate on narrowband
channels. On the other hand, for a wideband PU network, straightforward extension can
be done without affecting this methodology. Since SUs need to utilize these multiband
channels, where each sub-band is previously assigned to a certain PU, each SU has a
power budget denoted by Pmax. Whereas it is assumed that our PUs and SUs networks use
omnidirectional antennas, the communication channel can be established according to (1)
with considering antennas gain GTx,α = GRx,β = 1, ∀α, β. Furthermore, it is assumed that
each PU transmits using only single sub-band, and PUs operate in disjoint sub-bands. As a
result, we have the number of PUs equal to number of channels and hence Ψ = Q. The
main target of the optimization algorithm is to maximize the sum-rate, the total throughput,
for the SUs network. This can be achieved by optimizing the power levels allocated for
each SU within each shared traffic channel. The power allocation vector can be defined
as pω = [pω,1, . . . , pω,Q]

T, where each element represents the power value for SU ω for
each sub band q. In case that a SU has a power vector equal to zero, it means that this
SU in inactive. On the other hand, for PUs, it is allowed for a single PU to transmit
only on a single sub-band so that they are operating in disjoint sub-bands. Moreover,
during data transmission of SUs, they should avoid causing any harmful interference
to the high priority traffic that belongs to PUs network. It is mandatory for each SU to
satisfy this condition and not exceed its allowed power budget during transmission as well.
Considering all these power budget limitations and interference constraints, the sum-rate
maximization problem can be formulated as:

max
1
R∑

r
∑
ω

∑
q

Rω,q(r)

s.t. γψ,q(r) > γψTH,q(r)

γω,q(r) > γωTH,q(r)

(4)

whereR is the total time spent for data transmission , r = 1, . . . ,R, and γψ,q(r) > γψTH,q(r),
γω,q(r) > γωTH,q(r) are the SINR constraint conditions for all PUs and all SUs, respectively.
Thus, for SUs, it is mandatory to satisfy both SINR conditions to utilize a sub-band channel
from PUs channels.

Since our network is designed in a decentralized way with no information exchange
between different network elements, the only information available to UAVs are the
location, the channel frequency and the transmission power of each ETC gate system.
Therefore, we have developed a method to let UAVs estimate the interference caused by
self-transmission and calculate the corresponding SINR value for each PU’s receiver. With
the aid of Equations (1) and (2), each UAV will calculate the expected SINR value at each
ETC gate under the interference effect of its own data transmission. Then, each UAV can
check individually for the satisfaction of SINR conditions for both the PU network and
the SU network. In such a way, there is no need to deploy a fusion center to share the
SINR information between different SU network nodes, and therefore the network can be
implemented in a decentralized way.

4. Proposed Power Budget Aware MAB Algorithm

This section discusses two proposed algorithms to tackle this rate maximization
problem. These algorithms are called Power Budget Aware Upper Confidence Bound
(PBA-UCB) and the Power Budget Aware Thomson Sampling (PBA-TS).
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4.1. Proposed PBA-UCB Algorithm

UCB is considered one of the efficient MAB algorithms that can achieve balancing for
the exploration-exploitation dilemma of the MAB algorithm. UCB enhances the confidence
of the arm selection by decreasing the uncertainty behind the reward that will be revealed.
Algorithm 1 illustrates a modified version of the UCB algorithm, which is called the
PBA-UCB algorithm. This algorithm is applied to each UAV to select the most suitable
transmission power in a selfish way to maximize the system rate. It is assumed that
each UAV has information about the location of surrounding ETC gates operating in the
surveillance area. Furthermore, they know the transmitting frequency for each ETC gate.
The method of how UAVs can detect the location and the operating frequency of each ETC
gate is behind the scope of this paper. Hence, each UAV tries to maximize its own data rate
while competing with other UAVs to increase its transmission power while keeping an
eye on the SINR threshold. At the beginning, i.e., the first N rounds, PBA-UCB algorithm,
which is enabled on each UAV, tests the data rate that can be achieved by transmitting on
all available channels with random transmission power and observes the achievable data
rate. Afterwards, for the remaining rounds, N + 1 ≤ r ≤ R, the PBA-UCB algorithm picks
a power value in a way that satisfies:

p∗ω,q(r) = arg max
pω,q∈pω

(
µ̂ω,q(r− 1) +

√√√√ η ln(r)

T(p)
ω,q(r− 1)

− pω,q

pω,M

)
(5)

where pω,q ∈ pω is the average reward obtained for transmission power value p in channel
q up to the last previous round (r− 1), µ̂ω,q(r− 1) is the average achievable data rate to
the last previous round (r− 1) using transmission power value p in channel q, and it can
be calculated as:

µ̂ω,q(r− 1) =
1

T(p)
ω,q(r− 1)

T(p)
ω,q(r−1)

∑
m=1

Rω,q(m) (6)

where Rω,q(m) is the achievable data rate, which can be obtained from Equation (3).

T(p)
ω,q(r− 1) is a count of the number of selections of this transmitting power value until the

last previous round (r− 1). pω,q is the selected power value for transmission and pω,M
is the total available power budget for UAV that can be used. This equation illustrates
how PBA-UCB works. If a transmission power value is selected many times, which makes

T(p)
ω,q(r− 1) become large, the confidence bond term

√
η ln(r)

T(p)
ω,q(r−1)

decreases, and that causes

the UAV to seek to explore other power values that are less selected in the previous rounds.
On the other hand, when a transmission power value achieved a high reward, i.e., high
data rate, during the past rounds, which means µ̂ω,q(r− 1) becomes large, the UAV seeks
to exploit this high-gain arm in order to achieve the maximum achievable reward during
this round. Originally, the PBA-UCB algorithm sets parameter η to a positive value of 2 in
most cases [13], but empirically, when it is set to η = 0.5, the performance is improved [12].
In that way, the PBA-UCB algorithm can solve the exploration–exploitation trade-off in an
efficient way. Furthermore, the term pω,q

pω,M
shows how a UAV can balance between selecting

a power value to achieve a high data rate and consider for the remaining power budget to
be used in transmission on next available channels. It should be mentioned that this last
term defines the contribution behind our proposed PBA-UCB algorithm. Since the original
UCB algorithm could achieve only balancing between exploration and exploitation, our
proposed PBA-UCB algorithm enables a novel way to keep an eye on the remaining power
budget while balancing between exploration and exploitation. Furthermore, when selecting
a transmission power, the PBA-UCB algorithm checks for the satisfaction of both PU and
SU SINR conditions. Once it is satisfied, the algorithm confirms the use of this transmission
power value, starts to transmit data, and calculates the corresponding rate. Otherwise, it
sets the transmission power to zero and also sets the corresponding data rate to zero. In this
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way, the PBA-UCB algorithm can make sure there is no harmful interference that affects
the PU data transmission. On the other hand, it also counts for the interference threshold
on other SUs data transmission. Since the SINR condition is considered a critical design
issue, this operation is done in both of the initialization phase and the rate maximization
phase to ensure the feasibility of the proposed PBA-UCB algorithm. Algorithm 1 illustrates
the proposed PBA-UCB algorithm.

Algorithm 1 PBA-UCB transmission power selection

1: for ω ← 1 to Ω do
2: for 1 ≤ r ≤ N do . initialization phase
3: for q← 1 to Q do
4: Select a random value for pω,q(r)
5: if γψ,q(r) > γψTH,q(r) then
6: if γω,q(r) > γωTH,q(r) then
7: Obtain Rω,q(r)

8: T(p)
ω,q(r)← 1

9: else
10: pω,q(r)← 0
11: end if
12: else
13: pω,q(r)← 0
14: end if
15: end for
16: end for
17: for r ← N + 1 toR do . rate maximization phase
18: Set pω,M max SU Tx power
19: for q← 1 to Q do

20: p∗ω,q(r) = arg max
pω,q∈pω

(
µ̂ω,q(r− 1) +

√
η ln(r)

T(p)
ω,q(r−1)

− pω,q
pω,M

)

21: if γψ,q(r) > γψTH,q(r) then
22: if γω,q(r) > γωTH,q(r) then
23: Obtain Rω,q(r) using p∗ω,q(r)

24: T(p∗)
ω,q (r)← T(p∗)

ω,q (r− 1) + 1

25: µ̂ω,q(r)← 1
T(p∗)

ω,q (r)
∑

T(p∗)
ω,q (r)

m=1 Rω,q(m)

26: pω,M ← pω,M − p∗ω,q
27: else
28: p∗ω,q(r)← 0, Rω,q(r)← 0
29: end if
30: else
31: p∗ω,q(r)← 0, Rω,q(r)← 0
32: end if
33: end for
34: end for
35: end for

4.2. Proposed PBA-TS Algorithm

TS algorithm copes with the exploration–exploitation dilemma using a different
method than the previously discussed UCB algorithm. Basically, the reward gained by
laying with different arms using the TS algorithm is drawn from a pure Bayesian prob-
abilistic model [59]. In the beginning, TS uses a prior distribution for the reward based
on the initialization of parameters of the probabilistic model. Afterward, it tries to keep
tracking of the reward posterior distribution using the observation from the environment
during the learning process. Thus, it can randomly choose a suitable arm that is matched
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to be optimal according to the probability model. Thus, at each round, random samples are
drawn from the constructed reward’s posterior distribution. TS selects an arm to play that
can maximize the selected sampled value. Then, the arm’s posterior distribution is updated
by modifying its model parameters. This updated distribution will be used for the arm
selection of the upcoming rounds. It is known that TS has a superb empirical performance
and even better than the achieved performance of the UCB algorithm.

In our proposed PBA-TS algorithm, it is assumed that the reward, i.e., the achieved
data rate, is affected by AWGN noise and mutual interference from other PUs and SUs
occupying the same channel. Hence, the assumption of the Gaussian distribution is
compatible with our problem formulation. The selection of the most suitable power value
for transmission, which can maximize the achieved data rate, can be expressed as:

p∗ω,q(r) = arg max
pω,q∈pω

(
ϕω,q(r− 1)− pω,q

pω,M

)
(7)

where ϕω,q(r− 1) is a sample for the previously constructed posterior distribution from the
achieved data rate by a UAV ω at channel q with transmission power pω,q. The posterior
distribution is constructed from the Gaussian distributionN

(
µ̂ω,q(r), σ2(r)

)
, where µ̂ω,q(r)

and σ2(r) are the mean and the variance of the distribution according to the model in [20],
and they can be calculated as:

µ̂ω,q(r) =
1

T(p)
ω,q(r)

T(p)
ω,q(r)

∑
m=1

Rω,q(m) (8)

σ2(r) =
1

T(p)
ω,q(r) + 1

(9)

where Rω,q(m) is the achievable data rate and can be obtained from Equation (3), T(p)
ω,q(r) is

the counted number of selections of this transmitting power value until the last previous
round (r− 1), and Rω,q(m) is the achieved data rate. The term pω,q

pω,M
is deduced form the

distribution to balance between the rate maximization process and the remaining power
budget that should be used to transmit data over the next channels. At each round r, a
sample ϕω,q(r− 1) is taken from the previously constructed Gaussian distribution. Then,
the optimum power value p∗ω,q that maximizes Equation (7) will be selected for transmis-
sion. After that, UAV ω starts to transmit over a channel q using p∗ω,q, its corresponding

number of selections T(p∗)
ω,q (r) is updated, and the achievable data rate Rω,q(r) is observed

to construct the Gaussian distribution for the next round r + 1. This process is conducted
till the last roundR. Furthermore, along with the PBA-UCB algorithm, the SINR conditions
of both of PU and SU networks are examined at each time when choosing a certain power
value for data transmission. If both SINR conditions are satisfied, the PBA-TS algorithm
starts to use this transmission power value and counts the corresponding data rate. Oth-
erwise, the PBA-TS algorithm sets the transmission power to zero, which leads to zero
achievable data rate. The whole process of the proposed PBA-TS algorithm is summarized
in Algorithm 2.

4.3. Complexity Analysis of the Proposed Algorithms

In this paper, we spotlight the task of UAVs to build a post-disaster surveillance system
as a CRN by finding the optimal policy for each UAV. In Algorithms 1 and 2, learning
processes can find the optimal transmission power value for both PBA-UCB and PBA-TS
by examining various transmission power values over every channel for all UAVs using
different policies. On the other hand, it tries to keep the interference level under certain
thresholds. Let Ξ represent the total number of available arms, i.e., total elements of the
power vector p. It is assumed that the action space is deterministic; i.e., all actions are
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well known to each UAV. Therefore, the number of iterations of PBA-UCB is at most of the
order of O(Ω · Q · Ξ) steps. In particular, the complexity of PBA-UCB can be expressed
as O(Ω · Q2), if the total number of the available power levels Ξ in the power vector p
is equal to the total number of channels Q. This means the complexity of the PBA-UCB
algorithm is a polynomial in Ω and Q. Moreover, the PBA-TS has the same computational
complexity O(Ω · Q2) as the PBA-UCB algorithm. However, the update strategy in the
PBA-TS algorithm is based on sampling from the Gaussian distribution N

(
µ̂ω,q(r), σ2(r)

)
;

hence it may impose a slightly higher complexity depending on the sampling process.

Algorithm 2 PBA-TS transmission power selection

1: for ω ← 1 to Ω do
2: Set µ̂ω,q ← 0, σ2 ← 1
3: for r ← 1 toR do
4: Set pω,M= max SU Tx power
5: for q← 1 to Q do
6: Draw a sample ϕω,q(r− 1) from the distribution

N
(
µ̂ω,q(r), σ2(r)

)

7: p∗ω,q(r) = arg max
pω,q∈pω

(
ϕω,q(r− 1)− pω,q

pω,M

)

8: if γψ,q(r) > γψTH,q(r) then
9: if γω,q(r) > γωTH,q(r) then

10: Obtain Rω,q(r) using p∗ω,q(r)

11: T(p∗)
ω,q (r)← T(p∗)

ω,q (r− 1) + 1

12: µ̂ω,q(r)← 1
T(p∗)

ω,q (r)
∑

T(p∗)
ω,q (r)

m=1 Rω,q(m)

13: σ2(r)← 1
T(p∗)

ω,q (r)+1
14: pω,M ← pω,M − p∗ω,q
15: else
16: p∗ω,q(r)← 0, Rω,q(r)← 0
17: end if
18: else
19: p∗ω,q(r)← 0, Rω,q(r)← 0
20: end if
21: end for
22: end for
23: end for

5. Simulation Results

In this section, the simulation results of our proposed algorithms are evaluated in
terms of solution performance. We distributed each PU and SU transmitter randomly in a
5 km × 5 km area, while PUs and SUs receivers are deployed in a certain area from PUs
and SUs transmitters to comply with the SINR constraint. The SINR threshold is chosen to
be 30 dB for the PUs network, which is relatively high to ensure that the accumulated data
transmission from SUs will not cause any harmful interference to the most valuable traffic.
On the other hand, the SINR value for SUs network is set to 5 dB to ensure a successful
data transmission. The transmission powers for PUs and SUs networks are set to 24 dBm
and 30 dBm, respectively. We deployed 10 armed bandits to represent 10 different levels of
UAVs’ transmission power. These power levels are uniformly distributed with separation
equal to the maximum transmission power divided by number or armed bandits. Both
PU and SU networks operate at 5.8 GHz band with a bandwidth equal to 10 MHz. Since
both PUs and SUs networks operate in an open area, the attenuation constant parameter
is set to 3 for a free-space communication in a metropolitan area. Table 1 summarizes the
system’s parameters which are used for simulation.
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Table 1. Simulation parameters.

Notation Value

No. of armed bandits 10
Simulation area 5 km × 5 km

PU Tx power 24 dBm
Pmax 30 dBm
W 10 MHz
fq 5.8 GHz
c 3× 108 m/s
ξ 3

γψTH,q 30 dB
γωTH,q 5 dB

N0 −100 dBm
η 0.5

Figure 2 shows an example of PUs and SUs transmitter/receiver pairs deployment.
The deployment of PU receivers, i.e., cars, in the simulation area was done in a random
way within δ distance from their corresponding transmitters, while δ is chosen to achieve
30 dB at the boundary of their deployment region. The number of sub-bands is set to be
equal to the number of PUs, and hence Ψ = Q, as described previously in Section 3.

Figure 2. Distribution of PUs and SUs Tx/Rx pairs.

5.1. Average Total System Rate

This section shows the performance of the total average system rate in bps/Hz against
different values of UAVs and ETC gates.

Figure 3 shows the total average system rate using 10 UAVs while increasing the num-
ber of ETC gates. It is shown in this figure that the PBA-TS algorithm achieved the highest
data rate performance compared to both the PBA-UCB algorithm and transmission using a
random power value. The reason behind this is that PBA-TS algorithm is constructed using
posterior distributions for the obtained data rates through the integrated Bayesian strategy.
On the other hand, transmission using a random power value has the worst performance
due to the randomness in the selection of this power value for transmission in each round.
Thus, each UAV experiences random interference from not only ETC gates but also other
UAVs that share these channels. Furthermore, when the number of ETC gates increases and
each ETC gate has its own separate channel, the number of available spectrum resources
increases as well. This leads to each UAV becoming able to transmit data over a wider
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band of channels and causes the total achievable average system rate to increase for both
the PBA-TS algorithm and the PBA-UCB algorithm. On the other hand, and due to the
randomness illustrated in this section, the increase in the achievable total average system
rate using a random power value data transmission is not as high as the achievable data
rate using either the PBA-TS algorithm or the PBA-UCB algorithm.

Figure 3. Normalized average sum rate against number of ETC gates using 10 UAVs.

Figure 4 shows the performance of the achievable total average system rate against
an increasing number of UAVs while keeping the number of ETC gates equal to 10. It
is interesting that at the beginning with a few increments of the number of UAVs, the
achievable data rate, using our proposed PBA-MAB algorithms, is increased till a certain
point. Then, the achievable data rate begins to decrease with any increment in the number
of deployed UAVs. The reason behind that is that while increasing the number of UAVs, the
mutual interference between UAVs increases as well. Our proposed PBA-MAB algorithms
succeeded in mitigating the interference effect, which is reflected in the achievable data rate
reduction. Furthermore, the proposed PBA-TS algorithm can still achieve the highest data
rate performance compared to the proposed PBA-UCB algorithm and the transmission
using a random power value.

Figure 4. Normalized average sum rate against number of UAVs using 10 ETC gates.
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5.2. Convergence Rate

The convergence rate is considered one of the most important parameters to judge the
efficiency of online learning algorithms such as MAB algorithms; the faster the algorithm
can converge, the better the reward that can be gained in just a few attempts. Hence,
this section studies the convergence rate of the achievable total average system rate for
our proposed PBA-MAB algorithms with different settings. Figures 5 and 6 show the
convergence rate of the achievable total average system rate using 10 ETC gates while
changing the number of UAVs to be 10 and 30. This can show the convergence rate for
each algorithm under different network setup and different interference values. As shown
in these figures, the horizontal axis indicates the count for rounds. Each algorithm runs its
iterative process over counts till the algorithm converges toward a higher data rate. The
proposed PBA-TS algorithm can converge faster than the PBA-UCB algorithm due to the
fact that it uses Bayesian strategy over the posterior distributions of the reward. On the
other hand, the PBA-UCB fluctuates during the few beginning rounds, and it takes more
time to converge than the PBA-TS algorithm. Furthermore, it has a less convergence rate
that the PBA-TS algorithm when both of the algorithms saturate by the end of the simulation
rounds. These results can be concluded that both proposed PBA-MAB algorithms can deal
with the adversarial network setup and selfish behavior of the UAVs. Hence, it means that
every UAV learns how to select the most suitable transmission power value to enhance
the overall system performance at every round. Furthermore, without loss of generality, it
keeps an eye on the interference level while choosing this most suitable action.

Figure 5. Convergence of normalized average sum rate using 10 ETC gates and 10 UAVs.

Figure 6. Convergence of normalized average sum rate using 10 ETC gates and 30 UAVs.
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6. Conclusions

In this paper, we have investigated the radio resource allocation for a CRN through
DSA system to support a disaster surveillance system using UAVs wireless networks.
To tackle this problem, we proposed two MAB algorithms, i.e., the PBA-UCB algorithm
and the PBA-TS algorithm. The idea behind deploying MAB algorithms, as a class of
RL algorithms, is the ability of MAB algorithms to solve online optimization problems
with conflicting parameters that need to be jointly optimized. Since there is no informa-
tion exchange between all UAVs, multi-player PBA-MAB algorithms were introduced to
deal with this selfish configuration. Proposed PBA-MAB algorithms show outstanding
performance over transmission using a random power value selection. Furthermore, the
proposed algorithms showed a moderate convergence rate. The obtained results showed
the capability of different MAB algorithms to deal with such problems with a high degree
of randomness. Therefore, it can open the way for applying ML algorithms and more
precise MAB algorithms to handle various wireless communication problems.
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Abbreviations
The following abbreviations are used in this manuscript:

DSA Dynamic Spectrum Access
UAV Unmanned Aerial Vehicle
CRN Cognitive Radio Network
ETC Electronic Toll Gate
MAB Multi-armed Bandit
PBA-MAB Power-Budget-Aware Multi-armed Bandit
UCB Upper Confidence Bound
TS Thompson Sampling
PBA-UCB Power-Budget-Aware Upper Confidence Bound
PBA-TS Power-Budget-Aware Thompson Sampling
PU Primary User
SU Secondary User
QoS Quality of Service
ML Machine Learning
RL Reinforcement Learning
SINR Signal-to-Interference-Plus-Noise Ratio
WSN Wireless Sensor Network
CP Control Plane
DP Data Plane

116



Sensors 2021, 21, 7855

VANET Vehicle Ad hoc NETwork
iid independent and identical distribution
WLAN Wireless Local Area Network
LoS Line of Sight
AWGN Additive White Gaussian Noise
HetNets Heterogeneous Networks
PHY Physical layer
MAC Medium Access Control layer
IoT Internet of Things
VHF Very High Frequency
UHF Ultra High Frequency
mmWave millimeter-wave
D2D Device to Device
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Abstract: UAV equipped three-dimensional (3D) wireless networks can provide a solution for the
requirements of 5G communications, such as enhanced Mobile Broadband (eMBB) and massive
Machine Type Communications (mMTC). Especially, the introduction of an unmanned aerial vehicle
(UAV) as a relay node can improve the connectivity, extend the terrestrial base station (BS) coverage
and enhance the throughput by taking advantage of a strong air-to-ground line of sight (LOS) channel.
In this paper, we consider the deployment and resource allocation of UAV relay network (URN)
to maximize the throughput of user equipment (UE) within a cell, while guaranteeing a reliable
transmission to UE outside the coverage of BS. To this end, we formulate joint UAV deployment
and resource allocation problems, whose analytical solutions can be hardly obtained, in general. We
propose a fast and practical algorithm to provide the optimal solution for the number of transmit
time slots and the UAV relay location in a sequential manner. The transmit power at BS and UAV
is determined in advance based on the availability of channel state information (CSI). Simulation
results demonstrate that the proposed algorithms can significantly reduce the computational effort
and complexity to determine the optimal UAV location and transmit time slots over an exhaustive
search.

Keywords: UAV relay networks; UAV positioning; resource management; transmit time allocation

1. Introduction

As one of the diverse emerging applications of unmanned aerial vehicles (UAV), it
can be utilized as an aerial base station (BS) or an aerial relay node in three-dimensional
(3D) wireless networks to satisfy the service requirement of the fifth generation (5G) com-
munication [1–4], such as enhanced Mobile Broadband (eMBB) and massive Machine
Type Communications (mMTC). Due to their mobility, versatile UAVs can adjust their
locations to improve the connectivity among user equipment (UEs). Easy deployment of
UAV enables to construct 3D networks efficiently with terrestrial networks, which can
extend the service coverage or accommodate a large number of devices. By introducing
a strong air-to-ground line of sight (LOS) channel, UAV can improve the capability of
networks through diverse applications such as (1) emergency supports where communi-
cation services are unavailable [5], (2) Internet of Things (IoT) platforms where UAV can
collect data from distributed IoT devices by saving their transmit power [6,7], (3) terrestrial
network supports where UAVs can assist terrestrial BS transmission or device-to-device
(D2D) transmissions [8].

In UAV networks, UAV positioning and radio resource allocation are key factors to
extend cell coverage and to improve network performance. The locations of UAV BSs
determine the coverage area and the number of UEs within its service area, whereas the
resource allocation affects the overall performance of networks. Likewise for UAVs as
relay node, its location and resource management (e.g., power control and transmit time
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allocation) are critical to guarantee seamless connectivity to UEs outside BS service areas
without performance degradation.

Many studies on UAV BS scenario (UBS) [9–13] have focused on finding the optimal
3D UAV location to take advantage of strong air-to-ground LOS channels. The study [9]
uses a circle packing theory to determine optimal locations of UAVs, and maximizes energy
efficiency of UAVs. Another study [10], adopts an optimal transfer theory to minimize total
transmit power at UAVs, and investigates the effect of UAV height on power efficiency.
The authors of [11] propose a spiral algorithm that sequentially determines the locations
of multiple UAVs, and their UAV deployment algorithm is shown to outperform other
heuristic schemes in terms of performance and computational time. Study [12] analyzes
the effect of interference between UAVs and derives the optimal height of UAV that can
maximize the coverage of UAVs. The authors of [13] assume a disaster scenario and propose
UAV deployment considering the coexistence of aerial and terrestrial BS. Also, recent
works [6,14,15] address more complicated problems of optimizing both UAV deployment
and resource allocation to improve network performance. In [6], optimal locations of
UAVs, cell association and power controls are provided to maximize energy efficiency in
IoT communications. The study [14] optimizes both UAV locations and cell association
to minimize network delay. Study [15] achieves capacity enhancement in heterogeneous
networks by optimizing UAV deployment, load balancing and traffic offload.

Compared to studies on UBS, research on UAV relay network (URN) is in its infancy,
and more efforts are required to optimize both UAV deployment and resource allocation
for reliable transmission. Especially, the transmit period of each relay transmission link
is one of the most crucial factors on URN because it affects both optimal UAV location
and the network performance. Studies [16,17] analyze the performance of URN during
two transmit time slots and find the optimal height of UAV [16] and UAV operation range
numerically [17] to guarantee a reliable relay transmission. However, a relay transmission
during two transmit time slots is sometimes insufficient when UE stays far from BS or
requires a high level of quality of service (QoS). To deal with this, Ref. [18] adopts multiple
transmit time slots (>2) and derives the maximum distance between UAVs to achieve a
reliable relay transmission. However, it does not consider the optimal height of UAV and
the performance analysis may not be applicable in all circumstances due to a fixed height
of UAVs.

Research on URN to optimize both UAV deployment and resource allocation during
multiple transmit time slots (>2) can be rarely found due to the following two main reasons;
a relay transmission under time-varying channels and a difficulty on joint optimization of
UAV deployment and resource allocation. It is impractical to optimize UAV deployment
and resource allocation reflecting channel variations within a single time slot. So, joint
optimization of UAV deployment and resource allocation for multiple transmit time slots
is required even though they depend on each other.

In this paper, we consider with no constraint on the number of overall transmit time
slots in URN to joint optimization for UAV deployment and resource allocation. Espe-
cially, the throughput of UE within a cell is maximized while guaranteeing a reliable relay
transmission to UE in its extended service area. Multiple transmit time slots are utilized
in URN, but the minimum number of overall transmit time slots is considered in a relay
transmission for efficient resource management and without performance degradation
of UEs within its original coverage due to reduced service opportunity by the BS. The
formulated joint UAV deployment and transmit time allocation problem is a mixed-integer
nonlinear problem, which is difficult to solve and requires huge computational effort to
achieve global optimality. To tackle this, a time-varying channel condition is approximated
to the channel expectation in URN. The joint optimization problem is decomposed in a
sequential manner. As a solution, we propose the fast and practical UAV deployment and
transmit time allocation (UDTA) algorithm, which consists of a novel time slot determina-
tion (TSD) algorithm and UAV deployment (UD) algorithm that determines the optimal
number of transmit time slots and optimal UAV location, respectively. Transmit power at

122



Sensors 2021, 21, 6878

BS and UAV is determined based on channel state information (CSI). To the best of our
knowledge, no such work on URN to optimize UAV deployment and resource allocation
for generalized multiple transmit time slots is conducted.

The paper is organized as follows. Section 2 describes a URN system model. In
Section 3, the joint UAV deployment and transmit time allocation problem for throughput
maximization of UEs is formulated. Section 4 optimizes the UAV location for given trans-
mit time slots, and the optimal number of transmit time slots is determined in Section 5.
Computational complexity of the proposed algorithm is analyzed in Section 6. Simula-
tion results in Section 7 demonstrate the optimality and low complexity of the proposed
algorithm, followed by the conclusion in Section 8.

2. System Model

We consider a downlink URN, where UAV is used as an aerial relay node to assist BS
transmission in the networks, as shown in Figure 1. Two UEs are considered in URN; a
UE at the cell edge, denoted as CU, and an isolated UE, denoted as IU. CU can receive a
signal from BS through BS-to-CU link, whereas IU can only receive a signal by the relay
transmission through BS-to-UAV-to-IU link due to severe pathloss attenuation or blockage
between BS and IU. We assume that UAV operates in a half-duplex mode, and hence two
transmission phases are considered. UAV receives data from BS in the first transmission
phase, and forwards it to IU in the second transmission phase. Multiple time slots are
allocated to each transmission phase to guarantee a reliable signal reception at both UAV
and IU. Full channel state information (CSI) is assumed at BS, but not at UAV.

Figure 1. UAV relay network.

We assume that UAV is located at the height of H over the line between BS and IU
to avoid unnecessary signal attenuation in relay transmissions. In addition, to investigate
the effect of interference from UAV to the cell (especially, the worst case of maximum
interference to the cell), CU is assumed to be located on the same line between BS and IU
for analytical simplicity. Thereby, UAV and ground nodes can be projected onto a plane
(i.e., x-z plane), which reduces to the line between BS and IU (i.e., x-axis). The location of
ground node v (v ∈ {BS, IU, CU}) can be represented by its x-coordinate xv, and the UAV
location, denoted as U, can be expressed as U = {xU , H}, where xU is the x-coordinate of
UAV. xCU ≤ xU ≤ xIU is assumed to set a strong UAV-to-IU link. Note that the projected
two-dimensional (2D) space includes the information on UAV height, so it can clearly
reflect the air-to-ground LOS channel characteristics in URN.
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2.1. Channel Modeling and Assumption

Conventional relay systems where all nodes are located on the ground consider only a
ground-to-ground link to characterize channels between nodes, whereas URN consists of
not only ground nodes (i.e., BS, CU and IU), but also an aerial node (i.e., UAV). Therefore, an
air-to-ground link should be considered along with a ground-to-ground link to characterize
channels in URN.

For a ground-to-ground link, a small-scale fading with a pathloss dependent large-
scale fading can be used to reflect a rich-scattering environment and a signal attenua-
tion [19]. In URN, the channel between BS and CU is modeled as hBS,CUd−βG

BS,CU , where
hBS,CU∼exp(1) denotes the small-scale fading modeled by Rayleigh distribution, and
d−βG

BS,CU denotes the pathloss dependent large-scale fading. dBS,CU is the distance between
BS and CU, and βG denotes a pathloss exponent in a ground-to-ground link.

For an air-to-ground link, strong signals in LOS and Non-LOS (NLOS) links dominate
the channel characteristics and reduce the randomness of channel fluctuations. Hence, a
small-scale fading can be neglected, and only a pathloss dependent large-scale fading in
LOS and NLOS links is considered to model an air-to-ground channel in URN [8]. Ref. [20]
derives LOS probability of an air-to-ground link between UAV U and ground node v as

pv
los = F(θU,v) =

1
1 + C exp(−B[θU,v − C])

, (1)

where θU,v is an elevation angle between UAV U and ground node v, as shown in Figure 1.
B and C are coefficients that reflect the characteristics of the environment, such as rural,
suburban and urban areas. Compared to a LOS link, an NLOS link experiences an ad-
ditional signal attenuation of ς [dB]. Therefore, an air-to-ground channel between UAV
U and ground node v can be modeled as d−βA

v,U (pv
los + ςpv

nlos), where dv,U is the distance
between UAV U and ground node v, βA is a pathloss exponent of air-to-ground link, and
pv

los and pv
nlos are the LOS and NLOS probabilities of the link between UAV U and ground

node v with pv
nlos = 1− pv

los.
We assume that the channel condition between BS and CU is better than that between

BS and UAV (i.e., hBS,CUd−βG
BS,CU > d−βA

BS,U(p
BS
los + ςpBS

nlos)). The distance between BS and UAV
is much longer than that between BS and CU (i.e., dBS,U ≥ dBS,CU), because UAV should
be located close to IU for a reliable UAV-to-IU link. Due to a long distance between BS
and UAV, a pathloss attenuation becomes dominant in the channel condition of LOS link
between BS and UAV. Hence, the channel condition between BS and UAV gets worse than
that between BS and CU [17].

2.2. Transmission Schemes in URN

Based on the result of [17] that a non-orthogonal transmission at BS outperforms an
orthogonal transmission in URN in terms of overall throughput of UEs in the cell, we
adopt the non-orthogonal transmission at BS in the first transmission phase, where BS
transmits a superposition-coded signal to CU and UAV simultaneously [21]. On the other
hands, in the second transmission phase, the orthogonal transmission is used at BS and
UAV, where BS transmits a signal to CU, and UAV forwards the received data from BS in
the first transmission phase to IU. In the rest of this paper, the non-orthogonal transmission
phase (NOTP) and the orthogonal transmission phase (OTP) are used to represent the first
and second transmission phase, respectively.

2.3. Power Control Strategy and Overall Transmit Time Slots

A pairwise power control [22] is adopted at BS during entire transmit time slots of
URN to guarantee a required QoS in the cell while supporting a relay transmission to IU. In
NOTP, BS allocates PBS,CU = ρh−1

BS,CUdβG
BS,CU transmit power to BS-to-CU link to guarantee

a received signal power of ρ at CU, and the remaining transmit power at BS, PBS,U (i.e.,
PBS,U = Pmax

BS − PBS,CU), is allocated to BS-to-UAV link, where Pmax
BS is a maximum transmit
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power at BS. As a full CSI is available at BS, BS can determine PBS,CU depending on the
channel condition in a BS-to-CU link, and then PBS,U can be determined. Similarly, in OTP,
BS holds a pairwise power control to guarantee the received signal power of ρ at CU. On
the other hand, since UAV has no CSI, UAV uses its maximum transmit power, Pmax

U , to
provide seamless communication service to IU.

As illustrated in Figure 1, URN consists of overall n = Kno + Ko time slots, where
NOTP is composed of Kno time slots with a time index kno ∈ Kno = {1, . . . , Kno} and OTP
has Ko time slots with a time index ko ∈ Ko = {Kno + 1, . . . , Kno + Ko}. (Kno, Ko) denotes a
pair of time slots for each transmission phase.

3. URN: UAV Relay Network
3.1. Throughput of CU and IU

At a time slot kno (∀kno ∈ Kno) in NOTP, BS transmits a superposition-coded signal
to CU and UAV simultaneously with transmit power PBS,CU(kno) = ρh−1

BS,CU(kno)d
βG
BS,CU

and PBS,U(kno) = Pmax
BS − PBS,CU(kno), as explained in Section 2.2. CU can perform the

successive interference cancellation (SIC) [21] to eliminate an interference from BS-to-UAV
link due to the channel assumption in Section 2.1 (i.e., hBS,CU(kno)d

−βG
BS,CU ≥ d−βA

U,BS(p
BS
los +

ςpBS
nlos)). On the other hand, UAV cannot eliminate an interference from BS-to-CU link.

Hence, the corresponding signal to interference plus noise ratios (SINRs) at CU, ψno
CU(kno),

and UAV, ψU(kno), at a time slot kno in NOTP can be expressed as

ψno
CU(kno) =

ρ

σ2
CU

, (2)

ψU(kno)=
PBS,U(kno)d

−βA
BS,U(p

BS
los(1− ς) + ς)

PBS,CU(kno)d
−βA
BS,U(p

BS
los(1− ς)+ς)+σ2

U

, (3)

where d−βA
BS,U(p

BS
los(1− ς) + ς) in (3) represents the channel in BS-to-UAV link with LOS

probability pBS
los. σ2

i indicates the variance of additive white Gaussian noise (AWGN) at a
node i.

At a time slot ko (∀ko ∈ Ko) in OTP, BS transmits a signal to CU, and UAV relays
the received data from BS in NOTP to IU. Therefore, the SINRs at CU, ψo

CU(ko), and IU,
ψIU(ko), at a time slot ko in OTP can be given by

ψo
CU(ko) =

ρ

IU,CU + σ2
CU

, (4)

ψIU(ko) =
Pmax

U d−βA
U,IU(p

IU
los(1− ς) + ς)

σ2
IU

, (5)

where IU,CU , Pmax
U d−βA

U,CU(p
CU
los (1− ς) + ς) in (4) represents the interference from UAV to

CU. IU does not receive any interference from BS in OTP due to severe pathloss attenuation
in BS-to-IU link. pCU

los and pIU
los are the LOS probabilities of UAV-to-CU link and UAV-to-IU

link, respectively. Note that we assume that the adjacent cell utilizes different frequency
bands from that of the cell of interest to avoid the inter-cell interference, and that other
interference received at CU is negligible except that from the link between UAV and IU in
OTP, which is dominant.

From (2), (4) and (5), we can find that the SINR at CU in both transmission phases
and that at IU in OTP are time-invariant (i.e., ψno

CU(kno) = ψno
CU , ψo

CU(ko) = ψo
CU and

ψIU(ko) = ψIU , ∀kno, ko) due to the pairwise power control and channel characteristics of
air-to-ground LOS link. However, the SINR at UAV in NOTP (i.e., (3)) is time-varying for
each time slot kno because PBS,U(kno) and PBS,CU(kno) vary with the channel condition of
BS-to-CU link.
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Based on the Shannon capacity theorem [19], the amount of received data at CU,
r∑

CU(|Kno|), and at UAV, r∑
U(|Kno|), in NOTP (∀kno ∈ Kno) can be obtained using (2) and

(3) as

r∑
CU(|Kno|) =

Kno

∑
kno=1

f (ψno
CU) = f (ψno

CU)Kno, (6)

r∑
U(|Kno|) =

Kno

∑
kno=1

f (ψU(kno)), (7)

respectively, where f (x) , log(1 + x). (6) follows that each time slot has a unit length and
ψno

CU is a time-invariant.
Similarly, the amount of received data at CU, r∑

CU(|Ko|), and at IU, r∑
IU(|Ko|), in OTP

(∀ko ∈ Ko) can be obtained using (4) and (5) as

r∑
CU(|Ko|) =

Ko

∑
ko=1

f (ψo
CU) = f (ψo

CU)Ko, (8)

r∑
IU(|Ko|) =

Ko

∑
ko=1

f (ψIU) = f (ψIU)Ko. (9)

For the overall time slots n, the average data rate of CU, RCU [bps/Hz], can be defined
by (6) and (8) as

RCU =
1
n
(r∑

CU(|Kno|) + r∑
CU(|Ko|)), (10)

and the total amount of received data at IU via relay transmission, DIU [bit/Hz], can be
obtained by (7) and (9) as

DIU = min(r∑
U(|Kno|), r∑

IU(|Ko|)), (11)

where (11) follows that the amount of transmitted data through a forwarding link (i.e., UAV-
to-IU link) cannot exceed that of received data at UAV via backhaul link (i.e., BS-to-UAV
link) in a relay transmission.

3.2. Problem Formulation: JUDTAP

The throughput maximization of UEs in URN is equivalent to maximizing RCU while
delivering the required amount of data to IU, Dreq, during the minimum number of
overall time slots n with respect to UAV location U = {xU , H} and transmit time slots
K = {Kno, Ko}. Hence, the multi-objective optimization problem, denoted as joint UAV
deployment and transmit time allocation problem (JUDTAP), can be formulated as (12)

JUDTAP: max
U,K

[RCU ,
1
n
] (12)

s.t. DIU ≥ Dreq (12a)

n = Kno + Ko (12b)

Kno ≥ 1, Ko ≥ 1 (12c)

kno ∈ Kno, ko ∈ Ko (12d)

xCU < xU < xIU , H ≥ 0 (12e)

where multi-objective function implies that the overall number of time slots n should be
minimized before the average data rate of RCU is maximized, as explained in Section 1.
(12a) shows the requirement on the amount of received data at IU. (12b)–(12d) represent the
constraints on the number of time slots in URN, and (12e) indicates the possible operation
range that UAV can be deployed.
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The JUDTAP is a mixed-integer nonlinear programming [23] and its combinatorial na-
ture makes the bulk of computational load to find a global optimal solution (i.e., Uopt, Kopt).
In addition, mutual-influence between UAV location and transmit periods in both trans-
mission phases makes it more difficult to be solved. For example, to maximize RCU , UAV
should be located close to IU to reduce interference from UAV to CU (i.e., IU,CU in (4)).
However, it may increase Kno, eventually n, to guarantee a data transmission in BS-to-UAV
link (i.e., to satisfy (12a)). Therefore, the JUDTAP cannot be solved by optimizing U and K
independently due to their close relationships.

One approach to solve the JUDTAP is updating U and K iteratively. However, these
procedures are not practical and cannot guarantee a convergence to global optimal solution.
Therefore, in this paper, we propose a fast and practical algorithm that finds Uopt and Kopt

in a sequential manner;

• Step 1: Find the optimal pair of (Kno, Ko), Kopt, that leads to a minimum n.
• Step 2: Determine the optimal location of UAV, Uopt.

The details on each step will be presented in Sections 4 and 5.

3.3. Analysis on Relay Transmission during Multiple Time Slots

As explained in the previous section, the relay transmission during multiple transmit
time slots makes it difficult to analyze the constraint on BS-to-UAV link in (12a) (i.e.,
r∑

U(|Kno|) ≥ Dreq). More specifically, a time-varying small-scale fading in BS-to-CU link
changes ψU(kno) in (3) and r∑

U(|Kno|) in (7) for each time slot kno, so it is challenging to find
optimal U and K that satisfy r∑

U(|Kno|) ≥ Dreq. To cope with this issue, we introduce the
expected channel model in a ground-to-ground link (i.e., BS-to-CU link in URN) because the
effect of random fluctuation by small-scale fading during multiple time slots is negligible
and it is impractical to adjust the location of UAV for the short period of each time slot.
Therefore, E[hBS,CU ]d

−βG
BS,CU is used to model the channel condition of BS-to-CU link, where

E[hBS,CU ] represents the expectation of small-scale fading hBS,CU(k), ∀k ∈ Kno ∪Ko. The
expected channel model affects the pairwise power control at BS, and the SINR at UAV in
(3) as follows.

The pairwise power control at BS is simplified to a fixed power control. In NOTP, BS
allocates P̄BS,CU = ρE[hBS,CU ]

−1dβG
BS,CU and P̄BS,U = Pmax

BS − P̄BS,CU to BS-to-CU link and

BS-to-UAV link, respectively. Similarly, in OTP, BS allocates P̄BS,CU = ρE[hBS,CU ]
−1dβG

BS,CU
to BS-to-CU link.

The time-varying SINR at UAV in NOTP (i.e., ψU(kno), ∀kno in (3)) can be replaced
into a time-invariant ψ̄U due to P̄BS,CU and P̄BS,U . The amount of received data at UAV in
(7) can be simplified as r̄∑

U(|Kno|), where r̄∑
U(|Kno|) = f (ψ̄U)Kno.

Therefore, the constraint (12a) can be expressed as

DIU ≥ Dreq

⇔
P̄BS,Ud−βA

BS,U(p
BS
los(1− ς) +ς)

P̄BS,CUd−βA
BS,U(p

BS
los(1− ς) +ς)+σ2

U

≥ 2
Dreq
Kno −1, (13)

and Pmax
U

d−βA
U,IU

σ2
IU

(pIU
los(1− ς) + ς) ≥ 2

Dreq
Ko − 1, (14)

where (13) and (14) are obtained from time-invariant r̄∑
U(|Kno|) and (9), respectively.

After rearranging above two inequalities, the left terms of (13) and (14) can be ex-
pressed with respect to LOS probability, which are given as

F(θU,BS) ≥ XBS(dU,BS, Kno), (15)

F(θU,IU) ≥ XIU(dU,IU , Ko), (16)
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where

XBS(dU,BS, Kno)
∆
=

(2
Dreq
Kno − 1) σ2

U

d
−βA
U,BS(1−ς)

(Pmax
BS − 2

Dreq
Kno P̄BS,CU)

− ς

1− ς
, (17)

XIU(dU,IU , Ko)
∆
=

(2
Dreq
Ko − 1) σ2

IU

d
−βA
U,IU(1−ς)

Pmax
U

− ς

1− ς
. (18)

Based on (15)–(18), a sequential algorithm for Steps 1 and 2 is derived in the following
sections.

4. UAV Deployment

In this section, we investigate the effect of UAV location on the network performance,
and derive the optimal UAV location, Uopt. For this purpose, we assume that the transmit
time allocation is given (i.e., (Kno, Ko)) and guarantees the existence of UAV locations
that can provide a reliable relay transmission to IU. We utilize distance and elevation
angle in x-z plane to reflect the channel characteristics between UAV and ground node in
Section 2.1. Θ = {θU,v|v ∈ {BS, CU, IU}} and D = {di,j|i, j ∈ {BS, U, IU, CU}} represent
sets of elevation angles and distances respectively, and the UAV location U = {xU , h} in
(12) can be expressed as U = {dU,v, θU,v}.

4.1. UAV Deployment Problem

Based on (2) and (4), the maximization of multi-objective function for a given time
allocation in JUDTAP is equivalent to the minimization of interference from UAV to CU
(i.e., minimization of IU,CU in (4)). The constraint (12a) can be replaced by (15) and (16), and
the constraints (12b)–(12d) can be omitted because the transmit time allocation is given.

Therefore, for a given time allocation, JUDTAP reduces to UAV deployment problem
(UDP), which can be formulated as (19) with respect to Θ and D.

UDP: min
Θ,D

d−βA
U,CU(F(θU,CU)(1− ς) + ς) (19)

s.t. F(θU,BS) ≥ XBS(dU,BS|Kno), (19a)

F(θU,IU) ≥ XIU(dU,IU |Ko), (19b)

dBS,CU ≤ dU,BScos(θU,BS) ≤ dBS,IU . (19c)

The objective function is given by IU,CU/Pmax
U . (19a) and (19b) are the constraints of

BS-to-UAV link and UAV-to-IU link, respectively, and derived from (15)–(18) by replacing
XBS(dU,BS, Kno) and XIU(dU,IU , Ko) with XBS(dU,BS|Kno) and XIU(dU,IU |Ko) due to the
assumption on time allocation. (19c) represents the UAV operation range that UAV can be
deployed (i.e., (12e) of JUDTAP).

The optimal solution of UDP (i.e., Θopt, Dopt) determines the optimal UAV location,
Uopt, for a given time allocation. However, all the elements of Θ and D should be consid-
ered simultaneously to find Uopt, so no closed-form solution to UDP exists. Therefore, we
propose UAV deployment (UD) algorithm, which updates the UAV location iteratively to
reach Uopt based on search areas and directions. In the following section, we define search
areas and directions for a given UAV location, and investigate them to update the UAV
location toward Uopt.

4.2. Search Areas and Directions

For a given location of UAV U, we define search areas and directions using lines and
circles as shown in Figure 2, where UAV and ground nodes are placed on the x-z plane as
explained in Section 2. UAVs on a line have the same elevation angle of θU,v from ground
node v (i.e., v ∈ {CU, BS, IU}), while those on a circle have equal distance of dU,v from
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ground node v to UAV. The line and circle inside dashed-rectangle (i.e., UAV operation
range) in Figure 2b define the search areas considering the interference from UAV to CU,
while those in Figure 2c,d represent the search directions based on each relay transmission
link. All the search areas and directions for a given UAV location are integrated in Figure 2a.
The search areas and directions change when a given UAV location is updated. Therefore,
we investigate search areas and directions for the given location of UAV U, UU , to find the
updated location of UAV U′, UU′ .

(a) (b)

(c) (d)

Figure 2. Search areas and directions for updating UU toward UU′ . (a) The integrated search areas and directions for
UU . (b) Four search areas for UU′ based on the objective function of (19) (i.e., link between UAV and CU). (c) Four search
directions for UU′ based on the constraint (19a) (i.e., link between BS and UAV). (d) Four search directions for UU′ based on
the constraint (19b) (i.e., link between UAV and IU).

4.2.1. Search Area

The search areas À–Ã in Figure 2b are divided by the line and circle based on CU
location and UU . UAV U should move towards the area where the interference from UAV
U′ to CU (i.e., objective function in (19)) decreases. When UAV U moves into Area À, both
F(θU,CU) and d−βA

U,CU in (19) decreases due to smaller θU,CU and longer dU,CU . Any UAV
locations within Area À always reduce the UAV-to-CU interference, hence, Area À is a
potential search area for UU′ . On the other hand, all UAV locations in Area Ã increases
both F(θU,CU) and d−βA

U,CU . Therefore, they cannot decrease the objective function in (19),
thereby excluding Area Ã from potential search areas.

The search areas Á and Â possess the uncertainty on the interference from UAV U′ to
CU. UAV locations within Area Á decrease d−βA

U,CU , but increase the F(θU,CU), while those
within Area Â results in the opposite. However, when UAV U′ is within Area Á, a pathloss
attenuation dominates the LOS connection in BS-to-CU link. More specifically, F(θU′ ,CU)

is close to one due to large θU′ ,CU [20], but dU′ ,CU can be sufficiently large so that d−βA
U′ ,CU

becomes a dominant factor in the objective function of (19). Therefore, UAV locations
within Area Á can reduce the UAV-to-CU interference compared to given UAV location
UU . On the other hand, UAV locations within Area Â makes more severe UAV-to-CU
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interference due to proximity of their locations, hence, Area Â cannot be the potential
search area.

• Observation 1: The objective function in (19) can be decreased by moving UAV into
Area À or Á in Figure 2b.

The Observation 1 is directly applicable for a feasible UAV location (which satisfies
the constraints (19a) and (19b)) to reduce the UAV-to-CU interference. On the other hands,
when UAV location cannot satisfy the constraints (i.e., infeasible UAV location), Observation
1 and the channel condition of relay transmission links should be considered simultaneously
to find a feasible UAV location and to reduce the objective function in (19). In the following
subsection, we examine the search directions to satisfy the constraints and decrease the
objective function in (19) simultaneously.

4.2.2. Search Directions

Although the potential search areas that can be used to find UU′ from UU are described
on Observation 1, there is no clue on UU′ within the potential area. Hence, the points on a
line or a circle within the potential search area are utilized to determine UU′ . In particular,
search directions in Figure 2c,d are examined to move UAV U into the feasible UAV location
UU′ when UU cannot satisfy the constraints (19a) or (19b).

From the constraints, there are four cases (i.e., C1, C̄1, C2 and C̄2) to be considered
at UU . C1 and C2 indicate that UU satisfies (19a) and (19b) respectively, while C̄1 and C̄2
represent that it does not. Each case follows a different search direction in Figure 2c for C1
and C̄1 and in Figure 2d for C2 and C̄2.

C1 and C2 indicate that UU′ can be found based on Observation 1 to decrease the
objective function in (19). In the case of C1, Direction À or Á in Figure 2c should be selected
because they are within the potential search areas À and Á in Figure 2b (see Figure 2a). For
the same reason, Direction À, Á or Ã of Figure 2d should be selected in case of C2.

C̄1 and C̄2 represent that UU cannot satisfy the constraints (19a) and (19b) due to
poor channel conditions in BS-to-UAV and UAV-to-IU link, hence resulting in F(θU,BS) <
XBS(dU,BS|Kno) and F(θU,IU) < XIU(dU,IU |Ko) respectively. Therefore, to find the feasible
UAV location UU′ , θU,v should be increased along a circle or dU,v should be decreased along
a line in Figure 2c (when v = BS) and Figure 2d (when v = IU). This is because F(θU,v)
v ∈ {BS, IU}, XBS(dU,BS|Kno) and XIU(dU,IU |Ko) are increasing functions of θU,v, dU,BS
and dU,IU , respectively.

In the case of C̄1, the movement of UAV U along Direction Ã in Figure 2c decreases
dU,BS, while that along Direction Á increases θU,BS. Direction Ã always provides the
feasible UAV location UU′ that satisfies (19a), while Direction Á could find it only when
XBS(dU,BS|Kno) ≤ 1 because max F(θU′ ,BS) = 1. Similarly, in the case of C̄2, the movement
of UAV U along Direction Á in Figure 2d increases θU,IU , while that along Direction Ã

in Figure 2d decreases dU,IU . Direction Á could find the feasible UAV location UU′ that
satisfies (19b) only when XIU(dU,IU |Ko) ≤ 1.

• Observation 2 (C1): When UU satisfies the constraint (19a), Direction À along a line or
Direction Á along a circle in Figure 2c should be selected to determine UU′ .

• Observation 3 (C̄1): When UU cannot satisfy the constraint (19a), Direction Ã along a
line in Figure 2c always provides the feasible UAV location UU′ , while Direction Á

along a circle in Figure 2c could find UU′ only when XBS(dU,BS|Kno) ≤ 1.
• Observation 4 (C2): When UU satisfies the constraint (19b), Direction À or Ã along a

line, or Direction Á along a circle in Figure 2d should be selected to determine UU′ .
• Observation 5 (C̄2): When UU cannot satisfy the constraint (19b), Direction Ã along a

line in Figure 2d always provides the feasible UAV location UU′ , while Direction Á

along a circle in Figure 2d could find UU′ only when XIU(dU,IU |Ko) ≤ 1.
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4.2.3. Combined Search Directions

The Observations 2-5 should be integrated to consider the constraints (19a) and (19b)
together. First, Observations 2 and 4 can be used to decrease the objective function in
(19) for the case of C1∩C2 where C1∩C2 indicates that UU is a feasible UAV location and
satisfies both (19a) and (19b). As in Figure 2, the movement along Direction À in Figure 2c
and Direction Á in Figure 2d decreases both F(θU,CU) and d−βA

U,CU in (19). They have the
same properties, but differ on moving along line and circle, respectively. Similarly, the
movement along Direction Á in Figure 2c and Direction À in Figure 2d decreases d−βA

U,CU and
achieves large θU,CU , resulting in F(θU,CU) ≈ 1. Either direction that has same properties
can be selected for the movement towards Uopt. However, it is preferable to select search
direction moving along a line (i.e., Direction À in Figure 2c and Direction À in Figure 2d) to
reduce computation time, which will be discussed in Section 4.3. Note that, UAV locations
along Direction Ã in Figure 2d could break the constraint (19a) due to insufficient height of
UAV and small θU,BS, therefore, it is not an option for C1∩C2.

• Observation 6 (C1∩C2): When UU satisfies both the constraints (19a) and (19b), UU′

will be found along Direction À in Figure 2c or Direction À in Figure 2d.

When UU is infeasible location, there are three cases (i.e., C̄1∩C2, C1∩C̄2 and C̄1∩C̄2)
to be considered. However, it is clear that C̄1∩C2 ⊂ C̄1 and C1∩C̄2 ⊂ C̄2, therefore, Obser-
vations 3 and 5 will be solutions for each case.

• Observation 7 (C̄1∩C2): When UU satisfies the constrains (19b), but (19a), Direction Á

with the condition on XBS(dU,BS|Kno) or Direction Ã in Figure 2c should be selected
to find UU′ that satisfies (19a).

• Observation 8 (C1∩C̄2): When UU satisfies the constraints (19a), but (19b), Direction
Á with the condition on XIU(dU,IU |Ko) or Direction Ã in Figure 2d should be selected
to find UU′ that satisfies (19b).

Lastly, C̄1∩C̄2 indicates that UU cannot satisfy both constraints on relay transmission
links. Unfortunately, there is no solution based on Observations 3 and 5. For example, if
UAV U moves along Direction Ã in Figure 2c to make (19a) satisfied (which is opposite
to Direction Á in Figure 2d suggested in Observation 5 for the satisfaction of (19b)), it
causes dU,IU < dU′ ,IU and θU,IU > θU′ ,IU , thereby resulting in F(θU′ ,IU) < F(θU,IU) <
XIU(dU,IU |Ko) < XIU(dU′ ,IU |Ko) (i.e., (19b) is still not satisfied). Similarly, other search
directions on Observations 3 and 5 also cannot simultaneously improve both relay trans-
mission links, so we declare that no feasible UAV location exists for the case of C̄1∩C̄2. To
deal with this issue, more transmit time slots should be allocated to the relay transmission,
which will be discussed in Section 5.

• Observation 9 (C̄1∩C̄2): When UU cannot satisfy both constraints (19a) and (19b), no
feasible UAV location UU′ exists without allocating more transmit time slots to relay
transmission.

4.3. UAV Deployment (UD) Algorithm

In this section, we propose a novel UAV deployment (UD) algorithm for a given
time allocation based on search directions. The constraints (19a) and (19b) are described
graphically in Figure 3a as parabolic curves Ca and Cb, which are drawn with an equality
in (19a) and (19b) respectively. The UAV locations inside Ca and Cb satisfy the constraints
(19a) and (19b) respectively, therefore, areas for C1 ∩ C2, C1 ∩ C̄2, C̄1 ∩ C2, and C̄1 ∩ C̄2 (i.e.,
AC1∩C2 , AC1∩C̄2

, AC̄1∩C2
, and AC̄1∩C̄2

) can be defined as in Figure 3a. In particular, AC1∩C2

(see dashed area in Figure 3a) is of special interest to find the optimal UAV location Uopt

because it indicates the feasible UAV locations and always includes Uopt. The Uopt will be
determined to be on either Ca or Cb within AC1∩C2 (refer to Section 4.6 in [24]), especially
near the upper point of intersection of Ca and Cb to minimize the interference between UAV
and CU. Note that AC1∩C2 always exists due to the assumption at the beginning of Section 4
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that the given transmit time allocation (Kno, Ko) guarantees the existence of feasible UAV
locations.

(a) (b)

(c) (d)

Figure 3. The UAV deployment (UD) algorithm. (a) Three areas for UU with respect to constraints (19a) and (19b). Uopt is
within AC1∩C2 (specifically, either AC=

1 ∩C2 or AC1∩C=
2

). (b) [Step 1] on UD algorithm to determine UU′ = U f from UU = Uini.
(c) [Step 2] on UD algorithm to update U f until UU′ is determined outside AC1∩C2 . (d) [Step 3] on UD algorithm to determine
Uopt and terminate the algorithm.

We introduce two more cases C=
1 and C=

2 , which represent that current UAV location
satisfies the constraints (19a) and (19b) with an equality, respectively. Hence, it is clear that
curve Ca consists of AC=

1 ∩C2 and AC=
1 ∩C̄2

, whereas Cb is composed of AC1∩C=
2

and AC̄1∩C=
2

.
In addition, AC1∩C2 includes AC=

1 ∩C2 and AC1∩C=
2

(see Figure 3a).
The UD algorithm consists of three steps: [Step 1] for finding a feasible UAV location

U f from an initial UAV location Uini, [Step 2] for updating U f towards Uopt, and [Step
3] for determining Uopt and terminating the algorithm. Figure 3b,d represent three steps
respectively, and search directions along a line or a circle have the same properties as those
in Figure 2.

4.3.1. [Step 1] Finding U f from Uini

To utilize Observations for search directions, it is essential to place an initial UAV at
an arbitrary location. We suggest that the initial UAV location Uini = UU be at the point of
intersection of Cb and line in Figure 2d with θU,IU ≈ 90° (e.g., ‘u’ in Figure 3b). This point
belongs to AC̄1∩C=

2
, hence Direction Ã on Observation 7 can be applied to find U f = UU′

by decreasing dU,BS along the line between BS and Uini. Since this line always passes
through AC1∩C2 , the feasible UAV location U f can be found within AC1∩C2 , specifically at
the intersection of AC=

1 ∩C2 and the line (e.g., ‘l’ in Figure 3b) to minimize interference from
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UAV to CU. Therefore, U f = UU′ = {dU′ ,BS, θU,BS} can be obtained by directly calculating
dU′ ,BS from (19a) as

dU′ ,BS = X−1
BS (F(θU,BS) |Kno), (20)

where X−1
BS (· |Kno) is the inverse function of XBS(·|Kno) and θU,BS = θU′ ,BS is the elevation

angle between BS and Uini.
Alternatively, Uini at the intersection of Ca and line in Figure 2c with θU,BS ≈ 90° (e.g.,

‘:’ in Figure 3b) can be considered, and it is within AC=
1 ∩C̄2

⊂ AC1∩C̄2
. Based on Direction

Ã on Observation 8, U f = UU′ = {dU′ ,IU , θU,IU} can be determined to be on Cb, where

dU′ ,IU = X−1
IU (F(θU,IU) |Ko). (21)

It is obtained by taking the inverse function of XIU(·|Ko), X−1
IU (· |Ko), to (19b) with

θU,IU = θU′ ,IU .

4.3.2. [Step 2] Updating U f

[Step 1] finds the feasible UAV location U f (= UU in this step) within AC=
1 ∩C2 on Ca,

or AC1∩C=
2

on Cb. [Step 2] updates UU iteratively towards Uopt and near upper point of
intersection of Ca and Cb as shown in Figure 3c. AC=

1 ∩C2 and AC1∩C=
2

belong to AC1∩C2 ,
hence, Observation 6 can be applied. When UU is within AC=

1 ∩C2 on Ca (e.g., ‘l’ in

Figure 3c), UU′ = {dU′ ,IU , θU,IU} will be on Cb by increasing dU,IU along Direction À in
Figure 2d, according to (21). On the other hand, when UU is within AC1∩C=

2
on Cb (e.g.,

‘F’ in Figure 3c), UU′ = {dU′ ,BS, θU,BS} will be obtained on Ca by increasing dU,BS along
Direction À in Figure 2c based on (20). The newly obtained UU′ becomes UU for the next
procedure to draw a line for search directions. These procedures iterate until UU′ locates
on either Ca or Cb outside AC1∩C2 , but near the upper intersection point of Ca and Cb (e.g.,
‘:’ in Figure 3c).

Note that, search directions along the line (i.e., Direction À in Figure 2c,d) are selected
on Observation 6 rather than those along the circle (i.e., Direction Á in Figure 2c,d). Since
(19a) is not a function of θU,IU , Direction Á in Figure 2d cannot find UU′ within AC=

1 ∩C2

(e.g., ‘l’ in Figure 3c) from UU within AC1∩C=
2

directly, but numerically by searching θr,iu
as

θU′ ,IU = θU,IU + min ∆θ (22)

s.t. UU′satisfies (19a) with an equality,

where ∆θ is an increment of θU,IU and dU′ ,IU = dU,IU . Similarly, Direction Á in Figure 2c re-
quires numerical updating θU,BS to find UU′ within AC1∩C=

2
(e.g., ‘F’ in Figure 3c) from UU

within AC=
1 ∩C2 . These numerical updates increase computation time on Step 2, therefore, it

is preferable to select Direction À in Figure 2c and Direction À in Figure 2d on Observation
6, thereby determining UU′ from (20) or (21) directly.

4.3.3. [Step 3] Determining Uopt

[Step 2] places UU′ at ‘:’ in Figure 3c, which is outside AC1∩C2 . [Step 3] puts it back at
a point either on Ca or Cb within AC1∩C2 , and then declares the optimal UAV location Uopt.

Observations 7 and 8 can be utilized for this step because UU′ from [Step 2] (=UU in
this step) is on either Ca or Cb outside AC1∩C2 , specifically AC=

1 ∩C̄2
or AC̄1∩C=

2
. When UU is

within AC=
1 ∩C̄2

(e.g., ‘:’ in Figure 3d), Direction Ã on Observation 8 can be applied using

(21) to put UU′ on Cb, while Direction Ã on Observation 7 can be utilized to place UU′ on
Ca using (20) when UU is within AC̄1∩C=

2
(e.g., ‘u’ in Figure 3d). If newly obtained UU′

is within AC1∩C2 , more accurately AC=
1 ∩C2 or AC1∩C=

2
, the UD algorithm declares that it is
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Uopt, and terminates. If not, it repeats [Step 3] until UU′ is within AC=
1 ∩C2 or AC1∩C=

2
. The

details of UD algorithm are summarized in the Algorithm 1.

Algorithm 1 UD algorithm.

Input: (Kno, Ko).
Output: Optimal UAV location Uopt.
Step 1. Find U f from Uini:

1: initial UAV location is determined as Uini = {dU,IU , θU,IU}
= {X−1

IU (F(θU,IU) |Ko), θU,IU} with θU,IU ≈ 90°.
2: update Uini following Direction Ã in Figure 2c based on (20).

Then, U f within AC=
1 ∩C2 is obtained, and go to Step 2.

Step 2. Update U f towards Uopt:
3: if U f is within AC=

1 ∩C2 then
4: find UU′ following Direction À in Figure 2d based on (21).
5: else if U f is within AC1∩C=

2
then

6: find UU′ following Direction À in Figure 2c based on (20).
7: end if
8: if UU′ is within AC=

1 ∩C̄2
then

9: UU ← UU′ , and go to Step 3.
10: else
11: U f ← UU′ , and go to line 3.
12: end if
Step 3. Determine Uopt:
13: if UU is within AC=

1 ∩C̄2
then

14: find UU′ following Direction Ã in Figure 2d based on (21).
15: else if UU is within AC̄1∩C=

2
then

16: find UU′ following Direction Ã in Figure 2c based on (20).
17: end if
18: if UU′ is within AC=

1 ∩C2 or AC1∩C=
2

then
19: Uopt ← UU′ , and terminates the algorithm.
20: else
21: go to line 13.
22: end if

5. Optimal Number of Transmit Time Slots

To maximize the multi-objective function of JUDTAP in (12), the overall number of
time slots n that guarantees a reliable relay transmission to IU should be minimized before
UD algorithm is performed. Hence, in this section, we propose the time slot determination
(TSD) algorithm to determine an optimal pair of time slots (Kopt

no , Kopt
o ), equivalently the

minimum (optimal) number of overall time slots of nopt = Kopt
no + Kopt

o .

5.1. Existence of Feasible UAV Locations

In Section 4, UD algorithm is proposed to find Uopt with the assumption that the given
time allocation (Kno, Ko) guarantees the existence of feasible UAV locations, equivalently
AC1∩C2 , that satisfies both constraint (19a) and (19b). However, when Kno and Ko are
not enough for reliable relay transmissions, AC1∩C2 in Figure 3a does not exist for Uopt.
Therefore, it is critical to select a proper pair of (Kno, Ko), but we consider the minimum
Kno and Ko as an optimum in the resource-efficiency aspect. In addition, scanning all UAV
operation range (i.e., inside dashed rectangular in Figure 2) to check the existence of AC1∩C2

for each possible (Kno, Ko) is impractical. Therefore, a time-efficient determination for the
existence of AC1∩C2 should be considered. This can be realized by utilizing [Step 1] of
UD algorithm. If U f within AC=

1 ∩C2 can be found from Uini, AC1∩C2 exists for (Kno, Ko)
to guarantee a reliable relay transmission. On the other hand, if [Step 1] cannot find U f

within AC=
1 ∩C2 , (Kno, Ko) is not enough to satisfy both constraints on relay transmission
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(12a), thereby resulting in absence of AC1∩C2 . Hence, more time slots should be allocated
for a reliable relay transmission.

5.2. Time Slot Determination (TSD) Algorithm

In this section, we propose a novel time slot determination (TSD) algorithm to de-
rive the minimum number of overall time slots nopt along with (Kopt

no , Kopt
o ) for a reliable

relay transmission. First, it defines lmin and lmax with the assumption of Kno = Ko, and
utilizes them to reduce the search range for Kopt

no and Kopt
o . lmin is the minimum number

of time slots where (Kno, Ko) = (lmin,lmin) could provide AC1∩C2 , but not necessarily guar-
antee it, whereas lmax is the number of time slots that does guarantee AC1∩C2 for (Kno,
Ko) = (lmax,lmax). lmin is determined by the upper bounds of dU,BS and dU,IU , denoted as
dmax

U,BS(Kno) and dmax
U,IU(Ko), while lmax is obtained based on lmin and utilized to find (Kopt

no ,

Kopt
o ) and nopt.

5.2.1. Determination of lmin

The lmin aims at restricting search range, thereby reducing a computation time for
(Kopt

no , Kopt
o ). It does not require guaranteeing AC1∩C2 necessarily, but provides a lower

bound for lmax. It can be derived from maximum distances of dU,BS and dU,IU , dmax
U,BS(Kno)

and dmax
U,IU(Ko), for each Kno and Ko. From (15) and (16), dU,BS ≤ X−1

BS (F(θU,BS), Kno)

and dU,IU ≤ X−1
IU (F(θU,IU), Ko) can be obtained, and the right terms of both inequalities

are increasing functions of F(θU,BS) and F(θU,IU) respectively. Hence, dmax
U,BS(Kno) and

dmax
U,IU(Ko) can be defined as

dmax
U,BS(Kno),X−1

BS (F(θU,BS), Kno)|F(θU,BS)=1 = X−1
BS ( 1, Kno), (23)

dmax
U,IU(Ko),X−1

IU (F(θU,IU), Ko)|F(θU,IU)=1 = X−1
IU ( 1, Ko), (24)

where F(θU,i) = 1, i ∈ {BS, IU} because max F(θU,I) = 1. Note that dmax
U,BS(Kno) and

dmax
U,IU(Ko) are increasing functions of Kno and Ko, respectively.

Using (23) and (24), lmin is defined as

lmin = arg min
z∈Z>0

dmax
U,BS(z) + dmax

U,IU(z) ≥ dBS,IU , (25)

where z is a positive integer indicating z = Kno = Ko, and dBS,IU is a distance between
BS and IU. The lmin given by (25) makes two circles drawn at ground node i with radius
dmax

U,i (lmin), i ∈ {BS, IU} (i.e., blue and dashed green circles in Figure 2a) overlap each
other. As aforementioned, the feasible UAV locations could exist within an overlapped
region by two circles, but not guaranteed because the derivation of lmin starts with the
assumption of F(θU,i) = 1, i ∈ {BS, IU} in (23) and (24).

5.2.2. Determination of lmax

If a feasible UAV location exists for (Kno, Ko) = (lmin, lmin), lmax can be determined
as lmax , lmin by the definition. Otherwise, lmax should be greater than lmin such that a
feasible UAV location exists for (Kno, Ko) = (lmax, lmax). In addition, Kno and Ko, both less
than lmin, do not need to be considered because it can not provide AC1∩C2 . Hence, lmax can
be obtained as

lmax = arg min
lmin+z

(lmin + z, lmin + z), (26)

s.t z ∈ Z≥0 and

AC1∩C2 exists for (Kno, Ko) = (lmin+z, lmin+z),
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where z is a non-negative integer value. If a feasible UAV location exists for (Kno, Ko) =
(lmin, lmin), z = 0, and otherwise, z > 0. Note that it is obvious that nopt ≤ 2lmax because a
feasible UAV location always exists for (Kno, Ko) = (lmax, lmax).

5.2.3. Determination of (Kopt
no , Kopt

o )

Based on lmax, the initial number of overall time slots is defined as nini = 2lmax. The
TSD algorithm targets to the minimum number of overall time slots, so Kno and Ko can be
different even though nini is derived from the assumption of Kno = Ko. In addition, for each
number of overall time slot n, it is preferable to maximize Kno to achieve maximum RCU ,
because the SINR at CU in NOTP (i.e., (2)) is larger than that in OTP (i.e., (4)). Therefore,
nopt will be determined by any pair of (Kno, Ko), which leads to the minimum Kno + Ko.
However, when nopt is given, (Kopt

no , Kopt
o ) is preferred to be (Kno, Ko) with Kno ≥ Ko if exists.

Figure 4 represents a way to update Kno and Ko towards Kopt
no and Kopt

o . The row and
column of the table indicate values of Ko and Kno. Ko is upper bounded by lmax because
(Kno, Ko) = (lmax − z, lmax + z), z ∈ Z>0 for nini = 2lmax cannot achieve Kno ≥ Ko. Each
element of table denotes the sum of row and column values (i.e., the number of overall
time slots), and pairs of Kno and Ko resulting in Kno + Ko > 2lmax are out of interest
(i.e., upper triangle in Figure 4). To find (Kopt

no , Kopt
o ), an initial time allocation is set to

(Kno, Ko) = (lmax, lmax), nopt = nini, and two rules for updating (Kno, Ko) are defined as
follows:

(a) (b)

Figure 4. Part 2 on the time slot determination (TSD) algorithm. (a) Updating initial (Kno, Ko) = (lmax, lmax). (b) Updating
rules for (Kno, Ko).

[Rule 1]

If a feasible UAV location exists for (Kno, Ko) = (m, l), update nopt as m + l and check
the existence of feasible UAV location for (Kno, Ko) = (m, l − 1) and (Kno, Ko) = (m− 1, l),
obtained by downward and leftward movements in Figure 4 to decrease Ko and Kno,
respectively.

[Rule 1-1] If a feasible UAV location exists only for (Kno, Ko) = (m− 1, l), update nopt

as m + l − 1 and repeat [Rule 1] at (Kno, Ko) = (m− 1, l).
[Rule 1-2] If a feasible UAV location exists for (Kno, Ko) = (m, l − 1), update nopt as
m + l − 1 and repeat [Rule 1] at (Kno, Ko) = (m, l − 1).

[Rule 2]

If no feasible UAV location exists for (Kno, Ko) = (m, l) and m + l + 1 ≤ nopt, move
right in Figure 4 to increase Kno and check the existence of feasible UAV location for
(Kno, Ko) = (m + 1, l).

[Rule 1] aims at checking the availability of smaller nopt, while [Rule 2] is to inves-
tigate the existence of (Kno, Ko) with Kno > Ko for the candidate nopt. When feasible
UAV locations exist for both (Kno, Ko) = (m− 1, l) and (Kno, Ko) = (m, l − 1) in [Rule 1],
(Kno, Ko) = (m, l − 1) in [Rule 1-2] is selected to maximize Kno for nopt = m + l − 1. TSD
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algorithm terminates when (Kno, Ko) = (m + 1, l) in [Rule 2] results in m + l + 1 > nopt.
The last updated nopt is minimum (optimal) number of overall time slots, and (Kno, Ko),
which leads to nopt, becomes (Kopt

no , Kopt
o ).

5.2.4. TSD Algorithm

Details of the TSD algorithm are summarized in Algorithm 2. Part 1 determines lmin

and lmax from (25) and (26), respectively. Part 2 derives nopt and (Kopt
no , Kopt

o ) from (Kno, Ko)
= (lmax, lmax) by the updating rules for (Kno, Ko). Note that only a few iterations are required
on Part 2 of the TSD algorithm. From (26), it is clear that (Kno, Ko) = (lmax − 1, lmax − 1)
with n = 2lmax − 2 does not provide a feasible UAV location. This results from the
assumption of Kno = Ko, hence, n = 2lmax − 2 could give a feasible UAV location when
Kno is different from Ko. However, there is little chance for such a case to obtain a valid
(Kno, Ko) with n = 2lmax − 2 because Kno or Ko may be too small to set a reliable relay link
between BS and UAV or between UAV and IU. In other words, a leftward or a downward
movement in Figure 4 may be enough once or twice to reach nopt, and so may a rightward
movement to maximize Kno for the same reason. Therefore, the TSD algorithm reduces
a search time dramatically compared to exhaustive algorithm or others, hence delivers
Kopt = (Kopt

no , Kopt
o ) quickly.

Algorithm 2 TSD algorithm.

Part 1. Calculate of lmin and lmax.
1: Determine lmin using (25).
2: Determine lmax using (26).

Part 2: Find (Kopt
no , Kopt

o ).
Input: (lmax, lmax).
Output: (Kopt

no , Kopt
o ), nopt.

Initialization: (Kno, Ko)← (lmax, lmax), nopt ← 2lmax.
3: if feasible UAV location exists for (Kno, Ko) then
4: if feasible UAV location exists for (Kno, Ko − 1) then
5: (Kopt

no , Kopt
o )← (Kno, Ko − 1), nopt ← Kno + Ko − 1.

6: (Kno, Ko)← (Kno, Ko − 1), and go to line 3.
7: else if feasible UAV location exists for (Kno − 1, Ko) then
8: (Kopt

no , Kopt
o )← (Kno − 1, Ko), nopt ← Kno + Ko − 1.

9: (Kno, Ko)← (Kno − 1, Ko), and go to line 3.
10: end if
11: else
12: if Kno + Ko + 1 ≤ nopt then
13: (Kno, Ko)← (Kno + 1, Ko), and go to line 3.
14: else
15: Terminate the algorithm.
16: end if
17: end if

6. UAV Deployment and Time Allocation Algorithm

The TSD and UD algorithms are presented to determine Kopt={Kopt
no , Kopt

o } and to
decide Uopt for Kopt, respectively. The JUDTAP can be solved by UAV deployment and
transmit time allocation (UDTA) algorithm, which consists of TSD and UD algorithms
and runs them in a sequential manner. Details of UDTA algorithm are summarized in
Algorithm 3. As mentioned in Sections 4 and 5, TSD and UD algorithms reduce search range
for Kopt and search area for Uopt respectively, thereby requiring much less computation
time over exhaustive search algorithm. In the following subsection, a computational
complexity is analyzed with respect to the total number of computations, considered for
searching and determining Kopt and Uopt.
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Algorithm 3 UDTA algorithm.

Input: Dreq, xBS, xCU , and xIU .
Output: Kopt, Uopt.
Part 1: Optimal number of time slots.

1: Find łmin and łmax from Part 1 on TSD algorithm.
2: Find Kopt =(Kopt

no , Kopt
o ) from Part 2 on TSD algorithm.

Part 2: Optimal UAV location.
3: Based on (Kopt

no , Kopt
o ), find Uopt using UD algorithm.

Complexity Analysis

To determine the number of UAV locations for an exhaustive search, we consider that
a grid is superimposed over the operation range (i.e., dashed rectangular in Figure 2a)
with lines separated by ∆d [m]. As a result, the number of UAV locations to be consid-
ered increases as ∆d decreases. Total computations for an exhaustive search is derived

as O(∆d) ,
⌈

S
∆d

2

⌉ nopt(nopt−1)
2 .

⌈
S

∆d
2

⌉
is the number of UAV locations within the opera-

tion range of S [m2], where d·e is rounding up to the nearest integer. nopt(nopt−1)
2 is the

number of combinations for (Kno, Ko) to find (Kopt
no , Kopt

o ) from initial (Kno, Ko) = (1,1).
Hence, O(∆d) indicates that

⌈
S

∆d
2

⌉
locations for their feasibility need to be considered

for each time allocation (Kno, Ko). On the other hand, the UDTA algorithm requires at

most lmin + 2|lmax−lmin | + 22
∣∣∣lmax−Kopt

o

∣∣∣+
∣∣∣lmax−Kopt

no

∣∣∣
+ 10 number of computations to find Kopt

and Uopt. On TSD algorithm, lmin computations are required in (25) to determine lmin
from (Kno, Ko) = (1, 1). To determine lmax, 2|lmax−lmin | computations are required in (26)
from lmin, where only two UAV locations (i.e., initial and first feasible locations in [Step
1] on UD algorithm) are considered for each time allocation (Kno, Ko). Similarly, there are
at most 2

∣∣∣lmax − Kopt
o

∣∣∣+
∣∣∣lmax − Kopt

no

∣∣∣ combinations for (Kno, Ko) to find (Kopt
no , Kopt

o ) from

(łmax, łmax), hence resulting in 22
∣∣∣lmax−Kopt

o

∣∣∣+
∣∣∣lmax−Kopt

no

∣∣∣ computations. In the UD algorithm,
the total number of computations in (20) or (21) is less than 10, which is derived from
simulations and reasonable due to dramatically reduced search area within AC1∩C2 by the
proposed algorithm. As a result, the UDTA algorithm requires much fewer UAV locations
and (Kno, Ko) combinations to be considered for Kopt and Uopt over exhaustive search
algorithm, thereby reducing computational time and effort significantly.

7. Numerical Results

In this section, we compare the optimal UAV location and transmit time allocations by
proposed algorithms with those from an exhaustive search, and demonstrate that the UDTA
algorithm achieves optimality while significantly reducing computational complexity. For
simulations, we assume that Pmax

BS = 30 [dBm], Pmax
U = 25 [dBm], βA = 3, βG = 2, and

ς = 20 [dB] [25–28]. An urban environment is assumed with B = 0.136 and C = 11.95 [8].
λ , dBS,IU

dBS,CU
is a relative location of IU with respect to CU. In order to evaluate the optimality

of proposed algorithm, the throughput gap (%) is defined by RCU difference from exhaus-
tive search of ∆d = 1 because ∆d = 1 is sufficiently small to find the global optimal UAV
location for exhaustive search.

Figure 5 represents feasible combinations of (Kno, Ko) and formation of AC1∩C2 , and
compares Uopt by UD algorithm with that by exhaustive search of ∆d = 1, where xBS = 0,
xCU = 300 [m], xIU = 1000 [m] and Dreq = 3 [bit/Hz]. When (Kno, Ko) = (4, 4), AC1∩C2

starts to appear, but TSD algorithm concludes (Kopt
no , Kopt

o ) = (4, 3) resulting in nopt =

7, even though (Kno, Ko) = (3, 4) also provides AC1∩C2 . This is because (Kopt
no , Kopt

o ) =

(4, 3) maximizes Kopt
no for given nopt. TSD algorithm reduces the feasible UAV locations

AC1∩C2 significantly, and UD algorithm successfully determines Uopt close to that from the
exhaustive search of ∆d = 1.
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Figure 5. Feasible combinations of (Kno, Ko) and comparison of Uopt from different algorithms.

Figure 6 represents (Kopt
no , Kopt

o ), nopt, UAV location, and throughput gap with respect
to Dreq for same xv, v ∈ {BS, CU, IU} in Figure 5. The UDTA algorithm finds (Kopt

no , Kopt
o )

and UAV location close to optimum with negligible throughput gap. nopt increases as
Dreq increases to set a reliable relay connection. For a given nopt, UAV should be placed
lower and close to CU as Dreq increases. Even though this UAV movement increases
the interference to CU, it is necessary for reliable relay transmission in BS-to-UAV link.
For example, Figure 6a represents that nopt = 2 is required for 0.5 ≤ Dreq ≤ 0.9. When
Dreq = 0.5, UAV can be placed very high and remote from CU. As Dreq increases, however,
UAV moves towards BS to set a reliable BS-to-UAV link. Lastly, the throughput gap
between the proposed algorithm and exhaustive search is less than 0.1 (%) for entire range
of Dreq, hence, it demonstrates that UDTA algorithm successfully determines Kopt and
Uopt with negligible throughput gap from the exhaustive search of ∆d = 1.
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Figure 6. Performance comparison of different algorithms and their throughput gap with respect to
Dreq. (a) The number of transmit time slots. (b) UAV location and throughput gap.

URN with multiple transmit time slots (nopt >2) on each relay transmission link
can reduce redundant usages of transmit time slots. For example, URN consisting of
two time slots for a single relay transmission (i.e., single transmit time slot allocation to
each relay transmission link) requires at least three repetitions of relay transmissions to
provide Dreq = 1.9 at IU since Dreq = 0.9 is a maximum delivered data to IU by URN
with nopt = 2, as shown in Figure 6a. Therefore, six time slots are required for URN that
utilizes two transmit time slots for a single relay transmission, while URN that allocates
multiple transmit time slots on each relay transmission link only requires four time slots
for Dreq = 1.9. Hence, multiple transmit time slots should be adopted in URN to efficiently
utilize the transmit time slots.

Figure 7 represents (Kopt
no , Kopt

o ), nopt, UAV location, and throughput gap with respect
to λ for xCU = 300 [m]. As λ increases, IU moves away from BS, hence, larger nopt is
required in URN for a reliable relay transmission. In addition, UAV height should be
increased for large θU,v to set a strong LOS connection between UAV and ground nodes
v. In order to guarantee the minimum number of transmit time slots, Kopt

no can be smaller
than Kopt

o as explained in Section 5.2.3. For example, when 2.43 ≤ λ ≤ 2.83, nopt is equal
to 5 with (Kopt

no , Kopt
o ) = (3, 2) or (2, 3). Especially, (Kopt

no , Kopt
o ) = (2, 3) is selected when

2.76 ≤ λ ≤ 2.83 to achieve the minimum number of overall time slots, however, it requires
UAV to move towards BS for reliable BS-to-UAV link due to smaller Kopt

no . Similar to
Figure 6, UDTA algorithm achieves negligible throughput gap, less than 0.2 (%), over the
exhaustive search of ∆d = 1.

Figure 8 shows the throughput gap of exhaustive searches with respect to the number
of computations. It is obvious that the throughput gap increases as ∆d increases, due
to the reduction on the number of UAV locations considered for searching Kopt and
Uopt, compared with ∆d = 1. As aforementioned, the UDTA algorithm significantly
reduces computational time to find Kopt and Uopt due to the time-efficient determination
of (Kopt

no , Kopt
o ) based on lmin and lmax, and small AC1∩C2 derived from (Kopt

no , Kopt
o ). Therefore,

it provides optimal solution for JUDTAP, and achieves much less computations of lmin +

2|lmax−lmin | + 22
∣∣∣lmax−Kopt

o

∣∣∣+
∣∣∣lmax−Kopt

no

∣∣∣
+ 10� O(1) with negligible throughput gap over the

exhaustive search of even ∆d ≤ 1.
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Figure 7. Performance comparison of different algorithms and their throughput gap with respect to
λ. (a) The number of transmit time slots. (b) UAV location and throughput gap.
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8. Conclusions

In this paper, we have investigated URN with multiple transmit time slots, and
proposed algorithms to maximize the throughput of UE in a cell while guaranteeing a
reliable transmission to UE in its extended service area. The formulated multi-objective
joint UAV deployment and transmit time allocation optimization problem (JUDTAP) is
solved by TSD and UD algorithms to determine the optimal number of overall transmit
time slots Kopt and optimal UAV location Uopt in a sequential manner. Simulation results
demonstrate that Kopt and Uopt are critical to URN for a reliable relay transmission. Kopt

and Uopt by the proposed algorithm match well those from exhaustive search, but with
significantly reduced computation complexity to determine them over the exhaustive
search. In addition, URN allocating multiple transmit time slots on relay transmission links
is better than that utilizing two transmit time slots for a single relay transmission in terms
of resource efficiency.

Author Contributions: Conceptualization, S.I.H. and J.B.; methodology, S.I.H. and J.B.; validation,
S.I.H. and J.B.; formal analysis, S.I.H. and J.B.; investigation, J.B.; writing—original draft preparation,
S.I.H.; writing—review and editing, S.I.H.; supervision, S.I.H.; project administration, S.I.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wong, V.W.; Schober, R.; Ng, D.W.K.; Wang, L.-C. Key Technologies for 5G Wireless Systems; Cambridge University Press: Cambridge,

UK, 2017.
2. Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE

Commun. Mag. 2016, 54, 36–42. [CrossRef]
3. Gupta, L.; Jain, R.; Vaszkun, G. Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 2016, 18,

1123–1152. [CrossRef]
4. Marchese, M.; Moheddine, A.; Patrone, F. IoT and UAV Integration in 5G Hybrid Terrestrial-Satellite Networks. Sensors 2019, 19,

3704. [CrossRef] [PubMed]
5. Castellanos, G.; Deruyck, M.; Martens, L.; Joseph, W. Performance Evaluation of Direct-Link Backhaul for UAV-Aided Emergency

Networks. Sensors 2019, 19, 3342. [CrossRef] [PubMed]
6. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient internet of things

communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574-7589. [CrossRef]
7. Fu, S.; Zhao, L.; Su, Z.; Jian, X. UAV Based Relay for Wireless Sensor Networks in 5G Systems. Sensors 2018, 18, 2413. [CrossRef]

[PubMed]
8. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned aerial vehicle with underlaid device-to-device communications:

Performance and tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963. [CrossRef]
9. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless

coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. [CrossRef]
10. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Optimal transport theory for power-efficient deployment of unmanned

aerial vehicles. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia,
23–27 May 2016.

11. Lyu, J.; Zeng, Y.; Zhang, R.; Lim, T. J. Placement optimization of UAV-mounted mobile base stations. IEEE Commun. Lett. 2017, 21,
604–607. [CrossRef]

12. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Drone small cells in the clouds: Design, deployment and performance analysis.
In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015.

13. Komerl, J.; Vilhar, A. Base stations placement optimization in wireless networks for emergency communications. In Proceedings
of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014.

14. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Optimal transport theory for cell association in UAV-enabled cellular networks.
IEEE Commun. Lett. 2017, 21, 2053–2056. [CrossRef]

142



Sensors 2021, 21, 6878

15. Sharma, V.; Bennis, M.; Kumar, R. UAV-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett. 2016, 20,
1207–1210. [CrossRef]

16. Chen, Y.; Feng, W.; Zheng, G. Optimum placement of UAV as relays. IEEE Commun. Lett. 2017, 22, 248–251. [CrossRef]
17. Baek, J.; Han, S. I.; Han, Y. Optimal resource allocation for non-orthogonal transmission in UAV relay systems. IEEE Wirel.

Commun. Lett. 2017, 7, 356–359. [CrossRef]
18. Han, S. I.; Baek, J.; Han, Y. Deployment of multi-layer UAV relay system. In Proceedings of the 2018 IEEE Wireless Communica-

tions and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018.
19. Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005.
20. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014, 3,

569–572. [CrossRef]
21. Saito, Y.; Benjebbour, A.; Kishiyama, Y.; Nakamura, T. System-level performance evaluation of downlink non-orthogonal multiple

access (NOMA). In Proceedings of the IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), London, UK, 8–11 September 2013.

22. Weber, S. P.; Yang, X.; Andrews, J.G.; de Veciana, G. Transmission capacity of wireless ad hoc networks with outage constraints.
IEEE Trans. Inf. Theory 2005, 51, 4091–4102. [CrossRef]

23. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
24. Arora, J. Introduction to Optimum Design; Elsevier: Amsterdam, The Netherlands, 2016.
25. Islam, M.M.; Funabiki, N.; Sudibyo, R.W.; Munene, K.I.; Kao, W.-C. A dynamic access-point transmission power minimization

method using PI feedback control in elastic WLAN system for IoT applications. Internet Things 2019, 8, 100089. [CrossRef]
26. Alzenad, M.; El-Keyi, A.; Yanikomeroglu, H. 3-D Placement of an Unmanned Aerial Vehicle Base Station for Maximum Coverage

of Users With Different QoS Requirements. IEEE Wirel. Commun. Lett. 2018, 7, 38–41. [CrossRef]
27. Sodhro, A. H.; Li, Y.; Shah, M. A. Energy-efficient adaptive transmission power control for wireless body area networks. IET

Commun. 2016, 10, 81–90. [CrossRef]
28. Feng, Q.; McGeehan, J.; Tameh, E.K.; Nix, A.R. Path Loss Models for Air-to-Ground Radio Channels in Urban Environments. In

Proceedings of the 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 7–10 May 2006.

143





sensors

Article

Analytical Blind Beamforming for a Multi-Antenna UAV
Base-Station Receiver in Millimeter-Wave Bands

Pingchuan Liu 1,2, Kuangang Fan 2,3,* and Yuhang Chen 2,3

Citation: Liu, P.; Fan, K.; Chen, Y.

Analytical Blind Beamforming for a

Multi-Antenna UAV Base-Station

Receiver in Millimeter-Wave Bands.

Sensors 2021, 21, 6561. https://

doi.org/10.3390/s21196561

Academic Editor: Margot Deruyck

Received: 7 September 2021

Accepted: 28 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Hongqi Street
No. 86, Ganzhou 34100, China; wsnpingchuan@163.com

2 Magnetic Suspension Technology Key Laboratory of Jiangxi Province, Jiangxi University of Science and
Technology, Hongqi Street No. 86, Ganzhou 34100, China; chenyuhang@jxust.edu.cn

3 School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Hongqi
Street No. 86, Ganzhou 34100, China

* Correspondence: fankuangang@jxust.edu.cn

Abstract: Over the last decade, unmanned aerial vehicles (UAVs) with antenna arrays have usually
been employed for the enhancement of wireless communication in millimeter-wave bands. They
are commonly used as aerial base stations and relay platforms in order to serve multiple users.
Many beamforming methods for improving communication quality based on channel estimation
have been proposed. However, these methods can be resource-intensive due to the complexity of
channel estimation in practice. Thus, in this paper, we formulate an MIMO blind beamforming
problem at the receivers for UAV-assisted communications in which channel estimation is omitted in
order to save communication resources. We introduce one analytical method, which is called the
analytical constant modulus algorithm (ACMA), in order to perform blind beamforming at the UAV
base station; this relies only on data received by the antenna. The feature of the constant modulus
(CM) is employed to restrict the target user signals. Algebraic operations, such as singular value
decomposition (SVD), are applied to separate the user signal space from other interferences. The
number of users in the region served by the UAV can be detected by exploring information in the
measured data. We seek solutions that are expressible as one Kronecker product structure in the
signal space; then, the beamformers that correspond to each user can be successfully estimated. The
simulation results show that, by using this analytically derived blind method, the system can achieve
good signal recovery accuracy, a reasonable system sum rate, and acceptable complexity.

Keywords: UAV base station; MIMO; millimeter-wave band; blind beamforming; signal recovery

1. Introduction

Over the last few decades, wider bandwidths and more robust data transformations
have always been the trends of the development of wireless communication. As one
new and promising technology, millimeter-wave (mmWave) techniques have provided
the possibility of applying upcoming 5G technologies, such as massive multiple-input–
multiple-output (MIMO) technologies, to wireless systems [1–4].

One of the highlighted application scenarios of mmWave communication is in un-
manned aerial vehicle (UAVs); such scenarios are presented with a base station, communica-
tion relay platform, or other communication enhancement equipment [1–12]. For instance,
Z. Xiao et al. declared the advantages and challenges of mmWave UAV base stations (UAV-
BSs) in cellular networks and explored different ways of counteracting signal blockage [2].
J. Du et al. studied UAV-BSs using multi-user massive MIMO hybrid beamforming and
took an energy-saving strategy into consideration due to practical constraints, such as the
size and weight of UAVs [3]. In addition to energy and power constraints, the mobility and
positions of ground users are also crucial factors for UAV-assisted communication systems.
In Reference [4], by exploiting the mobility and position information of a UAV system and
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Sensors 2021, 21, 6561

ground users, W. Miao et al. proposed a lightweight beamforming algorithm in order to
enhance the transmission performance of 5G UAV broadcasting system. In Reference [5],
by using a UAV as a relay platform, F. Jiang and A. L. Swindlehurst studied the collection
of messages from co-channel users on the ground and derived an algorithm for adjusting
the UAV heading to maximize the approximate ergodic sum rate of the uplink channel.
In some application scenarios, single-antenna UAVs are regarded as connection points or
moving antennas for the enhancement of data transmission. For example, J. Ouyang et al.
used a single-antenna UAV as a data transmission relay to connect access points and base
stations [6]. M. Mozaffari et al. designed a novel framework for deploying a single-antenna
UAV as an antenna array in order to minimize the wireless transmission time [8]. Some
other recent research using single-antenna UAV-BSs has considered other scenarios [13–15].

In the research mentioned above and in other related research, usually, linear or planar
antenna arrays are employed on the UAV-BSs. It is clear that adopting MIMO systems
and mmWave communication in UAV-BSs has some convincing advantages. One aspect is
that mmWave systems have rich spectral resources and flexible beamforming, which can
meet the great demand of the data transfer rate. On the other hand, at particular positions,
multi-antenna UAV-BSs can achieve high beamforming gain towards different line-of-sight
(LoS) users by using mmWave communication, thus resulting in a more satisfying system
throughput and communication efficiency [16–22]. However, due to some practical system
constraints, such as multipath effects, blockage, and co-channel interference from different
users, a UAV-BS system will sometimes have the issues of a low signal-to-noise ratio (SNR)
in data acquisition and a low communication efficiency when serving multiple users.

To overcome these shortcomings and better utilize the advantages of mmWave, vari-
ous beamforming techniques have been intensively investigated in UAV communication
systems [16–21,23–26]. For example, Q. Song et al. studied the joint design of beamform-
ing and power allocation to maximize the instantaneous data rate based on an efficient
sub-optimal solution based on the block-coordinate descent method [23]. Some location-
based beamforming algorithms were designed to improve the secrecy outage probability
performance, maximize the network throughput, and provide flexible coverage [24–26].
In Reference [16], L. Liu et al. proposed a cooperative interference cancellation strategy
motivated by the Xhaul structure to mitigate the uplink multi-beam UAV communication
interference. In general communication systems, LoS transmission can efficiently improve
the throughput of the UAV-BS. However, in urban areas, LoS links are prone to severe
deterioration due to the complex propagation environments. In Reference [17,18], recon-
figurable intelligent reflecting surfaces were used to reflect the received signals in order
to enhance the data transmission quality, and passive beamforming was performed to
better maximize the average achievable rate and received power. Combined with ma-
chine learning and a mean field game (MFG) control scheme, L. Li et al. proposed a joint
beamforming and beam-steering method in order to build a reliable and steady connection
between a UAV-BS and ground users in Reference [19]. Z. Xiao et al. utilized the artificial
bee colony (ABC) algorithm to find the near-optimal beamforming vector for ground users
when deploying a multi-antenna UAV-BS [20]. In Reference [21], W. Zhang et al. designed
a beam-training code book for moving ground users, which can be regarded as a prior
work of UAV-BS beamforming.

In this research and with the most recent beamforming techniques in UAV-BS commu-
nication systems, obtaining channel state information (CSI) is usually regarded as a crucial
part of prior work. The effectiveness of channel estimation/identification may greatly
affect the performance of most existing methods. In practical scenarios, especially in urban
areas, specific CSI is difficult to acquire due to the complex propagation environment
and multi-user interference. Another factor that greatly affects the channel estimation is
the mobility of transmitters and receivers. The transmitting distance can also affect the
performance of channel estimation. Accurate time-varying MIMO channel estimation can
be very difficult to realize [4,7,20,27]. Moreover, the positions and mobility of ground users
and UAV-BSs further increase the difficulty of channel estimation [28]. This puts extra
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pressure on the timeliness of a system, which causes bad beamforming performance. For
this reason, we would like to formulate a blind beamforming problem for a UAV-BS that
does not depend on channel estimation or CSI.

Recently, some works explored beamforming methods that needed less specific CSI.
For example, X. Li et al. derived a beamforming method for different users under the
assumption of only statistical CSI, i.e., the LoS component and Rician K-factor [29]. L.
Du et al. proposed a robust pre-coder using imperfect CSI [30]. A beamforming scheme
considering limited CSI was proposed with the aid of full-diversity rotation matrices [31].
However, these beamforming methods still partially rely on channel estimation, which
can be time-consuming in complicated propagation environments. To tackle the thorny
problem mentioned above that is caused by complicated channel estimation, in this paper,
we will employ a method called the analytical constant modulus algorithm (ACMA) in
order to perform blind beamforming in UAV-BS communication systems. Differently from
methods that require detailed CSI, this blind method needs only the antenna output signals
(the received signals) and some of their statistical information. In other words, it saves
the computational costs caused by complex channel estimation. Another advantage of the
blind beamforming method is that no training sequence is needed in the data transmission
process, which saves the bandwidth and UAV’s battery life. The task of blind beamforming
is to calculate proper weight vectors for each ground user without detailed signal and
channel information [32–34].

Compared with a traditional blind beamforming method called the constant modulus
algorithm (CMA), the ACMA scheme can overcome the CMA’s disadvantages of a lengthy
iteration process and irregular convergence to local minima [32]. The analytical scheme
can successfully derive a proper beamformer for the UAV-BS system without CSI. It is,
in essence, a space separation method, which needs no lengthy iterations and achieves
near-optimal accuracy. Using algebraic operations, such as singular value decomposition
and diagonalization, we can successfully separate the user signal space (signals originally
transmitted by ground users) from interference space. By properly investigating the prop-
erties of antenna outputs, this method can achieve near-optimal calculations of the weight
vectors. These well-calculated weight vectors will finally formulate blind beamformers in
order to assign the power of each antenna towards the corresponding ground users. At
the same time, co-channel interference among different users will be efficiently compen-
sated, and the desired signals can be successfully separated from other signals. We will
evaluate this method’s performance by applying it to a UAV-BS communication system in
later sections. Different propagation settings are taken into consideration. The simulation
results show that, through this analytical blind method, UAV-BS beamforming in an MIMO
situation can provide a reasonable system sum rate while, at the same time, guaranteeing
the signal reconstruction accuracy of each signal. Its complexity is comparable to that of
the CMA and other classic methods under proper settings.

The main contributions of this paper are listed below:

• In this paper, we solve the UAV-BS beamforming problem in a blind way, which means
that channel estimation is not necessary in our work. We only explore information
from antenna outputs at the UAV-BS. This will save computation resources for the
whole communication system.

• The number of UAV-serving users (ground users) can be detected in the scheme for
sufficient snapshots and a reasonable signal–noise ratio. Algebraic operations can
successfully separate the user signal space from other interference spaces, thus causing
the beamformers to concentrate on user signals instead of other interference signals.

• With sufficient snapshots, this analytical blind method is robust for different channel
settings. It can suppress distortions caused by both interference and additive noise. A
near-optimal beamformer can be rapidly derived even when the number of snapshots
is not very large. The simulation results show that the derived beamformer can achieve
good MSE performance, a reasonable system sum rate, and acceptable complexity.
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One potential UAV-BS application scenario can be a situation in which some specific
users/target signals need higher-quality communications

The rest of this paper is organized as follows: Section 2 introduces the basic models
for the UAV-BS communication system. In Section 3, we formulate a blind beamforming
problem. Section 4 demonstrates the way in which we solve the formulated problem. In
Section 5, we evaluate the performance of our introduced method under different settings.

Notations: We denote scalars, vectors, and matrices by using lowercase a, bold low-
ercase a, and bold uppercase letters A, respectively. We further denote the transpose,
element-wise complex conjugation, and conjugate transpose of a matrix A by A

T
, A∗,

and AH, respectively. 0 denotes an all-zero-element vector or matrix of appropriate size.
Moreover, ⊗ denotes a Kronecker product, whereas pinv(A), SVD(A), and rowspan(A)
represent a pseudo-inverse, singular value decomposition, and row span of matrix A.
Finally, (A)i denotes the i-th row, Aj the j-th column, and Aij the element in row i and
column j of matrix A, respectively.

2. Basic Model
2.1. System Model

In this paper, we consider an MIMO uplink scenario in which a multi-antenna UAV-BS
serves ground users in mmWave bands, as shown in Figure 1. In this scenario, the UAV-BS
is usually equipped with a half-wavelength-spaced uniform linear array (ULA) or uniform
rectangular array (URA), while each ground user is equipped with a single antenna. The
ground users are distributed among distinct locations, transmitting signals of the same
frequency. Due to the existence of scattering and a reflective environment, a multi-path
effect is also considered in this scenario. We first introduce the well-known model for
describing this signal transmission process:

X = HS + N, (1)

where X ∈ Cm×n is the output of the m-element receiver on the UAV-BS over n symbol
snapshots, H ∈ Cm×d is the channel matrix between users and the UAV-BS, and S ∈ Cd×n is
the source signal matrix transmitted by ground users. Each sTi = (S)i ∈ Cn, i ∈ {1, . . . , d}
corresponds to d ground users. N ∈ Cm×n denotes the channel noise matrix.

To fight against the impacts of the channels on the signals, beamforming is usually
applied at the transmitters or receivers (sometimes both).

 

 

User 1 

User 2 

User d 
… 

x 

y 

z  

Equipped with antenna array 

 

 

… 

… 
… or 

Figure 1. Application scenario of a UAV-BS serving multiple users.

In this paper, we focus on beamforming (we can also call it beam-combining) at the
UAV-BS receivers, which can be modeled as

Ŝ = WX. (2)
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The beamforming matrix W ∈ Cd×m is applied to compensate for the channels’
impacts, especially for interference cancellation, power allocation, further signal recovery
processes, and so on. The rows of W , which are denoted as wT

i = (W)i, i ∈ {1, . . . , d},
correspond to the beamforming vectors for each ground user.

2.2. Channel Model

We then establish a 3D rectangular coordinate system to better illustrate the posi-
tions of the UAV-BS and ground users. The UAV-BS is located at (x, y, huav), where huav
represents the UAV’s flying altitude. The position of ground user i is (xi, yi, 0).

The channel matrix H consists of channel response vectors between users and the
UAV-BS. In the classic 2D situation, due to the existence of multi-path components (MPCs),
each channel vector hi can be expressed as

hi =
Li

∑
l=1

κi,la(m, θi,l), (3)

where κi,l represents the channel gain coefficient corresponding to the l-th MPC of user i,
a(m, θi,l) is the steering vector, m is the number of antenna elements, Li is the number of
existing MPCs, and θi,l is the elevation angle of arrival (AoA) of the l−th MPC. Due to the
spatial sparsity of the angles of arrival in the mmWave channel, different MPCs will have
distinct AoAs. The steering vector can then be derived as

a(m, θi,l) =
[
1, ejπ sin θi,l , ejπ2 sin θi,l . . . , ejπ(m−1) sin θi,l

]T
. (4)

Equation (4) illustrates the 2D situation, though when applying 3D beamforming by
using a uniform rectangular array (URA), the steering vector will be slightly different. For
a half-spaced URA, the steering vector can be derived as

a(mx, my, θi,l , φi,l) = ax(mx, θi,l , φi,l)⊗ ay(my, θi,l , φi,l), (5)

where mx and my are the URA dimensions along the x−axis and y−axis directions, and
the total array elements are m = mx ∗my. φi,l is the azimuth angle of the l−th MPC. The
geometry denoted with ax and ay can further be described as

ax(mx, θi,l , φi,l) =
[
1, ejπ sin θi,l cos φi,l , . . . , ejπ(mx−1) sin θi,l cos φi,l

]T
, (6a)

ay(my, θi,l , φi,l) =
[
1, ejπ sin θi,l sin φi,l , . . . , ejπ(my−1) sin θi,l sin φi,l

]T
. (6b)

Generally, the MPCs between the UAV-BS and ground users are composed of the LoS
part and non-LoS (NLoS) part under the condition of no blockage. For the LoS component,
the elevation angle θi,1 and azimuth angle φi,1 of user i can be expressed as





θi,1 = arctan

√
(x− xi)2 + (y− yi)2

huav

φi,1 = arctan
y− yi
x− xi

, (7)

which are based on the UAV-BS position and user position. For the NLoS components,
these angles will be some random values for which the elevation angles θi,l generally vary
from –90° to 90°, while the azimuth angles φi,l vary from –180° to 180°. In the scenario of
blockage, all MPCs will be NLoS components, and the channel H is usually described as a
classic Rayleigh fading channel.

The next crucial part in determining the channel response vector hi is its channel
gain coefficient κi,l . For the LoS component, κi,1 mainly depends on the path loss, which
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is affected by the transmitting distance Di and carrier frequency f . The channel gain
coefficient for LoS can be described as

κi,1 =
1

( 4π f
c ) · Dα

i

=
1

(4πλ) · Dα
i

, (8)

in which λ is the carrier wavelength, Di =
√
(x− xi)2 + (y− yi)2 + h2

uav is the linear
distance between the UAV-BS and ground user i, and α is the LoS path-loss factor. For the
NLoS components, we have the following channel gain:

κi,l =
σf

(4πλ) · Dβ
i

, (9)

where σf is a small-scale Rayleigh fading factor, and β is the NLoS path-loss factor. Gener-
ally, with the existence of LoS, the channel gain will be mainly dominated by the LoS part,
and other NLoS parts will sometimes be considered as interferences.

In practice, due to the mobility of the UAV and ground users, some new features,
such as non-stationarity and the Doppler shift effect, should also be considered in UAV
communications [27,28]. Thus, the time-varying channel response vectors for a URA-
equipped UAV-BS should further be expressed as

hi(t) =
Li

∑
l=1

κi,l(t)a(mx, my, θi,l(t), φi,l(t)) · e
j 2π

λ

∫ t
t0

fi,l(t)dt, (10)

where fi,l is the Doppler frequency. These time-varying factors in Equation (10) are, in
essence, mainly determined by the status of the UAV-BS and ground users. As mentioned
in Reference [27], only a few mmWave channel sounders have the ability to measure MIMO
channels in time-variant environments. MIMO channels will change due to environmental
variations, even when transmitters and receivers are static, not to mention in situations,
such as a moving UAV-BS serving moving ground users. Due to all these difficulties, which
can greatly impact the quality of the channel estimation and the latency of the system, we
focus on blind methods to compensate for signal distortion caused by the channel.

3. Problem Formulation

In general, in MIMO uplink wireless communications, the basic task of beamforming
is to introduce proper weight vectors wi in order to achieve signal recovery against inter-
ference. Generally, non-blind beamforming methods will rely on the channel information
of H and set the channel response matrix H as prior knowledge that which can be obtained
through channel estimation, but this consumes resources. In this paper, the problem that
we aim to solve is to derive a blind beamforming scheme at the UAV-BS receivers in order
to improve the communication quality of the communication systems. In other words, we
aim to calculate the proper beamforming (beam-combining) matrix W for optimal signal
recovery at the UAV receivers without detailed information about H. It was shown in
Reference [35] that a proper W usually means that the mean squared error (MSE) of the
recovered signals can be minimized. Thus, we formulate the blind UAV-BS beamforming
problem as a signal recovery MSE minimization problem. We denote by WX = Ŝ the
recovered signals; then, the problem can be expressed as finding a proper W that gives

min
1

d · n
d

∑
i=1

n

∑
j=1

(∣∣Sij
∣∣2 −

∣∣Ŝij
∣∣2)2, (11)

where d is the total user number, and n is the number of snapshots. This problem illustrates
that we want to minimize the signal recovery MSE for the whole system.
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In the noiseless case with perfect CSI, we can directly use W = pinv(H) as a proper
beamformer, resulting in

WX = Ŝ = S. (12)

The recovered signals of the UAV-BS are exactly the original signals sent by ground
users. However, in blind situations, we have no clues about what exactly the channel H is.
Thus, we try to solve this problem in another way, which is to explore the properties of the
UAV’s received signal matrix X.

Generally, some signals in communication systems have a constant modulus (CM)
feature, such as signals using BPSK or QPSK modulations. This CM feature can provide
useful information for X. We set the user signals with the CM feature as the target signals.
For the convenience of illustration, we assume that all the target user signals have unit
modulus elements via an appropriate scaler. The classic constant modulus algorithm
(CMA) usually regards this signal recovery problem as a constant modulus factorization
problem, that is, it makes X = HS or S = WX factorizable under ideal conditions. In
essence, the recovered user signals are derived from combinations of vectors in X, and
each recovered user signal can be expressed as ŝi

T = wT
i X. Consequently, each ŝTi can be

seen as a projection onto the row span of X. As we now have the signal CM property, for a
more distinct illustration, the problem mentioned in Equation (11) can be transformed into

min
1

d · n
d

∑
i=1

n

∑
j=1

(
1 −

∣∣Ŝij
∣∣2)2

s.t. ŝTi = (Ŝ)i ∈ rowspan(X), ∀i ∈ {1, . . . , d}.
(13)

This equation guarantees that the derived beamformer explores the CM feature in
order to achieve optimal beamforming for signal recovery accuracy, and simultaneously
makes sure that the recovered signals belong to specific UAV-BS receivers. We will intro-
duce an analytical blind method called the analytical constant modulus algorithm (ACMA)
in order to solve this problem in the following sections.

4. Solution of the Problem

We first assume that the ground users are transmitting independent signals with
enough phase richness, which means that S is a full rank and the CM factorization can be
unique. In practice, some trivial transformations, such as phase invariance, will sometimes
cause admissible non-uniqueness, but the uniqueness of recovered signals Ŝ can be guaran-
teed for n→ ∞. Once the uniqueness is guaranteed, we can make sure that the recovered
user signals at the UAV-BS site are the target signals originally sent by ground users [32].
To achieve a minimal signal recovery MSE for the whole system, we can pay attention to
each user signal. Ideally, each recovered user signal should have unit modulus elements,
as we assumed before, that satisfy

ŝTi =
[
1, . . . , 1

]
, ∀i ∈ {1, . . . , d} (14a)

s.t. ŝTi = (Ŝ)i ∈ rowspan(X), ∀i ∈ {1, . . . , d}. (14b)

As mentioned in the previous sections, the UAV-BS’s received signal matrix X is the
only data that we can acquire in the system. For an antenna-given X ∈ Cm×n, the first step
in the ACMA scheme is to separate the signal space from the interference space. To divide
spaces in X, we need to apply singular value decomposition (SVD) to X.

Let SVD(X) = UΣV∗, where U ∈ Cm×m, Σ ∈ Rm×n, and V ∈ Cn×n. By estimating
the rank of X, we can first obtain the number of received signals. One direct way is to
check how many singular values are non-zero in Σ; the number of non-zero values is equal
to the number of transmitted signals. Remember that ground users are transmitting d
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independent signals, and the received signal matrix X is, in essence, the combination of
transmitted signals si through channels, so there are actually d independent row vectors
in the row space of X. The SVD operation gives us the singular non-zero values and their
corresponding vectors, which can actually form the basis of rowspan (X). This SVD of X
first gives us the number of transmitted signals; then, we extract the signal space from X,
which is helpful for the following operations. Notice that the antenna array will sometimes
receive all of the signals that appear in the system, including non-CM (non-user) ones, so
the rank of X is not always precisely d in the presence of non-CM signals. We use δ as the
total signal number; then, we have δ non-zero values in Σ. In fact, the SVD of X can only
extract the signal space, not the target CM signal space. To obtain the CM signal space,
more operations are needed.

Let V̂ ∈ Cδ×n be the submatrix of V that contains the singular vectors corresponding
to δ singular non-zero values; then, we have that the rows of V̂ are actually the orthogonal
basis of rowspan(X), which can be seen as the signal space. Thus, we have

sTi ∈ rowspan(X)⇔ sTi = ωT
i V̂ , ∀i ∈ {1, . . . , δ}, (15)

where the weight vectors wi are acting on the signal space. Notice that, here, sTi , ∀i ∈
{1, . . . , δ} are not yet the recovered target user signals, and some non-CM signals are still
in the subspace. In other words, the SVD operation of X extracts the d user signals together
with δ− d interference signals. Clearly, this cannot yet meet the requirements for user
signal recovery. In the following, we will separate user signals from interference signals by
using the CM property.

We know that V̂ =
[
v1, . . . , vn

]
, where vj, ∀j ∈ {1, . . . , n} is the j−th column of V̂ ;

then, we can rewrite Equation (14a) as

ŝTi =
[
1, . . . , 1

]
, ∀i ∈ {1, . . . , d}

⇔
[∣∣∣(ŝTi )1

∣∣∣
2

. . .
∣∣∣(ŝTi )n

∣∣∣
2]

=
[
1, . . . , 1

]
, ∀i ∈ {1, . . . , d}

⇔ wT
i vjvH

j w∗i = 1, ∀i ∈ {1, . . . , d}, ∀j ∈ {1, . . . , n}.

(16)

We first define Pj = vjvH
j ∈ Cδ×δ, ∀j ∈ {1, . . . , n}; then, the CM property in Equation (16)

can be expressed as

ŝi =




wT
i P1w∗i

...
wT

i Pjw∗i
...

wT
i Pnw∗i



=




1
...
1


. (17)

Now, in the extracted signal space, our goal is to find linearly independent beamform-
ers wi for each user that can enforce this signal CM property. Once we have found all of
the wi, we will have separated the user signal space (the target CM signal space) from the
non-user signal space, and the blind beamforming problem for the UAV-BS can be solved.

For a better illustration, we can transform Equation (17) into a matrix computation
form. In the following, we will temporarily drop the index i of w for clarity, i.e., w stands
for all solutions wi, ∀i ∈ {1, . . . , d}. We define two operators, vec(·) and mat(·), where
vec(·) will stack all elements of a matrix into a vector by column, and mat(·) is the inverse
operator of vec(·).

Let pj = vec(Pj) ∈ Cδ2
; with the structure of y = vec

(
w∗wT

)
= w ⊗ w∗ ∈ Cδ2

,
we have the original CM elements in which wTPjw∗ = 1 is equal to pT

j y = 1; then,
Equation (17) can be expressed as
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Py =




1
...
1


, where P =




pT
1
...

pT
j
...

pT
n




, y = w⊗w∗. (18)

For greater convenience of computation, we can try to use some linear algebraic
methods to transform Equation (18) into a more manageable form. One reasonable choice
can be Householder transformation (HT) [32,36], though other options that can achieve the
same goal are also acceptable. Let

Q = I − 2
qq∗

q∗q
, q =




1
...
1


−




√
n

0
...
0


. (19)

Then, by applying this Q to P, we have separated the system into two parts:

QPy =

[
p̂1
P̂

]
y⇔

{
(1) p̂1y =

√
n

(2) P̂y = 0
,

p̂1 : 1× δ2

P̂ : (n− 1)× δ2
. (20)

After this transformation, we can directly focus on the second part of this system,
which is easier to solve than the system Py = 1 . The first part corresponds to the scaling
of the vectors, which will be addressed later. Now, we try to find a solution y that satisfies

P̂y =




0
...
0


, y = w⊗w∗. (21)

Due to the existence of multiple ground users, there will be more than one solution to
the system. We require the number of snapshots n to be larger than δ2; otherwise, there
will be no solutions to the system. One simple and direct way to calculate these solutions is
to employ SVD for P̂ because the solutions that make P̂y = 0 can be seen as the orthogonal
basis of the null-space (P̂). Thus, the singular vectors corresponding to singular zero values
can be seen as the solutions. In the case of noisy channels, we retrieve the singular vectors
corresponding to the smallest singular values of P̂. This operation can correctly estimate
the number of user signals in the signal space.

However, as we mentioned before, each CM solution y corresponding to each ground
user in the UAV-BS system should have the specific structure w⊗w∗. In common wireless
UAV-BS communications, the sample size is generally much larger than the number of
users served, which leads to an overdetermined system. We require n > δ2; hence, the
set of independent solutions y is not unique. Thus, we need the condition y = w⊗w∗

to restrict the solution space. Simple SVD operations cannot guarantee this structure;
it is not appropriate to compute the solutions y and hope that they have the specified
structure [32]. Operations are needed to make sure that each solution can be expressed
as w⊗w∗. We will simply introduce the extended QZ iteration method in the ACMA to
solve this structural problem.

In general, the CM solution space that satisfies Equation (21) can be written as

y = c1β1 + c2β2 + . . . + cd̂βd̂ = w⊗w∗, (22)
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where {c1, . . . , cd̂} is a set of constants, {β1, . . . , βd̂} is the basis of the kernel of P̂, and d̂ is
the dimension of Ker(P̂). The linearly independent y corresponds to linearly independent
w, which now leads to a linearly independent set of constants. Let SVD(P̂) = UpΣpVp

∗, as
mentioned above, be the basis of Ker(P̂), which can be estimated as the singular vectors
corresponding to singular zero values. The dimension of Ker(P̂) is equal to the number
of singular zero values, which is also the number of target user signals, so we have d̂ = d
(proved in Reference [32]). Then, the last d rows of Vp

∗ corresponding to singular zero
values can form a basis {β1, . . . , βd}. After finding the basis of this CM solution space, once
we obtain {c1, . . . , cd}, we will have separated the CM signal space from the non-CM ones.
Notice that, here, we say “singular zero values” because this is under the ideal conditions,
which means that there is no noise in the system. When additive noise is applied to the
system, there will be a threshold for deciding when small singular values can be seen
as “singular zero values”. The discussion about the threshold will be introduced in the
next section.

Let Bk = mat(βk), k ∈ {1, . . . , d}, and Y = mat(y); then, Equation (22) can be ex-
pressed as

Y = c1B1 + . . . + cdBd = w∗ ·wT. (23)

A proper set of constants can make the result of Equation (23) rank 1 and positive
semidefinite; hence, it can be factorized as w∗ ·wT. Assume that we already have the
weight vectors w1 . . . wd; then, βi = wi ⊗wi

∗, i ∈ {1, . . . , d} can form the basis of Ker(P̂),
and each Yi can be factorized as

Yi = λi1w1
∗wT

1 + λi2w2
∗wT

2 + . . . + λidwd
∗wT

d = W∗ΛiWT. (24)

If we could find matrix Q and Z to make QYiZ = Λi, then the set of constants
{c1, . . . , cd} corresponding to each user signal (making the solution rank 1) could be derived
from the eigenvalue matrices Λi. Consequently, the UAV-BS beamforming problem can
be seen as an eigenvalue problem. To reduce the calculation complexity and save the
calculation cost in the UAV-BS, it is not necessary to fully diagonalize Yi, as eigenvalues
can also be obtained if QYiZ are upper-triangular matrices.

The extended QZ iteration sets the initial Q(0) = Z(0) = I. For the k−th iteration, this
method aims to make

min ||Q(k)(Y1Z(k−1))||2LF + . . . + ||Q(k)(YdZ(k−1))||2LF

min ||(Q(k)Y1)Z(k)||2LF + . . . + ||(Q(k)Yd)Z(k)||2LF

, (25)

which necessitates making the lower-triangular part the minimal norm. Methods, such as
HT and SVD, can be used to construct upper-triangular Ri = QYiZ [32]. With the derived
Ri, we extract the diagonal entries of each Ri and form a coefficient matrix:

C =




(R1)11 . . . (R1)dd
...

...
(Rd)11 . . . (Rd)dd




−1

. (26)

Finally, each set of constants {c1, . . . , cd} is given by rows of C. Hence, each Yi = w∗ ·
wT can be calculated, and the beamformers wi for target user signal recovery sTi = wT

i V̂
can be estimated as the singular vectors corresponding to the largest singular value in
each Yi. The user signal space can be successfully separated from the interference space.
However, sometimes, we still need to run the Gerchberg–Saxton algorithm (GSA) several
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times to solve the phase invariance problem in order to make the solutions near optimal.
At the k−th iteration, the update rule is

wT
i (k + 1) =

[
(wT

i (k)V̂)1
|(wT

i (k)V̂)1|
, . . . , (wT

i (k)V̂)n

|(wT
i (k)V̂)n |

]
. (27)

5. Performance Evaluation

In this section, we perform numerical simulations to test the efficiency of the analytical
method for blind beamforming in a UAV-BS. We consider an uplink wireless communi-
cation scenario in which a UAV-BS serves d ground users in a specific urban region—for
instance, a 200 m× 200 m square region. In this region, the UAV-BS hovers in the sky, while
the users stay on the ground. The time-varying channel is considered according to the
model in Equation (10). We assume that the UAV moves at a speed of 10 m/s [28], while
the ground users maintain static. The carrier frequency is set to 28 GHz in the mmWave
band. So, fDoppler can be easily derived. The positions of the UAV-BS and ground users
are randomly distributed in the horizontal direction. For each position setting in each
simulation run, we average the simulation results over 100 times.

The UAV-BS is equipped with an m = mx ×my element URA, while each ground user
is equipped with a single antenna. In this uplink process, ground users transmit indepen-
dent and randomly generated signals by using QPSK modulations with n snapshots. Each
signal is assumed to have Li = 4 MPCs with the existence of LoS and the three strongest
NLoS components; thus, the channel in this scenario can be regarded as a mixture of LoS
and NLoS parts. We set the path-loss factors α = 0.95 and β = 2.25 in Equations (8) and (9)
according to the mmWave channel measurements in Reference [37]. The small-scale factor
σf can be set to a small value, such as 0.01. By combining the channel model mentioned
in Section 2.2 and the parameters in this section, we can simulate different channels for
the tests of this method. According to detailed parameter and environment settings in
this section, combined with the algorithm and models mentioned above, we can have the
antenna outputs matrix X, signal matrix S and the beamforming matrix H. Then, we can
easily evaluate the algorithm performance in this specific-simulated application scenario.

In the following simulations, additive Gaussian white noise is added to the system.
We first assume that m = 4× 4, and there are δ = 6 signals that appear in the system; four
of them are transmitted by ground users (target CM signals). By exploring the number
of singular near-zero values after SVD(P̂), we can estimate how many ground users are
located in the region served by the UAV-BS. As shown in Figure 2, we tested the efficiency
of the estimation of the number of ground users under different SNR and snapshot settings.
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Figure 2. Estimation of the number of ground users by examining small singular values when using
different SNR/snapshot settings.

Due to the existence of Gaussian white noise, the singular values corresponding to the
ground users are raised above zero. However, there is still a gap between the near-zero
values and other values. With the increasing SNR and number of snapshots, the gap
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becomes more distinct. A reasonable threshold was given in Reference [32], which the large
singular values should satisfy (with a probability better than 95%)

min(large singular value) >
1√
n
− δ− 0.5

n
. (28)

We then tried to evaluate the performance of the analytical method in minimizing the
system’s MSE under different channel settings. For the LoS channel, the LoS component
dominates the channel response. For the NLoS channel, all MPCs are regarded as NLoS
components. The Rayleigh fading channel represents an ideal NLoS situation in which
H ∼ Rayleigh(1). We used the classic MMSE method, random beamforming, and the
Artificial Bee Colony (ABC) method to compare with the analytical method. As we do not
know the channel H in a blind situation, the MMSE receiver cannot be directly employed
in practice. However, here, we assume that the MMSE receiver already knows the channel.
The classic MMSE will give us a weight vector

WMMSE = HH(HHH +
σ2

P
I
)−1, (29)

where σ2 is the system noise power, and P is the system signal power; σ2

P is actually SNR−1

on the natural scale. The random beamformer is defined as Wrand = ejΨ, where each
element of the random phase matrix Ψ will give us a random phase within [0, 2π] [20]. The
ABC method here is slightly different from the ABC beamforming process in Reference [20];
we transform it into an uplink process here. In this test, we set the food source number
Ns = 200 with iteration = 500.

From Figure 3, we can observe that, for the LoS and NLoS channel settings, the
analytical blind beamforming achieves better performance in minimizing the system’s
MSE, while the MMSE and ABC receivers do not perform as well. For the Rayleigh fading
channel, the efficiency of the analytical method is close to that of the MMSE because, in
this situation, noise is the dominant force affecting the signal recovery. The actual values
depend on the randomness of the noise and the channel distortion. Nevertheless, the
analytical blind beamforming is useful in most common scenarios.
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(c) Rayleigh fading channel
Figure 3. The system’s MSE using different beamforming methods with different channels.

We also tested the ACMA beamforming method under some sub-6-GHz bands. As
shown in Figure 4, the results are very close to each other. The carrier frequency in our
simulations mainly decides the values of the path loss and fDoppler, but it does not affect
the performance of the method in achieving a minimal system MSE.

Figure 5 shows the constellations of the originally sent user signals and recovered
user signals. It directly shows the performance of the ACMA in beamforming for signal
recovery. Compared with random beamforming, the analytical method can successfully
derive both the amplitude and phase information. Due to the phase ambiguity of blind
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beamforming methods, sometimes, there are phase differences between the original signals
and the recovered ones. Operations, such as differential encoding, can be applied to cancel
the phase differences. However, we mainly focused on blind beamforming for signal
recovery; thus, we have omitted the details about the encoding part.
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Figure 4. The MSE performance of the analytical method with different frequency bands.
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Figure 5. Constellation diagrams of the received user signals when SNR= 15 dB. The upper row shows the recovered
signals of four different users using the ACMA with the original constellation. The bottom row shows the signals when
using random beamforming.

In Figure 6, we show the compensated channel response for d = 4 different users
after applying analytical beamforming. We can see that the compensated channel wH
looks the same as an impulse. This, in essence, shows that the channel effects on each
transmitted user signal are nearly erased at the UAV-BS’s receiver. In other words, the
ACMA receivers only recover user signals (wi HS = si), which can be seen as directing the
receiving antennas towards different users.
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Then, we evaluate the system’s sum rate when applying the analytical method under
different settings. The system’s sum rate can be described as

Sumrate =
d

∑
i=1

log2
(
1 +

P · |hH
i wi|2

σ2

)
, (30)

which summarizes achievable rates of d ground users. Here, the signal power P and noise
power σ2 are still calculated on the natural scale. For better illustration, we transform
them into dB in the figures. We introduced approximate beamforming as an upper bound
in our tests. Approximate beamforming is regarded as an ideal beamforming in which
the beam gains are zeros along the non-user directions and are significant along the user
directions [20].
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Figure 6. Compensated channel response of four different users with the ACMA in comparison with ideal beamforming
when SNR= 10 dB.

In this experiment, we first evaluated the performance of these three beamforming
methods with a settled noise power of σ2 = −100 dBm and varying antenna numbers m.
Then, we used a 16-element URA to evaluate the system’s sum rate for varying σ2. As
shown in Figure 7, under different m and σ2 settings, the system sum rates achieved with
the analytical method are close to the approximate ones; moreover, they are much better
than with the random values.

As mentioned in Section 4, the Gerchberg–Saxton algorithm (GSA) is used for the
phase-retrieval problem. We proceeded with some iterations of the GSA for both analyt-
ically and randomly calculated weight vectors wi for more accuracy. The convergence
speed of GSA was tested in our simulations. As shown in Figure 8, the beamformers wi
obtained with the analytical method can achieve a very fast convergence speed, while the
ones derived from random beamforming surely need more iterations to guarantee that
they converge to their optimal solutions.
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Figure 7. The system’s sum rate performance after analytical blind beamforming.
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Figure 8. GSA convergence speed of four users using random initial points or points calculated with
the ACMA when SNR = 20 dB.

After testing the performance of the analytical method in terms of the signal recovery
accuracy and sum rate, we then tested its performance in terms of complexity. In Table 1,
we compare it with classic non-blind methods (LS channel estimation/MMSE estimation +
MMSE receiver) and the ABC method. As different methods depend on different parame-
ters, sometimes, it is hard to directly compare the complexity in one united form. Thus,
we compare these methods when they achieve comparable MSE results and introduce an
equivalent complexity. In our settings, we need at least m > d and n > d2 + 1, so we can
transform O(dnm) into O(d4) [32]. When d = 4, we need about LGSA = 20, Ns = 100, and
LABC = 300 to make the CMA and ABC converge to their optimal results, so we obtain
O(LGSA) ≈ O(d2), O(Ns) ≈ O(d3), and O(LABC) ≈ O(d4). The equivalent complexity
of each method will depend on the actual parameter settings.

Table 1. Comparison of the complexity of the methods when achieving comparable system MSE
values (notations: m: antenna number, d: user number, n: snapshots, Ns: food source number, LGSA: it-
eration number of the GSA, LABC: iteration number of ABC).

Method Complex Operations Equivalent Complexity

LS+MMSE m2d + 2d2m + dmn O(d4)
MMSE+MMSE 5m2d + 2d2m + dmn O(d4)

CMA LGSA2dmn + 2m2n O(d6)
ACMA 9(d2)2n + 9m2n O(d6)

ABC Nsdm + LABC(2Ns + 1)dm O(d7)

We then tested the simulation runtimes under specific parameter settings, as shown
in Figure 9. We can see that the ACMA can achieve a comparable runtime with that of the
classic methods with respect to different values of m. However, with an increasing user
number, there is a dramatic runtime increase for the ACMA, but it is still more efficient than
ABC. In fact, when the user number increases, ABC needs more food sources and iterations
to obtain good results, so we set Ns = 100 and LABC = 300 for only the controlled variables.
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Figure 9. Simulation runtimes for different parameter settings.

In relation to Figure 3, there is a trade-off problem between the complexity and the
system MSE. Indeed, the analytical method is more complex than the traditional MMSE
method, but it achieves more accurate signal recovery beamforming when considering
new features in the UAV communication channels. Accurate channel estimation is crucial
for non-blind methods, but it is still difficult to acquire due to the time variance and
other features [27]. From another perspective, battery endurance and energy cost are two
inevitable factors in UAV-assisted networks that must still be solved, though non-blind
methods usually need pilots or training sequences, which impact the bandwidth efficiency,
power consumption, and battery life [38]. The computational complexity is not as difficult
to deal with because chips are becoming more capable.

Through the evaluations in this section, we can observe that, when applied to a
simulated UAV-BS system, the analytical blind beamforming method can achieve good
MSE performance in terms of signal recovery and a reasonable system sum rate. Complex
and difficult MIMO channel estimation is omitted to save costs. In other words, this method
can successfully solve the MIMO UAV-BS beamforming problem without CSI. At the same
time, it can achieve a reasonable computational complexity when there are not too many
ground users. One possible UAV-BS application scenario can be a situation in which some
specific users/target signals need higher-quality communications.

6. Conclusions

In this paper, we investigated the blind beamforming method with the ACMA at
URA receivers for an MIMO UAV-BS system in mmWave bands. We firstly formulated
the UAV-BS beamforming problem as a system MSE minimization problem. Then, we
introduced the analytical method, ACMA, in order to derive a proper beamformer for
signal recovery. Instead of relying on detailed CSI, the analytical method only explores
information from antenna outputs. This method separates the user signal space from other
interference spaces by using algebraic operations, such as SVD and diagonalization; then,
it uses a specific structure to restrict the signal space to obtain a proper beamformer. We
evaluated this method under different settings, such as different channels, different antenna
settings, and different noise environments. New channel features, such as UAV mobility
and time variance, were taken into consideration. The simulation results show that the
analytical method exhibits good performance in terms of minimizing the system MSE, and,
at the same time, it achieves a reasonable system sum rate. When the UAV-BS is not serving
too many users, it achieves a complexity that is comparable with that of the MMSE method.
Future research might study the overall power consumption increased by computation
and transmission length. Practical experiments might be included in future work.
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Citation: Deaconu, A.M.; Udroiu, R.;
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Abstract: Drones are frequently used for the delivery of materials or other goods, and to facilitate
the capture and transmission of data. Moreover, drone networks have gained significant interest
in a number of scenarios, such as in quarantined or isolated areas, following technical damage due
to a disaster, or in non-urbanized areas without communication infrastructure. In this context, we
propose a network of drones that are able to fly on a map covered by regular polygons, with a
well-established mobility schedule, to carry and transfer data. Two means exist to equidistantly cover
an area with points, namely, grouping the points into equilateral triangles or squares. In this study,
a network of drones that fly in an aerial area divided into squares was proposed and investigated.
This network was compared with the case in which the area is divided into equilateral triangles.
The cost of the square drone network was lower than that of the triangular network with the same
cell length, but the efficiency factors were better for the latter. Two situations related to increasing
the drone autonomy using drone charging or battery changing stations were analyzed. This study
proposed a Delay Tolerant Network (DTN) to optimize the transmission of data. Multiple simulation
studies based on experimental flight tests were performed using the proposed algorithm versus
five traditional DTN methods. A light Wi-Fi Arduino development board was used for the data
transfer between drones and stations using delivery protocols. The efficiency of data transmission
using single-copy and multiple-copy algorithms was analyzed. Simulation results showed a better
performance of the proposed Time-Dependent Drone (TD-Drone) Dijkstra algorithm compared with
the Epidemic, Spray and Wait, PRoPHET, MaxProp, and MaxDelivery routing protocols.

Keywords: drones; network; DTN; mobility schedule; routing algorithms; data delivery

1. Introduction

Delay tolerant networks (DTNs) allow communication in environments in which fre-
quent transmission discontinuities are present [1–4]. They have applications in numerous
fields, such as space communication networks [1–3], smart cities [5], intelligent transport
networks, rural networks, environmental monitoring networks, and vehicle networks [4,6].
Within DTNs, message transmission is based on the store-carry-forward paradigm [7,8].
Devices update their communication routes based on the topological changes of the net-
work, and the mobility of the devices plays an important role [9–11].

The role of routing [12–14] in DTNs is to find the best path to send data through the
network to reach the destination. The routing strategies used by DTNs are classified based
on criteria such as connection type between nodes, the time at which the path for messages
is established, the amount of information held by the nodes about the network, and the
number of copies of a message that a node sends.

Algorithms containing different amounts of DTN information are proposed for inves-
tigation in [14]. It has been shown that the performances of these algorithms gradually
increase, depending on the amount of information about the network they use. Based on
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the number of copies of a message, single-copy algorithms (forward based) and multiple-
copy algorithms (flood based) have been investigated [15,16]. The Direct Delivery algo-
rithm only sends the message to the destination node, and is suitable for both small- and
high-mobility networks, in which the probability of meeting between the nodes is high.
Comparisons between classical flood-based protocols, such as Epidemic [17], Spray and
Wait [18], PRoPHET [19], and MaxProp [20], were undertaken in [15]. Maximum flow with
the static approach in buffer-limited delay tolerant networks was investigated in [21,22].

In public transport networks, the connection type between nodes is based on a well-
known schedule and well-defined routes. A DTN composed of pedestrians and cyclists
equipped with smart devices was investigated using routing protocols in an Opportunistic
Network Environment (ONE) [23]. The MaxProp protocol yielded the best results in terms
of delivery probability and average latency. DTN communications in the network storage
depend on the store-carry-forward mechanism. A DTN system applied in a communica-
tion network on a railway line was found to reduce the message delivery time by 20%,
depending on the schedule of trains [8]. In [24], an algorithm to search for the shortest safe
path on the network with a time-dependent and edge-length danger factor was proposed.
This work is suitable for the optimization of heavy trucks carrying inflammable materials,
poison gas, or explosive cargo, and traveling within a city. Based on the simulation in ONE
software, the Scheduling-Probabilistic Routing Protocol using History of Encounters and
Transitivity (PROPHET) improves the delivery rate and optimizes the delivery delay with
low overhead in DTNs for IoT applications [25].

Drone networks are now used in numerous applications across domains including
topography [26], aerial observation [27], delivery [28,29], agriculture [30], communica-
tions [25,31,32], atmospheric sciences [33–35], and rescue missions [36].

Drone flight path planning can be categorized as off-line planning, on-line planning,
or cooperative planning [37,38]. The relatively short flight distance of drones due to their
limited battery energy [39] can be extended using drone networks.

Flight simulations using a topological map of hexagons, in which each hexagon
contains one drone, have shown the potential for application in indoor rescue missions [36].
In [40], coverage path planning with UAVs was studied, addressing simple geometric
flight patterns, such as back-and-forth and spiral, and more complex grid-based solutions
considering full and partial information about the area of interest. The area was divided
into squares and a drone was flown from a square to another. Parcel delivery missions
using a drone were simulated based on heuristic flight path planning (HFPP) and other
routing algorithms [28]. The results showed that HFPP delivers up to 33% more data
packets compared with Encounter-Based Routing and Epidemic routing protocols.

Vehicular ad hoc networks (VANETs), which are a type of mobile ad hoc network
(MANET), can be used in an intelligent transport system. VANETs allow the mobile
vehicles to establish three main categories of communication: vehicle to vehicle, vehicle
to infrastructure, and infrastructure to infrastructure. A specific application of VANET
applied to a drone network allows messages to be sent via wireless links [32]. A bio-inspired
coordination protocol for a drone flying ad-hoc network (FANET) used for agriculture
applications [30] has been used in an ad hoc simulator for a preliminary analysis of the
feasibility of drone network design. The performance of the branch and bound search-
based mode selection (BBS-MS) for drone-based air-to-ground wireless networks was
investigated in [31].

In this study, we investigated six routing algorithms in a network of drones with
a mobility schedule to ensure communication between isolated areas or in areas with
technical damage. We then qualitatively compared the algorithms. The major contributions
of this study are as follows:

• The proposed drone network is independent of the Internet, and is of the DTN type.
• A topological map as a collection of regular polygons (squares) was proposed.
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• A time-dependent variant of Dijkstra’s algorithm, which determines the fastest route
by taking into account the time when the message reaches the node and the time
allocated for data transfer, was developed for the proposed network.

• Five classical algorithms for DTN networks were adapted and tested for the proposed
network.

• Simulations based on flight tests were performed to analyze the efficiency of the data
transmission. The results obtained by the single-copy and multiple-copy algorithms
were compared, in the case of buffer limited capacity.

• Practical application of this work is to facilitate the transmission of information in
regions quarantined due to an infectious outbreak, such as COVID-19 pandemic, in
regions with technical damage due to a disaster, and in non-urbanized areas without
electricity access or communication infrastructure.

The remainder of the paper is organized as follows. In Section 2, a drone network
architecture based on the mission profile, and drone sensing and communication, are
proposed. Then, the algorithms and protocols for the delivery of data using drones are
proposed, described, and analyzed. In Section 3, simulation results are summarized and
discussed. Finally, conclusions and possible future work are presented in Section 4.

2. Materials and Methods
2.1. Drone Network Architecture and Communication

A network map is essential for both drone flight control and simultaneous localization
and mission tasks. As noted in [36], three forms of map generation exist: metric, topological,
and hybrid maps. A metric map is represented as a grid, geometric, or feature map.
Topological maps are represented by graphs comprised of nodes and edges, where nodes
represent places, and the edges represent the paths between the nodes [36]. A hybrid map
consists of small metric map locations in nodes. These nodes are connected by edges, which
are the paths between the metric maps [36]. In this work, a topological map was proposed.

The 2D network surface is intended to be covered with equidistantly distributed
points. These points form regular polygons covering the 2D surface. Below, we prove that
the only possible means of covering the 2D surface in this manner is by using equilateral
triangles or squares. First, we prove the following lemma:

Lemma 1. There are 3 ways to cover a 2D surface using regular polygons: equilateral triangles,
squares, or regular hexagons.

Proof of Lemma 1. The sum of the degrees of the angles of a polygon with n vertices
(n ≥ 3) is 180◦ · (n − 2). Each angle of a regular polygon has [360◦ · (n− 2)]/n degrees. If
a point of the surface is a vertex of a polygon, then it is a vertex for m polygons (m ≥ 3)
around this point (Figure 1). Thus, at such a point we have:

m · 180◦ · (n− 2)
n

= 360◦ ⇔ 2 · n
n− 2

= m (1)

�

It results that 2 · n/(n− 2) = 2 + 4/(n− 2) is an integer value greater or equal to 3.
This implies that n − 2 is a divisor of 4 and, because n ≥ 3, it follows that n − 2 is one
of the values 1, 2, or 4, which is equivalent to the fact that n is 3, 4, or 6, and m is 6, 4
or, respectively, 3. This means that the 2D surface can only be covered with equilateral
triangles, squares, or regular hexagons.

Theorem 1. There are two ways to equidistantly cover a 2D surface with points.

Proof of Theorem 1. Using the result from Lemma 1 and the fact that the points are
considered equidistant on the 2D surface, it follows that there are only two ways to cover
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the 2D surface: with equilateral triangles or with squares, because using regular hexagons
is impossible (the vertices of the hexagons are not equidistantly positioned). �
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A network to cover a surface with hexagon cells containing three equilateral triangles
was proposed in [41]. In the current paper, a network is proposed to cover a similar surface
with square cells containing two operational squares (Figure 2). Each operational cell is
covered by a drone. A battery charging/changing dock, which is shared by two drones,
is placed in the center of each cell. The docks are able to automatically change/recharge
drones, without manual intervention, allowing fully autonomous drone management. The
mission profile of each drone consists of several phases or steps: engines start, take off,
climb at the cruise altitude, cruise, hovering and data exchange, descent, landing, and
engines shut-down. The cruise phase of the flight mission profile consists of four segments
(Figure 3). Charging or changing the drone battery is a necessary step at the end of the
flight mission.
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A drone with a quadcopter configuration [42], i.e., a DJI Mavic 2 Pro (DJI, Shenzhen,
China) with a size of 214 × 91 × 84 mm (length × width × height), and takeoff weight
of 905 g, was considered in this study. The performance characteristics of this drone are
presented in Table 1 [43]. All of the drones of the proposed squares network operate in a
pre-programmed manner. The drone network communicates with data exchange points
via wireless links.

Table 1. Drone performance [43].

Parameter Value

Max ascent/descent speed 4 m/s; 3 m/s
Max flight time (no wind) 31 min (at a consistent 25 km/h)

Max flight distance (no wind) 18 km (at a consistent 50 km/h)
Drone battery 3850 mAh, 1800 mA, 3.83 V

The endurance of drones can be improved using various methods, such as changing
the battery [44,45], charging the battery via wires [46,47], wireless recharging [48], solar
cells [49,50], laser-beam in-flight recharging [49,51], and tethered drones [49]. An average
time of 90 min is needed to fully charge an empty battery. An automated means of charging
a battery via a wire can be performed using a charging platform installed on the ground
and a drone retrofit-kit mounted on the drone [46,47]. Thus, the landing gear of the drone
is connected by touch with the charging platform after the drone lands, and charging starts
automatically. The main disadvantage of this system is that the drone is locked on the
ground during the charging of the battery.

An automatic battery changing and recharging system was investigated in [44]. The
battery is automatically recharged after it is changed at the station. The electricity needed
at each station is able to be provided by a solar panel that charges a battery located at the
station. The changing time depends on the efficiency of the changing mechanism, and
varies between 15 s [44] and 60 s [45]. In the current study, a maximum changing time
before the drone is ready to take off of 60 s was considered.

Four flight tests were performed based on the square-shaped flight mission in the
Brasov area of Romania. The flight tests were performed at a temperature of 2 ◦C, humidity
of 69%, and wind speed of 3.5 km/h. A Samsung S9 smartphone device, on which DJI Go 4
app software (DJI, Shenzhen, China) was installed, connected to a DJI remote controller, was
used to program the flight mission segments and to remotely control the drone (Figure 4).
A flight altitude of 30 m was chosen [52] and the cruise flight distance of each drone was
12,000 m.
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The theoretical flight times calculated based on the drone specifications (max. ascent,
descent speeds, and cruise speed) are not realistic for simulations. The main factors that
influence the experimental flight times are acceleration and deceleration of the drone, and
wind speed. The mean flight time for each flight segment was calculated based on the
flight tests (Table 2). Moreover, the average calculated cruise speed of the drone obtained
from the flight tests was 12.93 m/s.

Table 2. Flight test results.

Mission Phase Mean Flight Time Standard Deviation

Take off + climb (30 m) 8.24 s 0.193
Cruise segment (3000 m) 232 s 0.187
Descent + landing (30 m) 12.12 s 0.085
Transfer data (3 points) 120 s -

Total flight on square cell 1308 s 0.651

The percentage of the remaining drone battery obtained at the end of the flight
mission was 16% for the rectangular cell. The charging time for the drone battery was
79 min. A safety multiplier of 1.1 was applied to obtain the considered charging time, and
the resulting time was used in the simulations. Thus, 87 charging minutes were considered
for the rectangular cell flight. The average values of the flight times for each segment were
used as input parameters for the simulation of the drone networks in the DTN algorithms.

Eight high-resolution and two infrared sensors were used on the DJI Mavic 2 Pro.
These sensors enabled omnidirectional obstacle sensing, to determine the relative speed
and distance between the drone and the object, and to ensure good stability in forward and
hovering flight. Left, right, up, down, forward, and backward obstacle sensing were used.

A NodeMCU Lua Wi-Fi, V3, ESP-12E, CP2102 Wi-Fi Arduino development board
(Espressif Systems, Shanghai, China) was used for the data transfer between the drones
and the stations. The main characteristics of the NodeMCU are shown in Table 3. The
data were stored on a micro-SD card. The Wi-Fi board and micro-SD card module are very
lightweight and have very low power consumption. The experimental layout, consisting of
the NodeMCU Lua Wi-Fi board and the micro-SD card module mounted on a breadboard,
is shown in Figure 5a. Arduino code was used to program the Wi-Fi boards.

Table 3. Wi-Fi NodeMCU main characteristics [53].

Parameter Value

ESP8266 chip 26 MHz, 4 MB flash, 160 KB RAM
Dimensions (L ×W) 48 mm × 25 mm

Operating temperature −40 ◦C to + 125 ◦C
Weight 8 g
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Figure 5. (a)Testing stand of the NodeMCU Lua Wi-Fi board and the micro-SD card module mounted
on a testing breadboard. (b)The drone with the 3D-printed case and the Wi-Fi boards mounted on it.

A protective mounting case (Figure 5b) for the Wi-Fi boards was designed using the
SolidWorks version 2016 software (Dassault Systèmes, Waltham, MA, USA), and then 3D
printed using material extrusion technology from PLA (BCN3D Technologies, Barcelona,
Spain) on a BCN3D Sigma R19 printer (BCN3D Technologies, Barcelona, Spain).

The Wi-Fi board, micro-SD module, SD card, connection wires, and power cable
weighed a total of 21.8 g, thus representing an increase of 2.4% in the total weight of
the drone.

2.2. Algorithms and Protocols for Delivery of Data Using Drones

The DTN was modeled with a graph having fixed and mobile nodes. There are no
connections between the fixed nodes, so there is no possibility of direct data transmission
because the considered distance between the nearest two nodes is 3000 m. Network
connections are provided by mobile nodes (drones), but their condition is not always the
same; they have periods when they are active and periods when they are inactive. This
means that there is not always an end-to-end path available between any two nodes in
the graph.

We tested five well-known routing algorithms for DTNs (Epidemic, Spray and Wait,
PRoPHET, MaxProp, and MaxDelivery [54]), and a newly proposed TD-Drone Dijkstra
approach, on the square-shaped network shown in Figure 6. We performed tests on the
network by choosing random sources and random destinations that could be located on
any node (marked as a gray circle or a gray rectangle). We considered the drones worked
each day from 7:00 a.m. to 6:00 p.m. and the messages may leave a source node between
7:00 a.m. and 5:00 p.m. We considered 1000 messages randomly sent within this interval
of time.

Epidemic is the basic form of a flood-based routing protocol: when two nodes meet,
they identify the packages that the other node has and transfer the packages that it does
not have. At the end of the process, the two nodes have the same content in the buffer.
This process is repeated each time two nodes come into contact. When a node has a copy
of a message, it waits to meet the destination. In this case, the resource consumption is
high but, in a high mobility network, the delay of message transmission is small. In the
current network configuration, the algorithm produces poor results due to the low number
of contacts between nodes.

Spray and Wait is an algorithm with two phases, one for sending messages (spray)
and one to wait for the contact with the destination node (wait). This algorithm circulates
in two variants—standard and binary—depending on the number of spread copies of the
message. It acts in the same manner as Epidemic, with an important difference: the number
of spread copies is constant. The spray phase of the standard approach consists of spraying
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L copies of the message by the source node itself. The spray phase of the binary approach
consists of spraying half of the number of copies to a meeting node. In this case, not only
does the source spray messages, but also every node that has more than one copy. The
nodes that have only one copy enter the wait phase. This algorithm has the disadvantage
that nodes must keep track of other nodes’ movement, but the advantage is that the level
of flooding is limited.
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PRoPHET is similar to Epidemic, with the exception that it uses information from
the buffer of the other node to update its predictability vector. Each node calculates the
predictability of the message delivery and sends the message onward only if the contact
node has higher predictability than its own. The disadvantage of this approach is the
relationship between the overhead ratio and the number of nodes—as the number of nodes
increases, the overhead ratio increases [15]. This protocol is known for the complexity of
its forwarding strategy. Thus, it consumes a significant quantity of resources to process
and store historical values. This approach is feasible for networks with high computation
and infrastructure capabilities.

MaxProp is an algorithm based on prioritizing packet transmission and discarding.
The packets in the queue are divided into two categories: those below the “n” hop threshold
(up to that point), and those above this threshold. Newer packages that have not traveled
too much are considered a priority and the guarantee that they will reach their destination
is considered to be high. This algorithm also requires high computation and infrastructure
capabilities. This protocol has low performance when nodes have small buffer sizes because
of the adaptive threshold calculation, but gives better performance with a larger buffer size.
It has a so-called slow start problem, because, in the case of a big network, it may take a
very long time before each node receives the delivery predictability of other nodes because
of the disconnecting nature of the networks, as shown in [20].

MaxDelivery [54] is an algorithm based on prioritizing message delivery using an
appropriate buffer management strategy that consists of a forwarding, dropping, and
buffer-cleaning mechanism.

Next, we propose our time-dependent Dijkstra algorithm to find a route between
two nodes in our drone network. Dijkstra’s algorithm is used to find the shortest path
connecting two nodes in a network [55]. Our routing problem can be modeled using a
time-dependent oriented network [56] defined as follows.
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Definition 1. A triple G = (V, A, f) is called a time-dependent oriented network, where V is a set of
vertices, A ⊆ V × V is a set of arcs, and f is the time dependency function defined on each arc, f: A
× T→ T, T ⊆ R+ is called the time set and when moving on the arc a = (u, v) ∈ A from node u to
node v, f(a, t) ∈ T is the moment of arrival at node v if node u is left at the moment t ∈ T. Of course,
f(a, t) > t, for each arc a ∈ A and for any moment t ∈ T.

In our problem, V is the equidistantly distributed set of 2D points, A is the set of
connections between these points ensured by drones, and T = {0, 1, 2, . . . } is the set of
counting seconds in a day. The value of f(a, t) must be computed as quickly as possible.
Thus, for each arc a = (u, v), the arrival moments of drones at node v are maintained in
order to enable a binary search to be undertaken when f(a, t) is calculated at arc a and time
t. The arrival moments of drones for all arcs are pre-calculated (once before starting to
use the algorithm) because an exact schedule of drones is known based on each drone’s
starting second in a day, its travel on each arc, its data transfer at nodes, and its wireless
charge/battery change time.

For a given source node s ∈ V, the function dists: V × T→ N is introduced, where
dists(u, ts) is the distance in seconds from s to u starting from the moment ts, i.e., it is
the minimum number of seconds needed to go from node s to node u ∈ V on the arcs
of A if source s is left at moment ts. Of course, dists(s, ts) = 0 for every ts ∈ T. If node u
is not reachable (accessible) from s, then dists(u, ts) = +∞. For a given destination node
d, our problem is to determine dists(d, ts) at a given time ts. The pseudo-code for the
time-dependent Dijkstra algorithm is presented in Figure 7.
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Q is a priority queue. This means that, at any moment, the nodes from Q are sorted in
ascending order according to their distance in seconds from s. At the end of the algorithm,
if destination d was reached, the values kept in the so-called predecessor vector p are used
to determine the route from s to d. If a node v was reached, then this was done using
the arc (p(v), v), where node p(v) is called the predecessor of v. After the time-dependent
Dijkstra algorithm is executed using the staring moment ts, the route from s to d (if it exists,
i.e., dists(d) < +∞) is determined using the algorithm presented in Figure 8. Because the
nodes of the route are found by the above algorithm in inverse order (from d to s), the
route must be reversed at the end.
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algorithm.

For each data file that has to be delivered, a “json” file is attached that stores all of the
information needed to transfer the file from the source to the destination: delivery type
(Dijkstra, Epidemic etc.); file information (name, size, time-to-leave); route information
(node codes: stations and drones); etc. The json files that store message information for the
algorithms Epidemic, Spray and Wait, PRoPHET, MaxProp, and MaxDelivery implemented
in the ONE environment are similar to those considered in [41]. Each route starts and ends
with a station id. Each station id (except for the destination) is followed by a drone id, and
each drone id is followed by a station id. When a drone arrives at a station, a transfer is
initiated between the drone and the station. The drone transfers to the station all of the files
that have the station’s id in the attached json files. After the drone transfer to the station is
completed, the station transfers to the drone all of the files that have the drone’s id in the
json file.

The range of the Wi-Fi boards was tested. The connections between the boards and
file transfer were performed at a distance of up to 85 m with no obstacles in between.
In Figure 9, the console output of the Wi-Fi board is presented. The following steps are
executed: setup (upload speed is set to 115,200, MAC address is obtained), the connection
between two Wi-Fi boards is established, the file transfer is performed, and, finally, the
Wi-Fi boards are disconnected.

In our model, when transferring files, the drone hovers over the station at a height of
30 m, which is significantly less than the maximum distance obtained in range tests. The
transfer speed, including writing on and reading from the SD card, was also tested at a
distance of 30 m. An average of 5.81 Mbps was obtained, which means that a file of 10 MB
was transferred in 13.77 s.
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3. Simulation Results and Discussion

The proposed network of drones can be applied in various scenarios, such as in re-
mote quarantined or isolated areas, following technical damage due to a disaster (e.g.,
an earthquake), or in non-urbanized areas without electricity access or communication
infrastructure. For instance, a remote quarantined zone (e.g., due to the COVID-19 pan-
demic), in which buildings are separated by a safe distance, is considered. In this scenario,
each building may be a house in which patients are isolated, a warehouse storing food or
drugs, a laboratory in which medical tests are performed for patients, or a location at which
doctors are working (isolated from patients). Data packages (medical images, tests, results,
prescriptions from doctors, etc.) must be sent between these buildings. The communication
between these buildings can be achieved by drones organized in a square-shaped network.

To validate the proposed method, simulations were performed using the drone net-
work maps as a collection of squares. Most of the simulations were performed using the
Java-based simulator ONE and its provided facilities, using an ASUS ROG GL752VW-
T4015D laptop with Intel® Core™ i7-6700HQ 2.60GHz processor (Asus, Taipei City, Tai-
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wan), and 8 GB of RAM. The routing protocols used for the simulation within the ONE
simulator were Epidemic, Spray and Wait, PRoPHET, MaxProp, and MaxDelivery.

The following main steps were used for implementation of the ONE scenarios. The
first step consists of defining the map (Figure 10) in wkt file format, in which the coordinates
of all the points on the map, including points that establish the route of each drone, are
defined. The initializations of the algorithms that define the mobility of drones consist of
establishing the initial positions of drones and the recharging/changing points, associating
each drone with a recharger/changing point, establishing the stationary points for data
transfer, and defining the route of each drone. The final step is the establishment of the
simulation parameters, as shown in Table 4. The time parameters, such as the travel
autonomy time, the hovering time for the transfer points, and the parking time at the
charging or changing points, were established based on the experimental flight tests of the
DJI Mavic 2 Pro drone.

Table 4. Simulation parameters for the square-shaped flight mission.

Parameter Value

Number of drones for cruise 24
Number of fixed transfer points 63

Number of charging/ changing battery points 12
Average cruise speed of a drone 46.55 km/h (12.93 m/s)

Flight height of drones 30 m
Operating time of the drone in one day 11 h

Data transmission speed 2 Mbps
Drone buffer space 2 Gb

Message size 500 kb–1 Mb
Message time to live 10 h

Source and destination of messages any station
No. of route simulations 1000
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The proposed time-dependent Dijkstra variant was implemented in Visual C++ 2017
programming language. The application has about 1100 lines of C++ source code.

The application written in C++ was executed for each of the two considered situations:
squares with battery charging, and squares with battery changing. For each case, the same
1000 route simulations considered in the ONE experiments were executed.

The delivery rate and latency metrics were used to measure the performance of all six
routing protocols analyzed in this paper. The delivery rate is determined as a ratio between
the number of delivered messages and the number of created messages. The latency is
the average time needed for a message to reach the destination starting from the source
(departure node).

Detailed results of the comparison between changing the battery and charging the
battery cases are presented in Table 5. The results obtained in this paper by simulation
were compared with those obtained in [41].

Table 5. Efficiency factors in drone network.

Algorithm
Delivery Rate Latency (hours)

Battery
Changing

Battery
Charging

Battery
Changing

Battery
Charging

Squares Triangular Squares Triangular Squares Triangular Squares Triangular

Epidemic 0.166 0.209 0.135 0.146 0.81 0.72 2.28 2.13
Spray and Wait 0.211 0.179 0.141 0.156 0.52 0.56 1.75 1.92

PRoPHET 0.594 0.762 0.143 0.319 0.61 0.52 2.28 2.49
MaxProp 0.646 0.743 0.135 0.261 0.52 0.47 1.72 1.90

MaxDelivery 0.203 0.271 0.139 0.160 1.08 0.71 2.11 1.80
TD-Drone Dijkstra 0.954 0.973 0.540 0.664 0.43 0.45 1.69 1.48

In the case of the squares network and battery changing, the values of the delivery
rate were within the range of 0.166 to 0.646 for the routing protocols Epidemic, Spray
and Wait, PRoPHET, MaxProp, and MaxDelivery. The best delivery rate was 0.954 for the
TD-Drone Dijkstra protocol (Figure 11). The worst result in terms of latency was obtained
for MaxDelivery, and TD-Drone Dijkstra’s average latency was the best, as expected
(Figure 12).

The delivery rate in the case of drone battery charging was between 0.135 and 0.143
for the routing protocols Epidemic, Spray and Wait, PRoPHET, MaxProp, and MaxDelivery.
The maximum delivery rate was 0.54 and was obtained for the TD-Drone Dijkstra protocol.
These low values were obtained because of the large delay due to the battery charge.
The worst results for latency were obtained for PRoPHET and Epidemic, and TD-Drone
Dijkstra’s latency was also the best.
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The comparison between average latencies was performed on the routes where the
delivery was successful for all of the algorithms (66 routes for the case of battery change
and 64 routes in the case of battery recharge).
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Figure 12. Average latency in the squares drone network.

The best delivery rate in all cases was given by the TD-Drone Dijkstra algorithm
because its buffer load was the lowest (the data was loaded only in the stations and drones
belonging to the calculated route). The latency in the case of Dijkstra’s algorithm was high
because it can deliver most of the packages. Generally, the other algorithms can deliver
only on the shorter distances due to buffer restrictions. It is known that Dijkstra’s algorithm
results in the shortest path, and, therefore, the best latency.

The delivery rate was better for the triangles drone network (Figures 13 and 14), with
the exception of the Spray and Wait algorithm in the battery changing case. For PRoPHET,
Max Prop, and TD-Drone Dijkstra in the battery charging case, the latency was significantly
better.

Latency in the case of changing the battery in the triangles drone network was gener-
ally better (Figure 15), with the exception of Spray and Wait, and in the case of Max Delivery
a significantly better latency was obtained. In the case of battery charging (Figure 16), la-
tency was better in the triangles drone network for three algorithms (Epidemic, Max
Delivery, and TD-Drone Dijkstra), and, for the other three algorithms, the latency was
better in the squares drone network.
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In essence, the delivery rate was considerably better for the triangles drone networks,
and latency was generally better for the triangles case. The significant disadvantage
of the triangles drone network is that double the number of drones is needed to cover
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approximately the same surface, and double the number of loading/changing stations is
required, although the total number of fixed communication stations is similar (63 vs. 65).

Epidemic, Spray and Wait, PRoPHET, and MaxProp are classic algorithms used for
DTN. However, in our case, as shown, the time-dependent Dijkstra algorithm adaptation
can be successfully used because since the flight timetables are known. There are numerous
advantages of the TD-Drone Dijkstra algorithm: an exact and optimum route is a priori
calculated, ensuring the fastest time of delivery from departure to destination if the route
exists; a message is not unnecessarily sent in the network if no route exists from departure
to destination; multiple copies of the messages are not unnecessarily spread through drone
and station buffers, resulting in unnecessary overloading of the buffers; and, finally, the
rate of delivery success is maximized. The drawback of the TD-Drone Dijkstra algorithm is
that the route is calculated using the information about the operating drones and stations
at the moment of route calculation and, if a drone or a station from the route is down on
this route, the message does not reach the destination. All the routes passing through the
station or drone that is down are compromised until the fault is detected. Moreover, this
problem reappears when the drone/station is fixed until the moment this information is
updated. However, the chance of this problem occurring is low and, if it appears, it may be
fixed in time following the repair of the drone/station or when the current status of the
network is updated. Using the example of the Spray and Wait or Epidemic algorithms
presented in this paper, any message has the chance to reach the destination even if drones
or stations are down because a copy of the message is spread in the network.

4. Conclusions and Future Work

This paper presents a novel method of communication in quarantined or isolated
areas, or areas with technical damage, using networks of drones that fly based on a well-
established mission plan and schedule, on 2D surfaces covered by squares. Two situations
of drone battery management—charging and battery changing stations—were investigated.

A network of square cells with two drones in each cell was proposed to cover a geo-
graphical area. The drone network was simulated based on input data from experimental
flight tests of a quadcopter using six routing algorithms.

A TD-Drone Dijkstra algorithm (single-copy algorithm) and multiple-copies algo-
rithms were proposed to simulate a Delay Tolerant Network of drones. Results showed a
delivery rate ranging from 0.166 to 0.954 in the drone network with battery changing, and
from 0.135 to 0.540 in the drone network with battery charging. The best latency of 0.43 h
for a drone network with battery changing was obtained using the TD-Drone Dijkstra
algorithm. Thus, the best results were obtained for the TD-Drone Dijkstra algorithm, which
was able to deliver most of the data packages in the shortest time.

The traditional DTN algorithms, such as Epidemic, Spray and Wait, and MaxProp,
produced lower results due to the small number of contacts between nodes, and a low
number of message exchanges. The fastest communication was established for the drone
squares network with battery changing. It was found that the battery change scenario led
to an increase in the delivery rate of 76% compared to the battery charge scenario.

It was found that the battery change scenario led to an increase in the delivery rate of
~200% compared to the battery charge scenario.

The fastest communication was found for the drone triangular network with battery
charging, and for the drone square network with battery changing. However, the drone
square network is considerably cheaper than the drone triangular network. Thus, if
cost is not an issue, the triangle network of drones may be implemented because better
performances can be achieved. However, if there is a budget constraint, then the square
network type is more suitable.

In future work, we will aim to apply this network of drones to parcel delivery during
emergencies in remote quarantined zones.
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Abstract: Unmanned Aerial Vehicle (UAV) networks are an emerging technology, useful not only
for the military, but also for public and civil purposes. Their versatility provides advantages in
situations where an existing network cannot support all requirements of its users, either because of
an exceptionally big number of users, or because of the failure of one or more ground base stations.
Networks of UAVs can reinforce these cellular networks where needed, redirecting the traffic to
available ground stations. Using machine learning algorithms to predict overloaded traffic areas, we
propose a UAV positioning algorithm responsible for determining suitable positions for the UAVs,
with the objective of a more balanced redistribution of traffic, to avoid saturated base stations and
decrease the number of users without a connection. The tests performed with real data of user
connections through base stations show that, in less restrictive network conditions, the algorithm
to dynamically place the UAVs performs significantly better than in more restrictive conditions,
reducing significantly the number of users without a connection. We also conclude that the accuracy
of the prediction is a very important factor, not only in the reduction of users without a connection,
but also on the number of UAVs deployed.

Keywords: unmanned aerial vehicle; UAV positioning; machine learning; wireless communications

1. Introduction

Unmanned Aerial Vehicle (UAV) networks are receiving increasing attention mostly
due to their potential in a number of innovative services and applications, which are useful
not only for military, but also for public and civil purposes. They are useful, mainly due to
their versatility and dynamic nature, as their nodes and links can change, along with their
positions, according to their needs. For this reason, they are a good candidate to reinforce
existing networks when they fail or are overloaded [1].

The beauty of UAV networks lies in the fact that the position of the network nodes,
the UAVs, can be controlled, which can be dynamically changed to optimize the network
performance, and according to the users’ needs and their mobility. To find the best place-
ment for the UAVs, the UAV network should be able to extend the base network with
the limited capacity, by either moving the UAVs according to the needs, in real-time, or
predicting ahead of time where the users will be and how they will move. The first method
has the advantage of allocating exactly what is needed for the current situation, but has the
disadvantage of the delays associated with UAVs positioning. The second method does
not have any delays, as it can mobilize the UAVs ahead of time and optimize their position
according to predicted movements; however, the accuracy of the prediction will influence
how well the UAV network can help the existing network. Moreover, the volatile nature
of the UAVs network, and the fact that UAVs are energy-restricted nodes, require that
the placement needs to be determined with a low-complexity approach and be adapted
over time.
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Considering the previous requirements, this paper proposes an algorithm to calculate
the best positions for UAVs in the network, in order to provide a connection to as many
users as possible, satisfying their services and requirements. The algorithm predicts,
through machine learning approaches the users’ position, and according to their needs, it
predicts the position of the UAVs through machine learning, according to the predicted
requirements and location.

Several machine learning approaches are tested to determine the users’ positions.
Random Forest and Gradient Boosting have the best results, while Lasso, Ridge and
ElasticNet are tied at the last place. In terms of the time to train and predict, which is a
very important metric, Random Forest has a training time almost five times higher and a
prediction time 36 times higher, than Gradient Boosting.

The proposed algorithm for UAVs positioning is tested with real data of the users’
location and their connection through base stations. The test comprises the influence
of several parameters, such as the base station bandwidth and UAVs network range, to
understand the optimal conditions for the use of a UAV network to extend an already
existing network of ground stations, and in which situations should the algorithm be
used. The results show that the algorithm performs better in less restrictive network
conditions, and that the accuracy of the prediction is indeed an important factor to improve
the users connectivity.

The main contributions of this paper are summarized as in the following:

• Test a set of machine learning approaches for user mobility prediction with real sets
of users and their location;

• Proposal of a UAV positioning algorithm able to identify overloaded areas and areas
that can receive more user’s traffic, considering the users’ positioning, users’ mobility
and each users’ needs;

• Build of a bridge of UAVs that is able to transport the traffic through underloaded
areas, in a dynamic approach and updated over time;

• Test the approach with the real set of users and with new metrics to understand the
usefulness of UAVs to help in the transport of the users’ traffic.

The rest of this paper is organized as follows. Section 2 presents the related work.
Section 3 describes the problem and our proposed approach. Section 4 explains the method-
ology for choosing the most suitable machine learning algorithm for the users’ prediction.
Section 5 describes the proposed algorithm, while the results are presented in Section 6.
Finally, Section 7 concludes this paper and presents the future work.

2. Related Work

In UAV networks, the coverage optimization is always a challenge that needs to be
addressed. The network coverage optimization problem has been confronted by a number
of different research works, resulting in multiple possible solutions. Galkin et al. [2]
investigated how different UAV network parameters, such as density and height above
ground, as well as environmental parameters, such as the building density and building
heights, can influence the coverage probability. Kuhlman et al. [3] proposed an automated,
physics-aware planner that made use of an information value map for path planning with a
Markov Decision Process-based approach. Lyu et al. [4], in a scenario with no ground base
stations, proposed a solution where UAV-mounted mobile base stations provide wireless
connectivity to a number of ground terminals. The algorithm places a priority on ground
terminals on the boundary, to maximize coverage efficiency. Reina et al. [5] presented
a solution based on a multi-sub-population genetic algorithm and compares it to single-
population genetic algorithms and other meta-heuristic optimization algorithms, and found
that the multi-sub-population genetic algorithm achieves better performance than the other
options. Sabino et al. [6] also proposed a genetic algorithm, in this case, a Multi-Objective
Evolutionary Algorithm, to optimize the UAV node placement considering minimization
of the number of UAVs, assuring the necessary bandwidth and a limited number of UAVs.
Khan et al. [7] proposed a system where coverage of an area is given to a UAV that can
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handle the specific quality of service requirements. Each UAV’s capability to provide the
required quality of service is evaluated through a reputation-based auction mechanism.
They also address the real-time monitoring framework challenge present in this solution
by using a permission blockchain architecture considering Support Vector Machine.

Other works also take into account the energy management of the UAVs as an im-
portant component to the network coverage optimization. Peng et al. [8] proposed an
algorithm based on an Echo State Network to predict trajectories of user equipments, and a
Kuhn–Munkres-based algorithm to find the most energy-efficient trajectories for the UAVs.
Liu et al. [9] used Deep Reinforcement Learning for both the control of the UAVs and for
controlling energy consumption, communications coverage and connectivity. The work
in [10] proposed a framework to derive the localization error of terrestrial nodes in urban
areas when using UAVs as anchor nodes. Such framework includes height-dependent UAV
to ground channel characteristics and a highly detailed UAV energy consumption model.
Following a different problem in [11] the authors derive a model to minimize the total
UAV energy consumption while satisfying the communication throughput requirement of
each ground user. The model includes both propulsion energy and communication-related
energy. The work in [12] presents a detailed survey on the applicability of ML techniques
for UAV-based communications.

However, all these works consider a static network of UAVs. In a real network, users
are moving, and the needs of UAVs also move with the users. This paper proposes an
approach to predict this movement, and move the UAVs in advance to their best locations.

3. Problem Statement

In a network, traffic is not uniformly distributed across all base stations, with people
naturally migrating more to some areas and less to others. This will cause some base
stations to have more users than they can handle, while other base stations are largely
unused, causing connection problems to some users, even though the network as a whole
has more than enough resources to accommodate all users.

By identifying where the network will be overloaded, we will redistribute the traffic of
overloaded areas to places that have a lesser strain on the network, in an attempt to make
the distribution of users throughout the city as uniform as needed. This is the purpose of
the UAVs in the network: to divert the traffic to underloaded areas, so that all users can be
connected with their services and requirements. The UAVs will then be placed in the best
areas to redistribute the traffic in the network, as illustrated in Figure 1.

Figure 1. UAV assisted communication network.

To identify the overloaded areas in the network preemptively, we will use a machine
learning-based prediction algorithm. Several machine learning techniques are tested, and
the one with the best performance will be chosen. To be able to train it, we need a suitable
dataset that has records of a variety of users with information about the position, connection
type and quality, with fairly frequent updates, like once every 15 min. Furthermore, the data
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should also have detailed information about the positioning of the ground base stations,
which service they provide, their capacity and the area they can provide connection to.
Finally, this data should contemplate a location like a big city, with 50 to 100 km2.

4. Position Prediction Approach

The real data used in the user position prediction results from a large-scale research
initiative called Mobile Data Challenge (MDC) [13,14]. The dataset was collected with the
Lausanne Data Collection Campaign (LDCC), which was responsible for providing close
to 200 volunteers with data collection software on their smartphones. The data collection
started in October 2009 and finished in March 2011.

Using this dataset, we extracted the information necessary for training, which con-
sisted of the position of the users over time. We focused all the data on a circular area in
the city of Lausanne with a 5 km radius. This area was then divided into rectangles of
approximately 200 m horizontally and 140 m vertically.We also divided the data according
to its date: month, weekday and hour.

The end result is a four-dimensional matrix in which the first dimension comprises
the coordinates that represent the rectangular section, the second dimension is the month,
the third is the weekday and the fourth is the hour, each cell containing a number that
represents the quantity of users. Figure 2 shows an example of the matrix for an area in
May, where each line represents a different weekday, by the numbers 0 to 6, and each
column represents a different hour, from 0 h to 23 h.

Figure 2. Example of the number of users in the matrix format.

4.1. Feature Selection

To perform feature selection, we use a method called Boruta [15], which compares
the features to a randomized version of themselves, called shadow feature, only deeming
them as useful if the features can perform better than their shadows. Performing better
than the shadow becomes a very definite threshold for this method, that does not need
any human input. Besides that, the algorithm also runs several times, to understand how
each feature performs favorably and how many times it does not. Since the result for each
run is a “useful” or “not useful” criterion, the results follow a binomial distribution and
the features are positioned on it. Boruta then divides the binomial distribution into three
different areas which are the features to drop, features to keep tentatively and features
to keep. The features to drop and features to keep areas are defined by being the tails of
the distribution (the extreme portions of the distribution), where each tail represents 0.5%
of the distribution. Features in the features to drop area should be dropped as they have
little value as predictors. Features to keep should be kept, as they are very useful for the
prediction. The features to keep tentatively are the features that the Boruta method could
not guarantee that they are useful, and should be used according to the discretion of the
person building the model. In the case of this dissertation, those features will be kept, since
the number of features is not very high.

The Boruta algorithm is executed using a random forest regressor as the estimator,
used to evaluate if a shadow feature is better or not than the feature, for 20 iterations. The
results can be seen in Table 1.
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Table 1. Boruta results.

Feature Decision

Month Drop
Weekday Keep tentatively
Hour of the day Keep
Latitude Keep
Longitude Keep
Last known value Keep

Features in the keep tentatively category are not guaranteed to be useful, and they are
left for human responsibility. In this case, the feature “Weekday” was kept.

4.2. Machine Learning Algorithms and Hyper-Parameters

The machine learning methods used in the users’ mobility prediction are shown in
Table 2. They are separated into three different categories, which are Linear, Ensemble and
Deep Neural Network. Ensemble learners use simpler machine learning algorithms, like
the decision trees in this case, and improve them either by averaging the values of several
algorithms, or by continuously adjusting bias values on the course of several iterations of
the same algorithm.

Table 2. Machine learning in the users’ mobility prediction.

Method Type

Lasso Linear
Ridge Linear
Elastic Net Linear
Random Forest Ensemble
Gradient Boosting Ensemble
Neural Network Deep Neural Network

For all the machine learning algorithms except neural networks, the sklearn python
library is used. This library provides implementations of the algorithms with default
values on most algorithms that were not changed, unless it is specifically mentioned in the
remaining manuscript.

4.2.1. Lasso, Ridge and Elastic Net

The sklearn python library offers implementations of these three algorithms with built-
in cross-validation. This means that the algorithm uses the cross-validation capabilities to
select the best hyper-parameters, in order to build the best model according to the available
data. therefore, the choice of the hyper-parameters was left entirely to the responsibility of
the algorithm.

4.2.2. Random Forest Regressor

The random forest uses a number of decision trees with various sub-samples of the dataset;
it then uses the average of them all to improve the predictive accuracy and to control over-fitting.
To decide on the value for the maximum depth and the number of estimators, an empirical
research was done. The algorithm was trained using various values of both max depth and
number of estimators which can be seen in Figures 3 and 4, respectively.

For the max depth, the optimal value seems to be 21, even though the differences in
the performance start to be very small after 15. It is worthwhile to note that a higher depth
also implies a bigger training time; therefore, if a small training time is needed, a smaller
value of depth, like 15, might also be acceptable, as the difference in performance does not
make a significant impact.
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Figure 3. Comparing Root-Mean-Square Error (RMSE) values with different values of max depth for
the Random Forest algorithm.

Considering the number of estimators, the results are more irregular, but the number
which offers the best performance is 650, at the cost of a significantly bigger training time
when compared to, for example, using 150 estimators (4 h versus 52 min).

Figure 4. Comparing RMSE values with different values of estimators for the Random Forest algorithm.

4.2.3. Gradient Boosting Regressor

Gradient boosting is an ensemble machine learning technique that uses a number of
weaker prediction models to build a stronger prediction model. For each model, it tries
to find a new estimator that would reduce the error of each prediction. This estimator
is adjusted iteratively, going through each prediction model. The final result is a single,
stronger, prediction model, that predicts with higher accuracy than any of the weaker
prediction models that it uses. Like the Random Forest algorithm, some parameters will
also be tested empirically, to research their impact on the performance of the model.

Figure 5 shows how the three available loss algorithms perform, where “ls” stands
for least squares regression, “lad” stands for least absolute deviation and “huber” is a
combination of the two. While the “huber” function performs notably worse, “lad” and
“ls” have more similar performances, but “ls” achieve better performance. Figure 6 shows
that the best value for the max depth is 8, while Figure 7 shows that 150 is the number of
estimators that have the best performance.
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Figure 5. Comparing RMSE values with different loss algorithms for the Gradient Boosting algorithm.

Figure 6. Comparing RMSE values with different values of max depth for the Gradient Boosting algorithm.

Figure 7. Comparing RMSE values with different values of estimators for the Gradient Boosting algorithm.

4.2.4. Neural Networks

The neural network uses nodes, which is where the computation happens, divided
into layers. Besides the input layer and the output layer, a neural network may have several
layers, each one with several nodes. To decide both the number of layers and the number
of nodes in each layer, several different models were tried and evaluated.

In Figure 8 we can observe the impact that the number of layers has on the RMSE
values. While it does not have a large variation, using four layers seems to consistently
offer the best results.
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Figure 8. Comparing RMSE values with different number of layers and nodes per layer for the
neural network.

In Figure 9 we use four layers for each model, but varying the number of nodes from
10 to 80. Here in this figure, the variation is also very small, but using 40 nodes gives the
best RMSE score.

Figure 9. Comparing RMSE values with different number of nodes per layer for the neural network.

Another aspect that impacts the performance of a neural network is the batch size.
Figure 10 shows the variation in performance according to the batch size. The variation
is highly irregular, not converging to any value, as shown in Figure 10. Since it is not
practical to test every possible value for the batch size, the best option is to try to find a
local minimum that offers good performance when compared to the other local minima.
Therefore, a batch size of 2500 offers the best performance value.

Figure 10. Comparing RMSE values with different number of batch size for the neural network.
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With these results, we can come to the conclusion that the best neural network model
for this data is one with four layers, with 40 nodes each, and with a batch size of 2500. This
model is the one used in the performance tests in the following section.

4.3. Performance of the Machine Learning Algorithms

To compare the performance of the machine learning algorithms, we use metrics such
as Mean Absolute Error (MAE), Root-Mean-Square Error (RMSE), R-squared (R2) as well as
training and prediction times. We used 80% of the dataset for training, and the remaining
20% for testing, i.e., 13 months for training and 3 months for validation, with the data being
shuffled previously.

In Figures 11–13 all the algorithms are compared according to their performance with
the RMSE, R2 and MAE metrics, respectively. Random forest and Gradient Boosting have
the best results, while Lasso, Ridge and ElasticNet are tied at the last place. All algorithms
have RMSE values significantly higher than the MAE values, indicating a high variation on
the error values with a significant portion of them being higher than the average. Random
forest and Gradient Boosting have the best results, while Lasso, Ridge and ElasticNet are
tied at the last place. All algorithms have RMSE values significantly higher than the MAE
values, indicating a high variation on the error values with a significant portion of them
being higher than the average.

Another important metric is the time required for training and predicting. Table 3
shows these values when training with approximately 5 million samples of data. Random
Forest, that performs slightly above Gradient Boosting, has a training time almost 5 times
higher and a prediction time 36 times higher. If prediction speed is a priority, then Gradient
Boosting might be the best option, rather than Random Forest.

Figure 11. Performance of the algorithms according to their RMSE value.

Figure 12. Performance of the algorithms according to their MAE value.
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Figure 13. Performance of the algorithms according to their R2 value.

Table 3. Training and prediction times for all tested algorithms.

Algorithm Training Time (s) Prediction Time (s)

Random Forest 14,242 179
Gradient Boosting 2842 5
Neural Network 323 23
Lasso 28 0.02
Ridge 4 0.02
ElasticNet 27 0.02

4.4. Prediction Results

Through the prediction approach, the Random Forest predictor was used to generate
a user distribution map. Figure 14 shows the real values for the 15–16 h interval, while
Figure 15 shows the predicted values for the same interval. While the prediction shows
user activity in the same regions than the real values do, it still misses some of the regions
with low user values. For example, in Figure 14 there is a clear trace of users along a road
in the top left region, which is not present in the predicted values. This is due to the low
amount of users and data.

Figure 14. Real values of the number of users on an April Monday at 15–16 h.
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Figure 15. Prediction of the number of users on an April Monday at 15–16 h.

5. UAV Positioning for Network Traffic Redistribution
5.1. UAVs as Traffic Redistributors

Aerial UAVs are highly mobile and dynamic, which make them excellent to be used as
traffic redistributors: they can follow the users as they move throughout the day. In order
for them to redistribute traffic, they need to build a bridge of UAVs from the overloaded
area to the target area. UAVs will not serve as base stations, but only as extensions of
the already existing base stations. With this purpose, there will be UAVs with either one
of these two functions: connecting to the users or providing interconnection between
the target base stations and the UAVs responsible for connecting to the users. UAVs
that connect to the users will be in the areas that are overloaded, moving with the users’
movement prediction, and will be the ones responsible for providing connection to those
users. The UAVs that provide interconnection will transport the traffic towards the target
base station in a less populated area. The number of UAVs will depend on the distance
between the overloaded area and the target area, the range of the UAVs, the users’ needs
and the links capacity according to the distance.

Each UAV is limited in its capabilities. The number of users each one can serve is
limited by its bandwidth, transmission speed and services required by the users. While
the bandwidth and transmission speed are fixed for each UAV, even though transmission
speed might vary according to the number of interconnecting UAVs, the services required
by the users will most likely differ from user to user. This variation will be taken into
account when calculating the capacity of each UAV, and also the number of UAVs needed
to satisfy the traffic needs of each area.

5.2. UAV Positioning Algorithm

The UAV positioning algorithm is responsible for identifying overloaded areas and
areas that can receive more user’s traffic: through the mobility prediction of the users
and the location of the base stations, decide to which areas traffic will be redirected and,
therefore, decide the best placement of the UAVs.

The algorithm proposed in this paper has three main steps. After predicting the
number of users in each area:

1. It identifies overloaded areas and iterates through all overloaded areas;
2. It finds the nearest areas to offload traffic; and
3. It builds a bridge of UAVs that transports the traffic to those areas.
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5.2.1. Identifying Overloaded Areas

To identify overloaded areas, the average user bandwidth requirements as well as the
available bandwidth per base station are required to be known. With these two values, we
can determine the maximum number of users per base station and use it to determine, for
each base station, the number of users they can provide a connection to. Consequently, we
can also calculate and predict, for each area, the number of users without access to enough
bandwidth, if any. Algorithm 1 is proposed to run the previous steps.

Algorithm 1: Number of predicted users without a connection.
Output : Number of users in excess in each area (extra_users_area) and the number of users

connected to each base station (bs_users)
1 for area in All_Areas do
2 users = get_users_in_area(area) ; // Using prediction algorithm to get the

number of users
3 while users > 0 and not_all_base_stations_are_full(area) do
4 for base_station in base_stations_in_this_area do
5 if users == 0 then
6 exit loop;
7 end
8 if base_station_has_bandwidth(base_station) then
9 users -= 1;

10 bs_users[base_station] = 1;
11 end
12 end
13 end
14 extra_users_area[area] = users;
15 end

The algorithm assigns a base station to each user that is predicted to be inside it, until
all base stations are saturated or until all users are distributed. Overloaded areas can now
be predicted and used to distribute the UAVs.

5.2.2. Finding the Nearest Areas to Offload Traffic

After identifying an area with predicted users in excess, we need to offload their
traffic into other areas that can handle the traffic increase. For this purpose, we propose
Algorithm 2 that finds a number of available areas closer to the overloaded area that
requires the traffic offload. This number can be changed to define how many areas the
algorithm will return to forward the traffic to, to reduce the probability of overloading any
areas with this redistribution.

Algorithm 2: Areas available to receive more traffic.
Input :Overloaded areas and amount of extra users per area
Output :Areas available to receive offloaded traffic (list_of_available_areas)

1 for area in All_Areas do
2 distance = get_distance_between(overloaded_area, area);
3 available_user_spots = get_available_spots(area);
4 if available_user_spots > users_spots_available_required then
5 list_of_available_areas.add( (distance, area) );
6 end
7 end
8 sort_by_distance(list_of_available_areas);
9 return get_first_n_elements_of_list(n, list_of_available_areas);

The loop iterates through all areas, from now on denominated as target areas, cal-
culates the distance from the current area to the target area, and checks if it can receive
the necessary traffic. If it can, then we add a new tuple to the list created, containing the
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distance calculated before and the identifier of the target area. When the loop finishes, we
sort the list by the distance in order to select only the n closest target areas, and return
them in a list format. Since each area may have multiple base stations covering them and
two different areas may be covered by the same base station, it is possible that the areas
returned will not be able to support all the traffic required, which will require preventive
measures when using the output of Algorithm 2.

With this list, we can then proceed to redistribute the users through the areas, with
the help of the aerial UAVs.

5.2.3. UAVs Distribution

To redistribute traffic, UAVs are used as a path to other areas. The number of UAVs
used should be minimized when possible, which requires the use of UAVs that were
already placed before to serve as or complement paths to new areas. To avoid overloading
any UAVs, each UAV has a counter on how many users it supports (considering the users’
requirements), so if it is needed, a reinforcement UAV is deployed. For this purpose, for
every UAV that has been placed, there is a list of all other UAVs with a connection, not only
directly, but also indirectly through other UAVs. Therefore, whenever Algorithm 2 returns
a new area aiming to redirect the traffic, first it always checks if an available UAV path to
the area already exists. If that is not the case, then we search for the shortest available path
to find a UAV that has a connection closest to the target area. When this UAV is found,
the amount of UAVs needed to reach the target area is then calculated according to the
distance to the target area and the range of each UAV. UAVs are then placed in a straight
line in intervals of length equivalent to their range. Finally, a list is created, which registers
the position of every UAV, and the UAVs connected to.

5.2.4. Uniting All Parts

With all key parts defined before, the entire system will now be integrated. In this
integration, it is important to assure that the number of users connected to each base station
will not surpass the ones that it can receive. The procedure to perform the integration
and place the required UAVs to cover all predicted users in the network is described
in Algorithm 3.

The algorithm contains a loop through all areas to verify if there are any users left
without a connection, and if there are attempts to distribute them through other available
areas. The list with the target areas is found using Algorithm 2, and then the algorithm
iterates through all target areas, to check if a UAV route is already available, i.e., a path
made of UAVs previously built. If this is not the case, the algorithm finds the UAV in the
network closest to the target area (line 9) and, from it, it builds a path of UAVs to the target
area. After a UAV path is established, the algorithm begins to distribute the user’s traffic
through the base stations in the target area (line 15 to 26), and ends when all user’s traffic
has been redirected to that target area, or if all base stations are already at their maximum
capacity (considering each user’s traffic).

After the loop through all target areas, the distribution may not be able to provide
connection to all predicted users in the current area, caused by two or more target areas
sharing base stations, therefore providing less bandwidth availability than initially as-
sumed. When this occurs, the algorithm performs the process again for the current area,
finding other target areas and distributing the traffic through them, until there are no users
left without a connection or all base stations are at their maximum capacity. The overall
workflow of the proposed system, which encompasses all the algorithms presented before,
is illustrated in Figure 16.
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Algorithm 3: Location of the UAVs for traffic redistribution.
Input :Number of users in excess in each area (extra_users_area) and predicted number

of users per base station (bs_users)
Output :UAVs distributed across the areas

1 for area in All_Areas do
2 while extra_users_area > 0 do
3 available_areas = get_available_areas(n) ; // using Algorithm 2
4 add_UAV(area);
5 for available_area in available_areas do
6 users_to_distribute = get_amount_of_users_to_distribute(n, extra_users_area);
7 if UAV_route_not_available(area, available_area) then
8 closest_UAV, number_of_UAVs = get_closest_UAV(area, available_area);
9 for i in range(1, number_of_UAVs) do

10 UAV_position = calculate_UAV_position(closest_UAV, available_area,
i);

11 add_UAV(UAV_position);
12 end
13 end
14 while users_to_distribute > 0 and not_all_base_stations_are_full(available_area) do
15 for base_station in base_stations_in_this_area do
16 if users_to_distribute == 0 then
17 exit loop;
18 end
19 if bs_has_available_bandwidth(bs) then
20 extra_users[area] -= 1;
21 users_to_distribute -= 1;
22 bs_users[base_station] += 1;
23 end
24 end
25 end
26 end
27 end
28 end

Finally, it is important to mention all the signaling required to make such a system
to work. First, and to have an up-to-date ML model, the system needs to be constantly
collecting the number of users per cell. This information can be done using tracking systems
or the user’s information that can be gathered by the cellular stations. Such information
must be gathered in a central entity that will be responsible for the use of the selected
ML model. For every prediction stage, the updated positions must be transmitted to the
UAVs in order to cope with overcrowded cells, which may include the deployment of new
UAVs, the removal of unnecessary UAVs or simply the re-positioning of the UAVs in use.
Resuming, in a real-time environment we have a system where the user’s positioning is
gathered at a central entity (just like the system that gathered the MDC dataset), which is
then used to periodically train the model. In that case, the UAV placement algorithm will
be determining the best positions of the UAVs with historic and current users’ location and
mobility, and will update their positions upon new placement results.
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Figure 16. Overall workflow of UAV positioning system.

6. Performance Assessment

This section evaluates the performance of the algorithms by redistributing traffic
through those UAVs, and checking how many users are left without a connection. We
will now consider the real position of the users to check if the UAVs are placed in the best
positions, that is, if the users’ mobility and location prediction were performed with good
performance. The redistribution takes into account the positions of the base stations and
UAVs, and tries to redistribute the traffic according to the UAVs distribution as a result of
the UAV positioning algorithm.

The first step is to distribute the users through the base stations. After this process,
the number of users in excess and users connected to each base station are known, and
therefore, we should distribute the users in excess to other available base stations using the
UAVs placed before.

To evaluate the performance of the proposed approach, a new metric is created,
henceforth called score. To calculate this score, we will use the number of UAVs as well as
the number of users left without a connection. This process will be explained further in the
following section.

6.1. Score Formula

The proposed score formula takes into consideration the number of UAVs used and
how many users were left without a connection. To calculate the final score, we start with
0 points, which is the best possible score. Then, we will add the number of users in excess
and UAVs. However, one user in excess does not necessarily mean one more point to the
score, because we can give different weights to the extra users or the UAVs depending on
what we want to prioritize. For example, if the priority is to use the least amount of UAVs,
then each UAV may add two or three points to the total score while each extra user only
adds half or one point. On the other hand, if the priority is that no user is left without a
connection, then each extra user may add two or three points while each UAV only adds
half or one.
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The results will be shown with different weights for the extra users (wu) and number
of UAVs (wd), in order to reach the best conclusion regardless of the priority. The different
score formulas are the following:

• Balanced—both inputs have the same weight, serving as a good baseline when there
is not any special focus on either reducing the number of users without a connection
or the number of UAVs to be placed (wu = wd);

• User focused—a bigger weight is given to the number of users without a connection,
while a smaller weight is given to the number of UAVs (wu = 4 wd);

• UAV focused—the bigger weight is used for the number of UAVs (wu = 0.25 wd).

Thus, the score is given by

Score =
(wd · nd + wu · nu)

∆w
, (1)

where nd represents the number of UAVs used, nu the amount of users with coverage by
the extra users, and ∆w a normalization factor.

To reflect about the usefulness of the UAV positioning algorithm, the score is also
calculated before applying the algorithm, where the number of UAVs will inevitably be
0, so only the number of extra users will be used for the calculation. We then calculate
the difference between the beginning and the end of the redistribution, and measure the
percentage by which the score changed. When a bigger weight has been given to the
number of UAVs, the score may actually be higher after applying the algorithm, and the
percentage will be negative.

6.2. Results

To better understand the strengths and weaknesses of the proposed approach, tests
were performed changing the base station available bandwidth, the user bandwidth and
the ranges of the UAVs. For each set of parameters, the score was calculated through the
three strategies presented before.

The placement algorithm was executed five different times, corresponding to 5 h,
from 14h to 19h, and the score results were averaged. The data used in the performance
assessment was taken from the dataset used to train the prediction algorithm. The predic-
tion is executed hourly, using the Random Forest method, as well as the UAV positioning
algorithm, calculating the score for every hour, and averaging it in the end. It is assumed
that the users require a fixed amount of bandwidth for the duration of the hour, but this
value may change in the subsequent hour.

The bandwidth required for each user is assumed to be randomly selected with a
given probability. For example, for the standard example of an average user bandwidth of
50, the possible values are 25, 50 and 75, all with a probability of 33.3%. The bandwidth has
no explicit unit, but they all use the same unit and are therefore comparable to one another.

The results will show the score obtained or the percentage decrease when comparing
the network before and after applying the algorithm. Each mark corresponds to the mean
of 5 runs and its 95% confidence interval (the confidence intervals are small, and may not
be visible in some of the points).

6.2.1. Base Station Bandwidth

This sub-section evaluates the impact of the base station bandwidth. For this set of
results, the average user bandwidth is 50 and all UAVs are considered to have a range
of 240 m.

The bandwidth available in each base station is a very strong factor in how high
the score is, with the biggest score values coming from lower values of the base station
bandwidth, as observed in Figure 17. This is due to a higher number of UAVs placed, since
more user’s traffic will have to be redirected; it is also due to a lower tolerance for mistakes
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in the prediction, since there will be a lower number of base stations that can receive traffic
from other areas.

Figure 17. Score of the algorithm with different values of base station bandwidth.

The algorithm is also more efficient for larger values of base station bandwidth,
with higher values also having a stronger percentage decrease in the score, as observed
in Figure 18. However, for all types of score, the trend is the same: the actual values
are very different depending on the score type. In the “user focused” type, the score
always decreases, never going into negative values, where the same cannot be said for
the “balanced” type, where the percentage goes negative towards the lowest values of the
base station bandwidth. Finally, for the “UAV focused” type, the values tend to be worse,
going into negative values when the base station bandwidth values reach 500 or less. The
efficiency of the algorithm using this score is also lower overall, when compared to the
other two. This suggests a sharp increase in the number of UAVs placed when the base
station bandwidth decreases, caused by more users needing traffic redistribution and also
more routes created, since each base station will also accept less traffic.

Figure 18. Percentage decrease of the score with different values of base station bandwidth.

6.2.2. Average User Bandwidth

On the user bandwidth evaluation, the bandwidth of the base station was set to 1000,
and the average user bandwidth varied between 33 (each user with a value of 25 with 67 %
probability, and 50 with 33% probability), 50 (with 25, 50 and 75 all with equal probability),
and 75 (each user consuming either 50 with 33% probability or 75 with 67% probability).
All UAVs are considered to have a range of 240 m.

The variation of the average user bandwidth has the opposite impact when compared
to the base station bandwidth, as it just increases or decreases the number of users that
fit into each base station. Naturally, as the average user bandwidth decreases, so does
the score, since more users will be able to fit in the same number of base stations, as
shown in Figure 19. With an increase in the average user bandwidth, less users will fit into
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each base station, increasing the number of users without a connection, and consequently,
the number of UAVs placed. With higher values of average user bandwidth, less base
stations will be available and less users will be hosted, therefore decreasing the tolerance
for prediction errors.

Figure 19. Score of the algorithm with different values of average user bandwidth.

Again, when comparing the decrease percentage (Figure 20), the results are very
similar to what happens with the base station bandwidth variations. In this case, as the
average user bandwidth consumption increases, the decrease percentage of the score gets
lower. Moreover, it is noticeable that, with the “UAV focused” score, the percentage
decrease is substantially lower than the other two types, which are very similar overall.
This suggests that the main factor for the lower performance is the high number of UAVs
placed, since with more users without a connection, and less availability on base stations
to receive traffic, more UAV paths have to be built to redistribute the traffic.

Figure 20. Percentage decrease of the score with different values of average user bandwidth.

6.2.3. UAV Coverage Range

This test evaluates the influence of the UAV coverage range, where the range varied
between 100, 240 and 500 m. The base station bandwidth was set to 1000 and the average
user bandwidth is 50 with 25, 50 and 75 as possible values, all with equal probability.

The UAV coverage range will determine two key aspects: the number of UAVs needed
to reach a remote base station, which will influence the number of UAVs needed in total;
and also how tolerant to prediction errors the positioning of the UAVs is, which will
influence the number of users left without a connection. With this in mind, we can expect
that scores will decrease as the ranges increase, as shown in Figure 21.
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Figure 21. Score of the algorithm with different values of UAV coverage range.

In the decreased percentage of the score, illustrated in Figure 22, similar results are
observed. The decreased percentage of the score increases with the range. The UAV
coverage range highly influences the performance, since the larger it is, the more tolerant
the network is to bad UAV positioning originated through inaccurate prediction. While it
does not change the amount of users’ traffic each base station can receive or the amount of
traffic that exists, it changes how well the network can adapt to the current situation and
user distribution, and also the number of UAVs placed.

Figure 22. Percentage decrease of the score with different values of UAV coverage range with a base
station bandwidth of 1000.

6.2.4. Predicted Users Vs Real Users

To further illustrate the situation and the conditions in which the algorithm operates,
Figures 23 and 24 show the positions and number of users without a connection in vari-
ous situations. Figure 23 shows them as the machine learning algorithm predicted, and
Figure 24 shows the real number of users without a connection after the traffic distribution,
and the positions of the UAVs. The most important aspect to take from the figures is that
the prediction algorithm returns less users without a connection than in the reality, which
will inevitably lead to a significant number of users without a connection after applying
the UAV positioning algorithm.
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Figure 23. Prediction of users left without a connection (color marks).

Figure 24. Users left without a connection (color marks) and positioning of the UAVs after the traffic
redistribution (black marks).

As illustrated in Figure 24, there is still a significant number of areas that are not
directly covered by a UAV, meaning that the prediction algorithm failed to correctly
determine the number of extra users in those areas. While this can be improved by the use
of a dataset with a large number of users, there are also other options that can lessen the
impact of a less accurate prediction. One option is to reduce the threshold for the number
of users needed until an area can be considered overloaded. Doing this will increase the
number of UAVs placed, but also reduce the impact the prediction algorithm will have
when it underestimates the number of users in an overloaded area. Another option is to
allow UAVs to make some moving decisions after they are placed. This means that UAVs
will be able to move to neighbouring areas if the movement would be beneficial overall.

Furthermore, we also investigated how many users each UAV was connected to, on
average, which is illustrated in Figure 25. Using real values will generally achieve a much
larger number of users per UAV, since the amount of users that benefit from the UAV
placement will be significantly larger than the extra amount of UAVs placed. However,
the same does not apply for more restrictive network parameters, as the number of extra
UAVs placed starts to be higher than the amount of users it benefits, causing a decline in
the number of users per UAV.
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Figure 25. Average number of users per UAV when using real values versus predicted values.

7. Conclusions

This paper presented an approach to predictively place and move aerial UAVs in
a communication network to extend and balance the users’ traffic. It investigated the
performance of multiple machine learning algorithms to predict the users’ location and
movement. The performance results showed that the random forest and gradient boosting
presented the best performance, with random forest having a bigger prediction and training
time. Moreover, this paper designed and developed a UAV positioning algorithm that
returns the positions of the UAVs in a UAV network, with the objective of extending an
existing network and balancing the traffic load. This algorithm was tested with real and
predicted data. We concluded that the prediction algorithm slightly underestimates the
number of users in most areas, causing the UAV positioning algorithm to position less
UAVs than it should, and in turn increasing the amount of users left without a connection.
The UAV positioning algorithm performs favorably for less restrictive network conditions.

Future work will focus on using the prediction algorithm on areas with larger number
of users, and study the impact that the signal propagation, interference, noise, fading and
other impairments of the wireless medium have on the UAV network created by the UAV
positioning algorithm. We will also consider the UAV energy and power consumption in
the UAV placement algorithm, as well as the cost of its replacement.
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Abstract: Access to broadband communications in different parts of the world has become a priority
for some governments and regulatory authorities around the world in recent years. Building new
digital roads and pursuing a connected society includes looking for easier access to the internet.
In general, not all areas where people congregate are fully covered, especially in rural zones, thus
restricting access to data communications and inducing inequality. In the present review article, we
have comprehensively surveyed the use of three platforms to deliver broadband services to such
remote and low-income areas, and they are proposed as follows: unmanned aerial vehicles (UAV),
altitude platforms (AP), and low-Earth orbit (LEO) satellites. These novel strategies support the
connected and accessible world hypothesis. Hence, UAVs are considered a noteworthy solution since
their efficient maneuverability can solve rural coverage issues or not-spots.

Keywords: aerial communication; FANET; not-spots; stratospheric communication platform; UAV;
UAV-assisted network; 5G

1. Introduction

Coverage indicators are essential for perceiving the reliability of the network in a
determined area. Specifically, each country defines the best practices to determine the
covered zones for their boundaries and, therefore, the appropriated thresholds associated
with frequency bands. Commonly, most mobile operators offer coverage on the main urban
area [1], limiting the countryside to lower bandwidth, thus reducing connection speeds [2].
Nevertheless, the interest in providing more connectivity in rural zones has grown in the
last decade since economic development will be an immediate fact.

Extensive terminology has arisen to address the coverage holes, wherein a few or
even any operator guarantee its services. The Ofcom—Office of Communication of the
United Kingdom—names them as Not-Spots. The prior entity has the intention to reach
the coverage index until 95% by 2022 [3]. Several British operators (O2, Vodafone, EE,
and Three) have implemented a sharing strategy, allowing a mutual infrastructure approach
and, therefore, improving the competition in the countryside. This layout—or National
Roaming—grants customers in rural areas the possibility of connecting to the strongest
available signal, regardless of the chosen operator for these clients [3].

1.1. Motivation

The inequality in accessing Information and Communications Technologies (ICT)
resources and the lack of opportunities for reaching development are the most significant
drawbacks in developing countries, even though mobile devices accounted for 87% of
broadband connections there [4]. Latin America is not so far from that situation. However,
most governments have changed their ways of supporting more connectivity opportunities
in the last decade.
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Within the call for promoting a prosperous society, which can curb inequality and
poverty, the United Nations (UN) has considered the access to fixed-broadband internet
under the Goal 9 outline—Industry, Innovation, and Infrastructure—a valuable resource
for population growth. By 2018, 96.5% of the entire world population can access at least
2G mobile networks where LTE covers 81.8% of the population [5]. In full swing of the
Internet Era, not all villages can leverage granted-by-connectivity opportunities because of
thef high cost of access, which unearths the at-risk population group’s unfairness.

Considering the ongoing demands of communication infrastructure, the UN Sus-
tainable Goal 9 aims to significantly increase ICT resources access by 2020, in addition
to struggling to hook up LDC (Least Developed Countries) with affordable technology [6].
The COVID-19 pandemic has triggered comprehensive research and investment in dig-
italization, namely economy and education boosting, since teleworking, video confer-
encing systems, and remote education have been crucial parts during pandemic and
post-pandemic times.

In order to assess the connectivity situation around the world, the GSM Associa-
tion (GSMA) provides the GSMA Mobile Connectivity Index (MCI), which measures the
performance of 170 countries based on four key enablers of mobile internet adoption—
infrastructure, affordability, consumer readiness, and content and services—where the
current data include 2019 [7]. The prior institution has released The State of Mobile Internet
Connectivity 2020 Report , which analyzes the critical connectivity trends from 2014 to
2019 in terms of mobile internet use [4].

The coverage has not been sufficiently wide to provide the same standards compared
to Europe. For instance, in [4], it is possible to check that Europe and Central Asia and
North America were more 70% connected than compared to 54% in Latin America and the
Caribbean. Despite these observations, it is crucial to note that the offered services have
grown in the last region since its MCI overcomes a 61 score by 2019 in contrast with that
obtained five years earlier: 51 [7].

Although MCI appears to be the most significant, this is not the only affair to highlight
at the moment in terms of analyzing connectivity for particular contexts, such as the
countryside. Therefore, it is necessary to map out the earlier metric with each country’s
rural population density, discovering the most important limitations that prevent people
from adopting mobile internet. Table 1 depicts both MCI and Rural Population Density
(RPD)—in percentage units from the total—in order to analyze the gap among fifteen
Latin countries.

Table 1. Contrast between MCI and RPD of 15 Latin America countries [7].

Country MCI RPD

Argentina 67.2 8
Bahamas 68.7 17
Brazil 63.5 13
Chile 73.2 12
Colombia 63.7 19
Costa Rica 63.3 20
Dominican Republic 59.8 18
Ecuador 65.3 36
El Salvador 55.4 27
Haiti 32.8 44
Mexico 67.6 20
Panama 65.3 32
Peru 66.6 22
Uruguay 76.7 5
Venezuela 57.4 12

Identifying the locations where coverage is under specific boundaries appears to be
suitable for sketching out the Not-Spots’ presence in these contexts. Therefore, Figure 1
charts the correlation between the total population and coverage density, segregated by
mobile network generation from 2G to novel 5G, in two specific countries of the target
region: Colombia (Figure 1a) and Mexico (Figure 1b). This is aimed at recognizing the
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coverage gap inside the mentioned countries. Moreover, it likely identifies regions in which
the population cannot access voice and data services.

(a) Colombia (b) Mexico
Figure 1. Correlation between population and current mobile network coverage in both study cases.

1.2. Paper Outline

We have reviewed several strategies that pursue new connectivity standards by ex-
panding network coverage, especially for developing countries, compared with developed
countries such as European countries. These approaches aim to list the possible technolo-
gies that will improve connectivity in rural zones after studying the researched options in
the alternative deployment of networks for optimizing those regions.

After stating the motivations and the principal purposes roughly, we outlined the
article as follows: Section 2 presents a perspective of the network environment (outdoor
and indoor), highlighting the solutions that engage emergent services such as the Internet of
Things (IoT). Section 3 sketches out the possible researched technologies in order to enhance
coverage in rural zones and achieve high Quality of Service (QoS) and the network’s
throughput. Sections 4 and 5 set forth the discussion and conclusions about the assessed
solutions in prior sections, in addition to bearing in mind new research opportunities in
this field. To this end, Figure 2 shows the overall organization of the cited references in this
review article.

References
Outline

Other
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[10,20,21,
27–29]

[30,33,34,
60,61,73]

[104,108,
110–113][114–116]

UAV-based
Network
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94,105]
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83,85,86]

[73–77,79]

[67–72] [59,62–66]

[8,45,48,
50,53,58]

Supporting
Design

[26,31,37–
39,41][14–19]

[1,2,9,
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[106,107][96–101]

[56,84,88,
89,91,95]

Figure 2. Some Used references in our survey.
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2. The Rural Paradigm Shift

Under the perspective of granting better connectivity standards in the countryside, it
is adequate to set forth the differences among several best-fitted technologies in order to
find an optimal solution. The first approach is a suitable onset to focus on mobile network
connections optimized for rural populations and self-steady links for IoT terminals, whether
involving new communication tendencies such as Device-to-Device communications (D2D)
or even 5G [8].

Outdoor and indoor environments require the above aims to lift specific responses
within rural population needs. The outdoor schemes consider current traffic estimation
of the mobile network by algorithmic focusing since it may provide a proper breakdown
for determining the cells’ coverage capacity [9]. With respect to indoor environments,
achieving an extended coverage based on ad hoc Networks by lower frequency bands
involving repeaters would be suitable [10]. Nonetheless, other approaches will be analyzed
in Sections 2.1 and 2.2 that cope with issues for both cases.

2.1. Outdoor Perspective

Gatwaza et al. in [9] highlighted that traffic is an outstanding factor to dimension
current mobile networks. In isolated zones, the challenge lies in finding out how to fix
the maximum coverage per single base station with respect to complex topography and
highly dispersed population distribution [11]. Information on geographical distribution is
quite relevant for internet service providers (ISP) since it allows the estimation of areas that
deserve specialized deployment toward determining the under-requirements of system
capacity [12].

The coverage parameter defines the network’s scope, resulting in the expected en-
hancement for lower-connectivity regions. Consequently, the channel’s propagation pa-
rameters, such as Path Loss Exponent and Losses, are essential for coverage and quality
analysis. For instance, CDMA and AMPS cells may overlay the targeted geographical areas
to carry information among remote Base Stations (BS) appropriately [13]. Other alternatives
include the use of the WiMAX—IEEE 802.16—set of standards [14] and TV White Spaces
(TVWS) [15] to enable a ubiquitous network.

At the onset of 21st century, the developed countries evaluated options to achieve
better QoS in rural zones. One of them was implementing high-quality in-car mobile
services without the implementation of new cell sites. Thus, there was a possibility to
raise roadway coverage areas by using antenna arrays set over constant on-way cars. This
advance might have allowed the minimization of cost with respect to the non-installation
of more BSs. Furthermore, it would provide improvements due to its implementation over
dynamic CDMA signals, eradicating AMPS services [13].

With the massification of novel technologies, e.g., 5G and IoT for urban zones, the idea
includes analyzing other low-deployment cost options, such as FTTx. Araujo et al. pointed
out in [16] that services on FTTC (Curb) would be 70% cheaper than 5G implementation
and 20% less expensive than FTTH (Home). Although the main idea is boosting country-
sides as potential high opportunity zones, not all operators expect to invest in high-cost
infrastructure for low-density populations because its rollout may cost 80% higher than in
urban zones [17].

So far, several approaches have arisen to reach the desired coverage index. Knowing
that 5G services are not considered for the countryside yet, IoT services are limited to
highly reliable networks. More quantity of unfolded BSs and more coverage index may be
reached, increasing efficiency [16]. The BS coverage area is greater than 0.5 Km, and having
enough overlap with adjacent cells will ensure the quality of roaming at the maximum
allowable distance among them [18].

In mobile networks, the handover parameter is triggered when a user equipment (UE)
detects a better signal strength of the neighboring cells [1], but it can also be regarded
as non-convergent in the case of rural zones. Thus, identifying the BS coverage area at
network planning is a relevant part of the design process. 3G services may be the first
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technology to be implemented in the countryside since it is possible to monitor the network
parameters—such as coverage and cell capacity—by implementing appropriate Signal-to-
Noise rates (SNR) and QoS index. It is important to recall that the rural connectivity gap is
proportionally greater for low-income households [19].

After reviewing some references, we found that Stratospheric Communication Platforms
(SPC) have been trending in the last decade for outdoor solutions [20,21]. The Loon Project
searched for possibilities in building a new layer for the connectivity ecosystem in the
stratosphere based on weather balloons with distributed self-optimization [22]. The Loon
LLC group tackled the challenge of extending internet access worldwide based on this
approach until the project was closed down in 2021 [23,24]. Another intended sample was
Facebook Aquila; however, it collapsed in 2018 [25].

Another kind of alternative to cover rural populations includes the use of LEO satel-
lites. Moreover, LEO and SCPs significantly enable coverage increase and do not require
new terrestrial towers. Therefore, these options can offer highly reliable data rate services
while demanding simple but special maintenance attention with respect to its tracing [26].
Figure 3 states a feasible implementation of the reviewed solutions in the countryside for
outdoor areas, aiming to develop new tendencies considered in Section 2.3.

Figure 3. Some solutions for outdoor networks issues.

Figure 3 entails the use of alternative-to-terrestrial wireless connectivity aimed at rural
coverage. To promote the solutions mentioned previously, the SCPs bring several attributes
in offering a low-cost and widespread array of services in the countryside. Among them,
in [27], the author listed the advantages of deploying these airships—either a constellation
or a singular aerial unit—which may be summarized into three categories: seamless
countrywide coverage, power consumption trade-offs, and a higher speed of transmission.

Since SCPs enable an extension of coverage, the unobstructed free-of-shadowing LOS
roaming service would boost roaming services [27], leveraging the autonomous and dis-
crete features of these devices. For instance, Espinoza et all. led a feasibility study in [28]
for two Peruvian rural areas to promote connectivity, aiming at the underserved/unserved
communities despite the rough landscape of either the Andes range or the Amazon rain-
forest. The authors used stratospheric balloons to serve the growing customer and speed
demand for up to eight years. After that, an LTE-based network complemented the estab-
lished structure.
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Nonetheless, the fully fledged satellite-based networks carried on a cooperative relay
scheme to accomplish the ongoing high demands of reliable, seamless, and high-rate
transmissions. Therefore, the space-air-ground integrated network [29]—named SAGIN—
combines LEO satellites, SCPs, and terrestrial BS to achieve the future requirements of 6G
communications by addressing the provided-by-satellite coverage probabilities enhanced
with terrestrial gateways as the authors in acknowledged in [30] in addition to real-time
dynamic adjustment of HAP-based networks.

2.2. Indoor Case

Indoor-improving techniques outlined the strategies that enhance user experiences
inside closed spaces. Therefore, there is more interference resulting from physical obstacles.
This case requires evaluating the best estimation of indoor coverage provided, looking for
optimal system planning. The feasibility in implementing algorithmic solutions based on
UE location estimation appears to be challenging since their location accuracies depend on
the integrated sensors in devices used by authors in [31].

Satellite-based networks and other high-altitude platforms suffer excess losses because
the slant path intersects several obstructions than compared to terrestrials. Nevertheless,
using repeaters at lower frequency bands—despite the bandwidth limitation—can fulfill
the requirements demanded from users [10]. These devices are low-cost and readily avail-
able, hence boosting signal propagation and simultaneously enhancing indoor coverage.
Figure 4 shows a potential indoor-improvement deployment for a satellite-based backhaul.

Figure 4. Indoor solution for a satellite-based network.

In addition to satellite-based backhaul solutions, other approaches outperform the
repeater’s throughput, particularly for IoT devices and MTC at a glimpse, and Section 2.3
foresees the need reinforce this limitation. On one hand, the authors in [32,33] analyzed
the development of indoor coverage—focused in suburban and rural areas—by deploying
LTE-M, NB-IoT, LoRa, and GPRS solutions to cover a greater zone. On the other, there is a
reduction in indoor time dispersion by dynamical estimation of the channel parameters in
full swing machine learning techniques [34].

Regarding the first approach, Lauridsen et. al contrasted the technologies in a par-
ticular Northern Denmark region area by assessing their supported Maximum Coupling
Loss [32,33]. The results accomplished 99% of indoor devices coverage for both LTE-M
and NB-IoT solutions as long as these devices experienced 10 dB additional loss at its
maximum level.
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In the case of deep indoor devices—namely basement or underground located—NB-
IoT performed the best, with 8% of outage probability, followed by LoRa (13%) and GPRS
(60%) considering 30 dB additional losses. Despite the outstanding outcomes to shed light
on optimal indoor coverage, the authors suggest a throughput evaluation of pico-cells or
Wi-Fi access points to enhance connectivity inside closed spaces [32].

2.3. New Services

A few years ago, trending services such as IoT and 5G were considered challenging
to implement in rural areas, especially for Latin America because there were no consid-
erations to grant a reliable and high-traffic supported backhaul network. Nevertheless,
these paradigms would hook up dispersed nodes located in remote zones nowadays,
with staggering downlink/uplink rates, aiming to accomplish the requirements for MTC
and Narrowband Internet of Things (NB-IoT) [35].

IoT promises to be a suitable technology for upgrading the countryside—a stable
network may be guaranteed—following the massive number of connected things and
the heterogeneous nature of IoT devices. On the other hand, there is the incursion of
MTC application domains, such as agriculture management, transportation, logistics
improvement, and crop automation, being one of the fastest-growing telecommunications
technologies, especially in urban contexts [36]. LTE-based MTC addresses advantages in
increasing capacity, traffic response, and spectral efficiency [37].

Diverse strategies have arisen from assessing the most appropriate technologies to
furnish high-speed broadband and to reach desired standards such as service speed and
setting up at 30 Mbps in European rural areas. Ioannou et al. in [38] stated that FTTdp
(Distributed Point) solution using the G.fast standard is a cost-effective alternative to
VDSL, which is the current widespread technology in Europe granting connectivity in
the countryside. The authors acknowledge that FTTdP G.fast readily enables bandwidth
upgrade, but the model is not cost-efficient in terms of investing in geographically sparse
populations [16,17].

Consequently, LTE Fixed Wireless Access Networks (LTE FWA) could be an available,
attainable solution, bearing in mind extensive LTE infrastructure in a significant rural
part of the world. Regardless of whether newly emerged 5G standards are desirable for
implementation, we can upgrade LTE FWA through the LTE-NR model, which creates
a tight interaction between LTE and the new radio system. The also known model of
E-UTRA-NR Dual connectivity—or EN-DC—allows benefits in aspects of user throughput
in both low and high traffic load conditions [39].

Foreseeing the inclusion of the services mentioned above, the design of internet access
solutions should be engaged with the three main factors as the authors outlined in [40]:

• Affordability —for avoiding undue hardships by employing reliable networks;
• Social shareability—to gain access through selfless (shared) connections;
• Geographical network coverage—where networks allow the user’s mobility by them-

selves.

Simultaneously, the requirements on ubiquitous coverage will not follow the one-size-
fits-all standard to pursue a more connected rural society [41]. Figure 5 summarizes the
information granted by the GSMA’s reports [42,43], which attempt to state the main driven
innovations through an improved roll out in three foremost aspects:

• BS infrastructure —far-flung from the traditional macrocells model;
• Backhaul planning—avoiding the higher cost of urban deployment;
• Energy—mixing up with renewable sources;
• Blue Sky solutions—although those remain at the proof-of-concept stage.

These innovations will move beyond the traditional business model—such as CapEx—
and local governments should create new regulation principles to harvest investment in
network infrastructure.
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Figure 5. Innovations for rural connectivity.

3. Potential Solutions

There are several challenges to face in rural areas in terms of reliable and enhanced
mobile networks. This need triggers the state-of-art study of diverse network models
for the countryside in order to introduce ubiquitous solutions in which connectivity is
available at anytime and at any location with respect to the population’s demands in a
fully connected society.

By the first attempts to overcome likely hardships, such as insufficient population
for deploying infrastructure, adaptive solutions struggle with the current unfolding of
Mobile Network Operators (MNO). The new platforms or devices—that enhance coverage
and other rural Key Performance Indicators (KPIs)—leverage practical alternatives for
outdoor environments.

There have been studies that cater to rural coverage by using the TVWS-spectrum
sharing approach that utilizes free UHF band channels from analog switch-offs at a specific
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time and space location [15]. Indeed, the primary user (PU) exclusively uses frequency
resources on bands 470 MHz and 710 MHz.

On the other hand, S. Hasan et al. [44] aimed to recover GSM whitespace—or the
non-actively used and licensed GSM spectrum—to support dynamic spectrum sharing,
hence achieving a suitable QoS would not be attached to low throughput and high latency.
Regardless, other kinds of solutions have arisen so far that aim for a fully connected
countryside.

In the following subsections, several trustworthy approaches will be set forth for
diverse rural outdoor solutions, such as unmanned aerial vehicles (Section 3.1), low alti-
tude platforms, and high altitude platforms, and satellites (Section 3.2). Then, Figure 3
graphically summarizes the solutions as mentioned above to cope with rural not-spots.

3.1. UAV-Assisted Networks

Nowadays, unmanned aircraft have commercial uses and have enabled new research
interest and innovation toward improving connectivity. The smaller the airship, the better
the performance in bestowing coverage, especially for isolated areas. In this case, the drone
industry has addressed several civil instances and applications within an affordable and
straightforward aim: leveraging UAVs’ maneuverability to readily provide connectivity as
an off-the-shelf alternative within the current MNO infrastructures.

Historically, the first purpose for Unmanned Aerial System (UAS) was for military
and surveillance fields. During the second half of the 20th century, Warfighter’s internet
yielded a reliable and readily deployable UAV-based ad hoc network to boost backbone
communications [45]. This exploited UAS approach resulted in higher throughput stan-
dards. Therefore, a network-centric UAS operation concept arose beyond military and
political boundaries and was consequently adopted for civil and economic interests. In a
nutshell, the unmanned airships outpaced soldiery endurance.

Since the use of drones has been expedited, the need for regulating them has arisen as
well in terms of complying with safety standards, even though they reach lower altitudes
than other larger forms of aircraft. Therefore, the Global Unmanned aircraft system Traffic
Management Association—or GUTMA—appears to foster trustworthy, secure, and efficient
integration of UAS into global airspace, addressing drone stakeholders practices—defined
as UTM stakeholders—by close cooperation and continuous flight information manage-
ment [46].

To foster a collaborative and innovative community for UTM stakeholders, GUTMA
encourages governments to adopt operation-centric, safe, fair, and secure deployment of
UTM solutions. Moreover, with respect to allowing the full integration of UTM services
with the current network infrastructure, the first step should predict the digitalization
needs of UAS technology trends [47]. Once these are set forth, Table 2 compiles some of
the key specifications for the UAV-assisted network in line with the deployment scenario,
namely in urban, suburban, and rural contexts.

Table 2. Context-based Specifications for UAV Networks.

Network Parameters Context
Scenario LHT

(m)
UHT
()m)

BMP LOS NLOS Use
Case

Network
Configuration

Flight
Time (min)

UMa-AV 22.5 100 X HD/M2H 5G TBD
UMi-AV TBD TBD X M2H 15–45
RMa-AV 10 40 X X L2M/LD LTE/LTE+ 60–180

The gathered information in Table 2 divides the network features into two correlated
fields: target scenarios and use case context. Concerning the first field, Muruganathan et al.
approached the stakeholder populations in [48] and their LTE network’s technical deploy-
ment in environments such as urban-macro with aerial vehicles (UMa-AV), urban-micro
with aerial vehicles (UMi-AV), and rural-macro with aerial vehicles (RMa-AV). The last
scenario exhibits a better mobility performance (BMP) than the others. The second field
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considers zone density, emphasizing the highest (HD), the medium-to-high (M2H), the low-
to-medium (L2M), and the lowest (LD) densities [49].

An analysis of coverage issues should extend the operational scope through defined
network architecture to successfully deploy aerial communications. A likely first option
launches the UAV model by hooking up one or several Ground-BS (GBS) and using the
drone as a relay node in the network. Secondly, a swarm of drones seems suitable for
covering a vast extension of nodes or rural-dispersed nodes, creating a solid construction
of flying ad hoc network (FANET) networking. The last strategy outpaces the challenging
issues that mobile ad hoc Networks (MANET) tackled in terms of communication range
since a ground node can indirectly communicate with other hops through several aerial
relay nodes such as UAVs [50].

The concept of FANETs has arisen in the literature in order to top off a particular
form of Vehicular Ad Hoc Network (VANET) communications and addressing scalable,
reliable, real-time peer-to-peer mobile ad hoc networking between aerial and ground
nodes [51]. Table 3 relates some UAV-based communication surveys where the authors
have thoroughly reviewed UAS modeling strategy in fields such as civil, security, and
traffic management, among others.

Table 3. Some surveys of UAV-based communications.

Publication Brief Summary Approaches Fields

Mozaffari et al. [52]
A group of potential benefits and applications of UAV-based
communications in enhancing coverage, capacity, and reliability
of wireless networks.

• The key UAV challenges include 3D deployment, performance
analysis, channel modeling, and energy efficiency.
• A comprehensive overview of potential applications, chief
research directions, and challenging open problems, among
others.

Li et al. [53]
A noteworthy integration of 5G technologies with UAV
communications networks upon an emerging space-air-ground
integrated network architecture.

• Space-air-ground integrated network envisions for beyond-5G
communications.
• 5G techniques for physical and network layer of UAV scheme
and joint communication, computing, and caching.

Fotouhi et al. [54]
A development summary promotes the smooth integration
between UAVs and cellular networks without a one-size-fits-all
but affordable model.

• The authors surveyed interference issues and potential
solutions on UVA-based flying relays and BS approaches.
• The article sets forth the new regulations and protocols to
grant cyber-physical security in both aerial nodes and UEs.

Shakhatreh et al. [55]
An exhibition of the next large revolution in civil applications by
introducing UAV technologies to state feasible research trends
and future insights.

• Addressed civil applications: road traffic’s real-time
monitoring, wireless coverage, remote sensing, search and
rescue, surveillance, and civil infrastructure, among others.
• Discussed key challenges: charging, collision avoidance,
security, and networking.

Khawaja et al. [56]
Modeling Air-to-Ground (A2G) propagation channels in
designing and evaluating stages of UAV communication and
links attempts to improve AG channel measurement campaigns.

• AG wireless propagation channel research includes payload
communications and control and non-payload (CNPC)
networks.
• The AG channel study tackles limitations such as large and
small scale fading.

Hayat et al. [57] Aerial network missions should vary according to the civil
application aims.

• Search and rescue coverage
• Network coverage
• Delivery and transportation
• Construction

The approaches, as mentioned earlier and among others, are comprehensively ex-
plained in Tables 4 and 5. The first acknowledges the literature of UAV-based networks
between twenty and five years ago, which states the strategies that the cited authors as-
sessed for expanding MANET coverage primarily by algorithmic solutions. The second
leads our survey to the outstanding aim: to gauge the promising models for rural commu-
nications, raising the current cellular infrastructure, or even adopting a new topology for
ubiquitous coverage.
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3.1.1. The A2G Channel Modeling

W. Khawaja et al. comprehensively addressed the available A2G channel models—
also including the timeliness to be extended even for Air-to-Air (A2A)—in the study
given by [56]. Throughout the paper, they stated the most relevant UAV’s A2G schemes
and thereby identified the limitations and future research directions for UAS-based com-
munications scenarios. An outstanding classification of the analyzed literature includes
deterministic methods, stochastic modeling, and their fusion.

Even though the performed analysis provided by Khawaja et al. remarkably spurred
the development of a foremost deep-study on the A2G channel technical model, it is
relevant to include a third slope into the classification: Machine Learning (ML) approach,
which is scarcely investigated in the article [56]. To shed light on this end, Table 6 attempts
to state some leading research studies to sketch out the aerial channel beneath two main
strategies, ML and Geometry-based (GM) scheme, in addition to setting forth whether
these strategies lie in stochastic (St) or non-stochastic (N-St) approaches.

Table 6. Some efforts addressed in A2G modeling.

Approach Scenario MethodCite ML GM UMa UMi RMa St N-St Aim Contributions

[95] X X X X X PL and Delay Spread prediction for
mmWave channels.

• Low computational complexity.
• Full feature selection scheme.
• Frequency/scene-based transfer
learning model.

[96] X X X X X PL and Shadowing effects analysis
in 3D- LOS/NLOS Channel.

Unsupervised learning clustering
technique to derive a 3D temporary
channel.

[97] X X X PL empirical prediction with
environmental parameters.

• Location-based method by
using 3D-GPS coordinates.
• Learning phase includes
atmospheric conditions.

[98] X X X X X
Collaborative algorithm to solve
communication overload by
achieving 1.5x throughput.

Optimization of Multi-UAV user
deployment based in modified K-
means distribution and POO.

[99] X X X 3D non-stationary geometry-based
stochastic channel model for A2G.

• 3D arbitrary trajectories.
• 3D antenna arrays for 5G.
• Computational Methods for
time-variant channel parameters.

[100] X X X
A MIMO wideband truncated
ellipsoidal-shaped method with
scatterer consideration.

Statistical derivation of space-
time-correlation function and
Dopler power spectrum density.

[101] X X X Geometrical model for UAV flight’s
Multi-Path Components evolution.

• Geometrical parametrization for
the main MPCs.
• Simulation under non-intuitive
effects of propagation.

[102] X X X X X
Spatial-temporal correlation in
function of UAV’s hover radius,
flight altitude, and elevation angle.

• Numerical approach of PL,
Multi-shadow fading, Doppler shift,
and channel correlation.
• Fixed-Wings UAV-BS Model.

3.1.2. Regulation

The 3GPP Association mainly tackles the protocols and regulations for UAS-FANET
communication beneath the addressed need of the quickly maturing sector [103]. Conse-
quently, in the eagerness to state new studies and new features for safe operations, there
has been joint work with GUTMA, even involving the novel 5G framework use cases.
To our best knowledge, Figure 6 introduces the areas that are being addressed in the latest
3GPP Releases, from Release 15 to Release 17.

There are other institutions concerned with developing UAS standards, such as
GUTMA/GSMA, ASTM International, IEEE, ISO, EUROCAE, IETF, and JARUS [47]. For a
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handy insight on network safety, by avoiding a loss of service due to their proximity, we
have briefly recapped the 3GPP-suggested edges [103] in the Listing 1, as long as new
releases emerge in supporting the LTE aim [48].

Figure 6. UAS addressing in 3GPP standards.

Listing 1. 3GPP Releases Outline involved in UAS Communications.

• Release 15 addressed the research studies about the ability for UAVs to be served
using LTE networks in addition to a comprehensive analysis of potential interferences
between eNodeB and UAS.

• Release 16 has an overview of the potential requirements and use cases to enable the
necessary connectivity between UAS and UTM.

• Release 17 approaches the use cases and requirements for UAS identification and
tracking beneath the application layer. It also gathers the 5G connectivity needs of
drones in new KPIs into a 3GPP subscription.

3.2. Other Engaging Solutions

We have thoroughly reviewed the implications in assisting rural networks by em-
ploying UAVs; moreover, other engaging solutions can enable broad coverage in the
countryside and in shedding light on its connectivity. On the onset of the first decade of
2000s, SCPs appeared to be a prominent answer for fixed and mobile applications. These
devices remarkably outpaced the unprofitable gap since they have arisen as a cost-effective
solution for urban, suburban, and rural areas [21].

Aside from dedicated area coverage independence, the authors in [21] pointed out
that Sky Station platforms may provide higher capacity—by higher frequency reuse—than
other wireless systems, the possibility of grant enhanced roaming, and the possibility of
choosing their stationary point. Another seamless option for rural connectivity includes
satellites, namely LEO configuration. The following subsections will deepen the strategies
mentioned earlier, and UAVs also fall into this category.

3.2.1. Altitude Platforms

The altitude platforms are grouped into LAPs (Low-altitude platforms) and HAPs
(High-altitude platforms). Song et al. in [104] granted the main difference about the prior
categories. LAPs gather the aerial platforms at an altitude of 20 km. UAVs, drones,
and blimps fall into this group since they cannot support higher payload capacities,
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and their autonomy relies on SWAP constraints [105]. As Section 3.1 discussed, UAVs can
perform far-flung coverage, increase redundancy, and increase survivability, leveraging the
swarm FANET architecture [104].

LAPs have lent dynamic and scalable networks that can quickly cover broader regions,
although there are by-payloads stuck. In this case, there are two method to limit this
situation: First, developing a suitable propagation model that includes the elevation
angle—deployed at several altitudes—along with the MIMO output antenna diversity gain,
especially for the last mile connectivity [106]. In the UAV case, the strategy may contain a
formulation of statistical assessment of A2G propagation by either using Ray Launching
or Ray Tracing geometrical optics models [107]. Second, Drone-to-Drone communication
arises as a reliable collision avoidance system [105].

On the other hand, HAPs operate in a quasi-stationary position at an altitude of 20
to 50 km, becoming a viable option to furnish capacity and coverage enhancement [104].
The authors in [108] have envisioned these platforms as a super macro BS (HAPs-SMBS) to
unfold high-traffic-volume networks in a metropolitan area in bargaining with smart city
paradigms. Facing the LEO constellation shortcomings, HAPs-SMBS can mask the high
path loss and high mobility effects.

The potential uses of HAPs—to tackle rural not-spots—shed light on dynamically
managed radio resources and mitigate the crossed interference [109]. The rural environment
has admitted more prevalence to network coverage instead of higher capacity density.
The reason for this is that HAPS requires lower investment and provides high quality—
even providing higher terrestrial QoS—and this alternative has been carried out to cover
rural and remote areas [110]. At this point, the likely exploitation of radio environment
maps and artificial intelligence in the ongoing infrastructure may allow a radius coverage
area of more than 30 km, as Chukwuebuka highlighted in [110].

3.2.2. Satellites

Satellite-based architecture has furnished an outstanding architecture to hook up the
highly dispersed and remote rural nodes due to their scalability and flexibility in reaching
vast geographical areas. In function of the developed network scope, the satellites’ orbit
relies on defined classification [111]: LEO (altitude between 500 km and 2000 km), MEO
(altitude into the range 5000 and 20,000 km), and GEO (altitude of 35,800 km).

Underneath the condition of service-as-primary-resource, LEO architecture, on the
one hand, solves latency issues [112]; on the other hand, it has added remarkable bit
rate capacities by multi-beam technology [113]. In contrast, e.g., GEO holds limited these
parameters. Heading to the best alternative for rural not-spots, LEO has become the best
complementary structure of terrestrial networks in the countryside, figuring out several
shouldered challenges, such as routing problems and raining attenuation [114].

In order to provide seamless and continuous service by LEO satellite networks, these
approaches have adopted constellation shapes whereas QoS is guaranteed, fueled by
novel routing protocols regarding UE location and exploiting deterministic LEO topology.
Therefore, the route bottlenecks should be foreseen in any pair of end-users, as the authors
said in [115]. By avoiding design planning deficiencies, the system’s user capacity becomes
greater, and the covered geographical zone becomes larger [114].

4. Discussion

At this height, the rural zones have struggled to embrace fully fledged connectivity.
Regarding Latin America’s situation, three considerable constraints are in conflict with
the ubiquitous rural coverage aim: First, MNOs do not furnish a suitable telecom infras-
tructure outside of urban environments. Secondly, rural settlements are concentrated but
geographically sparse, occupying common hot spots. Finally, the studied strategies should
be based on bespoke hardware requirements since uneven relief and ecosystem variation
hamper the static estimation of channel parameters—the latter demands higher investment
cost—which seems unprofitable for ISPs and MNOs.
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The not-spots affect directly rural inhabitants, especially those who attempt to fos-
ter rural businesses, which include mainly agricultural and new industrial activities in
the countryside. Hence, Table 7 states the advantages and shortcomings of the studies
solutions—in Section 3—while we spur ongoing research of UAV-assisted networks de-
ployment driven by mobility, cost-effective, and the other leverages outlined in Table 7
that can bring networks to the uncovered regions. Further works include the analysis of
dynamical propagation model and simulations of LTE—aiming for 5G-NR deployment—at
incoming experimental stages.

Table 7. Comparison among the analyzed solutions for rural coverage.

Solution (Section) Advantages Disadvantages

UAVs [Section 3.1]

• Easily deployable and portable.
• Reliable infrastructure to enhance coverage.
• New security standards by new routing protocols.
• Compatible with others as terrestrial and aerial
network’s platforms.

• Static-channel-modeling intermittent connectivity.
• Energy constraints and limited effective payload.
• Uncertainty on legislation.
• Inefficient obstacle awareness rollout.

HAPs [Section 3.2]

• Commit to cover immensely inaccessible areas.
• Allows adaptable resource allocation.
• Low roll-out costs.
• Guarantee connectivity by a single platform.
• Agile deployment.
• Payload upgrading.

• Few protocol standardization.
• Unfit design of traffic aggregation.
• Poor raters of interference mitigation in shared
spectrum.

LEOs [Section 3.2]

• Enable higher QoS than terrestrial.
• Reach a latency issue standard.
• Add significant bit rate capacity.
• Provide high capacity backhaul.

• Insufficient coverage time assessment.
• Higher cost of deployment and maintenance.
•Most affected by fading effects.
• Unreliable communication at low elevation angles.

Future Research Opportunities

In the prior section, we have introduced three achievable solutions to strive against the
countryside’s not-spots. There remain shortcomings stuck in the fully fledged method of
granting connectivity to pursue endurance in the deployed system. UAV-based networks
seem to be an attractive option due to their commercial affordability, as we pointed out
in Section 3.1. However, for now, both UAS and Altitude Platforms have factors opposed
to large scale use, such as payload capability—to shoulder the network equipment—and
insufficient MNO interest, behind higher returning investment rates.

Consequently, three categories claim further analysis in the case of deploying aerial
networks. Firstly, A2G channel modeling needs to be supplied by a realistic propagation
model, since most of them are still limited to a single device or particular environments.
Moreover, there is a considerable need to characterize the by-mobility Doppler effect, in
addition to the channel’s captured time variation addressing more precision and accuracy.
Fueled by the efforts to sketch the A2G channel—as it was analyzed in Section —the
need to address research in this field has arisen and becomes more decisive as consumer
demands grow.

Secondly, aerial platforms lacking an optimal 3D placement are of concern. A match-
less location bestows the coexistence with the terrestrial cellular networks and avoids
mutual interference with GBS. In the case of UAS, an optimal arrangement of UAV-BS
can yield a minimum downlink transmission latency, setting up previously the drone-BS
location and transmission bandwidth [52]. This approach can reduce the total flight time
while also enhancing energy consumption.

With respect to concern on energy issues of SCP—which may be the foremost chal-
lenge to assure connectivity’s significant periods—the utilization of peer-to-peer energy
sharing has been investigated since energy is a limited resource in mobile networks because
they are jammed in non-renewable sources such as batteries. According to the application,
an attractive solution to outpace the excessive consumption of energy, mainly focused on re-
newable sources, appears to be a significant research field for guaranteeing communication
availability [116].
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Thirdly, outstanding cellular network planning foresees the minimum number of
required aerial nodes to cover a given geographical area, either partially connected or
entirely disconnected. Hence, to maximize the total covered zones, there should be a
previous identification of users and obstacles. Beneath this regard, prior frequency planning
and signaling overhead analysis can assure greater network throughput, especially for
high-frequency bands.

Finally, an in-depth design of the bespoke-solution construction affords countless
advantages to aim for in a fully connected countryside. In this case, embracing an expected
radius of 30 km [109]—or even a greater value—assures the coexistence of either LAPs or
HAPs with terrestrial systems, and sharing the same spectrum can extend the coverage
in rural and remote areas. Other strategies involve a novel antenna array design and
aerial swarms or constellations, which are expected to be further researched in broader
5G investigations.

5. Conclusions

Nowadays, complete rural internet access may be an incongruous reality due to the
lack of efforts to deploy a suitable mobile networks infrastructure. However, data demand
has grown recently since many rural inhabitants consider using technology to improve
their quality of life by implementing trending technologies, such as IoT. Although Latin
American countries have recently envisaged closing the connectivity gap, there are remote
geographical zones where not-spots are a significant challenge to governments because
they strive to outpace inequality under the insight of fully fledged coverage.

Bearing in mind our study cases, in Mexico and Colombia, which have economically
and technologically developed in the last decade, the connectivity gaps are noticeable.
Therefore, implementing alternative and efficient solutions—as listed in Section 3—will
involve hooking the peripheral population up with reliable deployments. The COVID-
19 pandemic has accelerated the reshaping of a noteworthy need for connectivity since
most of our performed activities leverage digitalization growth to partake in affordability
and access. Although several rural populations remain fully offline, the recent efforts to
stimulate new steady links have triggered new opportunities to access online education,
employment, or critical health and sanitation advice.

We have summarized some strategies to strengthen connectivity in rural environ-
ments, especially for Latin American countries. By establishing statistics that best draw the
mentioned phenomena, we encourage further access to ICT and encourage the target of
providing affordable access to the internet in developed countries, which in turn considers
rural and geographically remote populations. Hence, solutions such as UAVs, HAPs/
LAPs, and LEO satellites have arisen for most cost-effective bargaining. However, we
have comprehensively studied UAS scope in communication because its efficient maneu-
verability can solve the coverage problem through a solid construction of either GBS or
FANET approaches.
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A2G Air-to-Ground
AMPS Advanced Mobile Phone System
APs Altitude Platforms
BS Base Station
CAPEX Capital Expenditure
CDMA Code Division Multiple Access
D2D Device-To-Device
FANET Flying Ad-Hoc Network
FFTx Fiber-To-The-x
GBS Ground BS
GEO Geostationary Orbit Satellite
GT Ground Terminal
HAPs High-altitude Platform
ISP Internet Service Provider
KPI Key Performance Indicator
LAPs Low-Altitude Platform
LDC Least-Developed Country
LEO Low-altitude Earth Orbit Satellite
LOS Line-of-Sight
LTE-NR LTE-New Radio
MANET Mobile Ad-Hoc Network
MCI Mobile Connectivity Index
MEO Medium-altitude Earth Orbit Satellite
ML Machine Learning
MNO Mobile Network Operator
MTC Machine-Type Communication
NLOS Non-Line-of-Sight
NOMA Non-Orthogonal Multiple Access
PL Path Loss
QoS Quality Of Service
RDP Rural Population Density
SNR Signal-to-Noise Ratio
SCPs Stratospheric Communication Platforms
SUAV Small UAV
SWAP Size, Weight, and Power constraint
TBD To-Be-Developed
TVWS Television White Space
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle
UE User Equipment
UHF Ultra High Frequency
UTM UAS Traffic Management
VANET Vehicular Ad-Hoc Network
VDSL Very-high-bit-rate Digital Subscriber Line
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Abstract: The use of unmanned aerial vehicles or drones are a valuable technique in coping with
issues related to life in the general public’s daily routines. Given the growing number of drones
in low-altitude airspace, linking drones to form the Internet of drones (IoD) is a highly desirable
trend to improve the safety as well as the quality of flight. However, there remain security, privacy,
and communication issues related to IoD. In this paper, we discuss the key requirements of security,
privacy, and communication and we present a taxonomy of IoD based on the most relevant consid-
erations. Furthermore, we present the most commonly used commercial case studies and address
the latest advancements and solutions proposed for the IoD environments. Lastly, we discuss the
challenges and future research directions of IoD.

Keywords: Internet of drones; communication; security; privacy

1. Introduction

The Internet of drones (IoD) can be described as an infrastructure designed to provide
control and access over the Internet between drones and users. In reality, drones are rapidly
becoming readily available commodity items, allowing any user to fly different missions in
controlled airspace using multiple drones. Although technology helps mass-produce the
onboard components of unmanned aerial vehicles (UAVs), including processors, sensors,
storage and battery life, the performance limitations of these components impede and
reduce expectations. IoD offers drones coupling vehicle as well as cloud mobility functions
to allow remote drone access and control, as well as seamlessly scalable offloading and
capabilities of remote cloud storage [1,2]. Figure 1 illustrates the IoD environment that
includes base stations, signal link, and cloud environments.

The key advantage of a UAV with fixed wings compared to a UAV with rotary wings is
that a less complex repair and maintenance process is required by simple structure, thereby
giving the consumer more operating time at a reduced cost. The simple structure offers a
high-speed aircraft that can have a longer flight length and can cover more ground. UAVs
may make use of non-power supply techniques to make gliding more efficient. It is also
worth noting that fixed-wing airplanes can carry a greater payload for longer distances
when flying with less power giving them the capability to carry a combination of bigger
more advanced sensors with a pair of complementary sensors [3].

Until recently, UAVs were operated individually, but today a higher number of coordi-
nated drones may work together to accomplish complex missions. In these circumstances,
drone communication is absolutely essential. In other words, it is vital for users to fully
comprehend UAV communication systems. One additional kind of wireless channel and
network protocol is utilized in drone communications, but on the other hand, several dis-
tinct types of wireless routes and network protocols are applied in drone communications.
For this reason, the network design for UAVs is determined by their application. As a basic
example, researchers have discovered that a point-to-point line-of-sight link between a
drone and a gadget may maintain continuous data transmission even when transmission
is extended. Drones that use satellite communications to talk to each other for surveillance,
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when employed for safety defense, or more broad outreach activities, satellite communica-
tion is a better option for drones. Alternatively, cellular communications systems are more
commonly used in civic and personal applications. For example, indoor communication,
in particular for the mesh network and WSN, P2P protocols such as Bluetooth have shown
to be more efficient. When applied to drones, working with a multi-layered network can
be a difficult and challenging procedure [4]. Examples of important problems are outlined
below.
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A remote hijacking of the drones could be achieved by leveraging the vulnerability
in the software of the UAVs that act as a sophisticated tool for military purposes. Global
positioning system (GPS) signals are under the influence of malware programs on drones
that can be controlled by malicious users for malicious objectives (attackers). By doing
this, unreasonable attacks, such as dropping bombs, could be committed by the attacker,
endangering lives. The control signal is a significant feature of IoD environments due to
the different communications among entities and should not be disclosed or exposed in
any circumstance. There is a need for robust security measures to avert harm from security
attacks. Moreover, to facilitate personal and business drones for independent flight, a
certain type of authentication and key exchange protocols are required between the two
entities in the sky. Both the entities then create a symmetric security key for future data
transmission [4–6].

The rise in the popularity of drones has increased the frequency of cyber assaults
against UAV systems during the last decade. An adversary will target the radio connections
of UAV systems in order to hinder the systems’ ability to communicate with user equipment.
This includes data required by the user’s cellular equipment that control signals and GPS
signals. This is an example of an interception of information giving enemies the ability to
steal data that drones transmit and request, as well as foregoing direct control of the drones
through control signals. To guarantee the security of the wireless communication channels,
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guaranteeing that both control and data signals are sent has become a critical element
of the overall UAV system [7]. This review focuses on the recent advancements in IoD
development. The key contributions to this paper, which are presented from Sections 3–8,
are to:

• Investigate the main requirements of IoD (Section 3).
• Provide the main parameters-based thematic taxonomy (Section 4).
• Discuss the most commonly used commercial case studies of IoD (Section 5).
• Investigate the progress recently described in the literature (Section 6).
• Discuss the IoD open challenges and prospective study directions (Section 7).

2. Related Works

In order to examine the possible solutions involving the use of the Internet of drones,
several survey studies have been published in the literature. The specific surveys are briefly
summarized in this section and given in Table 1, which also covers the substance of this
article.

Boccadoro et al. [8] conducted an overview which focused on the consequences of
widespread drone adoption for the economy and society. They covered many aspects of
the IoD, including a comprehensive analysis of privacy and security issues. Additionally,
they explored on what are considered to be the primary research problems and projects
that are of high interest to the IoD for prospective future developments.

Rejeb et al. [9] investigated drones to discover their skills, achievements, and chal-
lenges in logistics for humanitarian use. They provided an in-depth overview of the
capabilities, challenges, and results associated with humanitarian drones in logistical oper-
ations, management, and governance. Furthermore, they examined possible humanitarian
uses for drones and established a road map for more extensive research on the issue. Yahuza
et al. [10] conducted a review to seek and evaluate the factors that impact the IoD network
security and privacy. They examined the variety of drone danger levels and security and
privacy vulnerabilities. Additionally, they analyzed the recently developed IoD security
controls. In addition, they provided the methods for determining the performance, such as
assessment and measurement procedures, that are used by the approaches.

Ayamga et al. [11] reviewed the advancements in agricultural, military, and medical
drones to showcase the strengths, weaknesses, opportunities, and threats of the current
technologies. In addition, the study suggested a need for further research investigation to
better integrate drones into current transportation and supply chain infrastructure, such
as increasing payload and flight length, and addressing the unique aspects of a country’s
culture in which drones are easily accepted and embraced.

Merkert and Bushell [12] conducted a review of systematic literature related to his-
torical concerns such as privacy, acceptance, and protection that have been gradually
replaced by operational considerations, including contact with and impacts on other users
of airspace, in order to recognize critical issues and research gaps. The study demonstrates
that unrestricted use of drones can cause problems for other users of the airspace, such as
airports and emergency services. In addition, analysis of current regulatory approaches
illustrates the need for more policy and management response to both handle rapid and
efficient growth in drone usage and promote innovation, with systems of the airspace
management for all cases of drone use being one promising strategic response.

Zaidi et al. [13] reviewed the state of the art with an emphasis on the Internet of flying
things (IoFT). They proposed taxonomy literature, including description, classification,
and comparative analysis of various IoFT works. In addition, the study presents an
applications problem for IoFT and future perspectives. Moreover, the survey provides
scientific researchers with basic concepts and a full overview of recent IoFT studies.
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Table 1. Related works.

Survey Paper Year of
Publication Highlight

Comparison of Current
Research Works in
Terms of

Domain

This work 2021

Comprehensive study covering
requirements, taxonomy, recent
advances, and challenges of future
research trends

Drone applications
Commercial case studies
Recent advances in IoD

IoD

Boccadoro et al. [8] 2021 Drone adoption for the economy
and society Drone applications IoD

Rejeb et al. [9] 2021 Humanitarian drones
The humanitarian drone’s
capabilities and
performance

Drones

Yahuza et al. [10] 2021 Evaluate IoD network security and
privacy Drones classification IoD

Ayamga et al. [11] 2021
Review the advancements in
agricultural, military, and medical
drones

No comparison table Drones

Merkert and Bushell
et al. [12] 2020

Need for more policy and
management response to drone
usage

Countries and regions
contributing

Airborne
drones

Zaidi et al. [13] 2020 State of the art of IoFT

IoT, FANET, and IoFT
MANET, VANET, UANET,
and FANET
UAV system, multi-UAV
system, and FANET

IoFT

Yaacoub et al. [14] 2020
Analysis to assist ethical hackers
in recognizing the current
vulnerabilities of UAVs

Frequencies of drones
communication
Drones cyber-attacks
Analytical drone review

Unmanned
Aerial
Vehicles

Al-Turjman et al. [15] 2020
Review the performance
assessment techniques and
cybersecurity applications

Flight stacks
Objective, constraint, area,
and assessment approach
Mass simulators
Testbeds

IoT networks

Alsamhi et al. [16] 2019 Improve smart cities’ real-time
implementation

Surveys and current work
Drone and IoT for smart
cities

Smart cities

Fotouhi et al. [7] 2019
Overview of advancements
supporting compatibility of UAVs
into mobile networks

Characteristics of drones
Comparison of aerial
placement

UAV Cellular

Wazid et al. [4] 2018
Define the strengths and
limitations of user authentication
of IoD

Authentication schemes
Communication overheads
Security features and
functionality

IoD

Bagloee et al. [17] 2016
Vehicles’ connection and
infrastructure of future growth of
AV

No comparison table Autonomous
vehicles

Gharibi et al. [1] 2016 Investigate and extract key
concepts of networks No comparison table IoD

Yaacoub et al. [14] conducted an overview and analysis of the use of drones or un-
manned aerial vehicles (UAV) in multiple domains such as civilian and military, terrorism,
and for other various purposes. They describe how a simulated attack on a given drone
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was carried out by the authors following the hacking period. The study analysis will
significantly assist ethical hackers in recognizing the current vulnerabilities of UAVs in
both military and civilian realms. In addition, their proposed future study will enable
implementation of new techniques and technologies for the identification and defense of
enhanced UAV attacks.

Al-Turjman et al. [15] highlighted an overview of drone applications, emergency
networks, and surveillance monitoring in software-defined networking-enabled drone-
base stations (DBS). Furthermore, they reviewed the performance assessment techniques
and related aspects of cybersecurity applications. In addition, the study presents the
necessity to advance in IoT-enabled spaces by developing an innovative and multi-faceted
drone performance assessment framework with primary concerns, meeting user-defined
requirements, and providing safe and reliable services.

Alsamhi et al. [16] presented a survey of the possible collaborative drone and IoT
techniques and technologies recently proposed to increase the intelligence of smart cities.
Their study focused on data collection, privacy and protection, public safety, disaster
management, energy use and quality of life in smart cities, and enhancing smart cities’
smartness.

Fotouhi et al. [7] presented an overview of advancements supporting compatibility of
UAVs into mobile networks. Their study focuses on discovering what types of consumer
UAVs are available to purchase off-the-shelf, and what other people and organizations
have addressed when it comes to standardization for serving aerial users with the existing
terrestrial base stations. In addition, the study investigates the potential issues and solu-
tions that are being addressed by standardization bodies for aerial users with respect to
interference.

Wazid et al. [4] discussed certain security issues and IoD environment specifications.
They also discuss a taxonomy of different security protocols in the IoD setting. The study
emphasizes the analysis of some of the user authentication systems recently proposed for
IoD communication. In addition, the study defines the strengths and limitations of user
authentication through a systematic comparative analysis of existing systems with IoD
contact systems.

Bagloee et al. [17] discussed an overview of literature related to computer ethics and
safety including vehicles’ connection and infrastructure of future growth of autonomous
vehicles (AV). The study illustrates that a significant information gap exists in AV technol-
ogy with regards to route activities. In addition, the study shows a tremendous opportunity
to incorporate a routing system that offers an effective and intelligent connected vehicle
technology. Gharibi et al. [1] presented a conceptual model of how such an architecture can
be designed and defined the features that should be implemented by an IoD framework.
They investigated and extracted key concepts of current large-scale networks such as
cellular network, air traffic control network, and the Internet to link with drone traffic
management architecture.

3. Requirements of Internet of Drones (IoD)

The expected increase in the use of drones in a variety of applications could expose
operators to a whole new array of risks, particularly damages to third parties and liability.
Several of the requirements for potential drones are presented and classified in the following
sub-sections. Figure 2 shows the key requirements of IoD.
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3.1. Communication Requirements

The impact of IoD communication vulnerabilities is receiving increasing attention
from researchers. Many remote locations would be hard to reach were it not for the usage
of drones. As a result, drones are commonly employed for important tasks such as rescuing
victims, providing surveillance, transportation, and helping with conserving and protection
of the environment [18]. Therefore, critical communication requirements to support the
different drone applications are discussed as follows.

3.1.1. Seamless Coverage

Hot-spot coverage (stages, tourist areas, and industrial areas) is appropriate for aerial
entertainment. Widespread coverage in suburban, urban, and rural areas is required for the
inspection and logistics of power or base stations. In the future, seamless drone coverage
will become more essential for network planning. Unlike conventional network coverage
serving mostly land users, enhanced sky coverage is required to support drone users flying
at different heights.

Coverage of up to 10 m altitude is appropriate for plant protection (e.g., spraying of
agricultural chemicals). Coverage of up to 50 to 100 m altitude is required for power line
inspection. Coverage of up to 200 to 300 m altitude is sufficient for mapping of agricultural
lands, while coverage of the upper air pipeline of up to 300 to 3000 m altitude may be
needed. It is difficult for networks to serve this large spectrum of coverage scenarios at
varying altitudes [19].

3.1.2. Real-Time and Remote Communication

Real-time and remote communication capabilities permit remote controllers to issue a
time-based command and control instructions on the basis of the drone flight status report
in real-time, such as space co-orders and equipment status. Real-time and remote controls
are primarily used in the monitoring of flight conditions, drone task, and equipment and
emergency control. The latency and rate of certain data requirements should be met to
allow remote control for drones. The downlink (from the base station to drone) data rates
in many application scenarios are about 300–600 kbps, and the existing 4G+ networks will
fulfill this requirement. For potential implementations, such as remote real-time operations,
the latency criterion is strict to guarantee the precision and experience of service [19].
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3.1.3. Transmission of HD Image/Video

Networks should be able to provide a high uplink (from the drone to the base station)
data rate for drones to permit the transmission of HD image/video. The data rate required
is calculated mainly by picture/video size and quality.

In the future, the demand for higher resolution images/videos in vertical industries
needing 4K/8K HD video support would need a higher Gbps-level data rate. The 5G
networks are well equipped to support such services with a data rate requirement of multi-
Gbps. Transmission of HD image/video will dramatically extend the drones’ application
scenarios including energy and power line inspection, agricultural exploration, control
and rescue, entertainment and monitoring. With high transmission rates, drones linked to
networks are able to transmit HD images/videos to enable the immersive experience of
augmented reality and virtual reality [19].

3.1.4. Drone Identification and Regulation

Mobile networks may help identify and control drones by supporting drone registra-
tion, tracking, provision, and coordination [19,20].

• Registration: Identifying but standardizing the drone equipment number, serial num-
ber, and flight control serial number helps track the whole process orderly from initial
drone production to in-use. Through standardizing registration of drone users, owners
and mobile networks, drone users and owners can be legally monitored.

• Monitoring: Drone connections and data communications can be detected and moni-
tored through mobile networks. Drone implementations can be completely tracked in
real-time with additional regulatory protocols.

• Forecast: Flight situations can be dynamically evaluated and early warning of possible
risks can be achieved by tracking drone positions and monitoring the flight traffic and
path.

• Coordination: Knowledge exchange between industries and different companies can
be carried out by approved oversight of all vertical industries involved.

3.1.5. Positioning of High-Precision

For numerous drone applications, positioning is critical. In several drone applications,
vertical positioning also is important, in addition to traditional positioning on the horizontal
plane. The requirement for positioning accuracy will increase from tens of meters to sub-
meters with the drone applications’ development. Fifty meters positioning precision is
adequate for regular monitoring activities. Applications such as agricultural land mapping
and automated loading involve high precision positioning at the sub-meter [19].

3.2. Security Requirements

Researchers have created several security and privacy approaches to secure the Inter-
net of drones (IoD) network to protect the location of unmanned aerial vehicles (UAVs)
and the privacy and security problems that come with using the IoD network. Due to these
localization errors, drone positioning was previously unreliable, which had disastrous
implications for the whole IoD network. Another critical aim of the IoD network is to
increase the level of security and privacy to a point where it cannot be compromised [21].
Therefore, the main requirements of security and privacy of the IoD network include
authenticity, confidentiality, availability, integrity, and non-repudiation [4,11,22]:

3.2.1. Authenticity

Authentication is required for sensing devices, users, and portal nodes before access
to a limited resource is enabled or essential information is disclosed [23]. In addition, for
communicating entities to have mutual authentication, two of the communicating entities
have to be a monitoring drone and a ground-control station. To guarantee full forward
secrecy, it is essential to employ a secure key exchange using a method that produces
session keys that are impossible to recover [24].
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3.2.2. Confidentiality

Confidentiality or privacy of the wireless communication channel protects from the
unauthorized disclosure of information [24]. Another significant barrier to IoD implemen-
tation is making data available, and controlling access to that data (data confidentiality).
For instance, when a group of drones collects road traffic data from several places, there is
a continuing problem in sharing this data safely and effectively [20].

3.2.3. Availability

Registered users should also be granted access to appropriate network services in
conjunction with system denial-of-service attacks. Both the mechanism and the system are
capable of recognizing if a drone is engaged in combat and keeping track of the battle limit,
which governs whether the flight management system can pick up on a malfunctioning
drone and determine if the availability criteria are compromised [10].

3.2.4. Integrity

Integrity is essential to guarantee the trustworthiness of the information (for example,
that it has not been altered in transit, and the source of the information is genuine) [24].

3.2.5. Non-Repudiation

The goal is to ensure that a criminal organization does not conceal its actions. In fact,
when there are several parties conducting an action, one of the necessary security measures
is to make sure that the action cannot be rejected without the others’ knowledge [24].

4. Taxonomy of IoD

This section presents a thematic taxonomy for the Internet of drones that consists of
the elements of IoD, notably architecture, middleware, data fusion and sharing, security
and various applications, as shown in Figure 3.
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4.1. Architecture

IoD architecture is divided into two major elements: Architecture components and
communication protocols. IoD architecture plays a vital role in controlling and administrat-
ing unmanned aerial vehicles to perform their operation more efficiently [25].

4.1.1. Architecture Elements (Component)

There are numbers of the Internet of things components present in the architecture of
IoD. The role and operations of these components depend on interaction with the IoD ar-
chitecture. Furthermore, stability, data acquisition, and communication methods of IoD are
determined by its architecture components [26]. In addition, IoD architecture components
are intended to perform operations mainly related to deciding and controlling the drones
and ensuring that the data reach the correct destination from the source nodes [1,27]. Lastly,
in the development of IoD architecture, we have to consider resources such as airspace,
intersections, and nodes [1].

4.1.2. Communication Protocols

IoD enables multiple communication protocols to support and transfer data between
the nodes. Authors propose a drone planner which assists in two communication protocols,
namely the MAVLink protocol and ROSLink protocol. The MAVLink is a lightweight
message marshaling protocol and ROSLink is integrated with the robot operating system
which provides robots into the IoT [28]. The efficiency of the communication protocol
is decided by the node movements and behavior in the network [29]. Furthermore, the
communication protocol for IoD has to accelerate in routing competencies where data
communication between the source node to target nodes is crucial [30]. Due to the above
reasons, selection of the communication protocol for IoD should be analyzed thoroughly.

4.2. Middlewares

In a connected IoT devices environment, the middleware layer plays an essential role
functioning as a mediator between various nodes and applications [31]. Moreover, the
middleware layer ensures abstraction between the various interfaces of the IoD, namely
programming language, operating system, networks, and architecture [32]. Two major
middlewares, service-based and cloud-based are discussed in the sub-section.

4.2.1. Service-Based

Service-based middleware facilitates in offering network access, local message deliv-
ery, caching and name resolution to the IoD architecture [33]. Service-based middleware
can achieve robust connectivity for the entire IoD architecture. Furthermore, it can in-
tegrate well with other network layers to provide efficient collaboration, performance,
and is adaptive to the architecture. Authors propose service-based middleware that en-
ables effective data transmission and extended connectivity time between the network
communications [34]. In IoD architecture, simultaneous communication between the
ground network and drone is a fundamental principle. The authors propose concurrent
communication between ground ad hoc networks and multi-UAV network for on-time
communication [1].

4.2.2. Cloud-Based

Cloud-based middleware for IoD service facilitates diverse applications to integrate
their operations into the network architecture. The most commonly used robotics applica-
tion middleware is the robot operating system (ROS) which utilizes the benefits of its elastic
resources by offloading computation and processing to the cloud for efficient resource
usage. This process is named cloud robotics [1]. The cloud-based middleware provides
reliable communication between the ground network and UAV [35]. The cloud-based
middleware delivers a very rapid response to the requested service. It further benefits the
IoD to actively communicate with the other networks.

239



Sensors 2021, 21, 5718

4.3. Data Fusion and Sharing

Currently, multiple drones are connected to perform various operations simultane-
ously. Incorporating data fusion and sharing for IoD allows the processing and merging of
several data sources to generate correct information for decision making. Moreover, data
fusion based algorithms for multi-UAV further support more efficient performance in the
smart environment. In this sub-section, we outline the three different types of data fusion
and sharing for the IoD, namely distributed, centralized, and cloud-based.

4.3.1. Distributed

The distributed data fusion and sharing are also called meta-architecture. This de-
centralizes the data into local interaction and no components are important to any other
operation and results in several benefits for the IoD operation, namely scalability, being
fault-tolerant, interoperability, and ease of redesign [36]. These benefits help reconfigure or
remove the particular unavailable or disconnected drone from the network. Moreover, the
distributed environment is more convenient to make a decision independently and in the
case of emergency can work as collaborative sharing.

4.3.2. Centralized

The centralized data fusion and sharing mechanism needs high-power communication
equipment to perform the operation smoothly. Furthermore, it shares all the information
through the fusion center with other devices in the network and leads to provision of
more accurate information about the operation [37]. At the early stage of deployment and
operation for the shorter distance, centralized sharing performs more efficiently. However,
when it comes to longer distances and later part of the operations, it will be much more
complicated to reposition or control the device [38].

4.3.3. Cloud-Based

Cloud-based data fusion and sharing are completely controlled by cloud interfaces
that consolidate various services to support the client to make an effective decision. Fur-
thermore, services such as analytics and intelligent operation can be performed in the
architecture. The developed framework to integrate various sources to operate traffic
management of smart cities applications use cloud-based data fusion. In addition, these
frameworks offer services to safety, collision avoidance, and risk-aware navigation [39].

4.4. Security

IoD transport and convey by more sensitive and confidential information about
the operation. Correspondingly, unauthorized access or control to drones leads to the
destruction of any services or physical attack. In this sub-section, an overview of four
different areas in security is discussed.

4.4.1. Authentication

Authentication is one of the major threats to any drone, whereby information disclo-
sure results in leakage of identity, location, flying routes, and other meta-data information
about the device. To improve the authentication, the authors propose a fast modular
arithmetic operation for the drone that helps control the signature key generation and
computing capability of any UAV resources. In addition, preserving authentication fur-
ther secures the authentication performance for UAV-to-UAV in real-time [2]. Moreover,
authentication should be given higher priority when it comes to accessing information
in real-time, otherwise the attacker can change the original message while operations are
performing in real-time. Most of the communication channels are protected by encryption
algorithms, which help protect the unauthorized authentication of the IoD [40].
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4.4.2. Privacy

The privacy issues of the IoD arise from three major areas: Sensors, communications,
and multi-UAV [41]. Eaves-dropping and keylogging are the popular methods in data
interception which is aimed to affect the privacy of the flowing information between
the drone and communication center [42]. Furthermore, the IoD utilizes the open-access
communication environment which is vulnerable to many security and privacy issues such
as message integrity, and disclosure of the UAV identity [2]. The recent advancement in
drone usage by civilian and business entities further increases the possible harm to the
right of the individual or organization to privacy [43].

4.4.3. Intrusion Detection

An intrusion detection system is classified into two main categories, namely host and
network-based. The authors propose a hybrid method for the UAV network intrusion
detection system, which comprises spectral traffic analysis and a robust controller to
observe the abnormal behavior in the UAV environment. Moreover, it performs a statistical
signature to explore the threat. Furthermore, the wireless network faces several threats,
namely overload, flash crowds, worms, port scans, jamming attacks, etc. [44].

To handle the above-mentioned modern threats, integrating deep learning and big
data technologies for intrusion detection will provide a more efficient method to identify
the threats [45].

4.4.4. Availability

The specialty of the IoD is to have high availability of the data flows in real-time to the
network. The IoD streams the high rate of data in the emergency response operation [46].
Moreover, in an emergency, the rivals may alter the incoming drone data or stop the
availability of the data to threaten the current situation. This would affect the evacuation
operation in the area [47]. Apart from this, these atomic attacks, namely battery exhaustion
attack, fuzzing attack, and physical component warning suppression would be performed
to disrupt the availability of drone data [48]. Lastly, any modern security system should
protect the collected drone data to be available in the network without interruption for
further analysis.

4.5. Applications

In this section, we discuss the most frequently used IoD applications, namely smart
agriculture, mining, construction, emergency and delivery services, and film and TV.
Table 2 illustrates the summary of drone applications and its modern usage areas.

4.5.1. Smart Agriculture

IoD based smart agriculture is being pursued to satisfy the growing demand emerging
from an environmental change with an ever-increasing population and limitation to natural
resources. In general, due to over-reliance on machinery, many farmers have left behind
farming jobs leading to a shortage of workers for agriculture industries.

Innovations such as IoD, cloud, and IoT will help them monitor their fields in real-time
to make an efficient decision. In particular, adopting the IoD and wireless sensor network
for smart agriculture will add more value and efficiency in monitoring and growing crops
for better yields. Furthermore, IoD eases the process by aerial monitoring and smart
spraying in crop affected areas [49]. In the era of precision agriculture, remote sensing
with IoD and GPS technologies further helps increase the various types of detection in the
farming sector, such as drought stress, nutrient status, and weed detection [50].

4.5.2. Mining

The usage of the IoD in mining applications protects human safety and reduces the
cost of mining operations. Moreover, the disruptive technologies help in indoor and
outdoor visual inspections, pit planning management, stockpile surveying in the mining
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industries. The collected IoD data can be further processed to make efficient decisions
in mining industries. The authors propose that the framework of UAV applications in
mining areas is divided into three major categories. Firstly, basic data from digital cameras,
spectral, lidar, thermal infrared, and gas sensors. Secondly, monitoring objects such as
dump, surface subsidence, coal gangue heap, open mining pit, and industrial site. Thirdly,
different applications in mining areas [51].

4.5.3. Construction

IoD makes it easier to access the visual data of the construction site to the client’s view
simultaneously. Furthermore, connected sensors, GPS, and the high-quality camera provide
various details to different stakeholders in the project. With sophisticated technologies,
the project manager has real-time data access to the site to monitor and avoid waste in the
construction process.

In addition, worker smart helmets in the construction site provide data about the
safety of an individual person to the drone. However, usage of IoD for the construction
industry is quite new compared to other application areas which need clear regulatory
approval and availability of experts [52].

Table 2. Summary of drone applications and their modern usage areas.

Applications Modern Usage Areas Reference

Smart Agriculture

Soil and Field Analysis
Crop Monitoring
Irrigation
Pathogen detection
Drought stress
Weed detection
Nutrient status
Yield prediction

https://www.microdrones.com/en/content/drones-and-
precision-agriculture-the-future-of-farming/ (accessed on
10 December 2020).
[47,49]

Mining

Field measurements
Water sampling
Stockpile management
Site description
Mine or quarry monitoring
Sediment flow
Hazard identification

https://wingtra.com/drone-mapping-applications/
mining-and-aggregates/ (accessed on 10 December 2020).
[51,53]

Construction

Construction Safety
Autonomous operation
Planning and analysis process
Site Inspections

[52]

Emergency and
Delivery Services

Rescue Operations
Blood and medicine Transportation
Patient Monitoring
Disaster relief and Management
Find Missing Persons
Public safety

[53–55]

Film and TV

Scouting and planning
Location managers
Logistics and safety
Multiple sensors shooting
Visual effects

https://variety.com/2019/artisans/production/film-and-
tv-shoots-drones-1203223079/ (accessed on 11 December
2020).
[32,56]

4.5.4. Emergency and Delivery Services

IoD plays a significant role in forest search and emergency medicine delivery to
remote areas. Furthermore, it is used for transporting blood, for disaster relief, missing
individuals finding lost hiker in the hill station, and many more areas of emergency services.
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Tech giants, such as Google and Amazon use the sky to provide medical care and food
delivery. IoD is equipped with a unique signature to track individual missions to verify
the place to which they traveled for disaster assistance. This helps coordinate the search
and rescue more efficiently. IoD is even used in the assistance of underwater search and
rescue operations. However, the greatest challenge relates to the bandwidth of IoD devices
that need to assist with intelligent algorithms [53].

The use of drones for emergency response services, especially in medical situations,
opens up new possibilities for life-saving measures. Using drones to provide “eyes” on
a dangerous situation or to deliver medical supplies to stranded patients may improve
emergency response physicians’ ability to provide treatment in dangerous situations. IoD
offers many emergency response services that impact daily life, discussed as follows.

Disaster management: Sensor data are a major problem in a broad geographical area.
In the case of satellite remote sensing, the identification of different parameters such as
forest vegetation, the tracking of the bottom of rivers, and the desert is very difficult. For
these situations, most devices are specifically designed and have very low time sensitivity.
In addition, environmental instability such as large clouds, cyclones, and volcanic ash can
cause disturbances. A certain situation can occur when acquiring large-scale sensor data.

As is the case in most situations, the sensors are located in fixed positions and the
network architecture is not suitable for rapid monitoring and management. In addition,
the sensor nodes themselves are susceptible to failure and low transmission capacity. Thus,
a dynamic node collection is highly important, which links the ground station and data
processing sites by utilizing the utility of the drone ecosystem Internet. Furthermore, the
drone functions as a highly complex data mule and sensing nodes, and sometimes the
nodes are disconnected from the network. That is, the intrinsic phenomenon of flying
nodes in dissipated networks and ad-hoc flying networks. Therefore, clearly, the nodes
interconnect in an opportunistic way [54].

Public safety: Whether a delivery site or a specific restaurant, and being more popular
with COVID-19, we can see that replacing personal delivery with a drone can boost
protection (no chance of transmission) but there are other possible benefits of drone usage.
Fewer cars will minimize CO2 emissions and alleviate congested streets. Drones may
reduce delivery times in non-urban areas or enable delivery to previously unreachable
areas. Cost savings will also potentially occur, the average cost of owning and using a
vehicle appears to be greater than a drone. Despite the labor pool, many restaurants and
supermarkets had trouble filling open vacancies prior to COVID-19. The use of drones can
allow the redeployment of their labor by these establishments [55].

4.5.5. Films and TV

Films and TV production are going through revolutionary changes from human
intervention to automation. Algorithms, technologies, and expert knowledge systems
provide more efficiency to produce a high quality of creative content into cinematography
industries. In the existing approach, labor workers are heavily used to position, and
target the camera position for adjusting the camera motion. These problems are easily
addressed by a drone-based intelligent shooting system, which further integrates with
machine learning and computer vision to assist in more convenient automation.

IoD contains more than one high clarity camera to track the visual object for the
production of films and TV. Moreover, IoD provides high precision and coordination
to capture the shot for cinematography applications. However, the standardization of
drones for shot types and camera trajectories need to be addressed [56]. Films and TV had
comprehensively addressed the various existing elements in IoD, in particular, architecture,
middleware, data fusion and sharing, security, and various applications.

5. Commercial Case Studies

A broad variety of Internet of drone applications in the fields of mining and industrial
automation services are being opened up by drones acting as sensor devices. Drones are
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now being designed for a variety of business applications that are an increasing using IoD.
The following section discusses the most key commercial case studies of IoD, summarized
in Table 3.

Table 3. Commercial case studies.

Case Study Middleware Strategy Data Sharing Supported Applications and Services

Matternet Cloud-based Cloud-based Healthcare and logistics

Aria Insights Service-based Distributed Oil and Gas

DroneSmartX Cloud-based Cloud-based

Agriculture
Energy
Manufacturing
Oil and Gas

H3 Dynamics Cloud-based Cloud-based
Real Estate
Mining
Oil and Gas

5.1. Matternet

Matternet is the leading technology company for independent urban drone logistics
systems, offering the technology platform as a service for healthcare and logistics orga-
nizations for the transport of medical supplies through dispersed healthcare networks.
Matternet has successfully deployed drone networks all over the world and has been
licensed by the Swiss Federal Office of Civil Aviation (FOCA) and the United States for
regulatory purposes. The Federal Aviation Administration (FAA) carries out fully au-
tonomous operations beyond the line of sight and flights over people to carry essential,
important medical supplies. To date, over 10,000 commercial revenue drone flights have
been facilitated by Matternet technology [57,58].

In order for Matternet to operate drones in Zurich, local regulators required a flight
permit. Drone reliability and safety were crucial regulatory requirements. Regulators
required that human operators access the status and location of the drone in real-time and
had the ability to manually interact with and monitor the drone, if necessary. Moreover,
Matternet had to incorporate data on air traffic control in real-time since helicopters
frequently landed near hospitals. The built-in Matternet solution includes self-employed
drones and landing stations, as well as a logistics cloud platform. The operations platform
is in charge of flight planning and drone surveillance in real-time. A flight director can
track the flight status and send orders to drones to come home or wait at certain places [59].

5.2. ARIA

Autonomous roadless intelligent array (ARIA) insights use artificial intelligence (AI)
and drones to eliminate people from unpredictable circumstances. Smarter collection of
data and machine learning allow decision-makers to solve a problem or conduct a task
rapidly and efficiently, while ensuring that human lives are not placed at risk. Decision
makers no longer have to spend hours recording and watching a video with sophisticated
analytics. Instead, the robots from Aria insights can recognise information that is relevant,
sound an alarm when new data are detected, and eventually link all the data to a digital
3D map [60].

The new machine learning technologies of Aria insights require consumers in the
public safety, oil and gas, and other commercial sectors to gather information and then
transform it into actionable plans. Aria’s drones can conduct fully autonomous missions
fitted by AI capabilities to make it easier to recognize characteristics of interest in multiple
use cases. For example, drones may help maintain enclosed spaces, such as oil tankers
or pipelines, allowing operators to locate areas that need to be repaired without human
exploration into potentially unsafe working conditions. Aria insights drones can also track
the progress of a natural disaster and inform first responders about increased activity in a
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given area, as well as warn event organizers when sections of the crowd may require more
supervision [60].

5.3. DroneSmartX

DroneSmartX, a UAV service provider, has created the UAV SmartHub, a system that
allows users to connect to smart sensors on the ground and send data directly to the cloud
platform. According to the company, headquartered at the University of Central Florida’s
business center in Kissimmee, Fla., the UAV SmartHub is connected to several types of
commercial-grade drones. DroneSmartX claims that the device integrates UAV as a service
with the Internet of things to make drones smarter [61].

The platform gathers data from sources such as passive and active radio frequency
identification (RFID), Bluetooth, GPS, and other sensors; processes the data; and delivers
it back to the user through the cloud platform in real-time. Ideal applications include
agriculture, energy, manufacturing, oil and gas, and inventory of warehouses. According
to DroneSmartX, the SmartHub will add tags to thousands of items for inventory checks in
minutes [61].

5.4. H3 Dynamics

H3 dynamics is developing the future of business drone services through the combina-
tion of machine learning, remote tele-robot, and off-grid power to ensure the deployment
and management of condition control, surveillance, and security solutions from anywhere.
H3 dynamics provide huge volumes of smart, professional-validated inspection reports
into complex images, videos, and other sensor data, a cloud-based service for owners,
airlines, contractors, and financial companies [62].

H3 dynamics have developed a station named “DBX” that can easily link all its
functions with third-party networks, including particular security and communications
networks, using an open application program interface (API) architecture. The DBX can
respond in any mobile or fixed sensor to geo-located signals, such as an intelligent camera
in a CCTV network, mobile phone, fire sensor or radar coordinate after an earthquake
or movement of some sort. To facilitate the fight against COVID-19, Rooftop DBX drone
facilities are being re-used as rooftop drone distribution and delivery networks for test kits,
blood samples, and provision of supplies. H3 dynamics provide services to many sectors
such as real estate, mining, and oil and gas [62].

6. Recent Advancements

This section explores recent advancements in IoD research activities (models, scheme
frameworks, protocols, mechanisms, methods, architectures, and algorithms). Table 4 lists
the ideas that have been put forward and they are addressed below.

Almulhem [63] proposed a model for a security threat, known as threat trees, to
evaluate and enumerate threats to the architecture of the IoD. The suggested threat tree is
intended to provide a holistic view of threats affecting an IoD scheme. However, the threat
tree that has been proposed does not necessarily include all potential threats.

Zhang et al. [64] suggested a scheme to enable drones and users to authenticate each
other. The suggested scheme protected from security attacks. In addition, the proposed
scheme provides better protection and better functionality characteristics in terms of
connectivity and processing costs but it still does not address certain types of attack.

Nikooghadam et al. [23] presented a scheme for developing a stable authentication
based on an elliptical curve for drones to ensure surveillance of a smart city. The scheme
demonstrates supporting security criteria and resisting established attacks, while incurring
low computational and communication costs.
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Table 4. Recent advancements in IoD.

References Architectural
Organization

Middleware
Strategies Solution Type Proposed Solution

Supported
Applications and
Services

Almulhem [63] Communication
protocol Cloud-based Model

Provide a holistic view of
threats affecting an IoD
scheme

IoD system

Zhang et al. [64] Component Service-based Scheme Attain security and
withstand various attacks IoD architecture

Nikooghadam
et al. [23]

Communication
protocol Service-based Scheme

Develop authentication
for drones to ensure
surveillance of smart city

Smart City
Surveillance

Deebak and
Al-Turjman [65]

Communication
protocol Service-based Scheme

Reduce the computation
expense of the
authentication protocol

IoD infrastructure

Bera et al. [22] Communication
protocol Service-based Scheme

Secure data management
system between entities
of IoD communication

IoD environment

Wang et al. [66] Communication
protocol Service-based Scheme Improve the accuracy of

object segmentation IoD

Tian [2] Communication
protocol Service-based Framework Secure authentication to

protect privacy of UAV IoD communication

Ever [3] Communication
protocol Service-based Framework Secure authentication of

UAV environment IoD applications

Choudhary et al. [25] Communication
protocol Service-based Framework Enhance IoD security

aspects Military IoD

Nouacer et al. [67] Component Cloud-based Framework
Secure architectures
based drone for software
and hardware

IoD architecture

Sharma et al. [68] Communication
protocol Service-based Protocol

Minimize packet drops,
to maintain fairness and
boost energy quality

Wireless Sensor
Network

Mukherjee et al. [54] Communication
protocol Cloud-based Mechanism Enhance protocol EdgeDrone

Bera et al. [69] Communication
protocol Cloud-based Mechanism Access control for

unauthorized UAV IoD environment

Weng et al. [70] Communication
protocol Service-based Method Improve mobility

compensation of drones IoT drone

Dawaliby et al. [71] Component Cloud-based Architecture Handle IoT drone
operations IoT drone

Gallego-Madrid
et al. [72] Component Cloud-based Architecture

Provide an intermediate
processing layer running
(VNF)

Drone Gateways

Koubâa et al. [28] Communication
protocol Cloud-based Architecture

Control, monitor, and
communicate over
Internet with drones

IoD

Rehman et al. [73] Communication
protocol Service-based Algorithm

Enable information
search to explore the
ranking of services

Drone network

Chang et al. [74] Communication
protocol Service-based Algorithm

Improve cost estimation
for multiple in-flight
rerouting

IoD

Huang et al. [75] Communication
protocol Cloud-based Algorithm

Support analysis of
computational
complexity

IoD

Yao et al. [76] Communication
protocol Service-based Algorithm Minimize the energy

consumption of the drone IoD
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Deebak and Al-Turjman [65] suggested a scheme of IoD to gather sensible knowledge
independently. The scheme is implemented to reduce the computation expense of the
authentication protocol. The suggested scheme is constructed to provide a valid authenti-
cation time for robustness between the IoT devices. However, the proposed scheme has not
addressed privacy leakage. Bera et al. [22] discussed a scheme to secure a data management
system between entities of IoD communication based on blockchain. The proposed scheme
has the ability to resist multiple possible attacks. In addition, comparative analysis shows
that the proposed scheme offers better conditions for security and reliability and also has
fewer overheads for computational and communication compared to similar schemes.
However, the proposed scheme required more investigation of blockchain technologies to
support deployment in a real IoD environment.

Wang et al. [66] presented a scheme of joint learning segmentation combined with a
model of conditional random-field and designed model based-enhanced U-net to improve
the accuracy of object segmentation and to solve the problem of inappropriate edge recogni-
tion. The findings of the presented scheme indicated that the precision of the segmentation
of the ground object increased up to 86.1%, which is a promising development.

Tian et al. [2] introduced a framework for authentication to protect privacy. The frame-
work guarantees the efficiency of authentication when deployed on resource-constrained
small-scale UAVs using the lightweight online/offline signature design. The presented
framework is enabled to predict authentication by exploring mobile edge computing (MEC)
in view of the high mobility of UAVs to further reduce the cost of authentication for future
authentication activities. Moreover, the framework allowed privacy security in terms of the
UAV identity, location, and flying routes by developing a username buffer and updated
strategy of the public key. However, the study is missing the use of formal analysis to
compare current authentication schemes in detail.

Ever [3] designed a framework for UAV environment authentication using elliptic-
curve crypto-systems. The proposed framework was tested to ensure that it is immune
to substantial well-known possible data confidentiality, shared authentication, password
guessing, and key impersonation related attacks. However, the study has not covered
privacy issues.

Choudhary et al. [25] proposed a framework for a security based-neural network,
which implements MAC protocol managed by the length of Macaulay. The proposed
framework enhances the sufficient duration of comprehensive control over ties to enhance
the security aspects of IoD and introduces countermeasures against identified cyberattacks.
However, the proposed framework does not support the combination of a security protocol
with channel authorization and real-time performance.

Nouacer et al. [67] designed a framework to secure the architectures based drone
for software and hardware. The framework holds a holistically built ecosystem ranging
from electronic components to applications. Moreover, the framework enabled a tightly
integrated solution for multi-vendor and scalable drone embedded architecture and an
appropriate tool-chain. The problems of latency and computing capacity, on the other
hand, are not fully discussed.

Sharma et al. [68] suggested a protocol that depends on congestion, which offers both
symmetric reliability and congestion control based on rate adjustment. The protocol aims
to minimize packet drops, maintain fairness, and boost energy quality. In addition, the
protocol offers greater energy effectiveness and efficiency. However, the proposed protocol
does not cover security and privacy issues.

Mukherjee et al. [54] presented a mechanism to enhance protocol solution as an
amalgam with the opportunistic routing mechanism.

The mechanism kept monitoring the history of the encounter and the transitivity
of encounter time. The analysis of the improved mechanism has been further checked
and a substantially improved performance in terms of publisher bandwidth, latency, and
run time has been observed. The findings of the proposed mechanism showed efficiency
improvement for both memory usage and energy dissipation. However, although the
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problems of latency and computing power have been mitigated, there are concerns of
bandwidth that remain unresolved.

Bera et al. [69] suggested a mechanism of access control for unauthorized UAV de-
tection and mitigation. The proposed mechanism is enabled to protect data from a drone
(UAV) to the server of the ground station and the abnormal data for the identification of
unauthorized UAVs. The results of the proposed mechanism illustrated the possibility to
conduct big data analytics on authenticated transactional data recorded on the blockchain.
However, the study is missing the cover privacy and attack issues during the transfer of
data form the UAV to the server.

Weng et al. [70] suggested a method to improve mobility compensation of drone based
IoT. The method involves phases of frequency offset approximation and relative velocity
measurement. The proposed method shows beneficial gains of mobility compensation of
drones via the simulations of Monte Carlo, but the study has not considered security and
privacy issues of drones’ mobility.

Dawaliby et al. [71] designed an architecture-based blockchain to handle IoT drone
operations while retaining and security. The results of the introduced architecture obtained
in the case of practical agricultural usage illustrate the usefulness in reducing signaling
and operating time, improving the percentage of effective maintenance operations, and
providing trust and protection in autonomous drone management. The study needs to
develop a platform to better meet the demands of IoT devices and use different placement
strategies.

Gallego-Madrid et al. [72] introduced an architecture based on the ability of multi-
access edge-computing (MEC) to host a drone-board virtualization platform to provide
an intermediate processing layer running virtualized networking functions (VNF). The
results of the presented architecture have shown significant communication improvements
using LoRa-drone gateways in terms of link availability and covered areas, particularly
in vast controlled extensions or at points with difficult access, such as rough zones. The
study needs to conceptually expand the architecture with software-defined networking and
artificial intelligence to dynamically pre-configure the networks according to the current
context.

Koubâa et al. [28] proposed an architecture-based cloud for drone management to
control, monitor, and communicate over the Internet. The architecture allowed smooth
contact with the drones over the Internet, enabling them to be operated anywhere and
at any time without distance limitations. In addition, the architecture provided drones
with access to cloud computing services to offload heavy computations. Furthermore, the
proposed architecture demonstrated the efficacy performance assessment analysis using
a real drone for a real-time monitoring application. However, the study has not covered
privacy issues of data movement between drones and clouds.

Rehman et al. [73] suggested an algorithm to support information searching that
exploits the ranking of services in a drone network. The results of the proposed algorithm
have shown that, with its average execution time not exceeding 2.5 ms on two separate
machines, the proposed knowledge searching algorithm proved to be successful. The study
has not defined in detail the services, classes, and mathematical models to rating parameter,
in order to offer better optimization design and performance.

Chang et al. [74] presented an algorithm to improve cost estimation for multiple in-
flight rerouting. The experimental flight test of the proposed algorithm was conducted ten
times on different routes. In addition, the findings indicate that the adjusted cost estimation
algorithm has a rerouting cost estimate of more than 92% accuracy under multiple rerouting
path-points. However, the study did not use AI and IoT to develop the autonomous flight
algorithm’s foundation.

Huang et al. [75] introduced an algorithm to support the analysis of the computational
complexity of IoD. They demonstrated the efficacy of the proposed algorithm, detailed
computer simulations are carried out, and a comparison with identified objectives is given
to determine performance gains. This study did not disprove assumption and identify
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potential locations for drone-BSs to provide service to mobile users. Another flaw is that
environmental variables such as rain and wind were not taken into account in this study.

Yao et al. [76] presented an algorithm to minimize the energy consumption of the
drone. The suggested algorithm obtained the optimal solution and transformed the convex
optimization problem, and then updated the Lagrangian parameters with an updated
Newton method. The results of the simulation showed that the proposed algorithm per-
forms better than the current algorithms. However, the issues of latency and computational
power are not completely addressed.

In conclusion, there have been few recent studies that have made advances to con-
tribute to the research fields. For example, only a few studies addressed schemes, frame-
works, architectures, and mechanisms, as well as systems for enhancing and improving the
security and privacy of IoD services. Therefore, further research and investigation of issues
are required for IoD environments.

7. Challenges and Future Research Trends

This section highlights the most crucial challenges and future research trends on the
Internet of drones.

7.1. Privacy and Security-Related Challenges

Since government agencies grant licenses for drone usage in civilian and commercial
applications, the modern IoD is equipped with numerous connected sensor devices. These
devices are vulnerable to various threats including hijack, human error, and loss. These
issues should be given higher priority in the design of drone applications.

Integrating AI-based security detection with blockchain to protect the devices and
a more sophisticated defense system to control and monitor the application will help
reduce the security threat to IoD [77]. In fact, when referring to UAVs one may have
to stress the “temporary” relation since these devices could be “untethered” from land.
Communications networks are vulnerable to jamming attacks that could catch new vehicles
or shut down those vehicles by manipulating their controls. To ensure this goal is met,
high integrity protected data links must be used between the flight and ground controllers,
and the Federal Aviation Authority (FAA). Technological advancement such as augmented
telecommunication and data protection technologies can help avoid the security breaches
of the future. Nevertheless, anti-jamming using high powered signal encoding is possible
with modern high technology. Communications protection depends on the communication
channel frequency, communications media, technology, and the relationships between each
other. Usually, encryption algorithms that operate at low bit rates are a bigger problem
than those that run at high bit rates as there are more costly categories. Therefore, lowering
costs are often followed by a reduction in security or in the number of operations [78].

Additionally, owing to the UAVs autonomous nature, safety is a major concern. The
UAVs are noisy and not easy to monitor, hence more safeguards should be established to
maintain data protection. There will be many possibilities, implications, and events from
the analysis of UAV. To secure UAV systems, using many techniques including redundant
sensory devices and security systems that are linked to the UAV ground station and others,
should be addressed. Other methods of preventing UAVs from being hacked have been
reported. The recommendations from the defense department (DoD) discuss taking steps to
counter hijacking. Thus, there are very few details on anti-terror strategies for coping with
hijacking. The potential danger of hacking in the air can look as malware in the software
created, spoofing attacks on communications-relay, and manipulation hardware or software.
One of the possibilities to counter the attack is for the control station to manipulate the
electromagnetic field of the carrier signal with hardware on the malicious attacker side.
Other forms of attacks include stealing data and gaining control of device functions. To
minimize the implications of these conditions, enabling the use of risk reduction standards
that could be exercised in court is essential. Which risks are compatible to achieve the
highest utility? Based on the available details, these decisions will lead to potential choices
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to be made. A ground radar device that detects vehicle hijacking is potentially useful by
telling the driver that the vehicle has been electronically changed. The only drawback will
be the expense of developing, equipping, evaluating, and implementing the product since
they had a dollar for dollar return on investment [79,80].

7.2. Global Resource Management-Related Challenges

Resource distribution is critical in serving productivity and reducing cost and can be
divided into two groups, the global allocation of resources and local allocation. Global
concerns concentrate on the expenditure spent on the global resources of time, energy, and
equipment. In addition, the maximum global productivity can be deployed by various
equipment in the Internet of everything (IoE), such as edge computers, cloud servers, and
UAVs. Under digital media transmission in IoE, global efficiency can be increased by
networking algorithms and video coding. Energy and power are allocated for every role
based on committed performance. For instance, in a smart building scenario (such as in
a local network), an efficient data collection algorithm is good for increasing the user’s
data rate. In addition, for the flying terminals, the energy management system is essential
for making use of limited energy. This is the concept of allocating resources at various
nodes [81].

In fact, a challenge for UAV applications is to preserve efficiency while facing cost
issues. First, developing protocols for the provisioning of network services based on
information rate and requirements of computation is a challenge. The problems to be
addressed are for systems that are clustered, use of cloud resources, and autonomous
services. In addition, the most popular economic activity is “resource allocation” since it
includes competing interests of individuals and companies or services to receive particular
resources. The next challenge is discovering reliable and cost-effective ways to assign
consumer demands. Another difficulty in resource utilization centers on determining how
best to specify the priorities and paths to the minimization of activity energy expenditure.
Moreover, resource mapping aims to offer an equal amount of services to buyers and
suppliers. Resource mapping may face problems such as mapping the physical components
and the rational distribution of resources to fulfill the requirement, which is often hindered
by physical limitations and obstacles. Designing algorithms that can use generic methods
to quickly obtain a mapping process fast is critical. The application’s compatibility with
the UAV platform needs to be checked by installing corresponding hardware prerequisites.
Yet another difficulty to be resolved would be to build models that can correctly measure
the performance of multi-core CPUs, PC storage medium, communication channels, and
information center data stores. In addition, this consideration may be a problem when
mapping resources [79].

7.3. Sensor Communication-Related Challenges

The IoD sensor’s communication protocols are designed with lightweight and highly
sensible objects which have a substantial chance for data loss or receive the wrong data from
other nodes. Furthermore, sensors face routing issues when communicating with multiple
drones with a network center. Some of the drone manufacturers use cheap hardware
components which increase the chance of other network communication issues namely,
high throughput, latency, and delay between the device and center [82]. To address these
issues, next-generation network technologies such as 5G, intelligent routing, narrowband-
Internet of things, LoRa-based IoT systems, Sigfox, NB-IoT, and LTE-M need to support
connection choices in the future. Lastly, the standardized policy should be developed to
use the authorized component for drones’ communication protocol.

7.4. Coordination and Tasks Scheduling-Related Challenges

Cloud computing and edge computing are going to be combined in the future to
handle computationally intensive IoT applications. These intelligent external intelligent
network applications need an appropriate centralized AI analysis and individual big data
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analysis for coordination. Regarding the situation-target scheduling, the applied intelli-
gence first examines the gathered information on the necessary computing tasks and then
decides whether the tasks are required to be submitted to the remote cloud. The object of
migration is different from the requirement of resources for a real-world data or application.
Computer architecture and networking will be adapted to international performance. This
method can be changed at any time for possible changes and improvements. This will
certainly become a regular theme [83–85].

7.5. Drones Distribution and Deployment-Related Challenges

Apart from data confidentiality, data sharing and access control are challenges that
face IoD deployment. For instance, in the application where a set of drones can collaborate
to collect road traffic data of different regions, how to securely and efficiently share these
collected data (e.g., in the sense that only authorized entities have access to the data) remain
an ongoing challenge [20,22].

8. Conclusions

Unmanned aerial vehicles or drones are helpful in raising efficiency in everyday life.
With the number of drones in low altitude air territory, linking drones into the Internet of
drones (IoDs) will help enhance the safety and performance of the drone aircraft. However,
privacy, security, and communications are still a big concern of the governments. We have
addressed key prospects for the association of IoD. This article provides a taxonomy of the
IoD based on the most important perspectives. We have included commercial cases that
are the most common and illustrate the most recent techniques used for IoD. Finally, we
have addressed the obstacles IoD faces and provide some direction for future studies.
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