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Characterizing complex material consists in establishing the relationship between
flow rheology during forming processes and the induced micro-structural state that affects
directly the final mechanical properties of the formed parts. It is necessary that research
activities reach to address the coupling between forming process and mechanical perfor-
mances (e.g., fatigue or reliability). Even if in this issue we put the main attention on
the fluid dynamic part, the research activity today must cover the life cycle from individ-
ual kinematics of particles to the mechanical properties of formed parts. Some points of
illustration are quoted here on a non-exhaustive basis:

- Individual kinematics of one fiber or particle in non-Newtonian flow and consideration
of hydrodynamic interactions remains today an open subject experimentally as well as
numerically (using direct approaches). No accurate analytical characterizations have
been done in non-Newtonian fluids in infinite domains. A specific attention must be
considered for viscoelastic materials. Such a material is usually encountered during
forming processes of injection molding or thermoplastics extrusion.

- After this first step, one must be able to make statistical transitions in order to predict
the orientation distribution of a suspension of particles. This step suppose that the
individual kinematics has been well established and must take into account particles
interactions in order to predict different phenomena such as aggregation.

- Composites involve in their liquid or solid state a significant fluctuation of physical
properties due to their heterogeneity. In order to get a fine description, numerical
models use generally an excessive computing time and requires a high capacity of
storage. This is a consequence of the high number of degrees of freedom requested
to correctly describe the physical properties. It will then be necessary to use some
approaches that reduce the numerical cost, such as the POD (Proper Orthogonal
Decomposition) or the PGD (Proper Generalized Decomposition). These methods will
make simulations of complex flows easier. The main difficulty consists in predicting
correctly the microscopic state that affects directly the final properties. Two modeling
scale are to take into account: the first one is related to the global dimension of the
flow providing velocity field, thermal distribution, pressure and other macroscopic
fields. The second one is related to the orientation of fibers, the conformation of
molecules, etc.

- Establishing distribution models is an essential information for reliability models.
Reliability of composites have to be studied through the part life cycle. This requires
reproducing (numerically and experimentally) the succession of loadings inducing
material damage. Modeling aspects have to be oriented to establish the tools allow-
ing to predict failure probability. These tools could be built by using the statistical
information previously calculated.

Entropy 2022, 24, 782. https://doi.org/10.3390/e24060782 https://www.mdpi.com/journal/entropy1
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- Next, fatigue and damage models using internal variables have to be related to the
induced microstructure. Indeed, modeling of fatigue is constraint by the CPU time
and requires to simulate a very high number of cycles. Two strategies are possible in
order to circumvent the difficulty related to the computational cost of the temporal
scale: (i) the first one consists in making a decomposition of the time dimension into
two dimensions, where the first one is related to a finite small number of cycles and
the other one is related to a global evolution of the internal variables. (ii) And the
second strategy consists to come back to POD-like techniques which are suitable for
extracting modes in cyclic behavior.

- These approaches must be associated to homogenization procedures for complex
materials. A specific knowledge of space scales transitions and the relationship with
the Representative Elementary Volume (REV) during the forming process or the
mechanical loadings, is an essential information for using composites material during
their life cycle. Fatigue models in direct simulations could be compared to fatigue
model with homogenized variables.

- Machinability of complex materials is also an interesting subject. Modeling the cut-
ting process and the confrontation with experimental measures could give an idea
to bring a multi-physic comprehension of chip formation and the tool/workpiece
interaction by adopting finite element approaches and methodologies. Microscopic
state is determinant in these conditions.

In all this sequence just described the challenge in the flow phase consists to establish
the relationship between the flow rheology during the flowing process and the state of
the induced micro-structure that directly affects the quality of the obtained mechanical
parts. This characterization should take into account the multi-scale description of the
continuum matter. Many developments are required. One of them consists in identifying
experimentally, numerically, and analytically the laws that govern each scale rigorously.
Another challenge consists in developing numerical techniques that allow addressing a
detailed description of the physical laws involving a large number of degrees of freedom.
Development and control of advanced numerical techniques and experimental observa-
tion is essential to predict accurately and with a lowest cost the state of matter and the
resulting properties.

Achieving the goal of modeling micrometric and nanometric suspensions remains a
major issue. This help to master in a controlled way the mechanical, thermal, and electrical
properties, among others, of the suspensions and then of the resulting product when
considered in material forming, flow of heat transfer fluids or other applications. In some
cases, they can contribute to improve the performance of energy transport. An optimal use
of these products is based on an accurate prediction of the flow-induced properties of the
suspensions and consequently of the resulting products and parts.

The scientific issues to solve are mainly related to the prediction of the behavior
evolution. Particles suspended in a viscous medium tend to modify the behavior. The
final properties of the resulting microstructured fluid or solid become radically different
from the simple mixing rule. There are numerous works addressing homogenization
strategies for systems consisting of perfectly of dispersed particles in a matrix. However,
in most cases, particles aggregate or sediment, or exhibit strong induced anisotropy. The
microscopic description, despite being the finest one, is too heavy from both computational
and experimental points of view. For this reason, coarser descriptions are sometimes
preferred. Even if they are less accurate, they lead to faster simulations.

Considering the general behavior of suspensions, viscoelastic fluids or complex flows,
two levels of description are relevant: a level related to the overall kinematics and a level
associated with the material point in the microscopic scale [1].

Taking into account the state of microscopic structure can be done at different scales.
For some behaviors such as fibers, differential approximation requires a closure relation-
ship [2]. Unfortunately, in most cases (except for some special ones), there is no equivalence
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between the constitutive laws and the microscopic definition of the structure. A microscopic
simulation at the scale of the kinetic theory is then required.

The most common technique for kinetic theory problems is the stochastic approach. A
lot of work has been done on different models of kinetic theory (dumbbell models, fibers,
polymer melts . . . ) see, for example [3,4].

For higher dimensions (much higher than three) stochastic methods become limited.
In the few studies that we find in the literature on the simulation of this type of problem,
the authors use a discrete approach (Brownian or with Monte Carlo) that involves the use
of a large number of particles. In very special cases, the probability distribution evolution
can be expressed as N evolution problems of N different functions with a vectorial change
of variable.

The framework for these problems requires the development of specific numerical
techniques applicable for problems with large numbers of degrees of freedom.

The difficulty of multidimensional models resolution is related to the proposal of
new appropriate strategies able to circumvent the curse of dimensionality. One possibility
lies in the use of sparse grids [5]. However, as argued in ref. [6], the use of sparse grid is
restricted to models with moderate multidimensionality (up to 20). Another technique able
to circumvent, or at least alleviate, the curse of dimensionality consists in using a separated
representation of unknown fields (see ref. [7]. for some numerical elements on this topic).

The question of multidimensionality has also been subject of works related to the
space-time separated representation. In fact, such decompositions were proposed many
years ago by Pierre Ladeveze as an ingredient of the powerful non-linear-non-incremental
LATIN solver that he proposed in the 80s. During the last twenty years many works were
successfully accomplished by the Ladeveze group. The interested reader can refer to [8]
and the references therein related to the radial approximation, denotation given to the
space-time decomposition in the LATIN framework.

The resolution of problems with analytical solution is rarely possible. Analytical
solution is provided only for specific simplified equations. Otherwise, solution is searched
for as a discrete form over a given set of points. Once the discrete solution is obtained in
these points the continuum solution can be built on using an appropriated interpolation.
When model is defined in dimension D, and with N degrees of freedom in each direction the
resolution requests ND discrete points. The difficulty related to the information processing
and storage becomes exponentially dependent on the dimension D. Beyond the value of D
equals to 3, standard discretization techniques (such as finite elements, finite differences, or
finite volumes methods) suffer from the limitations related to the high number of degrees
of freedom.

On this numerical point of view, some contributions have been focused on the devel-
opment of a new strategy different from the classical based-mesh techniques (FEM, FDM,
FVM). The developed method called the PGD (Proper Generalized Decomposition) allows
circumventing the curse of dimensionality and allows particularly to solve space-time
problem avoiding the use of standard incremental time scheme. It allows more generally to
solve problems defined in multidimensional space. The main idea consists to build up the
multidimensional solution as a tensor product of functions expressed in lower dimensions.

This strategy was useful for transient problem, but also has proved its robustness
for solving micro-macro problems by including configuration and physical spaces in the
same discretization. In addition, this strategy has been successfully applied for solving
kinetic theory problem when configuration space dimension exceeds the value three. This
situation in encountered in the kinetic theory of melt polymer or for bead-spring-chain
model for polymer suspension.

The obtained results as well as the potential application are encouraging to carry on
the development of this technique and to improve its performance in terms of convergence
speed and optimality and to enlarge its application fields.

In addition, considering in general the behavior of statistical fluids, fiber suspensions,
polymers suspensions, viscoelastic fluids, we see that there are two levels of flow description:
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(i) The first one is a level related to the global flow kinematics variables (such as velocity)
requiring a variational formulation of the problem overall the physical domain.

(ii) The second one is a level related to the elementary representative volume which
characterizes a state of matter: an orientation or conformation induced by the flow.
This condition defines the effect of the microscopic structure of the flow.

Taking into account the state of microscopic structure can be done at different scales.
One can use in a first approach a constitutive law (differential or integral) to describe the
evolution of the stress tensor characterizing the structure. For some behaviors such as fibers,
the constitutive law is written in terms of an approximation introducing a closure relation.
Unfortunately, in most cases (excluding some constitutive equation written rigorously),
there is no equivalence between the definition of the microscopic structure evolution and
the constitutive law. In fact, the approximation introduces some errors. This is particularly
the case for fiber suspension where there is a high incidence of the error induced by a
closure relation on the orientation tensor when the diffusion parameter is small.

If we wish to describe directly the evolution of the structure, a fine modeling at the
microscopic scale reveals itself indispensable.

The way in which we describe a microscopic behavior is based on (i) the kinematics
of each particle and (ii) the evolution of a probability distribution on the configuration
space of all the particles, also called the probability space. From a probability distribution
one can go back to the macroscopic state through a calculation of the stress tensor giving
the microscopic contribution. We consider that the kinematics of each particle is given by
a hydrodynamic contribution and interactions efforts contribution. Terms arising from
Brownian effects are obviously taken into account in the diffusive contribution of the
convection-diffusion equation characterizing the evolution of the probability distribution.
This equation is the so-called Fokker-Planck equation.

For example, in the context of multi-dumbbells models some contributions have
allowed to find a solution of the Fokker-Planck equation as a sum of functions products in
the context of the PGD [9]. This also has been done in the case of polymer melts [10].

Such approaches of numerical modeling at small scales also have many advantages
in the bio-medical field. Macromolecules such as DNA chains can be modeled with high-
dimensional configuration spaces. The difficulty arises in situations in which one wants to
lead a macromolecule (pharmaceutical drug for example) in into a pipe of very small size
(e.g., a vein) without the use of tools. We should then be able to predict the properties of
the velocity field so that the macromolecule gets the desired state.

In the same framework, the kinetic description of the rheology of carbon nanotubes
suspensions where the direction and also the aggregation state of the system has been
addressed [11].

In carbon nanotubes suspensions one must distinguish the case where the nanotubes
are functionalized to prevent their aggregation and the case if they are not. This latter situa-
tion is able to lead to their aggregation with significant effects on the rheological properties.

In the case of the functionalized nanotubes, kinetic model has been developed for
short suspensions and has been relevant to describe the nonlinear rheology.

When now we come back to the upper scale of the global flow (in a framework of
micro-macro approach), the difficulty lies in predicting the state of micro-structure which
affects directly the final properties. We then have a level of modeling on the scale of the
geometry of the flow giving kinematics, thermal field, pressure . . . and a level of modeling
of the microscopic characterization, of the state of orientation, of a fiber suspension, or of
the conformation of a macromolecule’s population . . .

To this end, developments are necessary:

- To be able to consider the relevant microscopic information in order to integrate more
physical responses such those finely described with molecular dynamics.

- To integrate the micro-macro coupling—for which we must create the required tech-
niques in adequacy with a rapid integration of microscopic behavior (finely described
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at the representative elementary volume of flow with the probability distribution) in a
simulation code.

The scope of application of this work is the engineering of complex fluids. Although
several studies have been done by substituting the microscopic description by using ap-
proximations based on constitutive differential or integral equations, it turns out that the
kinematics of the flow is highly affected by the topology of the microstructure; conse-
quently, we have to treat more carefully the microscopic information. The objective is
to make the interaction between the kinematics of the flow behavior and the molecular
information at the lowest numerical cost. This then requires an appropriate use of specific
techniques of model reduction to adequately describe the probability distribution on a
hyperspace resulting from a combination of physical space, the configuration space and
the temporal dimension.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The dynamic viscosity and rheological properties of two different non-aqueous graphene
nano-plates-based nanofluids are experimentally investigated in this paper, focusing on the effects
of solid volume fraction and shear rate. For each nanofluid, four solid volume fractions have
been considered ranging from 0.1% to 1%. The rheological characterization of the suspensions was
performed at 20 ◦C, with shear rates ranging from 10−1 s−1 to 103 s−1, using a cone-plate rheometer.
The Carreau–Yasuda model has been successfully applied to fit most of the rheological measurements.
Although it is very common to observe an increase of the viscosity with the solid volume fraction,
we still found here that the addition of nanoparticles produces lubrication effects in some cases. Such
a result could be very helpful in the domain of heat extraction applications. The dependence of
dynamic viscosity with graphene volume fraction was analyzed using the model of Vallejo et al.

Keywords: graphene nano-powder; thermal nanofluid; rheological behavior; Carreau nanofluid;
lubrication effect; Vallejo law

1. Introduction

Global warming and environmental disasters are current events that demonstrate
the urgency of a better consideration of renewable energy sources. According to the
International Energy Agency (IEA), during 2018, the fossil fuel share represented 81% of
the 14,314 Mtoe of the world’s primary energy demand, while the share of renewable
energy was only 9.7%. According to the IEA, improving energy efficiency is the central
factor that will enable the world to move towards a sustainable development scenario.
Unfortunately, the IEA also noted a clear slowdown in global progress on energy efficiency
in its 2019 report [1], which is of serious concern in the objective to meet global climate
targets and other sustainable energy goals. It is therefore vital to improve energy efficiency
at all levels of fossil resource use and consequently every reliable contribution in this
direction is welcome.

Heat transfer plays a vital role in many industrial and technical applications, ranging
from cooling of heat engines or high-power transformers to heat exchangers used in hot
water solar panels, refrigeration systems, or power plants. Unfortunately, usual heat
transfer fluids (HTFs) such as water (Wa), thermal oils (TOs), ethylene-glycol (EG), or
lubricating oils (LOs) all have thermal conductivity less than one unity (k < 1 W· m−1·K−1),
and this is a significant obstacle in improving the efficiency in thermal energy transfer
or extraction.

According to Fourier’s law jQ = −k∇T, increasing the thermal conductivity k of
HTFs will result in increasing the conductive heat flux between solids and HTFs. Thus,

Entropy 2021, 23, 979. https://doi.org/10.3390/e23080979 https://www.mdpi.com/journal/entropy7
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one way to improve heat extraction is to combine the flow properties of HTFs with the
high thermal conductivity of some solid materials, such as metals (Cu, Ag, Fe, etc.), metal
oxides (CuO, Cu2O, SiO2, TiO2, Al2O3, etc.), or different carbon-based materials (carbon
black (CB), carbon nanotubes (CNT), and nanohorns (CNH) or graphene (GR)).

However, the use of suspensions with micrometer-sized solid materials (micro-
composites) would lead to many prohibitive problems, such as abrasion, sedimentation,
and high risk of clogging. Fortunately, advances in nanotechnology now make it possible to
synthesize a wide variety of highly thermally conductive solid nanoparticles (NPs), which
can be stably suspended in HTFs to form nano-composites (nanofluids and nanolubricants)
and impart interesting thermal properties for heat extraction, without the disadvantages
mentioned above.

Nanofluids [2] are colloidal suspensions composed of solid nanoparticles (NPs), hav-
ing at least one dimension that is nanometric in size (<100 nm), stably suspended in a
thermal liquid such as water, ethylene glycol, or thermal oils [3–5]. Lubricating oil-based
suspensions are also sometimes called nanolubricants [6]. The amazing thermal properties
of nanofluids have been the subject of intense investigations in recent years [3,4,7–9]. The
potential applications of these nano-suspensions are multiple and promising in various
fields, such as cooling power electronic components, industrial and domestic air condition-
ing and cooling, heat extraction, and transport. As mentioned previously, these suspensions
could constitute, under certain mechanical conditions of use which will be discussed later,
a promising outlet for nanosciences in the field of energy saving [9–11].

Due to the very large contact areas provided by porous media [12,13], their use in heat
exchangers could also be an interesting way to improve heat transfer (in ducts and pipes,
for example). It could therefore be possible to combine the two aspects (thermal nanofluids
and porous media) to further intensify heat extraction [14], provided of course that the
addition of nanoparticles does not significantly increase the base fluid viscosity.

Nanofluids also have a wide range of applications in many other fields than thermal
transfers. We can mention, for example, the very promising field of nanomedicine, where
nanocarriers are used to allow the delivery of therapeutic and/or imaging agents directly
to tumor cells [15,16].

Different kinds of nano-particles (NPs) have been considered so far to produce nanoflu-
ids. They can be prepared from polymeric, metallic, organic, and inorganic materials, in
the form of tubular (e.g., carbon nanotubes), spherical (metals and oxides) or layered
(graphene) structures [10,17–23]. Among these various materials, graphene is a very
promising candidate because of its exceptional physical properties, including: a high
value of charge carrier mobility [20], exceptional transport performances [22], high specific
surface area [24], high thermal conductivity [18], and a significant Young’s modulus [25].
These properties rank this allotropic variety of carbon in the category of the most suitable
materials for the preparation of thermal nanofluids, which are sought after mainly to
improve heat extraction capacities.

While the most cited carbon-based nanomaterials for nanofluids applications are car-
bon nanotubes [26–31], recently other structures (such as graphene nanoplatelets (GNPs)
and reduced graphene oxide (RGO)) have become more widespread [32]. Several re-
searchers have studied the rheological properties of different graphene based nanoflu-
ids [9,32–36]. Monireh et al. [35] examined the impact of several parameters on the rhe-
ological properties of glycerol and multilayer graphene nanofluids. Their results show
that the viscosity increases with the raise in the solid mass fraction (between 0.0025 and
0.0200). They reported an increase in the viscosity (401.49%) of glycerol for 2% graphene
nano-sheets fraction, at shear rates of 6.32 s−1 and at a temperature of 20 ◦C. In addition,
Kole et al. [34] examined and evaluated the effect of graphene nano-sheets, added to the
base fluid (distilled water + ethylene glycol). Their results showed a non-Newtonian
behavior with the appearance of a reduction in viscosity by shearing, and an increase
of 100% compared to the basic fluid for a graphene volume fraction of 0.395%. In their
paper, Kazemi et al. [36] examined the effect of adding Silica and Graphene nanoparticles
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(using volume fractions 0.05%, 0.1%, 0.25%, 0.5%, and 1%) on viscosity of water. Their
experimental results revealed non-Newtonian pseudoplastic behavior of Graphene/water
nanofluids. Ahammed et al. [37] have studied the effect of volume fraction (0.05–0.15%) and
the temperature (10–90 ◦C) on the viscosity of nanofluids containing graphene nanosheets
dispersed in water. They found that the nanofluid water–graphene viscosity decreases
with increasing temperatures and increases with the volume fraction of the nanosheets. An
average increase of 47% in viscosity has been noted for 0.15% volume fraction of graphene
at 50 ◦C.

While, from a heat transfer point of view, thermal conductivity is an essential property
of thermal nanofluids, from a practical point of view, the dynamic viscosity of these
suspensions is an essential property for applications involving fluid flow, as heat transfer
and mechanical efficiency are deeply impacted by the viscosity of the fluid [27,32,38]. The
addition of nanoparticles to a base fluid can significantly alter its rheological properties,
inducing, for example, non-Newtonian behaviors, and, moreover, it can lead to a significant
increase of head losses. These pressure losses and rheological behavior alterations can
represent a serious limitation to the industrial use of thermal nanofluids [32]. It is therefore
important to study them systematically in order to predict the best operating ranges of the
considered thermal nanofluids. This is thus the main motivation of the present research.

The improvement of the thermal conductivity and the modification of the viscosity of
nanofluids strongly depend on several parameters, among which the size and concentration
of the nanoparticles, their nature and shape, the nature of the base fluid, the operating
temperature and the shear rate [32,33,39,40].

This paper presents an experimental study of the rheological properties of two thermal
nanofluids based on an allotropic variety of graphene nanoparticles, called graphene nano-
platelets (GNPs). In this study, the GNPs nanoparticles were dispersed in two kinds of base
fluids, with quite different viscosities: an industrial lubricating oil (LO) and ethylene glycol
(EG). We are concerned here with the study of the influence of solid particles concentration
and of shear rate on the rheological behavior of the suspensions under investigation.
Preparation and characterization of the suspensions used in the study are presented in the
first part of the paper (Experimental Methods). Then, experimental results are presented
and analyzed in terms of the influence of solid volume fraction and shear rate on the
rheological properties of the two graphene-based suspensions (Results and Discussion).
The experimental results are compared with different models (Carreau–Yasuda and Cross
in regard to the shear rate and Vallejo and Maron–Pierce for the solid volume fraction).
Conclusions and perspectives for future investigations are finally proposed (Conclusions
and Perspectives).

2. Experimental Methods

2.1. Materials

Ethylene glycol (EG) (Sigma-Aldrich, BioUltra ≥ 99.5%) and a lubricating oil (LO)
(Fuchs, ISO VG 68 RENEP CGLP) were used as base fluids. Table 1 shows the measured
ηmea and reference ηref viscosity values of pure base liquids at 20 ◦C. The reference viscosity
of EG is given by [41], while the reference value for LO is given by the manufacturer Fuchs.
The uncertainty εη between measured and reference values is also given in % in Table 1.

Table 1. Measured ηmea, reference ηref viscosity values (in mPa·s) and uncertainty εη (in %) of pure
base liquids at 20 ◦C.

Base Liquid ηref ηmea εη

Ethylene Glycol (EG) 19.9 20.3 2.0
Lubricating Oil (LO) 195 187 4.3

The GNPs were purchased from the Graphene Supermarket company (GSc) and
used as is. The dry powder of GNPs has a black color, a purity of 99.2%, and a density
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ρ = 2.25 g·cm−3 (from GSc). Figure 1 shows the scanning electron microscope (SEM) im-
ages of the GNP sheets (performed at LAMPA with a Zeiss Supra 25 microscope, allowing
a 1.5 nm resolution at 20.00 kV). These images clearly show the structural morphology of
GNPs in the form of nano-sheets with an average thickness of 3 nm (according to GSc).
These sheets are thus composed of 3 to 8 graphene mono-layers. Figure 1 also shows that
the nano-sheets are aggregated and overlap randomly.

2 μm 1 μm

Figure 1. SEM images of GNP nano-sheets, made at a working distance (WD) of 9.4 mm, an electron high tension (EHT) of
15.00 kV and noise reduction by line average filtering.

The nano-powders were analyzed by Raman spectroscopy, a technique that is com-
monly used to characterize graphitic materials. Figure 2a shows a typical Raman spec-
trum obtained with the powders used in this study. The three main peaks characteristic
of graphene-based materials are present, with usual relative intensities and widths: G
(∼1580 cm−1) and 2D (∼2690 cm−1) peaks that are always present in the case of graphene
and the D peak (∼1350 cm−1), which indicates the presence of defects [42]. Raman spectra
were performed using a Confotec MR520 Raman spectrometer at λ = 532 nm, with an
analysis time of 30 s.

X-ray diffraction (XRD) analysis was also conducted on the nano-powders. Figure 2b
shows that the diffraction pattern of graphene powders presents two main peaks at 2θ∼27◦

and 2θ∼54◦, which are very close to the diffraction peaks of graphite, as mentioned in [43].
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Figure 2. Raman spectrum (a) and XRD spectrum (b) of the GNPs powder used in this study.

2.2. Graphene Suspensions

Different masses of GNPs were dispersed in 20 mL of each base fluid, to obtain the
following solid volume fractions: φ = 0.1%, 0.25%, 0.5%, and 1%. No dispersing agent
or surfactant has been used in the formulation. Each mixture has been stirred with a
magnetic stirrer for 48 h, to ensure a uniform dispersion of the nano-particles in the base
fluid. In order to limit the initial agglomeration of the nano-particles in the base fluid, the
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solutions were exposed to moderate sonication (LEO ultrasonic bath, oscillation frequency
46 kHz and power 80 W) for 2 h. The samples, contained in closed vials, were immersed
in a water bath at room temperature. No significant variation of the samples temperature
was observed during the sonication process. Next, all suspensions were stored at room
temperature in hermetic containers. No observable phase separation has been detected
before and after rheological measurements. In all the cases considered here, the preparation
of suspensions with a solid volume fraction of 2% has led to samples that were no longer
liquid but rather pasty and that behaved like gels (no flow under the effect of gravity, by
turning the vial upside down). This study is therefore limited to solid volume fractions of
less than 2%.

2.3. Suspensions Characterization

To study the state of dispersion of the nano-particles in the base fluid and to evaluate
the presence and size of graphene aggregates [33,44–47], samples of each suspension were
analyzed by SEM after drying (Figure 3 shows an example of nanofluid based on ethylene
glycol, for a solid volume fraction φ = 0.25%: EG-GNPs-0.25). One drop of each sample was
collected, placed on the SEM grid and then slowly dried in an oven (see Table 2). Figure 3
shows that the graphene nano-sheets are uniformly dispersed, revealing no irreversible
agglomerates, and that the morphology of these nano-sheets is not noticeably altered after
the stirring and sonication steps.

20 μm 1 μm

Figure 3. SEM characterization of EG-GNPs-0.25 nanofluid.

Table 2. Characteristics of oven sample processing.

Base Fluid EG LO

Oven duration 12 h 72 h
Temperature 100 ◦C 220 ◦C

The rheological study of the nanofluids was carried out with a rotational rheometer
(Malvern Kinexus Pro), using a cone-plate geometry (1◦–60 mm), temperature-controlled
with a resolution of 0.01 ◦C. The geometry and the liquid to be characterized were enclosed
under a cover (hood), in order to improve the temperature homogeneity within the sample.
All the dynamic viscosity measurements were performed with the same geometry. No
particular experimental problems, such as material rejection or phase separation, were
observed during the measurements.

2.4. Rheological Properties of Base Liquids

The first experiments were carried out on the base liquids, in order to evaluate the
uncertainty of the rheometer. All measurements were repeated at least twice to check their
reproducibility. Figure 4 shows the results of our measurements obtained for pure ethylene
glycol, the less viscous base liquid used in the present study, at three working temperatures
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(20.00 ◦C, 40.00 ◦C, and 60.00 ◦C). The values that we have measured for these three
temperatures are quite close to those obtained by Chen et al. [48] and Sawicka et al. [41].
As expected, the dynamic viscosity (η) of ethylene glycol is independent of shear rate.
Similar results were obtained for the lubricant oil. The base fluids used in this study behave
like Newtonian fluids over the whole temperature range under investigation. The relative
measurement uncertainty has been estimated to be on the order of 2% at 20.00 ◦C.
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Figure 4. Rheological behavior of ethylene glycol at different working temperatures.

Figure 5 shows the evolution of dynamic viscosity as a function of temperature for
each of the two base fluids used in our study. As expected, it is observed that the dynamic
viscosity ηbf of these base fluids is a decreasing function of temperature, according [48] to
usual laws of type:

ln ηbf = A + 1000 × B
T + C

, (1)

where T is the absolute temperature, ηbf is the base fluid viscosity (in mPa·s), and A, B,
and C are fluid specific constants. Even more specific laws can be used (see, for example,
Bird et al. [49], chapter 1). It is also possible to write (1) in the so-called Vogel–Fulcher–
Tamman form [50,51]:

ηbf = η0e
DT0

T−T0 , (2)

where η0 (in Pa.s), T0 (in K) and D are fitting parameters related to A, B, and C by the
following relations: η0 = 10−3 · eA, T0 = −C and D = −103 · B/C.

12



Entropy 2021, 23, 979

20 30 40 50 60 7010−3

10−2

10−1

100

Temperature (◦C)

Sh
ea

r
vi

sc
os

it
y

(P
a.

s)

EG measured
EG reference
LO measured

Figure 5. Evolution of the dynamic viscosity of base liquids as a function of temperature. The
continuous lines represent model (1) with the respective coefficients of Table 3.

Table 3 gathers the values of coefficients A, B, C and of the determination coefficient
R2 calculated for the two base fluids used in this study.

Table 3. A, B, and C coefficients of Equation (1) and η0, T0, and D coefficients of Equation (2),
calculated for the two base fluids used in this study.

Liquids A B C η0/10−5 T0 D R2

EG −3.202 0.813 −162.5 40.68 162.5 5.003 0.9974
LO −2.353 0.757 −194.0 95.08 194.0 3.902 0.9998

In [41], Sawicka et al. used an Arrhenius-type law to model their measurements of EG
viscosity as a function of absolute temperature T:

ηEG = A exp
(

B
T

)
, (3)

where A = 1.6 × 10−7 Pa.s and B = 3440 K. Note that, using model (3), our experimental
measurements led to the following values in the case of EG: A = 1.11 × 10−7 Pa·s and
B = 3548 K, with a coefficient of determination R2 = 0.9971. These results confirm the
consistency of the present viscosity measurements with those of Sawicka et al. Table 4
collects our measurements ηmea of viscosity versus temperature for ethylene glycol and
compares them with the results ηref obtained by Sawicka et al. in [41]. The corresponding
uncertainties εη are also given in %.

Table 4. Ethylene Glycol viscosity values (in Pa·s) as a function of temperature.

T (◦C) 20.00 30.00 40.00 50.00 60.00 70.00 80.00

ηmea (Pa·s) 0.0203 0.0139 0.0089 0.0063 0.0047 0.0037 0.0029
ηref (Pa·s) 0.0199 0.0135 0.0094 0.0067 0.0049 0.0036 0.0027
|εη| (%) 2.0 2.8 5.3 6.0 4.1 2.0 5.8
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3. Results and Discussion

3.1. Rheological Behavior

Figures 6 and 7 show the rheological behavior of the two nanofluids for different
volume fractions, at a working temperature of 20.00 ◦C, and as a function of the shear rate.
Within the shear rates range investigated, it is observed that the rheological behavior of the
nanofluid is strongly dependent on the solid volume fraction. For each of the two studied
nanofluids, shear-thinning has been observed, which is more pronounced for higher solid
volume fractions. As indicated in the literature [35], the decrease in viscosity as a function
of shear rate could be attributed to a de-agglomeration effect of the graphene nanosheets
or to the alignment of the nanosheets in the plane of flow during shearing [48], resulting
in less viscous dissipation and consequently in a decreasing of the apparent viscosity of
the suspension. As the volume fraction of GNPs suspended in the base fluid increases,
shear-thinning deviation from Newtonian behavior becomes more and more pronounced.
Very similar behaviors were observed by Vallejo et al. [51] using nanofluids composed of
an ethylene-glycol:water mixture (50:50 vol%) and different carbon-based nanomaterials
(carbon black, nanodiamonds, graphite/diamond mixtures and sulfonicacid-functionalized
graphene nanoplatelets).
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Figure 6. Dynamic viscosity of EG-GNP nanofluids as a function of shear rate, for different solid
volume fractions, at 20.00 ◦C. Solid and dashed lines correspond to the model (6), using the coefficients
gathered in Table 5. The horizontal dashed line indicates the viscosity value of the base fluid.
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Figure 7. Dynamic viscosity of LO-GNP nanofluids as a function of shear rate, for different solid
volume fractions, at 20.00 ◦C. Solid lines correspond to the model (6), using the coefficients gathered
in Table 5. The dashed line indicates the viscosity value of the base fluid.

Table 5. Values of the Carreau–Yasuda parameters η0, η∞, a, λ, and n obtained by fitting the
experimental results. BF means base fluid (EG: Ethylene Glycol and LO: Lubricating Oil) at (@)
solid volume fraction φ (in %). R2

CY and R2
CM are the determination coefficients corresponding to

the Carreau–Yasuda and the Cross models, respectively. R2
PL is the determination coefficient of the

power law model, which has been applied only for φ = 0.1 %.

BF@φ η0 (Pa·s) η∞ (Pa·s) a λ n R2
CY R2

CM R2
PL

EG@0.1 0.3535 1.7574× 10−2 123.84 4.8878 −0.0216 0.9967 0.9910 0.9689
EG@0.25 0.8731 3.3330× 10−2 2.3583 5.7222 0.3245 0.9992 0.9984 –
EG@0.5 19.776 0.1871 21.873 21.731 0.1295 0.9969 0.9969 –
EG@1.0 117.11 0.8536 18.701 25.214 0.0981 0.9978 0.9978 –
LO@0.1 0.1395 0.1229 7.3295 0.6650 0.0861 0.9753 0.9696 0.8217
LO@0.25 1.0120 0.1683 1.9802 7.1384 0.2703 0.9999 0.9996 –
LO@0.5 1.7795 0.2264 4.8753 9.7821 0.2927 0.9995 0.9989 –
LO@1.0 27.642 0.8118 4.1630 9.9430 0.3159 0.9998 0.9992 –

For each of the two types of nanofluids studied here, two quasi-Newtonian plateaus
can be observed for the lowest solid volume fraction (φ = 0.1%). The first one, denoted
QNP0, is observed at low shear rates (see Figures 6 and 7), while the second one, denoted
QNP∞, is observed at high shear rates. The QNP∞ plateau is also present for the volume
fraction (φ = 0.25%), but only in the case of LO based nanofluids. It can be noted that the
extent of each of these plateaus depends on both the nature of the base liquid considered
and on solid volume fractions. The presence of such Newtonian plateaus in the rheological
behavior of nanofluids based on carbonaceous nanomaterials has also been reported by
Vallejo et al. [51].
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In the absence of Newtonian plateaus, the shear-thinning behavior of suspensions
is often well described using a power law ([52] chapter 5, page 90), also known as the
Ostwald–de Waele law (PL):

η = k|γ̇|n−1, (4)

where γ̇ is the shear rate, k > 0 is the flow consistency index, and n is the flow behavior
index (n < 1 for shear-thinning behavior). From the results shown in Figures 6 and 7, it
is clear that a power law of type (4) cannot describe the whole contour shape of the flow
curves for the different nanofluids studied here. It can only describe a small range of shear
rates, corresponding to the shear thinning region. We have illustrated the inability of the
power law (PL) to adequately describe the whole rheological behavior of our nanofluids,
firstly in Figures 8 and 9, where we have compared different rheological models in the
case of the lowest solid volume fraction φ = 0.1 % and secondly, in Table 5, where the
corresponding coefficient of determination R2

PL has been calculated when applying the
power law (4) over the whole shear rates domain.

In [51], Vallejo et al. used the Cross model (CM) to fit their rheological measurements:

η = η∞ +
η0 − η∞

1 + (k · γ̇)m , (5)

where m and k are called the rate constant and the time constant, respectively, while η0
and η∞ are the asymptotic values of dynamic viscosity corresponding to QNP0 and QNP∞,
respectively [51]. This law has shown to be more suitable than the power law to describe
our measurements over the entire range of shear rates studied (see Figures 8 and 9).
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Figure 8. Dynamic viscosity of EG-GNP nanofluid as a function of shear rate, for the lowest solid
volume fraction φ = 0.1 %, at 20.00 ◦C. The Carreau–Yasuda model (6) has been plotted using the
coefficients gathered in Table 5. In the shear thinning domain, PL modeling led to a quite good
coefficient of determination R2

PL = 0.9981.
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Figure 9. Dynamic viscosity of LO-GNP nanofluid as a function of shear rate, for the lowest solid
volume fraction φ = 0.1 %, at 20.00 ◦C. The Carreau–Yasuda model (6) has been plotted using the
coefficients gathered in Table 5. In the shear thinning domain, PL modeling led to a coefficient of
determination R2

PL = 0.9891.

Our experimental data were also fitted using the Carreau–Yasuda (CY) model for
shear-thinning fluids [53,54]:

η − η∞

η0 − η∞
=

[
1 + (λγ̇)a] n−1

a , (6)

where η0 is the zero shear rate dynamic viscosity (corresponding to QNP0); η∞ is the high
share rate dynamic viscosity (corresponding to QNP∞) and, according to Kowalska et al., λ
is a relaxation time characteristic of the studied fluid and a is a parameter characteristic of
the transition width between the zero shear rate viscosity domain and the shear thinning
domain. The values of the Carreau–Yasuda parameters, obtained by fitting our experimen-
tal results, are gathered in Table 5 and were used to plot the continuous and dashed lines
(except horizontal lines) in Figures 6 and 7. It can be seen from these figures that, at the
lowest solid volume fractions used here (φ ≤ 0.25%), the rheological behavior of each of
the two types of nanofluids is well described by the CY model, over the whole range of
shear rates investigated here.

It should be noted that the CY model consistently gave better results than the Cross
model, for each of the nanofluids studied in this work (see the coefficients of determination
R2

CY and R2
CM collected in Table 5). Therefore, we will discuss hereafter only the results

given by the CY model.
It can be noticed that the CY model still applies here remarkably well for the highest

solid concentrations studied in this work (φ = 0.5 % and φ = 1.0 %), but only at low
shear rates.

This remark is particularly true in the case of ethylene glycol-based nanofluids (EG-
GNPs), where it is observed for shear rates above 2 s−1 that the rheological behavior
completely fails the Carreau–Yasuda model (see Figure 6, dashed lines). These large devia-
tions from the CY model certainly reflect the increasing influence of graphene–graphene
and graphene–ethylene glycol interactions on the rheological properties of the suspension,
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as the solid volume fraction and the shear rate increase. This very particular rheological
behavior has also been observed in some cases by Vallejo et al., for high solid mass fractions
(see [51], Figure 3: 0.50wt%Nd97 and Figure 4e: 2.0wt%nD87 and nD97).

On the other hand, we have found that the CY model is particularly well suited for
lubricating oil-based nanofluids (LO-GNPs) over the entire shear rates range, as can be
seen from the curves plotted in Figure 7 and from the results gathered in Table 5. The value
of the coefficient of determination R2

CY is in this case very close to one, for three of the four
LO-based nanofluids studied here.

The significant differences in rheological behaviors observed in this work clearly high-
light the influence played by base liquid/GNPs interactions on the rheological properties
of graphene nanopowder-based suspensions.

3.2. Effect of Solid Volume Fraction on Dynamic Viscosity

We now analyze the influence of suspending various graphene nanosheets volume
fractions (φ = 0.1%, 0.25%, 0.5% and 1.0%) on the dynamic viscosity of each of the two
base fluids under investigation, at the working temperature T = 293.15 K.

The dependence of the room temperature dynamic viscosity with solid volume fraction
φ of EG-GNPs and LO-GNPs nanofluids has been compared to several widely used models,
namely Einstein [55], Brinkman [56], Batchelor [57], or Krieger–Dougherty [58] laws (see
Table 6). These laws, valid only for spherical nanoparticles, proved to be totally inadequate
with the nanofluids studied here, which contain graphene nanosheets.

Table 6. Some models commonly used to estimate the viscosity of micro-dispersions as a function of
the solid particles volume fraction. The intrinsic viscosity [η] has a typical value of 2.5 for spherical
particles, φm is the maximum particle packing fraction (which has been chosen here as an adjustment
parameter) and usually 5.2 ≤ α ≤ 7.6.

Models Einstein Brinkman Batchelor Krieger–Dougherty

η/ηbf = 1 + 2.5φ 1/(1 − φ)2.5 1 + 2.5φ + αφ2 (
1 − φ

φm

)−[η]φm

The dynamic viscosity η was calculated at 20.00 ◦C as a function of the solid volume
fraction φ for each nanofluid, using the experimental results shown in Figures 6 and 7, for
the following shear rates: γ̇ = 0.1, 1.0, 10, 100 and 1000 s−1. The evolution of dynamic
viscosity as a function of the GNP volume fraction is shown in Figure 10 for the case of
ethylene glycol-based nanofluids and in Figures 11 and 12 in the case of lubricating oil.
The dynamic viscosity values of most of the present nanofluids were well modeled using
the law proposed by Vallejo et al. [32,59]:

η = η0e
DT0

T−T0 + Ee
F
T · φ − G · φ2 (7)

where the parameters η0, D, and T0, whose values are gathered in Table 3, are specific to the
base fluid; E, F, and G are fitting parameters. Since only one temperature T is considered
in the present study, we rewrite Vallejo’s law in the following simplified form:

η = η0e
DT0

T−T0 + E′ · φ − G · φ2 (8)
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Figure 10. Evolution of the shear viscosity η of EG based nanofluids as a function of the solid volume
fraction φ, at 20.00 ◦C and different shear rates. The continuous lines correspond to the Vallejo
model (8), with the coefficients collected in Table 7.
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Figure 11. Evolution of the shear viscosity η of LO based nanofluids as a function of the solid volume
fraction φ, at 20 ◦C for moderate to high shear rates. The continuous lines correspond to the Vallejo
model (8), with the coefficients collected in Table 8.
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Table 7. Values of the Vallejo parameters E′ and G obtained by fitting the experimental results of EG
based nanofluids, for different shear rates, at 20.00 ◦C.

Shear Rate (s−1) E′ (Pa·s) G (Pa·s) R2

0.1 −8.3824 −50.4425 0.9996
100 −0.9938 −8.0442 0.9998
101 −0.5826 −3.0493 0.9994
102 −0.0908 −0.7015 0.9999
103 0.0143 −0.1411 0.9953

Table 8. Values of the Vallejo parameters E′ and G obtained by fitting the experimental results of LO
based nanofluids, for different shear rates, at 20.00 ◦C.

Shear Rate (s−1) E′ (Pa·s) G (Pa·s) R2

0.1 −12.723 −37.105 0.9886
100 −3.2195 −9.2146 0.9884
101 −1.1533 −3.0482 0.9935
102 −0.5789 −1.3981 0.9954
103 −0.4336 −0.9024 0.9900
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Figure 12. Evolution of the shear viscosity η of LO based nanofluids as a function of the solid
volume fraction φ, at 20.00 ◦C and low shear rates γ̇ = 0.1 s−1 and γ̇ = 1.0 s−1.The continuous lines
correspond to the Vallejo model (8), with the coefficients collected in Table 8.

The Maron and Pierce equation [32] was also used to model our measurements:

η = ηbf

(
1 − φ

φm

)−2
(9)

where φm can be considered as a fitting parameter. This model, which gave good results for
aqueous nanofluids containing graphene oxides [60], however, did not provide satisfactory
results with the present nanofluids. Therefore, it will not be developed in the rest of
this work.
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More specifically, in the case of ethylene glycol a quasi systematic increase in the
dynamic viscosity with the GNP volume fraction has been observed, whatever the shear
rate considered (see Figures 6 and 10); these results are similar to those already published
in several studies [34,35,40,51,61–64]. However, we noticed a weak lubricating effect, at the
limit of the measurement uncertainty, for the lowest volume fraction considered (φ = 0.1 %)
and for shear rates above 40 s−1.

Thus, it can be seen that from the point of view of mechanical performance that it
is not very favorable to load ethylene glycol with graphene nanopowders, since it can
significantly increase the effective dynamic viscosity of the suspension. This increase is
more important as the shear rates considered are low. For example, for γ̇ = 1.0 s−1 and
φ = 1 %, we found a relative increase in viscosity that is equal to ηr(1 s−1) = η/ηbf ≈ 350,
which is considerable. Relative increases of this order of magnitude, or even greater, have
already been observed in the past with aqueous nanofluids based on carbon nanotubes
(CNTs). For example, Ding et al. [65] observed huge variations in dynamic viscosity as a
function of shear rate with water-CNT nanofluids. In the case of 0.5 wt.% CNTs suspended
in water, they found at 25 ◦C that ηr(103 s−1) ≈ 10 while ηr(1 s−1) ≈ 105.

The variations of the dynamic viscosity η of the suspensions as a function of the
solid volume fraction φ were modeled using Vallejo’s law (8), at different shear rates γ̇.
As can be seen from the solid line curves shown in Figure 10 and from the values of
the coefficients of determination collected in Table 7, it can be noticed that the model of
Vallejo et al. applies quite well to the description of the evolution of EG based nanofluids
viscosity as a function of graphene volume fraction φ, whatever the shear rate considered.
These remarkable results confirm the interest of Vallejo’s model for ethylene glycol-based
nanofluids containing graphene nanopowders.

Next, the viscosity values of the nanofluids based on lubricating oil and graphene nanopow-
ders (LO-GNPs) are analyzed. Figure 7 shows a very interesting and promising rheological
behavior, since the addition of GNPs leads here, for the lowest volume fraction φ = 0.1 %,
to a decrease of the viscosity compared to the base fluid (ηr(0.1 s−1) = η/ηbf = 0.75 and
ηr(1000 s−1) = 0.66), rather than an increase, and this whatever the shear rate considered.
Chen et al. [29] have also observed, in the case of a nanofluid prepared with a volume
fraction of 0.4% carbon nanotubes (CNT) suspended in EG, that the effective viscosity of the
suspension is lower than that of the base fluid, due to a lubrication effect of nanoparticles,
which can also be assumed here to be the reason for the viscosity decrease. For higher
volume fractions given by 0.5% and 1%, the viscosity of the nanofluid becomes greater
than that of the base fluid, whatever the shear rate considered. These observations reflect
a non-monotonic behavior of the dynamic viscosity as a function of the solid volume
fraction that can be seen in Figure 11. The possibility of a lubrication effect, in the case
of the LO-GNP nanofluids for solid volume fractions, which should allow a significant
improvement in heat extraction, is a very encouraging result for the use of these liquids
from an industrial point of view.

As can be seen from Figure 11 and Table 8, Vallejo’s model gave adequate results for
moderate (γ̇ = 101 s−1; R2 = 0.9935) to high shear rates (γ̇ = 102 s−1; R2 = 0.9954 and
γ̇ = 103 s−1; R2 = 0.9900). On the other hand, the agreement is much less beneficial (see
Figure 12) for the two lower shear rates considered here: γ̇ = 0.1 s−1 (R2 = 0.9886) and
γ̇ = 1.0 s−1 (R2 = 0.9884).

In contrast to the case of EG-GNP nanofluids, it can be deduced from the present
measurements that the viscosity of LO-GNP nanofluids seems not to verify Vallejo’s law
correctly at low shear rates. Since the nanoparticles are of the same nature for both types
of nanofluids considered in this study, this difference in behavior should probably be
attributed to the fluid-GNP interactions.

4. Conclusions and Perspectives

An experimental study of the rheological properties of two different graphene based
nanofluids was presented for the following base fluids: ethylene glycol and an industrial
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lubricating oil. The influence of nanoparticles concentration on the rheological properties
of the suspensions has been systematically studied, for different solid volume fractions
(0.1%, 0.25%, 0.5% and 1%) at a working temperature of 20.00 ◦C. The rheological properties
of the suspensions were analyzed using both the Carreau–Yasuda and Cross models for
shear thinning liquids. For each of the two types of nanofluids considered, the Carreau–
Yasuda model gave the best results, the agreement being particularly good at low graphene
concentrations (φ ≤ 0.25 %). However, the presence of graphene at higher concentrations
can lead to deviations from the Carreau–Yasuda law, which become more significant at
high shear rates.

The Vallejo model was successfully applied to ethylene glycol-based nanofluids what-
ever the shear rate considered. In the case of lubricating oil-based nanofluids, the de-
pendence of the viscosity on the solid volume fraction is moderately well described by
Vallejo’s law for low shear rates. Further research will be needed to determine whether
other base liquids also escape Vallejo’s law for low shear rates in the case of graphene-based
nanofluids.

The suspensions studied in this work have exhibited a wide variety of original rheo-
logical behaviors. A lubrication effect has been demonstrated for the nanofluid based on
lubricating oil, for which the viscosity decreases with the addition of graphene nano-sheets
at φ = 0.1 %. This interesting behavior allows us to consider industrial applications for
this nanofluid in the field of heat extraction, for example, without sacrificing the mechani-
cal performance.

Future work will focus on the rheological behavior of these two types of nanofluids as
a function of temperature, but also on the thermal and thermodynamic properties (thermal
conductivity, specific heat, solidification temperature) and on the electrical and dielectric
properties (electrical conductivity and dielectric permeability).
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Abstract: The effect of shear flow on spherical nanoparticles (NPs) migration near a liquid–liquid
interface is studied by numerical simulation. We have implemented a compact model through which
we use the diffuse interface method for modeling the two fluids and the molecular dynamics method
for the simulation of the motion of NPs. Two different cases regarding the state of the two fluids
when introducing the NPs are investigated. First, we introduce the NPs randomly into the medium
of the two immiscible liquids that are already separated, and the interface is formed between them.
For this case, it is shown that before applying any shear flow, 30% of NPs are driven to the interface
under the effect of the drag force resulting from the composition gradient between the two fluids at
the interface. However, this percentage is increased to reach 66% under the effect of shear defined
by a Péclet number Pe = 0.316. In this study, different shear rates are investigated in addition to
different shearing times, and we show that both factors have a crucial effect regarding the migration
of the NPs toward the interfacial region. In particular, a small shear rate applied for a long time will
have approximately the same effect as a greater shear rate applied for a shorter time. In the second
studied case, we introduce the NPs into the mixture of two fluids that are already mixed and before
phase separation so that the NPs are introduced into the homogenous medium of the two fluids. For
this case, we show that in the absence of shear, almost all NPs migrate to the interface during phase
separation, whereas shearing has a negative result, mainly because it affects the phase separation.

Keywords: liquid–liquid interface; shear rate; nanoparticles; diffuse interface; phase field method;
molecular dynamics; numerical simulation

1. Introduction

In recent years, using nanoparticles (NPs) in industrial and medical markets has grown
significantly. They have been of immense significance in different branches of science and
engineering. This is basically due to their unique properties, such as augmented reactivity
and special optical properties, which make them very suitable for products and applications
in tissue engineering, composite technology, enhanced oil recovery and drug delivery [1,2].
In addition, NPs arise in nanoparticle-armored fluid droplets [3] and phase-arrested gels [4].
It is well known that studying biological processes on the nanoscale level is an essential
point behind the development of nanotechnology [5].

The assembly of NPs at the liquid–liquid interface is essential in the preparation
and stabilization of conventional emulsions, which have wide applications in petroleum,
cosmetics, food, and biological transferring [6,7]. Modeling the dynamics of NPs at liquid–
liquid interfaces has a crucial role in developing static and dynamic flow models that help
in drug delivery and understanding the biological and physical phenomena inside the cells
of the body [8].
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In addition, the dynamics of NPs in non-aqueous media, such as ionic liquids (ILs),
was reported in many studies. It was shown that the design and preparation of the nano-
materials are well planned and executed, using ILs to produce tunable and functional fluid
ILs-based nanomaterials, and it also was reported that ILs help to synthesize nanomaterials
with various functionalized surfaces [9].

Furthermore, the non-extensivity of entropy was investigated for different sizes of
colloidal Ag nanoparticles (NPs), and it was shown that the subextensivity of entropy
occurs for colloidal Ag NPs. In the small size of colloidal Ag NPs and at low temperature,
nonextensivity is important [10]. Taherkhani et al. used classical molecular dynamics
(MD) simulations to investigate the radial distribution, glass transition, ionic transfer
number, and electrical conductivity of the ionic liquid 1-ethyl-3-methylimidazolium hex-
afluorophosphate [EMIM][PF6] ionic liquid encapsulated in carbon nanotube (CNT), and
they also studied the effect of nitrogen as a doping element in CNT on these properties of
[EMIM][PF6] by MD simulation. It was shown that in the presence of nitrogen, ion transfer
uses a hydrogen bonding mechanism, while in its absence, ion transfer uses a diffusion
mechanism in which the cation has a significant effect on the ion transfer and electrical
conductivity [11].

The behavior of NPs is strongly affected by the surrounding environmental factors and
thus, external effects will modify their dynamic properties. Many researchers have studied
the effects of external fields on the aggregation of NPs. The effect of shear on nanoparticle
dispersion in polymer melts was investigated by Karla et al. [12], and it was shown that shear
significantly slows down the aggregation of NPs and such an effect is strongly dependent on
the polymer chain length and shear rate. In addition, Karla et al. [13] studied how the NPs
disperse in a block copolymer system under shear flow; they found that shear can have a
pronounced effect on the location of NPs in block copolymers and that it can be used as a
parameter to control nano-composite self-assembly. In addition, Minh D Vo et al. [14] used
dissipative particle dynamics (DPD) methods to study the effect of shear and particle shape
on the physical adsorption of a polymer on carbon nanoparticles; they found that there are
three possible states of the polymer adsorption on carbon nanoparticles (adsorbed, shear
affected, and separated states) depending on the value of the shear rate. Besides that, the
effects of shear stress on the intracellular uptake of NPs in a biomimetic microfluidic system
were investigated by Kang et al. [15], and they showed that for the case of cationic NPs, as the
magnitude of the shear stress increases, the intracellular uptake of such NPs maximizes at a
certain value of shear stress and then decreases gradually, which ensures that the shear stress
has a crucial role in various nanoparticles and drug delivery systems.

Plater et al. investigated experimentally the effect of viscosity ration of polypropylene/
Poly-e caprolactone blends on the localization of carbon black aggregates. The authors
reported that the particles were dragged to the viscous phase, even when the particles
were located initially into the more fluid phase, although they preferred to locate in the
latter [16].

Becu et al. succeeded in visualizing a single armored droplet with nanoparticles
undergoing a shear flow in another Newtonian medium. The results showed a continuous
but clear slowdown of the droplet relaxation after successive strain jumps. This effect is
related to the densification of the droplet interface by NPs when deformed [17].

In the current study, we focus on how shear force affects the migration of NPs to the
liquid–liquid interface, which will help to understand how NPs behave under standard
industrial processing conditions. The goal of this study is to implement a compact model
for the simulation of the shear effect on the migration of spherical NPs near a liquid–liquid
interface. Our work is based on the phase field method (PFM) for the fluids modeling,
using the diffuse interface model, and molecular dynamics (MD) for modeling the motion
of the nanoparticles, through which we superimpose the discrete model of NPs (using MD)
on the continuum model of fluids (using PFM), which is a new idea in numerical modeling
that we discussed briefly in our previous paper [18].
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The content of this paper is as follows. In Section 2, we give details of the models and
methods that we used in numerical simulation. We describe the diffuse interface model
and give a brief description of the numerical implementation and time discretization. In
Section 3, we discuss the numerical results for the migration of nanoparticles at the liquid–
liquid interface. We investigate the effect of shearing on the migration of nanoparticles
at the liquid–liquid interface, and we compare the results for different shear rates and
different shearing times. Finally, a conclusion follows in Section 4.

2. Materials and Methods

2.1. Particle–Particle and Fluid–Particle Interactions

In this section, the discrete dynamic of particles is described. Molecular dynamics is
the method of choice when one wants to study the dynamical properties of a system in full
atomic detail, provided that the properties are observable within the time scale accessible
to simulations. Time scale is one of the two main limitations of the method as will be
discussed later. Molecular dynamics simulations are also useful when the system cannot
be studied by the experimental methods mentioned above, for example, when the protein
cannot be crystallized or is too big or insoluble to be studied by NMR.

To calculate the dynamics of the system, that is, the position of each atom as a function
of time, Newton’s classical equation of motion is solved iteratively for each atom.

Each NP is considered a rigid spherical body whose velocity (vi) and position (xi) are
updated by using Newton’s equation of motion, which relates the applied forces with the
particle’s acceleration (ai) according to the following equation:

Fi(t) = mi
d2xi
dt2 = miai(t) (1)

where Fi is the applied force on the particle ′i′, and mi is the mass of the particle. The
applied forces can be classified into particle–particle interaction forces and external forces
due to the fluid (in our case, we consider drag forces, Brownian forces and shear effects).

The force on each atom is the negative of the derivative of the potential energy with
respect to the position of the atom:

f j−i = −∇V(r) (2)

If the potential energy of the system is known, then, given the coordinates of a starting
structure and a set of velocities, the force acting on each atom can be calculated and a new
set of coordinates generated, from which new forces can be calculated. Repetition of the
procedure will generate a trajectory corresponding to the evolution of the system in time.
The accuracy of the simulations is directly related to the potential energy function used to
describe the interactions between particles. In molecular dynamics, a classical potential
energy function is used that is defined as a function of the coordinates of each of the atoms.
In macroscopic systems, the fraction of the particles near the wall is negligible, whereas
in the MD simulations, this fraction is more significant, and the surface effect is of great
importance. In order to reduce the surface effect and conserve the number of particles in
the simulation box, periodic boundary conditions must be used so that when a particle
enters or leaves the simulation region, an image particle leaves or enters this region.

The position and velocity of the NPs (xi and vi respectively) at each new time are
calculated, using the velocity Verlet algorithm time integration scheme:

x(t + δ) = x(t) + v(t)δ+
1
2

a(t)δ2 (3)

v(t + δ) = v(t) +
1
2
[a(t) + a(t + δ)]δ2 (4)

where δ indicates the time increments for the molecular dynamics (MD).
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In our model, the particle–particle interaction is calculated, using the truncated
Lennard–Jones (LJtrunc) potential; this potential is used in many numerical studies in
order to model particle–particle interactions. See [19] for example.

VLJ
ijtrunc

(r) =
{

VLJ
(
rij

)
− VLJ(rc) f or r < rc

0 f or r > rc
(5)

With

VLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

(6)

where rc is the cut-off distance, which is taken to be 3σ, ε is the depth of the potential well, σ
denotes the equilibrium distance, and r is center to center separation between two particles.

Thus, the interaction force acting on the i − th particle induced by the j − th particle is
given by the following:

fj→i = −∇VLJtrunc (r) nj→i = −
∂VLJtrunc

(
rij

)
∂rij

nj→i (7)

where rij = rj − ri is the separation distance between two nanoparticles, i and j correspond
to different NPs indices, and nj→i represents the unit vector that point from xj to xi.

So, for N particles, the force acting on each particle is formed by the individual
interactions with all the neighboring particles:

Fi =
N

∑
j 
=i

f j→i (8)

The external forces acting on the NPs are due the surrounding fluids and thus, each
NP is affected by the Brownian force Fr and the drag force Fd given by the following
formulas:

Fr(t) =
√

2 D Δt χ (9)

where Δt is the time step in the numerical model, D is the diffusion coefficient and χ is a
normal random number whose average is zero and variance is one.

The drag effects are considered by the following:

Fd = ϕ
(

v f − vp

)
(10)

where ϕ is the drag coefficient, vp is the particle’s velocity and v f is the fluid’s velocity
resulting from the Navier–Stokes equation involving the concentration gradient (see [20]
for details):

v f = div(∇c ⊗ ∇c ) (11)

where ⊗ corresponds to the tensor product. The definition of c is introduced in the next
section. It denotes the phase field scalar used to describe the mixture.

2.2. Diffuse Interface Model

In the diffuse interface model, the convective Cahn–Hilliard equation is given by the
following:

∂c
∂t

+ u.∇c −∇.jA = 0 (12)

The diffusive flux is given by jA = M∇μ, where M denotes the mobility (scalar in the
case of isotropic separation mixture, and tensor in the case of non-isotropic separation). μ
is the chemical potential obtained from the variational derivative of the free energy with
respect to the mass fraction c.
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The Cahn–Hilliard theory [21] assumes that the driving force for diffusion is the
gradient of the chemical potential, and thus, the above equation is generally written
as follows:

∂c
∂t

+ u.∇c = ∇.(M∇μ) (13)

The free energy is a double-sink function that implies that the only stable equilibrium
values of c are +1 or −1. We use the classical symmetric form of ψ, which is used in most
cases. However, other forms of non-symmetric potential can be used. The expression of
free energy is assumed given by the following:

f (c,∇c) = −1
2

αc2 +
1
4

βc4 +
1
2

ε|∇c|2 (14)

where ε is the gradient energy parameter and α and β are positive constants. Thus, we
have the following:

μ =
δ f
δc

= −αc + βc3 − ε∇2c (15)

For this study, we apply shear forces. In order for the expression of this force to be
compatible with our framework of periodic study, we consider that the shear force is taken
to be periodic along the y-axis and defined by the following:

fshear =
sin 2 ∗ π ∗ y

l
(16)

This is illustrated in Figure 1.

Figure 1. Periodic shear force along the y-axis.

The effect of shearing is introduced into the momentum equation represented by the
Navier–Stokes equation (NS) with a phase field-dependent surface force as follows [22]:

ρ

(
∂u
∂t

+ (u.∇)u
)
= −ρ∇g +∇.η

(
∇u +∇uT

)
+ ρ μ∇c + fshear (17)

We also consider the continuity equation for an incompressible fluid as follows:

∇.u = 0 (18)

In the above equations, the dynamic viscosity of the fluid is denoted by η, u is the
velocity field and g is the Gibbs free energy given by the following:

g = f + p/ρ, where p is the pressure and ρ is the mass density. The superscript T
stands for the transpose operator.
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2.3. Scaling the Equations

In order to simplify the equations and minimize the effects of round-off errors, it is
preferable to use a set of dimensionless parameters. So, we scale the governing equations
by defining Uc and Lc as the characteristic velocity and characteristic length, respectively,

Tc = Lc
Uc

= σ.
√

m
ε as the characteristic time and εc as the characteristic energy. The

characteristic length of the phase field scale is related to that of the molecular dynamics as
Lc = 100 σ (fixed ratio chosen for our studies).

We introduce r∗ = r/σ, ε∗ = ε/εc , c∗ = c
cB

, u∗ = u
Uc

, t∗ = tUc
Lc

, μ∗ = μξ2

εcB
, η∗ = η

ηc
as

the normalized viscosity.
In addition, the dimensionless drag coefficient is defined as follows:

ϕ∗ =
ϕ σ√
εc m

The Péclet number is defined as the product of a shear rate by a characteristic time
as follows:

Pe =
.
γ. Tc =

.
γ. σ.

√
m
ε

ξ =
√

ε
α Is the interfacial thickness and cB =

√
α
β is the bulk concentration, which

represents the mean field equilibrium value. Dropping the asterisk notations, we obtain
the following:

dc
dt

= −u.∇c +
1
Pe

∇2μ (19)

μ = c3 − c − C∇2c (20)

∇.u = 0 (21)

∇g −∇.η
(
∇u +∇uT

)
=

1
C . Ca

μ∇c + fshear (22)

VLJ(r) = 4ε

[(
1
r

)12
−

(
1
r

)6
]

(23)

From this potential, we can get the force to be the following:

FLJ = −∇VLJ (r) (24)

Fd = ϕ ∗
(

v f − vp

)
(25)

We obtain the following set of dimensionless groups: the Cahn number C and the
Capillary number Ca, defined respectively as follows:

C =
ξ

Lc
; Ca =

ξηUc

ρεcB2 ;

2.4. Numerical Implementation

To model the dynamics of the NPs, we use the molecular dynamics (MD) method
with periodic boundary conditions implemented in order to conserve the number of NPs
in the simulation box.

In addition, we use the phase field method in order to model the two fluids and the
formation of the interface between them. In this method, the concentration is defined as in
Equation (19).
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To find the weak form, we multiply by a weighting function c∗ and integrate over the
whole fluid domain Ω to obtain the following:∫

c∗
dc
dt

dΩ +
∫

c∗ u.(∇c)dΩ −
∫ 1

Pe
c∗ ∇2μ dΩ = 0 (26)

where c∗ = c∗ T N and N is defined as
[

N1 N2 N3 N4
]
.

In the above equation N1, . . . N4 are the quadratic interpolation functions of the
4-node quadrilateral element:

dc
dt

= NT .
c (27)

The finite element interpolation for the gradient of the concentration is described in
terms of the linear combination of the shape function derivatives, given in matrix form, by
the following:

∇c = B c (28)

B =

[
N1,x N2,x N3,x N4,x
N1,y N2,y N3,y N4,y

]
Solving Equation (23), we get:

c∗ T
∫

N NT dΩ
.
c + c∗ T

∫
N u. B dΩ c − c∗ T 1

Pe

∫
N ∇2μ dΩ = 0 (29)

This integration allows obtaining a linear system that has to be solved at each time
step, which can be solved using a semi-implicit or explicit time integration scheme:

M
.
c + G c + F(c) = 0 (30)

Similarly, in order to solve the velocity equation, we can write the following:∫
u∗∇2u dΩ +

∫
u∗Aμ∇cdΩ = 0 (31)

where u∗ = u∗ T N (32)

and ∇2u = K u (33)

Solving Equation (28), we obtain the following:

u∗ T
∫

N K dΩ u + u∗ T
∫

N A μ B dΩ c = 0 (34)

This integration gives the following linear system to be solved at each time step:

T u + H c = 0 (35)

The position and velocity of the NPs (xi and vi respectively) at each new time are
updated, using the velocity Verlet integration scheme.

3. Results and Discussion

3.1. Fluids Separation and Interface Formation

The system is composed of two liquids that are normally immiscible. Due to some
external effects (temperature for example), these two liquids may be mixed to form one
thermodynamic phase. So, we can start the study from an initial state where the two fluids
are totally mixed as shown in Figure 2 (left figure).
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Figure 2. Mixture of two immiscible liquids, from the homogenous state (left) to the equilibrium state after the phase
separation (right).

These figures represent a 2D plot of the simulation box representing the two fluids.
The side bar in Figure 2 represents the evolution of the concentration between the two

fluids in order to form the interface. The concentration is taken to vary from −1 in the first
fluid (blue) to 1 in the second one (red). In our model, the area fractions of the two phases
are taken, as shown in Table 1.

Table 1. Variation of concentrations through the medium of the two fluids.

Concentration “C” Liquid 1 Liquid 2

−1 100% 0%

1 0% 100%

0 50% 50%

As time goes on, and since the two liquids are normally immiscible, the molecules of
each fluid immediately start to cluster together into microscopic clusters throughout the
liquid. These clusters then rapidly grow and coalesce until we obtain an equilibrium state
in which the two fluids are totally separated, and the interface is formed between them, as
shown in Figure 2 (right).

The blue medium represents the first liquid, and the red represents the second liq-
uid;the concentration is varying, according to the diffuse interface model. Note that our
simulation box is bounded between 0 and 1 along the two axes as shown by the limiting
lines in the figure, but we represent a periodic repetition of this box in Figure 2 (right) for
clarity; this is done in all 2D figures throughout the paper.

3.2. Introduction of Nanoparticles after the Separation of the Two Fluids and the Formation of
the Interface

After the two fluids are separated and the interface is formed between them, we
introduce N nanoparticles randomly into the system.

We consider two cases regarding the concentration of NPs in the medium (total area
of the NPs relative to the area of the medium of two fluids). The first case is 0.06 (200 NPs),
and the second is 0.3 (1000 NPs).

3.2.1. Low Concentration of Nanoparticles

Consider 200 NPs (concentration of NPs 0.06) distributed randomly within the two
fluids as shown in Figure 3.
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Figure 3. Random distribution of 200 NPs within the two fluids after phase separation.

• Neglect particle–particle interactions

For the first moment, let us neglect the interaction between the NPs via LJ potential
and study the migration of NPs toward the interface. In this part, we examine the behavior
of the NPs once they are introduced into the mixture of the two fluids that is already
separated and the interface is formed between them. The main goal here is to study
whether the external shear effect can improve the migration of NPs to the interface or not.
Different cases regarding the shear effect are simulated. We start with the case involving no
shear, and then we increase the Péclet number progressively; in each case, the percentage
of NPs migrating to the interface is plotted.

1. No shear case.

Once introduced into the medium of the two fluids, the NPs near the interface are
affected by the drag force given in Equation (7), resulting from the concentration gradient
between the two fluids at the interface. These NPs are driven to the interfacial region,
whereas the NPs far from the interface are not affected by this force, and thus, only 37% of
the NPs migrate to the interface as shown in Figure 4.

Figure 4. NPs near the interface migrate to the interfacial region (left); percentage of NPs belonging to the interfacial region
in the absence of shear (right).

In the simulation, time is defined as a dimensionless parameter (normalized time)
t∗ = tUc

Lc
as shown in Section 2.3 (scaling the equations).
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The percentage of NPs belonging to the interface is calculated by finding the number
of NPs belonging to the interfacial region relative to the total number of NPs introduced
into the medium.

In this work, the interface is defined as the region of high concentration gradient, and
we are able to track the position of the NPs and determine those that reach the interfacial
thickness by calculating the concentration gradient at every position. By this way, we are
able to determine whether each NP reaches the interface or not. It is important to note that
the noise in Figure 4 (right) and all the coming figures are mainly due to the effect of the
Brownian force introduced in the system. Although the effect of the other forces dominates
the effect of the Brownian force, there are still some effects as seen by the percentage of error
caused due to the Brownian force After the steady state is reached after introducing NPs, a
shear is applied for a certain duration (T-shear), defined relative to the characteristic time.
Thus, under the effect of the drag force, NPs near the interface are adsorbed. We consider
different cases for which we quantify the evolution of the NPs percentage belonging to the
interfacial region.

2. Simulation with shear rate = 0.4; Pe = 0.008, T-shear = 0.3.

In Figure 5, MD corresponds to molecular dynamics simulation, and it represents the
separation of the two fluids in the absence of shear (before applying shear). This figure
shows that the percentage of NPs migrating to the interface in the absence of shear is about
37%, and this percentage is not significantly affected in the case of low shear (low Péclet
number Pe = 0.008).

Figure 5. Shape deformation of the two fluids under the effect of shear (left); percentage of NPs belonging to the interfacial
region in the regions, before applying shear (green), during applying shear (red), and after stopping shearing (black),
Pe = 0.008 (right).

For this case, we find that a low Péclet number does not have a noticed effect on the
percentage of NPs belonging to the interface.

3. Simulation with shear rate = 7.7; Pe = 0.154, T-shear = 0.3.

Increasing the shear rate and thus, increasing the Péclet number to 0.154, the percent-
age of NPs belonging to the interfacial region increases under the effect of shear, from 37%
to about 60% as shown in Figure 6.
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Figure 6. Percentage of NPs belonging to the interfacial region in the regions, before applying shear (green), during applying
shear (red) and after stopping shearing (black), Pe = 0.154.

4. Simulation with shear rate =15.8; Pe = 0.316, T-shear = 0.3.

In Figure 7, it is clear that increasing the shear rate and thus, increasing the Péclet number,
enhances the migration of the NPs toward the interface to reach about 62% at the end of the
shear; also, this percentage increases a little bit to reach 70% after stopping shearing.

Figure 7. Percentage of NPs belonging to the interfacial region in the regions, before applying shear (green), during applying
shear (red) and after stopping shearing (black), Pe = 0.316.

This is mainly due to the fact that as the shear rate increases, more interfaces are formed
in the medium (i.e., the length of the interface is increasing) and thus, the percentage of NPs
belonging to the interfacial region increases. After stopping shearing, the interfaces tend to
reach an equilibrium state, and they reach the separation phase. In this case, the NPs that
are still near the interface are attracted to the interfacial region, due to the concentration
gradient so that the percentage increases a little bit to reach 70%.

• Including particle–particle interactions.

In this part, we consider the same situation discussed above (concentration of NPs
0.06), but this time we take into account the particle–particle interactions.

Once introduced, the NPs near the interface are driven by the hydrodynamic drag
force to the interfacial region, and all the NPs that are close to each other interact by the
particle–particle interaction force, so the NPs form clusters around each other as shown in
Figure 8.

35



Entropy 2021, 23, 1143

Figure 8. (a) Random distribution of the NPs within the two fluids; (b) formation of clusters under the effect of particle–
particle interactions.

In this part, we also study the effect of different shear rates.

1. No shear case.

Evaluating the percentage of NPs that are within the interfacial thickness, before
applying any shear on the system, shows that this percentage is about 26% as shown in
Figure 9. This value is smaller than that found in the case of neglecting the Lennard–Jones
potential. This is mainly because the formation of clusters prevents the clustering NPs
from reaching the interface. In reality, they agglomerate around the ones that are in the
interfacial thickness so that the cluster is attached to the interface by some of the NPs
forming it.

Figure 9. NPs near the interface migrate to the interfacial region (left); percentage of NPs belonging to the interfacial region
in the regions, before applying shear (right).

The distribution of the NPs at the interface and the accumulation of the others over
them are shown in Figure 8 above. In this case, the NPs that are attached to those at the
interface are seen in the figure to belong to the first fluid (red) or the blue one (blue) and
thus, they are not considered to belong to the interface. They are blocked by the ones that
reached the interface before.

Now, we apply shear after the NPs near the interface are adsorbed, and we investigate
the effect of shear on the migration of NPs to the interfacial region.
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2. Simulation with Pe = 0.008; T-shear = 0.3.

As for the case without the Lennard–Jones potential, small shear rates do not have an
important influence on the system. Thus, the percentage of NPs belonging to the interfacial
region is not significantly modified, compared to the case of no shear as shown in Figure 10.

Figure 10. NPs near the interface migrate to the interfacial region (left); percentage of NPs belonging to the interfacial
region in the regions, before applying shear (green), during applying shear (red) and after stopping shearing (black),
Pe = 0.008 (right).

3. Simulation with shear rate =15.8; Pe = 0.316; T-shear = 0.3.

As the shear rate increases, more interfaces are formed in the medium (i.e., the length
of the interface is increasing) and thus, the percentage of NPs belonging to the interfacial
region increases, as shown in Figure 11.

  

Figure 11. Percentage of NPs belonging to the interfacial region in the regions, before applying shear (green), during
applying shear (red) and after stopping shearing (black), Pe = 0.316.

One can notice that the percentage in these cases differs from that in the cases discussed
above, where we neglected the Lennard–Jones potential. This is mainly due to the fact
that in the case when the particle–particle interactions are taken into account, the NPs
accumulate around each other and form clusters at the interface.

It is noticed in the literature that embedding particles at the liquid interfaces may, for
example, lead to increased stability of biphasic systems, such as Pickering’s emulsions [23],
or lead to a double percolation morphology followed by electrical conductivity as with
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immiscible polymer blends [24]. For the latter case, several studies have focused on the
competition or synergy between thermodynamics and hydrodynamics that is inerrant
to mixing processes [25–28] on the particle localization. However, the observation of the
particle adsorption dynamics remains rarely considered. For example, Keal et al. were able
to demonstrate, by confocal microscopy tracking, the adsorption by natural diffusion of
colloidal particles at a liquid–liquid interface of very low interfacial tension. To date, we are
not aware of any experimental work describing the adsorption dynamics of nanoparticles
at the liquid–liquid interfaces under flow.

The blue boxes (marked area) in Figure 12 show that the two interfaces come so close,
and the particles accumulate between them.

Figure 12. Some clusters are attached between two adjacent interfaces, Pe = 0.316.

3.2.2. Simulation with High Concentration of NPs

As for the previous concentration, we take into account two cases. First, we neglect
the Lennard–Jones (L.J.) potential and then we include it in the second case.

• Simulation of neglecting the L.J.potential.

For the initial state, consider 1000 NPs (concentration of NPs 0.3) randomly distributed
within the two fluids, as shown in Figure 13a.

Figure 13. Random distribution of the NPs within the two fluids (left); more NPs migrate to the interface under the effect of
shear, Pe = 0.316, T-shear = 0.3 (right).
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First, neglecting the effect of the L.J. potential, we discuss the effect of different shear
rates applied for the same duration (T-shear), and in addition, we study the effect of
different shearing durations for the same shear rates. i.e., for the same Péclet numbers.

By increasing the Péclet number to 0.316, we find that about 66% of the NPs are driven
to the interfacial thickness for shear duration (T-shear = 0.3). Thus, we again ensure that
shearing enhances the migration of the NPs toward the liquid–liquid interface.

• Simulation including the L.J. potential.

In this part, we include the effect of the Lennard–Jones potential, for the case of
1000 NPs within the simulation box. We fix Pe = 0.3160 and T-shear = 0.3, and we examine
different cases through which we vary certain parameters related to the L.J. potential.

1. ε = 1, σ = 0.02

In Figure 14, it is clear that by increasing the concentration of NPs within the simulation
box, each NP has an interaction with all the NPs close to it. Due to the high concentration
of NPs, all of them are connected with each other and thus, the L.J. force is strong enough
to prevent the shear from affecting the motion and the location of the NPs.

Figure 14. Particle–particle interactions are stronger than the effect of shear.

2. Simulation with ε = 0.1, σ = 0.02

In experimental studies, it is possible to control and vary the value of the potential
between each NP and its neighbors and thus, it is possible to modify the particle–particle
interactions in order to match some industrial needs [29,30].

In order to study the effect of shearing in such cases, we minimize the value of the
potential well’s depth, ε, in the definition of the L.J. potential.

The results are shown in Figure 15, where we find that in such cases, shearing affects
the motion of the NPs and let them migrate toward the interfacial region. In addition,
there are some NPs connected between two adjacent interfaces, and this matches the
experimental results reported by Becu and Benyahia [14].
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Figure 15. Migration of the NPs clusters to the interface under the effect of shear.

It is clear from the obtained results that by controlling the value of the potential
between neighboring NPs and under the effect of shear, we are able to let the NPs form a
layer on the interface, even when the concentration of the NPs in the fluids is high.

3.3. Introduce the NPs Randomly into the Mixture of the Two Fluids before Phase Separation

In this part, we study the case of NPs introduced into the medium of the homogenous
mixture of the two fluids before phase separation and thus, before the formation of the
interface as shown in Figure 16.

Figure 16. Initial state of NPs randomly distributed within the mixed fluids.

3. Simulation with no shear.

As time goes on, and since the two fluids are immiscible, they will start to separate,
but this time the NPs are within the fluids and thus, their motion is affected by the
phase separation.

In the absence of shear, it is clear from Figure 17 that almost all the NPs (100%) are driven
to the interfacial region after a time of 2.2 relative to the characteristic time. The percentage
increases progressively during the phase separation so that the NPs are affected by the force
resulting from the concentration gradient throughout all the phase separation time.
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Figure 17. Percentage of NPs belonging to the interfacial region, in the absence of shear.

Comparing these results to the case when the NPs are introduced after phase separa-
tion has occurred, it is clear that the time of NPs introduction is important.

Since the percentage of NPs adsorbing at the interface is less when the phase separation
is already occurred, this seems to indicate that the potential of adsorption is higher in this
case. However, when we start from the homogenous state, the potential barrier is less, and
thus, more particles can be adsorbed at the interface.

In order to quantify the effect of shear on the migration of the NPs to the interface in
this case, we present the results obtained for different shear rates applied to the system just
at the beginning of the simulation before the phase separation starts.

4. Simulation with shear rate = 0.4; Pe = 0.008

As for the previous cases, a small shear rate does not have an important effect on the
obtained results, compared to the case of no shear as shown in Figure 18.

Figure 18. Percentage of NPs belonging to the interfacial region, in the presence of small shear.

5. Simulation with shear rate 7.7; Pe = 0.154.
6. Simulation with shear rate 15.8, Pe = 0.316

Increasing the shear rate will have a negative result with respect to the migration of
NPs towards the interface. As seen in Figures 19 and 20, the percentage of NPs belonging
to the interface is smaller compared to the case of no shear for all time durations.
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Figure 19. Percentage of NPs belonging to the interfacial region in the presence of shear, Pe = 0.154.

Figure 20. Percentage of NPs belonging to the interfacial region in the presence of shear, Pe = 0.316.

So as seen in the figures above, we find that in the case when we introduce the NPs
into the medium of the two mixed fluids before phase separation takes place, more NPs
will migrate to the interface in the absence of shear.

4. Conclusions

In this study, we have investigated the effect of shear force on the migration of
nanoparticles toward the interface of two immiscible liquids.

We have implemented a numerical simulation through which we modeled the two
fluids using the diffuse interface model. Two cases were investigated. The first one is to
introduce the NPs randomly into the medium of two fluids that have been separated and
the interface was formed between them. The second case is to introduce the NPs randomly
into the mixture of the two fluids before phase separation takes place. For the first case, if
we leave the fluids without any external effect, we find that only a small percentage, not
greater than 30% of the NPs will migrate towards the interface. These NPs are the ones
that are close to the interface when we introduce them randomly into the medium. Their
migration toward the interface is mainly due to the effect of the drag force related to the
concentration gradient in the interfacial region.

We have found that inducing a shear onto the system enhances the percentage of
NPs belonging to the interface. It has been shown that there are two factors affecting the
percentage of NPs migrating towards the interface, the value of the shear rate modified
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using the Péclet number, Pe and the shear duration T-shear. Introducing a shear defined by
Pe = 0.154 for a duration of 0.63 drives 66% of the NPs to the interface compared to 30 %
for the case of no shear effect. The same result was obtained using Pe = 0.316 for duration
of 0.3. This ensures that both factors play a crucial role regarding the migration of NPs
towards the interface.

In addition, we have discussed the effect of including or neglecting the particle-
particle interaction using the Lennard–Jones potential and we have found that for low
concentration of NPs, some differences appear regarding the percentage of NPs within the
interface. This is mainly because due to particle–particle interactions NPs close to each
other will form clusters and accumulate around each other, so that then NPs first attached
to the interface will attract the close ones to accumulate around them so that we find
clusters of NPs attached to the interface. In addition, for the same case we find that some
clusters will be attached between two close interfaces which match with some experimental
observations [14]. On the other hand, we have found that for the case of high concentration
of NPs there are several observations depending on the value of the L.J. potential well. For
ε = 1 the particle–particle interaction will be strong enough and will compete the effect of
shear and thus the NPs will not be driven to the interface. However, for ε = 0.1 the NPs
will be driven to the interface, where they form a layer at the interfacial region, with some
of them are connected with other NPs on adjacent interfaces. From the experimental point
of view, it is well known that we can modify the value of the particle–particle potential
interactions in order to match some industrial needs and thus the NPs can be driven under
the effect of shear to the interface even though when their concentration in the fluids is high.
So for this case, we have shown that shearing is a key factor in enhancing the migration of
the NPs towards the interface.

On the other hand, we have found that NPs introduced randomly into the mixture
of the two fluids before phase separation takes place will migrate faster and in a higher
percentage to the interface in the absence of shear.

It is clear that the time of NPs introduction is important. Since the percentage of NPs
adsorbing at the interface is less when the phase separation already occurred, seems to
indicate that the potential of adsorption is higher in the case. Whereas, when we start from
the homogenous state, the potential barrier is less, thus, more particles can be adsorbed at
the interface.

These results help us to understand how NPs behave under standard industrial pro-
cessing conditions. We obtain more information regarding new methods for synthesizing
nanomaterial films; in addition, these results also help to understand the behavior of small
NPs within the cells of organisms where they are greatly affected by the flow rate of the
surrounding fluids.
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Abstract: Over recent decades, tremendous advances in the field of scalable numerical tools and
mesh immersion techniques have been achieved to improve numerical efficiency while preserving a
good quality of the obtained results. In this context, an octree-optimized microstructure generation
and domain reconstruction with adaptative meshing is presented and illustrated through a flow
simulation example applied to permeability computation of micrometric fibrous materials. Thanks to
the octree implementation, the numerous distance calculations in these processes are decreased, thus
the computational complexity is reduced. Using the parallel environment of the ICI-tech library as a
mesher and a solver, a large scale case study is performed. The study is applied to the computation
of the full permeability tensor of a three-dimensional microstructure containing 10,000 fibers. The
considered flow is a Stokes flow and it is solved with a stabilized finite element formulation and a
monolithic approach.

Keywords: octree optimization; microstructure generation; domain reconstruction; flow simulation;
permeability computing

1. Introduction

The properties and behavior of a discontinuous fiber-reinforced thermoplastic are
induced by the mechanisms involved during the forming process. Modeling and numerical
simulation have a major role in understanding and predicting these mechanisms, especially
at the microscopic scale, which provides the most accurate results. Nevertheless, at this
scale of computation, numerical simulations are generally expensive in terms of computing
resources and time. Optimizing and evaluating the used algorithms is a constant challenge.
One of the most expensive issues when using finite elements and immersed boundary
approaches for discontinuous reinforced composites simulation is the computation of
distances. Fibers generation, immersion, and reconstruction techniques particularly rely
on these evaluations, as the distances between fibers must be regularly evaluated during
microstructure generation and distances from each point of the computational mesh to
the frontiers of the immersed elements have to be measured. However, without any
optimization, whenever the number of points and fibers in a simulation rises, the cost of
reconstruction increases dramatically. In order to make these techniques applicable in the
context of composites materials, an optimization of the distance evaluation is required. A
first idea is to implement distance computation algorithms that save computational time.
Reducing the number of expensive functions or operations used to compute each distance
is a key element, as well as defining properly the data types used to limit memory footprint.
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This paper proposes a reduction in the number of distances to evaluate, which is performed
using an octree.

The octree data structure [1] is a partition of a three-dimensional space built from
recursive subdivisions into eight sub-domains. The sub-cubes obtained are hierarchically
organized, which allows to easily reduce search time. Octree algorithms are widely used
in various fields and their application range is significantly extensive, especially when
positions must be accessed and manipulated. These applications include construction of a
three-dimensional object model from a set of images [2] and simulation of displacement
of free surface [3]. Octrees are broadly applied for collision detection algorithms in vir-
tual reality, rigid bodies contacts, characters animation, or machining simulation, such as
cutter-path generation for numerical control machines which require efficient collision de-
tection routines [4–6]. Another significant example involving octree algorithm is the mesh
generation procedure. Octree can be used to create meshes tied to geometrical objects [7],
for adaptive mesh refinement (AMR), e.g., with structured grids in fluid dynamics [8], or
combined with others techniques in advanced mesh generation processes [9].

In this paper, an octree-optimized microstructure generation and domain reconstruc-
tion with adaptative mesh is presented. An application of flow simulation through the
reconstructed domains dealing with the identification of the full-component permeability
tensor is conducted.

2. Microstructure Generation and Optimization Using Octree

The microstructure of a discontinuous fiber composite greatly affects its properties. For
that, virtual numerical sample generation is crucial in order to carry out precise prediction
simulations. However, a major difficulty to generate such a microstructure lies in the
establishment of an optimized methodology that allows generating a very large number of
fibers without interpenetration and with a minimum computation time and resources. In
this work, a Random Sequential Adsorption RSA algorithm [10,11], widely used for rigid
particles generation, is chosen.

A collection of N random unit orientations P, N homogeneously distributed mass
center positions X and N lengths L, following a normal distribution law with mean length
< L > and standard deviation σ, are primarily created. The program begins with one
initial fiber (i) randomly oriented with Pi. Subsequently, another fiber (j) with a random
orientation Pj is selected and then the system is checked for overlap. If the fiber (j)
intersects a pre-existing fiber, it is repositioned by randomly changing orientation vector
Pj while retaining the same position vector Xj. The selection of a new Pj is repeated up to
a maximum number of trials until the overlap condition is released. In this method, the
generated geometry is periodic, so that any fiber cutting a boundary will be extended on
the opposite one. This means that fibers close to surfaces can interact with the fibers of the
near domains. Therefore, every new fiber to be placed is verified for interaction with all
already pre-existing fibers and their 26 periodic images in the near domains.

Figure 1 presents an example of a generated microstructure with 1000 cylindrical
fibers having a same diameter d, a mean aspect ratio r =< L > /d = 20 and a fiber volume
fraction Vf = 0.1.

In the previously described algorithm, N ∗ 27 distances evaluations are required
to generate the N + 1-th fiber. Presuming that no intersection is detected, a minimum
of 27 ∗ N ∗ (N − 1)/2 distances has to be computed, thus leading to a N2 complexity.
However, this number can increase, as once an intersection occurs, new random positions
and orientations must be generated for the fiber. This computational cost is acceptable
when N remains small, but becomes unaffordable when N reaches the order of the millions
of fibers. To limit the number of distances to evaluate, this paper proposes the use of an
octree algorithm. This tree structure enables to browse rapidly across all the elements and to
select them based on their position. Consequently, a selection of the closest elements can be
performed, which allows measuring the distances to these elements only. The complexity
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is decreased and can reach N log(N) for an optimal problem. The next paragraphs describe
the octree building procedure, while the use of the octree is explained in Section 3.1.

Figure 1. Example of a generated microstructure with 1000 fibers having a same diameter d, a mean
aspect ratio r =< L > /d = 20 and a fiber volume fraction Vf = 0.1.

This data storage concept is a tree structure built recursively from a computational
domain, in which elements, e.g., fibers, are dispersed. To clarify this paragraph, an analogy
is performed between the computational domain and box bounding all the elements. In
practice, there is a possibility for elements to be concentrated in a particular area of the
computational domain. In that situation, the octree building procedure is processed in the
interest region only, which does not cause any problem later on. The tree is built through
refinement steps where the computational domain is divided in two along each dimension,
thus generating subdomains (children). The name octree comes from the characterization
of the tree in 3D, where 8 subdomains are generated by the division procedure (Figure 2).

Figure 2. Illustration of the octree data structure: On the left is highlighted the refinement of a
tree element into 8 new elements. The cube on the right presents the geometrical positions of the
octree elements.

After refinement, the elements shall no more be contained in the initial computational
domain, but are defined using pointers towards every child they intersect. This choice
characterizes the octree class, which is composed of the dimensions of the computational
domain and pointers to, either the elements contained inside it or the children generated.
The corollary of this choice is that fibers can be duplicated if they intersect several children.
After a refinement step, all the children are overlooked with emphasis on the number
of elements it contains. If a subdomain remains empty, i.e., no elements intersect it, it is
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immediately deleted. If too many elements are found in this child, the refinement procedure
is repeated in this particular subdomain. The recursiveness is applied in that way until:
either an acceptable number of elements is obtained in the deepest subdomains (leaf), or
the maximal depth of the octree is reached.

The repartition of elements into the children is handled using bounding boxes. Axis-
Aligned Bounding Boxes AABB have been used, which offer different advantages. First of
all, these boxes are very easy to determine, both computationally speaking and in terms
of access to data. It also allows reducing the computational effort for the determination
of the intersections, as the boxes are oriented along the same axes as the computational
domain. Finally, this choice enabled to generalize the octree to very different usage, from
fibers to, e.g., 3D facets used to define surface meshes. The drawback brought by these
bounding boxes lies in the intersections, as an “ill-oriented” fiber may be duplicated in
leaves it does not intersect, only because its bounding box does. In that case, we can
implement Oriented Bounding Box OBB in future works to enclose fibers as tightly as
possible. Another limitation occurs when very long elements (proportionally to the size
of the computational domain) are present, as again the fibers may be highly duplicated.
However, the following developments of this paper will show that octree usage remains
appropriate for elements with a small length to width ratio.

This paragraph presents the octree generation on an example that features 14 fibers,
with a maximal depth for the octree of 2 and 1 fiber allowed per leaf. The procedure is
drawn in Figure 3.

Figure 3. Octree generation example: (a) Fibers in computational domain. (b) Octree first level of
refinement. (c) Octree second level of refinement.

The octree parameters mean that any subdomain containing more than 1 element
needs to be refined, with a limit of only 2 levels. After the first step of the refinement,
the fibers presented in Figure 3a are allocated to every subdomain their bounding box
intersect. An interesting emphasis can be placed on the blue fiber (second “row” from
the top, middle of the computational domain), which is duplicated into both of the two
children on top of the initial computational domain in Figure 3. Consequently, after
a second step of refinement this fiber can be found in two different octree leaves, the
asterisked ones in Figure 3b. Figure 3c corresponds to the final octree as obtained with
the parameters detailed previously. Even if the presence of only one fiber per leaf was
authorized, subdomains containing more than one fiber can be found because of maximum
refinement allowed. Note that the subdomains containing ∅ have been created by octree
refinement, and immediately deleted as no fiber was allocated to it.

When adding a new fiber following the RSA algorithm, thanks to the implementation
of the octree, the check for overlap will be carried out among a reduced number of fibers
initially judged by the octree as potential candidates for collision. Fibers with which there
is a possible collision are the fibers in the leaf or leaves to which the new fiber belongs and
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whose AABBs intersect. Figure 4 shows a schematic diagram of this method: it shows a
leaf of an octree (large box black) to which we would like to add the red fiber and where the
blue and green fibers already exist. Thus, a possibility of intersections can only occur with
blue fibers. The green fibers will not be concerned because their AABBs do not intersect
the AABB of the red fiber.

Figure 4. Illustration of the collision detection optimisation process: addition of the red fiber to an
octree leaf, possibility of collision only with blues fibers whose AABBs intersect the AABB of the
red one.

During this process, fibers are dynamically added to the octree. For that, two major
conditions should be verified to update the octree after adding a new fiber:

• A new fiber must be always included in the global domain initially built for octree
and, if it is not the case, it is necessary to destroy the octree and to reconstruct it;

• The size of a leaf should not exceed the defined maximal size and, if it is not the case,
it is necessary to refine the octree.

To quantify the gain brought by the octree, we study the evolution of the CPU time, t,
according to the number of generated fibers, N. For all the simulations, we consider r = 20,
Vf = 0.1, and a maximum number of trials equal to 5000. The leaf maximal size is fixed to
100. Figure 5 shows a considerable gain on time which improves as the number of fibers
becomes more important.

Figure 5. Microstructure generation time as a function of the number of fibers, for a case with
microstructure having r = 20, Vf = 0.1, and a maximum number of trials equal to 5000.
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3. Computational Domain Reconstruction

3.1. Mesh Immersion and Optimization Using the Octree

Mesh immersion is a technique enabling the representation of complex bodies using a
single computational mesh. The main idea is to compute the distance from each point of
the computational mesh to an object immersed, which can be represented by an analytical
function, a mesh, or any set of data.The only constraint is the need to build an interior for
the object, thus defining a frontier. This definition enables to establish a signed distance
function α, as presented in Equation (1) for the immersion of a shape ω of the frontier
Γ = ∂ω into a domain Ω. This interior can be concave or even split, as the mathematical
evaluation of α does not have any prerequisite. However, the more complex ω will be, the
more points in the computational mesh will be needed to represent it accurately.

α = d̄(x, ω) =

{
d(x, Γ) if x ∈ ω
−d(x, Γ) if x /∈ ω

, x ∈ Ω. (1)

Once the signed distance function is defined, any computational point x has a signed-
distance either positive or negative. The union of points with positive α defines the interior,
and the inverse set gives the exterior. This formulation mathematically corresponds to using
a Heaviside function as a level-set function, which gives 1 for α positive and 0 for α negative.
However, this approach is not suitable for multiphase flows, as strong discontinuities are
sources of instability when using Galerkin approximation for the resolution of the Navier–
Stokes equations. To overcome this issue, a smoothed Heaviside function based on a width
parameter ε has been defined and is presented in Equation (2).

Hε(α) =
1
2

(
1 +

uε(α)

ε

)
, (2)

with
uε(α) = ε tanh

(α

ε

)
. (3)

This paradigm introduces a transition phase of a width of about 2ε which smooths
the shifting between physical parameters of the two phases. The “blurred area” does not
operate as a gray zone in terms of mesh immersion, as the norm and sign of the result given
by Hε in this region is depending on α. Compared to immersion results giving either 0 or 1
for a classical Heaviside function, a better capture of the interfaces can even be achieved.
However, the quality of the reconstruction of ω remains highly dependent on the meshing
of Ω. Fine meshes are needed around interfaces, and if the meshing of ω is complex, a high
effort will be put in either mesh generation or distance evaluation.

This interdependency is addressed by coupling the immersion with a mesh adap-
tation procedure. An anisotropic mesh generated automatically concentrates its points
around Γ, guaranteeing that an important portion of them will be located in the transition
region highly impacted by Hε. Further explanations about this procedure can be found
in Section 3.2 and in [12]. Figure 6a presents the results of α for a circle of a radius R, and
Figure 6b presents the results obtained for Hε with ε = R/100. A slice of the computational
mesh is also drawn, where the major part of the points are gathered in the interest zones
(Figure 6c).

The level-set function is defined analytically from α, making the evaluation of α the
major effort of the immersion procedure. If an analytical definition of α requires only one
distance computation per point and does not need to be optimized, considering more
complex representations generates computing complexity, e.g., when meshes or fibers set
are immersed. Those cases use a set of elements to define ω or Γ, so the determination
of the closest neighbor is not immediate. The performance of the immersion code then
highly depends on the computational effort needed to evaluate a single distance, but also
on the number of distances to compute before finding the closest element of ω. Without
any optimization of the immersion procedure, the computation of α for a single point x and
M fibers defining ω require M distance evaluations. Consequently, the immersion of M
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fibers in Ω composed of N points forces the computation of N × M distances. When few
fibers are immersed in small meshes, this cost is affordable. However, when 10,000 fibers
are immersed, as proposed in the case of study of this paper, the number of computations
is extremely high (assuming that N is quasi-linearly related to M), which is somewhere
between not competitive and unrealizable computationally. The coupling of the mesh im-
mersion procedure with an octree is a way to reduce the complexity. The construction of the
octree was overlooked in Section 2, and its contribution to the reduction in computational
costs is detailed in the next paragraphs.

Figure 6. Immersion and mesh adaptation: (a) Signed distance α and isoline α = 0. (b) Adapted
computational mesh (c) Smoothed Heaviside Hε with ε = R/100.

Instead of computing the distance from a point x to each element defining ω, the idea
behind the octree is to select elements located near x, and to compute the distance from
them only. The distance computation algorithm is discussed in the following, with use of
the nomenclature defined in Table 1.

Table 1. Nomenclature used to discuss distance computation algorithm.

Variable Name Signification

x Point of computational mesh
ω Shape immersed represented by elements
Ex Closest element of the set representing ω from x

OLx Closest octree leaf from x
dx Maximal theoretical distance from x to Ex
Cx Circle/sphere of center x and radius dx
αx Signed distance from x to Ex

All starts with the determination of the octree leaf OLx which is the closest from x.
From the definition of the octree, OLx is proven not to be empty. Even if the closest element
from x, named Ec, is not imperatively stored inside OLx, its distance to x is inferior or
equal to the distance from x to the closest element located inside OLx. A well-parametrized
octree guarantees that the size of the set of elements contained inside a leaf is reasonable.
The distances from x to the bounding boxes of every element contained inside OLx are
then computed. The distance to the furthest point of every bounding box is computed,
and the minimum obtained is selected. This minimal distance dx defines a circle/sphere
Cx of center x and of radius dx, in which the closest elements is compulsorily located. The
octree is then browsed to determine all the leaves it intersects, which are candidates to
host Ex. The bounding boxes of all the elements located in the selected leaves are browsed,
and if the minimum distance from x to it is inferior to dx, the distance from x to the
element is computed. αx is then obtained by selecting the minimum among the distances
to elements evaluated.
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Octree has been defined to be computationally efficient and stand-alone, and the use
of bounding boxes is a key factor to that extent. Large computational savings are enabled
as the octree only knows the elements as bounding boxes and, until the very end of the
algorithm, distances computed are between x and the boxes. The number of distances
from x to the elements, which can be very expensive computationally, is limited to the
elements whose bounding box intersect Cx. Browsing all the boxes contained inside OLx to
determine dx might seem unnecessary, but if this procedure is not completed, the maximal
theoretical distance to Ex is the distance to the furthest point of OLx. Overlooking the
boxes enables to reduce the span of Cx, which may translate to a smaller selection of octree
leaves and to a reduced number of distances from x to elements. The computational cost
of this stage, implying few distance computations to bounding boxes, often tends to be
worth the savings brought by the optimization of Cx. The usage of bounding boxes also
bring easy generalization of the octree procedure. The selection of the closest elements, to
which distance from x is evaluated, is totally independent on the type of elements used.
Heterogeneous sets can even be used, with, e.g., facets and fibers mixed.

Figure 7a presents the refined octree defined in Figure 3, where all the leaves of the
computational tree are colored in red. To compute the distance from a point P to ω, OLP is
determined and drawn in green in Figure 7b. All the bounding boxes of fibers immersed
in this leaf are browsed to determine dP and CP. The octree leaves intersecting this circle
are determined and asterisked in Figure 7c. The intersection between the bounding boxes
of fibers contained in those leaves and CP is examined, and if, and only if, an intersection
is found, the distance from x to the fiber is determined. The same procedure is followed
for points Q and R. Those three examples depict the efficiency of the method in different
situations (the most frequent situation is the one described by the point R), where the
number of evaluations of distances to elements is largely reduced. Table 2 shows a large
decrease despite the low number of fibers immersed, which reduces the efficiency of the
method. The octree construction and closest leaves determination costs are not included
in this situation. However, the recursive construction and the distance to bounding boxes
determination are cheap computationally compared to the distance to fibers evaluation,
which requires projections. When a deeper octree is used for much bigger ω, evaluating
distances to fibers become quite expensive, and savings brought by the octree rise rapidly.

Figure 7. Octree fiber immersion optimization example: (a) Final octree. (b) Determination of closest
leaf. (c) Octree leafs to consider.

Table 2. Reduction in the number of evaluations of distances provided by the octree.

Distances to Fiber/Points P Q R Total

no octree 14 14 14 42
octree 3 3 1 7
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3.2. Parallel Anisotropic Mesh Adaptation

Octree-optimized mesh immersion procedure is an efficient way to represent geome-
tries if an accurate computational mesh is used as Section 3.1 stated. The results obtained
with this technique are highly dependent on the position of the points, particularly at
the interfaces. To that extent, a coupling between mesh immersion and the automatic
generation of an anisotropic mesh is proposed in order to reduce the size of the problem to
be treated. This iterative process starts with a coarse initial mesh, where geometries are
immersed and reconstructed using the methods proposed in Section 3.1. A-posteriori error
estimator [13,14] evaluates errors from the level-set results at each computational point,
using the smoothed Heaviside function Hε described in Equation (2). In order to generate
an anisotropic mesh, a tensor is defined at each point, enabling to measure the errors along
each dimension. In other words, at each computational point, the variation of the function
Hε along each direction is observed.

The adaptation relies on a uniform distribution of the error along the edges of the
mesh in all the computational domain. A metric can be built, which allows to deform the
mesh in order to attain uniform error: refinement is performed in the areas where the error
is too important, while mesh is coarsened where low error is observed. As Hε is defined
from a hyperbolic tangent, major gradients variation are found around the interfaces
while the function is almost constant far from the frontiers. Consequently, around the
interfaces, low edges are required to attain errors equivalent to the one obtained with large
edges where gradients are almost null. Consequently, the new mesh will feature more
nodes in the interest zones, and the reconstruction will gain precision. As the metric is
built as a tensor, different stretching factors are used for each direction, which guarantees
anisotropic meshing.

After several iterations, the errors are uniformly dispersed in the computational
domain. Nodes are mostly concentrated around Γ, and the immersed geometry is well
described. Highly-stretched mesh cells can be found in regions where very thin description
is needed in one dimension while the others do not require particular attention. How-
ever, the stretching ratio of the mesh cells is limited, in order to ensure convergence of
computations. The automatic and anisotropic mesh adaptation brings versatility, and at
the same time guarantees that the results obtained with the mesh immersion procedure
will be accurate. The reduction in the number of points required for the reconstruction
enables to reduces both memory usage and computational costs. Coupled with an octree,
an efficient optimization of the reconstruction is obtained. Moreover, this reconstruction
process is executed on a multi-cores context in order to be able to combine the optimizations
related to the use of mesh adaptation and octree with massively parallel computing. The
parallelization of the process is performed by an iterative coupling between operations
of independent adaptive mesh in different partitions and displacement of the interface
between these partitions [15,16].

3.3. Weak Scalability Test of the Proposed Reconstruction Approach

To determine the scaling capability of the whole reconstruction procedure, weak
scaling tests have been performed on the western French region, Pays de la Loire cluster
Liger (a BULL/Atos DLC720 cluster, 6384 cores Intel Xeon (Haswell and Cascade Lake)
(compute and visualization parallel procedures), a total of 36,608 Gigabytes of system
memory, 5.33 GB per core, FDR Infiniband interconnect (56 GB/s)). Five microstructures
were generated, as described previously, while keeping the same geometrical characteristics
of fibers. To realize tests with similar workload per processor, the size of the computational
domain and the number of immersed fibers were proportionally increased according to the
number of the used cores, as detailed in Table 3.
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Table 3. Simulation parameters for weak scalability test performed on liger supercomputer.

Number Domain Number Total
of Fibers Edge Size of Cores Mesh Nodes

test 1 8 0.178 1 172,245
test 2 216 0.534 27 728,895
test 3 1000 0.890 125 37,153,365
test 4 4096 1.425 512 160,374,769
test 5 8000 1.781 1000 317,813,266

The reconstruction process started from an initial coarse mesh and took 30 iterations
with constant precision and fixed octree parameters. For the different test cases, an average
number of mesh nodes per core equal to 3 × 105 was maintained with the exception of
test 1 (1.8 × 105 nodes) where the volume of fibers that extend outside the computational
domain and are therefore sliced is significant, so leading to a decrease in the number of
nodes. Total time of the immersion and adaptation process as a function of the number of
cores is represented in Figure 8. For an ideal weak scale test, the run time is expected to stay
constant while the workload is increased in direct proportion to the number of processors.
For real case, as shown in Figure 8, a deviation can be observed due to communications
and partitioning efforts. However, according to the same figure, the running time variation
is relatively small between the tests (except for the first one where the workload is different)
which allows to consider that for a scaled problem size, the domain reconstruction approach
has good efficiency in terms of weak scalability.

Figure 8. Total reconstruction time evolution as a function of used cores for the different test cases.

4. Flow Simulation Examples: Application to Permeability Computation

4.1. Flow Simulation

The resulting mesh from the reconstruction process can be used to simulate various
physical phenomena, such as those involved in fluid-structure interaction problems. Gen-
erally, for composite flow applications, incompressible Stokes flow around the fibers is
considered. By considering a stationary regime and neglecting the volume forces, the
variational form of the Stokes problem for velocity field, u, and pressure field, p, is written:

(v, q) ∈ V0 ×Q{
(2ηε(u) : ε(v))Ω − (p,∇ · v)Ω = 0
(∇ · u, q)Ω = 0

(4)

where ε is the strain rate tensor.
A monolithic approach is used, i.e., the flow Equation (4) are solved on the single

mesh defined over the whole computational domain, Ω, regardless of the type of phase
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it contains. The different phases are distinguished by their physical properties which are
taken into account through a mixing law. A linear mixture relation is used for the viscosity,
η, and described by the Equation (5).

η = η f Hε + ηs(1 − Hε) (5)

η f and ηs are, respectively, the viscosities of the liquid and solid phases. ηs acts as
a penalty parameter: when it is high enough, shear rate in the penalized phase becomes
close to zero and we find a rigid body motion. This is a simple way to obtain results similar
to those provided by an augmented Lagrangian method where a Lagrange multiplier
is used to impose a constraint on the solid phase to avoid its deformation [17]. To
solve the system (4) using a finite element method, a stabilized approach of VMS type
is employed [12]. The used software in this work is ICI-tech, developed at the High
Performance Computing Institute (ICI) of Centrale Nantes and implemented for massively
parallel context.

4.2. Permeability Computation Procedure

Predicting permeability is a very important issue in the field of composite forming
process. However, it is tricky and complex to obtain experimentally and numerically
reliable results, because most simulations are carried out in small periodic representative
elementary volumes, under a lot of simplifying assumptions that idealize the real media.
Here, we chose to rise to the challenge to numerically determine the permeability tensor
of a large virtual sample of fibrous media that imitates sophisticated real media. In three-
dimensional cases, permeability is characterized by a symmetric second-order tensor K.
This tensor relates the average fluid velocity 〈u〉 to the average pressure gradient on the
fluid domain 〈∇p〉 f , as shown by the Darcy law below:

〈u〉 = −K

η
〈∇p〉 f (6)

Using a monolithic approach with finite element discretization, the homogenized
velocity and pressure fields are written as the sum of their integration on each mesh
element Ωe of the simulation domain Ω:

〈u〉 = 1
VΩ

∑
e

∫
Ωe
(1 − Hε(α))u dΩe (7)

〈∇p〉 f =
1

VΩ f
∑

e

∫
Ωe
(1 − Hε(α))∇p dΩe (8)

where VΩ is the volume of the total domain and VΩ f is the volume of the fluid domain.
To predict permeability, the proposed simulation procedure relies on microstructure

generation, phase reconstruction, mesh adaptation, and resolution of the Stokes equations,
considering that fibers are static and impermeable. In fact, to determine all components of
K, three flows in the three directions x, y, and z are successively simulated, an exponent
{1, 2, 3} is referred to each one. The flow is induced by an imposed pressure gradient.
Depending on the direction where the flow is desired, a constant pressure field on the
input face of the simulation domain against a null field on the output face is imposed.
For the other faces of the domain, only the normal component of the velocity field is
imposed as null. Assuming that the permeability tensor is symmetric and positive definite,
its components can be calculated by the resolution of the overdetermined linear system
given by:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈∇px〉1 〈∇py〉1 〈∇pz〉1 0 0 0 0 0 0
0 0 0 〈∇px〉1 〈∇py〉1 〈∇pz〉1 0 0 0
0 0 0 0 0 0 〈∇px〉1 〈∇py〉1 〈∇pz〉1

〈∇px〉2 〈∇py〉2 〈∇pz〉2 0 0 0 0 0 0
0 0 0 〈∇px〉2 〈∇py〉2 〈∇pz〉2 0 0 0
0 0 0 0 0 0 〈∇px〉2 〈∇py〉2 〈∇pz〉2

〈∇px〉3 〈∇py〉3 〈∇pz〉3 0 0 0 0 0 0
0 0 0 〈∇px〉2 〈∇py〉2 〈∇pz〉3 0 0 0
0 0 0 0 0 0 〈∇px〉3 〈∇py〉3 〈∇pz〉3

0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kxx

Kxy

Kxz

Kyx

Kyy

Kyz

Kzx

Kzy

Kzz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈ux〉1〈
uy

〉1

〈uz〉1

〈ux〉2〈
uy

〉2

〈uz〉2

〈ux〉3〈
uy

〉3

〈uz〉3

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The solution obtained from the resolution of this matrix system (9) is, obviously, an approx-
imate solution. To ensure a perfect symmetry of K, if necessary, the following modification
to the extra diagonal terms is made:

K f inal
ij = K f inal

ji =
Kij + Kji

2
(10)

4.3. Permeability Computation Validation

To validate permeability computation, the whole procedure was applied to a parallel
square packing of fibers having an identical diameter. Rigidity of fibers was ensured by
imposing ηs = 500η f and a zero velocity condition was imposed upon them. Figure 9a
shows the used geometry configuration for Vf = 25.65%. Equation (11) represents its
calculated permeability tensor adimensionalized by the square of fiber radius which respect
a transverse isotropic form as expected from the symmetry of the packing.

K =

⎡⎣0.21 0 0
0 0.21 0
0 0 0.28

⎤⎦ (11)

Permeability evolution according to fiber volume fraction was studied by varying fiber
diameter and keeping same the domain size for all simulations. The obtained results of
normalized transverse permeability are reported in Figure 9b and compared to the model
of [18–20]. The observed permeability values through this graph are in the same order than
the one obtained from analytical laws which is relevant to our approach.

Figure 9. Comparison of computed permeability with some analytical models: (a) Simulated parallel
square packing configuration. (b) Normalized transverse permeability results.
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4.4. Application for 10,000 Fibers
4.4.1. Microstructure Generation

The first step of the process is the microstructure generation using the octree opti-
mized algorithm described in Section 2. A sample of approximately 10,000 (exactly 10,062)
collision-free fibers is created in a cubic domain with an edge length of 1.35 mm. The fibers
have a common diameter of 15 μm and a length that follows a normal distribution of mean
0.2 mm and standard deviation 0.03 mm. The obtained volume fraction is V f = 14%. The
orientation state is nearly isotropic and is given by the following orientation tensor a2 [21]:

a2 =

⎡⎣ 0.334241 −0.00219696 −0.018116
−0.00219696 0.34166 −0.00620966
−0.018116 −0.00620966 0.324099

⎤⎦
Figure 10 shows the set of the generated fibers. Despite the fact that the generation is

sequential, these fibers are created in only 1min44s thanks to the octree contribution.

Figure 10. Studied generated microstructure: (a) 10,000 generated fibers. (b) A random slice showing
no collisions.

4.4.2. Microstructure Reconstruction with Adaptative Mesh

The computation was performed on 384 cores. Starting from an initial mesh of
≈4.6 million nodes and ≈27 million elements, after 30 iterations, an adapted final mesh
of ≈67 million nodes and ≈391 million elements is created by the methods described in
Sections 3.1 and 3.2. For Hε with ε = 3.125 μm, the total immersion and adaptation process
required 4h52min for the 30 iterations. Figure 11 shows the evolution, in a number of
elements for each iteration of the mesh adaptation, as well as the computational time.
During the first iterations of immersion of the generated fibers in the initial mesh, the
mesher adds a considerable number of elements until reaching a peak at the ninth iteration,
in order to properly capture the geometries of all the fibers at first. Then, the mesher focuses
its work on optimizing the mesh adaptation at the interfaces while respecting a criterion of
mesh quality. Once an efficient mesh is achieved, the number of elements stabilizes. The
time evolution curve naturally follows the evolution of the mesh size.

57



Entropy 2021, 23, 1156

Figure 11. Evolution of the mesh number of elements (left axis) and calculation cost (right axis)
during the 30 iterations of adaptation of anisotropic mesh, performed on 384 cores

4.4.3. Flow Resolution and Permeability Tensor Computation

Three pressure gradients are applied to the constructed finite element mesh in order
to generate the flows required for the identification of K. Figure 12 shows the pressure
field and velocity vectors around the immersed fibers for the flow in the x direction. These
results were obtained for a resolution time of the system (4) equal to approximately 7min

minutes on 384 CPUs.

Figure 12. Flow according to x direction: (a) velocity vector around the fibers. (b) Zoom around a
zone of the figure.

The predicted full permeability tensor adimensionalized by the square of fiber radius
for this media is as follows:

K =

⎡⎣ 0.7322 −0.0013 −0.0033
−0.0013 0.7444 −0.0025
−0.0033 −0.0025 0.7089

⎤⎦
For isotropic material, only the three diagonal elements are non-null and they are

equal. Here, the studied sample is nearly isotropic. For this reason, the obtained diagonal
elements are quite similar and the off-diagonal elements are smaller by around two orders
of magnitude.

5. Conclusions

Obtained results show our capability thanks to an octree implementation to deal
with big data in terms of input of permeability simulation and to perform reliable finite
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element calculation on complex geometries. Through the proposed method, further studies
can be conducted to better quantify the impact of the microstructural parameters on
the permeability and, thus, avoiding problems related to the choice of the size of the
simulation domains, which remains rather delicate to define, especially in the case of
non-periodic geometries. We can also think about exploring the permeability of multiaxial
tissues of the non-crimp fabric (NCF) or textile type. Thanks to the several numerical
optimization, the permeability can thus be evaluated at the microscopic scale on several
layers by representing the fibers inside the wicks.
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Abstract: An innovative data-driven model-order reduction technique is proposed to model dilute
micrometric or nanometric suspensions of microcapsules, i.e., microdrops protected in a thin hy-
perelastic membrane, which are used in Healthcare as innovative drug vehicles. We consider a
microcapsule flowing in a similar-size microfluidic channel and vary systematically the governing
parameter, namely the capillary number, ratio of the viscous to elastic forces, and the confinement
ratio, ratio of the capsule to tube size. The resulting space-time-parameter problem is solved using
two global POD reduced bases, determined in the offline stage for the space and parameter variables,
respectively. A suitable low-order spatial reduced basis is then computed in the online stage for
any new parameter instance. The time evolution of the capsule dynamics is achieved by identify-
ing the nonlinear low-order manifold of the reduced variables; for that, a point cloud of reduced
data is computed and a diffuse approximation method is used. Numerical comparisons between
the full-order fluid-structure interaction model and the reduced-order one confirm both accuracy
and stability of the reduction technique over the whole admissible parameter domain. We believe
that such an approach can be applied to a broad range of coupled problems especially involving
quasistatic models of structural mechanics.

Keywords: data-driven model; model order reduction; proper orthogonal decomposition; manifold
learning; diffuse approximation; microcapsule suspension; Hausdorff distance

1. Introduction

Numerical modeling and simulation today appear to be an indispensable science to
analyze physics-coupled problems (e.g., micrometric and nanometric suspensions), but
also for innovative design and optimization of complex three-dimensional systems in engi-
neering and industry (health, automotive, aircraft, etc.). Although one can nowadays find
robust and accurate open-source or commercial codes for the simulation of multiphysics
systems, it is still hard to use them in the context of robust or optimal design because
of the prohibitive computational time that does not match with engineering production
horizons. In order to accelerate computations, one can make use of parallel HPC (High
Performance Computing) facilities, but this can become financially costly. For most appli-
cations, even with HPC facilities, the evaluation of the solutions takes days or weeks for
three-dimensional multi-coupled problems.

Alternatively, a current tendency is to use machine learning or artificial intelligence
tools to capitalize knowledge stored into data and use it for future case studies. It leads to
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less redundant or useless computations, while the database of results continues to grow
with more and more relevant information contents. With machine learning, one can expect
to explore the design spaces in an easier, faster and more efficient way. However, one
usually needs expertise to design and train artificial neural networks (ANN) correctly. For
high-dimensional data, the training stage may require large computational resources and
issues of quality of data may also be raised. Machine learning can be extended to time
dependent problems and dynamical system using e.g., recurrent neural networks [1].

However, for particular use cases like physical systems, machine learning algorithms
are designed to return three-dimensional spatial fields. This means that the outputs of
the networks are high-dimensional vectors, which may induce training convergence and
accuracy issues. Over the last two years, one could observe the rise of so-called Physics-
informed neural networks (PINN) where the artificial neural networks are trained from
a loss function that includes physical information (like partial differential equations),
see e.g., [2].

Another class of ’machine learning’ methods are the data-driven model order reduc-
tion (MOR) techniques, that use data generated from a (time-consuming) high-fidelity
solver, also called the full-order model (FOM) [3,4]. Data-driven and non-intrusive reduced-
order models (ROM) can be seen as supervised ANN [5,6]. For parametrized partial differ-
ential problems, ROMs usually perform a dimensionality reduction by means of suitable
reduced bases. This can be achieved via different approaches such as the Proper Orthogonal
Decomposition (POD) [7–9], piecewise tangential interpolation [10], Proper Generalized
Decompositions (PGD) [11–13], Empirical Interpolation Methods (EIM) [14–16] or via dif-
ferent greedy procedures [17]. Then one has to find the manifold that maps the parameters
to the coefficients of linear combination of the reduced basis functions. This can also
be achieved in a supervised way, by means of universal approximation techniques like
diffuse approximation [18] for example. Using ROMs may lead to substantial speedups as
compared to FOM, from say 10 up to 10,000. One can even imagine real-time computations
in some cases [19].

The ’ultimate’ case is that of space-time-parameter problems involving spatial fields,
timeline and design variables. This is of course of industrial importance, but still an issue
and a current active field of research (see [20] for example). For such problems, the data
are generally organized in data cubes (Figure 1). In this paper, a data-driven reduced-
order modeling approach is proposed for space-time-parameter mechanical problems
involving an equation of kinematics and a quasi-static law of equilibrium. As particular
application, the physical problem that is addressed is the dynamics of dilute suspensions
of micrometric capsules in microfluidic channels. Microcapsules can be used in Healthcare
as innovative drug transportation vehicles into blood vessels and are expected to deliver
drugs at identified targets [21,22]. They are composed of an elastic membrane protecting a
liquid inner core and are used in suspension in another liquid. Testing them in microfluidic
environments offers great potential to determine the capsule behavior and characterize
the mechanical properties of the membrane [23–29], but also for sorting or enrichment
of capsule suspensions [30–34]. We presently focus on the flow of a dilute suspension
of initially spherical micrometric capsules in a microfluidic channel, which is a complex
three-dimensional inertialess fluid-structure interaction problem that interestingly depends
on only two independent design variables: the capillary number of the capsule Ca, which
is a non-dimensional number that estimates the order of magnitude of the viscous forces
acting on the capsule with respect to the elastic forces that build up in the membrane, and
the confinement ratio a/� that provides a comparison between the initial capsule diameter
and the channel width.
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Figure 1. Space-time-parameter data cube.

Proper Orthogonal Decomposition has been shown to be particularly suitable to build
reduced order models (ROM) of microcapsules [35], but so far no model capable of predict-
ing capsule dynamics currently exists. The originality of the paper is to propose a ROM
of the capsule-fluids interactions which provides the time-evolution of the capsule shape
for any parameter values. From the capsule shape, it is indeed possible to deduce all the
quantities of interest (viscous load, internal tensions within the membrane, membrane en-
ergy, etc.) in post-treatment. The ROM is inspired from the physical problem, in which the
boundary condition stipulates that the fluid velocity equals the capsule membrane velocity.
The correction of the capsule node position field can thus be obtained by integrating the
velocity field over time. The challenge remains to correlate the position and velocity fields,
which we propose to do with diffuse approximation and manifold learning [18,36,37] using
the principal modes of both fields obtained by POD decomposition.

Numerical experiments will demonstrate the accuracy and efficiency of the approach,
comparing reduced-order solutions to the full-order ones. We believe that the methodology
proposed in this paper can be applied to a broad range of multiphysics problems such as
fluid-structure interactions, structural dynamics using quasi-static structural mechanics
models and related problems.

This paper is organized as follows. In Section 2, we describe the physical problem
and its full order model solution. In Section 3.2, we construct parametric and spatial
reduced-order modes using a set of pre-computed simulations. This allows to introduce
a reduced-order model that expresses the displacement and velocity of a capsule at a
selection of snapshots. In Section 3.4, we build a reduced model that corresponds to
any parameter vector of Ca and a/� values by estimating its corresponding principal
components. Then, with the use of a Diffuse Approximation (DA) method, we adopt a
data-driven manifold learning to predict the deformation of the capsule in the flow for a
chosen time discretization. Finally, in Section 4, we will validate the whole computational
ROM approach with a comparison to the FOM solutions.

2. Material and Methods

2.1. Problem Statement

Let us consider a spherical micrometric capsule of radius a freely placed in a three-
dimensional microfluidic channel with square cross-section of length 2� (see Figure 2). The
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capsule and the channel are filled with an incompressible Newtonian fluid of the same
constant density ρ and dynamic viscosity μ. The capsule is enclosed by a thin hyperelastic
isotropic membrane (surface shear modulus Gs, area expansion modulus Ks = 3Gs). It is
subjected to a Poiseuille flow of mean velocity V.

Figure 2. Initial configuration considered in the FOM model: an initially spherical capsule is placed at the center of a
square-section channel. The time-evolution of its dynamics is computed using a reference frame centred onto the capsule
centre of mass.

The problem is governed by two dimensionless numbers:

• The confinement ratio a/�, ratio of the capsule to tube sizes;
• The capillary number Ca = μV/Gs, ratio of the viscous forces onto the capsule

membrane to the membrane elastic forces.

The Reynolds number of the external flow is assumed to be very small (typically of
order 10−2 or less), inertia being negligible because of the spatial scales involved in the
problem. As far as the internal flow is concerned, its velocity is induced by the motion of
the capsule membrane, which is itself entrained by the external flow: it is thus of smaller
amplitude than that of the external flow. Hence, the flow in the internal (β = in) and
external (β = ex) fluids are described by the Stokes equations:

∇ · vβ = 0, ∇ · σβ = 0, β = in, ex. (1)

where σβ is stress tensor in the fluids. The Stokes equations are defined in the domains
bounded by the capsule membrane for β = in and by the capsule membrane and the
channel wall for β = ex. The inlet Γin and outlet Γout cross-sections of the channel are
assumed to be far from the capsule (10� in the FOM model). The reference frame (O, x, y, z)
is fixed on the capsule center of mass O at each time step. For the velocity vector field vβ

and the pressure field pβ, we consider the following boundary conditions (note that the
boundary conditions include wall confinement effects, see [38] for more details):

• The flow perturbation induced by the capsule vanishes at Γin and Γout:

vex(x, t) → v∞(x), when x ∈ Γin ∪ Γout, (2)

where v∞ is the Poiseuille flow velocity of the suspending fluid in the absence of
capsule. For a square channel we have the expression in expansion form

v∞(x, y) =

∞

∑
n=1,3,...

πV
n3

[
1 − cosh(nπx/�)

cosh(nπ/2)

]
sin(nπ(y/�+ 1/2))

2

[
π4

96
−

∞

∑
n=1,3,...

tanh(nπ/2)
n5π/2

] . (3)
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• Uniform pressure at Γin and Γout:

pex(x, t) = 0, x ∈ Γin, (4)

pex(x, t) = Δp(t) + Δp∞, x ∈ Γout, (5)

where Δp∞ is the undisturbed suspending pressure drop in the absence of capsule
and Δp is the additional pressure drop due to the capsule.

• No slip boundary conditions on the channel wall W:

vex(x, t) = 0, for x ∈ W (6)

• No slip boundary conditions on the capsule membrane C:

vin(x, t) = vex(x, t) =
∂

∂t
x(X, t), for x ∈ C (7)

where ∂
∂t x(X, t) is the membrane velocity at position x at time t, and X is the reference

position vector of the capsule membrane.
• The normal loading continuity indicates that the load q on the membrane is due to

the viscous traction jump[
σex(x)− σin(x)

]
· n = q, for x ∈ C (8)

where n is the outward unit normal vector.

As the membrane thickness is negligibly small compared to the capsule dimensions,
the membrane can be considered as a hyperelastic surface devoid of bending stiffness. The
in-plane deformation is then measured by the principal extension ratios λ1 and λ2, that
measure the in-plane deformation. Owing to the combined effects of hydrodynamic forces,
boundary confinement, and membrane deformability, the capsule can be highly deformed.
Consequently, the choice of membrane constitutive law is important. We consider the
Neo-Hookean (NH) constitutive law that models the membrane as an infinitely thin sheet
of a three-dimensional isotropic and incompressible material. It was indeed shown to
adequately model microcapsules with a cross-linked proteic membrane [23,24,39]. The
principal Cauchy in-plane tensions τi (i = 1, 2) (forces per unit arc length of deformed
surface curves) can be expressed as a function of the principal extension ratios:

τ1 =
Gs

λ1λ2

[
λ2

1 −
1

(λ1λ2)
2

]
, τ2 =

Gs

λ1λ2

[
λ2

2 −
1

(λ1λ2)
2

]
. (9)

2.2. Discrete Full Order Model (FOM)

The Fluid-Structure Interaction (FSI) problem is numerically modeled by coupling
the Boundary Integral Method (BIM) that solves the fluid Equations (2)–(8) with the
Finite Element Method (FEM) that solves the membrane mechanical problem [38,40] using
the Caps3D in-house code. The unknowns are the discrete displacement field {u} and
the discrete velocity field {v} at the nodes of the membrane mesh. The equation of
kinematics states that d

dt{u} = {v}. The forces exerted onto the membrane are computed
by the FEM. The deformation of the membrane is computed from the velocity vector field
obtained at the membrane nodes by solving the Stokes equations with the BIM, leading
to a nonlinear relation written in abstract form {v} = {N}({u}). For a given parameter
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vector θθθ = (θ1, θ2)
T , where θ1 = Ca and θ2 = a/�, the time-continuous semi-discrete FSI

scheme reads in abstract form

d
dt
{u}(t) = {v}(t),

{v}(t) = {N}({u}(t), θθθ), t ∈ (0, Tf ],

{u}(0) = {0}, {v}(t) = {N}({0}, θθθ)

where {u}(t) and {v}(t) represent the discrete FE displacement and velocity fields at
continuous time t, and Tf is the final time. For time discretization, either a forward Euler
scheme or a second order Runge-Kutta scheme is used with a suitable constant time
step δt > 0. The Euler scheme reads

{ui+1} = {ui}+ δt {vi},

{vi+1} = {N}({ui+1}, θθθ),

{u0} = {0}, {v0} = {N}({0}, θθθ)

where {ui} and {vi} represent the discrete FE displacement and velocity fields at discrete
time ti,δ = i δt ≤ Tf . For second-order accuracy in time, a Runge-Kutta Ralston scheme
is used:

{ûi+2/3} = {ui}+ 2
3

δt {vi},

{v̂i+2/3} = {N}({ûi+2/3}, θθθ),

{ui+1} = {ui}+ δt
4

(
{vi}+ 3{v̂i+2/3}

)
,

{vi+1} = {N}({ui+1}, θθθ),

{u0} = {0}, {v0} = {N}({0}, θθθ).

Because of the explicit nature of the numerical schemes for the equation of kinematics, the
time step is subject to a Courant-Friedrichs-Lewy (CFL)-like stability condition

γ̇ δt < C
ΔhC
�

Ca, (10)

where γ̇ = V/�, C > 0 is a constant and ΔhC is the typical mesh size (see [40]). In practice,
we first use small time steps, and tune them to be big enough but not too close to the
stability boundary. This process does not take too much time.

2.3. Design of Experiment, Database of FOM Results

Simulations of the FOM problem have been run varying the governing parameters in
the range [0; 0.2] for the capillary number Ca and [0.75; 1.2] for the confinement ratio a/�.
For a/� ≥ 0.95, the capsule is initially pre-deformed into an ellipsoid of semi-minor axis
equal to 0.9. This pre-deformation does not have any impact on the steady-state capsule
shape and is enough to avoid contacts between the capsule membrane and the channel
wall. The resulting numerical database, composed of Nc = 118 (Ca, a/l) samples (Figure 3),
contains the time-evolution of the three-dimensional position (or displacements) vectors of
the capsule membrane nodes. Only the configurations for which a steady-state shape has
been reached are retained. No steady state is found above the dotted red line of Figure 3,
the microcapsules exhibiting continuous elongation owing to the strain-softening behavior
of the membrane law [41].
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Figure 3. (a) Values of Ca and a/l included in the FOM database in the case of an initially spherical capsule with a
Neo-Hookean membrane flowing in a square-section microfluidic channel. The parameter domain where a steady capsule
deformation can be reached is delimited by the red dotted line. (b) Time evolution of capsule deformation along the
microfluidic channel shown as illustration for the 6 cases indicated with numbers in figure (a). The capsule is pre-deformed
into an ellipsoid when a/� ≥ 0.95.

In the ROM model, we consider the capsule positions in the laboratory reference
frame (and not the reference frame centred on the capsule centre of mass as in the FOM
model). The capsule thus moves along the microchannel. For data generation, we pick
up time snapshot solutions at coarser discrete times ti = i Δt, where Δt = m δt for some
integer m ≥ 1. The total number of coarse discrete times is denoted Nt. Let {X}[n] and
{x}[n](ti) ∈ R

3, n = 1, . . . , Nx, be the coordinates of node number n of the capsule mesh
in the reference configuration (at time t = 0) and at discrete time ti, i = 1, . . . , Nt. The
coordinates in the current configuration {x}(ti) are function of the (Ca, a/�) parameter
value denoted θθθ j, j = 1, . . . , Nc. The database is thus stored as a datacube of 3D-space,

1D-time and 2D-parameter data. The displacement vector is then {u}
(
{X}[n], ti, θθθ j

)
=

{x}[n](ti) − {X}[n]. The velocity vector {v} is calculated by finite differences from the
position vector. Typically, for a standard capsule FOM simulation, Nx is of order 103 and
Nc of order 102. The time step Δt is chosen such that Nt is of order 102.

3. Reduced Order Model (ROM)

Reduced order modeling aims at deriving a lightweight model of low-order dimen-
sion from solutions obtained by the FOM, while trying to keep the same order of accuracy.
There are many reasons for doing that. In particular, parameter exploration and sensitivity
analysis are made easier because of large speedups using the ROM compared to the pro-
hibitive FOM computational time. One can also imagine real-time parameter exploration
and visualization of capsule evolution.

3.1. Overview

We first give a general overview of the proposed data-driven model order reduction
methodology. The approach is classically made of an offline stage for the search of the
principal components and POD coefficient matrices of the FOM solutions, followed by an
online stage where a parameter is chosen and a low-order dynamical system is run to get
the solutions.
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1. Offline stage. We reduce the data dimensionality by means of a double POD basis
for space and parameter variables. The displacement field is represented as

{u}({X}, t, θθθ) =
Kx

u

∑
k=1

Kc
u

∑
�=1

Ak�(t) {Φr
u}k (ψu(θθθ))�, (11)

where {Φr
u}k ∈ R

3Nx are the spatial POD modes, ψu(θθθ) ∈ R
Kc

u the parameter modes
and Ak�(t) scalar coefficients depending on time t. The truncation ranks are Kx

u and
Kc

u, respectively (the ‘x’ superscript stands for ‘space’ and the ‘c’ superscript for
‘configuration’). We use a similar representation for the velocity field:

{v}({X}, t, θθθ) =
Kx

v

∑
k=1

Kc
v

∑
�=1

Bk�(t) {Φr
v}k (ψv(θθθ))�. (12)

The determination of the double POD basis is achieved by singular value decomposi-
tion (SVD) from the datacube with different rearrangements of the data in stacked
matrix form. The truncation ranks Kx

u, Kc
u, Kx

v , Kc
v are expected to be rather small while

ensuring accuracy of the representations.

2. Online stage. For any query parameter θθθq in the parameter domain:

(a) Estimate the displacement field {u}({X}, t, θq) from expression (11). This
requires an interpolation process at θθθ = θθθq. For that, we decide to use a
diffuse approximation technique [18] that can be used for any parameter space
dimension;

(b) From the estimated displacement field {u}({X}, ti, θq) computed at different
instants ti ∈ [0, Tf ], compute a low-order reduced basis {ϕk}(θθθq), k = 1, . . . , mu
by singular value decomposition. We then get the low-order representations
of both displacements and velocities:

{u}({X}, t, θq) =
mu

∑
k=1

αk(t) {ϕk}(θθθq), (13)

{v}({X}, t, θq) =
mv

∑
k=1

ξk(t) {γk}(θθθq), (14)

(c) Manifold learning online stage: using diffuse approximation, we determine
the low-order manifold M that links displacements and velocities in the
(reduced-order) state space:

ξ = M(α, θθθq);

(d) Derivation of a low-order dynamical system: we then derive a lightweight
differential-algebraic dynamical system, easy to solve numerically: for
θθθ = θθθq, solve

dα

dt
= Q ξ(t),

ξ(t) = M(α(t), θθθq).

The high-dimensional displacement and velocity fields can then be recon-
structed according to (13) and (14).

In the next section, we give all the details of the ROM methodology.
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3.2. Offline Stage
3.2.1. Global Parametric Reduced Basis (GPRB)

This first step consists in computing a parametric reduced basis in the whole parameter
domain from the database of FOM results (see Section 2.3). For simplification reasons,
we use the subscript � that can be either u or v to express displacements and velocity
respectively in the formulas.

Let Si
u ∈ M3Nx ,Nc(R) be the matrix of capsule displacement fields {u} and

Si
v ∈ M3Nx ,Nc(R) the matrix of the velocity fields {v} at time ti, i = 1, . . . , Nt (Figure 4a),

considering all the configurations θθθ j for j = 1, . . . , Nc of the database, i.e.,

Si
u =

[
{u}

(
{X}, ti, θθθ1

)
, . . . , {u}

(
{X}, ti, θθθNc

)]
,

and
Si

v =
[
{v}

(
{X}, ti, θθθ1

)
, . . . , {v}

(
{X}, ti, θθθNc

)]
.

Then we stack all the matrices Si
� for i = 1, . . . , Nt into a big matrix S� ∈ M3Nx×Nt ,Nc(R):

S� =

⎡⎢⎢⎢⎢⎣
S1

�

S2
�
...

SNt
�

⎤⎥⎥⎥⎥⎦ for � = u, v.

We then apply SVD [42] and get:

S� = U� ΣS�
ΨT

� , for � = u, v, (15)

where U� ∈ M3Nx Nt ,Nc(R), Ψ� ∈ MNc(R) are semi-orthogonal and orthogonal matrices,
respectively, and ΣS� ∈ MNc(R) is the diagonal singular value matrix. The matrix Ψ� of
discrete parameter modes can be truncated according to Kc

� parameters, so we note:{
Ψr

� =
[
(Ψ�)1, . . . , (Ψ�)Kc

�

]
∈ MNc ,Kc

�
(R),

with (Ψ�)k ∈ MNc ,1(R) for k = 1, . . . , Kc
�, and � = u, v.

(16)

The orthogonality property ensures that
(

Ψr
�

)T
Ψr

� = IKc
�
.

(a) (b)

Figure 4. FOM data rearrangements for (a) parametric data set selection and (b) spatial data set selection.
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3.2.2. Global Spatial Reduced Basis (GSRB)

Similarly, we build a global spatial reduced basis that captures the spatial data of cap-
sule displacements. Let T j

u ∈ M3Nx ,Nt(R) be the displacement matrix and T j
v the velocity

matrix for the j-th configuration θθθ j, for j = 1, . . . , Nc at all time instants ti, i = 1, . . . , Nt
(Figure 4b):

T j
u =

[
{u}

(
{X}, t1, θθθ j

)
, . . . , {u}

(
{X}, tNt , θθθ j

)]
,

and
T j

v =
[
{v}

(
{X}, t1, θθθ j

)
, . . . , {v}

(
{X}, tNt , θθθ j

)]
.

Then we define the global matrix T� ∈ M3Nx ,Nt×Nc(R) that horizontally gathers all the

matrices T j
� for j = 1, . . . , Nc and � = u, v, respectively:

T� =
[

T1
� , T2

� , . . . , T Nc
�

]
, for � = u, v.

The SVD decomposition is applied on T� to get

T� = Φ� ΣT� VT
� , for � = u, v, (17)

where Φ� ∈ M3Nx (R), V� ∈ MNc Nt ,3Nx (R) are orthogonal and semi-orthogonal matrices,
respectively, and ΣS� ∈ M3Nx (R) is the diagonal singular value matrix with singular
values organized in decreasing order. We can also apply a spatial basis truncation at a
range of Kx

� for a specified accuracy threshold. The reduced spatial POD basis is stored in
the matrix:

Φr
� =

[
{φ�}1, . . . , {φ�}Kx

�

]
∈ M3Nx ,Kx

�
(R) (18)

with the orthogonality property
(

Φr
�

)T
Φr

� = IKx
�
, � = u, v.

3.3. Data Dimensionality Reduction

Once the POD modes of S� and T� for the displacement fields (� = u) and the velocity
fields (� = v) are computed, one can summarize (approximate) capsule displacement and
velocity fields of the database at any discrete time ti (i = 1 . . . , Nt) as

{u}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
≈ Φr

u A(ti) (Ψr
u)

T ∈ M3Nx ,Nc(R), (19)

{v}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
≈ Φr

v B(ti) (Ψr
v)

T ∈ M3Nx ,Nc(R), (20)

where A(ti) ∈ MKx
u ,Kc

u(R) and B
(
ti) ∈ MKx

v ,Kc
v(R) are some coefficient matrices depending

on time ti. If the approximation is chosen as the orthogonal projection over the vector
spaces spanned by the POD modes, the coefficient matrices are computed as follows for
i = 1 . . . , Nt:

A(ti) = (Φr
u)

T︸ ︷︷ ︸
Kx

u×(3Nx)

{u}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
︸ ︷︷ ︸

(3Nx)×Nc

Ψr
u︸︷︷︸

Nc×Kc
u

, (21)

B(ti) = (Φr
v)

T︸ ︷︷ ︸
Kx

v×(3Nx)

{v}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
︸ ︷︷ ︸

(3Nx)×Nc

Ψr
v︸︷︷︸

Nc×Kc
v

. (22)

The outputs of the offline stage are respectively the POD matrices Φr
u, Φr

v, Ψr
u, Ψr

v and
the small matrices A(ti), B(ti), i = 1, . . . , Nt. The next online stage will operate on the
summarized data (19), (20) with coefficients matrices (21), (22). The algorithm of the offline
phase is summarized in Algorithm 1.
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Algorithm 1 Offline phase

Require: database of θθθk for k = 1, . . . , Nc, truncations Kc
�, number of snapshots Nt.

for i ← 1, . . . , Nt do
if (� = u) then

Si
u ←

[
{u}

(
{X}, ti, θθθ1

)
, . . . , {u}

(
{X}, ti, θθθNc

)]
; Su ← [Su; Si

u];
else

Si
v ←

[
{v}

(
{X}, ti, θθθ1

)
, . . . , {v}

(
{X}, ti, θθθNc

)]
; Sv ← [Sv, Si

v];
end if

end for
for j ← 1, . . . , Nc do

if (� = u) then

T j
u ←

[
{u}

(
{X}, t1, θθθ j

)
, . . . , {u}

(
{X}, tNt , θθθ j

)]
; Tu ← [Tu, T j

u];
else

T j
v ←

[
{v}

(
{X}, t1, θθθ j

)
, . . . , {v}

(
{X}, tNt , θθθ j

)]
; Tv ← [Tv, T j

v];
end if

end for
Φ� ← SVD(S�), Ψ� ← SVD(T�), for � ← u, v;
for i = 1, . . . , Nt do

A(ti) ← (Φr
u)

T {u}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
Ψr

u;
B(ti) ← (Φr

v)
T {v}

(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
Ψr

v;
end for

3.4. Online Stage: Search for an Approximate Solution at a Query Configuration θθθq

In the online stage, a user will ask for an approximate solution at a new (query)
configuration θθθ = θθθq that has not been already computed by the FOM solver or is not
stored in the database. Ingredients of the online stage will be: (i) the data summarization
of the previous offline stage; (ii) a first estimation of the spatio-temporal solution at θθθ = θθθq;
(iii) the computation of a low-dimensional spatial reduced basis suitable for θθθ = θθθq; (iv) the
construction of a manifold M that links variables of displacements and velocities in the
low-order state space to solve the equation of membrane mechanics; (v) finally, the building
of a low-order differential-algebraic (DAE) system of equations that defines the reduced-
order model. Substeps (ii) and (iv) will make use of diffuse approximation (DA) as a
universal approximator for multivariate functions.

3.4.1. First Estimation of the Solutions at θθθ = θθθq

As an introduction, let us assume that, from the parameter sampling {θθθ1, . . . , θθθNc},
we consider a polynomial Lagrange interpolation with Lagrange polynomials denoted by
Li(θθθ) such that the Lagrange property

Li(θθθ j) = δij, 1 ≤ i, j ≤ Nc

is fulfilled (δij is the standard Kronecker symbol). Let us denote by
L(θθθ) = (Lj(θθθ))j=1,...,Nc ∈ R

Nc the vector that stores the Lagrange polynomials. Then

I{u}
(
{X}, ti, θθθq

)
:= {u}

(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
L(θθθq) ∈ R

3Nx

is an interpolated displacement field at parameter θθθ = θθθq and discrete time t = ti. One can
of course do the same for the velocity field.

Unfortunately, Lagrange polynomial interpolation is not suitable for parameter spaces
of arbitrary dimension because of the curse of dimensionality and because it may suffer
from instability issues (Runge phenomenon). Rather than using polynomial interpolation,
we propose to use a Diffuse Approximation (DA) technique [18,29] which is an approxi-
mation method based on local low-order polynomial reconstruction (of order one or two)
using a compactly-supported kernel function and weighted least squares. The DA method
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is known to be a robust and reliable approach which is less sensitive to the location of the
sampling points. Moreover, it can be applied to multivariate functions of arbitrary dimen-
sions, which is interesting for larger or more general parameter spaces. It is particularly
suited for the current problem, for which the sampling is performed on a Cartesian grid. It
may fail in the occurrence of local point alignment within the cloud points, which does not
occur in the present study. The accuracy of the DA method may slightly decrease close to
the boundary of the domain, the number of neighboring points being reduced.

To estimate the displacement field for θθθ = θθθq, we look for a vector ψu(θθθq) ∈ R
Kc

u

such that
{u}({x}, ti, θθθq) = Φr

u A(ti)ψu(θθθq) (23)

returns an approximation of the displacement field at θθθ = θθθq. Similarly for the velocity
field, we search for a vector ψv(θθθq) ∈ R

Kc
v that gives

{v}({x}, ti, θθθq) = Φr
v B(ti)ψv(θθθq). (24)

Each vector ψ�(θθθq) ∈ R
Kc

� can be locally approximated by

Ψ�(θθθq) = A� p(θθθq), for � = u, v, (25)

where the matrix A� ∈ MKc
� ,m(R) (to be determined) is the approximation coefficient

matrix and p
(
θθθq

)
∈ R

m is a vector of independent polynomial functions, where⎧⎪⎨⎪⎩p(θθθ) =
[
1 Ca a/�

]T
, m = 3 for first order DA,

p(θθθ) =
[
1 Ca a/� Ca(a/�) (Ca)2 (a/�)2

]T
, m = 6 for second order DA.

(26)

To approximate ψ�(θθθq), let us consider a neighborhood S (θθθq) centered on θθθq contain-
ing M neighboring points (Figure 5a). It is an ellipse of equation(

θ1 − (θθθq)1
)2

+ r̃2(θ2 − (θθθq)2
)2

= R2

where r̃ is fixed (equal to 1.9 in Figure 5a) and R is chosen such that the ellipse contains M
points (M being chosen by the operator). In other words, the distance between θθθ = (θ1, θ2)

T

and θθθq is

d =
((

θ1 − (θθθq)1
)2

+ r̃2(θ2 − (θθθq)2
)2

) 1
2 /R. (27)

The compactly supported Wendland weight function shown in Figure 5b is classically used.
It has appropriate high-order approximation properties ([43]):{

w(d) = 2 d3 − 3 d2 + 1, d ≤ 1,
0, otherwise.

(28)

Diffuse approximation consists in minimizing the weighted least square problem

min
A�∈MKc

� ,m(R)
Jθθθq

(
A�

)
:=

1
2 ∑

θθθ∈S (θθθq)

w(d(θθθ))
∥∥∥A� p(θθθ)− [Ψr

�(θθθ)]
T
∥∥∥2

R
Kc

�
(29)

where [Ψr
�(θθθ)]

T is the truncated matrix of modes that correspond to couples θθθk,
k = 1, . . . , Nc. The solution A� (� = u, v) of the weighted least square problem (29) is then

A� = (Ψr
�)

TWP
(
PTWP

)−1
∈ MKc

� ,m(R) (30)
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where the matrix P ∈ MNc ,m(R) and the diagonal matrix of weights W ∈ MNc(R) are
defined as

P =

⎡⎢⎣ p(θθθ1)
T

...
p(θθθNc)

T

⎤⎥⎦ and W =

⎡⎢⎢⎢⎢⎣
w1 0 · · · 0

0 w2
...

...
. . .

0 · · · wNc

⎤⎥⎥⎥⎥⎦. (31)
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Figure 5. (a) DA elliptical region of interest (dashed line) defined around the point θθθq = (Ca = 0.055, a/� = 0.95) in the
parametric space with M = 10 neighbors; (b) Weight function w(d).

3.4.2. Construction of a Low-Order Reduced Basis Suitable for θθθ = θθθq, Data Generation

From (23) and (24), one can easily generate some pseudo-snapshot matrices U (θθθq)
and V(θθθq) that gather the estimated displacements and velocities at Nt discrete times,
respectively: ⎧⎨⎩U (θθθq) =

[
{u}

(
{X}, t1, θθθq

)
, . . . , {u}

(
{X}, tNt , θθθq

)]
,

V(θθθq) =
[
{v}

(
{X}, t1, θθθq

)
, . . . , {v}

(
{X}, tNt , θθθq

)]
.

(32)

One can then apply a new SVD decomposition of matrices U (θθθq) and V(θθθq) respec-
tively to get spatial POD modes {ϕk}(θθθq) ∈ R

3Nx , k = 1, . . . , mu for {u} and velocity POD
modes {γk}(θθθq) ∈ R

3Nx , k = 1, . . . , mv for {v}.

POD
(
U (θθθq)

)
→ {ϕ1}(θθθq), . . . , {ϕmu}(θθθq) (33)

POD
(
V(θθθq)

)
→ {γ1}(θθθq), . . . , {γmv}(θθθq) (34)

where mu and mv are the truncation ranks of displacement and velocity modes determined
in the next section on numerical experiments. One can then search the displacement and
velocity fields at θθθ = θθθq as

{u}
(
{X}, t, θθθq

)
=

mu

∑
k=1

αk(t){ϕk}
(
θθθq

)
, (35)

{v}
(
{X}, t, θθθq

)
=

mv

∑
k=1

ξk(t){γk}
(
θθθq

)
. (36)
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By denoting

Φ(θθθq) =
[
{ϕ1}

(
θθθq

)
, . . . , {ϕmu}

(
θθθq

)]
∈ M3Nx,mu(R), (37)

Γ(θθθq) =
[
{γ1}

(
θθθq

)
, . . . , {γmv}

(
θθθq

)]
∈ M3Nx,mv(R) (38)

and α(t) = [α1(t), . . . , αmu(t)]
T ∈ R

mu , ξ(t) = [ξ1(t), . . . , ξmv(t)]
T ∈ R

mv , we have the
vector formulas

{u}
(
{X}, t, θθθq

)
= Φ(θθθq) α(t), {v}

(
{X}, t, θθθq

)
= Γ(θθθq) ξ(t). (39)

The mode matrices Φ(θθθq) and Γ(θθθq) are assumed to be orthonormal (w.r.t the natural
Euclidean inner product), so we have [Φ(θθθq)]T Φ(θθθq) = Imu and [Γ(θθθq)]T Γ(θθθq) = Imv .

3.4.3. Toward a Physically Consistent Dynamical Reduced-Order Model

Consider now the forward Euler scheme on the FSI system with a ROM time step
δtROM > 0: at time ti+1,ROM = ti,ROM + δtROM, the numerical scheme is

{ui+1} = {ui}+ δtROM {vi}, (40)

{vi+1} = {N}({ui+1}, θθθq). (41)

Let us emphasize that the equation of local mechanical equilibrium depends on the param-
eter θθθq. For the reduced-order model, we would like to have a similar algebraic structure to
(40), (41) but formulated as a low-dimensional system. If {ui} and {vi} are searched in the
form {ui} = Φ(θθθq) αi and {vi} = Γ(θθθq) ξi, respectively, Equation (40) becomes

Φ(θθθq) αi+1 = Φ(θθθq) αi + δtROM Γ(θθθq) ξi.

By multiplying by [Φ(θθθq)]T on the left, we get the system of mu equations

αi+1 = αi + δtROM Q(θθθq) ξi, (42)

where Q(θθθq) = [Φ(θθθq)]TΓ(θθθq). Equation (41) is replaced by

Γ(θθθq) ξi+1 = {N}(Φ(θθθq) αi+1, θθθq).

By multiplying by [Γ(θθθq)]T on the left, we get

ξi+1 = M(αi+1, θθθq)

where
M(αi+1, θθθq) = [Γ(θθθq)]

T{N}(Φ(θθθq) αi+1, θθθq) ∈ R
mv . (43)

3.4.4. Manifold Learning

Because of nonlinear terms, the direct computation of M(αi+1, θθθq) in (43) requires
high-dimensional computations, which makes the ROM irrelevant from a performance
point of view. To “identify” a low-order manifold M, we rather adopt a data-driven
approach based once again of diffuse approximation. We link the entry data αD

k (t
i),

k = 1, . . . , mu, i = 1, . . . , Nt to the output data ξD
k (ti), k = 1, . . . , mv, i = 1, . . . , Nt (’D’

stands for ’data’). For that, one can compute the orthogonal projections of the pseudo-
snapshots over the POD bases, leading to the formulas

αD
k (t

i) = 〈{u}({X}, ti, θθθq), {ϕk}(θθθq)〉

and
ξD(ti) = 〈{v}({X}, ti, θθθq), {γk}(θθθq)〉
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at instants ti = iΔt. Manifold learning consists in achieving a (nonlinear) regression
method that links entry and output data. We are looking for a manifold representation
ξ = M(α, θθθq) in the form

ξk = p(α)Tak, k = 1, . . . , mv (44)

where p(α) is the vector made of monomials in α of order zero and one, and ak ∈ R
mu+1 is

a vector of coefficients to be determined from the data. This corresponds to a local linear
embedding process. For each k = 1, . . . , mv, one looks for a coefficient vector ak(t) ∈ R

mu+1

solution of the weighted least square problem

ak(t) = arg min
a∈Rmu+1

1
2

Nt

∑
i=1

w
( |t − ti|

R

)(
p(αD(ti))T a − ξD

k (ti)
)2

(45)

where t ∈ [0, Tf ], w = w(d) is the weight function defined in Figure 5b and d = |t−ti |
R . This

returns a regression function

ξk = ξk(t, α(t)) = p(α(t))T ak(t). (46)

3.4.5. Low-Order Dynamical Reduced Order Model

The resulting time-discrete reduced-order model is then

ti+1,ROM = ti,ROM + δtROM, (47)

αi+1 = αi + δtROM Q(θθθq) ξi, (48)

ξ i+1
k = p(αi+1)T ak(ti+1,ROM) ∀k ∈ {1, . . . , mv}. (49)

High-dimensional displacement and velocity fields can be reconstructed as follows:

{u}
(
{X}, ti+1,ROM, θθθq

)
= Φ(θθθq) αi+1, {v}

(
{X}, ti+1,ROM, θθθq

)
= Γ(θθθq) ξi+1.

The online stage of the reduced-order model is summarized in Algorithm 2.

Algorithm 2 Online phase

Require: choose a query parameter θθθq, choose a time step δtROM > 0.
Initialization: t = t0,ROM = 0, α0 = 0, ξ0 = ξD(0);
Compute Ψu(θθθq) and Ψv(θθθq) from the diffuse approximation approach;
for i = 1 . . . , Nt do
{u}({x}, ti, θθθq) ← Φr

u A(ti)Ψu(θθθq);
{v}({x}, ti, θθθq) ← Φr

v B(ti)Ψv(θθθq);
end for
U (θθθq) ← [{u}({x}, t1, θθθq), . . . , {u}({x}, tNt , θθθq)];
V(θθθq) ← [{v}({x}, t1, θθθq), . . . , {v}({x}, tNt , θθθq)];
Compute Φ(θθθq), Γ(θθθq), Q(θθθq), αD(ti) and ξD(θθθi), i = 1, . . . , Nt;
while t < Tf do

t ← t + δtROM; ti+1,ROM = ti,ROM + δtROM;
αi+1 = αi + δtROM Q(θθθq)ξi;
Compute ak(ti+1,ROM), k = 1, . . . , mv from the diffuse approximation approach;
ξ i+1

k = p(αi+1)T ak(ti+1,ROM);
If needed, reconstruct the high-dimensional displacements/velocity fields:
{u}

(
{X}, ti+1,ROM, θθθq

)
= Φ(θθθq) αi+1;

{v}
(
{X}, ti+1,ROM, θθθq

)
= Γ(θθθq) ξi+1;

end while
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4. Numerical Experiments

4.1. Study Case

We consider a capsule flowing in a square-base microchannel of base edges of length
2�. We want to capture the capsule dynamics for capillary numbers Ca belonging to the
interval [0.005, 0.2] and aspect ratios a/� in the interval [0.75, 1.2] for which a steady state
shape is reached. The Caps3D code [38,40] is then used as FOM solver. The comparison
of the FOM results with experimental ones using a square-base cylinder have been thor-
oughly described in other previous studies (see for example [23,24,27,39] from A.V. Salsac’s
research team). The total non-dimensional time for simulation is T = 20. For any capillary
number and aspect ratio, the capsule is discretized with the same mesh resolution and
connectivity, consisting of Nx = 2562 nodes (corresponding to 1280 triangular elements),
with a capsule mesh size ΔhC = 0.075 a (see Figure 6). A second-order RK2 Ralston scheme
is used for time integration. The dimensionless time step is γ̇δt = 5 · 10−4 for Ca > 0.02
and γ̇δt = 10−4 for Ca ≤ 0.02 .

Figure 6. Three-dimensional representation of a capsule flowing in a square microchannel at T = 0.

4.2. FOM Result Database Generation

A database of FOM results is generated from a sampling of the parameter domain (see
Figure 7). It is observed that configurations for which a shape steady state is reached before
the non-dimensional final time of 20 correspond to couples (Ca, a/�) in the parameter
plane below the dashed red line of Figure 7. Using a Cartesian parameter sampling with
step sizes of 0.01 in Ca and 0.05 in a/�, plus few additional points at Ca = 0.005, we get a
database made of Nc = 118 configurations. From Caps3D FOM solutions, we pick up time-
snapshot solutions every time step Δt = 0.2 in non-dimensional time scale, corresponding
to Nt = 100. This makes a datacube made of 2 × 3Nx NcNt ≈ 1.81 · 108 double precision
float numbers taking about 1.45 GB of memory.

Clustering Strategy

For the sake of memory storage complexity, we adopt a strategy of data clustering with
two weakly-overlapping clusters chosen manually, represented in Figure 7. For each cluster,
a data dimensionality reduction is done following the offline-stage algorithm presented in
Section 3. That means that two families of reduced-order models are actually computed.
In the online stage, for a new query parameter vector θθθq, one has to determine the cluster
of belonging.
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Figure 7. Design of computer experiment with sampling in the admissible parameter domain. The
parameter domain is splitted up into two overlapping clusters: cluster 1 (squares), cluster 2 (crosses)
and overlapping region (mixed squares and crosses).

4.3. Elements of Analysis—Accuracy Criteria

In order to measure the approximation error generated by the data dimensionality
process, we introduce the classical Relative Information Content (RIC) (see for example [9]),
which is computed as:

RIC(K) =

r

∑
k=K+1

σ̃2
k

r

∑
k=1

σ̃2
k

, K = 1, . . . , r, (50)

where σ̃k is the k-th singular value from the SVD decomposition, r is the rank of the matrix
of study (S� or T�) and K is the truncation rank. A supplementary indicator is the ratio

K �→ σ̃K
σ̃1

(51)

that gives an idea of the decay rate of the singular values.
The second criterion directly measures the error between the shape predicted by

the ROM and the shape computed by the FOM. This is achieved by using the so-called
Modified Hausdorff distance dMH [44] that we normalize by the capsule radius a. The
modified Hausdorff distance computes the distance between two finite sets F and G of a
normed space of norm ‖.‖, and is defined as

dMH(F ,G) = max(dh(F ,G), dh(F ,G)), (52)

with
dh(F ,G) = 1

NF
∑

pF∈F
ds(pF ,G) (53)

where NF is the number of points in the set F and ds(pF ,G) is the distance between pF
and the set G, which is defined as

ds(pF ,G) = min
pG∈G

‖pF − pG‖. (54)
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4.4. Dimensionality Reduction Analysis

A singular value decomposition analysis is first performed on the matrices Su and
Sv, and then on Tu and Tv. In Figure 8a, we plot the indicator (1 − RIC) (see (50)), as a
function of the truncation rank K, for Su and Sv. What can be seen is that (1 − RIC) rapidly
converges towards the value 0 in all cases. An expected (1 − RIC) of 10−7 is reached for a
truncation rank Kc

u (resp. Kc
v) of 7 for the displacement (resp. 23 for the velocity). Similarly

in Figure 8b, we plot the indicator (1 − RIC) for Tu and Tv. The number of modes Kx
u

(resp. Kx
v) needed to reach the threshold of 10−7 is 7 for the displacement (resp. 56 for

the velocity).
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Figure 8. Behaviour of the relative information content of the matrices Su and Sv (a) and Tu and Tv (b) shown in the form
(1 − RIC) as a function of the truncation rank K. The horizontal red line corresponds to (1 − RIC) = 10−7.

As supplementary indicators, the singular values σ̃K normalized by σ̃1 are plotted in
Figure 9a (resp. Figure 9b) for both matrices Su and Sv (resp. Tu and Tv) in log10 scale. One
can first observe a lower decay rate for the velocity fields compared to the displacements,
meaning a greater information complexity for the velocity. Secondly, the decay rate is lower
for the global spatial mode than for the parametric modes, indicating a larger entropy of
information on the whole parameter domain. That justifies the derivation of suitable lower
order spatial basis at a query parameter θθθq in the online stage.

At the beginning of the online stage, for a query parameter θθθq, an interpolated ap-
proximate solution is computed thanks to a diffuse approximation reconstruction. This
allows us to get pseudo-snapshots in time for both displacements and velocities, stored in
matrices U (θθθq) and V(θθθq), respectively. We assess the RIC for the two matrices, from an
experimental parameter vector θθθq = (0.10, 0.90). The comparison of the time evolution of
POD coefficients between FOM and ROM models shows a high accuracy (see Figure 10).
and Figure 11 shows that the RIC rapidly converges to 1. An expected RIC greater than
1 − 10−7 returns a truncation rank mu (resp. mv) of value 3 (resp. 8).
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Figure 9. (a) Parametric normalized singular values σ̃K/σ̃1 for Su and Sv; (b) Spatial normalized singular values σ̃K/σ̃1 for
Tu and Tv.
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Figure 10. FOM versus ROM comparison of the time evolution of the first three displacement (a) and velocity (b) POD
coefficients for the query parameter θθθq = (0.10, 0.90).
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Figure 11. Online stage: behaviour of the relative information content of the matrices U (θθθq) and
V(θθθq) shown in the form (1 − RIC) for query parameter θθθq = (0.10, 0.90). The red line corresponds
to (1 − RIC) = 10−7.
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4.5. ROM Accuracy Analysis

The reduced-order model algorithm is applied with the following parameters and
options:

- For global POD modes: Kx
u = 40, Kc

u = 40, Kx
v = 50, Kc

v = 50;
- For DA in (25), (30): local second order polynomial reconstruction, M = 12;
- For local POD modes: mu = 10, mv = 10;
- For DA in (45), (46): local first order polynomial reconstruction, R = 2Δt.

The resulting time-evolution of the three-dimensional capsule shape, that is re-
constructed with the ROM model, is illustrated in Figure 12 for the query couple
θθθq = (0.10, 0.90). The steady-state is reached before γ̇t = 3, which explains that the
capsule shape is the same for γ̇t = 3, 6, 9.

Figure 12. Three-dimensional shape of a capsule flowing in a square microchannel, reconstructed with the ROM model for
θθθ = (Ca = 0.10, a/� = 0.90) and shown at γ̇t = 0, 0.4, 3, 6, 9. The capsule initial shape is shown in transparency.

We now focus on the accuracy analysis of the proposed reduced-order model. The
methodology for error measurement is based on a ‘Leave-one-out’ cross-validation proce-
dure, where each sample FOM solution is taken out from the database and then evaluated
by the ROM model and compared to the original FOM one. The error is measured using
the modified Hausdorff distance calculated on the capsule shapes at different instants.

Figure 13 shows the heat maps of the FOM-vs-ROM error computed over the parame-
ter space at the time instants γ̇t = 1, 2, 4 and 8. Figure 13 shows that the predicted ROM
solutions are very accurate with a mean relative error below 0.2%. The maximum relative
errors are below 3.5%: they occur along the boundary of the parameter domain, which is
the only location where the predictions slightly lose in accuracy. This is probably due to a
lack of well-distributed neighbors close to the boundaries, which affects the accuracy of
the DA reconstruction (off-centre approximation). One can also notice that the accuracy of
predictions decreases in time.
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Figure 13. Heat maps of the normalized Hausdorff Distance dMH/a of configuration prediction shapes over the parametric
space at different transient states: (a) γ̇t = 1; (b) γ̇t = 2; (c) γ̇t = 4; and (d) γ̇t = 8. The maximum error is 3.26% in (d).

The capsule cross-section profiles predicted by the ROM (red dots) are compared to
the reference FOM solutions (solid black line) in Figure 14 at different time instants (γ̇t = 0,
1, 2 and 8) for the 6 configurations, selected as illustration in Figure 3. We observe that the
reduced-order model returns very accurate solutions in terms of capsule shape as well-as
axial position in the channel.

From the computing performance point of view, ROM-vs-FOM speedups are observed
to be of order 10,000 with almost the same accuracy, making interactive exploration and
real-time visual rendering possible.

4.6. CapsuleExplorer: Capsule Visualization/Exploration Software

We have developed an in-house software tool CapsuleExplorer based on the pro-
posed ROM to provide the three-dimensional microcapsule deformation/evolution at any
time γ̇t and for any θθθq in the admissible parameter domain. CapsuleExplorer allows
one to select a particular couple (Ca, a/�) in the admissible parameter domain, then to
visualize the capsule dynamics between initial and final times, either in three dimensions
or two dimensions with longitudinal or transversal cross-sectional view. The ROM high
performance feature allows real-time exploration/visualization. CapsuleExplorer has
been developed as a web application. Figures 15 and 16 show some screenshots of the
graphics user interface, which will be useful for applications such as identifying the capsule
wall mechanical properties through comparison with experimental results.
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Figure 14. Comparison between the ROM (red dots) and FOM solutions (black line) of the capsule cross-section shapes in
the plane y = 0 at the times γ̇t = 0, 1, 2 and 8 respectively, for the 6 parameter couples selected in Figure 3. The horizontal
lines correspond to the channel walls.

Figure 15. CapsuleExplorer: (a) parameter domain exploration; (b) dynamic 3D capsule view.

82



Entropy 2021, 23, 1193

Figure 16. CapsuleExplorer: (a) dynamic 2D cross-section longitudinal view; (b) dynamic 2D cross-section transversal view.

5. Concluding Remarks

In this paper, we have presented an innovative data-driven reduced-order model that
enables the dynamics of a deformable membrane flowing in a microchannel, from its initial
state to the steady shape state. The ROM is built to be valid in a large domain of interest in
the parameter plane (Ca, a/�). Our FSI-ROM model first starts with an offline procedure
to build two global orthonormal bases (space+parameter) that return good approximations
of the FOM solutions over the whole parameter domain. The rather small truncation
ranks already lead to an appreciable data dimensionality reduction, which is important for
complexity and memory storage purposes.

The online stage consists in predicting the space-time solution for any query cou-
ple θθθq = (Ca , a/�) in the parameter domain. In a first step, we determine a low-order basis
for both the displacement and velocity vector variables. This is achieved by the use of dif-
fuse approximation that returns an interpolated space-time solution at the query vector θθθq.
Then an SVD analysis provides a suitable low-order spatial basis for final construction
of the ROM in the second step. The physically-based ROM is made of the kinematics
equation and the law of membrane quasi-static equilibrium in their reduced formulation.
The unknown variables become the POD coefficient vectors of displacement and velocity
fields. The reduced quasi-static equilibrium law is determined once again by the use of a
diffuse approximation. The manifold learning is achieved by the use of time-snapshot data
of the interpolated solution at θθθ = θθθq.

Numerical experiments confirm the efficiency of the method. ROM-vs-FOM speedups
are observed to be of order 10,000 with almost the same accuracy (with less than a 0.3%
error measured in terms of Hausdorff distance inside the parameter domain). Larger errors
are encountered at the boundary of the parameter domain, but they still remain reasonable
(up to 3.3% in Hausdorff distance). This work tends to show that model-order reduction
techniques are complementary and valuable tools for the rapid design and optimization of
capsules in healthcare engineering such as drug delivery through blood vessels.

The case of more complex FSI configurations such as the deformation of capsules
flowing through a bifurcated microchannel will be investigated in a future work.
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Abstract: The present study addresses the discrete simulation of the flow of concentrated suspensions
encountered in the forming processes involving reinforced polymers, and more particularly the
statistical characterization and description of the effects of the intense fiber interaction, occurring
during the development of the flow induced orientation, on the fibers’ geometrical center trajectory.
The number of interactions as well as the interaction intensity will depend on the fiber volume
fraction and the applied shear, which should affect the stochastic trajectory. Topological data analysis
(TDA) will be applied on the geometrical center trajectories of the simulated fiber to prove that a
characteristic pattern can be extracted depending on the flow conditions (concentration and shear
rate). This work proves that TDA allows capturing and extracting from the so-called persistence
image, a pattern that characterizes the dependence of the fiber trajectory on the flow kinematics and
the suspension concentration. Such a pattern could be used for classification and modeling purposes,
in rheology or during processing monitoring.

Keywords: topological data analysis (TDA); reinforced polymers; concentrated suspensions; flow
induced orientation; discrete numerical simulation

1. Introduction

Reinforced polymers are widely used in industry for enhancing mechanical and
functional performances while keeping the cost reasonable. The main issue related to the
use of fiber-based reinforced polymers for elaborating short fiber composites is due to the
difficulty of accurately predicting the flow induced orientation, with the final properties
becoming strongly dependent on the final orientation state of fibers in the formed part.

The orientation evolution of an ellipsoidal fiber immersed in a flow characterized by
a gradient of velocity can be computed by using the so-called Jeffery equation [1]. However,
as soon as the fiber concentration increases, intense interactions between the rotating fibers
takes place and the orientation kinematics of each fiber will differ from the one predicted
by the Jeffery model.

At the population level (ensemble of fibers in a representative volume in which
the velocity gradient is assumed almost identical) the interactions can be described as
a diffusion term acting on the fiber orientation probability distribution Ψ, whose evolution
is governed by the so-called Fokker-Planck equation [2], and more concretely the so-called
Folgar-Tucker model [3]. Due to the fact that the orientation distribution depends on the
physical coordinates (space and time) and also on the configurational ones (the orientation
p defined on the surface of the unit sphere), Ψ(x, t, p), descriptions based on the moments
of the orientation distribution are preferred [2,4]. Thus, the second order moment of the
orientation distribution function reads:

a(x, t) =
∮

p ⊗ pΨ(x, t, p) dp, (1)
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where ⊗ refers to the tensor product.
When considering a description based on the orientation tensors (orientation distribu-

tion moments), the diffusion term describing fiber interaction within the Folgar & Tucker
formulation, results in a sort of randomizing term that tends, to evolve the orientation
towards the isotropic state, that is a → I/3 (in 3D), with I the identity tensor [2,4].

However, many hypotheses were introduced when deriving the models describing the
fiber interaction, fact that limits their validity and accuracy. Discrete simulations consider
a population of fibers, subjected to two main actions, the hydrodynamic ones induced by
the fluid flow, flow that is assumed unperturbed by the fibers presence and their orientation
state, and the forces that apply when two neighbor fibers approach mutually activating,
first hydrodynamics forces and then contact forces for avoiding interpenetration.

Discrete simulations are extremely expensive because of the high number of fibers to
be considered for representing the different concentration regimes, and because of the ex-
tremely small time steps that the small length scales involved by the fibers interaction imply.

When fibers enter in contact, having a non-null relative velocity, the interaction will
affect the orientation kinematics from one side, but it will also affect the fibers geometrical
center trajectory. Thus, it is postulated that this trajectory will depend on the number and
intensity of the fiber interaction, both expected scaling with the flow gradient of velocity,
the fiber concentration and the orientation state.

Thus, the analysis of those erratic trajectories that the fiber follow, should provide
a very valuable information on the orientation state (difficult to measure in 3D flows
of concentrated suspensions), the local concentration that could differ from one point to
another in the flow, or even the effective velocity gradient that could differ from the nominal
one, that as previously indicated is assumed the one unperturbed by the fibers presence.

However, extracting information from those erratic trajectories seems difficult, needing
the use of adequate metrics to compare them, that apparently seem very different even
when the flow conditions remain identical. Moreover, the usual statistical descriptors
(widely considered for describing roughness for instance) seem insufficient for describing
the trajectory richness. Thus, robust metrics for describing in a concise, compact and
rich enough way, with the suitable invariance properties, are needed for making possible
unsupervised clustering and supervised classification of the different trajectories. For that
purpose, the present work considers topological data analysis for analyzing the stochastic
time-series induced by the fiber interactions, at the level of the movement of the fiber
geometrical center.

The paper is organized as follows. Section 2 describes the discrete simulation of flows
involving concentrated fiber suspensions. Then, in Section 3, the so-called Topological
Data Analysis (TDA) will be revisited. Finally, the numerical results will be reported in
Section 4, before addressing some final concluding remarks in Section 5.

2. Discrete Simulation

The main assumptions considered in the the modelling and simulation framework
are [5,6]:

1. The suspending fluid is Newtonian, incompressible and the flow is laminar;
2. The fluid velocity gradient is assumed being homogeneous in the considered represen-

tative volume where the calculations are performed, with the velocity field assumed
unperturbed by the particles presence and their orientation;

3. The mass of the fibers is negligible, thus the inertia of the fibers is neglected;
4. Fibers are considered to have the same length, but they could have different length;
5. The long-range hydrodynamic interactions are considered along with short-range

hydrodynamic interactions between fibers;
6. Initially and before the simulation starts, the fibers are homogeneously and almost

isotropically distributed in the considered volume, with interpenetration prevented.
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The position of the geometrical center G of fiber (α), r(α), is given by

r(α) = x(α)x + y(α)y + z(α)z, (2)

where x, y and z represent respectively the three unit vectors related to the three
space coordinates.

Fibers are assumed having an ellipsoidal shape, with length l and diameter d (taken
at the axis center). Thus, the aspect ratio of the fibers r reads:

r =
l
d

. (3)

In the numerical simulations described later, the considered fibers have an aspect
ratio of 20. Thus, the fibers will be represented by elongated ellipsoids, whose orientation
will be described by a unit vector p aligned with the ellipsoid longest axis. Moreover, the
considered aspect ratio allows assuming the fibers rigid, as experimental observations
prove for usual materials, as for example glass fibers.

Since the suspensions are considered concentrated, with the fiber volume fraction
noted by φ, the following inequality applies:

φ ≥ 1
r

. (4)

The higher r (i.e., long fibers), the more the system is considered concentrated for a
fixed fibers concentration φ. In what follows, the fibers are supposed to be sufficiently long
(i.e., r � 1), approaching the cylindrical shape.

The fixed frame is defined from (O, x, y, z), whereas another frame is attached to each
fiber: (G, x′, y′, z′). A shear flow is applied, with the velocity field expressed from

VT(x) = (V1, V2, V3) = (γ̇y, 0, 0), (5)

with γ̇ the applied shear rate and y the y-coordinate of the fiber geometrical center. This
expression allows defining the velocity gradient ∇V as well as its symmetric and skew-

symmetric parts, D and W respectively, with Ω =
1
2
(∇× V).

The fiber orientation is defined by the unit vector p(α) such as p(α) = p(α)1 x + p(α)2 y +

p(α)3 z. The relative fluid/particle velocity at G reads

q̇(α) = ṙ(α) − V(r(α)) = ṙ(α) − γ̇y(α)x. (6)

2.1. Fiber Motion Equations: Translation

The net force that the fluid transfer to the fiber scales with the relative velocity at
G from the so-called resistance tensor ζ, and then the force balance with the acting force
F, reads

F(α) + ζ(α) · q̇(α) = 0, (7)

where the friction tensor expression is given in [7], and depends on the fluid viscosity, the
fiber geometry and its orientation.

2.2. Fiber Motion Equations: Rotation

First we consider the dilute case where fiber interaction cans be neglected. The fluid
deformation induces on the fiber the torque H(α) : D (with H a third order resistance
tensor) and the fluid/fiber relative rotary velocity ω(α) induces the torque ξ(α) · ω(α), with
ξ(α) a second order resistance tensor. Both resistance tensors [7] depend again on the fluid
viscosity, fiber geometry and fiber orientation.

89



Entropy 2021, 23, 1229

When neglecting inertia effects, the torque balance (in absence of fiber interactions) reads

ξ(α) · ω(α) +H(α) : D = 0, (8)

from which the fiber rotary velocity can be extracted,

ṗ(α) = −p(α) ×
(

ω(α) − Ω
)

, (9)

that for infinite aspect ratio fibers leads to

ṗ(α) = ṗ
(α)
J = W · p(α) +

[
D · p(α) −

(
D : p(α) ⊗ p(α)

)
p(α)

]
, (10)

that coincided with the Jeffery equation [1].
When the suspension becomes concentrated enough, fiber-fiber interactions occur.

Thus, short-range forces will appear on the fibers as they interact.
There are two types of interactions considered via two types of forces: A lubrication

force Flb occurs when two fibers approach one another; and a contact force Fc when they
touch, that when neglecting friction (the roughness of the fiber surface is very small,
fact that enables neglecting the induced friction force), the contact force, as well as the
lubrication one, is assumed acting in the normal direction.

The resulting interaction force on fiber (α) reads:

F(α) = ∑
β 
=α

F(α,β)
c n(α,β) + ∑

μ 
=α

F(α,μ)
lb n(α,μ), (11)

that will induce a torque T(α) on the considered fiber, leading to the torque balance

T(α) + ξ(α) · ω(α) +H(α) : D = 0, (12)

from which
ω(α) = −ξ(α)

−1 ·
(

T(α) +H(α) : D
)

, (13)

leading to the fiber rotary velocity ṗ(α).
Thus, knowing the resulting force applied on fiber (α) one can compute the relative

velocity at G, q̇(α) (that allows updating the fiber center position), and the fiber rotary
velocity ṗ(α).

The calculation of the distance between two fibers and the calculation of the lubrication
forces depending on the approaching velocity Θ̇(α,β), were detailed in [8].

Contact forces are assumed to occur if the gap between two close fibers is equal to
zero and if F(α,β)

c 
= 0. The condition employed in the present work reads [9]

d
dt

[(
r(α) − r(β)

)
· n(α,β)

]
= Θ̇(α,β) = 0, (14)

with Θ(α,β) ≈ 0. It physically means that two fibers in contact cannot penetrate one another.
For solving the problem, fibers are grouped. Imagine that fibers (α) and (β) are in

contact. The first group is composed by all the fibers in interaction with fiber (α). The
second group is all the fibers in interaction with fiber (β). There is one unknown force
for each pair of fibers, because the forces acting on the two fibers are equal in magnitude
but opposite in direction. All forces for these two groups are coupled and should be
solved together with all the interactions in the suspension by enforcing the kinematic
constraints (14) at each contact level. For additional details the interested reader can refer
to [5] and the references therein.
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3. Topological Data Analysis

Data is generated by considering a population of fibers inside a computational box,
that represents the so-called representative volume. The number of fibers depends on
the considered fibers volume fraction (fibers concentration). Then, a simple shear flow
is assumed taking place inside, with the velocity given by VT = (γ̇y, 0, 0). As discussed
above, the flow is assumed unperturbed by the fibers presence and orientation. In absence
of interactions, the geometrical center of each fiber will follow a rectilinear trajectory,
traversing the computational box, until leaving it from its right boundary. Instead of
increasing the box size, fully periodic boundary conditions are enforced. Thus, as soon as
a fiber leaves the box from its right boundary it is re-injected into the box through its left
boundary. The computational cell perfectly represents the bulk flow conditions, as soon
as the analyzed flow is not affected by the physical walls (e.g., the mould walls). Here,
we assume that the flow cell (representative volume) is far enough (with respect to the
fiber length) from the physical walls for ignoring the effects of those walls.

In the absence of interactions, the orientation of each fiber describes the so-called
Jeffery orbit. When concentration increases, Jeffery orbits intersect one another and then
lubrication and contact forces appear when fibers interact. The number of interactions will
scale with the fiber concentration, while the interaction intensity scales with the applied
shear rate. Thus, the higher the fibers’ concentration and the applied shear rate, the more
intense and frequent the interactions occurring in the flow, creating a strong perturbation in
the orientation kinematics (fiber rotary velocity) as well as in the erratic trajectory described
by the fiber centers.

The interactions (lubrication and contacts) occur inside the box, but due to the assumed
and enforced periodic boundary conditions, fibers located in the neighborhood of the right
boundary can interact with the ones located in the neighborhood of the left one, and those
close to the bottom boundary with the ones close to the top one, and similarly for the front
and rear sides of the box.

Fibers are initially located randomly into the box, while avoiding interpenetration. Thus,
at the end of the box filling an almost isotropic orientation state is obtained, i.e., a ≈ I/3.

A test fiber is considered close to the center of the box, and its trajectory is recorded, in
particular the three components of the fluctuating vector q̇ acting on it, that will represent
the three time series Sx, Sy, Sz: Sx = {q̇1

x, q̇2
x, ...} and similarly for the other two times series.

In these time series and for comparison purposes, the exponent refers to the quantity of
applied strain, i.e., •n refers to •(γ̇tn).

The kinematics of the test particle is followed a certain time, in order to almost cover
the three main regimes that it is experiencing:

1. The first regime is the one taking place at the very beginning when the flow starts,
where the initial fiber distribution evolves in absence of interactions, until fibers ap-
proaching ones another induce the expected fiber interaction (lubrication and contact);

2. The second regime is the one when the orientation of the fibers in the population
evolve, trying to align with the flow direction (induced by the applied shear) but in
presence of numerous and intense interactions;

3. The third region is an almost stablished regime, when fibers are quite aligned with the
preferential orientation direction (the x-coordinate in the case here studied). In this
case the number of interaction reduces because when fibers are almost aligned in the
same direction, interactions are much less probable and much less intense. However,
as the fibers are ellipsoids, they cannot align in a stable manner in the flow direction,
the rotary velocity never vanishes, even in absence of interactions. The rotary velocity
becomes very small when ellipsoids align along the flow direction, and consequently
the fiber spend a lot of time aligned in the flow direction, but it continues its rotation,
and the rotary velocity increases when the orientation moves apart form the flow
direction, reaching its maximum velocity when the y-coordinate reaches its maximum
value. Then, the rotary velocity decreases again when the fiber orientation approaches
again the flow direction, and the cycle repeats and rotation continues. Thus, the fiber
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spend long periods almost aligned with the flow, and rotate very fast outside this
most stable direction (the local orientation with the flow). During this fast rotation
the interactions are numerous and intense, because of the fact that each fiber rotates
at different instants.

In order to compare the just referred time series, we must consider appropriate metrics
able to find the similarity of times series, neither identical nor superposable. Topological
Data Analysis [10–12] inherits the invariance properties of topology, and then it is an
appealing candidate for analyzing, describing and finally classifying time series with
respect to the concentration regime and the applied shear rate.

For the sake of clarity, we will consider a generic time series S = {s1, s2, ..., sk, ...}.
To extract the topology of the data composing the time series, first the extremum points
(local minimums and local maximums) are identified, and then we proceed to the one-
to-one local-minimum/local-maxixum neighbors pairing. In the pairing process, when
multiple alternatives exist, the one maximizing the max to min distance is retained.

Now, we assume that P min-max pairs have been constructed: (b1, d1), ..., (bP, dP),
where b refers to the minimum, also referred as birth, and d refers to the maximum, or the
death. Each one of these pairs results in a point in the so-called persistence diagram, with
the birth component reported in its horizontal axis and the deaths in the vertical one. Being
the maximum always greater (or equal) than the minimum, points will group in the upper
part with respect to the bisector (diagonal of the square birth/death representation).

Instead of representing on the vertical axis the deaths, an alternantive derived repre-
sentation consists of representing the lifetime, that is, dk − bk. Thus, the points reported
into the so-called life-time diagram are the P data points: (b1, d1 − b1), ..., (bP, dP − bP), that
now appear distributed everywhere in the 2D representation.

Calculating distances between clouds of points is possible when using an adequate
metrics. One possibility consists of using the Wasserstein metrics usually employed in
optimal transport [13], that first matches the points of all the considered sets, in order to
minimize the cost related to the distance among them, and then compute the Euclidian
distance between the matched points-sets.

However, using this kind of data representation in usual artificial intelligence and
machine learning techniques for clustering, classifying and modeling (i.e., constructing
regressions) remains its trickiest issue. For that reason, a step forward consists of transform-
ing the life-time diagram into the so-called persistence image, defined in a vector space
facilitating its post-processing for a diversity of purposes.

For that purpose, and as described in our former works [14–16], we associate to each
data-point in the life-time diagram a bivariate normal distribution, weighted and then
integrated in different patches on a square domain covering the support of the regularized
life-time diagram, leading to the so-called persistence images.

The resulting persistence images have an important property, the one of be invariant
for time-series having similar topologies, even when they cannot be perfectly matched
when using their time-representations.

Thus, persistence images enable efficient unsupervised clustering or supervised classi-
fication, and can be used also as input in regressions, by considering convolutional neural
networks –cNN– directly applied on them, or nonlinear polynomial regression applied on
the coefficients of their PCA decomposition [17].

4. Results

According with the rationale described at the beginning of Section 3, different time
series related to the movement of a test fiber in different flow conditions, the last character-
ized by the fibers volume fraction (%) and the applied shear rate s−1, were generated. The
considered design of experiments –DoE– is given in Table 1.

The initial orientation is almost isotropic, that is, there are fibers pointing in any
direction of the unit sphere, with an almost a uniform distribution. Thus, one expects that
when the flow starts, the flow induced orientation, trying to align all the fibers along the
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flow direction (as discussed before), will create frequent and intense fiber-fiber interactions,
scaling with the shear rate and the concentration. These interactions will induce significant
displacements of the fibers geometrical centers. When the fibers align along the flow
direction, i.e., with the velocity field, they remain most of the time aligned with the flow.
However the alignment with the flow is never permanent because of two main reasons.

Table 1. Design of Experiments.

Case Concentration (%) Shear Rate (s−1)

1 14 5
2 18 5
3 22 5
4 18 1
5 18 3
6 18 7

First, when considering fibers modeled by ellipsoids (as it is the case here) the local
alignment is not a steady solution (no steady solution exists). The rotary velocity reaches
its smallest value when the fiber is aligned with the flow, but it is not exactly zero. Thus,
the fiber moves apart from the alignment with the flow, to make a turn, coming back to
the alignment with the flow, where again it spends a long period before starting another
rotation, and so on.

The second advocated reason is, that even if the interaction is much less intense when
fibers are globally quite aligned with the flow, the sporadic rotations just described create
fiber-fiber interactions that induce the displacement of the fibers geometrical centers, while
the orientation also deviate from the local alignment with the flow.

Moreover, as fibers are rotating according to the applied shear, in the clockwise
direction in our case, the displacement of the fibers geometrical center is expected exhibiting
an asymmetric behavior.

For confirming the previous expectations, we consider Cases 4 and 6 in Table 1,
related to the minimum and maximum applied shear rates, both having the same fiber
concentration, and compares the displacement of the test fiber geometrical center along
the y-direction (the shear direction), both cases represented respectively in Figures 1 and 2.
These two figures prove that the larger is the shear rate, the higher is the fiber-fiber
interaction intensity, and consequently the displacement induced on the fibers along the
shear direction (y-direction—with the flow occurring along the x-direction).

Figure 1. Time series related to displacement on the y-direction in Case 4: Minimum shear rate.
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Figure 2. Time series related to displacement on the y-direction in Case 6: Maximum shear rate.

To evaluate the effect of the concentration while keeping constant the applied shear,
we consider Case 1 and Case 3, with respectively the minimum and maximum fibers
concentration (both subjected to the same applied shear rate). Figures 3 and 4 represent
the associated displacement along the shear direction (y-coordinate). As it can be noticed
from the observation of these figures, for the lower concentration, after the numerous
interactions that follow the flow initiation, a plateau corresponding to the fibers alignment
along the flow direction, where interactions almost disappear, is noticed. As discussed
previously, fibers move apart form the local alignment for performing a full rotation before
coming back again to the orientation with the flow, in which it stays for a long period
(the rotary velocity is minimum when fibers are almost aligned with the flow). For the
maximum concentration, fiber-fiber interactions persist after the transient regime, and the
permanent regime continues exhibiting intense fluctuations induced by the interactions.
It can be stressed that the concentration mainly affects the number of interactions, but their
intensity seems more influenced by the shear rate than by the fiber concentration.

Figure 3. Time series related to displacement on the y-direction in Case 1: Minimum concentration.
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Figure 4. Time series related to displacement on the y-direction in Case 3: Maximum concentration.

To better appreciate the number and distribution of the topological events, Figures 5–8
show the persistence diagrams related respectively to Figures 1–4, where each blue dot
represents a topological event, with its appearance reported in the x-coordinate axis and its
death in its y-coordinate axis, being the vertical distance to the diagonal a representation of
its persistence (its lifetime).

Figures 5 and 6 clearly reveal that the topology becomes more persistent when in-
creasing the shear rate, with the associated topological event appearance asymmetrically
distributed with respect to the zero value. High shear rates induce strong interactions
(as observed in Figure 2) that result in highly fluctuating dynamics, with large amplitudes,
that result in persistent topology. On the contrary, when the shear rate decreases the
fluctuations are much less intense (smaller amplitudes) inducing an ephemeral topology,
with the topological events closer to the diagram diagonal.

Figure 5. Persistence diagram related to displacement on the y-direction in Case 4: Minimum
shear rate.
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Figure 6. Persistence diagram related to displacement on the y-direction in Case 6: Maximum
shear rate.

Now, focusing on the effect of concentration, from Figures 7 and 8 it can be stressed that
in the dilute regime, represented by Figure 3, the largest persistent topology is associated
with the transient regime, with ephemeral events occurring as soon as fibers almost align
with the flow.

Figure 7. Persistence diagram related to displacement on the y-direction in Case 1: Minimum
concentration.

96



Entropy 2021, 23, 1229

Figure 8. Persistence diagram related to displacement on the y-direction in Case 3: Maximum
concentration.

When the concentration increases nothing changes significantly, as expected, concern-
ing the most persistent topology, however, the ephemeral one becomes more abundant and
erratic than the one related to the dilute case. It is important to notice that the scale of rep-
resentation is impacted by an isolated negative displacement that induces a displacement
along the x-axis, and that could be considered as an outlier. These findings confirm that
the concentration affects more the ephemeral events that the persistent topology.

Thus, two main scales can be differentiate, the one related to the transient regime,
involving more persistent topology, and the one related to long-time regime exhibiting
more ephemeral events.

The main issue, previously discussed, is the way of using a compact, concise and
complete descriptor of the time series depicted in the previous figures (Figures 1–4), more
easy to manipulate than the discrete persistence diagrams reported in Figures 5–8.

The use of persistence images is a valuable route for accomplishing it, because they
allow extracting and differentiating micro and macro events, inducing ephemeral or per-
sistent topology. Persistence images are defined in a vector space and can be easily ma-
nipulated by most of the state-of-the-art artificial intelligence and machine learning tech-
niques. These images contain a rich multi-scale information able to represent the amount
of topology and its persistence, expected describing the fibers trajectories depending on
the concentration and shear rate, the former induing the amount of topological events and
the last their persistence.

Figure 9 schematizes the persistence image content, where the horizontal axis refers
to the value at which the topological event appears, while the vertical one refers to its
persistence. Thus, Figures 10–13 represent the persistence images associated respectively
to Figures 1–4, that describe the findings just discussed when referring to the associated
persistence diagrams (Figures 5–8).

To sum up the effect of the concentration and the applied shear rate on the persis-
tence image, Figure 14 represents the images corresponding to q̇y in the different con-
centration/shear rate conditions, where a clear evolution of the topological pattern can
be appreciated.
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Figure 9. Persistence images reader code.

Figure 10. Persistence image related to displacement on the y-direction in Case 4: Minimum
shear rate.
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Figure 11. Persistence image related to displacement on the y-direction in Case 6: Maximum
shear rate.

Figure 12. Persistence image related to displacement on the y-direction in Case 1: Minimum
concentration.
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Figure 13. Persistence image related to displacement on the y-direction in Case 3: Maximum
concentration.

Figure 14. q̇y persistence images in different fibers volume fraction/shear rate conditions.

5. Conclusions

This paper proved that interactions affect, in a very precise way, the trajectory followed
by the geometrical center of the interacting particles. Because of the high variability, a
robust metric was chosen for comparison purposes, concretely topological data analysis.
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Thus, the time-series related to the erratic perturbation of the nominal trajectories, reflecting
the interactions (lubrication and contact) allows to extract a sort of topological pattern, the
so-called persistence image, that characterizes in a stable manner (invariant description)
all the trajectories related to the same flow conditions, in particular same values of the
fiber concentration and flow shear rate, both effecting the number and intensity of the
interactions, and then having a noticeable effect on the trajectory topology.

This work opens numerous perspectives, in particular the one related to the flow moni-
toring, to infer, from the recorded trajectory, local quantities, like the the effective shear rate,
concentration and ensemble orientation (moments of the orientation distribution function).
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Abstract: Predicting the void fraction of a two-phase flow outside of tubes is essential to evaluate the
thermohydraulic behaviour in steam generators. Indeed, it determines two-phase mixture properties
and affects two-phase mixture velocity, which enable evaluating the pressure drop of the system. The
two-fluid model for the numerical simulation of two-phase flows requires interaction laws between
phases which are not known and/or reliable for a flow within a tube bundle. Therefore, the mixture
model, for which it is easier to implement suitable correlations for tube bundles, is used. Indeed, by
expressing the relative velocity as a function of slip, the void fraction model of Feenstra et al. and
Hibiki et al. developed for upward cross-flow through horizontal tube bundles is introduced and
compared. With the method suggested in this paper, the physical phenomena that occur in tube
bundles are taken into consideration. Moreover, the tube bundle is modelled using a porous media
approach where the Darcy–Forchheimer term is usually defined by correlations found in the literature.
However, for some tube bundle geometries, these correlations are not available. The second goal of
the paper is to quickly compute, in quasi-real-time, this term by a non-intrusive parametric reduced
model based on Proper Orthogonal Decomposition. This method, named Bi-CITSGM (Bi-Calibrated
Interpolation on the Tangent Subspace of the Grassmann Manifold), consists in interpolating the
spatial and temporal bases by ITSGM (Interpolation on the Tangent Subspace of the Grassmann
Manifold) in order to define the solution for a new parameter. The two developed methods are
validated based on the experimental results obtained by Dowlati et al. for a two-phase cross-flow
through a horizontal tube bundle.

Keywords: steam generator; void fraction; mixture model; porous media approach; reduced-order
model; Proper Orthogonal Decomposition (POD)

1. Introduction

Steam generators are heat exchangers used especially in nuclear propulsion. Water,
heated by the reactor core, flows through a tube bundle, which is a closed circuit called the
primary circuit. The heat of the primary fluid is diffused by conduction through metallic
tube walls to the water, which flows outside the tubes. Water in the secondary circuit, also
called the secondary fluid, enters in a liquid state and becomes a two-phase mixture of
steam and water as heat transfer occurs along the heat exchanger. The steam is then used
to generate electricity using rotating turbines.

A three-dimensional thermo-hydraulic analysis is essential to predict the performance
of heat exchangers and their correct design, especially taking into account that the tube
bundle, where there may be thousands of tubes, would require unacceptable computational
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cost and time. Therefore, the whole code cited in this paper models the tube bundle as
a porous medium. In the case of two-phase flows, the void fraction is the key parameter
to characterize the flow. Indeed, it enables calculating the mixture density, the mixture
viscosity, and the mixture velocity. Consequently, it plays an important role for computing
pressure drops and heat and mass transfers.

Since the 1980s, thermal-hydraulic codes have been developed to understand the
physical phenomena involved. One of the first codes, THIRST [1], was developed to
compute three-dimensional, two-phase, and steady flow in steam generators. The two-
phase flow was solved by the homogeneous two-phase model, and the phase velocities were
assumed to be equal, but this does not reflect what is really going on. To take into account
the slip between phases, Navier–Stokes equations were solved for the mixture of the
secondary fluid. The THYC code [2] gives the relative velocity thanks to a correlation using
the drift flux model of Zuber and Findlay [3]. This model is based on the determination
of drift-flux parameters for which there are many different empirical correlations [4–8].
Stevanovic et al. [9] used the two-fluid model to predict the thermal-hydraulic behavior in
horizontal tube bundles. Navier–Stokes equations were solved for each phase. The accurate
definition of the interfacial drag force, comprising a drag coefficient correlation, is important
in order to predict the void fraction distribution. In their paper, the original drag correlation
of Ishii and Zuber [10] was multiplied by 0.4. They validated this modification of the
correlation with their experimental data. Nevertheless, most drag coefficient laws in the
literature [11–15], including Ishii and Zuber’s correlation, are made for different two-phase
flow regimes (bubbly, slug, stratified, annular, or spray flow) inside a tube and not in tube
bundles. In this study, this problem is tackled by using the mixture model, which is a
simplified two-phase model where Navier–Stokes equations are solved for the mixture.
The developed method involved formulating the relative velocity as a function of slip
and then implementing a specific void fraction model for tube bundles derived from
the literature.

The slip ratio is defined as the ratio between gas phase velocity and liquid phase
velocity. Feenstra et al. [16] developed a slip ratio model based on their R-11 data for up-
ward two-phase cross-flow through horizontal tube bundles. They identified the important
variables that affected slip, and the application of the Buckingham pi theorem enabled them
to reduce the slip ratio as a function of two dimensionless numbers, namely the Richardson
number and the Capillary number. They demonstrated that it fitted well with experimental
void fraction data in R-11 and air–water mixtures for a wide range of mass fluxes, qualities
and pitch-diameter ratios. This model is not explicit for void fraction; indeed an iterative
process is necessary to compute the void fraction. Likewise, Hibiki et al. [17] used the slip
ratio correlation of Smith [18] to develop a correlation for the entrainment factor dependent
on the tube’s bundle arrangement. The entrainment factor is correlated with a dominant
parameter such as nondimensional mass flux based on experimental data coming from
various flow configurations and tube bundle arrangements. The developed correlation
agrees both with parallel and crossflow in the tube bundle.

Moreover, the porous media approach implies adding a momentum sink to the govern-
ing momentum equation. This source term is defined by the Darcy–Forchheimer law [19,20].
A widely used and easy method is the use of correlations coming from the literature, such
as Zukauskas et al.’s correlation [21] for a transverse flow to a tube bundle or Rhodes and
Carlucci’s correlation [22] for a parallel flow. These correlations result from experiments,
it seems to be the most accurate method to determine the law but it is valid for a given
design and it is expensive and time-consuming. However, for new, i.e., non-standard,
tube geometry, these correlations are not available, and solving a reduced-order model to
define them is suggested. From some CFD calculations of flow through a Representative
Elementary Volume (REV) of the tube bundle, pressure and velocity fields were decom-
posed by POD (Proper Orthogonal Decomposition). Then, the non-intrusive reduced
model method, Bi-CITSGM (Bi-Calibrated Interpolation on the Tangent Subspace of the
Grassmann Manifold) [23,24], was applied in order to determine the solution for a new
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parameter. In this method, spatial and temporal POD sampling bases are interpolated
by ITSGM (Interpolation on the Tangent Subspace of the Grassmann Manifold) [25] and
the temporal eigenvalues by usual methods such as Lagrange, IDW (Inverse Distance
Weighting), or RBF (Radial Basis Function). Then, the reduced-order model was used to
compute the source term of the porous media approach applied to the flow through a
tube bundle.

This work was validated with the experimental results of Dowlati et al. [26] which
is a two-phase cross-flow through a horizontal tube bundle. The summary of the devel-
oped methodology is presented in Figure 1. First, the mixture model was used, and we
rewrote the slip velocity, �ugl , as a function of the slip in order to implement a specific void
fraction model. The implementation of Feenstra’s correlation and Hibiki’s correlation were
compared to the usual formulation of Manninen et al. [27]. Moreover, the tube bundle
was modelled by a porous medium. The ability to use a reduced-order model to deter-
mine the momentum sink term �Ft was studied and compared to the usual correlation of
Zukauskas et al. [21].

The remainder of the paper is organized as follows. In Section 2, the governing
equations used to model the two-phase flow through a tube bundle by a porous media
approach are presented. The rewriting of the relative velocity and the Darcy–Forchheimer
term are also detailed. Section 3 deals with the methodology of the reduced-order model
on the REV to compute the Forchheimer term. The ITSGM method and the non-intrusive
approach Bi-CITSGM are reviewed. Section 4 validates the application of the proposed
reformulation of the relative velocity, and Section 5 confirms the use of a ROM to determine
the momentum sink term. Finally, conclusions are drawn.

Figure 1. Summary of the suggested approach. On the left side, the mixture model is modified by
Feenstra’s correlation to compute the void fraction. On the right side, the Bi-CITSGM method applied
to a REV is introduced in the porous media approach to define the pressure drop of the tube bundle.

2. Cross-Flow through a Horizontal Tube Bundle

This study focuses on the simulation of the thermal-hydraulic behaviour of a two-
phase adiabatic crossflow through a horizontal tube bundle. The tube bundle is modelled by
a porous medium that involves solving the conservation equations of mass and momentum
and the turbulence model using the superficial velocity porous formulation. The flow
is considered two-dimensional and only transverse to the tube bundle. All geometric
notations pertaining to the tube bundle are illustrated in Figure 2.
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Figure 2. Geometric definitions of the tube bundle.

2.1. Governing Equations of the Two-Phase Flow

In order to simulate the adiabatic two-phase flow, the mixture model is used. Only two
phases are considered: the liquid phase l and the gas phase g. The mixture model allows
the phases to be interpenetrating and to move at different velocities using the concept of
slip velocities. The continuity equation for the mixture is

∂

∂t
(ρb) +∇ · (ρb�ub) = 0 (1)

where �ub is the mass-averaged velocity defined by

�ub =
αgρg�ug + αlρl�ul

ρb
. (2)

αk is the volume fraction of phase k, and ρb is the mixture density, defined by

ρb = αgρg + αlρl . (3)

The momentum equation for the mixture is obtained by summing the individual momen-
tum equations of all phases. It takes the following form

∂

∂t
(ρb�ub) +∇ · (ρb�ub ⊗ �ub) = −∇p +∇ ·

[
μb

(
∇�ub +∇�uT

b

)]
+ ρb�g

−∇ ·
(

αgρg�udr,g�udr,g + αlρl�udr,l�udr,l

)
+ �Ft. (4)

μb is the mixture viscosity such as

μb = αgμg + αlμl (5)

and �g = −g�y with g = 9.81 m/s2. The hydraulic resistance of tubes on the fluid is taken
into account by the Darcy–Forchheimer term �Ft. This is a source term due to the use of
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the porous media approach and it is defined in the following Section 2.3. �udr,k is the drift
velocity of the phase k defined by

�udr,k = �uk − �ub. (6)

Moreover, the volume fraction equation for phase g is built from the continuity equation
for the gas phase, using the definition of the drift velocity (Equation (6)) to eliminate the
phase velocity as:

∂

∂t
(
αgρg

)
+∇ ·

(
αgρg�ub

)
= −∇ ·

(
αgρg�udr,g

)
. (7)

The drift velocity is related to the relative (or slip) velocity according to:

�udr,g = �ugl

(
1 − αgρg

ρb

)
and �udr,l = �ugl

(
αlρl
ρb

− 1
)

. (8)

The most used algebraic slip formulation is the Manninen model [27]. With this formulation,
the slip velocity is given by

�ugl =
τg

fdrag

(
ρg − ρb

)
ρg

�a (9)

where τg is the particle relaxation time,

τg =
ρgd2

g

18μg
(10)

dg is the gas particle diameter and�a is the acceleration.

�a = �g − (�ub · ∇)�ub −
∂�ub
∂t

(11)

The drag force fdrag is obtained with the model of Schiller and Naumann [11]. Commonly
used, it is expressed as a function of the drag coefficient CD and the relative Reynolds
number:

fdrag =
CDRe

24
and Re =

ρl‖�ug − �ul‖dg

μl
(12)

This slip velocity formulation is not suitable for a two-phase flow in tube bundles because
it is not designed for such a configuration and does not take into account the associated
physical phenomena. In the next subsection, a formulation more adequate for the tube
bundle configuration is suggested.

2.2. Rewriting of the Slip Velocity

The void fraction depends on the slip ratio S and quality x according to

ε =
1

1 + S ρg
ρl

1−x
x

(13)

Here, the slip velocity is reformulated as a function of slip in order to introduce a slip ratio
model adapted to a two-phase through a tube bundle. The slip velocity is the velocity
difference between the gas phase and the liquid phase.

�ugl = �ug − �ul (14)
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The velocity components in Equation (14) can be written as⎧⎨⎩ugl,x = ul,x

(
ug,x
ul,x

− 1
)
= ul,x(Sx − 1)

ugl,y = ul,y

(
ug,y
ul,y

− 1
)
= ul,y

(
Sy − 1

) (15)

ul,x (resp. ul,y) is the liquid velocity in the �x (resp. �y) direction. The same notation is used
for the gas velocity and the slip velocity.
For an upward cross-flow to the tube bundle in the y direction, it can be assumed that
the velocity ratio Sx is equal to 1 and that Sy is defined by a correlation coming from the
literature. Finally, the drift velocity is written as⎧⎨⎩udr,g,x = ul,x(Sx − 1)

(
1 − αgρg

ρb

)
udr,g,y = ul,y

(
Sy − 1

)(
1 − αgρg

ρb

) (16)

The proposed approach needs to solve Equations (1), (4) and (7) with the modified definition
of the drift velocity defined by Equation (16).

2.2.1. Hibiki’s Correlation (2017)

Smith [18] gives the slip ratio valid for all void fraction ranges and for vertical, inclined,
and horizontal flows in a channel [28,29] as

S = e + (1 − e)

⎛⎝ ρl
ρg

+
(

1−x
x

)
e

1 +
(

1−x
x

)
e

⎞⎠0.5

(17)

where e is the ratio of the mass of liquid droplets entrained in the gas core to the total
mass of liquid. In order to implement a void fraction correlation in a steam generator
thermal-hydraulic code, Hibiki et al. defined this parameter for staggered tube bundles
like Dowlati et al. as

e = min(0.0637N0.571
ṁ,p , 1). (18)

Nṁ,p = ṁp/ρg jg,crit where the critical superficial gas velocity is

jg,crit =

(
Δρgσ

ρ2
g

)0.25
⎛⎜⎝ μl(

ρlσ
√

σ
gΔρ

)0.5

⎞⎟⎠
−0.2

. (19)

where σ is the surface tension. ṁp is the pitch mass flux, which represents the mixture
velocity between two tubes ‖�ub,p‖ multiplied by the mixture density.

ṁp = αgρg‖�ug,p‖+ αlρl‖�ul,p‖ where ‖�uk,p‖ = ‖�uk‖
P

P − Dext
for k = {l, g} (20)

2.2.2. Feenstra’s Correlation (2000)

Feenstra et al. [16] defined the slip ratio as

S = 1 + 25.7
√

Ri ∗ Cap
(

P
Dext

)−1
(21)

Dext is the outer diameter of the tubes, and P is the pitch, illustrated in Figure 2. The Richard-
son number is the ratio between the buoyancy force and the inertia force:

Ri =

(
ρg − ρl

)2g(P − Dext)

ṁp
2 (22)
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The Capillary number is the ratio between the viscous force and the surface tension force:

Cap =
μl‖�ug,p‖

σ
(23)

The gas phase velocity is based on the resulting void fraction:

‖�ug,p‖ =
xṁp

ερg
(24)

2.3. Definition of the Darcy–Forchheimer Term

The source term �Ft = Ft,x�x + Ft,y�y is added to the momentum equation because tube
bundles are represented by a porous medium and is usually written as:⎧⎨⎩ Ft,x = −

(
Dxxμbub,x + Kxx

1
2 ρb‖�ub‖ub,x

)
Ft,y = −

(
Dyyμbub,y + Kyy

1
2 ρb‖�ub‖ub,y

) (25)

This term is composed of a viscous loss term and an inertial loss term resulting from
Darcy–Forchheimer’s law [19]. ‖�ub‖ is the mixture velocity magnitude, Dxx and Dyy are
the inverse of the permeability, and Kxx and Kyy are the correction terms of Forchheimer.
In this study, the first term of Equation (25) is neglected because the flow is turbulent.
As the term has the same dimensions as a pressure gradient, Equation (25) is rewritten by:

Ft,x = −
ΔP2Φ

f ,x

NR,xPx
and Ft,y = −

ΔP2Φ
f ,y

NR,yPy
(26)

ΔP2Φ
f ,i is the two-phase frictional pressure drop, NR,i is the number of tube rows, and Pi is the

pitch in direction i (�x or �y) shown in Figure 2. From Equations (25) and 26, the unknown
coefficients Kxx and Kyy are defined by:⎧⎪⎨⎪⎩

Kxx = − ΔP2Φ
f ,x

1
2 ρb‖�ub‖ub,x NR,x

1
Px

Kyy = − ΔP2Φ
f ,y

1
2 ρb‖�ub‖ub,y NR,y

1
Py

(27)

From the method developed by Consolini et al. [30] to define the two-phase frictional
pressure drop over horizontal tube bundles, Equation (27) is reduced to:

Kxx = −λEu
Px

(
Py

Py − Dext

)2
and Kyy = −λEu

Py

(
Px

Px − Dext

)2
(28)

where the Euler number, Eu, can be given by Zukauskas et al. [21]. Zukauskas et al. defined
a correlation for the Euler number resulting from their experiments and experimental
results from the literature. This law enables to determine frictional pressure drops for
in-line and staggered tube bundles with 1.25 ≤ P/Dext ≤ 2.5 and 10 ≤ Re ≤ 106.
The Euler number is calculated as :

Eu = k1

4

∑
i=0

ci

Rei (29)

where ci and k1 are coefficients given in reference [21]. The two-phase multiplier coefficient
is written by Consolini et al. [30] as:

λ = Λ + (1 − Λ)(1 − 2x)2 with Λ =

(
ṁp

400

)−1.5
(30)
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It is important to note that the two-phase multiplier factor is equal to 1 when the quality
tends towards 0 (only liquid phase) and 1 (only gas phase). This key argument is not
available with the correlation of Ishihara et al. [31] based on the Lockhart–Martinelli
approach [32], which was the method used by Dowlati et al. in [26].

For complex or non-standard geometries, such as helicoidal tube bundles or corru-
gated tubes [33–35], there are no suitable or reliable correlations in the literature to compute
the Forchheimer force �Ft. They can be obtained by experiments or numerical simulations
by LES or RANS approaches but these methods imply a significant cost. In order to reduce
computational time and cost, we suggest using a non-intrusive reduced model model
(ROM). This parametric ROM simulates the flow in an REV (Representative Elementary
Volume) of the tube bundle. The knowledge of this flow enables the Forchheimer term to
be quickly obtained. In addition, the spatial distributions of the pressure and the velocity
around each tube are precisely given by this approach. The ROM methodology is detailed
in the next section.

3. Reduced Ordel Model on the REV to Compute the Forchheimer Term

3.1. Representative Elementary Volume

A Representative Elementary Volume (REV) of the tube bundle is considered in Figure 3,
where the lower and upper boundary conditions are periodical. Governing equations
for periodically fully developed flow are derived from the incompressible Navier–Stokes
equations defined by:{

∇ · �u = 0
∂�u
∂t +∇ · (�u ⊗ �u) = −∇P

ρ + ν∇2�u +
�β
ρ

where �β =

(
0
β

)
(31)

�u is the periodic flow velocity:

�u(x, y, t) = �u(x, y + 2Py, t) (32)

P represents the reduced pressure, which satisfies periodic boundary conditions,

P(x, y, t) = P(x, y + 2Py, t) (33)

and the actual pressure is given by

p(x, y, t) = −βy + P(x, y, t) (34)

according to Patankar [36]. β is the linear component of the pressure, which is to be
calculated iteratively for a fixed mass flow rate [37,38].

Figure 3. REV of the tube bundle of Dowlati et al. [26].
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3.2. Definition of Reduced Bases

Model reduction techniques make it possible to quickly and inexpensively obtain the
temporal dynamics of a complex flow. The principle of the reduced-order model (ROM) is
to approximate the solution in a small dimension sub-vector space, which enables capturing
the dominant characteristics of the physical phenomenon studied. The solution f (t, x) is
written as a linear combination of a finite number of spatial basis functions Φk(x) as:

f (t, x) ≈
q

∑
k=1

ak(t)Φk(x) (35)

q is relatively small compared to the problem size, and ak is the temporal coefficient. Here,
f corresponds to the velocity �u or the pressure p.

The most common method to compute the spatial basis Φ is the POD (Proper Orthog-
onal Decomposition) method [39,40]. However, the ability of the POD basis function to
give the dynamic of the phenomenon studied is dependent of the information contained
in the snapshots that form the basis. For instance, a POD basis built with snapshots for a
Reynolds number Re1 will not be able to predict the dynamics of the physical phenomenon
for another Reynolds number Re2. To increase the validity domain of the POD basis, it is
possible to interpolate a set of POD bases Φ1, · · · , ΦN built for different values of Reynolds
numbers Re1, · · · , ReN in order to obtain the basis associated to the desired Reynolds
number. Standard interpolation techniques (RBF, Lagrange, Spline, etc.) are not very
efficient and are not generally representative of the phenomenon studied. To get around
this difficulty, a basis interpolation approach based on the results of differential geometry
and, more particularly, on the properties of the Grassmann manifold can be used [25,41–43].
In this work, we consider the approach offered by Amsallem et al. [25] that is subsequently
noted as ITSGM (Interpolation on the Tangent Subspace of the Grassmann Manifold).
The algorithm is given in Algorithm A1.

Once the spatial basis for the desired parameter is defined, the temporal coefficients
are usually computed by solving a system of differential equations (ROM) resulting from
the Galerkin projection of the full model on the basis functions Φk(x) [44]. This method
has the disadvantage of being costly and intrusive. Indeed, for each new value of Reynolds
number, it is necessary to compute the coefficients of the ROM, which is costly. Moreover,
derivative operators are difficult to assess using a commercial CFD code. Consequently,
in this paper, we use the non-intrusive method Bi-CITSGM [23,45].

3.3. Description of the Bi-CITSGM Method

The methodology of the Bi-CITSGM is given in Algorithm A2 in the Appendix B.
The first step of this method is to interpolate the spatial basis and the temporal basis, built
by POD, using the ITSGM method. The singular value matrix is acquired by classical
interpolation methods such as Lagrange, RBF, and Spline. Then, the ranking step aims to
sort the interpolated spatial and time eigen modes with respect to the interpolated singular
values. Indeed, as the spatial and temporal bases may not be in the same order as the
singular values, orthogonal matrices need to be introduced. These calibration matrices
are a solution to an optimization problem under constraints whose solution is analytically
determined. For more details, see [23,24].

4. Validation of the Using of the Modified Mixture Model on the Dowlati’s Experiment

4.1. Study Configuration

The methodology, presented in Section 2, was validated with the experiment of
Dowlati et al. They made void fraction and friction pressure drop measurements for
vertical two-phase flow of air–water across staggered in-line tube bundles with different
pitch-to-diameter ratios. Here, the tube bundle, illustrated in Figure 4, is made up of
20 tube rows in a staggered arrangement with five tubes in each row and the ratio P/Dext
is 1.75. Geometry dimensions are given in Table 1. The estimated uncertainties in the data
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done by Dowlati et al. are detailed in Table 2. The present study is done with quality
range between 1.3 × 10−4 and 3 × 10−2 and mass flux range between 164 kg/(m2· s) and
538 kg/(m2· s).

Table 1. Dimensions of the tube bundle.

Value

Outer diameter of a tube Dext [mm] 12.7
Ratio P/Dext [-] 1.75
Pitch Px [mm] 22.225
Pitch Py [mm] 19.25
Width L = 5Px [mm] 111.125
Height H = 20Py [mm] 385

Table 2. Estimated uncertainties in the data given by Dowlati et al. [26].

Parameter Uncertainty

Quality ±2%
Void fraction ±0.05
Mass flux ±2%
Frictional two-phase pressure drop ±15%

CFD calculations were performed with Ansys Fluent v2020R2. The tubes in the tube
bundle were not represented. The tube bundle was modelled as a porous medium by
adding a source term in the momentum equation. At the inlet, the homogeneous void
fraction model is assumed. Thus, the homogeneous void fraction εH and inlet phase
velocities are written as follows,

�ug,in =

(
0

xṁin
ρgεH

)
(�x,�y)

; �ul,in =

(
0

(1−x)ṁin
ρl(1−εH)

)
(�x,�y)

(36)

εH =
1

1 + ρg
ρl

1−x
x

(37)

where x is the quality. Calculations are initialized from the input boundary conditions.
The mesh, illustrated in Figure 5, is defined in such a way as to ensure that the dimension-
less wall distance y+ is close to 1. The turbulent model k-ω SST [46] is used.

Figure 4. Staggered tube bundle from Dowlati’s experiment (P/Dext = 1.75).
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Figure 5. Mesh used for CFD calculations (size for the central cells = 3 mm/cell size along the border
= 0.75 mm).

4.2. Influence of the Slip Model on the Void Fraction Prediction

In order to evaluate the influence of the slip model on the void fraction prediction,
mean relative and absolute errors are introduced.

Erel =
1

Npt

Npt

∑
i=1

εcalc
i − ε

exp
i

ε
exp
i

(38)

Eabs =
1

Npt

Npt

∑
i=1

(
εcalc

i − ε
exp
i

)
(39)

Npt, εcalc, and εexp are, respectively, the number of data and the computed and experimental
void fractions averaged over the tube bundle. To prove that we need to apply a void fraction
model to the mixture model, calculations were performed with the slip velocity formulation
of Manninen. Here, the value of the void fraction postprocessed with this formulation
always matches with the homogeneous void fraction. Figures 6 and 7, for, respectively,
ṁp = 164 kg/(m2.s) and ṁp = 401 kg/(m2.s), showed that the homogeneous void fraction,
and thus the Manninen’s formulation, do not take into account the slip between phases for
flows in tube bundle. Indeed, the relative error is about Erel = 51.05% and the absolute
error Eabs = 0.15. The results stress that it is important to implement a void fraction
model appropriate for a two-phase cross-flow through a horizontal tube bundle. Moreover,
for each mass flux, Figures 6 and 7 demonstrate the correct implementation of Feenstra or
Hibiki’s correlation in the CFD code. That is to say, the errors calculated subsequently in
this paper derive only from the slip ratio model implemented and not from the numerical
model. It can be seen in Figure 8, which depicts void fraction results as functions of quality
and mass flux, that the void fraction increases with the quality and with the mass flux.
Roser [47] justified this phenomenon by the upward movement of the gas phase against
the liquid phase due to the buoyancy force making it all the more important that the mass
flux is low. For higher mass flux, the gap with the homogeneous void fraction model is less
significant. Indeed, the two phases are “well mixed” due to the increase in turbulence.

Figure 9 depicts CFD-computed void fractions versus experimental void fractions for
all mass fluxes. Feenstra’s correlation always underpredicts the void fraction; however,
errors are acceptable with Erel = 17.49% and Eabs = 0.07. Errors seem to be more important
for high mass fluxes and low qualities with some errors outside of range ±20%. Hibiki’s
correlation overpredicts the results for ε ≤ 0.5 and underpredicts it for ε > 0.5. The relative
error is a little higher than Feenstra’s correlation with Erel = 21.81%, but the absolute error
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is better with Eabs = 0.05. Some void fraction points are outside the range ±20% for low
void fractions; however, this correlation is better for higher void fractions.

(a) (b)
Figure 6. Void fraction results for air-water flow through Dowlati’s staggered tube bundle with
ṁp = 164 kg/(m2.s). (a) Feenstra’s correlation; (b) Hibiki’s correlation.

(a) (b)
Figure 7. Void fraction results for air-water flow through Dowlati’s tube bundle with
ṁp = 401 kg/(m2.s). (a) Feenstra’s correlation; (b) Hibiki’s correlation.

(a) (b)
Figure 8. Void fraction as a function of quality and mass flux (� = results from CFD simulations and
� = experimental measurements). (a) Feenstra’s correlation; (b) Hibiki’s correlation.
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(a) (b)
Figure 9. CFD computed void fraction versus experimental void fraction. (a) Feenstra’s correlation;
(b) Hibiki’s correlation.

In order to improve the void fraction prediction, the Capillary number used in Feen-
stra’s correlation is now expressed as a function of upstream mass flux. The upstream mass
flux and the mass flux between two tubes are linked by:

ṁp = ṁupstream
P

P − Dext
(40)

With this modified Feenstra’s correlation, named “Upstream Feenstra’s correlation”, the re-
sults were always improved compared to the experimental results, the original Feenstra’s
correlation, and Hibiki’s correlation. Indeed, Figure 10 shows that the results with the mod-
ified Feenstra’s correlation were closer to experimental results than the original Feenstra’s
correlation. It is important to note that only 10% of the simulations had a relative error for
the void fraction higher than 20% for the modified Feenstra’s correlation. As can be seen
in Figure 11, these points were located at low void fractions. For the higher void fraction,
results were very close to the experiment. Compared to other correlations, this one has an
absolute error of 0.03 and a relative error of 9.10%, which confirms the accuracy of the void
fraction prediction.

Figure 12 plots the slip ratio obtained by the experiment and Feenstra, Hibiki and
upstream Feenstra’s correlations as a function of quality for each mass flux. As the void
fraction increases with mass flux, it can be noticed that slip ratio decreases with the quality
until reaching 1. For ṁp ≤ 247 kg/(m2.s), the slip ratio turns out to be relatively constant
regardless of the quality. However, no correlation studied here captures this phenomenon.
For ṁp ≥ 329 kg/(m2.s), the slip ratio increases with the quality, and correlations follow
the same trend. Overall, the slip ratio obtained by the upstream Feenstra correlation is the
closest to experimental results.

Now that we have verified the accurate prediction of the void fraction by rewriting
the relative velocity and implementing a suitable void fraction model, we can focus on
the pressure drop of the system. The porous media approach implies adding a source
term to the momentum equation. We prove, in the next section, the possibility to use a
non-intrusive parametric reduced model on an REV in order to compute this term.
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(a) ṁp = 164 kg/(m2.s) (b) ṁp = 247 kg/(m2.s)

(c) ṁp = 329 kg/(m2.s) (d) ṁp = 401 kg/(m2.s)

(e) ṁp = 538 kg/(m2.s)

Figure 10. Comparison of void fraction results obtained by the different methods.

Figure 11. CFD computed void fraction with the modified Feenstra’s correlation versus experimental
void fraction.
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(a) ṁp = 164 kg/(m2.s) (b) ṁp = 247 kg/(m2.s)

(c) ṁp = 329 kg/(m2.s) (d) ṁp = 401 kg/(m2.s)

(e) ṁp = 538 kg/(m2.s)

Figure 12. Comparison of slip ratio obtained by the different methods.

5. Computation of the Pressure Drop in Tube Bundles by Using POD-ROM on an REV

The porous media approach involves the implementation of the Euler number
(Equation (28)) in the Forchheimer’s correction term. Usually, this dimensionless number
is computed with correlations coming from the literature. Here, we want to show that it
is possible to compute this variable by a non-intrusive reduced-order model, Bi-CITSGM,
applied to a REV of the tube bundle. The case of the tube bundle of Dowlati et al. is an
case of application for which there is already a correlation resulting from the literature and
for which the resolution of a reduced model is of little interest. However, we would like to
extend this developed methodology to a case of a complex tube bundle for which there is
no correlation from the literature. In addition, it is less expensive to define a correlation
resulting from numerical calculations rather than from tests. First, the Bi-CITSGM method
is validated on the REV, and then, the implementation on CFD simulations of the Dowlati’s
experiment is discussed.
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5.1. Validation of the Bi-CITSGM Method on the REV

Figure 3 depicts the 2-D REV of the tube bundle of Dowlati et al. with symmetric
and periodic boundary conditions. The dimensions of transverse pitches and the tube
diameter are given in Table 1. CFD calculations were done with OpenFOAM. The governing
equations were unsteady and dimensionless, and the k-ω SST turbulence model is used.
The flow is computed until the fully developed flow is established. The density of the
fluid was always equal to 1 kg/m3, the desired mass flow was 4.7625 × 10−2 kg/s, and the
viscosity varied according to the desired Reynolds number.

All the considered training Reynolds numbers are {2000; 3000; . . . ; 29,000; 30,000}.
This range of training Reynolds numbers fits with the Reynolds number in each cell of
the Dowlati’s simulation. For each Reynolds number, a thousand time steps are kept,
and these snapshots are once and for all decomposed by POD. For each new Reynolds
number, the Bi-CITSGM method gives the results almost instantly. In Figures 13–15, solving
the ROM with five or ten POD modes are compared to the reference CFD calculation for
each Reynolds number. The Bi-CITSGM method enables determining the pressure field
with an accuracy less than 10%, except for Reynolds numbers less than 5000 (Figure 13).
To increase the accuracy of pressure fields, the spacing between the training Reynolds
numbers should be reduced in this range. However, the key parameter in this section
is the pressure drop. Figures 14 and 15 show that the pressure drop prediction is much
less than 10% even for Reynolds numbers less than 5000. For instance, at a Reynolds
number of 24,500, the absolute error between the CFD reference pressure field and the
interpolated pressure field at two given times is represented in Figure 16. The highest
errors are rather local in the REV, and overall, the interpolated pressure field is very close
to the CFD reference. Following the good results achieved by the Bi-CITSGM method on
the REV, the results in the next subsection are plotted by keeping only five POD modes.

Figure 13. Relative error of the time- and area-weighted pressure average between Bi-CITSGM
method and CFD calculation.

Figure 14. Time-weighted pressure drop average for Bi-CITSGM method and CFD calculations.
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Figure 15. Relative error of the time weighted-pressure drop average between Bi-CITSGM method
and CFD calculation.

(a) t∗ = 0.02 s (b) t∗ = 0.02 s (c) t∗ = 0.075 s (d) t∗ = 0.075 s
Figure 16. Absolute error between CFD calculations and Bi-CITSGM method for Re = 24,500.

5.2. Validation of the Implementation of the Bi-CITSGM Method on the Dowlati’s Experiment

The Bi-CITSGM method is solved at each REV of the tube bundle and each iteration
in order to compute the Forchheimer term. In addition, the void fraction model of Feen-
stra et al. is always implemented. Figure 17 compares the total two-phase pressure drop of
Dowlati’s tube bundle given by the experiment, the Zukauskas correlation implementation
and the Bi-CITSGM method implementation in the Forchheimer term. Total pressure drops
well fit with the experiment results at low void fractions. Errors become higher when the
void fraction increases; however, the post-processing of the pressure drop from the paper
of Dowlati et al. [26] is not immediate, nor is it very accurate. The post-process of the
pressure drops resulting from the implementation of the Zukauskas correlation and that of
the Bi-CITSGM method in the source term are superimposed on the graph. These results
validate the suggested approach. Likewise, in Figure 18, the two-phase frictional pressure
drops are plotted for different mass flux and are compared to the experiment results. We
note that the two-phase frictional pressure drop is highly dependent on the mass flux and
less on the void fraction. On the contrary, the gravitational pressure drop decreases when
the void fraction increases and is barely dependent on the mass flux. These results are
consistent with the physical phenomena that occur in a two-phase flow through a tube
bundle. Consequently, the aim to determine the momentum sink by the non-intrusive
reduced-order model, Bi-CITSGM, is validated by the results presented in this subsection.
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Figure 17. Total pressure drop of Dowlati’s tube bundle (×: Zukauskas; ◦: Bi-CITSGM; �: experiment).

Figure 18. Frictional pressure drop of Dowlati’s tube bundle (×: Zukauskas; ◦: Bi-CITSGM;�: experiment).

6. Conclusions

In order to predict the thermal–hydraulic performance of an adiabatic upward air-
water flow through a horizontal tube bundle, two approaches are suggested. They are
validated with the experimental results of Dowlati et al. First, the prediction of the void frac-
tion on the tube bundle was improved by using the mixture model and rewriting the drift
velocity as a function of slip. Two correlations coming from the literature, Hibiki et al. [17]
and Feenstra et al. [16], are compared to the experimental results. They are given similar
results with a relative error about 20%. Moreover, we showed that the definition of the Cap-
illary number with the upstream mass flux in Feenstra’s correlation significantly improves
the void fraction prediction with a relative error under 10%. Second, the CFD porous media
approach used implies adding a momentum sink to the governing momentum equation
named the Darcy–Forchheimer term. Usually, pressure drop correlations coming from
the literature have been used to compute the Forchheimer term except for complex and
non-usual geometry for which there is no correlation. In this instance, we demonstrate that
it is possible to determine a numerical pressure drop correlation by solving a non-intrusive
parametric reduced-order model of the flow through a Representative Elementary Volume
of the tube bundle. In the case of the straight tube bundle of Dowlati et al., the Bi-CITSGM
method is consistent with the Zukauskas correlation [21]. Moreover, there is a short gap
with the experimental results despite a significant possible post-processing error. The two
proposed methods that yield satisfactory results need to be expanded. For instance, it
would be interesting to simulate a two-phase parallel-flow in a staggered vertical tube
bundle with the mixture model modified by the rewriting of the drift velocity. Moreover,
the use of a non-intrusive reduced-order model applied to a non-usual geometry of REV in
order to compute the Forchheimer term could be an axis of development.
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Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamic
POD Proper Orthogonal Decomposition
ROM Reduced-order model
REV Representative Elementary Volume
ITSGM Interpolation on the Tangent Subspace of the Grassmann Manifold
Bi-CITSGM Bi Calibrated Interpolation on the Tangent Subspace of the Grassmann Manifold
RBF Radial Basis Function
IDW Inverse Distance Weighting

Appendix A. Algorithm of the ITSGM Method

Let Φγ1
, Φγ2

, . . . , ΦγNp
be a set of POD basis and

[
Φγ1

]
,
[
Φγ2

]
, . . . ,

[
ΦγNp

]
the sub-

vector space associated belonging to the Grassmann manifold. By using the definitions
of the geodesic path, exponential application, and logarithm application, the aim is to
approximate the subspace [Φ

γ̃
] amount for a new parameter γ̃ 
= γi. The different steps of

the ITSGM method come hereafter.

Algorithm A1 ITSGM Algorithm.

(a) Choose a reference point [Φγi0
] where i0 ∈ {1, . . . , Np}.

(b) For i ∈ {1, . . . , Np}, determine the vector Xi = Log
[Φγi0

]
(Φγi

) with

Xi = Ui arctan(Σi)VT
i , i = 1, . . . , Np (A1)

where UiΣiVT
i is the truncated SVD decomposition of (I −

Φγi0
Φγi0

T)Φγi
(Φγi0

TΦγi
)−1.

(c) Interpolate X1 ,X2 , . . . ,XNp
and obtain the initial velocity X

γ̃
linked with the new

parameter γ̃. As the tangent space T
[Φi0

]
G(q, N) is a vector space, the interpolation

standard technique can be used like Lagrange or RBF.
(d) Determine the interpolate sub-vector space

Φ
γ̃
= Φγi0

Ṽ cos(Σ̃) + Ũ sin(Σ̃) (A2)

where ŨΣ̃ṼT is the SVD decomposition truncated of X
γ̃
.

Appendix B. Algorithm of the Bi-CITSGM Method

Let the POD decomposition of order q of the matrices Sγi
linked to the parameter γi such as

Sγi
≈ Uγi Σγi

VT
γi
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where Uγi ∈ R
Nx×q et Vγi ∈ R

Ns×q are, respectively, the spatial and temporal bases,
and Σγi

∈ R
q×q is the singular value matrix. Obtaining the solution S

γ̃
for a new parameter,

γ̃ 
= γi is given by the online step of the Bi-CITSGM method defined below.

Algorithm A2 Bi-CITSGM Algorithm.
Offline step (do this step only once):
(a) For i = 1, . . . , Np, to approximate the snapshot matrices Sγi

, use the truncated SVD
decomposition of order q as follows:

Sγi
≈ Uγi Σγi

VT
γi

(A3)

where Uγi ∈ R
Nx×q and Vγi ∈ R

Ns×q are, respectively, the spatial and time basis and
Σγi

∈ R
q×q is the singular values matrix.

Online step:
(b) Interpolate the singular values matrix Σγi

with the classical interpolation method

(Lagrange, RBF, etc.) and build the matrix Σ̃ for the new parameter γ̃.
(c) Approximate the spatial basis Uγ̃ and the temporal basis Vγ̃ with the reduced basis

interpolation method ITSGM (described in the Algorithm A1).
(d) Adjust the signs of the modes of the training basis by multiplying the jth spatial mode

Φγk
j and temporal mode Λγk

j by −1 if the following condition is met:

||Φγk0

j − Φγk
j||2 > ||Φγk0

j + Φγk
j||2 with k0 = argmin

i∈{1,...,Np}
distG(Φγ̃

, Φγi
).

(e) Calculate the considered coefficients ωi and κi

ωi =
distG(Uγ̃, Uγi )

−m

Np

∑
k=1

distG(Uγ̃, Uγk )
−m

κi =
distG(Vγ̃, Vγi )

−l

Np

∑
k=1

distG(Vγ̃, Vγk )
−l

(A4)

(f) Calculate λ the diagonal matrix of eigenvalues, and P the matrix of eigenvectors by
verifying the following eigenvalue decomposition:

Np

∑
i=0

Np

∑
j=0

ωiωjUT
γi

Uγ̃UT
γ̃ Uγj = PλPT (A5)

(g) Calculate η the diagonal matrix of eigenvalues, and H the matrix of eigenvectors by
verifying the following eigenvalue decomposition:

Np

∑
i=0

Np

∑
i=0

κiκjVT
γi

Vγ̃VT
γ̃ Vγj = HηHT (A6)

(h) Calculate the orthogonal matrices K and Q given by:

K = Uγ̃

( Np

∑
i=0

ωiUγi

)
Pλ− 1

2 PT (A7)

Q = Vγ̃

( Np

∑
i=0

κiVγi

)
Hη− 1

2 HT (A8)

(i) Build the interpolate snapshot matrix defined by:

S
γ̃
= Uγ̃KΣ̃QTVT

γ̃ (A9)
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Abstract: The water flow characteristics over an interval-pooled stepped spillway are investigated
by combining the renormalization group (RNG) k-ε turbulence model with the volume of fluid
(VOF) interface capture technique in the present study. The results show that the energy dissipation
performance of the interval-pooled stepped spillway was generally better than that of the pooled,
stepped spillways and the traditional flat-panel stepped spillway. The omega vortex intensity
identification method is introduced to evaluate the energy dissipation. Due to the formation of
“pseudo-weir”, the energy dissipation did not increase with the growth of the pool’s height. In
addition, the average vortex intensity can characterize the dissipation rate to some extent.

Keywords: energy dissipation; interval-pooled stepped spillway; numerical simulation; omega
identification method

1. Introduction

Stepped spillways have been widely utilized as energy dissipation facilities in hy-
draulic engineering and show great potential due to achieving a better rate of energy
dissipation while releasing excess flood water [1–3]. They can reduce the scale of the
stilling basin and the number of downstream protection works and decrease the extent
of downstream river erosion, which has excellent economic and technical performance
indicators [4]. To improve the energy dissipation effect and hydraulic characteristics of
stepped spillways, several studies have been conducted to optimize the configurations. The
stepped spillway is not confined to flat, uniform steps, and some models of stepped chutes
have been designed with changing channel slopes [5], nonuniform steps [6], and pooled
steps [7,8]. Among them, Felder and Chanson (2013) and Thorwarth (2009) conducted
physical experiments on pooled stepped spillways with chute slopes of θ = 8.9◦, 14.6◦,
and 26.8◦, and the results showed that the energy dissipation efficiency of pooled stepped
spillways performed well, but unstable free surface fluctuations occurred at a chute slope
θ of 8.9◦, which could cause some potential problems for the step structure. Moreover, a
new type of pooled stepped spillway which has a pool on the horizontal step face of every
second step was also proposed, and its flow characteristics were investigated by several
researchers [9–11]. Several experimental studies have been conducted to analyze the flow
pattern of pooled stepped spillways, and the corresponding step spillway parameters in
these studies are presented in Table 1. Among them, Kökpinar (2004) made a detailed
comparison of the air-liquid flow parameters for a 30◦ interval-stepped spillway with a
classical step stepped spillway and a pooled stepped spillway, and the results indicate that
the interval enclosure spillway can entrain more air and reduce the risk of cavitation. André
and Schleiss (2004) then conducted physical experiments for interval-stepped spillways
with θ = 30◦ and θ = 18.6◦, and they found that interval-stepped spillways have better
energy dissipation performance with a defined pool height. Felder and Chanson (2013)
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conducted experiments on an interval-stepped spillway with a small angle (θ = 8.9◦). Their
cases were tested in nappe and transition flow regimes and did not achieve a skimming
flow due to the chute angle and discharge. All the above-mentioned studies realized that
interval-stepped spillways have totally different hydraulic characteristics from pooled
stepped spillways and flat stepped spillways, their energy dissipation aspect is still lacking,
and systematic research is needed.

Table 1. Summary of experimental studies of flow properties on interval-pooled stepped spillway
configurations.

Reference θ (◦) Step Geometry Comment Flow Regime Methodology

Kökpinar (2004) 30 h = 6 cm, l = 10.4 cm,
d = 3 cm

W = 0.5 m,
64 steps,

wp = 2.6 cm
NA/TRA/SK physical model

experiment

André and Schleiss
(2004) 18.6/30

h = 6 cm, l = 17.8 cm,
d = 3 cm,

h = 6 cm, l = 10.4 cm,
d = 3 cm

W = 0.5 m,
42/64 steps,
wp = 2.6 cm

NA/TRA/SK physical model
experiment

Felder and
Chanson (2013) 8.9 h = 5 cm, d = 5 cm,

l = 31.9 cm

W = 0.5 m,
21 steps,

wp = 1.5 cm
NA/TRA physical model

experiment

Notes: θ = angle between pseudo-bottom formed by the step edges and the horizontal; h = vertical step height (m);
l = horizontal step length (m); d = pool height (m); wp = width of the pool weir crest (m); W = channel width (m);
SK = skimming flow regime; TRA = transition flow regime; NA = nappe flow regime.

On the other hand, after decades of development, numerical simulation has become
another important tool for the study of hydraulic phenomena [12,13]. During this period,
the flow and air entrainment over stepped spillways have been studied by numerical simu-
lations using different methods, such as Reynolds-averaged Navier–Stokes (RANS) [14,15]
and meshless smooth particle hydrodynamics (SPH) [16]. This not only shows more clearly
the development pattern within the flow field but also the interaction of the hydraulic
conditions. A large number of vortex structures with different scales exist in the skim-
ming flow, which plays a key role in the energy dissipation efficiency. Therefore, accurate
identification of the vortex intensity is of great importance for understanding the flow
mechanisms and analyzing spillway dissipation problems. Vortex identification techniques
have also undergone rapid development in recent decades such as the vorticity threshold
method, the Q criterion method, the λ criterion method, the Ω criterion method, and
the Rortex method [17–20], which analogizes the above mainstream vortex identification
methods, among which the Ω criterion method has better performance in capturing the
vortex structure generated near the NACA66(mod) edge of the water wing at high speed
and identifying the strong rigid body rotation and weak rotation regions. Therefore, this
paper mainly uses the Ω criterion method to explore the step vortex structure [21].

To the best of our knowledge, the influence of various pool heights on the energy
dissipation of interval-stepped spillways is still unknown. Thus, the vortex intensity and
distribution are explored in the present study through numerical methods. Furthermore,
the relationship between the pool height and energy dissipation rate is also investigated
preliminarily.

2. Numerical Simulation

2.1. Computational Domain

Due to their high performance and effectiveness, numerical methods are commonly
used in hydraulic and hydrological studies [22–24]. Consequently, numerical simulations
are adopted in this paper to examine the air-water two-phase flows over the spillway. The
computation domain is described in detail and depicted in Figure 1. The experimental data
were applied to validate the results from a numerical simulation [25]. Therefore, the shape
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parameters of the interval-pooled stepped spillways (width, length of the step, and height
of the step and chute slopes) are consistent with the referred experimental study. Moreover,
four pool heights (d = 0.025, 0.05, 0.075 and 0.1 m) are applied to investigate its influence
on the flow pattern (Figure 1). As indicated by an earlier study [26,27], an equilibrium state
will be reached between the water head loss and gravity if the step spillway is long enough.
After the validation of the reliability of the numerical simulation, 10 steps were added
downstream of the original 10 steps to ensure that the water flow near the downstream
area formed a “quasi-uniform flow”. The computational domain of this model is shown in
Figure 1, with an upstream tank with a volume of 0.58 × 0.52 × 0.50 m3 and a spillway
crest with a length of 1.01 m followed by 20 steps, where each step is 0.2 m long (l) and
0.1 m high (h). The overall spillway slope (θ) is 26.6◦, and the width (W) is 0.52 m. The
width of the pool weir crest (wp) is 0.015 m. The channel width (W), chute slope h/l, and
pool weir crest wp were kept the same in different shapes and cases (Figure 1).

Figure 1. (a) Schematic of an interval-pooled stepped spillway. (b) Sketch of the specific step size.

2.2. Boundary Conditions

In the present study, the dimensionless depth dc/h is used, where h is the step
height and dc is the critical water depth. The critical water depth can be calculated by
dc = 3

√
Q2/(g × W2), where Q is the water discharge and W is the step width. Therefore,

dc/h =
(

q/
√

g × h3
)2/3

and is proportional to the Froude number. Our study only
addresses the skimming flow, since it aims to investigate the hydraulic energy dissipation
efficiency and hydrodynamic characteristics with a high flow rate with a discharge range of
1.90 ≤ dc/h ≤ 5.14. The specific values that are given are shown in Table 2. Similarly, these
parameters may be indicative of a full scale to guarantee that scale effects are unlikely to
influence the extrapolation of the results to prototype conditions (Felder, Guenther, et al.,
2012). In terms of model selection, the volume of fluid (VOF) method [28] was chosen for
free surface tracking. Since the RNG model added an additional term to the equation, it
allowed the whole model to simulate more complex flows more accurately [29]. In many
studies, the results simulated using the RNG model have produced reliable results [30,31].
Therefore the renormalization group (RNG) k-ε turbulence model [32] was applied. The
upper inlet boundary was set as the velocity inlet boundary, while the no-slip boundary and
standard wall function for the sticky bottom layer were adopted on the wall. In addition,
the pressure outlet boundary condition was employed for the outlet boundary, and the
pressure inlet boundary was applied for the air-inlet boundary (Figure 2).
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Table 2. The flow conditions for different channel configurations.

Q (m3/s) dc/h Flat Pooled d = 0.25 h d = 0.50 h d = 0.75 h d = 1.00 h

Q1 = 0.123 1.79
√ √ √

Q2 = 0.135 1.90
√ √ √ √ √ √

Q3 = 0.148 2.02
√ √ √ √

Q4 = 0.160 2.13
√ √ √ √ √ √

Q5 = 0.188 2.37
√ √

Q6 = 0.216 2.60
√ √

Q7 = 0.244 2.82
√ √ √ √ √

Q8 = 0.272 3.03
√ √ √

Q9 = 0.300 3.24
√ √ √ √ √ √

Figure 2. Meshing pattern in the computational domain.

2.3. Mesh and Model Validation

For the simulation of the flow over pooled, stepped spillways, a nonuniform struc-
tured mesh was applied. Since the mesh density has a significant effect on the accuracy
and reliability of the results, mesh independence was applied in this section. The grid
convergence index (GCI) method, based on the Richardson extrapolation (RE) method, is
an appropriate and recommended method that has been evaluated over several hundred
computational fluid dynamics (CFD) cases [33,34]. The GCI formula is described as follows:

GCI =
1.25

∣∣∣∅1−∅2
∅1

∣∣∣(
h2
h1

)p′
− 1

(1)

where p′ = 1
ln(h2/h1)

ln
∣∣∣∅3−∅2
∅2−∅1

∣∣∣+ ln

((
h2
h1

)p
−sgn

(
∅3−∅2
∅2−∅1

)
(

h3
h2

)p
−sgn

(
∅3−∅2
∅2−∅1

)
)

, ∅i is the calculation result of the

i-th grid, i is taken as 1, 2, and 3, and hi is the average grid size of the i-th grid and satisfies
the relationship of h1 < h2 < h3.

To check whether the numerical results were influenced by the grid density, three
different sizes of structured grids were tested. The average cell grid sizes were 0.0186 m,
0.0152 m, and 0.012 m, and the corresponding total numbers of elements were 280,000,
480,000 (as shown in Figure 2), and 680,000, respectively. According to the GCI method, the
maximum GCI values in the velocity profiles were 6.7 and 3.5% (Figure 3). Considering the
efficiency and accuracy of the simulation, the average cell grid of 0.0152 m was used for all
subsequent analyses.
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Figure 3. Discretization error bars computed using the GCI index on the 8th and 9th step horizon-
tal plane.

The simulation was validated against the experimental data of Felder, Guenther et al.
(2012) in terms of both the velocity profile and energy dissipation. Figure 4 shows that
the simulation results agreed well with the experimental data, and the maximum error
of the flow velocity on the 8th step and 9th step was only 7.29% and 6.58%, respectively.
The energy dissipation rates of the flat stepped spillway (dc/h = 0.81) and pooled, stepped
spillway (dc/h = 1.85) were calculated according to Equation (2). The errors were 9.17%
and 8.62%, respectively, which were within a reasonable range.

Hres = dd × cosθ +
Uw

2 × g
+ d (2)

where θ represents the angle, Uw represents the velocity (m/s)—that is, the average velocity
of the vertical distance from the edge of the step to 90% of the mainstream water depth—d
is the pool height, dd is the water flow depth, and Hres is the residual head (m).

Figure 4. Experimental and numerical simulation comparison chart of the velocity on the 8th and 9th
step horizontal plane.

3. Results and Discussion

3.1. Energy Dissipation Performance

In Figure 5a, the vertical coordinate in Figure 5a represents dimensionless residual
energy Hres/dc, and the horizontal coordinate is dc/h. The present data show there was a
large difference in the residual energy of the connected steps of the interval-pooled stepped
spillways. This means that the method is not applicable to measure the energy dissipation
rate in interval-pooled stepped spillways. The experimental results obtained by Thorwarth
(2009) are also presented in the same diagram. The residual water head of the pool case
decreased with the increasing flow, leading to a higher dissipation rate. It is noteworthy
that the residual head of the pooled, stepped spillways increased with the height of the
pool even at other angles (θ = 14.6◦); that is, in pooled, stepped spillways, the increase in
the pool height did not result in a significant increase in dissipation. The reason for this can
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be attributed to the fact that with the increase in the pool height, the step cavity circulation
became stable, and the dissipation energy in the mainstream area was greater than the
circulation in the step cavity (Thorwarth 2009). The mechanism of energy dissipation in the
interval steps will be further discussed later.

Figure 5. (a) Dimensionless residual energy of stepped spillways. (b) Energy dissipation rate of
interval-pooled stepped spillways.

The above-mentioned approach could obtain the energy dissipation rate of a specific
step but could not evaluate the performance of the whole stepped spillway. From Figure 5a,
it can be found that the residual head of the 17th step and the 18th step appeared to contrast
greatly. Clearly, it was more difficult to evaluate the dissipative performance of interval-
pooled stepped spillways using a certain independent step-residual head. Therefore, it was
necessary to estimate the energy dissipation of the whole spillway (i.e., to calculate the
energy difference between the water flow upstream and downstream entering the stepped
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spillway (as shown in Figure 6)), and the energy dissipation rate of the whole spillway
could be calculated according to Equation (3), converted through the Bernoulli equation:

η =
ΔE
E1

× 100% =
E1 − E2

E1
× 100% (3)

where η is the energy dissipation rate, which means the percentage difference between the
pre-step and post-step energy and the total pre-step energy, ΔE is the energy difference
between the pre- and post-stepped spillways, and E1 and E2 are the total energy upstream
and downstream of the stepped spillways, respectively:

η = 1.39(
dc

h
)
−1

(4)

Figure 6. Overall interval-pooled stepped spillways energy dissipation rate calculation schematic.

The energy dissipation calculated by Equation (3) is shown in Figure 5b. The energy
dissipation did not change with the pool height d. In the maximum flow (dc/h= 3.24)
scenario, the interval-pooled stepped spillways with d/h = 0.25 had the best performance,
with an energy dissipation rate of up to 28%. The energy dissipation rate of the interval-
pooled stepped spillways was predicted by Equation (4) (R2 ~ 0.98). The energy dissipation
rate of the interval-pooled stepped spillway with d/h = 0.25 was 20.07% higher than that
of the flat stepped spillway, with the same flow rate and step angle. Compared with
the pooled, stepped spillway, the energy dissipation rate of the interval-pooled stepped
spillway with d/h = 0.25 increased by 16.51%. Compared with previous studies, the
interval-pooled stepped spillway energy dissipation was only increased by approximately
2% for the step angle of 30.0◦ in the experiments conducted by André and Schleiss (2004).

3.2. Energy Dissipation Analysis Using the Omega Vortex Identification Method

The dissipation rate of the stepped spillway is closely related to the circulation region
of the step (Thorwarth 2009). Therefore, the omega vortex identification method was
introduced for stepwise exploration [19]. The guidelines of the Ω method were defined
as follows:

Ω =
b

a + b + ε
(5)

a = trace
(

AT A
)

=
3

∑
i = 1

3

∑
j = 1

(
Aij

)2

(6)

b = trace
(

BT B
)

=
3

∑
i = 1

3

∑
j = 1

(
Bij

)2

(7)

where A and B are the strain rate and vorticity (or spin) tensors, respectively. The flow is
irrotational if all the terms in B are zero. A and B are the symmetric and anti-symmetric
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parts of the velocity gradient tensor. In addition, a and b are the squares of the Frobenius
norm of A and B. ε is a very small number to prevent division by zero. Ω is the ratio of
vorticity over the whole motion of the fluid element [19]. Note that Ω ∈ [0, 1]. The flow is a
pure deformation when Ω = 0, and the flow is rigidly rotational when Ω = 1. Ω > 0.5 is the
region of rigid body rotation, and the more it tends toward 1, the greater the region of pure
rigid body rotation:

ε = 10−7(b − a)max (8)

It was mentioned by Wang, et al. (2019) that different choices of Ω values have an
effect on the vortex structure, and it is appropriate to take the −7th power of the difference
between the b and a maxima.

From Figure 7a, for dc/h = 3.24, the vortex structure in the flat stepped spillway had
a stable and uniform distribution, which was mainly distributed in the cavity corner and
main flow. The vortex was caused by the velocity difference on the edge of the step, which
formed a large rotation area. The maximum at the core of the vortex Ωmax ≈ 0.68. For the
pooled stepped spillway (d/h = 0.31), the pools increased the strength of the eddies in the
cavity corner and decreased the strength of the eddies in the mainstream. Ωmax ≈ 0.72,
which is larger than that of the traditional stepped spillway.

Figure 7. (a) The 17th and 18th step longitudinal interface diagram at the central axis Ω > 0.5
vortex structure in flat stepped spillways and pooled, stepped spillways. The upper inset shows
a distribution of Ω > 0.5 vortex intensity in the water flow in the whole area of the step structure
(d/h = 0.5). The right inset shows a distribution of Ω > 0.5 vortex intensity in the water flow in the
17th and 18th steps (d/h = 0.5). (b) Distribution of the 17th and 18th step vortex structure and vortex
intensity at the longitudinal median axis for different d/h ratios at dc/h = 3.24.
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Then, we refocused on the vortex distribution and strength of the 18th and 19th steps of
the interval-pooled stepped spillway in Figure 7b. For d/h = 0.25, the vortex corresponding
to the 17th step was not in the chamber but in the region of the main flow. The 18th step
corresponded to vortices all appearing inside the cavity, with a maximum value Ωmax of
about 0.76. When d/h ≥ 0.50, the vortex intensity distribution and the maximum at the
core of the vortex appeared within the 18th step with the increase in the 18th pool, but the
vortex did not exist within the cavity corner.

When d/h ≥ 0.50, the vortex intensity distribution started to appear within the 18th
step. The maximum at the core of the vortex increased with the increased height of the
19th step pool (d/h = 0.50 for Ωmax ≈ 0.82, d/h = 0.75 for Ωmax ≈ 0.86, and d/h = 1.00 for
Ωmax ≈ 0.95) (Table 3). The core of the vortex started to shift outward from the cavity corner
with the increase in the height of the 18th step. From the omega maximum distribution
(Table 3), the increase in the pool height could effectively enhance the spin-rolling intensity
in the cavity. The increased height of the pool blocked more of the water flow over the
steps and enhanced the energy dissipation effect of the no-pool steps. The overall energy
dissipation rate was improved. This may be the main reason why the interval-pooled
stepped spillway’s dissipation effect was better than the pooled, stepped spillway and the
flat stepped spillway.

Table 3. The omega maximum within the 17th and 18th step cavity.

Flat Pooled d/h = 0.25 d/h = 0.50 d/h = 0.75 d/h = 1.00

0.68 0.72 0.76 0.82 0.86 0.95

3.3. Formation of a “Pseudo-Weir”

From Figure 8, we can see that the area where the flow velocity was greater than 0 in
the vertical upward direction near the edge of the 17 steps increased with the increasing
pool height. When d/h ≥ 0.50, the velocity value in the vertical upward direction was
greater than 0, which exceeded the height of the 17 steps, and a “pseudo-weir” was formed
at the edge of the 17 steps. Figure 8 shows that as the pool height of the 18 steps increased,
the velocity of the water flowing through the 18 steps and then into the 17 steps increased.
This phenomenon indicates that the formation of a “pseudo-weir” enhanced the vortex
strength in the no-pool steps. This may be the main reason for the shift of the vortex
distribution of the 18th step between d/h = 0.25 and d/h = 0.50.

Figure 8. Distribution of vertical velocity Vy at the 18th step. The inset is the distribution of velocity
vectors about the 18th step.
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As shown in Figures 8 and 9, the increase in pool height caused an increase in the
“pseudo-weir”. However, the rising “pseudo-weir” induced a continuous increase in
stagnant water within all step cavities. Therefore, the increased pool height did not
significantly raise the energy dissipation within the step. This was confirmed from Figure 9.
It was found that the percentage of negative streamwise velocity at the 17th and 18th steps
increased as the pool height increased, which means that the upward shift of the core of
vortex position. And the area involved in dissipating energy in the water body would not
change significantly with the increase in pool height.

Figure 9. Distribution of streamwise velocity Vx at the 17th and 18th steps. The inset is the percentage
of negative velocity vs. the pool height.

3.4. Quantifying Vortex Strength

To better quantify and count the vortex intensity, we created three reference quantities:
the area to vortex ratio Ωp in Equation (9), the average vortex intensity Ω0.5 in the region
of Ω > 0.50 in Equation (10), and the average intensity of Ω > 0.5 in the region Ωd in
Equation (11). They are defined as follows:

Ωp = S0.5/Sc (9)

Ω0.5 =
1
N

N

∑
k = 1

Ωk (10)

Ωd = Ωp × Ω0.5 (11)

where S0.5 is the area occupied by Ω > 0.5, Sc is the calculation area, Ωp denotes the
percentage of omega > 0.5 in the calculation region, Ω0.5 is the average of Ω > 0.5, Sk is the
kth value of of Ω > 0.5 in the computational domain, and Ωd means the average intensity
of Ω > 0.5 in the region.

The above 3 parameters were calculated for the 17th and 18th steps with whole-step
spillways (Tables 4 and 5). The specific positions are shown in Figure 7a with the upper
inset and the right inset.

Table 4. Vortex parameters in the water of the 17th and 18th steps for stepped spillways.

d/h = 0.25 d/h = 0.50 d/h = 0.75 d/h = 1.00
Flat

(d/h = 0.00)
Pooled

(d/h = 0.31)

Ωp 0.34 0.44 0.43 0.39 0.49 0.41
Ω0.5 0.58 0.58 0.59 0.60 0.54 0.54
Ωd 0.20 0.26 0.25 0.24 0.27 0.22
η 0.46 0.42 0.41 0.42 0.39 0.38
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Table 5. Vortex parameters in the water of the stepped spillways.

d/h = 0.25 d/h = 0.50 d/h = 0.75 d/h = 1.00
Flat

(d/h = 0.00)
Pooled

(d/h = 0.31)

Ωp 0.38 0.41 0.39 0.36 0.43 0.39
Ω0.5 0.57 0.58 0.59 0.60 0.54 0.55
Ωd 0.22 0.24 0.23 0.21 0.23 0.22
η 0.46 0.42 0.41 0.42 0.39 0.38

The 17th and 18th steps and the overall step spillway were calculated using Ωp, Ω0.5,
and Ωd, respectively. It can be seen from Tables 4 and 5 that the values corresponding
to the same type of stepped spillway did not differ much. This means that the vortex
structure of each of the two steps was more stable and could characterize the development
of the overall vortex structure. Ωp was largest for the flat stepped spillways. Traditional
and pooled, stepped spillways accounted for a relatively large number because each set
of steps was more uniformly distributed in a better fashion than the vortex distribution
range produced by the edge of the steps in addition to the step cavity. In addition to the
stepped cavity, the vortex structure with a lower vortex intensity also existed uniformly in
the mainstream. However, the Ω0.5 values of conventional stepped spillways and pooled,
stepped spillways were small, indicating that the spaced steps strengthened the vortex
intensity of all steps. Ωd is the product of the area ratio and average intensity, which can
reflect an average intensity of Ω > 0.50. At the same flow rate, all types of Ωd did not differ
much and belonged to the same order of magnitude. In a comprehensive comparison,
the trend of the Ω0.5 index was closer to the change in the energy dissipation rate of each
type of stepped spillway, and it could approximate the magnitude of the overall stepped
spillway’s dissipation rate.

One of our optimization goals was to increase the energy dissipation rate of the spill-
way. Changing the dimensions to emphasize the effect of the macro-roughness elements on
the high-velocity water flow is an important optimized measurement. In further research,
we should explore the hydraulic characteristics of more types of step spillways to ensure
dam safety and to provide design references.

4. Conclusions

In this study, the step hydraulic characteristics of the traditional step-type spillway
were investigated by adding a pool weir to each step. The interval pool-type spillway
with different pool heights was investigated by numerical simulation and compared with
the conventional flat step and continuous pool-type step. The performances of energy
dissipation, vortex distribution, and flow field analysis were discussed in more detail.
Based on these studies, the following conclusions can be drawn:

1. The interval-stepped spillway allowed the flow to perform sufficient energy dissi-
pation by longitudinal abrupt expansion and contraction, creating a robust vortex
zone in the step cavity. The overall energy dissipation rate had an exponential de-
cay with dc/h and was generally better than conventional spillways and pooled,
stepped spillways.

2. After d/h ≥ 0.50, each step without a pool formed a “pseudo-weir”, which formed
a “pseudo-continuous weir” with an increasing pool, increasing the strength of the
vortex on the one hand, and on the other hand, the stagnant water body also increased,
resulting in an interval-pooled stepped spillway efficiency effect that did not change
significantly with the change in pool height.

3. A comprehensive analysis of the step spillway vortex structure was conducted. Three
parameters were defined to quantify the variation in vortices within the step, whose
Ω0.5 could represent the dissipation rate approximately. This shows that the average
intensity of the vortex was closely related to the dissipation effect.
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Abstract: The Navier-Stokes equation can be written in a form of Poisson equation. For laminar
flow in a channel (plane Poiseuille flow), the Navier-Stokes equation has a non-zero source term
(∇2u(x, y, z) = Fx (x, y, z, t) and a non-zero solution within the domain. For transitional flow, the
velocity profile is distorted, and an inflection point or kink appears on the velocity profile, at a
sufficiently high Reynolds number and large disturbance. In the vicinity of the inflection point or
kink on the distorted velocity profile, we can always find a point where ∇2u(x, y, z) = 0. At this point,
the Poisson equation is singular, due to the zero source term, and has no solution at this point due
to singularity. It is concluded that there exists no smooth orphysically reasonable solutions of the
Navier-Stokes equation for transitional flow and turbulence in the global domain due to singularity.

Keywords: Navier-Stokes equation; singularity; transitional flow; turbulence; Poisson equation

1. Introduction

In the past 50 years, researchers have conducted theoretical, experimental and direct
numerical simulation (DNS) works on the Navier-Stokes equation and have shown that
the flow field governed by this equation coincides well with the data on both the laminar
flow and the turbulent flow. Therefore, people believe that the Navier-Stokes equation
describes both the laminar flow and turbulence qualitatively and quantitatively. However,
whether the three-dimensional (3D) incompressible Navier-Stokes equation has unique
smooth (continuously differentiable) solutions is still not known [1,2].

Leray showed that the Navier-Stokes equations in three space dimensions always
have a weak solution for velocity and pressure, with suitable growth properties [3], but
the uniqueness of weak solutions of the Navier-Stokes equation is not demonstrated.
Further, the existence of a strong solution (continuously differentiable) of the Navier-Stokes
equations is still a challenge in the community of mathematics and physics, although much
effort has been made around the world.

Dou and co-authors studied the origin of turbulence using the energy gradient the-
ory [4–9] and discovered that there is velocity discontinuity in transitional flow and tur-
bulence [9], which is a singularity of the Navier-Stokes equation. The singularity found
theoretically is in agreement with the burst phenomenon in experiments. It was con-
cluded that there exist no smooth and physically reasonable solutions of the Navier-Stokes
equation at a high Reynolds number (beyond laminar flow) [9].

As is well known, the flow of viscous incompressible fluid is governed by the Navier-
Stokes equation, which is a Poisson equation. The steady laminar flow is dominated by the
Poisson equation with the source term of no vanishing. As observed in experiments and
simulations, when the incoming laminar flow is disturbed by nonlinear disturbance, the
velocity profile is distorted at a sufficient high Reynolds number. In the distorted flow, there
may be some points on the velocity profile where the source term becomes zero, which
form singularities of the corresponding Poisson equation. The existence of these singular
points may lead to no solution of the Navier Stokes equation.
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Singularity of the Navier-Stokes equation has received extensive study, owing to its
importance in partial differential equations and turbulence [1]. In the literature, there are
two different types of singularities described. These singularities are both located off the
solid walls. The first type is the one formed by the unbounded kinetic energy of fluid in the
flow field [1,3]. The second type is defined at the location where the streamwise velocity of
fluid is theoretically zero [9]. The formation mechanisms of these two kinds of singularities
are completely different. The former is caused by local infinite acceleration of fluid, and
finally blowing up takes place. The latter is resulted from the variation of the velocity
profile caused by disturbance in the flow field, which is the singularity of the Navier-Stokes
equation itself at some location. This kind of singularity can only occur in viscous flow
and does not occur in inviscid flow. In contrast, the first type of singularity may occur in
inviscid flows [10]. It has been shown that the first type of singularity may be formed via
reconnection of vortex rings in viscous flows [11,12].

In this study, the behavior of the Navier-Stokes equation in the Poisson equation form
in transitional flow and turbulence is studied by analyzing the evolution of the velocity
profile under finite disturbance, and the singular point of the Poisson equation is explored
in the flow domain. No existence and smoothness of solution of the Navier-Stokes equation
is concluded for transitional flow and turbulence.

Moffatt has restated the well-known Clay millennium prize problem essentially as
this [13]: “can any initially smooth velocity field offinite energy in an incompressible
fluid become singularat finite time under Navier-Stokes evolution?” The answer from the
reasoning in present study is certainly, if the Reynolds number is sufficiently high and the
disturbance is sufficiently large to lead to velocity deficit.

2. Stability and Turbulent Transition of Plane Poiseuille Flow

The three-dimensional laminar flow between two parallel walls is as shown in Figure 1
(plane Poiseuille flow). The width of space between two plates in the spanwise direction
is infinite. The height in wall-normal direction between the two plates is 2h. The wall
is set as the no-slip condition. The incoming flow is a laminar velocity profile. The
downstream boundary is set as the Neumann boundary condition. The exact solution of
the velocity for the laminar flow is a parabolic velocity distribution along the height for
Newtonian fluid [14]. This smooth velocity distribution is placed in the flow field as the
initial condition. Then, we observe the variation of the velocity distribution with time
under finite disturbances, as in simulations and experiments [15–18].

Figure 1. Plane Poiseuille flow between two parallel plates with boundary conditions and initial conditions.
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With the flow development from the interaction of the base flow with the disturbance,
the velocity profile can be modified, depending on the Reynolds number and the distur-
bance, as in simulations and experiments [15–18]. For the incoming laminar velocity profile
(Figure 2a) at a sufficiently high Reynolds number, after the velocity profile is distorted,
inflection point appears first (point A in Figure 2b), and then a section with positive second
derivatives appears on the downstream velocity profile (section A–B in Figure 2c). The ve-
locity profile with positive second derivatives may play an important role in the formation
of singularity. Three features of the streamwise velocity profile are shown in Figure 2.

Figure 2. (a) Velocity profile of laminar flow; (b) an inflection point appears on the velocity profile
indicated by A, and the second derivative of velocity u′′ < 0, except point A; (c) the second inflection
point B is produced after the first inflection point A, and a section of u′′ > 0 appears on the velocity
profile (A–B section). Here, u′′ stands for the second derivative of the velocity to the direction normal
to the wall, ∂2u/∂y2. In the figure, A: inflection point; B: second inflection point; D1: upper part; D2:
lower part; C1: point between A and D1 in (b); C2: point between A and D2 in (b); C: point between
A and B in (c).

Numerical simulations and experimental data show that when the laminar flow is
disturbed, the velocity profile will change, and some positions of the velocity profile will
be distorted. The results of theoretical analysis on plane Poiseuille flow by Dou show that
the basic flow has the maximum ability to amplify the disturbance at y/h = ±0.58, and
the velocity distortion is the largest there [4,5]. Numerical calculations and experiments
have shownthat the place where the maximum disturbance appears and the velocity profile
change first occurs is at y/h = ±0.58 [15], where the velocity profile shows an inflection
point. These results confirmed the analytical results by Dou and co-authors [4–9]. However,
there is little change in the velocity profile at the center line and near the two walls in the
early stage of disturbance amplification in plane Poiseuille flow.

Dou proved with the energy gradient theory that when there is an inflection point
on the velocity profile, discontinuity (negative spike) of streamwise velocity occurs in the
temporal evolution under disturbance [9], which is in agreement with simulations and
experiments. A model for the velocity distribution at the discontinuity was proposed as
shown in Figure 3, which occurs immediately after the inflection point is formed on the
velocity profile.

Leray did pioneering work on the weak solution of the Navier-Stokes equations [3].
Foias et al. summarized that [1]: “Leray speculated that turbulence is due to the formation
of point or ‘line vortices’ on which some component of the velocity becomes infinite.” “Even
today, despite much effort, Leray’s conjecture concerning the appearance of singularities in
3-dimensional turbulent flows has been neither proved nor disproved”.

141



Entropy 2022, 24, 339

As far as we know, the singularity in turbulence conjectured by Leray is never found
in experiments and simulations (the first type of singularity mentioned in the Introduction).
In contrast, the second type of singularity (zero streamwise velocity off the solid wall) is
confirmed by experiments and simulation results [19–22], as described in [9]. The aim
of present study is an alternative approach to achieve the same conclusion as that in our
previous work [9]: that there exist no smooth and physically reasonable solutions of the
Navier-Stokes equation for transitional flow and turbulence in the global domain due to
singularity (for pressure driven flows).

Figure 3. Streamwise velocity distribution under finite disturbance for high Reynolds number flow
(transitional flow), showing the singular point (velocity discontinuity) in the vicinity of the inflection
point A [9].

3. Navier-Stokes Equation in Form of Poisson Equation

3.1. Navier-Stokes Equation: Poisson Equation

The continuity and the unsteady momentum equation (Navier-Stokes equation) for
incompressible fluid can be written as follows [14]:

∇ · u = 0 (1)

ρ(
∂u

∂t
+ u · ∇u) = −∇p + μ∇2u + f (2)

where u is the velocity vector, p is the static pressure, ρ is the fluid density, μ is the dynamic
viscosity, and f is the gravitational force.

For the pressure-driven flow between two parallel plane walls (Figure 1), the wall
boundary condition is no-slip:

u = 0 (3)

Rewriting Equation (2), we have

∇2u =
1
ν
(

∂u

∂t
+ u · ∇u) +

1
μ
∇p − 1

μ
f (4)

where ν = μ/ρ is the kinematic viscosity.
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Equation (4) is a form of Poisson equation and can be written as follows in Carte-
sian coordinates:

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = Fx(x, y, z, t) (5)

∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 = Fy(x, y, z, t)

∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2 = Fz(x, y, z, t)

where

Fx(x, y, z, t) =
1
ν

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
+

1
μ

∂p
∂x

− 1
μ

fx (6)

Fy(x, y, z, t) =
1
ν

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

)
+

1
μ

∂p
∂y

− 1
μ

fy

Fz(x, y, z, t) =
1
ν

(
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
+

1
μ

∂p
∂z

− 1
μ

fz

where u, v, and w are the velocity components in the x, y, and z direction, respectively.

3.2. Reduced Form of Navier-Stokes Equation: Laplace Equation

When the source term in Equation (5) becomes zero in the domain (−h ≤ y ≤ +h),

Fx(x, y, z, t) = 0, Fy(x, y, z, t) = 0, Fz(x, y, z, t) = 0 (7)

The Poisson Equation (5) reduces to the Laplace equation form,

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = 0,

∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 = 0,

∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2 = 0 (8)

The solution of the Laplace equation in Equation (8) for plane Poiseuille flow with the
no-slip boundary condition at the upper and bottom walls is

u(x, y, z) = 0, v(x, y, z) = 0, w(x, y, z) = 0 (9)

This means that the fluid is static.

3.3. Solution of Navier-Stokes Equation for Steady Laminar Flow

For the steady parallel laminar flow in plane Poiseuille flow shown as in Figure 1, the
pressure gradient in the x directionis

∂p/∂x 
= 0 (10)

Then, the source term in Equation (5) is

Fx(x, y, z) 
= 0 (−h ≤ y ≤ +h) (11)

The solution for the Poisson Equation (5) with the no-slip boundary condition is

u(x, y, z) 
= 0 (−h < y < +h) (12)

u(x, y, z) = 0 (y = ±h)
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For pressure-driven flow governed by Equation (5), the non-zero solution of velocity
is that the source term must not be zero in the Poisson equation (Navier-Stokes equation).
However, this conclusion is not true for plane Couette flow (shear driven flow), and a non-
zero solution of velocity does not require a non-zero source term in the Poisson equation
(Navier-Stokes equation).

The solution of Equation (5) with a source term Fx(x, y, z, t) = 0 at any location in the
domain (−h < y < +h) makes no sense for the studied plane Poiseuille problem, and the
position with Fx(x, y, z, t) = 0 would be a singular point of solution for Equation (12).

As is well known, for steady laminar flow at a low Reynolds number, the solution of
Equation (4) or (5) for the parallel flow between two parallel plates (Figure 1) is as follow if
the origin of the coordinates is fixed at the centerline [14]

u(y) = −∂p
∂x

h2

2μ

(
1 − y2

h2

)
(13)

v = 0

w = 0

For this solution at low Reynolds number, there is no singular point in such a laminar
flow, and the flow is smooth and stable.

4. Solution of Navier-Stokes Equation for Transitional and Turbulent Flows

For the laminar flow at a higher Reynolds number in the plane Poiseuille flow con-
figuration, once a disturbance is introduced, the flow becomes time-dependent and three-
dimensional. As such, the streamwise velocity is distorted downstream due to the effect
of nonlinear disturbance interaction (Figure 2b,c). The velocity components in this three-
dimensional flow are v(x, y, z) 
= 0 and w(x, y, z) 
= 0, but u >> v and u >> w. In the
transitional flow and turbulent flow, at the position of turbulence “burst”, the velocity
components v and w may become large, which are the same order of magnitude as the
streamwise component u, but the magnitudes of v and w are still much smaller than the
streamwise velocity u, as found from previous experiments [19].

4.1. Strategy to Solve the Problem

As mentioned before, the existence and smoothness of the Navier-Stokes solution
are still unknown. If we find the singularity in the flow field that makes the solution
nonexistent in transitional flow and turbulence, we can provide counter evidence to the
existence and smoothness of the Navier-Stokes equation.

As discussed for Equation (5), for the steady laminar flow between two parallel
plates, ∇2u(x, y, z) = Fx(x, y, z) with Fx(x, y, z) 
= 0, and the solution within the domain is
u(x, y, z) 
= 0, except at the wall boundaries. There is no singularity in the basic flow here.

In transitional flow, under the nonlinear interaction of disturbance, the velocity profile
is distorted at a high Reynolds number, and the distorted velocity profile may produce
singularity in temporal evolution. For example, at some point (like the inflection point on
velocity profile, which will be shown later) on the velocity profile, the Laplace operator
may instantaneously become zero, ∇2u(x, y, z) = 0, so that Fx(x, y, z) = 0. At this point,
the solution to satisfy the governing equation ∇2u(x, y, z) = 0 and the boundary condition
u = 0 at the wall is u = 0.

As shown in Figure 2b,c, the velocity of the given distorted velocity profile is u 
= 0
except at the wall, while the solution at the inflection point from the governing equation
and the boundary condition is u = 0 in a time-dependent flow. Thus, this point is a singular
point of the Navier-Stokes equation (Equation (5)). Since there exists a singular point in the
flow field, there is no smooth solution of the Navier-Stokes equation.
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When there is such a singular point, the Navier-Stokes equation has no solution at
the singular point. In the transitional flow, we can find such singularity by analyzing the
evolution of the velocity profile.

Under the condition at sufficiently high Re and finite disturbance, two types of velocity
profiles can be produced, at least as shown in Figure 2b,c. After carrying out analysis, we
can always find the point where ∇2u(x, y, z) = 0 on these two types of velocity profiles.
At such a point, Fx(x, y, z, t) = 0, which becomes the singularity of the Poisson equation
(Equation (5)).

4.2. Finding the Singular Point on the Velocity Profile

The velocity profile of the u component under a disturbance expressed by Equation (5)
is shown in Figure 2b,c, while the flow is actually three-dimensional at the transitional
Reynolds number. At the inflection point (A in Figure 2b and A and B in Figure 2c), ∂2u

∂y2 = 0,

but ∂2u
∂x2 + ∂2u

∂z2 may not be zero. However, in the vicinity of the inflection point on the

velocity profile, we can always find the location where ∂2u
∂y2 and ∂2u

∂x2 + ∂2u
∂z2 have identical

magnitude and have opposite signs, since the gradient of flow variables in the y direction
is much larger than those in the x and z directions. Thus, we can have ∇2u(x, y, z) = 0 at
such a location.

In the following, the singular point that makes the equation ∇2u(x, y, z) = 0 estab-
lished in 3D flows is explored.

(a) When the incoming flow is a laminar velocity profile (two-dimensional), u = u(y),
v = 0, w = 0, we have ∂2u

∂y2 < 0, ∂2u
∂x2 = 0, ∂2u

∂z2 = 0, and ∂2u
∂x2 +

∂2u
∂y2 + ∂2u

∂z2 < 0 (Figure 2a).
(b) When the velocity is disturbed by finite disturbance, the middle part of the velocity

profile is disturbed greatly (becoming three-dimensional), and this part first deforms. Here,
it reaches ∂2u

∂y2 = 0 first in the middle part, forming the inflection point A, while the upper
and lower parts of the velocity profile do not change much (Figure 2b). In the following,
we will discuss these as two different cases, respectively.

(c) If ∂2u
∂x2 +

∂2u
∂z2 > 0 at point A (noting ∂2u

∂y2 = 0 at point A), then ∂2u
∂x2 +

∂2u
∂y2 + ∂2u

∂z2 > 0.
Observing Figure 2b, in the top and bottom parts of the velocity profile, D1 and D2

locations, the disturbance is small, and there still exist ∂2u
∂x2 ≈ 0, ∂2u

∂z2 ≈ 0,
∂2u
∂y2 < 0,

∣∣∣ ∂2u
∂y2

∣∣∣>>
∣∣∣ ∂2u

∂x2 +
∂2u
∂z2

∣∣∣; thus, ∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 < 0. Then, it is necessary that there exist

C1 and C2 points between A and D1 and between A and D2, respectively, which makes
∇2u(x, y, z) = 0.

(d) If ∂2u
∂x2 +

∂2u
∂z2 < 0 at point A (noting ∂2u

∂y2 = 0 at point A), then ∂2u
∂x2 +

∂2u
∂y2 + ∂2u

∂z2 < 0.
Observing Figure 2c, the velocity profile develops, reaching the stage of section A–B

where ∂2u
∂y2 > 0 (section A–B), while ∂2u

∂x2 + ∂2u
∂z2 < 0. With the evolution of the velocity

profile, the value of ∂2u
∂y2 at C point increases gradually from zero to positive. When the

magnitude of ∂2u
∂y2 equals that of ∂2u

∂x2 +
∂2u
∂z2 , then we have ∇2u(x, y, z) = 0 at one point in the

A–B section.
Therefore, when an inflection point is formed on the velocity profile, a section with

a positive value of ∂2u
∂y2 will be formed inevitably, with further evolution under a suffi-

ciently large disturbance at a sufficiently high Reynolds number. As long as the positive
value of ∂2u

∂y2 is sufficiently large at this section (A–B) on the velocity profile and is able to

offset the value of ∂2u
∂x2 + ∂2u

∂z2 , there always exists a location within the A–B section with
∇2u(x, y, z) = 0.

4.3. Solution with Variation of Source Term

The following analysis can be made for various magnitudes of the source term in
Equation (5):
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(1) Fx(x, y, z, t) = 0, Equation (5) becomes the Laplace equation, Equation (7), and the
solution is u(x, y, z) = 0, v(x, y, z) = 0, and w(x, y, z) = 0.

(2) Fx(x, y, z, t) is small, i.e., Re is low, the nonlinear disturbance effect is small in
the base laminar flow, and the velocity profile is not distorted downstream. Finally, the
disturbance is damped, and the flow stays laminar.

(3) Fx(x, y, z, t) is large, i.e., Re is high, the nonlinear disturbance effect is larger, and the
velocity profile is distorted downstream, which leads to a transitional flow. The inflection
point or kink appears on the velocity profile in the transitional flow. There is a position in
the vicinity of the inflection point (A) where ∇2u(x, y, z) = 0 is established (Figure 2b,c).
This position becomes the singular point of the Poisson equation (Equation (5)) due to
Fx(x, y, z, t) = 0 at this point. Figure 4 shows the schematic of the solution strategy of the
disturbed flow.

In Figure 4a, the base flow is defined by the Poisson equation (Navier–Stokes),
∇2u(x, y, z) = Fx(x, y, z, t), and the source term is not zero, Fx(x, y, z, t) 
= 0. The solu-
tion of the governing equation with the wall no-slip boundary conditions is u(x, y, z) 
= 0,
except at the walls.

Figure 4. Solution of streamwise velocity showing that there is a singular point for the disturbed
velocity distribution.
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In Figure 4b, after the base flow is disturbed, the velocity profile is distorted locally. The
governing equation is still the Poisson equation (Navier–Stokes), ∇2u(x, y, z) = Fx(x, y, z, t),
and the source term is still not zero, Fx(x, y, z, t) 
= 0. However, there is an exception at
the inflection point A or its neighborhood, ∇2u(x, y, z) = 0 (i.e., Fx(x, y, z, t) = 0), which is
singular in the flow field. Thus, there is no solution for Equation (5) at point A.

In Figure 4c, for flow field controlled by ∇2u(x, y, z) = 0 and the wall no-slip boundary
condition, the solution of flow field is u(x, y, z) = 0. Thus, the value of the streamwise
velocity at point A in Figure 4b should be zero, as discussed for Equations (7)–(9).

Thus, after inflection points are formed in Figure 4b, the velocity at point A in Figure 4b
will theoretically become zero immediately at the next moment in the temporal evolution.
This is shown in Figure 5. Because of the viscosity of fluid, the velocity at point A will
not be absolutely zero, but spikes are produced, as shown in Figure 3. Simultaneously,
fluctuations of the velocity components v and w as well as the pressure p are produced,
which follow the conservation of the total mechanical energy before and after the spike
generation. At the inflection point or its neighborhood, where the spike is produced, the
fluid element is compressed in the streamwise direction, and thus it is stretched in wall-
normal and spanwise directions. Since the mainstream velocity decreases, the pressure
will increase at the said singular location. Therefore, the fluctuation of u is firstly negative,
and those of v, w and p are positive, at the singular point. These variations of fluctuations
of velocity components and pressure are in agreement with the experimental results of
turbulent burst in plane Poiseuille flow [19,23].The feature of positive pressure maximum
associated with the burst of turbulence has also been found in the boundary layer flow on
flat plates [24–26].

Figure 5. Temporal evolution of velocity profile in transitional flow. (a) Velocity profile with inflection
points. (b) Singular points appear theoretically with u = 0 at the locations of zero source term.

Swearingen et al. found through experiments and simulations for wall-bounded flow
that the turbulence production events are preceded by an inflectional velocity profile [27].
In bounded transitional flows, this unstable profile produces velocity fluctuations in the
streamwise direction and in the other two directions. Figure 5 provides a theoretical
interpretation for the generation of fluctuations in wall-bounded transitional flows (pressure
driven flow). The result shown in Figure 5 is in agreement with the experimental and
simulation results in [19–22].

In Figure 4b, since point A is singular, the velocity is not differentiable at this position
(as shown in Figures 3 and 5). Therefore, there is no smooth solution of the Navier-Stokes
equation (Equation (5)) at point A in the transitional flow (Figure 4b).

(4) For fully developed turbulent flow, Fx(x, y, z, t) is large, i.e., Re is very high. The
velocity profile is heavily distorted by the vortex overlap to the streamwise velocity pro-
file [9], and velocity profiles with an inflectional point or kink are formed, which leads to
∇2u(x, y, z) = 0 (i.e., Fx(x, y, z, t) = 0) at these points. As such, there is a lot of singular
points of Equation (5), as expressed in Figure 2b,c. Therefore, there exist no continuous
smooth solutions of Equation (5) for turbulent flow in the global domain.
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Fletcher has discussed the characteristics of the general Poisson equation, where the
source term can be set up as any value [28]. That is, there is no limitation on the value
of the source term, and the zero source term can be defined anywhere in the flow field.
For example, for the thermal conduction problem between two parallel plates, the source
function of the resulting Poisson equation can be taken as any value (including zero value),
and the solution of temperature function has no singularity within the domain.

For plane Poiseuille flow, the governing equation (Navier-Stokes equation) can be
written as a form of Poisson equation, as in Equation (5). According to the Navier-Stokes
equation and the boundary conditions of plane Poiseuille flow, the source term of the
Poisson equation is not arbitrary and it must not be zero. Thus, the zero value of the source
term of Equation (5), if any, is not defined in the domain. At any position in the flow
field, as long as the source term is zero, it constitutes the singularity of the Navier-Stokes
equation, which makes the equation have no solution.

5. Significance of the Singularity in Turbulence

In the transition of laminar flow to turbulence, the singularity at the inflection point (or
its neighborhood) results in a “burst”, as observed by previous experiments [9]. The burst
is the origin of turbulence generation and production of turbulent stresses. In other words,
the flow relieves this singularity by a “burst” at the inflection point, and the singularity is
converted into turbulent fluctuations at the said position.

In present study, singularity on the velocity profile in finite time for the incompressible
Navier-Stokes equations is both mathematical and physical. In mathematics, this singularity
of the Navier-Stokes equation occurs at (or near) the inflection point, which makes the
equation not differentiable at this position. In physics, this singularity leads to a “burst” as
well as fluctuations of streamwise velocity and other velocity components, i.e., turbulence
if the Reynolds number is sufficiently high. The mechanical energy of the mainstream
flow is transmitted to turbulent fluctuations via this singularity. The singularity is also the
reason why turbulence cannot be repeated exactly.

In physical fluid flows in the laboratory, the flow is three-dimensional under finite
disturbance, rather than two-dimensional. Further, two-dimensional disturbance isn’t able
to induce this type of singularity, since the fluid element is subjected to both shear and
extension at the singularity. In other words, there is also stretch of spanwise vorticity at the
singular point.

As discussed before, at the singular point (inflection point), the streamwise velocity
is theoretically zero. In order to conserve the total mechanical energy, the pressure at this
point reaches its maximum. In the near upstream of the singular point, the disturbance
is already three-dimensional (even though the amplitude is small). At the singular point,
the disturbance is largest, with that singularity leading to “explosive burst” where the
amplitudes of fluctuations of both velocity and pressure are largest. The pressure maximum
at the singular point produces a pressure wave that spreads as its elliptical property.

Finally, it is pointed out that since the studied singularity of the Navier-Stokes equation
is caused by a vanishing viscous term in the Navier-Stokes equation at the inflection point of
the velocity profile in the flow domain (Laplace operator is zero), such singularity is never
produced in inviscid flows governed by the Euler equation. This implies that turbulence,
the properties of which are dissipative, with temporal bursting, with increasing resistance,
and with self-sustained fluctuations, could not be generated in inviscid flows.

6. Conclusions

Solutions of the Navier-Stokes equation with the Poisson equation form are studied
by analyzing the variation of the velocity profile versus the Re number and the disturbance.
For the steady laminar flow between two parallel plates, the Poisson equation dominates
the flow with the source term of no vanishing. For the laminar flow at a sufficiently high
Reynolds number and under certain finite disturbance, the velocity profile is distorted
downstream and an inflection point appears (or kink appearance). With the evolution
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of the velocity profile under finite disturbance, in the vicinity of the inflection point, it is
found that there is always a position with ∇2u(x, y, z) = 0 (i.e., Fx(x, y, z, t) = 0). This point
is singular in the global domain for the Poisson equation (Navier-Stokes equation). At this
kind of singular point, the flow variables are not differentiable. Therefore, there exist no
smooth and physically reasonable solutions of the Navier-Stokes equation in transitional
and turbulent flows.

It should be pointed out that the reasoning presented in this study is only for pressure-
driven flows. For shear driven flow, the same conclusion on existence and smoothness of
the solution of the Navier-Stokes equation can be obtained with the boundary conditions
changed, but the work done by shear stress should be taken into account (this work will
be published in separate paper). For shear-driven flows, the mechanisms of instability
occurrence and turbulent transition have been studied, respectively, for plane Couette flow
and Taylor-Couette flow in [7,8], where external work has been included.

The above conclusion confirmed the analysis results with the energy gradient theory
in [9], which show occurrences of streamwise velocity suddenly stop and velocity discon-
tinuity due to zero mechanical energy drop along the streamline. It was shown that the
discontinuity of streamwise velocity forms the singularity of the Navier-Stokes equation.

Therefore, both approaches using energy gradient theory and Poisson equation anal-
ysis are consistent and show that there is a singular point in the vicinity of the inflection
point on the velocity profile where the streamwise velocity is theoretically zero. Neither
existence nor smoothness of the solution of the Navier-Stokes equation is demonstrated for
transitional and turbulent flows.
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Abstract: The Reynolds averaged N-S equation and dynamic equation for nanoparticles are numer-
ically solved in the two-phase flow around cylinders, and the distributions of the concentration
M0 and geometric mean diameter dg of particles are given. Some of the results are validated by
comparing with previous results. The effects of particle coagulation and breakage and the initial
particle concentration m00 and size d0 on the particle distribution are analyzed. The results show that
for the flow around a single cylinder, M0 is reduced along the flow direction. Placing a cylinder in
a uniform flow will promote particle breakage. For the flow around multiple cylinders, the values
of M0 behind the cylinders oscillate along the spanwise direction, and the wake region in the flow
direction is shorter than that for the flow around a single cylinder. For the initial monodisperse
particles, the values of dg increase along the flow direction and the effect of particle coagulation is
larger than that of particle breakage. The values of dg fluctuate along the spanwise direction; the
closer to the cylinders, the more frequent the fluctuations of dg values. For the initial polydisperse
particles with d0 = 98 nm and geometric standard deviation σ = 1.65, the variations of dg values
along the flow and spanwise directions show the same trend as for the initial monodisperse particles,
although the differences are that the values of dg are almost the same for the cases with and without
considering particle breakage, while the distribution of dg along the spanwise direction is flatter in
the case with initial polydisperse particles.

Keywords: nanoparticle two-phase flow; particle coagulation and breakage; flow around circular
cylinders; particle distribution

1. Introduction

The particle-laden flow around cylinders has attracted the attention of many scholars
because of its extensive industrial applications. The particle dispersion and distribution in
the wake behind cylinders have been extensively studied in experimental and numerical
simulations during the past decade. Zhou et al. [1] showed that the particle distribution
was dependent on the Stokes number (St). The particles dispersed into the core regions
of the vortex at small St values concentrated on the boundary of vortex at intermediate St
values and assembled in the outer region of the vortex at large St values. Haddadi et al. [2]
found that the hydrodynamic interaction between particles led to the exchange of particles
between the wake area and the free stream. Jafari et al. [3] indicated that particle motion in
the wake was strongly affected by vortex shedding, while the particle Brownian diffusion
influenced the deposition rate of particles. Haddadi et al. [4] studied the suspension
around the cylinder with a particle fraction of about 0.08 in the microchannel and found
that particles could escape the wake area due to velocity fluctuations by increasing the
particle number in the wake. There was also particle exchange between the wake area
and the free stream. Huang et al. [5] indicated that the particle collection efficiency was
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positively related to the particle formation fraction, while the thermophoresis enhanced
the impaction efficiency of particles by 1–2 orders. Jeong and Kim [6] indicated that the
thermophorectic effect on the particles was obvious at small St values, while the deposition
efficiency of particles was increased by increasing the temperature difference between the
flow and the cylinder or by decreasing the ratio of thermal conductivity of the particle to
the fluid. The particles with small St values follow the fluid in the upstream surface of
the cylinder without collision, but move backward in the downstream direction. Gopan
et al. [7] developed correlations for particle temperatures and impaction rates based on the
flow and boundary conditions, as well as particle properties.

However, most of the above studies involved large particles, without considering
the coagulation and breakage of particle clusters after coagulation. In practical applica-
tions, particle coagulation and breakage often occur, which affects the distribution of the
particle concentration and sizein the wake behind cylinders. In addition, particle disper-
sion is dominant when the particle density is low, while it is necessary to consider the
coagulation caused by particle collision when the particle density is high. Keita et al. [8]
numerically studied the nanoparticle dispersion at Re = 9300. They found that the Brownian
diffusion tended to concentrate the particles at the edges of the vortices, while the turbu-
lence dispersed particles from the periphery to the core of the vortices. Tu and Zhang [9]
experimentally studied the condensation of submicron- and nanoscale particles within
Re = 5200–35,000. They found that the particle diameter downstream of the cylinder was
larger than that upstream, and the total particle concentration and geometric mean diam-
eter in the free stream werelarger and less than in the wake, respectively. Multi-cylinder
alignment could be used to enhance particle coagulation. Liu et al. [10] numerically and ex-
perimentally studied the structural properties of the vortex generators affecting the particle
coagulation. They showed that the optimal efficiency of the particle coagulation was about
16.42% for particles with sizes ranging from 15.7 to 850.0 nm at aflow velocity of 4.8 m/s.
Particle collision and coagulation mainly occurred in the windward boundary layer of the
vortex generator and at the longitudinal edges of the vortices. Kolsiet al. [11] numerically
studied the effects of using double rotating cylinders and partly porous layers in the bifur-
cating channels on the hydrothermal performance and indicated that the proposed methods
of heat transfer enhancement could be considered simultaneously for effective control of
the thermal performance of those systems. Alsaberyet al. [12] investigated transient entropy
generation and mixed convection due to a rotating hot inner cylinder within a square cavity
with a flexible side wall and achieved the highest average heat transfer and global entropy
generation rates for counter-clockwise rotation of the circular cylinder and lower values in
terms of flexible wall deformation.

From the above, it can be seen that there are few studies on particle distribution while
simultaneously considering the effects of particle coagulation and breakage, and research
results for the two-phase flow of nanoparticles around multiple cylinders are also rare. In
this work, a numerical simulation is carried out to study the distribution of the particle
concentration and particle size in the two-phase flow of nanoparticles around a single
cylinder and multiple cylinders. The flow of fluid around cylinders is selected because
this kind of flow is the most common in practical applications. Meanwhile, the effects of
particle coagulation and breakage, initial particle concentration, and size on the particle
distribution are discussed.

2. Governing Equations

For the nanoparticle-laden flow around cylinders, as shown in Figure 1 the distance
between two walls in the z direction is long enough and there is no velocity in the z direction,
meaning that the change of the flow along the z direction can be ignored. Therefore, the
three-dimensional flow can be reduced to flow the in x-y plane. The distribution of the
particle concentration and size in the wake behind cylinders is closely related to the flow
characteristics. In Figure 1a, the cylinder diameter is D = 50 mm and the geometric center
of the cylinder is used as the coordinate origin. Coordinates x, y, and z represent the flow,
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vertical direction, and span direction, respectively. In Figure 1b, the cylinder diameter is
D = 10 mm; the flow direction positions of the four columns of cylinders are x= 0.05, 0.09,
0.13, and 0.17 m, respectively; and the spanwise positions of the five rows of cylinders are
y = ±0.02, 0, and ±0.04 m, respectively. The Reynolds number of the flow is defined as
Re = UD/ν.

Figure 1. Nanoparticle-laden flows: (a) flow around a cylinder; (b) flow around 20 cylinders.

2.1. Fluid Flow

For the incompressible flow, the continuity and the Reynolds averaged N-S equations
are:
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where ui is the mean velocity, ρ is the density, p is the pressure, μ is the fluid viscosity, and
ui
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′ is the Reynolds stress, which is modeled by:
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in which νt = Cμk2/ε, where Cμ is a function of the average strain rate, and k and ε are the
turbulent kinetic energy and dissipation rate, respectively. The standard k-ε turbulence
model is selected here because it is suitable for flow with Reynolds numbers in the range of
300 < Re < 3 × 105 and is not directly affected by the wall. The transport equations of k and
ε are:

∂k
∂t

+ uj
∂k
∂xj

=
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
− ρ f ui

′uj
′ ∂ui
∂xj

− ε (4)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
+

ε

k
νtCε1

(
−ρ f ui

′uj
′ ∂ui
∂xj

)
− ρ f Cε2

ε2

k
(5)

where Cμ = 0.09, Cε1 =1.44, Cε2 =192, σk = 1.0, and σε = 1.3.

2.2. General Dynamic Equation for Nanoparticles

The instantaneous general dynamic equation for nanoparticles considering the con-
vection, diffusion, and particle coagulation and breakage is [13,14]:
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[
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(6)

where n is the spatial distribution of the number of particles with volume v at time t, and DT
is the turbulent diffusion coefficient, which is approximated by the turbulent viscosity of the
fluid [15]. The first two terms on the right hand side of Equation (6) are the generation and
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disappearance of particles with volume v caused by coagulation, while β(v1,v) is the kernel
function of coagulation of the two particles with volume v and volume v1 and consists
of two parts, i.e., β = βB + βT, where βB is the coagulation kernel caused by Brownian
motion [16]:
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where K is the Boltzmann constant, T is the temperature, and λ is the average free path of
gas molecules. Here, βT is the coagulation kernel caused by turbulent shear [17]:
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The last two terms on the right hand side of Equation (6) are the generation and
disappearance of particles caused by breakage. The volume-based breakage kernel function
a(v) represents the breakage frequency of particles with volume v. Particle breakage is
related to the particle size, velocity gradient, and particle concentration. The exponential
breakage kernel function obtained by fitting the experimental data by Spicer [18] is:

a(v) = A(
ε

ν
)

0.8
v1/3 (9)

where A is 0.47 m−1s−0.6. In Equation (6), the particle breakage distribution b(v|v1) gives
the relationship between the parent particles and separated sub-particles. Large particle
breakage is not a simple process. The floc is assumed to be composed of small particles
of the same size, meaning the distribution function of large, symmetrical broken particles
composed of monomers is [19]:

b(v|v1) =

{
2 v1 = 2v
0 else

(10)

2.3. Moment Equation of Particle Density

In order to obtain the number density distribution of particles more effectively, the gen-
eral dynamic equation for nanoparticles is usually transformed into the moment equation
of the particle density.

The k-th moment of the particle density is defined as:

mk =

∞∫
0

n(v, t)vkdv (11)

Based on Equation (11), Equation (6) can be transformed into a moment equation by
multiplying the terms of Equation (6) by vk and then integrating this over the entire volume
distribution:
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Substituting Equations (7)–(11) into Equation (12), it can be found that different
fractional moments in the equation are difficult to solve. Therefore, the Taylor series
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expansion technique [20] is used to transform the fractional moment into the moments
represented by the first three moments (i.e., 0, 1, 2):
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The zero-order moment m0 represents the total number of particles of all sizes in the
unit volume at a given position and time, which is also called the particle concentration.
The first-order moment m1 represents the volumes of all particles in the unit volume at a
given position and time, which is also called the volume concentration. The second-order
moment m2 is related to the dispersion of particles. In the simulation, the dimensionless
quantity is defined as Mn = mn/mnn(n = 0, 1, 2), where mnn is the initial value of mn. The
geometric mean diameter dg of particles is defined as:

dg = (
m2

1√
m3

0m2

)

1/3

(16)

3. Numerical Simulation

All simulations are based on the finite volume method and are carried out using the
OpenFOAM platform. OpenFOAM is an open source CFD software and has an extensive
range of features to solve anything from complex fluid flows involving turbulence and heat
transfer, to solid mechanics and electromagnetic simulations. The equations of fluid flow
are solved numerically with the basic solver pisoFoam in the platform. The piso algorithm
takes an iterative approach to deal with the coupled pressure–velocity. The discrete and
solution modes of the specific equation terms are also given. Gaussian linear interpolation
scheme is employed to discretize divergence terms, gradient terms, and Laplace terms of
the equations (interpolated from the body center of the grid unit to the surface center).
The equations for nanoparticles are solved numerically with the self- made solver. The
one-way coupling method is used, i.e., where the effect of particles on the flow is ignored.
The particles are obtained from lit permethrin-based mosquito coils. The particles have a
density of 730 kg/m3 and a diameter of 98 nm, which are the typical density and diameter
of nanoparticles.

3.1. Main Steps

The calculation domain is shown in Figure 1, where the boundary conditions are
as follows. The inlet velocity is evenly distributed and equal to 2.664 m/s, the pressure
boundary condition is adopted at the outlet, and the no slip boundary condition is adopted
on the wall. In the simulation, the range of Reynolds numbers is 300 < Re < 3 × 105. In this
Reynolds number range, the boundary layer on the cylinder surface is laminar but the flow
behind the cylinder is turbulent. In addition, the flow around a cylinder with this range
of Reynolds number is very common. In the simulation, the grid around a single cylinder
is shown in Table 1, where 2D and 3D represent two and three dimension, respectively.
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Since all boundaries are far enough from the wake region, the effects of the existence of
boundaries (i.e., size of the domain) on the solution accuracy can be ignored.

Table 1. Mesh characteristics.

Case Flow Grid Number

A 2D 28,800
B 2D 46,000
C 3D 668,000

In the simulation, the time step ΔT is 1.5 × 10−4 s and the courant number is less than
1 for achieving numerical stability and accuracy. The tolerance set by the solver was 10−5.
The mean velocity and pressure are calculated by adding the field average functions to the
control file.

3.2. Grid Independence Test and Validation

The velocity distribution of the flow around a cylinder is shown in Figure 2, where a
stagnation point is formed at the front end of the cylinder. The region close to the tail of the
cylinder is the wake region, where the velocity is very small. Downstream of cylinder, two
alternating vortices obviously appear. In order to validate the numerical method and code,
the present numerical result for the time-averaged streamline in 3D flow is compared with
the experimental ones [9], as shown in Figure 3, where both results are in good agreement.

Figure 2. Velocity distribution of flow around a cylinder.

Figure 3. Distribution of time-averaged streamlines: (a) present result; (b) experimental result [9].

An important parameter to describe the flow around a cylinder is the reflux length
lr, which is defined as shown in Figure 3a. The present numerical result for the reflux
length lr is further compared with other numerical results. For the present result in 3D flow,
lr = 0.08 − 0.025 m = 0.55 m and the particle diameter D = 0.5 m, so lr = 1.1D (Re = 9000),
as shown in Figure 4. Keita et al. [8] also numerically simulated the flow around a 2D
cylinder at Re = 9300 and gave a reflux length lr = 0.9D. The main reason for the slight
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deviation in the value of the reflux length is the difference between the Reynolds number
and calculation dimension. Figure 4 shows a comparison of the streamwise velocity at the
centerline along the x direction, where it can be seen that the present numerical results are
in good agreement with the experimental results [21].

Figure 4. Comparison of streamwise velocity at the centerline.

A grid independence test is performed by changing the grid number, as shown
in Figure 5, where mesh A and mesh B correspond to 28,800 and 46,000 grid numbers,
respectively, as shown in Table 1. The results are almost the same for both grid numbers, so
mesh A is selected in the simulation.

Figure 5. Streamwise velocity at the centerline along the x direction.

4. Results and Discussion

4.1. The Flow around a Single Cylinder
4.1.1. Particle Coagulation and Distribution of Particle Concentration

In a fully developed turbulent wake flow, the particle coagulation mainly results from
the Brownian motion and turbulent shear in the free molecular region. The coagulated
particles may break up under the action of turbulent shear. The characteristic times for
flow convection, particle coagulation, and particle breakage are different. Previous research
results have shown that particle coagulation occurs when the ratio of the characteristic time
of flow convection to that of particle coagulation is less than 0.1 [22–24]. Figure 6 shows
the distributions of particle concentration M0 (=m0/m00) with different initial particle
concentrations m00. It can be seen that the values of M0 upstream of the cylinder are
uniformly distributed along the spanwise direction and gradually reduced along the
flow direction, which indicates that coagulation has occurred in the process of particle
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transportation downstream. The values of M0 are large (as shown in Figure 6a) and small
(as shown in Figure 6b) in the wake region close to the tail of the cylinder, indicating that
it is easy for the particles with an initial m00 = 3.6 × 1011/m3(i.e., relatively low initial
particle concentration) to enter the wake area behind the cylinder, although the opposite is
true for the particles with an initial m00 = 3.6 × 1015/m3. The variation ranges of M0 are
0.9997~1.0002, as shown in Figure 6a, and 0.23~1.0, as shown in Figure 6b, showing that
it is easier for the particles to coagulate when m00 is high, resulting in a wide distribution
range of M0. An oscillating wake is formed behind the cylinder and the values of M0 in
the oscillating wake are obviously larger (as shown in Figure 6a) and smaller (as shown
in Figure 6b) than that around the wake. At the position close to the outlet, the values
of M0 return to the uniform distribution along the spanwise direction. Three conclusions
can be drawn from Figure 6: (1) there is an obvious coagulation phenomenon of particles
forthe parameters of m00, d0, and Re given in the paper, and the larger the value of m00, the
larger the differences in values of M0 in different regions of the flow; (2) the existence of
the cylinder has a great influence on the distribution of the particles; (3) m00 will affect the
number of particles in the cylindrical wake.

Figure 6. Distribution of M0 values (d0 = 98 nm, Re = 9000): (a) m00 = 3.6 × 1011/m3; (b) m00 =
3.6 × 1015/m3.

4.1.2. Function of Particle Breakage

The coagulated particles may break up under the action of turbulent shear. However,
whether the coagulated particles are broken depends on the size of coagulated particles
and the shear rate of the flow. The variations in particle concentration M0 (=m0/m00) at
the centerline along the flow direction are shown in Figure 7. In the flow upstream of
the cylinder (x < 0), the values of M0 are decreased along the flow direction due to the
occurrence of particle coagulation, and there is almost no difference in M0 between the
cases with and without considering particle breakage because the particles do not have
enough time to break up after coagulation and the shear rate of the flow is very small.
The discontinuous part of M0 is located at the position of the cylinder (x = 0). In the flow
downstream of the cylinder, the values of M0 for the case considering particle breakage
are obviously larger than that for the case without considering particle breakage because
the shear rate of the flow downstream of the cylinder is large. A large shear rate is more
likely to lead to particle breakage and an increase in M0. The fluctuation curve shows that
the values of M0 are affected by the wake flow. Therefore, putting an obstacle in a uniform
flow will promote particle breakage under a certain particle concentration.
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Figure 7. Variations in M0 at the centerline along the flow direction (Re = 9000, d0 = 98 nm,
m00 = 3.6 × 1011/m3).

4.1.3. Distribution of Particles along the Spanwise Direction

Figure 8 shows the distribution of M0 along the spanwise direction in the flow down-
stream of the cylinder for two different m00. In Figure 8a, the values of M0 for both cases
with and without considering particle breakage decrease along the flow direction, showing
that the particle coagulation effect is larger than the breakage effect. The values of M0 along
the spanwise direction, except for the wake regions behind the cylinder and the near wall
region, are uniformly distributed and the same for the cases with and without considering
particle breakage because the shear rate of the flow is very small in this region.

Figure 8. Distribution of M0: (a) m00 = 3.6 × 1011/m3; (b) m00 = 3.6 × 1015/m3 (considering particle
breakage).

In the wake region behind the cylinder, the values of M0 for the case considering
particle breakage are obviously larger than that for the case without considering particle
breakage becausethe shear rate in this regionis large. As the flow develops downstream,
the values of M0 for both cases with and without considering particle breakage tend to be
uniformly distributed along the spanwise direction. Figure 8b shows the distribution of
M0 when considering particle breakage in the case of higher m00. It can be seen that the
distribution of M0 is qualitatively consistent with that in Figure 8a, but the magnitude of
M0 is far less than that in Figure 8a. The reason is that the higher m00 increases the chance
of particle coagulation, so the value of M0 (=m0/m00) is far less than m00.
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4.2. The Flow around Multiple Cylinders
4.2.1. Particle Coagulation and Distribution of Particles

For the flow around multiple cylinders, the distribution of M0 is shown in Figure 9. It
can be seen that the values of M0 upstream of the cylinders are uniformly distributed along
the spanwise direction and gradually reduced along the flow direction because of particle
coagulation. The values of M0 behind the cylinders oscillate laterally under the influence
of the flow structure in the wake of each cylinder. Compared with the flow around a single
cylinder, as shown in Figure 5, the wake region of the flow around multiple cylinders is
shorter along the flow direction due to the mutual interference of wakes behind multiple
cylinders. The distribution of M0 along the spanwise direction becomes uniform as the
influence of the wake disappears, and turns to a parabolic distribution due to the increase
in wall influence at the position close to the outlet.

Figure 9. Distribution of M0 in the flow around multiple cylinders (d0 = 98 nm, m00 = 3.6 × 1014/m3,
Re = 9000).

4.2.2. Distribution of the Geometric Mean Diameter of Particles with the Initial
Monodispersity

Figure 10 shows the distribution of the geometric mean diameters dg of particles along
the flow and spanwise directions for initial monodisperse particles. The values of dg are
given along the centerline of the flow in Figure 10a, where there are four jumps and discon-
tinuities in the values of dg at the positions of the four columns of cylinders. The values
of dg increase along the flow direction because of the occurrence of particle coagulation
in the process of particle transportation downstream, showing that the characteristic time
of the flow convection is longer than the characteristic time of the particle coagulation
and that the particles have enough time to coagulate, while at the same time showing that
the effect of particle coagulation is larger than that of particle breakage. The values of dg
are larger for the case without considering particle breakage than that when considering
particle breakage, which is reasonable because the number of small particles increases when
considering particle breakage. Figure 10b shows the distribution of dg along the spanwise
direction at different positions of x. The values of dg increase along the flow direction and
fluctuate along the spanwise direction. The closer to the cylinders, the more frequent the
fluctuations of dg due to the influence of the wake. In the far downstream area (x = 0.90),
the distribution of dg along the spanwise direction shows a single arc due to the influence
of the boundary. The values of dg are small in the middle and large on both sides at x = 0.50
and x = 0.90, which is the reason that the breakage of coagulated particles is larger in the
middle area with high M0.
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Figure 10. Distribution of dg for initial monodisperse particles (d0 = 98 nm, m00 = 3.6×1014/m3,
Re = 9000): (a) along the flow direction; (b) along the spanwise direction (considering particle
breakage).

4.2.3. Distribution of Geometric Mean Diameter of Particles with Initial Polydispersity

Figure 11 shows the distribution of the geometric mean diameter dg of particles along
the flow and spanwise directions for initial polydisperse particles with d0 = 98 nm and
geometric standard deviation σ = 1.65. In Figure 11a, the variations of dg along the flow
direction show the same trend as in Figure 10a, although the difference is that the values
of dg are almost the same for the cases with and without considering particle breakage
for the initial polydisperse particles. This is because the particle breakage distribution
b(v|v1) included in Equation (6) is only for the parent particles composed of separated
sub-particles, with the same size as that shown in Equation (10). The particle breakage is
insignificant for the polydisperse particles of different sizes. In Figure 11b, the distribution
of dg along the spanwise direction at different positions of x is similar to that shown in
Figure 10b; the difference is that the distribution of dg along the spanwise direction is flatter
in Figure 11b than in Figure 10b.

Figure 11. Distribution of dg for initial polydisperse particles (d0 = 98 nm, m00 = 3.6 × 1014/m3,
Re = 9000): (a) along theflow direction; (b) along the spanwise direction (considering particle
breakage).
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5. Conclusions

In this paper, the Reynolds averaged N-S equation and general dynamic equation for
nanoparticles are numerically solved in the two-phase flow around a single cylinder and
multiple cylinders. The distributions of M0 and dg values of particles with different m00
and d0 values are given. Some of the results are validated by comparing them with the
experimental and numerical results. The effects of particle coagulation and breakage, m00
and d0, on the particle distribution are discussed. The main conclusions are summarized
as follows:

(1) For the flow around a single cylinder, there is an obvious particle coagulation phe-
nomenon. The existence of a single cylinder has a great influence on the distribution
of particles. The number of particles in the wake is dependent on the value of m00.
In the flow upstream of the cylinder, there is almost no difference in M0 between
the cases with and without considering particle breakage. Putting a cylinder in a
uniform flow will promote particle breakage. As the flow develops downstream, the
values of M0 for both cases with and without considering particle breakage tend to be
uniformly distributed along the spanwise direction;

(2) For the flow around multiple cylinders, the values of M0 are reduced along the flow
direction upstream of the cylinders and oscillate laterally behind the cylinders under
the influence of the flow structure. For the initial monodisperse particles, the effect of
particle coagulation is larger than that of particle breakage. For the initial polydisperse
particles with d0 = 98 nm and geometric standard deviation σ = 1.65, the variations in
dg show the same trend as for the initial monodisperse particles, but the differences are
that the values of dg are almost the same for the cases with and without considering
particle breakage;

(3) In future work, it will be necessary to further study the numerical simulation of
three-dimensional flow and to explore the particle breakage model in the case of
polydisperse particles.
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