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Editorial

Preface to the Special Issue “Mathematical Modeling with
Differential Equations in Physics, Chemistry, Biology,
and Economics”

Arsen Palestini

MEMOTEF, Faculty of Economics, Sapienza University of Rome, 00185 Rome, Italy; arsen.palestini@uniroma1.it;
Tel.: +39-331-256-0711

First of all, I would like to express my warmest thanks to all the scholars who partici-
pated by submitting their papers to this Special Issue. As the Guest Editor of this volume,
I was delighted to see that the articles that have been proposed over these months are
all valuable, interesting and original. My acknowledgements also go to all the review-
ers for their commitment, which was extremely helpful to improve the quality of the
scientific contributions.

The staff of Mathematics (to whom I am very grateful) and I chose to avoid excessive
constraints when we conceived this Special Issue in order to keep the number of the
possible contributors as high as possible; anyone with brilliant results involving differential
equations was welcome. In line with this inclusive approach, we received manuscripts
from many disciplines with various lines of research.

I am hopeful that all readers of the papers included in this Special Issue will find them
interesting, novel and, above all, inspirational.

The contents of the volume are outlined in this brief introduction, after which I will let
you enjoy the papers.

To begin with, we accepted two articles on Runge–Kutta pairs: In Kovalgonov et al. [1],
a new Runge–Kutta pair of orders (5, 4) is constructed to address problems with periodic
solutions and, in particular, the performance of the related method is excellent on a couple
of oscillators. On the other hand, Shen et al. [2] consider a family of explicit Runge–Kutta
pairs of orders (6, 5) to establish a method which performs efficiently on a wide range
of orbital problems, such as perturbed Kepler with various disturbances and Arenstorf
and Pleiades.

An old but relevant problem is tackled by Ritelli [3], who addressed the issue of a two
parameter family of differential equations which was originally treated by Italian mathe-
matician Jacopo Riccati in the 18th century. The closed form integration of a differential
equation, more general to the one treated in Riccati’s contribution, is obtained, through the
use of Lie Symmetries.

A very peculiar application is provided by economists Solferino and Tessitore [4], who
derived a theoretical model to shed light on the dynamics leading to toxic relationships, to
outline the conditions for the best policy to heal from a toxic relationship.

A dynamic financial model is proposed by Fabretti [5], who investigates the behaviour
of a stock price in a given scenario, providing some insights on equilibrium and chaos.

Boykov et al. [6] carry out a study of the stability of solutions to systems of differential
equations with discontinuous right-hand sides, providing some applications to Hopfield
Artificial Neural Networks.

In our Special Issue, there is also an SEIR epidemiological model by Husniah et al. [7],
where the use of convalescent plasma is supposed to reduce the diffusion of a disease such
as COVID-19.

Some valuable mathematical results are obtained by Ryoo and Kang [8], whose analysis
focuses on q-Hermite polynomials arising from certain differential equations.

Mathematics 2022, 10, 1633. https://doi.org/10.3390/math10101633 https://www.mdpi.com/journal/mathematics1
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Rahman et al. [9] propose an inventory model for mixing liquid considering preserva-
tion facility, which is solved numerically.

Finally, De Marchis et al. [10] investigate accidental degeneracy of a linear, second-
order elliptic, Schrödinger-type differential operator.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Hermite polynomials are one of the Apell polynomials and various results were found by
the researchers. Using Hermit polynomials combined with q-numbers, we derive different types
of differential equations and study these equations. From these equations, we investigate some
identities and properties of q-Hermite polynomials. We also find the position of the roots of these
polynomials under certain conditions and their stacked structures. Furthermore, we locate the roots
of various forms of q-Hermite polynomials according to the conditions of q-numbers, and look for
values which have approximate roots that are real numbers.

Keywords: q-Hermite polynomials; zeros of q-Hermite polynomials; differential equation

1. Introduction

There is a special case in the Sturm–Liouville boundary value problem the called
Hermite differential equation that arises when dealing with harmonic oscillator in quantum
mechanics. The ordinary Hermite differential equation is defined as

d2y
dx2 − 2x

dy
dx

+ (ρ − 1)y = 0, (1)

where ρ is a constant. When ρ = 2n + 1, n = 0, 1, 2, . . . , then one of the solutions of
Equation (1) becomes a polynomial. These polynomial solutions are known as Hermite
polynomials Hn(x), which are defined by means of the generating function

e(2x−t)t =
∞

∑
n=0

Hn(x)
tn

n!
, |t| < ∞. (2)

The numbers Hn := Hn(0) are the Hermite numbers. Hermite polynomials, first
defined by Laplace, are one of the classic orthogonal polynomials and many studies
have been conducted by mathematicians. These Hermite polynomials also have many
mathematical applications, such as quantum mechanics, physics, and probability theory;
see [1–6].

We define the q-numbers also referred by Jackson as follows; see [7–9]

[x]q =
1 − qx

1 − q
, 0 < q < 1, (3)

Note that limq→1[x]q = x. In [8], we recall that the q-Hermite polynomials Hn,q(x)
defined by

∞

∑
n=0

Hn,q(x)
tn

n!
= e2[x]qt−t2

= G(t, [x]q), (4)

where 0 < q < 1. In the definition of q-Hermite polynomials, we can observe that if q → 1 ,
then Hn,q(x) → Hn(x).

Mathematics 2021, 9, 1168. https://doi.org/10.3390/math9111168 https://www.mdpi.com/journal/mathematics3
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In [10], authors defined the two-variable partially degenerate Hermite polynomials
Hn(x, y, λ) as

∞

∑
n=0

Hn(x, y, λ)
tn

n!
= (1 + λt)

x
λ eyt2

, λ �= 0, (5)

and we can see some useful properties of these polynomials. Representatively, we can
confirm the following theorems in [10].

(i) amHm(bx, b2y,
λ

a
) = bmHm(ax, a2y,

λ

b
)

(ii) Hn(x1 + x2, y, λ) =
n

∑
l=0

(
n
l

)
(x2|λ)Hn−l(x1, y, λ).

(6)

The differential equations derived from the generating functions of special numbers
and polynomials have been studied by many mathematicians; see [11–21].

Based on the results to date, in the present work, we can investigate the differential
equations generated from the generating function of q-Hermite polynomials Hn,q(x). The
rest of the paper is organized as follows. In Section 2, we obtain the basic properties of
the q-Hermite polynomials. In Section 3, we construct the differential equations generated
from the definition of q-Hermite polynomials:(

∂

∂t

)N
G(t, [x]q)− a0(N, [x]q)G(t, [x]q)− · · · − aN(N, [x]q)tNG(t, [x]q) = 0. (7)

We also consider explicit identities for Hn,q(x) using the coefficients of this differential
equation. In Section 4, we find the zeros of the q-Hermite polynomials using numerical
methods and observe the scattering phenomenon of the zeros of these polynomials. Finally,
in Section 5, conclusions and discussions on this work are provided.

2. Basic Properties for the q-Hermite Polynomials

To derive various properties of Hn,q(x), the generating function (4) is an useful func-
tion. The following basic properties of polynomials Hn,q(x) are derived from (4). Hence,
we choose to omit the details involved.

Theorem 1. Let n be any positive integer. Then, we have

(1) Hn,q(x) =
n

∑
k=0

(
n
k

)
2n−k[x]n−k

q Hk.

(2) Hn,q(x) = n!
[ n

2 ]

∑
k=0

(−1)k2n−2k[x]n−2k
q

k!(n − 2k)!
.

(3) Hn,q(x1 + x2) =
n

∑
k=0

(
n
k

)
Hk,q(x1)2n−kqx1(n−k)[x2]

n−k
q ,

(8)

where [x] is the greatest integer not exceeding x.

Theorem 2. The q-Hermite polynomials are the solutions of equation((
d

d[x]q

)2
− 2[x]q

(
d

d[x]q

)
+ 2n

)
Hn,q(x) = 0,

Hn,q(0) =

⎧⎨⎩(−1)k (2k)!
k!

, if n = 2k,

0, otherwise

(9)

4
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Proof. From Equation (4), we can note that

G(t, [x]q) = e2[x]qt−t2
(10)

which is satisfied as
∂G(t, [x]q)

∂t
−

(
2[x]q − 2t

)
G(t, [x]q) = 0. (11)

By substituting the series in (11) for G(t, [x]q), we find

Hn+1,q(x)− 2[x]qHn,q(x) + 2nHn−1,q(x) = 0, n = 1, 2, . . . , (12)

which is the recurrence relation for q-Hermite polynomials. Another recurrence relation
comes from (

d
d[x]q

)
G(t, [x]q)− 2tG(t, [x]q) = 0. (13)

The following equation implies(
d

d[x]q

)
Hn,q(x)− 2nHn−1,q(x) = 0, n = 1, 2, . . . . (14)

Remove Hn−1,q(x) from Equations (12) and (13) to obtain

Hn+1,q(x)− 2[x]qHn,q(x) +
(

d
d[x]q

)
Hn,q(x) = 0. (15)

By differentiating the following equation and using Equations (12) and (13) again, we
can obtain(

d
d[x]q

)2
Hn,q(x)− 2[x]q

(
d

d[x]q

)
Hn,q(x) + 2nHn,q(x) = 0, n = 0, 1, 2, . . . . (16)

From the above equation, we complete the proof of Theorem 2.

Theorem 3. Hn,q(x) in the Equation (4) is the solution of equation(
q − 1

qx log q
d2

dx2 +

(
1 − q

qx − 2(1 − qx)

1 − q

)
d

dx
+ 2n

log q
q − 1

qx
)

Hn,q(x) = 0,

Hn,q(0) =

⎧⎨⎩(−1)k (2k)!
k!

, if n = 2k,

0, otherwise.

(17)

Proof. We consider another form of the differential equation for Hn,q(x). We consider

G(t, [x]q) = e2[x]qt−t2
, (18)

which satisfies
dG(t, [x]q)

dx
− log q

q − 1
qx2tG(t, [x]q) = 0. (19)

Substitute the series in Equation (19) for G(t, [x]q), in order to find

dHn,q(x)
dx

− 2n log q
q − 1

qxHn−1,q(x) = 0, n = 1, 2, . . . . (20)

5
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To use Equation (15), we note

d
dx

(
q − 1

qx log q
d

dx
Hn,q(x)

)
=

1 − q
qx

d
dx

Hn,q(x) +
q − 1

qx log q

(
d

dx

)2
Hn,q(x). (21)

By differentiating Equation (15) and using the above Equation (21), we derive

2n
log q
q − 1

qxHn,q(x) +
(

1 − q
qx − 2(1 − qx)

1 − q

)
dHn,q(x)

dx

+
q − 1

qx log q
d2Hn,q(x)

dx2 = 0,
(22)

where the equation is obtained as the required result immediately.

3. Differential Equations Associated with q-Hermite Polynomials

In this section, we introduce differential equations arising from the generating func-
tions of q-Hermite polynomials. By using these differential equations, we can obtain the
explicit identities for these polynomials. Many authors studied differential equations de-
rived in the generating functions of special polynomials in order to derive explicit identities
for special polynomials, see [11–20].

Let

G := G(t, [x]q) = e2[x]qt−t2
=

∞

∑
n=0

Hn,q(x)
tn

n!
, x, t ∈ R. (23)

Then, we obtain the following equations using mathematical induction:

G(1) =
∂

∂t
G(t, [x]q) =

∂

∂t

(
e2[x]qt−t2

)
= e2[x]qt−t2

(2[x]q − 2t)

= (2[x]q − 2t)G(t, [x]q)
= (2[x]q)G(t, [x]q)
+ (−2)tG(t, [x]q),

(24)

G(2) =
∂

∂t
G(1)(t, [x]q) = −2G(t, [x]q) + (2x − 2t)G(1)(t, [x]q)

= (−2 + 4[x]2q)G(t, [x]q)
+ (−8[x]q)tG(t, [x]q)
+ (−2)2t2G(t, [x]q),

(25)

and
G(3) =

∂

∂t
G(2)(t, [x]q)

= (−8[x]q + 8t)G(t, [x]q) + (−2 + 4[x]2q − 8[x]qt + 4t2)G(1)(t, [x]q)

= (−12[x]q + 8[x]3q)G(t, [x]q)
+ (12 − 24[x]2q)tG(t, [x]q)
+ (24[x]q)t2G(t, [x]q)
+ (−2)3t3G(t, [x]q).

(26)

If we continue this process N-times, we can conjecture as follows.

G(N) =

(
∂

∂t

)N
G(t, [x]q) =

N

∑
i=0

ai(N, [x]q)tiG(t, [x]q), (N = 0, 1, 2, . . .). (27)

6
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By differentiating G(N) with respect to t in Equation (27), we find

G(N+1) =
∂G(N)

∂t

=
N

∑
i=0

ai(N, [x]q)iti−1G(t, [x]q) +
N

∑
i=0

ai(N, [x]q)tiG(1)(t, [x]q)

=
N

∑
i=0

ai(N, [x]q)iti−1G(t, [x]q) +
N

∑
i=0

ai(N, [x]q)ti(2[x]q − 2t)G(t, [x]q)

=
N

∑
i=0

iai(N, [x]q)ti−1G(t, [x]q) +
N

∑
i=0

(2[x]q)ai(N, [x]q)tiG(t, [x]q)

+
N

∑
i=0

(−2)ai(N, [x]q)ti+1G(t, [x]q)

=
N−1

∑
i=0

(i + 1)ai+1(N, [x]q)tiG(t, [x]q) +
N

∑
i=0

(2[x]q)ai(N, [x]q)tiG(t, [x]q)

+
N+1

∑
i=1

(−2)ai−1(N, [x]q)tiG(t, [x]q).

(28)

Replace N by N + 1 in (27), and we obtain

G(N+1) =
N+1

∑
i=0

ai(N + 1, [x]q)tiG(t, [x]q). (29)

Theorem 4. For N = 0, 1, 2, . . . , the differential equation

G(N) =

(
∂

∂t

)N
G(t, [x]q) =

(
N

∑
i=0

ai(N, [x]q)ti

)
G(t, [x]q) (30)

has a solution
G = G(t, [x]q) = e2[x]qt−t2

, (31)

where

a0(N, [x]q) =
N−1

∑
k=0

[x]iqa1(N − 1 − k, [x]q) + (2[x]q)N ,

aN−1(N, [x]q) = (−2)N−1N(2[x]q),

aN(N, [x]q) = (−2)N ,

ai(N + 1, [x]q)

= (i + 1)
N

∑
k=0

2k[x]kqai+1(N − k, [x]q) + (−2)
N

∑
k=0

2k[x]kqai−1(N − k, [x]q),

(1 ≤ i ≤ N − 2).

(32)

Proof. Comparing the coefficients on both sides of (28) and (29), we obtain

a0(N + 1, [x]q) = a1(N, [x]q) + (2[x]q)a0(N, [x]q),

aN(N + 1, [x]q) = (2[x]q)aN(N, [x]q) + (−2)aN−1(N, [x]q),

aN+1(N + 1, [x]q) = (−2)aN(N, [x]q),

(33)

and
ai(N + 1, [x]q) = (i + 1)ai+1(N, [x]q)

+ (2[x]q)ai(N, [x]q) + (−2)ai−1(N, [x]q), (1 ≤ i ≤ N − 1).
(34)

7
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In addition, from Equation (27), we get

G(t, [x]q) = G(0)(t, [x]q) = a0(0, [x]q)G(t, [x]q), (35)

which gives
a0(0, [x]q) = 1. (36)

It is not difficult to show that

(2[x]q)G(t, [x]q) + (−2)tG(t, [x]q)
= G(1)(t, [x]q)

=
1

∑
i=0

ai(1, [x]q)G(t, [x]q)

= a0(1, [x]q)G(t, [x]q) + a1(1, [x]q)tG(t, [x]q).

(37)

By using Equation (29), we can present the following as

a0(1, [x]q) = 2[x]q, a1(1, [x]q) = −2. (38)

From the Equation (33), we express

a0(N + 1, [x]q) = a1(N, [x]q) + (2[x]q)a0(N, [x]q),

a0(N, [x]q) = a1(N − 1, [x]q) + (2x)a0(N − 1, [x]q), . . .

a0(N + 1, [x]q) =
N

∑
i=0

(2[x]q)ia1(N − i, [x]q) + (2[x]q)N+1,

(39)

aN(N + 1, [x]q) = (2[x]q)aN(N, [x]q) + (−2)aN−1(N, [x]q),

aN−1(N, [x]q) = (2[x]q)aN−1(N − 1, [x]q) + (−2)aN−2(N − 1, [x]q), . . .

aN(N + 1, [x]q) = (−2)N(N + 1)(2[x]q),

(40)

and
aN+1(N + 1, [x]q) = (−2)aN(N, [x]q),

aN(N, [x]q) = (−2)aN−1(N − 1, [x]q), . . .

aN+1(N + 1, [x]q) = (−2)N+1.

(41)

Choose i = 1 in (34). Then, we can find

a1(N + 1, [x]q) = 2
N

∑
k=0

(2[x]q)ka2(N − k, [x]q) + (−2)
N

∑
k=0

(2[x]q)ka0(N − k, [x]q). (42)

For 1 ≤ i ≤ N − 1, by containing this process, we can deduce

ai(N + 1, [x]q) = (i + 1)
N

∑
k=0

(2[x]q)kai+1(N − k, [x]q)

+ (−2)
N

∑
k=0

(2[x]q)kai−1(N − k, [x]q).

(43)

8
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Here, notice that the matrix ai(j, [x]q)0≤i,j≤N+1 is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2[x]q −2 + 4[x]2q −12[x]q + 8[x]3q · · · ·

0 (−2) (−2)2(2[x]q) 12 − 24[x]2q · · · ·

0 0 (−2)2 (−2)23(2[x]q) · · · ·

0 0 0 (−2)3 . . . ·

...
...

...
...

. . . (−2)N(N + 1)(2[x]q)

0 0 0 0 · · · (−2)N+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(44)

From (33) to (43), we investigate the desired result immediately.

Theorem 5. For N = 0, 1, 2, . . . , we have

Hm+N,q(x) =
m

∑
i=0

Hm−i,q(x)ai(N, [x]q)m!
(m − i)!

, (45)

where

a0(N, [x]q) =
N−1

∑
k=0

2k[x]kqa1(N − 1 − k, [x]q) + (2[x]q)N ,

aN−1(N, [x]q) = (−2)N−1N(2[x]q),

aN(N, [x]q) = (−2)N ,

ai(N + 1, [x]q)

= (i + 1)
N

∑
k=0

2k[x]kqai+1(N − k, [x]q) + (−2)
N

∑
k=0

2k[x]kqai−1(N − k, [x]q),

(1 ≤ i ≤ N − 2).

(46)

Proof. By making the N-times derivative for (4) with respect to t, we get(
∂

∂t

)N
G(t, [x]q) =

(
∂

∂t

)N
e2[x]qt−t2

=
∞

∑
m=0

Hm+N,q(x)
tm

m!
. (47)

From (46) and (47), we obtain

a0(N, [x]q)G(t, [x]q) + · · ·+ a1(N, [x]q)tNG(t, [x]q) =
∞

∑
m=0

Hm+N,q(x)
tm

m!
, (48)

which makes the required result.

Corollary 1. For N = 0, 1, 2, . . . , if we take m = 0 in (45), then, the following holds

HN,q(x) = a0(N, [x]q),

9
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where,

a0(N, [x]q) =
N−1

∑
k=0

2k[x]kqa1(N − 1 − k, [x]q) + (2[x]q)N ,

a1(N, [x]q)

= 2
N−1

∑
k=0

(2[x]q)ka2(N − k − 1, [x]q) + (−2)
N−1

∑
k=0

(2[x]q)ka0(N − k − 1, [x]q).

(49)

For N = 0, 1, 2, . . . , the differential equation

G(N) =

(
∂

∂t

)N
G(t, [x]q) =

(
N

∑
i=0

ai(N, [x]q)ti

)
G(t, [x]q) (50)

has a solution
G = G(t, [x]q) = e2[x]qt−t2

. (51)

The following Figure 1 is the graph representation for this solution by using MATHE-
MATICA.

Figure 1. The surface for the solution G(t, [x]q).

We can find the left surface of Figure 1 when we choose −1 ≤ x ≤ 1, q = 1/10, and
0 ≤ t ≤ 1. Additionally, we can see the right surface of Figure 1 when we choose a condition
such as −1 ≤ x ≤ 1, q = 1/3, and 0 ≤ t ≤ 1. It particularly shows a higher-resolution
density of the plots in the right surface of Figure 1.

4. Distribution and Pattern of Zeros of q-Hermite Polynomials

In this section, we examine the distribution and pattern of zeros of q-Hermite poly-
nomials Hn,q(x) according to the change in degree n. Based on these results, we present
a problem that needs to be approached theoretically. Many mathematicians now explore
concepts more easily than in the past by using software. These experiments allow them to
quickly create and visualize new ideas, review properties of various figures, as well as find
and guess patterns. This numerical survey is particularly interesting since it helps them un-
derstand the basic concepts and solve numerous problems. Here, we use MATHEMATICA
to find Figures 2–4 and approximate roots for q-Hermite polynomials.

10
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The q-Hermite polynomials Hn,q(x) can be explicitly determined; see [21,22]. First,
several examples are given, as follows.

H0,q(x) = 1,

H1,q(x) = − 2
−1 + q

+
2qx

−1 + q
,

H2,q(x) = −2 +
4

(−1 + q)2 − 8qx

(−1 + q)2 +
4q2x

(−1 + q)2 ,

H3,q(x) =
4

(−1 + q)3 − 24q
(−1 + q)3 +

12q2

(−1 + q)3 +
12qx

(−1 + q)3 − 24q2x

(−1 + q)3

+
8q3x

(−1 + q)3 +
24q1+x

(−1 + q)3 − 12q2+x

(−1 + q)3 .

(52)

We observe the distribution of zeros of the q-Hermite polynomials Hn,q(x) = 0. In
Figure 2, plots for the zeros of the q-Hermite polynomials Hn,q(x) for n = 20 and x ∈ R

are as follows.

Figure 2. Zeros of Hn,q(x).

In the top-left picture of Figure 2, we choose n = 20 and q = 3/10. In the top-right
picture of Figure 2, we consider conditions which are n = 20 and q = 5/10. We can find
the bottom-left picture of Figure 2, when we consider n = 20 and q = 7/10. If we consider
n = 20 and q = 9/10, then we can observe the bottom-right picture of Figure 2.

Stacks of zeros of the q-Hermite polynomials, Hn,q(x), for 1 ≤ n ≤ 20 from a 3-D
structure are presented as Figure 3.

11
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Figure 3. Stacks of zeros of Hn,q(x), 1 ≤ n ≤ 20.

It is the left picture of Figure 3, when we consider q = 1/2. Additionally, if we consider
q = 9/10, we can obtains the right picture of Figure 3.

Our numerical results for the approximate solutions of real zeros of the q-Hermite
polynomials, Hn,q(x), with q = 1/2 and x ∈ R are displayed in Tables 1 and 2.

Table 1. Numbers of real and complex zeros of Hn, 1
2
(x) .

Degree n Real Zeros

1 1
2 2
3 3
4 4
5 4
6 5
7 6
8 7
9 7
10 8
11 8
12 9
13 10
14 10

The plot structures of real zeros of the q-Hermite polynomials, Hn,q(x), for 1 ≤ n ≤ 20
are presented in Figure 4.

Figure 4. Stacks of zeros of Hn,q(x), 1 ≤ n ≤ 20.

In the left picture of Figure 4, we choose q = 5/10. For q = 9/10, the right side of
Figure 4 is presented. Next, we calculated an approximate solution that satisfies Hn,q(x) =
0, x ∈ R. The results are shown in Table 2.

12
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Table 2. Approximate solutions of Hn,q(x) = 0, x ∈ R .

Degree n x

1 0
2 −0.436752, 0.629397
3 −0.689185, 0, 1.36726
4 −0.868165, −0.336082, 0.43894, 2.51738
5 −1.12122, −0.738054, −0.28456, 0.354831, 1.59042
6 −1.12122, −0.738054, −0.28456, 0.354831, 1.59042
7 −1.21784, −0.877176, −0.493795, 0, 0.756682, 2.61507
8 −1.30177, −0.993369, −0.658643, −0.251681, 0.305064,

1.24673, 6.76861

5. Conclusions and Discussion

In this paper, we derive a few solutions of special forms containing q-Hermit polynomi-
als and find several properties of differential equations for these polynomials. Moreover, we
find approximate values of real zeros for q-Hermit polynomials and analyze the structure
of roots for these polynomials in a special condition from 3D.

We also identified the structure of q-Hermit polynomials under special several condi-
tions. These conditions change the structure of the roots and the form of polynomials, and
further research needs to be done on finding various properties. In addition, by simulating
the structure of roots for Hermit polynomials through various methods using the results
of this paper and multiple software, it is also thought that the characteristics of the roots’
structure for higher-order equations will evolve into one area.
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2. Appell, P.; Hermitt, J. Fonctions Hypergéométriques et Hypersphériques: Polynomes d Hermite; Gauthier-Villars: Paris, France, 1926.
3. Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Krieger: New York, NY, USA, 1981;

Volume 3.
4. Hermite, C. Sur un nouveau développement en série des fonctions. Comptes Rendus l’Académie Sci. 1864, 58, 93–100.
5. Laplace, P.S. Mémoire sur les intégrales définies, et leur application aux probabilités, et spécialment à la recherche du milieu

qu’il faut choisir entre les résultats des observations. In Mémoires de la Classe des Sciences Mathematiques et Physiques de l’Institut
National de France; Mémoires de l’Académie des sciences: Ière série, France, 1810; Volume 9, pp. 279–347.

6. Temme, N. Special Functions: An Introduction to the Classical Functions of Mathematical Physics; Wiley: New York, NY, USA, 1996.
7. Kim, M.S.; Hu, S. On p-adic Hurwitz-type Euler Zeta functions. J. Number Theory 2012, 132, 2977–3015. [CrossRef]
8. Kim, T.; Choi, J.; Kim, Y.H.; Ryoo, C.S. On q-Bernstein and q-Hermite polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 215–221.
9. Robert, A.M. A Course in p-adic Analysis, Graduate Text in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 198.
10. Hwang, K.Y.; Ryoo, C.S. Some Identities Involving Two-Variable Partially Degenerate Hermite Polynomials Induced from

Differential Equations and Structure of Their Roots. Mathematics 2020, 8, 632. [CrossRef]

13



Mathematics 2021, 9, 1168

11. Agarwal, R.P.; Ryoo, C.S. Differential equations associated with generalized Truesdell polynomials and distribution of their
zeros. J. Appl. Pure Math. 2019, 1, 11–24.

12. Hwang, K.W.; Ryoo, C.S. Differential equations associated with two variable degenerate Hermite polynomials. Mathematics
2020, 8, 228. [CrossRef]

13. Kim, T.; Kim, D.S. Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations.
J. Nonlinear Sci. Appl. 2016, 9, 2086–2098. [CrossRef]

14. Ryoo, C.S. Differential equations associated with generalized Bell polynomials and their zeros. Open Math. 2016, 14, 807–815.
[CrossRef]

15. Ryoo, C.S. Differential equations associated with the generalized Euler polynomials of the second kind. J. Comput. Appl. Math.
2018, 24, 711–716.

16. Ryoo, C.S. Differential equations associated with tangent numbers. J. Appl. Math. Inform. 2016, 34, 487–494. [CrossRef]
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1. Introduction

Given a scalar ordinary differential equation in normal form, say

y′ = ω(x, y), (1)

where we assume the usual existence and uniqueness conditions, i.e., ω : Ω ⊂ R2 → R is
a Lipschitz-continuous function and Ω is an open set, it is well known that the problem
of representing its solutions in terms of elementary, or special, functions is, in general,
analytically intractable. In some well known and particular situations, this representation is
possible, according to some specific structure of the equation itself. Among the elementary
solution methods, the most advanced is that of the search for an integrating factor, which,
as we know, is related to the determination of a Lie symmetry, see [1] Section 2.5. When
the integrating factor depends on both variables (x, y) some old-school texbooks like,
for instance, [2] pages 50–51 or [3] pages 53–55, seek for the integrating factor using an
“inspection method”, useful when the given equation presents a particular structure. This
special technique has a long, and probably forgotten, history. It was, in fact, introduced
by the Italian mathematician Jacopo Francesco Riccati (1676–1754) and was published
posthumously in 1761, in the first [4] of four tomes of Riccati, Opera Omnia, dedicated to
his lectures on differential equations. Riccati called his method “dimidiata separazione”
which can be translated as splitted separation. This paper is devoted to one particular
family of equations studied by Riccati, revisiting it in terms of Lie symmetry and using the
2F1 Gauss hypegeometric function to express in closed form its integral curves. Moreover,
using Lie symmetry we solve a more general equation of the same kind.

2. Materials and Methods

2.1. The Original Equation

The equation proposed by Riccati, written in Pfaffian form, is:

ym(x dx + y dy) = xn(y dx − x dy). (2)

Mathematics 2021, 9, 1312. https://doi.org/10.3390/math9111312 https://www.mdpi.com/journal/mathematics15
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Here follows Riccati’s argument, given in modern terms; the original source, reference [4]
page 486, is shown in Figure 1. The strategy is to seek for the primitive of the two differential
forms, which appear in (2). The first step consists in writing (2), dividing both sides for y2:

ym−2(x dx + y dy) = xn (y dx − x dy)
y2 . (3)

Figure 1. Riccati original treatment of (2).

In terms of total diffentential D f = fxdx + fydy, we can consider Equation (3) using
the following identities:

D
(

1
2
(x2 + y2)

)
= x dx + y dy, D

(
x
y

)
=

y dx − x dy
y2 .

It is, then, natural to introduce the change of variables

q = q(x, y) =
x
y

, p = p(x, y) =
√

x2 + y2. (4)

To transform Equation (2) via this change of variable, we first write it in normal form:

y′ =
xny − xym

ym+1 + xn+1 . (5)

For n = m (5) obviously reduces to a homogeneous equation, solvable by elementary
methods, whose solution is defined by:

∫ y
x

y0
x0

1 + un+1

un(1 + u2)
du = ln

x0

x
. (6)

We, thus, may assume m �= n. Therefore, the change of variable (4) leads to the
transformed equation

dp
dq

=
Dx[p(x, y(x)]
Dx[q(x, y(x)]

=
y(x)2(x + y(x)y′(x))

(y(x)− xy′(x))
√

x2 + y(x)2
,

16



Mathematics 2021, 9, 1312

but, since y′(x) is provided by (5), we obtain:

dp
dq

=
xny2−m√

x2 + y2
.

Expressing the original variables (x, y) in terms of (p, q), that is, inverting (4):

x =
p q√

1 + q2
, y =

p√
1 + q2

,

we arrive at the transformed equation

dp
dq

= p−m+n+1qn
(

1 + q2
) m

2 − n
2 −1

, (7)

which is separable, so that the integration of (5) is, as a matter of fact, completed.

2.2. Approach Via Lie Theory

We skip the computation of the integrals generated by (7) since, in view of solving a
more general family of equations, we will integrate (5) using the infinitesimal generator of
the Lie group of symmetries associated to (5). This means (see [1] page 30 Equation (2.57))
that, given Equation (1), if we are able to find two functions ξ(x, y), η(x, y) verifying the
linearized symmetry condition:

η′
x +

(
η′

y − ξ ′x
)

ω − ξ ′xω2 − ξ ω′
x − η ω′

y = 0, (8)

it is possible to obtain the canonical coordinates associated with (5); see for instance [1] (p. 24).
We can formulate the following theorem, which describes the quadrature formula for

the solution of the differential Equation (5).

Theorem 1. If n, m are real numbers such that n �= m and if (x0, y0) lies in the positive quadrant,
then the integral curve of (5) which passes for (x0, y0) is implicitly defined by:

1
m − n

((
x2 + y2

)m−n
2 −

(
x2

0 + y2
0

)m−n
2

)
=

∫ x
y

x0
y0

un
(

1 + u2
)m−n−2

2 du. (9)

Proof. To integrate Equation (5), since we know the Riccati variable transformation, we
can use the method indicated in [1] page 26 in order to reconstruct the Lie symmetries
when canonical coordinates are given. In our situation we found that, defining

ξ(x, y) =
x

(x2 + y2)
m−n

2
, η(x, y) =

y

(x2 + y2)
m−n

2
, (10)

the linearized symmetry condition (8) is satisfied: This is a matter of algebraic computation.
We explain the “reverse enginerinng” procedure employed to obtain (10). Following
the argument of [1] page 26, if (X, Y) = (X(x, y), Y(x, y)) are canonical coordinates for
the differential Equation (5), expressing the original variables (x, y) in terms of (X, Y)
as x = f (X, Y) and y = g(X, Y) the invariance condition requires that the transformed
coordinates must satisfy the following translation property:{

x̂ = f (X(x, y), Y(x, y) + ε),
ŷ = g(X(x, y), Y(x, y) + ε).

(11)
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Now, also if it is not the case, we assume for a while the change of variable (4) as
canonical, and since for it we have

f (X, Y) =
XY√

1 + X2
, g(X, Y) =

Y√
1 + X2

,

thus, the expressions in the right hand side in (11) read as:⎧⎪⎨⎪⎩
x̂ = x +

x ε√
x2 + y2

,

ŷ = y +
y ε√

x2 + y2
.

(12)

Differentiating with respect to ε (12) should provide, in case of canonical coordinates,
the infinitesimal generator of the Lie symmetries of the differential Equation (5). In our
situation from (12) we obtain:

ξ̆(x, y) =
x√

x2 + y2
, η̆(x, y) =

y√
x2 + y2

.

The couple (ξ̆, η̆) misses the linearized symmetry condition (8); in fact, the left hand
side of (8) evaluated when ξ = η̆ and η = η̆ is indeed:

(m − n − 1)ymxn
√

x2 + y2

(ym+1 + xn+1)
2 .

This means that (ξ̆, η̆) is the infinitesimal generator for (5) only in the particular
occurrence m = n + 1 and, more importantly, gives us the suggestion to look for an
infinitesimal generator of the form:

ξa(x, y) =
x

(x2 + y2)a , ηa(x, y) =
y

(x2 + y2)a ,

where a is a real parameter which we choose in order to meet condition (8). Thus, evaluating
the left hand side of (8) for (ξa, ηa), we get:

ymxn(−2a + m − n)
(

x2 + y2)1−a

(ym+1 + xn+1)
2 . (13)

It is clear that (13) is zero if m− n− 2a = 0 and this explains why (10) is the infinitesimal
generator of the Lie group of (5). Hence, using (10) we arrive at the canonical coordinates:

X(x, y) =
x
y

, Y(x, y) =
1

m − n
(x2 + y2)

m−n
2 .

Thus, differential Equation (5) is fully separated in:

Y′ = Xn
(

X2 + 1
) 1

2 (m−n−2)
. (14)

Hence, integrating (14), we obtain:

Y(X) =
∫ X

X0

un(1 + u2)
1
2 (m−n−2)du + Y0, (15)

where X0 = x0/y0. Formula (9) follows, turning back to the original variables (x, y).
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Remark 1. Keeping in mind the elementary limit, for p, q > 0

lim
ε→0

p
ε
2 − q

ε
2

ε
=

1
2

ln
p
q

,

we can take the limit for m − n → 0 in (9), obtaining

1
2

ln
x2 + y2

x2
0 + y2

0
=

∫ x
y

x0
y0

un
(

1 + u2
)−1

du,

which, after some elementary computations, agrees with (6).

3. Results

3.1. Hypergeometric Integrations

In some particular situations it is indeed possible to evaluate the integral at the right
hand side of (15) in closed form. To this aim, since some notions and terminology are
needed. For the sake of completeness, we recall the integral representation of the Gauss
hypergeometric function, which is, as is well known, defined in terms of power series,
which converges for |x| < 1

2F1

(
a, b
c

∣∣∣∣x) :=
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
.

When Re(a) > 0, Re(c − a) > 0 then 2F1 can be represented by the integral, see [5]
Section 2 Equation (30):

2F1

(
a, b
c

∣∣∣∣x) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

sa−1(1 − s)c−a−1

(1 − sx)b ds. (16)

Equation (16) provides the analytical continuation of 2F1 to the complex plane exclud-
ing the half line (1, ∞); in the following we will use this fact. Thus integral (15) can be
evaluated in closed form, if the hypotheses of the integral representation (16) are fulfilled.

Theorem 2. If n, m are real numbers n �= m and if n > −1 for any (x0, y0) in the positive quadrant,
then the integral curve of (5) which passes for (x0, y0) has equation Φ(x, y) = Φ(x0, y0) where:

Φ(x, y) =
n + 1
m − n

(
x2 + y2

)m−n
2 −

(
x
y

)n+1

2F1

(
n+1

2 , n−m+2
2

n+3
2

∣∣∣∣∣− x2

y2

)
. (17)

Proof. If n > −1 it is possible to invoke (16); in fact, we express the integral in the right
hand side of (15) as

1
2

(∫ X2

0
u

n−1
2 (1 + u)

m−n−2
2 du −

∫ X2
0

0
u

n−1
2 (1 + u)

m−n−2
2 du

)
+ Y0. (18)

Notice that we must assume the convergence of the integrand in the origin, which
is guaranteed by the assumption n > −1. Then, normalizing the integration intervals
with the change of variable s = X2σ and s = X2

0σ in the first and the second integral,
respectively, in (18) we use (16), to rewrite (14) as:

Y(X) =
1
2

(
2Xn+1

n + 1 2F1

(
n+1

2 , n+2−m
2

n+3
2

∣∣∣∣∣− X2

)
−2Xn+1

0
n + 1 2F1

(
n+1

2 , n+2−m
2

n+3
2

∣∣∣∣∣− X2
0

))
+ Y0.

Going back to the original variables, we get Equation (17).
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Remark 2. Since the argument of 2F1 in (17) is strictly negative, and so we operate in the analytic
continuation of 2F1 itself, function Φ(x, y) is well posed in the interior of the first quadrant.

Remark 3. The hypergeometric structure of (17) allows algebraic implicit solutions of (5) provided
that the quantity (n + 2 − m)/2 turns out to be a negative integer, so that the 2F1 collapses to a
polynomial, that, of course, is strictly connected to the fact that in this case integral (9) is computed
in terms of elementary functions. Other solutions of (17) expressible in terms of the elementary
transcendental occur for half integer values of n + 1/2 and (n + 2 − m)/2. We provide a couple of
illustrative examples.

Example 1. For instance, for n = 2, m = 6 (17) allows algebraic solutions: in fact, the differential
equation for x0, y0 > 0 ⎧⎪⎨⎪⎩y′ =

x2y − xy6

x3 + y7 ,

y(x0) = y0,

has an implicit solution given by:

3
4

(
x2 + y2

)2
− 3x5 + 5x3y2

5y5 =
3
4

(
x2

0 + y2
0

)2
− 3x5

0 + 5x3
0y2

0

5y5
0

.

Of course, in this situation it is possible to represent the integral curves in polynomial form,
which in this case for simplicity we took x0 = y0 = 1:

30x2y7 + 15y9 − 12x5 + 15x4y5 − 20x3y2 − 28y5 = 0.

Example 2. If we take n = 2 and m = 3 in (17) relation

2F1

(
3
2 , 1

2
5
2

∣∣∣∣∣− z

)
=

3
2z3/2

(√
z(1 + z)− arcsinh

√
z
)

comes into play, see [6], http:// functions.wolfram.com/07.23.03.2889.01 (accessed on 5 June 2021),
so that the solution to ⎧⎪⎨⎪⎩y′ =

x2y − xy3

x3 + y4 ,

y(x0) = y0,

for positive initial data is:

(
2y2 − x

)√
x2 + y2

y2 + arcsinh
x
y
=

(
2y2

0 − x0
)√

x2
0 + y2

0

y2
0

+ arcsinh
x0

y0
.

If n > −1 hypotheses for the integral hypergeometric representation (16) are not
fulfilled, but it is still possible, and the second parameter m is chosen suitably to obtain a
hypergeometric representation of the solution of (5) as shown in the following Theorem 3.

Theorem 3. If n, m are real numbers n �= m such that n ≤ −1 and m < 1 then for any
(x0, y0) in the positive quadrant, the integral curve of (5) which passes for (x0, y0) has equation
Ξ(x, y) = Ξ(x0, y0), where:

Ξ(x, y) =
1 − m
m − n

(
x2 + y2

)m−n
2

+
( y

x

)1−m
2F1

(
1−m

2 , n−m+2
2

3−m
2

∣∣∣∣∣− y2

x2

)
. (19)
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Proof. Since we cannot use the integral representation to evaluate integral (15) we change
variable u = 1/v so that

Y =
∫ 1

X0

1
X

v−m
(

1 + v2
) 1

2 (m−n−2)
dv + Y0. (20)

At this point, integral (20) can be handled with the same technique used in Theorem 2
to arrive at thesis (19); we omit the computational details here.

Example 3. Taking n = −2, m = −3 differential Equation (17) becomes⎧⎪⎨⎪⎩y′ =
y4 − x3

x2y + xy3 ,

y(x0) = y0,

and its solution via (19) is given by:

2x2 − x + y2

x
√

x2 + y2
=

2x2
0 − x0 + y2

0

x0

√
x2

0 + y2
0

.

3.2. A More General Equation

The use of the Lie symmetries, until now has not improved what Riccati found, if we
leave aside the hypergeometric integration of (14) that was of course unknown in Riccati’s
age. However, having a more general perspective enables the discovery of a richer family
of differential equations which can be treated with this method. Let r, s be two positive
reals and let m and n be two real numbers such that n �= m. Consider the differential
equation in Pfaffian form:

ym D
(

1
r
(xr + yr)

)
= xn ys+1D

(
xs

sys

)
. (21)

Equation (21) can be written in normal form as

y′ =
xn+s−1y − xrym

ym+r + xn+s . (22)

We are in position to provide the generalization of Theorem 1.

Theorem 4. If n, m, r, are real numbers n+ r �= m+ s and if (x0, y0) lies in the positive quadrant,
then the integral curve of (22) which passes for (x0, y0) is implicitly defined by:

1
m − n + r − s

((
x1+r + y1+r

)m−n+r−s
1+r −

(
x1+r

0 + y1+r
0

) m−n+r−s
2

)
=

∫ x
y

x0
y0

un+s−1
(

1 + u1+r
)m−n−s−1

2 du.
(23)

Proof. The thesis follows observing that in this situation the infinitesimal generator of the
Lie group of transformation associated at the Equation (22) is

ξ(x, y) =
x

(xr+1 + yr+1)
m−n+r−s

r+1
, η(x, y) =

y

(xr+1 + yr+1)
m−n+r−s

r+1
. (24)
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Therefore the canonical coordinates are readily obtained:

Y(x, y) =
(xr+1 + yr+1)

m−n+r−s
r+1

m − n + r − s
, X(x, y) =

x
y

,

and using these coordinates Equation (22) is transformed into:

Y′ = Xn+s−1(1 + Xr+1)
m−n−s−1

r+1 . (25)

Equation (23) follows in a similar fashion as Theorem 2

Remark 4. For r = s = 1 Theorem 4 reduces to Theorem 1.

At this point it is also easy to generalize Theorem 2 using again the integral represen-
tation (16).

Theorem 5. n, m are real numbers n + r �= m + s and assume:

n + s > 0. (26)

If (x0, y0) lies in the positive quadrant, then the integral curve of (22) for (x0, y0) has equation:

Ψ(x, y) = Ψ(x0, y0), (27)

where:

Ψ(x, y) = n+s
m−n+r−s

(
xr+1 + yr+1

)m−n+r−s
1+r −

(
x
y

)n+s

2F1

(
n+s
1+r , 1−m+n+s

1+r
n+r+s+1

r+1

∣∣∣∣∣− xr+1

yr+1

)
. (28)

Proof. To solve (22) we have to integrate the canonical (fully separated) differential Equa-
tion (25) and, as in Theorem 2, in order to express the integral in terms of 2F1 we need to
extend the integration interval including the origin and so we have to impose conditions
(see the right hand side of (23)) 1 − n − s < 1 which is ensured by (26). Thus we can adapt
the argument of Theorem 2 to rewrite the right hand side of (23) as:

1
1 + r

(∫ X1+r

0

u
n−r+s−1

1+r

(1 + u)
n−m+s+1

r+1
du −

∫ X1+r
0

0

u
n−r+s−1

1+r

(1 + u)
n−m+s+1

r+1
du

)
+ Y0. (29)

Normalizing the intervals of integration on the right hand side of (29), we can use the
same argument of Theorem 2 to arrive at (28).

Example 4. We take, for instance, r = 2, s = 3, m = 2, n = 3 and the initial data x0 = 1, y0 = 2
(22) takes the form: ⎧⎪⎨⎪⎩y′ =

x5y − x2y2

x6 + y4 ,

y(x0) = y0.

Using (27) and (28) we can provide the solution in implicit form, which to the best of our
knowledge, is not yet reported in any repertoire and not obtainable via computer algebra:

2x3 + 3y3 + y

y(x3 + y3)
2/3 =

2x3
0 + 3y3

0 + y0

y0
(
x3

0 + y3
0
)2/3 ,
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or in algebraic form, for a suitable constant of integration c:(
2x3 + 3y3 + y

)3
= c3y3

(
x3 + y3

)2
.

In the case that integral representation condition (26) is not fulfilled, theorem (5) cannot
be invoked, but it is possible, using exactly the same techniques, obtain the analogous of
Theorem 3.

Theorem 6. If n, m are real numbers n + s �= m + r such that n ≤ −s and if condition

m + r
1 + r

< 1, (30)

then for any (x0, y0) in the positive quadrant, the integral curve of (22) which passes for (x0, y0)
has equation Λ(x, y) = Λ(x0, y0), where

Λ(x, y) =
1 − m

m − n + r − s

(
xr+1 + yr+1

)m−n+r−s
1+r

+
( y

x

)1−m
2F1

(
1−m
1+r , n−m+s+1

1+r
r−m+2

1+r

∣∣∣∣∣− y1+r

x1+r

)
.

(31)

Proof. Since in this situation the integrand at the right hand side of (23) is not integrable at
the origin we use, as we did in theorem 3, the variable transformation u = 1/v, obtaining:

Y − Y0 =
1

1 + r

∫ 1
X1+r

0
1

X1+r

v−
m+r
1+r

(1 + v)
n−m+1+s

1+r
dv. (32)

Condition (30) ensures the integrability at the origin of (32) and from this point
the same hypergeometric integration procedure can be repeated concluding the proof of
the theorem.

Example 5. Taking n = −4, m = −2, r = 1, s = 2 Equation (22) assumes the form

y′ =

y
x3 − x

y2

1
x2 +

1
y

= − x4 − y3

x3y + xy2 .

From (31) we infer that integral curves through (x0, y0) in the first quadrant are:

(
2x2 + y

)√
x2 + y2

x2 − arcsinh
( y

x

)
=

(
2x2

0 + y0
)√

x2
0 + y2

0

x2
0

− arcsinh
(

y0

x0

)
,

Notice that we used the identity:

2F1

(
3
2 , 1

1
5
2

∣∣∣∣∣− z

)
=

1
2

(
3
√

1 + z
z

− 3 arcsinh
√

z

z
3
2

)
,

see [6], http:// functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/07/07/
03/0012/ (accessed on 5 June 2021).

4. Discussion

Starting from a two parameter family of differential equations, (5), studied by Jacopo
Riccati in the second part of his treatise [4], we interpreted Riccati’s procedure in terms of
Lie symmetries, extending it to the more general four parameter family of Equation (22).
Once the canonical form of both families of equations has been obtained, see (14) and (25)
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providing quadrature relations, Theorems 1 and 4, we derive, where possible, through
integral representation of Gauss hypergeometric function 2F1, the explicit representation of
integral curves, Theorems 2, 3, 5 and 6. Finally, some particular cases have been highlighted
in which these representations are given in terms of algebraic curves or containing elemen-
tary transcendents. Note that none of the particular cases reported in the Examples 1–5
appear in specialistic repertories and are not obtainable via computer algebra. The latter,
however, greatly facilitated the search for infinitesimal generators (10) and (24) used in the
proofs of Theorems 1 and 4.

5. Conclusions

Hopefully the contribution made in this article is a prelude to further research develop-
ments in the field of ordinary differential equations, continuing the historical interpretation
approach adopted here, i.e., not limiting it to a chronological description of the results
obtained by the founding masters, but rather to mastering their techniques, in the light of
both the most recent knowledge, such as Lie symmetries, used in this article, and computer
algebra, which allows to tackle computational difficulties that could not be faced previously
and to consider generalisations of equations dealt with in the past.
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Abstract: We consider a family of explicit Runge–Kutta pairs of orders six and five without any
additional property (reduced truncation errors, Hamiltonian preservation, symplecticness, etc.). This
family offers five parameters that someone chooses freely. Then, we train them in order for the
presented method to furnish the best results on a couple of Kepler orbits, a certain interval and
tolerance. Consequently, we observe an efficient performance on a wide range of orbital problems
(i.e., Kepler for a variety of eccentricities, perturbed Kepler with various disturbances, Arenstorf and
Pleiades). About 1.8 digits of accuracy is gained on average over conventional pairs, which is truly
remarkable for methods coming from the same family and order.

Keywords: initial value problem; Kepler-type orbits; Runge–Kutta; differential evolution
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1. Introduction

The initial value problem (IVP) is

y′ = f (x, y), y(x0) = y0 (1)

with x0 ∈ R, y, y′ ∈ Rm and f : R×Rm → Rm.
Runge–Kutta (RK) pairs are amongst the most popular numerical methods for ad-

dressing (1). They are characterized by the following Butcher tableau [1,2]:

c A

b
b̂

with bT , b̂T , c ∈ Rsand A ∈ Rs×s. Then, the method shares s stages, and when c1 = 0 and
A is strictly lower triangular, it is evaluated explicitly. The approximated solution steps
from (xn, yn) to xn+1 = xn + hn by producing two estimations for y(xn+1). Namely, yn+1
and ŷn+1, given by
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yn+1 = yn + hn

s

∑
i=1

bi fi

and

yn+1 = yn + hn

s

∑
i=1

b̂i fi

with

fi = f (xn + cihn, yn + hn

i−1

∑
j=1

aij f j),

for i = 1, 2, · · · , s. These two approximations yn+1 and yn+1 are of algebraic orders p and
q < p respectively. Thus, a local error estimation

εn = hp−q−1
n · ‖yn+1 − ŷn+1‖

is formed in every step and is combined in an algorithm for changing the step size:

hn+1 = 0.9 · hn · (
t

εn
)1/p,

where t is a tolerance given by the user. When εn < t, the above formula is used for the
new step forward. In reverse, we also use it, but the solution is not advanced and hn+1 is
a new version of hn. Details can be found in [3]. As an abbreviation, these methods are
named RKp(q) pairs.

Runge–Kutta methods were introduced back in the late 19th century [4,5]. After 1960,
RK pairs appeared. Fehlberg gave the first celebrated such pairs of orders 5(4), 6(5) and
8(7) [6,7]. Dormand and Prince followed in the early 1980s [8,9]. Our group has also
presented a series of successful RK pairs [10–13].

Runge—Kutta pairs are suited for efficiently solving almost every non-stiff problem
of the form (1). The variety of pairs is explained by the accuracy required. Thus, when less
accuracy is required, the lowest RK pairs are more efficient. In contract, for stringent
accuracies at quadruple precision, a high-order pair should be chosen [14].

Here we focus on RK6(5) pairs, which are preferred for moderate to higher accuracies.
We are especially interested in problems (1) that resemble Kepler-like orbits. Thus, we will
propose a particular RK6(5) pair for addressing this type of problem.

2. Producing Runge–Kutta Pairs of Orders 6(5) and Training Their Coefficients

Runge–Kutta pairs of orders six and five are amongst the most frequently used.
The coefficients have to satisfy 54 order conditions. Thus, families of solutions have been
discovered over the years. Here we chose the Verner-DLMP [15,16] family, which has the
advantage of being solved linearly. Then, we freely chose the coefficients c2, c4, c5, c6, c7
and b̂9. Pairs from this family have been proven to perform most efficiently in various
classes of problems [17].

We proceed by explicitly evaluating the remaining coefficients. The algorithm is
discussed in [10] and is given as a Mathematica [18] package in the Appendix A.

Although s = 9, the family spends only eight stages per step since the ninth stage is
used as the first stage of the next step. This property is called FSAL (first stage as last).

The next question to be answered is regarding how to select the free parameters.
Traditionally we try to minimize the norm of the principal term of the local truncation error.
That is, the coefficients of h7 in the residual of Taylor error expansions corresponding to
the sixth-order method of the underlying RK pair.
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We intend to derive a particular RK6(5) pair belonging to the family of interest here.
The resulting pair has to perform best on Kepler orbits and other problems of this nature.
Thus, we concentrate on the particular orbit

1y′ = 3y,
2y′ = 4y,

3y′ = −
1y(√

1y2 + 2y2
)3 ,

4y′ = −
2y(√

1y2 + 2y2
)3 ,

with x ∈ [0, 10π], y(0) =
[
1 − ecc, 0, 0,

√
1+ecc
1−ecc

]T
and the theoretical solution

1y(x) = cos(v)− ecc, 2y(x) = sin(v)
√

1 − ecc2.

In the above, v = ecc · sin(u) + x, ecc is the eccentricity, and the components
of y are denoted by the left superscript. They should not be confused with y1 =[1y1,2 y1,3 y1,4 y1

]T , y2 =
[1y2,2 y2,3 y2,4 y2

]T , y3, · · · , which represent the vectors approx-
imating the solution at x1, x2, x3, · · · .

This problem can be solved with an RK6(5) pair from the family we are interested
in here. After a certain run, we recorded the number f ev of function evaluations (stages)
needed and the global error ge observed over the mesh (grid) in the interval of integration.
Then, we formed the efficiency measure

u = f ev · ge1/6. (2)

Running DLMP6(5) twice for Kepler we obtained the efficiency measures û1 and û2
as reported in Table 1. For example, we needed 1121 stages in order to achieve a global
error of 2.14 · 10−6 when running Kepler for ecc = 0, xend = 10π and tol = 10−7. Thus, we
obtained û1 = 1123 · 2.14 · 10−6 ≈ 127.22, as reported in Table 1. Analogously, for a second
run with ecc = 0.6, xend = 20π and tol = 10−11 we observed û2 = 833.27.

Let us suppose that any new pair NEW6(5) furnishes corresponding efficiency mea-
sures ũ1 and ũ2 for the same runs. Then, as a fitness function we form the sum

u =
û1

ũ1
+

û2

ũ2
,

and try to maximize it. That is, the fitness function is actually two whole runs of initial
value problems. The value u changes according to the selection of the free parameters c2, c4,
c5, c6, c7 and b̂9.

The original idea is based on [19]. For the minimization of u we used the differential
evolution technique [20]. We have already tried this approach and obtained some interest-
ing results in producing Numerov-type methods for integrating orbits [21]. In this latter
work we trained the coefficients of a Numerov-type method on a Kepler orbit. We observed
very pleasant results over a set of Kepler orbits as well as other known orbital problems.

Table 1. Efficiency measures for both runs and pairs.

ecc xend tol DLMP6(5) NEW6(5) Ratio û/ũ

First run 0 10π 10−7 û1 = 127.22 ũ1 = 50.64 2.51
Second run 0.6 20π 10−11 û2 = 833.27 ũ2 = 386.64 2.16
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The optimization furnished six values for the free parameters. They are included with
the rest of the coefficients in the resulting pair NEW6(5) presented in Table 2.

Table 2. Coefficients of the proposed NEW6(5) pair, accurate for double precision computations.

c2 = 0.173146279530013, c3 = 0.163620769891761, c4 = 0.245431154837642,
c5 = 0.452502877641229, c6 = 0.902924768667267, c7 = 0.8101151362080617,

c1 = 0, c8 = c9 = 1, b1 = 0.0794169052387116, b2 = b3 = 0,
b4 = 0.320063598496390, b5 = 0.179217292937057, b6 = −0.2872484367615202,
b7 = 0.573172758378662, b8 = 0.135377881710699, b9 = 0
b̂1 = 0.148854176113754, b̂2 = b̂3 = 0, b̂4 = 0.291009331941132,
b̂5 = 0.229278395578701, b̂6 = −0.1155397766857130, b̂7 = 0.429687174664803,

b̂8 = 0.0167106983873234, b̂9 = 0.064345053530889,
a21 = 0.173146279530013, a31 = 0.0863111204651556, a32 = 0.077309649426606,
a41 = 0.061357788709411, a42 = 0, a43 = 0.184073366128232,
a51 = 0.178735636864969, a52 = 0, a53 = −0.430121641642955,
a54 = 0.703888882419215, a61 = −0.3492563988707026, a62 = 0,

a63 = 4.2286674995349015, a64 = −5.131590895887595, a65 = 2.155104563890663,
a71 = −0.004184382566843, a72 = 0, a73 = 1.062724280290705,
a74 = −1.188530484293243, a75 = 0.8944565948851806, a76 = 0.045649127892262,
a81 = −0.518393300452978, a82 = 0, a83 = 4.607278279969559,
a84 = −5.004120306973807, a85 = 1.510536380616834, a86 = −0.399249451366671,
a87 = 0.803948398207063, a9j = bj, j = 1, 2, · · · , 8.

Interpreting Table 1, we observe that DLMP6(5) was 151% and 116% more expen-
sive than NEW6(5) for the first and second run, respectively. The norm of the principal
truncation error coefficients was ‖T(7)‖2 ≈ 2.64 · 10−4, which is much larger than the
corresponding value ‖T(7)‖2 ≈ 4.37 · 10−5 for DLMP6(5). The interval of absolute stability
for the new pair was (−4.24, 0] while for for DLMP6(5) it was (−4.21, 0].

In conclusion, no extra property seemed to hold. The pair given in Table 2 does not
possess any interesting properties. It is difficult to believe a special performance could be
obtained after seeing its traditional characteristics.

3. Numerical Tests

We tested the following pairs chosen from the family studied above.

1. The DLMP6(5) pair, given in [15].
2. NEW6(5), presented here.

DLMP6(5) is the best representative of conventional RK pairs. Everything else pre-
sented until now is hardly more efficient [10]. Both pairs were run for tolerances of
10−5, 10−6, · · · , 10−11, and the efficiency measures (2) were recorded for each one. We set
NEW6(5) as the reference pair. Then we divided each efficiency measure of DLMP6(5)
with the corresponding efficiency measure of NEW6(5). Numbers greater than 1 indicate
that NEW6(5) is more efficient. Thus, we can interpret the number 1.1 as DLMP6(5) being
0.1 = 10% more expensive than NEW6(5) while an entry of 2 means that DLMP6(5) is 100%
more expensive (i.e., has twice the cost for achieving the same accuracy).

The problems we tested were as follows.

1. The Kepler problem

This problem is explained above. We ran it for five different eccentricities (i.e., ecc =
0, 0.2, 0.4, 0.6, 0.8), while we recorded the efficiency measures using the endpoint errors for
xend = 10π and xend = 20π.

The efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Kepler are presented in
Tables 3 and 4.
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Table 3. Efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Kepler in [0, 10π].

tol−>
ecc︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0 1.90 2.36 3.66 3.06 2.46 3.18 3.59 2.89
0.2 1.15 1.11 1.14 1.01 1.07 1.46 2.07 1.29
0.4 1.09 1.10 1.11 1.51 0.80 1.27 1.71 1.23
0.6 1.49 1.49 1.86 1.27 1.18 1.43 1.73 1.49
0.8 1.13 1.17 1.32 1.21 1.36 1.08 2.73 1.43

Table 4. Efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Kepler in [0, 20π].

tol−>
ecc︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0 1.87 2.34 2.59 2.35 2.67 3.36 3.36 2.65
0.2 1.22 1.27 1.33 1.24 1.29 1.67 2.39 1.49
0.4 1.31 1.55 1.21 0.96 1.08 2.36 2.27 1.54
0.6 1.38 1.32 1.17 1.10 0.98 1.14 1.99 1.30
0.8 1.16 1.24 1.85 1.25 1.08 0.94 1.61 1.30

2. The perturbed Kepler

This problem describes the motion of a planet according to Einstein’s general relativity
theory and the Schwarzschild potential is applied. The equations are:

1y′′ = −
1y√

1y2 + 2y23 − (2 + δ)δ
1y√

1y2 + 2y25 ,

2y′′ = −
2y√

1y2 + 2y23 − (2 + δ)δ
2y√

1y2 + 2y25 ,

and the analytical solution is

1y = cos(x + δx), 2y = sin(x + δx).

We transformed this problem into a system of four first-order equations and solved
for xend = 10π and xend = 20π. After recording the endpoint errors and the costs, we
present the efficiency measures ratios of DLMP6(5) vs. NEW6(5) for perturbed Kepler in
Tables 5 and 6.

Table 5. Efficiency measures ratios of DLMP6(5) vs. NEW6(5) for perturbed Kepler in [0, 10π].

tol−>
δ︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0.01 1.90 2.48 2.39 2.33 3.04 3.64 3.49 2.75
0.02 1.93 2.69 2.19 2.11 2.58 3.65 3.45 2.66
0.03 1.91 2.76 2.14 2.07 2.50 3.45 3.47 2.61
0.04 1.87 2.63 2.18 2.12 2.53 3.28 3.57 2.60
0.05 1.87 2.40 2.32 2.30 2.47 3.24 3.72 2.62
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Table 6. Efficiency measures ratios of DLMP6(5) vs. NEW6(5) for perturbed Kepler in [0, 20π].

tol−>
δ︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

0.01 1.88 2.44 2.35 2.18 2.43 3.11 3.34 2.53
0.02 1.86 2.49 2.29 2.14 2.38 3.09 3.36 2.52
0.03 1.85 2.44 2.33 2.17 2.43 3.17 3.39 2.54
0.04 1.83 2.38 2.36 2.17 2.44 3.21 3.43 2.55
0.05 1.82 2.32 2.37 2.16 2.43 3.19 3.44 2.53

3. The Arenstorf orbit

Another interesting orbit describes the stable movement of a spacecraft around Earth
and Moon ([22], pg. 129).

1y′′ = 1y + 2 · 2y
′ − ζ ′ ·

1y + ζ

P1
− ζ ·

1y − ζ ′

P2
,

2y′′ = 2y + 2 · 1y
′ − ζ ′ ·

2y
P1

− ζ ·
2y
P2

,

with

P1 =

√
(1y + ζ)

2
+ 2y2

3
, P2 =

√
(1y − ζ ′)2

+ 2y2
3
,

ζ = 0.012277471, ζ ′ = 0.987722529,

initial values

1y(0) = 0.994, 1y
′
(0) = 0, 2y(0) = 0, 2y

′
(0) = −2.00158510637908252,

and with xA = 17.0652165601579625589 the solution is periodic.
We also transformed this problem to a system of four first-order equations and solved

it to xA and 2xA. After recording the endpoint errors and the costs we present the efficiency
measures ratios of DLMP6(5) vs. NEW6(5) for Arenstorf in Table 7.

Table 7. Efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Arenstorf.

tol−>
xend︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

xA 1.13 1.42 1.89 1.34 0.90 1.51 1.71 1.41
2xA 0.96 1.82 1.64 1.07 1.09 1.62 1.58 1.40

4. The Pleiades

Finally, we considered the problem “Pleiades” as given in ([22], pg. 245).

iy′′ = ∑
i �=j

μj
(jy − iy

)
ρij

, iz
′′
= ∑

i �=j

μj
(jz −i z

)
ρij

,

with

ρij =

√(
iy − jy

)2
+

(
iz − jz

)2
3
, i, j = 1, · · · , 7.

The initial values are

1y(0) = 3, 2y(0) = 3, 3y(0) = −1, 4y(0) = −3, 5y(0) = 2, 6y(0) = −2, 7y(0) = 2,

1z(0) = 3, 2z(0) = −3, 3z(0) = 2, 4z(0) = 0, 5z(0) = 0, 6z(0) = −4, 7z(0) = 4,
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1y′(0) = 0, 2y′(0) = 0, 3y′(0) = 0, 4y′(0) = 0, 5y′(0) = 0, 6y′(0) = 1.75, 7y′(0) = −1.5,
1z′(0) = 0, 2z′(0) = 0, 3z′(0) = 0, 4z′(0) = −1.25, 5z′(0) = 1, 6z′(0) = 0, 7z′(0) = 0,

We again transformed this problem to a system of fourteen first-order equations
and solved it to xend = 3 and 4. We recorded the endpoint errors after we estimated the
solution there by a very accurate integration using Mathematica and quadruple precision.
The efficiency measure ratios of DLMP6(5) vs. NEW6(5) for Pleiades can be found in
Table 8.

Table 8. Efficiency measures ratios of DLMP6(5) vs. NEW6(5) for Pleiades.

tol−>
xend︸︷︷︸ 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

3 1.12 1.02 0.97 1.03 0.89 1.10 1.63 1.11
4 1.13 1.03 0.97 0.96 0.94 1.15 1.64 1.12

We estimated 168 (i.e., 12 problems times 7 tolerances times two end points) efficiency
measures for each pair. In average we observed a ratio of 1.98, meaning that DLMP6(5) is
about 98% more expensive! This is quite remarkable since a great deal of effort has been
put over the years towards achieving 10–20% efficiency [23,24]. In reverse, this means that
about log10 1.986 ≈ 1.8 digits were gained on average at the same costs.

4. Conclusions

This paper is concerned with training the coefficients of a Runge–Kutta pair for
addressing a certain kind of problem. We concentrated on problems with Kepler-type
orbits and an extensively studied family of Runge–Kutta pairs of orders six and five.
After optimizing the free parameters (coefficients) in a couple of runs on Kepler orbits, we
concluded to a certain pair. This pair was found to outperform other representatives from
this family in a wide range of relevant problems.
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Appendix A

The following Mathematica package implements the algorithm producing the coeffi-
cients of the method for double precision. In the input we provide the free coefficients c2,
c4, c5, c6, c7 and b̂9. In the output we get four vectors, namely b, b̂, c and the matrix A.

NEW65[cc2_, cc4_, cc5_, cc6_, cc7_, bbb9_] :=

Module[{b, a, c, bb, vandh, vandl, ac, ac2, cc, ii, ba, cond, soh, b1, b4, b5, b6,

b7, b8, bb1, bb4, bb5, bb6, bb7, bb8, bb9, c2, c3, c4, c5, c6, c7, a21, a31,

a32, a41, a43, a51, a53, a54, a61, a63, a64, a65, a71, a73, a74, a75, a76,

a81, a83, a84, a85, a86, a87, so3, so5, sol, so6, so7, so8},

c2 = Rationalize[cc2, 10^-16]; c4 = Rationalize[cc4, 10^-16];

c5 = Rationalize[cc5, 10^-16]; c6 = Rationalize[cc6, 10^-16];

c7 = Rationalize[cc7, 10^-16]; bb9 = Rationalize[bbb9, 10^-16];

b={b1,0,0,b4,b5,b6,b7,b8,0};

a={{0,0,0,0,0,0,0,0,0},

{a21,0,0,0,0,0,0,0,0},
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{a31,a32,0,0,0,0,0,0,0},

{a41,0,a43,0,0,0,0,0,0},

{a51,0,a53,a54,0,0,0,0,0},

{a61,0,a63,a64,a65,0,0,0,0},

{a71,0,a73,a74,a75,a76,0,0,0},

{a81,0,a83,a84,a85,a86,a87,0,0},

{b1,0,0,b4,b5,b6,b7,b8,0}};

c={0,c2,c3,c4,c5,c6,c7,1,1};

bb={bb1,0,0,bb4,bb5,bb6,bb7,bb8,bb9};

vandh={b.c==1/2,b.c^2==1/3,b.c^3==1/4,b.c^4==1/5,b.c^5==1/6};

vandl={bb.c==1/2,bb.c^2==1/3,bb.c^3==1/4,bb.c^4==1/5};

ac=a.c-c^2/2;

ac2=a.c^2-c^3/3; cc=DiagonalMatrix[c]; ii=IdentityMatrix[9];

ba=b.(a+cc-1*ii);

cond=

{b.(cc-1*ii).a.(cc-c4*ii).(cc-c5*ii).c-Integrate[(x-1)*Integrate[(x-c5)*(x-c4)*x,

{x,0,x}],{x,0,1}],

b.(cc-ii).a.(cc-c4*ii).(cc-c5*ii).c-Integrate[(x-1)*Integrate[(x-c4)*(x-c5)*x,

{x,0,x}],{x,0,1}] /.{a43->0,a53->0,a63->0,a73->0},

bb.a.(cc-c5*ii).(cc-c4*ii).c-Integrate[Integrate[(x-c5)*(x-c4)*x,{x,0,x}],

{x,0,1}]};

(* start procedure *)

soh=Solve[vandh,{b4,b5,b6,b7,b8}];

b4=Together[soh[[1,1,2]]];

b5=Together[soh[[1,2,2]]];

b6=Together[soh[[1,3,2]]];

b7=Together[soh[[1,4,2]]];

b8=Together[soh[[1,5,2]]]; (* OK b *)

sol=Solve[Join[{(bb.a)[[3]]==0},vandl],{bb4,bb5,bb6,bb7,bb8}];

bb4=Together[sol[[1,1,2]]];

bb5=Together[sol[[1,2,2]]];

bb6=Together[sol[[1,3,2]]];

bb7=Together[sol[[1,4,2]]];

bb8=Together[sol[[1,5,2]]]; (* OK bb *)

c3=2/3*c4; a43=c4^2/(2*c3); a32=c3^2/(2*c2);

so5=Solve[{ac[[5]]==0,ac2[[5]]==0},{a53,a54}];

a53=Together[so5[[1,1,2]]];a54=Together[so5[[1,2,2]]]; (* after upper left *)

a87=Together[Solve[{ba[[7]]==0},{a87}][[1,1,2]]];

a76=Together[Solve[{cond[[2]]==0},{a76}][[1,1,2]]];

a86=Together[Solve[{ba[[6]]==0},{a86}][[1,1,2]]];

ac=Together[ac]; ac2=Together[ac2];

ba=Together[ba]; cond=Together[cond]; (* OK down right *)

so3=Solve[{ba[[3]]==0,cond[[1]]==0,cond[[3]]==0},{a63,a73,a83}];

a63=Together[so3[[1,1,2]]];

a73=Together[so3[[1,2,2]]];

a83=Together[so3[[1,3,2]]]; (* OK 3nd column *)

so6=Solve[{ac[[6]]==0,ac2[[6]]==0},{a64,a65}];

a64=Together[so6[[1,1,2]]];a65=Together[so6[[1,2,2]]];

so7=Solve[{ac[[7]]==0,ac2[[7]]==0},{a74,a75}];

a74=Together[so7[[1,1,2]]];a75=Together[so7[[1,2,2]]];

so8=Solve[{ac[[8]]==0,ac2[[8]]==0},{a84,a85}];

a84=Together[so8[[1,1,2]]];a85=Together[so8[[1,2,2]]]; (* OK ai4, ai5 *)

b1=1-b4-b5-b6-b7-b8;

bb1=1-bb4-bb5-bb6-bb7-bb8;

a21=c2;

a31=c3-a32;

a41=c4-a43;

a51=c5-a53-a54;

a61=c6-a63-a64-a65;
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a71=c7-a73-a74-a75-a76;

a81=1-a83-a84-a85-a86-a87;

Return[SetAccuracy[{b, bb, c, a}, 16] // Chop]]
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Abstract: We devise a theoretical model to shed light on the dynamics leading to toxic relationships.
We investigate what intervention policy people could advocate to protect themselves and to reduce
suffocating addiction in order to escape from physical or psychological abuses either inside family
or at work. Assuming that the toxic partner’s behavior is exogenous and that the main source of
addiction is income or wealth we find that an asymptotically stable equilibrium with positive love
is always possible. The existence of a third unconditionally reciprocating part as a benchmark, i.e.,
presence of another partner, support from family, friends, private organizations in helping victims,
plays an important role in reducing the toxic partner’s appeal. Analyzing our model, we outline the
conditions for the best policy to heal from a toxic relationship.
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1. Introduction

In this paper, we aim to give an additional contribution to the literature in Economics
of Love devising a modified version of the model in [1]. We analyse the dynamics leading
to toxic relationships, i.e., we focus our attention on situations where love is transformed
into a negative dependence and the relationship produces a dangerous addiction.

Moreover, we investigate what intervention policy people could advocate to protect
themselves and to reduce suffocating addiction in order to escape the trap of physical or
psychological abuse either in family or at work. The dynamics of couples’ relationships are
analyzed through a system of differential equations representing the laws of motions of
the amount of love that two individuals put in a relationship which also depends on any
source of partner’s appeal (financial, physical, intellectual, co-parenthood, etc.).

In our work, the appeal is assumed to change over time proportionally to both the
effect of the other partner’s love and to a variable representing the main source of addiction
(for instance, wealth, status, physical appearence, etc.). The aim of our analysis is to
build a model which takes into account the case where toxic relationships are at work,
i.e., when one partner chooses to stay in a relationship despite the low or null amount of
love received, for the sole reason that their partner’s appeal makes it harder for them to
terminate the relationship.

In 1995, Dr. Lillian Glass defines a toxic relationship as any relationship [between
people who] do not support each other, where there’s conflict and one seeks to undermine
the other, where there’s competition, where there’s disrespect and a lack of cohesiveness [2].

By toxic relationship, we mean a relationship disorder characterized by a disparity,
a non-egalitarian situation in which one of the two partners is dependent on the other one,
triggering a mechanism of dominance and subjection. In these relationships one partner
puts into the relationship much more effort than the other one, who, sometimes, could
even put no effort at all into it. In an healthy relationship partners can still cut out their
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spaces, maintaining a capacity for self-determination and taking benefit from reciprocity.
In a toxic relationship the emotional dependance enters into play, making the partner
our exclusive interlocutor, so that being happy and enthusiastic depends exclusively on
the other person, just like drug addiction. In order to avoid the abandonment and the
consequent lack of affection, the addicted partner cancels himself or herself out, while
the counterpart exploits the relationship to feel admired and to exercise control. A toxic
relationship implies psychological, and at times physical, violence, and can develop into a
tragic eposide of murder. The majority of the victims of these murders are women

Another typical example of toxic relationship is bullying at a workplace, very often
put into action by the boss. The unwillingness to call out such behaviour by the victims
and spectators results in to favoring it. The reason for this behaviour is obviously the fear
of being involved, of retaliation of some kind or even of losing the job.

In our work, we focus on the conditions which make a toxic relationshio to arise.
Due to the exploited parter’s addiction, the abusing parter’s behaviour seems appealing
regardless low affection. In Section 2 we rewiev the literature on this topic. In Section 3 we
give an analytical definition of a toxic relationship and we solve an intertemporal dynamic
model, where the toxic partner’s behaviour is assumed to be exogenous. Assuming that
the main source of addiction is income or wealth, we find that an asymptotically stable
equilibrium with positive love is always possibile for a high enough level of appeal if
subsidies that reduce addiction are introduced. In Section 4, we compare two alternative
policies that can be adopted to heal from addiction. One policy consits in healing through
a subsidy that can reduce the toxic partner’s appeal. The alternative policy is to heal
through a third, unconditionally reciprocating, part as a benchmark which represents an
alternative, but less attractive, to the partner’s love. This third part plays an important role
in reducing the toxic partner’s appeal. It substantially mimics not only the real presence of
another partner but also the support from family, friends and overall private organizations
in helping victims of domestic abuses recover their life fully. It may also represent private
organizations that offer economic and psychological support as well as legal counselling
to victims of bullying at workplace and placement offices which effectively help to find
another job. Section 5 contains our discussion and future implications and research.

2. Literature Rewiev

A very particular branch of economics literature, only recently developed, is the
Economics of Love. It is focused on the household’s well-being, marriage and long-term
relationships alongside their effects on economic growth (for an exhaustive survey on this
literature see [3,4]).

The first work in this new field of Economics appeared in the early 1970s with the
theory of marriage by Becker [5]. According to it, all individuals want to find a partner
with whom they will maximise their own well-being. The equilibrium in this marriage
market is reached when no one can change partner or become single and when nobody can
experience a higher well–being (referred to the consumption of household commodities).

Beckerś empirical analysis shows that the gain from marriage is positively dependant
on income, on relative difference in wage rates and on the level of intangible variables
such as education and beauty. Moreover, individuals choose partners with similar traits
such as height, race, social background, etc. Including among the factors which can affect
marriages also love (defined as a situation where the utility of one individual depends
on the commodity consumption of their partner as well as their own), Becker [6] finds
that love raises the likelihood of two people to marry because their well-being is likely to
be higher.

After these pioneering works, many other analyses have been focused on under-
standing how households operate. Outcomes of interest concern consumption, savings,
labor supply and other uses of time, household formation and dissolution, demand for
health and other forms of human capital, fertility and children outcomes, demand for
environmental quality, migration, and household produced goods ([3,4]).
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Many papers also investigated the determinants of long-lasting relationships and
their effects on economic development. Among them, Brines and Joyner [7] conducted
an empirical study on the stability of marriage and cohabiting couples in the United
States. They found that inequality in employment and income among the cohabiting
couple increased the chances of separation, although the effect was not symmetric since
inequality had a larger impact when the female partner earned more than the male partner.
Grossbard [4] studied family as a complex decision unit where partners with potentially
different objectives made decisions about consumption, work and fertility. He noticed that
couples marry and divorce depending upon their ability to coordinate these activities.

More recently Johnson et al. [8] applied a unique longitudinal approach to study the
long-term outcomes of relationships among 3405 couples. This paper was concerned on pre-
dictors of relationship longevity, from measures of conflict frequency, types of behaviours
experienced during times of conflict, satisfaction with the relationship and whether part-
ners believed their relationships would last or not. The German study’s findings showed
that complacency is perhaps the most significant trap to avoid: a relationship where part-
ners tried not to fall into that same-old routine can be vital and fulfilling for the years
to come.

While there are quite a lot of studies on marriage and cohabiting couples see Motz [9]
and Houston [10], there are only few papers which study the economic dynamics of
romance from a theoretical point of view.

Rinaldi (1998) proposed a mathematical model based on a linear dynamical system
where three aspects of love dynamics are taken into account: the forgetting process (obliv-
ion), the pleasure of being loved (return), and the reaction to the appeal of the partner
(instinct). The results of the model showed that the equilibrium turns out to be positive if
the appeals of the two individuals are positive. Sprott extended those results and discussed
various models of love and happiness, like the model of romance between Romeo and
Juliet and the one about triangular relationship to analyse how a third part could affect the
stability of a relationship, see Sprott J.C. [11].

Wauer et al. [12] studied human romantic relationships via system dynamics method-
ology where a non-linear modelling was proposed and analysed, showing that there are
short-termed and long-termed fluctuations of personal feelings due to, for instance, bi-
ological cycles and varying stresses from the daily job. The variability is expected to be
more limited for couples of cautious individuals. In Regan [13] individuals behave in
order to optimize their net benefit from a given relationship. The desire to maximize their
rewards, to minimize their costs and the inequity of the benefits to contributions among
the individuals will cause unhappiness in a relationship. It clearly depends on the role of
expectations [14] and on the level of effort that is given to the relationship. This commit-
ment then determines whether or not the relationship will be maintained [15]. Ref. [16]
added to the initial model of Rinaldi [1] a crossed interactions among partners to analyse
the effects and synergies of learning and adapting to live together. According to the results
of this model the system is asymptotically stable if the ratio of appeals is greater than the
reciprocal of the ratio of mutual intensiveness coefficient.

3. Basic Model of a Toxic Relationship

In this section, we devise a modified version of the model described in [1] where
the level of love an individual puts in a relationship varies over time, depending both on
oblivion, on the partner’s love and on the perception one has of the appeal of the partner.

We denote by 1, 2 the submitted and the toxic partner respectively.
We assume for simplicity that the partner 2’s appeal perceived by partner 1, A1,

decreases at the same rate of love x1 (i.e., oblivion’s rate is the same), it increases as
individual 1 loves more, and it decreases as fast as the difference between the amount
of love partner 2 puts into in the relationship, x2, and the desired amount of love that
partner 1 would expect from partner 2, x̂2.
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We also assume that A1 depends on a constant factor M2 of appeal i.e., income,
personality, physical appearance, etc.

We study the stability of the following system of dynamic equations:{
ẋ1(t) = −αx1(t) + βx2 + γ1 A1(t)
Ȧ1(t) = −αA1(t) + k[x1(t) + (x2 − x̂2)] + M2

(1)

where

(i) x1(t) is the love, which consists of both passion and intimacy individual 1 has for the
partner 2 at time t.

(ii) α refers to the forgetting coefficient and measures how quickly the state of love will
decrease, exponentially, in the absence of the partner.

(iii) β refers to the response of each partner to the love they receive from the other partner
(iv) x2 is the love the partner 2 puts in the relationship. We assume it is an exogenous

variable of the system and it remains constant over time, so that 0 ≤ x2 < x1(t),
∀t ≥ 0.

(v) A1(t) is the appeal factor, It is the partner 1’s perception of partner 2 at a time t.
It is a subjective variable and depends on the perception of the partner at time t.
It represents the measure of the partner’s power of attracting or arousing interest.
This is affected by partner 2 possessing specific characteristics ( physical, intellectual,
financial etc) that partner 1 is especially sensitive to.

(vi) γ1 refers to the response coefficients of the appeal of the other partner.
(vii) k measures the sensitivity of an individual with respect to the excessive unreciprocated

love given to the partner.
(viii) x̂2 is the minimum level of desired love by individual 1
(ix) M2 measures the source of partner 2’s appeal, it represents the measure of wealth,

beauty, etc. For simplicity we assume M2 to be constant over time.

We assume that parameters α, β, k, γ1 ∈ (0, 1] and x2, x̂2 ∈ [0, 1]

Definition 1. If there exists a minimum level of desired love x̂2 for individual 1 with x2 ≤ x̂2 and
if x1 > 0 then we say that the relationship between 1 and 2 is a toxic relationship.

In a toxic relationship, individual 1 loves partner 2 even if the partner 2 does not
reciprocate (neither at the minimum possible level normally requested x̂2), since the second
partner only provides x2 and x2 < x̂2 .This happens because attraction A1 of partner 1
towards partner 2 is very high.

We are going to prove that system (1) has a steady state stable equilibrium.

Proposition 1. Assume
√

kγ1 < α < β and M2 ≥ kx̂2 , then state steady (x∗1 , A∗
1)

x∗1 =
αβx2 + kγ1(x2 − x̂2)

α2 − kγ1
+

γ1M2

α2 − kγ1

A∗
1 =

βkx2 + αk(x2 − x̂2)

α2 − kγ1
+

αM2

α2 − kγ1

is an asympotically stable equilibrium for system (1).

Proof. Let A be the coefficient matrix of the system

A =

(−α γ1
k −α

)
.

since detA > 0 and trA < 0 the conclusion follows.
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Remark 1. Notice that in the steady state equilibrium, the love for the partner is always positive and
it grows as the depreciation rate decreases with respect to the sensitivity towards the partner’s appeal.

If partner 1 has x̂2 = 1 and partner 2 provides x2 = 0, the first partner still loves the second
one since

x∗1 = − kγ1

α2 − kγ1
+

γ1M2

α2 − kγ1

We notice that if the amount of love partner 2 puts in the relationship is equal to the desired
love of partner 1, i.e., x2 = x̂2, then

x∗1 =
αβx2

α2 − kγ1
+

γ1M2

α2 − kγ1

and
A∗

1 =
βkx2

α2 − kγ1
+

αM2

α2 − kγ1

This means that the first partner’s love is always positive if the second partner’s perceived
appeal overcomes the negative impact of the unreciprocated love.

In particular, if x2 = x̂2 = 0, then

x∗1 =
γ1M2

α2 − kγ1

and
A∗

1 =
αM2

α2 − kγ1

So we see that the partner 1 still loves partner 2 only depending upon the factor M2 which
represents wealth, or other benefits.

If individual 1 starts loving individual 2 at time t = 0, then 1 will love 2 forever. This
is true unless the love desired by 1 x̂2 attains a specific value

Proposition 2. If partner 1 has an amount of desired love

x̂2 =
(αβ + γ1k)x2 + γ1M2

kγ1

then partner 1 stops loving partner 2.

Proof. From the previous Proposition we see that x∗1 = 0 with this choice of x̂2.

Definition 2. Individual 1 overcomes a toxic relationship, i.e., 1 is healed, if x∗1 = 0.

Remark 2. Hence we see that from the above Proposition, individual 1 is healed only if the love
they desire equals a specific amount.

In practice, this is hard to achieve because it is not straightforward for a person to
select a specific value of love to put in a relationship. This is why in the next Section we
investigate if there are other ways to get out of such a relationship.

4. Healing

In this section, we look for conditions to help the submitted partner 1 to heal from
toxicity, since in the previous Section this condition could be attained only if the submitted
partner has a specific value of desired love x̂2.

We are going to consider two possible ways: the first one is by reducing the toxic
partner’s appeal 2 via a subsidy S > 0, while the second one is going to be the presence of
a third partner denoted by 3.
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We begin introducing a subsidy S = sM2. This represents a payment from the
government or another organization to the abused partner to cover personal living expenses
they might incur when leaving the relationship, such as rent. Here s is the factor of
proportionality chosen by the government.

In system (1) we introduce the subsidy S in the dynamic of A1{
ẋ1(t) = −αx1(t) + βx2 + γ1 A1(t)
Ȧ1(t) = −αA1(t) + k[x1(t) + (x2 − x̂2)] + M2(1 − s)

(2)

Proposition 3. The subsidy S = sM2 with

s =
αβx2 + kγ1(x2 − x̂2)

γ1M2
+ 1

is healing individual 1.

Proof. It is easy to see that in this case the steady state x∗1 s of system (2) is

x∗1 s =
αβx2 + kγ1(x2 − x̂2)

α2 − kγ1
+

γ1M2(1 − s)
α2 − kγ1

hence the result follows from the above assumptions.

Remark 3. Notice that
x∗1 s = x∗1 −

γ1M2

α2 − kγ1
s

so the subsidy reduces the love of partner one towards partner two.

Another way to heal might be the presence of a third person, denoted by 3, we want
to see if 1 can heal from the second partner. System (1) becomes{

ẋ1(t) = −αx1(t) + β(x2 − x3) + γ1 A1(t)
Ȧ1(t) = −αA1(t) + k[x1(t) + (x2 − x̂2)− x3] + M2 − M3

(3)

where x3 is the amount of love of individual 3 towards individual 1 and M3 with M3 < M2
is the appeal of the third partner.

Proposition 4. If x3 is such that

x3 = x2 +
γ1[(M2 − M3)− kx̂2]

αβ + kγ1

then 3 is healing individual 1.

Proof. It is enough to see that in this case the steady state x∗13 of system (3) is

x∗13 =
αβ(x2 − x3) + kγ1[(x2 − x̂2)− x3]

α2 − kγ1
+

γ1(M2 − M3)

α2 − kγ1

Remark 4. Notice that

x∗13 = x∗1 −
αβ + kγ1

α2 − kγ1
x3 −

γ1

α2 − kγ1
M3.

Hence, the third partner reduces the love of partner one towards partner two, similarly to the
subsidy’s role in the previous case.
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If in addition to partner 3 offering a certain fixed amount of love x3 to partner 1 there
is also a subsidy S = sM2, then proceeding as before we are going to consider the system{

ẋ1(t) = −αx1(t) + β(x2 − x3) + γ1 A1(t)
Ȧ1(t) = −αA1(t) + k[x1(t) + (x2 − x̂2)− x3] + M2(1 − s)− M3

(4)

Proposition 5. The subsidy S = sM2 with

s =
αβ(x2 − x3) + kγ1[(x2 − x̂2)− x3]

γ1M2
+ 1 − M3

M2

is healing individual 1.

Proof.

x∗13s =
αβ(x2 − x3) + kγ1[(x2 − x̂2)− x3]

α2 − kγ1
+ γ1

M2(1 − s)− M3

α2 − kγ1

and the result follows.

Remark 5. Notice that in the previous case we found that if individual 1 loves 2 without a
correspondence, then the only way to get x1 = 0 is by introducing a subsidy that counterbalances
the addiction due to income M2.

Instead, when there is also a third partner there is no need to take s > 1 because the love
term x3 also acts as a counterweight. This results in a lower minimum subsidy required to heal
partner 1 since

s = s − (αβ + kγ1)x3 + γ1M3

γ1M2

5. Discussion

A toxic relationship can be defined as a relationship characterized by one partner dis-
playing behaviours that are emotionally and often physically damaging the other partner.

A healthy relationship involves mutual caring, respect, compassion and a strong
interest in the partner’s happiness. In the couple both individuals share control and
decision-making. On the contrary, a toxic relationship is characterized by insecurity, self-
centeredness, dominance and control.

When two individuals have a toxic relationship, we usually look at the toxic partner’s
behaviour. We must also observe the individual who is the recipient of the toxic behaviour.
In fact, according to psychologists, the reasons that push adults into remaining in toxic
reationships, which will almost inevitably damage them emotionally or physically, need to
be thoroughly investigated. We think that this often happens because addiction may play a
very important role: the partner’s appeal grows over time regardless of the amount of love
the they invest in the relationship.

In this paper, we approach these issues from a theoretical point of view with the
purpose of devising an analytical model which can highlight the main points of this
problem and can shed light on useful policy solutions. To this purpose we use the model
of Rinaldi [1], adding the possibility of the toxic partner’s appeal evolving dynamically
according to a specific law of motion. Our model assumes the law’s dependence on
oblivion, on the excess of love with respect to the partner and on a constant parameter
that measures the values of the source of addiction(for instance income or wealth, etc.).
Our model shows that in the most simple case, where the partner’s behaviour is given
(exogenous) and hopelessly toxic, there is an asympotically stable equilibrium for high
values of addiction, with a submitted partner always in love.

Nevertheless, an opportune measure of correction based on subsidies can be intro-
duced. On the other hand, the lack of government help is often one of the main reasons
for the low levels of immediately reported domestic abuses. For instance, according to

41



Mathematics 2021, 9, 2258

GROVIO( Group of Experts on Action against Violence against Women and Domestic
Violence and EstremeConseguences) of the European Council, about 80% of abuse in Italy
happens at home, and there are not enough dormitories to host over 5000 women who
have left their houses to escape abusive partners. Alongside dedicated laws, penalties
and high compensation for the monetary, biological and moral damage, public funds are
essential. Furthermore, dedicated public funds play a key role in reducing any dependence
on employers or co-workers, and in incentivizing reports from victims. Nevertheless, union
organizations offering cheap or free legal help, supporting in searching for other jobs and
reintegration are very useful.

To take this problem into account , we look for an alternative policy and we study how
the results of our theorethical model change when an alternative third part enters the scene
and competes for the submitted parter’s love with the toxic partner. In this case lower or
zero subsidies can be necessary as the third part works like a substitute to decrease the
toxic dependance. Anyway a mix of policy intervention based both on subsidies and on
help from third part can be fashioned. Therefore, when a policy based only on subsidies is
not sufficient, other factors can be useful to rescue from toxicity.

Often, subsidies are not high enough or people need also to preserve their dig-
nity,security, counselling, etc. In our model for instance a high source of addiction may
also come from a very low self esteem which can otherwise be raised offering victims other
opportunities like alternative jobs or legal/counseling support. This is why we believe that
the best solutions relies in a mix of policies where alonside with the government, private
organizations offer support to the victims of abuse as well placement offices in finding
new jobs.

With this work we aimed to give a contribution to the literature on Economics of
Love and in particular we hope to incentive more theoretical and empirical studies on
relationships and to devise better policy solutions. In particular we think that a mix of
policies, directly or indirectly created to fight this phenomenon based on monetary help
and supportive institutions and organizations could be very effective.

A future development of this paper would be to consider people with low self esteem
who are most subject to this kind of addiction and where psychoterapy for couples is
strongly needed. In the extreme cases when toxicity externates in physical violence also
objective policy solutions are likely to be necessary.

An interesting follow-up investigation we would like pursue is the study of the all-
too-common instances of bullying at the workplace. In these instances, too often abuse
and harassment are considered normal events, so that the workers who suffer them prefer
to remain silent. This occurs especially when the victim’s job position is precarious and
when the employer can affect the victim’s financial condition on a whim. Istat data for Italy
tell us that 9 out of 100 women, during their working life, have suffered harassment or
blackmail with a sexual background at work (1 million 403 thousand), but that only 20%
talk about it with someone (usually office colleagues) and only 0.7% complain, for fear of
retaliation, shame, or for a distorted sense of guilt, slander. The company is damaged by
these occurrances as well as the workers as the effects are a lower productivity, increased
risk of accidents and conflict. The inevitable repercussions then fall on the health service
(treatments, drugs) and on the social security system (illnesses, injuries, etc.).
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also belongs. The chosen family comes with coefficients that all depend on five free parameters.
These latter parameters are tuned in a way to furnish a new method that performs best on a couple
of oscillators. Then, we observe that this trained pair outperforms other well known methods in the
relevant literature in a standard set of problems with periodic solutions. This is remarkable since no
special property holds such as high phase-lag order or an extended interval of periodicity.

Keywords: initial value problem; oscillatory problems; Runge–Kutta; differential evolution

MSC: 65L05; 65L06; 90C26; 90C30

1. Introduction

The Initial Value Problem (IVP) is

y′ = f (x, y), y(x0) = y0 (1)

with x0 ∈ R and the vectors y, y′ ∈ Rm. The function f is defined as f : R×Rm → Rm.
Runge–Kutta (RK) pairs are perhaps the most used numerical methods for addressing

(1). They usually presented in a so-called Butcher tableau [1,2] as given below.

c A
b
b̂

In this type of tableau, we have bT , b̂T , c ∈ Rs while A ∈ Rs×s. Then, the method
shares s stages and in case that A is strictly lower triangular, it is evaluated explicitly. The
numerical approximations of the solution step from (xn, yn) ∈ R1+m to xn+1 = xn + hn
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by producing two numerical estimations for y(xn+1). Namely, yn+1 ∈ Rm and ŷn+1 ∈ Rm,
given by

yn+1 = yn + hn

s

∑
i=1

bi fi,

and

ŷn+1 = yn + hn

s

∑
i=1

b̂i fi,

with

fi = f (xn + cihn, yn + hn

i−1

∑
j=1

aij f j),

for i = 1, 2, · · · , s. These two approximations yn+1 ∈ Rm and ŷn+1 ∈ Rm are of algebraic
orders p and q < p, respectively. This means that when expanding them in Taylor series,
they attain orders O(hp) and O(hq), respectively, with h being the proper step–length. Then,
a local error estimation

εn = hp−q−1
n · ‖yn+1 − ŷn+1‖∞,

is formed in every step and is combined in an algorithm for changing the steplength.

hn+1 = 0.8 · hn ·
(

t
εn

)1/p
,

with t a small positive number which is set by the user and is named tolerance. The safety
factor 0.8 is in common use in such formulas and offers increased reliability to the results.
Whenever εn < t, we use the above formula for defining the length of the next step forward.
In reverse, when εn ≥ t we again use it without advancing the solution in this case and
using instead the value hn+1 as a new trial step hn. Information in the issue can be found
with details in [3]. As an abbreviation these methods are named RKp(q) airs.

Carl David Tolmé Runge [4] and Martin Wilhelm Kutta [5] introduced the methods
bearing their names almost in the turning of the 19th century. For almost 60 years the these
methods were implemented with constant step sizes. Richardson extrapolation appeared in
the meantime [6] and was used in a kind of step control through doubling and halving [7].
Runge–Kutta pairs appeared 60 years ago. The first series of well-known Runge–Kutta
pairs of orders 5(4), 6(5), and 8(7) were presented by Fehlberg [8,9]. In the early 1980s,
Dormand and Prince gave their celebrated pairs [10,11].

Non-stiff problems having the form (1) are well suited for being efficiently solved by
Runge–Kutta pairs. There is a number of different pairs sharing various orders. We may
explain this by the accuracy on demand. Thus, the lesser the accuracy required, the lesser
order pairs are chosen. Otherwise, for stringent accuracies at quadruple precision, a high
order pair has to be preferred.

Here, we concentrate on RK5(4) pairs which are the first choice when middle tolerances
are used. Our special interest is in problems of the form (1) with periodic/oscillatory
solutions. In the following, we focus on producing a RK5(4) pair that best address the latter
type of problems.

The paper is organized in sections as follows.

1. Introduction
2. Theory of Runge–Kutta pairs for orders 5(4)
3. Training the coefficients
4. Numerical tests
5. Conclusions
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2. Theory of Runge–Kutta Pairs for Orders 5(4)

Runge–Kutta pairs of orders five and four are perhaps the most used ones. The
coefficients of these pairs have to satisfy 25 order conditions when the almost obligatory

A · e = c, e = [1, 1, · · · , 1] ∈ R
s (2)

holds. Namely, 17 order conditions for the higher order formula and another 8 conditions
for the fourth order formula. For a seven stages (i.e., s = 7) pair with an FSAL (First Stage
As Last) property there are 28 coefficients after considering (2). Over the years, various
techniques for solving this system have been presented. The solutions form different
families. Dormand and Prince presented such a family and perhaps the most famous pair
of all in [10]. Papakostas and Papageorgiou studied this family extensively [12]. Then, we
may choose arbitrarily the coefficients c2, c3, c4, c5, b̂7 and produce all the rest coefficients
explicitly. The particular pair DP5(4) appeared in [10] shares small principal truncation
error coefficients and it is implemented in the builtin function ode45 of MATLAB [13].

We now proceed presenting explicit formulas for the remaining coefficients that only
depend on the five free parameters.

b3 =
c4(5 − 10c5) + 5c5 − 3

60(c3 − 1)c3(c3 − c4)(c3 − c5)
, b4 =

5c3(2c5 − 1)− 5c5 + 3
60(c4 − 1)c4(c3 − c4)(c4 − c5)

,

b5 =
5c3(2c4 − 1)− 5c4 + 3

60(c5 − 1)c5(c3 − c5)(c5 − c4)
,

b6 =
5c3(c4(6c5 − 4)− 4c5 + 3)− 20c4c5 + 15c4 + 15c5 − 12

60(c3 − 1)(c4 − 1)(c5 − 1)
,

b̂3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
10(6b̂7 − 1)c2

3c4
+c3(−8b̂7(7c4 + 1)

+8c4 + 1) + 2(8b̂7 − 1)c4

⎞⎟⎟⎠
(

5c3(c4(6c5 − 4)− 4c5 + 3)
−20c4c5 + 15c4 + 15c5 − 12

)

5(c3−1)

(
10c2

3c4
−c3(8c4 + 1) + 2c4

)
−12b̂7(c4 − 1)(c5 − 1) + 2c4(3c5 − 2)− 4c5 + 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
12c3(c3 − c4)(c3 − c5)

,

b̂4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
−

⎛⎜⎜⎝
10(6b̂7 − 1)c2

3c4
+c3(−8b̂7(7c4 + 1) + 8c4 + 1)

+2(8b̂7 − 1)c4

⎞⎟⎟⎠
(

5c3(c4(6c5 − 4)− 4c5 + 3)
−20c4c5 + 15c4 + 15c5 − 12

)

5(c4−1)

(
10c2

3c4
−c3(8c4 + 1) + 2c4

)
+12b̂7(c3 − 1)(c5 − 1)− 2c3(3c5 − 2) + 4c5 − 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
12c4(c3 − c4)(c4 − c5)

,

b̂5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎝
10(6b̂7 − 1)c2

3c4
+c3(−8b̂7(7c4 + 1) + 8c4 + 1)

+2(8b̂7 − 1)c4

⎞⎟⎟⎠
(

5c3(c4(6c5 − 4)− 4c5 + 3)
−20c4c5 + 15c4 + 15c5 − 12

)

5(c5−1)

(
10c2

3c4
−c3(8c4 + 1) + 2c4

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
−12b̂7(c3 − 1)(c4 − 1) + 2c3(3c4 − 2)− 4c4 + 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
12c5(c3 − c5)(c4 − c5)

,

b̂6 = −

{ (
10(6b̂7 − 1)c2

3c4 + c3(−8b̂7(7c4 + 1) + 8c4 + 1) + 2(8b̂7 − 1)c4

)
·

(5c3(c4(6c5 − 4)− 4c5 + 3)− 20c4c5 + 15c4 + 15c5 − 12)

}
60(c3 − 1)(c4 − 1)(c5 − 1)

(
10c2

3c4 − c3(8c4 + 1) + 2c4
) ,
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a3,2 =
c2

3
2c2

, a4,2 =
c2

4(3c3 − 2c4)

2c2c3
, a4,3 =

c2
4(c4 − c3)

c2
3

,

a5,2 =
c5
(
15c2

3c4(2c5 − 1) + c3
(
c4
(
6 − 20c2

5
)
+ (3 − 5c5)c5

)
+ 2c4c5(5c5 − 3)

)
2c2c3(5c3(2c4 − 1)− 5c4 + 3)

,

a5,3 = −
c5(c3 − c5)

(
10c2

3c4(2c5 − 1) + c3

( −5c2
4(4c5 − 3)

+c4(4 − 15c5) + 2c5

)
+ 2c2

4(5c5 − 3)
)

2c2
3(c3 − c4)(5c3(2c4 − 1)− 5c4 + 3)

,

a5,4 =
(5c3 − 2)c5(c3 − c5)(c4 − c5)

2c4(c3 − c4)(5c3(2c4 − 1)− 5c4 + 3)
,

a6,2 =
15c2

3c4(2c5 − 1) + c3(c4(16 − 30c5)− 5c5 + 3) + 2c4(5c5 − 3)
2c2c3(5c3(c4(6c5 − 4)− 4c5 + 3)− 20c4c5 + 15c4 + 15c5 − 12)

,

a6,3 = −

(c3 − 1) ·

⎛⎝ −c2
3
(
5c2

4(4c5 − 3) + 20c4c2
5 + c4 − 2

)
+c3

(
c2

4(25c5 − 16) + c4
(
40c2

5 − 45c5 + 16
)
− 2

(
5c2

5 − 7c5 + 3
))

10c3
3c4(2c5 − 1) + 2c2

4(3 − 5c5)c5

⎞⎠
2c2

3(c3 − c4)(c3 − c5)(5c3(c4(6c5 − 4)− 4c5 + 3)− 20c4c5 + 15c4 + 15c5 − 12)
,

a6,4 =
(c3 − 1)(c4 − 1)

(
5c3

(
c4 − 4c2

5 + 5c5 − 2
)
− 2

(
c4 − 5c2

5 + 7c5 − 3
))

2c4(c3 − c4)(c4 − c5)(5c3(c4(6c5 − 4)− 4c5 + 3)− 20c4c5 + 15c4 + 15c5 − 12)
,

a6,5 =
(c3 − 1)(c4 − 1)(c5 − 1)(5c3(2c4 − 1)− 5c4 + 3)

c5(c3 − c5)(c4 − c5)(5c3(c4(6c5 − 4)− 4c5 + 3)− 20c4c5 + 15c4 + 15c5 − 12)
,

b1 = 1 − b3 − b4 − b5 − b6, b̂1 = 1 − b̂3 − b̂4 − b̂5 − b̂6 − b̂7,

a21 = c2, a31 = c3 − a32, a41 = c4 − a42 − a43,

a51 = c5 − a52 − a53 − a54, a61 = c6 − a62 − a63 − a64 − a65,

and finally the FSAL property holds

a7j = bj, j = 1, 2, · · · , 6.

This means that although s = 7, the method wastes only six stages per step and the
seventh stage is reused as first stage of the next step.

The question raising now is how to choose the free parameters. Traditionally, the
method developers try to minimize some norm for the principal term of the local truncation
error, i.e., the terms of h6 in the residual of Taylor error expansions corresponding to the
fifth order method of the underlying RK pair. Another choice is to increase the phase-lag
order. This means that we try to reduce the gap in the angle among the numerical and the
theoretical solution in a free oscillator [14]. The latter approach is well suited for usage in
problems with periodic solutions.

3. Training the Coefficients

We intent to derive a particular RK5(4) pair that belongs to the family discussed above.
The resulting pair has to perform best on harmonic oscillators and other problems with
periodic solutions. For achieving this, we will first try to find a pair that performs best on a
couple of harmonic oscillators. Then, we will check if this performance expands to other
problems with periodic solutions.

Thus, we concentrate on the harmonic oscillator

y′′ = −μ2y, y(0) = 1, y′(0) = 0, x ∈ [0, 10π],
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with theoretical solution y(x) = cos μx. This problem can be transformed to a first-order
system, [

y′1
y′2

]
=

[
0 1
−μ2 0

][
y1
y2

]
, y1(0) = 1, y2(0) = 0, x ∈ [0, 10π],

and then solved it numerically by a RK5(4) pair picked from the family of solutions we
are concerned here. We use tolerance t = 10−11 and μ = 3 and μ = 7. The choice of μ is
tailored by the numerical tests we will present below. The values selected are best placed
when μ ∈ [0, 10]. Notice that the above selection of μ is for the training phase. It is hoped
that the resulted method will furnish better results for every μ.

We record the number k1 and k2 of stages (i.e., function evaluations) needed and
the global errors g1 and g2 observed over the grid (mesh) in the interval of integration,
respectively (i.e for both selections of μ). Then, we form two efficiency measures

uj = kj · g1/5
j , j = 1, 2 (3)

in the sense that higher values mean lower efficiency. These measures were introduced
in [15] for comparing pairs of the same order.

Now we may set as fitness function the sum u1 + u2 which is meant to be minimized.
Thus, the fitness function consists of two runs of an Initial Value Problem. The value
u1 + u2 changes according to the selection of the free parameters c2, c3, c4, c5, and b̂7. We
actually do not care at this stage for b̂7, as this coefficient actually affects only the tolerance.
Indeed we may choose

b̃7 = λ · b̂7, λ �= 0,

and set a new b̃ = λb̂ + (1 − λ)b, as the new fourth order formula. Then, the tolerance
simply becomes λt.

This idea was originally appeared in [16]. Here, for the minimization of u1 + u2 we
tried Differential Evolution [17]. We have already got positive results using this approach
for methods in integrating of orbits [18,19]. In these latter works, we trained the coefficients
of the methods on a Kepler orbit. Then we observed very pleasant results over a set of
Kepler orbits as long on other known orbital problems.

DE is an iterative procedure and in every iteration, named generation g, we work
with a “population” of individuals

(
c(g)

2 , c(g)
3 , c(g)

4 , c(g)
5 , b̂(g)

7

)
i
, i = 1, 2, · · · , P with P the

population size. An initial population
(

c(0)2 , c(0)3 , c(0)4 , c(0)5 , b̂(0)7

)
i
, i = 1, 2, · · · , P is randomly

created in the first step of the method. We have also set as fitness function the measure
u1 + u2 obtained after two runs of harmonic oscilator. The fitness function is then evaluated
for each individual in the initial population. In each generation (iteration) g, a three-phase
sequential scheme updates all of the individuals involved. These phases are Differentiation,
Crossover, and Selection. For further details in the issue see in [20]. We used MATLAB
Software DeMat [21] for implementing the latter technique.

The optimization furnished five values for the parameters. The result is rather robust,
i.e., we get almost the same optimal value for u even for neighboring parameters. Thus, we
present the selected parameters in 6 significant decimal digits below,

c2 =
6618
21991

, c3 =
3679
11497

, c4 =
25691
30789

, c5 =
5444
5589

, b̂7 =
11

400
.

The resulting pair is presented in Table 1.
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Table 1. Coefficients of NEW5(4) pair, accurate for double precision computations.

0

6618
21991

6618
21991

3679
11497

105068699
701077884

87461119
514086615

25691
30789 − 156758655

1553593837 − 1971428717
769326967

1150666171
328963002

5444
5589 − 492306695

897757177 − 4668023671
453052236

11886685592
971735195 − 563000739

1384986010

1 − 1277080003
2297156422 − 19858667372

1842147371
12595531818
990040061 − 479293713

1359193574 − 43409699
1295767884

1 118291366
1206413123 0 224782023

473511539
563088416
949003535 − 735589742

998947995
326830465
573133003

5th-order 118291366
1206413123 0 224782023

473511539
563088416
949003535 − 735589742

998947995
326830465
573133003

4th-order 34973117
364942645 0 660068138

1367732753
376526469
703576622 − 319022417

656211193
219368109
635728846

11
400

For the above selection of free parameters, we got

uNEW54
1 = 88.37, uNEW54

2 = 284.89,

while for DP5(4) we observed

uDP54
1 = 279.28, uDP54

2 = 797.55

i.e.,
uDP54

1

uNEW54
1

+
uDP54

2

uNEW54
2

=
279.28
88.37

+
797.55
284.89

≈ 3.16 + 2.80 = 5.96,

meaning that DP5(4) is 216% (interpreting number 3.16) and 180% (interpreting number
2.80), respectively, more expensive for delivering the same accuracy in the two oscillators
chosen above.

The Euclidean norm of the principal truncation error coefficients for the new pair is
‖T(6)‖2 ≈ 2.82 × 10−4 which is a little smaller than the corresponding value ‖T(6)‖2 ≈
3.99× 10−4 for DP5(4). The absolute stability interval is (−3.55, 0] which is rather in normal
magnitude. No extra phase-lag order is observed as bA4c = 13128101

9439496880 �= 1
840 . See in [14]

for details on phase-lag property.
In conclusion, it seems that no extra property is present. The new pair appeared in

Table 1 does not possess something interesting. It is hard to believe its special performance
after seeing its traditional characteristics.

Other authors have also tried recently to train coefficients of RK methods [22]. How-
ever, in that later paper, only second- and third-order methods are considered [4,5] with
constant step sizes and over single problems (e.g., Van der Pol). The learning algorithm
given there remains to be tested on current and stiffer cases. Our proposal for Differential
evolution comes after several papers through the years [16].

4. Numerical Tests

We tested the following two pairs chosen from the family studied above.

1. DP5(4) pair given in [10].
2. NEW5(4) pair given here in Table 1.

DP5(4) has proven over the years to be perhaps the best pair of orders five and four.
Other pairs also exist but the difference with DP5(4) is very small. We do not consider pairs
that exploit the knowledge of frequency since this property is not considered here.
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All the pairs were run for tolerances 10−5, 10−6, · · · , 10−11, and the efficiency measures
of the form (3) were recorded. Notice that actually all the problems are transformed in
systems of first order equations.

The problems we tested are the following.

1–5. The model problem

y′′(x) = −μ2y(x), y(0) = 1, y′(0) = 0, x ∈ [0, 10π],

with theoretical solution y(x) = cos(μx). This problem was run for five different selections
of μ. Thus, when we use μ = 1 the problem is numbered as 1st problem. Then we choose
μ = 3 and the problem is numbered as 2nd problem. In consequence when μ = 5 the
problem is numbered as 3rd problem, when μ = 7 the problem is numbered as 4th problem,
and when μ = 9 the problem is numbered as 5th problem.

6. The inhomogeneous problem

y′′(x) = −100y(x) + 99 sin x, y(0) = 1, y′(0) = 11, x ∈ [0, 10π],

with theoretical solution y(x) = cos(10x) + sin(10x) + sin x.

7. The Bessel equation
The well-known Bessel equation

y′′(x) = −y(x) · 1 + 400x2

4x2 ,

is verified by a theoretical solution of the form [14]

y(x) = J0(10x) ·
√

x,

with J0 the zeroth order Bessel function of the first kind. This equation in also integrated in
the interval [0, 10π].

8. The Duffing equation

Next, we choose the equation

y′′(x) =
1

500
· cos(1.01x)− y(x)− y(x)3,

y(0) = 0.2004267280699011, y′(0) = 0,

with an approximate analytical solution given in [23],

y(x) ≈

⎧⎨⎩
6 · 10−16 cos(11.11x) + 4.609 · 10−13 cos(9.09x)
+3.743495 · 10−10 cos(7.07x) + 3.040149839 · 10−7 cos(5.05x)
+2.469461432611 · 10−4 cos(3.03x)0.2001794775368452 cos(1.01x)

⎫⎬⎭
We again solved the above equation in the interval [0, 10π].

9. semi-Linear system.

The nonlinear problem proposed by Franco and Gomez [24] follows.

y′′(t) =

( −199 −198
99 98

)
· y(x) +

(
(y1 + y2)

2 + sin2(10x)− 1

(y1 + 2y2)
2 − 10−6 sin 2(x)

)
,

x ∈ [0, 10π],

with theoretical solution

y(t) =
(

2 cos(10x)− 10−3 sin(x)
− cos(10x) + 10−3 sin(x)

)
.
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10. Van der Pol oscillator.

The equation we solved is

y′′ = 0.1 · (1 − y(x)2)y′(x)− y(x), y(0) = −0.2, y′(0) = 0, x ∈ [0, 10π],

and no analytical solution is known. Thus, the error at grid was estimated using an
eighth-order pair from [25] at tolerance 10−14.

We calculated seventy (i.e., 7 tolerances times 10 problems) efficiency measures for
each pair. We set NEW54 as the reference pair. Then, we divide each efficiency measure of
DP5(4) with the corresponding efficiency measure of NEW5(4). The results are recorded
in Table 2. The two underlined numbers correspond to the ratios found in the phase of
training above as the training was done for problems 2 and 4 and tolerance 10−11. Numbers
greater than 1 are in favor of the second pair. b̂7 was chosen so that the total function
evaluations spend for both pairs over all 70 runs is almost equal. The rightmost column
shows the mean over all tolerances for each problem. The overall average observed ratio
is 1.85 meaning that DP5(4) is about 85% more expensive. This is quite remarkable since
much effort has been put over the years for achieving even 10–20% of efficiency [25]. In
reverse, this means that about log10 1.855 ≈ 1.34 digits were gained in average at the same
costs [15].

Table 2. Efficiency measures ratios of DP5(4) vs. NEW5(4) over the interval [0, 10π].

Tolerances

Problem 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

1 1.33 1.45 1.60 1.76 1.93 2.12 2.65 1.83
2 1.36 1.48 1.63 1.79 1.96 2.17 3.16 1.94
3 1.37 1.50 1.64 1.80 1.98 2.20 2.74 1.89
4 1.38 1.51 1.65 1.81 1.99 2.22 2.80 1.91
5 1.39 1.51 1.66 1.82 1.99 2.23 2.24 1.83
6 1.41 1.54 1.68 1.85 2.02 2.35 1.75 1.80
7 1.32 1.44 1.57 1.72 1.89 2.08 2.67 1.81
8 1.14 1.4 1.65 1.93 2.19 2.38 2.40 1.87
9 1.52 1.67 1.84 2.00 2.17 2.54 1.98 1.96
10 1.25 1.36 1.49 1.62 1.77 1.94 2.24 1.67

Because of the problems used for training, it is obvious that we expect better results
when there is a larger linear part and a smaller nonlinear part. However, NEW5(4) outper-
formed DP5(4) even in the clearly nonlinear problems. We also mention that we got more
or less similar results for longer integrations. Especially the results for the interval [0, 20π]
are shown in Table 3. The overall average observed is 1.84 and the results slightly differ
from those of the previous Table.

As a final test, we included a more challenging problem which appears frequently in
similar works [14,23], namely, the hyperbolic PDE,

ϑu
ϑx

=
ϑu
ϑr

, u(x, 0) = 0, u(0, r) = sin π2r2,

0 ≤ r ≤ 1, x ≥ 0,

is discretized by symmetric differences (with Δr = 1/50) to the system of ODEs⎡⎢⎢⎢⎢⎣
y′1
y′2

y′50

⎤⎥⎥⎥⎥⎦ =
1
2
· 1
(1/50)

⎡⎢⎢⎢⎢⎣
0 −1
1 0 −1

1 0 −1
−1 4 −3

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
y1
y2

y50

⎤⎥⎥⎥⎥⎦.
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The 500th zero of the 20th component in the above problem is reached for

x500 = 33.50999699533,

which is found by a very accurate integration at stringent tolerances. We integrated the
methods to that point. The results presented as stages vs. error in a semi-log form and are
given in Figure 1.

Table 3. Efficiency measures ratios of DP5(4) vs. NEW5(4) over the interval [0, 20π].

Tolerances

Problem 10−5 10−6 10−7 10−8 10−9 10−10 10−11 Mean

1 1.33 1.45 1.60 1.75 1.92 2.11 2.64 1.83
2 1.36 1.49 1.63 1.78 1.96 2.16 3.17 1.94
3 1.37 1.50 1.64 1.80 1.97 2.18 2.58 1.86
4 1.38 1.51 1.65 1.81 1.98 2.19 2.79 1.90
5 1.39 1.51 1.66 1.82 1.99 2.23 2.42 1.86
6 1.41 1.54 1.68 1.85 2.03 2.36 1.80 1.81
7 1.32 1.44 1.57 1.72 1.89 2.07 2.65 1.81
8 1.08 1.36 1.66 1.98 2.33 2.58 2.58 1.94
9 1.52 1.67 1.84 2.00 2.17 2.44 1.73 1.91
10 1.24 1.28 1.34 1.44 1.58 1.75 2.17 1.54
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Figure 1. Results of DP5(4) vs. NEW5(4) for the Hyperbolic PDE.
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The results are very promising. Some future research may use optimization on a wider
range of tolerances and model problems. Perhaps a pair spending a parameter for fulfilling
the phase-lag property and then trained for periodic problems would furnish even more
interesting results. Of course, application of this technique on other classes of problems is
also possible, e.g., orbits.

5. Conclusions

We proposed the proper training the coefficients of Runge–Kutta pairs of orders five
and four in order to perform best on problems with oscillatory solutions. We actually
chose a couple of harmonic oscillators, an interval and a tolerance and tried to achieve
an outstanding performance there. Thus, we concluded to a new pair which is found to
outperform other representatives from this family in a wide range of relevant problems.
This pair is supposed to be better than classical DP5(4) for problems with periodic solutions.
If there are limitations remain to be clarified by applications in the future research.
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Abstract: In some diseases, due to the restrictive availability of vaccines on the market (e.g., during
the early emergence of a new disease that may cause a pandemic such as COVID-19), the use of
plasma transfusion is among the available options for handling such a disease. In this study, we
developed an SEIR mathematical model of disease transmission dynamics, considering the use of
convalescent plasma transfusion (CPT). In this model, we assumed that the effect of CPT increases
patient survival or, equivalently, leads to a reduction in the length of stay during an infectious
period. We attempted to answer the question of what the effects are of different rates of CPT
applications in decreasing the number of infectives at the population level. Herein, we analyzed
the model using standard procedures in mathematical epidemiology, i.e., finding the trivial and
non-trivial equilibrium points of the system including their stability and their relation to basic and
effective reproduction numbers. We showed that, in general, the effects of the application of CPT
resulted in a lower peak of infection cases and other epidemiological measures. As a consequence,
in the presence of CPT, lowering the height of an infective peak can be regarded as an increase in
the number of remaining healthy individuals; thus, the use of CPT may decrease the burden of
COVID-19 transmission.

Keywords: SEIR ODE model; COVID-19 transmission; convalescent plasma transfusion (CPT)

1. Introduction

The WHO officially declared the COVID-19 pandemic more than a year ago, i.e., on
11 March 2020 [1]. COVID-19 is caused by the SARS-CoV-2 virus, which is thought to have
originated in Wuhan, China. At the time of writing this paper, over 247,434,286 cases have
been reported across 223 countries with a total of 5,014,576 people having died [2]. Since
the announcement of the pandemic, almost every country has made a concerted effort to
control the virus, but the number of COVID-19 infections is still climbing in many parts of
the world. Although more than a year has passed, there remain some unwanted effects of
the pandemic impacting almost every facet of human life. In terms of health, economy, and
other human aspects, COVID-19 is still considered a very dangerous new disease. After
more than a year since its first appearance, COVID-19 is still reoccurring in many parts of
the world for multiple reasons including mutation of the virus into different variants. This
is one of the reasons why most infected countries are failing in battling the disease.

Some works in the literature have shown that convalescent plasma transfusion (CPT)
is currently being used as an alternative medical treatment method for COVID-19 patients.
This treatment has been successfully implemented and has resulted, in particular, in
increasing the number of survivors from the disease and reducing the number of deaths
in moderate and severe cases. Convalescent plasma transfusion involves the use of blood
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plasma to assist COVID-19 patients with the process of recovery. Blood plasma is taken from
people who have recovered from COVID-19 and who have antibodies against COVID-19
in their blood. Since there is currently no approved treatment for COVID-19, the US
Food and Drug Administration has approved convalescent plasma therapy for people
with COVID-19 [3]. Before blood can be transfused to a patient, it must be processed to
produce plasma and antibodies through the removal of blood cells. Upon transfusion, this
plasma has the ability to boost the attack rate of the body of its recipient against the virus.
This treatment is commonly referred to as CPT [4,5]. It has been documented that many
governments have already advocated for the use of this method to combat COVID-19.
Among the governments that have implemented CPT in their countries are Indonesia, the
United States, the United Kingdom, Australia, and India [6–8].

CPT is not a new concept. For more than a century, CPT has been used as a passive
immunization strategy in the prevention and treatment of epidemic infections [9]. The first
documented use of CPT dates back to at least 1918–1920, when it was used to treat Spanish
influenza A (H1N1) pneumonia, but it could be even older [10]. This method is being used
as a potential therapy for patients infected with COVID-19 [11]. Several studies have also
shown that convalescent plasma can reduce the risk of mortality in a patient receiving
CPT treatment [12,13]. Many works have shown that the result is a reduction in a patient’s
mortality risk as well as an increase in viral clearance [14].

Despite its increasing popularity as an alternative clinical treatment for COVID-19
patients, a recent finding [14] pointed out that “most clinical studies, in particular case
reports and case series, were of poor quality. Only 1 RCT [randomized controlled trials]
was of high quality”. Hence, the authors argued that “future research is necessary to fill
the knowledge gap regarding prevention and treatment for patients with COVID-19 with
CP while other therapeutics are being developed”. Currently, medical and epidemiological
studies use not only clinical methods but include other forms or approaches such as
mathematical modeling. The other shortcomings of studies on CPT are that, to date,
the impacts of CPT applications on the population have remained unclear. The present
study had the objective of filling in this gap via a mathematical approach in the hope that
new insight could be gained regarding the effect of CPT applications, especially at the
population level.

Only a few mathematical modeling papers (e.g., [15,16]) have addressed this issue
mathematically. The authors of [16] performed preliminary work on this issue and pre-
sented mathematical models not specific to COVID-19 but that take the form of general
discrete time SIR and SEIR models [16]. In the present paper, a mathematical modeling
approach was used to answer an important question on the effect of convalescent plasma
transfusion on the reduction of COVID-19 transmission at the population level. The as-
sumptions used in the development of the model were taken from the literature, showing
that the majority of patients who received CPT recovered and had lower mortality rates
than patients who were not treated using CPT transfusion. In the developed model, we
assumed that the effect of CPT would be to increase the rate of recovery. A continuous
SEIR epidemic model was used to describe the transmission of COVID-19. The SEIR model
can appear in the form of discrete models [17,18], but we used the continuous form here,
since this is the most often used version in the literature.

2. Materials and Methods

The tool used to conduct the research was a mathematical model, i.e., a system of
differential equations representing the transmission dynamics of COVID-19. The mathe-
matical model was obtained through the process of mathematical modeling to convert the
transmission mechanisms and problems therein into mathematical concepts and mathe-
matical problems. In this case, the main concepts were a system of differential equations
and related problems on how to determine and understand solutions to the problems at
hand (the detailed method can be found in [19–21]). The following section presents the
mathematical modeling process used for the remaining discussion.
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Mathematical Model

Let us consider a human population, which, due to the circulation of COVID-19, is
divided into four sub-classes/sub-populations, namely, the susceptible (S), the exposed (E),
the infective (I), and the recovered, who are assumed to be immune (R). For all variables in
the model (i.e., X = S, E, I, R, N), the notation X(t) means the number of individuals in X
class at time t.

Suppose that the health authority responsible for the population administers a CPT
intervention to cure infected people. We may raise the question of, in this case, how and to
what extent does the presence of CPT affect the dynamics of the system. What is the main
contribution of CPT at the population level? There are several scenarios regarding how CPT
is administered depending on the real situation such as a constant versus proportional rate
of CPT administration. Herein, we analyzed the continuous SEIR model in the presence of
CPT using a standard procedure in mathematical epidemiology, i.e., finding the trivial and
non-trivial equilibrium points of the system including their stability. A schematic diagram
of disease transmission is shown in Figure 1a. The detailed route from compartment I
to compartment R is as shown in Figure 1b with various possible numerical responses
f (I(t),R(t)) as outlined in Table 1.

 

(a) 

 

(b) 

Figure 1. Progression diagram of SEIR transmission with CPT effect f (I(t),R(t)) (a) and four possible
severity levels of COVID-19 infected patients (b).

The notations used in the schematic diagram above are:

β Transmission rate;
δ Transition rate from exposed class to infective class;
α Recovery rate;
μ Demographic rate (birth and death);
f (I,R) Functional form, which together with ε, acts as the CPT intervention rate.
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Table 1. Different possible scenarios of CPT implementation.

Number CPT Scenario Numerical Response f(I(t),R(t))

1 Proportional rate to infectives εI(t)
2 Proportional rate to recovered εR(t)

3 Mass action rate
(Lotka–Volterra) εI(t)R(t)

4 Constant rate ε

5 Saturating rate
(Michaelis–Menten)

εR(t)
r+R(t)

6 Maximum service limitation min(εI(t), Maxserv)
7 Maximum service limitation min(εR(t), Maxserv)
8 Maximum service limitation min(εI(t)R(t), Maxserv)
9 Maximum service limitation min( εR(t)

r+R(t) , Maxserv)

Maxserv is the maximum rate of CPT intervention that a health authority could afford.

To introduce CPT into the SEIR system, we assumed that the CPT rate was a function
of both the infective and recovered, most likely proportional to them, say with functional
form f (I(t),R(t)). We called this function a numerical response. The exact form of the
numerical response may vary depending on the assumption being used. For example,
it may only depend on I(t) when the disease has already developed and many infected
peoples have already recovered, being the source of the convalescent plasma (CP). We may
assume that the blood source of the CP is abundant. Other examples are presented in Table
1. By assuming a normalized population with N(t) = S(t) + E(t) + I(t) + R(t), the general
mathematical model of CPT in SEIR transmission is given by Equations (1)–(4):

dS
dt

= μ − βS(t)I(t)− μS(t) (1)

dE
dt

= βS(t)I(t)− δE(t)− μE(t) (2)

dI
dt

= δE(t)− αI(t)− μI(t)− f (I(t), R(t)) (3)

dR
dt

= αI(t)− μR(t) + f (I(t), R(t)) (4)

In the subsequent section, we analyze the model by showing its steady-state solutions,
their stability, and their relation to the basic reproduction number, which is central in
mathematical epidemiology studies. Furthermore, we show that the use of CPT may
decrease the burden of COVID-19 transmission such as resulting in a lower peak of infection
cases and a higher number of persons who remain susceptible. In this paper, a detailed
analysis was conducted for one of the numerical responses, i.e., the CPT rate proportional
to the number of infectives, reflecting an abundance of sources for the CP. The equilibrium
solution of the model was investigated analytically, while the transient solution was
explored numerically.

3. Results and Discussions

As mentioned earlier, herein, we considered the simplest case in which we assumed
that the availability of the CP was abundant. This might not be realistic but was used as
the first attempt to answer the abovementioned question. Once we obtained the answer,
we explored it in more realistic cases. Since we assumed that the CP was widely available,
a health authority may apply a CPT rate proportional to the number of infected people. We
did not differentiate between mild, severe, and critical patients. Thus, in the presence of
CPT, the rate of recovery due to the fact of this intervention also increased proportionally
to the number of those infected given CPT. The following section discusses the SEIR model
by considering the simplest numerical response, and other forms of numerical response
are explored in the numerical examples section.
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3.1. The SEIR Continuous Model with CPT Proportional to Infective Class

The modification of Equations (1)–(4), by considering the introduction of CPT propor-
tional to the infective class, yields the following equations:

dS
dt

= μ − βS(t)I(t)− μS(t) (5)

dE
dt

= βS(t)I(t)− δE(t)− μE(t) (6)

dI
dt

= δE(t)− αI(t)− μI(t)− εI(t) (7)

dR
dt

= αI(t)− μR(t) + εI(t) (8)

An endemic-free or non-endemic equilibrium always exists for any parameters of the
model. However, we show that there is a threshold that determines the existence of an
endemic equilibrium, say T ε, so that the endemic equilibrium exists only if T ε is above a
certain value; otherwise, an endemic equilibrium does not exist. We sum up this property
in the following theorem.

Theorem 1. In the SEIR model (Equations (5)–(8)), the following properties hold:

(a) A non-endemic equilibrium always exists, given by (S0
∗, E0

∗, I0
∗, R0

∗) = (1, 0, 0, 0);
(b) The endemic equilibrium is given by (Se

∗, Ee
∗, Ie

∗, Re
∗) with:

Se
∗ = δα+δε+δμ+μα+με+μ2

βδ ,

Ee
∗ = (μδ+μα+δα+δε+με+μ2−βδ)μ

(δ+μ)βδ
,

Ie
∗ = − (μδ+μα+δα+δε+με+μ2−βδ)μ

(δα+δε+δμ+μα+με+μ2)β
,

Re
∗ = − (μδ+μα+δα+δε+με+μ2−βδ)(α+ε)

(δα+δε+δμ+μα+με+μ2)β
.

(c) There is a threshold, T ε, such that an endemic equilibrium exists only if T ε > 1; otherwise,
an endemic equilibrium does not exist.

Proof of Theorem 1. By solving Equations (5)–(8) simultaneously under steady-state condi-
tions (i.e., when all LHSs of the equations are equal to zero), the system has two equilibria,
i.e., (S0

∗, E0
∗, I0

∗, R0
∗) and (Se

∗, Ee
∗, Ie

∗, Re
∗), with (S0

∗, E0
∗, I0

∗, R0
∗) = (1, 0, 0, 0) and:

Se
∗ = δα+δε+δμ+μα+με+μ2

βδ ,

Ee
∗ = (μδ+μα+δα+δε+με+μ2−βδ)μ

(δ+μ)βδ
,

Ie
∗ = − (μδ+μα+δα+δε+με+μ2−βδ)μ

(δα+δε+δμ+μα+με+μ2)β
,

Re
∗ = − (μδ+μα+δα+δε+με+μ2−βδ)(α+ε)

(δα+δε+δμ+μα+με+μ2)β
.

(a) (S0
∗, E0

∗, I0
∗, R0

∗) = (1, 0, 0, 0) is a non-endemic equilibrium, since all of the infected
classes (E and I) are zero;

(b) (Se
∗, Ee

∗, Ie
∗, Re

∗) could be an endemic equilibrium, since all of the infected classes (E
and I) could be positive for some parameter choices;

(c) To prove this part of the theorem, we looked for a threshold number, so that Se
∗ ≥ 0,

Ie
∗ > 0, Ee

∗ > 0, and Re
∗ ≥ 0. Note that by using some algebraic manipulation,

it is easy to show that the components of the equilibrium can be re-written in the
following forms: Se

∗ = 1
T ε , Ie

∗ = (T ε − 1) μ
β , Ee

∗ = (T ε − 1) μ
β + (α+μ+ε)

δ , and Re
∗ =

61



Mathematics 2021, 9, 2857

1 − Se
∗ − Ee

∗ − Ie
∗ = (T ε − 1) α+ε

β , with T ε = βδ
(α+μ+ε)(δ+μ)

. Hence, it is clear that if

T ε = βδ
(α+μ+ε)(δ+μ)

> 0, then Ie
∗ > 0 and Ee

∗ > 0. �

Note that when ε = 0 (i.e., when there is no CPT intervention), then T 0 = βδ
(α+μ)(δ+μ)

.
Thus, the condition that should be satisfied in order for an endemic equilibrium to exist
is T 0 = βδ

(α+μ)(δ+μ)
> 1. This can be written as T 0 = β 1

(α+μ)
δ 1
(δ+μ)

> 1 and can be
read verbally as the multiplication of four epidemiological factors, namely, (the rate of
infection)·(the length of stay within the infectious period)·(the rate of transition from
exposed class to infectious class)·(the length of stay within the incubation period). We
called T 0 the basic threshold number and T ε the effective threshold number. Thus, it is
clear that T 0 > T ε.

To provide a deeper interpretation of this threshold, let us consider a clinical inter-
vention. In the health context, any intentional action designed to obtain an outcome is
called a clinical intervention. If, in the absence of clinical intervention, we have T 0 > 1
(hence, an endemic equilibrium exists), then we could apply a clinical intervention (such
as CPT), so that it is possible to reduce the threshold to be less than 1 by changing T 0 to
T ε for a certain choice of ε > 0, resulting in T ε < 1 (removing the endemic equilibrium
from the system). This is the basic idea behind controlling/eliminating contagious diseases
from a mathematical point of view. Finding this kind of threshold is vital in the study of
mathematical epidemiology. In the modern literature, this threshold is usually called the
basic reproduction number (sometimes the basic reproduction/reproductive ratio). It is
not easy to find this number for more complex transmissions of a disease. There are some
good and rigorous literature studies regarding this concept, such as [19,22–24] and [25]
(pp. 285–319), that provide a more systematic way of constructing the basic reproduction
number. We prove, by standard theory, that the T 0 and T ε mentioned above are indeed
the basic reproduction number and the effective reproduction number, respectively. We
begin by defining the basic reproduction number.

The basic reproduction number of an infection is the expected number of cases pro-
duced by one case in a population where all the individuals are susceptible to infection.
The authors of [19] (p. 4) defined the basic reproduction number, with the symbol R0,
as the expected number of secondary cases per primary case in a “virgin” population.
In the same book, they showed that R0:= lim

n→∞
‖Kn‖1/n [19] (p. 75), where K is the next-

generation matrix defined therein. According to the authors, this is a natural definition of
the basic reproduction number from which its value can be computed. However, there is
another way to compute the basic reproduction number other than from this definition.
In fact, there are some methods that are easier to use to obtain the basic reproduction
number. As an example, the following method is suggested in [24]. The authors looked
at an epidemic multi-compartment model dxi

dt = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n (as in
Equations (5)–(8) above). They showed that the function fi(x) can be decomposed into the
rate of appearance of new infections in the ith compartment, Fi(x), and the rate of transfer
of individuals from/into the ith compartment, Vi(x). Furthermore, they defined F and V to
be the Jacobian matrix evaluated at the non-endemic equilibrium and showed that the basic
reproduction number can be calculated as the spectral radius R0 = ρ(FV−1). The following
theorem provides the reproduction numbers of the SEIR model (Equations (5)–(8)).

Theorem 2. The SEIR model (Equations (5)–(8)) has the following reproduction numbers:

(a) The effective reproduction number Rε
0 = βδ

(α+μ+ε)(δ+μ)
;

(b) The basic reproduction number R0 = βδ
(α+μ)(δ+μ)

.

In addition, the following hold:
Rε

0 = T ε and R0 = T o.
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Proof of Theorem 2.

(a) Following the method in [24], with reference to Equations (5)–(8), we have the rate
of appearance of new infections vector F (x) and the rate of transfer of individuals
vector V(x):

F =

⎛⎜⎜⎝
0

βSI
0
0

⎞⎟⎟⎠ and V =

⎛⎜⎜⎝
βSI + μS − μ

δE + μE
−δE + αI + μI + εI

−αI + μR − εI

⎞⎟⎟⎠.

Note that there are only two sub-classes that involve infected persons (i.e., E and
I), meaning we have F and V as 2 × 2 matrices. Here, we count a new infection as
only occurring in E with the rate βSI and do not count the rate δE in I as a new infec-
tion, since it is only the transition from E to I. Next, from the two vectors, we obtain

two matrices: F =

(
0 β
0 0

)
and V =

(
δ + μ 0
−δ α + μ + ε

)
. Consequently, V−1 =(

1
δ+μ 0

δ
(δ+μ)(α+μ+ε)

1
α+μ+ε

)
and FV−1 =

(
βδ

(δ+μ)(α+μ+ε)
β

α+μ+ε

0 0

)
, which gives rise to

the effective reproduction number Rε
0 = ρ(FV−1) = βδ

(α+μ+ε)(δ+μ)
.

(b) It is clear from (a) that when ε = 0, then Rε=0
0 = ρ(FV−1) = βδ

(α+μ)(δ+μ)
, which is the

basic reproduction number of the model in Equations (5)–(8).
(c) In addition, comparing the results to Theorem 1, obviously, we have Rε

0 = T ε, and
consequently R0 = T 0, which completes the proof. �

Theorem 3. The SEIR model in Equations (5)–(8) always has a trivial equilibrium (S0
∗, E0

∗, I0
∗, R0

∗),
while the non-trivial equilibrium (Se

∗, Ee
∗, Ie

∗, Re
∗) exists only if the effective reproduction number

is greater than 1, i.e., Rε
0 = βδ

(α+μ+ε)(δ+μ)
> 1.

Proof of Theorem 3. It is obvious as a consequence of Theorems 1 and 2. �

Up to this point, we concluded that the threshold we found earlier (i.e., T ε) is actually
equivalent to the “true” effective reproduction number, Rε

0 (Theorem 2(c)). Here, we
could actually find another threshold that has the same threshold value as Rε

0. Remember
that in the derivation of the basic reproduction number, we noticed that there are only
two sub-classes involving infected persons, i.e., E and I. Then, we have F and V as 2 × 2
matrices. Here, we count new infections only in E with the rate βSI and do not count the
rate δE in I as a new infection, since it is only the transition from E to I. However, if we
count new infections in E with the rate βSI and do count the rate δE in I as a new infection,
then we have:

F =

⎛⎜⎜⎝
0

βSI
δE
0

⎞⎟⎟⎠ and V =

⎛⎜⎜⎝
βSI + μS − μ

δE + μE
αI + μI + εI

−αI + μR − εI

⎞⎟⎟⎠,

Then we will have:

F =

(
0 β
δ 0

)
and:

V =

(
δ + μ 0

0 α + μ + ε

)
giving:

V−1 =

(
1

δ+μ 0
0 1

α+μ+ε

)
.
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Hence, we obtain:

FV−1 =

(
0 β

α+μ+ε
δ

δ+μ 0

)
which implies that:

ρ(FV−1) =
√

βδ
(α+μ+ε)(δ+μ)

.

Note that the last expression is actually the square root of the reproduction number, so
that by referring to [24], we have an alternative threshold, Aε = ρ(FV−1) =

√
Rε

0, which
is not a reproduction number but has the same threshold value, i.e., 1.

Theorem 4. The non-endemic equilibrium (S0
∗, E0

∗, I0
∗, R0

∗) of Equations (5)–(8) is asymptoti-
cally stable whenever Rε

0 = βδ
(α+μ+ε)(δ+μ)

< 1 and unstable otherwise.

Proof of Theorem 4. Let us consider the non-endemic equilibrium (S0
∗, E0

∗, I0
∗, R0

∗) =

(1, 0, 0, 0). The Jacobian matrix at this point is given by:

⎡⎢⎢⎣
−μ 0 −β 0
0 −δ − μ β 0
0 δ −α − μ −ε
0 0 α ε − μ

⎤⎥⎥⎦,

which has the polynomial characteristics: a4λ4 + a3λ3 + a2λ2 + a1λ + a0 = 0 with:
a4 = 1;

a3 = (4μ + δ + α − ε);

a2 = μ(δ + 3μ + α − ε) + δα + 2μδ − δε + 2μα + 3μ2 − 2με − βδ);

a1 = μ(δα+ 2μδ− δε+ 2μα+ 3μ2 − 2με− βδ) +(μδα− μδε+ μ2δ+ μ2α− μ2ε+ μ3 + βεδ−
βμδ);

a0 = μ(μδα − μδε + μ2δ + μ2α − μ2ε + μ3 + βεδ − βμδ).

Clearly, a4 > 0 and a3 > 0. Furthermore, we have a0 > 0, provided Rε
0 < 1. The detail

of the proof is as follows.
Proof of a0 > 0
We need μ(μδα + μδε + μ2δ + μ2α + μ2ε + μ3 + βεδ − βμδ) > 0, which can be written

as follows:
μ2(δε + μδ + με + μ2) + (μδα + μ2α + βεδ − βμδ)μ > 0

� μ(δε + μδ + με + μ2) + (μδα + μ2α + βεδ − βμδ) > 0
� μ(δε + μδ + με + μ2 + δα + μα) > βδ(μ − ε)

� βδ(μ−ε)
μ(ε+μ+α)(δ+μ)

< 1

� βδ
(ε+μ+α)(δ+μ)

< μ
(μ−ε)

.

Here, we need μ > ε to make the inequality consistent, since all of the parameters
are non-negative. Note that in this case, μ

(μ−ε)
> 1; hence, if Rε

0 < 1, then the inequality
βδ

(ε+μ+α)(δ+μ)
< μ

(μ−ε)
holds.

Proof of a1 > 0
Note that a1 can be written in the form of a1 = a11 + a0 with a11 = μ(δα + 2μδ + δε +

2μα + 3μ2 + 2με − βδ). We also note that a11 − a0 = 2μ3 + δμ2 + μ2ε + μ2α is positive, so
that a11 > 0, since we proved earlier that a0 > 0. Furthermore, since both a11 > 0 and
a0 > 0, then, consequently, a1 > 0.

Proof of a2 > 0
Note that a2 = a21 + a11/μ with a21 = μ(δ + 3μ + α + ε) is clearly positive. Since

a11 > 0, then a2 > 0. Therefore, we proved that all of the coefficients of the polynomial
characteristics are positive. Consequently, from the Descartes rule of signs, all roots have
negative real parts. This proves the stability of the disease-free equilibrium whenever
Rε

0 < 1. �
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Theorem 5. If the endemic equilibrium (Se
∗, Ee

∗, Ie
∗, Re

∗) of Equations (5)–(8) exists (i.e., when-
ever Rε

0 = βδ
(α+μ+ε)(δ+μ)

> 1), then it is asymptotically stable.

Proof of Theorem 5. The proof is analogous as before. �

Assuming that in the absence of CPT, the system has a large basic reproduction
number (otherwise, the administration of CPT will not make sense), then when CPT is
administered, we could compute the ratio of the effective reproduction number to the basic
reproduction number as:

Rε
0 : R0 = βδ

(α+μ+ε)(δ+μ)
: βδ
(α+μ)(δ+μ)

= (α+μ)
(α+μ+ε)

< 1

Hence, clearly, Rε
0 : R0. Consequently, we have the following theorem.

Theorem 6. For the SEIR model in Equations (5)–(8), we have:

Se
∗ = 1

Rε
0
> 1

R0
= S0

∗ and Ie
∗ =

(
Rε

0 − 1
) μ

β < (R0 − 1) μ
β = I0

∗ with the difference

Se
∗ − S0

∗ = ε(δ+μ)
δβ and I0

∗ − Iε
∗ = δμε

(δ+μ)(α+μ)(μ+α+ε)
.

Proof of Theorem 6. The proof is obvious. �

Analysis for the case of the rate of CPT proportional to the number of recovered class
can be conducted analogously. We do not present the results explicitly, since all proofs are
similar to the one presented here. In the next section, we carried out several simulations
to assess the impact of CPT both to the transient solution and to the equilibrium solution.
The simulation was conducted by implementing the Runge–Kutta numerical scheme to
determine the numerical solution of the system, and the results are presented numerically.

3.2. Numerical Examples

In this section, we present numerical examples to show the behavior of the SEIR model
with and without the presence of convalescent plasma transfusion. The results, in general,
support the analysis of the SEIR equilibrium solutions presented in the earlier section. For
the numerical examples, we used the CPT parameters in Table 2 and the other parameters
written in the respective resulting figures. The results are summarized in the figures that
follow.

Table 2. Parameter values used for different scenarios of CPT implementation.

Number CPT Scenario
Numerical Response

f(I(t),R(t)) Used in the Figures
Parameter Values

in the Figures

1 Proportional rate to
infectives εI(t) 7.a ε = 0.05

2 Proportional rate to
recovered εR(t) 7.b ε = 0.05

3 Mass action rate
(Lotka–Volterra) εI(t)R(t) 7.c ε = 0.05

4 Constant rate ε 7.d ε = 0.001

5 Saturating rate
(Michaelis–Menten)

εR(t)
r+R(t)

7.e ε = 0.001, r = 0

6 Maximum service
limitation min(εI(t), Maxserv) 7.f, 9.a ε = 0.55, Maxserv = 0.0028

7 Maximum service
limitation min(εR(t), Maxserv) 9.b ε = 0.55, Maxserv = 0.0028

8 Maximum service
limitation min(εI(t)R(t), Maxserv) 9.c ε = 0.55, Maxserv = 0.0028

9 Maximum service
limitation min( εR(t)

r+R(t) , Maxserv) 9.d ε = 0.55, Maxserv = 0.0028
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Figure 2 shows a graph of the disease dynamics predicted by the SEIR model for
specific parameters (written in the figure caption) with a high basic reproduction number
(approximately 2.3). It suggests that, eventually, the disease will endemic to a certain level
with a stable number of infectives (approximately 2% of the total population). Figure 3
shows the changes in the graph when CPT is utilized to cure patients. It shows that, for
a relatively high rate of CPT intervention, it can reduce the basic reproduction number
to the effective reproduction number as low as 0.97, which leads to a stable disease-free
equilibrium.

 
(a) (b) 

Figure 2. A graph of the SEIR model without CPT showing the susceptible and recovered classes (a)
and the exposed and infective classes (b). The SEIR parameters were μ = 1/75, β = 0.95, δ = 0.90, and
α = 0.40, with initial values of S0 = 0.99, E0 = 0, I0 = 0.01, and R0 = 0. The resulting equilibrium was
approximately S = 44%, E = 1%, I = 2%, and R = 53% with the basic reproduction number R0 = 2.265.

 
(a) (b) 

Figure 3. A graph of the SEIR model with CPT, showing the susceptible and recovered classes (a)
and the exposed and infective classes (b). The SEIR parameters were μ = 1/75, β = 0.95, δ = 0.90, and
α = 0.40, with initial values of S0 = 0.99, E0 = 0, I0 = 0.01, and R0 = 0. The CPT rate was assumed to
be ε = 0.55. The resulting equilibrium was approximately S = 99%, R = 0.05%, and the remaining E
and I were nearly zero. In this case, the resulting effective reproduction number was R0 = 0.97 (less
than 1).

Figure 3 also suggests that early application of CPT significantly reduces the risk of
disease outbreak. In the early transmission of COVID-19, this was clearly not the case, since
COVID-19 is a new and emerging disease; hence, the availability of CP was almost null in
the beginning. The figure also suggests a practical consequence of creating a convalescent
plasma bank. Now, looking closer at the graph in Figure 2, during the first 200 time steps,
we have the graph in Figure 4. It can be seen that there were already many recovered
patients; hence, the availability of CP stock may be justified. Suppose that at time t = 200,
the health authority begins to apply CPT as a curative method, then we have Figure 5,
which shows that CPT significantly drove the disease cases down to zero, eventually. This
is among the promising findings suggested by the SEIR model.
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(a) (b) 
  

(c) (d) 

Figure 4. A graph of the SEIR model without CPT (top figures) showing the susceptible and recovered
classes (a) and the exposed and infective classes (b) as in Figure 2 but with a shorter time horizon.
(c,d) With CPT. The bottom figures show similar graphs for the SEIR model with CPT as in Figure 3
but with a shorter time horizon.

Figure 5 shows a graph of the SEIR model as in Figure 2, assuming that in the
beginning (i.e., during the time interval (0,200)), the health authority takes the “do nothing”
decision in controlling the disease (blue and red circles), and then, at time t = 200, begins to
implement CPT with a relatively high rate of implementation (approximately half of the
infectives are given CPT, proportional to the number of infectives with ε = 0.55). The black
dots reveal that the intervention quickly pulls the number of infectives to zero (b) while, at
the same time, pushes the number of susceptibles upward (a).
  

(a) (b) 

Figure 5. Graphs of the SEIR model assuming the “do nothing” decision during the time interval
(0,200), followed by the implementation of CPT with the rate proportional to the number of infectives.
The graph in (a) shows the dynamics of the susceptibles, while the graph in (b) shows the dynamics
of the infectives.
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Figure 6 shows the effects of different rates of CPT on decreasing the number of
infectives (hence, the height of the infective peak). Here, we assumed a scenario in which
CPT is conducted with the rate proportional to the infectives (implicitly assuming an
abundance of CP bloods). Figure 7 shows the effect of different scenarios (see Table 1)
on the decrease in the infective numbers over time. All of the figures assumed that there
was no limit for the health authority to set CPT rates, except in Figure 7f, in which it was
assumed that the maximum CPT rate was the Maxserv (response function number 6 in
Table 2).
  

(a) (b) 

(c) (d) 

Figure 6. Graphs showing the effects of different rates of CPT on decreasing the number of infectives
(i.e., lowering the height of the infective peaks) (a,b) and, consequently, increasing the number of
remaining susceptibles (c,d). The other parameters were the same as in Figure 2.

In Figure 7f, if the Maxserv is unbounded, then the result is the same as in Figure 3b,
which is unlikely in reality. Figure 8 shows examples of the Maxserv graphs used in
Figure 7. The effect of various Maxserv response functions on the numbers of infectives
and the exposed population is shown in Figure 9.

In all of the numerical simulations above, we assumed that the effect of CPT was on
increasing patient survival. The recent findings reported in [26] support the assumption
we used in this paper. They carried out a meta-analytical approach to collect and analyze
the daily survival data from all controlled studies that reported Kaplan–Meier survival
plots. The authors showed that CPT contributes to improving the symptomatology and
viral clearance. Furthermore, they pointed out that the aggregate Kaplan–Meier survival
plot in their study revealed a good agreement pattern among all different studies in which
CPT was generally associated with greater patient survival [26].

The historical evidence shows the promising results of applying the therapeutic
treatment of CPT for critical patients infected by contagious diseases such as COVID-19. A
more recent study provided strong evidence that if the convalescent plasma is transfused
into patients within three days of the onset of illness, a 41% lower risk of death compared
to patients transfused four or more days after onset of illness is demonstrated [26,27]. This
remarkable result highlights an important role for the timely use of convalescent plasma
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transfusion. We discussed all such situations in terms of mathematical modeling with real
data collected from a secondary source in the numerical analysis.

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Plots of the effect of various CPT scenarios on the dynamics of the infective (red) and
exposed (green) classes, with the assumption that the CPT intervention was carried out from the
beginning of the pandemic. The scenarios and parameters were the same as in Table 2. The response
functions and the parameters in the response functions for the graphs in (a–f) are presented in Table 2.
See also Figure 2 as the reference for the other epidemiological parameters. Note that if Maxserv is
unbounded, then the result is the same as Figure 3b.

  
(a) (b) 

Figure 8. The graph in (a) shows a plot the of mass action term of εI(t)R(t) in Figure 7c. The graph
in (b) shows a plot of the numerical response min(εI(t)R(t), Maxserv) used in Figure 7f with ε = 1
and Maxserv = 0.01.
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(a) (b) 

  
(c) (d) 

Figure 9. Plots of the effect of various Maxserv CPT scenarios on the dynamics of infective (red)
and exposed (green) classes, with the assumption that the CPT intervention is conducted from the
beginning of the pandemic. The scenarios and parameters for the graphs in (a–d) are as in Table 2.

In this research, a standard analytical evaluation, from proving the existence of equi-
libria, their local stability, and their relationships with the reproduction numbers, was
only carried out for the model with the response function for the CPT rate proportional to
the number of infected class. The numerical simulations showed the consistency of other
forms of the response functions with the findings in real phenomena such as reported
in [26,27]. However, to obtain more prudent results, it is necessary to undertake a complete
mathematical analysis of all proposed response functions that will presumably provide
more in-depth insight and better implementation. Well-posedness of solutions and the
threshold criteria for the global stability of equilibria should certainly be sought [28]. On
the contrary, the numerical solutions presented in this paper were obtained by the RK45,
although according to the current findings [29,30], there is a better scheme to produce
a dynamically consistent numerical solution. Other future research could focus on the
application of optimal control theory for disease prevention and control based on different
nonlinear response functions for the therapeutic rate of CPT. In particular, a study con-
centrating on applying a wider class of control variables to formulate an optimal control
problem in order to find better control and preventive strategies in CPT implementation
would be beneficial as found in [31].

4. Conclusions

We presented a continuous SEIR epidemic model considering the effect of an inter-
vention using convalescent plasma transfusion (CPT) to the infected class. We analyzed
the model using the standard procedure and found the trivial and non-trivial equilibrium
points of the system including their stability and relation to the basic reproduction number.
In general, the effect of the application of CPT on the individual level resulted in a shorter
time of infection and a higher survival rate for infected individuals that received CPT.
Furthermore, we showed that at the population level, it could also decrease the peak of
the outbreak as well as the length of the epidemic period. In this case, the decrease in the
infection peak indicated the good effect of the use of CPT, which may eventually decrease
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the burden of COVID-19 transmission. The model presented here is still simple in terms of
biological and epidemiological complexity; hence, further refinement of the model is still
needed to obtain a more realistic model and a more accurate prediction.

In this paper, we proposed various functional forms/numerical responses that could
be used to model the CPT rate, but not all were evaluated analytically. These numerical
responses can be considered as a parametric viewpoint of control strategy. Hence, analytical
investigation regarding the use of these various functional forms is also worthy to explore
the robustness of the results presented here and to generate some possible epidemiological
precautions not explored in the current paper. The model in this paper also only assumed a
single strain or variant. In reality, viruses are always changing and mutating, and this could
cause a new strain or variant. How would the results here be affected by such phenomena?
Another question important for future research involves finding optimal CPT strategies
that minimize both the number of infections and the related costs of CPT implementation.
Our future research will focus on the application of optimal control theory for disease
prevention and control based on different nonlinear response functions for the therapeutic
rate of CPT. In particular, we will concentrate on applying a wider class of control variables
to formulate an optimal control problem in order to find better control and preventive
strategies for implementation of CPT.
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Abstract: We consider the linear, second-order elliptic, Schrödinger-type differential operator L :=

−1
2
∇2 +

r2

2
. Because of its rotational invariance, that is it does not change under SO(3) transforma-

tions, the eigenvalue problem
[
−1

2
∇2 +

r2

2

]
f (x, y, z) = λ f (x, y, z) can be studied more conveniently

in spherical polar coordinates. It is already known that the eigenfunctions of the problem depend on
three parameters. The so-called accidental degeneracy of L occurs when the eigenvalues of the problem
depend on one of such parameters only. We exploited ladder operators to reformulate accidental
degeneracy, so as to provide a new way to describe degeneracy in elliptic PDE problems.

Keywords: degeneracy; elliptic PDE; ladder operator; commuting operator; eigenvalues

1. Introduction

In this paper, we intend to treat an elliptic PDE (Among the numerous textbooks on
elliptic PDEs, we think that Gilbarg and Trudinger’s book [1], first published in 1998 and
then again in 2001 and 2015, is the main contribution to acquire the necessary knowledge
on this fascinating topic. On the other hand, the main notions to tackle the typical math-
ematical physics problems can be found in [2], for example.) with a special focus on the
property of the degeneracy of its spectrum.

To begin with, we consider the following elliptic PDE:[
−1

2
∇2 +

r2

2

]
f (x, y, z) = λ f (x, y, z), (1)

where r =
√

x2 + y2 + z2, and the function f (x, y, z) belongs to the following Hilbert space:

H =
{

f (·) ∈ L2(R3) ∩ C2(R3) | lim
r→∞

f (x, y, z) = 0
}

. (2)

As is known, ∇2 is the Laplacian operator:

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

The operator L := −1
2
∇2 +

r2

2
satisfies the property of rotational invariance, i.e., it is

invariant under SO(3) transformations. Addressing the problem (1) in polar coordinates is
not difficult, and it is well known that the eigenfuctions in H depend on three parameters,
say, l, m, n, whereas the eigenvalues only depend on n, meaning that L is a degenerate
operator. However, there are different kinds of degeneracy: If the eigenvalues λi are
independent of m, that is called natural degeneracy. If λi are independent of l, accidental

Mathematics 2021, 9, 3005. https://doi.org/10.3390/math9233005 https://www.mdpi.com/journal/mathematics73
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degeneracy occurs. Namely, we focus on accidental degeneracy and on its relationship with
ladder operators (a similar procedure applied to spherical hydrogen atom eigenfuctions
can be found in [3]).

Recent papers in which the various types of degeneracy are treated are [4–6], just to
cite a few.

The paper is organized as follows: In Section 2 the main notions and a selection
of useful results on invariance and degeneracy are presented. In Section 3, the ladder
operators are introduced and summarized. Section 4 intends to describe the accidental
degeneracy of the operator L in detail. Section 5 features a final discussion and the possible
future developments of this theory.

2. Invariance and Degeneracy

We took into account only the linear operators having a discrete spectrum. The
following definitions and results, which are well known in the literature, are helpful to
characterize our setup and to establish the notation that is used.

Definition 1 (Invariant operator). A linear operator O, defined on a Hilbert space, is said to be
invariant under a linear transformation U, defined on the same Hilbert space, if for any eigenvalue
λ of O, the corresponding eigenspace Eλ(O) is an invariant subspace, i.e., ∀ v ∈ Eλ(O), also
Uv ∈ Eλ(O).

Definition 2 (Commuting operators). Given two linear operators O1, O2 defined on a Hilbert
space, they are commuting if the commutator is null, that is:

[O1, O2] = O1O2 −O2O1 = 0.

Since the operator L is self-adjoint, it is easy to prove an invariance result, which holds
for all linear and self-adjoint operators admitting a complete set of eigenvectors generating
the Hilbert space.

Theorem 1 (Invariance theorem). The linear operator O is invariant under a linear transforma-
tion U if and only if [O, U] = 0.

Proof. If the commutator is zero, we have that, for any eigenvector v of the operator O:

OU = UO ⇐⇒ U(Ov) = O(Uv),

hence O(Uv) = λUv, meaning that O is invariant. Conversely, if O is invariant, this means
that, by linearity:

O(Uv) = λ(Uv) = U(λv) = U(Ov),

implying that [O, U] = 0, because the eigenvectors generate the whole Hilbert space, by
assumption.

It is straightforward to note that the operator L is invariant under the action of three
different linear operators, i.e.:

M1 = i
(

z
∂

∂y
− y

∂

∂z

)
, M2 = i

(
x

∂

∂z
− z

∂

∂x

)
, M3 = i

(
y

∂

∂x
− x

∂

∂y

)
, (3)

where the imaginary unit i is necessary to guarantee that the operators are self-adjoint (we
recall that in the framework of quantum mechanics, the operators M1, M2, and M3 are the
components of the pseudo-vector “angular momentum”, and the invariance of an operator
under the action of all three is called rotational invariance or invariance under the rotation
group SO(3)).
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Given its rotational invariance, it is more convenient to study the eigenvalue problem
by employing the spherical polar coordinates, which depend on the original variables
through the following relations:

r =
√

x2 + y2 + z2, θ = arccos

(
z√

x2 + y2 + z2

)
, φ = arctan

( y
x

)
,

where (r, θ, φ) ∈ [0, +∞) × [0, π] × [0, 2π]. By using the standard formulas, we also
reformulate the Laplacian operator in terms of partial derivatives with respect to the
spherical polar coordinates, i.e.:

∇2 =
∂2

∂r2 +
2
r

∂

∂r
+

1
r2

(
∂2

∂θ2 + cot θ
∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
, (4)

whereas the operator M3 becomes M̃3 = −i
∂

∂φ
.

Plugging the expression (4) into L yields the following form for the operator:

L̃ = −1
2

(
∂2

∂r2 +
2
r

∂

∂r

)
+

A(θ, φ)

2r2 +
r2

2
, (5)

and consequently, the eigenvalue problem becomes:[
∂2

∂r2 +
2
r

∂

∂r
− A(θ, φ)

r2 − r2 + 2λ

]
ψ(r, θ, φ) = 0, (6)

where A(θ, φ) is the following self-adjoint operator (An alternative formulation of the
problem (6) takes place when A is a constant, i.e., A := l(l + q − 2), where q is the di-
mension of the space and l is an integer number. This problem is usually solved numerically.
Another kind of degeneracy would occur, and although a deep analysis of such a case deserves
future research, it is beyond the scope of our paper.).

A(θ, φ) = − ∂2

∂θ2 − cot θ
∂

∂θ
− 1

sin2 θ

∂2

∂φ2 . (7)

Based on the change of variables, it is necessary to modify the Hilbert space of the
solutions as well:

H̃ =
{

ψ : R3 −→ R | ψ ∈ C2(R3) ∩ L2(R3),

ψ(r, θ, φ + 2π) = ψ(r, θ, φ), lim
r−→∞

ψ(r, θ, φ) = 0
}

. (8)

The next theorem is very relevant for the subsequent analysis of degeneracy.

Theorem 2. The following relation holds in spherical polar coordinates:

A(θ, φ) = M
2
1 +M

2
2 +M

2
3,

where the operators Mi, for i = 1, 2, 3, are defined by (3).

Proof. The sum of the squares of the operators defined in (3) reads as:

M
2
1 +M

2
2 +M

2
3 = −

(
z

∂

∂y
− y

∂

∂z

)2
−

(
x

∂

∂z
− z

∂

∂x

)2
−

(
y

∂

∂x
− x

∂

∂y

)2

= · · · = −x2
(

∂2

∂y2 +
∂2

∂z2

)
− y2

(
∂2

∂x2 +
∂2

∂z2

)
− z2

(
∂2

∂x2 +
∂2

∂y2

)

75



Mathematics 2021, 9, 3005

+2
(

xy
∂

∂x
∂

∂y
+ xz

∂

∂x
∂

∂z
+ yz

∂

∂y
∂

∂z
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
.

Now, we recall the well-known identities among partial derivatives:

∂

∂x
= sin θ cos φ

∂

∂r
+

cos θ cos φ

r
∂

∂θ
− sin φ

r sin θ

∂

∂φ
,

∂

∂y
= sin θ sin φ

∂

∂r
+

cos θ sin φ

r
∂

∂θ
− cos φ

r sin θ

∂

∂φ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
.

Applying the above formulas to the latest expression we obtained for the sum of
squares yields:

M
2
1 +M

2
2 +M

2
3 = · · · = − ∂2

∂θ2 − cot θ
∂

∂θ
− 1

sin2 θ

∂2

∂φ2 = A(θ, φ).

Back to the identification of the solution of (6), we can proceed by the separation of
the variables. The eigenvalues of L̃ are countable; more precisely for all n ∈ N, they have
the form:

λn = n +
3
2

.

The associated eigenfunctions read as:

ψ(·) = ψnlm(r, θ, φ) = Rn�(r)Y�m(θ, ϕ) =
[

N1 r� e−r2/2L
(�+1/2)
n/2−�/2(u)

∣∣∣
u=r2

]
[N2Y�m(θ, ϕ)], (9)

where the terms:
R(r) .

= N1 r� e−r2/2L
(�+1/2)
n/2−�/2(u)

∣∣∣
u=r2

and
Y�m(θ, ϕ) = N2 Y�m(θ, ϕ)

are respectively called the radial part and the angular part.
In the expression (9), we have that:

• the coefficient N1, N2 are normalization constants, as in every eigenvalue problem,
with respect to the norm of the Hilbert space, that is:∫ ∞

0
r2|R(r)|2 dr = 1 and

∫ 2π

0
dϕ

∫ π

0
|Y�m(θ, ϕ)|2 sin θ dθ = 1;

• n is a nonnegative integer number n = 0, 1, 2, . . . ;
• For any fixed value of n, the parameter � takes all the integer values from zero to n

such that n and � are both even numbers or both odd numbers, implying that the
difference between two subsequent values of � is two;

• For any fixed value of �, the parameter m assumes all integer values between −� and �;

• The functions L(�+1/2)
n/2−�/2(u) are the so-called Laguerre polynomials whose general expres-

sion is:

L
(h)
j (u) =

eu

uh
dj

duj (u
j+he−u);

• The functions Y�m(θ, ϕ) are the spherical harmonics:

Y�m(θ, ϕ) = eimϕ sinmθ

(
1

sin θ

d
dθ

)�+m
sin2�θ,
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for m > 0, whereas Y∗
�,m(θ, ϕ) = (−1)mY�m(θ, ϕ) for m < 0. They are simultaneous

eigenfunctions of the operator A(θ, ϕ) and of the operator M̃3, in compliance with the
following equations:

A(θ, ϕ)Y�m(θ, ϕ) = �(�+ 1)Y�m(θ, ϕ), (10a)

M̃3Y�m(θ, ϕ) = mY�m(θ, ϕ). (10b)

It is well known that the “degeneracy” of an eigenvalue λ of a linear operator is
the property for which the eigenspace corresponding to λ has dimension greater than
one. Under such a circumstance, we can state that the eigenvalue λ is degenerate as well.
When the spectrum of a linear operator has a degeneracy, a problem usually arises: given
a degenerate eigenvalue λ, it is not possible to guarantee that a related eigenvector v is
selected unambiguously.

From the secular Equations (10a) and (10b), the three simultaneous secular equations:

L̃ψn�m(r, θ, ϕ) = λnψn�m(r, θ, ϕ), (11a)

A(θ, ϕ)ψn�m(r, θ, ϕ) = �(�+ 1)ψn�m(r, θ, ϕ), (11b)

M̃3ψn�m(r, θ, ϕ) = mψn�m(r, θ, ϕ) (11c)

follow, and the degeneracy of the spectrum of the operator L̃ given in (5) is, in other words,
due to the dependence of the eigenfunctions on the given parameters. Namely, the eigen-
functions ψn�m(r, θ, ϕ) depend on the three parameters n, �, m, whereas the eigenvalues λn
of the operator L̃ in (11a) depend on n only, being independent of the other two parameters
�, m. The next result, whose proof is rather straightforward, describes the commutation
property of the operators.

Theorem 3 (Commutation theorem). The linear operators O1, O2, . . . , On acting on the same
Hilbert space are pairwise commuting if and only if there exists a basis of the Hilbert space formed
by all simultaneous eigenfunctions of O1, O2, . . . , On.

Theorem (3) provides an important connection with the degeneracy of the spectrum
of an operator, as the next theorem shows.

Theorem 4 (Degeneracy theorem). If a linear operator O, acting on a Hilbert space, is invariant
under at least two linear transformations U1,U2, acting on the same Hilbert space, which are not
pairwise commuting, then the spectrum of the operator O has a degeneracy.

Proof. By reductio ad absurdum, suppose that the spectrum of the operator O has no degen-
eracy. Since O is invariant under the linear transformation U1, we can apply Theorem 1,
from which the commutation relation [O,U1] = 0 follows. Hence, there exists a basis of the
Hilbert space formed by all simultaneous eigenfunctions {y(1)i } of O and U1. For the same
reason, there exists a basis of the Hilbert space formed by all simultaneous eigenfunctions
{y(2)j } of O and U2. Since the spectrum of the operator O has no degeneracy, it follows

that the two sets of eigenfunctions {y(1)i } and {y(2)j } are the same set, but this conclusion
is absurd because the operators U1,U2 do not commute with each other, and then, there
cannot exist a basis of the Hilbert space formed by all simultaneous eigenfunctions of the
non-commuting operators U1,U2.

At the present stage, based on Theorem 4, we can state that the degeneracy of the
spectrum of the operator L̃ is not surprising, in that this operator is invariant under the
action of the three operators M1, M2, M3, which fail to be pairwise commuting.

77



Mathematics 2021, 9, 3005

Definition 3 (Complete set of operators). If the linear operators of the set {O1, O2, . . . , On}
are all pairwise commuting and there exists no other linear operator commuting with them, except
the trivial operators, then the set is called the complete set of operators.

Each complete set of operators is endowed with the following key property. Provided
that an operator has a degenerate spectrum, that is the knowledge of an eigenvalue does
not allow selecting its eigenfunction unambiguously in the corresponding eigenspace, such
a degeneracy can be removed. Basically, if a certain eigenfunction is also an eigenfunction
of all the operators in the complete set with respect to a fixed eigenvalue for every operator
simultaneously, then the operator’s degeneracy is eliminated. The notion of ladder operators
is very helpful to outline our procedure.

3. Ladder Operators and the Degeneracy of the Spectrum of Operators

We identify the degeneracy of the spectrum of the operator L̃ as a consequence of the
existence of a particular kind of operators, called ladder operators. We provide a general
definition of ladder operator after proving the following result, which can be indicated as
the shift theorem.

Theorem 5 (Shift theorem). Let O be an operator acting on a Hilbert space, and let v be an
eigenfunction of O having an eigenvalue λ. If another operator T satisfies the condition [O, T]v =
μTv, where the coefficient μ is a real number, then: either Tv is the null function or Tv is another
eigenfunction of the operator O with eigenvalue λ + μ.

Proof. If such an operator T exists, we have that, by linearity and and since λ is an
eigenvalue of O, the above relation becomes:

[O, T]v = μTv ⇐⇒ OTv −TOv = OTv − λTv = μTv,

implying the new eigenvalue equation:

OTv = (λ + μ)Tv,

meaning that either Tv = 0 or λ+ μ is an eigenvalue of O associated with the eigenfunction
Tv, so the proof is complete.

Definition 4 (Ladder operators). An operator T satisfying the hypothesis of the shift theorem is
called the ladder operator for the operator O. In particular, T is a:

• Raising operator if μ > 0;
• Lowering operator if μ < 0.

A very interesting case in which Theorem 5 is applied occurs when there exists a
complete set of n self-adjoint operators O1, O2, . . ., On acting on a Hilbert space such that,
by virtue of Theorem 3, there exists a basis of the space formed by all their simultaneous
eigenfunctions {y1, y2, . . . , yn}.

If there exists an operator T commuting with the k operators Oi1 , Oi2 , . . . , Oik and
satisfying the n − k relations of the shift theorem with the remaining n − k operators Oj1 ,
Oj2 , . . . , Ojn−k for some certain eigenfunction ȳ, the following relations hold:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Oi1(Tȳ) = TOi1 ȳ = Tλi1 ȳ = λi1(Tȳ)
Oi2(Tȳ) = TOi2 ȳ = Tλi2 ȳ = λi2(Tȳ)

...
Oik (Tȳ) = TOik ȳ = Tλik ȳ = λik (Tȳ)

(12a)

and:
[Oj1 , T]ȳ = μj1Tȳ, [Oj2 , T]ȳ = μj2Tȳ, · · · , [Ojk , T]ȳ = μjkTȳ, (12b)
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from which we obtain that the function Tȳ is either the null function or a simultaneous
eigenfunction of Oi1 , Oi2 , . . . ,Oik with respect to the same eigenvalues λi1 , λi2 , . . . , λik ,
respectively. Therefore, by Theorem 5, that function is a simultaneous eigenfunction of
Oj1 , . . . ,Ojn−k with respect to the shifted eigenvalues λj1 + μj1 , . . . , λjn−k + μjn−k .

Remark 1. The degeneracy of the spectrum of a given operator O can be clarified (we precisely use
the term ’clarification’ if it is viewed in terms of ladder operators). Basically, we can consider the
complete set of operators as a necessary tool to eliminate the degeneracy of the spectrum of O and to
identify all the operators T1, . . . ,Tp that satisfy the relations (12a) together with the operator O
and the relations (12b) of the shift theorem with the remaining operators of the complete set.

The operator L̃ has a degenerate spectrum because its eigenvalues λn given in (11a)
are independent of the parameters � and m. Since the operator L̃ belongs to the complete
set of operators {L̃, A(θ, ϕ), M̃3}, in order to clarify the whole degeneracy in terms of
ladder operators, it is sufficient to find the ladder operators T1 and T2 commuting with L̃.
Besides commuting with L̃, such operators also satisfy the relations (12b) with the operators
A(θ, ϕ) and M̃3, in such a way that the functions T1ψn�m(r, θ, ϕ) and T2ψn�m(r, θ, ϕ) are
eigenfunctions of L̃ associated with the same eigenvalue λn and eigenfunctions of A(θ, ϕ)
and of M̃3 associated with a shifted eigenvalue with respect to � and m, respectively.

Natural Degeneracy of a Spectrum

The first ladder operator T1 of L̃ is already well known in the literature. Namely, it
can be easily reconstructed as a combination of the three operators M1, M2, and M3. To be
more precise, we take into account the two combinations of the operators M1 and M2 that
we express in Cartesian and in spherical polar coordinates as follows:

T
(+)
1 := M1 + iM2 = i

(
z

∂

∂y
− y

∂

∂z

)
−

(
x

∂

∂z
− z

∂

∂x

)
= eiφ

(
∂

∂θ
+

i cos θ

sin θ

∂

∂φ

)
,

T
(−)
1 := M1 − iM2 = i

(
z

∂

∂y
− y

∂

∂z

)
+

(
x

∂

∂z
− z

∂

∂x

)
= e−iφ

(
i cos θ

sin θ

∂

∂φ
− ∂

∂θ

)
,

(13)

which respectively are the raising operator and the lowering operator.
Since the two ladder operators T(±)

1 satisfy the conditions:

[L̃, T(±)
1 ] = [A(θ, ϕ), T(±)

1 ] = 0, [M̃3, T(±)
1 ] = ±T

(±)
1 ,

we obtain, according the Equations (12a) and (12b), that the functions T(±)
1 ψn,�,m are eigen-

functions of the operators L̃ and A(θ, ϕ) with respect to the same eigenvalues λn, �(�+ 1),
respectively, and eigenfunctions of M̃3 with respect to the shifted eigenvalue m ± 1.

The action of the ladder operators on the functions ψn,�,m is described by the next result.

Theorem 6. The functions T(+)
1 ψn,�,� and T

(−)
1 ψn,�,−� are identically zero.

Proof. If we expand the function T
(+)
1 ψn,�,�, we can note that (1 − u2)� is a polynomial

having degree 2� in u. Indicating with the constant K the 2�-th derivative of the function
w.r.t. u, we obtain the following expression:

T
(+)
1 ψn,�,� = eiφ

(
∂

∂θ
+

i cos θ

sin θ

∂

∂φ

)[
ei�φ sinl θ

(
1

sin θ

∂

∂θ

)2�
sin2� θ

]

= ei(�+1)φ

{
∂

∂θ

[
sin� θ

(
1

sin θ

∂

∂θ

)2�
sin2� θ

]
− � cos θ sin�−1 θ

(
1

sin θ

∂

∂θ

)2�
sin2� θ

}
.
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Now, if we posit cos θ = u and sin θ =
√

1 − u2, the latest expression becomes:

ei(�+1)φ

{
−
√

1 − u2

[
d

du

(
(1 − u2)�/2 d2�

du2� (1 − u2)�
)]

−�u(1 − u2)(�−1)/2 d2�

du2� (1 − u2)�
}

= Kei(�+1)φ
{
−
√

1 − u2
[

d
du

(1 − u2)�/2
]
− �u(1 − u2)(�−1)/2

}
= 0.

The pair of ladder operators T(±)
1 provides a clarification of that part of the degeneracy

of the spectrum of L̃, which is called natural degeneracy. As a matter of fact, the operator L̃,
depending on the Laplacian operator ∇2 and the norm r of the vector r, only, has a natural
and intrinsic invariance under rotations belonging to the proper rotation group SO(3).

The existence of the ladder operators T(±)
1 can be easily deduced from such invariance

properties. It is also straightforward to capture the notion that the natural degeneracy of the
spectrum of the operator L̃ is the independence of its eigenvalues λn from the parameter m.

More precisely, because we have the following actions:

T
(−)
1 ψn,−�,−� = T

(+)
1 ψn�� = 0,

we can iterate the action of the lowering operator T(−)
1 so as to obtain:

T
(−)
1 ψn�� = C�−1ψn,�,�−1, T

(−)
1 T

(−)
1 ψn�� = C�−2ψn,�,�−2,

· · · , (T
(−)
1 )�−1ψn�� = C−�ψn,�,−�,

or vice versa, by iterating the action of the raising operator T(+)
1 , the sequence:

T
(+)
1 ψn,�,−� = C−�+1ψn,�,−�+1, T

(+)
1 T

(+)
1 ψn,�,−� = C−�+2ψn,�,−�+2,

· · · , (T
(+)
1 )�−1ψn,�,−� = C�ψn,�,+�,

where the coefficients Ci are coefficients of normalization, that is the actions of the raising
and lowering operators T

(±)
1 on the eigenfunctions ψn,�,m leave the parameters n and �

unchanged and modify the parameter m, only.

4. Accidental Degeneracy of the Spectrum of L̃
Here, we illustrate the main result, which is absent in the literature so far, to the best

of our knowledge. We intend to determine the suitable ladder operators for the degeneracy
with respect to the parameter �, which is denoted as accidental degeneracy.

The so-called accidental degeneracy of the spectrum of the operator L̃ consists of the
independence of the eigenvalues λn from the parameter �. We explain also this type of
degeneracy with the help of ladder operators, denoted by T

(±)
2 . Such ladder operators map

an eigenfunction ψn,�,m(r) associated with the eigenvalue λn either to the null function or
to another eigenfunction, denoted by:

ψn,�′ ,m′(r) = T
(±)
2 ψn,�,m(r).

The two eigenfunctions belong to the same eigenspace of λn, that is the value of n is
the same in both of them, whereas the two values of � are different, and the two values of
m may be either equal or different.
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First of all, we establish the conditions for the functions ψn,�,m(r) and T
(±)
2 ψn,�,m(r)

to be eigenfunctions of L̃ associated with the same eigenvalue λn. Namely, by virtue of
Theorem 1, any ladder operator T(±)

2 has to satisfy the following equality:

[L̃, T(±)
2 ] = 0. (14)

If g(r) is any function depending on the polar coordinate r only, and the operator:

L̃g := − 1
2
∇2 + g(r),

is defined on the Hilbert space (8), it follows that every operator L̃g is endowed with
rotational invariance. Moreover, there are only two particular circumstances where the
operator L̃g ≡ L̃ has a further invariance, which is then “purely accidental” and is respon-

sible for accidental degeneracy. Such cases occur if either g(r) =
r2

2
or g(r) = −1

r
. The

latter case was extensively treated in [3], so we focus on the former case.
A synthetic explanation may sound as follows: We know that the eigenfunction

ψn,�,m(r) is associated with the eigenvalues �(� + 1), with respect to which ψn,�,m(r) is
also an eigenfunction of the operator A(θ, ϕ) in (7). Furthermore, since the variation of �
between two consecutive values is two, this implies that the eigenvalue of A(θ, ϕ), which
is subsequent after �(� + 1), is (� + 2)(� + 3). Hence, the raising operator T

(+)
2 , whose

expression is to be identified, must induce the shift (�+ 2)(�+ 3)− �(�+ 1) = 4�+ 6 on
the eigenvalues of A(θ, ϕ).

In order to do that, by virtue of Theorem 5, the raising operator T(+)
2 has to satisfy the

following condition:

[A(θ, ϕ), T(+)
2 ]ψn,�̄,m̄(r) = (4�+ 6) [T(+)

2 ψn,�̄,m̄(r)], (15)

where ψn,�̄,m̄(r) is a particular eigenfunction of A(θ, ϕ). Therefore, we are supposed to
identify an operator that verifies both conditions (14) and (15). The underlying degeneracies
have different natures. On the one hand, natural degeneracy is clarified by the ladder
operators T

(±)
1 given in (13) and obtained as combinations of the angular momentum

operators, and this is due to the fact that the ladder operators have to induce a shift of one
unit on the parameter m. On the other hand, accidental degeneracy has to be clarified by
operators T(+)

2 , which are obtained from the combinations of the components of a tensor,
because such operators have to induce a shift of two units on the parameter �.

The invariance of the operator L is illustrated by the next result.

Theorem 7. All the components of the following second-rank tensor:

Tij = − ∂

∂ri

∂

∂rj
+ rirj, for i, j = 1, 2, 3, (16)

where r1, r2, r3 are the coordinates of r, satisfy the commutation identity [L, Tij] = 0, i.e., L is
invariant under the action of all components.

Proof. We can employ the following property of the commutator, which holds for all A, B,
and C:

[AB, C] = A[B, C] + [A, C]B.
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Expanding the quantity [L, Tij] yields (Some calculations are omitted for the sake of
brevity. However, all the calculations are available upon request to the authors.):

[L, Tij] =

[
−1

2
∇2 +

r2

2
, − ∂

∂ri

∂

∂rj
+ rirj

]
=

[
−1

2
∇2, rirj

]
+

[
r2

2
, − ∂

∂ri

∂

∂rj

]

= −1
2

3

∑
k=1

{[
−1

2
∇2, rirj

]
+

[
r2

k , − ∂

∂ri

∂

∂rj

]}

= · · · = −1
2

(
∂

∂rj
ri +

∂

∂ri
rj + ri

∂

∂rj
+ rj

∂

∂ri
− rj

∂

∂ri
− ri

∂

∂rj
− ∂

∂ri
rj −

∂

∂rj
ri

)
= 0,

meaning that L is invariant under the action of all nine components Tij.

The components Tij are the further linear operators that accidentally commute with L,
in addition to M1, M2 and M3.

Given the above-mentioned Tij, we can consider the following operators:

T1 = T12, T2 =
T22 − T11

2
,

so that we are able to define the following ladder operators:

T
(±)
2 := T1 ± iT2 = − ∂

∂x
∂

∂y
+ xy ± i

2

(
∂2

∂x2 − ∂2

∂y2 + y2 − x2
)

,

where i =
√
−1.

Theorem 8. The ladder operators T(±)
2 satisfy the following commutation identity:

[M3, T(±)
2 ] = ±2T(±)

2 . (17a)

Proof. If we expand the expression of the commutator in the left-hand side of (17a),
we obtain:

[M3, T(±)
2 ] = i

[
y

∂

∂x
− x,

∂

∂y
, − ∂

∂x
∂

∂y
+ xy ± i

2

(
∂2

∂x2 − ∂2

∂y2 + y2 − x2
)]

= − i
[

y
∂

∂x
,

∂

∂x
∂

∂y

]
+ i

[
y

∂

∂x
, xy

]
+ i

[
x

∂

∂y
,

∂

∂x
∂

∂y

]
− i

[
x

∂

∂y
, xy

]
± 1

2

{[
y

∂

∂x
,

∂

∂y
∂

∂y

]
+

[
y

∂

∂x
, x2

]
+

[
x

∂

∂y
,

∂

∂x
∂

∂x

]
+

[
x

∂

∂y
, y2

]}

= i
(

∂2

∂x2 − ∂2

∂y2 + y2 − x2
)
±

(
− 2

∂

∂x
∂

∂y
+ 2xy

)
= ±2T(±)

2 .

Using Relations (12a), (12b), (14), and (17a), we can establish the following actions of
the operators T(±)

2 on the eigenfunctions ψn,�,m(r):

T
(+)
2 ψn,�,m(r) =

(n−m−2)/2

∑
k=0

ckψn,n−2k,m+2(r), T
(−)
2 ψn,�,m(r) =

(n−m+2)/2

∑
k=0

ckψn,n−2k,m−2(r).
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In order to prove that T(±)
2 are the ladder operators that give a clarification of acciden-

tal degeneracy, we have to determine the commutators [A(θ, ϕ),T(+)
2 ] and [A(θ, ϕ),T(−)

2 ].
As in Theorem 8, we also obtain the commutators:

[M1, T(+)
2 ] = i

[
z

∂

∂y
− y

∂

∂z
, − ∂

∂x
∂

∂y
+ xy +

i
2

(
∂2

∂x2 − ∂2

∂y2 + y2 − x2
)]

= i
[

z
∂

∂y
, xy

]
+ i

[
y

∂

∂z
,

∂

∂x
∂

∂y

]
− 1

2

[
z

∂

∂y
y2

]
− 1

2

[
y

∂

∂z
,

∂2

∂y2

]
=

∂

∂y
∂

∂z
− yz + ixz − i

∂

∂x
∂

∂z
,

[M2, T(+)
2 ] = i

[
x

∂

∂z
− z

∂

∂x
, − ∂

∂x
∂

∂y
+ xy +

i
2

(
∂2

∂x2 − ∂2

∂y2 + y2 − x2
)]

= i
[

∂

∂x
∂

∂y
, x

∂

∂z

]
+ i

[
xy, z

∂

∂x

]
+

1
2

[
∂2

∂x2 , x
∂

∂z

]
+

1
2

[
x2, z

∂

∂x

]
=

∂

∂x
∂

∂z
− xz − iyz + i

∂

∂y
∂

∂z
,

from which we can prove the following fundamental result.

Theorem 9 (Theorem of accidental degeneracy). The commutator
[

A(θ, ϕ),T(+)
2

]
is

the operator:[
A(θ, ϕ), T(+)

2

]
= 4T(+)

2 M3 + 6T(+)
2 +

(
− 2i

∂

∂x
∂

∂z
+ 2

∂

∂y
∂

∂z
+ 2ixz − 2yz

)
T
(+)
1 ,

where T(+)
1 is the raising operator of the natural degeneracy in (13).

Proof. Using the relation A(θ, ϕ) ≡ M2
1 +M2

2 +M2
3 and expanding the left-hand side,

we have: [
A(θ, ϕ), T(+)

2

]
=

[
M

2
1 +M

2
2 +M

2
3, T(+)

2

]
= M1

[
M1, T(+)

2

]
+

[
M1, T(+)

2

]
M1 +M2

[
M2, T(+)

2

]
+

[
M2, T(+)

2

]
M2

+M3

[
M3, T(+)

2

]
+

[
M3, T(+)

2

]
M3

= i
(

z
∂

∂y
− y

∂

∂z

)(
∂

∂y
∂

∂z
− yz + ixz − i

∂

∂x
∂

∂z

)
+ i

(
∂

∂y
∂

∂z
− yz + ixz − i

∂

∂x
∂

∂z

)(
z

∂

∂y
− y

∂

∂z

)
+ i

(
x

∂

∂z
− z

∂

∂x

)(
∂

∂x
∂

∂z
− xz − iyz + i

∂

∂y
∂

∂z

)
+ i

(
∂

∂x
∂

∂z
− xz − iyz + i

∂

∂y
∂

∂z

)(
x

∂

∂z
− z

∂

∂x

)

+ 2i
(

y
∂

∂x
− x

∂

∂y

)[
− ∂

∂x
∂

∂y
+ xy +

i
2

(
∂2

∂x2 − ∂2

∂y2 + y2 − x2
)]

+ 2i
[
− ∂

∂x
∂

∂y
+ xy +

i
2

(
∂2

∂x2 − ∂2

∂y2 + y2 − x2
)](

y
∂

∂x
− x

∂

∂y

)
.
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Expanding the right-hand side yields:

4T(+)
2 M3 + 6T(+)

2 +

(
−2i

∂

∂x
∂

∂z
+ 2

∂

∂y
∂

∂z
+ 2ixz − 2yz

)
T
(+)
1

= 4i
(
− ∂

∂x
∂

∂y
+ xy +

i
2

∂2

∂x2 − i
2

∂2

∂y2 +
iy2

2
− ix2

2

)(
y

∂

∂x
− x

∂

∂y

)

+ 6
(
− ∂

∂x
∂

∂y
+ xy +

i
2

∂2

∂x2 − i
2

∂2

∂y2 +
iy2

2
− ix2

2

)
+

(
− 2i

∂

∂x
∂

∂z
+ 2

∂

∂y
∂

∂z
+ 2ixz − 2yz

)(
iz

∂

∂y
− iy

∂

∂z
− x

∂

∂z
+ z

∂

∂z

)
.

With the help of some algebra, we can recognize that the two expansions are equal;
hence, the proof is complete.

Theorem 9 and the identity T
(+)
1 ψn�� = 0 lead to establishing the action of the commu-

tator [A(θ, ϕ), T(+)
2 ] on the eigenfunction ψn,�,�, obtained when positing m = �.[

A(θ, ϕ), T(+)
2

]
ψn,�,�

=

[
4T(+)

2 M3 + 6T(+)
2 +

(
− 2i

∂

∂x
∂

∂z
+ 2

∂

∂y
∂

∂z
+ 2ixz − 2yz

)
T
(+)
1

]
ψn,�,�

=
[
4T(+)

2 M3 + 6T(+)
2

]
ψn,�,� +

(
− 2i

∂

∂x
∂

∂z
+ 2

∂

∂y
∂

∂z
+ 2ixz − 2yz

)[
T
(+)
1 ψn,�,�

]
= (4�+ 6)

[
T
(+)
2 ψn,�,�

]
,

that is we have found the fundamental commutator:[
A(θ, ϕ),T(+)

2

]
ψn,�,� = (4�+ 6)

[
T
(+)
2 ψn,�,�

]
. (17b)

The function T
(+)
2 ψn,�,� is either the null function or a simultaneous eigenfunction

of the operator L, with respect to the same eigenvalue λn as ψn,�,�, and of the operators
A(θ, ϕ), M3, with respect to the eigenvalues �(�+ 1) + 4�+ 6 ≡ (�+ 2)(�+ 3) and �+ 2,
respectively, that is:

T
(+)
2 ψn,�,� = C�+2 ψn,�+2,�+2 .

Furthermore, the raising operator T(+)
2 provides a clarification of the accidental de-

generacy of the spectrum of the operator L̃ because its iterated action on the eigenfunction
ψn,0,0, where n is even, gives:

T
(+)
2 ψn,0,0 = C2 ψn,2,2 , T

(+)
2 ψn,2,2 = C4 ψn,4,4 , . . . , T

(+)
2 ψn,n−2,n−2 = Cn ψn,n,n

and analogously with n odd:

T
(+)
2 ψn,1,1 = C3 ψn,3,3 , T

(+)
2 ψn,3,3 = C5 ψn,5,5 , . . . , T

(+)
2 ψn,n−2,n−2 = Cn ψn,n,n ,

where the coefficients Ci are coefficients of normalization, that is the action of the raising
operator T(+)

2 on the eigenfunctions ψn,�,� leaves the parameters n unchanged and modifies
the parameters �, m, only.
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Regarding the operator T(−)
2 , we have the relation (it can be proven by means of the

same strategy as in Theorem 9):[
A(θ, ϕ), T(−)

2

]
= − 4T(−)

2 M3 + 6T(−)
2 +

(
− 2i

∂

∂x
∂

∂z
− 2

∂

∂y
∂

∂z
+ 2ixz + 2yz

)
T
(−)
1 ,

where T
(−)
1 is the lowering operator of the natural degeneracy in (13), from which we

obtain the action: [
A(θ, ϕ), T(−)

2

]
ψn,�,−� = (4�+ 6)

[
T
(−)
2 ψn,�,−�

]
. (18)

Again, for the above reasons, the function T
(−)
2 ψn,�,−� is either the null function or a

simultaneous eigenfunction of the operator L, with respect to the same eigenvalue λn as
ψn,�,−�, and of the operators A(θ, ϕ), M3, with respect to the eigenvalues �(�+ 1)+ 4�+ 6 ≡
(�+ 2)(�+ 3) and −�− 2, respectively, that is:

T
(−)
2 ψn,�,−� = C̃�+2 ψn,�+2,−�−2 .

Since the action of the operator T(−)
2 on the eigenfunctions ψn,�,−� raises the parameter

� by two units, as the operator T(+)
2 , we can conclude that there is no lowering operator

for the parameter �, but this is not surprising because, by virtue of (17a), the operator T(−)
2

lowers the parameter m of the eigenfunctions ψn,�,−� from −� to −�− 2. This means that
the parameter � cannot change from � to �− 2 because otherwise, we would have that:

|m| = | − �− 2| > �− 2,

which is absurd, due to the constraint |m| � �.
Furthermore, the operator T(−)

2 provides a clarification of the accidental degeneracy
of the spectrum of the operator L̃ because its iterated action on the eigenfunction ψn,0,0,
where n is even, gives:

T
(−)
2 ψn,0,0 = C̃2 ψn,2,−2 , T

(−)
2 ψn,2,−2 = C̃4 ψn,4,−4 , . . . , T

(−)
2 ψn,n−2,−n+2 = C̃n ψn,n,−n,

and also, if n is odd:

T
(−)
2 ψn,1,−1 = C̃3 ψn,3,−3 , T

(−)
2 ψn,3,−3 = C̃5 ψn,5,−5 , . . . , T

(−)
2 ψn,n−2,−n+2 = C̃n ψn,n,−n ,

where the coefficients C̃i are coefficients of normalization, i.e., the action of the operator
T
(−)
2 on the eigenfunctions ψn,�,−� leaves the parameters n unchanged and modifies the

parameters �, m, only.

5. Discussion

In this paper, we focused on the accidental degeneracy of a second-order, Schrödinger-
type differential operator, acting on a Hilbert space. Typically, in the theory of PDEs, the
concept of degeneracy is connected to the number of parameters on which the eigenvalues
depend. Natural degeneracy and accidental degeneracy were reformulated and character-
ized by using the ladder operators. Such a useful tool can be further employed to provide
a new way to describe degeneracy in eigenvalue problems with elliptic operators.
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Abstract: The mixing process of liquid products is a crucial activity in the industry of essential
commodities like, medicine, pesticide, detergent, and so on. So, the mathematical study of the
mixing problem is very much important to formulate a production inventory model of such type
of items. In this work, the concept of the mixing problem is studied in the branch of production
inventory. Here, a production model of mixed liquids with price-dependent demand and a stock-
dependent production rate is formulated under preservation technology. In the formulation, first
of all, the mixing process is presented mathematically with the help of simultaneous differential
equations. Then, the mixed liquid produced in the mixing process is taken as a raw material of a
manufacturing system. Then, all the cost components and average profit of the system are calculated.
Now, the objective is to maximize the corresponding profit maximization problem along with the
highly nonlinear objective function. Because of this, the mentioned maximization problem is solved
numerically using MATHEMATICA software. In order to justify the validity of the model, two
numerical examples are worked out. Finally, to show the impact of inventory parameters on the
optimal policy, sensitivity analyses are performed and the obtained results are presented graphically.

Keywords: mixing process; simultaneous differential equations; variable production rate; simulated
annealing; differential evolution

1. Introduction

The mixing problem has a great impact on different sectors of business management,
viz. the medicine industry (Gautam et al. [1], Essi [2], Ploypetchara et al. [3]), cosmetics
industry (Bernardo and Saraiva [4], Kim et al. [5], Zhang et al. [6]), chemical industry
(Funt [7], Wu et al. [8], Jasikova et al. [9]), and so on, to produce essential commodities
in our daily life. Thus, in the area of inventory control, investigation of the production
inventory problem of a mixed product along with the mixing process is an intersecting
research area. In this connection, Nienow et al. [10], Cheng et al. [11], Fitschen et al. [12], and
many others have had a valuable influence in this area. As various inventory parameters
like production rate, demand rate, deterioration rate, and preservation technology play
a significant role to control a production inventory, researchers should take more care of
those inventory parameters in the studying of the production inventory problem with the
mixing process.

In production inventory, the production rate of the product is the key parameter
that may be constant or dependent on customers’ demand/stock level of the product,
among others. On the other hand, owing to the failure of machines, sometimes imperfect
production occurs during the production process. Thus, imperfect production is also an
important factor for production firm/manufacturing firm. Several researchers developed
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different production models by taking various production rates and imperfect production
processes. De [13] analyzed a production problem with a variable rate of production. Su
and Lin [14,15] investigated two production inventory models with a demand- as well as
inventory-level-dependent production rate. After that, Giri et al. [16] analyzed an unreliable
production system with variable production. Roy et al. [17] studied a production inventory
model for defective products with rework policy. Considering an imperfect production
process, Sana [18] formulated a production inventory model. A few years later, Sharmila
and Uthayakumar [19] established the optimal policy of a production problem with three
different production rates. Then, Patra and Maity [20] developed a production problem
for defective items with a variable production rate. Dey [21] investigated an imperfect
production model under an integrated system in an imprecise environment. Succeeding
them, Mishra et al. [22] studied the sustainability of a production system under controllable
carbon emission. Lu et al. [23] applied the Stackelberg gaming approach to determine the
optimal policy of an imperfect production inventory model with collaborative investment
policy for reducing emission. Recently, Öztürk et al. [24] studied an imperfect production
process with random breakdowns, rework, and inspection costs and Khara et al. [25]
formulated an imperfect production model considering advanced payment and trade
credit facilities. Beside these, the works of Malik et al. [26], Lin et al. [27], and Rizky
et al. [28] are valuable in this area.

Demand of customers is also an important factor in inventory control. It depends
on several factors, such as selling price of the product, inventory level, frequency of the
advertisements, time, and so on. In reality it is seen that, if the price of a commodity
increases, the demand for that commodity must decrease, i.e., the selling-price-dependent
demand rate is a decreasing function. On the other side, more customers are attracted
because of the large number of items in stock, i.e., the stock-dependent demand rate is
an increasing function of the stock level of the items. Sometimes, the customers’ demand
for a new product increases drastically owing to the advertisement of the product. Thus,
advertisement frequency has a great impact on the demand rate. Resh et al. [29] first
introduced the variable demand rate (selling-price-dependent) in the area of inventory
control and modified Harris’s EOQ model. Urban [30] analyzed an inventory model with
stock-linked demand. Chang [31] studied a model for optimal lot sizing with a nonlinear
stock-linked demand rate. Mukhopadhyay et al. [32] and You [33] studied different types
of EOQ models with price-dependent demand. After a few years, Khanra et al. [34]
constructed an inventory model with a time-dependent demand rate under trade credit
policy. Further, Bhunia and Shaikh [35] studied a deterministic inventory model with price-
dependent demand and a three-parameter Weibull distributed deterioration rate. Prasad
and Mukherjee [36] proposed an inventory model where the demand rate is connected to
stock and time, along with shortages. Manna et al. [37] investigated a production inventory
model with imperfect production and advertisement-dependent demand. Jain et al. [38]
investigated a fuzzy inventory model where the demand for an item is dependent on
time. Recently, the contributions of Alfares and Ghaithan [39], Shaikh et al. [40], Rahman
et al. [41], Cardenas-Barron et al. [42], Das et al. [43], Halim et al. [44], Rahman et al. [45],
and others on this topic are worth mentioning.

Deterioration is also important in the control of inventory. Most of the commodities in
our daily life deteriorate with the passing of time owing to the several factors. Thus, to study
an inventory problem for deteriorating items, we cannot avoid the effect of deterioration.
Naturally, the deterioration rate of an item cannot be predicted accurately. However, it
was taken as constant or time-dependent or probabilistic by several researchers. In their
work, for the first time, Ghare and Schrader [46] proposed the concept of deterioration
(constant). Then, Emmons [47] proposed the concept of stochastic deterioration with two-
parameter Weibull distribution. Since then, a number of research works have been reported
in the existing literature. Among those, the works of Datta and Pal [48], Wee [49], Ouyang
et al. [50], Min et al. [51], Dash et al. [52], Dutta and Kumar [53], Shah [54], Tiwari et al. [55],
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Shaw et al. [56], Mashud et al. [57], Khakzad and Gholamian et al. [58], Mishra et al. [59],
Khanna and Jaggi [60], and Naik and Shah [61] are worth mentioning.

On the other side, the economy of an industry is badly affected by reckless deteri-
oration. Thus, in the case of more deterioration, the control of deterioration is highly
required. Usually, to prevent more deterioration, some policies/techniques are adopted,
named preservation policies/technologies. For the first time, Hsu et al. [62] investigated
the concept of preservation technology in the area of inventory control. After that, Dye [63]
discussed the preservation investment effect on deterioration rate. Zhang et al. [64] solved
an inventory problem for perishable goods by considering stock-dependent demand and
investment in preservation technology. Yang et al. [65] proposed an inventory model under
preservation technology and trade-credit policy. Tayal et al. [66] studied an inventory prob-
lem for a perishable product with a permissible delay in payment along with investment
in preservation technology. Dhandapanin and Uthayakumar [67] analyzed the optimal
policy of a multi-item inventory model under preservation technology. Recently, Shaikh
et al. [68], Das et al. [69], Saha et al. [70], Mashud et al. [71], Sepehri et al. [72], and others
contributed through their works on preservation technology.

The organization of the paper is according to Figure 1. In this work, a production
problem for mixed liquid and price-dependent demand is formulated. In this formulation,
at first, the mixing process is presented mathematically by the simultaneous differential
equations under some restrictions. Then, the corresponding optimization problem related
to this model is obtained as the profit maximization problem. Because of the high non-
linearity of the objective function (average profit), the mentioned maximization problem is
solved by differential evolution and simulated annealing in Mathematica software. Then,
to investigate the validation of the model, two numerical examples are solved. Finally,
sensitivity analyses are performed graphically and this work is concluded with some future
scopes. A summary of some of the literature is presented in Table 1.

Figure 1. Organization of the paper.
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Table 1. Summary of the related literature.

Literature
Simultaneous

Differential Equation
Production Rate Demand Deterioration

Su and Lin [14] No Variable Variable _____

Kapuscinki and Tayur [73] No Constant Periodic _____

Sana et al. [74] No Constant Time varying Constant

Lo et al. [75] No Constant Constant Weibull distributed

Roy et al. [17] No Imprecise Imprecise Imprecise

Sarkar [76] No Constant Constant Probabilistic

Samanta [77] No Constant Constant Probabilistic

Bhunia et al. [78] No Constant Variable ______

Rastogi and Singh [79] No Demand-dependent Selling-price-
dependent Time-dependent

Ullah et al. [80] No Constant Constant Constant

Salas-Navarro et al. [81] No Constant Probabilistic ______

Das and Islam [82] No Time-dependent Time-dependent
and imprecise ______

Saren et al. [83] No Constant Selling-price- and
time-dependent Constant

Khanna and Jaggi [60] No ______ Price- and
stock-dependent

Preservation-
technology-dependent

Sepehri et al. [72] No Constant Selling-price-
dependent Constant

This Work Yes Variable Selling-price-
dependent

Preservation-
technology-dependent

2. Research Gap and Contributions

After a brief survey of the literature, it is conjectured that many works have been
accomplished on production inventory (Table 1) for different types of products, such as
food, electrical goods, garments, medicine, and so on, with various assumptions regarding
the production rate, demand rate, deterioration rate, and so forth. On the other hand, the
concepts of the mixing problem are essential in the production manufacturing of liquid
products (like, medicine, juice, cosmetics, and so on). To the best of our knowledge, few
works on the mixing process (viz. Essi [2], Ploypetchara et al. [3], Kim et al. [5], Jasikova
et al. [9], and Fitschen et al. [12], among others) are available in the literature. However,
very few researchers ([84,85]) considered the combination of the mixing process as well as
manufacturing process in his/her work. Though Su et al. [84] accomplished their work
on production inventory for mixed products, they did not consider the mathematical
formulation of the mixing process.

To fill this gap, a production inventory model for mixed liquid was formulated by
defining the mixing process mathematically. Here, the mixing process of liquids is consid-
ered as a part of the production process. The mixing process is presented mathematically by
simultaneous differential equations. Then, in the manufacturing part of this modelling, the
variable production rate (dependent on the stock level of mixed liquid) and preservation
technology are considered. The mentionable contributions of this study are as follows:

(i). Application of simultaneous linear differential equations (to the present mixing
process) in the production inventory system.

(ii). Linkage between the mixing process and manufacturing process.
(iii). Consideration of the variable production rate in the manufacturing process dependent

upon the stock level of mixed liquid.
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All of the above represent the novelty of this work.

3. Notation and Assumptions

The following notations and assumptions are used thought the manuscript.

3.1. Notation

The notations used in this paper are as follows:
x(t) Concentration of liquid at time t in container-I (%)
y(t) Concentration of liquid at time t in container-II (%)
q(t) Stock level of mixed liquid (L)
A Capacity of container-I (L)
B Capacity of container-II (L)
α Incoming rate of liquid with concentration k in container-I (L/unit time)
β Outgoing rate of liquid from container-I to container-II (L/unit time)
γ Incoming rate of liquid from container-II to container-I (L/unit time)
δ Outgoing rate of liquid 2 from container-II (L/unit time)
η Initial concentration of liquid in container-II (%)
k Concentration of liquid supplied from outside (%)
a, b Demand parameters
D(p) Demand of the customers
P Production rate (L/time unit)
θ1 Wastage rate during production without preservation
m Preservation controlling parameter
ξ Preservation investment ($)
cp Processing cost ($/L)
p Selling price per unit ($/L)
Co Set up cost ($/order)
h Carrying cost per unit per unit time ($/L/time unit)
t1 Duration of production (time unit)
T Cycle length (time unit)
TP(t1, p, ξ) Average profit ($/time unit)

3.2. Assumptions

(i). This work deals with a mixture of three different concentrations of a liquid.
(ii). The capacity of container-I filled with liquid with an initial concentration of zero

(container) is less than the capacity of container-II filled with liquid with an initial
concentration of k.

(iii). At first, the liquid with concentration η is sent to container-I at the rate α. Then,
the mixture of liquid is sent to container-II at the rate β, and the liquid is sent back
to container-I from container-II at the rate γ; this process continues to obtain the
best desirable mixture. After reaching the desired mixture, the mixed liquid from
container-II at the rate δ is used in the production process.

(iv). The production rate of the mixed product P(t) is proportional to the level of mixed
liquids (y(t)). The mathematical form of P(t) is P(t) = δ

B y(t).
(v). The wastage/deterioration rate θ during production is dependent on preservation

technology. The mathematical form of the deterioration rate is θ = θ1e−mξ , where ξ is
the preservation investment, m is the preservation controlling parameter, and θ1 is
the original deterioration rate.

(vi). The demand of an item is dependent on selling price and its mathematical form is
D(p) = a − bp, a, b, p > 0, such that p < a

b .
(vii). Shortages are not allowed.
(viii).Time horizon is infinite and lead time is constant.

4. Problem Description

The problem of the proposed model has two parts: (i) the mixing problem and (ii) the
production inventory problem. In the mixing problem, the process of mixing takes place
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on an instrument made by two containers (Figure 2). In this instrument, container-I is
connected to container-II by a pipe line so that the liquid can pass from container-I to
container-II, and vice versa. Initially, liquids of two different concentrations (η and k) are
taken to make the initial mixture. During mixing, the liquid with a concentration η is
passed through container-I at the rate α and then from container-I to container-II with the
rate β. Again, the mixed liquid is returned back from container-II to container-I with the
rate γ, and this process is continued to obtain the desired mixed liquid. Finally, the desired
mixed liquid exits from container-II at the rate δ. The entire process of mixing is presented
in Figure 2. Then, in the part of production process, the desired mixture is taken as a
raw material and a single product is produced at the production rate P(t)

(
P(t) = δ

B y(t)
)

.
During the production period, owing to the customers’ demand, the produced product is
stored with the rate (P − D) per unit time and the level of inventory reaches its pick level
at time t = t1. After that, the level of stock gradually decreases because of fulfilling the
demand of the customer and the stock level reaches zero at time t = T. The variation in the
level of inventory at any time t is shown in Figure 3.

Figure 2. Representation of the mixing procedure in the production process.
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Figure 3. Changes in inventory level with respect to time.

5. Mathematical Formulation

Here, we have discussed the mathematical formulation of mixing and the production
inventory system.

5.1. Mathematical Formulation of Mixing Problem

The mixing process described in the previous section is presented mathematically by
the following simultaneous differential equations:

.
x = ηα − β

A x + γ
B y

.
y = β

A x − γ+δ
B y

(1)

Subject to the initial conditions x(0) = 0, y(0) = kB, where δ < γ < β and 0 < k < 1.
Moreover, from the principle of flow, we get

β = α + γ = γ + δ (2)

Solving the system (1), one can obtain the concentrations of the liquids in container-I
and container-II as follows:

x(t) = exp
(
− k1

2
t
)
{c1 exp(k4t) + c2 exp(−k4t)}+ k3

k2
(3)

y(t) =
B
γ

[
c1

(
k4 −

k1

2
+

β

A

)
exp

{(
k4 −
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2

)
t
}
+ c2

(
−k4 −

k1

2
+

β

A

)
exp

{(
−k4 −

k1

2

)
t
}]

− η

γ
αB +

βBk3

γAk2
(4)

where
k1 = β

A + γ+δ
B ,

k2 = βδ
AB

k3 = η
α(γ+δ)

B

k4 =

√
k1

2−4k2
2

c1 = − k3
2k2

+ 1
2k4

[
kγ + ηα + k3

k2

(
β
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2
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]
and

c2 = − k3
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[
kγ + ηα +

k3

k2

(
β

A
− k1

2

)
− βk3

Ak2

]
.
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5.2. Mathematical Formulation of the Production Problem

The inventory level of the problem at any time t satisfies the governing
differential equations

dq(t)
dt

+ θq(t) = P(t)− D for 0 ≤ t ≤ t1 (5)

dq(t)
dt

+ θq(t) = −D for t1 < t ≤ T (6)

with the conditions q(0) = 0, q(t1) = Q and q(T) = 0.
The solutions of Equations (5) and (6) are given by

q(t) =
(

βδk3
γθk2 A − D

θ − ηαδ
γθ

)
{1 − exp(−θt)}

+ c1(
k4−

k1
2 +θ

){(
k4 − k1

2

)
δ
γ + βδ

γA

}[
exp

{(
k4 − k1

2

)
t
}
− exp(−θt)

]
+ c2(

k4+
k1
2 −θ

){(
k4 +

k1
2
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δ
γ − βδ

γA

}[
exp
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−
(

k4 +
k1
2

)
t
}
− exp(−θt)

]
for 0 < t ≤ t1

(7)

and
q(t) =

D
θ
{exp(θ(T − t))− 1} for t1 < t ≤ T (8)

Again, using the continuity of q(t) at t = t1, we have

T = 1
θ log

[
θ
D

[(
βδk3

γθk2 A − D
θ − ηαδ

γθ

)
{1 − exp(−θt1)}
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+ 1
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(9)

5.3. Various Components of the System

The various components of the system are calculated as follows:

(i). Sales revenue (SR):

SR = p
T∫

0

D dt = pDT

(ii). Ordering cost (Co):
(iii). Holding cost (HC):

HC = h
t1∫
0

q(t) dt + h
T∫

t1

q(t) dt

= h
(

βδk3
γθk2 A − D

θ − ηαδ
γθ

){
t1 − 1

θ (1 − exp(−θt1))
}
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2
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2
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}
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2
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]
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θ (T − t1)

(iv). Production cost (PC):
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PC = cp
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(v). Preservation cost: CP = ξT.

Therefore, the profit per unit time of the system is given by

TP(t1, p, ξ) =
1
T
[SR − PC − HC − Co − CP]

Now, the corresponding maximization problem of the system is given by

Maximize TP(t1, p, ξ)

subject to t1 > 0, 0 < p < a
b

(10)

6. Solution Methodology

The corresponding optimization problem (10) of the proposed production system
is clearly highly non-linear in nature with respect to the decision variables t1, p, ξ. It is
difficult to solve (10) by any analytical method, such as the gradient-based technique,
Lagrange’s multiplier method, Newton’s method, saddle point optimization techniques,
and so on. Thus, in order to solve the mentioned optimization problem (10), the following
algorithms built in MATHEMATICA software are used:

(i) Differential evolution (Price, 1996);
(ii) Simulated annealing (Marchesi, 1988).

The discussions of the above-mentioned algorithms are done based on the following
generalized optimization problem:

Maximize f (u)
subject to t ∈ S ⊆ Rn

where f : S → R

(i) Differential Evolution (DE)
Differential evolution is one of the popular search techniques in the area of optimiza-

tion. The algorithm of this optimizer has the following attributes:

• The initial positions of the population of size m are {u1, u2, . . . , um}, m � n
• In the evaluation process for each iteration, the algorithm generates a new population

with m points. Using the three points uu, uv and uw, the algorithm generated the jth
new point randomly from the previous population.

• The mathematical form is us = uw + s(uu − uv), where s is a scaling parameter.
• The new point unew is created from uj and us with the help of the ith coordinate from

us along with probability ρ, otherwise it will take the coordinate from uj.
• If f (unew) > f

(
uj
)
, then unew replaces uj in the new population.

• The probability ρ is controlled by the “cross probability” option.

Generally, this process is converged if deviation in between the best functional values
in the new position and old population as well as the deviation between the new best point
and the old best point are less than the tolerances.

The values of parameters used in the Differential Evolution are given in Table 2.
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Table 2. The values of parameters used in the Differential Evolution.

Operator Name Default Value Descriptions

“Cross Probability” 0.5 Probability of a gene taken from ti

“Random Seed” 0 It is a starting value of random number generator

“Scaling Factor” 0.6 Scale applied to the deviation vector in creating a mate

“Tolerance” 0.001 It is accepting constraint violations

(ii) Simulated Annealing (SA)
Simulated annealing is another random search-based meta-heuristic maximizer. The

algorithm of this maximizer is inspired by physical activity of annealing, in which a
metallic object is warmed up to an extreme temperature and allowed to cool gently. In
this process, the atomic structure of metal reaches the lower energy level from the upper,
and thus becomes a tougher metal. Exploring this concept in optimization, the algorithm
of simulated annealing allows to move away from a local minimizer, and to traverse and
settle on a better position and, ultimately, on the global maximizer.

During the iterative process, a new point unew is created in the neighboring point
u. Thus, the radius of the neighborhood is decreased from iteration to iteration. The
best-found point ubest obtained so far is tracked as follows:

If f (unew) > f (ubest),unew replaces ubest and u.
Otherwise, unew replaces u with a probability eb(i,Δ f , f0), where b is the Boltzmann

exponent, I is the current iteration, Δ f is the change in the objective value, and f0 is the last
iteration objective function value.

The default function for b is taken as −Δ f log(i+1)
10 .

Simulated annealing is used for multi-initial points and obtains an optimizer among
them. In general, the default number of initial points is taken as min{2n, 50}.

The starting points is repeated until achieving of the maximum number of iterations
and this method converges to a point.

The values of the parameters of the Simulated annealing are given in Table 3.

Table 3. The values of parameters used in the Simulated annealing.

Option Name Default Value Descriptions

“Level Iterations” 50 Maximum number of iterations to stay at a given point

“Perturbation Scale” 1.0 Scale for the random jump

“Random Seed” 0 It is a starting value of random number generator

“Tolerance” 0.001 Tolerance for accepting constraint violations

Solution Procedure
To solve the optimization Problem (10), the following steps are followed:
Step 1: Set the initial values of all input inventory parameters.
Step 2: Define the objective Function (10) in MATHEMATICA.
Step 3: Use the following comments:
“NMaximize [objective, decision variables, Method → “SimulatedAnnealing”]
“NMaximize [objective, decision variables, Method → “DifferentialEvaluation”]
Step 4: Compile and execute.
Step 5: Check the result.
Step 6: If the program is convergent and the results are feasible, go to Step 8, otherwise

go to Step 7.
Step 7: Repeat Steps 1 to 6.
Step 8: Print the optimal results.
Step 9: Stop.
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7. Numerical Illustrations

Here, we have discussed validation of the proposed work. During the validation
process, two numerical examples of a hypothetical system are considered as follows:

Example 1: In this numerical example, the hypothetical data of input parameters are taken
in the following way:

A = 690, B = 700, α = 325, β = 690, γ = 365, δ = 325, θ1 = 0.22, η = 0.9, k = 0.2, a = 150, b = 0.5, Co = 450,
cp = 50, h = 0.5.

Example 2: Here, the values of preservation parameters are taken as m = 0.7 and the other
input parameters are taken to be the same as Example 1.

Example 1 and Example 2 are solved by DE and SA, which are codded in Mathematica
software, and the obtained results are displayed in Tables 4 and 5, respectively. Moreover,
to show the concavity of the objective function, the pictorial representations of the average
profit function versus independent variables taken two at a time w.r.t. Example 2 are
depicted in Figures 4–6.

Table 4. Best-found solution of Example 1.

Unknown Parameters Best-Found Result Obtained by DE Best-Found Result Obtained by SA

Production time (t1) (month) 1.9851 1.9851

Cycle length (T) (month) 2.2615 2.2615

Selling price (p) ($/L) 170.746 170.746

Average profit (TP) ($/month) 7591.65 7591.65

Table 5. Best-found solution of Example 2.

Unknown Parameters Best-Found Result Obtained by DE Best-Found Result Obtained by SA

Production time (t1) (month) 3.92474 3.92474

Cycle length (T) (month) 7.005 7.005

Selling price (p) ($/L) 174.89 174.89

Preservation investment (ξ) ($) 8.97837 8.97836

Average profit (TP) ($/month) 7703.15 7703.15

Discussion

From the solution of Examples 1 and 2 (cf. Tables 2 and 3), the following findings are
observed.

(i) The average profit of Example 2 (model with preservation technology) is higher than
that of the Example 1 (model without preservation technology). From this finding, it
may be concluded that the model with preservation technology is more economical
than the model without preservation technology.

(ii) The best-found results of both Examples 1 and 2 obtained by DE and SA are same up
to a certain degree of accuracy. Thus, from here, it can also be concluded that both of
the algorithms are equally efficient to solve the corresponding optimization problem
of the proposed model.

(iii) Figures 4–6 indicate pictorial evidence for the near optimality of the obtained results
for Examples 1 and 2.
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Figure 4. Profit function with respect to t1 and p.

Figure 5. Profit function with respect to t1 and ξ.

Figure 6. Profit function with respect to ξ and p.
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8. Sensitivity Analyses

To show the impact of various known inventory parameters on the average profit
(TP), production time (t1), selling price (p), and cycle length (T), sensitivity analyses are
performed with respect to Example 2 by changing the parameters from −20% to 20%. Then,
the obtained results of these analyses are depicted graphically in Figures 7–12.

Figure 7. Impact of Co on the optimal policy.

Figure 8. Impact of h on the optimal policy.

Figure 9. Impact of cp on the optimal policy.
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Figure 10. Impact of θ1 on the optimal policy.

Figure 11. Impact of m on the optimal policy.

Figure 12. Impact of b on the optimal policy.
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From Figures 7–12, the following observations can be made:

• The profit per unit (TP) is moderately sensitive with a reverse effect with respect to cp,
whereas it is insensitive with the change of θ1, m, h and Co, and highly sensitive with
a reverse effect with respect to b.

• The production time (t1) is less sensitive directly with respect to Co, cp, and slightly
sensitive with a reverse effect with respect to h. On the other hand, it is insensitive
with the changes in θ1, m & b.

• The selling price (p) is slightly sensitive with respect to cp, whereas it is insensitive
with the changes in Co, h, θ1 & m, and fairly sensitive with a reverse effect with respect
to b.

• The preservation investment (ξ) is slighter sensitive with respect to Co, cp, h & θ1,
whereas it is insensitive with the changes in b, and highly sensitive with a reverse
effect with respect to m.

• The cycle length (T) is slightly sensitive with respect to cp, and moderately sensitive
with a reverse effect with respect to h. On the other hand, it is insensitive with the
changes in b, θ1 and m and fairly sensitive with respect to Co.

9. Managerial Implications

From the numerical and sensitivity analyses, a few advisories or awareness may
be given to the manager of the manufacturing system of mixed products, which are
presented below:

(i). As the model with preservation technology is more economical than the model
without preservation technology, it will be a good choice for the manager to consider
the preservation facility during the manufacturing process of perishable products.

(ii). On the other hand, the manager should be careful about the preservation controlling
factor (m), which has a high reverse effect on the preservation investment, the igno-
rance of which may be the cause of higher compensation on preservation technology.

(iii). The average profit is highly sensitive with respect to the demand controlling param-
eter b and inventory cost components in the reverse sense, thus a manager/model
analyst should take more care about these parameters when making the optimal
decision.

10. Conclusions

In this work, the concept of the mixing problem is implemented in the production
inventory model for a liquid product with selling-price-dependent demand and a vari-
able production rate under preservation technology. The mixing process is formulated
mathematically by the system of differential equations. The non-linear average profit
is maximized numerically by the meta-heuristic optimizers: differential evaluation and
simulated annealing.

It may be concluded from the numerical result that, if the enterprise/organization
applies the preservation facility, it will be more beneficial for them. From the sensitivity
analyses, it can also be concluded that the demand parameters and different inventory
costs have a significant negative impact on average profit.

As a practical implication, the concept of this proposed model can be applied in
various industries, such as medicine, cosmetics, detergent, food industries, and so on.
Although the concept of this model can be implemented in the various fields mentioned
above, this work has some limitations. Firstly, there is no theoretical proof of the optimal
policy of the proposed model. Secondly, under uncertainty, this model cannot be directly
implemented in the such industrial sectors and, finally, the shortages case is not considered
in this model.

Keeping the above limitations of the proposed model in mind, in the future, the
concept of the mixing problem can be extended in other production inventory models,
such as models with shortages, a production model with an imperfect production process,
and a model with trade credit policy, among others. Finally, the concept of this work may

101



Mathematics 2021, 9, 3166

be extended in an uncertain environment-fuzzy, stochastic, fuzzy-stochastic, and interval
environment, among others.
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Abstract: A piecewise linear dynamical model is proposed for a stock price. The model considers
the price is driven by three rather standard demand components: chartist, fundamental and market
makers. The chartist demand component is related to the study of differences between moving
averages. This generates a high order system characterized by a piecewise linear map not trivial to
study. The model has been studied analytically in its fixed points and dynamics and then numerically.
Results are in line with the related literature: the fundamental demand component helps the stability
of the system and keeps prices bounded; market makers satisfy their role of restoring stability, while
the chartist demand component produces irregularity and chaos. However, in some cases, the chartist
demand component assumes the role to compensate the fundamental demand component, felt in an
autogenerated loop, and pushes the dynamics to equilibrium. This fact suggests that the instability
must not be searched into the nature of the different investment styles rather in the relative proportion
of the contribution of market actors.

Keywords: dynamical systems; financial markets; investment style; border collision bifurcation;
fundamental analysis; technical analysis; market maker
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1. Introduction

Financial markets are complex systems whose functioning has been studied and dis-
cussed largely in literature. Conventionally, markets are seen as populated by rational
investors that arbitrage away any possible predictable gain, thus what is left is just per-
turbation with null returns. However psychological forces unquestionably play a role in
financial crashes, for example, it happened in 1929, on the Black Monday of October 1987,
or in the dot.com bubble of 2001. Bubbles and crashes cannot be explained by an efficient
market, where prices are supposed to reflect all the available information. Starting from
empirical facts that cannot be explained by the efficient market hypothesis and observable
features that can be seen as the outcome of speculative activities, a large stream of literature
developed models in which prices are driven by the demand of heterogeneous market
participants. The addressed issues consisted in understanding how irregular patterns,
alternating periods of bull and bear markets, can be derivable from the way actors par-
ticipate in the market. One of the first behavioral model in this direction was proposed
in [1] with linear trading rules that were successively extended to non-linear versions
in [2,3]. At the same time, imitative behavior and switching between investment styles
have been also largely addressed to explain the emergence of fads, herding behavior, and
financial bubbles [3–5]. Such a field intersects also with some empirical literature that looks
at financial data searches for chaotic traces instead of randomity [6–9].

In the mentioned literature two rather standard approaches in terms of investment
styles are considered: fundamental analysis and technical analysis. The fundamental
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analysis supports the trading through a deep analysis of the real economy behind the asset
and evaluating the future earnings; in this respect, a fundamental value will summarize
the outcome of such analysis and will drive the trader’s order submission. The technical
analysis, based on graphs and indices, return trends and the market sentiment, provides
concise tools to understand where the market is going. Professional traders rely both on
technical and fundamental analysis to determine whether and how to participate in the
market. Hence the model considers the price driven by a composite demand in which
fundamentals and indices contribute together to move the price. Moreover, the third
typology of component is considered, hereafter referred to as market makers’ demand:
market makers are specific entrepreneurs who accomplish the task to absorb excess demand
if any. The fundamental and chartist demand components are assumed piecewise linear,
indeed it is quite common that an investor does not participate continuously in the market
rather she enters (buy) or exits (sell) the market if something gives her a signal of unfair
prices or trend inversion; in other words, an investor submits an order, whatever it is,
when something happens to suggest the presence of earning opportunities. Thus the model
belongs to that part of literature that sees markets as financial dynamical systems and
applies continuous and discontinuous piecewise smooth maps in economics and finance,
as [10–12]; in the specific financial markets, see [13] for a review. In the present model, the
chartist demand component is given by a common chartist investment strategy that uses
the difference of moving averages to catch trend inversions. From the mathematical point
of view, this leads to a large first-order difference equation system whose study is not so
straightforward. The equilibrium points and their stability can be studied only partially;
the bifurcations that occur belong to the class of border collision bifurcations for which
analytical results are still limited to low order systems [14–16].

The analytical and numerical analysis confirm that demand based on fundamental
analysis keeps prices around the fundamental value even when chaos appears. Demand
based on technical analysis can in large amount contribute to enhancing the chaos of the
system and the price oscillations, while market makers assume the role to stabilize the
market. The presence in the market of investors, those who try to speculate without caring
about fundamentals, generates dynamics that remove the price from its fundamental value
because their action drives the market in the same direction the market goes, giving strength
to the trend. A clear example of such a phenomenon is represented by the financial bubble
(see [17,18]): increasing prices lead investors to buy, which feeds the price increase far away
from its fundamental. On the other hand, when the price is so pumped, it starts a period of
instability, then a crash can occur, or a smooth deflation will bring back the price near its
fundamental. In the model each demand component is weighted by a specific parameter,
the ratios between these parameters give the balance between the investment styles relative
dominance. Results are anything but surprising, and in line with the related literature,
however, the emergence of a situation in which the fundamental demand component
alone generates periodic prices and small amounts of chartist demand push prices to
converge. How can chartist demand push to equilibrium a periodic dynamic triggered
by the fundamentals? In an attempt to answer this question: while the fundamental
demand component generates a loop that feeds a periodic up and down of prices, the
chartist demand component that moves in an opposite direction operates as softening the
fundamental force resulting in a convergent price. One could argue that the interaction of
different investments styles in the market generates disequilibrium in prices when their
contribution is out of proportion, otherwise, the market moves chaotic without spikes or
anomalies, apparently in line with the efficient market hypothesis. In other words, one can
conclude that the observed instability does not derive from the presence of some specific
investment style in itself, rather from a disproportion of their reciprocal contributions to
form the total demand.

The novelty of the model stays in introducing: (a) a common chartist investment
strategy that sees applied the moving averages; in particular, the difference between two
moving averages, as used by technical analysis, involves the use of past prices in the long
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and short term, leading to a high order system whose study is anything but trivial to face;
(b) the market makers demand so far has not experienced enough attention in the related
literature. Future investigations will move in the direction of studying deeply the border
collisions bifurcation in high order system as it occurs here; adding sophistication to the
market makers demand via a piecewise map, which would be more reasonable from the
economic point of view; developing a stochastic version of the model to replicate more
realistically the market and allowing for calibration on real data.

The rest of the paper is organized as follows: Section 2 presents the model with all
its components in details; Section 3 presents the analytical study of the system in each
component, in the limit of their tractability; Section 4 presents numerical examples with
relative observations and results; in Section 5 a general discussion on the model is provided;
finally Section 6 concludes.

2. A Financial Market Model

The proposed model considers the price as moved by the market demand, driven
by three rather standard components: a fundamental component, set according to a “fair”
price deriving from fundamental analysis; a chartist component, that follows the market
trend by using technical analysis, and a market makers component, that helps liquidity
and price fluidity absorbing demand in excess.

Let xt and yt be the stock price and the demand at time t, respectively. They can be
put in relation by a difference equation system of the type

xt = axt−1 + byt−1

yt = y f
t + yc

t + ymm
t

, (1)

where y f
t , yc

t and ymm
t are the fundamental, chartist and market makers demands, respec-

tively. The price is driven by past prices, just one step before, and the demand yt−1. The
price dependence with respect to the past and the demand could be modeled in many
different maps, for the sake of tractability the linear map remains one of the most adopted
choices.

Under the action of the three market forces, prices will move up and down, showing
stable, periodic, or chaotic behavior. Each market component can dominate more than
others pushing the market to an equilibrium price or an erratic movement, that even in a
stylized fashion can remind real market reproducing known stylized facts. Each component
will be studied analytically and numerically, varying the specific parameters that balance
the weight of each component. In the following, each component will be described in
detail.

2.1. Fundamental Demand

The fundamental strategy is built around the fundamental price that each agent
evaluates according to her perception and belief, selecting the relevant economic and
financial factors which contribute to producing the supposed security’s intrinsic value. For
the sake of simplicity, we consider a demand driven by a unique fundamental price as all
the investors agree on it. A heterogenous specification of the fundamental value could
be adopted to incorporate heterogenous agents’ beliefs; for example, we could select a
fundamental value following a random walk which can incorporate also the effect of news
arrival, as in [5,19], however, it would add more complexity to the model.

Given v the fundamental price, the stock results overvalued if xt > v, the stock is
correctly valued if xt = v, and the stock is undervalued if xt < v; then an investor sells,
holds her position, or buys, respectively, because she expects prices decreasing or increasing
accordingly. In literature this has been often modeled by a linear function y f

t ∼ (v − x),
which can generate an unlimited demand; however limited money availability could
suggest that a bounded function could fit better the bounded reality, for example, the
following

y f = c arctan(V − x). (2)
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The Equation (2) owns the quality to be continuous and smooth, however its analytical
tractability could be hard. Then a piecewise linearized version around v could be more
suitable:

y f =

⎧⎨⎩
d i f x < v − δ
c(v − x) i f v − δ ≤ x ≤ v + δ
−d i f x > v + δ

. (3)

Note that the map is continuous if d = cδ, discontinuous otherwise. This map can be
written also as

y f = c(v − x)χ[v−δ,v+δ] − dχ(v+δ,∞) + dχ(∞,v−δ).

where χA is the indicator function of set A.
The dynamics of these maps will be analyzed in Section 3.1.

2.2. Chartist Demand

The technical analysis attempts to interpret the evolution of the market by looking at
charts, for this reason, the investors using such analysis are called often chartists. According
to the technical analysis, the price charts present recurrent figures (head and shoulders,
Elliot’s wave, triangular forms, just for citing some examples); such figures can indicate
evolution, persistence, or inversion of trend. If the market is in a down-trend (bearish)
the technical analysis suggests selling, and if it is in an up-trend (bullish) to buy; price
dynamics are often summarized by indicators as moving averages, those are built such that
they can generate a signal of market changes.

Investment decisions in technical analysis are the result of complex evaluations based
on market observation by means of charts, signals, oscillators involving prices, volumes,
and any variable of interest. Among the most commonly used indicators, there are moving
averages, that smooth the price dynamics, clearing it from temporary oscillations. The
difference between two moving averages, a long and a short one is a common indicator
sensible to a trend inversion. The moving average (ma) at time t on K days is defined by

maK(t) =
1
K

t

∑
i=t−K+1

xi; (4)

it is a smooth line of prices that shows the development of the price following it without
anticipating. It is a popular practice to use and compare two moving averages, one on
the long term, one on the short term; the former catches the main trend while the latter is
more sensitive to short time fluctuations; their difference, called a difference of averages
(doa), is such that it generates a signal as they cross each other; indeed, in the short term,
ma is lower than the long-term ma and their position inverts, the short ma is catching an
increasing trend inversion; while when the short term is greater than the long one and their
position inverts, their intersection signals a decreasing trend beginning. Formally, let doat
be

doat = maS(t)− maL(t), (5)

where S < L, i.e., maS(t) is the short term moving average and maL(t) is the long term
moving average, briefly we have:

if doat−1 < 0 < doat then buy,
if doat−1 > 0 > doat then sell.

(6)

In a few words, the signal is generated when the doa-line crosses zero, if it does from
below, the signal is to buy, if it does from above is to sell. Introducing such an indicator in
the chartist demand, we get

yc = e · (doat − doat−1) · χ(doat · doat−1 < 0) (7)

where e is the specific chartist parameter and χ is the indicator function. Given (4), we have
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doat − doat−1 =
1
S
(xt − xt−S)−

1
L
(xt − xt−L), (8)

it results

yc
t = e ·

(
1
S
(xt − xt−S)−

1
L
(xt − xt−L)

)
χ(D), (9)

where D = {xi, i = t − L, . . . , t | doat · doat−1 < 0}.

2.3. Market Makers Demand

Market makers clean the market by excess demand, so they buy or sell in opposition
to the market behavior. For this reason, the easiest expression is

ymm
t = −dmyt−1,

where dm is the reaction parameter that balances the market makers’ presence in the market.

3. The Analytical Study

Fundamental and chartist components are piecewise linear maps of first and L + 1
order. In the present section, fundamental and chartist demand components are first
considered singularly and analytically studied to the limit of their tractability, then they
will be studied together. The market makers’ demand will not be considered alone because
this lacks economic sense.

3.1. The Model with Fundamental Demand

Let us start with the map {
xt = axt−1 + byt−1
yt = c arctan(v − xt−1).

(10)

The system can be re-written in one equation

xt = axt−1 + bc arctan(v − xt−2), (11)

which is a one-dimensional map but a second-order difference equation. This map admits
a positive fixed point lower than v for 1−a

bc > 0, a negative fixed point for 1−a
bc < m∗ and

one negative and two positive fixed points greater than v for m∗ < 1−a
bc < 0, where m∗ is

given by

m∗ =
1

1 + (v − x∗s )2 , (12)

given x∗s to be the solution of the equation

x∗s
1 + (v − x∗s )2 + arctan(v − x∗s ) = 0.

The local/global stability of such points can be studied numerically; the trajectories
appear in some cases non-trivial, but a full analytical study is hindered by the presence
of the arctang. The map in (10) can be approximated by a two-dimensional piecewise
smooth map, which shows interesting behavior, and it is more analytically tractable. Note
that parameters in the piecewise smooth map can be set to have a continuous map that
approximates (10), the calculation is straightforward. For the sake of simplicity, we use the
same notations even if they might differ.

Let us consider now the piecewise linear map

{
xt = axt−1 + byt−1
yt = c(v − xt−1)χ(xt−1)[v−δ,v+δ] − dχ(xt−1)(v+δ,∞) + dχ(xt−1)(∞,v−δ)

(13)
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which can be written in a normal form

zt =

⎧⎪⎨⎪⎩
A1zt−1 + d

−→
1 xn < v − δ

A2zt−1 + c−→v v − δ ≤ xn ≤ v + δ

A1zt−1 − d
−→
1 xn > v + δ

, (14)

where zt = (xt, yt),
−→v = (v, 0)′,

−→
1 = (0, 1)′ and

A1 =

(
a b
0 0

)
, A2 =

(
a b
−c 0

)
.

The phase space of this map is divided by the borderlines x = v − δ, x = v + δ into
3 regions L1 := {(x, y) ∈ R2 : x < v − δ}, L2 := {(x, y) ∈ R2 : v − δ ≤ x ≤ v + δ}
and L3 := {(x, y) ∈ R2 : x > v + δ}; in each region the dynamics follows a linear map
continuous in its relative region. The map is invertible if bc �= 0. By a straightforward
calculation we find that the map owns three fixed points Oi ∈ Li with i = 1, 2, 3,

O1 =
(

bd
1−a , d

)
i f bd

1−a < v − δ

O2 =
(

bcv
1−a+bc , cv 1−a

1−a+bc

)
i f v − δ ≤ bcv

1−a+bc ≤ v + δ

O3 =
(
− bd

1−a ,−d
)

i f − bd
1−a > v + δ

. (15)

Each of these three points exists in an own existence region according to parameters
value (a, b, c, d, δ, v). In order to determine the stability, we need to calculate the eigenvalues
of matrices A1 and A2, where the characteristic polynomials are

p1(λ) = λ(a − λ), p2(λ) = λ2 − aλ + bc.

Since p1(λ) admits λ = 0 and λ = a as roots, O1 and O3 are stable if a < 1. The
polynomial p2(λ) has discriminant Δ = a2 − 4bc that depicts different stability regions
according to a, b, c values. The curve Δ = 0 partitions the space

R3 into two regions where the eigenvalues are

• real and distinct if Δ > 0,
• real and equal if Δ = 0,
• complex if Δ < 0.

The bifurcation conditions are given by

Period doubling( f lip) : 1 + a + bc = 0
Saddle − node( f oldbi f .) : 1 − a + bc = 0
Neimark Sacker : bc = 1.

(16)

In Figure 1 (left) the stability regions and the bifurcation curves are represented in the
(a, b) plane with c = 1, while in (middle) the stability regions and the bifurcation curves are
represented in the (b, c) plane with a = 1. In Figure 2 (left:right) the bifurcation surfaces
are shown in the (a, b, c) space. The conditions for the asymptotic stability are

1 − Tr(A2) + Det(A2) = 1 + a + bc > 0
1 + Tr(A2) + Det(A2) = 1 − a + bc > 0
Det(A2) = bc < 1.

In Figure 1 the asymptotic stability region is highlighted by the striped area. Simula-
tions and relative discussion of this case are reported in Section 4.
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Figure 1. In (a) on the left hand side the bifurcation conditions together with the asymptotic stability
region of the map in Equation (14) are represented in the plane (a,b) with c = 1; In (b) on the right-hand
side the bifurcation conditions together with the asymptotic stability region are represented in the
plane (b,c) with a = 1. The green area corresponds to complex eigenvalues, the blue one to real
eigenvalues; the black lines denote the flip and fold bifurcation, the red line marks the Neimarck
Sacker bifurcation and the striped area characterizes the asymptotic stability region.

Figure 2. (left), (middle), (right) show the three bifurcation conditions in Equation (16) represented
in the space (a,b,c).

3.2. The Model with Fundamental and Market Makers Demands

In the following section, we consider fundamental demand together with market
makers. Considering market makers alone have a poor economical meaning, for this
reason, it is more of interest to the presented case. We have the following system

{
xt = axt−1 + byt−1
yt = c(v − xt−1)χ(xt−1)[v−δ,v+δ] − dχ(xt−1)(v+δ,∞) + dχ(xt−1)(∞,v−δ) − dmyt−1

, (17)

which corresponds to a normal form as in (14) where

A1 =

(
a b
0 −dm

)
, A2 =

(
a b
−c −dm

)
.

Matrices A1 and A2 are invertible if adm �= 0 and −adm + bc �= 0, respectively. As
in (13) the phase space is divided in 3 regions Li, with i = 1, 2, 3 and a straightforward
calculation brings to the following fixed points
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O1 =
(

bd
(1−a)(1+dm)

, d
1+dm

)
i f bd

(1−a)(1+dm)
< v − δ

O2 =
(

bcv
(1−a)(1+dm)+bc , cv 1−a

(1−a)(1+dm)+bc

)
i f v − δ ≤ bcv

(1−a)(1+dm)+bc ≤ v + δ

O3 =
(
− bd

(1−a)(1+dm)
,− d

1+dm

)
i f − bd

(1−a)(1+dm)
> v + δ

. (18)

Now the parameters set includes the new parameter dm. The characteristics of polyno-
mials are

p1(λ) = (−dm − λ)(a − λ), p2(λ) = λ2 + (dm − a)λ − adm + bc.

In L1 and L3 eigenvalues are always real and fixed points are stable if a < 1 and
dm < 1. Flip bifurcation occurs at a = 1 and dm = 1, fold bifurcation occurs at a = 1 and
dm = −1, while Neimarck Sacker bifurcation occurs when a = − 1

dm
. The stability region in

L2 is given by the conditions

(1 − a)(1 + dm) + bc > 0
(1 + a)(1 − dm) + bc > 0
bc − adm < 1

(19)

and bifurcation conditions are

Period doubling( f lip) : (1 + a)(1 − dm) + bc = 0
Saddle − node( f oldbi f .) : (1 − a)(1 + dm) + bc = 0
Neimark Sacker : bc − adm = 1

.

Assuming that dm ∈ [0, 1] which is economically reasonable, in Figure 3 stability
regions and bifurcation curves are plotted with c = 1 (lhs) and a = 1 (rhs). The triangular
region moves accordingly the effect of dm, while the hyperboles on the right-hand side
moves up and down accordingly.
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Figure 3. In (a) on the left hand side the bifurcation conditions together with the asymptotic stability
region of the map in Equation (17) are represented in the plane (a, b) with c = 1; In (b) on the right-
hand side the bifurcation conditions together with the asymptotic stability region are represented
in the plane (b,c) with a = 1. In green the area in which eigenvalues are complex, in blue where
eigenvalues are real, the black lines denote the flip and fold bifurcations, the red line marks the
Neimarck Sacker bifurcation, and the striped area characterizes the asymptotic stability region. The
Figure can be compared with Figure 1 to see that the presence of market makers enlarge the stability
region.

3.3. The Model with Chartist Demand

Considering only the chartist component, the model takes the form
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{
xt = axt−1 + byt−1

yt = e ·
(

1
S (xt−1 − xt−1−S)− 1

L (xt−1 − xt−1−L)
)

χ(D),
, (20)

where D = {xi with i = t − L − 1, . . . , t − 1 | doat−1 · doat−2 < 0}. It is a system of order
L + 1, that can be transformed into a L + 2 system of first order as following⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1)t+1 = ax(1)t + bx(2)t (t)

x(2)t+1 = e ·
(

1
S (x(1)t − x(S+2)

t )− 1
L (x(1)t − x(L+2)

t )
)

χ(D)

x(3)t+1 = x(1)t

x(4)t+1 = x(3)t
...
x(S)t+1 = x(S−1)

t
...
x(L+2)

t+1 = x(L+1)
t .

(21)

Let be zt = (x(1)t , x(2)t , . . . , x(L+2)
t ), the system takes the normal form zt = Azt−1 in D,

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b 0 · · · · · · 0
e
S − e

L 0 · · · 0 − e
S · · · e

L
1 0 0 · · · 0
0 0 1 0 · · · 0
... 0 0 1 0 · · · 0
... 0

... 0
. . . · · · 0

... 0 0
. . . 1 0

0 · · · 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (22)

Outside D the system collapses in xt = axt−1, which has the trivial solution xt = atx0.
The characteristic polynomial is given by

p(λ) = a1λL+2 + a2λL+1 + a3λL + a4λL−S−1 + a5

where a1 = (−1)L, a2 = (−1)L+1a, a3 = (−1)L+1b
( e

S − e
L
)
, a4 = (−1)L eb

S , and a5 =

(−1)L+1 eb
L . In this case the study of the stability region is not trivial.

3.4. The Complete Model

When all the components are considered the model takes a normal form zt = Azt−1
in D ∪ [v − δ, v + δ] where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b 0 · · · · · · 0
−c + e

S − e
L dm · · · 0 − e

S · · · e
L

1 0 0 · · · 0
0 0 1 0 · · · 0
... 0 0 1 0 · · · 0
... 0

... 0
. . . · · · 0

... 0 0
. . . 1 0

0 · · · 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Also, in this case, we can write the characteristic polynomial, however, the stability
region study is not trivial, and it can be performed only partially. For this reason, in the
following, we settle for numerical simulation to discuss the dynamics scenario and the
economic implications.
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4. Numerical Simulation

In the following, we study numerically all the presented cases. In detail, we start with
the fundamental map; then we consider fundamental and market makers’ demand together;
as a third step we consider chartist demand firstly alone then jointly with fundamental
demand and, finally, we combine all the demands. The market makers’ demand is studied
only associated with fundamental and chartist demands, indeed, as already mentioned,
being thought to absorb excess demand, alone it loses reasonability from the economic
point of view. In all the simulations it holds v = 5, δ = v

2 and d = 2. The main discussion is
about parameters a, b, c, dm, e which give the impact of each demand and past prices on the
dynamics.

4.1. Fundamental Demand

We investigate the dynamics starting from the analytical results. In the asymptotic
stability region, prices go to one of the fixed points with speed according to the parameters.
Closer the parameters to the border of the stability region slower the convergence, as it
can be seen in Figure 4, comparing the scenario in the top with parameters a = 1, b = 1.9
and c = 0.4 to that in the bottom with a = 1, b = 0.7 and c = 1.4, where the value of c at
the border would be 1

b = 1.4286. Each figure in the following shows price dynamics on
the left-hand side and the phase space (x, y) on the right-hand side. Outside the stability
region, the dynamic scenarios include periodic orbits and chaotic motion. Some examples
of periodic orbits are reported in Figure 5, where on the top there is an orbit of period 6 to
be read clockwise; note that in terms of price and demand the orbit is 3-period but they are
combined giving 6 couples of price and demand. On the bottom a periodic elliptic orbit
appears, this dynamics holds for any value of a ∈ (0, 1) when b and c are equal 1. In this case,
the effect of the demand is fixed, while the price drift matters: the higher a the closer the
ellipse center to the fixed point (v, 0) and the closer the amplitude to the range (v− δ, v+ δ).
Examples of chaotic motion are reported in Figures 6 and 7. In Figure 6 the plot on the top
panel shows prices almost regularly oscillating in the range (v − δ, v + δ), since parameters
are closed to the stability region border; while on the bottom panel parameters are far from
the border and prices oscillate widely. In Figure 7, c is negative; being c the fundamental
demand parameter, negative values mimic a trend follower demand, indeed the dynamics
show bear and bull period (on the top), a wide range of prices (in the center) and price
overvaluation (on the bottom). In Figure 8 bifurcation diagrams with respect c show the
map behavior varying c.

4.2. Fundamental and Market Makers

As already discussed, stability regions, see again Figure 3, the presence of market
makers tends to regularize prices enlarging the stability region. Outside of this region
dynamics scenarios appear very similar to those in the already studied case with only the
fundamental demand component. We focus on dm ∈ [0, 1] because values outside this
interval own low interest from an economic perspective, indeed such a case complies with
a reverse effect of market maker that rather absorbing amplifies the excess demand effect.
Even if such dynamics could be interesting from the mathematical point of view, its absence
of interest from the economical point of view suggests skipping this study. The simulation
outcomes do not add any insight to those already discussed in the fundamental demand
map, thus no figures about this case are reported.
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Figure 4. The (top-left) shows the price evolution and (top-right) the phase space of fundamental
map dynamics with a = 1, b = 1.9 and c = 0.4, while (bottom-left) and (bottom-right) show the price
evolution and the phase space of fundamental map dynamics with a = 1, b = 0.7 and c = 1.4 note that
the value of c at the border would be 1

b = 1.4286.
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Figure 5. The (top-left) shows the price evolution and (top-right) the phase space of the fundamental
map dynamics with a = 1, b = 1.9 and c = 1

b ; while (bottom-left) and (bottom-right) show the price
evolution and the phase space of fundamental map dynamics with a = 0.8, b = 1 and c = 1.

117



Mathematics 2022, 10, 679

0 100 200 300 400 500

t

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

x t

2 3 4 5 6 7 8

xt

-4

-3

-2

-1

0

1

2

3

4

y t

0 100 200 300 400 500

t

-4

-2

0

2

4

6

8

10

12

14

x t

-5 0 5 10 15

xt

-10

-8

-6

-4

-2

0

2

4

6

8

10

y t

Figure 6. The (top-left) shows the price evolution and (top-right) the phase space of the fundamental
map dynamics with a = 1, b = 0.7 and c = 1.5, note that 1

b = 1.4286; while (bottom-left) and (bottom-

right) show the price evolution and the phase space of fundamental map dynamics with a = 1, b = 0.9
and c = 3.4.
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Figure 7. The (top-left) shows the price evolution and (top-right) the phase space of the fundamental
map dynamics with a = 1, b = 0.9 and c = −0.5; while (middle-left) and (middle-right) show the
price evolution and the phase space of fundamental map dynamics with a = 1, b = 1.9 and c = −0.4,
while in the (bottom) it holds a = 1, b = 0.9 and c = −0.4.
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Figure 8. Bifurcation diagrams with respect c of the fundamental map. (left) shows the diagram with
a = 1, b = 1.9 and c ∈ [−0.6, 1.6]. (middle) shows the diagram with a = 1, b = 1 and c ∈ [−0.6, 1.6].
(right) shows the diagram with a = 0.9, b = 0.9 and c ∈ [−0.6, 1.6]. Note that having a and b lower
than 1 enlarge the area in which a lower/negative c generates chaos.

4.3. Chartist Demand

It is of interest to see how the system behaves when only chartist demand is active.
When a = 1 and b = 1, no matter the chartist contribution, the system converges to a fixed
point determined by the initial conditions. When a < 1 and b = 1 the system shows a
rough periodicity for small value of e, i.e., for small contribution of the chartist investment
style, and a chaotic behavior for high values of e, see bifurcation diagrams in Figure 9.
Lower the b later the chaos appears, since a low b reduces the amplitude of the chartist
demand and hence its impact on prices, see Figure 9 in the center. Finally, if a is greater
than 1, but still in that range in which prices do not explode, the contribution of the chartist
leads directly to chaos, see Figure 9 (rhs).
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Figure 9. Bifurcation diagrams for the chartist map with respect to the parameter e. (left) shows the
diagram with a = 0.9, b = 1 and e ∈ [0, 7.6]. (middle) shows the diagram with a = 0.9, b = 0.8 and
e ∈ [0, 7.6]. (right) shows the diagram with a = 1.1, b = 0.8 and e ∈ [0, 7.6]. Note that having the lower
the b the later the chaos appears.

4.4. Fundamental and Chartist Demand

Let us now consider the dynamics with the fundamental and chartist demands. In
Figure 10 (lhs), a, b, c are the same as those in the bottom of Figure 5, while e ∈ [0, 7.6].
The bifurcation diagrams show that low values of e do not change the dynamics, then
the presence of chartist investors stabilizes the price pushing it to converge to a slightly
overvalued price. Increasing e the dynamics becomes chaotic with small intervals in which
the contribution of chartist demand pushes prices to converge or to oscillate around the
equilibrium, not far from the fundamental value. How and why chartist demand can do
this is not straightforward to understand and appears counterintuitive. Note that when
a = 1.1, b = 0.8 and c < 1

b the fundamental map converges and chartist investors do
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not affect the convergence, even a large amount of chartists do not change the dynamics.
Similarly when a = 1 and b = 1.9 and c = 1

b chartist demand has no effect on the periodic
dynamics of fundamental map. Differently, when a < 1, b < 1 and c < 1

b , such that
the fundamental map dynamics is asymptotically stable, a small presence of chartist has
no effect, while high values of e move the dynamics into chaos. Note that in Figure 10
(rhs) there is a range of e in which the price oscillates chaotic into the range (v − δ, v + δ),
while for e approaching values near 7 prices move chaotic in a very large range. This fact
suggests the following picture: prices oscillate in a reasonable range under the action of
fundamental and chartist forces, for some reason, chartist investors increase in number till
to surpass a certain threshold, after that, prices start to oscillate widely as it happens in case
of market turbulence, with prices going up and down crazily. This confirms the belief that
chartist investors participate in instability and bubble inflation. However, it appears that
the responsibility of instability stays more in the unequal proportion of force pressures on
the market than the specific action of an investment style itself. In other words, it is not the
adoption of the technical analysis in itself the problem but their dominance in proportion.

Figures 11 and 12 propose three dynamics with comparable parameters. On the
left-hand side, only fundamental demand is considered, while in the center fundamental
demand is coupled with chartist demand and on the right-hand side, all the components
are effective. The dynamics changes according to the demand: with only fundamental
demand, the price stays in a narrow neighborhood of O2, when chartist demand intervenes,
the regular dynamics moves into a chaotic elliptic attractor (see the plot in the center),
while the intervention of market maker regularizes and pushes the price to converge fast
(see rhs). In this case, chartist demand moves prices to chaos, and market makers restore
the convergence. Differently in Figure 12, fundamental parameters are set to generate a
periodic elliptic attractor (lhs), chartist demand has the effect to shrink the price to the fixed
point O2 (see in the center) and again the market makers accelerate the convergence (rhs).
In this example, chartist demand has the effect to push prices to equilibrium.
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Figure 10. Bifurcation diagrams for the map that considers together fundamentalist, and chartist
demands. The diagrams are presented with respect to e. (left) shows the diagram with a = 1.1, b = 0.8,
c = 1

b and e ∈ [0, 7.6]. (right) shows the diagram with a = 0.9, b = 0.8, c = 1
b and e ∈ [0, 7.6].
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Figure 11. (left) shows the phase space of the fundamental map with a = 0.8, b = 0.9 and c = 1.1,
(middle) shows the phase space of fundamental and chartist map with a = 0.8, b = 0.9 and c = 1.1 and
e = 2.0, and (right) shows the phase space of the complete map with the same values of previous plot
and dm = 0.5.
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Figure 12. (left) shows the phase space of the fundamental map with a = 1.1, b = 0.9 and c = 1
b

(periodic dynamics), (middle) shows the phase space of fundamental and chartist map with a = 1.1,
b = 0.9 and c = 1

b and e = 2.0, (right) shows the phase space of the complete map with the same
values of previous plot and dm = 0.5.

5. Further Discussions

The present section addresses a general discussion about the model, its limits, and
some possible future evolutions. The presented model is deterministic and pointed toward
considering how market participants, their styles, and their attitudes have an impact on
prices and market instability. The model considers three rather standard strategies and
provides stylized explanations of empirical market features. Thanks to its simplicity the
model is flexible with respect to many future variations. One could include the possibility
to have fundamental value varying over time, following for example a random walk as
in [4]. This can be done substituting in Equation (10) v by

vt = vt−1 + ε,

where ε ∼ N(0, σ2).
Another variation could consider the switching between investment styles; this can

be done by allowing the reaction parameters c, d, e, and dm also including the tolerance
δ to change in time as in [19]. Indeed, in the full demand, we can see the contribution
of investment styles accounted by traders simultaneously in the proportion given by the
reaction parameters. Traders can consider differently the misalignment by fundamentals
or the trend, thus reaction parameters can vary according to the strength of the investors’
belief in each specific investment style. In other words, there could be phases in the market
in which investors believe and adopt more fundamental analysis than technical one or
vice versa. For doing so a mechanism of imitation and profitability evaluation must be
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implemented. Alternatively, although more simplistic it could be done by considering
parameters varying randomly in time. A stochastic version of the model can also be
considered, including a random perturbation of prices to incorporate the effect of traders
moved by liquidity needs or the effect of exogenous news arrival on the market. The
stochastic version has the advantage to replicate more realistically the market features.
Indeed, a deterministic model has mainly the aim to offer a stylized explanation of market
features and not the presumption to be completely realistic as it is needed to be used
for forecasting purposes for example. The stochastic version could be also subjected to a
calibration procedure following the simulated method of moments as in [20,21]. Although
the undeniable value of work pointed towards the reproduction of real market dynamics
in its entirety, such an issue is outside the aims of the present paper and left for future
investigations.

6. Conclusions

In the present model, a simple financial market model is considered with three rather
standard market forces contributing simultaneously to the total demand: fundamental,
chartist, and market makers. The model is given by a discrete difference equation system
with a piecewise linear map of a high order. Each component has been studied separately
to understand and highlight its contribution to the dynamics. Results are not surprising
and in line with the related literature [1,4,12,13]: fundamental demand helps the stability of
the system and keeps prices bounded; market makers satisfy their role of restoring stability,
while the chartist demand component adds instability and chaotic movement to prices.
However, we see that in some cases chartist demand can compensate for fundamental
demand, felt in the loop, and pushes the dynamics to equilibrium. The lesson we can take
from this fact is that the instability does not stay intrinsically in the nature of the demands
but their combination and proportion. Indeed, markets are places where a mix of different
beliefs and attitude meets. The market dynamics cannot be anything else than the outcome
of such a variety of agents. In the market, the heterogeneity of actors finds an equilibrium
that can show regular dynamics and smooth oscillations coherent with the efficient market
hypothesis. Nevertheless, if any kind of disequilibrium occurs in the market forces, prices
can oscillate widely, bear and bull periods can arrive, and bubbles can inflate and explode.

The contribution of the paper goes in three directions: (1) it considers a common,
rather so far unstudied, chartist demand implying moving averages difference; (2) the
model includes market maker participation, so far that it has not received so much attention;
(3) the model uses a high order piecewise linear map that provides interesting bifurcation
diagrams belonging to the class of border collision bifurcations but those deserve much
attention for the future, also for their economic implications.

Future investigations can move in the following directions: (1) the study of border
collisions bifurcations in high order systems as the one proposed here; (2) the sophistication
of the market maker demand via a piecewise map; (3) the implementation of a stochastic
version of the model with a mechanism of changing the weight of each investment style;
(4) the calibration of a stochastic version of the model to reproduce real markets dynamics.
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Abstract: In this paper, we study the stability of solutions to systems of differential equations with
discontinuous right-hand sides. We have investigated nonlinear and linear equations. Stability
sufficient conditions for linear equations are expressed as a logarithmic norm for coefficients of
systems of equations. Stability sufficient conditions for nonlinear equations are expressed as the
logarithmic norm of the Jacobian of the right-hand side of the system of equations. Sufficient
conditions for the stability of solutions of systems of differential equations expressed in terms
of logarithmic norms of the right-hand sides of equations (for systems of linear equations) and
the Jacobian of right-hand sides (for nonlinear equations) have the following advantages: (1) in
investigating stability in different metrics from the same standpoints, we have obtained a set of
sufficient conditions; (2) sufficient conditions are easily expressed; (3) robustness areas of systems
are easily determined with respect to the variation of their parameters; (4) in case of impulse action,
information on moments of impact distribution is not required; (5) a method to obtain sufficient
conditions of stability is extended to other definitions of stability (in particular, to p-moment stability).
The obtained sufficient conditions are used to study Hopfield neural networks with discontinuous
synapses and discontinuous activation functions.

Keywords: differential equations with discontinuous right-hand sides; Hopfield artificial neural
networks; stability

MSC: 34D20; 34A36

1. Introduction

Hopfield, Cohen–Grossberg and similar neural networks have been actively studied
recently due to their applications in physics and engineering [1–4]. Hopfield neural net-
works (HNNs) have found many applications in associative memory, repetitive learning,
classification of patterns, optimization problems and many others.

Today, two basic mathematical models are employed for neural network research:
either local field neural network models or static neural models. The basic model of local
field neural network is described as

dxi(t)
dt

= −xi(t) +
n

∑
j=1

wijgj(xj(t)) + Ii, i = 1, 2, . . . , n, (1)

where gi is a function of the ith neuron activation, xi is the state of the ith neuron, Ii is the
external input imposed on the ith neuron, wij stands for the synaptic connectivity value
between the jth neuron and the ith neuron, and n is the number of neurons in the network.
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A static neural network is defined by the system of equations

dxi(t)
dt

= −xi(t) + gi

(
n

∑
j=1

wijxj(t) + Ii

)
, i = 1, 2, . . . , n, (2)

where we used the same notation as above.
The local fields neural network (1) was introduced by Hopfield and it is the Hopfield

neural network that is usually referred to in the literature. The neural network (1) models
bidirectional associative memory networks [5] and cellular neural networks [6].

Static neural networks (2) are often referred to as Cohen–Grossberg networks. They
are widely used in optimization problems and in modeling brain processes, so-called
brain-state-in-a-box neural networks [7]. The research on stability for models such as (2)
was opened with the classical work [8].

The stability results for the basic model (2) as well as the results for a more general model,

dxi(t)
dt

= ai(xi)[bi(xi)−
n

∑
i=1

cij ϕj(xj)]

were obtained in [8,9].
Below, we present a brief review of the papers devoted to the stability of solutions for

systems of ordinary differential equations with discontinuous right-hand sides. Here, we
examined the stability of dynamic neural networks and obtained sufficient conditions for
their absolute and local asymptotic stability. The fixed points of the neural network are
associated with local minima of the network energy function. Interest in seeking for local
minima is due to the study of the memory problem for neural networks. Clearly, the more
local minima a neural network has, the greater potential memory it holds.

When solving computational mathematics problems on neural networks, asymptoti-
cally stable networks appear to be more preferable in general.

The derivation of sufficient conditions for stable neural networks in general is a rather
complicated problem. Its solution is known only in a few special cases.

In [10], sufficient conditions for stability for neural networks (1) have been obtained
based on Gershgorin circles. In [11], sufficient conditions for the global stability of solutions
of systems of Equation (1) have been obtained by a mapping method. In [12], the results of
works [10,11] have been generalized and new Lyapunov functions have been constructed.

In [13], it was proven that the diagonal stability of the interconnection matrix implies
the existence and uniqueness of an equilibrium and global stability of the equilibrium.

In [14], it was shown that the negative semidefiniteness of matrices ensures the stability
of Hopfield neural networks described by the Equation (1). In [15], the number of sufficient
conditions for the local exponential stability of HNNs was presented. In [16], the algorithm
of matrix norms was applied to the study of nonlinear dynamical systems.

The stability of recurrent systems that model identification problems was investigated
in [17].

Extensive literature is devoted to researching the stability of neural networks with
various time delays [18–22].

Constructing a mathematical model, we have to abstract from many phenomena—for
example, from the uncertainty. In [21], the stability of fuzzy cellular neural networks based
on the union of cellular neural networks and fuzzy logic methods has been studied. The cel-
lular neural networks are modeled by systems of differential equations with discontinuous
right-hand sides.

Along with continuous activation functions, there are a great number of applications
that are modeled by neural networks with discontinuous activation functions. Similar
models have been studied in [23].

The theory of differential equations with discontinuous right-hand sides is given in [24].
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Recall, following [24], the definitions of solutions for differential equations with
discontinuous right-hand sides and their stability.

Consider an equation or a system of equations in vector form

dx
dt

= f (t, x), (3)

where f (t, x) is a piece-wise continuous function or a vector function in domain Ω : {x ∈
Rn, t ∈ [0, ∞)}; M is a measure zero set of the function f (t, x) discontinuity points.

Each point (t, x) we associate with a set F(t, x) in n dimensional space. This set is
constructed as follows. If the function f (t, x) is continuous at the point (t, x), the set F(t, x)
contains just one point which matches with f (t, x). If f has a discontinuity point at (t, x),
the set F(t, x) is defined according to the related physical problem. One such method is
described in Section 1.5 in [25].

Definition 1 ([24]). A solution of the Equation (3) is called a solution of differential inclusion

dx
dt

∈ F(t, x), (4)

i.e., absolutely continuous vector function x(t) defined in interval or segment I and for which the
inclusion dx

dt ∈ F(t, x) is satisfied almost everywhere in I.

Definition 2 ([24]). The solution x = ϕ(t), t0 ≤ t < ∞ of differential inclusion (4) is called stable
if, for any ε > 0, there exists δ > 0 so that, for every x̃0, |x̃0(t0)− ϕ(t0)| < δ each solution x̃(t)
with the initial condition x̃(t0) = x̃0, t0 ≤ t < ∞ exists and satisfies the inequality

|x̃(t)− ϕ(t)| < ε for t0 ≤ t < ∞.

Definition 3 ([24]). The solution x = ϕ(t), t0 ≤ t < ∞ of differential inclusion (4) is called
asymptotically stable if it is stable and, in addition, lim

t→∞
|x̃(t)− ϕ(t)| = 0.

Definition 4 ([24]). The solution x = ϕ(t), t0 ≤ t < ∞, of differential inclusion (4) is called
stable in general if it is asymptotically stable for any initial x0 ∈ Rn, where Rn is n-dimensional
vector space.

Intense research on the stability of systems of ordinary differential equations with
discontinuous right-hand sides began in the middle of the last century in connection with
increasing interest in automatic control problems. In addition to the issues of automatic
control, automatic regulation [26] and the theory of relay systems, differential equations
with discontinuous right-hand sides are widely used to model various problems in physics
and engineering—in particular, the classical problem of dry friction [27]. Differential
equations for automatic control with variable structures and discontinuous right-hand
sides are obtained from differential equations with continuous right-hand sides when
passing to the limit along a parameter [24].

Today, the stability of solutions of systems of ordinary differential equations with
discontinuous right-hand sides is an active and growing field.

This is because there are numerous applications of systems of differential equations
with discontinuous right-hand sides (Filippov systems) for various problems in physics,
techniques, biology and medicine. A detailed bibliography is given in [28].

Recently, stability theory with discontinuous coefficients has been extended to nu-
merical mathematics. There are widely used various methods to determine solutions for
systems of linear and nonlinear algebraic equations.
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In [29], the authors have developed a continuous method for solving nonlinear oper-
ator equations. Each nonlinear operator equation is assigned with the Cauchy problem.
Convergence of the method is based on Lyapunov stability theory.

Collocation methods for solving initial and boundary problems for differential equa-
tions and the theory of B, D, G, P stability of their solutions has been developed and
presented in [30–32]. The latter also contains an extensive bibliography.

In [33], the second Lyapunov’s method was used to investigate semistability finite-
time stability differential inclusions for systems of differential equations with discontinuity
of the first kind on various manifolds. Semistability has a wider range of applications than
the stability condition.

Research is performed in several directions: (1) systems of differential equations with
one [34] and two [35] relays have been studied.

Stability of solutions of differential equations with one relay

dxi(t)
dt

= pisgn xi +
n

∑
j=1

cijxj, i = 1, 2, . . . , n. (5)

has been studied in [34].
In [35], the author investigates the stability of solutions of systems of differential equations

dx1(t)
dt = a1sgnx1(t) + b1sgnx2(t) + ∑n

j=2 c1,jxj(t),
dx2(t)

dt = a2sgnx1(t) + b2sgnx2(t) + ∑n
j=2 c2,jxj(t),

dxi(t)
dt = ∑n

j=1 ci,jxj(t), i = 3, .., n,

(6)

with constant coefficients.
Stability of solutions of systems of differential equations with relay [34,35] is based

on the study of transfer functions. There have been obtained necessary and sufficient
conditions for the stability of solutions for the systems (5), (6) expressed in terms of
coefficients of equations.

Numerous works have been devoted to the stability of systems of nonlinear switching
differential equations. For a bibliography, see [36].

Another class of problems is related to the study of sliding modes in automatic
regulation and control systems [37]. It is interesting to note that sliding modes are present
in ecology models [28].

When studying the stability of systems of nonlinear differential equations with discon-
tinuous right-hand sides, Lyapunov’s functions method [38–40] has been used.

Stability of neural networks described by the equations

dxi
dt

= −cixi +
n

∑
j=1

aij ϕj(xj), (7)

i = 1, 2, . . . , n and more general equations

dxi
dt

= −cixi −
n

∑
j=1

aij

n

∑
k=1

ajkgk(xk), (8)

i = 1, 2, . . . , n by the second Lyapunov method has been investigated in [41] assuming that
the functions gk(x), k = 1, 2, . . . , n are continuous. The following conditions are imposed
on the functions ϕj(xj)

A1. Each function ϕj(xj) is defined everywhere for −∞ < xj < ∞, continuous and
one-valued;

A2. Each function ϕj(xj) lies in the first and the third quadrant; xj �= 0, moreover, the
inequalities are fulfilled xj ϕj(xj) > 0, j = 1, 2, . . . , n;

A3. lim|xj |→∞
∫ xj

0 ϕj(ρ)dρ = +∞, j = 1, 2, . . . , n.
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Stability of neural networks with discontinuous coefficients gi(x), i = 1, 2, . . . , n has
been studied in [42,43].

It was assumed in [42] that

gi(x) = g(x) =
{

1, x > 0,
0, x < 0,

i = 1, 2, . . . , n. To ensure the stability of a neural network, the method based on the
majorization of the nonlinear part of Equation (7) by a constant and further solving the
differential has been proposed.

Stability of the solutions of Equation (7) with discontinuous nonlinear functions was
investigated with the second Lyapunov method in [43]. The study of sliding mode stability
is also reported in [43].

The detailed research of neural networks including Hopfield networks is given in [44].
The stability of neural networks with various activation functions in general has been
studied, as well as the stability at separated stationary points. The basic technique of neural
network stability in [44] appears to be the use of Lyapunov’s and energy functions. In [44],
one can find an extensive bibliography on the stability of neural networks described with
differential and difference equations.

The exponential stability of a Hopfield neural network on the timeline has been
investigated in [45]. Stability of the neural networks described by differential equations

dxi(t)
dt

= −eixi +
n

∑
j=1

gij(xj), i = 1, 2, . . . , n, (9)

with functions gij(xj), i, j = 1, 2, . . . , n having discontinuities of the first kind at separate
points has been studied in [25,46].

In this paper, we investigate the stability of solutions of systems of linear and nonlinear
equations with discontinuous right-hand sides. We obtained sufficient conditions for the
asymptotic stability for systems of differential equations used when studying HNNs’
stability with discontinuous synapses and activation functions.

We study the stability of solutions for systems of differential equations regardless of
how an inclusion equation is defined. With this approach, it is essential to use the first
Lyapunov method.

It is possible to suggest that in applying the second Lyapunov method, one has to
construct separate Lyapunov–Krasovski functionals for each area where the right-hand
side of the differential equation system is continuous.

The paper is divided into the Introduction, three sections and the Conclusions.
Section 2 introduces the definitions and the notation used throughout the paper. Section 3
examines the stability of solutions of differential equations with discontinuous right-hand
sides. In Section 4, we analyze the stability of Hopfield neural networks. The obtained
results are drawn in the final section.

2. Definitions and Notations

We now introduce a few definitions used in this paper.
Here, Dkg(t, u1, . . . , un) stands for a partial derivative

Dkg(t, u1, . . . , un) = ∂g(t, u1, . . . , un)/∂uk, k = 1, 2, . . . , n.
Moreover, we employ the following notation: B(a, r) = {z ∈ B : ‖z − a‖ ≤ r},

S(a, r) = {z ∈ B : ‖z − a‖ = r}, Re(K) = �(K) = (K + K∗)/2, Λ(K) = lim
h↓0

(‖I + hK‖ −

1)h−1. Here, B is a Banach space, a ∈ B, K is a linear and bounded operator on B, Λ(K) is
the logarithmic norm [47] of the operator K, K∗ is the conjugate operator to K, and I stands
for the identity operator.

The main properties of the logarithmic norm are given in [47].
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If A is an n × n matrix, then Λ(A) can readily be computed for the corresponding
norms of linear vector spaces.

The logarithmic norm is known for operators in the most frequently used spaces.
Let A = {aij}, i, j = 1, 2, . . . , n be a real matrix.
In the n-dimensional space Rn of vectors x = (x1, . . . , xn), the following norms are

often used:

- ‖x‖1 =
n
∑

i=1
|xi|;

- ‖x‖2 = max
1≤i≤n

|xi|;

- ‖x‖3 = (
n
∑

i=1
x2

i )
1/2.

Below are some expressions of the logarithmic norm of a matrix A = (aij) correspond-
ing to the norms of the vectors given above:

Λ1(A) = max
1≤j≤n

(
ajj + ∑

i �=j
|aij|

)
;

Λ2(A) = max
1≤i≤n

(
aii + ∑

j �=i
|aij|

)
;

Λ3(A) = λmax

(
A + A∗

2

)
,

where A∗ is the conjugate matrix for A.

3. Stability of Solutions to Equations Systems with Discontinuous Right-Hand Sides

3.1. Stability of Solutions to Linear Equations Systems with Discontinuous Coefficients

Consider the Cauchy problem

dxi(t)
dt

=
n

∑
j=1

aij(t)xj(t), t ≥ 0, (10)

xi(0) = xi, i = 1, 2, . . . , n, (11)

with discontinuous coefficients aij(t), i, j = 1, 2, . . . , n.
We assume that the functions aij(t) are continuous everywhere except a countable set

of points ζ1, ζ2, . . . , where the functions have discontinuities.
The following statement is valid.

Theorem 1. Let the following conditions be satisfied:
(1) Functions aij(t) are continuous everywhere except a countable set of points ζ1, ζ2, .., where

the functions have discontinuities. There is at most a finite number of discontinuities on each
[0, A], 0 < A < ∞. The coefficients {aij(t)} at ζ1, ζ2, . . . , have discontinuities of the first kind or
discontinuities of the second kind integrable in L-metric:

∫ ζ1
l+1

ζ1
l

|aij(t)|dt ≤ clij < ∞, i, j = 1, 2, . . . , n, l = 1, 2, ...

Here, ζ1
l are the points that satisfy ζi < ζ1

i < ζi+1, i = 0, 1, . . . , ζ0 = 0;
(2) The Cauchy problem (10)–(11) has a solution for t ≥ 0 and any initial conditions;
(3) The inequality Λ(A(t)) ≤ −κ, κ > 0 is valid everywhere except a set of points ζ1, ζ2, . . .

Here, A(t) = {aij(t)}n
i,j=1.

Then, zero solution of the system (10) is asymptotically stable in general.
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Set Λ(A(t)) equal to zero at discontinuity points ζi. By the theorem, we have a
finite number of discontinuities in each time interval. Thus, it does not change the value∫ t

0 Λ(A(τ))dτ.

Proof of Theorem 1. Consider a time interval [0, ζ1). The Wintner estimate is valid [47]
within this interval

‖x(t)‖ ≤ ‖x(0)‖ exp
{∫ t

0
Λ(A(τ))dτ

}
, t ∈ [0, ζ1). (12)

The function ‖x(t)‖ is continuous for t ≥ 0, and then the Inequality (12) is correct for
t ∈ [0, ζ1]. Therefore,

‖x(ζ1)‖ ≤ ‖x(0)‖ exp
{∫ ζ1

0
Λ(A(τ))dτ

}
.

Consider an interval [ζ1, ζ2]. First, assume that functions aij(t) have discontinuities
of the first kind at ζ2. Let A+(t) = {a+ij (t)}, i, j = 1, 2, . . . , n be a matrix with elements
defined by

a+ij (t) =

⎧⎨⎩aij(t), t �= ζ2,
lim

t→ζ2+0
aij(t), t = ζ2.

We take xi(ζ1), i = 1, 2, . . . , n, as initial values. Repeat the arguments above, for
t ∈ [ζ1, ζ2], and we have

‖x(t)‖ ≤ ‖x(ζ1)‖ exp
{∫ t

ζ1
Λ(A+(τ))dτ

}
=

= ‖x(ζ1)‖ exp
{∫ t

ζ1
Λ(A(τ))dτ

}
≤ ‖x(0)‖ exp

{∫ t
0 Λ(A(τ))dτ

}
.

Next, we consider the case where functions aij(t) have discontinuities of the second
kind and integrals

∫ ∞
0 |aij(t)|dt exist. Obviously, for t ∈ [0, ζ1), the Inequality (12) is valid.

Since the function x(t) is continuous, the inequality is valid on the interval [0, ζ1]. From the
continuity of ‖x(t)‖, it follows that a point ζ1

1(ζ1 < ζ1
1 < ζ2) such that

‖x(t)‖ ≤ ‖x0‖+ ‖x0‖
exp

{∫ t
0 Λ(A(τ))dτ

}
− 1

2

exists for t ∈ [ζ1, ζ1
1].

By taking xi(ζ
1
1), i = 1, 2, . . . , n as initial conditions and repeating the arguments above,

we verify immediately the validity of the inequality

‖x(t)‖ ≤ ‖x0‖ exp
{∫ t

0
Λ(A(τ))dτ

}
,

for 0 ≤ t ≤ ζ2. Repeating the process in each interval [ζl , ζl+1], we can observe that the
inequality is correct for 0 ≤ t ≤ ∞.

Let us consider the case when coefficients aij(t) have a countable number of disconti-
nuity points.

Let the function a11(t) have a countable number of discontinuity points located in
interval [b1, b2] with measure Δ = |b2 − b1|, b1 > 0.

The following assertion is true.
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Theorem 2. Let the following conditions be satisfied:
(1) The functions aij are continuous everywhere except a countable number of points located in

the interval [b1, b2], b1 > 0, Δ = |b2 − b1|.
(2) The Cauchy problem (10), (11) has a solution for all t ≥ 0 and for any initial conditions.
(3) The inequality Λ(A(t)) ≤ −κ, κ > 0 holds everywhere except the interval [b1, b2]. Here,

A(t) = {aij(t)}, i, j = 1, 2, ..., n;
(4) The inequality is valid

b1∫
0

Λ(A(τ))dτ + AΔ < 0,

where A = sup
τ∈[b1,b2]

‖A(τ)‖.

Then, a trivial solution of the system of Equation (10) is asymptotically stable.

Proof of Theorem 2. Consider [0, b1]. From Wintner inequality [47], it follows that for
t ∈ [0, b1]

‖x(t)‖ ≤ ‖x(0)‖ exp
{∫ t

0
Λ(A(τ))dτ

}
.

Take [b1, b2]. Here, we have

x(t) = x(b1) +
∫ t

b1

A(τ)x(τ)dτ,

and the integral is understood in the sense of Lebesgue.
Thus,

‖x(t)‖ ≤ ‖x(b1)‖+
∫ t

b1

‖A(τ)‖‖x(τ)‖dτ ≤ ‖x(b1)‖+ A
∫ t

b1

‖x(τ)‖dτ.

where A = maxb1≤t≤b2 ‖A(t)‖.
From Gronwall–Bellman inequality, it follows that

‖x(t)‖ ≤ ‖x(b1)‖ exp{A(t − b1)}.

Thus, for t ∈ [b1, b2],

‖x(t)‖ ≤ ‖x(0)‖ exp
{∫ b1

0 Λ(A(τ))dτ + A(t − b1)
}

≤ exp
{∫ b1

0 Λ(A(τ))dτ + A(b2 − b1)
}
‖x(0)‖.

(13)

Therefore, if
∫ b1

0 Λ(A(τ))dτ + AΔ < 0, then ‖x(b2)‖ ≤ ‖x(0)‖ and a trivial solution
of the system of Equation (10) is stable.

It is easy to see that the obtained results can be extended to systems of switching
differential equations. At the same time, the stability condition is extended to systems
of differential equations with an arbitrary number of relays. Moreover, the suggested
method allows one to obtain sufficient conditions for the stability of solutions of systems of
nonlinear equations with relay. Similarly, based on the results presented in Sections 2 and 3,
one can formulate sufficient conditions for the stability of switching systems.

Example. We consider a system of differential equations with relay

dxk(t)
dt

=
m

∑
l=1

akl(t)sgn xl(t) +
n

∑
l=1

bkl(t)xl(t), k = 1, 2, . . . , n.
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Theorem 1 implies that for the asymptotic stability of the trivial solution of this system,
it is sufficient to fulfill the following conditions: for each t ∈ [0, ∞)

bkk(t) +
m

∑
l=1

|akl(t)|+
n

∑
l=1,l �=k

|bkl(t)| ≤ −ξ, ξ > 0.

3.2. Stability of Solutions for Systems of Nonlinear Non-Autonomous Differential Equations with
Discontinuous Right-Hand Sides

First, let us recall the sufficient stability conditions for systems of nonlinear differential
equations with continuous right-hand sides that we gave previously [48], and which we
extensively use below.

Consider the system of equations

dxi(t)
dt

= ai(t, x1(t), . . . , xn(t)), i = 1, 2, . . . , n, (14)

with the initial conditions
xi(0) = xi, i = 1, 2, . . . , n. (15)

Let x∗(t) = (x∗1(t), . . . , x∗n(t)) be a steady-state solution of the Cauchy problems (14)
and (15).

Let the functions ai(t, u1, ..., un) be continuous with respect to the first variable and
have partial derivatives with respect to other variables satisfying the Lipschitz condition
with a coefficient A:

|Djai(t, x∗1 , . . . , x∗n)− Djai(t, y∗1, . . . , y∗n)| ≤ A(|x∗1 − y∗1 |+ . . . + |x∗n − y∗n|), i, j = 1, . . . , n. (16)

Let χ = const > 0. Let, for t ∈ [0, ∞), the following conditions be satisfied

Diai(t, x∗1(t), . . . , x∗n(t)) +
n

∑
j=1,j �=i

∣∣∣Djai(t, x∗1(t), . . . , x∗n(t))
∣∣∣ < −χ < 0, i = 1, . . . , n. (17)

Theorem 3 ([48]). Let the system (14) have a steady-state solution x∗(t) = (x∗1(t), . . . , x∗n(t)). Let
the functions ai(t, x1, . . . , xn), i = 1, 2, . . . , n be continuous with respect to the first variable, con-
tinuously differentiate to other variables and partial derivatives satisfy the Lipschitz condition (16).
Let, for all t ≥ 0, the conditions (17) be satisfied. Then, the steady-state solution x∗(t) of the
system of Equation (14) is asymptotically stable in the R3

n space metric of n-dimensional vectors
v = (v1, . . . , vn) with norm ‖v‖ = max1≤j≤n |vj|.

Consider a system of nonlinear equations

dui(t)
dt

= ai(t, u1(t), . . . , un(t)), i = 1, 2, . . . , n, t ≥ 0, (18)

with initial conditions
ui(0) = ui, i = 1, 2, . . . , n. (19)

Their right-hand sides are continuous everywhere except a countable set of values
(ζi, ui

1, . . . , ui
n), i = 1, 2, . . . , in which they have discontinuities.

For the sake of simplicity, we consider two cases here:
(1) there are discontinuities with respect to variable t;
(2) there are discontinuities with respect to variable u1.

Consider the first case. Assume that the functions aj(t; u1, . . . , un), j = 1, 2, . . . , n have
discontinuities with respect to t at points ζi, i = 1, 2, . . . ; 0 < ζ1 < ζ2 < . . . . For convenience,
let j = 1. The functions ai(t; u1, . . . , un), i = 2, 3, . . . , n are assumed to be continuous.

We impose the following constraints on ai(t, u1, . . . , un), i = 1, 2, . . . , n:
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(1) functions ai(t, u1, . . . , un), i = 2, . . . , n are continuous with respect to t(t ∈ [0, ∞))
and have partial derivatives that satisfy the Lipschitz condition with coefficient q with
respect to other variables

|Dkai(t, u1, . . . , un)− Dkai(t, v1, . . . , vn)| ≤ q
n

∑
i=1

|ui − vi|, k = 1, 2, . . . , n, t ∈ [0, ∞); (20)

(2) the function a1(t, u1, . . . , un) is continuous for t ∈ [0, ζ1) ∪∞
i=1 (ζi, ζi+1). For t, it has

partial derivatives with respect to other variables satisfying the Lipschitz condition with
coefficient q

|Dja1(t, u1, . . . , un)− Dja1(t, v1, . . . , vn)| ≤ q
n

∑
i=1

|ui − vi|, , j = 1, 2, . . . , n; (21)

(3) for t ∈ [0, ∞)

Diai(t, x∗1(t), . . . , x∗n(t)) +
n

∑
j=1,j �=i

∣∣∣Djai(t, x∗1(t), . . . , x∗n(t))
∣∣∣ < −χ < 0, i = 2, 3, . . . , n; (22)

(4) for t ∈ [0, ζ1) ∪∞
i=1 (ζi, ζi+1)

D1a1(t, x∗1(t), . . . , x∗n(t)) +
n

∑
j=2

∣∣∣Dja1(t, x∗1(t), . . . , x∗n(t))
∣∣∣ < −χ < 0, (23)

where χ = const > 0.
Now, consider the time interval t ∈ [0, ζ1].
Let ‖u(0)‖ ≤ δ, where δ ≤ χ/(4qn2). In [48], it was shown that in order to fulfill the

conditions (20)–(23) in time interval t ∈ [0, ζ1], the trajectory of the solution of the Cauchy
problems (18) and (19) does not leave a ball B(0, δ). It was also shown that for t ∈ [0, ζ1], it
holds that

‖u(t)‖ ≤ e−χt/4‖u(0)‖ ≤ e−χt/4δ. (24)

Since the function ‖u(t)‖ is continuous for t ∈ [0, ∞), we can find ζ ′1, ζ1 < ζ ′1 < ζ2
such that |ζ ′1 − ζ1| < |ζ2 − ζ1|/10 and ‖u(t)‖ ≤ e−χζ1/8‖u(0)‖ for t ∈ [ζ1, ζ ′1]. Obviously,
for t ∈ [ζ ′1, ζ2], ‖u(t)‖ ≤ e−χ(t−ζ ′1)/4‖u(ζ ′1)‖ ≤ e−χ(t−ζ ′1)/4e−χζ1/8‖u(0)‖.

For t = ζ2, we have ‖u(ζ2)‖ ≤ e−χ(ζ2−ζ ′1)/4e−χζ1/8‖u(0)‖ < e−χΔ1/8e−χΔ0/8‖u(0)‖.
Here and below, Δk = |ζk+1 − ζk|.

Consider the interval [ζ2, ζ3]. From function ‖u(t)‖, t ∈ [0, ∞) continuity, it follows that
there is an interval [ζ2, ζ ′2] such that |ζ ′2 − ζ2| < Δ3/10 and ‖u(t)‖ ≤ e−χ(Δ0+Δ1)/8‖u0‖ for
t ∈ [ζ2, ζ ′2]. Then, if t ∈ [ζ ′2, ζ3] ‖u(t)‖ ≤ e−χ(t−ζ ′2)/4‖u(ζ ′2)‖ ≤ e−χ(t−ζ ′2)/4e−χ(Δ0+Δ1)/8‖u0‖,
‖u(ζ3)‖ < e−χ(ζ3−ζ2)/8e−χ(Δ0+Δ1)/8‖u0‖ = e−χ(Δ0+Δ1+Δ2)/8‖u0‖.

Repeating the process, we have for t ∈ [ζk, ζk+1] : ‖u(ζk+1)‖ < e
−χ(

k
∑

l=0
Δl)/8

. Therefore,
t → ∞ ‖u(t)‖ → 0.

Asymptotic stability is proven.

Theorem 4. Let the following conditions be fulfilled:
(1) the Cauchy problems (14) and (15) has a steady-state solution x∗(t), x∗(t) = (x∗1(t), . . . , x∗n(t)),
t ≥ 0;
(2) functions aij(t, x1, x2, . . . , xn) are continuous with respect to variables x1, . . . , xn and have a set
of countable discontinuities ζ1, . . . , ζn, ... with respect to t. Moreover, in each finite time interval
[0, T), there is at most a finite number of discontinuities;
(3) at every point of continuity with respect to t, functions aij(t, x1, . . . , xn) have partial derivatives
with respect to x1, . . . , xn and satisfy the Inequalities (20), (21);
(4) the conditions (22), (23) are fulfilled.
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Then, a steady-state solution of the Cauchy problems (14) and (15) is asymptotically stable.

Now, we move on to the case where functions ai(t, u1, . . . , un), i = 1, 2, . . . , n have
discontinuities with respect to ui, i = 1, 2, . . . , n.

For simplicity, we restrict the discussion to the case where the function a1(t, u1, . . . , un)
has a discontinuity at u1 for u1 = u∗

1.
Assume that a gap occurs at time t = η1 > 0 and u1(η1) = u∗

1.
Let, for −∞ < u1 < u∗

1, −∞ < ui < ∞, i = 2, . . . , n and for u∗
1 < u1 < ∞, −∞ <

ui < ∞, i = 2, . . . , n, functions ai(t, u1, . . . , un), i = 1, . . . , n have partial derivatives that

satisfy the Lipschitz condition |Djai(t, u1, . . . , un)− Djai(t, v1, . . . , vn)| ≤ q
n
∑

i=1
|ui − vi|, j =

1, 2, . . . , n.
Consider a time interval [0, η1). The conditions of Theorem 3 are verified in each

[0, b] ⊂ [0, η1). Therefore, for t ∈ [0, η1), the inequality occurs ‖u(t)‖ ≤ e−χt/4δ < δ.
Although the function ‖u(t)‖ is continuous for t ∈ [0, ∞), the inequality ‖u(t)‖ ≤

e−χt/4δ is valid for t ∈ [0, η1].
Consider special features of the transition of the Cauchy problem solution trajectories (18)

and (19) through t = η1.
There are two possible cases:

(1) there is an interval (η1, η1 + Δ1], in which u1(t) �= u1(η1);
(2) there is a time interval [η1, η1 + Δ2], in which u1(t) = u1(η1).

We will study each case separately.
First, from continuity of the function ‖u(t)‖, it follows that there is h, h < η1/10 so

that t ∈ [η1, η1 + h], ‖u(t)‖ < e−χt/8δ.
Therefore, for t ∈ [0, η1 + h], the inequality ‖u(t)‖ ≤ e−χt/8δ is valid. Clearly, ‖u(η1 +

h)‖ ≤ e−χ(η1+h)/8δ.
For t ∈ [η1 + h, ∞), the inequality ‖u(t)‖ ≤ e−χ(t−η1−h)/4‖u(η1 + h)‖

≤ e−χ(t−η1−h)/4e−χ(η1+h)/8δ ≤ e−χt/8δ is valid.
Therefore, ‖u(t)‖ ≤ e−χt/8δ, for t ∈ [0, ∞).
Thus, for the first case, the stability of the steady-state solution for the system of

Equation (18) is proven.
Now, we move on to the second case. Since u1(t) = u1(η1) for t ∈ [η1, η1 + Δ1], in this

time interval instead of (18), one should observe the following system of equations

0 = a1(t, u1(η1), u2(t), . . . , un(t)). (25)

dui(t)
dt

= ai(t, u1(η1), u2(t), . . . , un(t)), i = 2, . . . , n. (26)

The system of Equation (26) is considered under initial condition ui(η1) = ui,
i = 2, 3, . . . , n.

We assume that functions u2(t), . . . , un(t) satisfy the condition (25) for t ∈ [η1, η1 +Δ1].
The system of Equation (26) is studied similarly to the system (18) in the space of

lower dimension. Sufficient conditions of stability for the solution of the system (26) for
t ∈ [η1, η1 + Δ1] are constructed similarly to the sufficient conditions of stability for the
solution of the system (18) on the time interval t ∈ [0, ζ1]. We omit the details. Finally, we
investigate the time interval t ∈ [η1 + Δ1, ∞] and employ the arguments given in [48].

Now, we must consider the case of a countable set of discontinuities. It suffices to
observe the case where there are discontinuities with respect to u1 for ūi

1, i = 1, 2, . . . . We
suggest that the discontinuities occur at the time moments t∗i : a1(t∗i , ūi

1(t
∗
i ), . . . , un(t∗i )),

i = 1, 2, . . . . As above, we will assume that at each finite time interval [0, T], there is a finite
number of discontinuities.

Here, we also must consider two cases:
(1) ui

1(t) �= ūi
1(t

∗
i ) in an interval t ∈ (t∗i , t∗i + h1

i );
(2) there is an interval [t∗i , t∗i + hi], where ui

1(t) = ūi
i(t

∗
i ).
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For convenience, we observe the first case. The second one leads to the case of a system
of a lower dimension.

To each time moment t∗i , i = 1, 2, . . . associated with a function discontinuity
a1(t, u1(t), . . . , un(t)) we assign a number ζ ′i so that t∗i < ζ ′i < t∗i+1, |ζ ′i − t∗i | ≤ |t∗i+1 − t∗i |/4,
i = 1, 2, . . . .

Repeating the above arguments for each time interval [0, ζ ′1], [ζ
′
i , ζ ′i+1], i = 1, 2, · · · , we

verify the validity of the following statement.

Theorem 5. Let the following conditions be fulfilled:
(1) the Cauchy problems (14)–(15) has a steady-state solution x∗(t), x∗(t) = (x∗1(t), . . . , x∗n(t));
(2) functions aij(t, x1, . . . , xn) are continuous with respect to variables (t, x1, . . . , xn) everywhere
except a countable set of discontinuities with respect to variables x1, . . . , xn that occur at time
moments t∗i , i = 1, 2, . . . . Moreover, in each finite time interval, there is a finite number of
discontinuities;
(3) at continuity points, functions aij(t, x1, . . . , xn) have partial derivatives with respect to variables
x1, . . . , xn that satisfy the Lipschitz condition;
(4) the conditions (22), (23) are fulfilled.

Then, a steady-state solution of the Cauchy problems (14)–(15) is asymptotically stable.

4. Stability of Hopfield Neural Networks

In this section, we investigate the stability of Hopfield neural networks, which are
modeled by a system of nonlinear differential equations

dxi(t)
dt

= −ai(t)xi(t) +
n

∑
j=1

wi,j(t)gj(xj(t)), (27)

with discontinuous coefficients ai(t) and activation functions gi(x), i = 1, 2, . . . , n.
We will perform our study of the stability of neural networks (27) in two stages. The

first stage includes a case with discontinuous coefficients ai(t). The second one considers
discontinuity of activation function gi(x), i = 1, 2, . . . , n.

First, let functions ai(t), i = 1, 2, . . . , n have discontinuities of the first kind. It is
enough to restrict ourselves to the case of one point of discontinuity. Assume that the
function a11(t) is discontinuous at the point b1, 0 < b1 < ∞. Without loss of generality, we
suggest gj(0) = 0, j = 1, 2, . . . , n, |gi(x)| ≤ αi|x|, i = 1, 2, . . . , n.

Now, we investigate the stability of the zero solution of the system of Equation (27).
In the interval (0, b1], the norm of the solution of Equation (27) for initial value

x(0) = x0, x(0) = (x1(0), . . . , xn(0)), (28)

is estimated by the inequality

‖x(t)‖ ≤ exp
{∫ t

0 Λ(A(τ))dτ
}
‖x(0)‖

+
∫ t

0 exp
{∫ t

s Λ(A(τ))dτ
}
‖F(t, x(s))‖ds,

(29)

where A(t) = {aij(t)}, i, j = 1, 2, . . . , n,

F(t, x(t)) =

(
n

∑
j=1

w1j(t)gj(x(t)), . . . ,
n

∑
j=1

wnj(t)gj(x(t))

)T

.

Proceeding with the Inequality (29), we have

‖x(t)‖ ≤ exp
{∫ t

0
Λ(A(τ))dτ

}
‖x(0)‖+ γ

∫ t

0
exp

{∫ t

s
Λ(A(τ))dτ

}
‖x(s)‖ds, (30)

where γ is defined from the inequality ‖F(t, x(t))‖ ≤ γ‖x(t)‖.
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From the Inequality (30), using well-known methods, we have the estimate

‖x(t)‖ ≤ exp
{∫ t

0
Λ(A(τ))dτ + γt

}
‖x(0)‖, t ∈ [0, b1].

Taking x(b1) = (x1(b1), . . . , xn(b1)) as the initial value and repeating the arguments
given in the proof of Theorem 1, we obtain the inequality

‖x(t)‖ ≤ exp
{∫ t

0
Λ(A(τ))dτ + γt

}
‖x(0)‖,

which is valid for t ∈ [0, ∞).
From this inequality, it follows that when the condition{∫ t

0
Λ(A(τ))dτ + γt

}
< 0,

is satisfied, the system of Equation (27) is asymptotically stable in general.
Thus, the following statement has been proven.

Theorem 6. Let the following conditions be fulfilled:
(1) functions ai, i = 1, 2, . . . , n are continuous everywhere in [0, ∞) except a finite number of

points where they have discontinuities of the first kind;
(2) functions gi(t) are continuous;
(3) |gj(x(t))| ≤ αj|x(t)|;
(4) in t ∈ [0, ∞), the following condition is satisfied∫ t

0
Λ(A(τ))dτ + γt < 0,

where gamma is defined from the inequality ‖F(t, x(t))‖ ≤ γ‖x(t)‖.
Then, the Hopfield neural network is stable in general.

Consider the case of discontinuity in synapses wij(t), i, j = 1, 2, . . . , n. For conve-
nience, we restrict ourselves to the discontinuity of the function w11(t) at the time moment
b1, 0 < b1 < ∞.

Let us represent the system of Equation (27) as

dx1(t)
dt

= −a1(t)x1(t) + w11(t)g′1(0)x1(t)

+w11(t)u1(x1(t)) +
n

∑
j=2

w1j(t)gj(xj(t)),

dxi(t)
dt

= −ai(t)xi(t) +
n

∑
j=1

wij(t)gj(xj(t)), i = 2, 3, . . . , n. (31)

Here, u1(x1(t)) = g1(x1(t))− g′1(0)x1(t).
It is essential that |u1(x1(t))| = o(|x1(t)|), since we examine the trivial solution of the

system (27). Therefore,

|u1(x1(t))| = |g(x1(t))− g1(0)− g′1(0)x1(t)| ≤ B|x1(t)|2,

where B = max
0<θ(x1(t))<1

|g′′(θ(x1(t)))|.
Obviously, the system of Equation (31) has a structure similar to that of the sys-

tem of Equation (27). The difference is that the coefficient for x1(t) now is equal to
−a1(t) + w11(t)g′1(0), and the vector function F(x(t)) contains w11(t)u1(x(t)) instead of
w11(t)g1(x(t)).

Taking this remark into account, the assertion of Theorem 7 extends to the system (31).
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Finally, we consider the case which involves discontinuous activation functions.
Clearly, the system of Equation (18) is a special case of the system of Equation (18).
Theorem 5’s statements are readily extended to this.

5. Conclusions

In this paper, we obtain sufficient conditions of asymptotic stability for solutions of
linear and nonlinear systems of ordinary differential equations with discontinuous right-
hand sides. We have derived conditions for local asymptotic stability and stability in
general and the obtained sufficient conditions have been used to investigate the stability
of Hopfield neural networks with discontinuous synapses and activation functions. The
proposed method for studying Hopfield neural networks can also be applied to other types
of artificial neural networks.

The authors hope to continue their study in the following directions:

- stability of solutions of systems of differential equations with discontinuous right-hand
sides and delays;

- stability of solutions of systems of parabolic equations with discontinuous right-
hand sides;

- stability of solutions of systems of hyperbolic equations with discontinuous right-
hand sides.

We intend to use the obtained results in the following fields:

- Ecology. There are a lot of regions with dramatic climate change. Models with
discontinuities describe the dynamics of populations very well.

- Problems of automatic regulation and control.
- Mathematical models of immunology during therapy.
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