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Preface to ”Research in Metabolomics via Nuclear

Magnetic Resonance Spectroscopy: Data Mining,

Biochemistry and Clinical Chemistry”

It is our pleasure to present this Special Issue entitled “Research in Metabolomics via Nuclear

Magnetic Resonance Spectroscopy: Data Mining, Biochemistry and Clinical Chemistry”, which

broadly addresses the applications of nuclear magnetic resonance (NMR) spectroscopy in the

metabolomics field.

Metabolomics is defined as the comprehensive characterization of the ensemble of endogenous

and exogenous metabolites present in a biological specimen. Metabolites represent, at the same time,

the downstream output of the genome and the upstream input from various exogenous factors, such

as the environment, lifestyle, and diet. Even though the first scientific paper explicitly dealing with

metabolomics is more than 20 years old, we think that this collection is still timely and of particular

interest for the scientific community because this “-omic” science is still growing and novel practical

applications in biomedicine and in the agricultural field continue to emerge. As researchers at the

Magnetic Resonance Center of the University of Florence (Italy) we decided to focus this Special

Issue on NMR-based metabolomics, which is our main field of research. The ensemble of the studies

present in this volume offers a representative overview of the applications of NMR metabolomics

raging from the biomedical fields to food science.

In the end, we want to thank the authors for their precious contributions as this Special Issue

would not be possible without them. We would also like to express our sincere appreciation to the

dedicated editorial team of Applied Sciences for their valuable contributions to this volume.

Alessia Vignoli, Gaia Meoni, and Leonardo Tenori

Editors
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1. Introduction

Even though metabolomics is about 20 years old, the interest in this “-omic” science is
still growing, and high expectations remain in the scientific community for new practical
applications in biomedicine and in the agricultural field. Thus far, biomedical metabolomic
studies have produced great advancements in biomarker discovery, identification of novel
metabolites, and more detailed characterization of biological pathways involved in the
manifestation and progression of diseases. In parallel, metabolomics has been shown to
have an emerging role in monitoring the influence of different manufacturing procedures
on food quality and food safety. In light of the above, this Special Issue was introduced to
collect the latest research from various application fields of NMR-based metabolomics [1,2],
ranging from biomedicine to data mining and food chemistry.

2. NMR-Based Metabolomics

Our collection comprises four research articles that report interesting applications
of NMR metabolomics in the biomedical setting. In the first article published in our
issue, Baranovicova et al. [3] present a longitudinal study that explores the dynamics of
metabolomic changes in the plasma of 53 patients, diagnosed with SARS-CoV-2 infection,
at three consecutive time points during their first week of hospitalization (days 1, 3, and
7 after admission to the hospital) to reveal the differences among patients with positive
(survivors) and negative (worsening condition, non-survivors) outcomes. People with
COVID-19, regardless their prognosis, presented alterations in their energy and amino
acids metabolism. These changes were normalized by the seventh day in patients with
positive outcomes; conversely, they were not reverted in patients with negative outcomes.
These results indicate that the ability to respond to metabolomic alterations induced by
severe inflammation due to SARS-CoV-2 infection is a key factor in determining patients’
outcomes and that these metabolic changes can be tackled with individual pharmacological
or diet interventions to support patient response.

In recent years, nanoscience and nanotechnology have been developing rapidly; at
the same time, the increased use of nanoparticles has raised several concerns regarding
human public health and occupational safety. In the article by Horník et al. [4], NMR-
based metabolomics of exhaled breath condensate (EBC) and blood plasma is used to
study the effects of occupational exposure to nanoparticles (NPs). The EBC and blood
plasma samples from 20 workers exposed to NPs were collected pre-shift (i.e., before 2.5 h
of exposure to NPs) and post-shift (i.e., after NP exposure). Moreover, 20 controls (not
exposed to NPs) were enrolled for this study. Multivariate statistical analyses, performed
both on EBC and plasma NMR data, showed clear discriminations among the three groups
of interest (the pre-shift, post-shift, and control groups). The univariate metabolite analysis
revealed several alterations in subjects exposed to NPs, in particular the acute effect of NP
exposure is primarily reflected in the metabolic pathways involved in the production of
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antioxidants and of other protective species, whereas the chronic effect of NP exposure
seems to be associated with alterations in glutamine and glutamate metabolism, and the
purine metabolism pathways.

The paper authored by Vignoli et al. [5] characterizes the effects of surgery on the
serum metabolomic profiles of colorectal cancer (CRC) patients and explores the possibility
that metabolic variations among preoperative and postoperative serum samples could be
informative on future cancer recurrence. A total of 41 patients diagnosed with early-stage
CRC and scheduled for radical resection were enrolled for this study. Serum samples
collected preoperatively (t0) and 4–6 weeks after surgery but before the start of any treat-
ment (t1) were analyzed via 1H NMR spectroscopy. A clear discrimination between t0
and t1 emerged: after surgery, there are significant increases in pyruvate, HDL cholesterol,
HDL phospholipids, HDL Apo-A1, and HDL Apo-A2 levels, coupled with significant
decreases in acetone, 3-hydroxybutyrate, LDL-Chol/HDL-Chol ratio, and Apo-A1/Apo-
B100 ratio. Taken together, these results point to a relevant rearrangement of the metabolic
pathways related to lipoproteins, ketone bodies, and energy metabolism. Furthermore,
several differences between post- and pre-operative serum samples, in particular those
related to the HDL-Chol and VLDL-Chol subfractions, seem to be associated with cancer
recurrence. These data pave the way for novel strategies for risk stratification in patients
with early-stage CRC.

The paper by Georgiopoulou et al. [6] is the last research article related to biomedical
applications of NMR metabolomics included in our issue. It proposes an analysis of
urine samples of preterm infants with neonatal sepsis, a systemic infection difficult to
diagnose in its early stages and thus reporting high rates of morbidity and mortality. In this
study, the urine metabolomic profiles of 34 septic neonates, 14 preterm neonates without
sepsis or other serious morbidity but hospitalized in the NICU, and 23 healthy preterm
neonates were examined. Multivariate and univariate statistical analyses showed clear
discriminations between septic and healthy newborns. In particular, alterations in the levels
of gluconate, myo-inositol, hippurate, taurine, N, N-Dimethylglycine, betaine, creatinine,
glucose and lactose emerged as the most significant. These data represent a promising basis
for future large-scale multicenter studies and give new perspectives for clinical research in
the field of neonatology.

We decided to address also foodomics in our issue, which refers to metabolomic
approaches applied to foodstuff for investigating topics related to nutrition, fraud detection
and traceability of the geographical origin and production/processing procedures of food.
In this regard, in our issue, we decided to publish an NMR-based metabolomic study
based on water extracts of green and roasted coffee beans of different cultivars from three
distinct Nicaraguan farms [7]. We think that this study can show well the potential and
versatility of NMR metabolomics. Here, the authors demonstrate the potential of NMR
metabolomics not only to define the geographical origin and the farm of provenance but
also to characterize the effect of the environment (microclimates, irrigation, fertilizers,
etc.) and the post-harvest practices (e.g., drying and fermentation) that are responsible for
different aroma precursors in coffee and thus affect its distinct taste.

The ensemble of these studies offers a representative overview of the applications of
NMR metabolomics raging from the biomedical fields to food science.

The capabilities of NMR, coupled with an ever-growing list of statistical chemometric
techniques, make NMR-based metabolomics a versatile technique. Applying correct and
suitable statistical techniques has become of fundamental importance for metabolomics
studies. For this reason the review of Corsaro et al. [8], which lists some of the most com-
monly used and useful statistical techniques in metabolomics, explaining their advantages
and disadvantages, has been included in our issue. In this work, the authors give an overview
of the wide range of statistical opportunities for NMR-based metabolomics, ranging from
conventional approaches (e.g., unsupervised and supervised methods, and pathway analyses)
to less frequently applied deep learning and artificial neural networks. We found this review
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beneficial not only for fledgling metabolomic students approaching chemometrics but also for
experts in the field looking for a more suitable approach to their studies.

In conclusion, the current Special Issue of Applied Sciences offers a variety of examples
on how NMR-based metabolomics can potentially be used in several and varied settings.
Although this Special Issue has been closed, more in-depth research on this topic is expected
in the years to come, and future research will no doubt continue to explore the possibility
of translating metabolomics into real-life applications.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Background: COVID-19 represents a severe inflammatory condition. Our work was
designed to monitor the longitudinal dynamics of the metabolomic response of blood plasma and
to reveal presumable discrimination in patients with positive and negative outcomes of COVID-19
respiratory symptoms. Methods: Blood plasma from patients, divided into subgroups with positive
(survivors) and negative (worsening condition, non-survivors) outcomes, on Days 1, 3, and 7 after
admission to hospital, was measured by NMR spectroscopy. Results: We observed changes in energy
metabolism in both groups of COVID-19 patients; initial hyperglycaemia, indicating lowered glucose
utilisation, was balanced with increased production of 3-hydroxybutyrate as an alternative energy
source and accompanied by accelerated protein catabolism manifested by an increase in BCAA
levels. These changes were normalised in patients with positive outcome by the seventh day, but still
persisted one week after hospitalisation in patients with negative outcome. The initially decreased
glutamine plasma level normalised faster in patients with positive outcome. Patients with negative
outcome showed a more pronounced Phe/Tyr ratio, which is related to exacerbated and generalised
inflammatory processes. Almost ideal discrimination from controls was proved. Conclusions:
Distinct metabolomic responses to severe inflammation initiated by SARS-CoV-2 infection may serve
towards complementary personalised pharmacological and nutritional support to improve patient
outcomes.

Keywords: NMR metabolomics; human plasma; COVID-19

1. Introduction

COVID-19, which develops after SARS-CoV-2 infection, represents a severe inflamma-
tory condition. Over the past two decades, a close link between metabolism and immunity
has emerged [1,2]. The immune reaction in severe inflammation is intimately associated
with a dependency on amino acids included in the proteosynthesis and specific metabolism
of immunocompetent cells [3]. In addition, the immune response of the organism is also
closely related to glucose energetical metabolism [1,2,4–6]. Synergic interactions between
metabolism and immune processes serve as a tool to monitor the particular state of an
organism relating to immunological response via metabolomics analysis. The increasing

Appl. Sci. 2021, 11, 4231. https://doi.org/10.3390/app11094231 https://www.mdpi.com/journal/applsci5
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number of studies confirms the great potential of the metabolomic approach in the evalua-
tion of COVID-19 disease, its course, and its outcome [7–10]. A comprehensive metanalysis
of COVID-19 patients showed several key metabolic characteristics for disease progres-
sion and clinical outcome [11]. Untargeted metabolomics on patients’ serum via mass
spectroscopy revealed potential prognostic markers of both severity and outcome [10,12].
Interestingly, metabolomics may also predict antiviral drug efficacy in COVID-19 [13], and
metabolomic analysis of patients’ exhaled air can identify patients with COVID-19 in acute
respiratory distress syndrome. NMR-based metabolomic profiling of blood samples has
been already used to monitor COVID-19 patients’ response to tocilizumab [14].

We focused herein on the dynamics of metabolomic changes in blood plasma at
three successive time points during the first week of COVID-19 patient hospitalisation,
with patients divided into two groups: (i) those with a positive outcome (survivors) and
(ii) those with a negative outcome (non-survivors or obviously worsening condition).
Hospitalised COVID-19 patients with clinically proven moderate-to-severe pneumonia
with acute hypoxemic respiratory failure were included. We were interested to explore the
metabolic changes in blood plasma that could be associated with immune cell response, as
well as with energy metabolism, in comparison to control subjects representing a sample of
the normal population, without any acute or chronic inflammatory or pulmonary diseases.
Secondarily, it was of interest as to whether there are metabolomic features in blood plasma
that could predict patient outcome, at which time point are they recognisable, and to what
extent. Complementary to testing significant changes, we also employed a discriminatory
algorithm in the search for metabolites that could serve alone or in combination as plasma
biomarkers.

2. Materials and Methods

2.1. Subjects

Altogether, 53 patients with PCR-confirmed SARS-CoV-2 were included in the study.
Patients were admitted to the Clinic of Pneumology and Phthisiology, Martin University
Hospital, Slovakia, due to chest X-ray/CT signs of bilateral pneumonia and acute hypox-
emic respiratory failure requiring oxygen supplementation (oxygen saturation at <94%
in room air). In general, patients presented with typical symptoms of COVID-19: fever,
cough, dyspnoea, weakness, fatigue, myalgia and arthralgia, loss of smell and taste, and
loss of appetite. Some patients suffered from gastrointestinal symptoms (diarrhoea) as
well. Laboratory results on admission showed increased inflammatory markers (CRP, IL-6,
ferritin, fibrinogen) and hypoxemic respiratory failure, and changes in differential blood
count included leucocytosis, lymphopenia, neutrophilia, and eosinopenia in most patients.

During the study, patients received either standard hospital enteral nutrition or a
diabetic diet (patients with diabetes). Patients incapable of oral food intake received the
equivalent for enteral nutrition via nasogastric tube. None of the included patients had
percutaneous endoscopic gastrostomy/jejunostomy. Neither nutritional supplementation
nor parenteral nutrition was administered. When necessary, but only sporadically, patients
received crystalloid solutions to treat dehydration or mineral imbalance.

Oxygen was administered via nasal cannula, face mask, or face mask with a rebreath-
ing bag with flow adjusted to achieve target oxygen saturation of 94%. Seven patients
required high-flow nasal oxygen therapy (HFNO), and in case of hypoxemic–hypercapnic
respiratory failure, three received non-invasive ventilation (NIV). In patients with severe
and critical clinical condition requiring a very high flow of oxygen, saturation of 90% was
considered sufficient. None of the included patients received mechanical ventilation during
sample collection; however, two patients were later intubated and mechanically ventilated.
Apart from oxygen supply, patients were treated with dexamethasone (all patients, dose
of 6 mg/day for a duration of 10 days); antivirals (remdesivir or favipiravir if eligible
according to local guidelines—duration of symptoms less than 7 days), n = 17; antibiotics
(in case of bacterial superinfection or its suspicion), n = 53; LMWH, n = 49; vitamins:
vitamin C, n = 17, vitamin D, n = 19; zinc, n = 14; and betaglucans, n = 44.
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Patients were divided into two subgroups: Group A (n = 34) contained patients
with a positive outcome (survivors), while Group B (n = 19) contained patients with a
negative outcome, i.e., patients with a worsening condition during the sampling period, or
those who died (10 were dead at the time of manuscript preparation). All known patient
comorbidities at the time of study enrolment are listed in Table 1. To assess the patients’
condition, the determining criterion was the need for increasing/decreasing oxygen flow
or switch to HFNO, NIV, or mechanical ventilation to achieve target oxygen saturation,
together with clinical evaluation and known clinical outcome. Due to various causes such
as hospital discharge before Day 7, death, or even patient disagreement with other blood
collections, the number of samples on Day 3 or Day 7 is slightly reduced. All details about
subjects included in the study are summarised in Table 1.

Table 1. Characteristics of patients included in the study.

Parameter: Median (IQR) Group A Group B

size 34 19
age, years 65 (21) 71 (16)

gender 15 female 8 female
number of samples Day 1 34 19
number of samples Day 3 31 16
number of samples Day 7 26 10

oxygen 34 19
HFNO - 7

NIV 1 * 2
smoker 2 2

non smoker 23 10
ex-smoker 5 5

smoking not known 4 2
chronic obstructive
pulmonary disease 2 4

obesity 11 11
hypertension 22 13

asthma 2 -
kidney disease 4 4

ischemic heart disease 9 9
diabetes 14 7
cancer 1 2

cancer history 1 3
thyroid disease 3 1
liver cirrhosis - 1

rheumatoid arthritis 1 3
stroke history 1 1
acute stroke 1 -
sarcodiosis 1 -

* Patient with chronic hypoxemic–hypercapnic respiratory failure due to COPD on home NIV (non-invasive
ventilation) with LTOT (long-term oxygen therapy).

As controls, plasma samples from age- and gender-matched subjects without any
acute or chronic inflammatory diseases, any type of respiratory failure, or any pulmonary
diseases, regardless of common highly age-related conditions (hypertensia, obesity, and
others in the representative sample of the population) were used, representing a ‘sample of
the normal population’, collected in a fasting state without any additional criteria. Included
were 55 subjects: median age 64, IQR 18, female n = 25.

2.2. Sample Preparation

Blood was collected in EDTA-coated tubes, in the fasting state, after the first night
in the hospital (Day 1) and then 2 and 6 days later (Day 3 and Day 7). Within 1 h after
collection, blood was centrifuged to plasma at 4 ◦C, at 2000 rpm, for 20 min and stored
at −80 ◦C until use. Plasma denaturation was carried out according to Gowda et al. [15]:
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600 μL of methanol was added to 300 μL of blood plasma. The mixture was briefly
vortexed and frozen at −24 ◦C for 20 min. After subsequent centrifugation at 14,000 rpm
for 15 min, 700 μL of supernatant was taken, dried out, and stored at −24 ◦C. Before NMR
measurement, the dried matter was mixed with 100 μL of stock solution (consisting of:
phosphate buffer 200 mM pH 7.4 and 0.30 mM TSP-d4 (trimethylsilylpropionic acid -d4)
as a chemical shift reference in deuterated water) and 500 μL of deuterated water. Finally,
550 μL of the final mixture was transferred into a 5 mm NMR tube.

2.3. NMR Measurement

NMR data were acquired on a 600 MHz Avance III NMR spectrometer from Bruker,
Germany, equipped with a TCI CryoProbe at T = 310 K. Initial settings (basal shimming,
receiver gain, and water suppression frequency) were performed on an independent sample
and adopted for measurements. After preparation, samples were stored in a Sample Jet
automatic machine, cooled at approximately 5 ◦C. Before measurement, each sample was
preheated to 310 K for 5 min. An exponential noise filter was used to introduce 0.3 Hz line
broadening before Fourier transform. All data were zero-filled. Samples were randomly
ordered for acquisition.

We modified standard profiling protocols from Bruker as follows: denaturised plasma:
noesy with presaturation (noesygppr1d): FID size 64k, dummy scans 4, number of scans
64, spectral width 20.4750 ppm; profiling cpmg (cpmgpr1d, L4 = 126, d20 = 3ms): number
of scans 64, spectral width 20.4750 ppm. For 15 randomly chosen samples, 2D spectra were
measured: cosy with presaturation (cosygpprqf): FID size 4k, dummy scans 8, number of
scans 16, spectral width 16.0125 ppm; homonuclear J-resolved (jresgpprqf): FID size 8k,
dummy scans 16, number of scans 32. Samples were randomly ordered for acquisition. For
denaturised plasma samples, we kept the half-width of the TSP-d4 signal under 1.0 Hz. All
experiments were conducted with a relaxation delay of 4 s.

2.4. Data Processing

Spectra were solved using the human metabolomic database (www.hmda.ca, accessed
on 23 March 2021) [16], chenomics software free trial version, internal metabolite database,
and research in the metabolomic literature [15]. The proton NMR chemical shifts are
reported relative to the TSP-d4 signal assigned a chemical shift of 0.000 ppm. The peak
multiplicities were confirmed in J-resolved spectra, and homonuclear cross peaks were
confirmed in 2D cosy spectra. Peak assignments are listed in Table 2.

All spectra were binned to bins of size 0.001 ppm. No normalisation method was
applied to the data. Then, the intensities of selected bins were summed only for spectra
subregions with only one metabolite assigned or minimally affected by other co-metabolites.
Metabolites showing weak intensive peaks or strong peak overlap were excluded from
the evaluation. The obtained values were used as relative concentrations of particular
metabolites.

Besides principal component analysis (PCA) and partial least squares discriminant
analysis (PLS-DA), we applied the random forest (RF) discriminatory algorithm on the data.
We ran nonparametric ANOVA (Kruskal–Wallis) and the nonparametric Mann–Whitney
U-test to test significance. For data processing and analyses, we used the online tool
metaboanalyst 5.0 [17], Origin Pro 2019, PASW Statistics software, and Matlab 2018b.

8



Appl. Sci. 2021, 11, 4231

Table 2. Chemical shifts (in ppm), J couplings (in Hz), and multiplicities (s, singlet; d, doublet; t,
triplet; q, quartet; m, multiplet; dd, doublet of doublets; dq, doublet of quartets) for the pool of
metabolites identified in blood plasma. Signals marked with # were not suitable for quantitative
analyses.

Metabolite NMR Peak Assignment, Confirmed by Jres and Cosy

lactate 1.33 (d; J = 7.0), 4.12 (q; J = 7.0)
glutamine 2.12 (m), 2.15 (m), 2.44 (m), 2.48 (m), 3.77 (dd)
isoleucine 0.94 (t; J = 7.5), 1.01 (d; J = 7.0), 3.68 (d; J = 4.2)

leucine 0.96 (d; J = 6.2), 0.97 (d; J = 6.1), 1.68 (m), 1.72 (m),
1.75(m)

phenylalanine 3.13 (m), 3.28 (m), 7.34 (d; J = 7.5), 7.38 (t; J = 7.4), 7.44 (t)

tyrosine 3.05 (dd), 3.20 (dd), 3.93 (dd), 6.91 (d; J = 8.5),
7.20 (d; J = 8.5)

valine 0.99 (d; J = 7.1), 1.04 (d; J = 7.1), 2.27 (m), 3.61 (d; J = 4.4)
pyruvate 2.38 (s)

citrate 2.54 (d), 2.67 (d)
acetate 1.92 (s)
alanine 1.48 (d; J = 7.30), 3.78 (q)

glucose 3.23 (m), 3.40 (m), 3.46 (m), 3.52 (dd), 3.78 (m), 3.82 (m),
3.89 (dd), 4.64 (d), 5.23 (d)

3-hydroxybutyrate 1.20 (d; J = 6.23 Hz), 2.31 (m), 2.41 (m), 4.16 (m)
creatine 3.04 (s), 3.94 (s)
lysine 1.33 (d), 3.58 (d; J = 4.9), 4.25 (m)

2-oxoisocapronate (2-ketoleucine) 0.94 (d; J = 6.6), 2.11 (m), 2.61 (d; J = 7.0)
α-ketoisovalerate (2-ketovaline) 1.11 (d; J = 7.1), 3.01(dq)

3-methyl-2-oxo-valerate
(2-ketoisoleucine) 0.90 (t; J = 7.5), 1.10 (d; J = 6.7)

lipoprotein fraction 0.82–0.93 (m), 1.20–1.37 (m)
# creatinine 3.05 (s), 4.07 (s)
# histidine 7.07 (s), 7.80 (s)

# proline 1.46 (m), 1.50 (m), 1.73 (m), 1.89 (m), 1.93 (m),
3.03 (t; J = 7.6)

# threonine 1.34 (d), 3.56 (d;J = 4.9),4.26 (m)
# tryptophan 7.21 (t), 7.30 (t), 7.33 (s), 7.56 (d), 7.74 (d; J = 8.0)

3. Results

Altogether, 24 metabolites were identified in denatured plasma in both patients and
healthy subjects, where the signals from 19 compounds were sufficient for quantitative
evaluation (Table 2). Further in the text, we use the trivial names of 2-ketoacids derived from
leucine, isoleucine, and valine (IUPAC names are in Table 2). Besides molecular metabolites,
we also evaluated the lipoprotein fraction, which, as described by Liu et al., contains
very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and high-density
lipoproteins (HDL), including up to one-third of triacylglycerides [18]. For multivariate
analyses, we used the relative concentrations of plasma metabolites (expressed as the
integral of a particular spectral region) as an input in order to target biologically informative
value. We avoided feeding the algorithms with binned NMR spectra as is common in
metabolomic studies, since there may be regions of NMR spectra marked as important that
are not straightforward and unambiguously related to biological relevance.

Firstly, the data of all patients were analysed (Group A and Group B together) on
Day 1 against controls by PCA and PLS-DA (Figure 1). In contrast to patients, controls
were relatively clustered together. The loading values were the highest for glucose, 3-
hydroxybutyrate, and leucine in PC1 and alanine, lactate, and glutamine in PC2. The
situation was very similar after the PLS-DA run. The 10-fold cross-validated PLS-DA
algorithm performed with accuracy of 0.954, R2 of 0.7926, and Q2 of 0.6749 for eight compo-
nents. The variables with the highest VIP scores were: glucose, 3-hydroxybutyrate, alanine,
leucine, valine, and glutamine (performance measured in accuracy). The incorporation of
additional variables did not improve the performance.
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Figure 1. PCA (left) and PLD-DA analyses (right) of the system: patients in the hospital on Day
1 versus controls; algorithms were fed by the relative concentrations of plasma metabolites, and
analyses were run in metaboanalyst [16].

The PCA and PLS-DA analyses of the ternary system comprising Group A and
Group B on Day 1 and the controls showed a very similar result to those for the previous
binary system, where the patients were clustered together relatively well and patients
were scattered among themselves without obvious differentiation between patient groups
(results shown in Figure S1 in the supplement). PLS-DA analyses were further used to
differentiate patient data on a given day. The results from these analyses can be summarised
as follows (the best result, performance measured in accuracy): Day 1, accuracy of 0.73, R2
of 0.138 (one component); Day 3, accuracy of 0.76, R2 of 0.3905 (five components); and Day
7, accuracy of 0.72, R2 of 0.387 (four components). In all cases, Q2 values were negative,
which suggests an overfitted model.

In the next step, we employed the random forest (RF) discriminatory algorithm to
obtain a more realistic estimation of the discriminatory power of the system since RF is
relatively robust to overfitting and outliers [19]. The RF algorithm used included cross-
validation via balanced subsampling. It worked with two-thirds of the data for training
and the rest for testing for regression, and about 70% of the data for training and the rest for
testing during classification to overcome the negative aspects of training and testing on the
same data. This approach partially substitutes the validation on an independent data set.
As input variables also for this algorithm, we used relative concentrations of metabolites in
plasma expressed by the spectral integrals of particular NMR regions. In the case of highly
correlating predictors, RF may label some of them as unimportant, so RF was launched
10 times. Within the RF re-runs, metabolites slightly permuted in the importance order.
As an output from these analyses, receiver operating characteristic curve (ROC) curves
were created. The ROC is defined only for binary systems, and it is created by plotting the
true-positive rate against the false-positive rate at various threshold settings. An important
output is the area under the curve (AUC), which represents ranking quality. The AUC of a
ranking is 1 (the maximum AUC value) when all samples are truly assigned into the groups.
An AUC of 0.5 is equivalent to randomly classifying subjects as either positive or negative
(i.e., the classifier is of no practical utility) [20]. We ran RF discriminatory analyses for the
systems of patients versus controls, Group A versus controls, Group B versus controls,
and Group A versus Group B on Days 1, 3, and 7. The results of RF classifications are
summarised in Table 3.
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Table 3. Outputs from random forest discriminatory analyses for selected systems.

System
OOB Error

(5 Variables)
AUC

Number of
Variables

Metabolites in
Importance Order

All Patients Day
1/Controls 3/108 0.984

0.995
2
5

3-hydroxybutyrate,
phenylalanine,

Phe/Tyr ratio, acetate,
glucose

Group A Day
1/Controls 1/89 0.977

0.996
2
5

3-hydroxybutyrate,
phenylalanine,

glucose, Phe/Tyr ratio,
acetate,

Group B Day
1/Controls 1/74 0.972

0.991
2
5

phenylalanine,
3-hydroxybutyrate,

Phe/Tyr ratio, acetate,
glutamine or glucose

Group A/Group
B Day1 - 0.568

0.674
2
5 AUC value too low

Group A/Group
B Day 3 - 0.754

0.783
2
5

alanine, lysine,
glutamine, Phe/Tyr
ratio, phenylalanine

Group A/Group
B Day 7 - 0.487

0.503
2
5 AUC value too low

For significance testing among relative concentrations of plasma metabolites in pa-
tients against controls and patients’ dynamic data, we used nonparametric ANOVA, known
as the Kruskal–Wallis test. Due to the relatively low sample sizes, we continued with non-
parametric testing via the Mann–Whitney U-test for the combination of binary data sets.
The details are listed in Table 4. The Phe/Tyr ratio was also used as one variable. As the
threshold to claim significance, the p-value was set to 0.05, as established. In the discus-
sion, we did not strictly adhere to p-values, but we focused rather on the data behaviour
visualised in the box plots.

Table 4. Results from statistical tests; p-value derived from nonparametric ANOVA and Mann–Whitney U-test.

Metabolite
Nonparametric ANOVA

(Kruskal–Wallis)

Mann–Whitney U-test,
Only Significant Changes (p < 0.05) are Listed,

Arrows Indicate the Direction of Change

chi.
Squared

p-Value
FDR p-Value
Adjusted

Group A
Against
Controls

Group B
Against
Controls

Group A
Against
GroupB

glucose 80 3.9 × 10−15 1.4 × 10−14 Day1↑, Day3↑ Day1↑, Day3↑,
Day7↑

3-OH-butyrate 130 1.1 × 10−24 1.2 × 10−23 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑ Day7, A < B

citrate 77 1.2 × 10−14 3.2 × 10−14 Day1↓, Day3↓,
Day7↓

Day1↓, Day3↓,
Day7↓

leucine 39 7.6 × 10−7 1.5 × 10−6 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑

isoleucine 31 2.8 × 10−5 4.9 × 10−5 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑

valine 13 0.040 0.047 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑

ketoleucine 25 3.7 × 10−4 5.5 × 10−4 Day1↑, Day3↓,
Day7↓ Day1, A > B
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Table 4. Cont.

Metabolite
Nonparametric ANOVA

(Kruskal–Wallis)

Mann–Whitney U-test,
Only Significant Changes (p < 0.05) are Listed,

Arrows Indicate the Direction of Change

chi.
Squared

p-Value
FDR p-Value
Adjusted

Group A
Against
Controls

Group B
Against
Controls

Group A
Against
GroupB

ketoisoleucine 19 0.0042 0.0059 Day1↑, Day3↓,
Day7↓

ketovaline 17 0.0094 0.012 Day1↑, Day3↓,
Day7↓ Day1, A > B

creatine 64 8.5 × 10−12 2.0 × 10−11 Day3↑, Day7↑ Day3↑, Day7↑
alanine 49 8.5 × 10−9 1.8 × 10−8 Day1↓ Day1↓, Day3↓,

Day7↓
Day3, Day7, A
> B

glutamine 29 6.1 × 10−5 9.8 × 10−5 Day1↓ Day1↓,Day3↓
phenylalanine 120 1.2 × 10−23 8.5 × 10−23 Day1↑, Day3↑,

Day7↑
Day1↑, Day3↑,
Day7↑

Phe/Tyr ratio 85 3.3 × 10−16 1.4 × 10−15 Day1↑, Day3↑,
Day7↑

Day1↑, Day3↑,
Day7↑ Day1, A < B

lipoproteins 150 7.8 × 10−31 1.6 × 10−29 Day1↓, Day3↓,
Day7↓

Day1↓, Day3↓,
Day7↓

acetate 100. 2.1 × 10−19 1.1 × 10−18 Day1↓, Day3↓,
Day7↓

Day1↓, Day3↓,
Day7↓

lysine 79 6.6 × 10−15 2.0 × 10−14 Day1↑, Day3↑,
Day7↑ Day7↑

4. Discussion

4.1. Discriminatory Analyses

PCA and PLS-DA analyses are well-established tools when evaluating multidimen-
sional data. PCA analysis serves rather as a 2D visualisation of data sets indicating group
proximity. PLS-DA includes a discriminatory algorithm and may be used also to differenti-
ate among groups. PCA analysis of the patient data collected on Day 1 against controls
showed controls clustered together, whilst patients were scattered in 2D space. This sug-
gests the great data variability in patient samples, which was more or less confirmed
by PLS-DA. As PLS-DA is known to overfit the data [19], for biomarker discovery, we
employed a cross-validated RF algorithm. As an output, the ROC curve was created. For
the system of patients on Day 1 and controls, RF performed very well with an AUC of
0.995 for five variables with an out-of-bag error of 3/108. The variables Phe/Tyr ratio,
phenylalanine, 3-hydroxybutyrate, acetate, and glucose were of the highest importance.
The corresponding ROC curve is shown in Figure 2.

Very similar performance—almost ideal discrimination—was achieved for the sys-
tems of Group A on Day 1 against controls and Group B on Day 1 against controls (details
in Table 3). The five metabolites of the highest importance were identical to those be-
fore: phenylalanine, Phe/Tyr ratio, acetate, 3-hydroxybutyrate, glucose, permuted with
glutamine, and proline.

The possibility to discriminate between acute COVID-19 patients and healthy controls
has been proven in previous studies [7,10,11]. These studies covered another spectrum
of metabolites evaluated by different analytical tools as NMR spectroscopy. Here, we
also note that metabolites that were marked as the most important in the discrimination
algorithm may not be specific to COVID-19 disease, since as discussed in the next text, they
are generally related to inflammation, immune response, and energy metabolism.
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Figure 2. ROC curve with AUC values for systems of COVID-19 patients on Day 1 vs. controls,
determined by random forest algorithm with relative concentrations of metabolites in blood plasma
as input variables; analysis run in metaboanalyst [16].

It was of interest to see whether there are any metabolites in blood plasma that could
serve as potential predictors of disease progress/outcome. We ran RF discrimination for
binary systems of patients’ groups on collection days. Here the performance was weaker,
with AUC values of 0.67 on Day 1 and 0.78 on Day 3 for common, permuting variables:
Phe/Tyr ratio, alanine, lysine, glutamine, leucine, and phenylalanine. A further increase in
the number of variables did not improve the performance of the discrimination analysis.
For the data set of Group A versus Group B on Day 7, the system did not show any
discriminatory potential, with an AUC value of 0.503, in other words, the classification was
not relevant. Based on this, the biochemical changes observed were rather indicative, not
defining unambiguous biomarkers for patient outcome.

4.2. Metabolomic Changes

Patients hospitalised due to a severe course of COVID-19 showed a significantly
increased glucose level on Day 1. All patients were equally treated over the whole time
period with dexamethasone, which is known to impair glucose metabolism [21] via the
stimulation of gluconeogenesis from amino acids released from muscles, and even one
dose of 10 mg dexamethasone may lead to a temporarily increased blood glucose level [22].
The hyperglycaemia in COVID-19 patients treated with dexamethasone is presumably
caused by ‘triple insult’: dexamethasone-induced impaired glucose metabolism, COVID-
19-induced insulin resistance, and COVID-19 impaired insulin production [23]. Prolonged
uncontrolled hyperglycaemia, regardless of diabetes mellitus, seems to be important in the
pathogenesis of COVID-19 [24]. In our study, the hyperglycaemia normalised in Group
A, but not in patients with unfavourable outcome included in Group B (Figure 3). This
observed result is in line with general knowledge that hyperglycaemia is an unfavourable
state in many clinical conditions, i.a., in severe inflammation [25], and is one of the im-
portant risk factors of COVID-19 disease progression [26]. The plasma levels of glycolytic
products pyruvate and, eventually, lactate were not significantly changed in any group of
patients. The relative plasma level of alanine, a metabolite that contributes significantly to
liver gluconeogenesis, was decreased on Day 1 in both groups but normalised in patients
with a positive outcome on Days 3 and 7; however, it stayed decreased in Group B (figure
not shown).
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Figure 3. Relative concentrations of selected metabolites in blood plasma for patient Groups A and B
on Day 1, Day 3, and Day 7. Values are relativised to the median of controls set to 1.

In the blood plasma of COVID-19 patients, we observed a significantly increased level
of 3-hydroxybutyrate, a ketone bodies representative. Besides serving as an energy source
for the brain, heart, and skeletal muscle, ketone bodies play pivotal roles as signalling me-
diators, drivers of protein post-translational modification, and modulators of inflammation
and oxidative stress [27]. 3-hydroxybutyrate exerts a predominantly anti-inflammatory
response [28–30], but can also be pro-inflammatory [31]. A recent study on COVID-19
patients already showed dysbalance in ketone bodies [32]. In our study, the initially in-
creased plasma level of 3-hydroxybutyrate decreased over Day 3 and Day 7 in Group A,
but it stayed at an elevated level in Group B on the third and seventh days (Figure 3).
Interestingly, the glucose level in this patient group also remained high. As we did not
analyse the level of C peptide as a representative of the insulin level, we can hypothesise
that the proposed glucose resistance or insufficient glucose utilisation is compensated
by ketone bodies. The increase in the 3-hydroxybutyrate level in COVID-19 patients is
accompanied by a decreased amount of lipoprotein fraction in blood plasma in patients
suffering from COVID-19, containing up to one-third of triacylglycerides [18] as one of the
additional substrates for ketone body synthesis (boxplot not shown).

We observed a decreased citrate level in the blood plasma in COVID-19 patients,
suggesting alteration of the TCA cycle (Figure 3), similar to the results of a recent study by
Pang et al. [11]. Besides including α-ketoglutarate, an essential substrate for endogenous
glutamate/glutamine synthesis, there is evidence that TCA cycle intermediates also have
an epigenetic impact by influencing DNA and histone methylation, including immune
cells [33]. Further, the metabolite creatine, a part of muscle energy metabolism, was
significantly increased in the blood plasma of COVID-19 patients compared with controls
in both groups, rising with the time of hospitalisation (Figure 3). Patients forced to lie in
bed for a sustained period lack spontaneous movement utilising muscle energy, which is
probably the reason for the increase of plasma creatine.

BCAAs (branched chain amino acids), including leucine, isoleucine, and valine, share
a common pattern of extrahepatic metabolism, and their relative plasma concentrations
were represented similarly in both groups of patients. In Figure 3, we show only the
dynamics of leucine since isoleucine and valine behaved almost identically. As a repre-
sentative of ketoacids derived from BCAAs, we show only the course of ketoleucine, as
the dynamics was repeated for the other two ketoacids: ketovaline and ketoisoleucine.
Increased leucine in COVID-19 patients was reported by Dierckx et al. [34]. There is an
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established association between elevated circulating BCAAs and their deleterious effects,
as their increased concentration may promote oxidative stress and inflammation [35], hav-
ing also a neurological impact [36,37]. By monitoring dynamic changes for two different
patient subgroups, we observed that initially increased plasma levels of BCAAs in both
groups slowly decreased in Group A but not in Group B (Figure 3). Interestingly, the mean
values of BCAAs in Group B obviously follow the course of the plasma glucose levels. The
increase of BCAAs at time of impaired glycolysis and increased use of fatty acids were very
recently discussed in a comprehensive review by Holecek [38], showing the important role
of BCAAs in energy metabolism.

Taking the above discussed results together, severe inflammation induced by COVID-
19 caused changes in energy metabolism, where we observed increased blood glucose
that implies lowered glucose utilisation (the influence of dexamethasone treatment cannot
be omitted). In balance, the body, including immune cells, uses ketone bodies (observed
increased 3-hydroxybutyrate together with decreased triacylglycerides) as an energy source,
and, alternatively also amino acids released by accelerated protein catabolism (increased
levels of essential amino acids BCAAs). Interestingly, although all patients in both groups
received the dexamethasone treatment during the follow-up period, the above mentioned
changes normalised only in patients with a positive outcome; however, they persisted in
patients with a negative outcome (more than half of them had died at the time of writing).
This course was independent of the patients’ diet (Figure S2 in Supplement).

In acute inflammatory conditions, the demand on glutamine increases [39] which
may lead to its plasma decrease if the endogenous synthesis of glutamine does not fulfil
the requirements of the body [39]. Glutamine serves besides others as a fuel for immune
cells—lymphocytes, neutrophils, and macrophages [39–42]—and plays a crucial role in
cytokine production [42]. In our study, we noticed a decrease in the glutamine plasma
level in COVID-19 patients on Day 1, observed to a lower extent in Group A, which is
in accordance with another study where glutamine deficiency may have contributed to
disease severity [43]. The glutamine plasma level normalised in both groups, but this was
faster in Group A (Figure 4). On Day 7, both groups of patients showed plasma glutamine
levels very similar to the level in control subjects, where probably the balance between
glutamine production and utilisation had stabilised (Figure 4). Accelerated spontaneous
stabilisation of glutamine levels in patients with better outcome supports the results from
another study, where the administration of glutamine in the early period of infection
suggested a shortened hospital stay and decreased the need for ICU stay [40].

Another significant metabolic parameter associated with immune activation and
inflammation is the Phe/Tyr ratio [44,45]. Perturbations in phenylalanine and tyrosine
biosynthesis were recognised in SARS-CoV-2 patients by Barberis et al. [46]. In our study,
both groups showed initially increased plasma phenylalanine levels, as observed in another
study [34], and the level tended to decrease in Group A but not in Group B (Figure 4).
The plasma tyrosine level did not show any substantial change. The Phe/Tyr ratio was
calculated by dividing the relative concentrations of both metabolites. The obtained
value is only the relative ratio, but for comparison, it has the same informative value. The
Phe/Tyr ratio was increased in both groups, obviously higher in patients with unfavourable
outcome, where a course towards control levels was slowed down in Group B against Group
A (Figure 4). Positive relationships between the Phe/Tyr ratio and immune activation
markers have been described earlier in several papers [44,45]. It was suggested that
suppression of body inflammation can, to a certain extent, improve abnormalities in
Phe metabolism within associated neuropsychiatric symptoms [44], among which, e.g.,
depression and fatigue are some of the most recognised post-COVID-19 difficulties [47].
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Figure 4. Relative concentrations of selected metabolites related to immunity in blood plasma for
patient Groups A and B on Day 1, Day 3, and Day 7. Values are relativised to the median of controls
given a value of 1.

5. Conclusions

Metabolomic changes in blood plasma analysed by NMR in patients suffering COVID-
19 were strong enough to obtain almost ideal discrimination from controls, where the ROC
derived from random forest showed an AUC of 0.995 for the variables 3-hydroxybutyrate,
phenylalanine, acetate, glucose, and Phe/Tyr ratio. The inflammation by COVID-19
caused changes in the body’s energy metabolism, where we observed increased blood
glucose that implies lowered glucose utilisation, balanced with increased production of
3-hydroxybutyrate as an alternative energy source. Besides that, increased essential BCAAs
are a sign of accelerated protein catabolism, offering a further energy source. Interestingly,
although all COVID-19-positive patients received dexamethasone treatment during the
follow-up period, the above mentioned changes (increased glucose, 3-hydroxybutyrate, and
BCAAs levels in blood plasma) normalised only in patients with positive outcome by the
seventh day; however, they persisted for over one week in patients with negative outcome
(more than half of them had died at the time of writing). Further, patients suffering COVID-
19 showed decreased plasma glutamine that normalised faster in patients with a positive
outcome. With the length of hospital stay, plasma levels of creatine increased in patients in
both groups. Increased Phe/Tyr ratio, which is closely connected with neuropsychiatric
morbidities, often reported as post-COVID-19 symptoms, was more pronounced in patients
with a negative outcome. Based on our results, the ability of patients to normalise energy
metabolism seems to be one of the key factors determining the disease progression. This
trend was observed independently of patient diet, which differed with respect to diabetic
condition. This study documents evident differences in the course of the metabolomic
response to COVID-19 in relation to patient outcome. However, the described changes
may not be unique for COVID-19 since they reflect generalised immune response and
alterations in body energy metabolism as well. The presented results may serve towards
complementary personalised pharmacological and nutritional support in order to improve
patient outcomes in severe inflammatory conditions.
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10.3390/app11094231/s1, Figure S1: PCA (left) and PLD-DA analyses (right) of the system of
patients divided into subgroups Group A and Group B on Day 1 versus controls; algorithms were
fed relative concentrations of plasma metabolites, and analyses were run in metaboanalyst [16].
Figure S2. The relative changes in two metabolites closely related to energy metabolism—glucose
and 3-hydroxybutyrate—where both Groups A and B were divided into subgroups according to
patient diet (according to presence of diabetes) on Days 1, 3, and 7 after hospital arrival; not dia
= non-diabetic patients on a normal diet, dia = diabetic patients on a diabetic diet. Values were
relativized to median of controls set to 1.
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40. Cengiz, M.; Uysal, B.B.; Ikitimur, H.; Ozcan, E.; Islamoğlu, M.S.; Aktepe, E.; Yavuzer, H.; Yavuzer, S. Effect of oral l-Glutamine

supplementation on Covid-19 treatment. Clin. Nutr. Exp. 2020, 33, 24–31. [CrossRef]
41. De Oliveira, D.C.; Lima, F.D.S.; Sartori, T.; Santos, A.C.A.; Rogero, M.M.; Fock, R.A. Glutamine metabolism and its effects on

immune response: Molecular mechanism and gene expression. Nutrients 2016, 41, 14. [CrossRef]
42. Shah, A.M.; Wang, Z.; Ma, J. Glutamine Metabolism and Its Role in Immunity, a Comprehensive Review. Animals 2020, 10, 326.

[CrossRef] [PubMed]
43. Abdelaal, M.A.; Abdelrahman, D.; Cengiz, M.; Yavuzer, H.; Yavuzer, S.; Bien, I.; Bhuva, P.; Pham, J.V.; Siu, R.; Tang, M.; et al.

Actions of L-Glutamine vs. COVID-19 Suggest Additional Benefit in Sickle Cell Disease. Blood 2020, 136, 11–12. [CrossRef]
44. Murr, C.; Grammer, T.B.; Meinitzer, A.; Kleber, M.E.; März, W.; Fuchs, D. Immune Activation and Inflammation in Patients with

Cardiovascular Disease Are Associated with Higher Phenylalanine to Tyrosine Ratios: The Ludwigshafen Risk and Cardiovascular
Health Study. J. Amino Acids 2014, 2014, 1–6. [CrossRef]

45. Geisler, S.; Gostner, J.M.; Becker, K.; Ueberall, F.; Fuchs, D. Immune activation and inflammation increase the plasma
phenylalanine-to-tyrosine ratio. Pteridines 2013, 24, 27–31. [CrossRef]

46. Barberis, E.; Timo, S.; Amede, E.; Vanella, V.V.; Puricelli, C.; Cappellano, G.; Raineri, D.; Cittone, M.G.; Rizzi, E.; Pedrinelli, A.R.;
et al. Large-Scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int.
J. Mol. Sci. 2020, 21, 8623. [CrossRef]

47. Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of
COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [CrossRef]

19





applied  
sciences

Article

Effects of Workers Exposure to Nanoparticles Studied by NMR
Metabolomics
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Abstract: In this study, the effects of occupational exposure to nanoparticles (NPs) were studied by
NMR metabolomics. Exhaled breath condensate (EBC) and blood plasma samples were obtained
from a research nanoparticles-processing unit at a national research university. The samples were
taken from three groups of subjects: samples from workers exposed to nanoparticles collected
before and after shift, and from controls not exposed to NPs. Altogether, 60 1H NMR spectra
of exhaled breath condensate (EBC) samples and 60 1H NMR spectra of blood plasma samples
were analysed, 20 in each group. The metabolites identified together with binning data were
subjected to multivariate statistical analysis, which provided clear discrimination of the groups
studied. Statistically significant metabolites responsible for group separation served as a foundation
for analysis of impaired metabolic pathways. It was found that the acute effect of NPs exposure
is mainly reflected in the pathways related to the production of antioxidants and other protective
species, while the chronic effect is manifested mainly in the alteration of glutamine and glutamate
metabolism, and the purine metabolism pathway.

Keywords: NMR metabolomics; human plasma; exhaled breath condensate; nanoparticles exposure

1. Introduction

Nanoscience and nanotechnology have been developing rapidly in recent years, es-
pecially in new materials for electronics and optoelectronics fields, for energy technology,
and in technology fields related to medical products, particularly for diagnostics and
drugs delivery systems. The increased use of nanoparticles has raised concerns in many
areas including the environment, human public health, consumer safety, and occupational
safety and health [1,2]. Nanoparticles (NPs) are defined as particles with one or more
dimensions at the nanoscale, less than 100 nm. The physiological response to NPs and the
potential adverse effect on human health requires further research since contact with NPs
is becoming a common part of everyday life. In recent years, numerous toxicity studies
have assessed the hazard of NPs exposure [2–14]. In general, several health issues were
associated with NPs including allergy, injury of epithelial tissue, inflammation, and ox-
idative stress response [1–3,6,10,11,15,16]. The mechanisms of NPs’ biological interaction
may vary according to the chemical composition, size, shape, bulk chemical composition,
solubility, dose, etc. Moreover, NPs may show an increased toxicity when compared
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to larger particles of the same chemical composition that are little or even non-toxic by
themselves [2,10,16,17].

For humans, inhalation is probably the most common way of NPs access followed
by oral and dermal routes of exposure. Inhaled NPs can be deposited throughout the
human respiratory system including pharyngeal, nasal, transbronchial and alveolar regions,
depending on the particle size. The fractional deposition efficiency of particles below
100 nm is in the range of 30–70% in pulmonary regions, and the alveolar deposition
increases as the size of NPs decreases [2,16–18]. After deposition in the respiratory tract,
NPs may penetrate through membranes and thus enter the blood, pulmonary interstitium,
brain, liver, heart, spleen and possibly to the foetus in pregnant females. Since NPs can have
the same dimensions as some biomolecules, such as proteins and nucleic acids, adsorption
and subsequent disruption of their structure are also possible [2,3,10,11,19].

The existing toxicological methodology for NPs still requires further adjustment to
properly assess the risks, including the transport and distribution of NPs in the human
body and the mechanism of interaction at the subcellular and molecular level, and to
extrapolate the results from in vitro and animal models experiments, which may explain
the human health deterioration. Another challenge of this field is to find a fast, specific and
sensitive way to evaluate occupational risk. So far, the number of human studies is very
limited. As the main exposure to NPs takes place via inhalation and the respiratory system
is the primary afflicted organ system, collection and analysis of exhaled breath condensate
(EBC) is the most frequently used non-invasive technique for assessment of a subject’s
condition. EBC contains, besides water, a small proportion of inorganic ions, small organic
molecules, proteins and other macromolecules. Analysis of EBC enables the determination
of important biomarkers as a response to current physiological conditions [20].

Recently, two toxicological studies were performed on a cohort of 20 workers exposed
to NPs during their occupation [12,13]. A detailed analysis of lung function parameters
obtained by spirometry revealed a significant decline of forced expiratory volume (FEV1)
and its ratio to forced vital capacity (FVC) when compared to the pre-shift values or to the
control group. These data were accompanied by LC-MS analysis of inflammation markers
in EBC. The levels of pro-inflammatory markers LTB4, LTD4, LTE4, IL 9 and TNF were
found to be increased in the worker group relative to controls. On the other hand, the levels
of anti-inflammatory LXB4 and IL 10 were lower in the worker group than in controls.
Moreover, the levels of the TNF (tumour necrosis factor) found in the pre-shift samples were
positively correlated with the duration of employment in the NPs processing workshop [13].
LC-MS analysis was also targeted at markers of oxidative stress. The oxidation of lipids
was evaluated from the levels of malondialdehyde (MDA), 4-hydroxy-trans-hexenal (HHE),
4-hydroxy-trans-nonenal (HNE), C6–C13 aldehydes, and 8-isoprostane; oxidative damage
of nucleic acids from levels of 8-hydroxyguanosine (8-OHG), 8-hydroxy-2-deoxyguanosine
(8-OHdG), and 5-hydroxymethyl uracil (5-OHMeU); oxidation of proteins from levels of
o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr). A statistically
significant increase was observed for all markers of lipid oxidation in post-shift samples
relative to pre-shift ones, while the markers of oxidation of nucleic acids and proteins were
found already significantly elevated in the pre-shift EBC samples, and no further increase
was observed in the post-shift samples [12]. Both studies suggested lung impairment at
the molecular level induced by oxidative stress associated with NPs exposure. However,
the adverse effects were attributed rather to NPs in general than to specific chemical
composition of NPs.

In this study, the EBC and blood plasma samples of the same cohort were analysed
by 1H NMR spectroscopy and processed by means of multivariate statistical analysis. It
has already been shown that such NMR-based metabolomics can be advantageously used
in NPs toxicology studies [1,11,21–28] reflecting the molecular changes induced by NPs
inhalation. The samples studied here were examined as pre-shift and post-shift and were
compared to controls. The main goal of this study was to assess the acute and chronic effect
of NPs occupational exposure.
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2. Materials and Methods

2.1. Workplace and Process Description

Subjects of the study were recruited at a research and development unit at a national
research university, where a new thermoplastic or reactoplastic composite material was
being developed. In the workplace, three different operations are performed, specifically,
welding on metal surfaces, smelting of mixtures containing nanoadditives, and machining
of the finished nanocomposite. A chemical analysis of aerosol generated in the working
environment showed Fe, Mn and Si as the most abundant elements [12]. Aerosol mass
concentration ranged from 0.12 to 1.84 mg/m3 during nanocomposite machining processes.
Median particle number concentration ranged from 4.8 to 105 × 106 particles/m3 with the
particle size ranging from 25 to 860 nm [12].

2.2. Subject Recruitment and Sample Collection

The samples were collected from 20 nanocomposite workers (15 men, 5 women; age
29–63, average 42 years; 1 smoker, 19 non-smokers) and from 20 control subjects living
in the same district but working only in an office without any contact with NPs (13 men,
7 women; age 20–66, average 43 years; 2 smokers, 18 non-smokers).

The EBC and blood plasma samples from nanocomposite workers were collected
twice during the workday, pre-shift (i.e., before 2.5 h exposure to NPs) and post-shift (i.e.,
after NPs exposure). The examinations are referred to as pre-shift and post-shift. Beside
the NP exposed workplace, the rest of the 8-hour shift was spent in the office. The controls
were examined only once during the same time frame as the workers.

The pre-shift samples were used to study the subacute/chronic effect on the subjects
of exposures in previous days. Comparison of the pre-shift and post-shift samples was
intended to evaluate the acute effect of exposure during the shift.

All subjects were asked questions from a standardized questionnaire which summa-
rized information on personal and occupational history, medical treatments, dietary habits,
smoking habits, and alcohol intake (Table S1, Supplementary Materials). Participants un-
derwent a physical examination, followed by the collection of biological samples—exhaled
breath condensate and blood plasma.

This study has been approved by the Ethics Committee of the 1st Medical Faculty,
Charles University. All procedures were performed following the Helsinki Declaration and
the Collection Law of the Czech Republic. All participants signed an informed consent.

2.3. EBC Collection

EBC samples were collected using an Ecoscreen Turbo DECCS device (Jaeger, Hochberg,
Germany) equipped with a filter. All subjects breathed tidally for 15 min through a mouth-
piece connected to the condenser (−20 ◦C) while wearing a nose-clip. A minimum volume
of exhaled air of 120 L was monitored via the EcoVent device (Jaeger, Wurzburg, Germany).
The sample collection took approximately 15 min. All samples were immediately frozen
and stored at −80 ◦C.

2.4. Blood Plasma Collection

Venous blood (9 mL) from the subjects studied was collected using sterile blood
collection tubes with heparin as an anticoagulant. The plasma fractions were obtained by
centrifugation at 15,000×g for 10 min and immediately frozen and stored at −80 ◦C.

For more details on the subjects’ cohort, working environment, analysis of NPs com-
position and properties, see previous publications [12,13]. A follow-up of the researchers
in 2017 and 2018 confirmed the results from 2016 [29].

2.5. Sample Preparation

Samples were thawed at room temperature. For preparation of EBC and blood plasma
samples for 1H NMR analysis, the following operation procedures were determined.
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2.6. EBC Sample Preparation

An aliquot of 500 μL of EBC was mixed with 100 μL phosphate buffer (0.1 mol/L1,
pH = 7.4, 0.1 mol/L1 sodium salt of trimethylsilyl-2,2,3,3-d4-propionic acid (TSP),
38 mmol/L1 NaN3). Thus, sufficient sample volume for NMR analysis was obtained
and pH was adjusted to 7.7.

2.7. Blood Plasma Sample Preparation

Aliquots of 350 μL of blood plasma were centrifuged through an Amicon 3-kDa cut-off
filter (Merck, Germany) for 30 min at 14,000 rpm to isolate low-molecular metabolites.
Subsequently, the filtrate was mixed with 350 μL phosphate buffer in D2O (0.1 mol/L1,
pH = 7.4, 0.1 mol/L1 sodium salt of trimethylsilyl-2,2,3,3-d4-propionic acid (TSP),
38 mmol/L1 NaN3). Thus, sufficient sample volume for NMR analysis was obtained
and pH was adjusted to 7.4.

2.8. Acquisition

One dimensional proton NMR spectra for all EBC and plasma samples were acquired
using a Varian INOVA 500 MHz spectrometer (Varian Instruments Inc., Palo Alto, CA,
USA) operating at 499.87 MHz, equipped with Ultra Shim System II. A 5 mm probe with
inner 1H coil was used to maximize the sensitivity. Prior to the analysis, samples were
kept for at least 10 min inside the NMR probe for temperature equilibration (298.15 K).
The 1H NMR spectra of EBC and plasma samples were obtained using wet1D and tnnoesy
pulse sequence, respectively. Spectral width covered 8 kHz using 2.7 s acquisition time. A
relaxation delay of 4 s and 2 s was used for EBC and plasma samples, respectively. The final
spectrum resulted from an accumulation of 1000 scans. Representative 1H NMR spectra
can be found in Figures S1 and S2 in the Supplementary Materials.

2.9. Data Processing

The Fourier-transform spectra were manually corrected for phase and baseline distor-
tions using Chenomx NMR Suite 8.0 (NMR Suite program, Edmonton, Alberta, Canada [30]).
The experimental spectrum was referenced to TSP. The solvent signal residuum was sub-
tracted, TSP signal linewidth was determined, and pH was set.

Compound profiling was performed in the Chenomx Profiler by precise fitting of the
compounds from the Chenomx library to the experimental spectrum. In EBC samples,
15 metabolites were identified, while 58 metabolites were identified in blood plasma sam-
ples. Since only 15 metabolites were quantified in the EBC, binning was used for EBC
spectra to obtain more variables per sample. The binning was applied to each spectrum in
the range 0.7–8.6 ppm, except for the region containing residual water signal (4.1–5.6 ppm).
Standard bin size of 0.02 ppm was used, yielding 320 bins.

The concentration data from plasma samples were normalized to the total concen-
tration sum to reduce the effects of sample dilution prior to statistical analysis. Total
area normalization works well in biofluids, in which overall concentrations of metabolites
are almost constant among the samples, such as blood plasma or urine [31]. However,
normalization to the total area is not recommended in the case of EBC samples because of
large differences in dilution [32]. Hence, PQN normalization was used for the EBC samples
as a more robust type of normalization [33].

2.10. Statistical Analyses

All data analyses were performed using the open-source software R [34] and Metabo-
analyst 5.0 [35]. Multivariate data analyses were conducted on processed concentration
data and binned data separately. As a first step of statistical analysis, principal component
analysis (PCA) was used to provide preliminary insight on the data complexity, trends
of grouping or identifying outliers. Subsequently, orthogonal partial least squares dis-
criminant analysis (OPLS-DA) was used for sample classification. Multilevel partial least
squares analysis (mPLS) was used in the case of comparison of the pre-shift and post-shift
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samples [36]. All reported values of accuracy, sensitivity, and specificity were assessed by
means of 100 cycles of a Monte Carlo cross-validation scheme where 90% of the samples
were randomly selected at each iteration as a training set to build the model; the remaining
10% were subsequently tested on performance characteristics for the classification.

In order to identify the most influential and statistically significant compounds, the
Wilcoxon rank-sum test and its paired version, the Wilcoxon signed-rank test, were used.
Obtained p-values were adjusted for multiple comparisons using the Benjamini and
Hochberg correction [37]. The threshold of adjusted p-values was set to <0.05 for sta-
tistical significance. Fold change was performed following the general formula defined as
a logarithm of base 2 of a division of a median concentration of an individual compound
in one group by a median concentration of an individual compound in the other group.
The result is projected in logarithm to base 2 scale.

Altered metabolic pathways were detected using Metaboanalyst 5.0 using the metabo-
lite ID taken from the Human Metabolome Database. Metabolic pathway analysis was
performed on blood plasma metabolic profiles to reveal the biological impact of NPs inhala-
tion. A plot of affected pathways contained 43 nodes, each representing one pathway, with
colour and size coding corresponding to pathway significance and its impact, respectively.
The significance was generated from betweenness centrality and out-degree centrality
measurements. The pathway impact was generated by the summation of importance
measures of matched metabolites to all metabolites present within the pathway.

3. Results and Discussion

In this study, 1H NMR spectra of 60 exhaled breath condensate (EBC) samples
and 60 blood plasma samples were analysed. The samples originate from a research
nanoparticles-processing unit at a national research university. The samples were taken
from three groups of subjects: (i) samples from workers exposed to nanoparticles (NPs)
collected before shift (pre-shift, 20 EBC and 20 blood plasma) and (ii) after shift (post-shift,
20 EBC and 20 blood plasma), and (iii) a control group of subjects not exposed to NPs
(controls, 20 EBC and 20 blood plasma). The pre-shift and post-shift samples were col-
lected from the same individuals. Individual groups are defined in Materials and Methods.
A comparative study of the pre-shift and control samples was applied to reveal a suba-
cute/chronic effect of NPs exposure, while the comparison of the pre-shift and post-shift
samples should reflect the acute effect on the workers’ health.

3.1. Exhaled Breath Condensate

Since exhaled breath condensate is composed of 99.9% water, the other constituents are
rather diluted. For this reason, quantitative analysis of 1H NMR spectra using the Chenomx
reference library provided only 15 metabolites. Due to the limited number of metabolites
quantified, a meaningful multivariate statistical analysis cannot be performed on such
a dataset. However, univariate statistical analysis identified some of the metabolites as
statistically significant for discrimination of the groups studied. A Wilcoxon rank-sum test
showed that pre-shift and post-shift EBC samples are mainly characterized by significantly
elevated levels of acetoin and propionate, and decreased acetone, isopropanol and lactate
levels when compared to control samples (Table S2, Supplementary Materials). On the
other hand, an increase in dimethylamine and decrease in acetoin are the most significant
changes induced by NPs exposure as observed in comparison of pre-shift and post-shift
EBC samples (Figure 1).

Final group discrimination analysis was performed using binning data. Fingerprinting
of individual 1H NMR spectra provided 320 bins which subsequently served as an input
into multivariate statistical analysis. Principal component analysis (PCA) of all binned
spectra did not show any significantly outlying sample. It also indicated certain trends
in group separation; however, a clear discrimination was not achieved (Figure S3, Sup-
plementary Materials). Satisfactory group separation was achieved by orthogonal partial
least squares discriminant analysis (OPLS-DA), which was applied to the pre-shift and
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control group to reveal the chronic effect of NPs exposure and to the pre-shift/post-shift
and post-shift/control group to uncover the acute effect.

Figure 1. Fold change projections depicting differences in levels of individual metabolites observed
in EBC samples between individual groups.

An excellent separation between the pre-shift and control group was achieved using
three components. The model was characterized by 81.4% sensitivity, 94.8% specificity and
88.1% accuracy after Monte Carlo cross-validation (Figure 2a). Similarly, the separation of
post-shift and the control group was achieved using a seven-component model yielding
88.7% accuracy, 93.9% sensitivity and 83.5% specificity after Monte Carlo cross-validation
(Figure 2b).
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Figure 2. OPLS-DA of pre-shift subjects (yellow circles) and healthy controls (blue diamonds) using 320 bins from EBC
samples; Acc. 88.1%, Sen. 81.4%, Spe. 94.8% (a). OPLS-DA of post-shift subjects (red squares) and healthy controls (blue
diamonds) using 320 bins from EBC samples; Acc. 88.7%, Sen. 93.9%, Spe. 83.5% (b).

The bins contributing significantly to the group separation were identified from OPLS-
DA loadings provided by Metaboanalyst. These bins show increased EBC concentration
of acetoin, acetate and propionate in the pre-shift and post-shift samples when compared
to the controls. Mainly increased signal intensities of alcohols were found in controls.
These findings correspond well with the statistically significant compounds identified by
univariate statistics as discussed above (Figure 1).

The comparison of the pre-shift and post-shift groups should reveal the acute effect of
NPs exposure. The performed OPLS-DA provided a very good discrimination of the two
groups using six components with accuracy of 83.1%, sensitivity of 84.1% and specificity of
82.1% after Monte Carlo cross-validation (Figure 3a). As both groups consist of the same
20 subjects whose samples were collected before and after the shift, a pairwise multilevel
partial least squares (mPLS) analysis can be applied [36]. Compared to other PLS analyses,
mPLS does not focus on investigation of the studied groups as a whole, but rather observes
changes in each individual before and after the stimulus of the change and reflects the
changes occurring within the same subject. The mPLS analysis showed a satisfactory
discrimination of the two groups using three components with 82.0% accuracy after Monte
Carlo cross-validation (Figure 3b). Although the OPLS and the mPLS models show similar
accuracy, the mPLS model requires fewer components.

Figure 3. OPLS-DA of pre-shift (yellow circles) and post-shift subjects (red squares); Acc. 83.1%, Sen. 84.1%, Spe. 82.1% (a).
Multilevel partial least squares (mPLS) analysis of pre-shift (yellow circles) and post-shift subjects (red squares); Acc. 82% (b).
Both using 320 bins in each EBC sample.
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The bins responsible for the group separation correspond to acetoin, which was found
increased in the pre-shift group, and to lactate, formate and unsaturated chains of higher
carboxylic acids increased in the post-shift group. This is in agreement with the statistically
significant compounds identified by univariate statistics (Figure 1).

Acetoin is a commonly identified metabolite in EBC [38–40] as a product of the
detoxification process of acetaldehyde [41].

Since dimethylamine was found increased only in the post-shift group, it is probable
that it may be associated with the acute effect of NPs exposure.

The increased levels of short-chain fatty acids such as acetate, propionate and bu-
tyrate in NPs exposed groups in comparison to the control group could be attributed to
involvement in the regulation of several leukocyte functions such as eicosanoids and cy-
tokines/chemokines production [38]. Propionate is associated with lipid metabolism [39],
which was also found affected by chronic exposure to NPs [12]. Boxplots of selected
metabolites affected by NPs exposure are depicted in Figure 4.

Figure 4. Boxplots of selected metabolites affected by NPs exposure.

3.2. Analysis of Blood Plasma

Using the Chenomx reference library, 58 metabolites were identified and quantified in
each 1H NMR spectrum of blood plasma samples. The concentration data of all quantified
metabolites were used as an input for both multivariate and univariate statistical analyses
to reveal important features of each group. The homogeneity of the groups was tested by
principal component analysis (PCA) as an unsupervised statistical method. According to
PCA, no sample was found significantly outlying. Nevertheless, group discrimination was
not achieved (Figure S4, Supplementary Materials).

Subsequently, a supervised statistical method (OPLS-DA) was employed to pre-shift
and control samples. A very good separation between these two groups was achieved using
three components. The model was characterized by 88.2% sensitivity, 73.2% specificity and
80.7% accuracy after Monte Carlo cross-validation (Figure 5a).
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Figure 5. OPLS-DA of healthy controls (blue diamonds) and pre-shift subjects (yellow circles); Acc. 80.7%, Sen. 88.2%, Spe.
73.2% (a). OPLS-DA of post-shift subjects (red squares) and healthy controls (blue diamonds); Acc. 86.0%, Sen. 86.4%, Spe.
85.7% (b). Both using 58 normalized metabolites from blood plasma samples.

The nonparametric Wilcoxon rank-sum test was used to reveal statistically significant
compounds that should reflect the effect of chronic exposure to NPs. Only acetone was
found under the threshold for statistical significance (adjusted p-value ≤ 0.05). Four other
metabolites were close to this threshold, specifically glutamate, glutamine, cystine and
hypoxanthine (Table S3 and Figure S5 in Supplementary Materials). Levels of acetone,
glutamine and cystine were found increased in the control group, whereas glutamate and
hypoxanthine show higher levels in the pre-shift group.

OPLS-DA was also used for differentiation between the post-shift subjects and the
healthy controls. A very good separation of the two groups was obtained using a six-
component model with an accuracy of 86.0%, sensitivity of 86.4% and specificity of 85.7%
after Monte Carlo cross-validation (Figure 5b). The nonparametric Wilcoxon rank-sum
test was used to reveal statistically significant compounds (Table S3 and Figure S6 in
Supplementary Materials). Seven metabolites were found under the threshold for statistical
significance (adjusted p-value ≤ 0.05). Levels of propylene glycol, glutamate and pyruvate
were found increased in the post-shift group, whereas acetone, mannose, 2-oxoisocaproate
and O-acetylcarnitine showed higher levels in the control group.

Analogically, the acute effect of NPs exposure was also studied on plasma samples of
the pre- and post-shift groups using OPLS-DA (Figure 6a). This discrimination analysis
showed a certain potential to distinguish between the two groups with a model based on
eight components characterized by 75.4% accuracy, 74.0% sensitivity and 76.9% specificity.
Subsequently, mPLS was performed with a remarkable discrimination of the two groups
using five components with 89.0% accuracy after Monte Carlo cross-validation (Figure 6b).
In this case, mPLS reflects the intra-individual differences within each subject; therefore, it
provides better group separation than discrimination analysis based on OPLS.

Subsequent analysis by the nonparametric pairwise Wilcoxon signed-rank test re-
vealed 11 statistically significant compounds (Table S3 and Figure S7 in Supplementary
Materials). Only compounds with adjusted p-value ≤ 0.05 after Benjamini-Hochberg
correction were deemed statistically significant. Out of the 11 statistically significant com-
pounds, increased levels for eight metabolites were found in the pre-shift group, specifically
isobutyrate, 2-hydroxybutyrate, 2-oxoisocaproate, lactate, 3-hydroxybutyrate, isopropanol,
tryptophan and 3-methyl-2-oxovalerate. Levels of three statistically significant metabolites
were elevated in post-shift groups, namely propylene glycol, glycolate and myo-inositol.

The stress induced by NPs exposure is well documented by increased levels of certain
metabolites in post-shift samples when compared to the pre-shift samples or controls.
In particular, increased levels were found for propylene glycol, glycolate, myo-inositol,
pyruvate and glutamate (Figure 7). Propylene glycol is known to be predominantly
of exogenous origin as a part of various vitamins and other dietary supplements. The
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increased concentrations of propylene glycol in the post-shift group corresponds to the
increased consumption of such supportive products in the morning before the shift.

Figure 6. OPLS-DA of pre-shift (yellow circles) and post-shift subjects (red squares); Acc. 75.4%, Sen. 74.0%, Spe. 76.9% (a).
mPLS analysis of pre-shift (yellow circles) and post-shift subjects (red squares); Acc. 89% (b). Both using 58 normalized
metabolites from blood plasma samples.

Figure 7. Boxplots of metabolites with increased levels in the post-shift samples.

On the other hand, the NPs exposure also induced a depletion of other metabolites in
post-shift samples; namely of 3-methyl-2-oxovalerate, 2-oxoisocaproate, 2-hydroxybutyrate,
3-hydroxybutyrate, isobutyrate, isopropanol, mannose, O-acetylcarnitine and tryptophan
(Figure 8). All the changes found in the post-shift group can be attributed to the acute effect
of the NPs on workers’ health.

The long-term effect of the NPs on workers’ health can be deduced from the simulta-
neous changes in the pre- and post-shift group when compared to the control group. The
levels of acetone, glutamine and cystine were found to decrease, while the levels of lactate
and hypoxanthine increased in both groups when compared to the controls (Figure 9). The
changes in levels of lactate and hypoxanthine were found to be more pronounced in the
pre-shift group, which indicates involvement of these compounds in several metabolic
pathways and mixing of acute and chronic effects.
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Figure 8. Boxplots of metabolites showing a depletion in the post-shift samples.

Figure 9. Boxplots of metabolites showing simultaneous changes in the pre- and post-shift group in comparison to the controls.
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Metabolic pathway analysis was performed in MetaboAnalyst to assess involvement
of the statistically significant metabolites in the individual metabolic pathways. The
alterations between individual groups found by the pathway analysis are depicted in
Figure S8 (Supplementary Materials) and the most affected pathways are summarized in
Table S4 (Supplementary Materials).

The increased levels of lactate found in the pre-shift group can be partially associated
with the metabolism of propylene glycol, which is contained in the food supplements
administrated before the shift, as mentioned above. On the other hand, lactate is also
involved in several other metabolic pathways, including pyruvate metabolism, according
to pathway analysis (Figure S6 in Supplementary Materials) or glucose-alanine metabolism,
according to the literature [42]. These pathways play an important role as energy pathways
where lactate is usually produced from pyruvate. The highest concentrations of pyruvate
were found in the post-shift group, indicating that the energy pathways were affected
and the transformation between lactate and pyruvate is impacted by the NPs exposure.
Increased levels of lactate have been observed in several studies on the impact of NPs
exposure to rats [21,43,44]. Additionally, decreased levels of mannose, which can serve as
an additional energy source, were observed in the post-shift group [45].

Elevated levels of lactate can lead to metabolic acidosis, similarly to increased levels
of glycolate, which were found in the post-shift group. The formation of acid metabolites
can induce inhibition of other metabolic pathways [46]. Glycolate is mainly involved in
glyoxylate metabolism where it is oxidized to glyoxylate, which is further transformed
into glycine [47]. Glyoxylate can be also transformed into oxalate, which is then caught
and secreted by the renal tubules. Excessive concentrations of oxalate cause urolithiasis
and nephrocalcinosis [48]. The excessive oxidation of glyoxylate to oxalate by lactate
dehydrogenase is prevented by reduction of cytosolic and mitochondrial glyoxylate to
glycolate by cytosolic glyoxylate reductase [48].

The post-shift group also manifested increased concentrations of myo-inositol. This
metabolite has an important osmoregulatory role and is involved in the running of a wide
range of cell functions, including cell growth and survival [49,50], which could explain why
myo-inositol is increased in the acute state. Several studies have reported alterations in the
myo-inositol levels after exposure to NPs in rats [43] or mouse fibroblast cells L929 [51].

The decreased tryptophan concentration in the post-shift group could be explained
by its transformation to kynurenic acid via the kynurenine pathway (pathway tryptophan
metabolism in Figure S8c in Supplementary Materials). Kynurenic acid has a protective
effect against oxidative stress and lung inflammation induced by exposure to NPs [52].
Furthermore, the kynurenine pathway was previously associated with the elevated levels
of cytokines [53], which is consistent with the results of our previous study [12,13]. A
decreased concentration of tryptophan was also observed in rat blood serum after exposure
to TiO2 NPs [52], which is in agreement with the findings in workers exposed to nanoTiO2,
and similar oxidative stress effects [54,55].

The levels of several metabolites associated with the synthesis of glutathione were
found altered, namely cystine, glutamate and 2-hydroxybutyrate. Glutathione as a major
antioxidant is synthesized from cysteine, glutamate and glycine. Cysteine is transformed
to glutathione in response to oxidative stress. This is reflected in decreased levels of
cystine, an oxidized dimer form of cysteine. The availability of cysteine was reported as the
rate-limiting step in the glutathione synthesis where cysteine is supplied via the cystine-
glutamate antiporter system [49,56]. Elevated levels of glutamate in the pre- and post-shift
group indicate that glutamate is exchanged for cystine in the antiporter system [49]. The
elevated levels of glutamate also affect several other metabolic pathways, such as glutamine
and glutamate metabolism, alanine, aspartate and glutamate metabolism, arginine and
proline metabolism, histidine metabolism and butanoate metabolism, as is shown in the
metabolic pathway analysis via MetaboAnalyst (Figure S8a,b in Supplementary Materials).
Alterations in glutamate levels have also been observed in several studies focusing on NPs’
impact on rats [26,43,51].
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The utilization of glutamate in glutathione biosynthesis leads to higher demands on
glutamate and increases glutamine transformation into glutamate via the glutamine and
glutamate metabolism pathway. This is documented by decreased levels of glutamine in
both pre- and post-shift groups compared to the control group. Together with glutamate,
glutamine is also involved in the pathway of alanine, aspartate and glutamate metabolism,
which was also found altered according to metabolic pathway analysis (Figure S8a,b in
Supplementary Materials). Glutamine and glutamate were also found affected in the study
of Kitchin et al. [57], in which the effect of TiO2 and CeO2 nanomaterials on human liver
HepG2 cells was examined. A significant decrease in glutamine was observed, similar
to observations from our study. Nevertheless, a decrease in glutamate was observed, on
the contrary to our study, indicating that glutamate was involved at least partially in a
different way.

2-Hydroxybutyrate is a reduction product of 2-ketobutyrate, which is produced dur-
ing the transformation of cystathionine to cysteine within the methionine degradation
pathway [58]. Since the concentration of 2-hydroxybutyrate is decreased in the acute
state, 2-ketobutyrate is probably transformed into other metabolites, including propionyl-
CoA [59], which is also associated with degradation of branched-chain amino acids, as
discussed below.

The concentrations of two ketone bodies metabolites, 3-hydroxybutyrate and ace-
tone, were found altered. Both compounds are closely connected to acetoacetate, an-
other ketone body, which was, however, found unaltered. Nevertheless, decreased con-
centrations of 3-hydroxybutyrate and acetone after exposure to NPs suggest that the
metabolic pathway of ketone body metabolism is affected. This was also revealed in the
metabolic pathway analysis via MetaboAnalyst (Figure S8b in Supplementary Materials).
3-Hydroxybutyrate is also involved in butanoate metabolism, and it is also a degradation
product of branched-chain amino acids, mainly of leucine [60]. The decreased concen-
trations of 3-hydroxybutyrate and acetone after NPs exposure are in contrast with other
studies, which reported elevated levels of 3-hydroxybutyrate [21,23,61]. However, these
studies were performed on rats exposed to high NPs doses. 3-Hydroxybutyrate is also an
end product of β-oxidation of fatty acids [21]. The impairment of this metabolic pathway
is also reflected in a decreased concentration of O-acetylcarnitine. This molecule serves as a
carrier of acetyl from acetyl-CoA derived from fatty acids to mitochondria [62], thus taking
part in energy metabolism. Moreover, decreased levels of O-acetylcarnitine can also be as-
sociated with oxidative stress. Similarly to this study, decreased levels of O-acetylcarnitine
were also observed in zebrafish and mice embryos after Fe2O3 NPs exposure [62]. Accord-
ingly, workers exposed to NPs during iron oxide pigment production showed elevated
markers of lipid, nucleic acid, and protein oxidation in their EBC [63].

Decreased levels of 3-methyl-2-oxovalerate and 2-oxoisocaproate (4-methyl-2-oxoval
erate) were found in the post-shift group. These compounds are produced as direct
metabolites of isoleucine and leucine during their degradation by branched-chain amino
acid aminotransferase [64]. Since the concentrations of leucine and isoleucine were found
almost unaffected, leucine and isoleucine are involved in other pathways or processes,
and the direct degradation pathway of these amino acids is inhibited. Isobutyrate is
another metabolite associated with the metabolism of branched-chain amino acids, mainly
of valine [65]. The decreased concentration of isobutyrate in the post-shift group also
indicates that branched-chain amino acids’ degradation is inhibited in the acute state.
However, this inhibition was not manifested in the metabolic pathway analysis performed
in MetaboAnalyst.

Hypoxanthine is an important part of purine metabolism [66], thus the elevated
levels of hypoxanthine found mainly in pre-shift plasma samples indicate alterations
in this metabolism. Such an observation is complementary to the findings of a previ-
ous study performed on the same cohort, where the markers of nucleic acids’ oxidation
(8-hydroxyguanosine and 8-hydroxy-2-deoxyguanosine) were identified in pre-shift EBC
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samples. Similar markers were also found in other toxicological studies of occupational
exposure to different NPs, indicating a general effect of chronic NPs exposure [12,54,55].

The metabolic pathway analysis performed mainly indicates that the induced oxida-
tive stress activates anti-oxidative pathways, and antioxidants, such as glutathione, are
extensively consumed. Higher demands in the supplement of the consumed antioxidants
can be observed in decreasing levels of their intermediates, in particular glutamine and
cystine. The decreased tryptophan levels may be related to the production of its metabo-
lites like kynurenic acid, which have protective effects against oxidative stress and lung
inflammation. Moreover, alterations of several other metabolic pathways were observed.

The changes induced in metabolic profiles by NPs exposure were associated predomi-
nantly to the organism’s response to oxidative stress. Similar response has been observed
in studies dedicated to evaluation of the oxidative stress induced by smoking. Despite the
number of smoking subjects being rather small in the presented study, statistical analysis
was also performed after exclusion of the smoking subjects. One subject was excluded
from the pre-shift/post-shift group and two subjects from the control group. The obtained
results were in correspondence with those found in the original study and only minor
changes were observed. Adjusted p-values of several metabolites levels previously found
as statically significant raised slightly above the designated threshold. On the other hand,
the adjusted p-value of hypoxanthine in blood plasma descended below the threshold in
the comparison of the pre-shift and control groups (Tables S5 and S6 in Supplementary
Materials). It is worth noting that the changes found in the results of univariate statistical
analysis can be partially attributed to the decreased number of samples. The group separa-
tion provided by multivariate statistical analyses remained unaffected (Figures S9–S12 in
Supplementary Materials). Major limitation of this study is the small number of subjects
reflecting the actual size of the workplace, as all available workers were included.

4. Conclusions

The EBC and blood plasma samples of a cohort of 20 workers exposed to NPs during
their occupation were analysed by 1H NMR spectroscopy and processed by statistical
analysis. Altogether, 15 metabolites were identified in EBC samples, while the analysis
of plasma samples provided 58 metabolites. Subsequent multivariate statistical analyses
performed on binning data from EBC and concentrations of 58 metabolites from plasma
samples enabled clear discrimination between the pre-shift, post-shift and control groups.
The univariate statistical analysis revealed statistically significant metabolites. Although
plasma and EBC samples each showed changes in levels of different metabolites, the
metabolic pathway analysis indicated, in both cases, mainly a reaction of the organism to
oxidative stress and subsequent efforts for its protection.

The comparison of the pre-shift and post-shift group accompanied by comparison of
the post-shift and control group provided insight into the acute effect of the NPs exposure.
Altered levels of lactate, pyruvate, 3-hydroxybutyrate, mannose and O-acetylcarnithine in-
dicated an energy balance impairment. The altered levels of glutamate, cystine, tryptophan,
acetate, propionate and butyrate were associated to the pathways related to the production
of antioxidants, mainly glutathione, and other protective species. The comparison of the
pre-shift and control group revealed that the chronic effect of the NPs exposure manifested
mainly in an alteration in glutamine and glutamate metabolism. The increased levels of
hypoxanthine indicated an impairment of the purine metabolism pathway.

The presented results correspond well with similar studies performed on cohorts
exposed to different types of NPs, indicating that the observed adverse effects can be
attributed to nanoparticles in general, rather than to their chemical nature.

This work is one of the few dealing with the occupational exposure to NPs studied by
the means of NMR metabolomics. Similar response to NPs exposure was observed for both
types of samples indicating that either biofluid can be used for evaluation of adverse effects
of nanoparticles inhalation. Potentially, blood derivatives could serve as an alternative to
commonly used EBC samples.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11146601/s1, Table S1: Basic characteristics of the samples; Figure S1: 1H NMR spectrum
of a representative EBC sample; Figure S2: 1H NMR spectrum of a representative blood plasma
sample; Table S2: Wilcoxon test for EBC samples; Figure S3: Principal component analysis for EBC
samples; Figure S4: Principal component analysis for plasma samples; Table S3: Wilcoxon test for
blood plasma samples; Figure S5: Fold change projection of pre-shift subjects and healthy controls;
Figure S6: Fold change projection of post-shift subjects and healthy controls; Figure S7: Fold change
projection of pre-shift and post-shift subjects; Figure S8: Metabolic pathway analysis; Table S4:
Overview of the most influenced metabolic pathways; Table S5: Wilcoxon test for EBC samples after
exclusion of smoking subjects; Table S6: Wilcoxon test for blood plasma samples after exclusion of
smoking subjects; Figures S9 and S10: Multivariate statistical analysis of EBC samples after exclusion
of smoking subjects; Figures S11 and S12: Multivariate statistical analysis of plasma samples after
exclusion of smoking subjects.
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Abstract: Background: Colorectal cancer (CRC) is the fourth most commonly diagnosed and third
most deadly cancer worldwide. Surgery is the main treatment option for early disease; however, a
relevant proportion of CRC patients relapse. Here, variations among preoperative and postoperative
serum metabolomic fingerprint of CRC patients were studied, and possible associations between
metabolic variations and cancer relapse were explored. Methods: A total of 41 patients with stage
I–III CRC, planned for radical resection, were enrolled. Serum samples, collected preoperatively
(t0) and 4–6 weeks after surgery before the start of any treatment (t1), were analyzed via NMR
spectroscopy. NMR data were analyzed using multivariate and univariate statistical approaches.
Results: Serum metabolomic fingerprints show differential clustering between t0 and t1 (82–85%
accuracy). Pyruvate, HDL-related parameters, acetone, and 3-hydroxybutyrate appear to be the
major players in this discrimination. Eight out of the 41 CRC patients enrolled developed cancer
relapse. Postoperative, relapsed patients show an increase of pyruvate and HDL-related parameters,
and a decrease of Apo-A1 Apo-B100 ratio and VLDL-related parameters. Conclusions: Surgery
significantly alters the metabolomic fingerprint of CRC patients. Some metabolic changes seem to be
associated with the development of cancer relapse. These data, if validated in a larger cohort, open
new possibilities for risk stratification in patients with early-stage CRC.

Keywords: metabolomics; colorectal cancer; nuclear magnetic resonance; surgery; relapse

1. Introduction

Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the sec-
ond leading cause of cancer death worldwide [1–3]. A total of 80% of colon cancers are

Appl. Sci. 2021, 11, 11120. https://doi.org/10.3390/app112311120 https://www.mdpi.com/journal/applsci39



Appl. Sci. 2021, 11, 11120

diagnosed at early stage (stage 1 to 3), and surgery is the primary treatment option with
curative intent for this type of disease [4]. Unfortunately, about 35% of these patients
develop cancer relapse, which, in the majority of cases, occurs within the first 2–3 years
after surgery [5,6]. TNM staging at diagnosis, based on depth of tumor wall invasion
(T), lymph node involvement (N), and presence of distant metastasis (M), is currently the
principal instrument available to predict risk of relapse, and thus to identify patients who
may have potential benefits from adjuvant treatment [7,8].

Colorectal cancer is a heterogeneous disease, even within the same pathological stage,
with different characteristics of clinical onset and different individual response to treatment.
Moreover, patients with stage II and III CRC are shown to have different prognoses,
particularly those who receive adjuvant chemotherapy, with 5-year overall survival (OS)
ranging between 50% and 90% [9].

Adjuvant chemotherapy is strongly indicated in stage III disease, which is associated
with a reduction of the relative risk of death of 33%, and an absolute survival benefit of
5–10% [10]. In stage III, the use of oxaliplatin in addition to fluoropyrimidines yields a
further significant advantage of about 5% in terms of disease-free survival (DFS) and OS.
Conversely, the therapeutic indication in patients with stage II CRC is controversial, as
treatment with 5-Fluorouracil has an absolute benefit of 3–4% [11,12]. In patients with
clinicopathologically high-risk stage II disease [13], decision-making around adjuvant
chemotherapy treatment needs to be carefully evaluated and discussed, considering also
recurrence risk factors such as baseline carcinoembryonic antigen and vascular invasion [7].
There is no evidence to support the use of adjuvant chemotherapy in stage I disease. Con-
sidering all the above mentioned data, identifying patients who are most likely to benefit
from adjuvant chemotherapy and preventing the other patients from futile treatments and
unnecessary exposure to toxicity is crucial in stage II disease.

Early detection of disease relapse is extremely relevant in CRC, as radical surgical
intervention in patients with oligometastatic CRC can achieve a proven survival benefit.
Therefore, early detection of relapse could potentially increase cure rates. Postoperative
surveillance with clinical, radiological, and markers examination is often unable to identify
early metastatic disease and/or postoperative minimal residual disease. Based on these
considerations, improved risk stratification tools are required to reduce the number of
patients treated unnecessarily.

Metabolomics is defined as the comprehensive measurement of the ensemble of
metabolites present in a biological specimen, the so-called metabolome [14]. Metabolites
represent, at the same time, the downstream output of the genome, transcriptome, and pro-
teome, as well as the upstream input from various exogenous factors such as environment,
lifestyle, diet, and drug administration [15]. In contrast to genomics, which indicates what
might happen, metabolomic profiling/phenotyping captures what is actually happening
in the body, and for this reason, in the last few years, metabolomics has been extensively
applied in biomedical research [16–22].

Several relevant efforts to improve risk stratification in CRC have been made in the
past years, considering mismatch repair (MMR) status, as well as BRAF and KRAS muta-
tions, and the presence of tumor-derived circulating DNA [23,24]. Metabolomics has also
emerged as a technique capable of contributing significantly in this setting [25–31]. Some
of us have shown, in a cohort of elderly patients, that nuclear magnetic resonance (NMR)-
based metabolomics can discriminate between early and metastatic CRC. This approach
may be a useful tool to build a prognostic model capable of assessing the likelihood of
cancer relapse, based on the degree to which a serum fingerprint derived from a patient
with early disease resembles that of a metastatic patient [13].

The study presented here explores the variations among preoperative and postoper-
ative metabolomic serum fingerprints of CRC patients, obtained via NMR spectroscopy
(Figure 1); moreover, for the first time, to the best of our knowledge, possible associations
between pre/post-surgery metabolic variations and cancer relapse are examined.
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Figure 1. Study design.

2. Materials and Methods

2.1. Study Cohort

From June 2017 to August 2018, we prospectively enrolled 41 patients with histo-
logically diagnosed CRC, who were treated as per standard clinical practice at the Prato
Hospital. All patients enrolled met the following inclusion criteria: (i) female or male pa-
tients with radically operable heteroplasia of the colon/rectum (stage I, II, III); (ii) Eastern
Cooperative Oncology Group Scale of Performance Status (ECOG PS) 0–1; (iii) patients of
age ≥ 18 years. For all patients enrolled, the following data were collected: (i) demographic
data; (ii) clinical and histological characterization of the tumor; (iii) any other clinical
information useful for the study (i.e., comorbidities, drug treatments).

All patients signed informed consent before entry into the study. The present study
complies with the 1964 Declaration of Helsinki and its later amendments and received
the approval by the local ethics committee (Comitato Etico Regione Toscana—Area Vasta
Centro, study number: 10208_bio).

2.2. Samples Collection

Serum samples were collected and stored following standard operating procedures
validated at international level [32]. Two × 10 mL of overnight fasting peripheral blood
were collected for each patient at the two timepoints (t0: before the radical tumor resection;
t1: 4–6 weeks after surgery before the start of any adjuvant treatment) in serum vacutainer
and processed within one hour from phlebotomy. After clot formation at room temper-
ature, tubes were centrifuged at 1600 RCF for 10 min at 4 ◦C. Then, serum aliquots of
1 mL (labelled with an anonymized code) were immediately frozen at −80 ◦C, pending
NMR analysis.

2.3. NMR Analysis
2.3.1. Acquisition of NMR Data

All NMR spectra were acquired using a Bruker 600 MHz spectrometer (Bruker BioSpin,
Rheinstetten, Germany) operating at 600.13 MHz proton Larmor frequency, equipped with
an automatic refrigerated (6 ◦C) sample changer (SampleJet, Bruker BioSpin). Temperature
stabilization (approximately 0.1 K at the sample) was obtained using a BTO 2000 thermo-
couple. Before NMR acquisition, to equilibrate temperature at 310 K, each sample was
maintained inside the NMR probe head for at least 300 s. The spectrometer was calibrated
daily, before any measurement, following strict standard operation procedures [33] to
ensure high spectral quality and reproducibility.

Serum samples contain low molecular weight metabolites as well as high molecular
weight macromolecules; for this reason, three different pulse sequences were used to en-
able the selective detection of the different serum molecular components: a 1D spin echo
Carr–Purcell–Meiboom–Gill sequence (CPMG) was used to selectively detect signals of
low molecular weight metabolites, and a 1D diffusion-edited pulse sequence was used to
selectively acquire the signals of high molecular weight components (i.e., lipids, lipopro-
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teins, proteins). Moreover, a 1D nuclear Overhauser effect spectroscopy pulse sequence
(NOESY) was applied to detect signals of all molecules present in concentrations above the
NMR detection limit.

A detailed description of sample preparation procedures, instrument configuration,
and NMR parameters setting can be retrieved from our previous publication [16].

2.3.2. Spectral Processing

Before applying Fourier transform, free induction decays were multiplied by an
exponential function equivalent to a 0.3 Hz line-broadening factor. Using automated
routine of TopSpin 3.6 (Bruker BioSpin), Fourier-transformed spectra were corrected for
phase and baseline distortions, and NOESY and CPMG spectra were also calibrated at the
anomeric glucose 1H doublet at δ 5.24 ppm. Each 1D spectrum in the range between 0.2 and
10.0 ppm was segmented into chemical shift bins of 0.02 ppm, and the corresponding
spectral areas were integrated using AssureNMR software (Bruker BioSpin). The spectral
region containing residual water signal (δ 5.12–4.38 ppm) was removed, and the dimension
of the system was reduced to 453 bins.

2.4. Statistical Analysis

All data analysis was executed in the “R” statistical environment [34]. Multivariate
analysis was performed on binned spectra without any a priori knowledge of the metabo-
lites present. Multilevel partial least square analysis (mPLS) [35,36] was performed to
obtain data reduction (R script developed in-house). Support vector machine [37] applied
on the first nine mPLS components was used for classification purposes. Models were
evaluated by means of 100 cycles of a Monte Carlo cross-validation scheme (in-house-
developed R script). In brief, 90% of the pairs of data, selected at random at each iteration,
were used as a training set to build the model. Then, the remaining 10% was tested,
and sensitivity, specificity, and accuracy (calculated according to the standard definitions)
were assessed.

Univariate analysis was conducted directly on the spectral regions associated with the
metabolites/lipoproteins present in all serum samples at concentrations above the detection
limit (>1 μM). Metabolites and lipoprotein-related parameters were identified and quan-
tified using the Bruker IVDr quantification platform [38]. Metabolites whose levels were
lower than the limit of quantification (LOQ) were imputed with half the LOQ (Table S1).
Nonparametric Wilcoxon signed-rank test was used to infer intraindividual differences
between the two timepoints. The p-values were adjusted for multiple testing using the
false discovery rate (FDR) procedure with Benjamini–Hochberg [39] correction at α = 0.05.
Wilcoxon rank-sum test was used to infer differences between metabolites/lipoproteins of
free-from-disease and relapsed CRC patients. The p-values were not adjusted for multiple
testing because the group of relapse patients is small, and therefore the correction would
be too severe, increasing the risk of missing promising biomarkers. However, we are aware
that this could increase the risk of a type I error.

Univariate analysis on clinical data was performed using the Fisher test for categorical
variables and the ANOVA test for continuous variables. Polyserial correlations between
ordinal clinical variables (pT, N, grade, stage, ECOG PS) and metabolites were calculated
using the function “polyserial” (R package “polycor”). Point-biserial correlations between
dichotomous clinical variables (tumor localization, sex) and metabolites were calculated
using the function “biserial.cor” (R package “ltm”).

3. Results

3.1. Characteristics of Enrolled Patients

Forty-one patients were enrolled in the study (21 female and 20 male). The median
age was 73 years (Table 1).
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Table 1. Descriptive statistics of enrolled CC patients at the time of analysis.

Whole Sample
(N = 41)

Stratified by
Progression Status

Stratified by
Chemotherapy Treatment

Not
Relapsed
(N = 33)

Relapsed
(N = 8)

p-Value
Capecitabine

(N = 9)
XELOX
(N = 10)

No CT
(N = 22)

p-Value

Age at study
entry

Median (min;
max) 73 (51;92) 71 (51;92) 78 (68;86) 0.032 77 (68;86) 65 (51;72) 78 (54;92) 0.001

Sex
F 21 (51%) 18 (55%) 3 (38%)

0.454
2 (22%) 7 (70%) 12 (55%)

0.109
M 20 (49%) 15 (45%) 5 (62%) 7 (78%) 3 (30%) 10 (45%)

ECOG PS

PS 0 29 (71%) 23 (70%) 6 (75%)

1

7 (78%) 10 (100%) 12 (55%)

0.102PS 1 8 (20%) 7 (21%) 1 (12%) 1 (11%) 0 (0%) 7 (32%)

PS 2 4 (10%) 3 (9%) 1 (12%) 1 (11%) 0 (0%) 3 (14%)

pT

pT1 6 (15%) 6 (18%) 0 (0%)

0.086

0 (0%) 1 (10%) 5 (23%)

0.477
pT2 8 (20%) 8 (24%) 0 (0%) 1 (11%) 1 (10%) 6 (27%)

pT3 23 (56%) 17 (52%) 6 (75%) 7 (78%) 7 (70%) 9 (41%)

pT4 4 (10%) 2 (6%) 2 (25%) 1 (11%) 1 (10%) 2 (9%)

N
N0 24 (59%) 23 (70%) 1 (12%)

0.005
3 (33%) 3 (30%) 18 (82%)

0.005
N+ 17 (41%) 10 (30%) 7 (88%) 6 (67%) 7 (70%) 4 (18%)

Stage risk

Stage I 11 (27%) 11 (33%) 0 (0%)

0.035

0 (0%) 0 (0%) 11 (50%)

0.002
Stage II Low risk 2 (5%) 2 (6%) 0 (0%) 0 (0%) 0 (0%) 2 (9%)

Stage II High risk 11 (27%) 10 (30%) 1 (12%) 3 (33%) 3 (30%) 5 (23%)

Stage III 17 (41%) 10 (30%) 7 (88%) 6 (67%) 7 (70%) 4 (18%)

Grading

G1 2 (5%) 1 (3%) 1 (12%)

0.168

1 (11%) 1 (10%) 0 (0%)

0.205

G2 19 (48%) 17 (53%) 2 (25%) 2 (22%) 4 (40%) 13 (62%)

G3 17 (42%) 13 (41%) 4 (50%) 5 (56%) 5 (50%) 7 (33%)

G4 2 (5%) 1 (3%) 1 (12%) 1 (11%) 0 (0%) 1 (5%)

NA 1 1 0 0 0 1

Localization
Left-sided 13 (32%) 12 (36%) 1 (12%)

0.398
3 (33%) 6 (60%) 4 (18%)

0.07
Right-sided 28 (68%) 21 (64%) 7 (88%) 6 (67%) 4 (40%) 18 (82%)

Comorbidities

No com. 13 (32%) 8 (24%) 5 (62%) 4 (44%) 3 (30%) 6 (27%)

0.519No vascular com. 8 (20%) 8 (24%) 0 (0%) 0.111 0 (0%) 3 (30%) 5 (23%)

Vascular com. 20 (49%) 17 (52%) 3 (38%) 5 (56%) 4 (40%) 11 (50%)

MSI

Instable 1 (11%) 1 (14%) 0 (0%)

1

0 (0%) 0 (0%) 1 (33%)

0.278
MSI 1 (11%) 1 (14%) 0 (0%) 0 (0%) 0 (0%) 1 (33%)

Stable 7 (78%) 5 (71%) 2 (100%) 2 (100%) 4 (100%) 1 (33%)

NA 32 26 6 7 6 19

CDX2
Positive 1 (100%) 0 (0%) 1 (100%)

-
1 (100%) 0 (0%) 0 (0%)

-
NA 40 33 7 8 10 22

KRAS

Mutated 5 (29%) 1 (11%) 4 (50%)

0.131

3 (50%) 0 (0%) 2 (67%)

0.042WT 12 (71%) 8 (89%) 4 (50%) 3 (50%) 8 (100%) 1 (33%)

NA 24 24 0 3 2 19

NRAS
WT 13 (100%) 8 (100%) 5 (100%)

-
4 (100%) 8 (100%) 1 (100%)

-
NA 28 25 3 5 2 21

BRAF

Mutated 4 (24%) 3 (33%) 1 (12%)

0.576

1 (17%) 3 (38%) 0 (0%)

0.461WT 13 (76%) 6 (67%) 7 (88%) 5 (83%) 5 (62%) 3 (100%)

NA 24 24 0 3 2 19

ECOG PS: Eastern Cooperative Oncology Group Performance Status; pT: primary tumor size; N: regional lymph nodes; MSI: microsatel-
lite instability.

Most of the enrolled patients had a good Eastern Cooperative Oncology Group (ECOG)
performance status (PS), with 29 patients (71%) having a PS 0. However, over one half of
the patients (n = 38; 69%) had comorbidity, of which 20 patients had vascular comorbidity.

By inclusion criteria, all patients have early-stage disease: 11 patients (27%) with stage
I, 13 patients (32%) stage II, and 17 patients (41%) stage III. In particular, six patients had a
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pT1 (5 N0 e 1 N+), eight patients had a pT2 (6 N0 and 2 N+), 23 patients had a pT3 (18 N+),
and four patients had a pT4 (3 N0 and 1 N+).

Regarding the 13 patients with stage II, two were at low risk and 11 at high risk for
the presence of lymphovascular invasion, T4 or G3–4.

The majority of tumors had intermediate (G2; 48%: N = 19) or high (G3–G4; 47%
N = 19) histologic grading, while G1 accounted for 5% of tumors in this population (N = 2).
A total of 13 patients had left CRC and 28 right CRC (Table 1).

Half of the patients (46%; n = 19) received adjuvant chemotherapy, in accordance
with clinical stage of disease. Nine patients received fluoropyrimidine monotherapy and
10 patients received polychemotherapy with oxaliplatin and fluoropyrimidine. Six out of
eleven patients at stage II at high risk received adjuvant treatment; the rest of them did not
receive chemotherapy for age or comorbidity

Thirteen out of the 17 patients with stage III disease received adjuvant treatment
according to tumor stage. At the last follow-up, 19% (n = 8) of patients had disease relapse
(Table 1). As expected, the patients with relapse had a history of stage III disease or stage II
at high risk.

3.2. Effects of Surgery on the Metabolome of CRC Patients

The mPLS analysis was performed to assess intraindividual variations between t0
and t1 in the metabolomic fingerprints of CRC patients. The results obtained show sig-
nificant differential clustering, with optimal separation of the two timepoints using each
type of NMR spectra acquired, namely CPMG, NOESY, and DIFFUSION (Figure 2). All
models classify t0 and t1 samples with an accuracy in the range 82–85%, and the best
results were obtained using NOESY spectra. These data indicate that both low molecular
weight metabolites and high molecular weight macromolecules (i.e., lipoproteins, proteins)
contribute to the discrimination.

 
Figure 2. Score plots of the first two components of the mPLS models calculated using each of the three typologies of
NMR spectra acquired: CPMG; NOESY; diffusion-edited. Discrimination accuracy of each model is reported. Each dot
represents an NMR spectrum; dots are colored as follows: t0—orange, t1—turquoise. The first component mainly describes
the differences between t0 and t1. The second component mainly reports the within-subject variation.

From univariate analysis emerges that after surgery there is a significant increase of
pyruvate, HDL cholesterol, HDL phospholipids, HDL Apo-A1, and HDL Apo-A2 (Figure 3).
Moreover, after surgery we observed a significant decrement of acetone, 3-hydroxybutyrate,
LDL-Chol/HDL-Chol ratio, and Apo-A1/Apo-B100 ratio (Figure 3). Furthermore, several
lipoprotein-related subfractions were shown to be significantly altered between t0 and
t1 (Figure S1). These data point to a relevant rearrangement of the metabolic pathways
related to lipoproteins, ketone bodies, and energy metabolism.
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Figure 3. Boxplots of the statistically significant metabolites and lipoproteins-related parameters discriminating CRC
patients at t0 (orange) and t1 (turquoise); p-values obtained using Wilcoxon signed-rank test and adjusted for FDR are
reported. *** p < 0.001; ** p < 0.01; * p < 0.05.

3.3. Associations between Metabolome Variations after Surgery and Cancer Relapse

Eight out of the 41 CRC patients enrolled in the present study developed cancer
relapse in the three years after diagnosis. We hypothesized that different changes in
preoperative and postoperative metabolomic serum profiles could be predictive of patients’
prognosis. To explore this hypothesis, the difference between each metabolite/lipoprotein-
related parameter at t1 and t0 was calculated, and each resulting difference analyzed via
univariate approaches to underline possible divergent behavior in free-from-disease and
relapsed CRC patients. Postoperative, relapsed CRC patients show a significant increase of
pyruvate, HDL Apo-A1, HDL Apo-A2, HDL cholesterol, HDL free cholesterol, and HDL
phospholipids, and a significant decrease of Apo-A1 Apo-B100 ratio, VLDL-5 cholesterol,
VLDL-5 free cholesterol, and VLDL-5 phospholipids (Figure 4).

45



Appl. Sci. 2021, 11, 11120

Figure 4. Boxplots of the differences between t1 and t0 discriminating free-from-disease (green) and relapsed (red) patients,
only statistically significant metabolites and lipoproteins-related parameters are reported; p-values obtained using Wilcoxon
signed-rank test are reported. ** p < 0.01; * p < 0.05.

3.4. Associations between Metabolites and Clinical Variables

Possible associations between metabolites/lipoproteins (main fractions) and clinical
variables were investigated. Results are reported in Table S2.

Glycine and histidine showed statistically significant correlations with tumor size.
Tyrosine correlates with tumor stage and regional lymph nodal spread (N). N also correlates
with isoleucine, Apo-A1, and Apo-A2. Tumor localization (left or right colon) shows
correlations with acetone, cholesterol, LDL cholesterol, and Apo-B100. Interestingly a panel
of eight metabolic variables (N,N-Dimethylglycine, valine, dimethylsulfone, triglycerides,
cholesterol, LDL cholesterol, Apo-A2, Apo-B100) correlates with the Eastern Cooperative
Oncology Group Scale of Performance Status. Moreover, as expected, sex shows significant
correlations with several metabolites/lipoproteins: creatine, creatinine, glutamine, glycine,
isoleucine, leucine, formic acid, cholesterol, LDL cholesterol, HDL cholesterol, Apo-A1,
Apo-A2, and Apo-B100. Of note, none of the examined metabolic features show significant
correlation with tumor grade.
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4. Discussion

The primary option for the treatment of colorectal cancer is surgery. Adjuvant
chemotherapy is strongly indicated in stage III disease and in stage II patients at high
risk of relapse. Whereas, in low-risk stage II disease decision-making around adjuvant
chemotherapy must be carefully evaluated. At present, postoperative surveillance via
clinical, radiological and biomarkers examination often cannot identify early metastatic
disease and/or postoperative micrometastatic residual disease.

Based on these considerations, especially in stage II disease, improved risk-stratification
tools are required to identify those patients who are most likely to benefit from adjuvant
chemotherapy and need to be followed up more closely after surgery to timely detect systemic
recurrence. On the other hand, accurate stratification instruments could prevent low-risk
patients from unnecessary treatment and possible mild-to-severe adverse reactions.

The analysis described in the present research article shows for the first time, to the
best of our knowledge, the metabolomic variations among preoperative and postoperative
NMR-based serum fingerprint of CRC patients. Furthermore, metabolomics as novel ap-
proach for risk-stratification in CRC setting was evaluated by studying differences between
pre- and postoperative serum samples of each patient enrolled. With this innovative ap-
proach, each patient in the study population acts as his/her own control, thus eliminating
noise from interindividual variability.

Our data demonstrate that metabolomics profiles are influenced by the presence
or absence of the cancerous mass. Indeed, the mPLS models calculated using each of
the three NMR spectra acquired (namely, CPMG, NOESY, and DIFFUSION) show high
discrimination accuracies (range 82–85%). This evidence poses an important question in
terms of future study design, since sample collection when the tumor was still in place or
after resection can significantly impact on metabolomic data.

From the univariate analysis, it emerges that after surgery, there is a significant increase of
pyruvate, HDL cholesterol, HDL phospholipids, HDL Apo-A1, and HDL Apo-A2. Moreover,
we observed, postoperative, a significant decrement of acetone, 3-hydroxybutyrate, LDL-
Chol/HDL-Chol ratio, and Apo-A1/Apo-B100 ratio. These data point to a relevant rewiring
of the metabolic pathways associated to lipoproteins, ketone bodies, and energy metabolism.

Depletion of pyruvate and increase of ketone bodies has been observed in sera of
metastatic CRC patients with respect to healthy controls, and this evidence has been associ-
ated with an altered energy metabolism, probably reflecting an increased gluconeogenesis
and fatty acid oxidation [31]. It is interesting to note that in our dataset, these three
metabolites show trend inversions after surgery.

Our data show an increase of several HDL-Chol and a decrease of LDL-Chol lipoprotein-
related parameters post-surgery. This may be explained by the fact that, after cancer resection,
an improvement in the inflammatory status of the gut is achieved, allowing for an improved
lipid metabolism and lipid assimilation in the absence of the tumor.

Strikingly, despite the low number of recurrence events registered, it is peculiar that
the difference in HDL-Chol is particularly marked in relapsed patients and is coupled with
a decrease of VLDL-Chol. It has been observed that in colorectal cancerous tissue, the
levels of cholesterol and triglycerides were reduced and HDL-Cholesterol level increased,
indicating that CRC development destroys the physiological balance of lipids and lipopro-
teins, leading to lipid metabolic disorders [40]. Preclinical and clinical studies have already
investigated the role of cholesterol in CRC progression; however, a clear understanding of
the molecular mechanism linking these two entities is still lacking [40,41].

In conclusion, our results show that surgery can affect the metabolomic and lipidomic
profiles of CRC patients and they point to possible associations between these metabolic
changes and cancer recurrence. This study is based on a small population of CRC patients
in which a very limited number of recurrence events are present; therefore, at present,
results are only speculative and require further confirmation. In order to validate these
findings in a general population, we are conducting a multicentric prospective trial focused
on high-risk stage disease, the LIquid BIopsy and METabolomics in colon cancer (LIBIMET)

47



Appl. Sci. 2021, 11, 11120

study. LIBIMET aims primarily at redefining the risk of relapse in patients with high-risk,
early-stage colon cancer by combining of ctDNA and serum metabolomics.

5. Conclusions

Taken together, the data here presented highlight the notion that CRC can induce
metabolic changes that are reflected at a systemic level and can be detected in serum.
This evidence suggests that our approach aimed at detecting micrometastatic CRC by
assessing its metabolomic fingerprint in serum is correct, and that this may be exploited for
biomarker-oriented research to contribute towards better management of colorectal cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app112311120/s1. Table S1: Data completeness for the different metabolites quantified
in the serum samples analyzed via NMR. LOQ = limit of quantification. Table S2: Correlation
between clinical data and metabolites. Correlation coefficients and p-values are reported in table.
Figure S1: Boxplots of the statistically significant lipoproteins-related parameters discriminating of
CRC patients at t0 (orange) and t1 (turquoise); p-values obtained using Wilcoxon signed-rank test
and adjusted for FDR are reported.
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Abstract: One of the most critical medical conditions occurring after preterm birth is neonatal sepsis,
a systemic infection with high rates of morbidity and mortality, chiefly amongst neonates hospitalized
in Neonatal Intensive Care Units (NICU). Neonatal sepsis is categorized as early-onset sepsis (EOS)
and late-onset sepsis (LOS) regarding the time of the disease onset. The accurate early diagnosis
or prognosis have hurdles to overcome, since there are not specific clinical signs or laboratory
tests. Herein, a need for biomarkers presents, with the goals of aiding accurate medical treatment,
reducing the clinical severity of symptoms and the hospitalization time. Through nuclear magnetic
resonance (NMR) based metabolomics, we aim to investigate the urine metabolomic profile of septic
neonates and reveal those metabolites which could be indicative for an initial discrimination between
the diseased and the healthy ones. Multivariate and univariate statistical analysis between NMR
spectroscopic data of urine samples from neonates that developed EOS, LOS, and a healthy control
group revealed a discriminate metabolic profile of septic newborns. Gluconate, myo-inositol, betaine,
taurine, lactose, glucose, creatinine and hippurate were the metabolites highlighted as significant in
most comparisons.

Keywords: metabolomics; NMR spectroscopy; neonatal sepsis; EOS; LOS; preterm birth

1. Introduction

Neonatal sepsis is a systemic inflammatory response to infection, with a wide range
and severity of symptoms [1]. The incidence varies all over the world and is quite different
among high-, low-, and middle-income countries [2]. According to World Health Organiza-
tion (WHO), 1.3 to 3.9 million cases are reported annually and 400,000 to 700,000 deaths
worldwide [3]. Despite the progress in medical knowledge, neonatal care and antibiotic
treatment, sepsis is considered one of the main reasons of morbidity and mortality, espe-
cially in very low birth weight (VLBW, <1500 g birth weight) and preterm infants (born
before 37 weeks of pregnancy) [4–6]. Extremely preterm infants, whose gestational age
(GA) is less than 28 weeks, are at greater risk of sepsis diagnosis [7,8]. However, several
studies suggest that also late preterms are highly susceptible to developing sepsis [9–11].

Neonatal sepsis is classified as early onset sepsis (EOS), occurring within 72 h after
birth, and late onset sepsis (LOS), 72 h after birth according to the onset time of the
findings [12]. The incidence of EOS is 1 to 5 per 1000 live births, decreasing with intrapartum
antibiotic therapy [13,14]. Associated with the increasing survival rate of preterm and
VLBW infants, LOS rate presents an increase, with neonates weighing less than 750 g
having the highest rate of LOS diagnosis [15,16].

Prematurity and low birth weight are among the main risk factors causing sepsis,
with premature neonates having three to ten times higher possibility of sepsis diagnosis
than normal weight full-term ones [1]. Risk factors and mortality rates differ among early-
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and late-onset sepsis [17]. Among the EOS risk factors are fetal distress, low APGAR
score, resuscitation of the neonate and multiple pregnancies. Additionally, for low-income
countries, as EOS seems to be enhanced from factors such as inadequate antenatal care,
unhealthy birth and late recognition of conditions that might induce infections to the
mother or the neonate [18]. Factors that can increase risk of LOS are considered mainly
invasive procedures, such as surgical interventions, intubation, mechanical ventilation,
catheter/probe insertion, long-term parenteral nutrition, frequent blood sampling, low
stomach acid and/or insufficient breastfeeding [1].

The pathogenesis of EOS is taking place during the intrapartum period, during which
the responsible pathogens are transmitted from mother to neonate [19]. Pathogens causing
EOS are usually colonized in maternal genitourinary tract and with the amniotic membrane
rupture are transmitted to the fetus or during the labor to neonate [20]. Most frequent
EOS’s pathogens are the Gram (+) group B Streptococcus (GBS) followed by the Gram (−)
E. Coli bacteria [21]. Pathogens causing LOS can be transmitted during labor or from the
environment. LOS is usually caused by nosocomial or environmental pathogens, specifi-
cally Coagulase-negative staphylococci (CONS), Gram (−) bacilli and Fungi, especially C.
albicans. Apart from differences in the pathogenesis and the time of onset, EOS and LOS
have different clinical manifestations [22].

A combination of clinical signs and laboratory findings constitute the diagnosis proce-
dure, with blood culture considered as the “gold” standard [23]. For the physicians, the
diagnosis of sepsis is a challenge. The limited diagnostic accuracy of common laboratory
tests, such as white blood cell indices and acute phase reactants contribute poorly to the
early diagnosis of neonatal sepsis. The diagnostics’ accuracy limitations, in combination
with the neonate’s prematurity and survival status as well as the ambiguity of early clinical
signs, urge neonatologists to shut out sepsis [24]. Hence, the discovery of new biomarkers,
which can easily be detected at an early stage, has occupied the medical and scientific
community, with many studies already having been carried out [25].

In this scope, metabolomic analysis could take upon a fundamental role. Detecting
and quantifying a wide variety of small molecules, intermediate or final components of
metabolic pathways, metabolomics aim to identify the alterations caused by the condition
of biological and medical interest. As the outcome of biochemical procedures regulated by
proteins derived from genes expression, metabolomics provides the closest relation with
the phenotype of an organism, at a specified time frame in correlation with endogenous
and exogenous influences. The utilization of metabolomics as a tool for the validation
of new biomarkers for early diagnosis or prognosis of pathophysiological conditions is
constantly growing.

Before any metabolomic analysis, based on the main question to be answered, the
process of the analysis has to be determined. A targeted metabolomics approach is selected
when the aim is to measure the levels of a particular set of metabolites which are suspected
to have a relation with a condition. An untargeted approach aims to detect and assign
as many peaks as possible related to metabolites biofluid, tissue or cell extract under
study, identifying the metabolic “fingerprint” [26]. Nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS) are the two dominant analytical techniques for
metabolomic analysis of biofluids. NMR-based analysis offers numerous advantages and
could combine chemometrics and basic clinical research [27].

In the field of neonatology, the interest for a prognostic and diagnostic tool for neonatal
sepsis is continuously growing. A urine sample, reflecting a holistic view of the metabolism,
is considered as the most appropriate biological fluid for analysis of newborns’ metabolism
via NMR spectroscopy. The impact of neonatal sepsis on newborn metabolism has been in
the center of interest the last few years and application of metabolomic studies towards
the investigation of a specific profile of septic newborns is on demand, but, to establish
metabolites as biomarkers, further analysis must be conducted [28–30]. The aim of our
study is to reveal those metabolites with differentiated levels among the septic neonates
hospitalized in the Neonatal Intensive Care Unit (NICU) and control/healthy neonates.
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Such metabolic alterations could lead to early diagnosis of EOS and LOS. To our knowledge,
both medical treatment and parenteral nutrition of NICU hospitalization may induce
essential metabolic drifts. For this reason, we chose to investigate the comparison of the
sepsis metabolic profile with the metabolic profile of NICU hospitalized neonates without
severe comorbidities except prematurity, complementary to healthy neonates, whose care
after birth was taken over by their mother.

2. Materials and Methods

2.1. Study Population

The current study was conducted in the Neonatal Ward and the NICU of the General
University Hospital, and the Department of Pharmacy at the University of Patras. Seventy-
one (n = 71) neonates were recruited in the study, only after informed consent and parental
permission having been provided. The neonates were separated into the following four
groups: Group A: Septic neonates diagnosed with EOS (n = 23); Group B: Septic neonates
diagnosed with LOS (n = 11); Group C: Preterm neonates without any clinical sign or
symptom of sepsis or other serious morbidity (n = 14) hospitalized in the NICU; Group D:
Healthy preterm neonates (n = 23) not separated from their mother after birth. All NICU
neonates were premature, with GA ranging from 25 to 36 GA weeks, while all healthy non
NICU preterm neonates ranged from 35 to 36 GA weeks. For each neonate, the following
were recorded: (a) perinatal data such as gestational age (GA), birth weight (BW), sex,
delivery mode, premature rupture of membranes and Apgar score; (b) clinical data such
as mechanical ventilation, treatment with antibiotics, positive blood cultures, C reactive
protein (CRP), and breast feeding. All clinical characteristics and laboratory findings of the
neonates participated in this study are listed in Table 1. The biological fluid under study
was urine and the samples were collected in the first 24 h after birth for EOS neonates and
in the third day of the extrauterine life for LOS neonates. The collection was carried out
with the use of adhesive pediatric urine collection bags and 1.5 mL of each collected urine
sample was transferred to sterile vials and remained at −80 ◦C until the analysis.

Table 1. Clinical characteristics and laboratory findings for septic and control neonates. Median and
(minimum–maximum) values of the GA, BW, Apgar Score for the first and tenth minute of life, the
number (percentage) of the male sex, the delivery mode (cesarian section), the small for gestational
age (SGA) infants, the newborns with premature rupture of membranes (>18 h), treatment with
mechanical ventilation and/or antibiotics, blood culture positive (Gram-positive, Gram-negative and
fungi) and c reactive protein (CRP).

Group A
EOS

(n = 23)

Group B
LOS

(n = 11)

Group C
Control NICU

(n = 14)

Group D
Control Non NICU

(n = 23)

Male sex (n, %) 8 (35) 5 (45) 9 (64) 18 (75)
GA (weeks) 34 (26–36) 34 (25–36) 35 (31–36) 36 (35–36)

BW (gr) 2150 (770–4060) 1820 (690–2900) 2085 (1630–3540) 2740 (2100–3700)
Small for GA (n, %) 5 (22) 4 (36) 2 (14) 0(0)

Cesarian Section (n, %) 8 (73) 8 (73) 11 (79) 13 (57)
Apgar Score 1st min 8 (3–9) 8 (3–9) 8 (7–9) 9 (5–9)

Apgar Score 10th min 9 (8–10) 9 (8–10) 9.5 (8–10) 9 (7–10)
Antibiotics (n, %) 23 (100) 11 (100) 1 (7) 11 (48)

Premature Rupture of Membranes >18 h (n, %) 1 (4.3) 0 (0) 3 (21.4) 0 (0)
Mechanical Ventilation (n, %) 17 (71) 7 (64) 4 (14) 0 (0)

Nutrition No No No Breast milk
Laboratory findings

B.C negative, CRP positive findings (n, %) 17 (74) 5 (45) 0 (0) 0 (0)
B.C positive, gram (+) (n, %) 4 (17) 5 (45) 0 (0) 0 (0)
B.C positive, gram (−) (n, %) 1 (4) 1 (10) 0 (0) 0 (0)

B.C positive,
Fungi (n, %) 1 (4) 0 (0) 0 (0) 0 (0)
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2.2. Ethical Statement

The study was approved by the General University Hospital of Patras Human Re-
search Ethics Committee and all the procedures performed in this study involving human
participants were in accordance with the ethical standards of the institutional and/or na-
tional research committee and with the 1964 Helsinki declaration and its later amendments
or comparable ethical standards. A written informed consent was obtained from parents.

2.3. NMR Sample Preparation

The urine samples were stored at −80 ◦C until analysis. For NMR analysis, frozen
urine samples were thawed at room temperature and centrifuged at 12,000 rpm for 10 min
at 4 ◦C. For each sample, 540 μL of the supernatant was mixed with 60 μL potassium
phosphate buffer (1.5 M KH2PO4 in H2O containing 4% 2 Mm NaN3 and 10 mM 4,4-
dimethyl-4-silapentane-1-sulfonic acid (DSS), pH 4.2). The mixture was vortexed and
590 μL of it was transferred into a 5 mm NMR tube (Bruker BioSpin srl).

2.4. NMR Experiments

The 1H-NMR spectra were recorded at 298 K on a Bruker Avance III HD 700 MHz NMR
spectrometer equipped with a cryogenically cooled 5.0 mm 1H/13C/15N/D Z-gradient
probe. Two kinds of 1H-NMR spectra were recorded for each urine sample of the study’s
participants. A mono-dimensional (1D) NMR spectrum was acquired using a standard
NOESY (noesygppr1d.comp; Bruker BioSpin, Billerica, MA, USA) pulse sequence for water
suppression, to reveal all the detectable 1H signals of metabolites. Due to the complexity of
urine NMR spectra, as they consist of numerous peaks, presented in a non-distinctive man-
ner, and sometimes overlapped, the identification and further quantification of metabolites
using only 1D NMR spectra cannot be accomplished [31]. Hence, for each urine sample,
a two-dimensional (2D) J-resolved (jresgpprqf.comp; Bruker BioSpin) spectrum acquired,
separating the chemical shifts and J-couplings into two different dimensions, making it a
very useful NMR experiment for metabolite assignment in metabolomics [32]. Accurately,
the acquisition parameters for the 1H 1D NMR and 2D J-resolved spectra were 64 scans,
4 dummy scans, FID size 64.536, a spectral width of 10,504 Hz, 3.1 s acquisition time, 2 s a
relaxation delay, and 100 ms mixing time [33].

2.5. Data Processing

After the NMR data acquisition, all spectra were manually processed for phase and
baseline corrections and calibrated to the internal standard’s DSS peak at 0.00 ppm. The
processing was performed using the TopSpin 4.1.1 (Bruker BioSpin srl). For further sta-
tistical analysis, all 1H 1D NOESY NMR spectra were transformed into binned numerical
data. Each spectrum was fragmented into buckets of 0.02 ppm width for the spectral
region 0.70–9.50 ppm, using the AMIX software (Bruker BioSpin). The spectral areas of
4.50–6.00 ppm, 2.70–2.80 ppm and 1.75–1.77 ppm where 1H signals of water, urea and
internal standard DSS are observed, were excluded. Chenomx software (NMR Suite Version
9.0, Edmonton, AB, Canada), the online Human Metabolome Database (HMDB) and data
from literature, were utilized for the assignment of important and discriminant proton
NMR signals of urine samples.

2.6. Statistical Analysis of NMR Data

The statistical analysis of the spectral binning data was performed using the online
tool MetaboAnalyst 5.0 [34]. Multivariate analysis (MVA), consisting of the unsupervised
principal component analysis (PCA) and supervised partial least squares discriminant
analysis (PLS-DA), was applied on the 1H NMR data after Pareto normalization. This
normalization was selected, since NMR information does not deviate much from the
original compared to autoscaling, and fewer errors related to noisy spectral regions without
biological impact are conducted [35]. PCA and PLS-DA plots were examined to extract
information about group clustering and potential outliers. Loadings values from PCA
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model and variable importance in projection (VIP) scores >1 from PLS-DA were the main
evidence source about metabolites with differentiation between groups, responsible for
the group clustering. The quality of PLS-DA was ensured using the parameters as follows:
goodness of fit R2 and the goodness of predictability Q2, after 10-fold cross-validation test.
For statistical correlation of NMR data, a mono-dimensional (1D) statistical total correlation
spectroscopy analysis was performed using the muma R package [36], where pareto scaled
data were analyzed and the represented pseudo-NMR spectrum displayed the covariance
(height) and the Pearsons correlation coefficient (color) of all spectral variables (buckets)
with the variable of interest being the ‘’driver peak” or ‘’driver signal”. Additionally,
univariate analysis was performed on the successfully identified metabolites, targeting only
the non-overlapping metabolites’ peaks for integration. Non-parametric Kruskal–Wallis
test, followed by a false discovery rate (FDR) correction, was conducted using RStudio and
metabolites with p-value <0.05 were characterized as significant.

2.7. Pathway Analysis and Visualization

A pathway analysis module of MetaboAnalyst 5.0, integrating enrichment analysis
and pathway topology analysis through a Google Maps-style visualization system, was
adopted to identify the metabolic pathways associated with the statistically significant
metabolites for EOS, LOS and healthy preterms. After the import of metabolites’ compound
names as data input, the Homo Sapiens pathway library from KEGG was selected. A hy-
pergeometric test and relative betweenness centrality were preferred for over-presentation
and topological analysis, respectively.

3. Results

A total of 45 metabolites were successfully detected and assigned in urine samples of
the preterm neonates. Due to the complexity and peak overlapping of the 1H NMR urine
spectra, statistically important and peaks with discriminant signals were recorded for the
qualitative identification of the neonate’s urine metabolism. Table S1 represents the list of
all the assigned metabolites (Supplementary materials Table S1) and the main pathway they
may belong to. Further statistical analysis of the binned data was based on the reported
chemical shifts to associate statistical important spectral regions with specific metabolites.

3.1. Metabolic Profile Alterations of Preterms with EOS
3.1.1. EOS Preterms Versus Non NICU Healthy Preterms

Twenty-three preterm infants (n = 23), hospitalized in NICU, were diagnosed with
EOS and their urine NMR metabolic profiles were compared to the first day of life spectro-
scopic data of the control group, consisting of twenty (n = 20) healthy preterm neonates,
treated by their mothers immediately after birth and non-hospitalized in NICU (non NICU
preterms). The generated data, consisting of 359 spectral bins, were processed using Pareto
normalization. The numerical data matrix was applied as input for the unsupervised PCA
and the supervised PLS-DA. Both showed a clear discrimination between the two groups.
According to PC1 and PC2, explaining the 73.4% of the total variance, loadings belonging to
an unknown pattern of multiple peaks between 7.40–7.50 ppm and at 1.40 ppm, observed
to the majority of the NMR spectra of the NICU urine samples (20 out of 23 spectra of
EOS samples), were responsible for the separation (Supplementary materials Figure S1).
Additionally, gluconate and lactose differed between the two groups, with EOS neonates
having the higher concentration level of gluconate and lower of lactose. The PLS-DA
model (Figure 1a) shows a discrimination between the two groups, with an R2 of 0.664
and Q2 of 0.409 for the third component after a 10-fold cross-validation test, supporting
the unsupervised PCA’s clustering. VIP scores, with colored boxes on the right represent-
ing the differentiated relative concentrations of the corresponding buckets in each group
(blue—low—and red—high—relative concentration) were in accordance with loadings
(Figure 1b) and those with higher scores reveal lower intensity of buckets related to ppm of
taurine, myo-inositol and betaine, creatinine for EOS and higher intensity of the unknown
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area 7.40–7.50 ppm. The box plots of the metabolites responsible for the group clustering
confirm the concentration’s alteration among the compared groups (Figure 1c). The Y
axis represents the normalized concentration of the corresponding spectral region. The
obtained negative values come as a result of the total spectral area normalization. The unas-
signed spectral region of two different types of peaks that resonate at 1.40 ppm statistically
correlate with the multiple peaks at the aromatic region of 7.40–7.50 ppm. The statistical
correlation was confirmed with the 1D-STOCSY (Supplementary materials Figure S2) that
indicates all the correlations of all spectral variables (buckets). To further examine and high-
light the structural correlations with the spectral variables that resonate at 7.40–7.50 ppm,
we set as ‘’driver peak” the variable x.1.41, which includes the signals at 1.40 ppm and the
observed maximum correlation displayed between the variable x.1.41 and x.7.51. Thus,
they may belong to the same metabolite or group of metabolites derived from medication
or parenteral nutrition. We attribute the unknown spectral pattern at 7.40–7.50 ppm and at
1.40 ppm as a NICU metabolic-induced characteristic, since it is present predominantly in
the 1H NMR spectra from NICU urine samples (Figure 2). Most of the preterm neonates
hospitalized in NICU are under antibiotic treatment because of sepsis or of other infectious
condition suspicion; also, prophylactic administration of broad-spectrum antibiotics is
unfortunately very common. Antibiotics can lead to adverse effects, including necrotizing
enterocolitis (NEC) and LOS [37]. Patton et al. studied their impact on fecal metabolome
of preterm infants, but urine metabolome has not been investigated yet [38]. Our study
suggests the further analysis of these unidentified spectral regions as antibiotic outcome on
1H NMR spectra of urine samples. However, in depth investigation of the antibiotic and/or
additional medication effect on the urine NMR metabolic profile is beyond the scope of
this research.

3.1.2. EOS Preterms versus NICU Control Preterms
1H NMR urine metabolic profile of the first day of life from twenty-three (n = 23)

preterm infants with EOS was compared to that of thirteen (n = 13) preterms hospitalized
in NICU without any sign or symptom of sepsis or other infection. This comparison was
conducted complementary to the group of preterms without the need of hospitalization, to
examine and reduce the effect of NICU hospitalization on newborns urinary metabolism.
Multivariate analysis of EOS and NICU control preterms displayed less distinctive clas-
sification (Supplementary Materials Figure S3a) regarding the comparison with healthy
non-NICU preterms (Supplementary Materials Figure S1a). The PLS-DA model (Figure 3a)
separated the two groups, but the low value of the R2 = 0.491 and the negative Q2 indi-
cate an overfitted model with low predictability. The buckets responsible for this group
separation, as resulting from the PCA loadings plot (Supplementary Materials Figure S3b)
and from VIP scores, are related to gluconate, threonine/lactate and 7.40 ppm chemicals
shifts of unknown peaks (Figure 3b). Gluconate seems to be present in higher concentration
on EOS group, but some buckets related to gluconate (4.09 ppm, 4.15 ppm) have higher
VIP score in the control group. This may be justified by the shift of gluconate peaks in
different spectra or the presence of sugars, such as glucose and lactose. The pattern of
7.40, 1.40 ppm had higher intensity for control neonates, and may be related to different
medical treatment and nutrition. In accordance with prior analysis, EOS neonates differ
from controls at the 3.25 ppm spectral region, where mainly betaine is located, overlapping
myo-inositol and taurine.
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(a) (b) 

 
(c) 

Figure 1. Multivariate analysis of NMR data belonging to neonates diagnosed with EOS (pink circles)
and healthy neonates without need for NICU hospitalization (blue circles). (a) PLS-DA scores plot
of the EOS and healthy non-NICU preterms. (b) VIP scores and metabolites related to buckets with
different concentration among the two groups. (c) Box plots of normalized concentration for the
discriminant metabolites.
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Figure 2. Spectral regions of unassigned chemical shifts mostly present on 1H NMR spectra of NICU
samples (blue spectrum) and healthy non-NICU preterms (black spectrum).

  
(a) (b) 

Figure 3. Multivariate analysis of NMR data belonging to neonates diagnosed with EOS (orange
circles) and neonates hospitalized in NICU without EOS (purple circles). (a) PLS-DA scores plot of the
EOS and control group. (b) VIP scores and metabolites related to buckets with different concentration
among the two groups.

3.1.3. EOS Metabolic Profile Progression between First and Third Day of Life

With the perspective for the validation of a metabolite for further analysis or the
identification of a group of metabolites characteristic of the septic urine metabolome,
the progression of the metabolome throughout the time of the condition needs to be
examined. In our study a comparative analysis of urine metabolomes between the first
and the third day of septic newborns’ extrauterine life was conducted. For ten (n = 10)
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out of the twenty-three neonates diagnosed with EOS, urine samples and NMR data
from the third day of neonates’ life are not available due to handling inaccuracies during
sample collection or other excluding criteria regarding the NMR spectra (e.g., baseline and
phase distortions) and the presence of lipids, characterized of broad peaks overlapping
peaks of small molecules studied in this analysis. Hence, a total of twenty-six (n = 26;
paired 1st and 3rd day of life) urine 1H NMR spectra, corresponding to each one of
the thirteen (n = 13) EOS preterms, were analyzed. An initial classification of the two
groups was performed via PCA, where the third principal component, explains the 79.9%
of the cumulated variance (Supplementary materials Figure S4). PLS-DA corroborated
and strengthened the clustering, providing a valid and reliable model (Figure 4a). The
cross-validation indicated the use of the first two components as optimal for building
the classification model, with R2 = 0.613 and Q2 = 0.296. VIP scores were in accordance
with the PCA’s loadings and indicated reduced concentration of myo-inositol, gluconate,
betaine, taurine, and creatinine on the third day (Figure 4b). The normalized concentration’s
differentiated levels of the reported metabolites are clearly represented on their associated
box plots (Figure 4c). The alteration of myo-inositol levels between the first and the third
day of life has been previously reported for healthy full-term (>38 GA) neonates [33].
Specifically, in association with sepsis, increased levels of myo-inositol have also been
detected on the work of Sarafidis et al. for LOS at the day of the disease’s onset [28]. The
decrease in creatinine is in accordance with the Fanos et al. findings for septic neonates [30].

3.2. Metabolic Profile Alterations of Preterms with LOS
3.2.1. LOS Preterms versus Non NICU Healthy Preterms

Spectroscopic data of urine samples collected on the third day of life from eleven
(n = 11) preterm neonates that developed LOS were compared to the third day’s 1H NMR
urine profile of twelve (n = 12) non-NICU healthy preterms. The unsupervised PCA,
explaining the 75.1% of the total variability within the first three components (PC1 = 43.3%,
PC2 = 18.2% and PC3 = 13.6%) indicated a clear tendency for clustering the two groups.
Loadings with the greatest impact caused this form of PCA plot, agreed with EOS results
and reinforced the claim of the great impact of hospitalization in NICU on urine metabolome
(Supplementary materials Figure S5). The supervised PLS-DA, after the cross-validation
resampling method, present a reliable and predictable model with R2 = 0.861 and Q2 = 0.788
for the second component (Figure 5a). As expected, VIP scores highlighted gluconate and
the pattern of 1.40, 7.40–7.50 ppm (Figure 5b), with significant alterations of normalized
concentration among groups, clearly displayed on the box plots (Figure 5c). Multivariate
analysis of LOS metabolic profile reveals similar metabolic alterations with EOS. This
analysis did not add something different compared to the analysis about EOS and healthy
non-NICU preterms, and it is primary evidence that the septic profile does not dramatically
change in relation to time within the first three days of neonate’s life.

3.2.2. LOS Preterms Versus NICU Control Preterms

Following the same procedure with the comparisons for EOS neonates, in order to
eliminate the impact of hospitalization and dietary or drugs urine excreted metabolites in
urine LOS data compared to the NICU control group. In total, eleven (n = 11) 1H NMR urine
LOS profiles were compared with nine (n = 9) 1H NMR urine NICU control profiles from
the third day of life. Scores plot of the PCA model (Supplementary materials Figure S5a)
primarily did not reveal strong discrimination and resembles the PCA plot clustering of EOS
analysis. Additively, presents different urine metabolic profile with the same elevations
of myo-inositol, betaine, gluconate, taurine and NICU characteristics (Supplementary
materials Figure S6b). The PLS-DA model is characterized by low capacity of predictability
with negative Q2 values (Figure 6a). Beyond these metabolites, VIP scores revealed higher
concentration of buckets belonging to sugars, for the control group (Figure 6b). The bucket
of 1.17 ppm belongs to a crowded 1H NMR region, without a specific metabolite present to
the total of urine samples.
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(a) (b) 

 

 
(c) 

Figure 4. Multivariate analysis of NMR data belonging to urine samples of neonates diagnosed
with EOS the first (green circles) and the third day (blue circles) of their life. (a) PLS-DA scores
plot of the first- and third-day’s samples. (b) VIP scores and metabolites related to buckets with
different concentration among the two groups. (c) Box plots of normalized concentration for the
discriminant metabolites.

3.3. Metabolic Profile Alterations between EOS and LOS Neonates

LOS and EOS neonates, except the onset of the disease, present different clinical
symptoms and vary on the severity of the outcome. This differentiation can be reflected
also on the metabolism. So, additively to separate comparisons between EOS, LOS and
control groups, multivariate analysis was conducted between the urine metabolic profile of
the first day of life for twenty-three (n = 23) EOS neonates and third day of life for eleven
(n = 11) LOS neonates. For the PCA model (Supplementary materials Figure S7), until the
PC3 the variance explained was 70.1% and the plot showed a tendency of clustering the
urine metabolic profiles of each group, which became clear on the PLS-DA plot (Figure 7a).
The metabolic alterations, according to VIP scores (Figure 7b) and box plots (Figure 7c),
resemble the differences among the first and third day of EOS. So, the correlation between
EOS and LOS cannot be validated as this metabolic outcome may reflect the adaptation of
the neonate to the extrauterine life. To shed light on the alterations of the septic metabolome
over the days, targeted metabolomic analysis of specific metabolites already known or
suspected based on metabolomics results for their association with sepsis would offer a
more certain approach.
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Figure 5. Multivariate analysis of NMR data belonging to neonates diagnosed with LOS (pink circles)
and control neonates without need for hospitalization (blue circles). (a) PLS-DA scores plot of the LOS
and healthy non-NICU preterms without need for hospitalization. (b) VIP scores and metabolites
related to buckets with different concentration among the two groups. (c) Box plots of normalized
concentration for the discriminant metabolites.

  
(a) (b) 

Figure 6. Multivariate analysis of NMR data belonging to neonates diagnosed with LOS (orange
circles) and control neonates of NICU (blue circles). (a) PLS-DA scores plot of the LOS and control.
(b) VIP scores and metabolites related to buckets with different concentration among the two groups.
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Figure 7. Multivariate analysis of NMR data belonging to urine samples of neonates diagnosed with
EOS (red circles) and neonates with LOS (green circles). (a) PLS-DA scores plot of EOS and LOS
samples. (b) VIP scores and metabolites related to buckets with different concentration among the
two groups. (c) Box plots of normalized concentration for the discriminant metabolites.

3.4. Univariate Statistical Analysis

A univariate statistical analysis was performed on specific metabolites with discrim-
inant peaks. Metabolites with p-value < 0.05 (Table 2) were characterized as statistically
significant. Between septic and healthy non-NICU preterms, additively to multivariate
results, lactose and hippurate were highlighted as significant for EOS, and dimethylglycine
for LOS group. For both septic groups decreased levels of taurine, betaine and increased
levels of gluconate also shown by multivariate analysis were reinforced by univariate
analysis. EOS and LOS metabolites’ comparison confirmed the initial results obtained
through multivariate analysis regarding myo-inositol’s differentiation. Septic groups and
control NICU preterms did not highlight any statistically significant metabolite. The box
plots of the statistically significant metabolites represent the differentiation of their relative
intensity between septic and healthy control non-NICU neonates (Supplementary materials
Figure S8).
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Table 2. Statistically significant metabolites and their p-value for EOS and LOS groups.

Metabolites p-Value Septic Group

EOS versus
healthy non NICU preterms

Taurine 0.004 ↓
Gluconate 8 × 10−5 ↑

Lactose 1 × 10−4 ↓
Hippurate 7 × 10−5 ↓

LOS versus
healthy non NICU preterms

Gluconate 0.0007 ↑
Lactose 0.01 ↓
Betaine 0.006 ↓

N, N-Dimethylglycine 0.005 ↓
Hippurate 0.03 ↓

3.5. Pathway Analysis

The identified significant metabolites from multivariate and univariate analysis were
implemented into MetaboAnalyst pathway analysis module to determine a qualitative
aspect of all the possibly affected metabolic pathways. A separate analysis for the EOS
and LOS group was selected, as except myo-inositol, betaine, gluconate, taurine, lactose,
creatinine and hippurate which were statistically significant for both groups, glucose and
N, N-Dimethylglycine were characterized as significant only for EOS and LOS group,
respectively. A metabolic pathway analysis depicted ten (n = 10) altered metabolic path-
ways for the EOS (Figure 8a, Supplementary materials Table S2) and nine (n = 9) for the
LOS group (Figure 8b, Supplementary materials Table S3). The representation of all the
identified pathways was based on the pathway impact (x-axis) and the calculated p-value
(y-axis). Among the nine metabolic pathways for EOS, ascorbate/ alderate metabolism
and taurine/hypotaurine metabolism were the most significant, with p-value < 0.05. Tau-
rine/hypotaurine metabolism pathway had the largest impact factor (0.42), followed by
inositol phosphate pathway (0.13). Myo-inositol and taurine were the metabolites involved
in these pathways (Supplementary materials Table S2). Regarding the LOS, significant
metabolites, glycine/serine, and threonine metabolism pathway, where betaine and N,N-
Dimethylglycine are involved, had the lowest p-value (0.01). The pathway impact scores
did not present large differences from EOS pathway analysis.

  
(a) (b) 

Figure 8. Graphically representation of the pathway analysis. Each cycle represents a metabolic path-
way, while the color and the size are based on p-value and pathway impact, respectively. (a) Pathway
analysis of EOS group significant metabolites. (b) Pathway analysis of LOS significant metabolites.
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4. Conclusions

The findings of our study indicate a discrete metabolic profile of septic neonates. NMR
based metabolomic approach revealed the relation among septic and control neonates, high-
lighting gluconate, myo-inositol, hippurate, taurine, N, N-Dimethylglycine, betaine, creati-
nine, glucose and lactose as significant metabolites. Our study reported, for the first time,
altered urinary amounts of betaine in EOS and LOS neonates and N, N-Dimethylglycine in
LOS neonates. Differentiated concentration levels of taurine and hippurate via LC-MS anal-
ysis have been previously reported by Sarafidis et al., and through UPLC-MS by Mardegan
et al. [28,29]; however, our study was the first to detect them in urine samples of septic
neonates via NMR. The utilization of the two control groups and their discrete analysis,
based on the NICU hospitalization, showed that NICU treatment has a significant impact
on neonates’ urine metabolome. The observed spectral pattern indicative for the most of
the NICU neonates, suggests that it is related to endogenous or exogenous metabolites of
the personalized nutrition or medical treatment. Additionally, the impact of nutrition is
confirmed from the greatly elevated levels of gluconate for the septic group and lactose for
neonates fed from their mothers. Differentiation between EOS and LOS, and the adaptation
of the fetus to neonate during the first days of extrauterine life that occur in parallel are
reflected to the metabolism. Changes through the first days of life, associated with EOS and
LOS, highlight the necessity for chronological coupled sampling with the onset and specific
time of the disease progression. This research builds on the power of NMR metabolomic
analysis to determine the status of an entire organism by a small amount of non-invasive
collected biological sample. The establishment of NMR analysis of metabolome for clinical
research in the field of neonatology, leading to large-scale multicenter studies, gives new
and promising perspectives for its incorporation into the clinical daily routine and the
validation of new combined diagnostic biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12041932/s1; Figure S1: Scores and loadings plot of PCA for
NMR data belonging to neonates diagnosed with EOS (pink circles) and healthy neonates without
need for NICU hospitalization (blue circles). (a) PCA scores plot of the EOS and healthy non-NICU
preterms. (b) Loadings plot of PC1 and PC2; Figure S2: 1D-STOCY pseudo-NMR spectrum of
correlation coefficients to the other signals in the median urine NMR spectrum and maximum
intensity correlation of peaks are color encoded and projected into statistical difference spectra:
‘’driver peak” was set the one at 1.41 ppm; Figure S3: Scores and loadings plot of PCA for NMR
data belonging to neonates diagnosed with EOS (orange circles) and neonates hospitalized in NICU
without EOS (purple circles). (a) PCA scores plot of the EOS and control group. (b) Loadings plot of
PC1 and PC2; Figure S4: Scores and loadings plot of PCA for NMR data belonging to urine samples
of neonates diagnosed with EOS the first (green circles) and the third day (blue circles) of their life.
(a) PCA scores plot of the first- and third-day’s samples. (b) Loadings plot of PC1 and PC2; Figure S5:
Scores and loadings plot of PCA for NMR data belonging to neonates diagnosed with LOS (pink
circles) and control neonates with-out need for hospitalization (blue circles). (a) PCA scores plot of
the LOS and healthy non-NICU preterms without need for hospitalization. (b) Loadings plot of PC1
and PC2; Figure S6: Scores and loadings plot of PCA for NMR data belonging to neonates diagnosed
with LOS (orange circles) and control neonates of NICU (purple circles). (a) PCA scores plot of the
LOS and control group. (b) Loadings plot of PC1 and PC2; Figure S7: Scores and loadings plot of
PCA for NMR data belonging to urine samples of neonates diagnosed with EOS (red circles) and
neonates with LOS (green circles). (a) PCA scores plot of EOS and LOS group. (b) Loadings plot
of PC1 and PC2; Figure S8: Box plots of the statistically significant metabolites highlighted from
univariate analysis with p-value < 0.05, between healthy control non-NICU neonates, LOS and EOS
groups; Table S1: 1H NMR Chemical Shifts of Metabolites detected in urine samples of neonates
and their main metabolic pathway; Table S2: Detailed results from the pathway analysis of the EOS
group’s significant metabolites; Table S3: Detailed results from the pathway analysis of the LOS
group’s significant metabolites.
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Abstract: Metabolomic tecniques have already been used to characterize two of the most common
coffee species, C. arabica and C. canephora, but no studies have focused on the characterization of green
and roasted coffee varieties of a certain species. We aim to provide, using NMR-based metabolomics,
detailed and comprehensive information regarding the compositional differences of seven coffee
varieties (C. arabica) of green and roasted coffee bean batches from Nicaragua. We also evaluated
how different varieties react to the same post-harvest procedures such as fermentation time, type
of drying and roasting. The characterization of the metabolomic profile of seven different Arabica
varieties (Bourbon-typica), allowed us also to assess the possible use of an NMR spectra of bean
aqueous extracts to recognize the farm of origin, even considering different farms from the same
geographical area (Nueva Segovia). Here, we also evaluated the effect of post-harvest procedures
such as fermentation time and type of drying on green and roasted coffee, suggesting that post-
harvest procedures can be responsible for different flavours. This study provides proof of concept
for the ability of NMR to phenotype coffee, helping to authenticate and optimise the best way of
processing coffee.

Keywords: metabolomics; phenotyping; nuclear magnetic resonance spectroscopy; coffee beans;
coffee processing; coffee varieties; post-harvest treatment

1. Introduction

Green coffee beans are one of the most traded commodities, and coffee is the most
consumed beverage after water [1]. Its popularity is due to the attractive organoleptic
and energetic characteristics of coffee [2]. The quality of coffee principally derives from
the grade of green coffee beans that are influenced by several factors, including genetics,
geographic localization, altitude of the plantation, climate, agricultural and postharvest
processing factors [3,4]. Moreover, the different processing techniques of coffee beans
can impact the final product. Usually, in wet-processed coffee, freshly harvested coffee
cherries are de-pulped to remove the skin and most of the fruit around the bean. Then,
de-pulped coffee beans are placed in tanks where they can naturally ferment for 12–24 h.
This fermentation begins to break down the mucilage, which is a sugary, slimy substance
that surrounds the beans. Then, the coffee is dried on courtyards under the direct sun or
in shade. The exact implementation of these steps influences the organoleptic properties
and the quality of the product [5], which can be described also by the presence and the
concentration of certain metabolites (small molecules < 1500 Da) in coffee beans [6]. These

Appl. Sci. 2021, 11, 11779. https://doi.org/10.3390/app112411779 https://www.mdpi.com/journal/applsci67



Appl. Sci. 2021, 11, 11779

differences in metabolites can be therefore used as indicators of coffee quality, and can
potentially direct the agronomic and post-harvest procedures to a high-quality grade final
product [7].

Metabolomics, the omic science that deals with metabolites the final products of all
biochemical reactions occurring in a certain biological system, can be considered an optimal
tool to characterize the totality of genetic and environmental interactions and their effect on
coffee [8]. Therefore, understanding how different factors affect coffee metabolites could be
crucial to improve coffee quality. Most of the commonly used analytical techniques have
been extensively applied to characterize the levels of certain specific chemical components
(e.g., sugars, caffeine, trigonelline, phenolics, tocopherols, chlorogenic acids and lipids) and
the metabolic profiles of the two mostly traded coffee species, Coffea arabica and C. canephora
(Robusta) [7,9–12]. The profiles of Arabica and Robusta species can be distinguished using
fatty acids, amino acid enantiomers, caffeine and other xanthine alkaloids, chlorogenic
acid concentration, as well as other compounds (furans, phenols, quinic acids, pyridines,
biogenic amines, terpenes and steroids) [13]. Arabica coffee accounts for 60% of global
production and is preferred by customers due to its distinct flavor and aroma [14]. There
are currently more than 50 commercially grown Arabica coffee cultivars but with different
traits that can be classified into four groups based on their genetic descriptions: Ethiopian
Landrace, Bourbon-Typica group, Introgressed, and F1 Hybrid [15]. However, little is
known about the chemical differences between coffee varieties [6,16,17]. Considering
that coffee species have demonstrated to react differently to external stimuli, it could be
interesting to evaluate how different varieties of the same species and cultivation type, react
if exposed to the identical post-harvest conditions or roasting procedure. Mengistu et al.
2020, demonstrated that different coffee varieties of C. arabica grown in the north-western
highlands of Ethiopia are characterized by different levels of trigonelline, chlorogenic acids
and caffeine. However, at present there are no metabolomic based studies determining the
fingerprint and the profile of green and roasted beans of different coffee varieties. Here,
NMR-based metabolomics is applied to characterize seven different coffee varieties of the
same species (C. arabica) and the same cultivation type (Bourbon-Typica) localized within
the same geographic area of Nicaragua. Moreover, we evaluated how they differently react
to the same post-harvest procedure and to the same roasting time and temperature. The
experimental design also allowed us to evaluate the differences between the same varieties
grown by different farms located within the same territory. The possibility to characterize
the profile of coffee of different producers, localized within a restricted geographic area, as
previously demonstrated by our group in cow’s milk [18], could be of potential interest for
precise authentication. This could pave the way for the authentic territorial characterization
of specialty coffees. Identifying qualitative attributes and characteristic metabolomic
profiles of each producer and promoting transparency concerning its origin could help
individual farmers to add value to their products and become more involved in upgrading
strategies.

2. Materials and Methods

2.1. Coffee Beans

A total of 36 green coffee beans batches were collected in 2019 from three distinct
farms (farm 1: 13◦47′11.8′ ′ N 86◦32′46.5′ ′ W, 1155 m AMSL (above mean sea level); farm 2:
13◦45′08.8′ ′ N 86◦29′42.3′ ′ W, 1033 m AMSL; farm 3: 13◦44′36.1′ ′ N 86◦24′25.0′ ′ W, 696 m
AMSL) localized in the Nicaraguan department of Nueva Segovia. Table 1 shows all the
characteristics of each batch. A total of seven different coffee varieties (C. arabica, Bourbon-
Typica) have been collected: catuai rojo (CR, number of coffee batches = 8), maracaturra
(MC, n = 4), bourbon (BO, n = 8), caturra (CA, n = 4), pacamara (PA, n = 4), tekesic (TE,
n = 4), bourbon rojo (BR, n = 4). Selected varieties are recognized by name according to
information provided by the growers. With the aim to evaluate the effect of the different
types of green coffee processing, we considered for each variety two different times of
fermentation (12 h and 24 h duration), and two drying procedures after full washing,
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namely “under shade” (Us) and “direct sun” (Ds), see Table 1. Green bean batches (80 g)
were roasted by Caravela Ltd. (London, UK) using an IKAWA professional roaster (IKAWA
Ltd., London, UK) at 220 ◦C for 5:30 min.

Table 1. List of the Nicaraguan coffee batches analyzed.

Farm Variety
Fermentation

Time (h)
Drying Municipality Batch Code

1 CR 12 Us Dipilto 346
1 CR 12 Ds Dipilto 347
1 CR 24 Us Dipilto 348
1 CR 24 Ds Dipilto 349
1 MC 12 Us Dipilto 352
1 MC 12 Ds Dipilto 353
1 MC 24 Us Dipilto 350
1 MC 24 Ds Dipilto 351
1 BO 12 Us Dipilto 356
1 BO 12 Ds Dipilto 357
1 BO 24 Us Dipilto 354
1 BO 24 Ds Dipilto 355
2 CA 12 Us Dipilto 337
2 CA 12 Ds Dipilto 336
2 CA 24 Us Dipilto 335
2 CA 24 Ds Dipilto 334
2 PA 12 Us Dipilto 341
2 PA 12 Ds Dipilto 340
2 PA 24 Us Dipilto 339
2 PA 24 Ds Dipilto 338
2 BO 12 Us Dipilto 345
2 BO 12 Ds Dipilto 344
2 BO 24 Us Dipilto 343
2 BO 24 Ds Dipilto 342
3 CR 12 Us Mozonte 362
3 CR 12 Ds Mozonte 363
3 CR 24 Us Mozonte 364
3 CR 24 Ds Mozonte 365
3 TE 12 Us Mozonte 366
3 TE 12 Ds Mozonte 367
3 TE 24 Us Mozonte 368
3 TE 24 Ds Mozonte 369
3 BR 12 Us Mozonte 358
3 BR 12 Ds Mozonte 359
3 BR 24 Us Mozonte 360
3 BR 24 Ds Mozonte 361

2.2. NMR Samples

Seven beans for each batch were grounded using a Caso 1830 coffee grinder, which
was thoroughly cleaned between the grinding of each sample. A total of ~0.2 g of crushed
beans were weighed into 2 mL Eppendorf tubes and 1 mL of ultrapure H2O (Synergy®,
Merck KGaA, Darmstadt, Germany) was added to each sample. Samples were centrifuged
5 min at 14,000 RCF (room temperature) and then incubated at 95 ◦C in closed 2 mL
Eppendorf tubes for 1 h. The aqueous extracts were centrifuged for 5 min at 14,000 RCF at
4 ◦C to let the solid debris settle. Then, 300 μL of the supernatant were transferred into a
new 1.5 mL Eppendorf tube and mixed with 300 μL of phosphate buffer (1.5 M K2HPO4,
100% (v/v) 2H2O, 2 mM NaN3, 5.8 mM TSP; pH 7.4, all reagents have been purchased
by Sigma-Aldrich, Darmstadt, Germany) and vortexed for 20 s. A total of 450 μL of this
mixture was transferred in a 4.25 mm NMR tube. Samples were weighted and extracted in
five technical replicates for each batch.
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2.3. NMR Spectroscopic Analysis and Data ProcessingNMR Data Analysis

One-dimensional (1D) 1H-NMR spectra were measured at 400 MHz using an AVANCE
III Bruker spectrometer equipped with a 5 mm BBI 400S1 H-BB-D-05Z probe. The probe
temperature was regulated at 300 K and for each spectrum, 64 scans were collected using
noesygpps1d (Bruker) pulse sequence, a spectral width of 12.47 ppm, a relaxation delay
of 4 s and a total acquisition time of 8 min. The receiver gain was set to 203. FIDs were
zero-filled and transformed using exponential line broadening (0.6 Hz), resulting in spectra
of 16,384 data points. A total of 260 noesygpps1d spectra were acquired. Because of the low
shimming quality, two NMR spectra of roasted coffee beans (361a and 369b) were removed
before the statistical analyses (total of considered spectra: n◦ green = 180; n◦ roasted = 178).

2.4. NMR Data Analysis

Resulting NMR spectra were aligned to the TSP signal (0 ppm) and input variables
for statistical analyses were generated via variable size binning (green coffee beans spectra
divided into 384 buckets, and roasted coffee beans spectra divided into 419 buckets).
Each spectrum was segmented into buckets of 0.02 ppm in the range between 0.4 and
10 ppm, except the resonance regions of caffeine (3.2, 3.4, 7.75 ppm) and chlorogenic acid
(6.2, 7.0, 7.50 ppm) because of the significant chemical shift changes observable due to
their interaction in aqueous solution [19]. Therefore, the buckets of these regions were
merged to have the protons of the corresponding molecule into the same bucket window
(merged in green buckets: 3.14–3.28, 3.34–3.44, 6.02–6.5, 6.58–7.2, 7.44–7.68, 7.7–7.9; merged
roasted buckets: 3.22–3.28, 3.36–3.48, 6.22–6.44, 6.72–7.2, 7.44–7.66, 7.7–7.88; Supplementary
Materials Figure S1). Moreover, the region of residual water (4.5 ppm–5.24 ppm) was
excluded. Buckets were then normalized to the measured weight of crushed beans, and
thereafter, Probabilistic Quotient Normalization (PQN) was applied. The resulting dataset
was used to perform multivariate statistical analysis.

A total of 20 metabolites were identified in all the NMR spectra of green coffee, and
29 were identified in all the roasted one. Among them, 15 metabolites are present both in
the NMR spectra of green and roasted aqueous extracts. Comprehensively, 34 different
metabolites were assigned (Figure 1). Since most of them resonate in crowded regions of
the spectrum, where the presence of other signals below certain peaks cannot be excluded,
only 15 metabolites in green and 25 metabolites in roasted coffee, corresponding to well
defined and resolved peaks in the spectra, were quantitated considering the area under
the peaks. Signal identification was performed using a library of NMR spectra of pure
organic compounds (AssureNMR 2.2 software, Bruker BioSpin, Karlsruhe, Germany),
public databases (e.g., FooDB, n.d.; PhytoHub, n.d., Edmonton, Alberta) storing reference
and literature data [7,10,12]. The resulting matrices were used to perform multivariate and
univariate data analyses.
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Figure 1. 1H NMR spectra (400 MHz) of water-soluble green (a) and roasted (b) coffee beans. (1) fatty acids; (2) isoleucine;
(3) valine; (4) propionic acid; (5) lactic acid; (6) alanine; (7) unknown1; (8) quinic acid; (9) acetic acid; (10) hydroxy
acetone; (11) acetone; (12) gamma-aminobutyric acid (GABA); (13) malic acid; (14) citric acid; (15) choline; (16) caffeine;
(17) theophylline; (18) myo-inositol; (19) glycolic acid; (20) trigonelline; (21) 2-furylmethanol; (22) 5-caffeolylquinic acid
(5-CQA); (23) sucrose; (24) citraconic acid; (25) chlorogenic acids; (26) fumaric acid; (27) xanthine; (28) formic acid;
(29) N-methylpyridinium (NMP); (30) nicotinic acid; (31) 5-hydroxymethylfurfural (5-HMF); (32) anserine; (33) methyl
xanthines; (34) putrescine.

2.5. Statistical Analysis

Data analyses were performed using R, an open-source software for the statistical
analysis of data. Multivariate analysis on metabolomic data was performed on processed
NMR bucketed spectra. Principal component analysis (PCA) was used as first exploratory
analysis [20]. The RF (“Random Forest” of R package) algorithm [21], was used to assess
whether green and roasted NMR metabolomic profiles can be used to classify samples
according to the variety, origin, and kind of drying (direct sun or under shadow) and
fermentation time (12 h or 24 h) of different coffee batches. Random Forest uses a collection
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of classification trees, each of them is grown by random selection of features from a
bootstrap sample at each branch. Class prediction is based on the majority vote of the
collection. While the tree is constructed, about one-third of the instances are left out of the
bootstrap sample. This data is then used as test sample to obtain an unbiased estimate of
the classification (OOB) error. Variable importance is evaluated by measuring the increase
of the OOB error when variables are permuted [22].

Univariate analysis was performed on quantitated metabolites. The Kruskal–Wallis
test followed by Dunn post hoc analysis [23] was chosen to infer significant differences
among independent samples from multiple groups (n◦ groups > 2). The Wilcoxon test was
chosen to gather differences between two groups and false discovery rate correction was
applied using the Benjamini and Hochberg method (FDR) [24], an adjusted p-value < 0.05
was considered statistically significant.

3. Results and Discussion

3.1. Unsupervised Analysis of 1H NMR Coffee Beans Spectra

As preliminary evaluation, PCA was performed on the datasets of bucketed 1H-
NMR spectra (5 independent samples for each batch), to investigate the quality and
the overall behaviour of the acquired green and roasted coffee spectra (Supplementary
Materials Figure S2). The sum of the variance of PC1 and PC2 accounts for a total of
89.9% and 76.5% in green and roasted coffee score plots, respectively (Supplementary
Materials Figure S2a,b). PCA shows a tendence to form clusters according to the variety
(Supplementary Materials Figure S2a,b). The farm effect seems to emerge particularly in
BO variety (Supplementary Materials Figure S2a,b), while e subtle differentiation by the
fermentation time (12 h vs. 24 h) emerges, especially for the MC and PA green coffee beans
water extracts (Supplementary Materials Figure S2a). This is in line with the observation
that there are varieties that, being more metabolically susceptible, could also change more
significantly in taste depending on the way in which they are processed [24]. Even less
marked, these differences are present also in the spectra of roasted beans.

3.2. Coffee Varieties

Each variety was analyzed, using RF as the supervised machine learning approach,
to demonstrate the presence of the fingerprint of coffee varieties both in green and in
roasted coffee using all NMR data (mean predictive accuracy 91.7%, Table S1). This type
of analysis conducted within the same farm, certainly highlights the strong differences
between varieties.

Then, the presence of the varietal fingerprint was investigated regardless of the farm
of provenance, using bucketed spectra (Figure 2a,b). The predictive accuracies of green
(Figure 2a) and roasted (Figure 2b) coffee beans models are similarly good (87.2% in
green and 86.0% in roasted), confirming, as previously seen (Supplementary Materials
Table S1), that even after roasting the varietal metabolomic fingerprint could be derived.
Among all variety classes, TE and BR class error is the highest (Figure 2a,b). The RF
variable importance is calculated for green and roasted coffee beans batches, and the
overall importance is assessed by determining the maximum for each descriptor over all
classes (Figure 2c,d). As shown in Figure 2c,d, there are some conserved regions (ppm),
present both in green and roasted coffee spectra, that mostly contribute as important
features ranked by RF: the region between 0.94 and 1.2 ppm could be mainly ascribed to the
broad signals of methyl and methylene protons of fatty acids (FA) chains [9], the regions
within 4.44 and 4.46 ppm, 8.08–8.12 ppm, 8.80–8.86 ppm and 9.12–9.14 ppm, attributable to
trigonelline (TR) protons, and the bucket range from 2.52 ppm to 2.76 ppm corresponding to
citric acid (CT) signals. Therefore, fatty acids, trigonelline and citric acid, can be considered
descriptors of the varieties both in green and in roasted NMR spectra. It emerges that fatty
acids and trigonelline maintain also the same trend between the considered varieties in
green and in roasted coffee.

72



Appl. Sci. 2021, 11, 11779

  
(a) (b) 

  
(c) (d) 

Figure 2. Variety fingerprint assessment through RF. Confusion matrices of RF algorithm of green (a) and roasted (b) coffee
bean spectra. A summary of the variable importance measures for the buckets of coffee NMR spectra with variety as
the response variable in the RF model is reported: (c) for green coffee model (a,d) for roasted coffee model (b). Buckets
are ranked according to the mean decrease in classification accuracy when they are permuted. Calculated RF class error
and mean decrease accuracy units can be also read as percentage (e.g., class error of 0.05, means 5%). Most important
buckets regions corresponding to assignable resonance present both in green and roasted coffee RF models (c,d) are labeled
accordingly: fatty acid, FA; trigonelline, TR; citric acid, CT. Corresponding RF score plots are reported in Supplementary
Materials Figure S3.

In addition, with the aim to compare the efficacy of the fingerprinting and profiling
approaches [8], RF was applied, even on the matrices of the corresponding peak areas
of the identified metabolites in green and roasted spectra (Figure 3a–d). Compared to
the RF models built on bucketed spectra (entire spectra, fingerprinting, Figure 2), models
built on metabolites resulted to be less accurate (green model, Figure 3a, pred. acc: 79.4%;
roasted model, Figure 3b, pred. acc: 69.7%). This suggests that the fingerprint approach is
preferable for variety classification/recognition [8].
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Figure 3. Variety profiling. Confusion matrices of RF algorithm of green (a) and roasted (b) metabolites of coffee beans. A
summary of the variable importance measures for the identified metabolites with variety as the response variable in the RF
model (a) of green coffee (c) and model (b) of roasted coffee (d). Metabolites are ranked according to the mean decrease in
classification accuracy. At the bottom are reported the boxplots of the trigonelline levels in green (e) and roasted beans
(f) among the seven different coffee varieties.
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The most important metabolites in discriminating varieties are ranked in Figure 3c,d.
This analysis reports trigonelline as the most contributing metabolite in the discrimination
of varieties, both in the profile of green (Figure 3c) and in the profile of roasted coffee
(Figure 3d).

Univariate statistical analysis (Figure 3e,f, Supplementary Materials Figures S4 and S5)
supports that trigonelline trends are conserved between coffee varieties, even after roasting
(BO > MC > PA > TE = BR > CA > CR).

An increment of quinic, acetic, fumaric and formic acids and a decrement of gamma-
aminobutyric acid (GABA), malic acid, theophylline, trigonelline, 5-CQA, sucrose and
chlorogenic acids occur following the roasting process (Supplementary Materials Figure S6).
Although it is already known that roasting leads to the alteration of these metabolites [12,25,26],
there are no data regarding the behavior of such components among different coffee
varieties after roasting. As previously seen, trigonelline is particularly interesting in this
respect, as it demonstrated a characteristic trend among varieties and was preservable even
after roasting. Characteristically higher amounts of trigonelline are usually detected in
C. arabica with respect to C. canephora [27]. This is in line with reports by Mengistu et al.,
2020 on Ethiopian coffee, suggesting a characteristic trend of trigonelline among different
varieties. The significance of trigonelline has been well established in previous studies, not
only as a precursor of flavor and aroma compounds (as one of the main contributors to
coffee’s bitter taste), but also as a beneficial nutritional compound [28].

The fact that the trigonelline trend is conserved among varieties after roasting could
suggest trigonelline as a potential candidate biomarker for variety determination.

3.3. Coffee Farms

RF models were also created to assess whether the characteristic fingerprint and/or
profile of the corresponding coffee farm can be derived from coffee batches of the same
variety. However, this hypothesis has been tested only in catuai rojo (CR) and bourbon
(BO), since among the seven varieties collected, only these two are produced by more than
one farm (see Table 1). RF models have been built to distinguish CR batches of farm 1 and
farm 3 and BO batches of farm 1 and farm 2. All the four RF models built to distinguish
farms of CR show optimal predictive accuracies (pred. acc%. 94 ± 3.15) both for green and
roasted coffee (Supplementary Materials Figure S7a–d). Consistently with the summaries
of the most important variables (Supplementary Materials Figure S7a1–d1), univariate
analysis on metabolites shows significant higher content of quinic acid, alanine, trigonelline,
caffeine, and lower amounts of theophylline, 5-CQA, citric and chlorogenic acid in green
coffee beans of the catuai rojo variety of farm 1 when compared to farm 3 (Figure 4a).
Higher levels of choline, sucrose, xanthine, and lower levels of 5-hydroxymethyl furfural
(5-HMF), fumaric acid, hydroxyacetone and formic acid can be observed in CR roasted
coffee of farm 1 (Figure 4b). Even the four RF models built to classify BO coffee batches
according to the farm of origin (farm 1 vs. farm 2) show optimal classification accuracies
(pred. acc%. 98.1 ± 2.4, Supplementary Materials Figure S7e–h). The summary of variables
importance (Supplementary Materials Figure S7f1) and univariate analysis on metabolite
levels (Figure 4c) report higher amounts of alanine, 5-CQA, malic and chlorogenic acid,
and lower levels of theophylline, quinic acid, GABA and sucrose in green beans of farm 1
when compared to farm 2. The trends of theophylline, 5-CQA and chlorogenic acid are
conserved even after roasting (see Figure 4d). Moreover, in roasted BO coffee beans of farm
1 compared to farm 2, lower amounts of 5-HMF, lactic acid, hydroxyacetone, formic and
acetic acid and myo-inositol are detected. Taken together, these results suggest that farm 1
is characterized by higher levels of theophylline when compared with the other farms.
Theophylline is a xanthine alkaloid and it is usually detected in higher amount in Robusta
than in Arabica beans [29,30]. It has already been demonstrated by Mehari et al., that the
concentrations of xanthine alkaloids (such as theophylline, theobromine, trigonelline and
caffeine) could change significantly in coffee according to geographical origin [31]. Higher
levels of theophylline could derive from different caffeine metabolisms of the plant, but
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also from caffeine degradation performed by natural occurring microorganisms during
bean fermentation [32,33].

  

(a) (b) 

  
(c) (d) 

Figure 4. Log2(FC) of metabolites’ concentrations characteristic of distinct farms. Positive Log2(FC) values represent
higher level of green coffee (a) and roasted coffee (b) metabolites in farm 1 compared to farm 3 (negative Log2(FC) values)
considering catuai rojo batches; positive values represent higher levels of green coffee (c) and roasted coffee (d) metabolites
in farm 1 compared to farm 2 (negative Log2(FC) values) considering bourbon batches. Dark gray bars represent the
metabolites which are statistically significant after the FDR p-value correction (FDR < 0.05), gray bars for those metabolites
that show a p-value < 0.05 but lose significance after the False Discovery Rate correction. Asterisks represent the Cliff’s delta
effect-size, were “***” means large effect, “**” medium effect.

3.4. Evaluation of the Fermentation and Drying Effects on Coffee Metabolomic Profile

To evaluate the effect of the two times of fermentation (12 h and 24 h), the RF approach
was applied on green and roasted coffees, using either the matrices of bucketed spectra or
the matrices of metabolites (Supplementary Materials Figure S8a–d). Considering all four
models created, the fermentation time mostly affected the profile of green coffee, while
the effect was not remarkable in roasted coffee. The RF model built on green metabolites
resulted to be the most effective in discriminating the fermentation times (pred. acc%.
72.2, Supplementary Materials Figure S8b). A total of 24 h fermented coffee beans were
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characterized by higher levels of acids (in particular: malic acid, acetic acid, chlorogenic
acids, 5-CQA, citric acid, fumaric acid, GABA, quinic acid, as reported in Supplementary
Materials Figure S8b1).

Univariate analysis corroborates the fact that malic acid levels are statistically different
in the two groups. Among all the fifteen quantified metabolites in green coffee beans, only
malic acid remained statistically significant after the false discovery rate (FDR) correction
(malic acid: p-value = 0.0002, FDR = 0.003, cliff’s delta = small). Based on the good
performance of the model reported as b in Supplementary Materials Figure S8, to check
if distinct varieties reacted differently to 12 h or 24 h of fermentations, the effect was
evaluated on green coffee metabolites considering each variety separately. As can be seen
in Figure 5, each variety reacts differently to the time of fermentation. In particular, the
profiles of fermentation times can be distinguished with a predictive accuracy ~100% in
maracaturra, pacamara and bourbon rojo (Figure 5b,e,f), suggesting a remarkable change
induced by the time of fermentation. As previously reported, the coffee batches longer
fermented are characterized by higher levels of acids.

 

 

(a) (b) 

  
(c) (d) 

Figure 5. Cont.
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Figure 5. RF models on green coffee metabolites characterizing each variety according to 12 or 24 h of beans fermenta-

tion. (a) catuai rojo; (b) maracaturra; (c) bourbon; (d) caturra; (e) pacamara; (f) tekesic; (g) bourbon rojo. Mean decrease
accuracy values are reported on the orthogonal axis of each plot.

The drying effect was also evaluated considering coffee batches processed “under
shade” and those at “direct sun” exposure. Four RF models were created using available
data (Supplementary Materials Figure S9a–d): also, in this case the effect of the different dry-
ing procedure is more remarkable in green coffee (Supplementary Materials Figure S9a,b),
and in particular the RF model built on metabolites provided a better discrimination of
green coffee batches processed in the two different manners (overall predictive accuracy:
71%, Supplementary Materials Figure S9b). Among the quantified metabolites, amino
acids (valine and alanine) seem to be the most affected by these procedures (Supplemen-
tary Materials Figure S9b1). Univariate analysis confirms valine as the only metabolite
which remained significantly altered after the FDR correction (valine: p-value = 0.0006,
FDR = 0.008, cliff’s delta = small). The effect of the drying procedure is detectable in each
variety Figure 6. In Figure 6 it emerges that valine levels are higher in all coffee beans
batches dried at direct sun. Alanine, acetic and chlorogenic acid levels are generally altered
in all the considered models, but there is not a unique trend common for all the varieties
(Figure 6a–e), demonstrating that each variety differently reacts to the type of drying.
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Figure 6. Cont.
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Figure 6. RF models on green coffee metabolites characterizing each variety according to the different drying procedures used: “under
shade” and “direct sun”. (a) catuai rojo; (b) maracaturra; (c) bourbon; (d) caturra; (e) pacamara; (f) tekesic; (g) bourbon rojo. Mean
decrease accuracy values are reported on the orthogonal axis of each plot.

4. Conclusions

Coffee metabolomics research has primarily focused on green and roasted coffee beans
from the two main varieties, C. arabica and C. canephora. To the best of our knowledge, there
are no metabolomic based studies about the characterization of coffee varieties considering
both green and roasted coffee. Here, we have presented detailed and comprehensive
information regarding the different metabolomic composition of seven Arabica coffee
varieties, using an NMR-based metabolomic approach. For each variety, two points of
fermentation time (12 h vs. 24 h) and two types of drying procedures (under shade and
direct sun) have been considered. The analyses were performed both considering the entire
spectra to evaluate the fingerprint of each variety, and on the identified metabolites, both
for green and for roasted coffee beans.
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The results demonstrated that NMR spectra of both green and roasted coffee beans
can be used to recognise coffee varieties with high accuracies (87.2% and 86% using,
respectively green and roasted NMR spectra to build the model).

Moreover, it was also possible to characterize, using this approach, the metabolomic
profile of distinct coffee farms within the same restricted geographical area of Nicaragua
cultivating the same varieties. Our results demonstrate that, even when coffee batches are
processed following the same post-harvest procedure, the characteristic fingerprint of each
farm could be derived with high predictive accuracies. The opportunity to quickly obtain
NMR spectra with a minimal sample preparation, and to use them to classify samples
according to the variety, makes the NMR-based metabolomic approach a suitable approach
to recognize original products. Moreover, NMR spectroscopy may be considered as a
“magnetic tongue” that analyses and predicts food flavours without being targeted and
disruptive.

Therefore, the effects of the time of fermentation and drying types were also evaluated,
suggesting that both post-harvest procedures are capable of inducing changes in the
metabolic profile of coffee beans that are responsible for different flavours in the cup. In
particular, the amount of malic acid, which contributes to a tart acidulous and sour taste,
is increased in 24 h of fermentation batches of CR, PA, TE, and BR; trigonelline, instead,
related to a bitter taste, is increased in 12 h fermentation in CA, while the other varieties
show weaker variation based on the treatments; formic acid which gives a sour/lemon
taste, is increased in MC green beans at 24 h of fermentation, while it is decreased in BR
cultivar at 24 h of fermentation. Caffeine content seems also to be slightly increased by
longer fermentation time. The content of acetic acid, which contributes to a sour vinegar
taste, seems to be higher, particularly in CR and PA if exposed to the sun drying, instead,
for the other varieties, higher content can be obtained if beans are exposed under shade.
The present study suggests that post-harvest treatment procedures can differently affect the
amount of aroma precursors within distinct coffee varieties and that the kind of processing
should be optimized specifically for each variety.
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Farms’ fingerprint and profiling assessment through RF. Figure S8: RF models built on green and
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Abstract: NMR measurements combined with chemometrics allow achieving a great amount of
information for the identification of potential biomarkers responsible for a precise metabolic pathway.
These kinds of data are useful in different fields, ranging from food to biomedical fields, including
health science. The investigation of the whole set of metabolites in a sample, representing its
fingerprint in the considered condition, is known as metabolomics and may take advantage of
different statistical tools. The new frontier is to adopt self-learning techniques to enhance clustering
or classification actions that can improve the predictive power over large amounts of data. Although
machine learning is already employed in metabolomics, deep learning and artificial neural networks
approaches were only recently successfully applied. In this work, we give an overview of the statistical
approaches underlying the wide range of opportunities that machine learning and neural networks
allow to perform with accurate metabolites assignment and quantification.Various actual challenges
are discussed, such as proper metabolomics, deep learning architectures and model accuracy.

Keywords: NMR; metabolomics; biomarkers; clustering; artificial intelligence; machine learning;
deep learning; health science

1. Introduction

Metabolomics corresponds to the part of omics sciences that investigates the whole set
of small molecule metabolites in an organism, representing a large number of compounds,
such as a portion of organic acids, amino acids, carbohydrates, lipids, etc. [1–3]. The in-
vestigation and the recording of metabolites by target analysis, metabolic profiling and
metabolic fingerprinting (i.e., extracellular metabolites) are fundamental steps for the dis-
covery of biomarkers, helping in diagnoses and designing appropriate approaches for drug
treatment of diseases [4,5]. There are many databases available with metabolomics data,
including spectra acquired by nuclear magnetic resonance (NMR) and mass spectrometry
(MS), but also metabolic pathways. Among them, we mention the Human Metabolome
Database (HMDB) [6] and Biological Magnetic Resonance Bank (BMRB) [7] that contain
information on a large number of metabolites gathered from different sources. By means
of the corresponding web platform, it is possible, for instance, to search for mono- and
bi-dimensional spectra of metabolites, starting from their peak position [3]. However,
metabolomics databases still lack homogeneity mainly due to the different acquisition
conditions, including employed instruments. Thus, the definition of uniform and mini-
mum reporting standards and data formats would allow an easier comparison and a more
accurate investigation of metabolomics data [8].

In recent years, NMR has become one of the most employed analytical non-destructive
techniques for clinical metabolomics studies. In fact, it allows to detect and quantify
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metabolic components of a biological matrix whose concentration is comparable or big-
ger than 1 μM (see Appendix A). Such sensitivity, relatively low if compared with other
MS techniques, allows to assign up to 20 metabolites in vivo, and up to 100 metabolites
in vitro [9–11]. Numerous strategies are being designed to overcome actual limitations,
including a lower selectivity compared to the MS technique coupled with gas or liquid
chromatography (GC-MS and LC-MS, respectively) and a low resolution for complex bio-
logical matrices. These include the development of new pulse sequences mainly involving
field gradients for observing multidimensional hetero- or homo-nuclear correlations [12].
Within metabolomics investigations, NMR analyses are usually coupled with statistical
approaches: sample randomization allows to reduce the correlation between confound-
ing variables, sample investigation order and experimental procedures. In the last ten
years, nested stratified proportional randomization and matched case-control design were
adopted in the case of imbalanced results [13–15].

In any case, data pre-processing is a relevant step before performing data analysis
by means of a conventional approach or a statistical one. The goal of pre-processing is to
homogenize the acquired data, avoiding the presence of instrumental bias mainly involving
peaks’ features for a better quantification of metabolites. For example, the pre-processing
of NMR spectra concerns phasing, baseline correction, peak alignment, apodization proce-
dures, normalization and binning [16,17] (see Figure 1). In particular, the binning procedure
corresponding to the spectral segmentation is performed mainly in those cases of challeng-
ing spectral alignment or simply for reducing the data points [18]. Even though binning
reduces data resolution, binning procedures are commonly used [19–21].

Figure 1. Schematic workflow illustrating the steps of NMR based metabolomic studies coupled
with chemometrics and pathway analysis. (1) Sample preparation and NMR tube filling (top left);
(2) experimental parameters setting and data acquisition (top right); (3) data processing (middle left);
(4) execution of multivariate statistical analysis (bottom right); (5) determination of metabolic path-
ways (bottom left). Some figures are reprinted from Refs. [22,23] under the terms of the CC-BY license.
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For what concerns normalization, recorded spectra are usually normalized by the
total integrated area and thus the metabolites concentration can be compared among
different samples. In the case of large signals variation, probabilistic quotient normalization
can be adopted instead [24]. Finally, deconvolution is also employed for the necessary
assignment and quantification of those metabolites whose signals overlap [25,26]. All
these pre-processing methods are also chosen, taking into account that the approaches
adopted for the data processing are essentially dual: (1) chemometrics, consisting in
the employment of statistical analysis for the recognition of similar patterns and for the
significant determination of intensity values, and (2) quantitative metabolomics, based on
an initial assignment and quantification of metabolites with the subsequent statistics. We
outline that, from one side, chemometrics allows an automatic and non-biased classification
of metabolites, whereas from the other side, it needs a big number of uniform spectra.
These requirements do not apply for quantitative metabolomics [27,28].

In order to gain useful insights and a corresponding interpretation of NMR outcomes,
it is indeed mandatory to use statistical and bioinformatic tools, considering the complex
output generated [22]. In this work, we discuss the main statistical approaches currently
used for NMR-based metabolomics analysis, pointing out the advantages and disadvan-
tages. Illustrative examples are reported, and the actual challenges influencing the analysis
are also discussed. On the basis of these evidences, it emerged that innovative experi-
mental procedures would need to be implemented in order to improve the potentiality
of existing approaches (i.e., adequate sample sizes and conditions), thereby combining
their complementing features with the aim to achieve most of the metabolomic information
from an NMR measurement. Nevertheless, on considering the high complexity of biologi-
cal systems, each regulation level, including the genome, should be considered, yielding
corresponding insights on cellular processes. Thus, data coming from different biological
levels should be integrated within the same analysis for the observation of interconnectivity
changes between the different cellular components. In this context, neural network-based
approaches could be adequate in responding to this major challenge and indeed to the
exploitation of proper approaches for the weighted consideration of data corresponding to
different layers of biological organization.

2. Conventional Approaches

2.1. Unsupervised Methods

In the analysis of large metabolomic NMR datasets, unsupervised techniques are
applied with the aim to identify any significant pattern within unlabeled databases without
any human action. Below, we introduce and describe several unsupervised methods, high-
lighting their characteristics and implementation procedures. In particular, we describe the
following unsupervised techniques: (a) principal component analysis (PCA); (b) clustering;
(c) self-organizing maps (SOMs).

2.1.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is employed for lowering the dimensionality
of high-dimensional datasets, preserving as much information as possible by means of a
“linear” multivariate analysis [29,30]. This approach employs a linear transformation to
define a new smaller set of “summary indices”—or “principal components” (PCs)—that are
more easily visualized and analyzed [31]. In this frame, principal components correspond
to new variables obtained by the linear combination of the initial variables by solving
an eigenvalue/eigenvector problem. The first principal component (PC1) represents the
“path” along which the variance of the data is maximized. As happens for the first principal
component, the second one (PC2) also defines the maximum variance in the database. Nev-
ertheless, it is completely uncorrelated to the PC1 following a direction that is orthogonal
to the first component path. This step reiterates based on the dimensionality of the system,
where a next principal component is the direction orthogonal to the prior components
with the most variance. If there are significant distinctions between the ranges of initial
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variables (those variables with smaller ranges will be dominated by those with larger ones),
distorted results may occur. To avoid this kind of problem, it is required to perform a
standardization operation before executing PCA that corresponds to a transformation of the
data into comparable scales. This can be done by using different scaling transformations,
such as autoscaling, the generalized logarithm transform or the Pareto scaling with the aim
to enhance the importance of small NMR signals, whose variation is more affected by the
noise [32]. One of the most used transformation is the mean centered autoscaling:

value − mean
st.deviation

, (1)

Furthermore, the computation of the covariance matrix is required to discard re-
dundant information mainly due to the presence of any relationship between the initial
variables of the data. The covariance matrix is symmetric (a n × n) being composed by the
covariances of all pairs of the considered n variables (x1, ..., xn):

⎡
⎢⎣

Cov(x1, x1) · · · Cov(x1, xn)
...

. . .
...

Cov(xn, x1) · · · Cov(xn, xn)

⎤
⎥⎦ (2)

In this frame, PCs can be obtained by finding the eigenvectors and eigenvalues from
this covariance matrix. Figure 2 shows a graph with only three variables axes of the n-
dimensional variables space. The red point in this figure represents the average point used
to move the origin of the coordinate system by means of the mean-centering procedure
in the standardization process. Once we define PC1 and PC2, as shown in Figure 2, they
define a plane that allows inspecting the organization of the studied database. Further,
the projection of the data with respect to the new variables (PCs) is called the score plot,
and if the data are statistically different/similar, they can be regrouped and classified.

Figure 2. Example plot with 3 variable axes in a n-dimensional variable space. The principal
components PC1 and PC2 are reported.

PCA is usually applied in NMR-metabolomic studies because it simplifies the in-
vestigation of hundreds of thousands of chemical components in metabolomic database
composed of several collected NMR spectra. In this way, each NMR spectrum is confined
to a single point in the score plot in which similar spectra are regrouped, and differences on
the PC axes shed light on experimental variations between the measurements [28,33–35].
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However, it is noteworthy that PCA, like the other latent structure techniques, must be
applied to matrices where the number of cases is greater than the number of variables [36].

The PCA technique can also be combined with other statistical approaches, including
the analysis of variance (ANOVA) as reported by Smilde et al. [37] in their ANOVA-
simultaneous component analysis (ASCA). This method is able to associate observed
data changes to the different experimental designs. It is applied to metabolomics data,
for example, to study variations of the metabolites level in human saliva due to oral
rinsing [38], or the metabolic responses of yeast at different starving conditions [39].

2.1.2. Clustering

Clustering is a data analysis technique used to regroup unlabeled data on the basis of
their similarities or differences. Examples of clustering algorithms are essentially the follow-
ing: exclusive, overlapping, hierarchical, and probabilistic clustering [40,41]. Exclusive and
overlapping clustering can be described together because they differ for the existence of
one or multiple data points in one or more clustered sets. In fact, while exclusive clustering
establishes that a data point can occur only in one cluster, overlapping clustering enables
data points to be part of multiple clusters with different degrees of membership. Exclusive
and overlapping clustering are hard or k-means clustering and soft or fuzzy k-means
clustering, respectively [42–44]. In hard clustering, every element in a database might be
a part of a single and precise cluster, whereas in soft clustering, there is a probability of
having each data point into a different cluster [44]. Generally speaking, k-means clustering
is a “distance-based” method in which each “clustered set” is linked with a centroid that is
considered to minimize the sum of the distances between data points in the cluster.

Hierarchical clustering analysis (HCA) is used to recognize non-linear evolution in
the data—contrary to what was done by the PCA which shows a linear trend—by means of
a regrouping of features sample by sample without having any previous information [45].
This clustering method could be divided in two groups: (i) agglomerative clustering, and
(ii) divisive clustering [46,47]. The first one allows to keep data points separate at first,
unifying them iteratively later until it one cluster with a precise similarity between the data
points is obtained. In the opposite way, divisive clustering creates a separation of data
points in a data cluster on the basis of their differences. The clustering analysis leads to
dendrograms that are diagrams in which the horizontal row represents the linked residues,
whereas the vertical axis describes the correlation between a residue and previous groups.
Figure 3 reports a dendrogram obtained by means of hierarchical cluster analysis performed
on 1H NMR data on the plasma metabolome of 50 patients with early breast cancer [48].
This kind of analysis allowed to discriminate among three different groups: LR-1 (red),
LR-2 (blue) and LR-3 (green). They are characterized by significantly different levels of
some metabolites, such as lactate, pyruvate and glutamin [48]. Furthermore, covariance
analysis of NMR chemical shift changes allows defining functional clusters of coupled
residues [49].

Clustering has been largely applied for metabolomic studies covering fields from
medicine to food science, as is reported in the Applications section (Section 4). Here, we
anticipate that clustering is essentially adopted for samples’ classification by grouping
metabolites without any external bias. This allows entering into the details of the precise
metabolic pathways that may provide a connection between metabolomics and molecular
biology. In such a way, many biomedical applications, including diagnostics and drug
synthesis, would reach important improvements.
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Figure 3. An example of a dendrogram obtained by means of hierarchical cluster analysis performed
on 1H NMR data on the plasma metabolome of 50 patients with early breast cancer. From the analysis,
3 different groups are classified: LR-1 (red), LR-2 (blue) and LR-3 (green). In this case, the Ward
algorithm is adopted for measuring the distance. Figure reprinted from Ref. [48] under the terms of
the CC-BY license.

2.1.3. Self-Organizing Maps (SOMs)

Self-organizing maps (SOMs) were introduced by Kohonen [50] and are widely em-
ployed to cluster a database, reduce its dimension and detect its properties by projecting
the original data in a new discrete organization of smaller dimensions. This is performed
by weighting the data throughout proper vectors in order to achieve the best representation
of the sample. Starting from a randomly selected vector, the algorithm constructs the map
of weight vectors for defining the optimal weights, providing the best similarity to the
chosen random vector. Vectors with weights close to the optimum are linked with each
unit of the map allowing to categorize objects in map units. Then, the relative weight
and the total amount of neighbors reduce over time. Therefore, SOMs have the great
power of reducing the dimensionality of the system while preserving its topology. For that
reason, they are commonly adopted for data clustering and as a visualization tool. Another
great asset of SOMs concerns the shapes of the clusters that do not require being chosen
before applying the algorithm, whereas other clustering techniques usually work well
on specific cluster shapes [51]. However, some limitations are evidenced using SOMs.
In fact, they are normally of low quality, and the algorithm must be run many times before
a satisfactory outcome is reached. Further, it is not easy to furnish information about
the whole data distribution by only observing the raw map. Figure 4 reports the cluster
of subjects involved in the study of renal cell carcinoma (RCC) by (NMR)-based serum
metabolomics that was generated by using SOM (including the weighted maps for the
considered 16 metabolites) [52].

The achieved results clearly separate healthy subjects (left region) and RCC patients
(right region) within the SOM. Moreover, the weighted maps of the individual metabolites
allow to identify a biomarker cluster including the following seven metabolites: alanine,
creatine, choline, isoleucine, lactate, leucine, and valine. These may be considered for an
early diagnosis of renal cell carcinoma [52].
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Figure 4. An example of SOM model for studying renal cell carcinoma (RCC). (A) SOM classification
and discrimination between healthy subjects (left region) and RCC patients (right region) by consider-
ing 16 metabolites extracted by means of NMR spectroscopy on serum samples. (B–Q) Weight maps
of the considered 16 metabolites. Darker colors correspond to higher SOM weights. Figure reprinted
from Ref. [52] under the terms of the CC-BY license.

2.2. Supervised Methods

Problems or datasets having response variables (discrete or continuous) are generally
treated with supervised methods. We distinguish between classification or regression
problems, depending on whether the variables are discrete or continuous, respectively.
The supervised technique is based on the association between the response variable (used
to drive the model training) and the predictors (namely covariates) with the aim to perform
precise predictions [53–55]. In fact, first, a training dataset is used as fitting model, while,
in a second step, a testing dataset is used to estimate the predictive power. The relevant
predictors are chosen by three types of feature selection methods [56] whose merits and
demerits are listed in the scheme drawn in Figure 5 [57]:

1. The filter method marks subgroups of variables by calculate “easy to compute” quan-
tities ahead of the model training.

2. The wrapper method marks subgroups of variables by applying the chosen trained
models on the testing dataset with the aim to determine the achieving the optimal
performance.

3. The embedded method is able to ascertain simultaneously the feature selection and
model structure.
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Figure 5. Scheme about merits and demerits of supervised methods, including filter, wrapper and
embedded feature selection approaches.

Then, to measure the robustness of the fitting model and the predictive power, sta-
tistical approaches are adopted. Among them, we mention the root mean square error
for calculating regression, sensitivity and specificity and the area under the curve for
achieving classification.

For simplicity, let us consider that in binary classification, the test prediction can
provide the following four results: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). The model sensitivity, which coincides with the TP rate (TPR,
i.e., the probability of classifying a real positive case as positive), is defined as TP/(TP + FN).
On the contrary, the specificity is defined as TN/(FP + TN) and is linked to the ability of
the test to correctly rule out the FP (FP rate, FPR = 1 − specificity). In order to evaluate
the performance of binary classification algorithms, the most used approach is that of the
receiver operating characteristic (ROC) curve, which consists of plotting TPR vs. FPR for
the considered classifier at different threshold values (see Figure 6). The performance of
the classifier is usually indicated by the value of the corresponding area under the ROC
curve (AUC). Figure 6 shows, as an example, the ROC curve and the corresponding AUC
value for a classifier with no predicting power (red dashed line with AUC = 0.5), a perfect
classifier (green dotted line with AUC = 1) and a classifier with some predictive power
(blue solid line with AUC∼0.8).

Furthermore, several resampling methods, including bootstrapping and cross validation,
can be adopted to achieve more reliable outcomes. This is a general description of the super-
vised methods; in the next, we will briefly enter into the details for some of them including
random forest (RF) and k-nearest neighbors (KNN), principal component regression (PCR),
partial least squares (PLS), and support vector machine (SVM).
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Figure 6. ROC curves and corresponding AUC values for three classifiers: no predicting power (red
dashed line with AUC = 0.5), perfect classifier (green dotted line with AUC = 1) and some predictive
power (blue solid line with AUC∼0.8).

2.2.1. Random Forest (RF) and k-Nearest Neighbors (KNN)

Although RF and KNN algorithms can be used for both supervised and unsupervised
statistical analyses, here, we deal with the supervised aspects.

Random forest, as the name itself suggests, is composed by a proper number of
decision trees working as an ensemble but individually depict a class from which the
most representative corresponds to the model’s prediction. Therefore, the idea behind the
random forest algorithm is to correct the error obtained in one selection tree by using the
predictions of many independent trees and by using the average value predicted by all
these trees [58]. RF can deal with categorical features by treating both high dimensional
spaces and a large number of training examples. In detail, the first step in a RF scheme is to
create a selection tree; then, by using the observations {Yj, Xj}1<j<K, where Xj is usually
a vector and Yj is a real number, different sets can be obtained using different splitting
criteria which operate on the considered vectors. Each criterion allows the initial subset to
be divided into two subsets. An example of the selection tree is shown in Figure 7:

Figure 7. Example of decision tree with a different action corresponding to a different conditions set.

Given an observation Xi, and known selection tree, one determines in which final
node the vector Xi is classified in order to predict Y.
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Instead, the k-nearest neighbors (KNN) algorithm considers that similar outcomes lie
near each other. Given again an observation Xi and with the aim to predict Y, the KNN
algorithm selects the k-nearest observations of Xi in {Yj, Xj}1<j<K. Let i1, ..., ik be the k
values which provide the k minimum values of the function: g(j) = d(Xj - Xi). These
minimum values can be equal if there are multiple values of Xj at the same distance from
Xi [59]. There are at least the three possibilities for the distance (Euclidean, Manhattan and
Minkowski). So, the value predicted for Yi is the mean value of the k values Yj for the k
nearest neighbors of Xi:

Ŷi =
1
k

k

∑
1

Yik (3)

2.2.2. Principal Component Regression (PCR) and Partial Least Squares (PLS)

It is well known that a linear model can be written as Y = Xβ + ε, in which Y
represents the response variable (it can be a single variable or even a matrix), and X
represents the design matrix having variables along its columns and observations along its
rows; β corresponds to the coefficients vector (or matrix) and ε represents the random error
vector (or matrix). For a small number of variables and a high number of observations, it is
commonly adopted for β the ordinary least square solution ((XTX)−1 XTY). In the opposite
case, where it is not possible to evaluate the inverse of the singular matrix (XTX), other
solutions have to be considered [60]. One of them is the principal component regression
(PCR) that makes use of the first PCs achieved by running PCA to fit the linear regression
model instead of using all original variables. However, often, there is not a good correlation
between these PCs and the response variables Y. Alternatively, the partial least squares
(PLS) regression method is more efficient [61]. In the latter case, one has to determine
the most suitable number of components to maintain, and then PLS evaluates a linear
regression model by employing the projection of predicted and observed variables to a new
space according to the following relations:

Y = UQ′ + F (4)

X = TP′ + E (5)

where T and U, analogously to PCA, correspond to X and Y scores and are matrices
constituted by latent variables; at the same time, P′ and Q′ correspond to X and Y loadings,
representing the weight matrices of the linear combinations; E and F represent all that
is not possible to explain by using latent variables. Each of them, being expressed as a
linear combination of X and Y, can be rewritten in terms of weight factors as t = Xw and
u = Yc, where t and u are two latent variables and w and c are the corresponding weight
vectors. Indeed, PLS evaluates that set of X variables that is able to explain the majority
of the changes in Y variables. Therefore, PLS, by using orthogonal conditions, evaluates
those latent variables t and u, whose covariance is maximal. Ultimately, there are some
substantial differences between the PCA and PCR-PLS approaches. In fact, as already
mentioned, PCA pertains to unsupervised methods, whereas PCR and PLS pertain to
supervised approaches. Moreover, as already mentioned, PCR takes advantage of the first
PCs obtained from the PCA, using them as predictors for fitting the regression of a latent
variable. Hence, PCA is able to explain just the X variance, whereas PLS allows achieving
a multi-dimensional route in the X space, indicating the maximum variance route in the
Y space. In other words, in PCR, the principal components become the new (unrelated)
variables of the regression, which thus becomes more easily resolvable. Otherwise, in PLS,
the Y variables are decomposed into principal components too, while those of X are rotated
along the direction of maximum correlation with respect to the principal components of
Y. Therefore, the purpose of PLS is to determine latent variables similar to the principal
components that maximize the variance of both matrices.

We also mention the partial least squares discriminant analysis, or PLS-DA, which
is an alternative when the dependent variables are categorical. Discriminant analysis is
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a classification algorithm which adds the dimension reduction part to it. PLS-DA allows
the employment of predictive and descriptive algorithms other than for discriminative
variable choice (see Figure 8a). PLS-DA is executed on NMR spectra for different aims,
including food authentication and diseases classification in medical diagnostics [62–65].
However, a more comprehensive variant of PLS is the orthogonal PLS (OPLS) method.
It is finalized to separate systematic changes in X into two parts; one of them is in linear
relationship with Y and another is irrelevant to Y (generally, perpendicular to it). So, some
changes in X which are perpendicular to Y are eliminated, while uncorrelated changes in X
are separated from correlated ones (see Figure 8b). In this way, the uncorrelated changes
are analyzed separately, favoring the prediction ability and the interpretation of results [66].
This latter is one of the advantage of OPLS with respect to PLS together with the aspect that
the inner repetition is not time consuming, which can accelerate the calculation process.
In fact, OPLS is more appropriate for discriminating the precise differences between two
systems, providing information on the variables with the largest discriminatory power.

Figure 8. (a) Bidimensional PLS-DA score plot of urine samples obtained from different hospitals.
HB—Basurto Hospital, CRC—Cruces Hospital, HD—Donosti Hospital, TX—Txagorritxu Hospital.
Figure reprinted from [67] under the terms of Creative Commons Attribution 4.0 International License.
(b) OPLS scheme.

2.2.3. Support Vector Machine (SVM)

Considering the data organized into a matrix, each subject corresponding to a row
vector can be conceived as a single point in the p-space of the considered variables. Data
can be essentially organized into two main groups, “separated by a gap” whose margins are
defined by support vectors. Instead, the edge located in the gap center separating the data
corresponds to the dividing hyperplane. SVM tries to define the support vectors, and the
prediction will indicate to which hyperplane side the new observations belong. However,
generally, data cannot be linearly separated, and hence it is difficult to determine the
separating hyperplane. Nevertheless, SVM can accurately execute a non-linear classification
throughout the so-called kernel trick. It consists of an implicit mapping of the considered
inputs into high-dimensional feature spaces with the objective to their linear separation
in that space [68]. In detail, the optimal hyperplane is the one that provides the highest
separation between the two classes. With greater definition, by separation, we mean the
maximum amplitude (or width, w) between the lines parallel to the hyperplane without any
data points in between. This optimal hyperplane is called the maximum-margin hyperplane
and the corresponding linear classifier is the maximum-margin classifier (Figure 9).
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Figure 9. Linear SVM model highlighting the classification of two classes (red and blue). Figure
reprinted from Ref. [68] under the terms of the HighWire Press license.

In addition, in the presence of mislabeled data, the SVM can provide inadequate
classifications; therefore, only a few misclassified subjects are found instead by maximiz-
ing the separation between the two classes. Finally, validation methods and diagnostic
measures are analogous to those adopted in PLS methods. Ultimately, SVM is one of the
approaches with the highest accurate prediction, since it is based on statistical learning
frameworks [69,70]. It can also be used within machine learning approaches for anomaly
detection (such as weather) by choosing an anomaly threshold with the aim to establish
whether an observation belongs to the “normal” class or not. Disadvantages of supervised
methods include overfitting problems [71] corresponding to the inclusion of noise inside the
statistical model. These issues can be provoked by excessive learning, so several validation
techniques, such as cross validation [72] or bootstrapping [73], are usually employed to
solve them.

2.3. Pathway Analysis Methods

A powerful method to describe peculiar features of the cell metabolism is pathway
analysis (PA), which provides a graphical representation of the relationships among the
actors (mainly enzymes and metabolites) of precise catalyzed reactions. Therefore, PA is
highly employed for the interpretation of high-dimensional molecular data [74]. In fact,
taking advantage of the already acquired knowledge of biological pathways, proteins,
metabolites and also genes can be mapped onto newly developed pathways with the
objective to draw their collective functions and interactions in that specific biological envi-
ronment [75]. Although PA was initially developed for the interpretation of transcriptomic
data, in the last decades, it has become a common method in metabolomics, being particu-
larly suited to find associations between molecules involved in the same biological function
for a given phenotype [76–78].

PA methods include several tools allowing deep statistical analyses in metabolomics
known as enrichment analysis. They grant the functional interpretation of the achieved
results mainly in terms of statistically significant pathways [79]. These tools can handle het-
erogeneous and hierarchical vocabularies and may be classified into two distinct collections.
The first encompasses “non-topology-based” (non-TB) approaches, which do not consider
the acquired knowledge concerning the character of each metabolite in the considered
pathways [80]. Non-TB approaches include the over-representation analysis (ORA) as the
first generation technique and the functional class scoring (FCS) as the second generation.
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Finally, the second collection includes topology-based methods (see Figure 10) that are
adopted to determine those pathways that are significantly impacted in a given phenotype.

Figure 10. Conceptual map about the topology-based pathway analysis method.

This latter approach can be classified depending on the considered pathways (e.g., sig-
naling or metabolic), inputs (e.g., subset or all metabolites and metabolites p-values), chosen
mathematical models, outputs (e.g., pathway scores and p-values) and the wanted implemen-
tation (e.g., web-based or standalone) [81,82]. Note that PA methods were originally developed
for genes, but they can be successfully applied for every biomolecule/metabolite [83].

2.3.1. Over-Representation Analysis (ORA)

Over-representation analysis (ORA) is among the most used pathway analysis ap-
proaches for the interpretation of metabolomics data needed as input, once the type of
annotations to examine is chosen. One obtains a collection of annotations and their as-
sociated p-value as outputs since a statistical test is applied to determine whether a set
of metabolites is enriched by a specific annotation (e.g., a pathway) in comparison to
a background set. Different statistics can be applied to obtain information about the
studied biological mechanisms and on the specific functionality of a given metabolite
set. Among the most used statistics, we would like to mention the well-known binomial
probability, Fisher’s exact test and the hypergeometric distribution [84,85].

Three are the necessary inputs in ORA analysis: (i) a set of pathways (or metabolite
collections); (ii) a catalog of investigating metabolites and, (iii) a background collection
of compounds. The list of investigating metabolites usually comes from experimental
data after applying a statistical test to determine those metabolites whose signals can be
associated with a precise result by choosing a threshold value usually associated to the
p-values [74]. The background collection includes all metabolites that can be revealed in
the considered measurement. If the p-value corresponding to each pathway is obtained
by means of the right-tailed Fisher’s exact test based on the hypergeometric distribution,
the probability to find k metabolites or more in a pathway can be written as [74]:

P(X ≥ k) = 1 −
k−1

∑
i=0

(M
i )(

N−M
n−i )

(N
n )

, (6)
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where N corresponds to the number of background compounds, n is the number of the mea-
sured metabolites, M is the number of background metabolites mapping the ith pathway,
and k represents the overlap between M and n. A scheme of the ORA principle is displayed
in Figure 11 as a 3D Venn diagram. Finally, multiple corrections are usually applied, as cal-
culations are made for many pathways, thus obtaining a collection of significantly enriched
pathways (SEP).

Figure 11. A 3D Venn diagram illustrating the relation between ORA parameters (Equation (6)) in
which N corresponds to the number of background compounds, n is the number of the measured
metabolites, M is the number of background metabolites mapping the ith pathway, and k represents
the overlap between M and n.

Before applying ORA, one has to verify if the metabolomics dataset is sufficiently big
to furnish proper statistical significance. For instance, usually MS-based techniques can
observe more metabolites than NMR-based methods, such as the mono-dimensional NMR
ones commonly used for profiling [86]. Indeed, the choice of the most suitable background
collection is the real challenge and still remains an open subject because it strictly depends
on the situation [74].

2.3.2. Functional Class Scoring (FCS)

Functional class scoring (FCS) methods look for coordinated variations in the metabo-
lites belonging to a specific pathway. In fact, FCS methods take into account those coor-
dinated changes within the individual set of metabolites that, although weak, can have a
significant effect of specific pathways [75,78]. Essentially, all FCS methods comprise three
steps (see Figure 12):

1. A statistical approach is applied to compute differential expression of individual
metabolites (metabolite-level statistics), looking for correlations of molecular mea-
surements with phenotype [87]. Those mostly used consider the analysis of variance
(ANOVA) [88], Q-statistic [89], signal-to-noise ratio [90], t-test [91], and Z-score [92].
The choice of the most suitable statistical approach may depend on the number of
biological replicates and on the effect of the metabolites set on a specific pathway [93].

2. Initial statistics for all metabolites of a given pathway are combined into statistics
on different pathways (pathway-level statistics) that can consider interdependencies
among metabolites (multivariate) [94] or not (univariate) [91]. The pathway-level
statistics usually is performed in terms of the Kolmogorov–Smirnov statistics [90],
mean or median of metabolite-level statistics [93], the Wilcoxon rank sum [95], and the
maxmean statistics [96]. Note that, although multivariate statistics should have more
statistical significance, univariate statistics provide the best results if applied to the
data of biologic systems (p ≤ 0.001) [97].
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3. The last FCS step corresponds to estimating the significance of the so-called pathway-
level statistics. In detail, the null hypothesis can be tested into two different ways:
(i) by permuting metabolite labels for every pathways, so comparing the set of metabo-
lites in that pathway with a set of metabolites not included in that pathway (com-
petitive null hypothesis) [75] and (ii) by permuting class labels for every sample, so
comparing the collection of metabolites in a considered pathway with itself, whereas
the metabolites excluded by that pathway are not considered (self-contained null
hypothesis) [91].

Figure 12. Schematic representation of the three main steps adopted in FCS methods.

2.3.3. Metabolic Pathway Reconstruction and Simulation

The identification of metabolomic biomarkers and their mapping into a neural net-
work is fundamental to further study the cellular mechanisms and its physiology. The goal
is to identify the effects of the metabolites (as a function of their concentration) on the
cellular changes, providing a relationship with the most likely biologically meaningful
sub-networks. Thus, basing on genome annotation and protein homology, reference path-
ways could be mapped into a specific organism. However, this mapping method often
produces incomplete pathways that need the employment of ab initio metabolomic network
construction approaches (such as Bayesian networks), where differential equations describe
the changes in a metabolomic network in terms of chemical amounts [98,99]. Qi et al. [100]
further improved this approach allowing to optimize accuracy in defining metabolomics
features or better the correlation between the substrates whose nature is well known as
well as the species of each individual reactions, so defining the classification of the mapped
metabolic products in a pathway and their modifications under selected perturbations.
Recently, Hu et al. [23] performed a pathway analysis on serum spectra recorded by 1H
NMR with the aim to identify eventual biomarkers characterizing the treatment of hu-
man lung cancer. After a first statistical analysis in terms of PLS-DA, they were able to
identify four metabolic pathways associated with the metabolic perturbation induced
by non-small-cell lung cancer (Figure 13) by means of the MetaboAnalyst package [101].
In detail, the highest pathway impact was shown by the metabolisms of (i) taurine and
hypotaurine, (ii) d-glutamine and d-glutamate, (iii) glycine, serine and threonine, and
(iv) alanine, aspartate and glutamate, thus shedding light on the responsible processes in
this kind of cancer.
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Figure 13. Pathway analysis performed on serum spectra recorded by 1H NMR allowing the identifi-
cation of main metabolic pathways associated with non-small cell lung cancer. The larger the circle,
the higher the impact. The color, from red to yellow, identifies the corresponding significance. Figure
reprinted from [23] under the terms of the Creative Commons Attribution 4.0 International License.

3. Artificial Intelligence toward Learning Techniques

Artificial intelligence (AI) techniques are based on algorithms that try to simulate
both human learning and decision making. Indeed, AI exploits the ability of computer
algorithms to learn from a given dataset containing precise information that then must
be recognized in new dataset in an automatic way. Specifically, the computer algorithms
during learning on the test dataset create models that are able to provide information on
the probability that a specific result may occur. Furthermore, these programs are usually
able to identify the important features associated with the outcome of interest. Artificial
intelligence methods can accurately handle big data for biomarkers prediction, allowing the
determination of relevant characteristics pertaining to a dataset and a deep comprehension
of the significance of such data. Specifically, the integration of metabolic snapshots with
metabolic fluxes and the use of knowledge-informed AI methods allow obtaining a pro-
found comprehension of metabolic pathways at the system level. Hence, the development
of multi-omic techniques integrating both experimental and computational methods, ade-
quate to extract metabolic information at the cellular and subcellular levels, will provide
powerful tools to enter the details of metabolic (dis)regulation, therefore allowing the
exploitation of personalized therapies [102].

Machine Learning, Neural Networks and Deep Learning

All the conventional approaches discussed in the previous sections can be imple-
mented by learning algorithms that let the corresponding network learn by a given dataset
and, after performing a test with a sample dataset, can be used with a known predictive
power. In this section, we get into details of the different machine learning techniques as a
subset of AI methods (Figure 14).
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Figure 14. Venn diagram illustrating that deep learning is the core of machine learning, which in turn
is a technique within AI methods.

In addition, neural networks and deep learning approaches are characterized in terms
of the number of node layers, also named depth. Briefly, a node is the locus in which
the algorithm performs the calculation and would correspond to the action that a neuron
exerts in the human brain when it is subject to a stimulus. As shown in Figure 15b, a node
takes different inputs, each having its own weight, that can be amplified or reduced by
the activation function, thus giving a corresponding significance to the received inputs
with respect to the specific task that the used algorithm is learning. So, a neural network
consisting of two or more hidden layers can be classified as a deep learning technique and
is usually described by the diagram shown in Figure 15a, together with a scheme of how
one node might look (Figure 15b).

Figure 15. (a) Example scheme of a deep neural networks, reprinted from Ref. [103] under the terms
of the CC-BY license; (b) operating principle of a single node.

Deep learning techniques, being able to handle large datasets, thus allowing a high-
level description, are already used to provide the optimal route to solve a lot of issues
in the field of image recognition, speech recognition, and natural language processing.
Furthermore, DL techniques can be divided into three main categories (see Figure 16) that
are deepened in Ref. [104]:

• Supervised learning (discriminative) includes multi-layer perceptron (MLP), convolu-
tional neural network (CNN), long short-term memory (LSTM) and gated recurrent
unit (GRU);

• Unsupervised learning (generative) includes generative adversarial network (GAN),
autoencoder (AE), sparse autoencoder (SAE), denoising autoencoder (DAE), contrac-
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tive autoencoder (CAE), variational autoencoder (VAE), self-organizing map (SOM),
restricted Boltzmann machine (RBM) and deep belief network (DBN);

• Hybrid learning (both discriminative and generative) includes models composed by
both supervised and unsupervised algorithms other than deep transfer learning (DTL)
and deep reinforcement learning (DRL).

Figure 16. A taxonomy of DL techniques. For acronyms, see main text.

Supervised learning can furnish a discriminative function in classification applications
by identifying the different features of those classes that can be extracted by the data.
Among them, multi-layer perceptron (MLP) is a feedforward ANN that involves (i) an input
layer collecting input signals, (ii) an output layer that provides an outcome in consideration
of the processed input and (iii) some hidden layers separating the input and output layers
that correspond to the network computational engine. On the contrary, unsupervised
learning is employed to recognize eventual correlations by analyzing the signals pattern
and to assess the statistical distributions of the achieved results both on original data and
on their corresponding classes. This kind of generative approach can be also used as an
initial step (pre-processing) before applying supervised learning methods. Most common
unsupervised techniques, reported in Figure 16, are listed and briefly described in the next.
Hybrid learning paradigms combining both discriminative and generative methods are
possible. Hybrid deep learning architectures are usually constituted by multiple models
where the basis can indeed be either a supervised or unsupervised deep learning method.
Common hybrid learning algorithms are, for example, semi-supervised learning that
allows to use a supervision for some data points, keeping the others unlabeled, and deep
reinforcement learning (DRL; see Figure 16) that, interacting with an environment, involves
the knowledge of performing with sequential decision-making tasks in order to maximize
cumulative rewards [104,105]. Their advantages lie in the possibility to consider the best
aspects of discriminative and generative models. For instance, a hybrid architecture can
adopt small inputs to avoid the problem of determining the right network size and instead
an increasing number of neurons in receptive-field spaces [106]. At the same time, by a
proper enhancement of the initial weights through suitable algorithms, neural networks in
hybrid architectures can provide higher accuracy and predictive power [107,108].

Most of the techniques in the categories indicated before are feed-forward (working
from input to output) but, as detailed in the last part of the section, the opposite movement
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is also possible. This is called backpropagation and works from output to input, allowing
the evaluation of the individual neuron’s error, allowing to properly modify and fit the
algorithm iteratively. Unlike ML, that usually adopts manual identification and description
of relevant features, DL techniques aim to execute automatically the features extraction,
avoiding almost all human participation. In addition, DL can handle larger datasets,
especially of the unstructured type. In fact, DL methods can have unstructured raw data
as input (such as text or images) and can directly define which characteristics must be
considered to distinguish the original observations. By recognizing similar and/or different
patterns, DL methods can adequately cluster inputs. Therefore, DL approaches would need
a very high number of observations to be as accurate as possible. Generally, and according
to the scheme reported in Figure 16, the most adopted deep learning techniques are the
following [104]:

1. Classic neural networks encompass linear and non-linear functions which, in turn,
include S-shaped functions ranging from 0 to 1 (sigmoid) or from −1 to 1 (hyperbolic
tangent, tanh) and rectified linear unit (ReLU), which gives 0 for input lower than the
set value or evaluates a linear multiple for bigger input.

2. Convolutional neural networks (CNN) take into high consideration the neuron or-
ganization found in the visual cortex of an animal brain. It is particularly suited for
high complexity and allows for optimal pre-processing. Four stages can be considered
for CNN building (see Figure 17):

(a) Deduce feature maps from input after applying a proper function (convolution);
(b) Reveal an image after given changes (max-pooling);
(c) Flatten the data for the CNN analysis (flattening);
(d) Compiling the loss function by a hidden layer (full connection).

3. Recurrent neural networks (RNN) are exploited when the objective is the prediction
of a sequence. They are a subset of ANN for sequential or time series data, usually
applied for language translation, speech recognition, and son on. Their peculiar
feature is that the outcome of the output node is a function of the output of previous
elements within the sequence (see Figure 18a).

4. Generative adversarial networks (GAN) combine generator networks for providing
artificial data and discriminator networks for distinguishing real and fake data.

5. Self-organizing maps (SOMs) have a fixed bi-dimensional output since each synapse
joins its input and output nodes, and usually take advantage of data reduction per-
formed by unsupervised approaches.

6. Boltzmann machine is a stochastic model exploited for yielding proper parameters
defined in the model.

7. Deep reinforcement learning are mainly used to understand and so predict the effect
of every action executed in a defined state of the observation.

8. Autoencoders work directly on the considered inputs, without taking into account
the effect of activation functions. Among the autoencoders, we mention the following:

(a) Sparse autoencoders have more hidden than input layers for reducing overfitting.
(b) Denoising autoencoders are able to reconstruct corrupted data by randomly

assigning 0 to some inputs.
(c) Contractive autoencoders include a penalty factor to the loss function to pre-

vent overfitting and data repetition when the network has more hidden than
input layers.

(d) Stacked autoencoders perform two stages of encoding by the inclusion of an
additional hidden layer.

9. Backpropagation (BP) are neural networks that use the flux of information going
from the output to input for learning about the errors corresponding to the achieved
prediction. An architecture of the BP network is shown in Figure 18b.
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10. Gradient descent are neural networks that identify a slope corresponding to a relation
among variables (for example, the error produced in the neural network and data
parameter: small data changes provoke errors variations).

Figure 17. Example of a convolutional neural network. Figure reprinted from Ref. [109] under the
terms of CC BY-NC-ND 4.0 license.

Figure 18. (a) Scheme of a RNN. (b) Example of a BP network architecture. Figure reprinted from
Ref. [109] under the terms of CC BY-NC-ND 4.0 license.

From the above brief information, it emerges that, even if DL methods can be thought
as black-box solutions, future generation deep learning can provide a great aid for the
analysis of big data and for corresponding reliable results.

4. Applications of Deep Learning Approaches for NMR-Based Metabolomics

In this section, the applications of deep learning on NMR-based metabolic data for
specific different fields are reported and discussed. Here, we briefly introduce the poten-
tiality of the applications of deep learning in metabolomics which today are still relatively
low compared to other omics. This is explained since metabolome-specific deep learn-
ing architectures should be defined, and dimensionality problems and model evaluation
regime should be further evaluated. In any case, data pre-processing using convolutional
neural network architecture appears to be the most efficient approach among the deep
learning ones. The main advantage of CNNs compared to a traditional neural network is
that they automatically detect important features without any human supervision. Specif-
ically, CNNs learn relevant features from image/video at different levels, similar to a
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human brain [110]. This is very relevant to analyze both biomedical and food data, whose
classification in view of safety security actions is extremely important.

The potentiality of the NMR technique within the field of metabolomics is currently
employed for several purposes, including the detection of viable microbes in microbial
food safety [10], the assessment of aquatic living organisms subjected to contaminated
water [111], the identification of novel biomarkers to diagnose cancer diseases [112] and
the monitoring of the plant growth status changing environmental parameters in view of
smart agriculture [113]. In the next sections, we discuss some applications of deep learning
approaches for NMR-based metabolomics in food and biomedical areas, highlighting their
strengths and limitations.

Even before the development of artificial intelligence, statistical analyses were success-
fully applied in food analysis but with some limitations. For example, traditional methods
are usually not very accurate in the classification of similar foods in contrast to modern
deep learning approaches that allow enhancing all small differences. However, traditional
methods usually constitute the first step, providing the input for neural networks with
the aim to achieve a more accurate and automatic output. Furthermore, advanced com-
putational algorithms can be applied not only for statistical analysis, but also to execute
simulations whose predictions depend on the considered conditions [114].

4.1. Food

Foodomics is a term referred to the metabolomic approaches applied to foodstuffs for
investigating topics mainly related with nutrition. Nowadays, DL methods are being pro-
gressively applied in the food field with different purposes, such as fraud detection [115].
Furthermore, another important issue is to guarantee the geographical origin and pro-
duction/processing procedures of food, the precise proportions of ingredients, including
additives and the kind of used raw materials. In this context, machine learning is a power-
ful method for achieving an adequate classification. For example, Greer et al. [116] carried
out NMR measurements using a not-conventional protocol to measure the magnetization
relaxation times (both the longitudinal T1 and transverse T2) and then they efficiently
classified cooking oils, milk, and soy sauces (see Figure 19).

Since the considered datasets are very large (typically about 5 × 106 points each),
the authors first reduced their size by means of the singular value decomposition, thus
allowing a fast classification and also providing little insight into the sample physical
properties. Figure 19 reports different combinations for the obtained classification features.
Figure 19a,b corresponds to the two components used by the Gaussian fit of those peaks
revealed by the inverse 2D Laplace transform [117]. A sharp distinction of the samples is
clearly shown for every adopted combination. The y-axes of Figure 19a,c report the first
component of T1 versus the first and second components of T2, respectively. Contrarily,
the y-axes of Figure 19b,d report the second component of T1 versus the first and second
components of T2, respectively. The authors found that most of the trained models reached
an accuracy up to 100% (see, for example, Figure 20a). Finally, they also pointed out the
effect of the sample temperature on classification accuracy for achieving reliable results
(see Figure 20b).
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Figure 19. T1–T2 correlational maps classifying several kinds of oils: olive (blue), canola (orange),
corn (yellow) and vegetable (purple) by using the two components used by the Gaussian fit of those
peaks revealed by the inverse 2D Laplace transform. (a,c) report the first component of T1 versus
the first and second components of T2, respectively. (b,d) report the second component of T1 versus
the first and second components of T2, respectively. See main text and Ref. [116] for details. Figure
reprinted with permission from Ref. [116]. Copyright 2018 Elsevier.

Figure 20. (a) Comparison of the accuracy for the predictive power of the algorithms applied to
classify cooking oil samples by employing three different classification training; (b) accuracy of
predictive power applied to soy sauce sample highlighting the effect of temperature. Figure adapted
with permission from Ref. [116]. Copyright 2018 Elsevier.

Nowadays, deep neural networks (DNNs) are rarely used for metabolomics studies
because the assignment of metabolites contribution in NMR spectra still lacks highly re-
liable yields due to the complexity of the investigated biological matrix and thus of the
corresponding signals. As described in the previous section, different deep learning meth-
ods were used, but some of them are characterized by some limitations (i.e., low accuracy
in classification). Some efforts were made to overcome this problem. Date et al. [118]
recently developed a DNN method that includes the evaluation of the so-called mean
decrease accuracy (MDA) to estimate every variable. It relies on a permutation algorithm
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that allows the recognition of the sample geographical origins and the identification of
their biomarkers. On the other hand, for food authenticity and nutritional quality, the fast
revelation of viable microbes is still a challenge. Here, we report a multilayer ANN example
(see Figure 21) showing four input neurons, two hidden layers made of three neurons,
and two output neurons.

Figure 21. Multilayer artificial neural network showing 4 input neurons, 2 hidden layers made of
3 neurons, and 2 output neurons of which the one corresponding to “Salmonella” shows the highest
value, associated with the prediction performed by the used ANN. Figure reprinted from Ref. [119]
under the terms of the CC-BY license.

Such a scheme was organized by Wang et al. [119] for the detection, by means of
NMR spectroscopy coupled with deep ANNs, of pathogenic and non-pathogenic microbes.
According to the classification method, each output neuron is associated to one possible
output. Here, “Salmonella” shows the highest value of output, thus corresponding to
the prediction performed by the used ANN. In such a case, the weights of each input
are optimized to reach the wanted outcome throughout backpropagation, thus defining
multiple epochs and training cycles. Figure 22 reports an example referred to an ANN
analysis with two hidden layers of 800 neurons. ANN training is made optimizing a set of
training criteria to avoid shallow local minima. In particular, training continues when the
loss function decreases after an epoch of training (“greedy” algorithm—case a) and even
after a small increase followed by a continuous decrease (case b). On the contrary, training
stops for an increase in the loss function after several constant values (case c) and for steep
increases (case d) [119].

Figure 22. Comparison of the different criteria adopted for the ANN training. (a) “Greedy” learning;
(b) “jumping” out of a local tiny minimum; (c) halt at large minima; (d) halt at sharp growths in loss.
Figure reprinted from Ref. [119] under the terms of the CC-BY license.

Once the network is trained, it is able to perform predictions on new input data.
As already mentioned, the loss and the model accuracy provide a measure of the output
goodness. In fact, the aim is to minimize the disagreement between the prediction and the
reality (loss) and to maximize accuracy (cross-validation method). Thanks to this approach,
Wang et al. [119] found that the used ANNs accurately predict 91.2% of unknown microbes
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and, after repeating the model training by considering just those metabolites whose amount
increased with incubation time, they observed an accuracy up to 99.2%.

Machine learning and neural network approaches are simultaneously adopted to
analyze large amounts of NMR metabolomics data for food safety [109]. This can be
performed also by means of magnetic resonance imaging (MRI), which is an imaging
technique relying on NMR principles. Within the food field, it is mainly used to resolve the
tissue texture of foods [120,121]. On the other hand, Teimouri et al. [122] used PLSR, LDA,
and ANN for the classification of the data collected by CCD images from food portions,
different in color and geometrical aspects. In this way, they were able to classify 2800 food
samples in one hour, with an overall accuracy of 93%. Instead, De Sousa Ribeiro et al. [123]
developed a CNN approach able to reconstruct degraded information on the label of
food packaging. Before applying CNNs, they started with K-means clustering and KNN
classification algorithms for the extraction of suitable centroids.

4.2. Biomedical

Metabolomics-based NMR investigations, coupled with deep learning methods, are
increasingly employed within the biomedical field. More profoundly, the use of complex
DL architectures hardly allows achieving a predictive power with ranking or selection.
As already discussed, DL models use several computational layers to analyze input signals
and establish any eventual preferred direction for signal encoding (forward or backward).
This procedure does not usually allow the interpretation of input signals in terms of the
used model, making it hard to identify biomarkers in a network, where biological and DL
modeling are connected (Figure 23).

Today, it is still necessary to uniform assessment metric for biomedical data classifica-
tion or prediction, also avoiding false negatives in disease diagnosis. Further, deep learning
is a promising methodology to treat data collecting by smart wearable sensors, which is
considered fundamental in epidemic prediction, disease prevention, and clinical decision
making, thus allowing a significant improvement in the quality of life [124,125].

Figure 23. The multiomics method represented connects biological (i.e., signal inhibition, signaling
network and biochemical feedback) with DL modeling (backpropagation, prediction, convolution,
etc.), aiming to maximize the robustness of the approach for the identification of biochemical features
referred to specific phenotypes. Figure reprinted from Ref. [124] under the terms of the Creative
Commons Attribution Noncommercial License.
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With the aim to obtain an accurate metabolites identification from the observation of
the corresponding peaks in complex mixtures, Kim et al. [126] developed a convolutional
neural network (CNN) model, called SMART-Miner, which is trained on 657 chemical
entities collected from HMDB and BMRB databases. After training, the model is able to
automatically carry out the recognition of metabolites from 1H-13C HSQC NMR spectra
of complex metabolite mixtures, showing higher performance in comparison with other
NMR-based metabolomic tools (Figure 24).

Figure 24. Overlay of experimental HSQC spectra from a metabolite mixture (black correlations) and
the outcomes predicted by SMART-Miner (colored correlations). Figure reprinted with permission
from Ref. [126]. Copyright 2021 Wiley Periodicals, Inc.

Brougham et al. [127], by employing ANNs on 1H NMR spectra, performed a suc-
cessful classification of four lung carcinoma cell lines, showing different drug-resistance
patterns. The authors chose human lung carcinoma and adenocarcinoma cell lines together
with specific drug-resistant daughter lines (Figure 25). The ANN architecture was con-
structed at first using three layers and the corresponding weights were determined by
minimizing the root mean square error. Then, the authors analyzed networks with four
layers, two of which are hidden. Their results show that the four-layer structure with
two hidden layers provided a 100% successful classification [127]. These data are very
interesting in terms of the robustness of the used approach: the cell lines were correctly
classified, even though the effects were provoked by the operator and independently from
the spectra chosen for training and validation (Figure 25).
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Figure 25. (A) Example of 1H NMR spectrum for DLKP lung carcinoma cells. Labeled
peak corresponds to (a) CH3, (b) CH2, (c) CH2CH=CH, (d) CH2COO, (e) =CHCH2CH=, and
(f) HC=CH/CHOCOR. The highlighted intervals at 0.60–1.04 and 1.24–3.56 ppm were used for
statistical analysis. (B) PCA score plot including data from all four cell lines. (C) Residual mean
squares error vs. nodes number in the hidden layers, for the 3-layers (full symbols), and in the
second (empty triangles) and third (empty circles) layer for the 4-layers networks. Figure reprinted
from Ref. [127] under the terms of the Creative Commons Attribution License.

Very recently, Di Donato et al. [128] analyzed serum samples from 94 elderly patients
with early stage colorectal cancer and 75 elderly patients with metastatic colorectal cancer.
With the aim to separately observe each different molecular components, these authors
acquired one-dimensional proton NMR spectra by using three different pulse sequences
for each sample: (i) a nuclear Overhauser effect spectroscopy pulse sequence to observe
molecules with both low and high molecular weight; (ii) a common spin echo mono-
dimensional pulse sequence [129] to observe only lighter metabolites and (iii) a common
diffusion-edited pulse sequence to observe only macromolecules [128]. Their results,
taking advantage of Kaplan–Meier curves for prognosis and of a PCA-based kNN analysis,
allowed distinguishing relapse-free and metastatic cancer groups, with the advantage of
obtaining information about the risks in the early stage of the colorectal cancer disease.

Peng et al. [130], by using two-dimensional NMR correlational spectroscopy on the
longitudinal (T1) and transversal components (T2) of the magnetization relaxation time
during its equilibrium recovery, were able to perform a molecular phenotyping of blood
with the employment of supervised learning models, including neural networks. In detail,
by means of a fast two-dimensional Laplace inversion [117], they obtained T1–T2 correlation
spectra on a single drop of blood (<5 μL) in a few minutes (Figure 26) with a benchtop-
sized NMR spectrometer. Then, they converted the NMR correlational maps for deep
image analysis, achieving useful insights for medical decision making by the application
of machine learning techniques. In particular, after an initial dimensionality reduction
by unsupervised analysis, supervised neural network models were applied to train and
predict the data that, at the end, were compared with the diagnostic prediction made by
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humans. The results showed that ML approaches outperformed the human being and
took a much shorter time. Therefore, the authors demonstrated the clinical efficacy of this
technique by analyzing human blood in different physiological and pathological conditions,
such as oxidation states [130]. Concerning the analysis of different physiological conditions,
Figure 26 reports the T1–T2 correlational maps of blood cells at oxygenated (a), oxidized
(b), and deoxygenated (c) states. Three peaks with different relaxation times values were
observed and assigned to the different microenvironments that water experiences in the
considered samples of red blood cells. For the obtained maps, the coordinate for the bulk
water peak (slowest component) is shown at the upper left of the map indicating T2 and
T1 relaxations (in ms) and T1/T2-ratio, respectively. Instead, the coordinates of the fastest
components, due to hydration and bound water molecules [131], are reported close to the
corresponding correlation peak (Figure 26).

Figure 26. T1–T2 correlational maps in false colors of red blood cells at different conditions: oxy-
genated (a), oxidized (b), and deoxygenated (c). Figure reprinted from Ref. [130] under the terms of
the Creative Commons Attribution 4.0 International License.

5. Conclusions and Future Perspective

The role played by each metabolite (in terms of identification and quantification) is
essential to validate NMR spectroscopy potentiality in this field. Overall, NMR-based
metabolomics coupled with machine learning and neural networks improves its power,
especially in the food and biomedical fields, paving the way for innovative and hybrid
approaches for deep insights into the metabolic fingerprinting of complex biological ma-
trices. In fact, the number of identified metabolites is very low, and in some cases, the
metabolites profile analysis is difficult for the high noise level and the multicolinearity
with respect to the genomics case. However, the coupling of genomics and metabolomics
tools is still a goal to be achieved. To this purpose, the deep learning and neural network
approaches are the best methods to use, although the first step may involve the use of
linear discriminant analysis to select a subset of metabolites to be used as input for the
neural network analysis in view of an accurate classification as well as the generalizabil-
ity of the method. Therefore, some efforts are still necessary for applying deep learning
approaches on NMR metabolomics data, strictly related to the specific properties of the
selected/investigated metabolites, evaluating the dimensionality reduction problems and
improving the reliability of the evaluation models.
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Appendix A. Technical Aspects

Nuclear magnetic resonance (NMR) is one of the most employed experimental tech-
niques for investigating the wide composition and structural complexity of biological
samples. The NMR technique is characterized by high reproducibility and ease of sample
preparation and measurement proceedings. NMR is a non-destructive technique able to
perform different measurements on the same sample, providing increasingly accurate and
detailed information. NMR also allows to reach a quantitative analysis and to carry out
in vivo metabolomics studies. Unfortunately, it has a relatively low sensitivity (μM), but,
in combination with chromatography, it shows a great potentiality for targeted analysis.
However, it is a relatively young experimental technique with continuous development
from both the hardware and software point of view (see Ref. [3] for a more details). For in-
stance, cryoprobes [132–134] and magic angle techniques [17,135,136] are today commonly
used for improving the signal-to-noise ratio, while AI methods are used both for signal
pre-processing, such as baseline optimization [137–139], and for data analysis, as discussed
in the main text of this review.

Briefly, the NMR working principle is based on the resonant excitation of the precession
dynamics of the nuclear magnetic moment under the effect of a static magnetic field. Nuclei
characterized by an odd number of protons and/or neutrons show a magnetic moment,
associated to the nuclear spin characterized by the corresponding quantum number (I).
Nuclei with I 	= 0 possess an intrinsic nuclear magnetic moment (μ) so producing a slight
local magnetic field (B0). Once immersed in an external magnetic field (B), these nuclei,
previously randomly orientated, align themselves either in the same or opposite direction
of B. These nuclei, subject to B, move in a precessional motion at a frequency called Larmor
frequency, which takes on values in the range of 50–900 MHz (see Figure A1). Indeed, it
is characteristic for each nucleus and increases with the strength of the external magnetic
field B. In this condition, if the system is irradiated with an electromagnetic radiation at the
corresponding Larmor frequency (resonance condition), nuclei can absorb the radiation
energy, and the nuclear spins can be promoted to a different Zeeman level.
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Figure A1. (A) Spectroscopies and corresponding frequency ranges. Larmor frequency of most used
nuclei for metabolomics analyses with respect to that of the proton when at 600 MHz. (B) Parts per
million intervals for all these nuclei (15N, 13C, 31P, 19F and 1H) at characteristic chemical environments.
Figure reprinted from Ref. [3] under the terms of the Creative Common CC-BY license.

When spins relax toward the fundamental state, they emit a radio frequency (damped
in time, called free induction decay (FID)) that well characterizes each nucleus of the
system, depending on the corresponding chemical environment that essentially exerts a
local magnetic field, causing a shift (chemical shift) from the pure Larmor frequency value.
This is commonly indicated by δ and measured in parts per million since the recorded
frequency is divided by the spectrometer working frequency such that the spectra acquired
with different instruments can be compared. Note that nuclei with I = 0, such as 12C and
16O, are NMR inactive [140,141].

Figure A1B reports the most common NMR active nuclei. Among them, 13C and
15N show a wide chemical shift range, together with a sharp line signal, but their poor
natural abundance and the low sensitivity (compared to other nuclei as 1H or 19F) limit
their employment in the metabolomic investigation. 31P has a good sensitivity (6.6 × 10−2

relative to 1H) and a wide spectral range, but only few metabolites, such as nucleoside
or phospholipids, contain it, restricting its employment to a few compounds. The same
comments can be done about 19F.

The high abundance in nature, high sensitivity and relevant gyromagnetic ratio of
1H makes 1D 1H NMR spectra especially useful in the metabolomic investigation. The 1D
1H NMR spectra are fast to record (few minutes) and just the information contained in
only one spectrum can provide useful data to identify and quantify from 50 to 100 metabo-
lites [142,143]. In this case, if nuclear spins are totally relaxed and no polarization transfer
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sequences are applied, the intensity of each acquired proton signal is correlated with the
corresponding concentration levels in the molecules, and the area under each peak is
directly proportional to the number of 1H constituting the corresponding residue, giving a
real distribution of the individual metabolites in the sample mixture. This quantification is
possible without previous calibration, thanks to the large linear dynamic range and signal
response that characterize proton NMR spectroscopy.

Another important aspect in the analysis of the 1H NMR spectra is the solvent suppres-
sion, and in this way, several protocols can be used. Commonly, the protonated solvent can
be replaced with a deuterated one; this procedure can also require the lyophilization of the
sample and the subsequent dispersion in the deuterated solvent. When this is not possible,
the solvent peak can be suppressed by using proper pulse sequences [144]. Regarding the
identification of metabolites constituting a biological matrix, when they have a unique and
high reproducible fingerprint at specific conditions (pH, solvent, temperature), the non-
target strategy can be adopted [145]. This consists of the employment of multimodal
models, which clarify how the NMR fingerprint of each sample and among the groups
correlate with each other, providing a static analysis. This strategy is very important to give
a first overview about the sample composition; however, it is not sufficient to analyze very
complex samples. In the latter case, it is more common to adopt the target strategy, which
consists in the comparison of the acquired data with available metabolite databases, such as
the Human Metabolome Database, Biological Magnetic Resonance Data Bank, Birmingham
Metabolite Library, Bbiorefcode (Bruker Biospin Ltd., Billerica, MA, USA) and Chenomx
library (Chenomx Inc., Edmonton, AB, USA) [145].

Figure A2 reports a 1H NMR spectrum acquired from human serum at 700 MHz:
55 different metabolites were identified and labeled in the recorded spectrum [3]. In par-
ticular, each proton signal can be attributed to the different components of the biofluid,
thanks to the high sensitivity of 1H nuclei, its natural abundance and the remarkably
narrow line widths, giving a remarkable spectrum resolution. Note that the high intensity
of the lactate peak is due to a conversion of the glucose in lactate during the prepara-
tion of the sample. To reach a certain assignment of the detected metabolic peaks 1D
1H NMR is sometimes not sufficient. This is due to the relevant numbers of resonances
with an ambiguous assignment, and to a peak overlap of the matrix’s components. Thus,
bi-dimensional (2D) NMR techniques, which investigate the spin–spin correlation among
1H-1H nuclei or with heteroatoms, such as 13C, 15N, 31P, are adopted. In metabolomic
studies, typical 2D NMR techniques are 1H-1H correlated spectroscopy (COSY) and total
correlation spectroscopy (TOCSY), 1H-13C heteronuclear single quantum coherence (HSQC)
and heteronuclear multiple bond correlation (HMBC). HSQC is a great experiment for
metabolites identification, which gives information on the direct connectivity between
protons and heteroatoms. In particular, the large chemical shift scale of 13C helps to solve
the tough issue of the overlapped signals in the proton spectrum, and the variety of HSQC
experiments can provide different sets of information on the investigated sample.

For instance, the potentiality of the HSQC technique was proved in the identification of
methyl groups of betaine and trimethylamine-N-oxide (TMAO). The proton resonances of
methyl groups in TMAO and betaine organic compounds are both close to δ = 3.26 ppm, and
thus, the signals are not distinguishable. Instead, the carbon chemical shift of methyl groups
in TMAO is assigned at 62.2 ppm, while that of betaine is at 55.8 ppm. This information can
be easily obtained by the 1H-13C HSQC experiment (see Figure A3), giving an unambiguous
identification of the two organic compounds [145]. HMBC is an appropriate technique
to analyze the correlations using the coupling of protons with heteroatoms, which are
separated up to four bonds, providing complementary information to that given by HSQC
for the structural characterization of metabolites.
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Figure A2. 1H NMR spectrum of ultrafiltered human serum at 700 MHz with the identified com-
pounds labeled above each of the corresponding peaks. Figure reprinted from Ref. [3] under the
terms of the Creative Common CC-BY license.
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Figure A3. 1H-13C 2D HSQC experiment to identify TMAO and betaine organic compounds of
a biological matrix. Figure reprinted from Ref. [145] under the terms of the Creative Common
CC-BY license.

Thus, metabolic identification can be easily reached by the combination of 2D-NMR
techniques with the metabolite databases. However, in some cases, the concentration of
metabolites is very low, and their peaks are often overlapped making their identification
difficult, even when employing 2D NMR techniques. In these cases, if the sharp chemical
shift of the compounds to identify is known, it is recommended to use a standard (reference)
compound, which is added in the concentration range 10–100 μM. For instance, this method
was applied to identify the uridine diphosphate (UDP) conjugates, which are present in
very low concentrations in cellular extracts with overlapped peaks, but their chemical shift
is well known and the signal-to-noise ratio (S/N) has sufficient intensity to be quantified
by 1D/2D NMR experiments [145]. Figure A4 shows in details how the spiking of pure
compounds into a mixture aids the identification of metabolites within the spectrum and
also its quantification by performing peak fitting of the two spectral regions corresponding
to UDP-nacetylglucosamin (UDP-Gluc-NAc). Note that the proton signal on the left side
(δ = 5.50 ppm) of UDP-Gluc-NAc is overlapped to that of galactose-1-phosphate (Gal-1-
P), whereas signals from the uridine group (δ = 5.95 ppm) superimpose with those from
UDP-glucose. In addition, without spiking, it is almost impossible to define the shift of the
methyl group belonging to UDP-Gluc-Nac acetyl (right region) since there is a big overlap
with other signals, such as the multiplets from glutamine and glutamate.

The addition of a standard is also employed to obtain an absolute quantification of
the metabolites contained in the sample. Therefore, the estimation of the metabolites
concentration can be made by comparing the area of the metabolites NMR peaks with that
of the reference sample by the following equation:

M
S

=
Im
Is

× Ns
Nm

(A1)
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in which M and S represent the amounts of the considered metabolite and that of the
reference, while Im and Is indicate the area under the curve of corresponding peaks, and Nm
and Ns represent the number of protons which contribute to these bands, respectively [145].
To quantify a small set of metabolites whose resonances are well-resolved peaks, also the
pulse length-based concentration determination (PULCON) quantitative NMR can be used.
It considers that the signal intensity is inversely proportional to the duration of the 90◦
pulse adopted to excite nuclei [146].

Figure A4. (A): The spiking of UDP-nacetylglucosamine (UDP-Gluc-NAc) allows its identification
and quantitation. (B): The same spectrum of A without the addition of UDP-Gluc-NAc. Figure
reprinted from Ref. [145] under the terms of the Creative Common CC-BY license.

Finally, another possibility for quantitative NMR analysis was reached by using a digi-
tal standard electronic reference to access in vivo concentration (ERETIC) technique [147].
It consists of the generation of a signal via a second channel of the probe and the addition of
it as a pseudo-FID during the acquisition of the proton experiment, resulting in a common
NMR signal [148]. Initially, the ERETIC technique required to be calibrated before running
the quantification measurements and some hardware rearrangements. Improvements of
ERETIC are ERETIC2 (Bruker Biospin, Topspin 3.0) and quantification by artificial signal
(QUANTAS) [149].

Considering the complexity of NMR spectrum of metabolites, often, peak integration
is not a sufficient method for the quantitative estimation, and in these cases, the decon-
volution approach is preferred. It consists in the fit of a target peak of the compound by
using the signal acquired from the reference compound [150]. Different specific software
for NMR, such as TopSpin (Bruker), MNova (Mestrelab Research), Spectrus Processor
(ACD/Labs), Delta (JEOL) and Chenomx NMR Suite (Chenomx Inc.) can be used for this
goal. Among them, JEOL Delta is the only one completely free of charge, while Chenomx
NMR Suite seems to show the best performance because it is based on a sophisticated
targeted profiling technology and on reference libraries containing hundreds of metabolite
spectral data, allowing a user-friendly deconvolution of complex NMR spectra [151]. The
spectral analysis and deconvolution can also be performed with non-specific software, such
as Matlab (The MathWorks, Inc.) or R (The R Foundation).

Several factors (i.e., pulse sequence changes or variation in the repetition time) in-
fluence the deconvolution process and its accuracy, including the variety of standard
compounds present in the library and the need to repeat the NMR data acquisition in the
same experimental conditions. Changes in the pulse sequence and/or the repetition time
result in a less accurate fitting. The performance of the deconvolution is also influenced
by the protons’ bond to nitrogen atoms, also called labile (for instance, the α-protons in
amino acids) [145]. These protons fast exchange with the solvent, and this not only makes
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it difficult to detect them, but also provokes changes in the line shape of the close protons
peaks. The result is an attenuated resonance, which does not precisely match with the
integral corresponding to the other proton peaks in the considered sample. Another error
regards the partial peak saturation of the protons, with a resonance close to the presatura-
tion peak of the solvent (commonly water). This was observed for the anomeric protons of
carbohydrates, which are frequently resonant close to the water signal, or also for the CH
quartet at δ 4.11 ppm in the lactate spectrum. Beyond these disadvantages, the deconvo-
lution approach is a great and widely employed tool for the metabolomic quantification
studies [145].

Generally, successful NMR metabolomics requires statistical analyses, which have
become progressively advanced over the years, and are the focus of this review. Dependent
and independent parameters are correlated by means of conventional approaches on the
basis of the mathematical relationship and, in turn, on model fitting. On the other hand,
machine learning approaches group input data based on a cluster classification without
any statistical assumption, while deep learning is devoted to find statistical inferences from
a large amount of input data. The future of NMR-based metabolomics is to generalize the
learning approaches to optimize predictive ability for specific diseases.
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5. Caspani, G.; Sebők, V.; Sultana, N.; Swann, J.R.; Bailey, A. Metabolic phenotyping of opioid and psychostimulant addiction: A
novel approach for biomarker discovery and biochemical understanding of the disorder. Br. J. Pharmacol. 2021, 1–29. [CrossRef]

6. Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The
Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [CrossRef]

7. Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al.
BioMagResBank. Nucleic Acids Res. 2007, 36, D402–D408. [CrossRef]

8. Goodacre, R.; Broadhurst, D.; Smilde, A.K.; Kristal, B.S.; Baker, J.D.; Beger, R.; Bessant, C.; Connor, S.; Capuani, G.; Craig, A.; et al.
Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 2007, 3, 231–241. [CrossRef]

9. Claridge, T.D. High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Amsterdam, The Netherlands, 2016. [CrossRef]
10. Oyedeji, A.B.; Green, E.; Adebiyi, J.A.; Ogundele, O.M.; Gbashi, S.; Adefisoye, M.A.; Oyeyinka, S.A.; Adebo, O.A. Metabolomic

approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Res. Int. 2021, 140, 110042.
[CrossRef]

11. Letertre, M.P.M.; Giraudeau, P.; de Tullio, P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized
Medicine: Current Challenges and Perspectives. Front. Mol. Biosci. 2021, 8, 698337. [CrossRef]

12. Emwas, A.H.; Alghrably, M.; Al-Harthi, S.; Poulson, B.G.; Szczepski, K.; Chandra, K.; Jaremko, M. New Advances in Fast
Methods of 2D NMR Experiments. In Nuclear Magnetic Resonance; IntechOpen: London, UK, 2020. [CrossRef]

13. Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2018, 210, 2–21.
[CrossRef] [PubMed]

14. Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for
clinicians. BMJ 2018, 362, k601. [CrossRef] [PubMed]

15. Teumer, A. Common Methods for Performing Mendelian Randomization. Front. Cardiovasc. Med. 2018, 5, 51. [CrossRef]
[PubMed]

16. Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple
preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [CrossRef]

17. Augustijn, D.; de Groot, H.J.M.; Alia, A. HR-MAS NMR Applications in Plant Metabolomics. Molecules 2021, 26, 931. [CrossRef]
18. Xu, X.; Xie, Z.; Yang, Z.; Li, D.; Xu, X. A t-SNE Based Classification Approach to Compositional Microbiome Data. Front. Genet.

2020, 11, 1633. [CrossRef]
19. Worley, B.; Powers, R. Generalized adaptive intelligent binning of multiway data. Chemom. Intell. Lab. Syst. 2015, 146, 42–46.

[CrossRef]

118



Appl. Sci. 2022, 12, 2824

20. Emwas, A.H.; Saccenti, E.; Gao, X.; Mckay, R.; Martins dos Santos, V.; Roy, R.; Wishart, D. Recommended strategies for spectral
processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics 2018, 14, 31.
[CrossRef]

21. Anderson, P.; Reo, N.; Delraso, N.; Doom, T.; Raymer, M. Gaussian binning: A new kernel-based method for processing NMR
spectroscopic data for metabolomics. Metabolomics 2008, 4, 261–272. [CrossRef]

22. Puchades-Carrasco, L.; Palomino-Schätzlein, M.; Pérez-Rambla, C.; Pineda-Lucena, A. Bioinformatics tools for the analysis of
NMR metabolomics studies focused on the identification of clinically relevant biomarkers. Brief. Bioinform. 2015, 17, 541–552.
[CrossRef]

23. Hu, J.M.; Sun, H.T. Serum proton NMR metabolomics analysis of human lung cancer following microwave ablation. Radiat.
Oncol. 2018, 13, 40. [CrossRef]

24. Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution
of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [CrossRef] [PubMed]

25. Liu, Z.; Abbas, A.; Jing, B.Y.; Gao, X. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based
filtering. Bioinformatics 2012, 28, 914–920. [CrossRef] [PubMed]

26. MacDonald, R.; Sokolenko, S. Detection of highly overlapping peaks via adaptive apodization. J. Magn. Reson. 2021, 333, 107104.
[CrossRef] [PubMed]

27. Dona, A.C.; Kyriakides, M.; Scott, F.; Shephard, E.A.; Varshavi, D.; Veselkov, K.; Everett, J.R. A guide to the identification of
metabolites in NMR-based metabonomics/metabolomics experiments. Comput. Struct. Biotechnol. J. 2016, 14, 135–153. [CrossRef]

28. Khalili, B.; Tomasoni, M.; Mattei, M.; Mallol Parera, R.; Sonmez, R.; Krefl, D.; Rueedi, R.; Bergmann, S. Automated Analysis of
Large-Scale NMR Data Generates Metabolomic Signatures and Links Them to Candidate Metabolites. J. Proteome Res. 2019,
18, 3360–3368. [CrossRef]

29. Jaadi, Z. A Step-by-Step Explanation of Principal Component Analysis (PCA). Available online: https://builtin.com/data-
science/step-step-explanation-principal-component-analysis (accessed on 8 January 2022).

30. AG, S. What Is Principal Component Analysis (PCA) and How It Is Used? Available online: https://www.sartorius.com/en/
knowledge/science-snippets/what-is-principal-component-analysis-pca-and-how-it-is-used-507186 (accessed on 8 January 2022).

31. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 2016, 374, 20150202. [CrossRef]

32. Parsons, H.M.; Ludwig, C.; Günther, U.L.; Viant, M.R. Improved classification accuracy in 1- and 2-dimensional NMR
metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinform. 2007, 8, 234. [CrossRef]

33. Izquierdo-Garcia, J.L.; del Barrio, P.C.; Campos-Olivas, R.; Villar-Hernández, R.; Prat-Aymerich, C.; Souza-Galvão, M.L.D.;
Jiménez-Fuentes, M.A.; Ruiz-Manzano, J.; Stojanovic, Z.; González, A.; et al. Discovery and validation of an NMR-based
metabolomic profile in urine as TB biomarker. Sci. Rep. 2020, 10, 22317. [CrossRef]

34. Shiokawa, Y.; Date, Y.; Kikuchi, J. Application of kernel principal component analysis and computational machine learning to
exploration of metabolites strongly associated with diet. Sci. Rep. 2018, 8, 3426. [CrossRef]

35. Halouska, S.; Powers, R. Negative impact of noise on the principal component analysis of NMR data. J. Magn. Reson. 2006,
178, 88–95. [CrossRef] [PubMed]

36. Rutledge, D.N.; Roger, J.M.; Lesnoff, M. Different Methods for Determining the Dimensionality of Multivariate Models. Front.
Anal. Sci. 2021, 1, 754447. [CrossRef]

37. Smilde, A.K.; Jansen, J.J.; Hoefsloot, H.C.J.; Lamers, R.J.A.N.; van der Greef, J.; Timmerman, M.E. ANOVA-simultaneous
component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics 2005, 21, 3043–3048. [CrossRef]

38. Lemanska, A.; Grootveld, M.; Silwood, C.J.L.; Brereton, R.G. Chemometric variance analysis of NMR metabolomics data on the
effects of oral rinse on saliva. Metabolomics 2012, 8, 64–80. [CrossRef]

39. Puig-Castellví, F.; Alfonso, I.; Piña, B.; Tauler, R. 1H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate
Curve Resolution-Alternating Least Squares for Pathway Analysis. Sci. Rep. 2016, 6, 30982. [CrossRef]

40. Trepalin, S.V.; Yarkov, A.V. Hierarchical Clustering of Large Databases and Classification of Antibiotics at High Noise Levels.
Algorithms 2008, 1, 183–200. [CrossRef]

41. Tiwari, P.; Madabhushi, A.; Rosen, M. A Hierarchical Unsupervised Spectral Clustering Scheme for Detection of Prostate Cancer
from Magnetic Resonance Spectroscopy (MRS). In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007;
Ayache, N., Ourselin, S., Maeder, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 278–286.
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