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Preface to ”Quantum Cosmology”

Within the second half of the last century, quantum cosmology concretely became one of the

main research lines within gravitational theory and cosmology. Substantial progress has been made.

Furthermore, quantum cosmology can become a domain that will gradually develop further over

the next handful of decades, perhaps assisted by technological developments. Indications for new

physics (i.e., beyond the standard model of particle physics or general relativity) could emerge and

then the observable universe would surely be seen from quite a new perspective. This motivates

bringing quantum cosmology to more research groups and individuals.

This Special Issue (SI) aims to provide a wide set of reviews, ranging from foundational

issues to (very) recent advancing discussions. Concretely, we want to inspire new work proposing

observational tests, providing an aggregated set of contributions, covering several lines, some of

which are thoroughly explored, some allowing progress, and others much unexplored. The aim

of this SI is motivate new researchers to employ and further develop quantum cosmology over

the forthcoming decades. Textbooks and reviews exist on the present subject, and this SI will

complementarily assist in offering open access to a set of wide-ranging reviews. Hopefully, this will

assist new interested researchers, in having a single open access online volume, with reviews that can

help. In particular, this will help in selecting what to explore, what to read in more detail, where to

proceed, and what to investigate further within quantum cosmology.

Paulo Vargas Moniz

Editor

ix





Citation: Moniz, P.V. Editorial to the

Special Issue “Quantum Cosmology”.

Universe 2022, 8, 336. https://

doi.org/10.3390/universe8060336

Received: 15 June 2022

Accepted: 16 June 2022

Published: 20 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Editorial

Editorial to the Special Issue “Quantum Cosmology”
Paulo Vargas Moniz

Departamento de Física, Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior,
Rua Marquês d’Avila e Bolama, 6200-001 Covilha, Portugal; pmoniz@ubi.pt or prlvmoniz@gmail.com

Some time ago, when I first inquired as to ‘what quantum cosmology is about’, I
did approach the hall with a combination of caution as well as eagerness. At my earnest,
I was proceeding within what one could label as festina lente1, i.e., albeit going broad
and wide, also proceeding serenely as much and as well I could. I wanted eventually to
contribute somehow, if possible in a worthy manner. Plus, I had to find and properly study
the footsteps previously carved by grand researchers in order to follow them, learn from
them and then venture myself.

This Special Issue (SI) also took a while to emerge as we come across several difficulties
during the pandemic years ranging from 2020 to 2022. However, we managed to gather a
set of diverse and focused contributions, surveying a considerably wide range of topics that
represent the main current avenues, as well as the potential for either new and/or still open
routes to further explore. Of course, the SI is not exhaustive and plenty other directions
remain to be mentioned and further addressed. The main point is that we (i.e., myself and
those that added to the SI) (co-)wrote review papers promoting those lines such that eager
(young) minds would feel challenged. Then, they can explore ‘seas ruled by uncharted trade
winds’ (cf. https://en.wikipedia.org/wiki/Trade_winds#History, accessed on 15 June
2022). If we were successful, someone will have been influenced and will make a significant
addition, after having read selected reviews from this SI. This will mean an unequivocal
positive output. This will mean our effort was worthy and, furthermore, it will mean we
did convey some kind of legacy from our own work (or part of it), herewith presented.

This SI contains sixteen review papers, each of about 20 pages, with 50 to 100 references
each. Some overlapping exists and this is most welcome: quantum cosmology is very much
multi-(sub)disciplinary; in particular, progress has been made when immersing oneself
within methods from other domains. However, some routes do cross or border each other,
so that some references or ingredients emerge ‘here, there, somewhere’, in one or two (or
even more) reviews alike, as expected in a young domain of exploration. In spite of the
challenges, quantum cosmology may well be the area that makes progress in this century,
in the next decades. To this, we bequeath the content of this SI.

One of the themes is as follows. Reviews herewith did consider several settings for
quantum cosmology probing, explanations and promotion, mostly building from Gen-
eral Relativity (GR) as the classical onset. However, then, wider scopes were appraised
and discussed. Concretely, in [1] a (super)string setup was presented. Related to it, non-
commutative properties were described in [2]. Within frameworks that encompass GR as
the specific limit, the review in [3] brought Brans-Dicke context and content, whereas [4]
took f(R) and [5] stretched modified gravity up to affine geometries. In a different use of ob-
servables, refs. [6,7] plus [8] as well as [9], each differently in either focus or tools, imported
from loop quantum gravity. Within a broader coordinatization of space, supersymmetry
was employed in [2,10].

However, this was not all. Besides the prospecting line above mentioned, we have
other reviews that instead probed the fitting and realism (i.e., if quantum cosmology can be
cast as to match either (i) real observed physics in some (semi)classical domain or (ii) known
methodologies of well-established field theories): in [11], the issue of third quantization
was imported and appraised; likewise present in [1]. Recently, the ‘landscape’ feature
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from string and alike settings has been a frequent ‘participant’ in discussions. In [12],
this is taken in a sincere appraisal concerning a specific (now iconic) solution for the
universe in quantum cosmology. The fulcrum of ‘time’ was amply debated through [13,14].
Finally, a majestic review was provided in [15] (if I can put it that way) bringing us into
a grand perspective of quantum cosmology. It also conveys our attention to the issue of
back-reaction (which is something [4,16] also captivate into).

It may be also of relevance to associate reviews with additional thematic issues. More
specifically, in [3,13] the de Broglie–Bohm interpretation of quantum mechanics was em-
ployed whereas in [14] the Montevideo interpretation was taken for discussion. Further-
more, the issue of a ‘bounce’ (and somewhat of an alternative for the very early universe
paradigm) at the creation event was used in [9,13]. Although a feature not yet fully elabo-
rated in quantum cosmology, (quantum) entanglement may become primordial and [16]
elaborated upon it, besides on back-reaction. Though not yet something, either methodi-
cally or thoroughly incorporated in quantum cosmology, chaos was mentioned in [9,15].
Within this domain, providing a contribution for effects created and then eventually causing
change, particle creation is important to be considered; see [7]. Another feature not often
widely discussed, are symmetries (within the Noether framework) in quantum cosmology;
see [5]. Moreover, the fundamental crucible of a singularity is unavoidable and in refer-
ence [4] an opportunity was provided to discuss on a particular case. Still elusive but a most
important ‘grail’ in quantum cosmology is to retrieve direct, unequivocal observational
evidence of quantum gravity; Furthermore, in reference [6] a discussion about the topic is
brought to the literature.

In summary, the above-cited review articles reflect the present state of the art, regarding
either already resolved or still unresolved problems. The Guest Editor of this Special Issue
does hope that it will be useful to stimulate subsequent new research routes in quantum
cosmology. The primordial baseline to embrace is that, beyond the mere ‘longitudinal’
effort, adding just an incremental borderline result, it is ‘transversal’ questioning that is
now much required (meaning, taking from some quantum cosmology mainstream issues
and then formulating them in a new unexpected format and/or move one or two steps
away from the current known footsteps).

Acknowledgments: The Guest Editor (P.V.M.) acknowledges the FCT grants UID-B-MAT/00212/2020
and UID-P-MAT/00212/2020 at CMA-UBI plus the COST Action CA18108 (Quantum gravity phe-
nomenology in the multi-messenger approach). Last and not least, it is fundamental to thank all
contributors for their outstanding reviews, without which this SI would have not been possible.

Conflicts of Interest: The author declares no conflict of interest.

Note
1 cf. Festina lente—Wikipedia: https://en.wikipedia.org/wiki/Festina_lente, accessed on 15 June 2022.
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Review

Shape Invariant Potentials in Supersymmetric
Quantum Cosmology
Shahram Jalalzadeh 1 , Seyed Meraj M. Rasouli 2,3 and Paulo Moniz 2,*

1 Departamento de Física, Universidade Federal de Pernambuco, Recife 52171-900, PE, Brazil;
shahram.jalalzadeh@ufpe.br

2 Departamento de Física, Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior,
Rua Marquês d’Avila e Bolama, 6200-001 Covilhã, Portugal; mrasouli@ubi.pt

3 Department of Physics, Qazvin Branch, Islamic Azad University, Qazvin 341851416, Iran
* Correspondence: pmoniz@ubi.pt

Abstract: In this brief review, we comment on the concept of shape invariant potentials, which is an
essential feature in many settings of N = 2 supersymmetric quantum mechanics. To motivate its
application within supersymmetric quantum cosmology, we present a case study to illustrate the
value of this promising tool. Concretely, we take a spatially flat FRW model in the presence of a single
scalar field, minimally coupled to gravity. Then, we extract the associated Schrödinger–Wheeler–
DeWitt equation, allowing for a particular scope of factor ordering. Subsequently, we compute the
corresponding supersymmetric partner Hamiltonians, H1 and H2. Moreover, we point out how
the shape invariance property can be employed to bring a relation among several factor orderings
choices for our Schrödinger–Wheeler–DeWitt equation. The ground state is retrieved, and the excited
states easily written. Finally, the Hamiltonians, H1 and H2, are explicitly presented within a N = 2
supersymmetric quantum mechanics framework.

Keywords: supersymmetric quantum mechanics; shape invariant potentials; supersymmetric
quantum cosmology

1. Introduction

Shape Invariant Potentials (SIP) constitute one of the hallmarks of supersymmetric
quantum mechanics (SQM), in the sense that it enables a prolific framework to be elaborated.
Being more specific, the presence of SIP allows us to easily obtain the set of states for a class
of quantum systems, suitably based on an elegant algebraic construction. Hence, let us
begin by mentioning that there is an algebraic structure associated with the SIP framework.
It has gradually been acquiring a twofold relevance and within most of the exactly solvable
problems in quantum mechanics [1–7].

On the one hand, such a structure has provided a method to determine eigenvalues
and eigenfunctions, by means of which a spectrum is generated. More specifically, a broad
set of those exactly solvable cases can be assembled and assigned within concrete classes;
very few exceptions are known [1–7]. The distinguishing feature of any of such classes is
that any exactly solvable case bears a shape invariant potential: supersymmetric partners are of
the same shape, and their spectra can be determined entirely by an algebraic procedure
comparable to that of the harmonic oscillator. In other words, operators can be defined,
namely A := d

dx + W(x), and its Hermitian conjugate A† := − d
dx + W(x), Hamiltonians

H1 and its superpartner H2 being expressed as A† A and AA†, respectively. From this, we
can produce and operate with other (more adequate) ladder operators for correspondingly
appropriate quantum numbers. These can be maneuvered within a J±, J3 algebra, with
comparable features to textbook ladder operators of angular momentum within either
SU(2) or SO(3); please see [1–7] for relevant details.

5
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On the other hand, several of these exactly solvable systems also possess a potential
algebra: the corresponding Hamiltonian can be written as a Casimir operator of an under-
lying algebra, which in particular cases is of a SO(2, 1) nature [2]. Remarkably, there is a
close correspondence: shape invariance can be expressed as constraint, which assists in
establishing the spectrum; moreover, this shape invariance constraint can be written as
an algebraic condition. For a specific set of SIP, the algebraic condition corresponds to the
mentioned SO(2, 1) potential algebra, where unitary representations become of crucial use.
Interestingly, these can be related to that of SO(3); several SIPs are as such [1–7]. On the
whole, a connection between SIP and potential algebra was attained. Nevertheless, it is also
clear that, in spite of the structural similarity between SO(2, 1) and SO(3) algebras, there
are caveats to be aware of, related to the differences between those unitary representations.

There are also a couple of additional points that we would like to emphasize. To
start with, some quantum states can be retrieved by group theoretical methods. This is
further endorsed from the connections between shape invariance and potential algebra,
wherein the former is translated into a concrete formulation within the latter [2]. As a
result, the scope of the class of potentials where that could be applied was made more
prominent [1]. Furthermore, other classes have been explored, related to harmonic oscillator
induced second order differential equations, bearing group and algebra features, which
subsequently allowed more SIP to be found [1–12]. In particular, this was further extended
toward graded algebras in [8].

Secondly, these algebraic/group theory procedures (within the concrete use of algebras
such as SO(2, 1) or SO(3)) have a striking resemblance to the approach and descriptive
language used in [13–16]; a review of this idea is found in [17]. Therein, it was pointed out
that intertwining boundary conditions, the algebra of constraints and hidden symmetries in
quantum cosmology could be quite fruitful. Specifically, group/algebraic properties within
ladder operators, either from angular momentum or from within the explicit presence of
specific matter fields (and their properties), determined a partition of wave functions and
boundary conditions, according to the Bargmann index [13–16]. Moreover, we proposed
in [17] to extend this framework towards SIP, which could include well known analytically
solvable cosmological cases. Being more clear, provided we identify integrability in terms
of the shape invariance conditions, we could eventually import those specific features of
SQM towards quantum cosmology [18–21]. That was the challenge we laid out in [17],
which is still to be addressed: we hope our review paper herein can further enthuse
someone to pick this up. A somewhat related and interesting direction to explore is to also
consider an elaboration following [22,23]; specifically, accommodating the lines in [13–17]
plus supersymmetry (SUSY) [18,19]. In brief, this paragraph conveys our central motivation
to produce this review, building from a suggestion advanced in [17].

Thirdly, the interest in the above elements notwithstanding, there are still obstacles
that ought to be mentioned, namely, about the scope of the usefulness of SIP in quantum
cosmology. In fact, the list of SIP is quite restrictive, and most potentials therein do
not emerge naturally within a minisuperspace. A few do, but for very particular case
studies [24]. The classification of spatial geometries upon the Bianchi method implies
that the potentials extracted from the gravitational degrees of freedom are very specific.
Any ’broadness’ can be introduced by inserting: (i) very specific matter fields into the
minisuperspace (and therein we ought to be using realistic potentials (as indicated by
particle physics)) or instead, (ii) try more SIP fitted choices but at the price of being very
much ad hoc, i.e., an artificial selection. Nevertheless, the list of SIP and similar cases, where
the algebraic tools could be adopted, has been extended. Although not a strong positive
endorsement, there is work [25–34] that allows us to consider that eventually an extended
notion of SIP may be soundly established, such that more cosmological minisuperspaces
can be discussed within (see e.g., [24]). For the moment, this is a purpose set in construction
and is what this review paper aims to to enthuse about and promote.

Upon this introductory section, this review is structured as follows. In Section 2, we
summarize the features of SQM that we will be employing. In particular, a few technicalities

6
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about SIP will be presented in Section 2.2. Then, in Section 3, we take a case study, typically
a toy model, by means of which we aim to promote work in SUSY quantum cosmology
with the novel perspective of SIP. We emphasize that this is a line of investigation that has
not yet been attempted before (see Section 3.3 for details). Section 4 conveys the Discussion
and suggestions for the outlook for future research work.

2. Supersymmetric Quantum Mechanics

In this section, let us present a brief review of some of the pillars that characterize
SQM. Then, we proceed to add a summary of the shape invariance concept. This section
contains neither new results nor any innovated procedure, but only a very short overview
of the results presented within seminal papers, e.g., [35–37].

2.1. Hamiltonian Formulation of Supersymmetric Quantum Mechanics

In order to describe SQM, let us start with the Schrödinger equation:

HΨn(x) =

[
− h̄2

2m
d2

dx2 + V(x)

]
Ψn(x) = EnΨn(x). (1)

We assume that the ground state wave function Ψ0(x) (that has no nodes1) associated with
a potential V1(x) is known. Then, by assuming that the ground state energy E0 to be zero,
the Schrödinger equation for this ground state reduces to:

H1Ψ0(x) =

[
− h̄2

2m
d2

dx2 + V1(x)

]
Ψ0(x) = 0, (2)

which leads to construct the potential V1(x):

V1(x) =
h̄2

2m
Ψ′′0 (x)
Ψ0(x)

, (3)

where a prime denotes differentiation with respect to x. It is straightforward to factorize
the Hamiltonian from the operators as follows:

A =
h̄√
2m

[
d

dx
− Ψ′0(x)

Ψ0(x)

]
, A† = − h̄√

2m

[
d

dx
+

Ψ′0(x)
Ψ0(x)

]
, (4)

through the equation

H1 = A† A. (5)

In order to construct the SUSY theory related to the original Hamiltonian H1, the next step
is to define another operator by reversing the order of A and A†, i.e., H2 ≡ AA†, by which
we indeed get the Hamiltonian corresponding to a new potential V2(x):

H2 = − h̄2

2m
d2

dx2 + V2(x), (6)

where

V2(x) = −V1(x) +
h̄
m

[
Ψ′0(x)
Ψ0(x)

]2

. (7)

The potentials V1(x) and V2(x) have been referred to as the supersymmetric partner po-
tentials. It should be noted that H2, as the partner Hamiltonian corresponding to H1 is in
general not unique, but there is a class of Hamiltonians H(m) that can be partner Hamilto-
nians2. This point has been specified [35,38,39], conveying a better understanding of the

7
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relationship between SQM and the inverse scattering method, established by Gelfand and
Levitan [40,41].

In SQM, instead of the ground state wave function Ψ0(x) associated with H1, the
superpotential W(x) is introduced, being related to Ψ0(x) and its first derivative (with
respect to x) by means of

W(x) = − h̄√
2m

(
Ψ′0(x)
Ψ0(x)

)
. (8)

At this stage, it is worth expressing the operators A and A† and the supersymmetric
partner potentials V1(x) and V2(x) in terms of the superpotential. Therefore, using (8),
Equations (3), (4) and (7) are rewritten as:

A =
h̄√
2m

d
dx

+ W(x), A† = − h̄√
2m

d
dx

+ W(x), (9)

V1(x) = − h̄√
2m

W ′(x) + W2(x), V2(x) =
h̄√
2m

W ′(x) + W2(x), (10)

where the expressions for V1 and V2 in (10) constitute Riccati equations. Equations (9) and (10)
imply that W ′(x) is proportional to the commutator of the operators A and A†, and W2(x)
is the average of the partner potentials.

It is easy to show that the wave functions, the energy eigenvalues and the S-matrices
of both the Hamiltonians H1 and H2 are related. Let us merely outline the results and
abstain from proving them. In this regard, we take Ψ(1)

n and Ψ(2)
n as the eigenfunctions

of H1 and H2, respectively. Moreover, we denote their corresponding energy eigenvalues
with E(1)

n ≥ 0 and E(2)
n ≥ 0 where n = 0, 1, 2, 3, . . . is the number of the nodes in the wave

function. It is straightforward to show that supersymmetric partner potentials V1(x) and
V2(x) possess the same energy spectrum. However, we should note that, for the ground
state energy E(1)

0 = 0 associated with the potential V1(x), there is no corresponding level
for its partner V2(x). Concretely, it has been shown that:

E(2)
n = E(1)

n+1, E(1)
0 = 0, (11)

Ψ(2)
n =

[
E(1)

n+1

]− 1
2 AΨ(1)

n+1, (12)

Ψ(1)
n+1 =

[
E(2)

n

]− 1
2 A†Ψ(2)

n . (13)

In what follows, let us express some facts. (i) If the ground-state wave function Ψ(1)
0 ,

which is given by (AΨ(1)
0 = 0)

Ψ(1)
0 = N0exp

[
−
∫ x

W(x′)dx′
]

, (14)

is square integrable, then the ground state of H1 has zero energy (E0 = 0) [35]. For this case,
it can be shown that the SUSY is unbroken; (ii) if the eigenfunction Ψ(1)

n+1 of H1 (Ψ(2)
n of H2) is

normalized, then the Ψ(2)
n (Ψ(1)

n+1), will be also normalized; (iii) Assuming the eigenfunction

Ψ(1)
n with eigenvalue E(1)

n (Ψ(2)
n with eigenvalue E(2)

n ) corresponds to the Hamiltonian H1

(H2), it is easy to show that AΨ(1)
n (A†Ψ(2)

n ) will be an eigenfunction of H2 (H1) with the
same eigenvalue; (iv) In order to destroy (create) an extra node in the eigenfunction as
well as convert an eigenfunction of H1 (H2) into an eigenfunction of H2 (H1) with the same
energy, we apply the operator A (A†); (v) The ground state wave function of H1 has no
SUSY partner; (vi) Applying the operator A (A†), all the eigenfunctions of H2 (H1, except
for the ground state) can be reconstructed from those of H1 (H2); please see Figure 1.

8
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Figure 1. The energy levels of V1(x) and V2(x) as two supersymmetric partner potentials. The

figure is associated with unbroken SUSY. It is seen that, except an extra state E(1)
0 = 0, the other

energy levels are degenerate. Moreover, in this figure, it is shown that how the operators A and A†

connect eigenfunctions.

It has been believed that this fascinating procedure, which leads to an understanding
of the degeneracy of the spectra of H1 and H2, can be provided by applying the properties
of the SUSY algebra. Therefore, let us consider a matrix SUSY Hamiltonian (which is part
of a closed algebra including both bosonic and fermionic operators with commutation and
anti-commutation relations) containing both the Hamiltonians H1 and H2 [37]:

H =

[
H1 0
0 H2.

]
. (15)

Supersymmetric quantum mechanics begins with a set of two matrix operators, Q and
Q†, known as supercharges:

Q =

[
0 0
A 0

]
, (16)

Q† =

[
0 A†

0 0.

]
. (17)

The matrix H is part of a closed algebra in which both bosonic and fermionic operators with
commutation and anti-commutation relations are included, such that the bosonic degrees
of freedom are changed into the fermionic ones and vice versa by the supercharges.

It is straightforward to show that:

[H, Q] = [H, Q†] = 0, (18)

{Q, Q†} = H, (19)

{Q, Q} = 2Q2 = {Q†, Q†} = 2
(

Q†
)2

= 0, (20)

by which the closed superalgebra sl(1, 1) is described [42] (see also Section 3.3). Note that
the relations (18) are responsible for the degeneracy.

In SQM, when the two partner potentials have continuum spectra, it is possible to
relate the reflection and transmission coefficients. A necessary condition for providing
scattering in both of the partner potentials is that they must be finite when x → −∞ or
x → ∞.

2.2. Shape Invariance and Solvable Potentials

In the context of the non-relativistic quantum mechanics, there are a number of known
potentials (e.g., Coulomb, harmonic oscillator, Eckart, Morse, and Pöschl–Teller) for which
we can solve the corresponding Schrödinger equation analytically and determine all the
energy eigenvalues and eigenfunctions explicitly. In this regard, the following questions

9
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naturally arise: Why are just some potentials solvable? Is there any underlying symmetry
property? What is this symmetry?

Gendenshtein was the first to answer these questions by introducing the shape in-
variance concept [43]. In fact, for such potentials, all the bound state energy eigenval-
ues, eigenfunctions and the scattering matrix can be retrieved by applying the general-
ized operator method, which is essentially equivalent to the Schrödinger’s method of
factorization [44,45].

In [43], the relationship between SUSY, the hierarchy of Hamiltonians, and solvable
potentials has been investigated from an interesting perspective (for detailed discussions
see, for instance, [35,37]). In what follows, let us describe briefly the shape invariance
concept. “If the pair of SUSY partner potentials V1,2(x, b) are similar in shape and differ only
in the parameters that appear in them, then they are said to be shape invariant” [46]. Let us be
more precise. Consider a pair of SUSY partner potentials, V1,2(x), as defined in (10). If the
profiles of these potentials are such that they satisfy the relationship:

V2(x, b) = V1(x, b1) + R(b1), (21)

where the parameter b1 is some function of b, say given by b1 = f (b), the potentials V1,2(x)
are said to bear shape invariance. In other words, to be associated within shape invariance
the potentials V1,2, while sharing a similar coordinate dependence, can at most differ in the
presence of some parameters. To make the definition of shape invariance clear, consider,
for example,

W = b tanh

(√
2m
h̄

x

)
. (22)

Then, inserting this superpotential into (10) gives us:

V1(x, b) = − b(b + 1)

cosh2
(√

2m
h̄ x

) + b2,

V2(x, b) = − b(b− 1)

cosh2
(√

2m
h̄ x

) + b2.
(23)

The above expressions show that one can rewrite V2 in terms of V1, as expressed in (10)
where, in this example, b1 = b− 1, and R(b1) := 2b1 + 1. Thus, the potentials V1,2 bear
shape invariance in accordance with the definition (10). Then, to use the shape invariance
condition, let us assume that (10) holds for a sequence of parameters, {bk}k=0,1,2,..., where,

bk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k times

(b) = f k(b), k = 0, 1, 2, . . . , b0 := b. (24)

Consequently,
H2(x, bk) = H1(x, bk+1) + R(bk). (25)

Now, we write H(0) = H1(x, b), H(1) = H2(x, b), and we define H(m) as:

H(m) := − h̄2

2m
d2

dx2 + V1(x, bm) +
m

∑
k=1

R(bk) = H1(x, bm) +
m

∑
k=1

R(bk). (26)

Using (25), we can extract H(m+1) as:

H(m+1) = H2(x, bm) +
m

∑
k=1

R(bk). (27)

10
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Therefore, in this way, we are able to set up a hierarchy of Hamiltonians H(k) for various
k values.

Employing condition (21) and the hierarchy of Hamiltonians [37], the energy eigenval-
ues and eigenfunctions have been obtained for any shape invariant potential when SUSY is
unbroken. It should be noted that there is a correspondence between the condition (21) (as-
sociated with SQM) and the required mathematical condition applied in the method of the
factorization of the Hamiltonian [47]. Although the terminology and ideas associated with
these methods are different, they can be considered as the special cases of the procedure
employed to handle second-order linear differential equations [48,49]. Notwithstanding the
above, it has been believed that a better understanding of analytically solvable potentials
could be achieved by SUSY and shape invariance. Let us elaborate more on this aspect.

H2 contains the lowest state with a zero energy eigenvalue, according to the SQM
concepts discussed in Section 2. As a result of (11), the lowest energy level of H(m) has the
value of:

E(m)
0 =

m

∑
k=1

R(bk). (28)

Therefore, it is simple to realize that because of the chain H(m) → H(m−1) . . . → H(1)(:=
H2) → H(0)(:= H1), the nth member in this sequence carries the nth level of the energy
spectra of H(0) (or H1), namely [35]:

E(0)
n =

n

∑
k=1

R(bk), E(0)
0 = 0. (29)

Let us now return to the example (22). We rewrite (21) as:

V1(x, b) = V2(x, b− 1) + b2 − (b− 1)2. (30)

We can generate bk from b0 = b as bk = b− k. Hence, the energy spectrum from V1(x, b)
yields:

E(0)
n =

n

∑
k=1

R(bk) =
n

∑
k=1

(b2 − b2
k) = b2 − b2

n = b2 − (b− n)2. (31)

It is worth noting that, according to the requirement (21), the well-known solvable potentials
(such as those were listed in the first paragraph of this subsection) are all shape invariant
and, therefore, their energy eigenvalue spectra are given by (29). “In [43], Gendenshtein then
conjectured that shape invariance is not only sufficient but may even be necessary for a potential to
be solvable” [35]; In addition, let us mention that new developments have been achieved
on this domain, where new approaches (see [50–54]) have either challenged or broaden
this assertion. Moreover, by applying SUSY, it is also possible to retrieve the bound-state
energy eigenfunctions of H1 for shape invariant potentials [36]. In particular, in the same
paper, by taking Ψ1

0(x, b) as the ground-state wave function of H1 (which is given by (14)),
and employing relation (13), a relation is obtained for nth-state eigenfunction Ψ1

n(x, b) as:

Ψ1
n(x, b) = A†(x, b)A†(x, b1) . . . A†(x, bn−1)Ψ1

0(x, b). (32)

For later convenience, let us concentrate on a specific shape invariance that only
involving translation of the parameter b0 with a translation step η [27] (for other kind of
relations between the parameters, see, for instance, [37]):

b1 = b0 + η. (33)

It is feasible to introduce a translation operator as:

T(b0) = exp
(

η
∂

∂b0

)
, T−1(b0) = T†(b0) = exp

(
−η

∂

∂b0

)
, (34)

11
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which act merely on objects defined on the parameter space.
By composing the translation and bosonic operators, we can construct the following

generalized creation and annihilation operators:

B1(b0) = A†(b0)T(b0),
(35)

B2(b0) = T†(b0)A(b0). (36)

Applying the shape invariant potentials to solve the Schrödinger equation is similar to
the factorization method employed to the case of the harmonic oscillator potential [27].
Therefore, we have:

B2(b0)A(b0)Ψ0(x; b0) = A(b0)Ψ0(x; b0) = 0. (37)

In order to obtain the excited states, the creation operator should repeatedly act on Ψ0(x; b0):

Ψn(x; b0) = [B1(b0)]
nΨ0(x; b0). (38)

We should note that the translation operators (T and T†) and ladder operators, A and A† do
not commute with any bk-dependent and any x-dependent objects, respectively. Therefore,
the generalized creation and annihilation operators (B1 and B2) act on the objects defined
on the dynamical variable space and the objects defined on parameter space via the bosonic
operators and the translation operators, respectively. According to (37), we have:

Ψ0(x; b0) ∝ exp
(
−
∫ x

W(x̃; b0)dx̃
)

, (39)

which is transformed by a normalization constant (that should, in general, depend on
parameters b) into a relation of equality. Concretely, the action of the generalized operators
affects in determining such a normalization constant; for more details, see, [55].

Now let us obtain the relations of the energy eigenvalues and energy spectrum. From
using (34), we can write:

R(bn) = T(b0)R(bn−1)T†(b0), (40)

where

bn = b0 + nη (41)

is a generalized version of (33). Employing (40), we get:

R(bn)B1(b0) = B1(b0)R(bn−1). (42)

Equations (40) and (42) yield a commutation relation as:

[H1, (B1)
n] =

(
n

∑
k=1

R(bk)

)
(B1)

n. (43)

Applying (43) on the ground state of H1, i.e., Ψ0(x; b0), it is seen that [B1(b0)]
nΨ0(x; b0)

is also an eigenfunction of H1 with eigenvalue E(1)
n given by (29). Therefore, the energy

spectrum is:

En = E0 + E(1)
n , (44)

where the ground state energy E0 is obtained from either:

H1 = H − E0, (45)

12
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or, equivalently,

W(x; b)−W ′(x; b) = V(x)− E0 = V1(x). (46)

Finally, it should be noted that the above established algebraic approach is self-
consistent. More concretely, by considering supersymmetric and shape invariance proper-
ties of the system, it can be applied as an appropriate method for obtaining not only the
eigenvalues and eigenfunctions of the bound state of a Schrödinger equation, but also exact
resolutions for this equation [27].

3. SUSY Quantum Cosmology

In order to apply the formalism presented in the previous section, let us investigate a
homogeneous and isotropic cosmology, in the context of General Relativity (GR) together
with a single scalar field, φ, minimally coupled to gravity.

3.1. A Case Study: Classical Setting

By considering the Friedmann–Lemaître–Robertson–Walker (FLRW) line element3

ds2 = N(t)dt2 + a(t)2
{

dr2

1− kr2 + r2dΩ2
}

, (47)

the ADM4 Lagrangian will be5

LADM = − 3
N

aȧ2 + 3kNa + a3
(

φ̇2

2N
− NV(φ)

)
, (48)

where an over-dot denotes a differentiation with respect to the cosmic time t; N(t) is a
lapse function, a(t) is the scale factor, V(φ) is a scalar potential and k = {−1, 0, 1} is the
spatial curvature constant associated with open, flat and closed universes, respectively.

In this work, let us consider the scalar potential V(φ) to be in the form [65,66]

V(φ) = λ +
m2

2α2 sinh2(αφ) +
ϑ

2α2 sinh(2αφ), (49)

where λ may be related to the cosmological constant; m2 = ∂2V/∂φ2|φ=0 is a mass squared
parameter; α2 = 3/8 and ϑ is a coupling parameter. Moreover, we will now investigate
only the spatially flat FLRW universe. For this case, it has been shown that an oscillator–
ghost–oscillator system is produced [66–71]. More concretely, by applying the following
transformations [72–75],

X =
a

3
2

α
cosh(αφ), Y =

a
3
2

α
sinh(αφ), (50)

the Lagrangian (48) transform into

LADM = − 1
2N

ξ̇> Jξ̇ +
N
2

ξ>MJξ, (51)

where

ξ :=
(

X
Y

)
, M :=

(
2λα2 −ϑ

ϑ 2λα2 −m2

)
, J :=

(
1 0
0 −1

)
. (52)

It is straightforward to decouple (51) into normal modes γ := Σ−1ξ by means of:

γ :=
(

u
v

)
, Σ :=

(
−m−

√
m4−4ϑ2

2ϑ
−m+

√
m4−4ϑ2

2ϑ
1 1

)
, (53)
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which diagonalize the matrix M as follows:

Σ−1MΣ =

(
ω1 0
0 ω2

)
, ω2

1,2 =
3λ

4
+

m2

2
∓
√

m4 − 4ϑ2

2
. (54)

Thus, we retrieve the Lagrangian associated with a 2D oscillator–ghost–oscillator:

LADM(u, v) = − 1
2N

γ̇>I γ̇ +
N
2

γ>J γ

= −1
2

{(
1
N

u̇2 −ω2
1 Nu2

)
−
(

1
N

v̇2 −ω2
2 Nv2

)}
,

(55)

where I := Σ> JΣ, and J := Σ>MJΣ. The conjugate momenta corresponding to u and v
are:

pu =
u̇
N

, pv = − v̇
N

. (56)

Moreover, the classical Euler–Lagrange equations are given by:

d
dt

(
u̇
N

)
+ Nω2

1u = 0,
d
dt

(
v̇
N

)
+ Nω2

2v = 0. (57)

It is straightforward to show that the Hamiltonian corresponding to the ADM La-
grangian (55) is:

HADM = −N
2

{(
p2

u + ω2
1u2
)
−
(

p2
v + ω2

2v2
)}

, (58)

which, for the gauge N = 1, yields

u(t) = u0 sin(ω1t− θ), v(t) = v0 sin(ω2t). (59)

In (59), θ is an arbitrary phase factor. From using the Hamiltonian constraint, we obtain
ω1u0 = ω2v0. It is also seen that the classical paths corresponding to solutions (59), in the
configuration space (u, v), are the generalized Lissajous ellipsis.

3.2. Quantization

In order to establish a quantum cosmological model corresponding to our model, let
us proceed with the Wheeler–DeWitt equation. The canonical quantization of (58) gives

HΨ(u, v) =
(
− ∂2

∂u2 +
∂2

∂v2 + ω2
1u2 −ω2

2v2
)

Ψ(u, v) = 0. (60)

Equation (60) is separable and we can obtain a solution as:

Ψn1,n2(u, v) = αn1(u)βn2(v), (61)

where

αn(u) =
(ω1

π

)1/4 Hn(
√

ω1u)√
2nn!

e−ω1u2/2, (62)

βn(v) =
(ω2

π

)1/4 Hn(
√

ω2v)√
2nn!

e−ω2v2/2. (63)
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In relations (62) and (63), Hn(x) stands for the Hermite polynomials. Moreover, we should
note that the Hamiltonian constrain relates the parameters of the model as:

(
n1 +

1
2

)
ω1 =

(
n2 +

1
2

)
ω2, n1, n2 = 0, 1, 2, . . . . (64)

The recovery of classical solutions from the corresponding quantum model is one of the
essential elements of quantum cosmology. For this aim, a coherent wave packet with
reasonable asymptotic behavior in the minisuperspace is often constructed, peaking near
the classical trajectory. We can herewith produce a widespread wave packet solution,

Ψ(u, v) = ∑
n1,n2

Cn1n2 αn1(u)βn2(v), (65)

where the summing is restricted to overall values of n1 and n2 satisfies the relation (64). Let
us consider the simplest case which is when ω1 = ω2 = ω, which means m2 = 2ϑ in the
definition of scalar field potential (49). Then, the wave packet will be:

Ψ(u, v) =
√

ω

π

∞

∑
n=0

Cn

n!2n exp
(
−ω

2
(u2 + v2)

)
Hn(
√

ωu)Hn(
√

ωv), (66)

where Cn is a complex constant. We apply the following identity to create a coherent
wave packet with suitable asymptotic behavior in the minisuperspace, peaking around the
classical trajectory:

∞

∑
n=0

tn

n!
Hn(x)Hn(y) =

1√
1− t2

exp
(

2txy− t2(x2 + y2)

2(1− t2)

)
. (67)

Using this identity and choosing the coefficients Cn in (66) to be Cn = B2n tanh ξ , with B
and ξ are arbitrary complex constants, we obtain:

Ψ(u, v) = C exp
(
−ω

4
cos(2β2) cosh(2β1)(u2 + v2 − 2η tanh(2β1)uv)

)

× exp
(
− iω

4
sinh(2β1) sin(2β− 2)(u2 + v2 − 2η coth(2β1)uv)

)
, (68)

where β1 and β2 are the real and imaginary parts of ξ = β1 + iβ2, respectively, η = ±1, and
N is a normalization factor. Figure 2a shows the density plot, and Figure 2b illustrates the
contour plot of the wave function for typical values of β1, β2, and η = 1 for the following
combination of the solutions:

Ψ(u, v) = Ψβ1,β2(u, v)−Ψβ1+δβ1,β2+δβ2(u, v). (69)

The classical solutions (59) can easily be represented as the following trajectories (for
ω1 = ω2 = ω):

u2 + v2 − 2ηuv cos(θ)− u2
0 sin2(θ) = 0. (70)

This equation describes ellipses whose major axes make angle π/4 with the positive/negative
u axis according to the choices ±1 for η. Additionally, each trajectory’s eccentricity and size
are determined by θ and u0, respectively. It can be seen that the quantum pattern in Figure 2
and the classical paths (70) in configuration space, (u, v), have a high correlation.
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(a) (b)

Figure 2. Density plot- (a), and contour plot- (b), of a wave packet. These figures are plotted for
numerical values ω = 1, β1 = 1, β2 = π/6, η = 1, δβ1 = 0.1 and δβ2 = 3π/50.

Let us point out how we can introduce a time-evolving wave-function. By employing
a canonical transformation on the (v, pv) sector of the Hamiltonian (58), we observe that
in the total Hamiltonian, the momentum associated with the the new canonical variable
appears linearly. Let us be more precise. Consider the following canonical transformation
(v, pv)→ (T, pT) given by:

v =

√
2pT

ω2
2

sin(ω2T), pv =
√

2pT cos(ω2T), {T, pT} = 1. (71)

It is easy to check out that the inverse map is given by the following relations:

pT =
1
2

p2
v +

1
2

ω2
1v2, T =

1
ω2

tan−1
(

ω2
v
pv

)
. (72)

In fact, the new set of phase space coordinates (T, pT) is related to the harmonic oscillator’s
action-angle variables, (ϕ, pϕ), by [76,77]:

ϕ = ω2T, pϕ =
pT
ω2

. (73)

The ADM Hamiltonian (58) simply takes the form:

HADM = N
(

1
2

p2
u +

1
2

ω2
1u2 − pT

)
. (74)

The classical field equations corresponding to (74) are:
{

u̇ = Npu, ṗu = −Nω2
1u,

Ṫ = −N, ṗT = 0.
(75)

For N = 1, we find

T = −t, pT = const. (76)

Thus, the motion in 2D phase space (T, pT) becomes trivial, i.e., flow paths are straight
lines with constant pT . As seen, the second set of solutions for (75) implies that T plays
the role of the time parameter. Consequently, the Poisson bracket of the time parameter
and super-Hamiltonian does not vanish but instead we have {T,H} = 1 = {T, pT}, which
implies that T is not a Dirac observable, and therefore, we may consider it as a time variable;
see, for instance, [76] and references therein.
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3.3. Supersymmetric Quantization

Employing the Hamiltonian constraint upon (74), and then substituting pu = −i d
du

and pT = −i ∂
∂T = i ∂

∂t , we get a Schrödinger–Wheeler–WeDitt equation:

i
∂

∂t
Ψ(u, t) =

[
−1

2
d2

du2 +
l(l + 1)

2u2 +
1
2

ω2
1u2
]

Ψ(u, t). (77)

In the process of obtaining Equation (77), we have further used the following factor ordering
procedure:

p2
u = −1

3

(
uα d

du
uβ d

du
uγ + uγ d

du
uα d

du
xβ + uβ d

du
uγ d

du
uα

)
, (78)

where the parameters α, β, and γ satisfy the requirement α + β + γ = 0, and we have set
1
3 (β2 + γ2 + βγ) := l(l + 1).

The time independent sector of Equation (77) reads:

HlΨ
l
n(u) = El

nΨl
n(u), (79)

where

Hl := −1
2

d2

du2 +
l(l + 1)

2u2 +
1
2

ω2
1u2. (80)

According to the Equation (10), we now introduce first-order differential operators:





Al := 1√
2ω1

d
du +

√
ω1
2 u− l+1√

2ω1u ,

A†
l := − 1√

2ω1

d
du +

√
ω1
2 u− l+1√

2ω1u .

(81)

For l ∈ N, we correspondingly obtain the following supersymmetric partner Hamiltonians:





H1 = ω1 A†
l Al = − 1

2
d2

du2 +
l(l+1)

2u2 + 1
2 ω2

1u2 + ω1(l − 1
2 ) = Hl −ω1(l + 3

2 ),

H2 = ω1 Al A†
l = − 1

2
d2

du2 +
(l+1)(l+2)

2u2 + 1
2 ω2

1u2 −ω1(l + 1
2 ) = Hl+1 −ω1(l + 1

2 ).

(82)

These two Hamiltonians have the same energy spectrum except the ground state of H2:





H1Ψ(l)
n =

[
E(l)

n + ω1 − (l + 3
2 )
]
Ψ(l)

n ,

H2Ψ(l+1)
n+1 =

[
E(l+1)

n+1 −ω1(l + 1
2 )
]
Ψ(l+1)

n+1 =
[

E(l)
n −ω1(l + 1

2 )
]
Ψ(l+1)

n+1 .

(83)

It is seen that these equations refer to the shape-invariance condition, by which we, equiva-
lently, can write:

A†
l−1 Al−1 − Al A†

l =
2

ω1
. (84)

Thus, altering the sequence of operators Al and A†
l causes the value of l to change. This

demonstrates how shape-invariance properties link the various factor orderings of the
Schrödinger–Wheeler–DeWitt Equation (79). Shape-invariant potentials are well recognized
for being simple to deal with when using lowering and raising operators, similar to the
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harmonic oscillator. However, we should note that the commutator of Al and A†
l does not

provide a constant value. Namely,

[Al , A†
l ] = 1 +

l + 1
ω1u2 , (85)

which implies that these operators are not suitable to proceed with. As the eigenvalue
relation (82) shows, the potentials V1(u; b0) and V2(u; b1) introduced in (9) are given by:

V1(u; b0) =
b0(b0 + 1)

2u2 +
1
2

ω2
1u2,

V2(u; b1) =
b1(b1 + 1)

2u2 +
1
2

ω2
1u2,

(86)

where b1 = l + 1 and b0 = l. Therefore, in relation (33) this corresponds to η = 1.
According to the Section 2.2, we presume that replacing l + 1 with l in a given operator
can be accomplished via a similarity transformation, (34), and so we build an appropriate
algebraic structure via translation operator:

T(l) = exp
(

∂

∂l

)
, T−1(l) = T†(l) = exp

(
− ∂

∂l

)
. (87)

Therefore, we introduce the operators:

Bl :=
1√
2

T†(l)Al , B†
l :=

1√
2

A†
l T(l), Nl

B := B†
l Bl , (88)

which lead us to the simple harmonic oscillator (Heisenberg–Weyl) algebra

[Bl , B†
l ] = 1, [Nl

B, Bl ] = −Bl , [Nl
B, B†

l ] = B†
l . (89)

These commutation relations show that B†
l and Bl are the appropriate creation and anni-

hilation operators for the spectra of our shape-invariant potentials. The action of these
operators on normalized eigenfunctions yields:

BlΨ
l
n =
√

nΨl
n−1, B†

l Ψl
n =
√

n + 1Ψl
n+1, Nl

BΨl
n = nΨl

n, n = 0, 1, 2, . . . . (90)

Equation (79) and the last equation of the above set give:

El
n = ω1

(
2n + l +

3
2

)
. (91)

In addition, the condition BlΨl
0 = 0 gives us the ground state of the model universe for

factor ordering l by:

Ψl
0 = Cl exp

(
−ω1

2
u2 − l + 1

u2

)
, (92)

where Cl is a normalization constant. The excited states can be easily determined by
applying (37).

In what follows, let us complete our procedure by including the Grassmannian vari-
ables ψ and ψ̄, which satisfy

ψ2 = 0, ψ̄2 = 0, ψψ̄ + ψ̄ψ = 1, (93)

involving them in the Hamiltonian (80). By means of such a procedure, we can subsequently
construct a supersymmetric extension of our Hamiltonian:

HSUSY = −1
2

d2

du2 +
l(l + 1)

2u2 +
1
2

ω2
1u2 + ω1ψ̄ψ. (94)
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In our work herein, the convention of the left derivative for these variables has been
adapted. Up to now, we specified the bosonic creation and annihilation operators B and
B† in terms of the dynamical variable u and its conjugate momenta. Here, we can also
introduce fermionic creation and annihilation operators C† = ψ̄ and C = ψ. Therefore, the
Hamiltonian (94) can simply be written as:

HSUSY = 2ω1(B†B + C†C). (95)

Adapting the basic commutator and anticommutator brackets:

[B, B†] = 1, {C, C†} = 1, (96)

and considering all the others to be zero, it is easy to show that the operators:

NB = B†B, NF = C†C, Q = B†C, Q† = C†B, (97)

(where the indices B and F refer to the bosonic and fermionic quantities, respectively) will
be conserved quantities. Namely,

[Q, HSUSY] = [Q†, HSUSY] = 0, [NB, HSUSY] = [NF, HSUSY] = 0. (98)

Moreover, we have:

[Q, NB] = −Q, [Q, NF] = Q

[Q†, NB] = Q†, [Q†, NF] = −Q†,

ω1{Q, Q†} = HSUSY, Q2 =
1
2
{Q, Q} = 0,

(
Q†
)2

=
1
2
{Q†, Q†} = 0. (99)

From (98) and (99) an explicit algebra is therefore produced, where the Hamiltonian HSUSY
is a Casimir operator for the whole algebra [78]. If we use a matrix representation, then we
can write, alternatively,

ψ = C =

(
0 0
1 0

)
, ψ̄ = C† =

(
0 1
0 0

)
, (100)

HSUSY = 2ω1

(
B†

l Bl + 1 0
0 Bl B†

l

)
=

(
H1 0
0 H2

)
. (101)

4. Discussion

This paper is a review that embraces a twofold endorsement. On the one hand, it
imports SUSY features (in a quantum mechanical setting). However, the current fact is
that SUSY has not (yet . . . ) been found in nature; searches prevail for any evidence, being
it directly or indirectly. On the other hand, this review refers to quantum cosmology as
a phenomenological domain regarding the full quantization of gravity. Likewise, there
is as yet no clear-cut observational evidence of such a stage in the very early universe.
Whereas the latter is fairly expected as the cosmos is further probed, proceeding gradually
to prior times, the former, although alluringly elegant, may just be a formal framework.
So, producing a review on a topic involving these two ideas may seem twice likely to raise
discomfort. However, maybe not; perhaps SUSY quantum cosmology deserves to be kept
nearby, just over an arm’s length, so as to say6, if the occasion (or data) emerges to either
support it or at least enthuse more research about it. There are still open aspects to appraise
and the one brought up in this review is among them [18,19].

In what concerns SUSY quantum cosmology, there have been a few books in the past
30 years or so [18,19,79] plus selected reviews on the different procedures that were con-
structed and subsequently promoted [80–90]. Likewise, there are chapters (and sections)

19



Universe 2022, 8, 316

about SUSY quantum cosmology in well known textbooks concerning quantum grav-
ity [91–94]. In particular, the direction and extension of N = 2 SQM to SUSY quantum
cosmology was led by [95–98] and subsequently by [99,100], referring to conformal issues.

Therefore, the opportunity to produce this review enthused us to refer to and explore
a specific particular aspect that was indicated as a concrete open problem in SUSY quantum
cosmology (Nb. we emphasize many more still remain; cf. in [18,19]); concretely, investi-
gating the setting of SIP, fairly present in N = 2 SQM. This framework has been previously
developed and independently from SUSY quantum cosmology, to explore issues in super-
symmetric quantum field theory, namely SUSY breaking (which the seminal paper [101]
has made possible).

Hence, a necessary and yet to be performed analysis remains to be elaborated: explic-
itly considering SIP as we just mentioned within quantum cosmology, i.e., bringing up this
possibility and using it intertwined within SUSY quantum cosmology. This is a new idea
for other researchers to pick up and evolve forward, producing their own assertions. The
content of our review is thus very open, conveying a direction for further exploration. It
involves algebraic quantum-mechanical aspects that are present when SIP characterizes
particular models. It also deals with integrability, which SUSY seems to bring so elegantly.

In this paper, besides contributing a topical review towards this Special Issue, we
also provided a constructive example to illustrate how promising the framework can
be. Concretely, we provided a case study, consisting of a spatially flat FRW model in the
presence of a single scalar field, minimally coupled to gravity. We extracted the Schrödinger–
Wheeler–DeWitt equation containing a particular set of possible factor ordering. Next, we
computed the corresponding supersymmetric partner Hamiltonians. Intriguingly, the shape
invariance properties can be related to the several factor orderings of our Schrödinger–
Wheeler–DeWitt equation. The ground state was computed and the excited states as
well. Consistently, the partner Hamiltonians, were explicitly presented within an N = 2
SQM framework.

We implicitly made another suggestion in Section 1 (Introduction). In more detail,
we suggested building a twofold framework; on the one hand, importing the ideas em-
ployed in references [13–17], where the presence of constraints, their algebra plus a natural
integrability induces separability in the Hilbert space of solutions for the Wheeler–DeWitt
equation. On the other hand, exploring, at least to begin with on formal terms, whether any
such algebra of the constraints generators for a minisuperspace would bear any similarity
to an algebra of supersymmetry generators. In other words, perhaps producing a sequence
of new operators Al and A†

l , assisting SIP properties but also related to SUSY constraints
of a Schrödinger–Wheeler–DeWitt equation similar to (79). SIP are well recognized for
being simple to deal with. In essence, our suggestion is to explore (i) if there is any rela-
tion between SIP and the descriptive report in [13–17] and, if positive, (ii) apply it within
SUSY quantum cosmology.

Author Contributions: Conceptualization, S.J., S.M.M.R. and P.M.; Formal analysis, S.J., S.M.M.R.
and P.M.; Methodology, S.J., S.M.M.R. and P.M.; Writing–original draft, S.J., S.M.M.R. and P.M.;
Writing–review & editing, S.J., S.M.M.R. and P.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: PVM and SMMR acknowledge the FCT grants UID-B-MAT/00212/2020 and
UID-P-MAT/00212/2020 at CMA-UBI plus the COST Action CA18108 (Quantum gravity phe-
nomenology in the multi-messenger approach).

Conflicts of Interest: The authors declare no conflict of interest.

20



Universe 2022, 8, 316

Notes
1 In [37], the excited wave functions have also been studied. More concretely, instead of the choice of a nonsingular superpo-

tential that is based on the ground state wave function Ψ0(x), a generalized procedure was presented to construct all possible
superpotentials.

2 Cf. next subsection, concretely about Equation (28).
3 Throughout this paper we work in natural units where h̄ = c = kB = 1.
4 Adler–Deser–Misner (ADM); see [56] for more details.
5 In this work, we consider a framework in which the scalar field is minimally coupled to gravity, see also [57–59]. Instead, one can

choose other interesting gravitational models where φ is non-minimally coupled, see for instance [60–64].
6 “Ah, but a man’s reach should exceed his grasp, Or what’s a heaven for?”, Robert Browning (in ‘Andrea del Sarto’ l. 97 (1855)).
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Abstract: Minisuperspace Quantum Cosmology is an approach by which it is possible to infer initial
conditions for dynamical systems which can suitably represent observable and non-observable universes.
Here we discuss theories of gravity which, from various points of view, extend Einstein’s General
Relativity. Specifically, the Hamiltonian formalism for f (R), f (T), and f (G) gravity, with R, T, and G
being the curvature, torsion and Gauss–Bonnet scalars, respectively, is developed starting from the
Arnowitt–Deser–Misner approach. The Minisuperspace Quantum Cosmology is derived for all these
models and cosmological solutions are obtained thanks to the existence of Noether symmetries. The
Hartle criterion allows the interpretation of solutions in view of observable universes.

Keywords: quantum cosmology; noether symmetries; ADM formalism; exact solutions

1. Introduction

The Arnowitt–Deser–Misner (ADM) formalism was developed in 1962 with the pur-
pose of solving issues occurring in the attempt to merge the formalism of General Relativity
(GR) with Quantum Mechanics [1]. By means of a 3 + 1 decomposition of the metric, it
is possible to get a gravitational Hamiltonian and find canonical quantization rules lead-
ing to a Schrödinger-like equation, dubbed the Wheeler–De Witt (WDW) equation, first
obtained by J. A. Wheeler and B. DeWitt in 1967 [2–4]. Nowadays, the ADM formalism is
not considered as the ultimate candidate to solve the quantization problem of GR, both
because it does not account for a full theory of Quantum Gravity and because it implies an
infinite-dimensional superspace which cannot be easily handled. However, the restriction
of the problem to cosmology turns out to be useful for several reasons. On the one hand,
the configuration superspace can be reduced to a finite-dimensional minisuperspace, where
the WDW equation can be analytically solved. On the other hand, Quantum Cosmology
can provide information regarding the very early stages of the universe evolution by means
of the so-called Wave Function of the Universe , which is the solution of the WDW equation.
Clearly, this wave function cannot be interpreted as a straightforward probability ampli-
tude like in Quantum Mechanics, due to the lack of a Hilbert space and a definite-positive
inner product in gravitational theory. Moreover, the probabilistic meaning, based on many
copies of the same system, cannot be applied in the standard Copenhagen interpretation of
Quantum Mechanics.

For these reasons, its meaning is still unclear, though different interpretations have
been proposed. For instance, it can be thought as an indication of the probability for the
quantum system to evolve towards our classical universe [5,6]. Another interpretation,
related to the enucleation from nothing, was provided by Vilenkin in [7,8]. Furthermore,
according to the so-called Many World Interpretation [9], the wave function is supposed to
come from quantum measurements that are simultaneously realized in different universes,
without showing any collapse, as in standard Quantum Mechanics [10]. In 1983, J. B. Hartle
proposed to consider the wave function trend: when it is oscillating, variables are correlated
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and then it is possible to recover observable universes. The analogy comes from the wave
function interpretation of non-relativistic Quantum Mechanics. This interpretation is the
so-called Hartle criterion [11]. Interestingly, using this criterion, in the semiclassical limit
one can recast the wave function as ψ = eim2

PS, with S being the action and mP the Planck
mass. As a consequence, classical trajectories can be straightforwardly found by means of
the Hamilton–Jacobi equation.

The formalism of Quantum Cosmology has been successfully applied to GR in the
attempt to solve open issues related to the first phases of the Universe. However, in
the high-energy regime, GR exhibits several other shortcomings. For this reason, many
alternative models have been proposed over the years, such as Kaluza–Klein Theory [12–16],
String Theory [17–21], Non-Local Gravity [22–26], Loop Quantum Gravity [27–31], etc.

All these theories try to address small-scale shortcoming suffered by GR, and most of
them recover Quantum Cosmology as a limit [32].

However, matching the quantum formalism is not the only reason to consider GR
alternatives, since many problems also occur at cosmological and astrophysical scales.
More precisely, though GR predictions have been successfully confirmed by many ex-
periments and observations, the theory also exhibits incompatibilities at several scales of
energy [33,34]. Two of the most controversial problems are related to the existence of Dark
Energy and Dark Matter. The former should represent most of the universe content and
should be made by a never detected fluid with negative pressure, introduced to address
the today observed accelerating expansion; the latter was first introduced to fit the galaxy
rotation curves. For a detailed discussion on puzzles and shortcomings in Einstein’s gravity
see e.g., [35].

Due to the need to address incompatibilities between GR and observations, several
modified/extended theories of gravity arose in the last decades. Within the landscape of
modified models, some theories extend the Hilbert–Einstein action by including functions
of second-order curvature invariants [36,37], some relax GR assumptions such as the
Lorentz Invariance [38–40], the Equivalence Principle [41,42], or the metric-compatible
connection [43].

One of the most straightforward extensions is the so-called f (R) gravity, whose action
contains a function of the scalar curvature. For detailed reviews, see [44,45]. By extending
the gravitational action, it is possible to find out explanations for open questions at astro-
physical and cosmological level. For instance, f (R) gravity, in the post-Newtonian limit, is
capable of fitting the galaxy rotation curve without introducing dark matter [46,47], the
cosmological accelerating expansion without any dark energy [48,49], or the mass-radius
diagram of neutron stars without exotic equations of state [50,51]. However, to date, no
f (R) model can account for the ultimate candidate capable of solving all the problems
exhibited by GR simultaneously at any scale.

Furthermore, the Hilbert–Einstein action can be extended by considering also other
second-order curvature invariants. An example is f (R, RµνRµν, RµνρσRµνρσ) gravity, with
Rµν and Rµνρσ being the Ricci and the Riemann tensors, respectively. These additional
terms naturally arise from the one-loop effective action of GR, with the consequence that
the renormalization procedure can be pursued only when higher-order invariants are
included, so that UV divergences can be avoided [52–55]. Among all possible choices, there
is only a particular combination of curvature invariants giving a topological surface in
four dimensions. It is G = R2 − 4RµνRµν + RµνρσRµνρσ, the Gauss–Bonnet invariant. As a
consequence, the integration of G over the given manifold provides the Euler characteristic,
namely, a topological invariant. In four dimensions or less, G vanishes identically, while
in more than four dimensions it provides non-trivial contributions to the field equations.
Due to the impossibility of dealing with the linear term G in four dimensions, usually a
function of the Gauss–Bonnet term, that is f (G), is considered into the action. In this way,
the corresponding field equations can contribute to the dynamics, since f (G) starts being
trivial in three dimensions or less. Therefore, the gravitational action can be extended by
considering either the function f (G) or, in general, f (R,G). Both f (R,G) and f (G) models
exhibit several interesting features and provide some explanations for unsolved problems

26



Universe 2022, 8, 177

of GR at large scales [56–59]. Being a topological surface, the Gauss–Bonnet term can reduce
dynamics and provide analytic solutions for the field equations; moreover, it naturally
emerges in gauge theories of gravity such as Lovelock, Born–Infeld or Chern–Simons
gravity [60–63].

Another class of alternatives to GR is represented by those models relaxing the assump-
tion of torsionless and metric-compatible connections. In particular, it is possible to show
that the most general affine connection is made of three different contributions, respectively
related to curvature, torsion, and non-metricity. Torsion in the space-time occurs when
the connection exhibits an anti-symmetric part, that is when Γα

µν 6= Γα
νµ. Non-metricity

occurs when ∇αgµν 6= 0, with ∇ being the covariant derivative. Therefore, gravity can
be described by means of torsion, curvature and/or non-metricity, giving rise to a three
equivalent formalisms [64].

When curvature and non-metricity vanish, the resulting theory is the so-called Telepar-
allel Equivalent of General Relativity (TEGR) (see e.g., [65] for further details); when curvature
and torsion vanish we have the so-called Symmetric Teleparallel Equivalent of General Relativ-
ity (STEGR) [66]. More precisely, in the former theory, it is possible to define two rank-three
tensors of the form Tα

µν ≡ 2Γα
[µν]

and Kρ
µν ≡ 1

2 gρλ
(
Tµλν + Tνλµ + Tλµν

)
, respectively

called torsion tensor and contorsion tensor. Both of them identically vanish in GR. In this way,
by means of the superpotential Spµν ≡ Kµνp − gpνTσµ

σ + gpµTσν
σ, one can define the torsion

scalar as T ≡ TpµνSpµν, so that the TEGR action can be chosen to be linearly proportional
to T. Interestingly, the action thus constructed turns out to be equivalent to the Hilbert–
Einstein one, up to a boundary term [67]. Moreover, TEGR can be recast as a gauge theory
with respect to the translation group in the locally flat space-time [67].

Similar considerations apply for STEGR, where the definition of the non-metricity
tensor Qρµν ≡ ∇ρgµν 6= 0 and the disformation tensor Lρ

µν ≡ 1
2 gρλ

(
−Qµνλ −Qνµλ + Qλµν

)
,

together with Qµ ≡ Q λ
µ λ and Q̃µ ≡ Q α

αµ , allow to define the non-metricity scalar as:

Q ≡ − 1
4 Qαµν

[
−2Lαµν + gµν

(
Qα − Q̃α

)
− 1

2 (gαµQν + gανQµ)
]

[66]. In addition, the STEGR
action, chosen to be linearly dependent on the non-metricity scalar, is equivalent to GR and
TEGR, up to a boundary term. Modifications of the STEGR action will not be considered in
this work; for details on the fundamental structure of the theory and possible applications,
see, e.g., Refs. [68,69].

Here we consider an extension of the TEGR action, containing a function of the torsion.
This can allow to address the problems suffered by GR at large scales. Notice that, although
GR and TEGR are dynamically equivalent, f (R) gravity differs from f (T) gravity. For
instance, as the former leads to fourth-order field equations, the latter provides second-
order equations with respect to the metric. This makes f (T) gravity easy to handle from a
mathematical point of view.

In this paper, we want to discuss the problem of Minisuperspace Quantum Cosmology
in metric and affine formulations of gravity theories. In particular, we will consider some
metric and affine extensions. The aim is to show that, if the related cosmological models
exhibit Noether symmetries, it is possible to interpret solutions under the standard of the
Hartle criterion and then achieve observable universes.

The paper is organized as follows: Section 2 is devoted to the main features of ADM
formalism, Quantum Cosmology, and the relation between the latter and the Noether
symmetries. In Sections 3–5 we apply the Minisuperspace Quantum Cosmology formalism
to f (R), f (T) and f (G) models, respectively. In Section 6, we discuss the results and draw
conclusions.

2. Quantum Cosmology and Noether Symmetries

As mentioned in the Introduction, the ADM formalism can represent a useful tool in
the context of Quantum Cosmology. Here we briefly summarize the foundations of the ap-
proach and provide a link between the latter and the Noether theorem. Generally, the most
general form of the Hilbert–Einstein action includes the extrinsic scalar curvature K [2,70],
defined as the contraction of the three-dimensional spatial curvature tensor Kij with the

27



Universe 2022, 8, 177

three-dimensional metric hij. Here, middle indexes label the three-dimensional space. By
defining a set of coordinates Xα, the deformation vector Nα = Ẋα can be decomposed in
terms of the lapse function N and the shift vector Ni as:

Nα = Nnα + NiXα
i , (1)

where Xα
i is a tangent vector basis characterizing each point of the three-dimensional

surface and nα a unitary vector satisfying the relations

gµνXµ
i nν = 0 , gµνnµnν = −1 . (2)

Therefore, the metric can be recast as:

gµν =

(
(N2 − Ni Ni) Nj

Nj −hij

)
, (3)

by means of which the Lagrangian density reads:

L =
κ

2

√
|h|N

(
KijKij − K2 + (3)R

)
+ t.d. , (4)

with h being the determinant of hij and (3)R the intrinsic three-dimensional curvature. From
Equation (4), three conjugate momenta follow, respectively related to the shift vector, the
lapse function, and the three-dimensional metric:

π ≡ δL

δṄ
= 0 , πi ≡ δL

δṄi
= 0 ,

πij ≡ δL

δḣij
=

κ
√
|h|

2

(
Khij − Kij

)
. (5)

As a consequence, the Hamiltonian can be obtained by using Equation (5) and per-
forming the Legendre transformation of the Lagrangian (4), so that we have:

H = πij ḣij −L , (6)

constrained by the relations




π̇ = −{H, π} = δH
δN

= 0 ,

π̇i = −{H, πi} = δH
δNi

= 0 .
(7)

In the above equations, it isH =
∫

H d3x . In the canonical quantization procedure,
the momenta (5) turn into the operators

π̂ = −i
δ

δN
, π̂i = −i

δ

δNi
, π̂ij = −i

δ

δhij
, (8)

while the Poisson brackets (7) turn into commutators. Finally, we obtain





[ĥij(x), π̂kl(x′)] = i δkl
ij δ3(x− x′) ,

δkl
ij = 1

2 (δ
k
i δl

j + δl
i δ

k
j ) ,

[ĥij, ĥkl ] = 0 ,
[π̂ij, π̂kl ] = 0 .

(9)
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Most importantly, from Equation (7), it is

Ĥ|ψ >= 0 , (10)

with ψ being the wave function. Equation (10) can be recast in terms of dynamical variables
and momenta, leading to the WDW equation [71], which, in the case of GR, yields

(
∇2 − κ2

4

√
|h| (3)R

)
|ψ >= 0 , (11)

with the operator ∇2 being defined as

∇2 =
1√
|h|
(

hikhjl + hilhjk − hijhkl

) δ

δhij

δ

δhkl
. (12)

Equation (11) shows that the ADM formalism relies on an infinite-dimensional super-
space made of all possible 3-metrics, due to which any predictive power is inevitably lost.
Moreover, as discussed above, the probabilistic interpretation of the wave function does
not apply in this case, mainly because the scalar product

∫
ψ∗ψ dx3 is not positive-definite.

As a consequence, an infinite-dimensional Hilbert space cannot be considered. In what
follows, we show that the ADM formalism can be suitably applied to cosmology, where
the superspace can be reduced to a minisuperspace of configurations where the WDW
equation, under some constraints, can be exactly solved. More precisely, the existence of
Noether symmetries allows to introduce cyclic variables into the system, thanks to which
the Hamiltonians assume handy expressions and classical trajectories can be recovered.

Let us then introduce the main features of the Noether Theorem and how it can be used
as a method to select viable cosmological models which, eventually, result in observable
universes. To this purpose, we consider a transformation, involving coordinates and fields,
which is a symmetry for the Lagrangian density, namely,

{
x̃a = xa − ξa

φ̃i = φi − ηi ,
(13)

whose related first prolongation of Noether’s vector can be written as:

X[1] = ξa∂a + ηi ∂

∂φi + (∂aηi − ∂aφi∂bξb)
∂

∂(∂aφi)
. (14)

The Noether Theorem states that, if the transformation (13) is a symmetry for the
Lagrangian, then there exists a gauge function ga = ga(xa, φi) satisfying the condition [72]

X[1]L + ∂aξaL = ∂aga (15)

and the quantity

ja =
∂L

∂(∂aφi)
ηi − ∂L

∂(∂aφi)
∂bφi ξb +L ξa − ga, (16)

is an integral of motion. For internal symmetries, Equations (14) and (16) reduce to:

X = ηi ∂

∂φi + ∂aηi ∂

∂(∂aφi)
, (17)

ja =
∂L

∂(∂aφi)
ηi. (18)

Consequently, setting ga = 0, Equation (15) becomes

XL = 0 (19)
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and can be recast in terms of the Lie derivative along the flux of the vector X as

LXL = 0. (20)

For further details about Noether’s theorem and related applications see, e.g., [72–74].
It is worth pointing out that the conserved quantity (18) can be used to properly change
the minisuperspace variables if the related point-like Lagrangian is cyclic. Thanks to
Noether’s Theorem, it is possible to find a methodical procedure aimed at finding suitable
new coordinates. To this purpose, let us assume that there exists a transformation which
allows to introduce a variable ψ1, whose related conjugate momentum is an integral of
motion, that is

∂L

∂(∂aψ1)
= πa

ψ1 = const. (21)

From Equation (17), we notice that ψ1 is a constant of motion only if the related
infinitesimal generator is equal to 1. Indeed, considering the general change of variables
φi → ψi(φj), such that ψ1 is cyclic, the infinitesimal generators can be recast as:

ηi ∂

∂φi = ηi ∂ψj

∂φi
∂

∂ψj = iXdψj ∂

∂ψj . (22)

In this way, the Noether vector X and the conserved quantity ja, written in terms of
the new variables, read

X′ = ηi ∂

∂φi + ∂aηi ∂

∂(∂aφi)
= (iXdψk)

∂

∂ψk + ∂a(iXdψk)
∂

∂(∂aψk)
,

ja = ηi ∂L

∂(∂aψi)
= iXdψi ∂L

∂(∂aψi)
, (23)

where (iXdψk) is the inner derivative. Requiring the conserved quantity to be equal to the
conjugate momentum of ψ1, the following conditions must hold:

iXdψ1 = η j ∂ψ1

∂φj = 1, iXdψi = η j ∂ψi

∂φj = 0, i 6= 1, (24)

so that, from Equation (23), one gets

ja = ηi ∂L

∂(∂aφi)
=

∂L

∂(∂aψ1)
→ πa

ψ1 = constant. (25)

Therefore, the conjugate momentum πa
ψ1 of the new cyclic variable ψ1 turns exactly

into the Noether current, as expected by construction.
Notice that the condition X′L ′ = XL = 0 holds independently of the variables

considered, so that any Noether symmetry is preserved under the change of variables.
Nonetheless, it is worth remarking that the change of variables in Equation (24) is not
unique, but infinite possible field transformations can occur. Therefore, in order to reduce
dynamics, new variables must be chosen carefully.
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If the variables in the minisuperspace depend only on the general parameter t, like in
cosmology, Equations (14) and (16)–(18) provide:

X[1] = ξ̇∂t + ηi ∂

∂qi + (η̇i − q̇i ξ̇)
∂

∂q̇i , (26)

X = ηi ∂

∂qi + η̇i ∂

∂q̇i , (27)

j =
∂L
∂q̇i ηi − ∂L

∂q̇i q̇i ξ + Lξ − g, (28)

j =
∂L
∂q̇i ηi, (29)

with qi being the variables in the cosmological minisuperspace and L the Lagrangian.
Therefore, the change of variables qi → Qi(qj), which allows to introduce a constant of
motion, can be recast as:

iXdQ1 = η j ∂Q1

∂qj = 1, iXdQi = η j ∂Qi

∂qj = 0, i 6= 1. (30)

After summarizing the main features of ADM formalism and Noether Theorem, it is
worth investigating the deep connection between them, introducing the so-called Hartle
criterion. To this purpose, let us notice that Equation (30) permits to recast the conjugate
momenta of the cyclic variables as

ji ≡ πi
Qi =

∂L
∂Q̇i

. (31)

As a consequence, if the cosmological point-like Lagrangian enjoys m symmetries with
related conserved quantities j1, j2 . . . jm, Equation (10) together with (8) yield the following
system of m + 1 differential equations:





Ĥ |ψ >= 0
−i∂1|ψ >= j1|ψ >

−i∂2|ψ >= j2|ψ >
...
−i∂m|ψ >= jm|ψ > .

(32)

Notice that, thanks to the change of variables (30), suggested by the Noether symme-
tries, the above system can be suitably integrated. Indeed, the integrals of motion ji allow
to reduce dynamics and generally provide a wave function of the form [75]:

|ψ >= eijkQk |χ(Q`) >, m < ` < n, (33)

where m are the variables with symmetries (integrals of motion), ` are the variables with
no symmetries and n the minisuperspace dimension. Interestingly, in the semiclassical
limit, the existence of symmetries leads to oscillatory solutions of the WDW equation. The
latter, according to the Hartle criterion, are related to observable universes. Specifically,
Hartle proposal relies on the analogy with non-relativistic Quantum Mechanics, where
the oscillating wave function generally describes a classically permitted region, unlike the
exponential wave function which labels the quantum region. Similar arguments can be
also applied within the context of Quantum Cosmology, where the existence of Noether
symmetries assures that the Hartle criterion can be related to classical trajectories. In other
words, the oscillations of some components of the wave function mean correlations among
variables while the exponential behavior means no correlation. Moreover, in the Wentzel–
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Kramers–Brillouin (WKB) limit, the wave function can be linked to the gravitational action S
by means of the relation ψ(hij, φ) ∼ eiS. Therefore, using the Hamilton–Jacobi equations
∂S
∂qa = πa, it is possible to get the dynamics for the generic variable qa.

In other words, the importance of Noether symmetries in Quantum Cosmology is
twofold: on the one hand, symmetries allow to reduce the dynamical system of differential
equations arising from the ADM formalism, to find analytic solutions and to link such
solutions to observable universes. On the other hand, the wave function can be recast in
terms of the cosmological action to recover the Euler–Lagrange equations with respect to
the new variables. This permits to suitably find exact solutions. The physical interpretation
of such solutions is related to the Hartle criterion. For further readings on Quantum
Cosmology and applications to theories of gravity, see, e.g., [35,76,77].

The results discussed above make Quantum Cosmology an important connection
between classical and quantum aspects of gravity; while waiting for a complete and
self-consistent theory of Quantum Gravity, applications to cosmology give interpreta-
tive approach capable of reducing the infinite-dimensional superspace coming from the
ADM formalism to minisuperspaces where the equations of motion can be integrated and,
eventually, interpreted.

3. Minisuperspace Quantum Cosmology in f (R) Gravity

A first application of the above considerations can be developed for f (R) gravity
described by the action

S =
∫ √

−g f (R) d4x. (34)

We select the functional form of the above action by the Noether Symmetry Approach
and get the explicit expression of the point-like Lagrangian, which can be rendered cyclic
by applying conditions in Equation (30). Finally, we find the Hamiltonian in terms of
the new variables and solve the cosmological WDW equation for this modified model.
This procedure leads to the Wave Function of the Universe, by means of which classical
trajectories can be suitably obtained. We also show that the Hartle criterion is recovered, in
agreement with the above discussion.

By varying Equation (34) with respect to the metric, one gets:

Gµν =
1

fR(R)

{
1
2

gµν[ f (R)− R fR(R)] + fR(R);µ;ν − gµν� fR(R)
}

, (35)

being Gµν the Einstein tensor Gµν = Rµν −
1
2

gµνR and fR(R) the first derivative of f (R)
with respect to R. Notice that when fR = 1, Einstein field equations are recovered. In
addition, the RHS can be understood as an effective energy–momentum tensor provided
by the geometry, capable of reproducing the Dark Energy behavior without any further
material ingredient [49].

Before applying the Noether Symmetry Approach, let us find the related point-like La-
grangian in a cosmological spatially flat background of the form ds2 = dt2− a(t)dx2, where
a(t) is the scale factor. Using a Lagrange multiplier λ, and considering the cosmological
expression of the scalar curvature, the action can be written as

S =
∫ [

a3 f (R)− λ

(
R + 6

ä
a
+ 6

ȧ2

a2

)]
dt, (36)

where we integrated the three-dimensional hypersurface. By varying the action with
respect to the curvature scalar, it is possible to find the Lagrange multiplier λ, that is:

δS
δR

= a3 fR(R)− λ = 0, λ = a3 fR(R). (37)
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Replacing the result in Equation (37) into the action (36) and integrating out second
derivatives, the canonical point-like Lagrangian turns out to be [78]

L(a, ȧ, R, Ṙ) = a3[ f (R)− R fR(R)] + 6aȧ2 fR(R) + 6a2 ȧṘ fRR(R). (38)

The corresponding Euler–Lagrange equations are





6a2 ȧṘ fRR(R) + 6aȧ2 fR(R)− a3[ f (R)− R fR(R)] = 0

Ṙ2 fRRR(R) + R̈ fRR(R) +
ȧ2

a2 fR(R) + 2
ä
a

fR(R)− 1
2
[ f (R)− R fR(R)] + 2

ȧ
a

Ṙ fRR(R) = 0

R = −6
(

ä
a
+

ȧ2

a2

)
.

(39)

The first equation is the energy condition EL = 0, corresponding to the (0,0) component
of the field equations, namely the modified first Friedmann equation. The second is the
equation with respect to the scale factor; the third is the Euler–Lagrange equation with
respect to the scalar curvature, which provides again the cosmological expression of R
derived from the Lagrange multiplier. In the considered minisuperspace, the Noether
vector assumes the form

X[1] = ξ(a, R, t)∂t + α(a, R, t)∂a + β(a, R, t)∂R (40)

+
(
α̇(a, R, t)− ξ̇(a, R, t)ȧ

)
∂ȧ +

(
β̇(a, R, t)− ξ̇(a, R, t)Ṙ

)
∂Ṙ,

so that the application of the Noether identity (15), yields the following possible solution



X =

α0

a
∂a − 2α0

R
a2 ∂R

j = 9α0 f0(2Rȧ + aṘ)R−
1
2 , f (R) = f0R

3
2 ,

(41)

where X is the symmetry generator. For the entire set of solutions see [78,79]. Notice that
Equation (41) describes an internal symmetry, thus the infinitesimal generator ξ vanishes
identically. This means that Equation (41) is also a solution of the vanishing Lie derivative
condition and, consequently, the change of variables in Equation (30) can be adopted.

The WDW Equation and the Wave Function of the Universe

A suitable Minisuperspace Quantum Cosmology can be constructed for the function
f (R) = f0R

3
2 , selected by the Noether symmetries. Before considering the ADM formalism

and finding the related Hamiltonian, we use the Noether Approach to reduce dynamics, by
introducing a cyclic variable in the minisuperspace. To this purpose, Equation (24) permits
to pass from the minisuperspace S{a, R} to S ′{z, w}, by means of the following system of
differential equations: {

α∂az(a, R) + β∂Rz(a, R) = 1
α∂aw(a, R) + β∂Rw(a, R) = 0,

(42)

with z being the cyclic variable. A possible solution is





w = w0(a
√

R)`, z =
a2

2α0

a =
√

2α0z, R =
1

2α0
z
(

w
w0

) 2
`

,
(43)

being ` and w0 integration constants. Replacing Equation (43) into Equation (38), the
Lagrangian turns out to be

L =
f0

`w

(
w
w0

) 1
`

[
18α0ẇż− w`

(
w
w0

) 2
`

]
. (44)
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Notice that the new equations of motion are simpler than Equation (39), written in
terms of the old variables. They read:





(`− 1)ẇ2 − `wẅ = 0
(

w
w0

) 2
`

+ 6α0z̈ = 0 ,
(45)

where clearly z is the cyclic variable because there is no potential term depending on it.
The Legendre transformationH = πi q̇i −L provides the Hamiltonian

H =
`

18α0 f0
w
(

w
w0

)− 1
`

πwπz + f0

(
w
w0

) 3
`

. (46)

By promoting the momenta to operators, i.e., πi → −i∂i, the primary and secondary
constraints in Equations (10) and (8) read as:





Ĥψ =

[
`

18α0 f0
w
(

w
w0

)− 1
`

∂w∂z + f0

(
w
w0

) 3
`

]
ψ = 0

π̂zψ = −i∂zψ = j0ψ,

(47)

where the former is the WDW equation. The solution of the above system yields the
following wave function [80]

ψ(z, w) = ψ0 exp

{
i

[
j0z− 9α0 f 2

0
2j0

(
w
w0

) 4
`

]}
. (48)

In the semiclassical limit, the wave function can be recast in terms of the action S as

ψ ∼ eiS, (49)

so that comparing Equation (49) with Equation (48), the action turns out to be

S = j0z− 9α0 f 2
0

2j0

(
w
w0

) 4
`

. (50)

It can be easily proven that the Hamilton–Jacobi equations
∂S
∂qi = πi exactly provide

the same system as Equation (45). The related solution, after coming back to the old
variables, reads [80]

a(t) = a0

[
c4t4 + c3t3 + c2t2 + c1t + c0

]1/2
, (51)

with ci integration constants. It is worth noticing that, due to the oscillatory behavior of the
wave function (48), the Hartle criterion is recovered by the existence of the Noether sym-
metry. The cosmological solution, emerging after this process, is an observable universe (51).
Other solutions of this type can be found, see e.g., [81].

4. Minisuperspace Quantum Cosmology in f (T) Gravity

Let us now consider an action containing a function of the torsion scalar T, namely,

S =
∫

e f (T) d4x, (52)
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defined as an extension of TEGR. As discussed in Section 1, T is the contraction of the
superpotential with the torsion tensor. We assume the torsion scalar to be written in terms
of the Weitzenböck connection Γα

µν = eρ
a∂µea

ν, with ea
µ being the tetrad fields. By this choice,

the spin connection vanishes identically, but the Lorentz Invariance is formally preserved
and the dynamics results unchanged [82].

By varying the action (52) with respect to the tetrad fields, one gets the following field
equations:

1
e

∂µ(h eρ
aS µν

ρ ) fT(T)− eλ
a T ρ

µλS νµ
ρ fT(T) + eρ

aS µν
ρ (∂µT) fTT(T) +

1
4

eν
a f (T) = 0, (53)

with fT(T) being the first derivative of f (T) with respect to T and e the tetrad fields
determinant. Unlike the f (R) model, assigning a cosmological spatially flat space-time
is not sufficient to uniquely determine the form of the tetrad fields. To overcome this
issue, some criterions of “good” and “bad” tetrads can be used, as shown for example
in [83]. In the applications to cosmology, we can use the simplest choice among all possible
tetrads leading to a spatially flat cosmological universe, namely, ea

µ = diag(1, a(t), a(t), a(t)).
Consequently, the field Equation (53) takes the form

T fT(T)−
1
2

f (T) = 0 , (54)

2T fTT(T) + fT(T) = 0 . (55)

The same system of differential equations arises from the Euler–Lagrange equations
coming from the point-like Lagrangian, which, in turn, can be obtained by means of the
Lagrange Multipliers Method. More precisely, using the cosmological expression of the
torsion scalar

T = −6
ȧ2

a2 , (56)

the action (52) can be recast as:

S =
∫ [

a3 f (T)− λ

(
T + 6

ȧ2

a2

)]
dt. (57)

Moreover, the Lagrange multiplier λ is straightforwardly provided by the variation of
the action with respect to the torsion scalar, that is,

δS
δT

= 0 → λ = a3 fT(T), (58)

so that we have
L(a, ȧ, T) = a3[ f (T)− T fT(T)]− 6aȧ2 fT(T). (59)

As mentioned above, the dynamical system of Euler–Lagrange equations turns out to
be exactly equivalent to that provided by the field Equations (54) and (55). This system,
however, can be analytically solved after selecting the form of the function f (T). To this
purpose, as in the previous section, we consider the Noether Symmetry Approach and
develop the corresponding quantum cosmological model.

Let us start from Lagrangian (59) and select the unknown function by Noether’s
approach. In the considered two-dimensional minisuperspace, that is S = {a, T}, the first
prolongation of the Noether vector takes the form:

X[1] = ξ∂t + α∂a + β∂T +
(
α̇− ξ̇ ȧ

)
∂ȧ, (60)

where α = α(a, T) and β = β(a, T) are the components of the above ηi defined in (14). By
applying the Noether symmetry existence condition (15) and equating to zero terms with
the same time derivatives, we get a system of partial differential equations. A possible
solution is
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X =

[
ξ0

2k− 1

]
t∂t +

[
ξ0

3
a + α0a1− 3

2k

]
∂a +

[
1
k

(
β1 − 3

α0

a
− 3

2k
)
+

ξ0

2k− 1
+ β2

]
T∂T , k 6= 3

2
,

1
2

j0 = −12 f0k
(

ξ0a2 + α0a2− 3
2k

)
Tk−1 ȧ.

(61)

See [84] for other solutions. To introduce a cyclic coordinate by the procedure in
Equation (30), we set ξ0 = β1 = β2 = 0, so that internal symmetries are selected. In this
way, the components of the function ηi read:

α = α0a1− 3
2k , β =

−3α0

k
Ta−

3
2k . (62)

By means of Equation (30), it is possible to introduce a cyclic variable in the minis-
perspace S = {a, T}. Specifically, Equation(30) provides:

{
α∂az + β∂Tz = 1
α∂aw + β∂Tw = 0,

(63)

which, using the solution (62), reduces to




z =
2k

3α0
a

3
2k , → a =

(
3α0z
2k

) 2k
3

w = a3Tk, → T = w
1
k

(
3α0z
2k

)−2
,

(64)

so the Lagrangian with cyclic variable reads

L = w(1− k)− 6kα2
0ż2w

k−1
k , (65)

and z is cyclic as expected. The set of Euler–Lagrange equations coming from the above
Lagrangian is

kwz̈ + ẇż(k− 1) = 0, (66)

w = −6kα2k
0 ż2k. (67)

Following the same steps as f (R) gravity, we perform a Legendre transformation for
Lagrangian (65), that is:

H = w(k− 1) +
3π2

z

24kα2
0w

k−1
k

. (68)

In the canonical quantization scheme, where the conjugate momenta and the Hamilto-
nian are recast in terms of differential operators, the primary constraints (8) and (10) yield
the system: 




[
w(k− 1)− 3∂2

z

24kα2
0w

k−1
k

]
ψ = 0

i∂zψ = j0ψ ,

(69)

where the first equation is the WDW equation and the second is the momentum conserva-
tion equation. A solution is:

ψ ∼ exp
{

i
[

2α0w
2k−1

2k

√
2k(k− 1)

]
z
}

. (70)

Notice that, also here, the wave function is oscillating, confirming that the Hartle
criterion holds for this model and observable universes are naturally provided. Moreover,
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in the WKB approximation, the wave function can be related to the gravitational action, so
that the latter can be explicitly recast as:

S =

[
2α0w

2k−1
2k

√
2k(k− 1)

]
z.

Using the Hamilton–Jacobi equations




∂S
∂z

= πz = j0
∂S
∂w

= πw = 0 ,
(71)

we obtain the following analytic solution for z and w

z(t) = z0t, w = −6kα2k
0 z2k

0 , (72)

which, in terms of the old variables, becomes

a(t) = a0t
2k
3 , T(t) = −8k2

3
1
t2 . (73)

The free parameter k can be constrained by the energy condition, which is the first
Friedmann equation. It is possible to show that the only admissible solution occurs for
k = 1/2. This means that the only cosmological solution which is compatible with Noether
symmetries describes a stiff matter dominated epoch.

5. Minisuperspace Quantum Cosmology in f (G) Gravity

As mentioned in the Introduction, Gauss–Bonnet cosmology has been recently taken
into account because it allows to reduce the complexity of the field equations and, at the
same time, to solve some high-energy issues exhibited by GR. Moreover, once considering
an action proportional to R + f (G), the function can be understood as an effective cosmo-
logical constant, with negligible contributions at the level of Solar System. Therefore, in the
limit f (G)→ 0, GR is safely recovered. Nevertheless, it is possible to show that Einstein’s
theory can be obtained even without imposing the GR limit as a requirement, namely, when
the action is only proportional to the function f (G). Specifically, in cosmological contexts,
the model f (G) ∼

√
G turns out to be dynamically equivalent to the scalar curvature [58].

Similar considerations also apply in a spherically symmetric background [85]. Let us start
with the action

S =
∫ √

−g f (G) d4x, (74)

whose variation with respect to the metric tensor provides [36,86]:

1
2

gµν f (G)−
(

2RRµν − 4RµpRp
ν + 2R pστ

µ Rνpστ − 4RαβRµανβ

)
fG(G) +

+
(

2R∇µ∇ν + 4Gµν�− 4Rp
{ν∇µ}∇p + 4gµνRpσ∇p∇σ − 4Rµανβ∇α∇β

)
fG(G) = 0 . (75)

In a cosmological spatially flat space-time, the Gauss–Bonnet invariant takes the form

G = 24
ȧ2 ä
a3 . (76)

It is easy to see that, when multiplied by
√−g, Equation (76) turns out to be a boundary

term. In order to apply the Noether Symmetry Approach and find the cosmological
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Hamiltonian, we adopt a Lagrangian description as in the previous sections. Therefore, we
use the constraint (76) to recast the action (74) in terms of Lagrange multipliers as

S =
∫ [

a3 f (G)− λ

{
G − 24

ȧ2 ä
a3

}]
d4x . (77)

Using the variational principle and integrating out higher derivatives, the canonical
point-like Lagrangian turns out to be:

L(a, ȧ,G, Ġ) = a3[ f (G)− G fG(G)]− 8ȧ3Ġ fGG(G). (78)

The field Equation (75) is thus equivalent to the system of equations of motion coming
from Equation (78), which reads





a3[ f (G)− G fG(G)] + 24ȧ3Ġ fGG(G) = 0
a2[ f (G)− G fG(G)] + 8ȧ[2Ġ ä fGG(G) + ȧG̈ fGG(G) + ȧĠ2 fGGG(G)]
G = 24

ȧ2 ä
a3 .

(79)

The first equation is the energy condition. The second is the equation for the scale
factor evolution and the third is the equation for the Gauss–Bonnet term coinciding with
the Lagrange multiplier (76).

In the two-dimensional minisuperspace S = {a,G}, the generator of transformations
can be

X = ξ(a,G, t)∂t + α(a,G, t)∂a + β(a,G, t)∂G . (80)

The transformation is a symmetry, if the condition (15) holds. Pursuing the same
procedure as in Sections 3 and 4, the application of the Noether identity to Lagrangian (78)
provides a system of two differential equations:





3αa2[ f (G)− G f ′(G)]− βa3G f ′′(G) + ∂tξa3[ f (G)− G f ′(G)] = 0
3∂aα f ′′(G) + β f ′′′(G)− 3∂tξ f ′′(G) + ∂Gβ f ′′(G) = 0
ξ = ξ(t) , α = α(a) , β = β(G) g = g0,

(81)

whose solution is [58]

α = α0a , β = −4ξ0G , ξ = ξ0t + ξ1 , f (G) = f0Gk, j0 =
ȧ3

G3k , (82)

with the definitions
k ≡ 3α0 + ξ0

4ξ0
, f0 ≡

4 f0ξ0

3α0 + ξ0
. (83)

Replacing the selected function into the Lagrangian (78), the latter takes the form:

L = −1
3
Gk−2

[
3(k− 1)a3G2 + 24k(k− 1)ȧ3Ġ

]
. (84)

Starting from this Lagrangian, it is possible to find the related Hamiltonian and the
Wave Function of the Universe.

The WDW Equation and Wave Function of the Universe

As above, applying Equation (30), the minisuperspace can be reduced. Here, set-
ting ξ = 0, leads to trivial solutions. Therefore, only symmetries involving space-time
translations can be selected and this fact does not allow to use the procedure, based on
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Equation (30), as in previous sections. Nevertheless, starting from Lagrangian (84), it is still
possible to write the Hamiltonian as:

H =
f0

k
Gka3 + πa

(
−πG

8 f0
G2−k

) 1
3

, (85)

with πa =
∂L
∂ȧ

and πG =
∂L
∂Ġ . In this form, the system cannot be immediately quantized

due to the presence of the fractional exponent. However, we can still use the conserved
quantity (82) to reduce the minisuperspace and to get a suitable Hamiltonian. More
precisely, the momentum πG can be rewritten in terms of j0 as:

πG = −8 f0 j0G4k−2 , (86)

so that the Hamiltonian becomes

H =
f0

k
Gka3 + πa

(
j0G3k

) 1
3 . (87)

The canonical quantization rules, together with the WDW equationHψ = 0, provide
a system of differential equations of the form





πGψ = −i
∂

∂G ψ → ψ(a,G) = A(a) exp

{
i

8 f0 j0G4k−1

1− 4k

}

Hψ = 0 → f0

k
(j0)

− 1
3 a3 A(a)− i

∂A(a)
∂a

= 0 ,

(88)

which can be solved with respect to A(a) to provide the Wave Function of the Universe.
The solution is:

ψ(a,G) = ψ0 exp

{
i

[
− f0

4k
(j0)

− 1
3 a4 +

8 f0 j0G4k−1

1− 4k

]}
. (89)

Even in this case, the Hartle criterion is preserved by the existence of symmetries, as
the wave function is oscillating in the minisuperspace considered. Moreover, in the WKB
approximation, the gravitational action can be addressed to the quantity:

S = − f0

4k
(j0)

− 1
3 a4 +

8 f0 j0
1− 4k

G4k−1, (90)

so that Hamilton–Jacobi equation with respect to a(t) yields

∂S
∂a

= πa → Gka3 = 24Gk−2 ȧ3Ġ , (91)

which is exactly the first Euler–Lagrange equation. The second Hamilton–Jacobi equation(
∂S
∂G = πG

)
instead, provides the identity πG = j0. The system can be implemented with

the energy condition, so that the entire system of three differential equations yields the
exact solution:

a(t) = a0t1−4k G(t) = −96k(1− 4k)3t−4 ≡ G0t−4 . (92)

As shown in [58], the epochs crossed by the universe evolution can be obtained by
varying the value of the constant k. To conclude, also in this case observable universes are
recovered in the semiclassical limit.
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6. Discussion and Conclusions

Minisuperspace Quantum Cosmology is an approach that ultimately allows to select
initial conditions for observable universes. Starting from the Hamiltonian formulation of
gravity theories, it is possible, by a quantization procedure, to obtain the functional WDW
equation whose solution is the Wave Function of the Universe. Selecting particular configu-
ration spaces (minisuperspaces), it is possible to reduce the infinite dimensional problem
of superspace, and then the WDW equation to a partial differential equation eventually
solvable. According to the Hartle criterion, we can determine if dynamical variables of such
a wave function are either correlated or not and then apply the Hamilton–Jacobi equations
for achieving classical trajectories. The Noether Symmetry Approach, in its Hamiltonian for-
mulation, gives a straightforward interpretation of the Hartle criterion [75,80]: correlations
occur for the oscillating components of the Wave Function of the Universe and they are
related to the existence of first integrals of motion. The possibility to select classical trajec-
tories (i.e., observable universes) relies on the existence of Noether symmetries. In other
words, Noether symmetries constitute a selection rule in Quantum Cosmology.

In this paper, we considered some classes of gravity theories and selected their func-
tional forms taking into account the existence of Noether symmetries. Specifically, we
studied cosmological models related to f (R) gravity, f (T) gravity and Gauss–Bonnet
gravity. The application of Noether Symmetry Approach provides (i) the transformation
generator (which is a symmetry for the starting Lagrangian), (ii) the conserved quantity
and (iii) the form of the action functional. When searching for internal symmetries, it is
possible to follow the procedure in Equation (30) by which the cyclic variables for the
dynamical system are derived.

After a Legendre transformation, we obtain the Hamiltonian function related to the
Noether symmetry. After a canonical quantization, it is possible to derive the corresponding
WDW equations and the Wave Function of the Universe. The Hartle criterion is always
recovered thanks to presence of first integrals which give rise to oscillating behaviors
independently of the considered representation of gravity. This means that classical trajec-
tories, and therefore observable universes, can be always recovered if symmetries exist. As
reported also in [79,87], the presence of Noether symmetries seems a criterion to recover
physically viable models. In a forthcoming paper, this approach will be developed also in
comparison with observational data.
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Simple Summary: We clarify the question of clock transformations and trajectories in quantum
cosmology in a vacuum Bianchi I minisuperspace.

Abstract: We consider a simple cosmological model consisting of an empty Bianchi I Universe,
whose Hamiltonian we deparametrise to provide a natural clock variable. The model thus effectively
describes an isotropic universe with an induced clock given by the shear. By quantising this model,
we obtain various different possible bouncing trajectories (semiquantum expectation values on
coherent states or obtained by the de Broglie–Bohm formulation) and explicit their clock dependence,
specifically emphasising the question of symmetry across the bounce.

Keywords: quantum cosmology; canonical quantum gravity; time; clocks

1. Introduction

The problem of time in quantum cosmology [1,2] is well-known and, as of now,
unsolved. It rests on the fact that general relativity (GR) is a totally constrained theory,
and its canonically quantised counterpart can be reduced to the Wheeler–DeWitt (WDW)
equation HΨ = 0, which is a timeless Schrödinger equation. Hence, dynamics is absent
and, in a sense, meaningless in this framework.

A simple way to reintroduce dynamical properties into the theory consists in de-
parametrisation, namely by making use of the fact that there exists a constraint and using
a variable to serve as clock. Indeed, let us denote the relevant canonical variables {qk}
and their associated momenta {pk}, one hasH

(
{qk}, {pk}

)
≈ 0 in the Dirac weak sense.

Performing a canonical transformation
(
{qk}, {pk}

)
7→ ({Qa}, {Pa}) and assuming that

there exists a new variable Qα such that the Poisson bracket {Qα,H}P.B. is unity, one ob-
tains dQα/dt = 1, so that the variable Qα itself can be used as time; this is a classical
internal clock.

A simple and illustrative example consists in the Hamiltonian Hxy = Hx + Hy with

arbitrary Hx for a set of variables x but independent of the variable y, and Hy = − 1
2 (

.y2
+ y2)

represents a harmonic oscillator with negative sign. The (local) canonical transformation
T = 2 arctan(py/y) and pT = − 1

2 (p2
y + y2) produces Hy = pT , leading to .pT = 0 and

.
T = 1,

showing that T is a perfectly acceptable (local) clock variable for the Hamiltonian Hx.
Denoting Qα → t and its canonically conjugate momentum Pα → Pt, one notes that

since {Qα,H}P.B. = 1, the total Hamiltonian can be split into H = Pt + H, where H may
depend on t but not on Pt. At the quantum level, it then suffices to apply the Dirac
operator prescription pt 7→ p̂t = −ih̄∂/∂t to the original time WDW equation without
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time to transform it into ih̄∂Ψ/∂t = HΨ and thus recover a time-dependent Schrödinger
equation. Although this procedure is not always applicable for configurations in superspace,
restriction to a cosmological minisuperspace often permits it.

The question that naturally comes to mind is whether a clock thus defined is unique
and what the effect of changing it is. In what follows, we first discuss a simple cosmological
model based on a homogeneous but anisotropic Bianchi I metric in Section 2 in which we
obtain a clock provided by the shear; this yields a simple free-particle Hamiltonian in which
we introduce an affine quantisation procedure (Section 3) to account for the restriction that
the scale factor is positive definite. Section 4 is dedicated to exploring in detail the clock
transformations relevant to our quantised model, and we discuss the associated trajectories
in Section 5 before wrapping up our findings and concluding.

2. Classical Bianchi I Model

We begin by assuming a homogeneous and anisotropic Bianchi type I metric

ds2 = −N2dτ2 + e2(β0+β++
√

3β−)︸ ︷︷ ︸
a2

1

(
dx1

)2
+ e2(β0+β+−

√
3β−)︸ ︷︷ ︸

a2
2

(
dx2

)2
+ e2(β0−2β+)︸ ︷︷ ︸

a2
3

(
dx3

)2
, (1)

thereby defining the scale factors ai and the lapse N. Classically, in order to ensure the
required symmetries, all these functions are assumed to depend on time τ only. For the
metric (1), the usual Einstein–Hilbert action then reduces to

SEH =
1

16πGN

∫ √
−gRd4x =

3
8πGN

∫ √
γd3x

︸ ︷︷ ︸
V0

∫ e3β0

N

( .
β

2
+ +

.
β

2
− + 2

.
β

2
0 +

..
β 0 −

.
N
N

.
β0

)
dτ, (2)

in which we assume the comoving volume of 3-space to be finite (compact space ensuring
the extrinsic curvature surface term to be absent) and set to V0. Noting that

e3β0

N

(
..
β 0 + 2

.
β

2
0 −

.
N
N

.
β0

)
=

d
dτ

(
e3β0

N
.
β0

)
− e3β0

N
.
β

2
0,

one integrates (2) by each part and discards the boundary term to obtain the reduced action

SEH =
3V0

8πGN

∫ e3β0

N

(
−

.
β

2
0 +

.
β

2
+ +

.
β

2
−

)
dτ =

∫
L
(

βi,
.
βi

)
dτ, (3)

from which the momenta are found to be

p0 =
∂L

∂
.
β0

= − 3V0

4πGN

e3β0

N
.
β0 and p± =

∂L

∂
.
β±

=
3V0

4πGN

e3β0

N
.
β±, (4)

leading to the Hamiltonian

SEH =
∫ [

p0
.
β0 + p+

.
β+ + p−

.
β− −

2πGN

3V0
e−3β0

(
−p2

0 + p2
+ + p2

−
)

N
︸ ︷︷ ︸

H=CN

]
, (5)

where we emphasise the constraint C, which classically vanishes, with the lapse function
N(τ) always being nonvanishing.

For later convenience, we consider instead of β0 the volume variable V = exp(3β0),
with momentum pV = p0 exp(−3β0)/3, transforming the Hamiltonian into

H =
3V
8

(
−p2

V +
p2
+ + p2

−
9V2

)
N = CN. (6)
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In (6) and in what follows, we assume units such that 16πGN = V0.
As H in (6) depends on neither β±, these cyclic coordinates have conserved associated

momenta p±, which we write as

p+ = k cos ϕ and p+ = k sin ϕ,

in which we assume k > 0. Correspondingly, we find that the corresponding momenta
can be written as pk = −β+ cos ϕ− β− sin ϕ and pϕ = k(β+ sin ϕ− β− cos ϕ). Plugging
these relations into the Hamiltonian, it turns out that the new variable ϕ can be altogether
ignored as neither ϕ nor its momentum pϕ appears in H. We thus end with

SEH =
∫ [

pV
.
V + pk

.
k − 3V

8

(
−p2

V +
k2

9V2

)
N
]

dτ. (7)

As the volume is positive definite, solving the constraint C = 0 translates into setting
k2 = 9V2 p2

V , so that dk/dτ = [1/(2k)][d(k2)/dτ] = [1/(2k)][d(9V2 p2
V)/dτ], and finally

pV
.
V + pk

.
k =

d
dτ

[
VpV ln V +

1
2

V2 p2
V

(
9pk

k
− ln V

VpV

)]
− 1

2
V2 p2

V
dΥ
dτ

,

where
Υ =

9pk
k
− ln V

VpV
. (8)

The variable Υ now serves as an integrating measure in the action, and it has therefore
turned into a clock variable.

As now the constraint is satisfied; setting aside the boundary term above, one finally
obtains the action in the form

SEH = −1
2

∫
V2 p2

VdΥ =
∫ [

VpVd(VpV T)− 1
2

V2 p2
Vd(Υ + T)− 1

2
d(V2 p2

V T)
]

, (9)

where we have introduced an arbitrary function T(V, pV , pk) of the original relevant vari-
ables. Discarding the last, integrated term and setting q = VpV T and p = VpV , the action
is expressed in the canonical form

SEH =
∫ [

p
dq
dt
− H(q, p)

]
dt =

∫ (
p

dq
dt
− 1

2
p2
)

dt, (10)

provided we set t = Υ + T as the new time variable.
A thorough discussion of this issue together with that of choosing the otherwise

arbitrary function T is given in Ref. [3], where in particular it was shown that there exist
two categories of possible choices, namely the so-called fast- and slow-time gauges. In the
former case, the singularity is somehow not removed upon quantisation, in the sense that
the wavefunction asymptotically shrinks towards a δ−function around the vanishing scale
factor (hence a singularity) after an infinite amount of time. In the latter case of slow-time
gauge, the singularity is resolved into a bouncing universe.

We shall restrict out attention in what follows to the slow-time gauge only and there-
fore assume the arbitrary function to take the simple form T = V−1, leading the relevant
variable q to be identified with the volume V. The classical Hamiltonian is now reduced
to that of a free particle confined to the semi-infinite half line R+. We now turn to the
quantisation of this problem.

3. Affine Quantisation

Quantising a Hamiltonian system in principle follows a well-defined procedure, re-
ferred to as “canonical quantization” and proposed by Dirac. It consists of replacing the
relevant dynamical variables by corresponding operators and the Poisson brackets by
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i times the commutators between these operators. In the position representation with
wavefunction Ψ(q, t), the operator Q̂ becomes the multiplication by q and the momentum
yields P̂Ψ = −ih̄∂Ψ/∂q.

Canonical quantisation is based on the unitary and irreducible representation of the
group of translations in the (q, p) plane, the Weyl–Heisenberg group. For a particle living
in a smaller space, it therefore might not apply in a straightforward manner, as one has to
reduce the Hilbert space of available states to ensure the mathematical properties of the
observables to be satisfied. Instead of adopting this potentially problematic approach, we
propose that the so-called covariant integral be considered. This is based on a minimal
group of canonical transformations with a nontrivial unitary representation.

For the half-plane that arises in the Bianchi I case of the previous section, the natu-
ral choice is the 2-parameter affine group of a real line with elements (q, p) ∈ R+ × R,
transforming s ∈ R into (q, p) · s = s/q + p and with composition law

{(q0, p0), (q, p)} 7→
(
q′, p′

)
= (q0, p0) ◦ (q, p) =

(
q0q,

p
q0

+ p0

)
(11)

and left-invariant measure dq′ ∧dp′ = dq∧dp. It is clear that q represents a change of scale,
which is what one would expect for a scale factor (dimensionless in our conventions), while
the momentum is rescaled and translated as the scale is modified. For the 2-parameter
affine group, one can find a unitary, irreducible and square-integrable representation in the
Hilbert spaceH = L2(R+, dx). It reads

〈x|U(q, p)|ζ〉 = 〈x|q, p〉ξ =
eipx/h̄
√

q
ξ

(
x
q

)
, (12)

where ξ(x) = 〈x|ξ〉 ∈ H and |ξ〉 ∈ H is an (almost) arbitrary fiducial state vector belonging
to the Hilbert space (see Ref. [4] and references therein). As for the unitary operator U(q, p)
implementing an affine transformation, it reads

U(q, p) = eipQ̂/h̄e−i ln qD̂/h̄, (13)

with D̂ := 1
2 (Q̂P̂ + P̂Q̂) as the dilation operator, forming with Q̂ the algebra

[
Q̂, D̂

]
= ih̄Q̂.

Let us define the series of integrals

ρξ(s) :=
∫ 〈ξ|x〉〈x|ξ〉

xs+1 dx =
∫ |ξ(x)|2

xs+1 dx < ∞ and σξ(s) :=
∫ ∣∣∣∣

dξ(x)
dx

∣∣∣∣
2 dx

xs+1 (14)

assumed convergent, and the quantisation rule

f (q, p) 7→ Aξ [ f ] := Nξ

∫

R+×R
dqdp
2πh̄

|q, p〉ξ f (q, p) ξ〈q, p| with Nξ =
1

ρξ(0)
=:

1
ρ0

, (15)

associating to each function f (q, p) of the classical dynamical variables a unique operator
Aξ [ f ] in the Hilbert spaceH. The normalisation Nξ comes from the resolution of unity

∫ dqdp
2πh̄ρ0

|q, p〉ξ ξ〈q, p| =
∫

dx|x〉〈x| = 1 = Aξ [1], (16)

using 2πh̄δ(x − y) =
∫

eip(x−y)/h̄dp. Useful operators can then be represented, such as
powers of q or the momentum p, namely

Aξ [qs] =
∫

R+×R
dqdp
2πh̄ρ0

|q, p〉ξ qs
ξ〈q, p| = ρξ(s)

ρ0
Q̂s (17)
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and
Aξ [p] =

∫

R+×R
dqdp
2πh̄ρ0

|q, p〉ξ p ξ〈q, p|q, p| = P̂, (18)

showing that the fiducial state |ξ〉 should be such that ρξ(1) = ρξ(0) in (14) to ensure
the canonical commutation relations [Aξ [q], Aξ [p]] = [Q̂, P̂] = ih̄. Finally, the compound
quantity qs p2 is quantised to

Aξ [qs p2] =
ρξ(s)

ρ0
P̂Q̂s P̂ + h̄2

[
s(1− s)ρξ(s)

2ρ0
+

σξ(s− 2)
ρ0

]
Q̂s−2, (19)

so that the classical Hamiltonian in (10), namely H(q, p) = 1
2 p2, has an affine quantum

counterpart given by

Aξ [H(q, p)] = Ĥ(Q̂, P̂) =
1
2

P̂2 + h̄2Kξ Q̂−2 =
1
2

P̂2 + V(Q̂), (20)

with Kξ = σξ(−2)/ρ0; given the arbitrariness of the fiducial vector, this coefficient is essen-
tially arbitrary. If instead of the affine quantisation one applies the canonical prescription,
it would simply vanish (Kcan → 0). Among the advantages of this quantisation is the
fact that it permits us to merely parametrise the well-known operator ordering ambiguity,
replacing it by a single unknown number, to be ultimately fixed by experiment.

It should be noted that if Kξ ≥ 3
4 , the Hamiltonian (20) is essentially self-adjoint, so

one needs not impose any boundary conditions at q = 0, the dynamics generated being
unique and unitary by construction [5]. In the framework of quantum cosmology that
concerns us here, affine quantisation induces a repulsive potential V(Q̂) thanks to which it
is natural to expect that the classical GR Big Bang singularity will be resolved by quantum
effects, as indeed is found to happen with our choice of clock [3].

4. Clock Transformations

A classically constrained Hamiltonian theory with Hfull(qfull, pfull) ≈ 0 and
deparametrised to a reduced phase space (q, p) using an internal degree of freedom t
as clock is invariant under the so-called clock transformations. The idea behind the clock
transformation is the following: given a clock t and its associated reduced phase space for-
malism (q, p, t), one seeks, prior to deparametrisation, another choice of clock t̃, say, leading
to a similar reduced phase space formalism (q̃, p̃, t̃). This involves transformations of both
the clock variable t 7→ t̃(q, p, t) and the canonical variables (q, p) 7→ [q̃(q, p, t), p̃(q, p, t)]
as the change in time generally changes the canonical relations in reduced phase space.
These clock transformations can also be understood as canonical transformations in the
full phase space (qfull, pfull), thereafter restricted to the constraint surface. This restriction
is responsible for altering the canonical relations in the reduced phase space. The relation
between the full- and reduced-phase-space formulations of the clock transformations was
investigated in [6].

Let us start by noticing that the new canonical variables (q̃, p̃) associated with the new
clock t̃ can be chosen conveniently as to satisfy

dq ∧ dp− dt ∧ dH(q, p, t) = dq̃ ∧ dp̃− dt̃ ∧ dH(q̃, p̃, t̃), (21)

where the form of the reduced Hamiltonian H(·, ·, ·) is preserved by the clock transfor-
mation [7]. The above choice of q̃ and p̃ is convenient because once the solution to the
dynamics is known in t as q = Sq(t), p = Sp(t), it is automatically known in all other clocks
t̃ as q̃ = Sq(t̃), p̃ = Sp(t̃). It is obviously the same physical solution but now differently
parametrised. It is easy to notice that t̃ 6= t implies dq ∧ dp 6= dq̃ ∧ dp̃, and the clock
transformation indeed alters the canonical relations in the reduced phase space. This is
a sufficient reason for the existence of unitarily inequivalent quantum dynamics based
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on different choices of clock (as we shall see shortly). Let us now explain how the clock
transformation satisfying the above condition is determined in practice.

One first calculates Dirac observables Ci(q, p, t) (i = 1, 2 in the two-dimensional phase
space discussed here) by solving their defining equation, namely ∂tCi + {Ci, H}P.B. = 0. One
then demands that for the transformation (q, p, t) 7→ (q̃, p̃, t̃), one has Ci(q, p, t) = Ci(q̃, p̃, t̃),
thus leading to the required relationship between (q̃, p̃) and (q, p) for an arbitrary change
of clock time t 7→ t̃. It should be emphasised at this point that the clock transformation
provides an actual invariance provided there is an underlying Hamiltonian, even a time-
dependent one.

Consider first the Hamiltonian in (10), namely H0 = 1
2 p2. The Dirac observable

requirement then reads ∂tCi + p∂Ci/∂V = 0. One set of solution is C1 = p and C2 = pt− q,
leading to p̃ = p, and p̃t̃− q̃ = pt− q, which implies q̃ = q + (t̃− t)p = q + ∆p, thereby
defining the function

∆(t, q, p) := t̃− t. (22)

The effects of this transformation was studied in Ref. [3] for various arbitrary ∆. In phase
space, the solutions for H0 are .p = 0, and therefore p = p0 constant, with .q = p = p0
so that q = p0t + q0: these are straight lines in the (q, p) space, labelled by t. Changing
to t̃ yields the same Hamiltonian, now in the new variables, and therefore the same
equations of motion, and thus the same formal solutions, namely p̃ = p̃0 and q̃ = p̃0 t̃ + q̃0.
Applying the transformation implies q̃0 = q0 and p̃0 = p0. For one particular solution,
Equation (22) provides t̃(t), which must be monotonic and invertible, yielding t(t̃): q(t)
now transforms into q(t̃), and because p is constant, one recovers straight lines, now
labelled in a different way.

Let us now turn to the more complicated example of the quantum Hamiltonian (20),
now considered classical and written as H = 1

2 p2 + K/q2. One now needs to find the
solution to

∂Ci
∂t

+
2K
q3

∂Ci
∂p

+ p
∂Ci
∂q

= 0,

which is solved by the set

C1 =
1
2

p2 +
K
q2 = H(q, p) and C2 = qp− 2H(q, p)t. (23)

For the clock transformation, one derives from (23) the relations

q̃2 = q2 + Z and p̃2 = p2 +
2KZ

q2(q2 + Z)
= 2

(
H − K

q2 + Z

)
, (24)

where we have set Z = 2∆(pq + H∆). Two conditions must be imposed for the choice of
∆. First, it must be made such that it satisfies Z ≥ −q2 to ensure q̃2 ≥ 0 and hence q̃ ∈ R.
Second, the inequality

1 +
∂∆
∂t

+ {∆, H}P.B. = 1 +
∂∆
∂t

+ p
∂∆
∂q

+
2K
q3

∂∆
∂p
6= 0

must hold in order that the time delay function ∆ ensures monotony of the new time with
respect to the old one, i.e., dt̃/dt > 0. Note that the transformation (24) gives back that
corresponding to K = 0 in both limits K → 0 and q→ ∞.

Our system originates classically from the simplest option, namely H → H0 = 1
2 p2,

but that derived from the quantum one (20) can imply semiclassical (or perhaps semiquan-
tum [4]) trajectories that should be invariant under (24). It is therefore important to derive
actual trajectories one way or another to be able to estimate the effects a choice of clock
can have.
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5. Trajectories

There are various ways to implement physically meaningful trajectories in our quan-
tum description of the dynamics of a Bianchi I universe, as illustrated in Figure 1. The first
and most obvious consists merely in evaluating expectation values. If the wavefunction is
sufficiently narrow, this can provide an effective semiclassical approximation.

0 5 10 15 20

0

10

20

30

40

0 5 10 15 20
-2

-1

0

1

2

Figure 1. Time developments of the various trajectories proposed in the text (left panel) as obtained
from the wavefunctions of Figure 2. Except for the dBB case, all the definitions used for semiclassical
trajectories are well fitted (or exactly given) by the solution (29), shown as dashed lines for each curve
(these have been arbitrarily displaced up and down for visual purposes; otherwise they are hardly
distinguishable). The right panel shows the relevant associated momenta and emphasises the large
discrepancy visible only in the dBB case.

With the Hamiltonian (20), it has been shown that an approximate space trajectory can
be deduced directly from the quantum version of the algebra [3]: using [D̂, Ĥ] = 2iĤ and
the fact that Ĥ is a constant operator, one can integrate the Heisenberg equation of motion
dD̂/dt = −i[D̂, Ĥ] = 2Ĥ, leading to D̂(t) = D̂(0) + 2Ĥt. Even though the operator Q̂ itself
cannot be integrated directly from the algebra because [Q̂, Ĥ] = iP̂ and [P̂, Ĥ] = 2iKQ̂−3, its
square leads to [Q̂2, Ĥ] = 2iD̂, so one finds dQ̂2/dt = −i[Q̂2, Ĥ] = 2D̂(t) = 2D̂(0) + 4Ĥt.
This implies Q̂2 = Q̂2(0) + 2[D̂(0)t + Ĥt2]. A semiclassical trajectory can then be defined

in phase space by setting qsem(t) =
√
〈Q̂2〉 and psem(t) = 〈D̂〉/qsem(t). Shifting the time

to set the minimum of qsem(t) at tB = 0, one obtains a bouncing behaviour qsem(t) =
qB

√
(ωt)2 + 1.
Another option consists in solving the Schrödinger equation and evaluating the ex-

pectation values directly with the relevant wavefunction. This leads to another semiclas-
sical trajectory Qsem(t) = 〈Q̂〉 and Psem(t) = 〈P̂〉. It turns out that for t < 0, one has
Qsem(t) ' qsem(t), although close to the bounce and afterwards, there is a systematic shift
between Qsem(t) and qsem(t). The phase space trajectories (qsem, psem) and (Qsem, Psem)
are in good agreement, with only a difference in their time labelling.
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Figure 2. Snapshots of the time evolution of both the full wavefunction ψ(q, t) and its coherent state
approximation ψζ(q, t), with the initial condition shown in Figure 3. As the wavefunctions approach
the origin q→ 0, the true solution ψ starts oscillating, with the oscillations developing further with
time until the wave packet is far enough from the origin and they begin to be damped. On the other
hand, the coherent state wavefunction ψζ never oscillates, being merely squeezed at the origin and
then bouncing away. In the large time limit, they both evolve in more and more similar ways so that
limt→∞ ψ ∼ ψζ .

A third way to obtain approximate trajectories consists in considering coherent states,
as defined through Equations (12) and (13). Indeed, if one changes the fiducial state |ξ〉,
satisfying the canonical condition ρξ(1) = ρξ(0) below (18), to |ζ〉 such that 〈ζ|Q̂|ζ〉 = 1
and 〈ζ|P̂|ζ〉 = 0, the Schrödinger action

Ssch[|ψ〉] =
∫
〈ψ|
(

ih̄
∂

∂t
− H

)
|ψ〉dt (25)

is transformed into [8]

Ssch[|q(t), p(t)〉ζ ] =
∫ [

pζ
.qζ − ζ〈q(t), p(t)|H|q(t), p(t)〉ζ

]
dt

→
∫ [

pζ(t)
.q(t)− Hsem(qζ(t), qζ(t))

]
dt

(26)

once the arbitrary state |ψ〉 is replaced by the coherent state |q(t), p(t)〉ζ , now defined with
a priori unknown functions of time qζ(t) and pζ(t). It is clear from Equation (26) that the
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initially arbitrary functions qζ(t) and pζ(t) are now, in order to minimise the action, subject
to Hamilton equations

.qζ =
∂Hsem

∂pζ
and .pζ = −∂Hsem

∂qζ
. (27)

with the original Hamiltonian replaced by the semiclassical one Hsem.
Applying the coherent state method to the quantum Hamiltonian (20) yields

Hsem(q, p) =
1
2

p2 +
K
q2 , (28)

in which K = h̄2[Kξρζ(1) + σζ(−2)
]
. As above, the coefficient K depends on the choice of

fiducial state |ζ〉 and is, to a large extent, arbitrary.
Solving Equations (27) with (28) yields

qζ(t) = qB

√
1 + (ωt)2 and pζ(t) =

qBω2t√
1 + (ωt)2

, (29)

where qB =
√K/Hsem and ω = Hsem

√
2/K. It is interesting to note that the solution (29)

is functionally the same as that obtained by using the operator algebra qsem(t) and psem(t),
and even though the parameters qB and ω in both solutions differ in principle, they satisfy
ωqB =

√
2H in both cases.

Finally, trajectories can be obtained in the quantum theory of motion [9] formulation
of quantum mechanics originally proposed by de Broglie in 1927 [10] and subsequently
formalised in more detail by Bohm in 1952 [11,12]; we shall accordingly refer in what
follows to this formulation as the de Broglie–Bohm (dBB) approach. Applied to quan-
tum gravity [13], it permits some relevant issues to be reformulated and, in some cases,
solved [14].

The basic idea stems from the eikonal approximation in the classical wave theory of
radiation for which light rays can be obtained by merely following the gradients of the phase
of the wave. Similarly, in quantum mechanics, the wavefunction is understood to represent
an actual wave whose phase gradient provides a means to calculate a trajectory. In practice,
for a Hamiltonian such as (20), the Schrödinger equation reads ih̄∂tψ = − 1

2 ∂2
qψ+Vψ, which

can be expanded, setting ψ(q, t) =
√

ρ(q, t) exp[iS(q, t)/h̄], into a continuity equation

∂ρ

∂t
+

∂

∂q

(
ρ

∂S
∂q

)
= 0, (30)

naturally leading to the identification .qdBB = ∂qS, and a quantum-modified Hamilton–
Jacobi equation

∂S
∂t

+
1
2

(
∂S
∂q

)2
+ V(q) + VQ =

∂S
∂t

+
1
2

(
∂S
∂q

)2
+ V(q)− h̄2

4ρ

[
∂2ρ

∂q2 −
1

2ρ

(
∂ρ

∂q

)2
]

︸ ︷︷ ︸
VQ

= 0, (31)

which confirms the above identification, while highlighting a new potential adding to
the original one. Appropriately called the quantum potential, VQ, being built out of the
wavefunction solving the Schrödinger equation, is in general a time-dependent potential.

With the identification .qdBB = ∂qS, one gets ..q dBB = d(∂qS)/dt = ∂t(∂qS) + ∂2
qS .qdBB,

so using the identification again and the Hamilton–Jacobi equation (31), one finds..q dBB = −∂q(V + VQ), i.e., a modified Newton equation that, formally, can be derived
from the time-dependent Hamiltonian HdBB = 1

2 p2
dBB + V(qdBB) + VQ(qdBB, t). These tra-

jectories happen to be very different from those derived above for various reasons. In
particular, the coherent state approximation leads to one and only one trajectory qζ(t) once
the initial coherent state (including the fiducial state) is given. Similarly, expectation values
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are unique for a given quantum state, so that qsem(t) and Qsem(t) define one semiclassical
or semiquantum approximation only, which is entirely fixed by the parameters defining the
state, whereas qdBB(t), stemming from a differential equation, needs an initial value qdBB(t0)
to be evolved, and therefore there exists, for a given state, an infinite number of acceptable
trajectories. One could, however, argue that for the coherent state trajectory, depending
on the choice of a particular fiducial state, there remains some amount of ambiguity in
this choice, permitting various families of such trajectories to be defined. In that sense, the
coherent state approximation and the dBB approach can be compared.

Another crucial difference is that qsem(t), Qsem(t) and qζ(t) represent approximations
supposed to encode the underlying quantum mechanical evolution of the wavefunction.
The trajectories qdBB(t) are, by contrast, an extra degree of freedom in the dBB formulation
and thus exact solutions of the equations of motion.

Let us consider beginning with the canonical quantisation case, for which K → 0. In
this case, our Bianchi I vacuum model is formally equivalent, in the minisuperspace limit,
to that of a Friedmann universe filled with radiation [15], and one finds that there exists a
wavefunction such that the qdBB(t) has the same functional dependence in time as qζ(t) in
Equation (29), except for the fact that the minimum scale factor value is now given not only
by the parameters describing the wavefunction, but also depends on an initial condition
qdBB(t0). In that case, this comes from the fact that the quantum potential happens to be
VQ ∝ q−2, so one naturally recovers the Hamiltonian (28): one thus finds that all trajectories
are similar in shape.

The more relevant model in which K 6= 0 can also be solved analytically under special
conditions (see Ref. [3] for details and the solution itself). Our choice in the present work
was to assume an initial wavefunction ψtrue(q, tini) in the far past, with q large, to be
in a coherent state ψζ(q, tini) (see the right panel of Figure 3) and to evolve it with the
Schrödinger equation. Figure 2 shows how ψ(q, t) = ψtrue(q, t) and then very rapidly
departs from ψζ(q, t), although the expectation value trajectories qsem and Qsem remain
similar (in shape, if not in actual values) to qζ . As it happens, as the wave packets move
towards the origin q → 0, ψ starts oscillating, thus producing the oscillations in the
dBB trajectory QdBB, while the coherent state remains smooth at all times, being merely
squeezed close to the origin. It is interesting to note that even though the wavefunctions
differ drastically at the time of the bounce, the relevant trajectories (except the dBB one) are
well described by (29), although with different parameters qB and ω. We take that as an
indication that the coherent state approximation is a valid one in most circumstances as
long as one is only interested in expectation values. Given the very significant differences
with the true wavefunction, however, it can be assumed that higher order moments are not
well approximated.

As a result, the trajectories defined through either expectation values or coherent state
approximation are invariant under the clock transformation (24), contrary to the dBB ones.
However, as can be seen on Figure 4, in which the transformation stemming from the free
particle Hamiltonian is applied to the phase space trajectories, they do depend on the choice
of clock before quantisation. This is actually even more true for the dBB case, for which
these clock transformations can lead to such tremendous modifications of the space space
trajectories that the actual predictivity of the underlying theory becomes questionable.
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Figure 3. (Left): Parametric phase space trajectories built from the data from Figure 1. Except for the
dBB case, all are well fitted (if not exactly given) by p2 ∝ q−2

B − q−2, as obtained from (29). (Right):
wavefunction leading to the previous trajectories, at the initial time, at which we assume a a coherent
state. Subsequent evolution is shown in Figure 2.
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Figure 4. Change of the phase space trajectories when a clock transformation above (22) is applied to
Figure 3, with different time functions ∆(q, p) as indicated in the figure. The numerical parameters
are set to α = 2, α′ = 3, β = −0.63, γ = 0.1, ε = 1, p0 = 3/2, q1 = 0.126, q2 = 0.4, q3 = 0.04,
and q4 = 0.03; they have been chosen to yield visually important modifications of the trajectories.
Left panel: initial trajectory given by Equation (29). Applying (24) to this trajectory yields the very
same trajectory by definition. Right panel: the dBB trajectory, initially having more features, can be
modified much more drastically.

6. Conclusions

We have reviewed the question of clock transformation and trajectories in quantum
cosmology by means of a simple deparametrised and quantised Bianchi I model. The
Wheeler–DeWitt equation in this minisuperspace case reduces to the Schrödinger equation
of a free particle or, depending on the quantisation scheme, with a repulsive potential
which can be studied using standard techniques. The relevant degree of freedom, from the
point of view of cosmology, is the spatial volume q = V, i.e., the cube of the scale factor a,
while the canonically conjugate momentum is mostly given by the Hubble parameter.

Extending a previous work [3] to include dBB trajectories, we found very substantial
differences between those and their counterparts obtained by some averaging processes. In
the later case, all trajectories stem from a semiclassical Hamiltonian and are therefore in-
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variant under the corresponding clock transformation (although not for that corresponding
to the original classical theory). In the former case, however, unless the wavefunction is
restricted to belong to a very special class (for which the coherent state approximation is not
valid), we found that the dBB trajectories depend in a much more drastic way on the clock
transformations, rendering the ambiguity it stems from extremely serious, to the point
that the theory may no longer even be predictive. Calculating the spectrum of primordial
perturbations, for instance, involves the second time derivative of the scale factor, and
hence of our q, so that the choice of clock and initial conditions can yield tremendously
different predictions. For semiclassical trajectories, on the other hand, the choice is mostly
irrelevant, and the resulting perturbations might merely depend on a few parameters.

That said, it must be emphasised that the classical limit is, in all cases (hence including
dBB), well defined and consistent, so there remains the possibility that whatever dynamical
quantity (e.g., perturbations) is evolved through the full quantum phase might be unique.
We postpone such a discussion to a forthcoming work [16].
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Abstract: In the present article we review the work carried out by us and collaborators on supersym-
metric quantum cosmology, noncommutative quantum cosmology and the application of GUPs to
quantum cosmology and black holes. The review represents our personal view on these subjects and
it is presented in chronological order.

Keywords: quantum cosmology; supersymmetry; noncommutativity; generalized uncertainty
principles

1. Introduction

Quantum gravity is a prospect of a physical theory describing the quantum phenom-
ena associated to the gravitational field. At the present time nobody knows with certainty
how this theory will look like. There are several proposals in the literature describing
the possible nature of the fundamental degrees of freedom and checking the internal
consistency by connecting it to the correct limits as the low energy macroscopic general
relativity and quantum mechanical laws. These theories have some features which are
quite interesting by themselves, as the modification of the spacetime structure near Planck
scale (for an exposition of the different approaches, see for instance, [1,2]). String theory
and loop quantum gravity are among the most prominent examples. In the present article
we review our advances on another approach to quantum gravity as quantum cosmology.
This proposal has its origins in the Arnowitt, Deser and Misner (ADM) canonical formalism
of quantum gravity [3]. This is an approach to quantum gravity that possess some of the
features of the complete theory and it allows to formulate some models easily workable
(for some reviews on this topic, see [4,5].)

The study of the universe must be done in the framework of the theories in force
at present, depending on the scale to be described, although there is no question that it
must rely on general relativity. Cosmology links together, as a theory of the evolution
of the universe, small with large scales, hence a natural, theoretical framework for it is
quantum cosmology.

Cosmology describes the general laws of the universe, i.e., its evolution and structure
formation. Mostly, these laws can be formulated classically, in accordance with the obser-
vational bounds. However, assuming the past convergence of matter into a singularity, it
emerges the question, still open, of its quantum origin. On the other side, there is large
evidence and it is generally accepted that classical physics can be explained from quan-
tum physics. Accordingly, there have been broad efforts to formulate a quantum theory
of gravity.

The observation of the universe has lead to the knowledge that it behaves as a classical
system, it is no subject to quantum uncertainties. This fact refers to the observable universe,
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which begins with the time of the Cosmic Microwave Background (CMB). Before this time,
the universe is well described after the hot big bang, and there is controversy on what
happened before, although it is largely accepted, that an inflationary epoch should have
been present, originated during a homogeneous phase. Before this phase not much is
known, but it is believed that if the universe has expanded from a previous era above
Planck scale, a full quantum gravity description is required. On the other side, one of
the successes of inflation is that it produces a growth of quantum fluctuations to the size
and density required by gravitational instability, without generating too strong primordial
gravitational waves. These fluctuations can be explained by the quantization of small
inhomogeneous perturbations of the metric, in a homogeneous background, hence from
a semiclassical quantum gravity. Therefore, it is valid to study homogeneous cosmology
as a quantum theory. This quantization corresponds to quantum mechanics, with a time
independent Klein-Gordon equation, given by the Wheeler-DeWitt equation [5,6].

Among the candidates for a unified theory of quantum gravity, supergravity has an
important place, as an effective or possibly fundamental theory. As supergravity includes
necessarily fermions, it requires to be a quantum theory. Thus, the study of quantum
supergravity cosmology is meaningful and relevant. As a bonus, in the supersymmetric
framework, the Wheeler-DeWitt equation turns into a system of first order equations.

Supersymmetric quantum cosmology has been first formulated in an attempt to give a
systematic approach for a square root for the Wheeler-DeWitt equation in [7]. In this work,
a homogeneous theory following from N = 1 supergravity theory was considered. In this
way, an invariance principle for a square root of the WDW equation has been proposed,
at the energy scale of quantum cosmology. As the fields in the action depend only on
time, not all the original constraints follow from the variation, and the missing constraints
should be implemented by hand for consistency.

If one would like to consider the presence of quantum effects through the Heisenberg
uncertainty principle in gravitational systems, it is possible to argue that there is a minimal
length, which is precisely the Planck length LP. If we increase the energy, the length will
be start to be increased again. This behavior is typical of noncommutative field theories
and noncommutative gravity [8,9]. One of its prominent examples is the description
of instantons on noncommutative spaces. It can be appreciated an effective size of the
instantons depending on the noncommutative parameter. A novel proposal was carried
out by us in the paper [10], where noncommutative deformation was implemented at the
level of Wheeler’s superspace or more concretely at the level of minisuperspace.

If the uncertainty relations are modified by generalizing them, then the ultraviolet
(UV) behavior will change. This is precisely the aim of Generalized Uncertainty Principles
(GUP), which asserts that in the UV the usual Heisenberg relations should be modified.
These generalizations are consistent with some results of very high energy scattering in
string theory [11–18].

However, the observed large scale homogeneity of the universe, indicates a primary
description in a minisuperspace, with finitely many degrees of freedom. Such a theory has
the indubitable advantage, that it accepts a quantum description, and has served also as
a test ground for approaches of quantum gravity. Moreover, this theory has given new
insights in the study of the early universe, and of the other realm where it is thought that
quantum gravity should manifest, the interior of black holes. Among these approaches,
we have made several proposals that we shortly review here: supersymmetric cosmology,
effective noncommutativity in cosmology and black holes.

In this work we shortly present some of these developments with collaborators, and
concentrate on our own point of view, and main contributions. The article is organized
as follows: in Section 2 we review supersymmetric quantum cosmology starting from the
original proposal [7] and we describe very briefly the other proposals to supersymmetric
quantum cosmology in the literature. Section 3 is devoted to give an overview of the
noncommutative quantum cosmology. We give the original idea [10] and briefly discuss its
further evolution. In Section 4 we describe a recent proposal of the application of GUPs
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to quantum cosmology following Ref. [19]. In Section 5 we review the application of the
GUPs to black holes, this is based in Ref. [20].

2. Supersymmetric Quantum Cosmology

The starting point is the Freedman-Nieuwenhuizen-Ferrara action [21]. The fields are
the tetrad e a

µ , the spin connection ω ab
µ , and the Rarita-Schwinger Majorana 3

2 -spinor field
ψ a

µ , i.e., it satisfies ψ̄µ = ψT
µ C, where C is the charge conjugation matrix. The lagrangian is

L =
1

2κ2

[√
−gR(ω)− εµνρσψ̄µγ5γνDρψσ

]
, (1)

where the bosonic part is the Palatini lagrangian, which depends on the tetrad and the spin
connection. The derivative of the Rarita-Schwinger field is covariant with respect to Lorentz
transformations. After its elimination by its equations of motion, the spin connection turns
into the Ricci rotation coefficients, modified by the supersymmetric torsion term

ωλµν =
1
2
(
−Ωλµν + Ωµνλ + Ωνλµ

)
, (2)

where Ωλµν = eλa

(
∂µe a

ν − ∂νe a
µ − i

2 ψ̄µγaψν

)
.

Similar to Yang-Mills theories, the components e a
0 , ωab

0 , and ψa
0 are non-dynamical,

and their conjugated momenta pa, pab and πa vanish. The hamiltonian is [22,23]

H = e a
0 Ha + ωab

0 Lab + ψα
0 Sα + λa pa + λab pab + λαπα, (3)

where H0 is the hamiltonian constraint, Hi, (i = 1, 2, 3) the momentum constraints, Lab the
Lorentz constraints, and Sα the supersymmetry fermionic constraints. All these constraints
are first class.

In general the fermionic variables have first order kinetic term, from which follow
second class constraints, which require Dirac brackets. Thus, the canonical brackets of ψα

m
form a Clifford algebra (m = 1, 2, 3). The equal time bracket constraint algebra closes [22],
modulo Lorentz transformations,

{Sα(~x), Sβ(~x′)} = −(γaC)αβHa(~x)δ(~x−~x′). (4)

The canonical quantization of the bosonic variables is implemented by derivatives of
the conjugated variables, as for canonical quantum gravity [6]. The fermionic variables can
be quantized in a similar way [24]. Another way is, as in the case of the spinning particle,
representing the fermionic variables by Dirac matrices, leading to the Dirac equation [25].
The constraints are implemented as operator equationsHΨ = 0, on a wave function Ψ that
will be a functional of the fields of configuration space, called also superspace. Thus, the
solutions do not depend on the non-dynamical fields, are scalar by the Lorentz constraints,
and depend on 3-metrics through space diffeomorphisms invariant classes, due to the
momentum constraints Hi, see e.g., [5]. On the other side, these solutions satisfy the
supersymmetric constraints SαΨ = 0, then the hamiltonian and momentum constraints
will be satisfied, HaΨ = 0, due to (4).

At the beginning of the nineties, supersymmetric quantum cosmology has attracted
the attention of theoretical cosmologists and was developed in several directions, for early
developments see [26], and the extensive more recent review [27,28].

As fermionic degrees of freedom of the universe could describe anisotropies, fre-
quently a supergravity description of a homogeneous universes has been done for Bianchi
models [7,29], whose metric has the general form, in the ADM formulation, ds2 = [N2(t)−
Ni(t)Ni(t)]dt2 − 2Nm(t)dtωm − hmn(t)ωmωn, where hmn(t) = e2Ω(t)(e2β(t))mn, β(t) is a
3× 3 matrix, and the one-forms ωm are determined by the Bianchi type. With this met-
ric, a tetrad can be given by e 0

0 = N, e i
0 = eΩ(e−β)ij, e 0

m = 0, e i
m = e−Ω(eβ)mi, where

i, j, . . . are Lorentz space indices, and m, n, . . . are world space indices. Usually, the Misner
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parametrization is taken β = diag(β+ +
√

3β−, β+ −
√

3β−,−2β+). These choices amount
to a gauge fixing, corresponding to space homogeneity and Lorentz invariance of the tetrad.
As a consequence, there are no Lorentz constraints, as noted in [7]. However, as usual in
gauge theory QFT, in this case, the Lorentz constraints must be taken into account [29].
In [7,29] the Bianchi I model has been studied, ωm = dxm. In [7] a matrix representation
has been taken for the fermionic variables, with a spinor wave function, and in [29] a power
series in the fermionic variables. In fact, in [30] the Bianchi IX model has been studied,
considering the 12 dynamical fermionic degrees of freedom, which require a 64× 64 Dirac-
matrix representation. In this case, as there is no dependence on space coordinates, the
Lorentz constraints act only on the fermionic variables and are algebraic. Their application
to the 64-D spinorial wave function is straightforward and, as shown it [30], the wave
function reduces to only two non-vanishing components

ψ± = Ce±e−2Ω [2e2β+ Cosh(2
√

3β−)+e−4β− ]. (5)

This result confirms the observation in [29], that the Lorentz constraints restrict
strongly the solutions of the WDW equation. In [31], a thorough analysis of this model has
been done without considering the Lorentz constraints. In [32] this model has been studied
under the inclusion of a cosmological constant, with results indicating that there may be
no physical quantum states.

In [33], the Bianchi IX model has been considered by the observation that it has the
structure of a sigma model in classical mechanics, on a manifold with three degrees of
freedom q = (a, β+, β−), i.e., geometrodynamics with a specific metric for Bianchi IX,
Gij = diag(−1, 1, 1), and whose hamiltonian constraint can be written as

H0 = Gij(q)
[

pi pj +
∂φ(q)

∂qi
∂φ(q)

∂qj

]
, (6)

where pi are the conjugate momenta, and φ(q) = 1
6 e2aTre2β. As the hamiltonian (6)

is quadratic, a global supersymmetric extension can be given straightforwardly, see
e.g., [34–36], with the supersymmetric charges Q = ψi(pi + i ∂φ

∂qi ) and Q̄ = ψ̄i(pi− i ∂φ

∂qi ), and

H = {Q, Q̄} = H0 +
h̄
2

∂2φ

∂qi∂qj [ψ̄
iψj]. The fermionic variables satisfy {ψi, ψj} = {ψi, ψj} = 0,

and {ψi, ψ̄j} = Gij. Time reparametrization invariance is restored in [37], by the intro-
duction of the lapse function and its fermionic superpartner in the inverse Legendre
transformation. This formulation has been worked out to introduce a cosmological term
in [37] and scalar matter in [38].

A superfield formulation has been given in [39,40], by a realization of general time
reparametrizations on superspace1 (t, θ, θ̄)

δt = ζ(t) +
i
2
[θξ(t) + θ̄ ¯ξ(t)], (7)

δθ =
1
2

ξ̄(t) +
1
2

θ[ζ̇(t) + ib(t)] +
i
2

θθ̄ξ̇(t), (8)

δθ̄ =
1
2

ξ(t) +
1
2

θ̄[ζ̇(t)− ib(t)]− i
2

θθ̄ ˙̄ξ(t). (9)

where (ζ(t), ξ(t), ξ̄(t)) are the parameters of superspace transformation, and b(t) is the
parameter of the U(1) R-symmetry transformation, which acts on the (ξ, ξ̄) space. As this
is a one dimensional field theory, there are no Lorentz transformations. The fields are
replaced by superfields, but their components must be suitably rescaled to have the correct
weight under time reparametrizations. There are superfields for the parameters of time and
supersymmetry transformations, as in superspace supergravity, see e.g., [41]. The lapse
field is also replaced by a superfield, although there is not an invariant volume element
for superspace is not considered. However, this formulation allows to write invariant su-
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perfield actions, whose bosonic sector agrees with the corresponding non-supersymmetric
action. The constraint algebra contains the hamiltonian and supersymmetric constraints,
and it closes properly. An interesting feature is that it includes additionally, as a constraint,
the fermion number operator, which ensures equal number of bosonic and fermionic de-
grees of freedom; the corresponding Lagrange multiplier is the highest component of the
lapse superfield.

This formalism has been applied in [42,43] to a FRLW cosmology with a scalar field,
where the spontaneous symmetry breaking of supersymmetry has been explored. In these
works a canonical quantization has been performed, with matrix representations for the
fermionic variables, and the wave function has been computed. It has been shown that
a similar mechanism of supersymmetry breaking as in supergravity applies here, as the
scalar potential is not positive definite, which written in terms of the auxiliary fields is

V(φ) =
1
2

F2 − 3
κ2a2 B2, (10)

where F and B are auxiliary fields, given by their equations of motion F = 2 ∂g(ϕ)
∂ϕ ,

B = −κ2ag(ϕ), and g(ϕ) is the superfield potential, i.e., the superpotential in supergravity.
Thus, supersymmetry is broken if at an extremum ϕ0 of the potential, V(ϕ0) = 0, and
F 6= 0; the superpartner of the lapse, the gravitino, acquires a nonvanishing mass, similar
to the Higgs mechanism. The wave function has four components, two of them are not
normalizable, and the other two are the ‘conjugated’ states, one of them normalizable,
depending on the sign of the superpotential

ψ±(a, ϕ) = Ca
3
4 e∓2a3g(ϕ)±3

√
kM2

pl a
2
. (11)

In order to appreciate phenomenological consequences of the previous model, it has
been studied in [44] in a semiclassical setting by the WKB method, with the solutions (11)
written as eSa+Sϕ see also [45]. For each one of these solutions follow different classical
evolution equations for the scale factor and the scalar field. In these equations there are
supersymmetric contributions with the behavior of radiation and stiff matter. A detailed
numerical analysis has been made for an exponential superpotential and flat space, where,
in particular, inflationary stages can be observed. An interesting relation of a SU(2) matrix
model with supersymmetric quantum cosmology has been uncovered in [46], arising from
the quantization of the 11-dimensional supermembrane, which has a zero energy solution
of the same form of a wave function known from supersymmetric quantum cosmology [27].

The superspace approach in supergravity has the drawback, that the component fields
of superfields in general are not Lorentz spinors (bosonic or fermionic). This problem has a
solution in the formalism of the so called “new” Θ- variables [41,47]. The fermionic power
expansion in superfields is redefined as

φ(x, θ) = ∑
1
n!

θη1 · · · θηn ∂η1 · · · ∂ηn φ(x, θ)|θ=0

→ Φ(x, Θ) = ∑
1
n!

Θα1 · · ·ΘαnDα1 · · · Dαn φ(x, θ)|θ=0, (12)

where Dαφ(x, θ) are Lorentz covariant fermionic derivatives under local superspace co-
ordinate transformations (x, θ) → (x′, θ′) and local Lorentz transformations. The super-
gravity transformations are field dependent local superspace plus Lorentz transformations
δξΦA(x, θ) = −ξBDBΦA(x, θ), where A = (µ, α) are multiindices formed by a spacetime
index, and a Lorentz 1

2 -spin index. For consistency, this formulation requires a covariant
formulation of the Wess-Zumino gauge [47]. In [48] it is shown how to apply this formal-
ism to homogeneous spaces, and how to construct invariant supergravity actions. In this
framework, in [49,50], the FRLW model with a scalar field has been worked out, with a
wave function similar to (11), differing only by the power of the scalar factor in front of
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it, due to a different operator ordering. Further, in these works the interpretation of the
scalar field as time is considered, with an effective time dependent wave function, which
corresponds to the conditional probability for a given value of the scalar field

Ψ(a, t) =
ψ(a, φ)√∫ ∞

0 da |ψ(a, φ)|2

∣∣∣∣∣∣
φ=t

. (13)

With this wave function, the mean value of the scalar factor gives a classical evolution [49]

a(t) =
∫ ∞

0
a|Ψ(a, t)|2da = Γ(4/3)

[
h̄c

2|W(t)|

]1/3
. (14)

As a consistency check, a computation of the uncertainty relation gives ∆a∆πa ≈ 0.53 h̄.
Moreover, with an exponential superpotential an inflationary scenario can be obtained,

which lasts enough e-folds [50]. The exit of inflation requires fine tuning of a constant which
must be added to the superpotential. To illustrate it, we consider a Gaussian superpotential

W(t) =
c4M3

p

h̄2 t−2
(

1
λ

e−t + 1
)

(15)

with λ = 10−80, and c = 1, h̄ = 1, Mp = 1. With this potential it can be seen that
a(0) = 0, ȧ(0) = ∞ , and ä(0) = −∞. The acceleration increases quickly, and becomes
positive at t ≈ 0.45, and stays positive up to t ≈ 183. In this time interval, there are
log(a(183)/a(0.45)) ≈ 65 e-folds, see Figures 1 and 2. We show also the potentials corre-
sponding to this behavior in the analog FLRW model with a scalar field φ, for k = 0, 1,
Figure 3.

Figure 1. Wave function. Left: wave function. Right: effective wave function (at a = 0 there are
numerical issues).

Figure 2. Scale factor. Left: acceleration at inflation begin. Center: scale factor (log scale). Right:
acceleration at inflation exit.
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Figure 3. Analog potential for FLRW model.

3. Noncommutative Quantum Cosmology

Noncommutative field theories [8,9], have many remarkable properties as the UV/IR
mixing. Some similar features were studied in the case of gravitational theories. There
are many articles on the subject, in particular, our group participated with a number of
gravity proposals in various versions [51–53]. In the context of some noncommutative
gravity theories, one natural question was to carry out a canonical quantization analysis
following ADM formalism [3]. However the situations turns out quite complicated. Instead
of that in Ref. [10], we proposed to carry out the standard ADM formalism to get the
WDW equation and at that level, to propose a non-commutative deformation of the WDW
equation and look for solutions to this deformed equation.

The first example considered in this context was an anisotropic universe, the Kantow-
ski-Sach model [10]. Further development (without pretending to be exhaustive) on this
subject can be found in Refs. [54–71]. In Misner’s parametrization the metric is written as

ds2 = −N2dt2 + e2
√

3βdr2 + e−2
√

3βe−2
√

3Ω(dθ2 + sin2 θdϕ2) (16)

The quantum model of Kantowski-Sach cosmology is implemented through the
quantization of its WDW equation, i.e., the hamiltonian constraint

e
√

3β+2
√

3Ω
[

P2
Ω − P2

β + 48e−2
√

3Ω
]

ψ(Ω, β) = 0, (17)

where PΩ = −i ∂
∂Ω and Pβ = −i ∂

∂β . The physical observables in coordinate representation
are the position operators qj and the conjugate momenta pk, where q1 = Ω, q2 = β and
p1 = PΩ, p2 = Pβ. These operators satisfy the commutation relations

[qj, pk] = iδjk, [qj, qk] = 0, [pj, pk] = 0. (18)

The noncommutative Wheeler-DeWitt equation is

e
√

3β+2
√

3Ω ?

{
− ∂2

∂Ω2 +
∂2

∂β2 + 48e−2
√

3Ω
}
? ψ(Ω, β) = 0, (19)

where ? is the Moyal product (for a complete review, see for instance, [72])

f (Ω, β) ? g(Ω, β) = f (Ω, β) exp
{

i
θ

2

( ←
∂ Ω
→
∂ β −

←
∂ β

→
∂ Ω

)}
g(Ω, β), (20)

for a constant noncommutativity parameter θ.
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Thus the Moyal deformed WDW equation is given by

{
− ∂2

∂Ω2 +
∂2

∂β2 + V(Ω, β)

}
? ψ(Ω, β) = 0, (21)

where V(Ω, β) = 48e−2
√

3Ω is the potential. Using the properties of the star product,
Equation (20), we have V(Ω, β) ? ψ(Ω, β) = V(Ω− 1

2 θPβ, β− 1
2 θPΩ)ψ(Ω, β), and it can be

rewritten as {
− ∂2

∂Ω2 +
∂2

∂β2 + 48e−2
√

3Ω+
√

3θPβ

}
ψ(Ω, β) = 0. (22)

A solution to Equation (22) can be found using the solution to the same equation
with θ = 0, which is the usual WDW equation for the Kantowski-Sachs model in GR. This
solution in GR is given by

ψ±ν (Ω, β) = e±i
√

3νβKiν

{
4 exp

[
−
√

3Ω
]}

. (23)

Now assuming an ansatz for the deformed Equation (22) in the form

ψ±ν (Ω, β) = e±i
√

3νβχ(Ω). (24)

Taking into account the translation e
√

3θPβ ψ(Ω, β) = ψ(Ω, β− i
√

3θ), it is possible to
find that the function χ(Ω) satisfies the modified Bessel equation and Equation (22). Thus,
it was shown in [10] that Equation (22) has a solution given by

ψ±ν (Ω, β) = e±i
√

3νβKiν

{
4 exp

[
−
√

3
(

Ω∓
√

3
2

νθ

)]}
. (25)

Equation (22) represents a noncommutative deformation of the ordinary WDW equa-
tion for the Kantowski-Sachs cosmological model. This implies an additional correction
to the ordinary WDW equation due to an assumed noncommutative structure of the
minisuperspace. This noncommutativity is regarded as an indirect consequence of the non-
commutive gravity in spacetime, which seems to be a better approach to study microscopic
properties of gravity. In Ref. [10] it was plotted the probability, constructed from the wave
function solution (25), depending on coordinates Ω and β for various values of θ, including
the case of GR with θ = 0. In GR the probability obtained from the solution (weighted
with a Gaussian wave packet) has just one peak near Ω = 0 and β = 0 which indicates
where the universe is more probable to be placed. For nonvanishing theta θ 6= 0 it was
found a different behavior than that of GR. In this last case there was a big peak together
with other many different smaller peaks, which were interpreted as other (baby) additional
universes where the universe may to stay. Thus a bold consequence of the noncommutative
minisuperspace is the emergence of many other universes in which the universe can carry
out vacuum transitions by tunneling.

4. GUP’s in Quantum Cosmology

In this section we review an application of Generalized Uncertainty Principles (GUP)
to quantum cosmology [19,61,62,64,66]. In order to be concrete in [19] it was considered
the Kantowski-Sachs model, an homogeneous and anisotropic cosmological model in
the minisuperspace. The GUP involves a modification of the Heisenberg uncertainty
relation at very high energies (near the Planck scale), a behavior expected for the very
early universe. This implies a modification of the Heisenberg algebra of commutators, by
terms with powers of the momentum. As it is shown in [19], this implies a deformation
of the Wheeler-DeWitt equation. It is worth mentioning that the application of the GUP
in this context involves a minimal uncertainty of the quantum dynamical variables in
the minisuperspace. This UV modification of the Heisenberg algebra is for the phase
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space minisuperspace variables, and not properly for spacetime variables. However, very
interesting consequences of this hypothesis arise, such as black holes without singularity
as we will review in the next section.

The WDW Equation (17) has four quantum dynamical variables: the operators Ω and
β, and their conjugate momenta PΩ and Pβ, which satisfy the commutation relations (18).

Now, if we consider the commutation relation

[qj, pk] = iδjk[1 + γ2 p`p`], (26)

where q1 = Ω, q2 = β, p1 = PΩ and p2 = Pβ, and γ is a parameter with units of the inverse
of the momentum.

The procedure involves to perform a suitable change of variables

qj = (1 + γ2 p`p`)q′j, (27)

where q′j = i ∂
∂pj

such that [q′j, pk] = iδjk. This change does not respect entirely the Heisen-
berg algebra, but a noncommutative extension since

[qj, qk] = 2iγ2(1 + γ2 p`p`)(pjq′k − pkq′j). (28)

In particular, for the KS model we have that the potential V(Ω, β) will be modified
within the deformed algebra. An approximation to order γ2 for the potential V can be
written as

V ≈ −48e−2
√

3(1−4γ2)Ω′ e−2
√

3γ2Ω′(−P2
Ω+P2

β)e12iγ2Ω′PΩ . (29)

Assume a representation PΩ = −i ∂
∂Ω′ and Pβ = −i ∂

∂β′ , it is easy to see that

e12iγ2Ω′PΩ ψ(Ω′, β) = ψ(e12γ2
Ω′, β). (30)

Thus under the same ansatz as in the noncommutative case [10]

ψ(e12γ2
Ω′, β′) = e

√
3νβ′χ(Ω′), (31)

the WDW Equation (17) turns out to be

(
d2

dΩ′2
+ Vγ,ν + γ2Ṽ

)
χ(Ω′) = 0, (32)

where
Vγ,ν = 3ν2 + 48e−2

√
3(1−4γ2)Ω′ (33)

and
Ṽ = −4608

√
3Ω′e−4

√
3(1−4γ2)Ω′ . (34)

The potential Vγ,ν is the modified potential of the ordinary Kantowski-Sach model.
Moreover, Ṽ is the first correction due to the modified uncertainty relation (26). The
relevant contribution of the later potential is concentrated about the value of Ω′ given by
Ω′ = 1

4
√

3(1−4γ2)
.

It can be observed that the potential Vγ,ν dominates over Ṽ for values of γ satisfying

γ << 1
2

√
e3/2

24+e3/2 ≈ 0.198. For values γ ≥ 1
2

√
e3/2

24+e3/2 the potential Ṽ dominates over Vγ,ν

and it produces a well. One can see that this well has a local minimum at

Ω′min =

√
3
[

1− 2W(−
√

e(1−4γ2)
96γ2 )

]

12(1− 4γ2)
, (35)
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where W(z) is the Lambert function satisfying the equation z = WeW . This function has

real values for γ > 1
2

√
e3/2

24+e3/2 . In Figure 4 we show how the potential of Equation (32),

Vγ,ν + γ2Ṽ, changes under the variation of the Barbero-Immirzi parameter γ.

Figure 4. Potential of (32), it is shown how it changes under the variation of the Barbero-Immirzi
parameter. For γ ≥ 0.5 it becomes unstable.

Thus, under a variables change y ≡ Ω′ −Ω′min, Equation (32) turns out into a quantum
mechanical harmonic oscillator equation

[
− d2

dy2 + ω2y2
]

χ(y) = Eχ(y), (36)

where ω is the frequency of the oscillator and E is the energy which can be written as

ω2 = 3(1− 4γ2)3

[
W(−

√
e(1−4γ2)

96γ2 ) + 1
]

γ2W2(−
√

e(1−4γ2)
96γ2 )

, (37)

E = −3
2

{
ν− 1− 4γ2

12γ2W(−
√

e(1−4γ2)
96γ2 )

− 1− 4γ2

24γ2W2(−
√

e(1−4γ2)
96γ2 )

}
. (38)

The requirement that E > 0 to obtain a bounded state from below implies that

|ν| < −

√
(1− 4γ2)[12W(−

√
e(1−4γ2)

96γ2 ) + 6]

12γW(−
√

e(1−4γ2)
96γ2 )

. (39)

Thus, the condition of the existence for real values of ν implies that γ ≥ 1
2

√
e

12+e .
Then the quantum spectrum of the harmonic oscillator is given by

E = ω

(
n +

1
2

)
, (40)

where n is a natural number. As a consequence of this fact, the parameter ν is quantized in
the form

ν =

√
1− 4γ2

2
√

6

{2W(−
√

e(1−4γ2)
96γ2 ) + 1

γ2W2(−
√

e(1−4γ2)
96γ2 )

+ 8
√

3(2n + 1)

√
(1− 4γ2)

[
W(−

√
e(1−4γ2)

96γ2 ) + 1
]

γW(−
√

e(1−4γ2)
96γ2 )

}1/2

. (41)
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In this derivation it was assumed a quadratic degree of approximation in an expansion
of γ. It is possible to obtain some higher order terms, the subsequent terms in the expansion
which turn the harmonic oscillator into an anharmonic oscillator. This systems can be
solved in perturbation theory, considering the nonlinear terms as a perturbation. Thus it is
possible to find perturbatively the first correction to the energy levels and the corresponding
Hilbert space.

5. Deformed Dynamics and the Interior of Black Holes

In this section we comment on other application of GUP to gravitational systems. We
review the case of the application of GUP to the study of the dynamics in the interior of a
Schwarzschild black hole (SBH). SBH is parametrized by the Schwarzschild coordinates
(t, r, θ, φ). The interior of a SBH is described by a Kantowski-Sach metric (see Equation (16))
defined on a spacetime with topology R× S2, which has an infinite volume since the
noncompact nature of it. However, for a fiducial finite interval L0 in R, this spacetime has
finite volume. We can define local coordinates in the four dimensional spacetime R2 × S2

to be (T, x, θ, φ).
The idea of [20] consists to apply GUP to the hamiltonian classical dynamics described

by the Ashtekar-Barbero hamiltonian HAB, and deform the canonical algebra in terms
of the GUP parameter γ. First, we described the classical hamiltonian dynamics. The
dynamical variables (b, pb, c, pc) are smooth functions depending only on the variable T or
t. After gauge fixing the hamiltonian it reads

HAB = − 1
2Gγ

[
(b2 + γ2)

pb
b

+ 2cpc

]
. (42)

The canonical algebra is given by

{b, pb} = Gγ, {c, pc} = 2Gγ. (43)

The equations of motion of HAB are

db
dT

= {b, HAB} = −
1
2

(
b +

γ2

b

)
, (44)

dpb
dT

= {pb, HAB} =
pb
2

(
1− γ2

b2

)
, (45)

dc
dT

= {c, HAB} = −2c, (46)

dpc

dT
= {pc, HAB} = 2pc. (47)

In the Schwarzschild time t the solutions take the form

b(t) = ±γ

√
2GM

t
− 1, (48)

pb(t) = `L0t

√
2GM

t
− 1, (49)

c(t) = ∓γGM`L0

t2 , (50)

pc(t) = t2, (51)

where ` satisfies the equation p2
b(t) = `

( 2GM
t − 1

)
L2

0t2. Here pc can be interpreted as the
square of the radius of the infalling 2-spheres and consequently is zero at t = 0. This
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interpretation results from the fact that the Kretschmann invariant K = RabcdRabcd is
proportional to 1

p3
c
.

Now, it is possible to deform the classical algebra (43) with the GUP, and find a
modified dynamics. This can be achieved imposing minimal uncertainty in pb and pc. Thus
the modified algebra according to GUP is

{b, pb} = 1, {c, pc} = 1 (52)

such that
{b, pb}q,p = 1 + βbb2, {c, pc}q,p = 1 + βcc2, (53)

where βb and βc are suitable parameters. The modified algebra with a minimal uncertainty
in pb and pc is

[b, pb] = iGγ(1 + βbb2), [c, pc] = i2Gγ(1 + βcc2). (54)

Equivalently this yields

∆b∆pb ≥
Gγ

2

[
1 + βb(∆b)2

]
, (55)

∆c∆pc ≥ Gγ

[
1 + βc(∆c)2

]
. (56)

The GUP modified equations of motion are

db
dT

= {b, HAB} = −
1
2

(
b +

γ2

b

)
(1 + βbb2), (57)

dpb
dT

= {pb, HAB} =
pb
2

(
1− γ2

b2

)
(1 + βbb2), (58)

dc
dT

= {c, HAB} = −2c(1 + βcc2), (59)

dpc

dT
= {pc, HAB} = 2pc(1 + βcc2). (60)

In the Schwarzschild time t the solutions take the form

b(t) = ±γ

√
2GMtβbγ2 − t(2γ2GM)βbγ2

√
t(2γ2GM)βbγ2 − 2βbγ2GMtβbγ2

, (61)

pb(t) =
`c√
−βc

t−βbγ2

√[
2GMtβbγ2 − t(2γ2GM)βbγ2

][
t(2γ2GM)βbγ2 − 2βbγ2GMtβbγ2

]
, (62)

c(t) = ∓ `c√
−βc

γGM√
t4 + `2

c γ2G2M2
, (63)

pc(t) =
√

t4 + `2
c γ2G2M2, (64)

where it was introduced the fundamental physical length `c ≡ −βcL0. This can be con-
sidered as a prescription to cure the dependence on the fiducial length L0. Moreover, the
mentioned interpretation of pc(t), as the 2-sphere inside the black hole, leads from the last
Equation (64) to the existence of a minimum value for pc and consequently the resolution
of the black hole singularity at t = 0. See Figure 5.
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Figure 5. Comparison of the behavior of solutions of the unmodified (βb = βc = 0) with the modified
cases for the whole interior. G = M = `c = 1.
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Abstract: The Weyl curvature constitutes the radiative sector of the Riemann curvature tensor and
gives a measure of the anisotropy and inhomogeneities of spacetime. Penrose’s 1979 Weyl curvature
hypothesis (WCH) assumes that the universe began at a very low gravitational entropy state, cor-
responding to zero Weyl curvature, namely, the Friedmann–Lemaître–Robertson–Walker (FLRW)
universe. This is a simple assumption with far-reaching implications. In classical general relativity,
Belinsky, Khalatnikov and Lifshitz (BKL) showed in the 70s that the most general cosmological
solutions of the Einstein equation are that of the inhomogeneous Kasner types, with intermittent
alteration of the one direction of contraction (in the cosmological expansion phase), according to the
mixmaster dynamics of Misner (M). How could WCH and BKL-M co-exist? An answer was provided
in the 80s with the consideration of quantum field processes such as vacuum particle creation, which
was copious at the Planck time (10−43 s), and their backreaction effects were shown to be so powerful
as to rapidly damp away the irregularities in the geometry. It was proposed that the vaccum viscosity
due to particle creation can act as an efficient transducer of gravitational entropy (large for BKL-M) to
matter entropy, keeping the universe at that very early time in a state commensurate with the WCH.
In this essay I expand the scope of that inquiry to a broader range, asking how the WCH would
fare with various cosmological theories, from classical to semiclassical to quantum, focusing on
their predictions near the cosmological singularities (past and future) or avoidance thereof, allowing
the Universe to encounter different scenarios, such as undergoing a phase transition or a bounce.
WCH is of special importance to cyclic cosmologies, because any slight irregularity toward the end
of one cycle will generate greater anisotropy and inhomogeneities in the next cycle. We point out
that regardless of what other processes may be present near the beginning and the end states of the
universe, the backreaction effects of quantum field processes probably serve as the best guarantor
of WCH because these vacuum processes are ubiquitous, powerful and efficient in dissipating the
irregularities to effectively nudge the Universe to a near-zero Weyl curvature condition.

Keywords: weyl curvature hypothesis; early universe cosmology; singularity and bounce; cyclic
universe; quantum fields; backreaction effects

Preface

When Professor Moniz invited me last year to write a paper for this special issue with
some review or perspective emphasis I could not identify a topic of current interest and
importance in quantum cosmology on which I have done enough work to write about. Then
in July, Professor Hendrik Ulbricht brought to my attention that this August is Professor
Penrose’s 90th Birthday (b. 8 August 1931). That got me thinking through some important
themes in cosmology from Penrose’s viewpoint—his concerns in a broad range of research
topics in gravitation, quantum physics, black holes and cosmology, as lucidly presented in
many semi-popular books (the last two being [1,2]), are all of fundamental interest. This is
how I closed in to the title theme of this paper: The Weyl Curvature Hypothesis (WCH) [3–6].

How does WCH fare when quantum backreaction is added to our considerations?
Backreaction in gravitational physics enters at four levels: classical, semiclassical, stochastic
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and quantum gravity. In classical gravity it refers to the effects of the inhomogeneous
modes on the homogeneous or long wavelength (infrared) modes; in quantum cosmology
it refers to the effects of the inhomogeneous modes truncated in a mini-superspace approx-
imation. Backreaction at the semiclassical and stochastic levels has a different meaning.
It refers to the effects of quantum field processes such as particle creation [7–9] and trace
anomaly [10–12] on the structure and dynamics of a classical background spacetime. This is
a subject which I explored between 1977–1983–1995 in my work first with Parker [13,14] and
Hartle [15,16] from 77–80 (based on [17], continued by Hartle [18,19] and Anderson [20,21]
from 1980–1984), then upgraded to a closed-time-path, in-in, or Schwinger-Keldysh treat-
ment with Calzetta in 1987 [22], including noise and fluctuations in 1994 [23], with Matacz
in 1994 [24] and with Sinha in 1995 [25]. This was continued by Campos and Verdaguer in
1994–1996 [26,27]. These works explored the backreaction effects of the trace anomaly and
particle creation in the early universe near the Planck time, at the threshold of quantum
gravity (defined as theories for the microscopic constituents of spacetime and matter). The
Weyl curvature hypothesis (WCH) [3] will be examined in the context of semiclassical and
stochastic gravity [28] in Section 5.

Taking the time to write this essay has been a good way to update my knowledge since
my 1982–1983 papers on vacuum viscosity [29] and gravitational entropy [30] in the areas
of gravitational entropy, the Weyl curvature hypothesis, the cosmological singularity or
avoidance of singularity, as predicted by different theories, and how vacuum viscosity due
to the backreaction of quantum field processes at the Planck time, such as pertaining to the
trace anomaly and vacuum particle creation, would bear on these issues. I wanted to see
how the WCH fares with other later developed models such as the cyclic cosmology of clas-
sical general relativity (GR) (Section 2.1) or particle physics (Section 2.2) origins, singularity
avoidance solutions from quantum cosmology (Sections 3.1 and 3.2), in particular, the ‘Big
Bounce’ solutions of loop quantum cosmology (Section 3.3) and quantum phase transitions
in asymptotic freedom and causal dynamical triangulation (Section 4.1)—whether there are
indications that the WCH holds in these contexts and, in some cases, whether it has proven
to be desirable or even necessary. (If the reader only wants to find out how the WCH
and gravitational entropy fare in semiclassical gravity, he/she can just selectively read
Sections 1.2, 2.3, 3.1 and 5.)

It is not my intention to cover the full range of topics mentioned above, aided with
extensive literature, like a review. Far from it. I won’t even repeat what Penrose said in
his original proposal of the WCH and how he defined gravitational entropy, or how he
argued for a conformal cyclic cosmology in classical general relativity. Instead I would urge
interested readers to read his original papers for insights which can never be reproduced.
For papers by other authors which I find relevant to our central themes here I also prefer to
keep their original words rather than add my paraphrase or re-statement. The nature of
this article is probably closer to an outline, a selective highlight, a personal guide, as the
topics chosen certainly reflect my own interests or what I view as important, which could
be very different from other practitioners’.

1. Weyl Curvature Hypothesis and Gravitational Entropy

Penrose pointed out in his 1979 essay [3] that if our Universe had begun close to
what the Friedmann–Lemaître–Robertson–Walker (FLRW) models describe, in a state of
highest degree of isotropy and homogeneity, corresponding to zero Weyl curvature, then
it is something extremely special. He reached this conclusion by comparing the entropy
of matter we see today, measured by the Hawking radiation, emitted by black holes, to
the entropy of gravity, measured by the Weyl curvature tensor squared integrated over
3-volumes. Gravitational entropy (GEnt) defined as such would increase in time from zero
in the beginning (which could be a singularity, the ‘Big Bang’, or a state of minimal volume,
a ‘bounce’, see below) and provide a cosmological arrow of time. Penrose’s proposals for
the non-activation of gravitational degrees of freedom registered in the Weyl curvature, at
the Big Bang, are referred to as the Weyl Curvature Hypothesis (WCH).
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Penrose’s position on this theme has not changed in 40 years, as the following state-
ment from his 2018 essay shows [6] “In such a situation (the universe in a collapsing phase),
we expect density irregularities to increase as the universe contracts, and the FLRW approx-
imation would get worse and worse. In the late stages of the collapse, these irregularities
would result in numerous black holes. Time reversing this picture (and taking into account
the invariance of Einstein’s equations under time-reversal), we find that the singular origin
that we find in the FLRW models is something extremely special.” While today we see the
Planck distribution of matter suggesting a state of maximum matter entropy, “In contrast
with the behaviour of a gas in a box, for example, where maximum entropy would be
pictured as something with great spatial uniformity, gravitating bodies, such as systems of
stars, would tend to clump more and more in their spatial distribution, as their dynamical
time evolution proceeds, representing an increase in the gravitational entropy”.

The four themes I listed above are already laden in these descriptions: WCH, GEnt,
also the Bang-vs-Bounce issue. The reason is, for people who prefer to see the universe not
going to a singularity, they have to come up with some suitable ways to avoid it, such as
through processes in particle physics or in quantum gravity. We mention four of them in
this essay: pre-Big Bang, loop quantum cosmology (LQC), causal dynamical triangulation
(CDT) and asymptotic freedom (AsyF)1.

For people who want our future universe not just to bounce once or twice, but
to continue to bounce forever without suffering much attenuation, or stumbling into a
singularity, in the so-called ‘cyclic cosmologies’, the requirements are even more stringent.
What happens to the universe at the end of the contraction phase requires extra careful
scrutiny. The highly regular FLRW type of approach to the singularity or bounce would be
preferred, because only then would the deviations be kept under control cycle after cycle.
This is in turn because gravitational forces tend to clump irregularities, so the next cycle
would be more difficult to control than the last.

Most people would agree that quantum effects are important at the beginning and
ending stages of the universe, either entering a singularity or with a minimal scale. These
developments and considerations add new impetus and interests to Penrose’s WCH-GEnt,
originally formulated without quantum considerations. To the above mentioned subjects
we shall also add semiclassical and quantum backreaction considerations. The former
refers to the backreaction of quantum field processes on the dynamics of spacetime. They
need be included because these processes were dominant and had exerted significant effects
at the Planck scale. The latter pertains to LQC: It concerns the effects of the inhomogeneous
quantum modes in the superspace of 3-geometries, so far largely ignored in the mini-
superspace formulations of LQC.

1.1. Classical GR

Before we begin our studies of WCH in a quantum setting it is important to remind
ourselves of the two very important theoretical achievements in the 60s in classical general
relativity (GR), which underlie all investigations in black holes and cosmology built upon
the GR theoretical framework: the singularity theorems from 1965–1968 of Penrose [44] ,
Hawking [45] and Geroch [46], and the general solutions of the Einstein equations near
the cosmological singularity in the work of Belinsky, Khalatnikov, Lifshitz (BLK) from the
early 60s (when the authors preferred a singularity-free scenario, later corrected, after the
Penrose-Hawking singularity theorems) to the early 1970s [47–49] with the now famous
BKL approach to cosmological singularity, and Misner’s mixmaster universe [50,51] and
minisuperspace quantum cosmology [52] from 1969 to 1972, and the ‘velocity-dominated’
approach by Eardley, Liang and Sachs [53].

1.1.1. Singularity Theorems: Penrose-Hawking-Ellis-Geroch

The Penrose 1965 singularity theorem for black holes extended by Hawking to cosmo-
logical singularities are known as the Penrose-Hawking singularity theorems in general
relativity [54]. They are described in more pedagogical terms in the book by Hawking and
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Ellis [55], the premium monograph on global analysis methods in general relativity. These
theorems preclude singularity-free “bounce” from occurring in the presence of any type of
matter source with stress-energy tensor satisfying a very general condition of local energy
non-negativity. For a detailed explanation of its contents with an extensive bibliography on
this fundamental topic, see the 2015 review of [56] in a mid-century celebration of Penrose’s
1965 paper.

1.1.2. Approach to Cosmological Singularity: BKL-Misner

In addition to the primary sources of the Belinsky-Khalatnikov-Lifshitz -Misner enter-
prise mentioned above, the 1975 book by Ryan and Shepley [57] has an excellent introduc-
tion to spatially-homogeneous (Bianchi) cosmologies. See also the review of Barrow and
Tipler [58]. For a discussion of the classical BKL-M mixmaster chaotic dynamics (billiard
ball in minisuperspace), see, e.g., [59–63]2. For the latest developments of this respect in
relation to indefinite Kac-Moody algebra, see [66]. The role of chaos in the decoherence of
quantum cosmology and the appearance of a classical spacetime has been pointed out by
Calzetta [67].

Since many topics we shall discuss are related to the state of the universe near the
singularity (or how it negotiates into a bounce), we need some basic knowledge of the
BKL-M behavior. The most general solutions to the Einstein equation near and toward
the cosmological singularity of the Kasner type (not the Friedmann class where matter
does matter) is the inhomogeneous Kasner universe (with two directions contracting and
one direction expanding), interspersed with the mixmaster behavior, i.e., switching of the
direction of expansion from one axis to another in very short time intervals. This so-called
“inhomogeneous mixmaster solution” represents the generic behavior of the universe
toward the cosmological singularity. This result has been reworked by many authors
employing different methods, e.g., Uggla et al. [68] constructed an invariant set which
forms the local past attractor for the evolution equations, a framework for proving rigorous
theorems concerning the asymptotic behavior of spatially inhomogeneous cosmological
models. A more direct approach relies on methods in dynamical systems [69]. The BKL-M
behavior is also supported by Garfinkle’s numerical simulations in vacuum spacetimes
with no symmetries [70].

Three main features in the approach to cosmological singularity are, therefore: (1) “Mat-
ter doesn’t matter” in the BKL-Kasner classes of extrinsic curvature (‘velocity’)- dominated
spacetimes3 while matter does matter in the FLRW classes. (2) Extrinsic curvature (from ex-
pansion or contraction) dominates over the intrinsic (3-geometry) curvature, except in brief
intervals, which are known as the ‘mixmaster bounces’ (the universe point bouncing against
the 3-fold symmetric potential walls, receding during contraction) in mini-superspace;
(3) Inhomogeneous mixmaster behavior means that every point on the 3-geometry under-
goes an independent mixmaster dynamics.

We begin with some basics of Bianchi cosmology. Bianchi classified all spatially
homogeneous spacetimes into nine types [73] (some types are further distinguished by a
sub 0 or h, such as Type VIIh, etc.) [57]. The class of Bianchi Types I–IX spaces, especially
the Type I and Type IX spaces, encompasses many important classical cosmological models
for the early universe.

The line elements of the Bianchi universes are given by

ds2 = −dt2 +
3

∑
a,b=1

γab(t)σa(x)σb(x), (1)

where γab(t) is the metric tensor and σa(x) are the invariant basis one-forms on the homo-
geneous hypersurfaces, satisfying the structure condition dσa = 1

2 Ca
bcσb ∧ σc, where Ca

bc are
the structure constants of the underlying Lie group. For a diagonal type-IX (mixmaster)
universe, Ca

bc = εabc the totally antisymmetric tensor, and γab = l2
a δab, where la are the

three principal radii of curvature. The case when two of the three la’s are equal is called
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the Taub universe, the case when all three are equal gives the closed Friedmann–Lemaître–
Robertson–Walker (FLRW) universe .

The nonrotating, diagonal mixmaster universe with three principal radii of curvature
`a(=1,2,3) form a minisuperspace [50] which can be represented pictorially by the shape θ
and deformation β parameters, related to `a by

`1,2 = `0 exp[β cos(θ ∓ π/3)], `3 = `0 exp(−β cos θ)]. (2)

where `3
0 ≡ `1`2`3. With threefold symmetry, the origin of this space gives the FLRW

universe, while points along the three axes (θ = 0, 120, 240◦) constitute the family of the
Taub universes. Along any axis, say θ = 0, increasing β in the positive sense gives an
“oblate” configuration while negative β gives a “prolate” configuration. The dynamics of
the mixmaster universe is depicted by trajectories in this minisuperspace. The velocity of
the universe point is determined by the extrinsic curvature, with free motion depicting
the Kasner universe. The influence of spatial anisotropy (intrinsic curvature) is depicted
by a set of moving potential walls. The universe point bouncing off these walls signifies
a shifting in the contracting Kasner axis, while wandering into one of the three corners
signifies an oscillating and “flattening pancake” (oblate) configuration There is also one
situation when the universe point bounces off the three walls at a special incidence angle
so that it can continue to hover loosely around the origin. These characteristic regimes
of the mixmaster universe are called, respectively, (a) the “bounce” (b) the “channel run”
and (c) the “quasi-isotropic” solutions. These solutions have the approximate geometric
configurations as the three limiting cases of the Taub universe: i.e., (a) β > 0, (b) β < 0, and
(c) β = 0, respectively. For any massless field in a spacetime which is a vacuum solution to
Einstein’s equations R = 0, quantum effects of curvature are important irrespective of the
type of coupling.

The Bianchi Type I universe has zero intrinsic curvature but nonzero extrinsic curva-
ture from its expansion and contraction, whose rates differ in three directions. The line
element is given by

ds2 = −dt2 +
3

∑
i,j=1

`2
ij(t)dxidxj = a2(η)

[
−dη2 +

3

∑
i,j=1

e2β(η)ij dxidxj
]

(3)

where η =
∫

dt/a is the conformal time and βij is a symmetric, traceless 3× 3 matrix
describing the anisotropy of the geometry. For Bianchi Type I one can choose a coordinate
such that βij is diagonal4 with the three elements βi. The line element of Bianchi Type I
universe is thus

ds2 = −dt2 +
3

∑
i=1

`2
i (t)(dxi)2 (4)

where `i = a(t)eβi is the scale factor in the xi direction. This is a generalization of the spa-
tially flat isotropic FLRW universe to the case where the universe expands anisotropically. A
useful quantity for this measure is the anisotropy parameter Qβ ≡ − 1

2 ∑i>j( ˙̀ i/`i − ˙̀ j/`j)
2,

where an overdot denotes d/dt. When there is no matter present a solution to the vacuum
Einstein equation exists, called the Kasner universe:

`i(t) = tpi , where
3

∑
i=1

p2
i =

3

∑
i=1

pi = 1. (5)

We see from this relation that the universe expands when two of the pis are positive
and one negative, and contracts when two of the pis are negative and one is positive.
The Kasner solution is important because it is a generic behavior of the universe at ev-
ery point in space near the singularity where the most general solution of the Einstein
equation [47–49] is found to be an inhomogeneous Kasner solution. It is also known as a
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‘velocity-dominated solution’ [53] reflecting the fact that near the cosmological singularity
the extrinsic curvature (measuring the time rate of change of the scale factors) dominates
over the intrinsic curvature (in the 3-geometry), thus the saying “matter doesn’t matter”
in the BKL-M generalized Kasner class of solutions near the cosmological singularity, in
contradistinction to the FLRW class, which requires the presence of matter. Defining the
isotropic expansion rate α = ln a then we see pi = α + βi. The spatially flat FLRW universe
corresponds to the case β = 0 with scale factor a = eα.

1.1.3. Weyl Curvature

For an analysis of the Weyl curvature tensor in spatially-homogeneous cosmological
models of classical general relativity, see Barrow and Hervik 2002 [75]. For a review of
the entropy of universe with gravitational and thermal contributions, the entropy of black
holes and cosmic horizons entropy, see, Grøn 2012 [76].

1.1.4. Gravitational Entropy: Weyl and Other Measures

Assuming the interested reader would have read Penrose’s original paper on the
WCH, we will not repeat how he defines the gravitationl entropy via the Weyl curvature.
Instead, to expand the horizon somewhat we mention a few alternative definitions of
gravitational entropy.

Kinematic vs. Weyl singularity:
Lim et al. 2007 [77] and Coley et al. 2009 [78] studied what they called the ‘kinematic

singularities’, namely, the Hubble expansion scalar, the acceleration vector, the shear tensor
and the vorticity tensor in the decomposition of the covariant derivative of the 4-velocity
of a congruence of worldlines.

Bel–Robinson tensor
Clifton, Ellis and Tavakol [79] proposed a measure of gravitational entropy based on

the square-root of the Bel–Robinson tensor of free gravitational fields, which is the unique
totally symmetric traceless tensor constructed from the Weyl tensor. (For the square-root to
exist as a unique factorization of the Bel–Robinson, the spacetime is required to contain
gravitational fields that are only Coulomb-like or only wavelike.) These authors show
that their entropy measure (i) is in keeping with Penrose’s Weyl curvature hypothesis,
(ii) reduces to the usual Bekenstein–Hawking value measure for Schwarzschild black hole
and (iii) evolves like the Hubble weighted anisotropy of the free gravitational field for
scalar perturbations of a Robertson–Walker geometry thus increases as structure formation
occurs, and (iv) for the Lemaître Tolman-Bondi inhomogeneous cosmological models, they
found conditions under which the entropy increases.

Kullback-Leibler relative information entropy
While most works try to place the gravitational entropy defined by the Weyl curvature

in relation to thermodynamic entropy, Hosoya, Buchert and Morita [80] try to relate it to
information entropy. They introduced the Kullback-Leibler relative information entropy
to express the distinguishability of the local inhomogeneous mass density field from its
spatial average on arbitrary compact domains. Comparing the Kullback–Leibler entropy
to the Weyl curvature tensor invariants. Li et al. [81,82] calculated these two measures
by perturbing the standard cosmology. Up to the second order in the deviations from a
homogeneous and isotropic spacetime they find that they are correlated and can be linked
via the kinematical backreaction of a spatially averaged universe model.

1.2. Semiclassical Gravity: Entropy of Gravitons and WCH

The Weyl curvature tensor measures the anisotropy and inhomogeneities of spacetime.
Since it is the radiative sector of the Riemann tensor, it measures the curvature associated
with gravitational waves, which, of course, are the weakly inhomogeneous perturbations
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off a background spacetime. Quantizing the linear perturbations from a background gives
rise to gravitons. The short wavelength sector under the Brill-Hartle-Isaacson average
behaves like radiation fluid with the same equation of state as photons, namely, p = ρ/3,
with p the pressure and ρ the energy density. Gravitons, like photons, have two polariza-
tions but instead of spin-1 they are spin-2 particles. For these reasons gravitons are the
easiest entry point to see the connection between WCH and gravitational entropy.

By semiclassical we mean a quantum field, here, the graviton spin-2 field, propagating
in a classical background spacetime. (We also distinguish between quantum field theory
in curved spacetime, under the test field situation where the background is prescribed,
and semiclassical gravity where the background spacetime and the quantum field are
determined in a self-consistent manner). By quantum we mean both the matter field and
the spacetime are quantized. We reserve the term ‘quantum gravity’ to refer to theories
about the microscopic structures of spacetime at the Planck energy. We will explain what
quantum cosmology means in individual cases later, e.g., quantum cosmology of the mini-
superspace as in [52] refers to the situation where the 3-geometry is quantized, regardless
of whether the spacetime is an emergent entity or a fundamental one. However, ‘loop
quantum cosmology’ or ‘string cosmology’ is trickier, because ‘quantum’ could mean
quantizing the metric or the connection of GR, and if GR is an effective low energy theory,
the quantized collective excitations are like phonons, a far cry from the fundamental
constituents, or the ‘atoms’, of spacetime. It could also mean the cosmology (after the
Planck time) derived from a more fundamental theory of spacetime based on strings, loops,
sets or simplicies. Explaining how the spacetime manifold emerges from the interaction
of these fundamental constituents is a highly nontrivial task, probably the most severe
challenge facing the proponents of these theories of quantum gravity [83]. We shall return
to this point in the concluding remarks.

1.2.1. Graviton Backreaction in FLRW Universes

We consider this issue at two levels: (1) At the quantum field theory in curved
spacetime (QFTCST) [84–87] or test field level, we ask, under what conditions would
there be particle creation from the vacuum. It is easy to see that there is no particle
production for a massless conformally coupled field in an isotropic and homogeneous
universe, because such a spacetime is conformally-flat. But graviton production can
happen. This is because each of the two polarizations of the graviton behaves like a
massless minimally coupled scalar field [88,89]. Graviton production and its effects have
been studied by many authors [13,17,90]. As far as the matter entropy budget is concerned,
as mentioned above, with gravitons acting like photons (notwithstanding the big difference
in their scattering cross sections), their production increases the thermal entropy of the
matter content.

(2) To see how this is related to the gravitational entropy measured by the Weyl
curvature tensor, one needs to find out the backreaction of matter fields on the dynamics of
spacetime. This entails finding a self-consistent solution of the equations of motion for both
the matter fields and the spacetime they live in, namely, the semiclassical Einstein equation.
This backreaction constitutes a channel where the energy and entropy of spacetime can
be related to that of the quantum fields, with particle creation acting like a ‘transducer’
between the gravity and matter sectors. This way of thinking was first proposed by Hu in
1983 [30], having worked out the anisotropy damping scenario due to conformal massless
particle creation in Bianchi type I universes earlier with Hartle and Parker. We shall discuss
these results in Section 4.

Here, with the FLRW universe, the problem is simpler, since the background spacetime
is not only homogenous but also isotropic. In the beginning the Weyl curvature tensor is
nonzero because of the perturbations, the gravitational waves or the gravitons, imparting
the universe with some gravitational entropy. At the end, after graviton production ceases,
the spacetime returns to the FLRW universe with zero Weyl curvature tensor. One can
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see that the increase of matter entropy from the production process is accompanied by a
decrease of gravitational entropy. This is discussed in [91,92].

Now, what causes the graviton production to cease? The answer comes from solving
the semiclassical Einstein equations. Doing so, Hu and Parker 77 [13] show that the backre-
action of created gravitons leads to a change in the power expansion law a = tq towards
q = 1/2, i.e., radiation dominated. And a radiation-dominated RW universe admits no par-
ticle creation because the time-dependent frequency of the normal modes of the quantum
field contains a term d2a/dη2 where η is the conformal time. A radiation-dominated RW
universe behaves like a = η, rendering d2a/dη2 = 0. Thus, after a certain relaxation time
the behavior of the gravitons created corresponds to the evolution of classical radiation in
an isotropic universe. With backreaction we see that as the gravitational entropy density
goes to zero, graviton production will cease and no further backreaction will take place.

The fact that the backrection of graviton production can alter the equation of state of
matter was pointed out by Grishchuk in 1975 [90] and shown with field theory calculations
by Hu and Parker [13] and Hartle [17]. We will continue this description of the backreaction
of particle creation on background spacetime dynamics in Sec. V and discuss how the
damping of anisotropy and inhomogeneities of spacetime bears on gravitational entropy
and the WCH.

1.2.2. Entropy of Gravitons in the Gowdy Universe

Husain [93] paraphrased Penrose’s ideas of gravitational entropy based on the WCH
into three conditions: “If the Weyl curvature is to be identified with entropy, it should
satisfy the following criteria that are normally associated with entropy. (l) It should increase
monotonically with respect to a time coordinate from the initial singularity where it is finite
or zero. (2) Its value should increase with the number of quanta of the gravitational field.
(3) Clumped configurations of matter or gravitational quanta should correspond to higher
Weyl curvature values than unclumped configurations.”

Conditions (1) and (2) are illustrated in the example above, regarding graviton pro-
duction and its backreaction on the spacetime in a FLRW universe. For conditions (2) and
(3), we can see an example for the Gowdy universe [94,95]. The Gowdy three-torus (T3)
universe is an exact solution to the vacuum Einstein equations interpreted to be a single
polarization of gravitational waves propagating in an anisotropic, spatially inhomogeneous
background.

Appying Hamiltonian quantization via the Arnowitt-Deser-Misner (ADM) method
Berger [96,97] studied the production of gravitons from empty space. At large times,
graviton number is well defined since the solution is in WKB form. The creation process
produces the anisotropic collisionless classical radiation. Near the singularity, the model
behaves like an empty Bianchi Type I universe at each point in space (locally Kasner).

Beginning with the square of the curvature as an operator, Hussain calculated its
expectation values in states of clumped and unclumped gravitons. These results led him to
conclude that the curvature contains information about the entropy of the gravitational
field in this class of quantum cosmology models.

Finally, in the context of quantum cosmology based on the Wheeler-DeWitt (WdW)
equation we mention the work of Grøn and Hervik [98] These authors introduced a measure
of ‘gravitational entropy’ behaving in accordance with the second law of thermodynamics
and investigated its evolution in Bianchi type I and Lemaître–Tolman universe models.
They work with the quantity Π ≡ P

√
h =
√

h(C2

R2 )
1
2 which is the ratio between the Weyl

tensor squared C2 and the Ricci tensor squared R2, integrated over dV =
√

hd3x in a
comoving coordinate xi, where h is the 3-volume element. They also considered the
expectation value of the Weyl curvature squared and the Ricci curvature squared, taken
with respect to the wave functions of the universe satisfying the Wheeler-DeWitt equation.
They then investigated whether a quantum calculation of initial conditions for the universe
based upon the Wheeler–DeWitt equation supports Penrose’s Weyl curvature conjecture or
not for the Bianchi type I universe models with dust and a cosmological constant and the
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Lemaître–Tolman universe models. They investigated two versions of the hypothesis. The
local version based on P2 fails to support the conjecture whereas a non-local entity based
on Π2 showed more promise concerning the conjecture. Grøn and Hervik commented that
their findings seem to be corroborated by that of Pelvas and Lake [99] on the one hand,
who showed that local entities like P2 cannot be a measure of gravitational entropy, and on
the other hand, by that of Rothman and Anninos [100,101], who showed that a nonlocal
quantity they constructed using the volume of the phase space could. The investigations of
these authors seem to suggest that while one cannot say that the Weyl tensor is directly
linked to the gravitational entropy, a certain non-local entity which is constructed from it
has an entropic behavior, and reflects the tendency of the gravitational field to produce
inhomogeneities.

We shall say some more about ADM and WdW, and about loop quantum cosmology
in Section 3. But we will not discuss quantum geometry and gravitational entropy (see,
e.g., [102]) applied to black holes or in the much studied holographic entanglement entropy
vein [103] for spacetimes with boundaries.

2. Cyclic Cosmology and Trace-Anomaly Induced Bounces
2.1. Penrose’s Conformal Cyclic Cosmology (CCC)

This theory is Penrose’s recent favorite in terms of cosmological models–favorite in
that after his 2005 proposal he has gathered his thoughts on entropy, black holes, time and
cosmology in a 300 page 2010 book [1] which dwells on these foundational issues of Nature
in a lucid and inspiring way. In his more recent 2017 book [2] of over 500 pages, “Fashion,
Faith, and Fantasy in the New Physics of the Universe” Penrose refers (in Section 4.3) to
his “conformal cyclic cosmology” as an idea so fantastic that it could be called “conformal
crazy cosmology”5.

To see what CCC is, the reader may benefit from reading just 4 pages of exposition
in [4]. For the background it is useful to know something about singularities in GR, e.g.,
in [104,105], and in particular, the class of isotropic cosmological singularities, where the
Weyl tensor is finite or preferably zero in the WCH. At the isotropic singularity even
though the Ricci tensor related to matter may approach infinity, the Weyl curvature remains
finite. Goode and Wainwright [106–108] proposed a definition of isotropic cosmological
singularities which is adopted by Tod [109,110] whose work Penrose refers to. The essential
idea is that the physical metric which is singular at cosmic time T = 0, is conformally
related to a metric which is regular at T = 0, i.e., the singularity arises solely due to the
vanishing of the conformal factor. The conformal transformation which is used to define
an isotropic singularity is an essential ingredient in Penrose’s conformal cyclic cosmology.
Namely, the Big Bang can be conformally represented as a smooth spacelike 3-surface,
across which the space-time is, in principle, extendable into the past in a conformally
smooth way.

According to Penrose [6], the Big Bang (BB) of our ‘aeon’ is the conformal continuation
of the remote exponential expansion of a previous aeon. There is a pre-BB aeon, and after
our future Big Crunch (BC)—actually Penrose prefers to see a long exponential expansion
(EE) to our future—there is a post-BC or post-EE aeon. In this sense a cyclic cosmology
scenario naturally emerges, where the aeons are linked by conformal transformations.

2.2. Cyclic Cosmology from Particle/ String Models. Big Crunch

No classical matter can exist with a pressure p to energy density ρ ratio w ≡ p/ρ > 1.
The stiffest Zel’dovich equation of state with w = 1 is the upper limit of classical matter
because that is when the speed of sound equals the speed of light. In the recent two decades
cosmological models with a scalar field providing an effective equation of state w > 1 have
drawn some interest, motivated by the possibility of cyclic cosmologies based on string theory-
related models, notably the Pre-Big Bang model of Gasperini and Veneziano [111–113] and
the ekpyrotic cosmologies of Steinhardt and Turok [114,115]. The designers of these theories
want to see the universe contract towards a big crunch singularity in a smooth homogeneous
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and isotropic (FLRW) manner, so it can be reborn in an equally smooth manner to be able to
sustain a large number of cycles, ideally ad infinitum.

2.2.1. Cyclic and Ekpyrotic Cosmologies

Ekpyrotic cosmologies solve the flatness problem in the contraction phase in a way
similar to how inflation solves it in the expansion phase. Both are looking for the conditions
where the time rate of change of the scale factor (Hubble) becomes close to a constant for
a period of time (around 65 e-folding time to be compatible with the entropy contents
of the observed universe). It is easy to see this from two simple equations, the Einstein
G00 equation for the dynamics of spacetime and the continuity equation (divergence-free
condition) for matter. In a FLRW universe with scale factor a and Hubble expansion
rate H = ȧ/a, where an overdot denotes taking the derivative with respect to cosmic
time, the Einstein G00 = 8πGρ equation reads: H2 = −k/a2 + 8πG

3 ρ, where k = 0, 1,−1
correspond to the flat, closed and open universes and ρ, the total energy density, contains
different kinds of classical matter and quantum fields, represented by equations of state
with different values for w ≡ p/ρ. The familiar cases of w = 0, 1/3 in classical cosmology
are for dust and radiation, respectively. We shall first show (i) why w = −1 for inflaton
field, and then explain (ii) how a special kind of matter with an equation of state w > 1
affects the Hubble rate, and what it does for the ekpyrotic cosmologies.

It is well-known how inflation solves the flatness problem, namely, by assuming that
the potential V(φ) of the inflaton field φ is sufficiently flat so that it rolls down the slope very
slowly. That imparts a constant energy density in the Einstein equation which dominates
over the other sources, which all drop as power laws of the scale factor during an expansion

phase. The pressure-energy density ratio for a quantum field is w ≡ p/ρ =
1
2 φ̇2−V
1
2 φ̇2+V

. When
1
2 φ̇2 � V as in slow-roll inflation, w→ −1.

From the continuity equation we easily get ρ ∝ a−3(1+w), namely, for non-relativistic
matter ρnrel ∝ a−3, for radiation ρrad ∝ a−4, for curvature anisotropy ρanis ∝ a−6, and for
some ‘ultra-stiff’ nonclassical matter with w > 1, ρust ∝ a−r where r > 6. Now it is clear
why during contraction, as a gets smaller, contributions from this ultra-stiff matter with
w > 1 dominate over other forms in governing the expansion rate.

This is why the cyclic and ekpyrotic cosmological models focus on the Big Crunch
singularity and why scalar fields with equations of state w > 1 are of special interest. This
‘ultra-stiff’ matter in a homogeneous and isotropic universe can be realized by a scalar field
φ with a steep negative potential energy V(φ) < 0. The wits and skills in designing the
potential of a quantum field to fit one’s special needs– these activities which dominate
the theoretical stage in inflationary cosmology–will also be active for this newer vein of
cosmology. We refer interested readers to the nice review of Lehners [116] from which they
can trace back to the original papers.

Of special interest to our concern is whether the mixmaster behavior might be altered
by the effect of a scalar field with equation of state w > 1. The authors of Ref. [117] show
that if w > 1, the chaotic mixmaster oscillations due to anisotropy (extrinsic curvature) and
(intrinsic) curvature are suppressed, and the contraction is described by a homogeneous
and isotropic Friedmann equation. Referring to string theory related models, they show
that chaotic oscillations are suppressed in Z2 orbifold compactification and contracting
heterotic M-theory models if w > 1 at the crunch.

However, as pointed out by Barrow and Yamamoto [118] this result stands only when
the ultrastiff pressures are isotropic. The inclusion of simple anisotropic pressures when
pressures can exceed the energy density stops the isotropic Friedmann universe from being
a stable attractor as an initial or final singularity is approached. Thus the situation with
isotropic pressures, studied earlier in the context of cyclic and ekpyrotic cosmologies, is not
generic, and Kasner-like behavior occurs when simple pressure anisotropies are present.

Including the consideration of stochastic effects, as invoked in Linde’s ‘chaotic’ in-
flation or Starobinsky’s stochastic inflation scenarios [37,39], the effective scalar field can
climb up the potential in some regions of space, which leads to an increase in the energy
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density. However, as Brandenberger et al. [119] show, the backreaction of fluctuations
that have already exited the Hubble radius will lead to a decrease in the effective energy
density, which is strong enough to prevent eternal expansion in the late-time dark-energy
phase of ekpyrotic cosmology.

2.2.2. Big Crunch with Dark Energy in Semiclassical Cosmology

As was mentioned above, how the universe evolves in the future– whether it ap-
proaches a singularity (Big Crunch), or it can avoid it (a Bounce), and how it approaches the
singularity or the minimal radius, are important factors to consider in any cyclic cosmology
proposal. Without assuming any exotic matter, Kennedy et al. [120] studied the influence of
the vacuum expectation value of the energy-momentum tensor of a conformally-invariant
free quantized field without particle creation on the spherically symmetric gravitational
collapse of a dust cloud. Using the same method as used by Fischetti et al. [15] and
Anderson [20] for the early universe, they found qualitatively similar results, namely, for
certain values of an arbitrary parameter the collapse proceeds to singularity, although
in a manner which differs from the classical (Oppenheimer-Snyder) behaviour; for other
values of the parameter the collapse terminates before singularity and thereafter the dust
cloud expands.

Ever since the discovery of a sizable fraction (0.7) of dark energy in the cosmological
matter-energy contents, theories about the future of our universe need to take into account
the bounds provided by stringent cosmological data. The combined 2018 Planck data
together with other major observations give the dark-energy equation of state parameter
wde = −1.03± 0.03, consistent with a cosmological constant (w = −1). One can regard
this as weakly favoring ‘phantom’ dark energy (w < −1), which can lead to a future
singularity called ‘Big Rip’ [121]. (A rather complex classification of different possible
future singularities is given in, e.g., Ref. [122] Sec. IA. ) Assuming that the dark energy
which causes these singularities to behave like a perfect fluid, Carlson et al. [122] studied
the effects which quantum fields and an α0R2 term in the gravitational Lagrangian have
on future singularities. Special emphasis was placed on those values of α0 which are
compatible with the universe having undergone Starobinsky inflation [123] in the past, the
same values which allow for stable solutions to the semiclassical backreaction equations in
the present universe.

2.3. Semiclassical Gravity: Trace Anomaly Induced Bounces

For conformally-invariant fields in conformally-flat spacetimes in the conformal vac-
uum state, the regularized stress energy tensor is given by [20]

< 0|T̂ab|0 > =
α

3
(gabR;c

;c − R;ab + RRab −
1
4

gabR2) (6)

+ β(
2
3

RRab − Ra
cRbc +

1
2

gabRcdRcd − 1
4

gabR2),

where Rab is the Ricci tensor, R is the scalar curvature, and α and β are constants which
depend on the number and types of fields present. Dimensional regularization gives

α =
1

2880π2 (NS + 6Nν + 12NV); β =
1

2880π2 (NS + 11Nν + 62NV) (7)

where NS, Nν, NV are respectively the number of scalar fields, four-component neutrino
fields, and Maxwell fields included in one’s theory.

Taking the trace of (6) we see that it is non-vanishing even though for conformal fields
the classical stress energy tensor is traceless. This is why it is called the trace anomaly.
The semiclassical Einstein equations have been solved for the effects of backreaction in the
70s in various cases by the following authors: Ruzmaikina & Ruzmaikin [124] were the
first to work on this problem, they, and later, Gurovich & Starobinsky [125] studied the
case β = 0, Wald [11,12] investigated the case α = 0, and Fischetti, Hartle, and Hu [15] the
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cases α ≤ 0, all values of β and α > 0, β < 3α. Each of these was done for spatially-flat
FLRW spacetimes containing classical radiation and having no cosmological constant.
Starobinsky [123] investigated the case α < 0, β > 0 for FLRW spacetimes with no classical
radiation or matter and no cosmological constant.

The most complete investigation of the back-reaction problem for conformally-invariant
free quantum fields in spatially-flat homogeneous and isotropic spacetimes containing
classical radiation was carried out by Anderson [20]. He considered only solutions which
at late times approach the appropriate solution to the field equations of general relativity,
the so-called asymptotically classical solutions, with the following results: For all α, β with
α > 0 there are many such solutions, while for all α, β with α < 0 there is only one such
solution. For β > 3α > 0, there is always one solution which undergoes a “time-symmetric
bounce” and which contains no singularities or particle horizons. For α > 0 there is
always at least one solution which begins with an initial singularity and which has no
particle horizons. For all α, β there is always at least one solution which begins with an
initial singularity.

In a sequel paper [21], Anderson added the consideration of nonzero spatial curvatures
and/or a nonzero cosmological constant. The qualitative behaviors are the same as for
spatially-flat spacetimes with zero cosmological constant. Instead, for β > 3α > 0, there
is always one solution which undergoes a “time-symmetric bounce” and which contains
no singularities or particle horizons. The differences caused by the spatial curvature and
cosmological constant include the initial behavior of the time-symmetric bounce solution
and, if the spatial curvature is nonzero, the initial behavior of many solutions for the cases
β ≈ 3α > 0 and β ≈ 3α < 0. For further work on semiclassical backreaction of conformal
quantum fields in a universe with a cosmological constant, see, e.g., Ref. [126].

3. Singularity Avoidance in Quantum Cosmology

Readers interested in having a broader perspective of this issue might want to first
learn of the major milestones in the developments of quantum gravity. A summary is given
by C. Rovelli [127].

The first stage of quantum gravity began with a series of papers by Bergmann [128]
pursuing a program concerned with the quantization of field theories which are covariant
with respect to general coordinate transformations, like the general theory of relativity. All
these theories share the property that the existence and form of the equations of motion is
a direct consequence of the covariant character of the equations. Dirac’s work [129,130] on
the quantization of constrained systems is a cornerstone in this pursuit. A more sophisti-
cated and systematic treatment can be found in the book by Henneaux and Teitelboim [131].

ADM Quantization.
As most researchers would agree, the canon of canonical quantization of general

relativity is the ADM formalism for quantizing 3-geometries in a 3+1 (space-time) decom-
position, developed by Arnowitt, Deser and Misner in a series of papers 1959-1961. See
their summary in [132]. Read also Kuchař [133], Ashtekar [134], the monographs of Rovelli
[135] and Thiemann [136].

Wheeler-DeWitt equation.
The Wheeler-DeWitt equation [137,138] is a Hamilton-Jacobi equation formulation of

the ADM quantization on the superspace, the space of all 3-geometries. (For a short intro-
duction with some historical tidbits, read [139].) Minisuperspace refers to the truncation of
the infinite dimensional superspace to a few dimensions, such as the scale factors of the
Bianchi universes. Quantum cosmology was studied by Misner [50,52] by applying the
ADM quantization to the mini-superspaces of Bianchi Type I and IX universes. Read also
Ryan [74].

The second wave of quantum cosmology arrived in the mid-80s with the considera-
tions of the initial conditions for the wave functions of the universe, notably, Hartle and
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Hawking’s no boundary condition [140] and Vilenkin’s tunneling wave function [141–143].
That was also the time when the two major programs of quantum gravity took off, namely,
superstring theory [144,145] and loop QG [146,147] (and its modern version of spin foam
network [148–150] which has a more obvious microscopic appeal). Supersymmetric quan-
tum cosmology is well represented by the monographs of D’Eath [151] and of Moniz [152].
Other major approaches to quantum gravity are nicely represented in Oriti’s edited book
[153]. A state-of-the-art overview of multiple approaches from the words of 37 prominent
practitioners is recorded in this most recent book [154]. Please refer to the original papers,
reviews and monographs on this subject.

3.1. Quantum Cosmology: Bounce in Gowdy T3 Universe

Here we summarize Berger’s work [96,97]. The Gowdy T3 universe [94,95] can be inter-
preted as consisting of a single polarization of gravitational waves whose amplitudes satisfy
a linear wave equation propagating in a non-linear background spacetime. One can then
view these wave amplitudes acting quadratically as a source on the first-order equations for
the non-linear background part of the gravitational field as a backreaction problem. Classi-
cally the model has an initial “big bang” singularity near which it is velocity-dominated
behaving as a different Kasner solution at each value of the spatial coordinate orthogonal
to the symmetry plane. Far from the singularity, the method of Isaacson [155,156] may be
used to identify the gravitational waves. Their effective stress-energy tensor is that for a
p = ρ fluid in two dimensions propagating in a spatially-homogeneous background space-
time. At the quantum level, Berger performed a canonical quantization of the dynamical
degrees of freedom. An adiabatic vacuum state was introduced and adiabatic regulariza-
tion used to obtain non-divergent stress-energy tensor vacuum expectation values. The
regularized expectation value was used as a source for the classical background spacetime
in the spirit of semi-classical gravity. Berger found that “The effect of the regularization
of the stress-energy tensor expectation value is to replace the classical singularity with a
symmetric bounce. The semi-classical spatially-averaged Gowdy T3 cosmological model
thus collapses from a state of large volume to a minimum volume near r = 0 and then
re-expands. The classical singularity is replaced by a symmetric bounce”.

3.2. Quantum BKL-Mixmaster Scenarios

Earlier we mentioned applications of dynamical system methods and chaos theories
to cosmology, in particular, to the analysis of the BKL-mixmaster behavior [157–159]. For
quantum chaos applied to the BKL-M models, we mention the numerical solutions of
the Wheeler-DeWitt equation by Furusawa [160,161] and Monte Carlo simulations of the
vacuum Bianchi IX universe by Berger [162]. For more recent work we mention two
groups of authors on this subject. The first group’s authors are Bergeron, Czuchry, Gazeau,
Małkiewicz and Piechocki. Of particular interest to our theme here is their results on
singularity avoidance [163,164]. How to get the universe to enter an inflationary stage
without soliciting the aid of an inflaton field (cf. Starobinsky inflation [123] invokes a
scalar field, at least the trace anomaly of it, as was also studied in [15]) is certainly of
interest [165]. (See [166,167] for an earlier work on mixmaster inflation via an interacting
quantum field). These authors constructed the quantum mixmaster solutions using affine
and Weyl–Heisenberg covariant integral quantizations. According to these authors these
quantization methods can regularize classical singularities which, they claim, the commonly
implemented canonical quantization cannot. From this they show some promising physical
features such as the singularity resolution, smooth bouncing, the excitation of anisotropic
oscillations and a substantial amount of post-bounce inflation as the backreaction to the
latter. For a recent summary of these authors’ work on this subject, see [168].

The other group’s authors are Góźdź, Kiefer, Kwidzinski, Piechocki, Piontek and G.
Plewa. Kiefer et al. [169,170] formulated the criteria of singularity avoidance for general
Bianchi class A models in the framework of quantum geometrodynamics based on the
Wheeler–DeWitt equation and give explicit and detailed results for Bianchi I models with
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and without matter. The singularities in these cases are big bang and big rip. They find
that the classical singularities can generally be avoided in these models.

Góźdź et al. [171] use affine coherent states quantization in the physical phase space
and show that during quantum evolution the expectation values of all considered observ-
ables are finite. The classical singularity of the BKL scenario is replaced by the quantum
bounce that presents a unitary evolution of the considered gravitational system. In a
later paper [172] they asked whether their claims may change because the affine coherent
states quantization method depends on the choice of the group parametrization. Using
the two simplest parameterizations of the affine group, they show that qualitative features
of their quantum system do not depend on the choice. They maintain that the quantum
bounce replacing a singular classical scenario is expected to be a generic feature of the
considered system.

3.3. Loop Quantum Cosmology (LQC): ‘Big Bounce’?

We devote this space to LQC because singularity avoidance is supposed to be a major
accomplishment of LQG6. This is referred to as the ‘Big Bounce’, in capital letters. There
are many reviews of LQC, e.g., Ashtekar et al. [178–182], Bojowald [183,184], and a recent
book [185]. (Note the loop QG community does not sing in unison in regard to many major
claims in LQC. Read Ashtekhar and Singh’s 2011 status report [182] and the critiques of
Bojowald [186,187]).

Without getting into the detailed claims and critiques we ask two key physical ques-
tions: (1) What role would genuine quantum degrees of freedom play in the cosmological
singularity proven to exist in classical general relativity? (2) Does quantization of grav-
ity alter the Big Bang? If it does, will there be a minimum finite scale in the quantum
geometry—the quantum bounce? (Here, the canonical formulation of cosmic ‘time’ is often
provided by a relational variable such as the scale factor in the ‘3-volume’ or a scalar field.)

There seems to be some consensus in the LQC community on the existence of a
quantum bounce. On the first issue Bojowald asked the question [188]: How Quantum is
the Big Bang? Studying isotropic models with an interacting scalar field he concluded that
quantum fluctuations do not affect the bounce much. Quantum correlations, however, do
play an important role and could even eliminate the bounce.

In [189] a new model is studied which describes the quantum behavior of transitions
through an isotropic quantum cosmological bounce in loop quantum cosmology sourced
by a free and massless scalar field. Using dynamical coherent states Bojowald provided
a demonstration that in general quantum fluctuations before and after the bounce are
unrelated. “Thus, even within this solvable model the condition of classicality at late times
does not imply classicality at early times before the bounce without further assumptions.
Nevertheless, the quantum state does evolve deterministically through the bounce. These
analytical bouncing solutions corroborate results from numerical simulations attesting to
robustly smooth bounces under the assumption of semiclassicality”.

There seems to be no controversy in this last statement within the LQC community.
However, how much of the state of the universe before the bounce is retained, is a subject
of debates.

Cosmic memory over bounces
For theorists favoring the bounce scenario, especially the cyclic cosmologies, an

important question to ask is, does the universe retain, after the bounce, its memory about
the previous phase.

Bojowald is of the opinion of ‘cosmic forgetfulness’ [190], meaning, not all the fluc-
tuations (and higher moments) of a state before the bounce can be recovered after the
bounce, and values depend very sensitively on the late time state. In [191] he showed that
quantum fluctuations before the big bang are generically unrelated to those after the big
bang. A reliable determination of pre-big bang quantum fluctuations of geometry would
thus require exceedingly precise observations.
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Countering this claim, Corichi and Singh [192,193], in one exactly solvable model,
found that a semiclassical state at late times on one side of the bounce, peaked on a pair
of canonically conjugate variables, strongly bounds the fluctuations on the other side,
implying semiclassicality. From this result these authors assert that cosmic recall is almost
perfect. See Bojowald’s Comments [194] and Corichi & Singh’s Reply [195].

Bianchi I model as a prototype for a cyclical Universe
For more recent work on this topic, we mention two. Montani, Marchi and Moriconi

[196] investigated the classical and quantum behavior of a Bianchi I model with stiff matter,
an ultra-relativistic component, and a small negative cosmological constant (at the turnover
point). They apply the Vilenkin wave function, using the volume of the universe, a quasi-
classical variable, as the dynamical clock for the pure quantum degrees of freedom. They
found that in a model where the isotropic variable is considered to be on a lattice, the
big-bang singularity is removed at a semiclassical level in favor of a big bounce. The mean
value of the Universe anisotropy variables remains finite during the whole evolution across
the big bounce, assuming a value that depends on the initial conditions fixed far from the
turning point.

An even simpler picture is obtained by Wilson-Ewing [197–199]: “In the loop quantum
cosmology effective dynamics for the vacuum Bianchi type I and type IX space-times, a
non-singular bounce replaces the classical singularity. The bounce can be approximated
as an instantaneous transition between two classical vacuum Bianchi I solutions, with
simple transition rules relating the solutions before and after the bounce. These transition
rules are especially simple when expressed in terms of the Misner variables: the evolution
of the mean logarithmic scale factor Ω is reversed, while the shape parameters β± are
unaffected. As a result, the loop quantum cosmology effective dynamics for the vacuum
Bianchi IX space-time can be approximated by a sequence of classical vacuum Bianchi
I solutions, following the usual Mixmaster transition maps in the classical regime, and
undergoing a bounce with this new transition rule in the Planck regime.” At the level of
effective dynamics in loop quantum cosmology, for this type of bounce solutions, Gupt and
Singh [200] found the selection rules and underlying conditions for all allowed and forbid-
den transitions.

Open Issues of LQC
Bojowald raised a few cautionary points about the bounce solutions in LQC [201]: (a) A

conceptual gap exists in the form of several unquestioned links between bounded densities,
bouncing volume expectation values, and singularity avoidance, made commonly in
arguments in favor of a generic bounce in LQC. (b) While bouncing solutions exist and may
even be generic within a given quantum representation, they are not generic if quantization
ambiguities such as choices of representations are taken into account. Small-volume BKL
behavior in a collapsing universe is shown to be crucially different from the large-volume
behavior exclusively studied so far in LQC.

4. Quantum Phase Transition and Quantum Backreaction

In addition to the popularly known string and loop theories, there is a handful of
proposals of quantum gravity theories describing sub-Planckian (length scale) physics [153].
Our present aim is to see how the WCH fares in these theories, i.e., whether some of these
theories predict that the Weyl curvature diminishes by comparison with other components
of the Riemann tensor near the singularity or bounce. Note that this question may not be
answerable by all of them because many of these theories have not yet presented a full
account of how their basic constituents interact, and at the Planck length and above, give
rise to the familiar manifold structure of spacetime described by GR. What makes this non-
trivial and non-straightforward is the possibility of the emergence of mesoscopic structures
between the micro (QG) and the macro (GR), or the occurrence of phase transitions which,
in our opinion, is very likely. Quantum gravity not being discussed here since it is a topic
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covered by many books and reviews, we will limit our attention to identifying those micro-
theories which predict a robust and smooth (near-isotropic and homogeneous) geometry at
the Planck scale rising from sub-Planckian scale by phase transitions or other processes or
mechanisms (e.g., polymerization, crystalization).

4.1. Quantum Phase Transition: Continuum to Discrete

Asymptotic Safety
First proposed by Weinberg [202], the asymptotic safety program in quantum

gravity [203–211] asserts that the short-distance behavior of gravity is governed by a
nontrivial renormalization group fixed point. As describd by Bonano and Saueressig [212]
It provides an elegant mechanism for completing the gravitational force at sub-Planckian
scales. At high energies, the fixed point controls the scaling of couplings such that un-
physical divergences are absent, while the emergence of classical low-energy physics is
linked to a crossover between two renormalization group fixed points. These features make
asymptotic safety an attractive framework for the building of a cosmological model.

D’Odorico and Saueressig [213] studied quantum corrections to the classical Bianchi
I and Bianchi IX universes. The correction terms induce a phase transition in the dy-
namics of the model, changing the classical, chaotic Kasner oscillations into a uniform
approach to a point singularity. This seems to be consistent with the results obtained
from the backreaction of particle creation from quantum fields, namely, the isotropization
of anisotropy, which we mentioned in Section 2.3 and which will be described in Section 5.1.

Causal Dynamical Triangulation CDT
A systematic and vigorous treatment of discrete quantum geometry is the Causal

Dynamical Triangulations (CDT) program pursued by Ambjorn, Jurkiewicz, Loll et al.
extensively for decades. CDT is a lattice model of gravity that has been used to study
non-perturbative aspects of quantum gravity. Read the review of Loll [214], and for the
most recent development, Ambjorn et al. [215]: “CDT has a built-in time foliation but is
coordinate-independent in the spatial directions. The higher-order phase transitions observed
in the model may be used to define a continuum limit of the lattice theory. Some aspects
of the transitions are better studied when the topology of space is toroidal rather than
spherical. In addition, a toroidal spatial topology allows us to understand more easily the
nature of typical quantum fluctuations of the geometry. In particular, this topology makes
it possible to use massless scalar fields that are solutions to Laplace’s equation with special
boundary conditions as coordinates that capture the fractal structure of the quantum geometry.
When such scalar fields are included as dynamical fields in the path integral, they can have
a dramatic effect on the geometry.” One can view this as a discrete modeling of the Gowdy
T3 universe we described in Section 3.1. The quantum phase transition is of course the
interestingly new and exciting development.

Causal Set: Continuum to crystalline phase transition
Causal set theory, first proposed by Sorkin [216] and developed extensively by

Dowker [217,218] and their associates, has seen significant developments both in the
number of adherents and in scope of its research topics. How the classical continuum
spacetime as we know it evolved from discrete causal sets is one of the key issues.
Brightwell et al. [219] noted that non-perturbative theories of quantum gravity inevitably
include configurations that fail to resemble physically reasonable spacetimes at large scales.
Yet these configurations are entropically dominant and pose an obstacle to obtaining the
desired classical limit. These authors examine this ‘entropy problem’ in a model of causal
set quantum gravity corresponding to a discretization of 2D spacetimes. Using results from
the theory of partial orders they show that, in the large volume or continuum limit, its par-
tition function is dominated by causal sets which approximate a region of 2D Minkowski
space.
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Surya [220] continued this investigationand presented evidence for a continuum phase
in a theory of 2D causal set quantum gravity, which contains a dimensionless non-locality
parameter ε ∈ (0, 1]. She also found a phase transition between this continuum phase and
a new crystalline phase which is characterized by a set of covariant observables. For more
recent developments, see her review [221].

Berezenskii-Kosterlitz-Thouless (BKT) transition
Antoniadis, Mazur, and Mottola [222] presented a simple argument which determines

the critical value of the anomaly coefficient in four dimensional conformal factor quantum
gravity, at which a phase transition between a smooth and elongated phase should occur.
The argument is based on the contribution of singular configurations (“spikes”) which
dominate the partition function in the infrared. The critical value is the analog of c = 1
in the theory of random surfaces, and the phase transition is similar to the Berezenskii-
Kosterlitz-Thouless transition. The critical value they obtain is in agreement with the
previous canonical analysis of physical states of the conformal factor and may explain why
a smooth phase of quantum gravity has not yet been observed in simplicial simulations.

2D Quantum Gravity and Random Geometry
This was an active topic of research in the second half of the 80s. As a representative

work, Gross and Migdal [223] proposed a nonperturbative definition of two-dimensional
quantum gravity, based on a double scaling limit of the random matrix model which they
solve to all orders in the genus expansion. They derived an exact differential equation
for the partition function of two-dimensional gravity as a function of the string coupling
constant that governs the genus expansion of two-dimensional surfaces. The works of the
principal contributors to this subject are collected in a book [224].

4.2. Quantum Backreaction of Inhomogeneous Superspace Modes

We have mentioned the backreaction problem earlier. It may refer to several differ-
ent effects. We use different symbols to denote them: (C) the backreaction of inhomo-
geneous modes of classical gravitational perturbations on the homogeneous modes in
classical general relativity, as in the works of Buchert, Clifton, Ellis et al. versus Green &
Wald. (Q) The backreaction of the inhomogeneous modes of quantum geometry (in the
full superspace of 3-geometries) on the mini-superspace quantum cosmology as studied
in [225,226]. In between the classical and quantum levels lie the semiclassical and stochastic.
(S) The backreaction in semiclassical and stochastic gravity refers to the effects of quantum
matter field processes, such as the trace anomaly or particle creation, back-reacting on a
classical background geometry: (SC) Semiclassical gravity when the mean value of the
stress energy tensor of matter fields act as the source in the semiclassical Einstein equation;
(ST) stochastic gravity when the fluctuations of the quantum fields are included as sources
of the Einstein-Langevin equation. The ‘quantum backreaction’ in the title of this paper
refers to the middle two levels between the classical and the quantum.

These 4 levels (C-SC-ST-Q) of backreaction are summarized in a recent review with an
extensive bibliography [225]. These authors start by assessing the question of backreaction,
i.e., whether cosmological inhomogeneities have an effect on the large scale evolution of
the Universe, focusing on the purely quantum mechanical backreaction. They present
one recent approach based on mathematical tools inspired by the Born–Oppenheimer
approximation to include backreaction in quantum cosmology.

We mention three groups of representative work on this issue in the 80s to 90s , then
leave this topic for the readers to explore with the help of this excellent review.

(1) Using path-integral quantization, Hawking and Halliwell [227] assume that the
Universe is in the quantum state defined by a path integral over compact four-metrics. This
can be regarded as a boundary condition for the wave function of the Universe on super-
space, the space of all three-metrics and matter field configurations on a three-surface, the
same as was proposed by Hartle and Hawking earlier. They treated the homogeneous and

87



Universe 2021, 7, 424

isotropic degrees of freedom of the Friedmann Universe exactly and the inhomogeneous
and anisotropic degrees of freedom in superspace to second order in the perturbations. For
the same model Kiefer [228] calculated explicitly the wave functions for all multipoles of
the matter field and for the tensor modes of the metric. D’Eath and Halliwell [229] have
considered the backreaction of the fermionic perturbations on the homogeneous modes.
Origin of structure in supersymmetric quantum cosmology was studied by Moniz [230].
By employing the supersymmetry and Lorentz constraint equations a set of quantum
states was obtained and a particular quantum state which has properties typical of the
conventional no-boundary Hartle-Hawking solution was identified.

(2) In canonical quantum gravity Kuchař and Ryan [231] questioned the validity of
physical predictions based on minisuperspace quantization of Einstein’s theory of gravita-
tion. They proposed to investigate a hierarchy of models with higher symmetry embedded
in models of lesser symmetry, to spell out the criteria under which minisuperspace quan-
tum results can be expected to make meaningful predictions about full quantum gravity.
As a concrete example they studied a homogeneous, anisotropic cosmological model of
higher symmetry (the Taub model) embedded in one of lesser symmetry (the mixmaster
model) and showed that the respective behavior is widely different.

(3) With quantum field theory placed in an open systems setting, Sinha and Hu [232,233]
used the example of an interacting λΦ4 scalar quantum field in a closed Robertson-Walker
universe, where the scale factor and the homogeneous mode of the scalar field model the
minisuperspace degrees of freedom. They explicitly computed the back-reaction of the
inhomogeneous modes on the minisuperspace sector using a coarse-grained effective action
and show that the minisuperspace approximation is valid only when this backreaction
is small.

For backreaction due to quantized matter fields, its decoherence effects, and how the
semiclassical limits are reached in quantum cosmology, see, e.g., [67,234–237].

Concerning quantum backeaction, specifically the question of how the inhomogeneous
quantum modes backreact on the lower dimensional superspace modes, and whether the
results from mini- or midi-superspace can give a fair representation of the full picture,
a recent paper by Bojowald [238] also expressed such a concern: “Even though the BKL
scenario allows us to use the classical dynamics of homogeneous models to understand
space-time near a spacelike singularity, it is a poor justification of minisuperspace models in
quantum cosmology. Using a minisuperspace model to evolve from a nearly homogeneous
geometry at late times to a BKL-like geometry at early times means that we begin with
a well-justified, approximate infrared contribution of the full theory, but then push the
infrared scale all the way into the ultraviolet.”

Meanwhile, we shall wait to see further research results from the practitioners of loop
and spin-foam quantum cosmology to see how the singularity avoidance in LQG might be
altered by including the backreaction of inhomgeneous quantum modes.

In the next section we shall discuss the backreaction of quantum field processes and
how that affects the dynamics of classical background spacetimes. Before ending, we men-
tion two backreaction effects, one in inflation, the other in classical GR. Finelli et al. [239]
studied the backreaction of scalar fluctuations on the space-time dynamics in the long
wavelength limit using a set of gauge invariant variables. Below, we add a short interlude
in the classical backreaction research programs for completeness, as it bears on gravitational
entropy, albeit less so on the WCH at the cosmological singularity or bounce.

Backreaction of inhomogeneous mode in classical GR
There are two schools of thought on classical backreaction: This research began around

2000, with the work of Buchert [240] and Ellis with collaborators [241]. The central themes
are summarized in this letter [242] where these authors make the observation that “A
large-scale smoothed-out model of the universe ignores small-scale inhomogeneities, but
the averaged effects of those inhomogeneities may alter both observational and dynamical
relations at the larger scale”. It also comments briefly on the relation to gravitational entropy.
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A broader representation of their work can be found in these two reviews [243,244] See
also [245,246].

Green and Wald, on the other hand, showed in a series of papers from 2011–2014 [247]
that the backreaction effects of classical inhomogenous modes are insignificant. These issues
are related to how one should treat the inhomogeneous modes of shorter wavelengths, such
as using the Brill-Hartle-Isaacson average [155,156,248,249], and how much they impact on
the behavior of the theory if only the lowest modes are retained. Buchert, Ellis et al. [250]
countered the Green-Wald arguments, reasserting their claims. In turn Green and Wald
replied to this [251,252] with a simple derivation of their no backreaction results.

5. Semiclassical Backreaction Supports WCH

In this last section we examine to what degree is WCH consistent or contradictory
with the results of semiclassical backreaction, namely, the backreaction of quantum field
processes involving vacuum polarization or fluctuations on the geometrodynamics near
the Planck time, like those due to the trace anomaly or cosmological particle creation.
These processes have been studied rather thoroughly in the twenty years 1977–1996 as
we mentioned before. Earlier, in Sections 1.2, 2.3 and 3.1, we focused on the avoidance
of singularity due to the backreaction effects of the trace anomaly and particle creation.
Here we complete our narrative by adding the considerations of the damping of anisotropy
and inhomogeneity.

5.1. Damping of Irregularities Ensures a Smooth Transition, Critical for Cyclic Cosmologies

Sparing the reader the details of the derivations of regularized stress energy tensors
for particle creation and the calculations of the backreaction effects from the solutions of
the semiclassical Einstein equation (which can be found in the papers referred to in earlier
sections or in a recent book [28]), we shall just highlight the key features with relevance to
WCH in the following. More comments about gravitational entropy in this context can be
found in [30].

(1) Vacuum fluctuations of a quantum field are ubiquitous, one need not add them
in by hand, nor can one wish them away. Their effects on the background spacetime
have to be included in considerations of whether the universe contracts to a singularity or
undergoes a bounce.

(2) Many vigorous quantum field- theoretical studies of particle creation in (weakly)
anisotropic and inhomogeneous spacetimes show that vacuum particle production is
abundant near the Planck time, their backreaction effects are strong and the dissipation
of these irregularities happens swiftly. (Note the significant qualitative differences be-
tween semiclassical backreaction of quantum field processes and classical backreaction of
inhomogeneous modes in GR mentioned earlier).

(3) The damping of irregularities drives down the Weyl curvature with their strong
and swift actions. This seems to suggest that quantum field processes act as an effective
protector, maybe even a guarantor, of WCH.

(4) These quantum field processes act in such a way as to draw the spacetime into a
fixed point in superspace, a three-geometry of high isotropy and homogeneity, the special
status bestowed by the WCH.

(5) The overall backreaction effects of quantum field processes can be summarized by
something resembling a Lenz law: the production of particles acts in such a way as to dimin-
ish their production. This is because, when the universe is isotropized and homogenized,
it becomes conformally-flat, whence no more conformal particles are produced. (There is
ground to believe that in the very early universe massless particles are overwhelmingly
more abundant.)

(6) For any aficionado of cyclic cosmology, in addition to showing that a bounce is
possible, the ‘reining-in’ of the irregularities near the bounce–in fact, near every bounce– is
particularly important [118]: If the isotropic expansion were unstable as the scale of the
universe approaches zero, then huge irregularities and anisotropies could accumulate and
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the successive cycles would be very different and increasingly anisotropic. Some powerful
and ever-ready damping mechanisms need be there to prevent this from happening.

In summary, if we ponder upon the ubiquitous nature of these quantum field processes,
their strongly dissipative effects on the spacetime irregularities, and the isotropized and
homogenized outcome ‘locked-in’ by the Lenz law, we can see that WCH is more likely to
be validated when these factors are included in our considerations. Add to this the fact
that these processes apply both in the expansion and contraction phases of the universe,
rendering both the beginning and ending of a cycle to be smooth, we can see that quantum
field processes are good facilitators of cyclic cosmology.

5.2. Quantum Gravity: Macro Spacetime Manifold from the Interaction of Micro Constituents

Going from the Planck scale down toward the singularity or bounce, even from our
rather skimpy description earlier, it may appear to the reader that some quantum gravity
theories, e.g, those based on the WdW equation, Hamiltonian quantum gravity, and loop
quantum cosmology are more capable of providing a detailed description of quantum
spacetime than others, e.g., strings, spin foams, causal sets. This is not the case. One needs
to first scrutinize whether some tacit, commonplace, yet unproven assumption has crept in,
that the macro variables are the same as the micro variables. One should ask, “Are they?”. This
is a pivotal question, because by assuming there is no change of variables from micro to
macro, one only needs to deal with the quantum to classical transition issue. In my opinion,
a more important and challenging question is that of micro to macro transition.

Theoretically, this cuts into the key issue of whether the dynamical variables in GR are
‘fundamental’ all the way from the scale of our universe now, captured amazingly well by
Einstein’s theory, to the sub-Planckian scales, and, for the former group of theories, even
all the way down toward the singularity. What if the variables are collective variables, that
the macroscopic spacetime is emergent, and that general relativity is an effective theory
valid only at large scales and low energies? We know Nature has many, possibly an infinite
number of, levels of structure, separated by characteristic scales, and each level can be
described by a suitably constructed effective theory. If so, the theories we now know of the
large scale structures of spacetime will very likely become inapplicable at scales below the
Planck length.

Are we to believe that once a macro-variable is quantized, it becomes a micro-variable?
This is a big leap of faith. In Nature, a quantized macro-variable can be a very different
physical entity from a micro-variable, which can be of a quantum nature. E.g., sound is a
collective excitation of atoms. Quantizing them yields phonons. But quantization of sound
will never lead to the microvariables we want–atoms. In fact, these collective variables
lose their meanings once the atomic scale is reached. If the metric or connection forms
are collective variables, quantizing them is the wrong way to discover the sub-Planckian
microscopic constituents. In contrast, those theories which propose certain entities as the
microscopic constituents of spacetime, such as strings or causets, need to show that their
interactions can indeed produce the macroscopic spacetime we know, thus is the difference
between quantum and emergent gravity [83].

5.3. Quantum Cosmology: Singularity or Bounce Ruled by the Interaction of Micro-Constituents

Varied as the many schools of thought and practice are, there is agreement that quan-
tum gravity refers to theories of the microscopic structures of spacetime. Quantum cosmology
is supposed to be the application of quantum gravity to the description of the universe
from the Planck scale down to the singularity or the bounce. Thus, some knowledge of the
underlying theory of quantum gravity is required. Many theories of quantum cosmology
assume the existence of a metric or connection, and many papers, such as in string cosmol-
ogy, start with a statement like, “Let us consider strings in the FLRW or de Sitter universe”.
Right there, I must say, an ontological issue already shows up. Where does your spacetime
manifold come from? If we believe that strings or loops are the fundamental microscopic
constituents of spacetime at scales below the Planck length, then, before one talks about
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string or loop cosmology in terms of the dynamics of the metric or connection, one needs to
explain how the spacetime manifold, this macroscopic structure of our universe, befittingly
described by general relativity, comes into being.

It appears that a clear demonstration of how the spacetime manifold emerges from
string or loop interactions is still largely lacking. If one takes the dynamical variables of
a macroscopic theory of spacetime and quantizes them, thinking that one would get the
microscopic degrees of freedom in this way, while disregarding the possibly huge structural
and behavioral differences between the micro and the meso- and macro-scopic emergent
structures, the claims made pertaining to the nature of a singularity or a bounce in the
sub-Planckian length regions may not make much sense or even be outright inconsistent.

Therefore, unless one can provide a proof that the micro-variables describing sub-
Planckian physics are the same as the macro variables of the large scale spacetime we are
familiar with, in our opinion, all predictions and claims about bounces made in quantum
cosmology based on quantizing the macro geometric variables in general relativity need
be reassessed.

It is with this broader perspective that we should look at the meaning and applicability
of WCH. It may very well be that it is enough to examine the validity and implications of
WCH at the Planck scale and not extend it to the sub-Planckian scale, because, after all, the
Weyl curvature, like all the geometric objects, is well defined only when the spacetime it
lives in has a manifold structure, which could be an emergent entity of the underlying QG
theories for the microscopic constituents of spacetime.
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Notes
1 This list is far from exhaustive. We are not treating inflationary cosmology [31–34] here, since it already has a wide coverage

and how the WCH fits in with inflation is rarely discussed. On the relation of inflation and singularity, Borde and Vilenkin [35]
made a categorical statement that a physically reasonable spacetime that is eternally inflating to the future must possess an
initial singularity. Vilenkin [36] also questioned the necessity of quantum cosmology in the face of eternal inflation. As for the
speculations into our universe’s future, there is considerable amount of work based on two types of inflationary models, one is
the ‘stochastic inflation’ of Starobinsky [37,38] which allows the noise associated with the fluctuations of a quantum field to drive
the universe to inflation. The other is the ‘eternal inflation’ proposed and developed by Linde, Vilenkin, Guth and others [39,40],
where a universe can live forever with the continual births of baby universes in the sequential and parallel generation of multiple
branches. For a recent assessment of the likelihood for eternal inflation in a variety of popular models, including the swampland
of string theory, see, e.g., [41–43].

2 Chaotic dynamics of minisuperspace cosmology is not limited to the mixmaster type. As Calzetta and Hasi show [64,65] it can
also occur in the dynamics of a spatially-closed FLRW universe conformally coupled to a real, free, massive scalar field for large
enough field amplitudes.

3 An important exception is the case when a massless scalar field is present, which obeys an equation of state p = ρ like a stiff
fluid, and, in Friedmann models, has the same dependence of the density on the scale factor as anisotropies (ρ ≈ a−6). As is
rigorously shown in [71], such a scalar field will suppress the BKL oscillations during the evolution towards the singularity. The
relevance of stiff matter in the early universe is noted by Barrow [72].

4 This diagonal form has full generality because there is no spatial curvature. In a Bianchi Type IX universe where the spatial
curvature is present, spacetimes represented by the full matrix βij are more general than that of the diagonal metric which is
Misner’s mixmaster universe [50]; the off-diagonal components signify rotation [74].

5 An element of craziness needs to creep in before an idea ascends to the order of the three Fs: Fashion, Faith, and Fantasy. I read
this as a warning of an enlightened guru speaking to his present adherents and future believers: Safeguard your independent
thinking before you become completely converted.
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6 We could include group field theory (GFT) [173–176] in the present considerations (only) to the extent that (partial) equivalence
of models employed or results reported can be shown to exist between these two theories [177]. Of course we need to hear the
views of the GFT community on this.
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Abstract: We reviewed the canonical quantisation of the geometry of the spacetime in the cases of a
simply and a non-simply connected manifold. In the former, we analysed the information contained
in the solutions of the Wheeler–DeWitt equation and showed their interpretation in terms of the
customary boundary conditions that are typically imposed on the semiclassical wave functions. In
particular, we reviewed three different paradigms for the quantum creation of a homogeneous and
isotropic universe. For the quantisation of a non-simply connected manifold, the best framework is
the third quantisation formalism, in which the wave function of the universe is seen as a field that
propagates in the space of Riemannian 3-geometries, which turns out to be isomorphic to a (part of
a) 1 + 5 Minkowski spacetime. Thus, the quantisation of the wave function follows the customary
formalism of a quantum field theory. A general review of the formalism is given, and the creation
of the universes is analysed, including their initial expansion and the appearance of matter after
inflation. These features are presented in more detail in the case of a homogeneous and isotropic
universe. The main conclusion in both cases is that the most natural way in which the universes
should be created is in entangled universe–antiuniverse pairs.
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1. Introduction

Quantum cosmology is the application of the quantum theory to the universe as
a whole. However, it was clear from the beginning that the customary formalism of
the Copenhagen interpretation cannot be applied to the quantisation of the universe
because the Schrödinger equation and the measurement process on which the Copenhagen
formalism is based cannot be fundamental elements of a quantum theory of the spacetime.
Let us notice that if the quantum theory must represent the quantum state of the spacetime,
then, as Wheeler showed [1], its quantum state must be at the Planck length with a
superposition of spacetime geometries that is impossible to visualise or represent and
where one cannot even use the word “observation” at all (cf. [1]). However, as we approach
the macroscopic scale, the quantum state of the universe must represent the approximately
stable spacetime where we live and perform measurements of particles and other matter
fields. It means that the description of the universe that we observe must be an emergent
feature of the quantum representation of the universe.

In this article, we review the canonical formulation of quantum cosmology. We start
from the foliation of the spacetime into space and time that allows us to express the
Einstein–Hilbert action as a functional action of the components of the 3-metric of the
spatial sections of the spacetime. The evolution of the universe turns out to then be a
trajectory in the space of 3-Riemannian metrics, M, and its quantum state is represented by
a wave function that is the solution of the Wheeler–DeWitt equation, which, in principle,
contains all the information about the spacetime and the matter fields that propagate therein.
However, as we have already said, the full quantum state is a superposition of solutions
that correspond to different paths, i.e., different evolutions, in the space M. It is only in
the semiclassical regime where a particular kind of solution emerges by a decoherence
process1. This kind of solution includes the semiclassical solutions that represent a fixed
classical spacetime background with matter fields propagating therein and in which the
Schrödinger equation appears as an approximated equation at order h̄1. In particular, we
analyse the semiclassical wave function of a homogeneous and isotropic universe with
small inhomogeneities that can be treated as perturbations. In that case, explicit solutions
can be given for which it is easier to analyse the different boundary conditions that can be
imposed on the state of the universe. They give rise to different scenarios for the creation
of the universe, which are analysed in detail.

On the other hand, the space of 3-dimensional space-like metrics, M, defined at
any point in the space, turns out to be isomorphic to a 1 + 5 dimensional Minkowski
spacetime2. This analogy between the space M and the spacetime allows us to consider
the wave function of the universe as a field that propagates in M, and the Wheeler–
DeWitt equation as the field equation. In that case, a procedure of quantisation called
third quantisation can formally be performed in a similar way as it is done in a quantum
field theory. For instance, we can define quantum operators representing the creation
and annihilation of particular modes of the spacetime, i.e., different universes, and the
corresponding Fock space will then allow us to represent the quantum state of a multiply
connected spacetime manifold. It turns out to then be the appropriate framework to
describe the quantum state of the multiverse. Moreover, as it happens in a quantum field
theory, the isotropy of the background space implies that the creation of universes must
be in pairs with opposite values of the components of the momentum conjugated to the
configuration variables. We shall analyse the charge and parity relation between the matter
fields that propagate in one of these pairs to see that the matter content of one of the
universes must be CP inversely related with the content of the other universe. They thus
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form a universe–antiuniverse pair. We analyse this pair creation in detail in the case of
a homogeneous and isotropic universe where the period of reheating after inflation is
investigated. The decay of the inflaton field into the particles of the Standard Model is
produced in a CP-conjugated way in the two universes, so any excess of matter over
antimatter in one of the universes of the entangled pair is balanced with the excess of the
antimatter over matter in the partner universe, these two concepts (matter and antimatter)
always having a relative meaning, i.e., an internal observer in any of the universe always
interprets the content of his/her universe as matter.

This proposal is however still far from being directly testable. The effects of quantum
cosmology and, in particular, the effects of the existence of an entangled universe are
mainly restricted to the very early stage of the universe. Perhaps with future advances in
the detection of gravitational waves or of a cosmic neutrino background we will be able to
test the pre-inflationary stage of the universe where the effects of quantum gravity may
be significant. Moreover, the third quantisation formalism can also be a proposal for the
quantisation of the spacetime, and thus a better understanding of the formalism and its
application to other gravitational scenarios can provide us with a new line of research for
the search of a quantum theory of gravity.

2. Quantisation of a Simply Connected Spacetime Manifold
2.1. Quantisation of the Spacetime Geometry

Following the customary approach3, the spacetime can be foliated in space and time
by assuming a global time function t such that each surface t = constant is a spacelike
Cauchy hypersurface, Σt. The proper distance between the point x0 in Σt and the point
x0 + dx of Σt+dt is given by [7,8] (see, Figure 1)

ds2 = gµνdxµdxν =
(

NaNa − N2
)

dt2 + 2Nadxadt + habdxadxb, (1)

where NaNa = habNaNb and hab is the three-dimensional metric induced on each hypersur-
face Σt, with unit normal nµ, satisfying, nµnµ = −1. The functions N and Na are called the
lapse and the shift functions, respectively. They are the normal and tangential components
of the vector field tµ, which is the vector field that transport the point x0 from Σt to Σt+dt.

With the split of the spacetime in space and time, the spacetime can be seen as a
spacelike hypersurface evolving in time. The geometry of the hypersurface Σt at a given
time t0 is determined by the metric tensor hab(t0), so eventually the evolution of the
universe is encoded in the evolution of the metric hab(t). It is then remarkable that in the
end, as Wheeler says [9], Eintein’s geometrodynamics deals with the dynamics of 3-geometry, not
4-geometry! (emphasis his). From this 3 + 1 viewpoint of the spacetime, we can cast the
Einstein-Hilbert action4 [7]

SEH

∫

M
d4x
√
−g
(

4R− 2Λ
)
− 2

∫

∂M
d3x
√

hK, (2)

and the action of the matter fields5

Smatter =
∫

M
d4x
√
−g
(

1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ)

)
, (3)

into the standard Lagrangian form,

S =
∫

dt L(qi, q̇i, t), (4)

where qi and q̇i will be here the spatial metric, hab(x), the matter field(s), encoded in the
variable ϕ(x), and their corresponding velocities. In (2), 4R is the Ricci scalar associated to
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the 4-dimensional metric gµν, Λ is the cosmological constant, K = habKab, is the trace of the
extrinsic curvature, which can be written as,

Kab =
1

2N
(
ḣab − DaNb − DbNa

)
, (5)

where, Da is the covariant derivative on the spatial section Σt, and ∂M is the boundary of
the manifoldM. After some manipulation (see Ref. [7]), one finds that the Einstein–Hilbert
action (2) can be written as

SEH =
∫

M
dtd3xN

(
GabcdKabKcd +

√
h
(

3R− 2Λ
))

, (6)

where h is the determinant of the spatial metric hab, and

Gabcd =

√
h

2

(
hachbd + hadhbc − 2habhcd

)
, (7)

is the DeWitt’s metric [10]. The structure of the action (6) is very interesting. First, it is of
the standard form (4),

SEH =
∫

dt LEH =
∫

dtd3x LEH , (8)

with LEH the Lagrangian associated to the Einstein–Hilbert action (6) and LEH the La-
grangian density. Second, from (5) one can see that the extrinsic curvature Kab contains the
time derivative of the metric tensor hab, and 3R only depends on hab. Thus, the action (6)
presents the customary structure of a kinetic term that is quadratic in the velocities plus a
potential term. Furthermore, the supermetric (7) defines a metric structure on the space of
spacelike metrics, called the superspace6. Thus, the action (6) looks like the action of a par-
ticle that moves in a curved space; the coordinates of the ”particle” are the time-dependent
values of the components of the metric tensor, hab(t) and the curved space where this
particle moves in the space of symmetric Riemannian 3-metrics. That is, the evolution of
the universe can be seen as the trajectory in the superspace7 (see Figure 2).

Figure 1. Splitting the spacetime into space and time.

The momenta conjugated to the metric tensor components, hab, are given by [7]

pab ≡ ∂LEH

∂ḣab
= GabcdKcd =

√
h
(

Kab − Khab
)

. (9)

Thus, in terms of the momenta, the total action (the gravitational action plus the action of
the matter field) can be written as

S = SEH + Smatter =
∫

dtd3x
(

pab ḣab + pϕ ϕ̇− NH− NaHa

)
, (10)
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where the lapse and the shift functions act as Lagrange multipliers, with [7]

H = Gabcd pab pcd −
√

h
(

3R− 2Λ
)
+Hmatter, (11)

Ha = −2Db pb
a +
√

hJa, (12)

where [7], Ja ≡ hµ
a Tµνnν, and Gabcd is the inverse of the DeWitt metric (7),

Gabcd =
1

2
√

h
(hachbd + hadhbc − habhcd), (13)

with [10],

GabcdGcde f =
1
2

(
δa

e δb
f + δa

f δb
e

)
. (14)

Therefore, variation of the action (10) with respect to the lapse and the shift functions yields
the classical Hamiltonian and momentum constraints, respectively, i.e.,

H = 0 , Ha = 0. (15)

Let us now focus for a moment on the gravitational part of these constraints. The Hamil-
tonian constraint, H = 0, can be seen as the analogue of the momentum constraint of a
particle that propagates in the spacetime,

gµν pµ pν + m2 = 0, (16)

in which the mass is substituted by a non-constant potential (this analogy will be further
exploited in Section 3). On the other hand, the function Ha generates infinitesimal dif-
feomorphisms (change of coordinates) in the spatial hypersurfaces, Σ. Thus, the second
constraint in (15), Ha = 0, means that the Einstein–Hilbert action (6) is invariant under
such diffeomorphisms, which turns out to be like a gauge freedom [7]. Thus, the real con-
figuration space is the quotient space of all Riemannian 3-metrics, M ≡ Riem(Σ), in which
all three metrics related by diffeomorphisms correspond to the same class, i.e.

S(Σ) = M
Diff(Σ)

, (17)

which is called the superspace [7–10].

Figure 2. Left: the evolution of the universe can be seen as a path in the abstract space spanned by
the component of the spatial metric tensor, hab. Right: an example of evolution is depicted for the
case that the spatial metric is diagonal, i.e., given by, hab(t) = diag(h11(t), h22(t), h33(t)).

Following Dirac [11], the canonical procedure of quantisation consists in assuming the
quantum version of the classical constraints (15) by promoting the classical variables and
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their conjugate momenta into quantum operators and applying them to a wave function, φ,
that is defined in the configuration space,

Ĥφ = 0 , Ĥaφ = 0. (18)

The quantum version of the momentum constraint in (15), Ĥaφ = 0, assures that the wave
function φ is invariant under spatial diffeomorphisms in the 3-dimensional slices Σt [7].
For our purposes, much more interesting is the constraint, Ĥφ = 0, which under canonical
quantisation becomes the Wheeler–DeWitt equation [7,8,10],

(
−h̄2∇ · ~∇+

√
h
(
− (3)R + 2Λ + T̂00

))
φ(hab, ϕ) = 0, (19)

where, ∇· and ~∇, are the divergence and the gradient, respectively, defined in the space of
3-dimensional Riemannian metrics, M, and for a scalar field T̂00 reads

T̂00 =
−h̄2

2h
δ2

δϕ2 +
1
2

hij ϕ,i ϕ,j + V(ϕ). (20)

The Wheeler–DeWitt Equation (19) is the keystone of the canonical formalism of quantum
cosmology. The solution, φ(hab, ϕ), is usually called the wave function of the universe [12] be-
cause it represents the quantum state of the spacetime and the matter fields that propagate
therein. This is usually applied to the case of a single universe. However, as we shall see
in Section 3, the whole spacetime manifold can present a more complicated structure and
represent something more than what is typically called a universe. In that sense, the name
can be misleading. However, for historical reasons we shall retain sometimes the name
wave function of the universe even in the cases where it may represent the state of many
different universes.

The Wheeler–DeWitt Equation (19) can be seen as a Schrödinger-like equation with no
time variable, which is a consequence of the invariance of the quantum state of the universe
with respect to the time variable. In that sense, there is no preferred time in the quantum
description of the universe (additionally, there are no preferred spatial coordinates because
the constraint,Ha = 0). It is then sometimes stated that there is no time evolution of the
quantum state of the universe. However, this is not true, or at least it is not accurate. As we
have already pointed out, the evolution of the universe can be seen as the trajectory in the
superspace. The spacetime coordinates are the parameters that parametrise the trajectory,
which is therefore invariant under reparametrisations, but that does not mean that there
is no evolution. It is similar to the description of the path followed by a particle in the
spacetime, which is independent of the parametrisation of the path, but that does not mean
that the particle does not move.

There is also a path integral approach to quantum gravity and quantum cosmology [7,8,12].
It is a generalisation of Feynman’s idea that the amplitude for a particle to go from one
to another point point is given by a functional integral that weighs all the paths that start
from the point x0 at time t0 and end in the point x1 at t1 (see Figure 3). Following a parallel
reasoning, Hartle and Hawking propose [12] that the amplitude for the universe to change
from the hypersurface Σ, in which the spatial geometry and the field configuration are
given by hab and ϕ, respectively, to the hypersurface Σ′, where they are given by the values
h′ab and ϕ′, is given by [12]

〈h′ab, ϕ′|hab, ϕ〉 =
∫

δg δϕ eiS[g,ϕ], (21)
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where the integral must be performed over all 4-geometries and field configurations that
match the given values on the two spacelike hypersurfaces [12], Σ and Σ′. Following that
approach, the wave function of the universe is then given by,

φ(hab, ϕ) = ∑
∫

C
δgδϕ eiS(g,ϕ), (22)

where C denotes the class of spacetimes and matter configurations that fulfil the boundary
requirements on the hypersurfaces Σ, and the sum is performed over all kind of topologies.
In order to make well defined the path integral in (22) one has to rotate to Euclidean time.
However, that does not remove all the technical problems, which we are not going to
deal with here. In practice, as it happens with the Wheeler–DeWitt equation, the path
integral can only be performed for spacetimes and matter field configurations with a
high degree of symmetry. Moreover, both formulations become equivalent because the
requirement of invariance of the wave function φ(hab, ϕ) under reparametrizations of
the time variable implies the constraint [12], δS

δN = 0, whose quantised version is the
Wheeler–DeWitt equation.

Regardless, the path integral formulation has two interesting points. First, the analogy
with the Feynman’s path integral formulation of the trajectory of a particle in spacetime
makes it very intuitive. As we have seen, the classical evolution of the universe can be seen
as a path in the superspace. Applying Feynman’s idea to gravity means that the quantum
state of the universe is given by a quantum superposition of all the paths that go from
one to another configuration of the spatial hypersurfaces. As it happens in the spacetime,
the classical path (i.e., the classical evolution) emerges in some specific limit because of the
constructive interference between the paths of the quantum superposition, and in the same
limit the non-classical paths suffer from a destructive interference or decoherence [3,4,13,14].
The second interesting point of the path integral approach is the following: let us assume
that we already know how to construct the quantum amplitude for the universe to go from
one to another given configuration of the spacelike section. Then, what is the amplitude
for the birth of the universe? What are the boundary conditions that one must impose on
the state of the universe to obtain the appropriate probability amplitude for the universe to
be created?

Figure 3. (Left): path integral in spacetime. (Right): path integral in quantum gravity.

2.2. Boundary Conditions

In classical mechanics, as well as in quantum mechanics, we usually work with some
given conditions that we know or assume for certain at some initial time. Then, knowing
the law of evolution, the initial conditions determine the state of the system at any later
time. In the universe the thing is a bit different. What we only know for certain is the
state of the observable universe, say from the inflationary period8 to the current stage of
accelerated expansion, and we have to make some guess about the initial conditions that
give rise to a universe like that. However, this is all classical cosmology. The question in
quantum cosmology is: what are the conditions at the quantum level that give rise to a
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specific initial boundary, Σ0, that is propitious to inflate? The probability for the creation
of such universe would be given by the modulus squared of the wave function of the
universe, when this is evaluated at the initial hypersurface9. From that point of view, one
can say that the initial state of the (classical) universe is the final state of the amplitude for
the universe to be created ... from what? That is actually the issue behind the question of the
boundary condition of the universe.

Using the path integral approach, Hartle and Hawking proposed [12] that the class
C over which the integral (22) has to be performed is the class of compact geometries
(in principle of all topologies) that have Σ0 as their only boundary [7,12] (see Figure 4)
and matter fields that are regular on those geometries. It means that the boundary of the
universe is that the universe has no boundary, or equivalently, that the boundary Σ0 is created
from nothing. We shall see later on that for the case of an inflationary spacetime, the
quantum state that results from the no-boundary condition is [7,12,15]

φNB ∝ exp
(

1
3V(ϕ)

)
cos

(
(a2V(ϕ)− 1)

3
2

3V(ϕ)
− π

4

)
, (23)

where V(ϕ) is the potential of the inflaton field and a is the scale factor, which goes from the
initial value, a0 = V(ϕ)−1/2, to infinity. It is important to notice that the wave function (23)
can be written as

φNB ∝ e
1

3V(ϕ)

(
eiS + e−iS

)
, (24)

where,

S =
(a2V(ϕ)− 1)

3
2

3V(ϕ)
− π

4
. (25)

We shall see in the next section that in terms of the same time variable, one of the two terms
in (24), say the branch with e−iS, describes an expanding universe, and the branch with eiS

describes a contracting universe. It means that the result of imposing the no-boundary
condition on the quantum state of the universe is that it is given by the linear combination
of two states: one representing an expanding universe and one representing a contracting
universe. Typically, one considers the expanding branch of the universe as representing our
universe and disregards the contracting branch for being unphysical. However, we shall see
that there is another interpretation. In terms of the physical time variable of each universe,
the two universes can both be seen as expanding universes but with their matter fields
being CP-conjugated. They can be interpreted then as an expanding universe–antiuniverse
pair (see Sections 2.5.3 and 3). From that point of view, the no-boundary proposal would
yield the creation of universes in entangled universe–antiuniverse pairs.

Figure 4. Left: the class C over which the path integral has to be performed is the class of com-
pact geometries that have Σ0 as their only boundary [12]. Right: the tunnelling proposal states
that the only modes that survive the quantum barrier are the “outgoing” modes that represent
expanding universes.
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Vilenkin’s tunneling proposal is quite different10. Perhaps more based on practical
grounds, he proposes that the only mode that survives the tunnelling from the Euclidean
region (the region located at, a < V(ϕ)−1/2) is the one that represents an expanding
universe. Imposing the tunnelling boundary condition, the resulting wave function of the
universe is

φT ∝ exp
(
− 1

3V(ϕ)

)
exp

( −i
3V(ϕ)

(a2V(ϕ)− 1)
3
2

)
. (26)

The main difference with respect to the Hartle–Hawking wave function (23) is the negative
sign in the exponent of the exponential pre-factor, which may have important consequences.
Let us notice that the probability for the universe to be created from nothing is P ∝ |φ|2; so,
in the case of the no-boundary condition, we have

PHH ∝ e
2

3V(ϕ) , (27)

while in the case of the Vilenkin’s tunnelling condition, we have

PT ∝ e−
2

3V(ϕ) . (28)

One immediate consequence is that the Vilenkin’s condition seems to favour the creation of
a universe with a large value of the potential, which is a necessary condition for the initial
hypersurface Σ0 to inflate. That would in principle reject the Hartle–Hawking proposal
because, on the contrary, the no-boundary proposal seems to favour the creation of a
universe with a small (or zero) value of the potential (PHH → ∞, as V → ∞). However,
this result changes when high-order corrections are taken into account, so the result is not
conclusive [7].

From a purely theoretical point of view, it seems that the Hartle–Hawking proposal is
more fundamental in the sense that these authors put the focus on the natural condition
that one should impose on the Euclidean region of the spacetime. As a consequence,
they obtain that the universe is represented by two branches, one corresponding to an
expanding universe and the other describing a contracting branches. These two branches
can be considered independently once they suffer a process of decoherence, so in practice
they may represent two different universes. Vilenkin’s proposal seems to be more practical
(although it is also based on a parallelism with some processes of quantum mechanics).

2.3. Semiclassical Quantum Gravity

The first thing that the quantum state of the spacetime must provide us with is a
consistent explanation of how the classical background can emerge from the full quantum
state of the spacetime. Fortunately, not only can this be done in a beautiful manner but it is
in fact one of the greatest achievements of quantum cosmology.

Again, the path integral formulation of the spacetime supplies a clear picture of how it
can be obtained. At some appropriate limit, which is generally a large length or mass scale
compared with their corresponding Planck values, the contribution of most of the paths in
the integral vanishes because of their destructive interference. The only paths that survive
the interference are those that are in phase, i.e., those for which δS ≈ 0. These are actually the
trajectories of the superspace given by the classical constraints. Therefore, much in a similar
way as the classical trajectory of a particle emerges from the constructive interference in the
path integral approach of the quantum mechanics of a particle, the classical background
spacetime emerges as the constructive interference among the paths in the superspace.
In the quantum mechanics of a particle that we can then compute the quantum corrections
to the trajectory of the particle in terms of quantum uncertainties. We shall see in this section
that the quantum corrections to the classical background of the universe are caused by the
matter fields.
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Following the customary approach [5,7,8,15], let us consider the following semiclassi-
cal wave function [5],

φ(hab, ϕ) = ∆(hab)e±
i
h̄ S0(hab)ψ(hab, ϕ), (29)

where ∆ and ψ are slowly varying functions of the metric tensor hab, and S0(hab) is the
classical action for gravity alone, given by (2). Essentially, the wave function (29) contains
two parts: one that only depends on the geometric variables of the spacetime and another
part that contains all the matter degrees of freedom in the wave function ψ. The basic
idea is that we expect that the quantum fluctuations of the spacetime will weaken more
rapidly than the quantum fluctuations in the state of the matter fields. In that case, we shall
find a regime where the spacetime behaves nearly classically with quantum matter fields
propagating therein. That is exactly what we need to describe the universe we observe.
Also notice the presence of the Planck constant in (29). It means that the classical behaviour
of the spacetime will be present whenever the gravitational action is large with respect to
the Planck constant.

Now, insert the semiclassical wave function (29) into the Wheeler–DeWitt Equation (19)
and solve it order by order in h̄ in the geometrical degrees of freedom. At order h̄0, one finds

Gabcd
δS0

δhab

δS0

δhcd
−
√

h
(

3R− 2Λ
)
= 0, (30)

which is the gravitational part of the Hamiltonian constraint (11) if we make the identification,

pab =
δS0

δhab
. (31)

At first order in h̄, neglecting second derivatives of the slowly varying terms with respect
to the 3-metric, two equations are obtained. The first equation [5]

Gabcd
δ

δhab

(
∆2 pcd

)
= 0, (32)

is actually the condition for the function ∆(hab) to be a slowly varying function. In other
words, whenever (32) is satisfied (or to the extent it is satisfied) the wave function (29) can
be a good candidate to describe the observable universe. Equation (32) is also the equation
of the conservation of the probability current, ∆2 pcd. The other equation that is obtained at
order h̄ is

∓ 2iGabcd
δS0

δhab

δψ

δhcd
+
√

ĥ̂T00 = 0, (33)

where the ∓ signs correspond to the ± signs of the exponent of (29). It suggests the
identification of a time variable t, given by

∂

∂t
= ±2Gabcd

δS0

δhab

δ

δhcd
. (34)

In that case, (33) becomes the Schrödinger-like equation of the matter fields

i
∂ψ

∂t
=
√

h T̂00(ϕ,−i∂/∂ϕ)ψ. (35)

Therefore, in the semiclassical regime we obtain at order h̄0 the classical behaviour of
the spacetime and, at first order in h̄, the quantum evolution of the matter fields. Thus,
the semiclassical wave function (29) contains all the physical information of the observable
universe. One could say that recovering the classical equations for the spacetime degrees
of freedom and the Schrödinger equation for the matter fields does not add anything to
what we already knew before the quantisation of the universe. That is true; these two
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features are nothing more than a test of consistency for quantum cosmology. After all,
the recovering of the classical spacetime must not be surprising. We started the process
of quantisation from the classical action of the spacetime and the matter fields, and the
quantisation procedure consists basically in promoting the classical variables to non-
commuting quantum operators, [ĥab, p̂ab] ∝ h̄. Then, it should not be surprising that in the
limit h̄→ 0 we recover the classical behaviour (this is the essence of the correspondence
principle) and something similar for the quantum behaviour of the matter fields.

The canonical quantisation of the whole universe that we have seen in this section is
interesting for several reasons. First, it suggests that the quantisation processes that leads
to the wave function of the universe is consistent and, in that case, one can assume that the
wave function of the universe, φ(hab, ϕ), would contain in principle all the physical (classi-
cal and quantum) information of all the degrees of freedom of the universe. Any physical
process should be describable within the formalism of quantum cosmology. Of course, this
reductionist point of view is not practical at all, but from the conceptual point of view it
results appealing. A more interesting feature is that it allows us to analyse higher-order
corrections to the semiclassical universe, and this should give novel features that cannot be
foreseen in the classical scenario. It might help us to go beyond the quantum description of
matter fields in a classical spacetime background. In particular, it can help us to find some
exclusive features of the quantum regime of the spacetime, i.e., small deviations from the
known behaviour caused by the high-order corrections of quantum gravity [17–20].

Another interesting feature of quantum cosmology is the appearance of time. From the
point of view of the superspace, time is just the parameter that parametrises the curve that
describes a particular trajectory. In the picture given by the path integral, the quantum
state of the universe is given by the set of all paths that join together the initial and final
states. If the quantum wave-packet is spread, no definite time variable can be chosen
mainly because there is no definite curve that describes the evolution of the universe. It
is only when the wave-packet is peaked around a particular solution (ideally becoming
a delta function) when we have a definite curve, the classical evolution of the universe,
that it can therefore be parametrised in terms of a parameter that we can call time11. It
therefore appears as the result of a decoherence process between the different histories of
the universe [3–5,21].

Furthermore, quantum cosmology relates the two concepts of time of contemporary
physics: the one of the theory of relativity and the one of quantum mechanics. This is a
very subtle point. Both the theory of relativity and the quantum theory work with a time
variable, say tr and tq, respectively. We usually assume that both time variables are the
same, tr = tq = t, but this is an assumption that is not guaranteed from the beginning.
Of course, they (must) coincide in the Newtonian limit of both theories, but in general, they
only coincide if the time variable of theory of relativity would be measured with an actual
clock, which is made of matter fields. However, the theory of relativity deals with “ideal
clocks,” and the consideration of an actual clock may entail some problems12.

2.4. Minisuperspace Model

Despite its conceptual importance, it is not hard to see that the Wheeler–DeWitt equa-
tion found in the previous chapter is very difficult if not impossible to solve for a general
configuration of the spacetime and the matter field(s). In order to make computations, one
generally has to assume some symmetries in the underlying spacetime of the universe. This
process, called symmetry reduction [7], reduces the number of variables of the superspace
and the so-reduced superspace is called minisuperspace13.

Furthermore, a minisuperspace model is not necessarily an unrealistic model. On the
contrary, the observational data indicates that for most of the history of the universe the
spacetime presents a high degree of symmetry. Even more, if the initial hypersurface
Σ0 from which the universe starts evolving is large enough compared with the Planck
length, a minisuperspace model could describe the whole history of the universe14. In other
cases, it can be taken as a toy model from which we can obtain relevant information about
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some (classical and quantum) aspects of the universe like, for instance, the creation of the
initial hypersurface Σ0 or the quantum-to-classical transition and the appearance of time,
among others.

They can also allow us to study the effect of small deviations from the symmetric
picture. For instance, we shall consider later on small departures from the homogeneous
spacetime and the matter field in the form of gravitons and matter particles, respectively.
These are local perturbations of the otherwise homogeneous and isotropic background.
The picture then becomes quite realistic and allows us to analyse potentially observable
effects like the kind of correlations between the modes of the matter fields in different
regions of the spacetime or the quantum gravitational corrections to the Schrödinger
equation of the matter fields. In all those cases, the study of the minisuperspace model
turns out to be justified.

Therefore, let us consider the minisuperspace that is obtained from the foliation
of a 4-dimensional spacetime with closed homogeneous and isotropic spatial sections.
The geometry of the spacetime is then characterised by a Freedman–Robertson–Walker
(FRW) metric

ds2 = −N2(t)dt2 + a2(t)dΩ2
3, (36)

where dΩ2
3 is the line element on the unit three sphere. The foliation of the spacetime

into space and time is in that case parametrised by just two functions, the scale factor
a(t) and the lapse function N(t). The geometry of the spatial sections, hab, is then fully
characterised by the scale factor a(t) that parametrises the variation in the distance between
two fixed points of the space along the evolution of the universe. It parametrises therefore
the expansion or the contraction of the universe. On the other hand, the lapse function
N(t) determines the time parametrisation of the foliation. Different values of N(t) entail
different time variables (i.e., different time parametrisations), with some special cases.
For instance, if N = 1, the time variable t is called cosmic time, and if N = a(t), t is
customarily renamed with the Greek letter η and is called conformal time because in terms
of η the metric becomes conformal to the metric of a closed static spacetime. We know that
the evolution of the universe is invariant under the choice of time reparametrisation, so,
at the end of the process, we can take the preferable time variable15.

The line element of the spacetime is then fully determined by these two functions, a(t)
and N(t). The total action, i.e., the Einstein–Hilbert action (2) plus the action of the scalar
field (3), can be written as [7]

S = SEH + Sm =
1
2

∫
dtN

(
− aȧ2

N2 + a− Λa3

3
+

a3 ϕ̇2

N2 − 2a3V(ϕ)

)
, (37)

where an integration over the spatial variables has been performed and absorbed with a
definition of units in which, 2G/3π = 1, and the rescalings, ϕ→ ϕ/

√
2π and V → V/2π2.

The total action has been simplified considerably. The only dynamical degrees of freedom
are the scale factor, a(t), and the scalar field, ϕ(t), which according to the homogeneity
condition must only depend on the time variable. The superspace has then been reduced
to a two dimensional space. Now, we can proceed as described in the preceding sections.
The momenta conjugated to the configuration variables are,

pa ≡
δL
δȧ

= − aȧ
N

, pϕ ≡
δL
δϕ̇

=
a3 ϕ̇

N
, (38)

and the Hamiltonian then reads

H = NH =
N
2

(
−1

a
p2

a +
1
a3 p2

ϕ − a +
Λa3

3
+ 2a3V(ϕ)

)
. (39)

The momentum constraint is automatically satisfied by the symmetries of the spacetime,
and the Hamiltonian constraint, δH

δN = 0, then becomes, H = 0. Promoting the mo-
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menta into quantum operators and applying the quantum version of the Hamiltonian
constraint, H = 0, to the wave function of the universe, φ(a, ϕ), which depends now on
the two variables of the minisuperspace, a and ϕ, we obtain the Wheeler–DeWitt equation,
Ĥφ(a, ϕ) = 0.

2.4.1. Inflationary Universe

Let us first analyse the initial stage of the universe where the scalar field is assumed to
be approximately constant on the small time scale in which the universe rapidly undergoes
an inflationary expansion [25], ϕ̇ ≈ 0 and ϕ0 � 1. In that case, the kinetic term of the scalar
field in (37) can be neglected and the potential turns out to be approximately constant,
V(ϕ0). From (37), it can be seen that a constant value of the potential is equivalent to a
cosmological constant term, so the universe effectively behaves like a DeSitter spacetime.
Then, we can write (37) as

S =
1
2

∫
dtN

(
− aȧ2

N2 + a− H2
0 a3
)

, (40)

where, H2
0 = 2V(ϕ0), in the case of the inflationary universe or, H2

0 = Λ/3, in the case
of a “pure” DeSitter spacetime, or the sum of both in a general case. The corresponding
Hamiltonian constraint turns out to be

H = −1
a

p2
a − a + H2

0 a3 = 0, (41)

which is nothing more than the Friedmann equation expressed in terms of the momentum
conjugated to the scale factor, pa. In terms of the time derivative of the scale factor, using
pa = aȧ (in cosmic time16, with N = 1 in (38)), the Hamiltonian constraint (41) can be
written as

ȧ =
√

H2
0 a2 − 1, (42)

whose solutions can easily be obtained,

a(t) =
1

H0
cosh H0t. (43)

If t ∈ (−∞, ∞), the scale factor (43) describes a universe that starts shrinking from an
infinite volume, bounces at the minimum value, a0 = H−1

0 , and ends up in an eternal
expansion (see, Figure 5 Left). However, it does not seem quite plausible that the universe
is created with an infinite volume, so the most reasonable possibility consist in restricting
ourselves to the domain, t ∈ (0, ∞), which describes a “bubble” of spacetime that is created
with radius a0 = H−1

0 at t = 0 (the origin of time), and starts expanding exponentially in
an inflationary like expansion. If the length scale of the initial “bubble” is some orders of
magnitude greater than the Planck scale, i.e., H−1

0 >> lP, then, the quantum fluctuations
of the spacetime would be small, and the homogeneous and isotropic picture described
here could reasonably represent the creation of a universe like ours17.

111



Universe 2021, 7, 404

Figure 5. Left: the closed DeSitter spacetime describes a universe that starts shrinking from an
infinite volume, bounces at the minimum value, a0 = H−1

0 , and ends up in an eternal expansion.
Right: the value a0 can be seen as a barrier where the incoming waves are reflected and converted
into outgoing waves.

Let us now analyse the solutions of the corresponding Wheeler–DeWitt equation.
Making the substitution, pa → −ih̄∂a, and leaving aside the ambiguity of the factor
ordering, the Hamiltonian constraint (41) can conveniently be written as

h̄2 d2φ(a)
da2 + ω2(a)φ(a) = 0, (44)

where,

ω(a) =
√

H2
0 a4 − a2. (45)

Written in this way, the Wheeler–DeWitt Equation (44) resembles the equation of a harmonic
oscillator with time-dependent frequency (such parallelism will be further exploited in
Section 3). Equation (44) is not exactly solvable. However, far from the turning point,
a0 = H−1

0 , we can approximate the solutions by the WKB wave functions

φ±(a) =
N±√
ω(a)

e±
i
h̄ S(a), (46)

where N± is a normalisation constant and S(a) is given by

S(a) =
∫

da ω(a) =
(

H2
0 a2 − 1

) 3
2

3H2
0

. (47)

The two wave functions φ± in (46) represent incoming and outgoing wave functions. Let
us see it by inserting them into the Wheeler–DeWitt Equation (44). In that case, at order h̄0

the Hamilton–Jacobi equation is obtained

(
∂S
∂a

)2
+ a2 − H2

0 a4 = 0, (48)

which corresponds to the Hamiltonian constraint (41) if one makes the identification

pa = ±
∂S
∂a

. (49)

In fact, let us note that at leading order in h̄ it is satisfied

− aȧ ≡ pa ≈ 〈φ±| p̂a|φ±〉 = ±
∂S
∂a

+O(h̄1). (50)

Therefore, it is obtained

ȧ = ∓ω(a)
a

= ∓
√

H2
0 a2 − 1, (51)
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which is the Friedmann Equation (42), with two signs: the − sign that corresponds to φ+

and the + sign that corresponds to φ−. Thus, φ− describes an outgoing wave, i.e., a wave
that travels towards greater values of the scale factor—it thus represents an expanding
universe—and φ+ an incoming wave, i.e., a wave that travels towards smaller values of the
scale factor, which corresponds therefore to a contracting universe. Let us notice however
that the interpretation of φ± in terms of incoming and outgoing waves must be taken
carefully [26]. The Friedmann Equation (41) is invariant under the time reversal change,
t → −t, and in terms of −t (ȧ → −ȧ), φ+ would represent the expanding universe (i.e.,
an outgoing wave) and φ− the contracting universe (i.e., an incoming wave). Clearly, it
depends on the (time) parametrisation. The important thing is that the general quantum
state of the universe (far from the turning point) can be written as

φ(a) = A0 φ+(a) + B0 φ−(a), (52)

which represents a quantum superposition of incoming and outgoing waves, irrespective
of the particular wave function that represents each one. Another important feature that is
worth noticing is that the minimum value a0 constitutes a classical barrier below which the
universe cannot go through. Let us notice that for a value a < a0, there is no real solution
of the Friedmann Equation (51), so an incoming wave function representing a contracting
universe is classically reflected (bounced) into an outgoing wave (see Figure 5 Right).

2.4.2. Small Perturbations and Backreaction

Let us now consider a more realistic scenario by introducing two important changes.
First, we shall not neglect the kinetic term of the scalar field in the action (3), and we shall
consider a general form (i.e., not necessarily a constant) for the potential V(ϕ). Contrary
to what may be thought, that will not introduce qualitative changes. In return, it will
allow us to represent other stages of the evolution of our universe as well as many other
types of universes. The second change that we are going to make is the introduction of
small perturbations around the homogeneous and isotropic background spacetime. This
will help us to analyse several phenomena like the behaviour of the matter fields in the
semiclassical universe or the appearance of a physical time variable.

Regarding the last question, we can assume that except for the very beginning, the
inhomogeneities of the universe are relatively small18. Therefore, to a good order of ap-
proximation, the universe can be represented by a homogeneous and isotropic background
with relatively small inhomogeneities propagating in the background. In that case, it
seems reasonable to expand the variables of the spacetime and the matter fields around
the homogeneous and isotropic values and study the inhomogeneities as perturbations
of the homogeneous and isotropic background. We can still consider the 3 + 1 splitting
of the spacetime given in (1). However, the idea is now to expand the configuration vari-
ables (hab, N, Na and ϕ) around their homogeneous and isotropic values and retain just the
first-order terms. Then, let us consider the following expansions [6,27]

hab(t, x) = a2(t)Ωab + a2(t)∑
n

2dn(t)Gn
ab(x) + . . . , (53)

ϕ(t, x) =
1√
2π

ϕ(t) + ∑
n

fn(t)Qn(x), (54)

where Ωab is the metric on the unit three-sphere, ϕ(t) is the homogeneous mode of the scalar
field, Qn(x) are the scalar harmonics on the three-sphere, and Gn

ij(x) the transverse traceless
tensor harmonics [27], with, n ≡ (n, l, m). More harmonics can be present in (53). However,
we shall only focus on the tensor modes, dn, as the representative of the perturbation
of the spacetime. Eventually, these modes will represent gravitons propagating in the
background spacetime, and, analogously, the perturbation modes fn will represent the
particles of the scalar field(s). The lapse and shift functions must also be expanded in
terms of the spherical harmonics. Then, all these perturbed functions are inserted in the
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action (10). The configuration variables are now the scale factor a(t), the homogeneous
mode of the scalar field ϕ(t), and the infinite number of modes dn(t) and fn(t), denoted
generically by xn(t). The minisuperspace is then the infinite dimensional space spanned
by the variables (a, ϕ, xn), and the time evolution of the universe is represented by a
parametrised trajectory in that space, (a(t), ϕ(t), xn(t)). We should have included the
modes of the perturbed lapse and shift functions. However, as it happens with their
homogeneous counterparts, they are not dynamical variables but Lagrange multipliers
that generate a set of constraints that can be used to simplify the equations [27]. After a
cumbersome computation, one arrives at the Hamiltonian constraint

H = H0 +Hm = 0, (55)

where the Hamiltonian H0 contains only degrees of freedom of the homogeneous and
isotropic background, andHm is the Hamiltonian density that contains also the degrees of
freedom of the perturbation modes.

Let us first consider the Hamiltonian of the background spacetime, which is given by
the Hamiltonian density of (39),

H0 =
1
a

(
−p2

a − a2 +
1
a2 p2

ϕ + 2a4V(ϕ)

)
= 0. (56)

After canonical quantisation, the Wheeler–DeWitt equation reads
(

h̄2 ∂2

∂a2 −
h̄2

a2
∂2

∂ϕ2 + a4H2(ϕ)− a2

)
φ0(a, ϕ) = 0, (57)

where, H2(ϕ) ≡ 2V(ϕ), is not necessarily constant now. Let us consider the semiclassi-
cal solutions,

φ±0 (a, ϕ) = ∆(a, ϕ)e±
i
h̄ S(a,ϕ), (58)

where ∆(a, ϕ) is a slow varying field of the scale factor. Inserting the wave function (58)
into the Wheeler–DeWitt Equation (57), as we did in the previous section, and disregarding
second-order derivatives with respect to the background variables, one obtains at order h̄0

the Hamilton–Jacobi equation [6]

−
(

∂S
∂a

)2
+

1
a2

(
∂S
∂ϕ

)2
+ a4H2(ϕ)− a2 = 0. (59)

Following the semiclassical development of the previous sections, let us define a WKB-time
parameter tw as [6]

∂

∂t±w
≡ ±

(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
, (60)

in terms of which,

ȧ2 =
1
a2

(
∂S
∂a

)2
, ϕ̇2 =

1
a6

(
∂S
∂ϕ

)2
, (61)

and the Hamilton–Jacobi Equation (59) turns out to be

ȧ2 + 1− a2
(

ϕ̇2 + 2V(ϕ)
)
= 0, (62)

which is the Friedmann equation of the background spacetime. The WKB wave functions
φ±0 describe universes with a background spacetime that evolves according to the Fried-
mann Equation (62). The wave function φ0 may thus represent the quantum state of a
large variety of classical models of the universe. The two signs in (60) are irrelevant at the
classical level because the Friedman Equation (62) is invariant under the reversal change of
the time variable. However, they will play an important role at the semiclassical level.
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Let us now consider the complete Hamiltonian constraint (55). The corresponding
Wheeler–DeWitt equation is

(
Ĥ0 + Ĥm

)
φ(a, ϕ; xn) = 0, (63)

where Ĥ0 is the Hamiltonian of the background that we have already seen (56) and (57),
and Ĥm is the Hamiltonian of the perturbation modes, which for the moment we do
not need to specify. The wave function of the universe can be separated in two factors,
the wave function φ0(a, ϕ) of the background (58) and another wave function that contains
the matter degrees of freedom19. Therefore, the semiclassical wave function can be written
now as

φ±(a, ϕ; xn) = ∆(a, ϕ)e±
i
h̄ S(a,ϕ)ψ±(a, ϕ; xn), (64)

If we insert the wave function (64) into the Wheeler–DeWitt Equation (63) and we solve it
order by order in h̄, it at order h̄0 the Hamilton–Jacobi Equation (59) is obtained. Therefore,
the wave function (64) still describes the background spacetime that evolves according
to (62). On the other hand, at order h̄1 inH0, one obtains

± ih̄
(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
ψ± = Ĥmψ±. (65)

Here comes a subtle but crucial point of the semiclassical regime. In terms of the initial
proper time, t, the two branches of the universe represent an expanding and a contracting
universe because, from (38),

− a
da
dt

= pa ≈ 〈φ±0 | p̂a|φ±0 〉 ∼ ±
∂S
∂a

, (66)

so φ−0 describes a universe whose spacetime background is expanding and φ+
0 a universe

whose background spacetime is contracting. In that case, in order for the WKB-time (60) to
represent the proper time variable t in the two branches, we have to choose for the branch
φ− the WKB-time variable t− defined by

∂

∂t−
≡ −

(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
, (67)

in which case,
∂a

∂t−
=

1
a

∂S
∂a

, (68)

which represents an expanding universe. For the WKB-time variable in the φ+ branch, we
must choose

∂

∂t+
≡ −1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ
, (69)

in terms of which,
∂a

∂t+
= −1

a
∂S
∂a

, (70)

describes a contracting universe. It is worth noticing that this assignation is somehow
arbitrary [26,28]. If we would have started with a time variable, t→ −t, then, φ+

0 would
represent the contracting universe and φ−0 the expanding one, and the assignations of the
WKB-time variables would have been the other way around. However, in terms of the
definitions (69) and (67), the Equation (65) reads,

ih̄
∂

∂t±
ψ±(t±, ϕ) = Ĥmψ±(t±, ϕ), (71)
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where ψ±(t±, ϕ) ≡ ψ±[a(t±), ϕ], evaluated in the background solutions of (70) and (68).
Therefore, we have ended up with two universes, one contracting and another expanding,
both filled with matter.

There is however a different interpretation. One may assume that the physical time
variable, i.e., the time variable measured by actual clocks that are made of matter, is the time
variable that appears in the Schrödinger equation. In that case, it is worth noticing that the
physical time variable of the two universes is reversely related, t+ = −t−. Let us assume
that we fix the time variable by fixing the time that a particular observer measures and
consider thus t− as the physical time. Then, in terms of the time variable t− the evolution
of the scale factor is given by (70) so the two wave functions, φ+ and φ−, represent both
with a universe with an expanding background spacetime, i.e from the point of view of
this hypothetical observer both universes are expanding. The Schrödinger Equation (65) in
the observer’s universe becomes,

ih̄
∂

∂t−
ψ−(t−, xn) = Ĥmψ−(t−, xn). (72)

However, the Schrödinger equation for the fields of the partner universe is

− ih̄
∂

∂t−
ψ+(t−, xn) = Ĥmψ+(t−, xn), (73)

for the wave function ψ+. The ”wrong sign” in (73) is not problematic. It is only indicating
that (73) is the Schrödinger equation of the complex conjugated wave function ψ∗+ with a
CP-transformed Hamiltonian [26]. Let us notice that (73) can be written as

ih̄
∂

∂t−
ψ−(t−, x̄n) = Ĥm(x̄n)ψ−(t−, x̄n). (74)

It is therefore the Schrödinger equation for the antimatter fields of the observer’s universe.
In this case, we have ended up in the description of two universes, both expanding but
one filled with matter and the other filled with antimatter20. The two interpretations raised
here for the linear combination of incoming and outgoing wave look very similar to the two
interpretations made in QED of an electron–positron pair (see Figure 6). In Section 3.2.4,
we shall interpret this combination as the creation of a universe–antiuniverse pair.

Figure 6. An electron–positron pair can equivalently be seen as either an electron propagating
backwards in time, bouncing, and then propagating forward in time or as a particle–antiparticle pair
propagating forward in time.

Let us now specify the Hamiltonian of the perturbation modes. If we restrict to small
linear perturbations, the different modes do not interact, andHm turns out to be the sum
of the Hamiltonian of a set of harmonic oscillators [4,29]

Hm = ∑
n
Hn, (75)

with

Hn =
1

2M
p2

xn +
Mω2

n
2

x2
n, (76)
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where, M(t) = a3(t), and [6]

ω2
n =

n2 − 1
a2 , (77)

for the tensorial modes of the spacetime (xn ≡ dn), and

ω2
n =

n2 − 1
a2 + m2, (78)

for the perturbation modes of the scalar field (xn ≡ fn). Thus, for small perturbations,
the Hamiltonian of the modes turns out to be the Hamiltonian of a set of uncoupled
harmonic oscillators with time-dependent mass, M(t) = M[a(t)], and frequency given by,
ωn(t) = ωn[a(t)], where a(t) is the solution of the Friedmann equation of the background
spacetime (possibly including the backreaction).

The Schrödinger Equation (71) of the perturbation modes is then the Schrödinger
equation of a set of uncoupled harmonic oscillators, whose general solution can be written
as [4,6,30]

ψ± = ∏
n

ψn(t±, xn), (79)

where the function ψn(t, xn) is the wave function of a harmonic oscillator with time-
dependent mass and frequency, which can be written in terms of the wave function of
a harmonic oscillator with constant mass and frequency [31–34]. The general solution
of ψn(t, xn) can then be expanded in the basis of number eigenstates of the invariant
representation, ψN,n, as

ψn = ∑
N

cN ψN,n, (80)

where cN are constants coefficients, and the wave function of the invariant number state,
ψN,n, is given by [32,35]

ψN,n(a, φ; xn) ≡ 〈a, φ; xn|Nn〉 =
1

σ
1
2

exp
{

iM
2

σ̇

σ
x2

n

}
ψ̄N

( xn

σ
, τ
)

(81)

where ψ̄N(q, τ) is the customary wave function of the harmonic oscillator,

ψ̄N(q, τ) =

(
1

2N N!π
1
2

) 1
2
e−i(N+ 1

2 )τe−
q2
2 HN(q) (82)

with HN(q) the Hermite polynomial of order N, q ≡ xn
σ ,

τ(t) =
∫ t 1

M(t′)σ2(t′)
dt′, (83)

and σ(t) is an auxiliary function that satisfies the non-linear equation [31,32]

σ̈ +
Ṁ
M

σ̇ + ω2
nσ =

1
M2σ3 , (84)

plus some boundary condition [36]. The interesting property of the invariant representation
is that once the field21 is in a number state of the invariant representation, it remains in
the same state along the entire evolution of the field. For instance, let us assume that the
perturbation modes are in the vacuum state of the invariant representation, |0〉 = ∏n |0n〉.
In that case, the mean value of the energy of the perturbations reads22

〈Hm〉 = ∑
n

h̄ωn

(
〈N̂n〉+

1
2

)
= ∑

n

h̄ωn

2
→ h̄

2

∫ nmax
dn n2 ωn, (85)
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where ωn is given by (77) and (78) for matter particles or spacetime gravitons, respectively.
The sum in (85) diverges and some cut-off nmax must be taken. The energy 〈Hm〉 is the
backreaction of the perturbations on the homogeneous and isotropic background that
would induce a modification of the Friedmann Equation (62),

(
ȧ
a

)2
= 2ρϕ −

1
a2 +

〈Hm〉
a3 , (86)

where, ρϕ = 1
2 ϕ̇2 + V(ϕ) is the energy of the homogeneous mode of the matter field and

〈Hm〉 ∝ a−1 for the massless tensor modes or 〈Hm〉 ∝ m for the perturbations of the
scalar field.

2.5. Paradigms for the Creation of the Universe in Quantum Cosmology

In the preceding section we ended up with a Friedman equation that was corrected by
the backreaction of the perturbation modes of the spacetime. We shall see in this section
that such a term may induce important consequences in the way in which the universes
can be created. However, for historical reasons, instead of considering the backreaction of
the perturbation modes, we shall consider the model of a massless scalar field conformally
coupled to gravity and a cosmological constant, which eventually raises the same term in
the Friedmann equation, so the two models effectively entail similar effects. Later on, we
shall briefly comment on the nature of this term. The conformally coupled massless scalar
field is the field used by Hartle and Hawking in Ref. [12] to describe the quantum state of
the universe and the process of quantum creation. Besides, it will also help us to introduce
different paradigms for the creation of the universe.

Therefore, let us consider the following action for the spacetime and the massless,
i.e., V(ϕ) = 0, scalar field,

S = SEH + Sm =
1
2

∫
dtN

(
− aȧ2

N2 + a− Λa3

3
+

a3 ϕ̇2

N2 −
1
6

a3 4Rϕ2
)

, (87)

where the last term represents the conformal coupling of the scalar field, and 4R is the
Ricci scalar. Then, with the change, χ = aϕ, and after an integration by parts, the total
action (87) can be written as [12]

S = SEH + Sm =
1
2

∫
dtN

(
− aȧ2

N2 + a− H2
0 a3 +

aχ̇2

N2 −
χ2

a

)
, (88)

where H2
0 can be a pure cosmological constant, H2

0 = Λ/3, or the constant value of
the potential of an auxiliary inflaton field (different from the scalar field ϕ that we are
considering in (88)). In any case, it will be assumed that it is a constant. Now, the momenta
conjugated to the scale factor and the conformally coupled massless field χ can be easily
obtained, and the Hamiltonian constraint associated to the action (88) reads

H = NH =
N
2a

(
−p2

a − a2 + H2
0 a4 + p2

χ + χ2
)
= 0, (89)

which, taking into account that p2
χ + χ2 is nothing more than (twice) the energy of the

scalar field [36], 2E, can also be written as

1
2

p2
a + U (a) = E, (90)

with
U (a) =

1
2

(
a2 − H2

0 a4
)

. (91)
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which is formally similar to the energy equation of a particle that propagates under the
action of the potential (91). The first term of the l.h.s. of (90) would be the kinetic energy,
the second term would be the potential energy, and E would be the total energy23

Quantum-mechanically, the wave function of the universe, φ(a, χ), is the solution of
the Wheeler–DeWitt equation associated to the Hamiltonian constraint (89),

(
∂2

∂a2 + H2
0 a4 − a2 − ∂2

∂χ2 + χ2
)

φ(a, χ) = 0, (92)

which can be solved by the method of the separation of variables. Making, φ(a, χ) =
ξ(χ)ψ(a), the Wheeler–DeWitt Equation (92) can be split into the two following equations,

(
− d2

dχ2 + χ2
)

ξ(χ) = 2Eξ(χ), (93)

d2ψ(a)
da2 +

(
H2

0 a4 − a2
)

ψ(a) = −2Eψ(a). (94)

The first of these equations is the equation of a quantum harmonic oscillator with unit mass
and frequency. It can be solved in terms of Hermite polynomials, Hn(x),

ξ(χ) ≡ ξn(χ) =
1√
2nn!

(
1
π

) 1
4
e−

χ2
2 Hn(χ), (95)

with a quantised energy given by

E ≡ En = (n +
1
2
). (96)

On the other hand, Equation (94) can be written as

1
2

d2ψ(a)
da2 + (E−U (a))ψ(a) = 0, (97)

with U (a) given by (91). Equation (97) is formally similar to the Schrödinger equation of a
particle of energy E moving under the action of the potential U (a) (see Figure 7). For the
value E ∈ (0,Umax), where Umax is the maximum value of the potential, we can distinguish
three regions: two classically allowed regions (regions I and I I I in Figure 7) separated by a
classically forbidden region (region I I). We have already analysed in the preceding section
the behaviour of the wave function in region I. There are incoming and outgoing waves
that represent a contracting universe that shrinks to the minimum value of the scale factor
a+ (see, Figure 7) and bounces (or it is reflected), becoming an expanding universe. In the
other classically allowed region, region I I I, we shall see that there are also incident and
reflected waves that represent a universe that is confined to oscillate between a = 0 and
the maximum value a−.

In the case of a particle moving under the action of a similar potential, the particle
that is placed in the region I I I is classically confined to move in that region like the
universes in our example. However, we know that quantum-mechanically there is a non-
zero probability for the particle to tunnel though the quantum barrier and appear in the
region I. Something similar happens with the universe. If E > 0, the small oscillating
universe of region I I I can tunnel out through the Euclidean barrier appearing in region
I as a new-born universe. The universe is then said to be created from something. In the
limiting case, E = 0, which was the case analysed by Hartle and Hawking [12,37–39] and
by Vilenkin [40–42] for the creation of the universe, there is no region I I I from which to
tunnel out to region I. The universe appears in region I from a pure tunnelling phenomena
(like the creation of particles from the quantum vacuum). In that case, the universe is said
to be created from nothing24. Let us analyse the two cases separately.
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Figure 7. Potential U (a). For E > 0, there are three regions: two Lorentzian regions separated by an
Euclidean one. Compare it with the case E = 0 analysed in Figure 5.

2.5.1. Creation of the Universe from Nothing

Let us first analyse the creation of the universe from nothing, i.e., E = 0 in (90).
In that case, in terms of the time derivative of the scale factor, pa = −aȧ, the Hamiltonian
constraint (90) reduces to the Friedmann Equation (42) already studied in Section 2.4.1,

ȧ =
√

H2
0 a2 − 1, (98)

which yields the well-known solution,

a(t) = a0 cosh H0t, (99)

with, a0 = H−1
0 . If we restrict ourselves to the “expanding branch,” t ≥ 0, the scale

factor (99) represents a universe that starts expanding from the initial boundary Σ(a0) until
infinity. For values a < a0, there is no real solution, and the value a = a0 constitutes a
classical barrier for the universe (see Figure 5). However, one can perform a Wick rotation
into Euclidean time, t = −iτ, in terms of which the Friedmann Equation (98) becomes

daE
dτ

=
√

1− H2
0 a2

E. (100)

Now, the Euclidean Equation (100) has the solution

aE(τ) = a0 cos H0τ, (101)

where τ ∈ (− π
2H0

, 0). Let us notice that, in Euclidean time, −dt2 → +dτ2, the line element
turns to be

ds2 = dτ2 + a2
E(τ)dΩ2

3, (102)

which is the line element of a 4-sphere of radius 1/H0 embedded in a 5-dimensional flat
Euclidean spacetime. The ”spatial section” starts expanding from a single point of the
sphere (at τ = −π/2H0) until it reaches the value H−1

0 at the Euclidean time, τ = 0 (see,
Figure 8). It is called a DeSitter instanton, and it gives the maximum contribution to the
tunnelling wave function (it is the extremal solution of the Euclidean action [12]). At the
boundary hypersurface Σ(a0), it appears in the Lorentzian region as a new born DeSitter
universe that starts expanding exponentially.
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Figure 8. Left: a DeSitter instanton can be seen as a 4-dimensional sphere in the 5-dimensional
Euclidean flat spacetime. Right: the creation of a DeSitter spacetime from a DeSitter instanton of the
Euclidean sector of the spacetime.

Quantum-mechanically, the situation is the following. The initial boundary Σ(a0)
separates the Lorentzian region of the spacetime (see, Figure 8), where classical solutions
are allowed, from the Euclidean region, where only tunnelling solutions can exist. The wave
function that represents a classical spacetime in the Lorentzian region is given in terms of
the oscillatory wave functions e+iS and e−iS, where S is given by (47)

S(a, ϕ) =
(H2a2 − 1)

3
2

3H2 . (103)

In the Euclidean sector, a < a0, the wave function of the universe, can be written in terms
of the tunnelling wave functions, eI and e−I , where I is given by the integral (47) with ω(a)
being replaced by |ω(a)|, i.e.,

I(a, ϕ) =
(1− H2a2)

3
2

3H2 . (104)

The picture is then similar to the problem of a wave-particle tunnelling through a quantum
barrier. The oscillatory wave functions e±iS can be seen as the incoming and the reflected
waves that may represent a photon or another quantum mechanical particle. Classically,
the boundary Σ(a0) acts as a barrier that cannot be crossed (see Figure 9). Quantum-
mechanically, however, there is a non-null probability of penetrating into the barrier,
although the amplitude is exponentially suppressed in the Euclidean region. Analogously,
one can say in cosmology that there is a non-zero probability for the universe to appear from
nothing, i.e., from the Euclidean barrier of the spacetime. An essential difference is that here
the tunnelling is not from another classically allowed region of the spacetime. It is therefore
more similar to the creation of virtual particles from the quantum vacuum in a quantum
field theory. In a quantum field theory, the pair of virtual particles can only exist at a small
amount of time compatible with Heisenberg’s uncertainty relations, otherwise the principle
of energy conservation would be violated. In the universe, however, the energy is zero
(the negative gravitational energy balances the positive energy of the matter fields) so the
creation of the universe from nothing does not violate the conservation of energy.

From the above reasoning it is clear that the name ”creation from nothing” does
not refer to the absolute meaning of nothing, i.e., to something to which we can ascribe
no properties. As we have seen, the Euclidean region of the spacetime has geometrical
properties. In the standard literature (see, for instance, Refs. [7,8,16,37,38,40]), it usually
refers to two meanings. One, perhaps the most consistent, is that the universe is created
from a region of the spacetime where nothing real exists; in particular, there is no actual
time (i.e., time measured by clocks). In that sense, there is nothing. Another sense with
which the term “nothing” is used in the creation of the universe is that the universe, in the
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paradigmatic case of the creation of a DeSitter spacetime from the Euclidean instanton (101),
begins from a single non-singular point of the Euclidean 4-sphere (which is geometrically
equivalent to any other point in the sphere). In that case, the single point is meant to
be “nothing”.

Vilenkin’s vs. Hartle–Hawking’s Versions

The general quantum state of the universe is therefore given in the region I by the
linear combination

φI(a, ϕ) = AI
1√

ω(a)
e+

i
h̄ S(a) + BI

1√
ω(a)

e−
i
h̄ S(a), (105)

and in the tunnelling region I I by

φI I(a, ϕ) = AI I
1√
|ω(a)|

e+
1
h̄ I(a) + BI I

1√
|ω(a)|

e−
1
h̄ I(a). (106)

The particular combination of WKB wave functions in the Lorentzian and in the Euclidean
regions of the spacetime, i.e., the particular values of the constants AI,I I and BI,I I , depend
on the boundary condition that we impose on the state of the universe.

Hartle and Hawking [12,37,39] propose as the boundary condition that the path
integral must be performed over compact Euclidean geometries that fit with the “final”
values25 a0 and ϕ in the boundary Σ(a0) (see Figure 8). In the homogeneous and isotropic
minisuperspace, it is equivalent to the conditions [15]

a(τ0) = 0 ,
da
dτ

(τ0) = 1 ,
dϕ

dτ
(τ0) = 1. (107)

The wave function obtained for the Euclidean sections is e−I , with

I =
∫ a

0
da a (1− H2a2)

1
2 =

−1
3H2

(
1− (1− H2a2)

3
2

)
. (108)

It yields [7,12,15]

φI I
HH(a, ϕ) =

1

(1− H2a2)
1
4

exp
(

1
3H2

(
1− (1− H2a2)

3
2

))
. (109)

From the matching conditions of the WKB method, the Hartle–Hawking wave function
(109) implies a linear combination of oscillatory wave functions in the Lorentzian region
(a > a0) [7,12,15],

φI
HH(a, ϕ) =

1

(H2a2 − 1)
1
4

exp
(

1
3H2

)
cos

(
(H2a2 − 1)

3
2

3H2 − π

4

)
. (110)
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Figure 9. Hartle–Hawking “no-boundary” boundary proposal vs. Vilenkin’s tunnelling boundary
proposal. The H–H state implies a linear combination of expanding and contracting wave functions in
the Lorentzian region, where the tunnelling wave function corresponds only to expanding universes.

On the other hand, Vilenkin [40–42] proposes as the boundary condition, in an analogy
with the tunnelling process of quantum mechanics, that the only modes that survive
the quantum barrier are the “outgoing” modes, i.e., those that represent an expanding
universe26. It means that in the region I, the wave function of the universe is given
by [7,15,41,43]

φI
T(a, ϕ) =

AI(ϕ)

(H2a2 − 1)
1
4

exp

(
−i

(H2a2 − 1)
3
2

3H2

)
, (111)

where AI(ϕ) is a normalisation “constant” that can be found by imposing the regularity
conditions [15], ∂φ/∂ϕ→ 0 as a→ 0. Then, AI(ϕ) = exp

(
−1/3H2), for which φT ∼ e−

1
2 a2

,
that is regular at a → 0 for any value of the scale factor. By following the same WKB
procedure of matching conditions, we found in the Euclidean sector [15]

φI I
T (a, ϕ) =

1

(1− H2a2)
1
4

(
eI − i

2
e−I
)
≈ 1

(1− H2a2)
1
4

eI , (112)

where I is given by (108). Except for the values of the scale factor close to a0, the second
term in (112) is exponentially smaller than the first, so it is usually neglected.

Besides their conceptual meaning, the main difference between the wave function
of the two proposals is the different sign in the exponent of the pre-factor, exp

(
−1/3H2),

in the case of the tunnelling wave function, and exp
(
1/3H2), in the case of the no-boundary

wave function. The probability measures are different in both cases. Because the similarity
of the Wheeler–DeWitt equation with the Klein–Gordon equation, Vilenkin proposes to
use the probability current27 [43,44]

J =
i
2
(φ∗∇φ− φ∇φ∗), (113)

which is conserved because in virtue of the Wheeler–DeWitt equation it satisfies ∇ · J = 0.
The Hartle–Hawking wave function is real, so the probability measure (113) would yield
zero. These authors propose instead to use the customary probability measure of quan-
tum mechanics,

J = |φ|2. (114)

With these two choices, the probability for the creation of the universe reads [15]

P = J · dΣ ≈ exp
(
± 2

3H2(ϕ)

)
dϕ, (115)
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where the + sign is for the no-boundary wave function and the − sign for the tunnelling
wave function. Thus, as we have already noticed in Section 2.2, the no-boundary proposal
seems to favour small values of the potential (PHH → ∞ for H(ϕ)→ 0), and the tunnelling
proposal seems to favour the creation of universe with a large value of the potential (PT → 0
for H(ϕ)→ 0). Therefore, it is usually stated that Vilenkin’s tunnelling condition fits better
with the inflationary scenario [25,43].

2.5.2. Creation of the Universe from Something

Let us now analyse the case E ∈ (0,Umax) in (90). The corresponding Friedman
equation is obtained by substituting the value, pa = −aȧ, in (90). It yields

(
ȧ
a

)2
= H2

0 −
1
a2 +

2E
a4 . (116)

We can see that the conformally massless scalar field can reproduce the effect of a radiation
content of the universe (ρ ∼ a−4, 〈Hm〉 ∝ a−1 in (86)). The Friedman Equation (116) can
also be written as

ȧ =
H0

a

√
(a2 − a2

+)(a2 − a2
−), (117)

with [26,45]

a2
± =

1
2H2

0

(
1±

(
1− 8EH2

0

) 1
2
)

. (118)

For the value, 1
8H2

0
= Umax > E > 0, the two Lorentzian regions are located at a > a+ and

a < a−, respectively. These two sectors represent two separated regions where the universe
may exist. In between, there is the Euclidean sector, which is a classically forbidden region.
We have therefore two different types of universes separated by a quantum barrier (see
Figure 7). In region I I I, the solution of (117) can be written as [36]

a(t) =
(

a2
− cosh2 H0∆t− a2

+ sinh2 H0∆t
) 1

2 , (119)

where, ∆t = t− t0, with

t̃0 =
1

H0
arctanh

a−
a+

. (120)

It represents a small universe that starts in a big-bang-like singularity at t = 0, expands
to the maximum value a−, at t = t̃0, and then re-collapses to a big-crunch-like singularity,
at t = 2t̃0. For a value H0 � 1, the evolution of this type of universe is like the evolution
of a radiation-dominated universe (see Figure 10). This kind of universes are called baby
universes [46], which are typically associated with quantum fluctuations of the spacetime.

Figure 10. The universes of region I I I are cyclic universes that start from a big-bang singularity and
end in a big-crunch one. In region I, the universe effectively behaves like a closed DeSitter spacetime.
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On the other hand, the solution of (116) in region I can be written as [36]

a(t) =
(

a2
+ cosh2 H0∆t− a2

− sinh2 H0∆t
) 1

2 , (121)

with ∆t ∈ (−∞, ∞). It represents a universe that contracts from infinity to the minimum
value a+, reached at ∆t = 0, and then, it expands again to infinity (see, Figure 10). This so-
lution is essentially very similar to the closed DeSitter universe. In fact, it can continuously
be transformed into the customary solution of the closed DeSitter spacetime in the limit
E→ 0, for which a− → 0 and a+ → 1/H0.

In between, there is a tunnelling region, where the solution of the Euclidean version
of the Friedman equation is the Euclidean instanton (102) with the scale factor given by

aE(τ) =
(

a2
+ sin2 H0∆τ + a2

− cos2 H∆τ
) 1

2 , (122)

where a± is given by (118), a ∈ (a−, a+), and

∆τ = τ − τ0 ∈ (0,
π

2H0
). (123)

The Euclidean instanton with scale factor (122) connects the maximum expansion hyper-
surface Σ(a−) of the baby universes of region I with the initial hypersurface Σ(a+) of the
large parent universe in region I (see Figure 11). It therefore connects the two regions,
and it also provides the first-order contribution to the probability of crossing the quantum
barrier and appearing in region I as a new-born universe (see, Ref. [36]). The universe is
then said to be created from something.

Figure 11. The creation of a large parent universe from a baby universe.

Gott and Li: The Universe Is Its Own Mother

The question of whether the universe is created from nothing or from something seems
to be rooted in the value of the energy E in the Friedman Equation (90). If E = 0, the
universe must be created from nothing, and if E > 0, the universe must be created from
something. However, the value E = 0 is controversial because from (96), E = n + 1/2,
so the value E = 0 would violate the uncertainty principle of quantum mechanics [45].
In their original study [12], Hartle and Hawking suggested that this term might be cancelled
by some renormalisation procedure. However, Gott and Li [45] argue that there is no
expectation for such an exact cancellation, and in fact, Barvinsky and Kamenshchik [47–49]
computed the renormalisation corrections and not only is the energy term not cancelled
but new similar terms appear. Even more, we have seen that the backreaction of the
perturbation modes of the spacetime produces a similar term in the Friedmann equation
(their energy density is given by 〈Hm〉/V ∝ a−4, where 〈Hm〉 ∝ a−1 in (85) for the
perturbations of the spacetime). Therefore, a term with E > 0 seems to be unavoidable.
One may argue that it can be effectively small, and thus it could be neglected. However,
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regardless of how small it can be, we have seen that the consequences for the creation of
the universe are very important.

A conceptual problem arises however if the universe is created from “something”
because then we need the existence of that “something” prior to the creation of the universe,
i.e., if the universe is created from the tunnelling of a quantum fluctuation of a pre-existing
spacetime, then, one should explain how the first spacetime has been created from which
the rest of the universes have subsequently been generated. Gott and Li give an apparently
exotic although quite interesting explanation. They argue and show [45] that in region I I I
there can exist closed temporal curves (CTC’s). In that case, the spacetime fluctuations
of a large parent spacetime can travel through a CTC and become the baby universe that
“tunnelled out” through the Euclidean barrier to give rise to the parent universe in an
atemporal process in which terms like “after” or “before” become meaningless. They are
only meaningful within the large parent regions of the spacetime where CTCs do not exist.
Thus, according to these authors, the universe could be its own mother.

2.5.3. Creation of Universes in Pairs

There is a way out of this paradoxic explanation. Even with the value E > 0 in (116),
there is still room for the universes to be created from nothing, i.e., from the Euclidean
region without the need of a pre-existing spacetime. However, as we have seen, the process
cannot be the one studied in Section 2.5.1 for the creation of a single universe from the
single Euclidean instanton (101). Instead, one has to consider more elaborated instantons.
For instance, one can consider the double Euclidean instanton that is formed by joining
together two single Euclidean instantons through their minimal hypersurfaces Σi(a−) (see,
Refs. [47,48] and Figure 12). The result is the creation from nothing of a pair of entangled
universes in the region I [50–52] (see Figure 12).

Figure 12. (Left) a double Euclidean instanton can be formed by matching two single Euclidean
instantons. (Right) The creation of a pair of entangled universes from nothing, i.e., from a double
Euclidean instanton.

Let us notice that, in terms of the same time variable, one of the universes of the
entangled pair is a contracting universe, and the other is an expanding universe so the
situation is very similar to the case of coexisting incoming and outgoing waves. The wave
function φ(a, χ) can therefore be written as

φ(a, χ) = φ+(a, χ) + φ−(a, χ), (124)

with φ±(a, χ) given by [36]

φ±(a, χ) =
N√
ωDS

e±
i
h̄
∫

ωDS(a)da ξ±(η±, χ), (125)
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where ωDS is the potential of the Wheeler–DeWitt equation for the DeSitter spacetime,

ωDS =
√

H2a4 − a2, (126)

and
ξ±(η±, χ) ≡ ξ(a = a(η), χ) = ∑

n
cne−

i
h̄ (n+

1
2 )η±ξn(χ), (127)

where ξn(χ) are the eigenfunctions of the harmonic oscillator28. As we have already seen
in Section 2.4.2, the two newborn universes can also be interpreted as two expanding
universes filled with matter and antimatter, respectively. Let us notice that if one inserts
the wave functions (125) into the Wheeler–DeWitt Equation (92), it is obtained at order h̄1

± 2ih̄ωDS
∂ξ

∂a
− h̄2 ∂2ξ

∂χ2 + χ2ξ = 0, (128)

which is the time -dependent Schrödinger equation

ih̄
∂

∂η±
ξ(η±, χ) =

1
2

(
−h̄2 ∂2

∂χ2 + χ2
)

ξ(η±, χ), (129)

provided that one identifies the (conformal) time variable of the background spacetime of
the two universes, φ±, by

∂

∂η±
= ∓ ωDS

∂

∂a
⇒ η± = ∓

∫ da
ωDS

= ∓
∫ dt

a
. (130)

If we assume that the physical time variable is the variable measured by real clocks, which
are made up of matter, and thus that it is the time that appears in the Schrödinger equation,
then, in terms of the physical time of an observer in one of the universes, the Schrödinger
equation for the fields in the partner universe turns out to be the Schrödinger equation of a
field ϕ̄ that is CP-conjugated with respect the field in the observer’s universe (see Section 3).
The two universes form then a universe–antiuniverse pair. The process can be compared
with the creation of an electron–positron pair (see Figure 1 of Ref. [40], and Figure 6), which
can be seen as the creation of an electron moving backward in time and an electron moving
forward in time. Here, the “time” variable is the scale factor, so “moving forward in
time” means an expanding universe, and “moving backward in time” means a contracting
universe. Therefore, the creation of a contracting–expanding pair of universes can be
paralleled with the creation of an electron–positron pair.

3. Third Quantisation Formalism
3.1. Historial Review

There was a great excitation in the 1980s with the formulation of the third quantisation
formalism and the associated description of topology change in quantum gravity [28,46,53–58].
At that time, the cosmological paradigm was a universe in a decelerating expansion with
a zero value of the cosmological constant. The third quantisation formalism, which was
initially proposed [53] as an analogue to the second quantisation formalism of a quantum
field theory, fit well with the description of the quantum fluctuations of the spacetime.
As a consequence of the interaction with the fluctuations of the spacetime, it turns out
that the coupling constants become dynamical functions, and this was seen as a possible
explanation for the expected vanishing value of the cosmological constant.

On the other hand, general relativity is a (local) geometrical theory, and therefore
it does not account for the global topology of the spacetime manifold. However, it may
perfectly happen that the foliation of the spacetime gives rise, at some given value t, to
a collection of simply connected spatial sections (see Figure 13 (Left)). From the point of
view of the evolution of the universe, the topology change represented in Figure 13 (Middle)
can be seen as the creation of a universe (universe B) from the pre-existing one (universe
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A). In fact, the process is formally similar to the QED process depicted in Figure 13 (Right),
which represents the creation of a photon from the propagation of an electron. As we
know from QED, this kind of process is better explained in the formalism of quantum field
theory where we can define the creation and annihilation operators of particles. Therefore,
it seems reasonable to develop a field theoretical approach too to describe the creation (and
annihilation) of the universe(s).

Figure 13. (Left) The foliation of a given spacetime can give rise, at some value t0, to two disconnected
spatial sections. (Middle) Schematic representation. (Right) Creation of a photon from the scattering
of an electron.

As an introductory example, let us consider the Wheeler–DeWitt equation of a closed
DeSitter spacetime (see (44)), which can be written as

φ̈ + ω2(a)φ = 0, (131)

where, φ = φ(a), φ̇ ≡ dφ
da , and

ω2(a) =
H2

0 a4 − a2

h̄2 , (132)

with H2 = Λ/3. Clearly, (131) is the equation of a harmonic oscillator with the scale factor
a playing the role of the time variable. One can assume then that (131) is the result of the
variational principle of the action of a harmonic oscillator with time-dependent frequency,

S3 =
∫

da
(

φ̇2 −ω2φ2
)

, (133)

from which one can obtain the conjugate momentum, Pφ = φ̇, and construct a the corre-
sponding Hamiltonian,

H3 =
1
2

P2
φ +

ω2

2
φ2. (134)

The third quantisation procedure consists in promoting the variables φ and Pφ to quantum
operators in the usual way, φ̂→ φ and P̂φ → −ih̄∂φ, and describing the quantum state of
the whole spacetime manifold by the use of a new wave function, Ψ(φ), constructed as

Ψ(φ) =
∫

δφe
i
h̄ S3 , (135)

in the path integral approach, or via the Schrödinger equation,

H3|Ψ〉 = ih̄
∂|Ψ〉

∂a
. (136)

One can also define the ladder operators, b̂ and b̂†, of this particular harmonic oscillator in
terms of the operators φ̂ and P̂φ, as usual, and construct the state of the whole spacetime
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manifold, whatever the topology it has29, in terms of the eigenstates of the number operator,
|N, a 〉, so

|Ψ〉 = ∑
N

CN |N, a 〉. (137)

The number states, |N, a 〉, would represent N universes with a scale factor a, and the
state of the whole spacetime manifold, |Ψ〉, would be a quantum superposition of different
number states (see Section 5). Classically, these N universes are disconnected, and therefore
one should just consider one of them as representing our universe and disregard the rest
as being physically irrelevant. However, from the quantum mechanical standpoint, new
phenomena may appear as quantum correlations and other collective behaviour, so it
seems interesting, at least in principle, to analyse the quantum description of the whole
many-universe state.

Parent and Baby Universes: The Hybrid Action

The third quantisation formalism was mainly applied in the 1980s–1990s to the descrip-
tion of the quantum fluctuations of the spacetime. Let us notice that the quantum gravity
of multiply connected spacetime manifolds can be applied to two well-distinguished cases:
one that accounts for the properties of large regions of the spacetime, called parent uni-
verses30, and another that focus on a local region of the spacetime where small pieces of
length of the order of the Planck length can branch off and disconnect from the parent
spacetime and become small baby universes [46]. In both cases, the spacetime manifold
under study turns out to be non-simply connected. However, in the 1980s–1990s, the idea
of a multiverse was not seriously considered, and the main problem at that time was to
explain the supposedly zero value of the cosmological constant31.

Then, from the point of view of the third quantisation formalism, our universe can then
be seen as a large parent universe propagating in a plasma of baby universes. The effects
of the baby universes could be measured by their influence on the observable properties
of the parent universe, and the most representative picture of the baby–parent universe
interaction becomes the hybrid action [46], in which the parent universe is described by
a second quantised wave function, φp(qa), and the baby universes are described by the
third quantised wave functions, φ̂b, i.e., the behaviour of the spacetime is assumed to be
classical, and its fluctuations are seen as small particles propagating in the parent spacetime.
The total action is then given by

ST = S0(a, ϕ) + Sb(φ̂b) + SI(a, ϕ; φ̂b), (138)

where S0(a, ϕ) is the Einstein–Hilbert action of the homogenous and isotropic parent
spacetime with scale factor a, and matter field ϕ, Sb(φ̂b) is the third quantised action of the
baby universes, while SI is the action of interaction,

SI(a, ϕ; φ̂b) =
∫

dtN ∑
i
Li(t,~x)φ̂i

b =
∫

dtN ∑
i
Li(t,~x)(b̂+i + b̂−i ), (139)

where the index i labels the different modes of the baby universe field (i.e., it labels different
species of baby universes), and Li(t,~x) is called the insertion operator at the nucleation
event [46]. It defines the space–time points of the parent universe in which the baby
universes effectively nucleate.

Two main problems were addressed in the 1980s using the third quantisation formal-
ism: the dynamical value of the coupling constants and the loss of quantum coherence
(decoherence) produced by the plasma of baby universes.
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As an example of the former, let us consider a universe with a matter field ϕ(t) that
is coupled to the spacetime through the interaction with the baby universes. The parent
universe two point function becomes [46]

G(ϕ f , ϕi) ∝ 〈φ̂b, 0|φp(ϕ f )φp(ϕi)|φ̂b, 0〉

= 〈φ̂b, 0|
∫ ϕ f

ϕi

dϕ(t)
∫ ∞

0
dN eiSp+iSI |φ̂b, 0〉, (140)

where SI is given by (139) (for simplicity, let us assume just one specie of baby universes).
Now, suppose the baby universes are in a wave function eigenstate |α〉 , with φ̂b|α〉 = α|α〉,
where α satisfies (

∇2
q + m2

b

)
α = 0. (141)

In that case, the function (140) becomes

G(ϕ f , ϕi) ∝
∫ ϕ f

ϕi

dϕ(t)
∫ ∞

0
dN eiS̃p , (142)

where

S̃p =
∫

dtNa3
(

1
2N2 ϕ̇2 −V(ϕ)− κα

)
. (143)

The effects of the baby universes are thus encoded in an addition of an ordinary potential to
the second quantised action. The new term is dynamical in the sense that it must satisfy the
dynamical Equation (141). That was used as an argument for a possible mechanism for the
vanishing value of the cosmological constant, which was the expected value at that time.

The other question addressed with the third quantisation formalism was the loss of
quantum coherence of the matter fields caused by their propagation in the plasma of baby
universes. Basically, the argument was the following [54]. Let us suppose the composite
state between a matter field ϕ and the baby universes. Let |ϕ, n〉 be the state in which the
matter field is in the state |ϕ〉 and there are n baby universes. Then, the initial state is

|in〉 = |ϕin, 0〉, (144)

where |ϕin〉 is the initial state of the matter field. If we do not measure the state of the baby
universes, and we therefore integrate out their quantum state from the composite state
(144), then, the initial state is described by the density matrix [54]

ρin = |ϕin〉〈ϕin|. (145)

After the interaction with the baby universes, the final state becomes a linear combination
of the states of the fluctuations and the corresponding states of the matter field that come
out from the interaction with the |n〉 states. For simplicity, let us consider just two |n〉
states, |0〉 and |1〉. The composite state after the interaction would be

|out〉 = |ϕ0, 0〉+ |ϕ1, 1〉, (146)

where ϕ0 and ϕ1 are in general different, and the linear combination in (146) can be
weighted accordingly. Then, the reduced density matrix that describes the state of the
matter field alone becomes after the interaction

ρout = |ϕ0〉〈ϕ0|+ |ϕ1〉〈ϕ1|. (147)

The field turns out to be in a statistical mixture of two states. The initial state was a pure
state, i.e., a state of total information with zero entropy, S = 0. The final state, instead,
becomes a mixed state with entropy, S > 0, so information (quantum coherence) has been
lost. Coleman’s argument was that the operators of the baby universes must be independent
of the coordinates of the parent spacetime, and thus, the coupling with the matter fields is
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independent of their evolution. In that case, the state of the field does not change along the
time evolution because the states of the baby universes do not change in time32. However,
counterarguments were also given for the loss of quantum coherence [60,61].

3.2. Quantum Field Theory in M ≡ Riem(Σ)
3.2.1. Geometrical Structure of M

We have seen in Section 2 that the evolution of the universe can be seen as the
time evolution of the 3-dimensional metric that is induced on the spatial hypersurfaces
by the 4-dimensional metric that is the solution of the Einstein’s equations. Therefore,
the evolution of the universe is a trajectory in the space of Riemannian symmetric 3-metrics
with components, hab. Let us call it M. With the DeWitt metric (7), M becomes a metric
space, where we can define the line element as

ds2 = Gabcddhabdhcd. (148)

However, not all of the hab components are independent. A symmetric 3-metric has only 6
independent components, so it turns out that M is isomorphic to R6. Thus, we can make
the following choice for the coordinates33 in M,

qA = {h11, h22, h33,
√

2h23,
√

2h13,
√

2h12}, (149)

in terms of which the line element (148) can be written

ds2 = GABdqAdqB, (150)

where GAB is a 6-dimensional metric tensor that is related to the components of DeWitt’s
metric, Gabcd. The signature of M is (−,+,+,+,+,+), which is easy to check for the case
of the flat metric, hab = δab, and because the signature remains invariant under a change
of coordinates, it holds then for the general case too. Thus, DeWitt showed [10] that the
6-dimensional space M is indeed a 5 + 1 dimensional space with a 1 time-like dimension
and an orthogonal 5-dimensional space-like subspace. As the coordinate of the time-like
subspace, it is appropriate to take the coordinate τ defined by [7,10,62]

τ =

(
32
3

) 1
2
h1/4, (151)

where, h = dethij, which essentially represents the volume of an infinitesimal volume
element of the spatial sections of the spacetime (V ∝

∫
dx3
√

h). The hypersurfaces of
constant τ are the space-like sections of M, labelled by M̄ [10]. Then, in terms of the
variables, qµ = {τ, q̄A}, where q̄A, with A = 1, . . . , 5, are the five coordinates in M̄, the line
element (150) becomes

ds2 = −dτ2 + h2
0τ2ds̄2 = −dτ2 + h2

0τ2ḠABdq̄Adq̄B, (152)

where, h2
0 = 3/32, and ds̄ is the line element in M̄, with [10]

ḠAB = tr
(

h−1h,Ah−1h,B

)
≡ hij ∂hjk

∂q̄A hkl ∂hli
∂q̄B . (153)

The metric (153) is invariant under a conformal transformation of the metric, and in
particular, it is invariant under the change, hab → ξ(h)hab, so it is convenient labelling the
points of M̄ with the five independent components of the transformed metric,

h̄ab = h−
1
3 hab, (154)
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which has a unit determinant. Furthermore, M̄ is noncompact and diffeomorphic to
Euclidean 5-space [10], with the Ricci tensor R̄AB given by34

R̄AB = −3
4

ḠAB, (155)

and scalar curvature
R̄ = −15

4
≡ k

a2 , (156)

with k = −1. M̄ is then an “Einstein space” of constant negative curvature. In a homoge-
neous universe, the time-like variable τ represents the volume of the spatial sections of the
universe, and the five coordinates, h̄ab, represent the shape of a unit volume. A fixed point
in M̄ represents therefore the evolution of a universe that scales the volume of the spatial
sections without changing their shape, and lines of constant τ represent different shapes
of the spatial sections of the universe with a fixed given volume. Thus, the line element
(152) reveals the space M as a set of “nested” 5-dimensional submanifolds, all having the same
intrinsic shape [10]. From that point of view, the 5-dimensional submanifold M̄ can be seen
as a proper realisation of what is called the “shape space” [63].

On the other hand, the space M with the metric (152) has the same formal structure of
a Friedmann–Robertson–Walker spacetime with the hyperbolic 5-space H5 as the “spatial”
section. In particular, it has the same formal structure as the Milne spacetime35. Therefore,
one can find a set of coordinates (χ, θ, φ, ψ, ζ) in M̄ in terms of which the metric (152) can
be written as36

ds2 = −dτ2 + τ2
(

dχ2 + sinh2 χdΩ2
4

)
, (157)

where, χ ∈ [0, ∞), and dΩ2
4 is the line element on the 4-sphere of unit radius

dΩ2
4 = dθ2 + sin2 θ

(
dφ2 + sin2 φ(dψ2 + sin2 ψdζ2)

)
. (158)

The Milne spacetime is a particular coordination of part of the Minkowski spacetime. It
does not cover the whole Minkowski spacetime but only the interior of the upper (or the
lower, with a time reversal change) light cone of the Minkowski spacetime. Something
similar occurs in M. Let us introduce the variables

T = τ cosh χ , R = τ sinh χ, (159)

in terms of which the line element (157) becomes

ds2 = −dT2 + dR2 + R2dΩ2
4, (160)

with 0 < T < ∞ and 0 < R < ∞. The metric (160) is nothing more than the metric
of a 6-dimensional Minkowski space, and the Milne space only covers the upper light
cone (see Figure 14). The interior of the lower light cone is covered by a time reversal
change of coordinates, τ → −τ (let us notice that the metric (152) is invariant under this
change). However, although the manifold M̄ is geodesically complete, the manifold M is
not. The scalar curvature of M,

R = −20
τ2 (161)

presents a singular frontier of infinite curvature, located at τ = 0, where all geodesics
in M eventually hit [10]. It means that the upper and the lower light cones of the 6-
dimensional Minkowski space must be considered independently. They represent two
time-reversed copies of the universe, i.e., two universes related by a time reversal change
of the time (volume) variable. We shall see that, quantum-mechanically, this can be seen as
a universe–antiuniverse pair.
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Figure 14. The space of three metrics, M, turns out to be a particular coordination of upper (lower)
light cone of a 6-dimensional Minkowki space. Every point in the T, R plane is a four-sphere of unit
radius. Lines of constant τ are lines of constant volume of the spatial sections of the spacetime (with
different shapes). Lines of constant χ correspond to different volumes of the same shape (a scaling
universe). Something similar occurs in the lower light cone, which would represent a time-reversed
copy of the universe.

3.2.2. Classical Evolution of the Universe

Let us now analyse the evolution of the universe in the space, M ≡ Riem(Σ). From a
geometrical point of view, the evolution of the universe is the trajectory that extremizes the
Einstein–Hilbert action (6), which can conveniently be written as37[7]

SEH =
1
2

∫

M
dtd3xN

(
1

N2 Gabcd ḣab ḣcd −m2(hab)

)
, (162)

where the rescale, Gabcd → 1
32πG Gabcd, was madewith G the Newton’s constant, and the

potential terms of the Einstein–Hilbert action have been gathered in a mass term

m2(hab) =

√
h

8πG

(
2Λ−(3) R

)
. (163)

In term of the variables, qA = (τ, q̄A), the action (162) can be written

SEH =
1
2

∫

M
dtd3xN

(
1

N2 GAB q̇A q̇B −m2(qA)

)
, (164)

where GAB, is given by (152) or (157). The Einstein–Hilbert action has been written in the
form of (164) to make clear the formal resemblance with respect to the action of a particle
that moves in the spacetime,

S[xµ(λ)] =
1
2

∫ ( 1
N2 gµν ẋµ ẋν −m2

)
Ndλ, (165)

with ẋµ = dxµ

dλ , for which the trajectory is given by the geodesic equation,

ẍµ + Γµ
αβ ẋα ẋβ = 0, (166)

with

Γµ
αβ =

1
2

gµν

(
∂gαν

∂xβ
+

∂gβν

∂xα
− ∂gαβ

∂xν

)
. (167)

133



Universe 2021, 7, 404

The case of the universe is formally similar. The evolution of the universe is a trajectory
in M. The only difference is the trajectory is not a geodesic38 because of the non-constant
potential, m2(hab). Instead, it is given by

q̈A + ΓA
BC q̇B q̇C = −GAB ∂V(q)

∂qB , (168)

where q̇A = dqA

dt and 2V = m2(hab), and the Christoffel’s symbols, are defined analogously
in terms of the metric components as

ΓA
BC =

1
2

GAD
(

∂GDC
∂B

+
∂GBD

∂C
− ∂GBC

∂D

)
. (169)

In terms of the variables (τ, qA), the Equation (168) turn out to be

τ̈ + h2
0τḠAB ˙̄qA ˙̄qB =

∂V
∂τ

, (170)

¨̄qA +
2τ̇

τ
˙̄qA + Γ̄A

BC ˙̄qA ˙̄qB = − 1
h2

0τ2
ḠAB ∂V

∂q̄B , (171)

As we have seen in the preceding section, a geodesic in M eventually hits the singular
frontier located at τ = 0 (the zero volume hypersurface). However, because of the potential
term, which may also include the Lagrangian of the matter fields, the universe does not
follow a geodesic in M and may thus avoid the singular frontier. The paradigmatic case is
the closed DeSitter spacetime. In addition to (170) and (171), one can use the Hamiltonian
constraint (11), which in terms of the (τ, q̄A) coordinates reads,

τ̇2 = h2
0τ2ḠAB ˙̄qA ˙̄qB + m2 = h2

0τ2 ˙̄s2 + m2. (172)

In the case that the right hand side of (171) is zero, it can be shown that [10], ˙̄s = α/τ2,
with α a constant of integration39, and then

τ̇2 =
h2

0α2

τ2 + m2. (173)

In the case for which, Λ� 3R, the potential is proportional to τ, m2 = h2
0H2

0 τ2, and

τ̇2 = h2
0

(
α2

τ2 + H2
0 τ2
)

, (174)

whose solutions are given by

τ2(t) = α sinh(2H0∆t̃− ln H0α), (175)

for α 6= 0 and
τ(t) ∝ eH0∆t̃, (176)

for α = 0 (FRW spacetime) with ∆t̃ = h0∆t. From (175) and (176), one can see that,
as expected, for a universe stage in which Λ� 3R the expansion of the volume element
is exponential.

3.2.3. Quantum Field Theory in M

As we have seen above, the third quantisation40 procedure consists in promoting the
field φ(hab) and its conjugate momentum to quantum operators. One can then pose another
wave function, Ψ, as in (135)–(137), and work with the corresponding Schrödinger equation
(see, (136)). However, it turns out to be much more interesting to develop and study the
quantum field theory (QFT) of the field φ(hab) propagating in the 6-dimensional space M.
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Let us first notice that, in terms of the coordinates qA = {τ, q̄A} (see Equation (152)),
the Hamiltonian constraint (11) can be written as

H = GAB pA pB + m2(q, ϕ) = 0, (177)

where GAB is the inverse of (152), and in m2(q, ϕ) we have also included the Hamiltonian of
the matter fields (which for simplicity have not been considered so far) that can generically
be encapsulated in a variable ϕ,

m2(q, ϕ) = m2
g(q) + 2Hm(q, ϕ), (178)

with, m2
g(q), given by (see, Equation (163))

m2
g(q) =

h2
0τ2

8πG

(
2Λ− 3R(q)

)
, (179)

and
Hm =

1
2h2

0τ2
p2

ϕ + . . . + h2
0τ2V(ϕ), (180)

where the dots indicate terms that contain spatial derivatives of the matter fields, which for
simplicity we shall consider negligible.

Under canonical quantisation of the momenta in the Hamiltonian constraint (206), one
obtains the Wheeler–DeWitt equation, which, with an appropriate choice of factor ordering,
can also be written as, (

−h̄2�q + m2(q, ϕ)
)

φ(q, ϕ) = 0, (181)

where φ(q, ϕ), is the wave function of the universe [12], and

�q = ∇~∇ =
1√
−G

∂

∂qA

(√
−G GAB ∂

∂qB

)
, (182)

where G = det GAB; we have used the customary definitions of the gradient and the
divergence in a curved space,

~∇φ = GAB ∂φ

∂qB , ∇ · ~F =
1√
−G

∂

∂qA

(√
−GFA

)
. (183)

With these definitions, the Wheeler–DeWitt Equation (181) can be obtained from the varia-
tional principle of the third quantised action

S(3) =
1
2

∫
dq
√
−G

(
−h̄2~∇φ · ~∇φ−m2(q)φ2

)
, (184)

Variation of (184) with respect to the wave function φ gives rise to the wave Equation (181).
Now, following the analogy with a QFT, we can define a conserved current in the super-
space,

~J = ih̄
(

φ∗~∇φ− (~∇φ∗)φ
)

, (185)

from which it can easily be checked that ∇ ·~J = 0 and the following inner product

(φm, φn) = ih̄
∫

d~Σ
(

φ∗m~∇φn − (~∇φ∗m)φn

)
, (186)

where d~Σ is the future-oriented surface element of the 5-dimensional spacelike subspace.
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The procedure of field quantisation consists in promoting the wave function φ(q) to
an operator and expanding it into modes that are orthonormal with respect to the inner
product (186). Then [56]

φ̂(q) = ∑
n

φn(q)Ân + φ∗n(q)Â†
n, (187)

where φn(q) is a complete set of orthonormal solutions of the Wheeler–DeWitt Equa-
tion (181), the index n symbolises the particular set of quantum number associated to
that state [56], and Â†

n and Ân are the creation and annihilation operators of modes φn,
respectively, satisfying the customary commutation relations,

[Ân, Â†
m] = δnm , [Ân, Âm] = 0 = [Â†

n, Â†
m]. (188)

In terms of the variables (τ, q̄), the label n of the modes φn in (187) can be associated to
the 5-dimensional spacelike momentum of the particles that propagate in the space M.
In particular, we have seen that M has the geometrical structure of a 5 + 1-dimensional
Friedmann–Robertson–Walker universe, so we can use this information to develop the
quantisation of the field φ(q). In terms of the coordinates qA = (τ, q̄A), the Laplace–
Beltrami operator (182) can be written as,

�q = − 1
τ5

∂

∂τ

(
τ5 ∂

∂τ

)
+

1
τ2�q̄, (189)

where �q̄, is the corresponding 5-dimensional Laplacian (that with �q̄ is given by (182)
with the 5-dimensional metric ḠAB instead of GAB and without the minus sign in the
square roots). In conformal time, λ = ln τ, and with the rescale, φ(q) = e−2λφ̃(λ, q̄), the
wave Equation (181) (i.e., the Wheeler–DeWitt equation) becomes [75]

{
∂2

∂λ2 −�q̄ +

(
m2

h̄2 e2λ − 4
)}

φ̃(λ, q̄) = 0. (190)

However, the ”mass” of the field (260) is not a constant. Even considering just the geometri-
cal degrees of freedom, it continues being a non-constant function of the components of the
metric tensor hij (or, equivalently, of the variables qA) through the dependence on the 3R
curvature (see (179)). In that case, the space M turns out to be a dispersive medium for the
wave function of the universe. It does not invalidate the formalism, but it becomes more
complicated from a technical point of view. For that reason, let us focus on the case for
which 3R� 2Λ, which, on the other hand, is a very plausible condition for the initial state
of the universe41, and consider only the geometrical degrees of freedom plus the constant
Λ. We can then assume the value42

m2
g(q) ≈

h2
0Λ

4πG
τ2 ≡ h̄2m2

0e2λ, (191)

in the Wheeler–DeWitt Equation (181). In that case, the mass (260) only depends on the
time variable τ, and we can perform the quantisation of the field φ in the customary way
(see, for instance, Refs. [76,77]). Then, we can decompose the wave function of the universe
φ(q) in normal modes as

φ(q) =
∫ ∞

0
dk ∑

~j

[akuk(q) + a†
ku∗k(q)], (192)

where, k = (k,~j),
uk(q) = e−2λχk,J(λ)YJ, ~M(q̄), (193)
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and Yk,~j(q̄) are the eigenfunctions of the Laplacian defined on the 5-dimensional hyper-
boloid, which satisfy [78]

�q̄Yk,~j(q̄) = −(k
2 + 4)Yk,~j(q̄), (194)

with 0 < k < ∞, and ~j denotes the four indices that distinguish the four components
of the generalisation of the angular momentum on the four spheres43. Thus, the wave
Equation (181) (i.e., the Wheeler–DeWitt equation) reduces to

χ′′k +
(

m2
0e2λ + k2

)
χk = 0, (195)

where χ′ ≡ dχ
dλ . One interesting thing is that the frequency squared of the oscillator (195),

ω2
k(λ) ≡ m2

0e2λ + k2, is never negative. The other interesting thing is that (195) is readily
solvable in terms of Bessel functions. With the customary normalisation condition

χk∂λχ∗k − χ∗k ∂λχk = i. (196)

we easily find two set of orthonormal modes given by [75]

χ̄k(τ) =

(
2
π

sinh(πk)
)− 1

2
J−ik(m0τ), (197)

χk(τ) =

√
π

2
e

kπ
2 H(2)

ik (m0τ). (198)

3.2.4. Boundary Conditions and the Creation of the Universes in Pairs

In order to choose the particular set of modes, we have to impose some boundary
condition. For this, we shall consider the multiverse as a really closed system, so no external
influence is expected to modify its state. Therefore, it seems appropriate to describe the
state of the multiverse in a representation that is invariant under the evolution of the
third quantised Hamiltonian, which is an extension of the invariant representation used in
quantum mechanics [31–33,79–86].

An invariant representation can be given in terms of creation and annihilation opera-
tors, b̂k and b̂†

k, defined as [83]

b̂k =
i√
h̄

(
ξ∗k p̂φ − (ξ∗k )

′φ̂
)

, b̂†
k = − i√

h̄

(
ξk p̂φ − (ξk)

′φ̂
)
, (199)

where, φ̂ and p̂φ, are the operator version of the wave function and the conjugate momen-
tum, respectively, and ξk is a solution of the wave Equation (190), or equivalently with
(195), the orthonormality condition (196), which ensures the usual commutation relations,

[b̂k, b̂†
k] = 1. (200)

The operators b̂k and b̂†
k in (252) are time-dependent operators, but the dependence is such

that the the eigenstates of the corresponding number operator, N̂k = b̂†
kb̂k, remain invariant

under the action of the third quantised Hamiltonian. It means, for example, that once the
multiverse is in the vacuum state of an invariant representation it remains in the same
vacuum state irrespective of the internal histories of the connected pieces of the whole
spacetime manifold. From this point of view, the multiverse does not evolve in a proper
sense, although the time dependence of the vacuum state makes that the vacuum state
at (conformal) time, λ0, is functionally different than the vacuum state at λ1, being both
however the same vacuum state of the same invariant representation.

The conditions (196)–(252) do not fix the vacuum state. There is in fact an infinite
number of solutions that fit with (196)–(252), each of which define a particular represen-
tation and the associated vacuum state. For instance, the modes (259)–(264) define two
vacuum states, |0̄k0̄−k〉 and |0k0−k〉, respectively. The modes (259) can be identified with
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the Hartle–Hawking no-boundary condition, first, because they are regular at the Euclidean
origin44, τ → iτ → 0, and, second, because that holds for large values of the variable
τ, χ̄k(τ) ∝ cos m0τ, which essentially matches with the result (23). On the other hand,
Vilenkin’s tunnelling wave function can be identified with the mode (264), because at
large values of τ it reads, χk(τ) ∝ e−im0τ , which represent, in terms of the time variable t,
an expanding universe (see, Sections 2.2 and 2.3). One can also follow the analysis made in
Ref. [76] to conclude that the state |0̄k0̄−k〉 is the conformal vacuum state and that the state
|0k0−k〉 is the vacuum state of the 6-dimensional Minkowski space, M.

Regardless, these two set of modes are related by a Bogolyubov transformation,

χ̄k = αkχk + βkχ∗k, (201)

where (see, for instance, Ref. [76])

αk =

[
eπk

2 sinh(πk)

] 1
2

, βk =

[
e−πk

2 sinh(πk)

] 1
2

, (202)

with, |αk|2 − |βk|2 = 1. It means that the vacuum state of the χ̄k modes, |0̄k0̄−k〉 can be
written as [75,77]

|0̄k0̄−k〉 = ∏
k

1
|αk|1/2

(
∞

∑
n=0

(
βk
αk

)n
|nkn−k〉

)
, (203)

with a number of universes in the no bar representation given by

Nk = |βk|2 =
1

e2πk − 1
, (204)

which corresponds to a thermal distribution with generalised temperature

T =
1

2π
. (205)

Then, one can state that, in this case, the Hartle–Hawking no-boundary version of the
vacuum state is full of (Vilenkin’s) universes (and antiuniverses) [75]. This result is very
interesting because it implies that the consideration of universe–antiuniverse pairs seems
to be quite unavoidable. It is formally similar to what happens in the quantum field theory
of a matter field in an isotropic background spacetime, where the isotropy of the space
makes that the particles are created in pairs with opposite values of the field modes, k and
−k (see (203)), and in the case of a complex field in particle–antiparticle pairs with opposite
momenta. In the third quantisation formalism, the space-like subspace M̄ is homogeneous
and isotropic. Therefore, if the potential of the Wheeler–DeWitt equation is also isotropic
in M̄, i.e., invariant under rotations in M̄, the universes should be created in pairs with
opposite values of the 5-dimensional k (≡ k̄ab) modes. This is not the most general case,
but it is a quite plausible one provided that we assume a high value of the potential
of the inflaton field, which can be identified at the initial stage of the universe with Λ,
or equivalently, a small value of the spatial curvature 3R of the newborn universe. In both
cases, the potential term of the Wheeler–DeWitt equation can be approximated by (191),
and small deviations can be treated as perturbations, which should not significantly violate
the isotropy of the space M̄.

This could be confirmed as well from a more geometrical point of view. Let us notice
that the Milne spacetime can separately cover the interior of the upper and the lower
light cones of the Minkowski spacetime. These two sections of the full light cone can be
seen as the regions of the spacetime where future-oriented particles and past-oriented
particles, or antiparticles, are propagated, which turn out to be entangled [87]. One
would expect something similar in the case of the space M, which also covers the upper-
and lower-half light cones of the 6-dimensional Minkowski space. These two regions
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would describe expanding and contracting universes (created in pairs as we have seen
above), which are equivalent to the future- and past-oriented particles in Minkowski
spacetime. Thus, much in a similar way as particles propagating backwards in time can be
interpreted as antiparticles propagating forward in time [88], we have seen in Section 2,
and we will see it again in the next section, contracting universes can be seen as expanding
antiuniverses with a time variable that is reversely related with respect to the time variable
of the partner universe. It means that the fields that propagate in one of the two entangled
universes appear, from the point of view of an hypothetical observer in the partner universe,
as moving backward in time. This is an illusory effect created by the relative definition
of the time variables in the two universes, i.e., internal observers always define the fields
that propagate in their universes as matter and the fields that propagate in the partner
universe as antimatter. Furthermore, the value of each mode of the Fourier decomposition
in (192) is proportional to the momentum conjugated to the components of the scaled
metric tensor. It means that any change that is produced by the momentum associated to
+k̄ab in the shape of the universe with metric h̄ab is being also produced in the shape of the
partner universe with opposite sign, −k̄ab, so it is the parity of the two spatial sections tat
is reversely related too, and so it is the relative parity of the fields that propagate in the
two universes. In the next section, we shall see that the fields that propagate in the two
universes are also charge-conjugated as a consequence of the reversely relation of their
time variables. It turns out therefore that the field of the two universes is CP-conjugated.
One can then conclude that, quite generally, the universes of the multiverse are created in
symmetric universe–antiuniverse pairs whose composite quantum state is also expected to
be entangled [50,89,90].

3.2.5. Semiclassical Regime

If one takes into account the matter fields, the total Hamiltonian constraint (206) can
be written as,

ĤTφ =
(

ĤG + ĤSM
)
φ = 0, (206)

where ĤG is the Hamiltonian operator that yields the WDW equation of the spacetime
geometry alone (181) with Λ related to the constant part of the potential of the field that
drives the inflationary period, 2Λ = 2V0 ≡ H2

0 , and ĤSM (Hm in (260)) is the Hamiltonian
operator of the matter fields, which essentially are the fields of the Standard Model (SM)
with their corresponding potentials and interactions. Following the procedure described
in Section 2.3, the wave function of the universe can be written as the product of two
components, a wave function φ0 that depends only on the gravitational degrees of freedom
and the value of the constant Λ and a wave function that contains all the dependence on
the fields of the SM, collectively denoted by the variable, ϕ, i.e

φ±(hij, Λ; ϕ) = φ±0 (hij, Λ)ψ±(hij, Λ; ϕ), (207)

where the two signs have been introduced for later convenience and φ+ = (φ−)∗. The wave
function φ0 is the solution of the WDWE of the geometrical degrees of freedom, computed
in the preceding section. In general, it can be written in the semiclassical approach as

φ±0 (hij, Λ) ∝ e±
i
h̄ S(hij ,Λ). (208)

If one introduces the wave function (207) into the complete WDW equation and use the
classical constraint (30) one obtains, at order h̄1, the following equation (see (33))

∓ 2ih̄~∇S · ~∇ψ± = HSMψ±, (209)
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where ~∇ is the gradient in M, and the negative and the positive signs correspond, re-
spectively, to φ+ and φ− in (207). The Schrödinger equation for the matter fields is then
obtained if one defines the (WKB) time parameter t through the condition,

∂

∂t
= ∓2~∇S · ~∇ ≡ ∓2Gαβ ∂S

∂qα

∂

∂qβ
, (210)

where qα = (τ, q̄A), and q̄A are the coordinates of M̄ given in (152). We have now two
choices. Typically, the positive sign in (210) is chosen for the spacetime represented by
the wave function φ−0 and the negative sign for the spacetime represented by the wave
function φ+

0 . With these choices, the Schrödinger equation in the two branches turns out
to be

ih̄
∂ψ±
∂t±

= HHSM(ϕ)ψ±, (211)

where it can now be written ψ± = ψ±(t±; ϕ). From (210), one easily gets

∂τ

∂t±
= ±2

∂S
∂τ

, (212)

so the wave functions ψ± represent two universes, one expanding and one contracting
(recall that the variable τ is proportional to the volume of the space), which from (211)
are both filled with matter. An alternative although equivalent interpretation is to choose
the positive sign in (210) for both universes, i.e., t ≡ t+. In that case, both wave functions
represent expanding universes, but then the corresponding Schrödinger equations for the
internal fields are given by

ih̄
∂ψ+

∂t
= HHSM(ϕ)ψ+, (213)

−ih̄
∂ψ−
∂t

= HHSM(ϕ)ψ−, (214)

respectively. The last of which can be written as,

ih̄
∂ψ+

∂t
= HHSM(ϕ̄)ψ+, (215)

where we have used that ψ∗−(ϕ) = ψ+(ϕ̄). It is therefore the Schrödinger equation of a field
that is charge-conjugated with respect to the field given in (213). The wave functions φ+

and φ− represent then two expanding universes, but, from the point of view of the same
time variable, one is filled with matter and the other with antimatter, these two concepts
having always a relative meaning.

Let us focus on the wave function of the matter fields in one of the universes, say, ψ+.
If we consider that the modes of the field are decoupled, then, the Schrödinger equation
for the scalar field ϕ+, which generically denotes any of the polarisations of the W± and Z
bosons, can be written as the product of the wave functions of the modes, i.e.

ψ+(t, ϕ) = ∏
k

ψ
(k)
+ (t, ϕk), (216)

where ψ
(k)
+ (t+, ϕk) is the solution of the Schrödinger Equation (213) for each mode, whose

general solution can be expressed in the basis of number eigenfunctions of the time-
dependent harmonic oscillator [35].

The wave function in the time reversely symmetric universe, ψ−(t, ϕ̄), can be obtained
from the relation ψ−(ϕ̄) = ψ∗+(ϕ), so the eigenfunctions of the basis for the state of the
boson fields in the symmetric universe turn out to be given by (283) with the replacements,
t → −t and ϕk → ϕ̄k. Thus, the field ϕ that represents the matter content of one of the
universes is the charge conjugated of the field ϕ̄ that represents the matter content of the
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partner universe. We have seen in the preceding section that their parity is also reversely
related, so ϕ̄ turns out to be a CP-conjugated field of the field ϕ. Thus, the matter content
of one of the universes is the CP conjugated of the matter in the partner universe, and
they form thus a universe–antiuniverse pair. It does not necessarily mean that one of the
universes is completely made up of matter and the other is made up of antimatter. In fact,
the two universes can contain matter as well as antimatter but exactly in the opposite
ratio; so, from the global point of view, the total amount of matter in the two universes is
balanced with the total amount of antimatter.

3.3. Minisuperspace Model
3.3.1. Geometrical Structure of the Minisuperspace

Let us now apply the third quantisation formalism to the case of the minisuperspace
of homogeneous and isotropic metrics with small perturbations that represent the matter
content of the universe. The formalism greatly simplifies, and one can still obtain a clear
picture of the scenario described by the third quantisation formalism. On the other hand,
we have seen that the minisuperspace description of the universe, although not complete, is
a good approximation for most of the evolution of the universe provided that the universe
is created with a length scale of some orders of magnitude above from the Planck length.
In that case, the small deviations from the homogeneity and the isotropy of the universe
can be treated as perturbations described as particles propagating in the homogeneous and
isotropic background.

Let us therefore consider the homogeneous and isotropic Friedmann–Robertson–
Walker (FRW) metric as the background spacetime (36)

ds2 = −N2(t)dt2 + a2(t)dΩ2
3,

where a(t) is the scale factor, and dΩ2
3 is the line element on the three sphere45. We saw in

Section 2 that the lapse function is not a dynamical variable, so the only dynamical variable
turns out to be the scale factor, a(t). In this case, all the components of the spatial metric
are fixed except for the value of the scale factor. M̄ turns out to then be a 0-dimensional
space, where the spatial sections of the universes are represented by single points and their
evolution by (curved) lines in the 1 + 0-dimensional space M.

This picture can easily be extended by considering as well the homogeneous mode
of some matter fields, represented by a set of scalar fields, ~ϕ(t) = (ϕ1(t), . . . , ϕn(t)),
minimally coupled to gravity. We will see that these fields enter as space-like variables
in the configuration space. For simplicity, we shall consider only one single scalar field
representing the matter of the universe, so the configuration space, M, will be a 1 + 1-
dimensional space. In addition, one can also consider the inhomogeneous modes of these
fields, so the total configuration space would be the 1 + n ·∞-dimensional space spanned
by the variables, (a(t), ϕ1,k(t.x), . . . , ϕn,k(t, x)). For simplicity, we shall only consider46 the
homogeneous mode of a single scalar field, ϕ, and its inhomogeneities will be treated as a
perturbation described by particles propagating in the spacetime. Therefore, by now let us
consider the 1 + 1-dimensional configuration space M of coordinates, qA ≡ (a, ϕ).

The total action, i.e., the Einstein–Hilbert action of gravity plus the action of the scalar
field, given by (37), can be written as

S = Sg + Sm =
1
2

∫
dtN

(
GAB

q̇A q̇B

N2 − V(q)
)

, (217)

where, qA = (a, ϕ), with the supermetric Gabcd in (13) given now by [7]

GAB = diag(−a, a3), (218)
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from which one can clearly see that the scale factor (i.e., the first component) is a time-like
variable and the scalar field (the second component) is a space-like variable. The potential
term, V(q) in (221), reads

V(q) ≡ V(a, ϕ) = −a + 2a3V(ϕ). (219)

The first term in (219) comes from the closed geometry of the three space, and V(ϕ) is
the potential of the scalar field. The case of a spacetime with a cosmological constant, Λ,
is implicitly included if we consider a constant value of the potential of the scalar field,
V(ϕ) = Λ/6. As we showed in Section 3.2.2, the evolution of the universe can be seen as a
parametrised trajectory of the superspace with the variable τ ∝

√
h formally playing the

role of a time variable. In the case of the minisuperspace,
√

h = a3; but it is interesting to
change to a conformal scale factor, α = ln a, in terms of which the metric GAB turns out to
be conformal to the 2-dimensional Minkowski space,

GAB = e3αηAB, (220)

and the action (221) can be written as,

S = Sg + Sm =
1
2

∫
dtNe3α

(
ηAB

q̇A q̇B

N2 −
(

H2(ϕ)− e−2α
))

, (221)

where e3α = a3 is essentially the volume of the spatial sections, and H2(ϕ) = 2V(ϕ)
is the Hubble function. From the signature of (220), it can be seen that the scale factor
formally plays the role of the time variable and the matter field(s) the role of the space-like
component(s), and the minisupermetric (220) provides the minisuperspace with a complete
metric structure with a line element given by

ds2 = GABdqAdqB = −ada2 + a3dϕ2 = e3α
(
−dα2 + dϕ

)
. (222)

It also allows us to define the usual machinery of a geometric manifold. For instance,
we can define the Christoffel symbols associated to the minisupermetric GAB, defined as
usual by

ΓA
BC =

GAD

2

{
∂GBD

∂qC +
∂GCD

∂qB −
∂GBC

∂qD

}
, (223)

which, in terms of the variables (a, ϕ), the non-zero values are

Γa
aa =

1
2a

, Γa
ϕϕ =

3a
2

, Γϕ
ϕa = Γϕ

aϕ =
3
2a

, (224)

or in terms of the variables (α, ϕ),

Γα
αα = Γα

ϕϕ = Γϕ
ϕα = Γϕ

αϕ =
3
2

. (225)

In any case, we could compute other geometrical properties of the minisuperspace like the
corresponding Riemann tensor, the curvature scalar, etc. (see Ref. [10]).

From the geometrical point of view, the evolution of the universe can be seen as a
trajectory in the minisuperspace (see Figure 15), with a(t) and ϕ(t) being the parametric
coordinates of the universe along the worldline of the universe, and the time variable t is the
parameter that parametrises the trajectory. From that point of view, it is easy to see that the
evolution of the universe, i.e., the trajectory of the universe in the minisuperspace, cannot
depend on the particular choice of time variable, i.e., the trajectory must be independent of
the parametrisation used to describe it.
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Figure 15. (Left): the evolution of the universe can be seen as a trajectory in the minisuperspace.
(Right): a trajectory in the minisuperspace that is positively oriented with respect to the scale factor
component describes an expanding universe. Similarly, a negatively oriented trajectory describes a
contracting universe.

However, because of the presence of the potential V(a, ϕ) in the action (221), the tra-
jectory of the universe along the minisuperspace manifold is not a geodesic. It is instead
given by the equation

q̈A + ΓA
BC q̇B q̇C = −GAB ∂V

∂qB , (226)

which, with the help of (224), yields the customary field equations (see, for instance,
Refs. [7,25])

ä +
ȧ2

2a
+

3a
2

ϕ̇2 = − 1
2a

+ 3aV(ϕ) , ϕ̈ + 3
ȧ
a

ϕ̇ = −∂V(ϕ)

∂ϕ
. (227)

The fact that the curve (a(t), ϕ(t)) is not a geodesic is not a big deal. As we have said,
the trajectory of the universe is invariant under reparametrisations of time, so we can make
the following change of time variable

dt̃ = m−2V(q)dt, (228)

where m is some constant. Now, if we also perform the following conformal transformation
of the minisupermetric

G̃AB = m−2V(q)GAB, (229)

the action (221) becomes

S =
1
2

∫
dt̃N

(
1

N2 G̃AB
dqA

dt̃
dqB

dt̃
−m2

)
, (230)

which is a similar action but with a constant potential. The new time variable, t̃, turns out to
be the affine parameter of the minisuperspace geometrically described by the metric tensor
G̃AB, and the trajectory of the universe in this minisuperspace is given by the geodesic
equation

d2qA

dt̃2 + Γ̃A
BC

dqB

dt̃
dqC

dt̃
= 0. (231)

Thus, the classical trajectory of the universe can equivalently be seen as either a geodesic
of the minisuperspace geometrically determined by the minisupermetric G̃AB or a non-
geodesic of the minisuperspace geometrically determined by GAB.

We can also define the momenta conjugated to the minisuperspace variables

p̃A ≡
δL

δ
dqA

dt̃

, (232)
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and the Hamiltonian constraint associated to the action (230) turns out to be

G̃AB p̃A p̃B +m2 = 0, (233)

or in terms of the metric GAB and the time variable t,

GAB pA pB +m2
ef(q) = 0, (234)

where for convenience we have written m2
ef(q) = V(q), with V(q) given by (219). It is

worth noticing that the phase space does not change in the transformation {GAB, t} →
{G̃AB, t̃}, because

p̃A = G̃AB
dqB

dt̃
= GAB

dqB

dt
= pA, (235)

where pA = {pa, pϕ} and qA ≡ {a, ϕ}, and the Hamiltonian constraints (233) and (234) are
related by the inverse of the conformal transformation (229),

G̃AB =
m2

V(q)GAB. (236)

The field equations given either by (226) or by (231) are invariant under the reversal
change in the time variable, t→ −t. From the geometrical point of view, it only changes
the direction along which the curved has travelled, i.e., the direction of the tangent vector
∂
∂t . It means that for any given solution a(t) and ϕ(t), one may also consider the symmetric
solution, a(−t) and ϕ(−t).

In our case the momenta conjugated to the variables of the minisuperspace, given in
(235), turn out to be

pa = −
aȧ
N

, pϕ =
a3 ϕ̇

N
, (237)

in terms of which the Hamiltonian constraint (234) reads

− 1
a

p2
a +

1
a3 p2

ϕ + m2
eff(a, ϕ) = 0, (238)

which is the Friedmann equation expressed in terms of the momenta instead of in terms of
the time derivatives of the minisuperspace variables. As pointed out before, the geodesic
equation and the momentum constraint (238) are invariant under a reversal change of the
time variable. Let us notice however that the momenta (237) are not invariant, but they
turn out to be reversely changed, pa → −pa and pϕ → −pϕ. Nevertheless, they appear
squared in the Hamiltonian constraint (238), so it is not affected by the change.

However, by conservation of the momenta, one would expect that the cosmological
solutions should come in symmetric pairs with opposite values of the associated momenta.
From (237) and (238), it is easy to see that in terms of the cosmological time (N = 1), the
two symmetric solutions are given by

a
da
dt

= −pa = ±
√

1
a2 p2

ϕ + am2
eff(a, ϕ). (239)

It clearly reminds to the solutions of the trajectory of a test particle moving in the space-
time [66]. For instance, in Minkowski spacetime47, the time component of the geodesics
satisfies

dt
dµ

= −pt = ±
√
~p2 + m2, (240)

where µ is an affine parameter and pt = ±E, with E the energy of the test particle. The two
solutions are eventually associated to particles and antiparticles in a quantum field theory.

In the case of the universe, the two solutions given in (239) also represent two uni-
verses: one universe moving forward in the scale factor component and the other moving
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backward in the scale factor component (see Figure 16). In the minisuperspace, however,
moving forward in the scale factor component means evolving with an increasing value of
the scale factor, so the associated solution represents an expanding universe, and moving
backward in the scale factor component means evolving with a decreasing value of the
scale factor, so the symmetric solution represents a contracting universe. Therefore, the two
symmetric solutions form an expanding–contracting pair of universes (see Figure 16).
However, we have already showed in previous sections that an expanding–contracting
pair filled with matter can also be interpreted as two expanding universes, one of them
filled with matter and the other filled with antimatter [26,91], i.e., it can be interpreted as a
universe–antiuniverse pair [90,91].

Figure 16. A contracting and an expanding universe, both made of matter, can also be seen as a
pair of expanding universes, one of them made up of matter and the other made up of antimatter,
i.e., they can be seen as a universe–antiuniverse pair.

3.3.2. Field Quantisation of a FRW Spacetime

As we have already seen, the procedure of third quantisation parallels that of a second
quantisation in a curved spacetime (see Section 3.2.3). Now, the field is the wave function
φ(a, ϕ) that satisfies the corresponding Wheeler–DeWitt equation, which is now seen as
a wave equation. With the minisupermetric (220) in (181), the Wheeler–DeWitt equation
turns out to be

a
∂

∂a

(
a

∂φ

∂a

)
− ∂2φ

∂ϕ2 + a2ω2(a)φ = 0, (241)

where,
ω2(a, ϕ) = H2a4 − a2, (242)

with H2 = V(ϕ0) evaluated at the moment of the creation of the (inflationary) universe,
where it can be approximated by a constant. In that case, following the procedure shown
in Section 3.2.4, we can decompose the wave function φ(a, ϕ) in Fourier modes,

φ(a, ϕ) =
∫ dK

2π
eiKϕφK(a), (243)

where φK(a) must satisfy

φ̈K +
1
a

φ̇K + ω2
K(α)φK = 0, (244)

with [50,89]

ω2
K(a) = H2a4 − a2 +

K2

a2 . (245)

Let us notice that the inner product turns out to be here by (186) with [92], dΣA = nAdΣ,
where nA = (a−

1
2 , 0) is a timelike unit vector, and dΣ = dϕ, which defines the orthogonal

hypersurfaces (one dimensional curves) of constant a. It then becomes [50,92]

(u1, u2) = −i
∫ +∞

−∞
dϕ a

(
u1(a, ϕ)

↔
∂ au∗2(a, ϕ)

)
. (246)

145



Universe 2021, 7, 404

We can now define the operator version of the field, φ̂, and write it as

φ̂(a, ϕ) =
1√
2

∫ dK
2π

(
eiKϕv∗K(a)Â−K + e−iKϕvK(a)Â+

K

)
, (247)

where Â+
K and Â−K are the creation and annihilation operators, respectively, of universes

with momentum K conjugated to the scalar field; and the modes are normalised according
to the condition

dvK
da

v∗K − vK
dv∗K
da

=
2i
a

. (248)

We can now define the ground state of the invariant representation, Â+
K and Â−K , by

|0〉I = ∏
K
|0K, 0−K〉I , (249)

where |0K〉I (|0−K〉I) is the state annihilated by the operator Â−K (Â−−K). An excited state,
i.e., a state representing different number of universes with momenta K1, K2, . . ., is then
given by [92]

|mK1 , nK2 , . . .〉 = 1√
m!n! . . .

[(
Â+

K1

)m(
Â+

K2

)n
. . .
]
|0〉I , (250)

which represents m universes in the mode K1, n universes in the mode K2, etc. In the case
of a field that propagates in a homogeneous and isotropic spacetime, the value of the mode
k represents the value of the spatial momentum of the particle. In a homogeneous and
isotropic minisuperspace, the value of the mode K labels the eigenvalues of the momentum
conjugated to the scalar field ϕ, which formally plays the role of a spacelike variable in the
minisuperspace. In that case, the values K1, K2, . . ., in (250), label the different initial values
of the time derivatives of the scalar field in the universes. Thus, the state (250) represents m
universes with a scalar field with ϕ̇ ∝ K1, n universes with a scalar field with ϕ̇ ∼ K2, etc.
They represent different energies of the matter fields, which would correspond to different
numbers of particles in the universes. The general quantum state of the field φ, which
represents the quantum state of the spacetime and the matter fields, all together, is then
given by

|φ〉 = ∑
m,n,...

Cmn...|mK1 nK2 . . .〉I , (251)

which represents therefore the quantum state of the multiverse [93] in the model of the
minisuperspace that we are considering.

Here, it follows the subtle subject of the boundary conditions in quantum cosmology.
From a QFT we know that the vacuum state of a given representation may contain a
certain number of particles of another representation, so the question then asks which
representation is the appropriate one. We have already imposed that the representation of
the field that represents the state of the multiverse should be an invariant representation
because, in that case, once that field is in a given state, it will then remain in the same
state along the entire evolution of the universe. Furthermore, one would expect that the
field would be in the ground state of such an invariant representation provided that we
assume that no external force is exciting the state of the multiverse. However, that condition
does not completely fix the state of the field φ because there are many different invariant
representations. In general, an invariant representation, Â+

K and Â−K , can be defined as [83]

Â−K =
i√
h̄

(
v∗K p̂φ − v̇∗Kφ̂

)
, (252)

Â+
K = − i√

h̄

(
vK p̂φ − v̇Kφ̂

)
, (253)

where φ̂ and p̂φ are the operator version of the wave function and the conjugate momentum
in the Schrödinger picture, respectively, and vK is a solution of the wave Equation (244) sat-
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isfying the orthonormality condition (248), which ensures the usual commutation relations,
[Â−K , A+

K ] = 1. However, there are many different solutions of the wave Equation (244)
satisfying the orthonormality condition (248), so any of them provides an invariant rep-
resentation. In fact, we have seen in Section 3.2.4 that the Hartle–Hawking’s boundary
condition and the Vilenkin’s boundary condition provide two sets of solutions.

One might say that the Hartle–Hawking boundary condition has a more fundamental
character because it is rooted on a more ontological reasoning. It essentially rests on the
idea that the boundary conditions of the universe are that it has no boundary [39], i.e., that the
universe, and therefore the multiverse as well, comes from no prior configuration of the
space. In that case, it seems consistent to impose or to assume that the multiverse is always
in the ground state of the Hartle–Hawking invariant representation. However, single
universes are better represented by the representation obtained by imposing the Vilenkin’s
tunnelling condition. In fact, this boundary condition is specifically imposed to assure that
it describes single universes created in the Lorentzian region of the (mini)superspace (see
Section 2.5.1). In that case, as we have seen in Section 3.2.4, it turns out that the multiverse
is full of Vilenkin’s universes [50], which due to the isotropy of the superspace should come
in universe-antiuniverse pairs [75] (see, Section 3.2.4, and the next section). Thus, it seems
quite unavoidable to assume that our universe has been created in an entangled pair.

3.3.3. Reheating and the Matter–Antimatter Content of the Entangled Universe

In Section 3.2.5, we saw that the matter fields of the two universes of an entangled pair
are CP reversely related and that the two universes thus form a universe–antiuniverse pair.
Let us now apply the same semiclassical formulation to the period after inflation called
(p)reheating (see, for instance, Ref. [94]), where the inflation field48, χ, eventually decays
into the particles of the Standard Model (SM). In that period, the spacetime can largely be
considered homogeneous and isotropic, and the inhomogeneities of both the matter fields
and the spacetime can be analysed as small perturbations propagating in a homogeneous
and isotropic background.

We are not going to repeat the development of Section 3.2.5 but only to present a
particular and detailed example that will show the consequences of the complex conjugated
relation between these two wave functions. It is worth noticing that the CP conjugated
relation between the matter fields of the universe–antiuniverse pair is based on the fun-
damental considerations described in Section 3.2.5, and it is therefore independent of the
model chosen for the reheating scenario after inflation, so similar steps can be followed
in any other reheating scenario. For concreteness, we shall describe this period in the
appealing model of the Higgs-inflaton [22,23], in which the field that drives the inflationary
expansion of the space decays after inflation into the particles of the Standard Model (SM).
The idea rest on the form of the potential of the Higgs inflaton field. At high energy scales,
during the first stages of the inflationary period, the functional form of the potential can be
approximated by an exponential, and it can thus drive inflation. When the field has rolled
down the exponential slope of the potential, it finds a minimum around which it starts
oscillating. Then, inflation ends and the Higgs-inflaton field behaves like the rest of fields
of the SM, with interactions that allow the decays of the Higgs-inflaton into the particles of
the SM (see below). Finally, in the low-energy regime, the functional form of the potential
can be approximated by the customary double-well potential of the Higgs that gives the
expected masses to the particles of the SM [22,23].

Therefore, after the inflationary period, the potential of the inflaton field, V(χ), can
no longer be considered a constant. However, we saw in Section 2.4.2 that this does not
introduce a large qualitative change. The solutions of the Wheeler–DeWitt equation are
still expected to come in pairs, φ = φ+ + φ−, with conjugate complex phases that are the
solutions of the Hamilton–Jacobi Equation (59). In the semiclassical regime, they are given
by (64), i.e.,

φ±(a; χ, ϕ) = ∆(a)e±
i
h̄ S(a)ψ±(a; χ, ϕ), (254)
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where χ is the inflaton field, and ϕ collectively denotes all the fields of the SM. Following
the development of Section 2.3, the complex phase in (254) determines the dynamics of
the homogeneous and isotropic background spacetime, and the wave functions of the
matter fields in the two universes, ψ±(χ, ϕ), satisfy the Schrödinger equation of two sets of
CP-conjugated fields. They are related by the condition ψ∗−(χ, ϕ) = ψ+(χ, ϕ̄).

As we have said, at the end of the inflationary period, the Higgs-inflaton field χ has
slow-rolled down the potential, and it then approaches the minimum of the potential
located at χm, for which V′(χm) = 0. The expansion rate of the spacetime also slows
down, and the field starts oscillating around the minimum like a weakly damped harmonic
oscillator with mass m2 = V′′(χm). The total Hamiltonian constraint can be written during
this period as (206), with a gravitational part given by

HG = − 1
2M2

P
p2

a −
M2

Pa2

2
+ B(a), (255)

where B(a) contains the backreaction of the Higgs-field and eventually the backreaction of
the rest of fields of the SM that will contribute to the dynamics of the background spacetime.
It may also contain some residual constant term, which is expected to be subdominant at
least until the advent of the dark-energy period. The Hamiltonian of the Higgs-SM sector,
HSM in (206), can now be written as

HHSM = Hχ + HSM, (256)

with
Hχ =

1
2a3 p2

χ +
1
2

a3M2χ2 + ∆V(χ), (257)

where [23] M2 = λM2
P/3ξ2 with ξ a coupling constant of the theory, pχ is the the mo-

mentum conjugated to the Higgs-inflaton field, pχ = a3χ̇, and ∆V(χ) contains high-order
correction terms that can be neglected in a first approach [23]. The interactions between the
Higgs and the matter and gauge fields of the SM have been included in the Hamiltonian
HSM. The Klein–Gordon equation of the Higgs field can then be written,

χ̈ + 3
ȧ
a

χ̇ + M2χ = 0, (258)

where we assumed that the Higgs is essentially in the zero mode. For instance, for a power-
law evolution of the background spacetime, a(t) ∝ tp, Equation (258) is a Bessel equation
that can be solved analytically. With the appropriate boundary conditions, and assuming
Mt� 1 and p ≈ 2/3, it can be written as [23]

χ(t) =
χend
Mt

sin(Mt), (259)

where χ(t = 0) = χend is the value of the Higgs field at the end of the inflationary period,
which coincides with the beginning of the appearance of the (p)reheating mechanisms
(t = 0).

Different channels can now be considered for the decaying of the Higgs field into
the particles of the SM (see Refs. [23,95] for the details). It turns out that the perturbative
decay of the Higgs field is only effective when the amplitude of the Higgs is below a
critical value that depends on the mass of the final particles. This, together with the time
dependence of the decay rate of the Higgs into the particles of the SM, makes it that
the Higgs needs to oscillate a large number of times before decaying into the massive
gauge bosons and fermions and many more times to decay into the less massive fermions,
so the perturbative decay becomes ineffective during the first oscillations of the Higgs.
In that period, the most effective channel turns out to be the parametric resonance [23,95].
However, this channel is enhanced by the effect of Bose stimulation, so the production of
fermions through this channel is highly restricted. These will be mainly produced later
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on through the perturbative channel or through the subsequent decay of the intermediate
bosons into fermions.

Therefore, for the purpose of the present analysis, it is enough to focus on the produc-
tion of the intermediate gauge bosons, W± and Z. In the customary SSB mechanism, the
fields of the SM acquire a constant value of their masses. However, during the reheating
period, the potential still depends on the value of the Higgs field, χ, and thus the mass
acquired from the interaction with the Higgs depends on its value. In that period, it can be
approximated by [23]

m2
W '

g2
2|χ|

4
√

6ξ
, m2

Z '
m2

W
cos2θW

, m f '
y2

f |χ|
2
√

6ξ
, (260)

where g2 is the coupling of the intermediate gauge bosons, θW is the weak mixing angle,
and y f are the Yukawa couplings of the fermion sector [23]. Eventually, after the period of
reheating, in the low-energy regime, the potential takes the customary form of a double-
well potential, and the masses of the particles of the SM become the customary ones [23].
Thus, in the low-energy limit, the Higgs-inflationary scenario is indistinguishable from the
Higgs scenario of particle physics, as expected. However, it is in this mid-energy regime,
during the reheating period, when the basic components of matter are created in the two
universes and the one in which we are mainly interested now.

On the other hand, the quantisation of the intermediate gauge bosons W± and Z
followed as usual by decomposing them into normal modes as

ϕ̂(t, x) =
∫ d3k

(2π)3/2

(
e−ikx ϕk(t)b̂k + eikx ϕk(t)b̂†

k

)
, (261)

where ϕ ≡W±, Z, and b̂k, and b̂†
k are the annihilation and creation operators. As we saw

in Section 2.4.2, the inhomogeneous modes of the matter fields can be treated as particles
propagating in the background spacetime. The mode amplitude ϕk(t) satisfies

ϕ̈k + 3
ȧ
a

ϕ̇k + ω2
k(t)ϕk = 0, (262)

with (see (78))

ω2
k =

k2

a2 + m2
ϕ(t), (263)

where mϕ is now given by (260) with the value of the Higgs given in (259). In terms of the
number of times that it crosses zero, j = Mt

π , the field (259) can be written as

χ(j) =
χend
jπ

sin(π j), (264)

so that the frequency (263) turns out to be

ω2
k(j) =

k2

a2 +
m̃2

0 sin(π j)
π j

, (265)

where m̃0 is the effective mass of the gauge bosons at the beginning of the first oscillation
(j = 0). The time-dependence of the frequency entails the production of particles from two
different sources. The first one is the expansion of the background spacetime, which can be
neglected during the first oscillations of the Higgs. The other one is the time-dependence of
the Higgs field. The Bogolyubov transformation that relates the creation and annihilation
operators of the j-crossing, b̂j and b̂†

j , with those of the initial oscillation b̂0 and b̂†
0 is

b̂j = α b̂0 + β b̂†
0 , (266)

b̂†
j = α b̂†

0 + β b̂0, (267)

149



Universe 2021, 7, 404

where

α =
1
2

(
a3/2

j

√
ωj

ω0
+ a−3/2

j

√
ω0

ωj

)
, (268)

β =
1
2

(
a3/2

j

√
ωj

ω0
− a−3/2

j

√
ω0

ωj

)
, (269)

with |α|2 − |β|2 = 1, and aj = a(j)
a(0) is the ratio between the value of the scale factor at

the initial oscillation and the value of the scale factor at the oscillation j. The number of
particles is then

nj = |β|2 =
1
4

(
ωj

ω0
+

ω0

ωj
− 2

)
, (270)

where we have neglected the expansion of the universe during the first part of the re-
heating period. From Figure 17, it can be seen that the production of particles is resonant
near the points where the Higgs crosses zero. This is why this channel is called narrow
resonance [95].

Figure 17. Particle production (270) in terms of the number of crossings of zero, j = Mt
π . Dashed line

accounts for the expansion of the universe, with a(t) = t
2
3 , which can be neglected in the first few

oscillations. The production of particles is resonant in the points where the Higgs crosses zero (left).
If the expansion of the background spacetime is neglected, the production of particles in the peaks
rapidly tends to a constant value. However, when the expansion is taken into account, the number of
particles in the peaks scale with the scale factor (right).

During the first few oscillations, and mainly in the adiabatic regime, the influence of
the expansion of the background spacetime can be neglected, and the number of particles
at the peaks, which coincide with the value for which the Higgs crosses zero, rapidly tends
to the constant value np(a = 1), given by

np(a = 1) =
1
4



√

k2

k2 + m̃2
0
+

√
k2 + m̃2

0
k2 − 2


. (271)

However, when the expansion of the background spacetime is taken into account, the num-
ber of particles created at the peaks scales with the scale factor, as (see Figure 17, Right.)

np(t) ≈
m̃0

4k
a(t)− 1

2
. (272)

In that case, the contribution to the production of intermediate bosons W± and Z is much
more enhanced, and the expansion of the spacetime cannot be neglected.
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From the very beginning, the intermediate gauge bosons start decaying into the
fermions of the SM through their mutual interaction given by the Hamiltonian [23]

HI = −
g2√

2

(
W+

µ J−µ + W−µ J+µ
)
− g2

cos θW
Zµ Jµ

Z, (273)

where J−µ ≡ d̄LγµuL and J+µ ≡ ūLγµdL are the charged currents that couple to the boson
W+ and to the boson W−, respectively, and the neutral current

Jµ
Z ≡ κ1ūLγµuL + κ2d̄LγµdL, (274)

with,

κ1 =
1
2
− 2 sin2 θW

3
, κ2 =

1
2
− sin2 θW

3
. (275)

These interactions lead to the charged decays

W+ → u + d̄ , W− → ū + d, (276)

and the neutral decays

Z → u + ū , Z → d + d̄, (277)

where d and u stands= for the down- and up-type quarks, respectively, and similar decays
can also be considered for the rest of quarks. Analogously, we can consider the following
decays in the lepton sector

W+ → e+ + νe , W− → e− + ν̄e, (278)

as well as the neutral decays

Z → e− + e+ , Z → νe + ν̄e, (279)

all of them with their respective decay widths, ΓW± ,Z→i. Let us then notice that an asym-
metry in the decay of the Higgs into the intermediate gauge bosons would entail the
asymmetry in the production of quarks and leptons and therefore an asymmetry in the
creation of primordial matter during the reheating period without the need of any other
mechanism49.

In the scenario of universes created in correlated pairs (see Section 3), the two universes
can be seen as expanding universes with the wave functions of their matter fields CP-
conjugated. Let us focus on one of the two wave functions, say, ψ+(ϕ). If we consider
that the modes of the expansion (261) are decoupled, then, the Schrödinger wave function
for the scalar field, ϕ, which generically denote any of the polarisations of the W± and Z
bosons, can be written as the product of the wave functions of the modes, i.e.,

ψ+(t, ϕ) = ∏
k

ψ
(k)
+ (t, ϕk), (280)

where ψ
(k)
+ (t, ϕk) is the solution of the Schrödinger equation

ih̄
∂ψ

(k)
+

∂t+
= Hϕk ψ

(k)
+ , (281)

with

Hϕk =
1

2a3 p2
ϕk

+
a3ω2

k
2

ϕ2
k , (282)
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where a = a(t) is the scale factor of the background spacetime, and ωk = ωk(t) is given by
(263). The general solution of the Schrödinger Equation (281) can then be expressed in the
basis of the number eigenfunctions given by [35]

ψ+,Nk (t, ϕk) =
e−i(N+1/2)τ
√

2N N!π1/4
√

σ
e−

Ω
2 ϕ2

k HN(ϕk/σ), (283)

where HN(x) is the Hermite polynomial of degree, N ≡ Nk, which is the number occupa-
tion of the mode k, and τ = τ(t) is given by

τ+(t) =
∫ t 1

a3σ2 dt, (284)

the function Ω is given by

Ω =
1
σ2 − i

a3σ̇

σ
, (285)

and σ is a real function that satisfies the auxiliary equation [35]

σ̈ + 3
ȧ
a

σ̇ + ω2
k σ =

k2

m2σ3 . (286)

The wave function in the time reversely symmetric universe is given by (see Section 3.2.5)
ψ+(t, ϕ̄) so the eigenfunctions of the basis for the state of the boson fields in the symmetric
universe turns out to be given by (283) with the replacement ϕk → ϕ̄k. Therefore, if the
scalar field ϕ represents the boson field W− in one of the universes, then ϕ̄ represents the
boson field, W̄− = W+, in the symmetric universe50. The decay of the Higgs into the boson
W+ and W− can then be produced separately in the two symmetric universes.

Then, one can make the hypothesis that the intermediate gauge boson W+ and W− are
created in different universes, or at least at different rates in the two universes, without vio-
lating the global matter–antimatter asymmetry, an appealing scenario that is also suggested
in [71,96]. It is not mandatory that the asymmetry is complete, but a small asymmetry in
the decay of the Higgs into the W+ and W− bosons in the two universes would eventually
derive into an asymmetry in the production of fermions in the two universes due to the
different decays of the W± bosons into fermions (see (276) and (278)). In the universe in
which the boson W+ predominates, there would be an excess of the up-quark with respect
to the up-antiquark, and accordingly, there would be an excess of protons over antiprotons,
and matter would therefore dominate over antimatter. From the global picture of the two
correlated universes, the total amount of matter is always balanced with the total amount
of antimatter, so there is no global matter–antimatter asymmetry. It is worth noticing that
the creation of a universe–antiuniverse pair does not assure that the content of one of the
universes is completely matter and that the content of the partner universe is completely
antimatter. It is not therefore a mechanism for creating the matter–antimatter asymmetry
but a mechanism to restore or explain the apparent asymmetry [91]. In a multiverse sce-
nario, one may expect a whole range of matter–antimatter distributions along the pairs of
universes in the multiverse. In some of them, there would be the needed asymmetry to
form matter and therefore galaxies and planets like in our universe, without violating any
physical law.

4. Observable Effects of Quantum Cosmology

Testing the predictions of a theory with the observational data is a fundamental
keystone of any physical proposal. However, it is not the unique consideration, theoretical
consistency must also be taken into account, and, in fact, it may help us to break through
new paradigms. Well-known examples in contemporary physics are the study of the
unobservable black holes from the theoretical consistency of the perturbed motion of an
observable companion or the prediction of the charm quark from symmetry consistencies
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of the Standard Model of particles physics, not mention the unobserved “dark matter,”
which is basically supported by consistency arguments. Furthermore, observability and
falsifiability are not the same thing, as has been clearly argued51 in Ref. [97] (see also
Ref. [98] for a recent review).

Nevertheless, any theory must eventually be tested. In principle, the effects of quan-
tum gravity are expected to be relevant at a very small length, or equivalent to very large
scale of energy, and that makes them to be hardly measurable. For that reason, it is quite
difficult to propose practical tests in quantum cosmology. However, we may expect some
quantum corrections or deviations from the classical behaviour due to quantum cosmologi-
cal effects that, at least from a theoretical point of view, could be detected. Among these
effects, let us here briefly mention two: the pre-inflationary stage induced by the backreac-
tion of the perturbation modes and the corrections due to the high-order terms in the WKB
approximation [17–19].

In Section 2.4.2, we saw that the vacuum state of the perturbation modes possesses
an energy that permeates the whole universe. In principle, that backreaction energy is
expected to be a small correction to the energy of the unperturbed background spacetime.
However, despite being small, it might produce some observable effects. Let us notice that
the effective value of the Hamiltonian constraint, which is obtained by tracing out from
(55) the degrees of freedom of the perturbation modes, is,

H = H0 + 〈Hm〉 = 0, (287)

which in terms of the time derivative of the scale factor yields the modified Friedmann equation,

ȧ2

a2 = H2(ϕ)− 1
a2 +

〈Hm〉
a3 , (288)

where H2(ϕ) is here the energy of the homogeneous mode of the scalar field, which for
simplicity we shall consider constant, and

〈Hm〉 ∝ m n3
max, (289)

for the particles of the matter fields, and

〈Hm〉 ∝
n4

max
a

, (290)

in the massless case. In the former case, the last term in (288) represents a matter-like
content in the universe (∼a−3), and in the latter it mimics a radiation energy content
(∼a−4). In both cases, it can be shown [99–101] that a matter- or radiation-predominated
pre-inflationary period might, under some conditions, leave some observable imprints
in the power spectrum of the CMB. However, it is sometimes considered [3,4,102] that
nmax ≈ Ha, which means accounting only for the backreaction of the superhorizon modes.
In that case, the back reaction becomes equivalent to a cosmological constant that effectively
shifts the value of the potential [89] (see also Refs. [102–104]),

ε =
H4

8

{
1− m2

H2 log
b2

H2 +

(
1 +

m2

H2

)(
1− b2

H2

)}
, (291)

where terms of higher order have been disregarded. The energy shift (291) can be seen as a
correction to the effective value of the potential of the scalar field, an effect that is expected
to produce observable imprints in the properties of the CMB [105–107].

A different effect from quantum cosmology can be obtained by considering higher-
order terms in the WKB wave functions (64). Following [17–20], let us assume a WKB
wave function

φ(q; xn) = C(q)e±
i
h̄ S(q)ψ

(1)
± (q; xn), (292)
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with,

S(q) = S(0)(q) + h̄2S(2)(q) + . . . , (293)

ψ
(1)
± (q; xn) = ψ

(0)
± (q; xn)eih̄S(2)

n +..., (294)

where q is the variable of the background, and xn are the perturbation modes. The first-
order terms give rise to the corresponding Hamilton–Jacobi of the background spacetime
and a modified Schrödinger equation for the corrected wave function of the perturbation
modes, ψ

(1)
± , which can be written as the Schrödinger equation for a set of uncoupled

harmonic oscillator with a perturbed frequency with respect to the unperturbed frequencies
(77) and (78) that can be written as

ω2
n → ω̃2

n = ω2
n +Fn, (295)

where Fn = Fn(t) is a time-dependent function. A term like that is expected to produce
a variation in the power spectrum of the perturbation modes that would be in principle
measurable [18–20,35]. However, the effect is too small to be distinguishable from the
statistical uncertainty implied by cosmic variance [19,20].

Perhaps the application to different inflationary models or the expected advances in
the field of astronomical detectors and associated space missions, with the detection and
analysis of gravitational waves or the :cosmic neutrino background” (CNB), might make
directly testable in the future the deviations from classicality predicted from quantum
cosmology. Nevertheless, even though they may be difficult to be observed these effects
may have important conceptual consequences. For instance, we saw in Section 2.5 that
an energy term like the one produced by the backreaction in the Friedman Equation (288)
might drastically change the way in which the universes can be created.

On the other hand, the creation of the universe in entangled pairs52 may also add
new features to be tested in the future. For instance, in an entangled universe, the fields
of the matter content in the two universe stop being a vacuum state. If one computes the
state of the matter field in one single universe of the entangled pair by tracing out from
the composite state the degrees of freedom of the matter in the partner universe, then
the resulting state turns out to be a quasi-thermal state with a temperature that depends
on the degree of entanglement (which eventually depends on the size of the universe).
In Ref. [89], the ratio between the fluctuations of the perturbation modes of a field that is
initially in a thermal state and those corresponding to a initial vacuum state was computed,
yielding [89]

δφth
n

δφI
n

=

√√√√1
2

(
1 +

x2

(1 + x2)(1 + m2

H2x2 )

)
, (296)

with,

x ≡ n
Ha

=
nph

H
∼ H−1

Lph
, (297)

where Lph is the physical wave length, and H−1 is the distance to the Hubble horizon.
The large modes (x � 1) are in the vacuum state, and then δφth

n ≈ δφI
n. However,

the departure is significant for the horizon modes, x ∼ 1. This would be a distinctive
effect of the creation of the universes in entangled pairs, and it should leave an observable
imprint in the properties of the CMB.

5. Conclusions

Quantum geometrodynamics provides us with a consistent framework for the quan-
tum description of the universe in terms of a wave function that contains, at least in
principle, all the information about both the spacetime and the matter fields that propagate
therein. In the semiclassical regime, the complex phase of the wave function contains the
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information about the dynamics of the background spacetime, and the wave function of the
matter fields satisfy a Schrödinger equation that depends on the geometry of the subjacent
spacetime. The dynamics of the spacetime turns out to be invariant under the complex
conjugation of the semiclassical wave function. That gives rise to two different solutions
that have been typically interpreted as representing the expanding and the contracting
branches of the universe, both filled with matter. We have seen that a different, more
consistent interpretation is that the two solutions represent expanding universes with their
matter contents being CP reversely related, so from the point of view of an internal observer
of any of the universes, the partner universe is always made up of antimatter, these two
terms having therefore a relative meaning.

On the other hand, the Wheeler–DeWitt equation can be seen as the wave equation of
a field that propagates in the space of Riemannian 3-dimensional geometries, M, where we
can describe the evolution of the universe as a trajectory parametrised by a parameter that
we can call time. The quantum mechanical counterpart is a quantum field that, following
the customary approach of a quantum field theory, can be expressed in terms of creation
and annihilation operators that satisfy the usual commutation relations. These operators
represent the creation and the annihilation of modes for the spatial sections of the universe.
Thus, the third quantisation formalism allows us to describe the quantum state of a whole
spacetime manifold that can, in general, be a disconnected collection of simply connected
manifolds. It is thus an appropriate framework to describe a multiverse scenario, in which
the most natural boundary condition turns out to be that the field that represents the whole
spacetime manifold remains in the ground state of an invariant representation along the
entire history of the universes. This boundary condition implements the idea that the
multiverse is the true isolated system, and therefore no external interaction may excite
its quantum state. However, as we have seen, this invariant boundary condition does
not fix completely the quantum representation of the universe and, in fact, the ground
state of one invariant representation is, in general, full of pairs of universes in another
invariant representation. For instance, we have seen that the Hartle–Hawking no-boundary
condition can be seen as more fundamental because it is based on a more ontological
argument. In that case, one may assume that the field that represents the multiverse is in
the ground state of the invariant Hartle–Hawking representation. Because the invariance
of the invariant representation, the field remains then in this ground state irrespective of
the evolution of the universes. However, in terms of the invariant representation associated
to the Vilenkin’s tunnelling boundary condition, which represents the state of single
universes, it turns out that the ground state of the Hartle–Hawking no-boundary state is
full of Vilenkin’s pairs of universes. It means that the ground state of the multiverse is
full of pairs of universes whose matter contents turn out to be CP-conjugated. The charge
conjugation comes from the complex conjugation relation between the Schrödinger wave
functions of the matter fields in the two universes, and the reversely parity relation comes
from the opposite signs of the momentum conjugated to the geometrical variables of the
spatial sections of the spacetime. The two universes form thus a universe–antiuniverse pair.

We have seen all these features in a general model but particularly in the model of a
homogeneous and isotropic spacetime with particles and matter fields propagating therein,
where explicit examples can be analysed. In particular, we have seen that there are three
main paradigms for the creation of the universe in quantum cosmology. The universes
can be created from nothing, i.e., from no preexisting spacetime. However, it requires a
precise fine-tuning that seems to be quite unnatural. The other possibility is then that
the universe is created from the quantum fluctuation of the spacetime of a preexisting
spacetime. However, to then be consistent, one should also give an explanation for the
creation of the first spacetime. We have seen that Gott and Li’s explanation is that a vacuum
fluctuation of our spacetime can travel back along one of the closed temporal curves that
are allowed to exist in the vacuum state of the gravitational field to become the seminal
spacetime from which our spacetime has been created. From that point of view, the universe
would be the mother of itself. There is yet another possibility that avoids this paradoxical
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conclusion. The universes can be created from nothing, i.e., with no need of any prior
spacetime, but they must then be created in pairs, from double Euclidean instantons. That
turns out to be the most natural and self-consistent way in which the universes can be
quantum mechanically created.

We have also seen in a very specific model that the creation of matter after the period
of inflation would be correlated in the two universes of an entangled pair. The decay of
the inflaton field into the particles of the Standard Model after inflation in the reheating
period is produced in such a way that the matter and antimatter of the two universes is
perfectly balanced. The matter–antimatter asymmetry observed in our universe would
only be therefore an apparent asymmetry, and, in fact, it might be considered as evidence of
the existence of an entangled companion of our universe that would contain the amount of
antimatter that is left in our universe. However, the observational test of this and other
quantum cosmological hypothesis seems to be still far from the current state of observation
as the effects of an entangled partner would be in the domain of quantum gravity or at
least in a pre-inflationary stage of the universe. Perhaps in the future the advances in the
detection of primordial gravitational waves or a possible cosmic neutrino background may
shed some light onto these intriguing questions.
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Notes
1 We shall not deal here with such processes of decoherence, which can be seen in thebibliography [2–6].
2 More exactly, it is isomorphic to a Milne spacetime, which is a particular coordination of the light cones of the Minkowski

spacetime.
3 I shall closely follow Refs. [7,8].
4 Following Ref. [10], we are going to use throughout units in which, h̄ = c = 16πG = 1, although we will leave the constant h̄ in

some expressions to remark their quantum character.
5 For the matter fields we shall generally consider a scalar field.
6 We shall be more precise later on.
7 Spacetime becomes a ’trajectory of spaces’, cfr. p. 107, Ref. [7].
8 Let us assume that the period of inflation is fully supported by the current observational data.
9 Let us notice however that the creation of this initial boundary hypersurface Σ0 is not a process occurring in time but it

corresponds to the creation of the spacetime itself [7], actually.
10 There is also the so-called DeWitt’s boundary condition that states that the wave function of the spacetime must be zero as the

curvature approaches the initial singularity [7,10], which might have some interesting properties on the cosmic entanglement [16].
11 A classical path of the superspace is invariant under reparametrisations so by time we mean any time variable.
12 For instance, the march of a material clock would be given by the matter fields that are solutions of Einstein’s equations, in a

circular argument.
13 Sometimes it is distinguished between minisuperspace and midisuperspace models depending on the number of variables of the

reduced superspace.
14 In some cosmological scenarios [22–24], the length scale of the initial hypersurface can be some orders of magnitude greater than

the Planck length, enough for the fluctuations of the spacetime to be subdominant.
15 Unless otherwise indicated we shall always use cosmic time, t, for which N = 1.
16 Recall that after doing the variation with respect to N we can fix any particular value.
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17 However, one would generally expect that the creation of the universe comes from a quantum fluctuation of the spacetime
and therefore be of order of the Planck scale, H−1 ∼ lP. In that case, new elements should be incorporated, although the picture
described here and in the next section would still be instructive.

18 This is especially clear in the case of the cosmic microwave background radiation (CMB), in which the relative scale of the energy
fluctuations in the last scattering surface are of order 10−5.

19 By ’matter degrees of freedom’ we mean the perturbation modes that can represent matter, radiation or even fluctuations of the
gravitational field (gravitons).

20 In terms of t+ we would have ended up with two contracting universes, one made of matter and the other made up of antimatter.
However, that case is not interesting because the two newborn contracting universes would rapidly delve into the spacetime
foam from which they came up

21 Here, the field is the Schrödinger wave function ψn.
22 In Ref. [29] it is shown that the distribution of a large number harmonic oscillators becomes highly peaked around its average

value.
23 Let us note however that this is only a formal analogy. In fact, the Hamiltonian constraint (89) indicates is that the total energy of

the universe is zero, i.e., the (negative) energy of the spacetime exactly balances the (positive) energy of the matter fields.
24 Let us note however that this process does not violate the conservation of the energy because the total energy, i.e., the gravitational

energy plus the energy of the matter fields is, as we have already said, balanced.
25 These are the final values of the Euclidean regime. From the point of view of the Lorentzian sections, these are the “initial” values.
26 As we have seen, it is somehow arbitrary determining which solution describes an expanding universe and accordingly there is

an ambiguity in determining which modes are the ’outgoing’ modes.
27 In Section 3.3 we shall define more concretely the operator ∇ in the minisuperspace.
28 In the superposition (127) it should appear ξ±n , with (ξ+n )∗ = ξ−n . However, the eigenfunctions of the harmonic oscillator are real

functions so, ξ+n = ξ−n ≡ ξn.
29 In general, a non simply connected manifold can be divided into N simply connected parts [59] and this N parts can be seen as

N classically independent universes.
30 Typically, large regions of order of the Hubble length of our universe.
31 In the 1980s–1990s, the paradigm was a universe in a non-accelerated expansion.
32 It means that the state (146) would actually be,

|out〉 = |ϕ0〉(|0〉+ |1〉).

In that case, when we trace out the state of the baby universes, the state of the field remains unaffected in the initial state,
ρout = |ϕ0〉〈ϕ0|

33 We have followed the normalisation applied in Ref. [10].
34 This result is corrected from the one given in Ref. [10] by a factor 1

2 , which is already noted in Ref. [62].
35 For the Milne spacetime, see Ref. [64]
36 A rescale, χ→ aχ, θ → aθ, . . ., has been made to absorb the constant a.
37 Assuming the value, Ni = 0.
38 The fact that the trajectory is not a geodesic is not really determinant. In fact, using a generalisation of the Maupertuis principle [65,66],

one can compute the metric where the trajectory of the universe is a geodesic. Let us consider the reparametrisation given by,
dt̃ = m2(hab)dt and Gabcd → G̃abcd = m2(hab)Gabcd. In that case, the action (162) turns out to be

SEH =
∫

M
dt̃d3xN

(
1

2N2 G̃abcdh′abh′cd − 1
)

, (298)

where, h′ab = dhab
dt̃ . In the superspace determined by the supermetric G̃abcd the evolution of the universe turns out to be a geodesic.

39 For a FRW spacetime, α = 0 (because, ˙̄s = 0).
40 For recent works on the third quantisation, see Refs. [67–74].
41 Let us notice that the condition, 3R� 2Λ, does not assume that the universe is homogeneous.
42 The factor h̄2 has been introduced for later convenience.
43 In the 2 sphere,~j = {l, m}.
44 There is here no Euclidean region because we have assumed, 2Λ�3 R, in (191). Otherwise, the condition 3R > 2Λ defines an

Euclidean region where, in the no-boundary proposal, the universe would be created from nothing (see Section 2).
45 We are considering geometrically closed spatial sections.
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46 The inhomogeneities of the spacetime can also be considered as fields propagating in the spacetime (see Section 2).
47 A similar procedure can be followed in a curved spacetime.
48 We shall use now the variable χ to represent the inflaton field and leave the variable ϕ to represent collectively the rest of fields

of the SM.
49 Although other mechanisms of baryon asymmetry can simultaneously be present.
50 Typically, ϕ would represent a linear combination of the W+ and W+ fields. In that case, ϕ̄ would represent the corresponding

conjugated combination.
51 Tegmark poses the following example: a theory stating that there are 666 parallel universes, all of which are devoid of oxygen, makes the

testable prediction that we should observe no oxygen here, and is therefore ruled out by observation, cfr. Ref. [97], p. 105.
52 And, in general, the creation of universes in N-entangled states, see [36,108].
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Abstract: The Euclidean path integral is well approximated by instantons. If instantons are dynamical,
they will necessarily be complexified. Fuzzy instantons can have multiple physical applications. In
slow-roll inflation models, fuzzy instantons can explain the probability distribution of the initial
conditions of the universe. Although the potential shape does not satisfy the slow-roll conditions
due to the swampland criteria, the fuzzy instantons can still explain the origin of the universe.
If we extend the Euclidean path integral beyond the Hartle–Hawking no-boundary proposal, it
becomes possible to examine fuzzy Euclidean wormholes that have multiple physical applications in
cosmology and black hole physics.

Keywords: quantum cosmology; no-boundary proposal; instantons

1. Introduction: Preliminaries

In modern physics, understanding the nature of the origin of the universe is one of
the most fundamental problems. Due to the singularity theorem [1], if we move backward
in time and assume reasonable physical conditions, it appears that there must exist an
initial singularity. At this singularity, all the laws of general relativity break down; hence, a
quantum gravitational prescription is required.

To understand the initial singularity, the quantum gravitational description must be
non-perturbative. The most conservative approach is to quantize the gravitational degrees
of freedom as per the canonical quantization method [2]. Using this approach, one can
obtain the quantized Hamiltonian constraint; or the so-called Wheeler–DeWitt equation. If
we solve the equation, we can in principle obtain the probability for a given hypersurface
and the corresponding field configurations.

One of the limitations of canonical quantization is that the probability depends on the
selection of boundary conditions [3]. By selecting a certain boundary condition, one may
or may not provide a reasonable probability distribution for the early universe. There is no
fundamental principle that can be used to select the boundary condition; in principle, the
boundary condition must be confirmed by the possible observational consequences [4].

1.1. Hartle–Hawking Wave Function

Now, we can ask what the most natural assumption regarding the boundary conditions
of the universe is. It might be considered that the ground state wave function corresponds
to the most natural choice of boundary conditions, although one potential problem with
this is that the ground state is not defined in the context of quantum gravity. However,
one may reasonably argue that the Euclidean path integral might be the ground state
wave function of the Wheeler–DeWitt Equation [5]. The mathematical form, the so-called
Hartle–Hawking wave function, is listed below (we use the convention c = G = h̄ = 1):

Ψ
[
hµν, ψ

]
=
∫
DgµνDφ e−SE[gµν ,φ], (1)
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where gµν is the metric, φ is a matter field, and SE is the Euclidean action; we sum over all
regular and compact Euclidean geometries and field configurations satisfying conditions
∂gµν = hµν and ∂φ = ψ. One interesting feature of this wave function is that there is
only one boundary (the final boundary) of the path integral; however, the path integral
usually must have two boundaries (the initial and final boundaries). As the wave function
has no initial boundary, it is known as the no-boundary wave function. Although there
is no guarantee regarding the convergence of this path integral (this might diverge for
Minkowski or anti-de Sitter background), it will still be useful in understanding the physics
of de Sitter background.

1.2. Steepest-Descent Approximation and Fuzzy Instantons

In cosmology, it is reasonable to assume O(4)-symmetry as follows:

ds2
E = dτ2 + a2(τ)dΩ2

3, (2)

where τ is the Euclidean time, dΩ2
3 is the 3-sphere, and a(τ) is the scale factor. In addition

to this symmetry, if we impose the on-shell condition to the metric and matter field; or we
restrict to instantons, we can approximate the wave function based on the steepest-descent
approximation:

Ψ[b, ψ] ' ∑
on−shell

e−Son−shell
E , (3)

where b and ψ are the boundary values of a(τ) and φ(τ), respectively. Finally, the probabil-
ity for each instanton is approximately:

P[b, ψ] = |Ψ[b, ψ]|2 ' e−2 Re Son−shell
E , (4)

where

Son−shell
E = Re Son−shell

E + i Im Son−shell
E . (5)

Due to the analyticity, at the point of the Wick-rotation τ = τ0 + it, we must impose
the continuity of fields

a(t = 0) = a(τ = τ0), (6)

φ(t = 0) = φ(τ = τ0), (7)

as well as the Cauchy-Riemann conditions

ȧ(t = 0) = iȧ(τ = τ0), (8)

φ̇(t = 0) = iφ̇(τ = τ0). (9)

therefore, in general, if the fields are dynamical, the on-shell solutions will be complex-
valued; the instantons will be fuzzy. However, the boundary values b and ψ must be
real-valued [6]. In some sense, this is a type of boundary condition of the instantons. The
reality at the boundary of the wave function is related to the classicality of the solution. Once
the solution becomes classical, the probability must slowly vary along the steepest-descent
path. If the solution is real-valued, or if the real component of each function is at least
dominant over that of the imaginary part, the probability must slowly vary compared with
the phase part, and hence the history will be sufficiently classical. Furthermore, the history
should satisfy the classical equations of motion (e.g., the Hamilton–Jacobi equation). This
condition can be summarized as follows:

|∇αRe SE| � |∇αIm SE|, (10)
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where α = a, φ is the canonical direction [7]. In many practical cases, this classicality
condition can be easily demonstrated by verifying whether the real parts of the functions
dominate the imaginary parts after the Wick-rotation and a sufficient Lorentzian time.

1.3. Scope of This Paper

The question that naturally arises is this: for which physical situations can the classi-
cality condition be satisfied? The answer is that inflation is required to satisfy the classicality
condition. This is very important: if our universe was created from the Hartle–Hawking
wave function, a small amount of inflation is required [8]. However, there still remain
several questions:

1. Does the Hartle–Hawking wave function prefer sufficient inflation?
2. Which type of inflation allows classicalization: slow-roll or fast-roll?
3. Is the Hartle–Hawking wave function a unique choice for quantum cosmology; or can

there be additional generalization from the Euclidean path integral approach?
4. Is the Hartle–Hawking wave function compatible with the recent progress of quan-

tum gravity?

In this study, we review several interesting developments about the Hartle–Hawking
wave function and its potential applications. Furthermore, we answer a number of previous
questions and provide certain possible future applications and research directions.

2. Fuzzy Instantons with Slow-Roll Inflation

The first issue is to obtain classicalized fuzzy instantons based on slow-roll inflation.

2.1. Simplest Model

To discuss the generic properties of slow-roll inflation and fuzzy instantons, we
consider the following model [7]:

SE = −
∫

d4x
√
+g
[

1
16π

(R− 2Λ)− 1
2
(∇Φ)2 −V(Φ)

]
, (11)

where R is the Ricci scalar, Λ is the cosmological constant, Φ is a scalar field, and

V(φ) =
1
2

m2Φ2 (12)

is the potential. For simplicity, one can define the metric and several other variables
as follows:

ds2
E =

3
Λ

(
dτ2 + a2(τ)dΩ2

3

)
, (13)

φ ≡
√

4π

3
Φ, (14)

µ ≡
√

3
Λ

m. (15)

The equations of motion are as follows:

ä + a + a
(

2φ̇2 + µ2φ2
)

= 0, (16)

φ̈ + 3
ȧ
a

φ̇− µ2φ = 0. (17)

These are two second-order differential equations but we will consider complexified
instantons. Hence, each equation has two parts with one being the real part and the other
being the imaginary part. Therefore, there are basically eight initial conditions (at τ = 0)
that determine the solution; however, because of the Hamiltonian constraint, two of them
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are restricted. If we assume the no-boundary condition a(τ = 0) = 0 with the Hamiltonian
constraint, we must require that

a(τ = 0) = 0, (18)

ȧ(τ = 0) = 1, (19)

φ̇(τ = 0) = 0. (20)

The above equations already fix six of the initial conditions. There are thus two free
parameters Re φ(τ = 0) and Im φ(τ = 0), or we present

φ(τ = 0) = φ0eiθ , (21)

where both φ0 and θ are real values (see a recent analytic review in [9]).
Physically, φ0 corresponds to the initial condition of the inflaton field, i.e., the initial

condition of an inflationary universe. Therefore, we will eventually examine the probability
distribution as a function of φ0. On the other hand, θ is merely a free parameter. This
must be used to satisfy the boundary condition after the Wick-rotation (i.e., to achieve
classicality). If we select an appropriate θ, it may be possible that after the Wick-rotation
τ = τ0 + it, the imaginary parts of both a and φ will approach zero, and the real parts will
dominate (e.g., see Figure 1 [10]). Therefore, in other words, θ is a tuning parameter for the
classicality at a future infinity.

0 2 4 6 8 10 12
0.0
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Re 

Figure 1. Example of a fuzzy instanton solution with m2/V0 = 0.2 and mφ0/
√

V0 = 0.02, where the left side is the metric a,
and the right side is the scalar field φ. Here, the cusp is the turning point from a Euclidean to a Lorentizan signature [10].

Then, one may ask what the role of θ is in detail [11]. To determine this, let us first
assume slow-roll inflation given a classical background metric, i.e., φ̇2 � 1, µ2φ2 � 1, and
Im a� Re a. In this case, it can be stated that

Re a = Caet + Dae−t ' Caet, (22)

where Ca and Da are integration constants. The equations of motion for the scalar fields are
approximately

Re φ̈ + 3Re φ̇ + µ2Re φ ' 0, (23)

Im φ̈ + 3Im φ̇ + µ2Im φ ' 0. (24)

Hence,

Re φ ' CRe
φ e−

3
2 t+ωt + DRe

φ e−
3
2 t−ωt, (25)

Im φ ' CIm
φ e−

3
2 t+ωt + DIm

φ e−
3
2 t−ωt, (26)
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where CRe
φ , DRe

φ , CIm
φ , and DIm

φ are constants, and

ω2 ≡
(

3
2

)2
− µ2. (27)

From these equations, we can easily obtain the following conclusion. If µ < 3/2, the
solutions satisfy the over-damped motion. In other words, there are two linearly independent
solutions with different exponents. Therefore, it is possible to select θ such as to make
CIm

φ � 1 (and hence finely tune the integration constants). Then,

Im φ

Re φ
' e−2ωt → 0, (28)

and hence after the Wick-rotation, the solution will eventually satisfy the classicality
conditions. On the other hand, if µ > 3/2, the solutions satisfy under-damped motion. For
any choice of initial conditions, Im φ/Re φ will be proportional to a trigonometric function,
and hence,

Im φ

Re φ
' O(1). (29)

Therefore, the imaginary part and real part of the scalar field oscillate in a similar order.
One might query the consequences of this if there is no approach to classicalize a

scalar field. Note that the imaginary part of the scalar field provides the negative kinetic
term, indicating it is ghost-like. The energy of the scalar field will contribute to the matter
content of the universe. If the imaginary part of the scalar field is of the same order as
the real part even after the Wick-rotation, we cannot avoid the instability of the ghost-like
imaginary part of the field. This is a catastrophic consequence, and we cannot physically
allow this possibility. (However, for the possibility of observing restricted contributions
from the ghost-like term, please refer to [12]).

For a generic scalar field potential V, the criterion for a classical universe is µ2 < 9/4, or
∣∣∣∣
V′′

V

∣∣∣∣ < 6π. (30)

If m2/V < 6π, φ = 0 (local minimum) can allow for a classical universe. If m2/V > 6π,
there exists a cutoff φcutoff > 0 such that φ > φcutoff only allows for classical universes [7].

2.2. Probabilities and Preferences of Large e-Foldings

If one is able to construct a classical universe, it is possible to obtain the probability of
that universe. For the slow-roll potential, the probability of a classical universe with the
initial condition φ0 is approximately

log P ' 3
8V(φ0)

. (31)

Note that this is positive definite. Hence, the probability is exponentially enhanced.
The most highly favored initial condition is a field value with the smallest possible potential.
Considering the no-boundary proposal [8], this indicates that φ ' φcutoff corresponds to
the most probable initial condition.

However, the limitation is that the e-foldings of the most probable initial condition
are, in general, insufficient. For example, if we have a quadratic potential with Λ = 0, the
most preferred e-folding number will be ∼0.62, while more than ∼50 e-foldings will be
required [13].

There have been several proposals to resolve or understand this problem. First, the
simplest suggestion is that the no-boundary proposal is simply wrong. For example,
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if we do not trust the steepest-descent approximation for theoretical reasons, we may
obtain an alternative probability distribution [14]. Alternatively, if we begin from a new
fundamental wave function, it is possible to obtain a different probability distribution that
may prefer a large vacuum energy [3]. However, it is fair to say that there are still several
theoretical arguments to support the consistency of the original approaches put forward by
Hartle and Hawking [15]. Thus, we can consider several viable possibilities to rescue the
Hartle–Hawking wave function [16]:

1. We require a number of ad hoc terms to measure the probability. For example, Hartle,
Hawking, and Hertog introduced the volume-weighting factor to the probability
measure [8]. Consequently, there is competition between the volume-weighting
component and the Euclidean probability component. If the vacuum energy is suffi-
ciently large, the volume-weighting component is dominated, and large e-foldings
are eventually preferred. However, this assumption cannot be justified from first
principles. Furthermore, this leads to eternal inflation, while this eternal inflation goes
beyond the scope of our understanding because of the infinite volume and subsequent
quantum tunneling.

2. Our universe began from V ∼ 1 (Planck scale) vacuum energy. If this is the case, there
are no significant probability differences between the cutoff and other field values.
However, based on observational constraints, this Planck-scale inflation cannot be the
primordial inflation of our universe.

3. Unknown physical degrees of freedom are required. For example, if there exists a very long
field space or a large number of fields that contribute to inflation [13], such degeneracy
of the field space can compete with the Euclidean probability component. However,
in multiple cases, this requires too many degrees of freedom. Hence, in terms of
quantum field theory, these possibilities may be unnatural.

4. Certain modifications of the theory of gravity can explain large e-foldings. For example,
massive gravity models [17,18] could provide certain interesting possibilities; however,
this approach goes beyond the regime of Einstein gravity.

2.3. Rescue from the Secondary Scalar Field

However, the most reasonable rescue is to probably introduce one additional massive
field [11]. The primary idea is that the classicality condition requires the classicality of
all fields not only the inflaton field but also the other matter fields. If this is not the case
(i.e., if the only inflaton field is classicalized while the second field is not classicalized),
the ghost-like modes of the secondary field cannot be controlled after the Wick-rotation.
Hence, this possibility must be avoided.

For simplicity, let us consider the following model

SE = −
∫

d4x
√
+g
[

1
16π

R− 1
2
(∇Φ1)

2 − 1
2
(∇Φ2)

2 − 1
2

m2
1Φ2

1 −
1
2

m2
2Φ2

2

]
, (32)

where m1 and m2 are mass parameters of Φ1 and Φ2, respectively. In particular, we assume
that m1 � m2, and hence Φ1 is the inflaton field and Φ2 is only an assisting field. Similar
to the previous section, one can select the metric ansatz as follows:

ds2
E =

1
m2

2

(
dτ2 + a2(τ)dΩ2

3

)
. (33)

Due to the slow-roll condition, the variation of Φ1 is negligible along the field direction
of Φ2. Hence, it is possible to approximate that (1/2)m1Φ2

1 ' V0 is a constant; therefore,
the classicality condition of the potential (Equation (30)) is

m2
2

V0
' m2

2
1
2 m2

1Φ2
1
≤ 6π. (34)
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The results of numerical investigation are consistent with this expectation (Figure 2 [11]).
The shadowed box region becomes increasingly narrow as m1/m2 decreases. Hence, in the
m1/m2 � 1 limit, if Φ2 ' 0, the genuine cutoff of the Φ1 direction will satisfy Φ1 � 1.
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Figure 2. Numerical calculations of the cutoffs for (m1/m2)
2 = 0.125, 0.25, and 0.5 [11].

Now, we are required to ask what the most probable initial condition over the field
space (Φ1, Φ2) is. The smallest potential energy is the most preferred initial condition. As
we assumed m1 � m2, the potential varies very sensitively along the Φ2 direction. Hence,
the initial conditions with Φ2 ' 0 must be the most preferred. If we assume Φ2 ' 0, the
most probable initial condition of the Φ1 direction is Φ1,cutoff. However, to classicalize the
Φ2 field, the following condition must be satisfied:

m2
2

3πm2
1
≤ Φ2

1,cutoff, (35)

where the details regarding the constants on the left-hand-side are not extremely important.
If there is a mass hierarchy m1 � m2, the cutoff of Φ1 will be sufficiently large while the
initial condition of the inflaton field must have large e-foldings N :

N ' O(1)× m2
2

m2
1

. (36)

In this case, it is easy to make N greater than 50.
It might be asked why massive particles play an important role in the no-boundary

wave functions, as per our physical intuitions, massive particles can be integrated out based
on low energy effective theory. This is an interesting feature of Euclidean quantum gravity.
Massive particles will have greater stability in Lorentzian signatures and lower stability in
Euclidean signatures. If the Hartle–Hawking wave function is a fundamental prescription
of quantum gravity, it must classicalize all fundamental fields, including the most massive
(probably Planck-scale) particles. If the massive fields are not classicalized, there remains an
imaginary degree of freedom, which is detrimental for providing a consistent description.
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This idea is not limited to quadratic potential models. It might be interesting to apply
it to realistic inflation models, in addition to models with various interactions among fields.

3. Fuzzy Instantons with Fast-Roll Potential

The second issue is to obtain classicalized fuzzy instantons even if the slow-roll
condition is not guaranteed. Indeed, this issue has been highlighted in recent discussions
in string theory.

3.1. Landscape vs. Swampland

To understand the cosmological constant problem and multiple fine-tuning issues
regarding the universe, the cosmic landscape was a highly sophisticated hypothesis [19].
String theory allows for a wide variety (almost all possible) constants of nature, including
the cosmological constant, as well as detailed shapes of the inflaton potential with these
being referred to as the cosmic landscape. These possible parameter spaces are physically
realized via eternal inflation and the quantum tunneling of bubble universes. Eventually,
any fine-tuned parameters can be realized at a certain location in the multiverse.

Although there have been several criticisms of this approach, the most significant
criticism was suggested by the string theory community [20]. As per the authors, the
landscape where string theory is allowed is indeed a very restricted region among possible
parameter spaces, e.g., it was conjectured that the inflaton potential must be restricted by

∣∣∣∣
V′′

V

∣∣∣∣ > O(1), (37)
∣∣∣∣
V′

V

∣∣∣∣ > O(1), (38)

where these conditions are known as the swapland criteria. Of course, there are several
subtle issues here. First, there is no fundamental proof of the criteria. Hence, the order-one
constant is tricky to define. Perhaps slow-roll inflation can be marginally allowed [21];
however, there can be no fundamental cosmological constant if we seriously accept the
swampland criteria.

In this study, we do not agree or disagree on the details of the swampland criteria.
However, it has been established that they are harmful to the Hartle–Hawking proposal. In
particular, there is a tension with Equation (30). On seeing more details, we may identify a
run-away quintessence model, which is typical for string-inspired models [22]:

V(φ) = Ae−Cφ. (39)

For each point near φ0, we can approximate the potential as

V(φ) ' 1
2

AC2e−Cφ0

(
φ− φ0 −

1
C

)2
+

Ae−Cφ0

2
. (40)

Therefore, it is not surprising that φ = φ0 has a classical history only if

C2 . 3π. (41)

From numerical computations, we can confirm that C . 4 is the condition for the
existence of a classical solution (Figure 3, [22]). On the other hand, if C > 4 happens, which
is extremely natural for string-inspired models, there will be no classicalized instantons
along the runaway direction. Hence, such a quintessence model is not compatible with the
Hartle–Hawking wave function.
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Figure 3. Euclidean action for exponential potential. If C > 4, classicalized solutions are not
allowed [22].

The question then arises as to whether, even in the context of the swampland criteria,
there is any way to rescue the Hartle–Hawking wave function.

3.2. Rescue Using Hwang-Sahlmann-Yeom Instantons

Although the swampland criteria do not favor the local minimum of the potential,
they do not exclude the unstable local maximum of the potential. We describe the hilltop
potential near the hilltop (φ = 0) as follows:

V(φ) = V0

(
1− 1

2
µ2φ2

)
. (42)

If µ� 1, the slow-roll condition is satisfied; moreover, the usual fuzzy instanton can
exist. On the other hand, if µ� 1, which is more natural for string-inspired models, the
slow-roll condition is no longer satisfied. Thus, close to the hilltop, the initial field values
rapidly rise to the local maximum of the potential during the Euclidean time. By selecting
proper initial conditions, one can obtain the fuzzy instantons close to the fast-rolling hilltop
potentials [23] (for example, see Figure 4). We name these solutions Hwang-Shalmann-
Yeom (HSY) instantons to contrast them with the slow-roll fuzzy instantons proposed by
Hartle–Hawking–Hertog (HHH).

The physical difference is attributed to the probability (Figure 5 [22]). If µ � 1, the
probability is approximately

log PHHH '
3

8V0

(
1− 1

2 µ2φ2
0

) . (43)

On the other hand, if µ� 1, the field quickly approaches the local maximum of the
potential, and hence the dependence on the initial condition is negligible:

log PHSY '
3

8V0
. (44)

Therefore, once there is a hilltop with µ � 1, the probability of left-rolling and
right-rolling are almost the same.
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Figure 4. A fuzzy instanton solution (φ0 = 0.01) of a toy potential V = V0 − (1/2)m2φ2 + (1/24)λφ4, where V0 = 10−7,
m2 = 10−4, and λ = 2 × 10−2. The top figures depict Euclidean time, while the bottom figures depict Lorentzian
time. During Euclidean time, the field rapidly oscillates along the hilltop (φ = 0 in this potential, top right). After the
Wick-rotation, the field rolls in the left or right direction (bottom right).
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Figure 5. Euclidean action V0SE as a function of µφ0. The red curve is log PHHH; however, the blue
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This HSY instanton can rescue the Hartle–Hawking wave function even in the context
of the swampland because the classicalized universes can be created close to the narrow
and unstable hilltop of the field space.
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3.3. Cosmological Applications

If fuzzy instantons and the swampland criteria both exist in the context of the cosmic
landscape, there can be multiple cosmological applications of HSY instantons [22].

1. As per the moduli or dilaton stabilization issue, there is a probability competition
between the stable and unstable directions. It may be that the only possible starting
point from the no-boundary wave function is the hilltop of the potential. As per HSY
instantons, there is no preference between left-rolling and right-rolling. Hence, given
a reasonable probability, the moduli or dilaton stabilization can be explained using
quantum cosmology [23].

2. The universe starts from the local maximum rather than the local minimum. The
cosmological constant depends on the local minimum; however, the probability of the
HSY instanton depends on the local maximum. Therefore, although the cosmologi-
cal constant varies from anti-de Sitter to de Sitter space, there may be no singular
changes in the a priori probability because there is no singular change in the local
maximum [22].

3. HSY instantons can rescue the Hartle–Hawking wave function even in the context
of the swampland criteria because classicalized universes can be created close to the
narrow and unstable hilltop of the field space.

In terms of embedding a consistent inflation model with the swampland criteria
and the trans-Planckian censorship conjecture, if we consider only a single-field inflation
model, the no-boundary wave function will not be compatible with the criteria [21]. On the
other hand, if we include one additional field, there may be the possibility of rescuing the
no-boundary proposal. Alternatively, if the universe began from a hilltop of a very sharp
potential, it can be explained from the no-boundary wave function. However, its smooth
connection to a successful inflation model must be explained.

4. Extensions

In the previous sections, we examined the no-boundary proposal in a single scalar
field model with Einstein gravity. However, in principle, there are possible additional
extensions such as the following:

1. The Euclidean path integral does not necessarily indicate the no-boundary proposal,
which is a specific choice of the Euclidean path integral. In more generic cases,
there can be two boundaries (initial and final boundaries). However, because of
the ambiguity of time in quantum gravity, one may make the interpretation that
two universes are created from nothing. These solutions are known as Euclidean
wormholes (Figure 6 [24]).

2. The theory can be extended by or embedded with quantum gravitational models. For ex-
ample, string-inspired models can be used to introduce a number of additional terms,
e.g., the Gauss–Bonnet term with dilaton coupling [25]. Furthermore, loop quantum
cosmological models suggest the big bounce near the putative singularity [26]. These
corrections suggest a new type of solution.

4.1. Fuzzy Euclidean Wormholes

As a simple extension, we consider fuzzy Euclidean wormholes in Einstein gravity [24].
Indeed, in terms of instantons, Euclidean wormholes are more natural than compact
instantons. The intuitive reason for this is listed below [27].
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Figure 6. Possible interpretations of Euclidean wormholes [24]. Top: A collapsing universe is bounced (Interpretation 1).
Middle: A small universe tunnels to a large universe or one contracting and one expanding universes are created (Inter-
pretation 2). Bottom: Two entangled universes are created or a contracting universe is bounced to an expanding universe
(Interpretation 3).

Let us first consider a free scalar field model with an O(4)-symmetric metric ansatz.
The following will then be the generic solution of the scalar field in a Lorentzian signature:

dφ

dt
=
A
a3 . (45)

Of course, due to classicality,A is a real-valued number. If we Wick-rotate this solution
to Euclidean time, then we obtain

dφ

dτ
= −i

A
a3 . (46)

Therefore, if the velocity of the scalar field is non-vanishing in Lorentzian signatures
and if the solution is classical in Lorentzian signatures, it is necessary that the velocity of the
scalar field must be purely imaginary in Euclidean signatures. However, purely imaginary
scalar fields in Euclidean signatures are perfectly acceptable in terms of the formalism of
the Euclidean path integral. Then, the corresponding Euclidean metric satisfies

ȧ2 = 1− a2

`2 +
a4

0
a4 , (47)

where ` ≡
√

3/Λ and a4
0 = 4πA2/3.

If a0 � `, ȧ has two zeros. Hence, the Euclidean solution has two turning points say
amax and amin. If we consider a solution that covers amax to amin to amax, this becomes the
Euclidean wormhole solution where there are two boundaries arising from the solution,
and the Wick-rotation can be applied for these two boundaries. The compact instantons
are available only if A = 0, or when the velocity of the scalar field is zero. On the other
hand, the non-compact instantons occur in more general situations when the Lorentzian
solutions have non-trivial velocities.
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What we have considered is the case in which the scalar field is free. The natural
question that arises is what happens if we generalize to a specific inflation model. For this
purpose, we can introduce the ansatz of the initial condition of the Euclidean wormholes
as follows [27]:

Re a(0) = amin cosh η, (48)

Im a(0) = amin sinh η, (49)

Re ȧ(0) =

√
4π

3
B

a2
min

√
sinh ζ cosh ζ, (50)

Im ȧ(0) =

√
4π

3
B

a2
min

√
sinh ζ cosh ζ, (51)

Re φ(0) = φ0 cos θ, (52)

Im φ(0) = φ0 sin θ, (53)

Re φ̇(0) =
B

a3
min

sinh ζ, (54)

Im φ̇(0) =
B

a3
min

cosh ζ, (55)

where amin, B, φ0, η, ζ, and θ are free parameters. However, these free parameters are
not entirely free, but should satisfy the real-part and imaginary-part equations of the
Hamiltonian constraint:

0 = 1 +
8π

3
a2

min(−Vr + sinh 2ηVi)−
4πB2

3a4
min

(1 + sinh 2ζ sinh 2η), (56)

0 = a6
min +

B2 sinh 2η

2(Vr sinh 2η + Vi)
, (57)

where Vr and Vi are the real and the imaginary part of V(φ) at τ = 0. Based on these two
equations, two parameters among the five free parameters are determined, say, amin and η.

Now, the remaining free parameters are B, φ0, ζ, and θ. However, B determines the
amplitude of the imaginary part of the scalar field, and hence the size of the wormhole
throat. ζ is the parameter that determines the symmetry between the left and right sides of
the wormhole. These two parameters do nothing but determine the shape of the wormhole.
φ0 corresponds to the initial field value of the solution. Therefore, the only tuning parameter
that can be used to fulfill the classicality condition is θ.

This situation is the same as the compact instanton case; however, there is a serious
problem. In the compact instanton case, there is only one boundary (future boundary);
hence, the classicality must be imposed given only one boundary. Using θ, we can make one
boundary classical. However, in the Euclidean wormhole case, there are two boundaries
that we need to classicalize. In general, it is impossible to classicalize two boundaries at
the same time.

However, there are a number of exceptional cases, e.g., let us consider the follow-
ing potential:

V(φ) =
3

8π`2

(
1 + A tanh2 φ

α

)
, (58)

where `, A, and α are free parameters (see Figure 7 [27]). This model provides a flat
hilltop [28] that is consistent with the Starobinsky model [29], which is preferred by the
recent Planck data analysis [30]. In this model, the scalar field at the end of the wormhole
rolls down to the local minimum, and hence the primordial inflation is naturally terminated.
By tuning θ, we classicalize this end. On the other hand, it is not possible to tune the other
end; however, if the scalar field rolls up to the hilltop, it is possible it will come to an
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automatic stop as long as the hilltop is sufficiently flat. If the field stops at the hilltop, the
field will not be classicalized though the metric will be classicalized because the kinetic
terms of the scalar field provide no contribution. Furthermore, because of the flat potential,
there will be a local shift symmetry. By shifting the field along the complex direction, one
can classicalize the field value at the hilltop. In any case, the point is that we can definitely
classicalize one end; the other end is a little bit subtle, but the Euclidean action does not
vary after the Wick-rotation at the hilltop. As we are observing only one universe, we do
not require to worry about the details at the other end of the wormhole as long as the real
part of the Euclidean action is bounded well.

Figure 7. Complex time contours and numerical solution of Re a, Im a, Re φ, and Im φ for Equation (58). The top figure is
the physical interpretation of the wormhole. Part A (red) and C (green) are Lorentzian, and Part B (blue) is Euclidean [27].

In terms of this mechanism, we have three important comments:

1. This mechanism cannot be applied to convex inflaton potential (e.g., quadratic poten-
tial). Therefore, the Euclidean wormhole selects the concave inflaton potential [27].
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2. For a given vacuum energy scale V0 or `, the probability of the Euclidean wormhole is
larger than that of the compact instanton [24] because the maximum probability of the
Euclidean wormhole is

log P ' π`2
(

1 + 0.16
( a0

`

)5/2
)

, (59)

where that of the compact instanton is log P = π`2.
3. For a given concave potential, there may be competition between the compact instan-

tons and Euclidean wormholes. The largest probability of compact instantons occurs
close to the cutoff, where it is generally larger than that of the Euclidean wormholes
that appear only near the hilltop. On the other hand, if we assume a mechanism that
enhances the large e-foldings (e.g., introducing a massive field direction), Euclidean
wormholes will be more highly favored than compact instantons [28]. Therefore, as
long as we assume that our universe experienced more than 50 e-foldings, a Euclidean
wormhole with a concave potential will be preferred over compact instantons with
convex or concave potentials.

In conclusion, Euclidean wormholes can interestingly answer the question of why our
universe started from the concave part of a potential rather than the convex part? However, there
is a point of warning that is worth remarking upon. For all computations of Euclidean
wormholes, we implicitly assumed the ultraviolet(UV)-completion of the inflaton poten-
tials. In general, the Euclidean wormhole requires the potential to have a flat direction.
However, in the context of the swampland criteria, this might be an unjustifiable assump-
tion. Identifying a sufficiently flat field direction within a UV-completed model would
make an interesting future research topic.

4.2. Euclidean Wormholes in Gauss–Bonnet-Dilaton Gravity

If we consider the string theory as the UV-completion of quantum gravity, it is rea-
sonable to include higher-order corrections of string-inspired models and observe their
physical applications. The most famous model in this regard is known as Gauss–Bonnet-
dilaton gravity:

S =
∫

d4x
√
−g
(

R
16π
− 1

2
(∇φ)2 −V(φ) +

1
2

ξ(φ)R2
GB

)
, (60)

where

R2
GB = RµνρσRµνρσ − 4RµνRµν + R2 (61)

is the Gauss–Bonnet term, φ is the dilaton field, and

ξ(φ) = λe−cφ (62)

is the coupling function of the dilaton field. Note that λ and c are model-dependent
parameters.

Due to the corrections of the Gauss–Bonnet-dilaton term, although the null energy
condition is satisfied, the null curvature condition is effectively violated. Equivalently,
if we consider the Gauss–Bonnet-dilaton term as an effective contributor to matter, the
null energy condition will be effectively violated. Accordingly, it is not surprising that a
Lorentzian or Euclidean wormhole solution might exist [31].
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To obtain a Euclidean wormhole solution, we consider the following initial condition
at τ = 0 [32]:

a(0) =

√
3

4π(2V0 − φ̇2(0))
, (63)

ȧ(0) = 0, (64)

φ(0) = φ0, (65)

φ̇(0) = 0, (66)

where a(0) is obtained from the Hamiltonian constraint equation. By tuning φ0, we must
satisfy the boundary condition at τ = τend:

a(τend) = 0, (67)

ȧ(τend) = −1, (68)

to achieve a regular end.
In general, this solution penetrates over a sharp potential barrier. Furthermore, be-

cause the volume is greater than that of the usual compact instanton, the probability is
higher than that of the pure de Sitter instanton. Therefore, once there exists a string-inspired
term, although there exists a potential barrier, it can be used to create a universe with a
higher probability.

If we Wick-rotate at τ = 0, we can apply this solution to quantum cosmology [25].
However, if we extend the Euclidean time to τ < 0 and Wick-rotate the solution along
the anisotropic direction, this can explain a (expanding) Lorentzian wormhole based on
quantum tunneling [32]. The examination of the quantum tunneling of the Lorentzian
wormhole is another interesting issue and requires further investigation.

4.3. Hartle–Hawking Wave Function with Loop Quantum Cosmology

For loop quantum gravity, we consider the generic quantum state that satisfies the
(quantum) Hamiltonian constraint equation, in addition to the (quantum) momentum
constraint equations. The generic states that satisfy the momentum constraint equations
should follow the loop representations. Due to the loop representation, there must be
a correction to the Hamiltonian constraint at the classical level [33]. By including these
corrections, we can examine the effects of quantum gravity.

In general, it is believed that, in a cosmological context, the beginning of the universe
can be explained by the big bounce. The Lorentzian dynamics of the scale factor satisfy the
equation ȧ2 + V(a) = 0, where V(a) has a zero at a minimum value amin. This corresponds
to the bouncing point of the universe [26]. However, there remains a conceptual question:
As a goes to amin, the universe approaches the deep quantum regime, and it must be asked
how we can select the arrow of time. It would seem strange if we were able to determine a
definite direction for time even in this quantum gravitational regime.

Perhaps this conceptual tension might be explained if we introduce the Hartle–
Hawking wave function [26]. To compute the Euclidean Lagrangian LE from the loop
quantum gravity modified Euclidean Hamiltonian HE, we follow the relation:

LE = pa ȧ− HE, (69)

where pa is the canonical momentum of a. However, because of the Hamiltonian constraint,
HE = 0 in the on-shell level description. Therefore, the Euclidean action is simply

SE = −3π

2

∫
aȧ2dτ = −3π

2

∫ amin

0
a
√
|V(a)|da. (70)

Interestingly, in Euclidean signatures, as a approaches to zero, V(a) approaches to
zero. This indicates that the instanton explains the infinitely stretched solution as a function
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of τ, although the probability is well-defined [34]. Except for this feature, the interpretation
is the same as that of the usual Hartle–Hawking wave function. Therefore, close to the
quantum bouncing point, the bouncing interpretation is not the only possible explanation,
as a universe can be created from nothing (Figure 8 [26]). Furthermore, in certain parameter
regimes, a Euclidean wormhole solution is possible. Accordingly, there is an ambiguity in
defining the arrow of time around the quantum bouncing point; either a contracting phase
bounces to an expanding phase or two expanding universes are created via a Euclidean
wormhole solution.

Figure 8. A conceptual interpretation of V(a) [26].

4.4. Fuzzy Instantons in Anti-De Sitter Space

Finally, we report a number of discussions of the anti-de Sitter space. Let us consider
the following potential:

V(Φ) = V0

(
−1− 1

2
µ2Φ2 + λΦ4

)
. (71)

In the Euclidean domain, it is not surprising to have a complex-valued solution. Thus,
we consider the following pure imaginary field: Φ→ iφ. Then, the potential is effectively

U(φ) = V0

(
−1 +

1
2

µ2φ2 + λφ4
)

, (72)

while the kinetic term has an opposite sign. Therefore, it is possible to determine a solution
according to which the scalar field asymptotically approaches zero while there may exist a
throat at the center [35].

One potential issue is whether the Euclidean action is well-defined or not. As the
volume of Euclidean anti-de Sitter space is infinite, the Euclidean action itself is infinite.
However, by subtracting to the pure anti-de Sitter background, one may obtain a finite
action difference. The sufficient condition to obtain a finite action difference is that the field
should approach zero sufficiently quickly near the infinity [36]. This can be achieved if we
tune the shape of the potential [35].

If this finite action difference is allowed, this instanton can explain a case of tunneling
from two separate anti-de Sitter spaces to a connected anti-de Sitter wormhole after the
Wick-rotation (Figure 9 [35]). This solution satisfies the classicality at the time-like infinity.
One potential question is whether any effects from the fuzzy core of the solution can reach
a future infinity or not. However, in principle, this solution is embedded in the Euclidean
path integral formalism. Therefore, we can very easily extend this technique to anti-de
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Sitter fuzzy Euclidean wormholes in a black hole background. After the Wick-rotation, this
explains a Lorentzian (probably unstable) wormhole in anti-de Sitter space. The existence of
this structure can then cause conceptual trouble with the ER = EPR conjecture [37]. We leave
these interesting connections to the information loss paradox for future research [38,39].

AdS r r AdSbefore tunneling

after tunneling

throat

Figure 9. Conceptual picture of tunneling in anti-de Sitter space [35].

5. Future Perspectives

In this study, we discussed various aspects of the fuzzy instantons of the Hartle–
Hawking wave function.

First, we examined the slow-roll inflation models. Due to the fuzzy instanton analysis
and classicality condition, the universe should experience a small amount of inflation.
However, the amount is not sufficient, and we require several routes to rescue the Hartle–
Hawking wave function to fit the observations. Perhaps the most natural approach is to
introduce a massive field and impose the classicalization of all matter fields.

Second, we investigated the cases in which the slow-roll conditions break down. This
is very natural from the point of view of a UV-completed theory such as string theory.
However, a classical universe can be created even in these cases. We named these new
types of solutions HSY instantons.

Third, we extended this to divergent situations, e.g., the Euclidean path integral
formalism does not necessarily indicate that there is only one boundary. In principle, there
can be two boundaries. This case is related to fuzzy Euclidean wormholes, which in de
Sitter space can explain the preference of a concave inflaton potential. Fuzzy Euclidean
wormholes in anti-de Sitter space may be related to the information loss paradox, in
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addition to a possible criticism of the ER=EPR conjecture. Furthermore, the no-boundary
wave function can be applied to string-inspired models or loop quantum cosmology models.
These models allow for Euclidean wormhole solutions.

There are several interesting possible directions for future research:

1. Traditionally, we assumed cosmological landscapes and considered slow-roll infla-
tion models. However, in recent discussions, models that are consistent with the
swampland criteria might be more interesting. The Hartle–Hawking wave function is
definitely useful for both problems, though it might be more interesting to provide pos-
sible observational consequences [40,41] that reveal issues related to the swampland
criteria.

2. Fuzzy Euclidean wormholes can be realized in various systems, but the application of
the associated techniques might be complicated beyond Einstein gravity. This might
include the Gauss–Bonnet-dilaton gravity model or the loop quantum cosmological
model. Some fuzzy extensions of oscillating instantons are interesting [42]. In any
case, this will be a challenging topic.

3. Fuzzy instantons in anti-de Sitter backgrounds or black hole backgrounds are another
interesting topic. This issue may cover a number of topics regarding Hawking radia-
tion [43] as well as the information loss problem [44]. However, it is fair to say that it
is not easy to impose the classicality condition at a future infinity if the symmetry is
less than the O(4)-symmetry. The generalization of dynamical instantons in spherical
symmetry will be an important topic.

In conclusion, the Euclidean path integral is approximated well by instantons. If
the instantons are dynamical, they must be fuzzy or complexified. An investigation of
dynamical wormholes is a challenging and fruitful future research topic. This is necessarily
related to the study of fuzzy instantons not only in the context of cosmology but also in
black hole physics. We leave these fascinating topics for future research.
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Abstract: We present a review on some of the basic aspects concerning quantum cosmology in the
presence of cut-off physics as it has emerged in the literature during the last fifteen years. We first
analyze how the Wheeler–DeWitt equation describes the quantum Universe dynamics, when a pure
metric approach is concerned, showing how, in general, the primordial singularity is not removed by
the quantum effects. We then analyze the main implications of applying the loop quantum gravity
prescriptions to the minisuperspace model, i.e., we discuss the basic features of the so-called loop
quantum cosmology. For the isotropic Universe dynamics, we compare the original approach, dubbed
the µ0 scheme, and the most commonly accepted formulation for which the area gap is taken as
physically scaled, i.e., the so-called µ̄ scheme. Furthermore, some fundamental results concerning the
Bianchi Universes are discussed, especially with respect to the morphology of the Bianchi IX model.
Finally, we consider some relevant criticisms developed over the last ten years about the real link
existing between the full theory of loop quantum gravity and its minisuperspace implementation,
especially with respect to the preservation of the internal SU(2) symmetry. In the second part
of the review, we consider the dynamics of the isotropic Universe and of the Bianchi models in
the framework of polymer quantum mechanics. Throughout the paper, we focus on the effective
semiclassical dynamics and study the full quantum theory only in some cases, such as the FLRW
model and the Bianchi I model in the Ashtekar variables. We first address the polymerization in terms
of the Ashtekar–Barbero–Immirzi connection and show how the resulting dynamics is isomorphic to
the µ0 scheme of loop quantum cosmology with a critical energy density of the Universe that depends
on the initial conditions of the dynamics. The following step is to analyze the polymerization of
volume-like variables, both for the isotropic and Bianchi I models, and we see that if the Universe
volume (the cubed scale factor) is one of the configurational variables, then the resulting dynamics
is isomorphic to that one emerging in loop quantum cosmology for the µ̄ scheme, with the critical
energy density value being fixed only by fundamental constants and the Immirzi parameter. Finally,
we consider the polymer quantum dynamics of the homogeneous and inhomogeneous Mixmaster
model by means of a metric approach. In particular, we compare the results obtained by using the
volume variable, which leads to the emergence of a singularity- and chaos-free cosmology, to the use
of the standard Misner variable. In the latter case, we deal with the surprising result of a cosmology
that is still singular, and its chaotic properties depend on the ratio between the lattice steps for the
isotropic and anisotropic variables. We conclude the review with some considerations of the problem
of changing variables in the polymer representation of the minisuperspace dynamics. In particular,
on a semiclassical level, we consider how the dynamics can be properly mapped in two different sets
of variables (at the price of having to deal with a coordinate dependent lattice step), and we infer
some possible implications on the equivalence of the µ0 and µ̄ scheme of loop quantum cosmology.

Keywords: quantum cosmology; loop quantum cosmology; polymer quantum mechanics; bounce
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1. Introduction

Despite the fact that no self-consistent theory has been developed in quantum gravity
(for the most interesting approaches, see [1–13]), along the years, the arena of primordial
cosmology has constituted a valuable test to estimate the predictivity of the proposed
theories on the birth of the Universe and quantum evolution [14].

The most significant change in the point of view on how to approach the quantization
of the gravitational degrees of freedom took place with the formulation of the so-called
loop quantum gravity (LQG) [11], especially because this formulation was able to construct
a kinematical Hilbert space and to justify spontaneously the emergence of discrete area and
volume spectra. LQG relies on the possibility to reduce the gravitational phase space to
that of a SU(2) non-Abelian theory [6–9], and then the quantization scheme is performed
by using “smeared” (non-local) variables, such as the holonomy and flux variables, as
suggested by the original Wilson loop formulation and by non-Abelian gauge theories
on a lattice. Indeed, when adopting Astekar–Barbero–Immirzi (first order) variables,
the invariance of the gravitational action under the local rotation of the triad adapted to
the spacetime foliation is expressed in the form of a Gauss constraint.

The implementation of this new approach to the cosmological setting leads to de-
fine, in a rather rigorous, mathematical way, the concept of a primordial Big Bounce,
already hypothesized in the seventies. However, the cosmological implementation of LQG,
commonly dubbed loop quantum cosmology (LQC), has the intrinsic limitation that the
basic SU(2)-symmetry underlying the LQG formulation is unavoidably lost [15,16] when
the minisuperspace dynamics is addressed. This is due to the fact that the homogeneity
constraint reduces the cosmological problem to a finite number of degrees of freedom;
in particular, it becomes impossible to perform the local rotation and preserve the structure
constants of the Lie algebra associated to the specific isometry group. In this respect,
we could say that LQC requires a sort of gauge fixing of the full SU(2) invariance; see the
analysis in [17], where this question is explicitly addressed. In addition, the problem
of translating the quantum constraints from the full to the reduced level remains still
open [11].

Despite these limitations, LQC remains an interesting attempt to regularize the cosmo-
logical singularity, opening a new perspective on the origin and evolution of the Universe.
Furthermore, the so-called “effective formulation” of LQC is isomorphic to the implemen-
tation of polymer quantum mechanics (PQM) [18–21] to the minisuperspace variables,
typically the Universe scale factors. This correspondence allows to investigate some fea-
tures of the LQC formulation by applying simplified formalisms to more complicated
models, thus making them viable [22–45].

Here, we provide a review of basic well-established results of LQC and more recent
analyses in polymer quantum cosmology, with the purpose of better outlining the reli-
able achievements and the open questions in this sector of the quantum cosmological
problem formulation. In order to better compare it with LQC, when presenting the cos-
mological implementation of PQM, we mainly focus on its effective dynamics, except
for the less involved models, where a full quantum analysis is possible. In particular,
two recent studies [44,45] applied the polymer framework to the formulation of the flat
Friedmann–Lemaître-Robertson–Walker (FLRW) and Bianchi I models, respectively. The
peculiarities of these two analyses lie in the comparison between the polymer quantum dy-
namics in terms of the Ashtekar–Barbero–Immirzi connections and in terms of volume-like
configurational variables.

In this review, we highlight how the evolution of the quantum Universe is sensitive to
the considered set of configurational variables: when real connections are polymerized, the
resulting picture resembles that which is commonly dubbed the µ0 scheme of LQC [46–48];
on the other hand, the use of volume coordinates can be associated to the so-called µ̄
scenario [49–51]. In LQC, the difference in these two schemes is due to the cosmological
implementation of the area element as a kinematical or a dynamical quantity (in the µ̄
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scenario the area gap is rescaled for the momentum variable, i.e., the squared cosmic
scale factor).

Actually, the µ0 and µ̄ schemes lead to very different pictures of the primordial
quantum Universe: both correspond to a Big Bounce, but, while in the µ̄ scheme the critical
energy density is fixed by fundamental constants and the Immirzi parameter only, in the µ0
dynamics it depends on the initial conditions for the wave packets. The fact that these two
very different representations of the early Universe are associated with the polymerization
of the two different sets of variables cited above offers an intriguing perspective to better
interpret the real physics of the two scenarios and shows how PQM could shed light on the
possible shortcomings of the LQC formalism.

We will also provide an interesting comparison of the cosmological implementation
of the PQM in the metric representation. In particular, we will compare the analyses
in [34,38,42], where the homogeneous and inhomogeneous Mixmaster dynamics is studied
through the polymerization of the standard Misner isotropic variable α and of the Universe
volume, respectively: the difference is only in using or not using a logarithm in the
definition of the isotropic variable, but the implication is very deep since only the volume
representation ensures a bouncing cosmology. Furthermore, questions concerning the
chaotic or non-chaotic nature of the semiclassical Bianchi IX dynamics are addressed in
some detail.

Then, we will further present a coherent and detailed discussion of the relations
existing between LQC and polymer quantum cosmology, also discussing some of the most
relevant open questions, especially concerning the equivalence or non-equivalence of the
resulting dynamics in different sets of configurational variables.

We would like to stress that in this work, we will not consider the basic problem of
the implementation of the Copenhagen School interpretation to the Universe quantum
dynamics, common to all quantum cosmological formulations. We will briefly present
this issue because we think that it is important to keep in mind such difficulties since they
could perhaps drive the investigation toward a fully consistent theory of quantum gravity
and, hence, quantum cosmology. However, our presentation will escape this puzzling basic
interpretative question, as is often implicitly done in the literature. We must remark that
there are many other approaches of a different nature that are able to replace the singularity
with a Bounce, such as, for example, the Ekpyrotic scenario, massive gravity, and other
modified gravity theories; for general reviews of these models, see [52,53].

The paper is organized as follows. In Section 2, we introduce general features of
the cosmological dynamics. We present the difficulties in implementing the Copenhagen
interpretation to cosmology, then we describe the classical dynamics of homogeneous
models (both isotropic and anisotropic) with some attention to the problem of time and
to the definition of a cosmological clock. In Section 3, we present LQC: first, we briefly
summarize the features of LQG that are relevant for its cosmological implementation;
then, we discuss in detail the two formulations of isotropic LQC that are the µ0 and µ̄
schemes, and also the implementation of the latter to the anisotropic sector; and finally, we
conclude with a summary of critics and shortcomings that show the need for a different
quantum mechanical approach to cosmology. In Section 4, we present polymer cosmology:
we first introduce the formalism of polymer quantum mechanics, and then we focus on
its implementation to both the isotropic Universe and the anisotropic Bianchi models in
different sets of variables (namely, the Ashtekar variables, the volume-like variables and
the Misner-like ones). We conclude this section with a discussion on the results obtained
with different sets and also present a possible way to recover an equivalence between them.
Finally, in Section 5 we summarize the review and provide some final remarks. Throughout
all the paper, we use the natural units 8πG = c = } = 1.

2. Cosmological Quantum Dynamics

The first attempt to implement the canonical quantum gravity approach developed
in [1–3] to the cosmological setting was due to the analysis proposed in [54], where the
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Bianchi IX Universe was studied within certain approximations, and the most relevant
properties of its quantum dynamics were elucidated (for extensions of this approach to
generic inhomogeneous models, see [55–62], and for a refined numerical study of the
Bianchi IX quantization, see [63]).

Before entering some technical aspects of canonical quantum cosmology in the metric
formulation, it is mandatory to fix our attention to some intrinsic conceptual difficulties
that we meet on the interpretative level, even if we could assume the construction of a
Hilbert space and the determination of a suitable time variable to describe the quantum
dynamics as solved.

The standard interpretation of canonical quantum mechanics is due to the so-called
Copenhagen school, which postulated some general prescriptions, validated by the analysis
of atomic and molecular spectra and was never contradicted by experiments in modern rel-
ativistic particle physics. We briefly summarize here the Copenhagen school interpretation
via its main statements (very difficult to implement in quantum cosmology).

• The concept of probability to find a physical system into a given state is the “large num-
bers” limit of the frequency by which that state is registered in repeated experiments.

• The “measure” operation on a given quantum system must be performed by a classical
(or better, quasi-classical) observer, who induces a “collapse” of the wave function
into a specific eigenstate by physically interacting with the quantum environment.

When referred to the cosmological setting, both the statements above have a very
critical implementation. In fact, on one hand, we observe only one realization of the
Universe, and no frequency approximating the probability can be determined; on the
other hand, in a quantum Universe, it appears impossible (or at least ambiguous) to
speak of a quasi-classical observer. The possibility to recover both the concepts postulated
above would require that at least a portion of the Universe be in a quasi-classical state,
so that the interaction of these degrees of freedom with the fully quantum ones offers
an arena to recover the basic notion of the Copenhagen school interpretation (see, in this
respect, the Universe wave function interpretation provided in [64], where such a picture
is investigated).

We conclude by observing that the classical portion of the Universe mentioned above
cannot be identified with the present classical Universe thought of as an “observer” of the
primordial quantum phases. This claim is supported by the following two considerations.

• The information we receive from the quantum Universe in the Planck regime (medi-
ated by the physics of the cosmic microwave background radiation (CMB)) is already
a single classical determination of the quantum system, among all the possible ones.

• That information cannot be induced by a direct measurement on the primordial
Universe, simply because it lives in our past light cone, and no physical interaction
between our classical apparatus and the Planckian Universe can take place (even if
we were able to detect photons directly emitted in the quantum phase).

Thus, in what follows, we will think of the Universe wave function as if it were associ-
ated to physical notions in principle, according to the Copenhagen school interpretation,
without entering further into how it can be really demonstrated, or which alternative
interpretation could be addressed.

2.1. The Isotropic Universe

The Robertson–Walker (RW) geometry describing the isotropic Universe is a very
simple model, which has only one dynamical degree of freedom due to the high level
of symmetry. If on a classical level its employment is well justified by a large number
of phenomenological evidences (above all, the isotropy of the CMB temperature), on a
quantum level, it appears very close to be just a “toy model” deprived of many basic
features that more general cosmological models outline. We elucidate the reliability of this
apparently strong claim in this subsection and in the following one.
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The main failure of the canonical quantum cosmology as depicted by the Wheeler–
DeWitt (WDW) equation in the metric approach is that no removal of the initial singularity
emerges in general when the nature of the Universe wave function is elucidated. Let us now
develop some simple technical considerations for the isotropic Universe (for a pioneering
analysis, see [65]), limiting our attention to the spatially flat model and adopting as a
configurational variable the cubed cosmic scale factor v(t) = a3(t) (for example, the
Universe volume).

In the Arnowitt–Deser–Misner (ADM) formulation [66], the RW line element reads
as follows:

ds2 = N2dt2 − v
2
3

(
dx2 + dy2 + dz2

)
, (1)

where we set the speed of light equal to one, and N = N(t) denotes the so-called lapse
function. The action describing the Hamiltonian dynamics of the isotropic FLRW model
takes the following form:

SFLRW =
∫

dt(Pv v̇−NCFLRW) , (2)

where we have set the space integration on a fiducial volume to unity, Pv is the conjugate
momentum to v, and the super-Hamiltonian CFLRW reads as follows:

CFLRW ≡ −
9
4

v P2
v +

1
3

vρ(v) . (3)

When the equation of state for the cosmological fluid takes the form P = wρ (with
P being the pressure and w a constant parameter), the matter energy density ρ reads
as follows:

ρ(v) =
ρ
(w)
0

v1+w , (4)

with ρ
(w)
0 > 0. Clearly, varying the action with respect to N, we obtain the constraint

CFLRW = 0, which reduces to the Friedmann equation for the isotropic Universe, using
the Hamilton equation v̇ = −9vPv/2 to express the momentum Pv. The existence of a
Hamiltonian constraint reflects the possibility to freely choose the time variable (i.e., the
form of the lapse function) to describe the system dynamics, according to the general
relativity principle.

The Dirac prescription for the canonical quantization of a constrained theory consists
of implementing the phase space variables to canonical operators [67], leading to the
following WDW equation for the isotropic Universe (3):

∂2
vψ(v) +

4
27

ρ(v)ψ(v) = 0 , (5)

in which we adopt the natural operator ordering, where momenta are always at the right
of coordinate variables. This equation clearly resembles a time-independent Schrödinger
equation in the space-like coordinate v, and no evolution emerges for the Universe wave
function ψ(v).

If we instead adopt the symmetric operator ordering of [68], i.e., vP2
v → P̂v v P̂v,

and introduce the variable ξ ≡ ln v, we arrive to an equation of the following form:

∂2
ξ ψ = − 4

27
ρ
(w)
0 e−(w−1)ξ ψ . (6)
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For the relevant cosmological case of a “stiff matter”, corresponding to w = 1 and de
facto mimicking a massless free scalar field (the kinetic component of an inflaton field), we
obtain the simple solutions as follows:

ψ(v) ∝ exp


± i

√
4ρ

(1)
0

27
ln v


 . (7)

Indeed, the potential term of many inflationary models can be neglected at the high
temperatures of the Planckian regime [69,70] (we recall that the transition phase responsible
for inflation takes place in a classical Universe). The stiff matter is the most rapidly
increasing contribution allowed by a causal fluid when the zero volume limit is approached,
and it is therefore expected to dominate during the Planckian era. However, we stress that
the singularity is also present for all natural values of the parameter w [14,70].

The classical Universe has a singular behavior for v → 0 (the Big Bang singularity),
and it regularly expands indefinitely for v → ∞; here, we see that the Universe wave
function singles out a qualitatively similar behavior in these two different regimes. Thus,
no indications emerge from the WDW equation about the singularity removal, and this
turns out to be a general feature of the canonical metric approach.

2.2. Internal Clock

It is clear that it is not possible to construct a Hilbert space for the isotropic Universe
discussed above, and therefore, any precise notion of probability density is forbidden in
the absence of a well-defined time variable.

In general, any component of a gravitational system could be identified as a time
variable for the classical dynamics, as soon as a specific time gauge is assigned. Such a
concept can be retained also at the quantum level in a fully covariant form. Indeed, in the
WDW equation, it is possible to identify a given internal degree of freedom as a “relational
time”, by promoting it to the role of a physical clock for the quantum evolution of the
remaining gravitational or matter degrees of freedom. The most natural relational time for
the isotropic Universe dynamics, and in general for quantum cosmology, is a free massless
scalar field φ = φ(v), which is expected to be present in the primordial phases of the
Universe because of the inflationary paradigm; its energy density increases as∼v−2 toward
the singularity, which is the fastest growth allowed before the fluid acquires a superluminal
sound speed.

If we replace the stiff matter in Equation (6) with the energy density of φ, i.e.,

ρφ =
P2

φ

2v2 (8)

(Pφ being the conjugate momentum to φ), then we arrive to the following 1 + 1 Klein–
Gordon-like equation: (

∂2
ξ −

2
27

∂2
φ

)
ψ(ξ, φ) = 0 . (9)

The general solution of this equation reads as follows:

ψ =
∫

dkξ A(kξ) exp

{
ikξ

(
ξ ±

√
27
2

φ

)}
. (10)

Now, it is possible to adopt φ as a physical clock for the Universe dynamics, so
we can construct localized wave packets of the form (10), for instance with a Gaussian
weight function A(kξ). If we compare the peak of the Klein–Gordon probability density
i(ψ∗∂φψ− ψ∂φψ∗) with the classical trajectory v = v(φ), it is easy to check that there is a
very good correspondence, leading to the fact that the singularity is not removed by the
canonical quantization of the model.
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Thus, the introduction of the concept of a relational internal matter clock provides a
good solution to the problem of time since the zero-eigenvalue Schrödinger equation can be
interpreted as a Klein–Gordon-like operator in the configurational space. The similarities of
the relativistic case and the present WDW equation allow to define a conserved probability
density, which retains its positive nature when it is possible to perform the frequency
separation (violated when a non-zero potential for the scalar field φ is present).

We also observe that there exists a clear correspondence between the quantity ρ1
0 in

Equation (6) and the quantum number kξ , namely, the following:

ρ1
0 ≡

27
4

k2
ξ . (11)

We conclude by observing that the considerations above regarding the absence of a
singularity removal when comparing the classical and quantum evolution are particularly
reliable in the present case, in view of the linearity of the dispersion relation for the 1 + 1
Klein–Gordon-like equation. Such a property allows to construct localized non-spreading
wave packets up to the initial singularity. It is immediate to realize (see below) that a linear
dispersion relation is a feature that clearly does not survive when a higher dimensional
problem is faced.

2.3. The Bianchi Universes

A better understanding of the minisuperspace formulation of canonical quantum
gravity in the metric approach is provided by the investigation of the Bianchi Universes.
These models generalize the isotropic Universe by preserving the homogeneity constraint
and allowing for three different independent scale factors along the three spatial directions.

The ADM line element of the Bianchi Universes reads as follows:

ds2 = N2dt2 − e2α
(

e2β
)

ab
σaσb , (12)

where the variable α is related to the Universe volume v by the relation α = (1/3) ln v,
the matrix β parametrizes the anisotropies and has the diagonal form β = diag(β+ +√

3 β− , β+ −
√

3 β− , −2β−), while σa and σb are the 1-forms describing the specific
isometry group under which that Bianchi model is invariant. The variables (α, β±) are
known as Misner variables, and their usefulness lies in the fact that they make the kinetic
term in the Hamiltonian diagonal.

The homogeneity of the space allows to deal with the functions N, α, β+ and β− as
depending on time only. The isotropic limit is recovered for β+ ≡ β− ≡ 0, and it is possible
only for the three Bianchi models of type I, type V and type IX, corresponding to the flat,
negatively and positively curved FLRW model respectively.

The action of the Bianchi Universes in vacuum reads as follows:

SB =
∫

dt
(

Pαα̇ + P+ β̇+ + P− β̇− −NCB
)

, (13)

with

CB ≡
e−3α

3(8π)2

[
− P2

α + P2
+ + P2

− + 3(4π)4e4α UB(β+, β−)
]

. (14)

Above, we set to unity the space integral on the fiducial volume and denoted the
conjugate momenta to the corresponding variables α, β+ and β− with Pα, P+ and P−
respectively. The potential UB is provided by the spatial curvature of the specific model,
and it is identically zero for the Bianchi I model only. It is immediate to recognize that the
WDW equation for the Bianchi Universes takes the following form:

[
∂2

α − ∂2
β+
− ∂2

β−

]
ψ + 3(4π)4e4α UB(β+, β−)ψ = 0 , (15)
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with ψ = ψ(α, β+, β−). In this case, there is no need to add a free massless scalar field to
identify an internal time variable since the variable α (related to the three-metric determi-
nant) has a different signature with respect to the two anisotropy degrees of freedom β+

and β−. This is a very general feature of the WDW equation, first investigated in [1–3].
It is worth noting that the same signature of α and the same wave equation could

be found by using the Universe volume v = e3α and adopting the symmetric operator
ordering, as done above in Equation (6). Hence, we can realize how misleading it was
to use the volume of the Universe as a space-like coordinate in the isotropic Universe.
This interpretation is clearly possible, but as far as we introduce β+ and β− (the real
physical degrees of freedom of the cosmological gravitational field), we are naturally led
to consider v or α as the most natural internal time variables to describe the quantum
Universe evolution.

The first classical Hamilton equation α̇ = −2NPαe−3α shows that we must require
that Pα < 0 in order to deal with the expanding Universe (α̇ > 0). On the contrary, for the
collapsing Universe, i.e., α̇ < 0, we need Pα > 0. However, we note that Pα is a constant
of motion only when the potential term is negligible or when it is exactly zero, as in the
Bianchi I model.

If we set UB ≡ 0 in the WDW Equation (15), we can easily perform the frequency
separation, and we obtain the following general solutions:

ψ±(α, β±) =
∫

dk+dk− A(k+, k−) ei(k+β++k−β−∓
√

k2
++k2

− α) , (16)

where the suffixes (+) and (−) refer to positive and negative frequency wave functions,
respectively.

Since the mean value of the operator P̂α is negative for the positive frequency solution
and positive for the negative one (see the sign of its eigenvalues), we are led to identify
the expanding Universe with the positive frequency wave packet and vice-versa for the
collapsing one.

Actually, if we consider Gaussian weight A(k+, k−), it is possible to construct localized
wave packets, both representing the expanding (ψ+) or collapsing (ψ−) dynamics of the
Universe. The localized states follow the classical trajectories β+(α) and β−(α), so we
are naturally led to claim that the initial singularity is not removed by the canonical
quantization of the system also for a Bianchi I model. However, now the dispersion relation
contains a square root; therefore, it is no longer linear as it was for the isotropic Universe.
As a result, the wave packet spreads toward the singularity (for α→ −∞), and the localized
state cannot be extrapolated asymptotically. This fact prevents a definitive word on what
the initial singularity resembles in such a non-localized picture of the Universe. However,
we can surely claim that in the Planckian era, the Universe unavoidably becomes a fully
quantum system.

The Bianchi IX Model

The peculiarity of the Bianchi IX model lies in the chaotic dynamics near the singular-
ity; this has earned it the nickname of the Mixmaster model.

The explicit form of the potential UBIX(β±) is the following:

UBIX(β±) = 2e4β+
(

cosh
(

4
√

3β−
)
− 1
)
− 4e−2β+ cosh

(
2
√

3β−
)
+ e−8β+ . (17)

The potential walls are steeply exponential and define a closed domain with the
symmetry of an equilateral triangle [71]. These walls move outwards while approaching
the cosmological singularity due to the term e4α in front of the potential in (14) that increases
for α→ −∞.

The implementation of the ADM reduction allows to describe the Mixmaster dynam-
ics by means of the motion of a pinpoint particle, named the point-Universe, moving in
the triangular potential well. So, we solve the constraint (14) with respect to the momen-
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tum conjugate to the chosen time coordinate, here α, and then we obtain the reduced
ADM Hamiltonian:

CADM
BIX := −Pα =

√
P2
+ + P2

− + e4α3(4π)4UBIX(β±) . (18)

Because of the steepness of the walls, we can consider the point-Universe as a free
particle for most of its motion, except when a rebound against one of the three walls occurs.
So, by using the free particle approximation UBIX(β±) ∼ 0, we can derive the velocity of
the point-Universe as follows:

β′ ≡
√

β′+
2 + β′−

2 = 1 . (19)

where in this picture, the anisotropies have the role of the coordinates of the point-Universe.
On the other hand, it can be shown that the potential walls move outwards with velocity
|β′wall| = 1

2 , so a rebound is always possible. In particular, every rebound occurs according
to the following reflection law:

1
2

sin
(

θi + θ f
)
= sin θi − sin θ f , (20)

where θi and θ f are the incidence angle and the reflection one to the potential wall normal,
respectively. The maximum incidence angle results to be the following:

θmax ≡ arccos
(

1
2

)
=

π

3
, (21)

so the point-Universe always experiences a rebound against one of the three potential
walls, thanks to the triangular symmetry of the system.

In conclusion, the ADM reduction procedure in the Misner parametrization maps the
dynamics of the Mixmaster Universe into the motion of a pinpoint particle inside a closed
two-dimensional domain. The particle undergoes an infinite series of rebounds against the
potential walls while approaching the singularity, and the motion between two subsequent
rebounds is a uniform rectilinear one. Once the particle is reflected off one of the walls,
the values assumed by the constants of motion change, as well as, thus, the direction of
the particle. This way, the trajectory of the point-Universe assumes all possible directions
regardless of the initial conditions, giving rise to the chaotic behavior of the Bianchi IX
dynamics near the singularity.

3. Loop Quantum Cosmology

The name loop quantum cosmology refers to a specific quantum cosmological model, i.e.,
the quantization of the FLRW spacetime, according to the methods of LQG [46–51,72–74].
More in general, it is often also used to indicate all cosmological models that are quantized
through LQG procedures [75–86]. Note, however, that this implies that LQC is not the
cosmological sector of LQG: the internal symmetries of the formalism used to derive the
Loop quantization of general relativity do not allow the usual reduction of the Wheeler
Superspace to the cosmological minisuperspaces. However, it is possible to implement the
quantization procedure of LQG to a spacetime that is already reduced to a minisuperspace
model; this is, indeed, the scope of LQC.

In this section, we briefly introduce the formalism of kinematical LQG and show in
detail its implementation to the isotropic Universe in both the old (“standard”) and new
(“improved”) prescriptions of LQC; we also present the work that was done on the Loop
quantization of anisotropic models and then conclude with a short description of critiques
and shortcomings.
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3.1. Loop Quantum Gravity

LQG was developed in the 1990s [6–8,87–91] and remains today the best attempt at
a background-independent quantization of general relativity (GR) (for recent, more com-
prehensive reviews, see [92,93]). The requirement of background independence calls
for a reformulation of GR through new formalisms that allow this quantization process:
the formalisms of geometrodynamics and of Gauge theories.

GR was reformulated as a SU(2) Gauge theory by Ashtekar [5,94] by performing a
3 + 1 splitting of spacetime and using as fundamental conjugate variables a connection
Ai

a and an electric field Ea
i , which take values in the Lie algebra su(2) of SU(2). The

symmetry group is generated by the local SU(2) gauge transformations that leave points
of the manifold invariant, and the theory is covariant with respect to diffeomorphisms.
The constraints represent the simplest covariant functions that contain (Ai

a, Ea
i ) at most,

quadratically, and that do not reference any background quantity:

Gi = DaEa
i = 0, DaEa

i = ∂aEa
i + εk

ij A
j
aEa

k , (22a)

CLQC
a = Eb

i Fi
ab = 0, Fi

ab = 2∂[a Ai
b] + εi

jk Aj
a Ak

b, (22b)

CLQC = ε
ij
k Ea

i Eb
j Fk

ab = 0, (22c)

which are respectively the Gauss constraint (generator of the SU(2) rotations), the diffeo-
morphism constraint (generator of spatial diffeomorphisms) and the scalar Hamiltonian
constraint (generator of time evolution).

Before moving on to quantization, the canonical fields (Ai
a, Ea

i ) must be appropriately
smeared, also because it is not possible to construct an operator corresponding to the
connection [87]. This smearing is achieved, defining holonomies of the connections along
an edge ` and fluxes of the electric field across a bidimensional surface S:

h`[A] = P exp
(∫

`
Ai

aτid`a
)

, ΦS[E] =
∫

S
Ea

i τidSa, (23)

where τi are the SU(2) generators. Note that the holonomies have a one-dimensional
support; their trace for a closed edge results in the so-called Wilson loop that gives the
theory its name.

Now, the quantum kinematics is obtained by promoting these objects to operators and
defining their commutator; a very important consequence of the requirement of background
independence, i.e., of diffeomorphism invariance, is that the holonomy-flux algebra results
in having a unique representation and, therefore, a unique Hilbert space Hkin. This is
called a spin network space, defined as a graph Γ, made of a finite number L of edges (each
with a half-integer spin-quantum number jL) and a finite number n of nodes (each with
an intertwiner in). The basis vectors of this Hilbert space are, therefore, spin network states
denoted as |S〉 = |Γ, jL, in〉; wave functions on the spin network are cylindrical functionals
ΨΓ[A] = ψ(h`1 [A], h`2 [A], . . . , h`L [A]), which depend on the connections only through
holonomies and are square-integrable with respect to the Haar measure.

A key result of the kinematical framework of LQG is the quantization of the geomet-
rical operators of area and volume. For example, the area operator and its action on a
functional can be defined through the flux operator (23), and the eigenvalues result in
being dependent on how many edges of Γ intersect the considered surface. In particular,
the smallest non-zero eigenvalue of the area operator is a constant quantity depending on
fundamental constants and on the Immirzi parameter only; it is called the area gap ∆, and is
a key parameter of the theory. Note that this result is purely kinematical [7,8,90].

The dynamics is derived through the implementation of the operators corresponding
to the constraints (22); in order to do this, they must first be expressed in terms of the
fundamental variables, i.e., holonomies and fluxes, and then quantized, usually through
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the Dirac procedure [67]. We will not implement the dynamics here, but will show the
procedure directly in the cosmological sector of the following sections.

3.2. Standard Loop Quantum Cosmology

We now introduce the “old” procedure to implement the quantization methods of LQG
on the homogeneous and isotropic FLRW model [46–48]. Note that the Gauss constraint
(22a) and the diffeomorphism one (22b) are automatically satisfied by the symmetries of
the model; therefore, we have to deal only with the scalar constraint (22c) which will be
given the suffix “grav” to distinguish it from the matter Hamiltonian Cφ.

3.2.1. Classical Phase Space

The standard classical procedure in a flat, isotropic, open model is to introduce an
elementary cell V and restrict all integrations to its volume V0 calculated with respect to
a fiducial metric 0qab. Given the symmetries of the model, the gravitational phase space
variables (Ai

a, Ea
i ) can be expressed as follows:

Ai
a = c V−

1
3

0
0ωi

a, Ea
i = p V−

2
3

0

√
det(0qab)

0ea
i , (24)

where (0ωi
a,0 ea

i ) are a set of orthonormal co-triads and triads adapted to V and compatible
with 0qab. Therefore, the gravitational phase space becomes two-dimensional with funda-
mental variables (c, p), defined to be insensitive to (positive) rescaling transformations of
the fiducial metric and whose physical meaning is obtained through their relation with the
cosmic scale factor a(t): c ∝ ȧ, |p| ∝ a2. The fundamental Poisson brackets are independent
on the fiducial volume V0 and are given by the following:

{c, p} = γ

3
. (25)

This is the classical cosmological phase space that constitutes the starting point of LQC.

3.2.2. Kinematics

The quantum theory is constructed, following Dirac, by firstly giving a kinematical
description through the identification of elementary observables that have unambiguous
operator analogs. LQC can be constructed following the procedure of the full theory:
the elementary variables of LQG are holonomies of the connections and fluxes of the fields,
and their natural equivalent in this setting are holonomies hλ along straight edges (λ 0ea

k)
and the momentum p itself. Since the holonomy along the ith edge is given by

hλ
i (c) = cos

λc
2

I+ 2 sin
λc
2

τi, (26)

where I is the identity matrix, the elementary configurational variables can be taken to be
the almost periodic functions Nλ(c) = ei λc

2 and the momentum p.
The Hilbert space Hkin

grav is the space L2(RB, dµH) of square integrable functions on
the Bohr compactification of the real line endowed with the Haar measure. It is convenient
to work in the p-representation, in which eigenstates of p̂ are kets |µ〉 labeled by a real
number and are orthonormal; the fundamental variables are promoted to operators acting
as follows:

N̂λ(c)|µ〉 = êi λc
2 |µ〉 = |µ + λ〉, (27a)

p̂|µ〉 = γ

6
µ |µ〉. (27b)

3.2.3. Dynamics

The dynamics is defined by the introduction of an operator onHkin
grav corresponding

to the Hamiltonian constraint CLQC
grav shown in (22c). Given the absence of the operator ĉ,
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this must be done by returning to the integral expression of the constraint and express-
ing it as function of our fundamental variables before quantization. The gravitational
Hamiltonian constraint of GR in the flat case becomes the following:

CLQC
grav = − 1

γ2

∫

V
d3x N ε

jk
i Fi

ab e−1 Ea
j Eb

k , (28)

where e =
√
|det E|, Ni = 0 due to isotropy, and N does not depend on spatial coordinates

so it can be set to 1 without loss of generality. Using the Thiemann strategy [95], the term
ε

jk
i e−1 Ea

j Eb
k can be written as follows:

∑
k

4sgn(p)

γλV
1
3

0

0εabc 0ωk
c Tr

(
hλ

k

{
(hλ

k )
−1, V

}
τi

)
, (29)

where V = |p| 32 is the volume function on the phase space; for the field strength Fi
ab we

follow the standard strategy used in gauge theory of considering a square of side λ V
1
3

0 in
the ij plane spanned by two of the triad vectors and defining the curvature component
as follows:

Fk
ab = −2 lim

λ→0
Tr


hλ

ij − 1

λ2 V
2
3

0


 τk 0ωi

a
0ω

j
b, (30)

where the holonomy around the square is simply the product of the holonomies along its
sides: hλ

ij = hλ
i hλ

j (h
λ
i )
−1(hλ

j )
−1.

Given these expressions, the gravitational constraint can be written as the limit of
a λ-dependent constraint that is now expressed entirely in terms of holonomies and p,
and can therefore be now promoted to the operator as follows:

CLQC
grav = lim

λ→0
Cλ

grav, (31)

Cλ
grav = −4 sgn(p)

γ3λ3 ∑
ijk

εijk Tr
(

hλ
ij

{
(hλ

k )
−1, V

})
, (32)

Ĉλ
grav =

24i sgn(p)
γ3λ3 sin2(λc) Ô(λ), (33)

Ô(λ) = sin
λc
2

V̂ cos
λc
2
− cos

λc
2

V̂ sin
λc
2

, (34)

where the action of the volume operator (acting simply as |̂p| 32 ), of the holonomy operators
and of sine and cosine functions can be easily derived from (27). Note that in the promotion
of the Hamiltonian constraint to a quantum operator, a specific discretization choice is
made among many possibilities. This is a delicate point for the derivation of LQC, and as
explained in later sections, it is addressed in [16,96].

Now, in LQC, the limit λ→ 0 does not exist by construction. This can be interpreted
as a reminder of the underlying quantum geometry, where the area operator has a discrete
spectrum with a smallest non-zero eigenvalue corresponding to the area gap ∆. It is,
therefore, incorrect to let λ go to zero because in full LQG, the area of the ij square
cannot be zero; as a consequence, λ must be set to a fixed positive value µ0 that can be
appropriately related to the area gap by considering that the holonomies are eigenstates of
the area operator Â = |̂p| and demanding that the eigenvalue be exactly equal to ∆:

Â hµ0
ij (c) =

γµ0

6
hµ0

ij (c) = ∆ hµ0
ij (c). (35)

The operator corresponding to the Hamiltonian constraint can be now defined as the
λ-dependent operator (33) with λ = µ0:
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ĈLQC
grav = Ĉµ0

grav. (36)

The final step is to make this operator self-adjointed by either taking its self-adjoint
part or by symmetrically redistributing the sine operator as follows:

ĈLQC(1)
grav =

1
2

(
ĈLQC

grav + (ĈLQC
grav )

†
)

, (37a)

ĈLQC(2)
grav =

24i sgn(p)
γ3µ3

0
sin(µ0c) Ô(µ0) sin(µ0c). (37b)

The Ashtekar school uses the second one, but both are equivalent and yield similar results.
Now we can introduce matter in the form of a massless scalar field φ obeying an

Hamiltonian constraint of the following form:

Ĉφ =
̂|p|− 3

2 P̂2
φ, (38)

where Pφ is the momentum conjugate to φ. Physical states Ψ(µ, φ) are the solutions of the
total constraint as follows:

(ĈLQC
grav + Ĉφ)Ψ(µ, φ) = 0. (39)

In the classical theory, the field does not appear in the matter part of the Hamiltonian;
this leads to its conjugate momentum Pφ being a constant of motion and to φ being
able to play the role of emergent internal time. In quantum cosmology in general, this
choice of relational time is the most natural one because near the classical singularity, a
monotonic behavior of φ as a function of the isotropic scale factor a(t) always appears.
The constraint (39) can then be considered an evolution equation with respect to this
internal time φ and can be recast in a Klein–Gordon-like form, thus allowing for the
usual separation into positive and negative frequency subspaces. Once that is done, the
procedure to extract physics from the model is: to introduce an inner product on the
space of solutions of the constraint to obtain the physical Hilbert space Hphy; to isolate
classical Dirac observables to be promoted to a self-adjoint operator onHphy; to use them to
construct wave packets that are semiclassical at late times; and to evolve them backwards
in time using the constraint itself.

After the internal time procedure, the constraint (39) takes the following form:

∂2Ψ
∂φ2 =

1
B

(
C+(µ)Ψ(µ + 4µ0, φ) + C0(µ)Ψ(µ, φ) + C−(µ)Ψ(µ− 4µ0, φ)

)
= −Θ(µ)Ψ(µ, φ), (40)

C+(µ) = 1

72|µ0|3
∣∣∣|µ + 3µ0|

3
2 − |µ + µ0|

3
2

∣∣∣, (41a)

C−(µ) = C+(µ− 4µ0), (41b)

C0(µ) = −C+(µ)− C−(µ), (41c)

where B = B(µ) is the eigeinvalue of the inverse volume operator appearing in the matter
constraint (38):

̂|p|− 3
2 Ψ(µ, φ) =

(
6
γ

) 3
2

B(µ), (42a)

B(µ) =
(

2
3µ0

)6(
|µ + µ0|

3
4 − |µ− µ0|

3
4
)6

. (42b)

The operator Θ(µ) on the right-hand side of (40) is a difference operator, as opposed
to the differential character of the operator that appears in the equivalent equation of the
WDW theory [1–3]. This allows for the space of physical states to be naturally superselected
into different sectors that can be analyzed separately.

193



Universe 2021, 7, 327

In the choice of observables, classical considerations are helpful: it is possible to choose
the conjugate momentum to the field since it is a constant of motion, and the value of p at a
fixed instant φ0. The set (Pφ, p|φ0) uniquely determines a classical trajectory; therefore, it
constitutes a complete set of Dirac observables in the quantum theory. The operators act
as follows:

|̂p|φ0
Ψ(µ, φ) = ei

√
Θ(µ) (φ−φ0) |µ|Ψ(µ, φ0), (43a)

P̂φΨ(µ, φ) = −i
∂Ψ(µ, φ)

∂φ
, (43b)

where Ψ(µ, φ0) is the initial configuration, i.e., the wave function calculated at a fixed initial
time φ0 and the absolute value |µ| is due to the fact that states are symmetric under the
action of the parity operator Π̂.

The evolution of wave packets is then carried out numerically. In the following, we
briefly summarize the results that are relevant for the resolution of the singularity. For a
more detailed analysis of all resulting properties, see [47,48].

• Singularity resolution: an initially semiclassical state remains sharply peaked around
the classical trajectories and the expectation values of the Dirac observables are in good
agreement with their classical counterparts for most of the evolution when coherent
states are considered. However, when the matter density approaches a critical value,
the state bounces from the expanding branch to a contracting one with the same value
of
〈

P̂φ

〉
, as shown in Figure 1. This occurs in every sector and for any choice of Pφ � 1,

universally solving the singularity by replacing the Big Bang with a Big Bounce.
• Critical density: the critical value of the matter density results in being inversely

proportional to the expectation value
〈

P̂φ

〉
and can, therefore, be made arbitrarily

small by choosing a sufficiently large value for Pφ. This fact, besides being physically
unreasonable because it could imply departures from the classical trajectories well
away from the Planck regime, becomes even more problematic in the case of a closed
model: the point of maximum expansion depends on Pφ as well. In order to have a
bounce density comparable with that of Planck, a very small value is needed, but in
that case, the Universe would never become big enough to be considered classical; on
the other hand, a closed Universe that grows to become classical needs a large value
of Pφ but would have a bounce density comparable with, for example, that of water.

This framework, although it successfully solves the singularity, has, therefore, a very
important drawback and needs to be substantially improved.

Figure 1. Expectation values and dispersion of |µ| (red horizontal bars) in terms of µ0 as function of
time ϕ for a coherent state, compared with classical trajectories (green dashed lines). Image from [48].
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3.3. Improved Loop Quantum Cosmology

In this section, we present the new scheme introduced by the Ashtekar school in [49,50]
that improves on the standard LQG procedure.

The idea is that the quantization of the area operator must refer to physical geometries.
Therefore, when performing the limit (31) needed to construct the gravitational constraint,
we should shrink the ij square until its area reaches ∆ as measured with respect to the
physical metric instead of the fiducial one. The area of the faces of the elementary cell is
simply |p|, and each side of the square is λ times the edge of the cell; with this consideration,
the parameter λ now becomes a function µ̄(p) given by the following:

µ̄2 |p| = ∆. (44)

This means that the curvature operator now depends both on the connection and the
geometry, whereas with the previous µ0 scheme, it depended on the connection only. As a
consequence, more care is needed in the definition of the exponential operator because
now, ei µ̄c

2 depends also on p.
By using geometric considerations, we can make a comparison with the Schrödinger

representation and set the following:

êi µ̄c
2 Ψ(µ) = eµ̄ d

dµ Ψ(µ), (45)

i.e., the exponential operator translates the state by a unit affine parameter distance along
the integral curve of the vector field µ̄ d

dµ . The affine parameter along this vector field is
given by the following:

ν = K sgn(µ) |µ| 32 , (46)

with K = 2
√

2
3
√

3
√

3
. Since ν(µ) is an invertible and smooth function of µ, the action of the

exponential operator is well-defined; however, its expression in the µ-representation is
very complicated because the variable µ is not well-adapted to the vector field µ̄ d

dµ . It is
therefore useful to change the basis from |µ〉 to |ν〉; in this representation, the action of the
exponential operator takes the following extremely simple form:

êi µ̄c
2 Ψ(ν) = Ψ(ν + 1). (47)

The kets |ν〉 still constitute an orthonormal basis onHkin
grav and are eigenvectors of the

volume operator:

V̂|ν〉 =
(γ

6

) 3
2 |ν|

K
|ν〉. (48)

The gravitational constraint can now be constructed in the same way as before.
The matter constraint has the same form (38) of the standard case; therefore, it is

sufficient to express the inverse volume eigenvalues (42b) in terms of ν:

B(ν) =
(

3
2

)3
K |ν|

∣∣∣|ν + 1| 13 − |ν− 1| 13
∣∣∣
3
. (49)

Repeating the same steps of the standard case, the total constraint can again be
expressed as a difference operator but this time in terms of ν:

∂2Ψ
∂φ2 =

1
B

(
C+(ν)Ψ(ν+ 4, φ)+ C0(ν)Ψ(ν, φ)+ C−(ν)Ψ(ν− 4, φ)

)
= −Θ(ν)Ψ(ν, φ), (50)

C+(ν) = 3K
64
|ν + 2|

∣∣∣|ν + 1| − |ν + 3|
∣∣∣, (51a)
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C−(ν) = C+(ν− 4), (51b)

C0(ν) = −C+(ν)− C−(ν). (51c)

The old operator Θ(µ) in (40) involves steps that are constant in the eigenvalues of
p̂, while the new one Θ(ν), called improved constraint, involves steps that are constant in
eigenvalues of the volume operator V̂. In the |µ〉 basis, these steps vary, becoming larger
for smaller µ and diverging for ν = 0; however the constraint is well-defined since the
operators acting on the state |ν = 0〉 are well-defined as well.

Regarding the Dirac observables, it is sufficient to substitute p|φ0 with the volume
ν|φ0 , and the set (Pφ, ν|φ0) is again complete. Therefore, the action of the correspondent
operators is

|̂ν|φ0
Ψ(ν, φ) = ei

√
Θ(ν) (φ−φ0) |ν|Ψ(ν, φ0), (52a)

P̂φΨ(ν, φ) = −i
∂Ψ(ν, φ)

∂φ
. (52b)

After numerical calculations, the improved framework yields the following results.

• Singularity resolution: also in this case, the states remain sharply peaked throughout
all the evolution, and the expectation values of the Dirac observables calculated on
coherent states follow the classical trajectory up to a critical value of the energy density;
when that value is approached, the states jump to a contracting branch and undergo
a quantum bounce instead of following the classical trajectory into the singularity,
as shown in Figure 2.

• Critical density: the real improvement of the new scheme is that the numerical value
of the bounce density is independent of

〈
P̂φ

〉
and is the same in all simulations, given

by ρcrit ≈ 0.82ρP. The behavior of the energy density was also studied independently
from the evolution of wave packets by analyzing the evolution of the density operator
defined as follows:

ρ̂φ =

(̂
P2

φ

2V2

)
, (53)

and it was found that in all quantum solutions, the expectation value
〈
ρ̂φ

〉
is bounded

from above by the same value ρcrit.

Figure 2. Expectation values and dispersion of v as function of time ϕ (horizontal bars) for a coherent
state, compared with the classical trajectories (dashed lines). Image from [49].
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It is shown that the absolute value of the critical density is not modified even when a
non-zero cosmological constant is included in the model [49]. The physical understanding
of this phenomenon is given by an effective description obtained through a semiclassi-
cal limit.

The improved scheme is able to overcome the main weakness of old standard LQC
through a physically motivated modification in the construction procedure of the quantum
gravitational constraint. This is the model currently referred to when talking about LQC
and on which all subsequent literature is based. Indeed, this model has allowed for a series
of phenomenological predictions; they are not part of the aim of this paper, but we present
some examples below.

The µ̄ scheme made it possible to perform thermodynamical analyses where the Loop-
quantized FLRW model is considered a thermodynamical system, and the energy density
and pressure are given a precise thermodynamical meaning [97,98]; the computations for
the duration of the inflationary de Sitter phase give results consistent with the minimum
amount of e-folds necessary to solve the paradoxes (although slightly higher, depending
on some parameters, such as the shear at the Bounce in anisotropic models), predict a
phase of deflation in the contracting branch and also allow the extension of the standard
inflationary paradigm from the Planck scale up to the onset of slow roll inflation, yielding
novel effects, such as non-Gaussianities [99–104]. Most importantly, the improved scheme
allows for a computation of the primordial power spectrum through two main methods:
in the first, the implementation of holonomy corrections as a deformed algebra yields a
slightly blue-tilted scale invariant spectrum followed by oscillations and an exponential
behavior in the ultraviolet [105,106]; in the other, a test field approximation is used such
that the evolution of tensor modes on any background quantum geometry is completely
equivalent to that of the same modes propagating on a smooth but quantum-corrected
metric called “dressed metric”, and it is able to recover the red-titled ultraviolet power
spectrum of classical cosmology [99,107]. For a more detailed comparison between the two
methods, see [108–110].

3.4. Effective Dynamics

The semiclassical limit of LQC, i.e., the inclusion of quantum corrections in the clas-
sical dynamics, can be obtained through a geometric formulation of quantum mechanics
where the Hilbert space is treated as an infinite-dimensional phase space [21]. In simpler
cases with coherent states that are preserved by the full quantum dynamics, the resulting
Hamiltonian coincides with the classical one; however, in more general systems it is possi-
ble to choose suitable semiclassical states that are preserved up to a desired accuracy (e.g.,
in a h̄ expansion), and the corresponding effective Hamiltonian preserving this evolution is
generally different from the classical one [111].

3.4.1. Effective µ0 Scheme

In our model with a massless scalar field, the leading order quantum corrections yield
an effective Hamiltonian constraint for the µ0 scheme in the following form:

Cµ0
eff
2

= − 3
γ2µ2

0
|p| 12 sin2(µ0c) +

1
2

B(µ)P2
φ, (54)

where B(µ) is given by (42b) and for µ� µ0 can be approximated as follows:

B(µ) =
(

6
γ

) 3
2
|µ|− 3

2

(
1 +

5
96

µ2
0

µ2 + O
(µ4

0
µ4

))
. (55)
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Since quantum corrections are significant only in the quantum region near µ = 0, we
can ignore them and, through Hamilton equations, obtain a modified Friedmann equation:

H2 =

(
ṗ

2p

)2
=

1
3

ρ

(
1− ρ

ρcrit

)
, (56a)

ρ
µ0
crit =

(
3

γ2µ2
0

) 3
2 √2

Pφ
. (56b)

As in the full quantum dynamics, the critical density at the bounce is inversely
proportional to the value of the constant of motion Pφ.

3.4.2. Effective µ̄ Scheme

Applying the same procedure to the µ̄ scheme, the improved effective Hamiltonian
reads as follows:

C µ̄
eff
2

= − 3
γ2µ̄2 |p|

1
2 sin2(µ̄c) +

1
2

B(ν)P2
φ, (57)

where B(ν) is the eigenvalue of the inverse volume operator expressed in terms of ν as
given by (49). Again, for |ν| � 1, B(ν) quickly approaches its classical value:

B(ν) =
(

6
γ

)3/2 K
|ν|

(
1 +

5
9

1

|ν|2
+ O

( 1

|ν|4
))

. (58)

Neglecting the higher order quantum corrections as before and given that the Poisson
bracket between ν and c is easily derived from (25), the modified Friedmann equation in
this case is as follows:

H2 =

(
ν̇

3ν

)2
=

ρ

3

(
1− ρ

ρcrit

)
, (59a)

ρ
µ̄
crit =

4
√

3
γ3 . (59b)

The critical density does not depend on Pφ anymore, and that is the main reason for
which the improved model is much more appealing than the standard one.

3.5. Loop Quantization of the Anisotropic Sector

Let us now show the work that was done on the implementation of the LQG quanti-
zation procedures to the anisotropic sector of cosmology, i.e., to the Bianchi models. The
classical phase space in this case is six-dimensional since there are three spatial directions
that evolve independently (i.e., three different scale factors a1(t), a2(t), a3(t)); therefore,
in the Hamiltonian formulation, the fundamental variables will be (ci, pi) with i = 1, 2, 3
where the momenta ci are dependent on the velocities ȧi while the variables pi are propor-
tional to the (comoving) areas perpendicular to the direction i: |pi| ∝ ajak with i 6= j 6= k.
We will briefly present the results obtained by Ashtekar and Wilson-Ewing on the improved
method of Loop quantization of the Bianchi type I, II and IX models [79–81]; their work
simplifies and improves the previous analyses on the Loop quantum homogeneous models
by Bojowald [75–78].

3.5.1. Bianchi Type I

The Bianchi type I model corresponds to the simplest anisotropic model; its classical
Hamiltonian constraint in the Ashtekar variables reads as follows:

CBI = −
1

γ2V ∑
i 6=j

ci picj pj, (60)
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where V = a1a2a3 =
√
|p1 p2 p3| is the Universe volume. The Hamiltonian equations yield

a system of six coupled differential equations that can be easily solved by recognizing
that the quantities Ki = ci pi are constants of motion. The solution in the void case is
the famous Kasner solution where ai(t) ∝ tki , where ki are the constant Kasner indices
that obey ∑i ki = ∑i k2

i = 1 [112]; usually, these indices are parametrized through a
variable u ∈ (1,+∞). Repeating the procedure of the isotropic sector, we introduce matter
in the form of a scalar field φ obeying a Hamiltonian similar to (38) and playing the
role of relational time; then, we quantize the system according to the Dirac procedure,
following [79].

Now, when implementing the µ̄ scheme, we are naturally induced to use three different
parameters µ̄i relating to the three different directions. An analogous reasoning to the
previous section yields the following:

µ̄iµ̄j =
∆
|pk|

=⇒ µ̄i =

√
∆
|pi|∣∣pj pk

∣∣ (61)

with i 6= j 6= k. This implies that, when constructing the holonomies and extracting the

operators corresponding to the quasi-periodic functions
̂
ei µ̄i ci

2 , their action would depend
on all the pj and be unmanageable. A solution can be obtained using a generalization

of (44), i.e., µ̄i =
√

∆
|pi | so that it could be possible to define volume-like variables νi ∝ |pi|

3
2

and implement the operators as in (47):
̂
ei µ̄i ci

2 Ψ(νi, νj, νk) = Ψ(νi + 1, νj, νk). This process
allows to find the quantum dynamics of the three spatial directions separately, and each
results to be a copy of the isotropic model; however, the description of the evolution of the
whole model is not viable in this framework.

In order to keep the correct expression (61) of the parameters µ̄i, a new representation
was developed through the introduction of dimensionless variables qi ∝ sgn(pi)

√
|pi|;

this allows for the definition of a new basis in Hkin
grav comprised of vectors that are still

eigenvectors of the operators pi, and the action of the exponential operators depend on
these variables:

̂
ei µ̄i ci

2 Ψ(qi, qj, qk) = Ψ(qi +
sgn(qi)

qjqk
, qj, qk). (62)

Note how the shift along the qi direction depends on qj and qk. In order to make this
more manageable, there is a further possible substitution: to define a volume variable
ν ∝ q1q2q3 and use a basis |q1, q2, ν〉 (note that it is possible substitute any of the qi with ν
and obtain the same results). This way, after some calculations, it is possible to write the
action of the Hamiltonian gravitational constraint as dependent only on the volume: it will
give a combination of shifted wave functionals of the following form:

Ψ( f1(ν)q1, f2(ν)q2, ν± 4) (63)

where f1(ν), f2(ν) are simple rescaling functions of ν. This is more easily comparable with
the dynamics of the isotropic model; indeed, it is possible to construct a projection that
maps the anisotropic wave functional Ψ(q1, q2, ν) into the isotropic state Ψ(ν) of previous
sections, as well as making the gravitational constraints become the same.

Finally, let us address the issue of singularity resolution. It is possible to decompose
the Hilbert space in the two subspaces Hgrav

singular and Hgrav
regular, where the first contains all

states with support on points with ν = 0, and the second contains the states without;
since all terms in the gravitational constraint contain a factor proportional to a power of
ν (depending on the chosen factor ordering), the two subspaces are invariant under time
evolution and remain decoupled. Therefore, a state that starts as regular will remain regular
throughout all its evolution; in this sense, the singularity is avoided. This behavior is again
captured by the effective dynamics that predicts the classical Kasner solution away from
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the singularity and a Bounce in the Planck regime that jumps to the contracting branch in a
similar way to the isotropic model. However, in this case, we need to keep track also of the
three Hubble functions Hi that undergo different Bounces separately; still, for conclusive
evidence that this effective evolution correctly reproduces the exact quantum dynamics,
one would need numerical simulations of the exact quantum model.

3.5.2. Bianchi Type II

The Bianchi type II model augments the Bianchi I with a curvature term (coming from
the full expression of the connection) and the introduction of a potential along only one
direction (here the direction 1). Its classical Hamiltonian constraint is as follows:

CBII = CBI + Ccurv
BII + UBII, (64a)

Ccurv
BII = − 1

γ2V
ε p2 p3c1, (64b)

UBII =
1 + γ2V

γ2
p2

2 p2
3

4p2
1

, (64c)

where ε = ±1 is an internal pseudoscalar parametrizing the orientation of the triad.
The classical dynamics is comprised of two different Kasner epochs bridged by a transition
that changes the value of the Kasner indices [112]; in terms of the variable u introduced
before, the second Kasner epoch is parametrized by u2 = u1 − 1, where u1 is the value of
the first epoch.

When implementing the quantization procedure, it is possible to follow the same steps
of Bianchi I, but more care is needed for the new terms that appear in the constraint [80].
In particular, after the implementation of the µ̄ scheme through (61) and the definition of

the variables qi, the term Ccurv
BII contains a power |p1|−

1
2 , that usually becomes |p1|−

1
4 after

a symmetric factor ordering; this is handled through a variation of the Thiemann inverse
triad identities [95], that in the qi representation yield the following:

̂|p1|−
1
4 |q1, q2, q3〉 ∝ sgn(q1)

√
|q2q3| g(ν, q2, q3) |q1, q2, q3〉, (65a)

g(ν, q2, q3) =
√

ν + sgn(q2q3) −
√

ν− sgn(q2q3). (65b)

On the other hand, the term UBII contains only a power |̂p1|−2 whose action can be
simply defined as the eighth power of the operator (65). This form suggests that, in this
case, the simplest representation is to substitute ν to q1 and use the basis |ν, q2, q3〉.

The quantum dynamics of the Bianchi II model is analogous to that of Bianchi I (and
therefore of FLRW) because the regular and singular Hilbert spaces decouple in this model
as well, and a state that starts away from ν = 0 will never reach it. Far from the singularity,
the classical dynamics of the two bridged Kasner-like solutions is recovered, while near the
Planck regime, there is a Bounce that joins with the contracting branch.

3.5.3. Bianchi Type IX

The Bianchi type IX is the most complex homogeneous model (together with type
VIII). The Hamiltonian is as follows:

CBIX = CBI + Ccurv
BIX + UBIX, (66a)

Ccurv
BIX = − ε

γ2V
(c1 p2 p3 + c2 p3 p1 + c3 p1 p2), (66b)

UBIX =
1

γ2V

(
p2

2 p2
3

4p2
1
+

p2
1 p2

3
4p2

2
+

p2
1 p2

2
4p2

3
− p2

1 + p2
2 + p2

3
2

)
; (66c)
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the classical dynamics is a chaotic evolution from one Kasner solution to the next, each chang-
ing the Kasner indices and each closer in time to the next, until the singularity is reached.
In terms of u, each transition from one Kasner epoch (with a specific value of u) to an-
other one lowers the previous value by 1, until a value u1final < 1 is reached that puts
an end to the first Kasner era; at that point, the following epoch starts a second era with
u2init = u−1

1final
and again each transition lowers the previous value of u by 1. The cycle

continues indefinitely toward the singularity, giving rise to the same chaotic evolution that
appears in the point-Universe description outlined in Section 2.3. However, chaos is tamed
when introducing matter in the form of a massless scalar field φ (which is exactly what is
done in order to implement the quantization procedure): the Friedmann equation becomes
asymptotically velocity-term dominated (AVTD), so that a standard Kasner-like dynamics
is recovered, and the singularity is approached through a single, stable Kasner epoch.

The quantization procedure is the same as the other models. The scalar field plays
the role of relational time. The µ̄i are defined as in (61), and we introduce the variables
(q1, q2, q3) and then change to (q1, q2, ν) so that the action of the gravitational constraint
involves constant shifts in ν and rescalings of qi dependent only on ν (note that in this
model the symmetries are in place again, so any qi could be substituted with ν); the singular
and regular Hilbert spaces decouple and the singularity is still solved.

We must now address the issue of chaoticity. It can be shown that already for the
classical dynamics, the presence of the scalar field tames the chaos [113]; this is true
also in the quantum model, as long as the AVTD regime is reached before the quantum
gravitational effects become relevant, but if the value of the momentum conjugate to the
scalar field is too small, this will not happen. However one could argue that the quantum
gravity effects giving rise to the Bounce make it so that the model evolves away from the
high curvature region toward the classical contracting branch, and there is not a sufficient
number of Kasner epochs for chaos to appear before the AVTD regime is unavoidably
reached, even if this happens after the Bounce. Further arguments for the removal of
chaos in the Loop quantum Bianchi type IX model are given in [76–78]. Still, numerical
simulations of the complete quantum system are needed in order to give a definitive word
on the chaoticity of these models.

3.6. Criticisms and Shortcomings of LQC

Over the years, many criticisms have been made on the LQC framework, mainly about
the following points: whether the Bounce can be regarded as a semiclassical phenomenon
or must be considered a purely quantum effect; the fact that the quantum dynamics is not
derived by a symmetry reduction of the full LQG theory, but by quantizing cosmological
models that are reduced before quantization; the use of the area gap as a parameter to
construct the dynamics of the reduced theory and its effective description. In this section,
we briefly summarize these issues.

As already mentioned, LQC is not the cosmological sector of LQG, but rather the
implementation of the latter’s quantization procedures on a cosmological spacetime; a good
symmetry reduction of full LQG would require that some degrees of freedom be frozen out,
but this procedure conflicts with the quantum character of the SU(2) variables. The spatial
geometry of a cosmological spacetime is fixed, and during the quantization on invariant
variables, any kind of spatial structure, such as the possibility to perform local SU(2)
transformations, is lost. Furthermore, as it is well known, in LQG the implementation of
the scalar constraint is not yet a viable task [11], and it is worth noting how this problem is
somehow bypassed in LQC, where the dynamics for the cosmological models is constructed;
however, this procedure is far from being completely clear. Another way to see the problem
of the SU(2) symmetry is that the resulting algebra on the reduced model is different
from the holonomy-flux algebra of the full theory; therefore, LQC is not equivalent to
LQG [15]. Taking this a step further, in [16], it is claimed that the resulting algebra of LQC
has several different representations, among which the Ashtekar school implicitly chooses
the one that favors bouncing solutions, while in [96], it is argued that the mechanism for
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the resolution of the singularity lies in the regularization of the constraint rather than in
the quantization procedure itself (and indeed the singularity in LQC is avoided already at
a semiclassical level). Alternatively, in [17] an SU(2)-invariant gauge fixing is considered,
which yields a modified holonomy-flux algebra that reproduces the original one of LQG
only when holonomies are evaluated along the triad vectors; the quantization procedure
is then performed according to the full theory, and the resulting model is a quantum
cosmology that manages to better preserve the SU(2) structure. A different approach
to derive a consistent description of the Loop quantum cosmological sector is provided
in [114], where through the introduction of local patches, it is possible to define local
cosmological variables that properly take into account the presence and the properties in
full LQG of both holonomy corrections and inverse-volume operators. Another interesting
and more developed approach that tries to solve this problem is that of quantum reduced
loop gravity (QRLG). In this approach, inspired by the criticisms in [15,17], some gauge-
fixing conditions are implemented on the kinematical Hilbert space of LQG that restrict
the full gravitational model to a diagonal metric tensor and to diagonal triads; then, the
cosmological reduction is performed by considering only that part of the scalar constraint
that generates the evolution of the homogeneous part of the metric. Finally, the dynamics
is obtained by performing a cubation (instead of a triangulation) on the reduced spin-foam
graphs. This way, QRLG gives a quantum description of the Universe in terms of a cuboidal
graph and it provides a framework for deriving the cosmological setting from full LQG.
For a more detailed presentation, see [115–120]. In this context, also the formalism of group
field theory (GFT) for quantum gravity contributes to clarify the link between the effective
cosmological equations and LQC when applied to the cosmological sector. In this approach,
the effective cosmological dynamics emerges as an hydrodynamic-like approximation of
the multi-condensate quantum states, i.e., the fundamental quantum gravitational degrees
of freedom. In particular, a second order quantization and the basis to the idea of lattice
refinement are provided, showing the dependence of the effective cosmological connection
on the number of spin network vertices (a quantity of a purely quantum origin) and thus,
on the scale factor. For more details regarding the GFT cosmology and the emergent
bouncing dynamics, see [121–125].

Another problem that is often raised, linked to the previous one, is that an external
parameter fixing the discretization scale must be introduced from the full theory by hand
because LQC is derived independently from LQG; this leads to some issues. For example,
in [16] it is stated that an effective description will have a scale of validity (given by the
area gap itself), while the Ashtekar school uses the same effective equations across very
different regimes (namely, it follows the evolution of a wave packet from the classical
regime up to the Planck region near the singularity; this is connected also to the issue about
the nature of the Bounce.

LQG and LQC attempt to provide a promising framework for a quantum mechanical
description of general relativity and of cosmological models, but as outlined in this section,
both—the latter in particular—need to be substantially improved.

A good achievement toward this goal is the formulation of polymer quantum mechan-
ics (PQM), a new quantum mechanical framework that is able to reproduce LQC effects but
can be derived independently from LQG and is much more versatile and easily applicable
to any Hamiltonian system. Its implementation on the cosmological minisuperspaces is
the focus of the next sections.

4. Polymer Cosmology

The power of the polymer formulation stands in its capability of introducing regu-
larization effects typical of the LQG quantum gravity approach by means of a simpler
mathematical framework with respect to the LQC theory. Therefore, its employment in
the cosmological sector has great relevance in trying to overcome the singularity issue
of GR and making also a comparison with the LQC main results regarding the presence
of an initial Big Bounce and its properties. In this sense, the principal feature of the
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polymer approach is making clear that the properties of the cosmological dynamics are
strongly dependent on the set of variables on which the polymer quantization is imple-
mented [27,34,38,42,44,45].

In this section, we focus on the main applications of the polymer formulation to the
FLRW [44], Bianchi I [45] and Bianchi IX models [38,42] that represent the main cosmo-
logical scenarios on which the polymer-modified dynamics of the primordial Universe
are tested. We will start with a discussion on the main results obtained by treating the
polymer quantization of these models in the Ashtekar variables, that constitute the setting
more connected to the original LQC formulation from which the polymer formulation
is derived. Indeed, as originally affirmed by Ashtekar in [126], at the Planck scale, the
implementation of LQG shows that quantum geometry has a close similarity with polymers
and that the continuum picture arises only upon a coarse-graining procedure by means of
suitable semiclassical states. Then, we will proceed by applying the polymer quantization
to the volume-like variables, obtained after doing a canonical transformation from the
Ashtekar connections to new generalized coordinates. In particular, we will implement
both a semiclassical and a quantum treatment for the FLRW and the Bianchi I models,
i.e., the homogeneous and isotropic model and its simplest anisotropic generalization.
Finally, we will apply the semiclassical polymer framework in the Misner-like variables
(the isotropic variable α or the Universe volume V plus the anisotropies) to the Bianchi IX
model that represent the most general candidate for the primordial Universe from which
even the properties of the general cosmological solution can be extrapolated.

4.1. Polymer Quantum Mechanics

In this section, we introduce PQM as described in the main paper written by Corichi
in 2007 [18], where a complete mathematical framework is developed. PQM is an alterna-
tive representation of the canonical commutation relations non-unitarily connected to the
ordinary Schrödinger one. In fact, it can be introduced as a limit of the Fock representation,
where the continuity hypothesis of the Stone–Von Neumann theorem is violated. How-
ever, PQM can also be derived without recurring to its connection with the Schrödinger
representation as follows.

4.1.1. Polymer Kinematics

In order to introduce the polymer representation without any reference to the
Schrödinger one, let us consider the abstract kets |b〉 labeled by the real parameter b ∈ R
and taken from the Hilbert spaceHpoly.

A generic cylindrical state can be defined through the finite linear combination as follows:

|ψ〉 =
N

∑
i=1

ni|bi〉, (67)

where bi ∈ R, i = 1, . . . , N ∈ N. We choose the inner product so that the fundamental kets
are orthonormal as follows: 〈

bi
∣∣bj
〉
= δij . (68)

From this choice, it follows that the inner product between two cylindrical states
|ψ〉 = ∑i ni|bi〉 and |φ〉 = ∑j mj

∣∣bj
〉

is as follows:

〈φ|ψ〉 = ∑
i,j

m∗i njδij = ∑
i

m∗i ni. (69)

It can be demonstrated that the Hilbert spaceHpoly is the Cauchy completion of the
finite linear combination of the form (67) with respect to the inner product (68) and that it
results to be non-separable.
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Two fundamental operators can be defined on this Hilbert space: the symmetric label
operator ε̂ and the shift operator ŝ(ζ) with ζ ∈ R. They act on the kets |b〉 as follows:

ε̂|b〉 := b |b〉 , ŝ(ζ)|b〉 := |b + ζ〉 . (70)

The shift operator defines a one-parameter family of unitary operators on Hpoly.
However, since the kets |b〉 and |b + ζ〉 are orthogonal for any ζ 6= 0, the shift operator ŝ(ζ) is
discontinuous in ζ, and there is no Hermitian operator that can generate it by exponentiation.

Now, the abstract structure of the Hilbert space is described, so we can proceed
by defining the physical states and operators. In the following, we will consider a one-
dimensional system identified by the phase-space coordinates (Q, P), and we will separate
the discussion into two cases referred to the two possible polarizations for the wave func-
tion. We suppose also that the configurational coordinate Q has a discrete character, due to
the relation that it often possess with geometrical quantities. This is a way to investigate the
physical effects of discreteness at a certain scale, for example, when introducing quantum
gravity effects on the cosmological dynamics.

P-Polarization

In the momentum polarization, the wave function is written as follows:

ψ(P) := 〈P|ψ〉 (71)

where
ψb(P) := 〈P|b〉 = eibP. (72)

The shift operator ŝ(ζ) is identified with the multiplicative exponential operator T̂(ζ):

T̂(ζ)ψb(P) = eiζPeibP = ei(b+ζ)P = ψb+ζ(P); (73)

T̂(ζ) is discontinuous by definition and as a result, the momentum P cannot be promoted
to a well-defined operator. On the other hand, Q̂ corresponds to the label operator ε̂ and in
this polarization acts differentially:

Q̂ψb(P) = −i
∂

∂P
ψb(P) = bψb(P). (74)

Additionally, it has to be considered as a discrete operator since ψb(P) are orthonormal
for all b, even though b belongs to a continuous set.

By means of the C∗-algebra it can be seen thatHpoly is isomorphic to the following:

Hpoly,P := L2(RB, dµH) (75)

where RB is the Bohr compactification of the real line, i.e., the dual group of the real
line equipped by the discrete topology, and dµH the Haar measure. Moreover, the wave
functions are quasi-periodic with the inner product as follows:

〈
ψbi

∣∣∣ψbj

〉
:=
∫

RB

dµH ψ†
bi
(P)ψbj

(P) = lim
L→∞

1
2L

∫ L

−L
dP ψ†

bi
(P)ψbj

(P) = δij. (76)

Q-Polarization

In the position polarization, the wave functions depend on the configurational variable
Q and a generic state, written as follows:

ψ(Q) := 〈Q|ψ〉 (77)

where the basis functions can be derived using a Fourier-like transform as follows:

ψ̃b(Q) := 〈Q|b〉 = 〈Q|
∫

RB

dµH |P〉〈P|b〉 = 〈Q|
∫

RB

dµH |P〉ψb(P) =
∫

RB

dµHe−iQPeibP = δQb (78)
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through which we can easily see that the P̂ operator does not exist since the derivative
of the Kronecker delta is not well defined. However, for the operator T̂(ζ) we have the
following:

T̂(ζ)ψ(Q) = ψ(Q + ζ). (79)

As in the previous case, the Q̂ operator corresponds to ε̂, but in this polarization, it
acts in a multiplicative way, i.e., the following:

Q̂ψ̃b(Q) := bψ̃b(Q). (80)

The Hilbert space has analogous features as before:

Hpoly,Q := L2(Rd, dµc) (81)

where Rd is the real line equipped with the discrete topology and dµc is the counting
measure. The inner product is as follows:

〈
ψ̃bi

(Q), ψ̃bj
(Q)

〉
= δij (82)

so, it is clear how the Q̂ operator is discrete also in this polarization.

4.1.2. Polymer Dynamics

In the previous section, the polymer kinematic Hilbert space was introduced. In
particular, the discussion above has highlighted that it is not possible to well define the
Q̂ and P̂ operators simultaneously in the polymer framework. So, it is necessary to
understand how to implement the dynamics in order to apply the polymer framework to a
physical system.

Let us consider a one-dimensional system described by the Hamiltonian as follows:

C = P2

2m
+ U(Q) (83)

in the P-polarization. If we assume that Q̂ is a discrete operator, we have to find an
approximate form for P̂. For this reason, the required regularization procedure consists of
introducing a lattice with a constant spacing b0:

γb0 = {Q ∈ R : Q = Nb0, ∀ N ∈ Z} . (84)

In order to remain in the lattice, the only states permitted are as follows:

|ψ〉 = ∑
N

nN |bN〉 ∈ Hγb0
(85)

where bN = Nb0 andHγb0
is a subspace ofHpoly that contains all the functions ψ so that

∑N |bN |2 < ∞.
Now, we have to find an approximate form for P̂ in order to have a well-defined

Hamiltonian operator through which implement the dynamics in both the polarizations.
We notice that the operator êiζP is well defined and acts as the shift operator on the kets
|b〉. In particular, its action is restricted to the lattice only if ζ is a multiple of b0 and the
simplest choice corresponds to ζ = b0, so that its actions reads as follows:

T̂(b0)|bN〉 := |bN + b0〉 = |bN+1〉. (86)

Therefore, it is possible to use the shift operator to introduce the following approximation:

P ∼ 1
b0

sin(b0P) =
1

2ib0
(eib0P − e−ib0P), (87)
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valid in the limit b0P� 1, so that the regularized P̂ operator acts as follows:

P̂b0 |bN〉 =
1

2ib0
[T̂(b0)− T̂(−b0)]|bN〉 =

1
2ib0

(|bN+1〉 − |bN−1〉). (88)

It is possible to introduce also an approximate version of P̂2 as follows:

P̂2
b0
|bN〉 ≡ P̂b0 · P̂b0 |bN〉 =

1
4b2

0
[−|bN−2〉+ 2|bN〉 − |bN+2〉] =

1
b2

0
sin2(b0 p)|bN〉 . (89)

We remind that Q̂ is a well-defined operator, so the regularized version of the Hamil-
tonian is written as follows:

Ĉpoly :=
1

2m
P̂2

b0
+ Û(Q) (90)

that represents a symmetric and well-defined operator onHγb0
.

We notice that this Hamiltonian provides an effective description at the given scale
b0. More specifically, the question about the consistency between the effective theories at
different scales and the existence of the continuum limit is deeply investigated in [127].
In particular, it is demonstrated that the continuum Hamiltonian can be represented in a
Hilbert space unitarily equivalent to the ordinary L2 space of the Schrödinger theory by
means of a renormalization procedure that involves coarse graining as well as rescaling,
following Wilson’s renormalization group ideas.

When implementing PQM on the cosmological minisuperspaces, the geometrical
variables (namely, the areas p, pi in the Ashtekar variables, the scale factor α and the
anisotropies βi in the Misner variables, and both the volumes v, vi and the lengths qi in
the volume-like variables) will be discretized and therefore will play the same role as the
position Q; therefore, all the conjugate variables, i.e., c, c̃, ci, ηi, Pα, Pv, P±, will play the same
role as the momentum P and will be subjected to the polymer substitution (87).

4.2. Polymer Cosmology in the Ashtekar Variables

In this section, we present the main results about the polymer semiclassical quan-
tization of the FLRW and Bianchi I models in the Ashtekar variables, following [44,45].
In particular, the emergence of a Big Bounce regularizing the initial singularity is a solid
prediction in the polymer framework, but the physical properties of the dynamics result in
being dependent on the initial conditions on the motion.

4.2.1. The FLRW Universe in the Ashtekar Variables

In this subsection, we treat the semiclassical and quantum polymer dynamics of
the FLRW model [44]. Additionally, some analogies with the original LQC scheme are
highlighted.

The classical Hamiltonian constraint for this configuration is as follows:

CFLRW = − 3
γ2
√

p c2 +
P2

φ

2|p| 32
= 0 , (91)

where a massless scalar field is included so that φ can be chosen as the internal clock for
the dynamics.

On a semiclassical level, the polymer paradigm is implemented by considering the
variable p as discrete in view of its geometrical character (i.e., it has the dimension of
an area) and so a regularized version for the momentum c in the form c → sin(b0c)

b0
is

introduced, obtaining the following:

Cpoly
FLRW = − 3

γ2b2
0

√
p sin2(b0c) +

P2
φ

2|p| 32
= 0 , (92)

206



Universe 2021, 7, 327

in which for the square of the momentum c, we have used the semiclassical version of (89).
Given the Poisson brackets {c, p} = γ

3 , we can obtain the equations of motion for p
and c as follows:

ṗ = − 2N
γb0

√
|p| sin(b0c)cos(b0c), (93a)

ċ =
N
3

( 3
γb2

0

1
2
√

p
sin2(b0c) +

3γ

4

P2
φ

|p|5/2

)
. (93b)

The analytical expression of the Friedmann equation can be derived as follows:

H2 =
( ȧ

a

)2
=
( ṗ

2p

)2
=

1
γ2b2

0

1
|p| sin2(b0c)

(
1− sin2(b0c)

)
; (94)

then, by using (92), we obtain the following:

H2 =
( ṗ

2p

)2
=

ρ

3

(
1− ρ

ρcrit

)
, (95)

where
ρcrit =

3
γ2b2

0|p|
. (96)

Let us now consider the scalar field φ as the internal time for the dynamics, by requir-
ing the lapse function to be as follows:

1 = φ̇ = N
∂Cpoly

FLRW
∂Pφ

= N
Pφ

p
3
2

, N =
|p| 32
Pφ

=
1√
2ρ

; (97)

therefore, the effective Friedmann equation in the (p, φ) plane reads as follows:

( 1
|p|

dp
dφ

)2
=

2
3

(
1− γ2b2

0
6

P2
φ

|p|2
)

, (98)

and it is analytically solvable after rewriting it in a dimensionless form. The expression of
p(φ) can be written as follows:

p(φ) =

√
γ2b2

0
6

Pφ cosh

(√
2
3

φ

)
. (99)

As shown in Figure 3 the polymer trajectory follows the classical one until it reaches
a purely quantum era where the effects of quantum geometry become dominant and the
resulting dynamics is that of a bouncing Universe replacing the classical Big Bang.

However, the critical energy density depends on the initial conditions on the momen-
tum conjugate to the scalar field, as we can see in the following expression:

ρcrit =
( 3

γ2b2
0

) 3
2
√

2
Pφ

, (100)

obtained by putting together the Equations (96) and (99). The non-universal character of
the bouncing dynamics in this set of variables has the following consequence:

ρcrit −→ ∞ for Pφ −→ 0 , (101)

Thus, the initial singularity can be asymptotically approached, and the quantum
corrections become irrelevant (see Figure 4). Thus, in the Ashtekar variables, the non-
diverging behavior of the energy density at the Bounce ensures the regularization of the
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singularity, due to its scalar nature, but it can assume arbitrarily large values and is not a
fixed feature of the dynamics. This result is very similar to the µ0 scheme of LQC presented
in Section 3.2.

-3 -2 -1 0 1 2 3
ϕ

0.5

1.0
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2.0

2.5

3.0
p(ϕ)

Figure 3. The polymer trajectory (red continuous line) is compared to the classical ones for the flat
FLRW model. The Big Bang solution is the blue dotted line and the Big Crunch solution is the green
dashed line.
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Figure 4. Dependence of the critical energy density on the momentum of the scalar field. For Pφ → 0
the Bounce approaches the singularity.

Now we want to extend the semiclassical results obtained above to a full quantum
level. In order to implement the Dirac quantization method [67], we have to promote
variables to quantum operators, i.e., the following:

p̂ = − iγ
3

d
dc

, ĉ =
1
b0

sin(b0c), P̂φ = −i
d

dφ
; (102)

Thus, the Hamiltonian constraint operator in the momentum representation is as follows:

Ĉpoly
FLRW =

[
− 2

3b2
0

d2

dc2 sin2(b0c) +
d2

dφ2

]
= 0. (103)
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In particular, the Hamiltonian constraint selects the physical states by annihilation,
giving rise to the following WDW equation:

[
− 2

3b2
0

(
sin(b0c)

d
dc

)2
+

d2

dφ2

]
Ψ(c, φ) = 0, (104)

where we have used a mixed factor ordering that will lead us to a solvable differential
equation through the following substitution:

x =

√
3
2

ln
[

tan
( b0c

2

)]
+ x̄. (105)

Thus, (104) assumes the form of a massless Klein–Gordon-like equation:

d2

dx2 Ψ(x, φ) =
d2

dφ2 Ψ(x, φ), (106)

where Ψ is the wave function of the Universe. The solution can be written as follows:

Ψ(x, φ) =
∫ ∞

0
dkφ

e−
|kφ−kφ|2

2σ2

√
4πσ2

kφ eikφxe−ikφφ, (107)

where we have considered only positive energy-like eigenvalues kφ and have used a
Gaussian-like weighing function peaked on the initial value kφ.

Now, in order to investigate the non-singular behaviour of the model, we can evaluate
the expectation value of the energy density operator as follows:

ρ̂ =
P̂2

φ

2| p̂|3
(108)

using the basic operators (102) and the substitution (105) to compute the Klein–Gordon
scalar product:

〈Ψ|Ô|Ψ〉 =
∫ ∞

−∞
dx i

(
Ψ∗ ∂φ(ÔΨ)− (ÔΨ) ∂φΨ∗

)
, (109)

where we consider Ψ to be normalized.
In Figure 5, we show the time dependence of 〈ρ̂(φ)〉 for a fixed value of kφ, while the

maximum 〈ρ̂(φB)〉, i.e., the expectation value of the density at the Bounce is presented
in Figure 6 from which we can appreciate the inversely proportional relation with kφ

in accordance with the semiclassical critical density given in (100). The points representing
the quantum expectation values are obtained through numerical integration and are fitted
with the continuous lines; they are in good accordance with the semiclassical trajectories
when taking into account numerical effects and quantum fluctuations.

The quantum analysis performed here has highlighted the non-diverging nature (al-
though strongly dependent on the initial conditions) of the energy density expectation
value at the Bounce. This result ensures the existence of a minimum non-zero volume in
view of the scalar and physical nature of the energy density, thus confirming the replace-
ment of the singularity with a Big Bounce also at a quantum level. Clearly, a more precise
assessment of the nature of the Bounce would require a non-trivial calculation of the expec-
tation value of the Universe volume operator and also a careful analysis of the variance of
the energy density operator on the Universe wave function (see for instance [128]).
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Figure 5. The expectation value of the energy density as function of time (blue dots), fitted with a
function in accordance with the semiclassical evolution (continuous red line).

6 7 8 9 10 11 12
kϕ

12

14

16

18

20

22

24

26

ρ(ϕB)

Figure 6. The expectation value of the energy density at the time φB of the Bounce as function of kφ

(blue dots), fitted with a function in accordance with the semiclassical evolution (continuous red line).

4.2.2. The Bianchi I Universe in the Ashtekar Variables

In this section, we extend all the results obtained for the FLRW model by considering
its simplest anisotropic generalization, i.e., the Bianchi I model, as done in [45]. Firstly,
we develop the polymer semiclassical analysis of the model in the Ashtekar variables, and
then we study the dynamics of the Universe wave packet at a quantum level.

We proceed by discretizing the areas pi and imposing in (60) the polymer substitution
for the connections ci:

ci →
1
bi

sin(bici), (110)

where bi (i = 1, 2, 3) refer to the three independent polymer lattices and {ci, pj} = γδij.
Then, the polymer Hamiltonian takes the following form:

Cpoly
BI =− 1

γ2V ∑
i 6=j

sin(bici)pi sin
(
bjcj
)

pj

bibj
+

P2
φ

2V
= 0, (111)
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where i, j = 1, 2, 3 and V =
√

p1 p2 p3.
We derive the dynamics after choosing φ as the internal time, i.e., imposing the gauge

N =
√

p1 p2 p3
Pφ

, so the equations of motion take the following form:

dpi
dφ

= − pi cos(bici)

γPφ

[ pj

bj
sin
(
bjcj
)
+

pk
bk

sin(bkck)
]
, (112a)

dci
dφ

=
sin(bici)

γbiPφ

[ pj

bj
sin
(
bjcj
)
+

pk
bk

sin(bkck)
]
, (112b)

for i, j, k = 1, 2, 3, i 6= j 6= k. It is possible to solve this system by establishing the initial
conditions on the variables (ci, pi), which also satisfy the Hamiltonian constraint (111).
In this respect, we make the following choice:

c1(0) =c2(0) = c3(0) =
π

2b0
,

p1(0) = p̄1, p2(0) = p̄2,

p3(0) = p̄3 =
P2

φγ2b0 − 2p̄1 p̄2

2( p̄1 + p̄2)
,

(113)

where b1 = b2 = b3 = b0 without loss of generality. Moreover, it can be easily seen
that the momentum conjugate to the scalar field is a first integral since the variable φ is
cyclic in (111). Other constants of motion can be obtained by combining the Hamilton
Equation (112), so we obtain the following:

pi sin(b0ci)

b0
= Ki, Pφ = Kφ , (114)

where the considered values of Kφ and Ki depend on the initial conditions. Identifying
these first integrals allows to transform the six-equations system shown in (112) in three
closed systems along the three spatial directions as follows:

dpi
dφ

= − pi cos(b0ci)

γPφ

[
Kj +Kk

]
, (115a)

dci
dφ

=
sin(b0ci)

γb0Pφ

[
Kj +Kk

]
, (115b)

where i 6= j 6= k.
Thanks to this procedure, the equations of motion can be solved analytically, leading

to the following solutions:

p1(φ) = p̄1 cosh
[ (γ2P2

φb2
0 + 2p̄2

2)φ

2γPφb0( p̄1 + p̄2)

]
,

p2(φ) = p̄2 cosh
[ (γ2P2

φb2
0 + 2p̄2

1)φ

2γPφb0( p̄1 + p̄2)

]
,

p3(φ) = p̄3 cosh
[ ( p̄1 + p̄2)φ

γPφb0

]
.

(116)

We have reported only the explicit expression of the variables pi as functions of φ
since we are interested in the Universe volume behavior V(φ) =

√
p1(φ)p2(φ)p3(φ) that

is shown in Figure 7. The resulting trajectory highlights that a quantum Big Bounce
replaces the classical Big Bang thanks to the polymer effects, which are expected to become
dominant near the Planckian region.
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Figure 7. Polymer trajectory of the Universe volume V =
√

p1 p2 p3 as function of φ: the Big Bounce
replaces the classical singularity of the Bianchi I model.

Now, we focus our attention on the analysis of the critical energy density of matter at
the Bounce:

ρ
φ
crit =

P2
φ

2V(φ)2

∣∣∣∣∣
φB

=
P2

φ

2p̄1 p̄2 p̄3
=

P2
φ( p̄1 + p̄2)

p̄1 p̄2(γ2P2
φb2

0 − 2p̄1 p̄2)
, (117)

i.e., the energy density of the matter scalar field in correspondence of the minimum Uni-
verse volume at the time of the Bounce φB = 0. As we can see from (117), ρ

φ
crit clearly de-

pends on the initial conditions on the motion. Moreover, in the simplest caseK1 = K2 = K3
it reduces to the following:

ρ
φ
crit =

( 3
γ2b2

0

) 3
2
√

2
Pφ

, (118)

reproducing a consistent behavior with that one obtained in the FLRW model in the same
variables; see (100). Indeed, it is possible to see that for Pφ � 1 the critical matter energy
density increases until it diverges, while on the other hand, it approaches zero when
Pφ � 1, highlighting that in the Ashtekar formulation of the Bianchi I model, the Big
Bounce has no universal features.

Let us now study this model on a quantum level by implementing the Dirac quan-
tization. In the momentum representation of the polymer formulation, the fundamental
operators act as follows:

p̂i := −iγ
d

dci
, ĉi :=

sin(bici)

bi
, P̂φ := −i

d
dφ

. (119)

Before quantization, we rewrite the WDW equation in the form of a Schrödinger one in
the attempt of defining a positive and conserved probability density. Therefore, we recall the
semiclassical scalar constraint and perform an ADM reduction of the variational principle:

P2
φ −Θ = 0, (120)

where

Θ =
2

γ2

[ sin(b1c1)p1 sin(b2c2)p2

b1b2
+

sin(b1c1)p1 sin(b3c3)p3

b1b3
+

sin(b2c2)p2 sin(b3c3)p3

b2b3

]
. (121)
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After choosing the scalar field φ as the temporal parameter, we derive the ADM
Hamiltonian by solving the scalar constraint (120) with respect to the momentum associated
to the scalar field:

Pφ ≡ CADM-poly
BI =

√
Θ. (122)

where we choose the positive root in order to guarantee the positive character of the lapse
function. Thanks to this procedure, the WDW equation can be rewritten in the form of a
Schrödinger one by promoting the ADM Hamiltonian to a quantum operator:

− i∂φΨ =
√

Θ̂ Ψ, (123)

where the operator
√

Θ̂, that we assume well-defined, can be written as follows:

√
Θ̂ =

[ 2
γ2

(
∂x1 ∂x2 + ∂x1 ∂x3 + ∂x2 ∂x3

)]1/2
, (124)

where the new variables xi are defined from the connections ci as follows:

xi = ln
[

tan
(

µci
2

)]
+ x̄i. (125)

Now, we are allowed to introduce the probability density as follows:

P(~x, φ) = Ψ∗(~x, φ)Ψ(~x, φ), (126)

where

Ψ(~x, φ) =
∫ ∞

−∞
dk1 dk2 dk3 A(k1, k2, k3) ei(k1x1+k2x2+k3x3+

√
2|k1k2+k1k3+k2k3| φ), (127)

A(k1, k2, k3) = exp

(
3

∑
i=1
− (ki − ki)

2

2σ2
ki

)
. (128)

This quantity is positive everywhere by definition, and its spatial integral remains
constant through time.

Hence, we have discarded the covariant formulation of the WDW equation in favor
of a Schrödinger-like one in order to define a probability density through which we
analyze the quantum dynamics of the Bianchi I wave packet presented in (127). This way,
we have avoided all the issues regarding the sign of the probability density that would be
encountered in the interpretation of the WDW formulation as a Klein–Gordon-like theory.

In Figure 8, some different sections of the probability density P are shown at different
times in order to verify how its shape and its maximum evolve. The present sections
were obtained by fixing two of the three coordinates through the values that they assume
in the semiclassical trajectories1. As we can see from Figure 8, the normalized quantum
distributions of x1, x2, x3 are shown in sequence, and their spreading behavior over time is
evident. Additionally, in Figure 9, the position of the peaks of P is represented by the red
dots that are fitted by means of a linear interpolation and compared with the semiclassical
trajectories. We can affirm that there is a good correspondence between the quantum
behavior of the wave packet and the solutions of the semiclassical dynamics since all the
three slopes of the functions resulting from the fit of the red dots are consistent with the
semiclassical ones with a confidence level of 3 standard deviations (we have supposed
a relative error of 10%, accounting for quantum fluctuations and numerical integration
errors). Moreover, we want to highlight that this quantum analysis based on the sections of
P is justified by the semiclassical decoupling of the equations of motion. In conclusion,
we remark that this feature of our analysis in the Ashtekar variables suggests the presence
of a bouncing dynamics with non-universal properties also at a quantum level.

213



Universe 2021, 7, 327

-20 -10 10 20
x1

0.05

0.10

0.15

0.20

0.25

(x1, ϕ)

(x1, -10)

(x1, -4)

(x1, 0)

(x1, 4)

(x1, 10)

-20 -10 10 20
x2

0.05

0.10

0.15

0.20

0.25

(x2, ϕ)

(x2, -10)

(x2, -4)

(x2, 0)

(x2, 4)

(x2, 10)

-20 -10 10 20
x3

0.05

0.10

0.15

0.20

0.25

(x3, ϕ)

(x3, -10)

(x3, -4)

(x3, 0)

(x3, 4)

(x3, 10)

Figure 8. The normalized sections P(xi, φ) are shown in sequence for i = 1, 2, 3 respectively at different times. Their
spreading behavior over time is evident together with the Gaussian-like shape.
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Figure 9. The three pictures show the position of the peaks of P(xi, φ) for i = 1, 2, 3 respectively in function of time φ (red
dots). The resulting fitting functions (red dashed straight lines) overlap the semiclassical trajectories (continuous lines) with
a confidence level of the order of 3 standard deviations.

4.3. Polymer Cosmology in the Volume-like Variables

In this section, we describe the FLRW dynamics in the polymer framework when the
polymer lattice is implemented on the Universe volume v. Then, we generalize the analysis
by taking under consideration the Bianchi I model, which admits two different sets of
volume-like variables thanks to its anisotropic structure. In particular, when the Universe
volume itself is considered to be one of the configurational variables, it is possible to derive
a polymer modified Friedmann equation for the Bianchi I model. We will see that the total
critical energy density has universal features, as demonstrated in [37] for the isotropic case.

4.3.1. The FLRW Universe in the Volume Variables

Following [44], we outline the semiclassical dynamics of the model and then we
perform a full quantum analysis by analyzing the properties of the Universe wave packet.
In order to apply the polymer semiclassical framework to the flat FLRW model in the
volume variables, we introduce the Hamiltonian constraint as follows:

CFLRW = − 27
4γ2 v c̃2 +

P2
φ

2v
, (129)

where the phase space variables c̃, v are linked to the Ashtekar variables c, p through the
following canonical transformation:

v = |p| 32 = a3, c̃ =
2
3

c√
|p|

∝
ȧ
a

(130)

that preserves the Poisson brackets {c̃, v} = γ
3 . Additionally, a massless scalar field has

been added to the dynamics with the role of a relational time. Thus, the modified polymer
Hamiltonian is as follows:

Cpoly
FLRW = − 27

4γ2b2
0

v sin2(b0 c̃) +
P2

φ

2v
= 0, (131)
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where the variable v is defined as discrete and so the semiclassical polymer substitution (87)
c̃→ sin(b0 c̃)

b0
is used for the generalized coordinate c̃.

The equations of motion for these variables are as follows:

v̇ = − 9N
2γb0

v sin(b0 c̃)cos(b0 c̃), (132a)

˙̃c =
N
3

( 27
4γb2

0
sin2(b0 c̃) + γ

P2
φ

2v2

)
. (132b)

As expected in the polymer framework, a modified Friedmann equation appears;
in particular, we can obtain its analytical expression by using (132a) and the vanishing
Hamiltonian constraint (131):

H2 =
( v̇

3v

)2
=

ρ

3

(
1− ρ

ρcrit

)
, ρcrit =

27
4γ2b2

0
. (133)

The presence of a bouncing point for the Hubble parameter represents the mechanism
through which the initial singularity is regularized. In addition, the critical energy density
at which the Big Bounce occurs is fixed by the spacing b0 associated to the polymer
lattice, giving the dynamics a universal character. This result is in strong contact with the
analogous considerations made in the context of the µ̄ approach in the LQC formulation in
Section 3.3.

Considering now the scalar field φ as the internal time of the dynamics, we fix the
time gauge, i.e.,

1 = φ̇ = N
∂Cpoly

FLRW
∂Pφ

= N
Pφ

v
, N =

v
Pφ

=
1√
2ρ

; (134)

thus the effective Friedmann equation in the (v, φ) plane reads as follows:

(1
v

dv
dφ

)2
=

3
2

(
1− 4γ2b2

0
54

P2
φ

v2

)
, (135)

whose analytical solution is as follows:

v(φ) =

√
4γ2b2

0
54

Pφ cosh

(√
3
2

φ

)
. (136)

As shown in Figure 10 the Bounce is clearly visible since the Universe possesses a
minimum volume.

Now, we promote the system to a full quantum level by applying the Dirac proce-
dure [67]. In particular, the Hamiltonian operator annihilates and selects the physical wave
functions when applied to the generic quantum states, yielding the WDW equation:

Ĉpoly
FLRW |Ψ〉 = 0. (137)

If we promote the classical variables to a quantum level in the momentum representa-
tion, we obtain the following:

v̂ = − iγ
3

d
dc̃

, ˆ̃c =
1
b0

sin(b0 c̃), P̂φ = −i
d

dφ
, (138)
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recalling that v is discrete and therefore c̃ must be regularized. So, the quantum version of
the Hamiltonian constraint (131) is as follows:

[
− 3

2b2
0

(
sin
(

b0 c̃
) d

dc̃

)2
+

d2

dφ2

]
Ψ(c̃, φ) = 0; (139)

Using again a mixed factor ordering and the substitution

x̃ =

√
2
3

ln
[

tan
( b0 c̃

2

)]
+ ˜̄x, (140)

we can recast recast the expression (139) in the form of a massless Klein–Gordon-like
equation:

d2

dx̃2 Ψ(x̃, φ) =
d2

dφ2 Ψ(x̃, φ). (141)

This way, the wave packet representing the wave function of the Universe can be
written as follows:

Ψ(x̃, φ) =
∫ ∞

0
dkφ

e−
|kφ−kφ|2

2σ2

√
4πσ2

kφ eikφ x̃e−ikφφ (142)

in the x̃-representation. We have constructed a superposition of plane waves in φ by
means of Gaussian-like coefficients and we have restricted the analysis only to the positive
energy-like eigenvalues kφ.
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Figure 10. The polymer trajectory of the volume in (v, c̃) for the flat FLRW Universe. The volume
presents a minimum, showing that a Big Bounce takes place.

In this case, to study the bouncing behavior of the model, we can evaluate the expecta-
tion values of both the volume and the energy density operators:

V̂ = v̂, ρ̂ =
P̂2

φ

2v̂2 . (143)
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In what follows, we express all the quantities as functions of the new variable x̃
using (140), so that we can calculate the expectation values through the Klein–Gordon
scalar product as follows:

〈Ψ|Ô|Ψ〉 =
∫ ∞

−∞
dx̃ i

(
Ψ∗ ∂φ(ÔΨ)− (ÔΨ) ∂φΨ∗

)
, (144)

where we assume normalized wave functions. The action of the operators (143) is derived
from the basic operators shown in (138). In Figures 11 and 12, we show, respectively,
the expectation values 〈V̂(φ)〉 and 〈ρ̂(φ)〉 as functions of time. In Figure 13, the value〈
V̂(φB)

〉
of the volume at the Bounce is shown as a function of the initial value kφ; it is clear

how the minimum volume scales linearly with the energy-like eigenvalue, in accordance
with (136). Then, in Figure 14, we show the Bounce density 〈ρ̂(φB)〉 for different values of
kφ. In accordance with the semiclassical critical density (133), choosing the volume itself
as the configurational variable for the quantization of the system makes the density at
the Bounce independent from the initial conditions on the quantum solution (142). This
quantum analysis allows a direct comparison with the µ̄ scheme of LQC, and it shows
how polymer quantum cosmology is unable to reproduce the inverse triad corrections. We
notice that in Figures 11–14, the numerically integrated points are fitted with the continuous
lines to check for consistency with the semiclassical solutions.
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Figure 11. The expectation value of the Universe volume as a function of time (blue dots), fitted with
a function in accordance with the semiclassical evolution (continuous red line).
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Figure 12. The expectation value of the energy density as a function of time (blue dots), fitted with a
function in accordance with the semiclassical evolution (continuous red line).
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Figure 13. The expectation value of the Universe volume at the time φB of the Bounce as a function
of kφ (blue dots), fitted with a function in accordance with the semiclassical evolution (continuous
red line).
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Figure 14. The expectation value of the energy density at the time φB of the Bounce as a function
of kφ (blue dots), fitted with a function in accordance with the semiclassical evolution (continuous
red line).

4.3.2. The Bianchi I Model in the Anisotropic Volume Variables: (v1, v2, v3)

In this subsection, we study the polymer semiclassical dynamics of the Bianchi I
model in complete analogy with the analysis performed for the FLRW model in the volume
variables, as presented in [45]. More specifically, the anisotropic character of the Bianchi
I model leads to the possibility of taking into account two different sets of volume-like
variables that coincide in the case of the isotropic model. The first that we take under
consideration consists of three equivalent generalized coordinates (see [129]):

vi = sgn(pi)|pi|
3
2 , ηi =

ci√
|pi|

(145)

for i = 1, 2, 3, where ηi are the conjugate momenta and the new symplectic structure for
the system is characterized by the following Poisson brackets:

{ηi, vj} =
3
2

γδij. (146)

In this case, we are not promoting one of the configurational variables to represent
the Universe volume. On the contrary, we are imposing that the three independent coor-
dinates are isomorphic to the isotropic volume for each direction so that V = (v1v2v3)

1
3 .

In particular, each coordinate vi reduces to the Universe volume in the isotropic limit.
The Hamiltonian constraint for this framework in the polymer representation reads

as follows:

Cpoly
BI = − 1

4γ2V ∑
i 6=j

vi sin(biηi)vj sin
(
bjηj

)

bibj
+

P2
φ

2V
= 0, (147)

where i, j = 1, 2, 3 and the substitution ηi → sin(biηi)
bi

is performed.

If we fix the gauge through the choice N = V
Pφ

, the Hamilton equations will describe
the dynamics of the model with respect to φ playing the role of the time variable:

dvi
dφ

= −vi cos(biηi)

4γPφ

[vj

bj
sin
(
bjηj

)
+

vk
bk

sin(bkηk)

]
(148a)

dηi
dφ

=
sin(biηi)

4γbiPφ

[vj

bj
sin
(
bjηj

)
+

vk
bk

sin(bkηk)

]
(148b)
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for i, j, k = 1, 2, 3 and i 6= j 6= k. In analogy with the previous treatment, we can identity
the following constants of motion:

vi sin(b0ηi)

b0
= Ki, Pφ = Kφ (149)

where b1 = b2 = b3 = b0. Taking general initial conditions that satisfy the constraint (147),
the analytical solutions for the anisotropic volume coordinates read as follows:

v1(φ) = v̄1 cosh
[ (2γ2P2

φb2
0 + v̄2

2)φ

4γPφb0(v̄1 + v̄2)

]
,

v2(φ) = v̄2 cosh
[ (2γ2P2

φb2
0 + v̄2

1)φ

4γPφb0(v̄1 + v̄2)

]
,

v3(φ) = v̄3 cosh
[ (v̄1 + v̄2)φ

4γPφb0

]
,

(150)

where
v1(0) = v̄1, v2(0) = v̄2,

v3(0) =v̄3 =
(2γ2b2

0P2
φ − v̄1v̄2)

(v̄1 + v̄2)
.

(151)

By combining the solutions (150), we can find the Universe volume behavior in
function of φ as V(φ) = (v1(φ)v2(φ)v3(φ))

1/3. As shown in Figure 15, the Big Bounce
appears as a polymer regularization effect in place of the classical Big Bang. Analogously, it
is possible to investigate the properties of the critical energy density of matter by computing
the energy density of the scalar field in correspondence of the minimum volume at the time
φB = 0 of the Bounce, i.e., the following:

ρ
φ
crit =

P2
φ

2V(φ)2

∣∣∣∣∣
φB

=
P2

φ

2(v̄1v̄2v̄3)2/3 =
P2

φ(v̄1 + v̄2)
2/3

2[v̄1v̄2(2γ2P2
φb2

0 − v̄1v̄2)]2/3
; (152)

this results to be dependent on the initial conditions also in this set of anisotropic volume
variables. In the next section, we implement directly the Universe volume as a generalized
coordinate, trying to overcome this issue.
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Figure 15. Bouncing trajectory of the Universe volume V = (v1v2v3)
1/3 as function of φ in the

semiclassical polymer framework.
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4.3.3. The Bianchi I Model in the Volume Variables: (v, q1, q2)

Now, we consider the set of volume variables introduced in [45]:

qi = sgn(pi)
√
|pi| , v = q1q2q3 (153)

where ηi (with i = 1, 2, 3) are the conjugate momenta and v represents the Universe volume.
The Poisson brackets are as follows:

{ηi, qj} = γδij. (154)

and the Hamiltonian takes the following form:

CBI = −
1

4γ2V
(q1η1q2η2 + q1η1vη3 + q2η2vη3) +

P2
φ

2V
= 0. (155)

When we rewrite this expression using the polymer substitution ηi → sin(biηi)
bi

, we
obtain the following:

Cpoly
BI = − 1

4γ2V

(
∑

i=1,2

qi sin(biηi)v sin(b3η3)

bib3
+

q1 sin(b1η1)q2 sin(b2η2)

b1b2

)
+

P2
φ

2V
= 0. (156)

In order to derive the dynamics of the model in function of the relational time φ,
we impose the following:

φ̇ := N
∂Cpoly

BI
∂Pφ

= 1, N =
V
Pφ

, (157)

so the Hamilton equations for the couple (v, η3) take the following expressions:

dv
dφ

= −v cos(b3η3)

4γPφ

[
q1

b1
sin(b1η1) +

q2

b2
sin(b2η2)

]
, (158a)

dη3

dφ
=

sin(b3η3)

4γb3Pφ

[
q1

b1
sin(b1η1) +

q2

b2
sin(b2η2)

]
, (158b)

while for the conjugate variables (q1, η1), (q2, η2) we have the following:

dqi
dφ

= − qi cos(biηi)

4γPφ

[
v
b3

sin(b3η3) +
qj

bj
sin
(
bjηj

)]
, (159a)

dηi
dφ

=
sin(biηi)

4γbiPφ

[
v
b3

sin(b3η3) +
qj

bj
sin
(
bjηj

)]
, (159b)

for i, j = 1, 2 and i 6= j.
Once fixed the initial conditions on the variables (q1, η1), (q2, η2), (v, η3) according

to (156), we can solve this system analytically since the 3D motion is decoupled in three
one-dimensional trajectories, thanks to the use of the constants of motion as follows:

qi sin(b0ηi)

b0
= Ki, Pφ = Kφ (160)
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where i = 1, 2, 3 and b1 = b2 = b3 = b0. Differently from the previous analyses, we fix the
constants of motion as follows:

K1 =

√
2γ2P2

φ +K2

3
+K,

K2 =

√
2γ2P2

φ +K2

3
−K,

K3 =

√
2γ2P2

φ +K2

3
,

(161)

where K is an arbitrary constant. As we will see below, this choice allows to write a
convenient form for the Friedmann equation in order to develop a more rigorous analysis
of the bouncing behavior of the model. Indeed, the existence of a non-trivial solution to
the equation H2 = 0 identifies the expression of the critical energy density for which the
scale factor velocity becomes null. More precisely, this information allows to identify also
the anisotropy contribution to the total critical energy density added to the standard one
associated to the matter fields. This way, it is possible to rigorously analyze the physical
properties of the critical point.

In this set of volume variables, the Hubble parameter can be written as follows:

H2 =
( 1

3v
dv
dt

)2
=

(K1 +K2)
2

144γ2v2 cos2(b0η3) =

=
(K1 +K2)

2

144γ2v2 [1− sin2(b0η3)] =
(K1 +K2)

2

144γ2v2 (1− b2
0

v2K
2
3)

(162)

where we restored the synchronous time-gauge N = 1 in the equation for the volume
written in (158a). Now, if we substitute the conditions expressed above in (161), we obtain
the following:

H2 =
P2

φ + K̄2

54v2

[
1− 4γ2b2

0
3

(P2
φ + K̄2

2v2

)]
, K̄ =

K√
2γ2

. (163)

This expression represents the polymer modified Friedmann equation for the Bianchi I
model in the volume variables that, written in this convenient form, allows to derive the to-
tal critical energy density of the model. In particular, the additional term K̄2/2v2 reasonably
mimics the anisotropic contribution ρaniso, so that we can compute ρtot

crit as follows:

ρtot
crit = ρ

φ
crit + ρaniso

crit , (164)

where the term regarding the matter scalar field takes the usual expression P2
φ/(2v2).

Moreover, from (163) the total critical energy density results to be as follows:

ρtot
crit =

3
4γ2b2

0
. (165)

The solution for the Universe volume v(φ) when the initial conditions on the motion
satisfy (161) is as follows:

v(φ) =

√
2γ2P2

φ +K2

3
b0 cosh




√
2γ2P2

φ +K2 φ

2
√

3 γPφ


 , (166)

clearly resembling a bouncing behavior as shown in Figure 16.
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Figure 16. Semiclassical polymer trajectory of the Universe volume v(φ).

Now, we can verify whether the total critical energy density computed as (164) ac-
quires the expression (165). In particular, we have the following:

ρtot
crit =

P2
φ

2v(φ)2

∣∣∣∣∣
φB

+
K̄2

2v(φ)2

∣∣∣∣∣
φB

=
3P2

φ

2b2
0(2γ2P2

φ +K2)
+

3K2

4γ2b2
0(2γ2P2

φ +K2)
, (167)

which clearly reduces to (165); therefore, the total critical density computed from the laws
of motion for the Universe volume is consistent with the expression derived from the
Friedmann Equation (163). Imposing a cut-off on the volume variables makes the critical
energy density independent from the initial conditions on the scalar field, and therefore,
produces a Big Bounce with universal properties. This result shows that taking the Universe
volume itself as a configurational variable makes the Big Bounce acquire universal physical
properties, in agreement with the behavior obtained for the set (v, c̃) in the FLRW model.

We notice that, even if the polymer-modified Friedmann equation in this convenient
form is derived by considering the particular choice (161) for the constants of motion, the
physical properties of the bouncing behavior of our model as derived from (163) have a
general meaning since they are independent from the value assigned to the constant K.

4.4. Polymer Cosmology in the Misner-like Variables

In this section, we treat the semiclassical polymer dynamics of the most general
anisotropic Universe, i.e., the Bianchi IX model. First, we implement the polymer paradigm
in the Misner variables [42], and then we generalize the analysis by considering a inhomo-
geneous extension of the model in Misner-like variables, i.e., the anisotropies together with
the Universe volume v ∝ e3α [38].

4.4.1. The Bianchi IX Model in the Misner Variables

The aim of this section is to discuss the main features of the Mixmaster semiclassical
dynamics in the polymer representation [42]. We choose to define the Misner variables
(α, β±) as discrete, so we perform the following formal substitutions:

P2
± →

1
b2 sin2(bP±) , (168a)

P2
α →

1
b2

α
sin2(bαPα) , (168b)
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where b is the polymer parameter for the anisotropies, while bα is that one related to the
isotropic variable α.

The super Hamiltonian constraint (14) becomes the following:

Cpoly
BIX =

N
3(8π)2 e−3α

[
− 1

b2
α

sin2(bαPα) +
1
b2 sin2(bP+) +

1
b2 sin2(bP−) +

UBIX(β±)
b2

α

]
= 0 , (169)

while the ADM Hamiltonian has the following expression:

CADM-poly
BIX =

arcsin
√

b2
α

b2 [sin2(bP+) + sin2(bP−)] + UBIX

bα
, (170)

with the condition 0 ≤ b2
α

b2 [sin2(bP+) + sin2(bP−)] + UBIX(β±) ≤ 1, due to the presence
of the inverse sine function. In both (169) and (170), we have performed the substitution
UBIX(β±) = b2

α3(4π)4e4αUBIX(β±).
The dynamics of the model is described by the following Hamilton equations:

β′± =
∂CADM-poly

BIX
∂P±

=
bα

b
sin(2bP±)

sin
(

2bαCADM-poly
BIX

) , (171a)

P′± = −∂CADM-poly
BIX
∂β±

= − 3bα(4π)4e4α

sin
(

2bαCADM-poly
BIX

) ∂U(β±)
∂β±

, (171b)

(
CADM-poly

BIX
)′

= 4e4α−8β+
3bα(4π)4

sin
(

2bαCADM-poly
BIX

) , (171c)

where the symbol ′ denotes the derivative with respect to α.
Due to the steepness of the potential walls, we initially study the dynamics in the

regime U ∼ 0. Under this condition, it can be demonstrated that there is a logarithmic
relation between the time variable t and the isotropic one α, so we have that α ∼ ln(t)→
−∞ for t→ 0, even if α is described in the polymer formulation. This result points out that
the discrete nature of the isotropic variable α does not prevent the Universe volume from
vanishing, so the cosmological singularity is still present. We remark that the hypothesis
U ∼ 0 becomes more reliable near the singularity because for α → −∞, the walls move
outwards, and the region where the approximation is valid asymptotically covers the
whole (β+, β−) plane.

Regarding the study of the chaotic features in the polymer modified picture, we have
to analyze the relative motion between the particle-Universe and the potential walls, whose
velocity is still |β′wall| = 1

2 since the polymer representation leaves the potential unchanged.
On the other hand, if we study the anisotropy velocity of the particle while varying the
values of the polymer parameters, we can see that the following holds:

β′(bα, b, P±) ≥ 1 ∀ P± ∈ R⇔ bα

b
≥ 1 , (172)

where

β′ ≡
√

β′2+ + β′2− =

√√√√ sin2(bP+) cos2(bP+) + sin2(bP−) cos2(bP−)

r2(bP+, bP−)
[
1− b2

α
b2 r2(bP+, bP−)

] , (173)

and r(x, y) =
√

sin2(x) + sin2(y). We notice that (P+, P−) (and consequently

CADM-poly
BIX ) are constants of motion in the free particle regime. In addition, it is easy

to verify that the relation (19) is recovered for b, bα → 0.
The figures represented in Figure 17 show that the anisotropy velocity represented on

the vertical axis is always greater than 1 only if we choose the ratio bα/b to be greater than
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or equal to one. Therefore, the dynamics of the Mixmaster model is expected to be still
chaotic because of the existence of the singularity and the presence of a never-ending series
of rebounds against the potential walls. Instead, if we choose the polymer parameters
such that bα/b < 1 (Figure 18), the series of rebounds occurs until the particle velocity
becomes smaller than the velocity of the potential walls; then, the point-Universe reaches
the singularity with no other rebound.

Figure 17. The 3D-profiles of the anisotropy velocity (173) with bα/b = 1 (left panel) and bα/b = 1.5
(right panel).

Figure 18. The 3D-profile of the anisotropy velocity (173) with bα/b = 0.1.

Moreover, it can be demonstrated that for bα/b < 1, we have θmax
poly < π

3 , and this
implies the absence of rebounds, even if the particle moves towards a specific wall. On
the other hand, if bα/b ≥ 1, we have π

3 ≤ θmax
poly < π

2 ; this means that a rebound is always
possible, given the triangular symmetry of the system.

Regarding the polymer modified reflection law, by using analogous constants of
motion with respect to the standard Misner case, we are able to derive the following law:

1
4b

[
arcsin

(
cos θ f sin θi

sin θ f r(2bPi
+, 2bPi

−)
)
+ arcsin

(
cos θi r(2bPi

+, 2bPi
−)
)]

=

=
1
bα

[
arcsin

(
bα

b
r(bP f

+, bP f
−)
)
− arcsin

(
bα

b
r(bPi

+, bPi
−)
)]

,
(174)

where r(x, y) =
√

sin2(x) + sin2(y).
In order to make a comparison with the standard case (20), an expansion up to the

second order for b and bα is required:

sin
(

θi + θ f
)

2
= sin θi(1 + Π2

f )(1 + R f )− sin θ f (1 + Π2
i )(1 + Ri) (175)
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where
Π2 =

1
6

b2
α(P2

+ + P2
−), (176a)

R =
2
3

b2 (P+)4 + (P−)4

(P+)2 + (P−)2 , (176b)

and it is easy to show that in the limit b, bα → 0, we find the standard reflection law (20)
obtained by Misner.

Recovering this limit leads us to infer that the map above still admits stochastic
properties; therefore, when bα < b, sooner or later the parameter region where no rebound
takes place is reached, as in [27].

Given the results of this analysis and that of previous sections, we can infer that not
only the physical nature of the Big Bounce, but also its very existence depends on the
geometrical dimension of the variable chosen as discrete: we have seen here that using a
logarithmic variable does not indeed avoid the singularity. Therefore, in the last model
that we present in the next subsection, we choose to use a mixed representation involving
the anisotropies as they are defined by Misner, together with an isotropic volume variable
instead of α ∝ ln v.

4.4.2. The Inhomogeneous Mixmaster Model in the Volume Variable

In [38], the semiclassical polymer dynamics of the inhomogeneous Mixmaster model
is analyzed by choosing the cubed scale factor (i.e., the Universe volume) alone as the
discretized configurational variable. In addition, a massless scalar field and a cosmological
constant are included in the dynamics, accounting respectively for a quasi-isotropization
and inflationary-like mechanisms. The resulting dynamics is a singularity-free Kasner-
like phase that is linked with a homogeneous and isotropic de Sitter evolution. More-
over, the chaotic character of the Mixmaster dynamics is absent in this framework. Thus,
the study presented in [38] demonstrates that the generic cosmological solution is
singularity-free and non-chaotic once the polymer discretization of the Universe volume
variable is performed at a semiclassical level. This result is alike to that achieved also in
LQC, as presented in Section 3.5.

In order to summarize more in detail all the main results presented in [38], let us
start by characterizing the generic cosmological problem and its relationship with the
homogeneous Mixmaster model. The most general line element can be written as follows:

ds2 = N2dt2 − hab(dxa + Nadt)(dxb + Nbdt) , (177)

where Na,b(t,~x) is the shift vector and the following holds:

hab(t,~x) = em1(t,~x)l1
a l1

b + em2(t,~x)l2
a l2

b + em3(t,~x)l3
a l3

b , (178)

with a, b = 1, 2, 3. Rigorously, this is not the most general picture since we are not consider-
ing the rotation of the Kasner vectors l1,2,3

a,b (t,~x). Differently from the homogeneous Bianchi
line element (12), the lapse function N(t,~x) depends explicitly on the spatial coordinates,
as well as the Misner-like variables, that in their generalized version are defined as follows:

ma(t,~x) =
2
3

ln[v(t,~x)] + 2βa(t,~x) , (179)

where a = 1, 2, 3 and βa = (β+ +
√

3 β−, β+ −
√

3 β−,−2β+). Here, we are considering
v as the isotropic variable proportional to the spatial volume of the Universe (instead of
α as in the proper Misner variables), while β+, β− are the anisotropies. Let us include a
massless, self-interacting scalar field φ in the dynamics, taking into account the slow-roll
condition φ̇2 � U(φ) as well as the following hypothesis:

|∇φ|2 � U[φ(t,~x)] ∼ Λ(~x) , (180)
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both typical of the inflationary paradigm.
The action in the inhomogeneous case reads as follows:

Sinhom
B =

∫
d3x dt

(
Pvv̇ + ∑

j
Pj β̇ j −NC inhom

B −NiCi

)
, (181)

where j = +,−, φ and βφ ≡ φ. The super Hamiltonian constraint is as follows:

C inhom
B =

3
4

[
− vP2

v + ∑
j

P2
j

9v2 +
v1/3

3
Uinhom

B + vΛ(~x)
]

, (182)

while Ci represents the supermomentum one. We remark how the self-interacting scalar
field, under the slow-roll condition, is equivalent to a free scalar field plus a cosmological
constant Λ(~x).

The potential term is due to the three-dimensional scalar curvature and can be split as
Uinhom = W + Uinhom

B , where the contribution due to the spatial gradients of the config-
urational variables is encoded in W, and the term Uinhom

B represents the inhomogeneous
generalization of the Bianchi model’s potential (the Bianchi VIII and Bianchi IX models
are the most general choices). By using the Belinskii–Khalatnikov–Lifshitz (BKL) conjec-
ture [130], the term W is considered to be negligible and so the super Hamiltonian (182)
reduces to that one of the Bianchi IX model, where the spatial coordinates appear only
as parameters. The reliability of this assumption can be verified by explicitly evaluating
the term W by means of the supermomentum constraint. Moreover, by means of the
gauge choice Ni = 0, each point of space evolves independently and can be described,
using a homogeneous Bianchi IX model. This way, point by point, the inhomogeneous
cosmological evolution is approximated by a Mixmaster-like one. We notice that the cor-
responding solutions of the dynamics must satisfy also the supermomentum constraint,
which identically vanishes for a homogeneous spacetime. In addition, with the hypothesis
that the physical scale of the inhomogeneities is much bigger than the average Hubble
horizon, each causal connected region verifies a Mixmaster-like evolution, instead of each
point of space [131].

Let us now analyze the semiclassical polymer dynamics of the model. Using the sub-
stitution (89) for the momentum conjugate to the variable v, i.e., Pv → sin(b0Pv)

b0
, the Hamil-

tonian constraint becomes the following:

Cpoly
BIX =

3
4

[
− v

sin2(b0Pv)

b2
0

+ ∑
j

P2
j

9v2 +
v1/3

3
UBIX + vΛ

]
, (183)

where the spatial gradients are neglected and the potential term is that one of the Bianchi
IX model. Firstly, we can notice that the following condition is imposed by the form of the
Hamiltonian when the potential term is negligible:

sin2(b0Pv) = b2
0

(∑j P2
j

9v2 + Λ
)

. (184)

As a consequence, the right-hand side of (184) must be smaller than 1, and therefore,
the Universe volume acquires a lower bound:

v > vB ≡
b0

3

√√√√∑j P2
j

b2
0Λ

, (185)

with the condition b2
0Λ < 1, which is physically reasonable in the Planck units. So,

in the polymer semiclassical dynamics, the initial singularity is replaced by a Big Bounce.
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We notice that the minimum value of the Universe volume depends not only on the
polymer scale b0, but also on the cosmological constant Λ and on the conjugate momenta
Pj, which are constants of motion when the potential term is negligible. This feature is in
accordance with the results obtained in LQC [49]. The absence of singularity thanks to the
semiclassical polymer formalism can be shown more in general by solving the Hamilton
equation for the Universe volume, from which we obtain the following:

v(t) =

√√√√∑j P2
j
[

cosh
(

3
√

Λ
√

1− b2
0Λt

)
− 1 + 2b2

0Λ
]

18Λ(1− b2
0Λ)

. (186)

In particular, as shown in Figure 19 the Bounce occurs when the volume reaches its
minimum, which is given by Equation (185).

Figure 19. Semiclassical polymer trajectory of the Universe volume v in the synchronous time t.
Image from [38].

Moreover, by performing the ADM reduction and choosing v as the relational time,
the Hamilton equations for the anisotropies and the scalar field can be solved, showing
that the former do not diverge approaching the Big Bounce, as it happens in the standard
case. Additionally, far from the Bounce, the anisotropies tend to a constant value that can
be absorbed by an appropriate and local rescaling of the coordinate system. In this sense,
the quasi-isotropization mechanism described in [62,131] results to be preserved under the
polymer modification.

In conclusion, the semiclassical polymer dynamics is well described by a bridge
solution connecting an initial non-singular, inhomogeneous and anisotropic Kasner-like
regime with a later homogeneous and isotropic de Sitter phase. We notice that this result
is local, i.e., valid in a nearly homogeneous region. Nonetheless, with the hypothesis of
having an inhomogeneity scale much larger than the average Hubble horizon, each causal
connected region undergoes such an isotropization phase and can be expanded by the
inflationary mechanism on a scale much larger than the Hubble radius. Thus, if the
inflationary phase is long enough, it is possible to obtain a homogeneous and isotropic
region larger than the Hubble horizon today.

Finally, in [38], it is also demonstrated that the chaotic properties of the dynamics are
suppressed when the polymer representation is implemented at a semiclassical level. This
property is a consequence of the following considerations. As we have seen in Section 2.3,
the chaoticity of the Bianchi IX model is derived by analyzing the relative velocity between
the point-Universe and the potential walls. It is possible to verify that, similar to the
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analysis in Section 4.4.1, in this model, the velocity of the walls is finite at the Bounce, while
that of the point-Universe diverges in the polymer framework. So, rebounds always occur,
even in the presence of a scalar field, even though in the classical framework, its presence is
able to remove the chaos [113]. However, due to the polymer modifications, the following
condition holds:

∑
j

P2
j + 9Λv2 > max

(
3v4/3UBIX

)
. (187)

Therefore, there are two possible scenarios for the removal of chaos, similar to the case
of the Loop quantized homogeneous Bianchi IX model described in Section 3.5: either the
condition (187) is satisfied before the Bounce, resulting in a final stable Kasner-like epoch
(similarly to the AVTD regime reached classically when a scalar field is present), or chaos
is removed by the fact that the presence of a Big Bounce makes the number of rebounds on
the potential walls finite.

4.5. The Link between Polymer Quantum Mechanics and Loop Quantum Cosmology:
Canonical Equivalence

In Sections 4.2–4.4, we have presented the main results gained thanks to the applica-
tion of the polymer representation at the level of the semiclassical dynamics, with some
extensions to the full quantum regime in Sections 4.2 and 4.3. Along the presentation,
we have proceeded by considering more and more general cosmological models, start-
ing from the FLRW one and then extending the analysis to the Bianchi I and IX models
afterwards. For each model, we have compared the obtained results in different sets of
variables, always performing the canonical transformation between the phase space vari-
ables before implementing the polymer approximation for the variables conjugate to those
represented as discrete on the polymer lattices. If, on one hand, the polymer formulation
permits to successfully overcome the GR shortcoming of the initial singularity, on the
other hand, it reproduces different physical pictures for the same cosmological model
when represented in different sets of variables canonically linked in the classical regime.
In this respect, the polymer behavior of the Bianchi IX cosmological model in the standard
Misner variables is of particular relevance since it shows a singular dynamics in contrast
with the bouncing cosmology and the chaos removal ensured by the use of a volume-like
variable (note that in the Misner variables the presence of chaos depends on the ratio of the
different discretization parameters associated to the isotropic variable and the anisotropy
coordinates β± [42]).

This fact raises an issue about what it really means to do a canonical transformation
in the polymer framework. For a proposal about recovering the equivalence between
different sets of variables after the polymer is implemented on the Hamiltonian constraint,
see [44]. In this work, it is demonstrated how, by fixing the preferred system of generalized
coordinates and assigning a constant lattice step (actually in the considered case, there
is only the scale factor, but a generalization of the analysis can be easily inferred), the
dynamical features of the model remain the same in any other set of coordinates, at the price
of considering the discretization step as a function of the adopted variables. For example,
starting from the volume coordinates and then changing to the Ashtekar connections
maintains the canonical equivalence between the dynamics thanks to the dependence of
the polymer parameter on p. Therefore, the dynamics is ruled by the set of variables in
which the polymer spacing results in being constant. We note that this study was performed
only at a semiclassical level since the implementation of a translational operator depending
on the coordinates is not trivial, so the equivalence in the full quantum theory is still an
open question.

Nevertheless, this result achieved in [44] about the recovery of an equivalence class
of configurational variables could have relevant implications for the µ̄ scheme of LQC.
In particular, in the µ̄ scheme of LQC the translational operator acting on the physical
states acquires a parameter depending on the momentum variable (due to the physical
rescaling of the area element) that, in the polymer framework, plays exactly the role of p.
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This analogy suggests that a change of coordinates is at the basis of the improved LQC
approach [49–51] in a way that a translational operator of constant step is restored and the
theory is made technically viable.

However, such a change of variables opens a possible criticism about the quantization
procedure, which is no longer referred to the natural SU(2) connection so that LQC would
be departing from full LQG. While on a quantum level, this question is somewhat an open
issue, on the level of an effective LQC theory, the result mentioned above can somewhat
support the validity of the change in variables in view of the link between PQM and
LQC. Indeed, since the physical picture of the model is dictated by the scheme with a
constant polymerization parameter, we can conclude that the semiclassical dynamics of the
µ̄ formulation is the same of that obtained in the Ashtekar variables if the lattice parameter
is canonically transformed so that no ambiguity arises about the universal character of the
Big Bounce, i.e., about its independence on the initial conditions.

5. Concluding Remarks

In this review, we analyzed basic aspects of LQC and presented polymer quantum cos-
mology in depth in order to trace some solid implications on the early Universe evolution
precisely regarding the regularization of the singularity.

In this respect, we can firmly say that a bouncing cosmology always emerges in LQC
and in polymer quantum cosmology, when the Universe volume is considered one of the
configurational variables. Furthermore, the Big Bounce has also the features of a universal
cut-off since the critical energy density of the Universe takes a maximum value depending
only on fundamental constants and the Immirzi parameter. This result is obtained in the
improved scheme of LQC as shown in Section 3.3 and also demonstrated in the context of
PQM for the isotropic model in [37]. Moreover, similar results to those obtained in the µ̄
scheme are outlined in [44,45] when PQM is implemented on volume-like variables.

The situation is slightly different when we polymerize different sets of generalized
variables in PQM. In particular, when we consider the polymerization of the Ashtekar–
Barbero–Immirzi connections, the Big Bounce still emerges in the semiclassical dynamics,
but the critical energy density now depends on the initial conditions on the motion, or equiv-
alently on the wave packets when the full quantum approach is implemented (see [44,45]).
In these analyses, the polymerization of the natural connection seems to reproduce a
physical picture very similar to the µ0 scheme of LQC presented in Section 3.2.

The importance of the choice of the adopted variable for the polymer quantization of
the Universe is outlined by observing that the polymerization of the Bianchi IX model (both
in the homogeneous and inhomogeneous cases) expressed in the standard Misner variables
yields a model that is still singular [34,42], while discretizing the Universe volume in the
metric formulation does avoid the singularity [38]. This result highlights the link between
the dimensionality of the discretized variable and the regularization of the singularity
in PQM; also, it opens the non-trivial question about which equivalence class among all
possible choices of canonically related coordinates leads to the same physical picture.

An interesting result toward the solution of this puzzling question is elucidated from
the analysis in [44]. We have discussed how the equivalence is ensured for the isotropic
model on a semiclassical level by the possibility to restate the problem in terms of a new
polymerization step dependent on the configurational coordinates. This result can have
positive implications in stating the equivalence of the effective dynamics in the µ0 and µ̄
schemes of LQC [20,50], as discussed in Section 4.5, at least on a semiclassical level.

On the base of the results illustrated here, we can conclude that, if on one hand,
some basic features of cut-off quantum cosmology are well traced, many other detailed
points must be addressed. For instance, it is necessary to better characterize the physical
properties of the Big Bounce, both by providing a pure quantum description instead of just a
semiclassical one, and by further investigating the thermodynamical nature of the quantum
cosmological fluid. Moreover, it is crucial to understand how a collapsing Universe before
our expanding branch is generated and how it can influence the morphology of the present

230



Universe 2021, 7, 327

Universe (see some pioneering works [37,39,132–138]). A typical example of this issue
affecting bouncing cosmologies is provided in [37], where it is argued that the flatness
paradox is still present, even though the horizon paradox is naturally solved, thanks to
the pre-existing collapsing Universe. These kinds of physical questions become even more
meaningful if we postulate that the Universe dynamics is associated to a cyclical evolution
between a Big Bounce and a later classical turning point [139,140]: in this context, the
behavior of the Universe entropy becomes a delicate feature to be addressed.
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Note
1 In [45] it is shown that by combining the semiclassical solutions for ci(φ) with (125) we obtain that xi(φ) ∝ φ with

slopes depending on the initial conditions on the motion.
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Abstract: The purpose of this review is to provide a brief overview of recent conceptual developments
regarding possible criteria to guarantee the uniqueness of the quantization in a variety of situations
that are found in cosmological systems. These criteria impose certain conditions on the representation
of a group of physically relevant linear transformations. Generally, this group contains any existing
symmetry of the spatial sections. These symmetries may or may not be sufficient for the purpose of
uniqueness and may have to be complemented with other remaining symmetries that affect the time
direction or with dynamical transformations that are, in fact, not symmetries. We discuss the extent
to which a unitary implementation of the resulting group suffices to fix the quantization—a demand
that can be seen as a weaker version of the requirement of invariance. In particular, a strict invariance
under certain transformations may eliminate some physically interesting possibilities in the passage
to the quantum theory. This is the first review in which this unified perspective is adopted to discuss
otherwise different uniqueness criteria proposed either in homogeneous loop quantum cosmology or
in the Fock quantization of inhomogeneous cosmologies.

Keywords: quantum cosmology; uniqueness of the quantization

1. Introduction

Quantization is the process of constructing a description that incorporates the princi-
ples of Quantum Mechanics starting with a given classical system. In the present work,
we consider exclusively the so-called canonical quantization process. This means that the
classical system can be described in canonical form (e.g., in terms of variables that form
canonical pairs) and that one aims at promoting classical variables to operators in a Hilbert
space, preserving the canonical structure as much as possible. The prototypical system
is, of course, the phase space R2n, with coordinates {(qi, pi), i = 1, · · · , n}, equipped with
the Poisson bracket {qi, pj} = δij. The standard quantization is realized in the Hilbert
space L2(Rn) of square integrable functions, with configuration variables promoted to
multiplicative operators

q̂iψ = qiψ, (1)

and momentum variables acting as derivative operators

p̂iψ = −i
∂

∂qi
ψ. (2)

Here, and in the following, we set the reduced Planck constant h̄ equal to one. These
operators satisfy the canonical commutation relations (CCRs), thus, implementing Dirac’s
quantization rule that Poisson brackets go to commutators [1]. This quantization is irreducible,
in the sense that any operator that commutes with all the q̂i’s and p̂i’s is necessarily
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proportional to the identity operator. In addition, this quantization satisfies a technical
continuity condition, since it provides a continuous representation of the Weyl relations
associated with the CCRs (see Section 2 for details).

These two conditions uniquely determine the quantization. This is the celebrated
Stone–von Neumann uniqueness theorem (see, e.g., [2]): every irreducible representation
of the CCRs coming from a continuous representation of the Weyl relations is unitarily
equivalent to the aforementioned quantization, meaning that, given operators q̂′i and p̂′i with
the above properties in a Hilbert spaceH, there exists a unitary operator U : H → L2(Rn)
relating the two sets of operators q̂i, p̂i and q̂′i, p̂′i (see Equation (6) below).

On the other hand, it has been known since Dirac’s work (and it was rigorously proved
by Groenewold and van Hove [3,4]) that imposing Dirac’s quantization rule on a large set
of observables is not viable in the sense that it is impossible to satisfy the relations

[ f̂ , ĝ] = i{̂ f , g} (3)

for a large set of classical observables, and certainly not for the whole algebra of classical
observables (see [5] for a thorough discussion).

Nevertheless, in any given physical system, there are certainly observables of interest,
other than the coordinate variables q̂i and p̂i, which need to be quantized as well. Certain
canonical transformations typically stand out in a given classical system, e.g., dynamics or
symmetries, and these require, as well, a proper quantum treatment (these two aspects are,
in fact, related since observables of physical interest often emerge as generators of some
special groups of canonical transformations). This poses no problem as far as one considers
the standard quantization of linear canonical transformations and the corresponding
generators in R2n, precisely because of the above uniqueness theorem. One can easily
illustrate this issue by considering a canonical transformation

(
q
p

)
→
(

q′

p′

)
= S

(
q
p

)
(4)

in R2n, where S is a symplectic matrix. Then, the operators q̂′i and p̂′i, defined as

(
q̂′

p̂′

)
= S

(
q̂
p̂

)
, (5)

provide a new representation of the CCRs (in this case, in the same Hilbert space) with the
same properties of irreducibility and continuity. Thus, it is guaranteed that there exists a
unitary operator U such that

q̂′i = U−1q̂iU, p̂′i = U−1 p̂iU. (6)

The unitary operator U is naturally interpreted as the quantization of the symplectic
transformation S. We will also refer to it as the unitary implementation (at the quantum
level) of the canonical transformation S. If, instead of a single linear transformation
S, one has a 1-parameter group, generated, e.g., by a quadratic Hamiltonian function
H, one obtains a corresponding 1-parameter group of unitary operators U(t), which is
typically continuous, so that a self-adjoint generator Ĥ such that U(t) = e−iĤt can be
extracted. Non-quadratic classical Hamiltonians of the type H = (1/2)∑ p2

i + V(qi) do
not fall in this last category; however, there is nevertheless a standard and well-defined
procedure to obtain their quantum version (see [6] for details), which is simply to define Ĥ
as Ĥ = (1/2)∑ p̂2

i + V(q̂i).
Some ambiguities may occur in the quantization of more general functions, involving

e.g., products of q’s and p’s; however, these ambiguities are typically not overly severe.
These are precisely the type of ambiguities that may happen in standard homogeneous
quantum cosmology (QC). In fact, in a homogeneous cosmological model, the number
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of both gravitational and matter degrees of freedom (DoF) is hugely reduced, ending
up with just a finite number of global DoF, precisely due to homogeneity. In this so-
called minisuperspace setup, the configuration variables on the gravitational side are
typically given by the different scale factors, the number of which depend on the degree
of anisotropy.

The object of interest here is the Hamiltonian constraint, the quantization of which
leads to what is often called the Wheeler–de Witt equation ĤΨ = 0. This quantization may
not be entirely trivial, owing to a possibly complicated dependence of the constraint with
respect to the basic configuration and momentum variables. Nevertheless, the ambiguity
that may emerge from the quantization of the Hamiltonian constraint typically involves
a choice of factor ordering in Ĥ with respect to the basic quantum operators. Although
different choices may lead to different versions of the Hamiltonian constraint, it is often
the case that this does not affect the physical predictions substantially, in the sense that the
predictions remain qualitatively the same.

Thus, the formalism of standard homogeneous QC, based on the standard quantization
for a finite number of DoF, is to a large extent free of major ambiguities, as follows from the
Stone–von Neumann theorem.

This last paradigm can be broken in two different ways, for very distinct reasons.
First, the quantization—even of the set of basic configuration and momentum variables—
of systems with an infinite number of DoF escapes the conclusions of the Stone–von
Neumann theorem. On the contrary, in that case, there are representations of the CCRs
leading to physically inequivalent descriptions of the same system. This occurs when
local DoF are considered, of which one can mention two distinct situations of interest in
cosmology: (i) the quantization of gravitational DoF (and possibly also of matter fields) in
inhomogeneous cosmologies (such as in the example of Gowdy models [7]), and (ii) the
quantum treatment of fields propagating in a non-stationary curved spacetime (e.g., of the
FRW or de Sitter type), which is considered as a classical background.

While the first case embodies genuine applications to QC, i.e., a full quantum treatment
of the gravitational DoF (in cases with considerable symmetry, like the Gowdy model, in the
so-called midisuperspace setup), the second situation finds applications in the treatment
of quantum perturbations in cosmology (both of gravitational and matter DoF), with the
homogeneous background kept as a classical entity, such as, e.g., in inflationary scenarios.
There is, thus, the need of selecting physically relevant quantizations corresponding to a
given system containing an infinite number of DoF. Note that available selection criteria
(leading to uniqueness) typically rely on stationarity and are, therefore, not applicable in
the above described situations.

Section 4 is devoted to review selection criteria that were recently introduced and
proved viable, leading to unique and well defined quantizations in the aforementioned
cases. Such criteria are based on remaining symmetries, present in the cosmological system,
and crucially on the unitary implementation of the dynamics, which can be seen as a
weaker version of the requirement of invariance under time-translations, which can be
applied only in stationary settings.

The other avenue for departure from the conclusions of the Stone–von Neumann
theorem, which is relevant in the cosmological context, is exemplified by the quantization
approach for homogeneous cosmologies known as loop quantum cosmology (LQC)1.
Although the same models with a finite number of DoF are considered as in standard
homogeneous cosmology, the obtained quantizations are not physically equivalent.

The type of quantization used in LQC is not unitarily equivalent to that of standard
QC, and the reason why this is possible is that, in LQC, one of the conditions of the Stone–
von Neumann theorem is broken in a hard way. The LQC-type of quantization starts
from the Weyl relations, which are the exponentiated version of the CCRs and considers
representations of the Weyl relations that are not continuous, thus, violating one of the
conditions of the Stone–von Neumann theorem. In particular, it is the configuration part of
the representation that is not continuous.
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As a result, and although the correspondent of the unitary group eitq̂ is well defined in
the LQC-type of representation as a unitary group U(t), the would-be generator q̂ cannot
be defined, owing to the lack of continuity. This, in turn, is at the heart of the emergence
of the discretization (in the canonically conjugate variable) that is so characteristic of
LQC. Together with quantization methods adapted from those of loop quantum gravity
(LQG) [8,9], this discretization is responsible, at the end of the day, for the results about
singularity avoidance for which LQC is known.

One question that naturally arises is the following: are there other representations
of the Weyl relations with different physical properties? Or is this particular LQC-type
of representation naturally selected in some way? In Section 3, we discuss and comment
on a uniqueness result for isotropic LQC recently put forward by Engle, Hanusch, and
Thiemann [10], following a previous discussion concerning the Bianchi I case [11].

We would like to stress that, to the best of our knowledge, this is the first time that the
results reviewed in Section 3 and those mentioned in Section 4 have been considered and
discussed together. In particular, this joint and integrated review brings about a discussion
on the two possible ways to use relevant transformations in order to select a unique
quantization. In fact, results like those described in Section 3 are rooted on a requirement
of strict invariance, while the results of Section 4 relax that condition (regarding what
dynamical transformations are concerned), requiring only the weaker condition of unitary
implementation of the transformations in question. These two approaches are discussed,
providing a better understanding on the results achieved thus far in cosmology.

For completeness, we will start with a very brief review of the formalism for the study
of Weyl algebras and their representations.

Also, we include an Appendix A sketching the proof of the uniqueness of the repre-
sentation results mentioned in Section 4, in the simplest case of a scalar field in S1 with
time-dependent mass, with the purpose of providing the main steps and typical arguments
of the proofs to the interested reader, without overloading the main text.

2. Weyl Algebra and Standard Representations

Let U and V be a pair of unitary representations of the commutative group R, in the
same Hilbert spaceH, i.e., U (a) and V(b) are unitary operators for all real values of a and
b and such that U (a + a′) = U (a)U (a′) and V(b + b′) = V(b)V(b′). The pair U , V is said
to satisfy the Weyl relations if

V(b)U (a) = eiabU (a)V(b). (7)

The standard representation of the Weyl relations, corresponding to the usual Schrö-
dinger representation of the CCRs, is obtained as follows. Consider the Hilbert space L2(R)
of square integrable functions ψ(q) with respect to the usual Lebesgue measure dq. The
expressions

(U (a)ψ)(q) = eiaqψ(q) (8)

and
(V(b)ψ)(q) = ψ(q + b) (9)

define unitary representations of R, which clearly satisfy the Weyl relations (7). These
representations are, moreover, jointly irreducible and continuous, i.e., a 7→ U (a) and
b 7→ V(b) are continuous functions. The appropriate notion of continuity of these operator
valued functions is that of strong continuity, and irreducibility means that no proper
subspace ofH supports the action of both U (a) and V(b) ∀a, b.

It is precisely due to continuity that Stone’s theorem guarantees that it is possible to
define infinitesimal generators q̂ and p̂ such that U (a) = eiaq̂ and V(b) = eibp̂. In this case,
it turns out that q̂ is the multiplication operator q and p̂ = −i d

dq .
The celebrated Stone–von Neumann Theorem ensures that any other representation of

the Weyl relations on a separable Hilbert space, with the same properties of irreducibility
and continuity, is unitarily equivalent to the one above.
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In order to make contact with the language of ?-algebras, we now introduce the
so-called Weyl algebra. This is the algebra of formal products of objects U (a) and V(b),
subjected to the Weyl relations (7). Note that, thanks to the Weyl relations, a generic element
of the Weyl algebra can always be written as a finite linear combination of elements of the
form U (a)V(b), a, b ∈ R, or equivalently of elements

W(a, b) = eiab/2U (a)V(b), (10)

known as Weyl operators.
A representation of the Weyl relations is, thus, tantamount to a representation of the

Weyl algebra, and, since this is a ?-algebra with identity, its representations can be discussed
in terms of states of the algebra2. In particular, given a state, one can construct a cyclic
representation of the algebra, by means of the so-called GNS construction [12]. Taking
into account the above remarks, it follows that states of the Weyl algebra, and therefore
the corresponding representations, are uniquely determined by the values assigned to the
Weyl operators.

Concerning the unitary implementation of automorphisms of ?-algebras, it is a well
known fact that, if a state ω is invariant under a given transformation, then a unitary
implementation of that transformation is ensured to exist in the GNS representation defined
by ω. The above constructions related to the Weyl algebra are straightforwardly generalized
to any finite number of DoF, and also without difficulties to field theories. In this respect,
let us consider, for instance, a scalar field in R3.

The starting point in the canonical quantization process is the choice of properly
defined variables in phase space, that are going to play, e.g., the role of the q’s and the
p’s. The integration of the field φ and of the canonically conjugate momentum π against
smooth and fast decaying test functions provides just those amenable variables. Thus,
given test functions f and g with the above properties, hence, belonging to the so-called
Schwartz space S , one defines linear functions in phase space by

(φ, π) 7→
∫

φ f d3x +
∫

πg d3x =: φ( f ) + π(g). (11)

In particular, the variables φ( f ) and π(g), with Poisson bracket

{φ( f ), π(g)} =
∫

f g d3x, (12)

replace in this context the familiar q’s and p’s. The corresponding Weyl relations are

V(g)U ( f ) = ei
∫

f gd3xU ( f )V(g), f , g ∈ S , (13)

with seemingly defined Weyl operators

W( f , g) = e
i
2
∫

f gd3xU ( f )V(g). (14)

Let us focus on a particular type of representations of the Weyl relations (or equiv-
alently of the associated Weyl algebra), namely representations of the Fock type. These
are representations defined by complex structures on the phase space or equivalently on
the space S ⊕ S of pairs of test functions ( f , g). In this respect, the pairs ( f , g) define
linear functionals in the phase space, and thus S ⊕ S is naturally dual to the phase space
inheriting, therefore, a symplectic structure that is induced from that originally considered
on phase space. We also recall that a complex structure J on a linear space with symplectic
form Ω is a linear symplectic transformation such that J2 = −1 and is compatible with Ω
in the sense that the bilinear form defined by Ω(J·, ·) is positive definite.
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Let J be a complex structure on the symplectic space S ⊕ S . As mentioned above, a
state of the Weyl algebra is defined by the values on the Weyl operators, and, therefore,
the assignment

W( f , g) 7→ e−
1
4 Ω(J( f ,g),( f ,g)) (15)

defines a state and an associated cyclic representation of the Weyl algebra. The cyclic vector
is, here, physically interpreted as the vacuum of the Fock representation, and therefore the
above expression coincides precisely with the expectation values of the Weyl operators on
the vacuum of the Fock representation defined by J.

Let us now discuss the question of unitary implementation of symplectic transfor-
mations in the specific context of Fock representations. We consider unitary operators
W( f , g) providing a representation of the Weyl algebra and a linear canonical transforma-
tion A. There is, then, a new representationWA, defined (in the same Hilbert space) by
WA( f , g) :=W(A−1( f , g)). If the representationW is defined by a complex structure J, it
follows thatWA corresponds to a new complex structure JA := AJA−1. In general, A is
not unitarily implementable, i.e., there is no unitary operator UA such that

U−1
A W( f , g)UA =W(A−1( f , g)). (16)

In fact, the Fock representations defined by J and JA are unitarily equivalent if and
only if the difference JA − J is an operator of a special type, namely a Hilbert–Schmidt
operator [13]. Two notorious cases where that condition is automatically satisfied are the
following. First, every operator in a finite dimensional linear space is of the Hilbert–Schmidt
type, and therefore the unitary implementation of symplectic transformations comes for
free in finite dimensional phase spaces, as expected from the Stone–von Neumann theorem.
On the other hand, the null operator is always of the Hilbert–Schmidt type, regardless
of the dimensionality, and therefore a transformation A that leaves J invariant is always
unitarily implementable in the Fock representation defined by J .

With respect to previous remarks in our exposition, we note that invariance of J
immediately translates into invariance of the associated Fock state defined by (15). Of
course, the two situations that we have described correspond only to sufficient conditions
for unitary implementation, which are by no means necessary. In particular, unitary
implementation of a canonical transformation A can be achieved via a non-invariant
complex structure J, provided that JA − J is Hilbert–Schmidt.

In any case, and in clear contrast with the situation found for a finite number of DoF, in
field theory, no Fock representation supports the unitary implementation of the full group
of linear canonical transformations. Fock representations are, therefore, distinguished by
the class of transformations that are unitarily implementable. Now, in a particular theory,
specified, e.g., by a given Hamiltonian, a particular set of canonical transformations stands
out, namely transformations generated by the Hamiltonian and by possible symmetries.

The requirement of unitary implementation of relevant canonical transformations,
therefore, provides a criterion guiding the selection of one representation over another
when we are trying to quantize a field theory. In this respect, we notice that the case of the
set of transformations corresponding to classical time evolution is particularly relevant,
given the role that unitarity plays in the probabilistic interpretation of the quantum theory.

The simplest situation is that of a free field of mass m in Minkowski spacetime. In this
case, the representation is completely fixed by the requirement of invariance under spatial
symmetries and time evolution (or the full Poincaré group), in the sense that a unique
complex structure is selected by that requirement, namely Jm defined by

Jm( f , g) =
(
(m2 − ∆)

1
2 g,−(m2 − ∆)−

1
2 f
)

, (17)

where ∆ is the Laplacian.
In addition to the above free field in Minkowski spacetime, there are other known

situations of linear dynamics where uniqueness results apply. In fact, provided that the
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Hamiltonian is time independent, the criterion of positivity of the energy, together with
invariance under the 1-parameter group of canonical transformations generated by the
Hamiltonian, is sufficient to select a unique complex structure.

Here, positivity means that the unitary group implementing the dynamics possesses
a positive generator, i.e., the quantum Hamiltonian is a positive operator [14,15]. This
result finds remarkable applications in the quantization of free fields in stationary curved
spacetimes (i.e., with a timelike Killing vector) [16,17]. On the other hand, no general
uniqueness results are available for the non-stationary situations typical in cosmology.

3. Loop Quantum Cosmology

Let us now consider the representation of the Weyl relations used in LQC, sometimes
referred to as the polymer representation. We will restrict our attention to its simplest
version, namely the one associated with the homogeneous and isotropic flat FLRW model3.
For convenience, we set the speed of light and Newton constant multiplied by 4π equal to
the unit, and we make the Immirzi parameter [18] equal to 3/2 in order to simplify our
equations, without loss of generality.

At the classical level, the system is described by a pair of canonically conjugate
variables, typically denoted by c and p, with Poisson bracket {c, p} = 1. The variables c
and p parametrize, respectively, the (homogeneous) Ashtekar connection and the densitized
triad (see [10] for details in the context of the current uniqueness discussion, and [19,20]
for more general introductions to LQC). In particular, p is proportional to the square scale
factor of the FLRW spacetime.

Let us consider the Hilbert space HP defined by the discrete measure in R, i.e., the
space of complex functions ψ(p) such that

∑
p∈R
|ψ(p)|2 < ∞, (18)

with the inner product given by

〈ψ, ψ′〉 = ∑
p∈R

ψ̄(p)ψ′(p), (19)

where the overbar denotes complex conjugation. We note that this Hilbert space, also
referred to as the polymer Hilbert space, is very different from the standard one, L2(R).
In particular, HP is non-separable4. An orthonormal basis of HP is formed, e.g., by the
uncountable set of functions Ψp0 , for all p0 ∈ R, where

Ψp0(p) = δpp0 , (20)

with δpp0 as the Kronecker delta.
We, then, define the operators UP (a) and VP (b), for a, b ∈ R, acting onHP by

(UP (a)ψ)(p) = ψ(p− a) (21)

and
(VP (b)ψ)(p) = eibpψ(p). (22)

It is clear that these operators satisfy the Weyl relations (7) and that the representation
is irreducible. The map b 7→ VP (b) is continuous, and thus one can define the infinitesi-
mal generator. We will denote it by π(p) and not p̂, to distinguish it from the standard
Schrödinger representation in L2(R). It follows that

(π(p)ψ)(p) = pψ(p). (23)

On the other hand, UP (a) is not continuous. To see this, it suffices to note that, for
arbitrarily small a, the vector Ψp0 is mapped by UP (a) to an orthogonal one Ψp0+a. The
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would-be generator of the unitary group UP (a) cannot, therefore, be defined. Taking
into account the commutator [π(p),UP (a)], one can see that the operators UP (a) can be
regarded as providing a quantization of the classical variables eiac. We note that the reality
conditions are properly satisfied, since U †(a) = U (−a), with the dagger denoting the
adjoint. Thus, the set of operators UP (a), together with π(p), provide a quantization, in the
usual Dirac’s sense, of the Poisson algebra of phase space functions made of finite linear
combinations of the functions p and eiac, with a ∈ R (see [23] for details).

This Poison algebra is, of course, different from the kinematical algebra usually
associated with the linear phase space R2 with coordinates c and p, which is simply the
Heisenberg algebra of linear (non-homogeneous) functions in c and p. At the foundation
of LQC, there is, thus, a situation similar to that of LQG: a non-standard choice of basic
variables and a representation of the associated algebra that is non-continuous (at least in
part of the algebra), thus, obstructing the quantization of the connection itself [8]. However,
we note that, contrary to the situation in LQG, the standard Schrödinger quantization gives
us a different representation of the very same Poisson algebra, since the variables eiac are
trivially quantized in L2(R) by multiplication operators, e.g., by operators êiac such that

(
êiacψ

)
(q) = eiaqψ(q). (24)

In the case of this Schrödinger quantization, the continuity of the representation
U (a) allows us to define the operator ĉ itself, and therefore to extend the quantization of
configuration variables to a much larger set of functions f (c), simply by defining f̂ (c) =
f (ĉ); whereas, in the polymer quantization, one is restricted to quantize configuration
variables of the type eiac (and linear combinations thereof).

In LQG, there is a celebrated result about the uniqueness of the quantization that
gives robustness to the loop representation [24,25]. In [10], the authors proved a similar
uniqueness result for LQC, that we now discuss. In order to make contact with that work,
which uses the language of ?-algebras and corresponding states, we first introduce the
LQC analogue of the LQG holonomy-flux algebra, which is again denoted in [10] as the
quantum holonomy-flux ?-algebra U.

The LQC ?-algebra U is constructed in [10] as the algebra of formal products of
operators corresponding to the variables p and eiac subjected to the conditions coming
from the commutator [π(p),UP (a)]. However, since we have already introduced the Weyl
algebra, it is more natural here to follow an alternative procedure, and identify instead the
?-algebra U with the Weyl algebra, i.e., the algebra of formal products of objects U (a) and
V(b), subjected to the Weyl relations (7).

Recall now that the group of spatial diffeomorphisms is a “gauge” symmetry in
General Relativity (GR). Physical states in quantum gravity should, therefore, be invariant
under the quantum operators representing these diffeomorphisms (or annihilated by the
quantum diffemorphism constraint). Thus, a unitary implementation of the group of spatial
diffeomorphisms in the quantum Hilbert space is required. Since the LQG holonomy-flux
algebra is again a ?-algebra with identity, it follows from previous comments that, in order
to achieve the required unitary implementation of the group of diffeomorphisms, it is
sufficient that the quantization be defined by a diffeomorphism invariant state.

The LQG result of uniqueness of the quantization [24,25] guarantees, precisely, that
there exists a unique diffeomorphism invariant state of the LQG holonomy-flux algebra.
Moreover, the GNS representation defined by such a unique invariant state is unitarily
equivalent to the LQG representation that was previously known. The analogous result for
LQC starts from the observation, explained in detail in [10], that a residual gauge group
still remains, when descending from full GR to homogeneous and isotropic flat models. In
fact, although almost all of the diffeomorphism gauge symmetry is automatically fixed, in
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homogeneous and isotropic flat models, one is left with a small gauge group, namely the
group of isotropic dilations, acting on phase space as

(p, c) 7→ (λp, c/λ), λ ∈ R. (25)

Thus, there is the possibility of exploring this residual gauge symmetry in order to
select a state in LQC, very much like in the above mentioned LQG uniqueness result. The
authors of [10] succeeded in proving that there is a unique dilation invariant state of the
LQC holonomy-flux algebra, for which the associated GNS representation is unitarily
equivalent to the polymer representation described above.

Although the result of [10] is interesting and rigorous, we argue here that, in a certain
sense, its status is not as strong as that of the LQG uniqueness result. From the physical
viewpoint, what is really required is a unitary implementation of the group of interest
(which may correspond to dynamics, to symmetries, or to gauge transformations), and
not necessarily an invariant state. There are even situations (see, e.g., Section 4) where
invariant states are not available, and nevertheless a unitary implementation of the relevant
group exists.

It is true that constructing the quantization by means of an invariant state is suffi-
cient to achieve unitary implementation—and it is perhaps the “Kings way” of doing
it—however, it is by no means necessary. In the present case, the Schrödinger representa-
tion, although not (unitarily equivalent to a representation) defined by an invariant state,
carries a unitary implementation of the group of dilations (25), which is physically just
as good as the one provided by the polymer representation. The existence of this unitary
implementation actually follows from the Stone–von Neumann theorem, but let us show it
explicitly. We consider the transformations Uλ : L2(R)→ L2(R) defined by

ψ(q)
Uλ7−→ λ1/2ψ(λq), λ ∈ R, (26)

which are clearly unitary ∀λ, with respect to the standard inner product defined by the
measure dq. We consider also the standard operator p̂ = −i d

dq and the Schrödinger
quantization of configuration variables

(
f̂ (c)ψ

)
(q) = f (q)ψ(q), ψ ∈ L2(R), (27)

which clearly includes the LQC variables eiac. A straightforward computation shows that

(
U−1

λ p̂Uλψ
)
(q) = −iλ

d
dq

ψ(q), (28)

(
U−1

λ f̂ (c)Uλψ
)
(q) = f (q/λ)ψ(q), (29)

or
U−1

λ p̂Uλ = λ̂p, U−1
λ f̂ (c)Uλ = f̂ (c/λ), (30)

which is the announced unitary implementation of the group of dilations (25) in the
Schrödinger representation.

From this perspective, we conclude that the physical criterion of a unitary imple-
mentation of the residual group of dilations in homogeneous and isotropic flat cosmology
does not fully succeed in selecting a unique quantization, since both the polymer and the
Schrödinger representations are viable from this viewpoint. Only the more mathematically
stringent requirement of strict invariance selects a unique state. This is perhaps a reminder
about the fact that strict invariance is not an unavoidable requirement and that the quanti-
zation of groups of interest via unitary implementations that are not necessarily based on
invariant states is worth exploring.

Let us end with a brief comment regarding the analogous uniqueness result in LQG.
In that case, the uniqueness is also proved by requiring the strict invariance of a state
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of the holonomy-flux algebra under the action of spatial diffeomorphisms. There is,
however, a key difference with respect to the above described situation in LQC: no other
(irreducible) representation is known, of any kind, admitting a unitary implementation
of the diffeomorphism group5, and thus there is no alternative route that may cast any
shadow on the uniqueness.

The situation remains, however, somewhat open, until a stronger uniqueness result
is demonstrated that is based exclusively on a unitary implementation of the spatial
diffeomorphisms and not just in strict invariance or otherwise until a new representation of
the LQG algebra admitting a unitary non-invariant implementation of the diffeomorphism
group is constructed.

4. Fock Quantization in Non-Stationary Cosmological Settings

As we have already mentioned, the Stone–von Neumann uniqueness result fails for
an infinite number of DoF, and no general result on the uniqueness of the quantization is
available for non-stationary situations. This includes, of course, cases of interest in QC. In
some of those cases, the underlying theory can be recast in the form of a linear scalar field
with a time-dependent mass, propagating in an auxiliary background spacetime, which is
both static and spatially compact.

One such situation is the linearly polarized Gowdy model with the spatial topology
of a three-torus, where the gravitational degrees of freedom are encoded by a scalar field
on S1, evolving in time precisely as a linear field with a time-dependent mass of the type
m(t) = 1/(4t2) [31,32]. Other situations of interest include free scalar fields in cosmological
scenarios, e.g., propagating in (compact) FLRW or the Sitter spacetimes. In those cases, the
non-stationarity is transferred from the background to the field efective mass, by means of
a simple transformation.

4.1. Gowdy Models

Midisuperspace models are symmetry reductions of full GR that retain an infinite
number of degrees of freedom. Typically, these are local degrees of freedom, and thus they
often describe inhomogeneous scenarios. Therefore, these midisuperspace models must
face the inherent ambiguity that affects the quantization of fields.

One of the simplest inhomogeneous cosmologies obtained with a symmetry reduction
is the linearly polarized Gowdy model on the three-torus, T3 [7]. This model describes
vacuum spacetimes with spatial sections of T3-topology containing linearly polarized
gravitational waves, with a symmetry group generated by two commuting, spacelike,
and hypersurface orthogonal Killing vector fields. As a consequence, the local physical
degrees of freedom can be parametrized by a scalar field corresponding to those waves
and effectively living in S1.

After a partial gauge fixing, the line element of the linearly polarized Gowdy T3 model
can be written as [33]

ds2 = eγ−φ/
√

p
(
−dt2 + dθ2

)
+ e−φ/

√
pt2 p2dσ2 + eφ/

√
pdδ2, (31)

where (∂/∂σ)a and (∂/∂δ)a are the two Killing vector fields. The true dynamical field DoF
are encoded in φ(θ, t), where t > 0 and θ ∈ S1. On the other hand, p is a homogeneous
non-dynamical variable, and the field γ is completely determined by p and φ as a result
of the gauge-fixing process [33]. There remains a global spatial constraint on the system,
giving rise to the symmetry group of (constant) translations in S1. The time evolution is
dictated by the field equation

φ̈ +
1
t

φ̇− φ′′ = 0. (32)

Here, the prime denotes the derivative with respect to θ, and the dot denotes the
time derivative.
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A complete quantization of the system was obtained in [34]. Nevertheless, it was
soon realized [33,35] that the classical dynamics could not be implemented as a unitary
transformation in such quantization. With the purpose of achieving unitarity, and restoring,
in particular, the standard probabilistic interpretation of quantum physics within the
quantum Gowdy model, an alternative quantization was introduced by Corichi, Cortez,
and Mena Marugán [31,32]. A crucial step toward a quantization with unitary dynamics
is the following time-dependent transformation performed at the level of the classical
phase space. Instead of working with the original field φ and its corresponding conjugate
momentum Pφ, the authors introduced a new canonical pair χ and Pχ related to the first
one by means of the canonical transformation

χ =
√

tφ, Pχ =
1√

t

(
Pφ +

φ

2

)
, (33)

taking advantage in this way of the freedom in the scalar field parametrization of the metric
of the Gowdy model.

The evolution of the new canonical pair was found to be governed by a time-dependent
Hamiltonian that, in our system of units, adopts the expression

Hχ =
1
2

∮
dθ

[
P2

χ + χ′ 2 +
χ2

4t2

]
. (34)

The corresponding Hamiltonian equations are

χ̇ = Pχ, Ṗχ = χ′′ − χ

4t2 , (35)

that, combined, give the second-order field equation

χ̈− χ′′ +
χ

4t2 = 0. (36)

We can, therefore, view the system as a linear scalar field with a time-dependent mass
of the form m(t) = 1/(4t2), evolving in an effective static spacetime with one-dimensional
spatial sections with the topology of the circle6. Another relevant aspect of the model is the
invariance of the dynamics under (constant) S1-translations:

Tα : θ 7→ θ + α, α ∈ S1. (37)

These translations are, moreover, symmetries generated by a remaining constraint, as
we already mentioned.

The quantization of the system put forward by Corichi, Cortez, and Mena Marugán
in [31,32] starts from the CCRs satisfied by the canonical pair χ and Pχ, or rather by
the corresponding Fourier modes. The advantage of using Fourier components, say
χn = (1/

√
2π)

∮
dθe−inθχ(θ), instead of the field χ(θ) itself is clear: since the spatial mani-

fold is compact, the set of Fourier modes is discrete, and one, therefore, avoids the issues of
dealing with operator valued distributions, such as, e.g., χ̂(θ). The aforementioned quanti-
zation is of the standard Fock type, with the following remarkable properties. To begin
with, the complex structure on phase space that effectively defines the Fock representation
is invariant under S1-translations.

Thus, the corresponding state of the Weyl algebra is S1-invariant, leading to a natural
unitary implementation of these gauge transformations. Secondly and most importantly,
the classical dynamics in phase space defined by Equation (35) (i.e., generated by the
Hamiltonian (34)) are unitarily implemented at the quantum level. In other words, let t0
be an arbitrary but fixed initial time, and S(t, t0) be the linear symplectic transformation
corresponding to the classical evolution in phase space from the time t0 to the arbitrary time
t. Then, to each transformation S(t, t0), there corresponds a unitary operator U(t, t0), that
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intertwines between the quantum operators χ̂ and P̂χ defined at the initial time t0 and those
obtained from χ̂ and P̂χ by application of S(t, t0), as exemplified in Equations (5) and (6).

This last transformation corresponds to the usual evolution in the Heisenberg picture,
which can always be formally defined, once canonical operators are given at some initial
time. The key difference with respect to systems with a finite number of DoF is that,
whereas, in those cases, the relation between the “initial” and the evolved operators
in principle is always unitary, the existence of such unitary operators is far from being
guaranteed in an arbitrary representation of the CCRs for field theory (or generally with an
infinite number of DoF).

We note that, although a unitary implementation of all the transformations S(t, t0) is
achieved in the Corichi, Cortez, and Mena Marugán representation, the corresponding state
is not invariant under these transformations. In fact, no state exists such that it remains
invariant under all the transformations S(t, t0), ∀t.

All in all, the quantization of the linearly polarized Gowdy model proposed in [31,32]
is one of the few available examples of a rigorous and fully consistent quantization of an
inhomogeneous cosmological model. Nonetheless, the eventual robustness of its physical
predictions might be affected by the possible existence of major ambiguities in the quanti-
zation process. Fortunately, a quantization with the aforementioned properties is, indeed,
unique as shown in [36,37], where the uniqueness result that we now discuss was derived.

A source of ambiguity in the process leading to the Corichi, Cortez, and Mena Marugán
quantization is the choice of representation for the canonical pair χ and Pχ. However, it
was shown in [36] that any other Fock representation of the CCRs that (i) is defined by a S1-
invariant complex structure (or equivalently by a S1-invariant state of the Weyl algebra) and
(ii) allows a unitary implementation of the dynamics defined by Equation (35), is unitarily
equivalent to the considered representation (and therefore physically indistinguishable).
We note that there actually is an infinite number of S1-invariant states, leading to many
inequivalent representations. It is only after the requirement of unitary dynamics that a
unique unitary equivalence class of representations is selected.

Another possible source of ambiguity concerns the choice of the “preferred” canonical
pair (χ, Pχ). In this respect, note that a time-dependent transformation different from
Equation (33) would lead to classical dynamics that would not reproduce Equation (35),
and it is, in principle, conceivable that the new dynamics could be unitarily implemented
in a different representation, thus, leading to a distinct quantization. This is, however, not
the case.

It was shown in [37] that any other canonical transformation of the type (33) modifies
the equations of motion in such a way as to render impossible the unitary implementation
of the dynamics, with respect to any Fock representation defined by a S1-invariant complex
structure. The kind of transformations considered in [37] is restricted by the natural
requirements of locality, linearity, and preservation of S1-invariance. In configuration
space, these are contact transformations that produce a time-dependent scaling of the
field φ (see [37] for a detailed discussion). Such scalings can always be completed into a
canonical transformation in phase space, of the general form

(φ, Pφ) 7→
(

f (t)φ,
Pφ

f (t)
+ g(t)φ

)
, (38)

which includes a contribution to the new momentum, which is linear in the field φ.
Finally, let us mention that completely analogous results were obtained for the remain-

ing linearly polarized Gowdy models, namely those with spatial sections with topologies
S1 × S2 and S3. This analysis was performed in the following independent steps. First, the
classical models were addressed in [38], showing that, in these cases, the local gravitational
DoF can also be parametrized by a single scalar field, namely an axisymmetric field in S2.
Then, following a procedure similar to the one introduced by Corichi, Cortez, and Mena
Marugán, a Fock quantization with unitary dynamics was obtained [39]. In particular, a
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time-dependent scaling of the original field is again involved, now of the form φ 7→
√

sin tφ.
Finally, the uniqueness of the quantization obtained in this way was proved in [40].

4.2. Quantum Field Theory in Cosmological Settings

A common feature of the Gowdy models mentioned in the previous section is that the
local DoF are parametrized by a scalar field effectively living in a compact spatial manifold.
Moreover, after the crucial scaling of the field, the dynamics are those of a linear field with
time-dependent mass, i.e., they obeys a second-order equation of the type

χ̈− ∆ χ + s(t)χ = 0, (39)

where ∆ is the Laplace–Beltrami (LB) operator for the spatial sections in question, e.g., S1

for the Gowdy model on T3 and S2 for the remaining two models.
Remarkably, a whole different type of situations in cosmology can also be described

by an equation of the form (39). Let us consider, e.g., a free scalar field in a homogeneous
and isotropic FLRW spacetime, with the line element

ds2 = a2(t)
[
−dt2 + habdxadxb

]
, (40)

where t is the conformal time, a(t) is the scale factor, and hab (a, b = 1, 2, 3) is the Riemannian
metric, for either flat Euclidean space or the 3-sphere. A minimally coupled scalar field of
mass m obeys, in this cosmological spacetime, the equation

φ̈ + 2
ȧ
a

φ̇− ∆ φ + m2a2φ = 0, (41)

where ∆ is the LB operator defined by the metric hab of the spatial sections.
The most obvious situation described by this setup is the propagation of an actual (test)

scalar matter field (disregarding the backreaction) in an FLRW background. Nonetheless,
the treatment of quantum perturbations, both of matter and of gravitational DoF, also fits
the above description. In fact, in the context of cosmological perturbations, the leading-
order approximation in the action, together with a neglected backreaction, amounts to
keep the homogeneous classical cosmology as the background and treats both matter and
gravitational perturbations as fields propagating on that background [41–45].

The quantum treatment of the situations described above, therefore, faces the am-
biguity of the choice of quantum representation. In particular, the criterion based on
stationarity, mentioned in Section 2, is not available, since all these situations are inherently
non-stationary.

There is, however, a natural avenue to address this issue, arriving hopefully at a
unique quantum theory, with unitary dynamics. The way forward is actually suggested
by a standard procedure, commonly found precisely in QFT in curved spacetimes (see,
e.g., [46,47]) and in the treatment of cosmological perturbations (see, for example, [41–44]).
This consists in the scaling of the field variable φ by means of the scale factor, thus,
introducing the rescaled field χ = a(t)φ, which now obeys an equation of the type (39),
with s(t) = m2a2 − (ä/a).

Thus, the combined effect of the use of conformal time and the scaling φ 7→ a(t)φ is to
recast the field equation in the form (39), which is effectively the field equation of a linear
field with a time-dependent quadratic potential V(χ) = s(t)χ2/2, propagating in a static
background with metric

ds2 = −dt2 + habdxadxb. (42)

In this manner, we see that a generalization of the uniqueness result obtained for
the Gowdy models would provide a useful criterion to select a unique quantization for
fields in non-stationary backgrounds, such as FLRW universes, typically with compact
spatial sections with the topology of S3 or T3, also allowing applications to the usual flat
universe case.
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Note that the restriction to spatial compactness is most convenient from the viewpoint
of mathematical rigor, as, otherwise, infrared issues would plague the analysis. Nonethe-
less, the physical effects of the artificially imposed compactness, e.g., in the spatially flat
case, should be irrelevant when the physical problem at hand does not involve arbitrarily
larges scales, e.g., going beyond the Hubble radius. The case of continuous scales, which
corresponds to non-compactness, can be reached in a suitable limit for flat universes, after
completing all the demonstrations of uniqueness in the framework of compact spatial
sections [48].

The desired generalization of the result about the uniqueness of the representation in
the aforementioned context of test fields and perturbations on cosmological backgrounds
was obtained in [49–53]. In the rest of this Section, we very briefly explain the implications
of these results.

Let I× Σ be a globally hyperbolic spacetime, where I ∈ R is an interval and Σ is
a compact Riemannian manifold of dimension d ≤ 3 (for cosmological applications, one
can think of Σ as being either S1, S2, S3, or T3). The spacetime is assumed to be static, with
a metric given by Equation (42), where hab is the time-independent, Riemannian metric
on Σ.

Consider a linear scalar field in I× Σ obeying a field equation of the type (39), where
s(t) is essentially7 an arbitrary function, and ∆ is the LB operator associated with the metric
hab. Note that any symmetry of this metric is transmitted to the LB operator and, therefore,
to the equations of motion. Let us consider the Weyl algebra associated with the field χ
(and of course its canonical conjugate momentum) and their Fock representations. Then,

1. there exists a Fock representation defined by a state that is invariant under the
symmetries of the metric hab (or equivalently, a Fock representation with an invariant
vacuum) and such that the classical dynamics can be unitarily implemented;

2. that representation is unique, in the sense that any other Fock representation defined
by an invariant state and allowing a unitary implementation of the dynamics is
unitarily equivalent to the previous one.

Remarkably, it again follows that the rescaling of the field φ 7→ a(t)φ is quite rigid
and uniquely determined: no other time-dependent scaling can lead to a(n invariant Fock)
quantization with unitary dynamics, and thus no ambiguity remains in the choice of the
preferred field configuration variable. Furthermore, the unitarity requirement essentially
selects, as well, the canonical momentum field. Physically, this can interpreted as a unique
splitting between the time-dependence assigned to the background and that corresponding
to the evolution of the scalar field DoF.

Finally, extensions of these uniqueness results were obtained in several directions.
First, analogous results were obtained for scalar fields in homogeneous backgrounds of
the Bianchi I type [54]. These spacetimes are not isotropic, and therefore the conformal
symmetry, which was a common characteristic of the previous cases (at least asymptotically
for large frequencies) is no longer present in an obvious way. Even more remarkable are the
extensions of the uniqueness results attained for fermions, since they mark the transition to
a largely unexplored territory [55–57].

A recent account of these results8 can be found in [59].

5. Conclusions

We reviewed and discussed several results concerning the quantization of systems
with relevant applications in cosmology. In particular, we have focused our attention
on results ascertaining the uniqueness of the quantization process. This uniqueness is
crucial in order to provide physical robustness to the eventual cosmological predictions
of the quantum models in question, which would otherwise be fundamentally affected
by ambiguities.

Starting with homogeneous models in this cosmological context, we discussed a
uniqueness result from Engle, Hanusch, and Thiemann, concerning the representation
of the Weyl relations commonly used in LQC. Turning to recent investigations carried

250



Universe 2021, 7, 299

out by our group and collaborators, the quantization of the family of inhomogeneous
cosmologies, known as the linearly polarized Gowdy models, was reviewed next. Crucial
in this discussion is the requirement of unitary implementation (at the quantum level) of
the dynamics. Together with invariance under spatial symmetries, the criterion of unitary
dynamics proved very effective in the selection of a unique and physically meaningful
quantization in a variety of situations.

A common general mathematical model embodying all these cases is that of a scalar
field with a time-dependent mass (with arbitrary time dependence except for some very
mild conditions), propagating in a static spacetime with compact spatial sections. The
existence and uniqueness of a Fock quantization with unitary dynamics has been proven
for such a general model, thus, providing unique quantizations in cosmological systems,
ranging from quantum fields in FLRW backgrounds to the quantization of (perturbative)
gravitational DoF.

In particular, it follows from our analysis and the aforementioned discussions that the
quantization of linear transformations of physical interest via a unitary implementation
does not necessarily require the existence of an invariant state, and that it is worthwhile
pursuing alternatives that are not based on such invariance.

In fact, what is really required in physical terms is a unitary implementation and not
necessarily an invariant state, i.e., unitary implementations via non-invariant states are
still physically acceptable and cannot be discarded. Clearly, a proof on the uniqueness
of the quantization based solely on the unitary implementation of those transformations,
rather than on the existence of an invariant state, is a stronger result inasmuch as the
requirement of unitarity is weaker than invariance. Whereas, in some circumstances, there
are good reasons to restrict attention to invariant states (for instance, when there is a
time-independent Hamiltonian giving rise to a group of transformations), in the general
case of arbitrary transformations, the requirement of an invariant state is not so compelling
and non-invariant states cannot be simply disregarded.

In this sense, invariance can actually be an overly rigid demand in certain situations,
especially if the considered transformations provide a notion of evolution that is crucial
to describe the dynamics. For instance, the unitary implementation of the evolution via
(dynamical-)invariant states in typically non-stationary scenarios is of doubtful physical
use and, in fact, seems hopeless, whereas physically viable states, still leading to unitary
dynamics and ensuring uniqueness, are available and have direct cosmological applications.
In this respect, we conclude with the following remark.

The uniqueness of the Fock quantization of the scalar field with time-dependent mass
was obtained by restricting the attention to states that remain invariant under spatial
symmetries. Although the removal of this restriction seems unlikely to lead to physically
new representations with unitary dynamics, it is, nevertheless, an open possibility. More
precisely, it remains to be disproved the existence of representations with unitary dynamics
and a unitary implementation of the spatial symmetries, which are, nevertheless, not
unitarily equivalent to the representation defined by an invariant vacuum.

Thus, a conceivable line of future research in this area is to consider also Fock represen-
tations that, while not possessing an invariant vacuum, still allow a unitary implementation
of the spatial symmetries. The uniqueness result would be strengthened if those represen-
tations were shown to be equivalent to the previous one; otherwise, new and potentially
interesting representations could emerge. Another possibility, with a clearly higher poten-
tial to produce physically inequivalent results, is to use polymer-inspired representations
for the scalar field, instead of Fock representations.
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Appendix A. Sketchof the Proof of Uniqueness of the Representation for the Scalar
Field with Time-Dependent Mass in S1

In this appendix, we consider the simplest example of a linear scalar field in a static
spacetime with compact spatial sections, namely, the case where the spatial sections are
1-dimensional with the topology of the circle. The field equation reads

χ̈− ∆χ + s(t)χ = 0, (A1)

where the mass term s(t) can be an (essentially) arbitrary function of time.
Since the spatial manifold is compact and the field equation is linear, a Fourier decom-

position gives us a discrete set of independent modes:

χ(θ, t) =
1√
2π

∞

∑
n=−∞

χn(t)einθ =
1√
π

∞

∑
n=1

(
qn cos(nθ) + xn sin(nθ)

)
+

q0√
2π

. (A2)

The configuration space for the scalar field is then described by the set of real variables
qn, n ≥ 0, and xn, n > 0, which are completely decoupled. For simplicity, we drop all the
modes xn (which can be treated like their cosine counterparts qn for n > 0) and q0, and
continue with the infinite set {qn, n > 0}. The variable q0 is dropped to avoid introducing a
special treatment in the case s(t) = 0, since n = 0 corresponds to a zero frequency oscillator
or a free particle instead of a regular harmonic oscillator. In any case, it describes a single
degree of freedom, which cannot affect the considered matters of unitary implementation.

The equations of motion for the modes are

q̈n + [n2 + s(t)]qn = 0. (A3)

The corresponding Hamiltonian equations are

q̇n = pn, ṗn = −[n2 + s(t)]qn, (A4)

where pn is the momentum canonically conjugate to qn, i.e., {qn, pn′} = δnn′ .
There are many representations of the CCRs satisfied by the infinite set of pairs

{(qn, pn), n > 0}, or of the associated Weyl algebra. For instance, every sequence {µn, n > 0}
of (quasi-invariant9) probability measures in R gives a representation, since it defines a regular
product measure in the set of all sequences (q1, q2, . . .), thus, providing a Schrödinger type of
quantization in the Hilbert space of square integrable functions in the configuration space.

What is not available, however, is the straightforward generalization of the usual
representation in finite dimensions obtained from the Lebesgue measure dq, since no math-
ematical sense can be made of the formal infinite product ∏∞

n=1 dqn. In such a context,
Fock representations of the Weyl relations are given by (normalized) Gaussian measures,
which still make perfect sense in infinite dimensions. Even after restricting our atten-
tion to Gaussian measures, there are endless possibilities, and many of them lead to
inequivalent representations.
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In the present case, a particularly important measure in our infinite dimensional
configuration space is

dµ =
∞

∏
n=1

e−n q2
n

√
ndqn√

π
, (A5)

which is associated with the quantum operators

q̂nΨ = qnΨ, p̂nΨ = −i
∂

∂qn
Ψ + inqnΨ. (A6)

This is, in fact, a particular realization of the Fock representation given by the complex
structure J0, defined as in Equation (17)10 with m equal to zero. Thus, it should be no
surprise that this particular representation allows a unitary implementation of the free
massless field dynamics (i.e., with s(t) = 0). The quantization is the most natural one for
the massless field, since the wave functional Ψ = 1 is invariant under the unitary group
U(t) implementing the dynamics. Putting it differently, there is a well-defined quantum
Hamiltonian, and Ψ = 1 is the zero-energy state of the free massless field.

The same representation also allows a unitary implementation of the time-dependent
mass case. To see this, let us introduce the annihilation and creation-like variables an and
ān, defined by

an =
nqn + ipn√

2n
, (A7)

which are precisely the ones associated with the complex structure J0. In particular, this
means that J0 takes the diagonal matrix form diag(i,−i) when written in terms of the basis
in phase space made of the pairs (an, ān). With respect to this basis of (complex) variables,
the classical evolution (from time t0 to time t) determined by Equation (A4) is given by
non-vanishing 2× 2 matrix blocks of the form

Un(t, t0) =

(
αn(t, t0) βn(t, t0)
β̄n(t, t0) ᾱn(t, t0)

)
, (A8)

with
|αn(t, t0)|2 − |βn(t, t0)|2 = 1, ∀n > 0, ∀t, t0. (A9)

Note that, in the case s(t) = 0, precisely because of the way in which the variables
an are defined, the above parameters βn are all vanishing (and the parameters αn are only
phases).

For quite general functions s(t) in Equation (A4), the following condition is satis-
fied [49]:

∞

∑
n
|βn(t, t0)|2 < ∞, ∀t, t0. (A10)

This is precisely the necessary and sufficient conditions for unitary implementability
of the dynamics, in the J0 representation. Thus, there is a Fock representation, defined by a
complex structure that remains invariant under the spatial symmetries, such that a unitary
quantum dynamics can be achieved.

The proof that a quantization with the above characteristics is unique is as follows. To
begin with, any other invariant (under spatial isometries) complex structure J is related to
J0 by J = KJ0K−1, where K is a symplectic transformation given by a block diagonal matrix
with 2× 2 blocks of the form

(
κn λn
λ̄n κ̄n

)
, |κn|2 − |λn|2 = 1, ∀n > 0. (A11)

Suppose now that the dynamics are unitary in the Fock representation defined by J.
This is equivalent to the unitary implementability in the J0-representation of a modified
dynamics, obtained precisely by applying the transformation K to the canonical transforma-
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tions corresponding to time evolution. A simple computation shows that, for this modified
dynamics, the coefficients βn in Equation (A8) are replaced with

βJ
n(t, t0) = 2iκ̄nλnIm[αn(t, t0)] + (κ̄n)

2βn(t, t0)− λ2
n β̄n(t, t0), (A12)

where the notation Im denotes the imaginary part. Then, it follows from the hypothesis of
unitary dynamics that the following condition holds:

∞

∑
n
|βJ

n(t, t0)|2 < ∞, ∀t, t0. (A13)

Now, a detailed asymptotic analysis [49,50] shows that condition (A13) implies that

∞

∑
n
|λn|2 < ∞. (A14)

Given the relation between J and J0, this last condition guarantees precisely that the
operator J − J0 is of the Hilbert–Schmidt type, i.e., that the Fock representations defined by
J and J0 are unitarily equivalent.

Notes
1 There are currently also LQC-inspired applications to inhomogeneous cosmologies. We will not consider them in the present

work.
2 A state ω of a ?-algebra A is a linear functional such that ω(aa∗) ≥ 0, ∀a ∈ A, and ω(1) = 1, where 1 is the identity of the

algebra and the symbol ∗ denotes the involution operation, e.g., complex conjugation in algebras of functions and adjointness in
algebras of operators.

3 We also restrict attention to the more usual formulation of LQC, leaving aside the so-called Fleischhack approach, which is also
considered in [10].

4 Nevertheless, applications of LQC are effectively performed on a separable subspace of HP . This can either be seen as a
consistency requirement [21] or as a consequence of superselection [22], which, in any case, can be traced back to the fact that the
LQC quantum Hamiltonian constraint is a difference operator of constant step.

5 See, nevertheless, the variations on the LQG representation introduced by Koslowski and Sahlmann [26–28], and the related
developments by M. Varadarajan and Campiglia [29,30].

6 Alternatively, the system can be considered as an axially symmetric field propagating in a static (2+1)-dimensional spacetime
with the spatial topology of a two-torus.

7 Only very mild technical conditions on s(t) are required, see [50].
8 Part of the techniques employed for fermions were already explored in the case of the scalar field in Bianchi I, in order to deal

with the lack of conformal symmetry. A review of the range of different methods and improvements required to address the
increasing degree of generalization encountered in the treatment of the scalar field can be found in [58].

9 In order to provide a unitary representation of translations, measures are required to satisfy the technical condition of quasi-
invariance, which is satisfied, e.g., by any Gaussian measure.

10 With the obvious adaptations, taking into account that the spatial manifold is now S1 instead of R3.
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Abstract: The purpose of this paper is to analyse the back reaction problem, between Hawking
radiation and the black hole, in a simplified model for the black hole evaporation in the quantum
geometrodynamics context. The idea is to transcribe the most important characteristics of the
Wheeler-DeWitt equation into a Schrödinger’s type of equation. Subsequently, we consider Hawking
radiation and black hole quantum states evolution under the influence of a potential that includes
back reaction. Finally, entropy is estimated as a measure of the entanglement between the black hole
and Hawking radiation states in this model.

Keywords: quantum gravity; Hawking radiation; entanglement entropy

1. Introduction

Since the discovery that black holes would have to emit radiation, there have been
proposals to explain the loss of information associated with the apparent conversion of
pure to mixed quantum states. From the beginning, this information loss was proposed to
be fundamental and, the non unitary evolution of pure to mixed quantum states constituted
a hypothesis to solve the problem associated with this loss. For example, Steven Hawking
own proposal of the non unitary evolution is represented by the “dollar matrix” S/ [1]

ρfinal = S/ρinitial ,

which allows the evolution of pure quantum states, characterised by the density matrix
ρinitial, into mixed states ρfinal.

The black hole evaporation mechanism and the problem of information loss, collected
behind the event horizon, constituted a privileged arena for quantum gravity theories
candidates (namely, quantum geometrodynamics [2], string theory [3–7] and loop quantum
gravity [8–11]) to establish themselves beyond General Relativity. However, the scientific
community was reluctant to give up unitarity, a crucial feature of Quantum Mechanics,
and the hypothesis of a new principle of complementarity, between the points of views
of an infinitely distant observer and a free falling observer near the event horizon, was
raised [12]. Following a similar approach, it has been emphasised over the time the role of
the gravitational back reaction effect [13,14] of Hawking radiation on the event horizon
as a way to allow the information accumulated within the black hole to be encoded in
the outgoing radiation. In this way, the emergence of a mechanism in which all the black
hole information (a four dimensional object in General Relativity) would be accessible
at the event horizon (which can be described as a membrane with one dimension less
than the black hole), is somehow similar to what happens with a hologram [15]. This
new holographic principle was simultaneously proposed and clarified [16,17] in order to
incorporate the aforementioned principle of complementarity. The next step happened
when it was conjectured the correspondence between classes of quantum gravity theories
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(5-dimensional anti-De Sitter solutions in string theories) and conformal field theory (CFT-
conformal field theory-4-dimensional boundary of the 5-dimensional solutions), the so
called AdS/CFT conjecture [18–21]. This discovery was extremely important to ensure
the possibility of a correspondence between the physics that describes the interior of the
black hole (supposedly quantum gravity), and the existence of a quantum field theory at its
boundary (the surface that defines the event horizon) that would allow to save the unitarity.

In 2012, in an effort to analyse important assumptions, such as: (1) the principle of com-
plementarity proposed by Susskind and its colaborators, (2) the AdS/CFT correspondence
and, (3) the equivalence principle of General Relativity, in the way that Hawking radiation
could encode the information stored in the black hole, a new paradox was discovered [22].
In simple terms, the impossibility of having the particle, which leaves the black hole, in
an maximally entangled state (or non factored state) with two systems simultaneously
(the pair disappearing beyond the horizon and all the Hawking radiation emitted in the
past, a problem related to the so-called monogamy of entanglement), leads to postulate
the existence of a firewall that would destroy any free falling observer trying to cross the
event horizon. The firewall existence is incompatible with Einstein’s equivalence principle.
However, if there is no firewall, and the principle of equivalence is respected, according
to these authors, unitarity is lost and information loss is inevitable. Apparently, the situ-
ation is such that either General Relativity principles or Quantum Mechanics principles
need to be reviewed [23,24]. This is an open problem and the role of gravitational back
reaction, between Hawking radiation and the black hole, persists as an unknown and
potentially enlightening mechanism on how to correctly formulate a quantum theory of
the gravitational field.

In an attempt to study the possible gravitational back reaction, between Hawking
radiation and the black hole, from the quantum geometrodynamics point of view, a toy
model was proposed [25]. It was shown and discussed the conditions under which the
Wheeler-DeWitt equation could be used to describe a quantum black hole. In particular,
a simple model for the black hole evaporation was studied using a Schrödinger type
of equation and, the cases for initial squeezed ground states and coherent states were
taken to represent the initial black hole quantum state. One can ask, how can a complex
equation such as the Wheeler-DeWitt be approximated by a Schrödinger type of equation?
In the cosmological context, several formal derivations were carried [2,26–29] with the
purpose of enabling to use the limit of a quantum field theory in an external space-time
for the full quantum gravity theory. Such approaches usually involve procedures like the
Born-Oppenheimer or Wentzel-Kramers-Brillouin (WKB) approximations.

In this work we review this toy model. It is important to notice that, even though, a
full study of the time evolution of the Hawking radiation and black hole quantum states
was performed when a simple back reaction term is introduced, an important part of the
discussion about the time evolution of the resulting entangled state was left incomplete. In
fact, it is exactly the motivation of this paper to address the problem of explicitly describe
the time evolution of the degree of entanglement of this quantum system. In addition,
another important goal is to get an approximate estimate of the Von Neumann entropy and
check is the back reaction can induce a release of the quantum information in the Hawking
radiation. These results can be interesting, in the quantum geometrodynamics context, as
a simple starting point to more robustly address the black hole information paradox in a
canonical quantization of gravity program.

This paper is organized as follow. In Sections 2 and 3 we present an introduction to
quantum geometrodynamics and consider a semiclassical approximation of the Wheeler-
DeWitt equation. In Sections 4 and 5 we derive a simple model of the back reaction between
the Hawking radiation and the black hole quantum states, where its dynamics is governed
by a Schrödinger type of equation. Finally, in Sections 6 and 7, we obtain and discuss the
main result of this paper, namely the time evolution of the entanglement entropy and the
behaviour of the quantum information of the Hawking radiation state.
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2. Quantum Geometrodynamics and the Semiclassical Approximation

In the following, we mention a brief description of the bases of J.A. Wheeler’s ge-
ometrodynamics, which consists in a 3 + 1 spacetime decomposition (ADM decomposition-
R. Arnowitt, S. Deser and C.W. Misner [30]), and obtain General Relativity field equations
in that context. The field equations, obtained in this procedure, will exhibit the evolution
of a pair of dynamical variables (hab, Kab)-the 3-dimensional metric hab (induced metric)
and the extrinsic curvature Kab-on a Cauchy hypersurface Σt (three-dimensional surface).

General Relativity, defined by the Einstein-Hilbert action, here without the cosmologi-
cal constant,

SEH =
c4

16πG

∫
d4x

√
−g R , (1)

can be expressed under the hamiltonian formalism. For this purpose, a 3+ 1 decomposition
of spacetime (M, g)1 may be considered, whereM is a smooth manifold and g lorentzian
metric inM . Moreover, this decomposition consists of the 4-dimensional spacetime folia-
tion in a continuous sequence of Cauchy hypersurfaces Σt, parameterised by a global time
variable t2. General Relativity covariance is maintained, in this procedure, by considering
all possible ways of carrying this foliation. When we consider the hamiltonian formalism
we need to define a pair of canonical variables, however, we can initially identify a pair of
dynamical variables constituted, on the one hand, by the 3-dimensional metric induced in
Σt by the spacetime metric

h = g + n⊗ n
(
hµν = gµν + nµnν

)
, (2)

where nµ is an ortogonal vector to Σt. In this way we can separate the metric g, in its
temporal e spatial components, according to the following expressions,

gµν =

(
NaNa − N2 Nb

Nc hab

)
and gµν =



− 1

N2
Nb

N2

Nc

N2
hab −

NaNb

N2


, (3)

or, in a more suitable compact form,

gµνdxµdxν = −N2dt2 + hab(dxa + Nadt)
(

dxb + Nbdt
)

. (4)

In the previous equation N is called the lapse function whereas Na is the shift vector.
The other canonical variable, on the other hand, is the extrinsic curvature

Kµν = hσ
µ∇σnν . (5)

Hence, the dynamical variables pair (hab, Kab) (with Latin letter indexes, defining
3-dimensional tensor fields) enable us to rewrite Einstein-Hilbert action (1) as

SEH =
c4

16πG

∫

M
dtd3x L =

c4

16πG

∫

M
dtd3x N

√
h
(

KabKab − K2 +(3) R
)

. (6)

We can notice that the lapse function and the shift vector are Lagrange multipliers
(since ∂L/∂Ṅ = 0 e ∂L/∂Ṅa = 0) and, according to Dirac [31] we can establish the
existence of primary constraints which allow to write the action (6) as

SEH =
c4

16πG

∫

M
dtd3x

(
pab ḣab − NHg

⊥ − NaHg
a

)
, (7)

1 We assume that this spacetime is globally hyperbolic, such that we ensure that it can be foliated in Cauchy hypersurfaces.
2 For which a flow of ‘time’ can be perceived when a observer world line crosses a sequence of Cauchy hypersurfaces.
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with pab = ∂L/∂ḣab (conjugate momentum of the dynamical variable hab) and where



Hg
⊥ =

16πG
c4 Gabcd pab pcd − c4

√
h

16πG
(3)R

Hg
a = −2Db

(
hac pbc

) , (8)

with Gabcd =
1

2
√

h
(hachbd + hadhbc − habhcd) being the DeWitt metric and Db is the covari-

ant derivative. We can define the hamiltonian constraint

Hg
⊥ ≈ 0 , (9)

and the diffeomorphism constraint
Hg

a ≈ 0 , (10)

through the variation of the action (7) with respect to N and Na. Physically, constraints (9)–(10)
express the freedom to choose any coordinate system in General Relativity. More precisely,
the choice of the particular foliation Σt is equivalent to choose the lapse function N and,
the spatial coordinates

(
xi) choice is equivalent to choose a particular shift vector Na. It

is important to emphasise that, related to the DeWitt metric Gabcd definition, the kinetic
term in Equation (9) is indefinite, since not all kinetic functional operators in Equation (8)
share the same sign. This property will persist beyond the quantisation procedure and will
play a crucial role in the semiclassical (where it will give rise to a negative kinetic term)
approach to the black hole evaporation process.

3. Canonical Variables Quantisation and Wheeler-DeWitt Equation

The canonical quantisation programme, according to P.M. Dirac prescription, demands
the transition of classical to quantum canonical variables (hab, pab)→

(
ĥab, −ih̄δ/δhab

)
,

and also promotes Poisson brackets to commutators. We have to define a wave state
functional Ψ(hab) belonging to the space of all 3-dimensional metrics Riem Σ. Nevertheless,
there are important issues related with:

1. the correct factor ordering in building quantum observables from the fundamental

variables
(

ĥab, −ih̄δ/δhab
)

,

2. the interpretation of quantum observables as operators acting on the wave functional
Ψ(hab) and the adequate definition of a Hilbert space,

3. the classical constraints (9)–(10) conversion to their quantum counterpart

{
Hg
⊥Ψ(hab) = 0
Hg

a Ψ(hab) = 0
, (11)

and their quantum interpretation,
4. the lack of time evolution in the previous quantum constraints.

These questions are thoroughly discussed in [2,32], as well as possible solutions and
open problems till the present day. Among the previous mentioned issues, the problem
related to the lack of time evolution seems to stand as an essential feature in the formulation
of a quantum theory of the gravitational field. If we assume that the wave functional
evolution over time depends on a time concept defined after the canonical quantisation,
then, the time parameter t will be an emergent quantity [33].

In order to address the black hole evaporation problem and, to explore how infor-
mation is eventually encoded in Hawking radiation, it would be important to obtain the
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entropy time evolution as a measure of the degree of quantum entanglement between
radiation and black hole states. Since the quantum version of the hamiltonian constraint (9),

Hg
⊥Ψ(hab) =

(
16πGh̄2

c4 Gabcd
δ2

δhabδhcd
− c4

√
h

16πG
(3)R

)
Ψ(hab) = 0 , (12)

known as Wheeler-DeWitt equation, and the quantum diffeomorphism constraint

Hg
a Ψ(hab) = Db

(
hac

δ

δhbc

)
Ψ(hab) = 0 (13)

are both time independent, the wave functional is connected to a purely quantum and
closed gravitational system. In the case involving the study of a black hole evaporation
phase, Equations (12) and (13) describe a quantum black hole in the context of a purely
quantum universe. This situation is not suitable if we consider that we must have several
classical observers measuring and depicting the time evolution of the black hole outgoing
radiation. These classical observers, experience and describe physical phenomena in a
classical language that needs a time parameter. Hence, we need to consider a quantum
black hole in a semiclassical universe where time appears as an emergent quantity.

Time is the product of an approximation which aims to extract, from the Wheeler-
DeWitt equation, an external, semiclassical stage, in which black hole and Hawking radia-
tion quantum states evolve.

In reference [2] (Section 5.4) we can find a derivation, from Equations (12) and (13), of
a Schrödinger functional equation. In the following, we highlight some important details
of this derivation. Let us start by writing the wave functional as

|Ψ(hab)〉 = eim2
PlS[hab ]|ψ(hab)〉 , (14)

where S[hab] is a solution of the vacuum Einstein-Hamilton-Jacobi function [34], since its
WKB approximation enable us to extract, at higher orders, a Hamilton-Jacobi equation. In
addition, S[hab] is also solution to the Hamilton-Jacobi version of (12)–(13), namely

m2
Pl

2
Gabcd

δS
δhab

δS
δhcd

− 2m2
Pl

√
h (3)R + 〈ψ|Ĥm

⊥ |ψ〉 = 0 , (15)

−2m2
PlhabDc

δS
δhbc

+ 〈ψ|Ĥm
a |ψ〉 = 0 , (16)

with the definitions m2
Pl = (32πG)−1, h̄ = c = 1 and Ĥm

⊥ and Ĥm
a are assumed to be

contributions from the non-gravitational fields. Having the solution S[hab], we can now
evaluate |ψ(hab)〉 along a solution of the classical Einstein equations hab(x, t). In fact this
solution is obtained from

ḣab = NGabcd
δS

δhcd
+ 2D(aNb) , (17)

after a choice of the lapse and shift function has been made. At this point, we can define
the evolutionary equation for the quantum state |ψ(hab)〉 as

∂

∂t
|ψ(hab)〉 =

∫
d3x ḣab

δ

δhab
|ψ(hab)〉 , (18)

which, since ḣab depends on the DeWitt metric Gabcd, will have differential operators with
the wrong sign in its right hand side. Finally, we are in the position of defining a functional
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Schrödinger equation for quantized matter fields in an external classical gravitational
field as

ih̄
∂

∂t
|ψ[hab(x, t)]〉 = Ĥm|ψ[hab(x, t)]〉 ,

Ĥm ≡
∫

d3x
{

N(x)Ĥm
⊥(x) + Na(x)Ĥm

a (x)
}

. (19)

Notice that the matter hamiltonian Ĥm, is parametrically depending on metric coeffi-
cients of the curved space-time background and contain indefinite kinetic terms.

This derivation assumes a separation of the complete system (which state obeys the
Wheeler-DeWitt equation and the quantum diffeomorphism invariance) in two parts, in to-
tal correspondence with the way a Born-Oppenheimer approximation is implemented. The
physical system separation into two parts, one purely quantum and the other semiclassical,
is essentially achieved by separating the gravitational from the non gravitational degrees of
freedom through an expansion, with respect to the Planck mass mPl, of constraints (12)–(13).
However, we notice that there are gravitational degrees of freedom that can be included
in the purely quantum part (quantum density fluctuations whose origin is gravitational,
for example). Equation (19), formally similar to Schrödinger equation, is an equation with
functional derivatives, in which variable x is related to the 3-dimensional metric hab. As
previously mentioned, we recall that due to the DeWitt Gabcd metric definition, a negative
kinetic term emerges from the conjugated momentum pab.

In the following section, let us develop a simple model of the black hole evaporation
stage [25], which incorporates one interesting feature of the Wheeler-DeWitt equation,
namely the indefinite kinetic term, and study some of its consequences. The main objective,
here, is to estimate the degree of entanglement between Hawking radiation and black
hole quantum states, when we take into account a simple form of back reaction between
the two.

4. Simplified Model with a Schrödinger Type of Equation

Equation (19) is a functional differential equation, its wave functional solution depends
on the 3-metric hab describing the black hole and matter fields. It is obviously an almost
impossible task to solve and find solutions to that equation. However, we can consider a
simpler model, assuming a Schrödinger type of equation, which was first considered in [2].
In that work it was argued that in order to study the effect of the indefinite kinetic term
in (19), as a first approach, and since we are dealing with an equation which is formally a
Schrödinger equation, we could restrict our attention to finite amount of degrees of freedom.
This first approach as been successful in cosmology, allowing to solve the Wheeler-DeWitt
equation in minisuperspace, which brings a functional differential equation to a regular
differential equation. We do not claim that we are doing the exact same process, but instead
that a reduction of the physical system to a finite number of degrees of freedom could retain
some aspects of quantum gravity that could be studied using much simpler equations. It is
an acceptable concern if approximating a functional differential equation to a Schrödinger
type of regular differential equation becomes an oversimplification. Nevertheless, it can
also be acceptable to think that some physical insight can be obtained by assuming that the
indefinite character of the functional equation is mimicked in the simpler model. Let us
consider some assumptions in order to obtain the simpler equation.

1. Assuming that the hamiltonian Ĥm includes black hole and Hawking radiation parts,
and ignoring other degrees of freedom, the simpler equation can take the form,

ih̄
∂

∂t
Ψ(x, y, t) =

(
h̄2

2mPl

∂2

∂x2 −
h̄2

2my

∂2

∂y2 +
mPlω

2
x

2
x2 +

myω2
y

2
y2

)
Ψ(x, y, t). (20)

This last equation, where the emergence of a negative kinetic term which plays the
role of the functional derivative in the metric hab in (12), contrasts with an exact
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Schrödinger equation. Therefore, because variable x is related to metric hab, we
propose to identify it with the variation of the black hole radius3 2GM/c2, which turn
out to be also a variation in the black hole mass or energy. Variable y will correspond
to Hawking radiation with energy my.

2. Notice that the kinetic term of the gravitational part of the hamiltonian operator
is suppressed by the Planck mass. As long as the black hole mass is large, this
kinetic term is irrelevant. One would have in that case, only the Hawking radiation
contribution. If, instead we consider the last stages of the evaporation process, when
the black hole mass approaches the Planck mass, then the kinetic term associated with
the black hole state becomes relevant.

3. The time parameter t in Equation (20) was obtained by means of a Born-Oppenheimer
approximation and embodies all the semiclassical degrees of freedom of the universe.

4. In Equation (20) we consider harmonic oscillator potentials. Beside being simpler
potentials, they allow for analytical solutions and, in the Hawking radiation case
this regime is realistic [35,36]. For the black hole, this potential is an oversimplifi-
cation, which can be far from realistic. However, it can help to disclose behaviours
also present among more complex potentials, with respect to the entanglement be-
tween black hole and Hawking radiation quantum states, during the evaporation
process. Furthermore, before dealing with the full problem, simpler models can
identify physical phenomena that will reasonably manifest independently of the
problem complexity (for example, the infinite square well helps to understand energy
quantisation in the more complex Coulomb potential).

Let us assume that Equation (20) is solved by the variables separation method,

Ψ(x, y, t) = ψx(x, t)ψy(y, t), (21)

so that we can obtain the two following equations4,

ih̄ψ̇∗x(x, t) =

(
− h̄2

2mPl

∂2

∂x2 −
mPlω

2
x

2
x2

)
ψ∗x(x, t)

ih̄ψ̇y(y, t) =

(
− h̄2

2my

∂2

∂y2 +
myω2

y

2
y2

)
ψy(y, t)

. (22)

Equations (22) describe an uncoupled system comprising a harmonic oscillator and
an inverted one. In Figure 1 we illustrate the fact that having regular harmonic potential
with a negative (indefinite) kinetic term is equivalent, in the quantum point of view, to
the situation where an inverted oscillator potential has a positive kinetic term. In both
situations we have to deal with an unstable system, which would correspond of having
variable x varying uncontrollably. A wave function ψ0(x′, 0) that initially has a Gaussian
profile, will evolve over time according to,

∫
dx′ Ginv.(x, x′; t, 0)ψ0(x′, 0) = ψ(x, t) , (23)

where Ginv.(x, x′; t, 0) is the inverted oscillator Green function [37,38],

Ginv.(x, x′; t, 0) =
√

mPlωx

2πih̄ sinh(ωxt)
exp

(
imPlωx

(
(x2 + x′2) cosh(ωxt)− 2xx′

)

2h̄ sinh(ωxt)

)
, (24)

3 A black hole without rotation and charge which is simply described by the Schwarzschild static solution.
4 Where ψ∗x is the complex conjugate of ψx .
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which can be obtained from the harmonic oscillator Green function

Gosc.(x, x′; t, 0) =

√
myωy

2πih̄ sin(ωyt)
exp

(
imyωy

(
(x2 + x′2) cos(ωyt)− 2xx′

)

2h̄ sin(ωyt)

)
, (25)

by redefining ω → (iω). The wave function obtained from the computation of Equation (23)
shows a progressive squeezing of the state in phase space, which means an increasing
uncertainty in the value of x. Physically, in this simplified model, that would correspond
to an unstable variation of the Schwarzschild radius or mass of the black hole. Even
though, conceivably, a strong squeezing of the black hole state would occur [39], driving
its disappearance.

Px
2 with positive sign

V ~ (- x2 )

Px
2 with negative sign

V ~ (+ x2 )

Figure 1. The behaviour of a particle in an inverted oscillator potential, with a positive kinetic
term, is equivalent to the behaviour of a particle, with a negative kinetic term, in a regular harmonic
oscillator potential.

In the next section we will introduce the effect of a back reaction, coupling effec-
tively black hole and Hawking radiation quantum states, and see that, under particular
circumstances, the system becomes stable and strongly entangled.

5. Back Reaction and Schrödinger Equation

In this section we review and reproduce some results obtained in reference [25]. Notice
that in this work a slight change in some definitions will be carried. In addition some new
aspects of the model will be discussed. In order to investigate the effects of a back reaction
between Hawking radiation and black hole states, let us consider a linear coupling µxy
between the variables, where µ is a constant, in equation

ih̄
∂

∂t
Ψ(x, y, t) =

(
P2

y

2my
− P2

x
2mPl

+
mPlω

2
x

2
x2 +

myω2
y

2
y2 + µxy

)
Ψ(x, y, t) . (26)

We should emphasize that, following the Born-Oppenheimer and WKB approximation
used to obtain Equation (19), any phenomenological back reaction effect, here parametrized
by µ must be suppressed by the Planck mass [2]. Therefore we can consider that this back
reaction coupling constant, as the kinetic term of the gravitational part of the hamiltonian
operator, only becomes relevant when the black hole approaches the Planck mass. Conse-
quently we can assume that the constant µ ∼ µ′/mPl. Suppose the initial state, describing
the black hole, is the coherent state

ψα
x0
(x, 0) =

(mPlωx

πh̄

)1/4
exp

(
−mPlωx

2h̄
x2 + α

√
2mPlωx

h̄
x− |α|

2

2
− α2

2

)
, (27)

where

α =

√
mPlωx

2h̄
x0 + i

p0√
2mPlωx

, (28)
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which represents a black hole whose Schwarzschild radius oscillates around the value
2GM/c2. A coherent state represents a displacement of the harmonic oscillator ground
state |0〉

|α〉 = D̂(α)|0〉 = e−αâ†−α∗ â|0〉 , (29)

in order to get a finite excitation amplitude α. For the Hawking radiation initial state, let us
consider the Gaussian distribution

ψH
y0
(y, 0) ∝ exp

(
−myωy

2h̄
coth

(
2πωyGM

c3

)
y2
)

, (30)

which describes the radiation state [35,36,39] for a black hole with Schwarzschild radius
2GM/c2. Under these conditions, we can expect that, after the product state (27)–(30)
evolves in time

Û |Ψ0〉 = Û
(∣∣ψα

x0

〉
⊗
∣∣∣ψH

y0

〉)
= |Ψ〉 , (31)

the emerging final state |Ψ〉 will be entangled, because the hamiltonian in Equation (26)
includes a coupling such that Ĥ 6= Ĥx ⊗ 1+ 1⊗ Ĥy.

Determining the initial state
∣∣ψα

x0

〉
⊗
∣∣∣ψH

y0

〉
evolution over time would be solved if we

had the propagator related to the hamiltonian of Equation (26). Since this propagator is not
available, we can instead redefine variables




Px
Py
x
y


 =




√
2mPl

cos 2θ cos θ
√

2mPl
cos 2θ sin θ 0 0√

2my
cos 2θ sin θ

√
2my

cos 2θ cos θ 0 0
0 0 cos θ√

mPl cos 2θ
sin θ√

mPl cos 2θ

0 0 sin θ√my cos 2θ
cos θ√my cos 2θ







P1
P2
Q1
Q2


 , (32)

such that we can rewrite Equation (26) in the following way

ih̄
∂

∂t
Ψ(Q1, Q2, t) =

(
1
2

(
P2

2 − P2
1

)
+

1
2

(
Ω2

1Q2
1 + Ω2

2Q2
2

)
+KQ1Q2

)
Ψ(Q1, Q2, t) . (33)

In the previous equation, coordinates redefinition (32) implies that

Ω2
1 cos2 2θ = ω2

x cos2 θ + ω2
y sin2 θ +

µ sin 2θ√mPlmy

Ω2
2 cos2 2θ = ω2

x sin2 θ + ω2
y cos2 θ +

µ sin 2θ√mPlmy

, (34)

and the coupling is

K =
1

cos2 2θ

(
1
2

(
ω2

x + ω2
y

)
sin 2θ +

µ√mPlmy

)
. (35)

If we impose that, in the new variables (Q1, Q2), the coupling is K = 0, it follows that
the coupling in the original variables (x, y) is given by,

µ = −1
2
√

mPlmy

(
ω2

x + ω2
y

)
sin 2θ , (36)

with θ ∈]− π
4 , π

4 [. We can check that µ = 0 for θ = 0. In the numerical simulations, to cal-
culate the relevant physical quantities, we will assume that my = 10−5mPl and ω2

y = 105ω2
x

such that the potentials, in Equation (26), are of the same order, i.e., myω2
y ∼ mPlω

2
x. This

corresponds to assume that the Hawking radiation energy is well below Planck scale and,
the fluctuations of the Schwarzschild radius have significantly smaller frequency than the
Hawking radiation energy fluctuations. The numerical factor choice of 105 is arbitrary and
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does not influence the conclusions to be drawn from the results presented in subsequent
sections. However, we can establish that the coupling is defined in the interval

− 102 ≤ µ ≤ 102 , (37)

which is sufficiently broad to explore the more relevant cases. If we substitute the coupling
Equation (36) in the frequencies definition (34), we will obtain, in the new coordinates,

Ω2
1 =

1
cos2 2θ

[
ω2

x

(
cos2 θ − 1

2
sin2 2θ

)
+ ω2

y

(
sin2 θ − 1

2
sin2 2θ

)]
,

Ω2
2 =

1
cos2 2θ

[
ω2

x

(
sin2 θ − 1

2
sin2 2θ

)
+ ω2

y

(
cos2 θ − 1

2
sin2 2θ

)]
. (38)

We can notice an important observation related to Equation (38). Since, we assume
that ω2

y � ω2
x, it implies that Ω2

1 remains strictly positive5 in the significantly reduced sub
interval of the possible angles θ ∈]− π

4 , π
4 [. We can verify that Ω2

1 is only positive when

− arctan

(√
ω2

x
ω2

y

)
< θ < arctan

(√
ω2

x
ω2

y

)
. (39)

This observation means that, for values outside the mentioned interval (39), Ω2
1

is negative and Equation (33) turns out to be a Schrödinger equation describing two
uncoupled harmonic oscillators in the coordinates (Q1, Q2), i.e.,

ih̄
∂

∂t
Ψ(Q1, Q2, t) =

(
1
2

(
P2

2 + Ω2
2Q2

2

)
− 1

2

(
P2

1 +
∣∣∣Ω2

1

∣∣∣Q2
1

))
Ψ(Q1, Q2, t) . (40)

In addition, we also have

arctan

(√
ω2

x
ω2

y

)
< |θ| < π

4
⇒ |µ| > 1 (41)

which implies that, in Equation (26), when the coupling is |µ| > 1 the system becomes
stable and this will restraint the influence of the inverted potential.

The calculation of the initial state
∣∣ψα

x0

〉
⊗
∣∣∣ψH

y0

〉
time evolution, in coordinates (Q1, Q2),

with the help of the harmonic (25) and inverted oscillator propagators,
∫ ∫

dQ′1dQ′2 Ginv.(Q1, Q′1; t) · Gosc.(Q2, Q′2; t) · ψα
x0
(Q′1, Q′2; 0) · ψH

y0
(Q′1, Q′2; 0) , (42)

enable us to obtain Ψ(Q1, Q2, t), for which an explicit analytical expression is given in
Appendix A (Equation (A1)). Subsequently, we can use the inverse transformation

{
Q1 = x

√
mPl cos θ − y√my sin θ

Q2 = −x
√

mPl sin θ + y√my cos θ
, (43)

in order to retrieve the wave function in the original coordinates. This wave function has
the generic form

Ψ(x, y, t) = F(t) exp
(
−A(t)x2 + B(t)x− C(t)y2 + D(t)y + E(t)xy

)
, (44)

5 Whereas Ω2
2 is always positive, since the definition of Ω2

2 can be further simplified to

Ω2
2 =

1
2

(
1− 1

cos 2θ

)
+

mPl

2my

(
1 +

1
cos 2θ

)
∼ 105

2

(
1 +

1
cos 2θ

)

which for θ ∈]− π
4 , π

4 [ is always positive.
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where the time dependent functions can be found in Appendix A, more precisely in
Equation (A4).

One of the main objectives in this paper is to quantify the entanglement degree
between black hole and Hawking radiation quantum states. In order to proceed with that
idea we have to define the system matrix density

ρxy = |Ψ〉〈Ψ| . (45)

Wave function (44) cannot be factored, hence, the initial density matrix |Ψ0〉〈Ψ0|,
corresponding to the factored pure state

∣∣ψα
x0

〉
⊗
∣∣∣ψH

y0

〉
, has evolved to a pure entangled

state described by ρxy. Recalling the status of the classical observers outside the black hole,
they can only access the state of the outgoing radiation, i.e., they can only experiment part of
the system. Therefore, it is important to consider the reduced density matrix ρy obtained by
taking the partial trace of the system density matrix ρxy, i.e., computing ρy = trx

(
ρxy
)
. The

reduced density matrix elements, for black hole and Hawking radiation, are respectively

ρBh
(
x, x′

)
=tryρxy =

∫
dy
∣∣〈x′, y|x, y〉

∣∣2

ρHr
(
y, y′

)
=trxρxy =

∫
dx
∣∣〈x, y′|x, y〉

∣∣2
, (46)

where |x, y〉 ≡ Ψ(x, y, t), and with the generic form

ρBh
(
x, x′

)
=N1 exp

(
−A1x2 + B1x−A∗1 x′2 + B∗1 x′ + |C1|xx′

)

ρHr
(
y, y′

)
=N2 exp

(
−A2y2 + B2y−A∗2y′2 + B∗2 y′ + |C2|yy′

) . (47)

The coefficients defined in the last equation are given in Appendix B (Equations (A9)–(A11)),
and also depend directly on Equation (A4).

The diagonal reduced density matrix elements are

ρBh(x, x) = |F|2
√

1
2Re(C)

exp

(
−2Re(A)x2 +

(Re(E)x + Re(D))2

2Re(C)
+ 2Re(B)x

)
(48)

ρHr(y, y) = |F|2
√

1
2Re(A)

exp

(
−2Re(C)y2 +

(Re(E)y + Re(B))2

2Re(A)
+ 2Re(D)y

)
(49)

and, for illustration purposes, in Figure 2 we can observe their evolution over time. In
that case, we have taken µ = 1.01 for the back reaction coupling value. As we empha-
sised before, for this value, the system is stable and we can notice that the observed
behaviours corresponds closely to squeezed coherent states6, with an evident correlation
between them.

6 This observation will be corroborated by inspecting the behaviour of the Wigner functions in Appendix B. Squeezed coherent states are obtained

through the action of two different operators over the ground state of the harmonic oscillator |α, ξ〉 = D̂(α)Ŝ(ξ)|0〉 =
(

e−αâ†−α∗ â
)(

e−
1
2 ξ∗ â2− 1

2 ξ â†2
)
|0〉,

where D̂(α) is the displacement operator and Ŝ(ξ) is the squeeze operator.
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Figure 2. Diagonal reduced density matrix elements ρBh and ρHr (defined in Equations (48) and (49)) evolution over
time, with mPl = h̄ = ωx = x0 = 1; p0 = −1. The back reaction coupling value is µ ≈ 1.01, where ωy = ωx × 105/2 and
my = mPl × 10−5. Light areas, in the density plots, correspond to higher values of the density matrix.

6. Entropy, Entanglement and Information

Theoretically, black holes emit radiation, when measured by an infinitely distant
observer, approximately with a black body spectrum with an emission rate in a mode of
frequency ω

Γ(ω) =
γ(ω)

exp
(

h̄ω

kBTH

)
± 1

d3k

(2π)3 , (50)

where the Hawking temperature is,

TH =
h̄c3

8πkBGM
(51)

and the factor γ(ω) embodies the effect of the non trivial geometry surrounding the black
hole. Soon after this discovery, D. N. Page made important numerical estimates [40–42], of
various particle emission rates, for black holes with and without rotation, and the evapora-
tion average time for a black hole with mass M. Later, he made important conjectures [43]
about the Von Neumann entropy

SVN = −tr (ρ log(ρ)) (52)

of a quantum subsystem described by the reduced density matrix ρA = trB ρAB. If the
Hilbert space of a quantum system, in a pure initial random state, has dimension mn, the
average entropy of the subsystem of smaller dimension m < n is conjectured to be given by

Sm, n ' log m− m
2n

. (53)

Therefore, the given subsystem will be near its maximum entropy log m whenever
m < n. Afterwards, he applied this new conjecture to the case of the black hole evaporation
process [44]. Assuming that initially Hawking radiation and black hole are in a pure
quantum state, described by the density matrix ρAB, he showed that the Von Neumann
entropies related to the reduced density matrices (radiation - Hr - and black hole - Bh -),

SHr = −tr (ρHr log(ρHr)) (54)
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SBh = −tr (ρBh log(ρBh)) (55)

display an information (defined as a measure of the departure of the actual entropy from
its maximum value),

IHr = log m− SHr IBh = log n− SBh . (56)

In addition, he also described, through what is today known as the Page curve (a recent
nice review can be found in [45]), the way entropy will evolve7 (see Figure 3) while the
black hole evaporates. More recently, he has numerically estimated, based on his previous
works, about emission rates of several types of particles, the way Hawking radiation
entropy should evolve in time [46]. It is believed that a correct quantum gravity theory
should be able to show how Page curve emerges from the assumption of the outgoing
radiation and black hole quantum states unitary evolution.

IHr

SHr

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

~
t

8895 M
3

SHr

4π M
2

Figure 3. Time evolution of, the Von Neumann entropy (SHr) (according to Page curve [44,46]), and
the information (IHr) for the Hawking radiation.

It seems pertinent to explore what the simplified model, under analysis, allow us to
say about entropy and information. More precisely, we want to estimate how Hawking
radiation entropy and information evolve over time according to Equation (56). Consid-
ering the reduced density matrices (47), we see that to properly calculate Von Neumann
entropy (52) we have to diagonalize the matrices, i.e., compute their eigenvalues

∫ +∞

−∞
dy′ ρHr

(
y, y′

)
fn
(
y′
)
= λn fn(y) . (57)

This particular calculation is only known for a few specific cases, as for example, for a
system of two coupled harmonic oscillators [47], unfortunately a distinct situation from the
case studied here, namely the coupling between harmonic and inverted oscillators. Solving
the eigenvalues problem allows a great simplification and the evaluation of Von Neumann
entropy becomes simply

SVN = −∑
n
(λn log(λn)) . (58)

However, considering the eigenvalues problem technical difficulty, instead of comput-
ing the Von Neumann entropy we can estimate the Wehrl entropy [48,49],

SW = −tr(HBh(x, p) log(HBh(x, p)))

=
∫∫ dxdp

πh̄
HBh(x, p) log(HBh(x, p))

, (59)

7 Also, the way information included in the correlations between black hole and Hawking radiation quantum states will evolve.
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where HBh(x, p) is the Husimi function [50]

HBh(x, p) =
∫ dx′dp′

πh̄
exp

(
−σ(x− x′)2

h̄
− (p− p′)2

σh̄

)
WBh

(
x′, p′

)
. (60)

The Husimi function is defined to access the classical phase space (x, p) representation
of a quantum state, and it is obtained from a Gaussian average of the Wigner function

WBh(x, p) =
1

πh̄

∫
dη e−ipη/h̄

〈
x +

η

2
|ρBh|x−

η

2

〉

=
1

πh̄

∫
dη e−ipη/h̄ρBh

(
x +

η

2
, x− η

2

) . (61)

The Wigner function give us an rough criterion on how much a quantum state is
distant from its classical limit but, unfortunately, it is not a strictly positive function and
cannot be taken as a probability distribution in phase space8. The Husimi representation
(which is a Weierstrass transformation of Wigner function) enable us to define a strictly
positive function and corresponds to the trace of the density matrix over the coherent states
basis |α〉, i.e.,

Hα =
1
π
〈α|ρ|α〉 . (62)

If we compare this last definition with Equations (58) and (59), we can understand
Wehrl entropy as a classical estimate of the Von Neumann entropy, through the analogy

SVN = −∑
n
(λn log(λn))→ SW ≈ −∑ (Hα log(Hα)) . (63)

Hence, Wehrl’s entropy can be considered a measure of the classical entropy of a
quantum system, and has already been used [51] in the contexts of cosmology and black
holes. We should notice that Wehrl entropy gives an upper bound to Von Neumann entropy,
i.e., SW(ρ) ≥ SVN(ρ).

The time has come to obtain, in this simplified model, Wehrl entropy and information
evolution over time for Hawking radiation. In Figure 4 we can find the numerical estimates
of Hawking radiation Wehrl entropy and information. These were obtained based on
the calculation of Wigner (Appendix B) and Husimi functions, using the reduced density
matrix (47). We can observe that the entropy start with lower values, this corresponds to
a stage where entanglement and correlation between the states are weak. According to
Figure 2 this happens in a phase where the quantum states become increasingly squeezed
and displaced, under the influence of the inverted potential. However when the back
reaction begins to grow, correlations and degree of entanglement between the two states
increase, and consequently so does the entropy, and both subsystems are forced to oscillate
(counteracting the inverted potential). Finally, both states return to their initial configu-
rations, which brings a reduction of their entropies. It is in this last phase that, with a
decreasing entropy, the information contained in the state describing Hawking radiation
increases as expected from the Page curve.

At this point, we can ask ourselves: how much the estimate of the SW(ρ) give us an
accurate description of the real behaviour of the Von Neumann entropy SVN(ρ)? Since
Wehrl entropy satisfies SW(ρ) ≥ SVN(ρ), inspection of Figure 2 tell us that the variation
from a lower values of the entropy (initial stage of the time evolution) to higher (inter-
mediate stage of the time evolution) and again to lower values (final stage of the time
evolution) seems to indicate, with reasonable chance, that Von Neumann entropy can
present a behaviour relatively close to Wehrl entropy. In addition, the fact that we have
considered the unitary evolution of the pure state

∣∣ψα
x0

〉
⊗
∣∣∣ψH

y0

〉
, implies that the system

8 In fact, Wigner function is considered a quasiprobability distribution.
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matrix density remains a pure state (SVN(ρAB) = 0), while the reduced density matrices,
for the two subsystems, correspond to mixed states (SVN(ρA) 6= 0).
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Figure 4. Hawking radiation’s Wehrl entropy and information evolution over time, with mPl = h̄ =

ωx = x0 = 1; p0 = −1. The back reaction coupling parameter is µ = 1.01, where ωy = ωx × 105/2

and my = mPl × 10−5.

7. Conclusions

Even though the simplified model, discussed in this paper, was based on modest
assumptions (namely about the initial black hole quantum state, among others), it provides
a simple mechanism where one can appreciate the temporal evolution of entropy and the
behaviour of information (in a classical approach with Wehrl entropy being evaluated).
The model has the advantage that it can be treated analytically and show how the coupling
of a harmonic and inverted oscillators can produce results suggesting how the Page curve
can emerge.

There are certainly many ways in which this model can become more realistic. How-
ever, it would also certainly no longer be able to be treated analytically, which would
inevitably deprive it of its pedagogical appeal. In one hand, questions such as,

• how the squeezing parameter evolves in this model?
• what is the exact behaviour, in this model, of Von Neumann entropy SVN(ρ)?
• which aspects of the discussed estimates would benefit by considering a more

realistic model?
• how to apply the same procedure to the functional Schrödinger type of Equation (19)?

can be pursued as possible future topics of investigation. On the other hand, one can also
try to understand to which extent entropy, and Hawking radiation information, estimates
can be made in gravitational back reaction scenarios such as those proposed in [52,53]. In
that proposal, it is assumed that particles moving at high speeds to and from the event
horizon cause a drag [14] which has gravitational effects that can be described by the
Aechelburg-Sexl metric [54,55]. It is worth to mention that the discussion of back reaction
effects of the Hawking radiation and the correct way to derive the Page curve has been an
active field of research in connection with the black hole information paradox. The reader
can find complete reviews of the problem and recent progresses in that direction in [56–59]
Finally, the black hole evaporation subject and the fate of the information enclosed inside
it, are crucial aspects that any quantum gravity theory candidate will have to unveil.
At a time when the first direct evidences of objects that in everything resemble what in
General Relativity is described as a black hole are emerging, our scepticism about their
real existence starts to fade away. However, it has been a long time since the conceptual
problems associated with these hypothetical strange objects have challenged the limits of
theoretical physics.
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Appendix A. Wave Function Time Evolution

In this appendix, we explicitly write the analytical expressions, for the computation of
Equation (42), and the various time functions which help to define state (44). Although
some of the following expressions were originally presented in [25], a re-organisation, and
introduction of new time functions, used to write Equation (44) justify the necessity to
provide the reader with their accurate modifications.

Wave Function in the New Coordinates

When the initial state
∣∣ψα

x0

〉
⊗
∣∣∣ψH

y0

〉
evolves in time, it defines a wave function that in

variables (Q1, Q2) is,

Ψ(Q1, Q2, t) =
(mPlωx

πh̄

)1/4
(

myωy

h̄
coth

(
2πωyGM

c3 + iωyt0

))1/4(
−Ω1Ω2

F1F3

)1/2

exp

[
−
(

Q2
1

2h̄
F2

F1
+

Q2
2

2h̄
F4

F3

)]

exp

[
−iα∗

√
2ω̃x

h̄

(
Ω1Q1 cos θ

F1
+

Ω2Q2 sin θ

F3

)]

exp

[
Ω2Q2 sin 2θ

2F1F3

(
Ω1Q1

h̄
− iα∗

√
2ω̃x

h̄
sinh Ω1t cos θ

)
(
ω̃y + ω̃x

)
]

(A1)

exp


− h̄ sin2 2θ sin Ω2t

8F 2
1F3

(
i
Ω1Q1

h̄
+ α∗

√
2ω̃x

h̄
sinh Ω1t cos θ

)2(
ω̃y + ω̃x

)2




exp

[
α∗2ω̃x

(
cos2 θ sinh Ω1t

F1
+

sin2 θ sin Ω2t
F3

)
− α∗2

2
− |α|

2

2

]
,

where

ω̃x =
ωx

cos2 2θ
ω̃y =

ωy

cos2 2θ
coth

(
2πωyGM

c3 + iωyt0

)
(A2)
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F1 =− iΩ1 cosh Ω1t + ω̃x cos2 θ sinh Ω1t + ω̃y sin2 θ sinh Ω1t,

F2 =−Ω2
1 sinh Ω1t− iΩ1ω̃x cos2 θ cosh Ω1t− iΩ1ω̃y sin2 θ cosh Ω1t,

F3 =− iΩ2 cos Ω2t + ω̃x sin2 θ sin Ω2t + ω̃y cos2 θ sin Ω2t,

− (ω̃y + ω̃x)
2 sin2 2θ

sinh Ω1t sin Ω2t
4F1

(A3)

F4 =Ω2
2 sin Ω2t− iΩ2ω̃x sin2 θ cos Ω2t− iΩ2ω̃y cos2 θ cos Ω2t

+ iΩ2(ω̃y + ω̃x)
2 sin2 2θ

sinh Ω1t cos Ω2t
4F1

.

When we reverse the coordinate transformation Ψ(Q1, Q2, t)→ Ψ(x, y, t), applying
transformations (43), we obtain the state defined in Equation (44), where,

F(t) =
(mPlωx

πh̄

)1/4
(

myωy

h̄
coth

(
2πωyGM

c3 + iωyt0

))1/4(
−Ω1Ω2

F1F3

)1/2
×

exp

[
α∗2ω̃x

(
cos2 θ sinh Ω1t

F1
+

sin2 θ sin Ω2t
F3

)
− α∗2

2
− |α|

2

2

]
×

exp

[
α∗2ω̃x(ω̃y + ω̃x)2 cos2 θ sin2 2θ sinh2 Ω1t sin Ω2t

4F 2
1F3

]
,

A(t) =
mPl
2h̄

[F2

F1
cos2 θ +

F4

F3
sin2 θ +

Ω1Ω2

2F1F3
(ω̃y + ω̃x) sin2 2θ
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Ω2
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4F 2

1F3

]
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B(t) =− iα∗
√

2mPlω̃x
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[
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F1
− Ω2 sin 2θ

2F3
− Ω2(ω̃y + ω̃x) sin2 2θ sinh Ω1t

4F1F3
(A4)
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]
,
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F4
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Ω1Ω2

2F1F3
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1F3
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E(t) =
sin 2θ
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√

mPlmy
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+
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.

Appendix B. Wigner Functions

In this appendix, we obtain the Wigner functions analytic expressions for the reduced
density matrices (47). In addition, we present the numerical simulations for the Wigner
function time evolution related to the black hole subsystem (moreover, for the Hawking
radiation subsystem the simulations display some similarity). The main idea is also to
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illustrate the effects of the displacement D̂(α) and squeeze Ŝ(ξ) operators, while Wigner
function evolves in time in phase space.

Black Hole and Hawking Radiation Wigner Functions

The Wigner function can be defined as,

WBh(x, p) =
1

πh̄

∫
dη

1
πh̄

∫
dη e−ipη/h̄ρBh

(
x +

η

2
, x− η

2

)
, (A5)

where, upon the substitution of ρBh by Equation (47), we get

WBh(x, p) =
1

πh̄

∫
dη e−ipη/h̄ρBh

(
x +

η

2
, x− η

2

)
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N1

πh̄

∫
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(
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(
x2 − η2

4

))
. (A6)

After some algebraic manipulation, we obtain

WBh(x, p) =
N1

πh̄
exp

(
−(2Re(A1)−|C1|)x2 + 2Re(B1)x

)
·

·
∫

dη exp
(
−(2Re(A1)−|C1|)

η2

4
+ i
(

2Im(A1)x− Im(B1)−
p
h̄

)
η

) , (A7)

WBh(x, p) =
2N1√

πh̄
√

2Re(A1)−|C1|
exp

(
−(2Re(A1)−|C1|)x2 + 2Re(B1)x

)
·

· exp
(
− (2Im(A1)x− Im(B1)− p/h̄)2

(2Re(A1)−|C1|)

) , (A8)

where 



A1 = A(t)− E2(t)
8Re(C(t))

B1 = B(t) +
Re(D(t))
Re(C(t))

E(t)
2

|C1| =
|E(t)|2

4Re(C(t))

N1 = |F(t)|2 exp
(

Re(D(t))
2Re(C(t))

)√
πh̄

myRe(C(t))

(A9)

Concerning the Hawking radiation, a similar procedure enable us to obtain the fol-
lowing Wigner function,

WHr(y, p) =
2N2√

πh̄
√

2Re(A2)−|C2|
exp

(
−(2Re(A2)−|C2|)y2 + 2Re(B2)y

)
·

· exp
(
− (2Im(A2)y− Im(B2)− p/h̄)2

(2Re(A2)−|C2|)

) (A10)
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where 



A2 = C(t)− E2(t)
8Re(A(t))

B2 = D(t) +
Re(B(t))
Re(A(t))

E(t)
2

|C2| =
|E(t)|2

4Re(A(t))

N2 = |F(t)|2 exp
(

Re(B(t))
2Re(A(t))

)√
πh̄

myRe(A(t))

(A11)

In Figure A1 we display the time evolution for function WBh(x, p) in the interval
t ∼ [0, 40], which is related to Figure 2. This time interval can approximately be taken
as measuring one full cycle of ‘oscillation’ for the black hole state, i.e., the average time
required for the state to return to its initial configuration. Inspecting the aforementioned
figure, we can notice that the initial state Wigner function (first left panel of the figure)
describes a coherent state

∣∣ψα
x0

〉
, which is displaced from the origin of phase space, since

∣∣ψα
x0

〉
= D̂(α)|0〉 , (A12)

in agreement with Equation (29). After some time has elapsed (top right panel of the
figure), the Wigner function starts to squeeze, in the density plot, deforming its initial
circular shape to an elliptical one. This illustrates the action of the squeeze operator Ŝ(ξ),
besides the displacement around the origin of phase space. Finally, we can observe that
a full rotation of the displacement center point occurs around the origin of phase space,
while various degrees of squeezing affect the shape of the state.
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Figure A1. Time evolution of the black hole state Wigner function, with mPl = h̄ = ωx = x0 = 1;
p0 = −1. The coupling parameter which defines the back reaction is µ = 1.01, with ωy = ωx × 105/2

and my = mPl × 10−5. We verify that, throughout the various stages of the evolution (corresponding
to the various panels), the action of the operators D̂(α) (displacement operator) and Ŝ(ξ) (squeeze
operator), produces a full rotation of the displacement center point of the initial Wigner function
around the origin of phase space, while various degrees of squeezing affect the shape of the state.
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21. Nǎstase, H. Introduction to the AdS/CFT Correspondence; Cambridge University Press: Cambridge, UK, 2015. [CrossRef]
22. Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black holes: Complementarity or firewalls? J. High Energy Phys. 2013, 2013, 62.

[CrossRef]
23. Polchinski, J. The Black Hole Information Problem. In Proceedings of the Theoretical Advanced Study Institute in Elementary

Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, USA, 1–26 June 2015; pp. 353–397. [CrossRef]

276



Universe 2021, 7, 297

24. Harlow, D. Jerusalem Lectures on Black Holes and Quantum Information. Rev. Mod. Phys. 2016, 88, 015002. [CrossRef]
25. Kiefer, C.; Marto, J.; Vargas Moniz, P. Indefinite oscillators and black-hole evaporation. Annalen Phys. 2009, 18, 722–735.

[CrossRef]
26. Lapchinsky, V.G.; Rubakov, V.A. Canonical Quantization of Gravity and Quantum Field Theory in Curved Space-Time. Acta

Phys. Polon. B 1979, 10, 1041–1048.
27. Halliwell, J.J.; Hawking, S.W. Origin of structure in the Universe. Phys. Rev. D 1985, 31, 1777–1791. [CrossRef]
28. Banks, T. TCP, quantum gravity, the cosmological constant and all that... Nucl. Phys. B 1985, 249, 332–360. [CrossRef]
29. Barvinsky, A. Perturbative quantum cosmology: The probability measure on superspace and semiclassical expansion. Nucl. Phys.

B 1989, 325, 705–723. [CrossRef]
30. Arnowitt, R.; Deser, S.; Misner, C.W. Dynamical Structure and Definition of Energy in General Relativity. Phys. Rev. 1959,

116, 1322–1330. [CrossRef]
31. Dirac, P.A.M. Lectures on quantum mechanics. In Belfer Graduate School of Science Monographs Series; Belfer Graduate School of

Science: New York, NY, USA, 1964; Volume 2, pp. v + 87.
32. Kiefer, C.; Sandhoefer, B. Quantum Cosmology; NNSA: Washington, DC, USA , 2008.
33. Kiefer, C. Conceptual Problems in Quantum Gravity and Quantum Cosmology. ISRN Math. Phys. 2013, 2013, 509316. [CrossRef]
34. Barvinsky, A.O.; Kiefer, C. Wheeler-DeWitt equation and Feynman diagrams. Nucl. Phys. B 1998, 526, 509–539. [CrossRef]
35. Demers, J.G.; Kiefer, C. Decoherence of black holes by Hawking radiation. Phys. Rev. D 1996, 53, 7050–7061. [CrossRef] [PubMed]
36. Kiefer, C. Hawking radiation from decoherence. Class. Quantum Gravit. 2001, 18, L151–L154. [CrossRef]
37. Müller-Kirsten, H.J.W. Introduction to Quantum Mechanics, 2nd ed.; World Scientific: Singapore, 2012. [CrossRef]
38. Kramer, T.; Moshinsky, M. Tunnelling out of a time-dependent well. J. Phys. A Math. Gen. 2005, 38, 5993–6003. [CrossRef]
39. Grishchuk, L.P.; Sidorov, Y.V. Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev. D 1990,

42, 3413–3421. [CrossRef]
40. Page, D.N. Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Phys. Rev. D

1976, 13, 198–206. [CrossRef]
41. Page, D.N. Particle Emission Rates from a Black Hole. 2. Massless Particles from a Rotating Hole. Phys. Rev. 1976, D14, 3260–3273.

[CrossRef]
42. Page, D.N. Particle Emission Rates from a Black Hole. 3. Charged Leptons from a Nonrotating Hole. Phys. Rev. 1977,

D16, 2402–2411. [CrossRef]
43. Page, D.N. Average entropy of a subsystem. Phys. Rev. Lett. 1993, 71, 1291–1294. [CrossRef]
44. Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [CrossRef]
45. Alonso-Serrano, A.; Visser, M. Entropy/information flux in Hawking radiation. Phys. Lett. B 2018, 776, 10–16. [CrossRef]
46. Page, D.N. Time Dependence of Hawking Radiation Entropy. JCAP 2013, 1309, 028. [CrossRef]
47. Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666–669. [CrossRef] [PubMed]
48. Wehrl, A. General properties of entropy. Rev. Mod. Phys. 1978, 50, 221–260. [CrossRef]
49. Wehrl, A. On the relation between classical and quantum-mechanical entropy. Rep. Math. Phys. 1979, 16, 353–358. [CrossRef]
50. Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [CrossRef]
51. Rosu, H.; Reyes, M. Shannon-Wehrl entropy for cosmological and black hole squeezing. Int. J. Mod. Phys. 1995, D4, 327–332.

[CrossRef]
52. ’t Hooft, G. The Scattering matrix approach for the quantum black hole: An Overview. Int. J. Mod. Phys. 1996, A11, 4623–4688.

[CrossRef]
53. ’t Hooft, G. Virtual Black Holes and Space-Time Structure. Found. Phys. 2018, 48, 1134–1149. [CrossRef]
54. Bonnor, W.B. The gravitational field of light. Commun. Math. Phys. 1969, 13, 163–174. [CrossRef]
55. Aichelburg, P.C.; Sexl, R.U. On the gravitational field of a massless particle. Gen. Relativ. Gravit. 1971, 2, 303–312. [CrossRef]
56. Wang, H.; Wang, J. The nonequilibrium back-reaction of Hawking radiation to a Schwarzschild black hole. Adv. High Energy

Phys. 2020, 2020, 9102461 . [CrossRef]
57. Marolf, D.; Maxfield, H. Observations of Hawking radiation: the Page curve and baby universes. J. High Energy Phys. 2021, 272.

[CrossRef]
58. Gautason, F.F.; Schneiderbauer, L.; Sybesma, W.; Thorlacius, L. Page curve for an evaporating black hole. J. High Energy Phys.

2020, 91. [CrossRef]
59. Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y. The Page curve of Hawking radiation from semiclassical geometry. J. High

Energy Phys. 2020, 149. [CrossRef]

277





universe

Review

Classical and Quantum f (R) Cosmology: The Big Rip, the
Little Rip and the Little Sibling of the Big Rip

Teodor Borislavov Vasilev 1,* , Mariam Bouhmadi-López 2,3 and Prado Martín-Moruno 1

Citation: Borislavov Vasilev, T.;

Bouhmadi-López, M.; Martín-

Moruno, P. Classical and Quantum

f (R) Cosmology: The Big Rip, the

Little Rip and the Little Sibling of the

Big Rip. Universe 2021, 7, 288.

https://doi.org/10.3390/

universe7080288

Academic Editor: Antonino Del

Popolo

Received: 29 June 2021

Accepted: 29 July 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Física Teórica and IPARCOS, Universidad Complutense de Madrid, 28040 Madrid, Spain;
pradomm@ucm.es

2 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; mariam.bouhmadi@ehu.eus
3 Department of Theoretical Physics, University of the Basque Country, UPV/EHU, P.O. Box 644,

48080 Bilbao, Spain
* Correspondence: teodorbo@ucm.es

Abstract: The big rip, the little rip and the little sibling of the big rip are cosmological doomsdays
predicted by some phantom dark-energy models that could describe the future evolution of our
universe. When the universe evolves towards either of these future cosmic events, all bounded
structures and, ultimately, space–time itself are ripped apart. Nevertheless, it is commonly believed
that quantum gravity effects may smooth or even avoid these classically predicted singularities. In
this review, we discuss the classical and quantum occurrence of these riplike events in the scheme
of metric f (R) theories of gravity. The quantum analysis is performed in the framework of f (R)
quantum geometrodynamics. In this context, we analyze the fulfilment of the DeWitt criterion for the
avoidance of these singular fates. This review contains as well new unpublished work (the analysis
of the equation of state for the phantom fluid and a new quantum treatment of the big rip and the
little sibling of the big rip events).

Keywords: quantum cosmology; quantum geometrodynamics; Wheeler-DeWitt equation; extended
theories of gravity; dark energy singularities

1. Introduction

The discovery that our universe is currently undergoing an accelerated expansion
phase has supposed an inflexion point in our understanding of the physics of the cosmos.
Even though this acceleration was first noticed more than 20 years ago [1,2], its mysteries
are still not yet fully unraveled. On the contrary, understanding the mechanism involved
in this phase represents one of the greatest milestones in modern cosmology. This behavior
is so challenging because no form of matter we know from our ordinary experience can
actually produce this phenomenon. In general relativity (GR), this phase is attributed
to the existence of an exotic form of energy with a negative pressure that causes the
repulsion of the matter content and, thus, pushes the universe into expansion. This exotic
content is dubbed “dark energy” (DE). The simplest DE model, and still the one which
best fits the observational data, is the standard ΛCDM theory, where DE plays the role
of a cosmological constant. Nevertheless, this model contains various theoretical and
observational unresolved puzzles. To mention some of them: the nature of dark matter
(DM) and DE [3–7], the coincidence problem [8], the cosmological constant problem [9]
and the new tensions in certain cosmological parameters. (For a review of the topic see,
for instances, references [10,11] and references therein.) Therefore, one may expect the
ΛCMD paradigm to be just a useful effective model. Hence, a great number of alternative
models for DE describing the acceleration phase have been proposed. Some models are
phantom DE [12,13], tachyonic matter [14,15], Chaplygin gas [16,17], holographic DE [18]
and scalar fields in the form of quintessence [19,20] and k-essence [21], among other
examples. Alternatively, the current cosmological expansion could be described not by
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the inclusion of new exotic content but with suitable modifications to the underlying
theories of gravity. In that sense, modified theories of gravity provide an interesting
framework for cosmologists. Some examples of this approach are Horndeski theories [22]
(see also, e.g., reference [23]), Gauss-Bonnet gravity [24,25], f (R) theories of gravity [26]
(see also references [27–29]), f (R, T ) gravity [30], where T stands for the trace of the energy
momentum tensor, f (T) modified teleparallel gravity [31], being T the torsion scalar, and
modified symmetric teleparallel f (Q) theories of gravity [32], where Q denotes the non-
metricity scalar. (See, for example, references [33–36] and references therein for a review of
the state of the art.)

From a practical perspective, whatever the origin of DE may be, it can be described
effectively by its equation of state (EoS) parameter. That is the ratio w between the pressure
and energy density of the DE, or the effective pressure and energy density in the case of
modified theories of gravity. Hence, observational constraints on w are crucial to unveil
possible hints on the true nature of this exotic content. In this fashion, the cosmologi-
cal data currently available constrain w to a very narrow band around −1 [37,38], see
also [39–45]. Accordingly, the possibility of the expansion of the universe being fueled
by phantom-type DE (w < −1) is not observationally excluded. Furthermore, it is even
suggested by some data [46] and could help to alleviate the H0 tension (see, for instance,
references [47,48]). Nevertheless, considering phantom DE may entail some future cosmo-
logical singularities. (See reference [49] for counterexample.) All bounded structures in the
universe and, ultimately, the fabric of space–time itself might be torn apart at a final big rip
(BR) singularity [50]. Moreover, the universe could reach this singularity in a finite time
from present epoch, resulting in a moment at which the size of the observable universe,
the Hubble rate and its cosmic time derivative would diverge. On the other hand, for a
phantom DE model with a w parameter converging sufficiently rapidly to the cosmological
constant value (w = −1), the occurrence of a future singularity may be infinitely delayed
in time [51]. In that case, the singularity is called an abrupt cosmic event. This is precisely
the case of the little rip (LR) abrupt event [52,53] (see also [51,54]), where the scale factor,
the Hubble rate and its cosmic time derivative explode at the infinite asymptotic future.
Therefore, this abrupt event can be understood as a BR singularity that has been postponed
indefinitely. Another characteristic abrupt event of phantom DE models is the little sibling
of the big rip (LSBR). In this scenario, the size of the observable universe and the expansion
rate grow infinitely but the cosmic time derivative of the Hubble parameter converges to a
constant value [55]. It should be noted, however, that even though these abrupt events take
place at the infinite distant future, bounded structures are destroyed in a finite time [51,55].
See a brief summary of the phenomenology of these riplike doomsdays in Table 1. (See
also references [56,57] for observational constraints on some phantom DE models leading
the expansion towards these events.)

The BR singularity, and the LR and the LSBR abrupt events are, in fact, intrinsic to
phantom DE models. Nevertheless, a dark fluid could also induce the appearance of other
cosmic singularities. For example, a phantom-dominated universe could also reach a big
freeze singularity (BF) [58,59], where the scale factor reaches a maximum size at which the
Hubble rate and its cosmic time derivative diverge. (See also references [60–62] for other
examples of cosmological singularities and references [63–65] for a detailed classification
of DE singularities in cosmology.) However, it is commonly believed that a consistent
quantum description of the universe may prevent the appearance of classical singularities,
see references [66,67] (see also [64,65,68–71]).

The quantum fate of classical singularities can be addressed in the setup of quantum
cosmology: the application of quantum theory to the universe as a whole. Previous works
in this framework have shown that the aforementioned phantom riplike cosmological
doomsdays, among other singularities such as the big bang, can be avoided as a result of
quantum effects emerging as the universe approaches the classical singularity [66,72,73].
However, since the same classical background evolution can be equivalently described
in the context of GR or by alternative theories of gravity, it is natural to wonder whether
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these singularities are still avoided in the quantum realm for a different underlying theory
of gravity. In this work, we gather and review the so far published results about the
classical and quantum occurrence of these three riplike events when the description of
gravity is that provided by f (R) metric theories of gravity. For that purpose, we shall focus
on the quantum cosmology scheme given by the Wheeler-DeWitt (WDW) equation [74]
being adapted for the case of f (R) gravity [75], namely f (R) quantum geometrodynamics.
Consequently, we explore here the possibility of avoiding the BR singularity, and the LR
and the LSBR abrupt events in f (R) quantum cosmology.

This manuscript is organized as follows. In Section 2, we review some phantom DE
models predicting the classical appearance of future singularities and/or abrupt events. We
also provide a new classification of the cosmic singularities and abrupt events found there.
Moreover, we discuss the viability of those models from the point of view of cosmological
observations. In Section 3, we consider that the classical background evolution found in the
previous section can be equivalently described in the framework of metric f (R) theories of
gravity, where in the latter case the expansion of the universe will have a purely geometrical
origin. For that aim, we briefly discuss a reconstruction method for metric f (R) theories of
gravity. Thereafter, in Sections 3.1–3.3, we apply this background reconstruction technique
to the specific phantom DE models reviewed in Section 2. Thus, we present the group of
metric f (R) theories of gravity predicting a classical fate à la BR, LR or LSBR. Section 4
is entirely devoted to the revision of the fate of classical singularities in f (R) quantum
cosmology. Therefore, we summarize the f (R) quantum geometrodynamics approach in
Section 4.1. Then, the resolution of the modified Wheeler-DeWitt equation corresponding
to the BR, LR and LSBR doomsdays is addressed in Sections 4.2–4.4, respectively. We also
discuss there the avoidance of these cosmological catastrophes by means of the DeWitt
criterion. Finally, we check the validity of the approximations performed to solve the
modified Wheeler–DeWitt equations in Appendices A and B.

Table 1. Classification of the riplike cosmic events by means of the time of occurrence of the rip trip,
the scale factor a, the Hubble parameter H and its cosmic time derivative Ḣ. Please note that the
pseudorip has been included for the sake of completeness, as this corresponds to a mild event (before
which all bounded structures are disintegrated) rather than to a curvature singularity.

trip a H Ḣ

Big rip Finite ∞ ∞ ∞
Little rip ∞ ∞ ∞ ∞
LSBR ∞ ∞ ∞ Finite
Pseudorip ∞ ∞ Finite Finite

2. A Phantom Dark-Energy Universe

Throughout this review we consider homogeneous and isotropic cosmological sce-
narios, which are described by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric
given by

ds2 = −dt2 + a(t)2ds2
3, (1)

where t stands for the cosmic time, a represents the scale factor, ds2
3 denotes the three-

dimensional spatial metric and we have used the geometric unit system 8πG = c = 1.
Assuming the content of the universe to be described by a perfect fluid with energy density
ρ and pressure p, the Friedmann and Raychaudhuri equations are

H2 =
1
3

ρ− k
a2 , (2)

Ḣ + H2 =− 1
2

(
p +

ρ

3

)
, (3)
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respectively, where the dot denotes the derivative with respect to the cosmic time t, H
stands for the Hubble rate and k represents the spatial curvature (not fixed at this point).
Within the standard interpretation of the observational data, the cosmic fluid at present
is constituted by three species: radiation, matter (baryonic and dark) and dark energy.
The present concentrations of matter and dark energy are roughly ΩM,0 = 0.315 and
ΩDE,0 = 0.685, respectively, whereas the contribution of radiation to the total content of the
universe is negligible at the present time [37,38]. Therefore, DE is the dominant ingredient
today. Moreover, because we aim to study the asymptotic future expansion of the universe,
we assume that the DE density increases, remains constant or decreases more slowly than
the non-relativistic matter energy density and the spatial curvature term k/a2. Thus, from
a practical point of view, we can neglect the contribution of the other cosmic ingredients
when studying the future asymptotic behavior of these models. Consequently, hereafter p
and ρ denote the pressure and the energy density of the dark fluid. Then, the DE density
evolves as

ρ̇ + 3H(p + ρ) = 0. (4)

To evaluate the future fate of a DE dominated universe in the perfect fluid repre-
sentation, an equation of state (EoS) for the dark fluid must be provided. We emphasize
that presently observational data are compatible with the w = −1 value, though there is
a significantly overlap with both possibilities w < −1 and w > −1. On the other hand,
from a theoretical point of view, the value −1 in the w-axis represents a qualitative change
in the properties of DE, as well as in the future evolution of the universe. Therefore, the
cosmological constant case (w = −1) seems to play a special role from both theoretical and
observational perspectives. Then, let us begin with a brief review of the phenomenology
of the following EoS for the DE content, which is reminiscent of an expansion around a
cosmological constant,

p = −ρ− Aρα, (5)

being A a positive constant1. This equation of state was first introduced in references [64,68]
and thoroughly discussed in terms of singularity occurrence in reference [52]. In this
section, of the manuscript, we review the analysis performed in reference [52] and present
a novel alternative classification of the singularities there found by means of the behavior
of the scale factor a, the Hubble rate H and its cosmic time derivative Ḣ. That is a metric
classification such as the one presented in [65]. (See also the characterization given in [64]
and the study on cosmic singularities presented in references [76,77].) We argue for the
need for such a classification, instead of only addressing the evolution of the scale factor
a and the DE density ρ, since different cosmic events such as the LR and LSBR cannot be
differentiated in the latter picture.

From the continuity Equation (4) it follows that the DE density evolves as

ρ = ρ0

[
1 +

3(1− α)A
ρ1−α

0

ln
(

a
a0

)] 1
1−α

, (6)

for α 6= 1, and

ρ = ρ0

(
a
a0

)3A
, (7)

for the case of α = 1, where the subscript “0” denotes the current value of the corresponding
quantity. In either case, the EoS parameter w reads

w = −1− A

ρ1−α
0 + 3(1− α)A ln

(
a
a0

) . (8)

282



Universe 2021, 7, 288

Note that for a non-negative parameter A, the denominator in the r.h.s. in Equation (8) is
always positive2, whatever the value of α. Thus, the DE content modelled by the EoS (5)
exhibits a phantom-like behavior when the parameter A is positive. Please note that this
can be also seen directly from Equation (4) for an expanding (H > 0) universe.

On the other hand, note that α = 1 and α = 1
2 are special values on the α-line that

delimited qualitatively alike cosmological behaviors [52]. This can be deduced from the
time dependence of the scale factor obtained from Equations (2) and (6). This is [52]

ln
(

a
a0

)
=

2
√

ρ0

3A

{[
1 +

3A
2
√

ρ0
ln
(

a?
a0

)]
exp

(√
3A
2

(t− t?)

)
− 1

}
, (9)

for the case of α = 1
2 , and [52]

ln
(

a
a0

)
=

1
3(α− 1)ρα−1

0 A





1−
[

B−
√

3
2

(2α− 1)ρα− 1
2

0 A(t− t?)

] 2(α−1)
2α−1





, (10)

for α 6= 1
2 and α 6= 1, and

a
a0

=

[(
a?
a0

)− 3A
2
−
√

3ρ0

2
A(t− t?)

]− 2
3A

, (11)

for α = 1. B is a constant defined as

B :=
[

1 + 3(1− α)ρα−1
0 A ln

(
a?
a0

)] 2α−1
2(α−1)

, (12)

where we have denoted by t? some arbitrary (future) moment in the expansion history
of the universe from which we can safely neglect the contribution of matter fields and,
therefore, assume that DE is the only content of the cosmos. In addition, a? represents
the corresponding scale factor. Therefore, when α = 1

2 the scale factor asymptotically
approaches a double exponential growth on the cosmic time. However, for α > 1

2 , it
evolves as some function of ts − t, being ts the time of occurrence of the corresponding
singularity. Moreover, the expression for ts depends on the value of α. Hence, for the sake
of the discussion, we proceed to summarize the main results found in [52] for each case.
Those are: α > 1, α = 1, 1

2 < α < 1, α = 1
2 and α < 1

2 . Additionally, to the conclusion
presented in [52], we also compute the corresponding H and Ḣ variables in each case. This
allows us to provide a complementary classification of the cosmic events found in [52]
similar to that introduced in reference [65], see Table 2.

For the case of α > 1, the universe reaches a maximum size given by

amax := a0 exp

(
1

3(α− 1)ρα−1
0 A

)
. (13)

Furthermore, this size is reached in a finite time into the future

ts := t? +
2B

√
3(2α− 1)ρα− 1

2
0 A

. (14)

At that moment, the Hubble rate and its comics time derivative diverge, since

283



Universe 2021, 7, 288

H =

√
ρ0

3

[√
3

2
(2α− 1)ρα− 1

2
0 A(ts − t)

]− 1
2α−1

, (15)

Ḣ =
ρα

0 A
2

[√
3

2
(2α− 1)ρα− 1

2
0 A(ts − t)

]− 2α
2α−1

. (16)

This asymptotic behavior corresponds to the occurrence of a BF singularity [58,59] (see also
reference [76]). That is a type III singularity in the notation of [64].

The case of α = 1 corresponds to a constant EoS parameter w = −1− A. Accordingly,
the size of the observable universe becomes infinite at a finite time from present epoch,
namely trip. This is

trip := t? +
2√

3ρ0 A

(
a?
a0

)− 3A
2

, (17)

see Equation (11). Furthermore, given that

H =
2

3A
(
trip − t

) , (18)

Ḣ =
2

3A
(
trip − t

)2 , (19)

the Hubble rate and its cosmic time derivative also diverge at t = trip. Therefore, for
this value of α, the universe evolves towards a classical BR singularity, alike to that first
introduced in [12,13,50]. This corresponds to a type I singularity according to the notation
in reference [64].

On the other hand, for 1
2 < α < 1, the scale factor diverge at finite cosmic time,

see Equation (10) where the ratio 2(α− 1)/(2α− 1) is now negative. This makes the ln a
proportional to some power of 1/(trip − t). The time at which the observable universe
becomes infinite is

trip := t? +
2B

√
3(2α− 1)ρα− 1

2
0 A

. (20)

The Hubble rate and its time derivative follows the same relations given in Equations (15)
and (16), respectively. Hence, these quantities also diverge along with the scale factor.
Therefore, in a finite time into the future, the scale factor, the Hubble rate and Ḣ explode,
whereas the EoS parameter w converges to −1 from below. Of course, this implies that
the DE density and pressure blow up, as was found in [52]. This event is qualitatively
equivalent to a BR singularity (see the singularities classified as type I in, for example,
references [63–65]). Please note that this behavior was also found in reference [76], where it
was dubbed “grand rip” (see type −1 singularities in reference [77]).

Another possible choice for α corresponds to the interesting case of α = 1
2 . In this sce-

nario, the scale factor asymptotically evolves as an exponential function of an exponential
function on the cosmic time, i.e., a ≈ eet

, see Equation (9). Accordingly, the Hubble rate
and its cosmic time derivative are

H(t) =
√

ρ0

3

(
1 +

3A
2
√

ρ0
ln

a?
a0

)
exp

[√
3

2
A(t− t?)

]
, (21)

Ḣ(t) =
A
2
√

ρ0

(
1 +

3A
2
√

ρ0
ln

a?
a0

)
exp

[√
3

2
A(t− t?)

]
. (22)

284



Universe 2021, 7, 288

Thus, the scale factor, H, and Ḣ diverge at the infinite asymptotic future. This drives the
universe towards a LR abrupt event, see classification in [63,65]. (See also reference [53].)
In fact, the EoS (5) with α = 1

2 corresponds to the DE model for which the name ”little
rip” was first given [51], even though this cosmological behavior was already known from
before [52] (see also [53] where the LR was found in brane cosmology and before that in
some modified theories of gravity [78]).

Finally, for the case of α < 1
2 , the scale factor obeys the relation given in Equation (10).

However, since now the ratio 2(α − 1)/(2α − 1) is positive, then the equation for ln a
reduces to a certain polynomial on the cosmic time. This makes the expansion of the
observable universe to last indefinitely. Hence, no finite time singularities are present in
this case. The Hubble rate and its cosmic time derivative read

H =

√
ρ0

3


B +

√
3(1− 2α)A

2ρ
1
2−α
0

(t− t?)




1
1−2α

, (23)

Ḣ =
A
2

ρα
0


B +

√
3(1− 2α)A

2ρ
1
2−α
0

(t− t?)




2α
1−2α

. (24)

For 0 < α < 1
2 , both quantities tend to infinity at the infinite asymptotic future, thus,

leading to the occurrence of a LR abrupt event. On the contrary, Ḣ remains constant for
α = 0, or shrinks to zero when α < 0. This behavior corresponds to a final fate à la LSBR,
see reference [55]. Please note that since the DE density grows unbounded in both abrupt
events, the LR and the LSBR, see Equation (6), this distinction could not be done analyzing
only the asymptotic behavior of a and ρ. Additionally note that given some entire number
n, all the higher order derivatives of H up to the n-th order diverge when α = (n− 1)/2n.

Therefore, we conclude that the phantom DE model described by the EoS (5) with a
positive parameter A entails a great variety of cosmological singularities and abrupt events.
We summarized the results from reference [52] and our new findings here in Table 2. We
will present a more detailed analysis in another work.

Table 2. Classification of the singularities and abrupt events found for the phantom DE model given
by the general EoS (5), see reference [52], accordingly to the value of the parameter α, the time of
occurrence of the singular behavior ts, the Hubble rate H and its cosmic time derivative Ḣ. Please
note that since the BR and grand rip [76] singularities have qualitatively the same behavior in terms
of those quantities, we do not address the possible differences between both events in the following
classification. Hence, we keep the term “big rip” for both of them.

α ts a H Ḣ Event

1 < α Finite Finite ∞ ∞ Big freeze
1
2 < α ≤ 1 Finite ∞ ∞ ∞ Big rip
0 < α ≤ 1

2 ∞ ∞ ∞ ∞ Little rip
α ≤ 0 ∞ ∞ ∞ Finite LSBR

Cosmological Constraints

Since this review is mainly devoted to the analysis of the classical and quantum
fate of the BR, the LR and the LSBR events in metric f (R) theories of gravity, we should
now restrict our attention to some particular phantom DE models on which to apply the
reconstruction techniques in the next sections. Therefore, hereafter we shall consider only
the following phantom DE models when addressing the occurrence of these cosmic events:

• For the BR singularity we consider the phantom DE model with a constant EoS
parameter w < −1 [50]. This model corresponds to the choice of α = 1 in the more
general EoS (5) studied in the previous section.
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• For a DE model with a future LR abrupt event, we select the EoS for DE described in
reference [51], which corresponds to the case α = 1

2 in (5).
• For a universe doomed to evolve towards a LSBR abrupt event, we consider the DE

content to be described by the EoS (5) with α = 0. This LSBR was first introduced in
reference [55].

Note that the BR model here considered is just a subcase of the more general wCDM
scenario, which has been thoroughly analyzed in the literature (see, for example,
references [37–45], among others). More importantly, these specific phantom DE mod-
els have been shown to be compatible with the current observational data; see, for
instance, references [37–39,51,56,57,79]. Therefore, our own universe may evolve towards
some of these singular fates.

In the following, for the sake of concreteness, we shall consider the cosmological
constraints obtained in reference [57] when binding those DE models with observational
data. Thus, the results presented in the incoming sections are subjected to the observational
constraints on the parameter A presented in reference [57]. These constraints are summa-
rized in Table 3. Please note that the small values for A there obtained suggest that tiny
deviations from the ΛCDM scenario are, in fact, the observationally preferred situation
today [57]. Nevertheless, we recall that the asymptotic evolution of these DE models is not
that of a de Sitter universe, since the corresponding DE pressure and energy density do not
converge to a constant value but diverge. In the next section, we will obtain the group of
metric f (R) theories of gravity able to reproduce the same asymptotic expansion history,
which in GR corresponds to these particular phantom DE models.

Table 3. Best fit found in reference [57] for the phantom DE models discussed in Section 2, where A
is dimensionless for the case of the BR, and has units of inverse of meter and inverse of square meter
for the LR and LSBR models, respectively.

α A

BR 1 0.0276± 0.0240
LR 1

2 (2.75± 1.30)× 10−28

LSBR 0 (2.83± 4.17)× 10−54

3. Phantom Dark-Energy Models in f (R) Cosmology

For a given cosmological background evolution it is possible to find a family of alter-
native theories of gravity that leads to the same expansion history. The group of techniques
used to perform such a background “reconstruction” task are dubbed as “reconstruction
methods” (for a review of the topic see, for instance, reference [80] and references therein).
In this part of the review, we shall focus our attention on reconstruction methods within
the scheme of metric f (R) theories of gravity. Hence, we look for a metric f (R) theory of
gravity able to reproduce the same superaccelerated expansion profile to that of the general
relativistic model filled with phantom DE with the EoS (5), for the values of α selected in
Section 2. It is worth noting that whereas in GR the accelerated phase is attributed to the
existence of an exotic form of energy with a negative pressure (DE), in the setup of f (R)
theories of gravity the same expansion has a rather geometrical origin. Furthermore, as
the general relativistic model with the EoS (5) expands the cosmos towards some future
doomsdays, then the resulting metric f (R) theory of gravity will lead to the same classical
fate. For previous works on reconstruction techniques in f (R) gravity see, for instance,
references [80–86]. See also references [87–91] for successful reconstruction of phantom
DE-driven riplike events in metric f (R) theories of gravity.

Henceforth, we shall refer to two cosmological evolutions as equivalent at the back-
ground level if the corresponding geometrical variables H, Ḣ, R and Ṙ are identical [87]. In
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GR, the expansion of a homogeneous and isotropic universe is ruled by the Friedmann and
Raychaudhuri Equations (2) and (3), respectively. Accordingly, the scalar curvature reads

R = 6
(

Ḣ + 2H2 +
k
a2

)
= ρ− 3p, (25)

where ρ and p denotes the total energy density and pressure, respectively, these are
ρ = ρDE + ρM and p = pDE + pM. Later we will assume that they just correspond to
the DE component when the cosmic matter is diluted. Additionally, from the continuity
equation for the perfect fluid (4) and the Friedmann Equation (2), it follows

ρ̇ = −3(p + ρ)

(
1
3

ρ− k
a2

) 1
2
, (26)

ṗ = −3(p + ρ)

(
1
3

ρ− k
a2

) 1
2 dp

dρ
, (27)

where we have assumed p = p(ρ). Consequently, the cosmic time derivative of the scalar
curvature R reads

Ṙ = −3 (p + ρ)

(
1
3

ρ− k
a2

) 1
2
(

1− 3
dp
dρ

)
. (28)

On the other hand, for the gravitational interaction being that provided by metric
f (R) theories of gravity, the evolution of the universe is described by the action

S =
1
2

∫
d4x
√
−g f (R) + Sm, (29)

where Sm stands for the minimally coupled matter fields. In this framework, the field equa-
tions no longer coincide with (2) and (3). In fact, the modified Friedmann equation reads

3H2 d f
dR

=
1
2

(
R

d f
dR
− f

)
− 3HṘ

d2 f
dR2 − 3

k
a2 + ρm, (30)

being ρm the energy density of the minimally coupled matter fields. Since we are interested
in a metric f (R) theory able to reproduce the same background cosmological expansion as
a certain general relativistic model, then the preceding expression can be considered to be
a differential equation for some, a priori unknown, function f (R), where the coefficients
are already fixed, i.e., when the geometrical quantities involved in Equation (30) are set
to be equal to those of the GR model that we want to reproduce. Thus, the background
cosmological expansion of the resulting metric f (R) theory of gravity will be equivalent
to that provided by the general relativistic model. Furthermore, as we are interested on
the asymptotic future behavior of the universe, we can neglect the matter and spatial
curvature contribution in Equations (25) and (30), which will be (more) quickly redshifted
with the superaccelerated expansion. Therefore, we drop again the subindex DE for
the energy density and pressure. Hence, in the following sections we present the most
general solution to this reconstruction procedure when considering the EoS (5) for the
different values of α discussed in Section 2. Nevertheless, the obtained f (R) theories
must be understood as useful asymptotic models for the study of the behavior of the
universe near classical singularities, since a more realistic background reconstruction
would imply the non-cancellation of the matter and spatial curvature contribution in
Equations (25) and (30).
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3.1. BR Singularity in f (R) Gravity

For the BR singularity we considered the case of α = 1 in the DE general EoS (5).
This is

p = −(1 + A)ρ. (31)

For that specific value of α, the cosmic time derivative of the Hubble rate can be re-
expressed as

Ḣ =
3
2

AH2, (32)

compare Equations (18) and (19). Consequently, the scalar curvature and its cosmic time
derivative reduces to

R =3(4 + 3A)H2, (33)

Ṙ =9(4 + 3A)AH3. (34)

Therefore, the modified Friedmann Equation (30) reads

R2 fRR −
2 + 3A

6A
R fR +

4 + 3A
6A

f = 0, (35)

where we have used the notation fR := d f /dR and fRR := d2 f /dR2. The most general
solution for the function f (R) was already obtained in reference [87]. That is

f (R) = c+Rγ+ + c−Rγ− , (36)

being c+ and c− arbitrary integration constants and

γ± :=
1
2



1 +

2 + 3A
6A

±
√[

1 +
2 + 3A

6A

]2
− 2(4 + 3A)

3A



. (37)

In general, the parameter γ± may take complex values. However, for
{

A ≤ (10− 4
√

6)/3
}

∪
{

A ≥ (10 + 4
√

6)/3
}

, both branches are real valued. Please note that this is precisely the
case for the values of A showed in Table 3. Hence, when the observational constraints [57]
on the model are taken into account, both branches of the parameter γ± are real valued.

3.2. The LR in f (R) Gravity

For the LR abrupt event, we consider here the EoS (5) for DE with α = 1
2 in (5). This is

p = −ρ− A
√

ρ. (38)

Please note that for this choice of α, the Hubble rate in Equation (21) is an exponential
function on the cosmic time. Subsequently, its cosmic time derivative is proportional to
itself. Thus, for the sake of simplicity, we denoted by β that proportionality constant.
That is

Ḣ = βH, (39)

where we have defined

β :=

√
3

2
A. (40)
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The curvature scalar and its cosmic time derivative in terms of the Hubble rate are

R = 6H(β + 2H), (41)

Ṙ = 6βH(β + 4H). (42)

As noted in reference [88] (se also [91]), the modified Friedmann Equation (30) simplifies
when rewritten in terms of H. Thus, we need to solve

βH2(β + 4H) fHH −
[
4βH2 + H(β + H)(β + 4H)

]
fH + (β + 4H)2 f = 0, (43)

where fH := d f /dH, fHH := d2 f /dH2, and ρm and k has been neglected, as discussed
before. The most general solution to the above differential equation is [88]

f (H) =C1

(
H4 − 5βH3 + 2β2H2 + 2β3H

)
+ C2

[
βH
(

β2 + 4βH − H2
)

e
H
β

+
(

H4 − 5βH3 + 2β2H2 + 2β3H
)

Ei
(

H
β

)]
, (44)

being C1 and C2 integration constants and Ei the exponential integral function (see defini-
tion, e.g., in 5.1.2 of reference [92]). To obtain the final f (R) expression, the relation (41)
must be inverted. This is

H =
1

12

(
−3β±

√
9β2 + 12R

)
. (45)

At a first sight, it seems that this transformation may be non-univocally defined. However,
since the phantom DE density (6) increases with the expansion of the universe towards the
LR abrupt event, whereas the matter content is quickly diluted, then the corresponding
Hubble rate (21) and scalar curvature (41) also grow. Hence, only the positive branch in the
preceding expression applies. Therefore,

f (R) =c1

[
27β4 + 150β2R− β

(
9β2 + 12R

) 3
2
+ 2R2

]

+ c2

{
β

(
−3β2 − 2R + 9β

√
9β2 + 12R

)

×
(
−3β +

√
9β + 12R

)
exp

(
−1

4
+

1
4

√
1 +

4R
3β

)

+

[
27β4 + 150β2R− β

(
9β2 + 12R

) 3
2
+ 2R2

]
Ei

(
−1

4
+

1
4

√
1 +

4R
3β

)}
(46)

represents the most general family of metric f (R) theories of gravity predicting the occur-
rence of that specific LR abrupt event [88] (see also [91]). We recall that β, which depends
on the parameter A, is observationally constrained in Table 3.

3.3. The LSBR in f (R) Gravity

The selected DE model in this case corresponds to α = 0 in the EoS (5). That is

p = −ρ− A, (47)

where A takes the value showed in Table 3. In this scenario, see Equation (24), the cosmic
time derivative of the Hubble rate remains constant. Its value is given by

Ḣ =
A
2

. (48)
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Hence, the scalar curvature and its cosmic time derivative read

R = 12H2 + 3A, (49)

Ṙ = 12AH. (50)

Consequently, the modified Friedmann Equation (30) becomes

3A(R− 3A) fRR −
1
4
(R + 3A) fR +

1
2

f = 0, (51)

whose most general solution reads [90]

f (R) = c1

(
9A2 − 18AR + R2

)
+ c2

(
R− 3A

12A

) 3
2

1F1

(
−1

2
;

5
2

;
R− 3A

12A

)
, (52)

where c1 and c2 are integration constants and 1F1 is the confluent hypergeometric functions
or Kummer’s function, see definition in chapter 13 of reference [92]. See Table 3 for the
possible values of A we shall consider here.

3.4. Viability and Local System Tests

It is a well-known fact that local tests pose rather tight constraints on the metric
formulation of f (R) theories of gravity (see, for example, references [93–99]). Thus, any
candidate for a reliable alternative to GR should pass or, somehow, evade these low-
curvature-regime tests (see also [100–105] for an interesting discussion). However, the
metric f (R) models presented here were expressly built to reproduce a high curvature
regime very different from that of (an effective) ΛCDM. Please note that the contributions
of the matter (dark and baryonic) and the spatial curvature k to Equations (25) and (30)
have been de facto ignored. Therefore, the resulting f (R) theories obtained here must
be seen as useful asymptotic models for the theoretical evaluation of the quantum fate
of classical singularities rather than complete proposals for viable alternatives to GR at
all scales.

4. f (R) Quantum Geometrodynamics

Even though there is a lack of consensus on what is the correct quantum theory of
gravity, the application of ordinary quantum mechanics to the universe as a whole leads to
an interesting framework, known as quantum cosmology (for a review of the topic see, e.g.,
references [106,107]). Currently there are multiple proposals to quantize the cosmological
background. A non-exhaustive listing of different approaches to quantum cosmology is
string theory, loop quantum cosmology [108,109], causal dynamical triangulation [110–112]
and quantum geometrodynamics [74], among other examples (see also reference [106]).
Nonetheless, in this review we shall focus only on the latter approach, which corresponds,
in fact, to one of the first attempts to quantize cosmological backgrounds [74]. In the De-
Witt’s pioneering work [74], a quantization procedure for a closed Friedmann universe was
provided, leading to the first minisuperspace model in quantum cosmology. This quantum
cosmology is based on a canonical quantization with the Wheeler-DeWitt equation for
the wave function Ψ of the universe playing a central role [74,113,114]. The expression
minisuperspace stands for a cosmological model truncated to a finite number of degrees
of freedom. This nomenclature is derived from the usage of “superspace” to denote the
full infinite-dimensional configuration space of GR and the prefix “mini” for the truncated
versions. Moreover, DeWitt also proposed a criterion for the avoidance of classical singular-
ities within the quantum regime, namely the DW criterion. This is, the classical singularity
is potentially avoided if the wave function of the universe vanishes in the nearby configu-
ration space. This criterion is based on a generalization of the interpretation of the wave
function in ordinary quantum theory, where the wave function is the fundamental building
block for any observable. Consequently, regions of the configuration space that lay outside
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of the support of Ψ are, therefore, irrelevant in practice3. It should be noted, however, that
the non-vanishing of the wave function does not necessary entail a singularity. Therefore,
the DW criterion can only be a sufficient but not necessary criterion for the avoidance of
singularities. This criterion has been successfully applied in several cosmological scenarios,
see, e.g., references [65,66,71–73,89,90,115–117] among others.

4.1. Modified Wheeler-DeWitt

Following the ideas presented in reference [75], the Wheeler-DeWitt equation must
be adapted to the framework of f (R) theories of gravity. It is worthy to note that when
investigating the canonical quantization of an f (R) theory we are interpreting that theory
as a fundamental theory of gravity, rather than an effective framework coming from a
quantum gravity proposal. As this classical theory of gravity implies the occurrence of
singularities, one concludes that it must be quantized. In this section, we shall show how
the formalism of quantum geometrodynamics can be adopted to perform such quantization.
The resulting scheme is known as f (R) quantum geometrodynamics.

For the gravitational interaction being that provided by metric f (R) theories of gravity,
cosmological models can be described by the action

S =
1
2

∫
d4x
√
−g f (R), (53)

in the so-called Jordan frame. For a FLRW background metric, the above action reduces to

S =
1
2

∫
dt L(a, ȧ, ä), (54)

where the point-like Lagrangian reads

L(a, ȧ, ä) = V(3) a3 f (R), (55)

denoting by V(3) the spatial three-dimensional volume. Please note that metric f (R)
theories of gravity have an additional degree of freedom when compared with GR (see
Einstein’s and Jordan’s frame formulation in [118–121] and references therein). Conse-
quently, a new variable can be introduced for the canonical quantization of these alternative
theories of gravity. Furthermore, this new variable can be selected in such a way to remove
the dependence of the action (54) on the second derivatives of the scale factor. Hence,
following the line of reasoning presented in reference [75], we select the scalar curvature,
R, to be the new variable. Then, the action (54) becomes

S =
1
2

∫
dt L(a, ȧ, R, Ṙ). (56)

However, since the scalar curvature and the scale factor are not independent (at the classical
level), their relation needs to be properly introduced in the theory via a Lagrange multiplier,
µ, for the classical constraint R = R(a, ȧ, ä) given in Equation (25). Thence,

L = V(3)a3
{

f (R)− µ

[
R− 6

(
ä
a
+

ȧ2

a2 +
k
a2

)]}
. (57)

The Lagrange multiplier can be determined by varying the action with respect to the scalar
curvature. This leads to

µ = fR(R). (58)
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Accordingly, the point-like Lagrangian (57) can be reformulated as

L(a, ȧ, R, Ṙ) = V(3)
{

a3
[

f (R)− R fR(R)
]
− 6a2 fRR(R)ȧṘ + 6a fR(R)(k− ȧ2)

}
. (59)

For the sake of the quantization procedure, the derivative part of the above point-like
Lagrangian can be diagonalized by the introduction of a new set of variables [75]. These are

q := a
√

R?

(
fR
fR?

) 1
2
, (60a)

x :=
1
2

ln
(

fR
fR?

)
, (60b)

being R? a constant needed for the change of variables to be well-defined. There are differ-
ent proposals among the existing literature for the value of this constant, see, for instance,
references [75,89–91]. In this work we adopt the convention discussed in reference [91],
where R? is defined as the value of the curvature scalar evaluated at some future scale
factor a = a? on which the description of the universe by means of DE only becomes
appropriate. That is

R? := R(a, ȧ, ä)
∣∣∣
a=a?

, (61)

where R(a, ȧ, ä) obeys the classical relation (25). Furthermore, for the sake of concreteness,
we can safely assume a? = 100a0 hereafter. Since at that moment in the expansion the
matter content will be diluted by a factor of 10−6 with respect to the present concentration
and, therefore, ΩDE ≈ 1. Please note that from this definition it follows R > R?, since the
scalar curvature asymptotically approaches an increasing function with the expansion of
the universe. For different definitions of R? see references [75,89,90]. In these new variables,
Equation (59) transforms into

L(q, q̇, x, ẋ) = V(3)
(

R? fR
fR?

)− 3
2
q3

[
f − 6 fR

q̇2

q2 − R fR + 6 fR ẋ2 + 6k
R?

fR?

f 2
R

q2

]
, (62)

where f and fR are now understood as functions of x. This form of the Lagrangian is
already suitable for the quantization procedure.

Since the kinetic part of the point-like Lagrangian has been diagonalized, the deriva-
tion of the corresponding Hamiltonian is straightforward. The conjugate momenta are

Pq =
∂L
∂q̇

= −12V(3)R
− 3

2
? f

3
2

R?
f−

1
2

R qq̇, (63)

Px =
∂L
∂ẋ

= 12V(3)R
− 3

2
? f

3
2

R?
f−

1
2

R q3 ẋ. (64)

Then, the corresponding Hamiltonian reads

H = −V(3)q3
(

R? fR
fR?

)−3/2
{

f + 6k
R?

fR?

f 2
R

q2 − R fR +
6R3

?

(12)2V2
(3) f 3

R?

f 2
R

q4

[
P2

q −
P2

x
q2

]}
. (65)

For the quantization of the theory, we assume the procedure

Pq →− ih̄
∂

∂q
, (66)

Px →− ih̄
∂

∂x
. (67)
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Therefore, the Hamiltonian (65) of the classical system is promoted to a quantum operator.
Consequently, the classical Hamiltonian constraint becomes the modified Wheeler-DeWitt
(mWDW) equation for the wave function Ψ of the universe [74,75,106]. That is

ĤΨ = 0. (68)

After simple manipulations, the preceding expression can be cast in the form of the hyper-
bolic differential equation [75]

[
h̄2q2 ∂2

∂q2 − h̄2 ∂2

∂x2 −V(q, x)
]

Ψ(q, x) = 0, (69)

where the factor-ordering parameter has been set equal to zero. The effective potential
entering the preceding equation is given by

V(q, x) =
q4

λ2

(
k +

q2

6R? fR?

( f − R fR)e−4x
)

, (70)

being λ := R?/(12V(3) fR?). Please note that for a given f (R) expression, the variables q
and x are univocally fixed. Then, the relation in (60b) must be reversed to express f and
R fR in terms of x. However, this may not always be possible analytically, limiting the
non-numerical evaluation of the mWDW equation (69) to some suitable group of f (R)
theories. In the next sections, we will review the results for the wave function Ψ presented
in the literature when considering the f (R) expressions previously found by means of
the reconstruction techniques (see Sections 3.1–3.3). We recall that those metric f (R)
theories of gravity lead to the same asymptotic background expansion as their respective
general relativistic phantom DE models and, therefore, they predict (at the classical level)
singular cosmological behaviors. Accordingly, we will neglect the contribution of the
spatial curvature k in the effective potential (70) when studying the asymptotic fate of those
models, since it will be quickly redshifted with the superacceletared expansion.

Before proceeding further, we want to address some comments on the structure of
the mWDW equation (69). First, we want to emphasize the well-known ambiguity in the
factor ordering in Equation (69), i.e., we could have chosen a different factor ordering when
applying the quantization procedure on the Hamiltonian of the classical theory, which
could have led to a different wave function of the universe. According to reference [75], a
variation of the factor ordering affects only the pre-exponential factor of the semiclassical
wave function. Thus, the actual value of this parameter can be considered to be unimportant
for the evaluation of the DW criterion, which is the main goal of this review. In fact, the
DW criterion was found to be satisfied independently of the chosen factor ordering for
some particular models related to the topic of this review, see references [72,73,122,123].
On the other hand, note that the mWDW equation (69) is a globally hyperbolic differential
equation, i.e., the signature of the minisuperspace DeWitt metric,

GAB =

(
q2 0
0 −1

)
, (71)

is (+,−). This is quite different to what happens in GR when the DE content is described
by a minimally coupled phantom scalar field. In that case, the DeWitt metric has a positive
signature and, therefore, the WDW equation is of an elliptic type. Examples of these models
can be found, for instance, in references [66,71–73]. Additionally, a change of signature
in the WDW equation has also been noticed in the presence of non-minimally coupled
scalar fields [124]. Moreover, the change in the signature has implications in the imposition
of boundary conditions. Whereas the hyperbolic equation has a wave-like solution and,
therefore, a well-posed initial value problem, a perturbation in the initial or boundary
condition for an elliptic (or parabolic) equation will spread instantly over all the point in
that domain.
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4.2. The BR in f (R) Quantum Cosmology

In sight of the form of expression (37), only the negative branch gives the expected
limit to a de Sitter universe when the parameter A shrinks to zero. (On the contrary,
the exponent γ+ diverge when A vanishes) Since small deviations from the EoS of a
cosmological constant are the observationally preferred situation today [57] (see also
references [37–45], among others), hereafter we consider only the negative branch of the
solution presented in Equation (36). This is, we assume c+ = 0 in expression (36). Therefore,
in this section, we quantize a subclass of the more general family of metric f (R) theories of
gravity predicting the classical occurrence of a BR singularity. That is

f (R) = c−Rγ− . (72)

In the following of this section, we drop the subindex “-” for the sake of the notation
but keeping in mind that the preceding expression corresponds only to one of the two
independent solutions obtained from the reconstruction procedure. Additionally, note that
cosmological constraints on the model [57] (see also references [37,38]) satisfy the condition
A ≤ (10− 4

√
6)/3 ≈ 0.067. Therefore, those constraints favor a real valued exponent in

Equation (72) [see discussion below Equation (37)]. Hence, hereafter we shall consider that
the aforementioned exponent is real for values of A of physical interest. Additionally, note
that the quantum fate of the BR singularity in f (R) gravity has already been studied in the
literature for some particular values for A, finding that the DW criterion can be satisfied,
see reference [89].

For the choice of the f (R) gravity in (72), the change of variables in Equation (60) reads

q =a
√

R?

(
R
R?

) γ−1
2

, (73a)

x =
1
2

ln
(

R
R?

)γ−1
. (73b)

Moreover, from the evolution equations for the Hubble rate and its cosmic time derivative,
and the definition adopted in expression (61), it follows that the constant R? is

R? = (4 + 3A)1003Aρ0. (74)

Accordingly, the effective potential (70) entering the mWDW equation (69) becomes

V(q, x) = −γ− 1
6λ2γ

e−Cxq6, (75)

where, for the sake of the calculation, we have adopted the notation

C := 2
γ− 2
γ− 1

. (76)

Thus, the mWDW equation (69) reads

[
h̄2q2 ∂2

∂q2 − h̄2 ∂2

∂x2 +
γ− 1
6λ2γ

e−Cxq6
]

Ψ(q, x) = 0. (77)

However, the dependence of the effective potential on the minisuperspace variables can be
simplified when considering the following change of variables [89] (see also reference [73])

q = r(z)θ, (78a)

x = z. (78b)
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Please note that this implies [73]

∂2

∂q2 =r−2 ∂2

∂θ2 , (79)

∂2

∂x2 =

(
r′

r

)2[
θ2 ∂2

∂θ2 + θ
∂

∂θ

]
− 2

r′

r
θ

∂

∂θ

∂

∂z
+

[(
r′

r

)2

− r′′

r

]
θ

∂

∂θ
+

∂2

∂z2 , (80)

Then, for the choice of r(z) = eCz/6, the potential term will only depend on θ [89]. Accord-
ingly, the mWdW equation (77) simplifies to

[(
1− C2

36

)
h̄2θ2 ∂2

∂θ2 − h̄2 ∂2

∂z2 +
C
3

h̄2θ
∂

∂θ

∂

∂z
− C2

36
h̄2θ

∂

∂θ
+

γ− 1
6λ2γ

θ6
]

Ψ(θ, z) = 0, (81)

where the factor 1− C2/36 is different from zero at least for the range of values for A of
our interest, i.e., A ≤ 0.067 [see discussion below Equation (72)]. Therefore, to analyze
whether the BR singularity is avoided in the quantum realm by means of the DW criterion,
we focus on solving the preceding equation for the wave function Ψ in the configuration
space near the singularity. As we do not expect the wave function to be peaked along
the classical trajectory in this regime, R and a may take completely independent values.
Therefore, to consider a region close to the BR singularity, we should assume either a→ ∞
or R → ∞. Both choices imply θ → ∞, but in the former case z is arbitrary whereas
in the latter one z → ∞. Please note that the divergence of the scalar curvature can be
argued to be the dominant condition, from a geometric point of view, for the occurrence
of the BR singularity. Thence, we shall consider both θ and z going to infinity as the main
parametrization of the BR singularity in the configuration space. Nevertheless, the results
and conclusions presented in this section are independent of this choice and still hold for
θ → ∞ and z arbitrary.

Additionally, further simplifications can be made when solving (81) close to the BR.
By considering the third term containing the cross partial derivatives to be unimportant
when θ → ∞, the above equation can be solved via the separation ansatz

Ψ(θ, z) = ∑̃
k

bk̃χk̃(θ)ϕk̃(z), (82)

where bk̃ gives the amplitude of each solution and k̃ is related to the associated energy.
Please do not confuse k̃ with the spatial curvature k, which has been set to zero. (The
validity of this approximation is analyzed in Appendix A.) Under these approximations,
Equation (81) reduces to the following system of equations4

h̄2 ∂2 ϕk̃
∂z2 − k̃2 ϕk̃ = 0, (83)

(
1− C2

36

)
h̄2θ2 ∂2χk̃

∂θ2 −
C2

36
h̄2θ

∂χk̃
∂θ

+

(
γ− 1
6λ2γ

θ6 − k̃2
)

χk̃ = 0. (84)

The former equation can be straightforwardly worked out. The solutions are

ϕk̃(z) = d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)
, (85)

being d1 and d2 arbitrary constants. This corresponds to either exponential or trigonometric
functions on z, depending whether k̃2 is positive or negative, respectively . On the other
hand, Equation (84) can be solved in an exact way by means of Bessel functions, cf. 9.1.53
of reference [92]. This solution can be expressed as

χk̃(θ) = θ
18

36−C2

[
u1Jν

(
λ̃

3h̄
θ3
)
+ u2Yν

(
λ̃

3h̄
θ3
)]

, (86)
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where u1 and u2 are integration constants, Jν and Yν are the Bessel functions of first and
second order, respectively, and

ν2 :=
36

(36− C2)
2

[
1 + 4

k̃2

h̄2

(
1− C2

36

)]
, (87)

λ̃2 :=
6(γ− 1)

λ2γ(36− C2)
. (88)

When near the BR singularity, i.e., for large θ, the χk̃ part of the wave function Ψ behaves
asymptotically as

χk̃(θ) ≈
√

6h̄
πλ̃

θ
− 3(24−C2)

2(36−C2)

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)
+ ũ2 exp

(
−i

λ̃

3h̄
θ3
)]

, (89)

where ũ1 and ũ2 now depend on k̃, cf. 9.2.1-2 in reference [92]. Thence, the total wave
function of the universe asymptotically reads

Ψ(θ, z) ≈
√

6h̄
πλ̃

θ
− 3(24−C2)

2(36−C2) ∑̃
k

bk̃

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)
+ ũ2 exp

(
−i

λ̃

3h̄
θ3
)]

×
[

d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)]
. (90)

As a result, for the condition of d1 = 0 when k̃2 positive, the wave function vanishes at the
BR singularity. Therefore, for this boundary condition, the DW criterion is satisfied. This
result points towards the avoidance of this cosmological singularity in the quantum real of
f (R) cosmology. Nevertheless, it should be noted that by setting d1 = 0 we have dismissed
a subgroup of solutions to the mWDW equation as unphysical. If future investigations
show the importance of these ignored solutions, then it would be concluded that the DW
criterion may not always be satisfied.

4.3. The LR in f (R) Quantum Cosmology

In this section, we address the quantum fate of the LR abrupt event in the framework
of f (R) quantum geometrodynamics. Previously, in Section 3.2, it was shown that the
alternative theory of gravity given by the function (46) is the most general expression for a
metric f (R) theory of gravity which gives the same asymptotic expansion history as GR
filled with phantom DE governed by Equation (38). Moreover, since the presence of the Ei
function in the term multiplying c2 spoils the analytical inversion of x(R) in Equation (60b),
which is crucial for the exact derivation of the mWDW equation (69), hereafter we consider
c2 = 0 [91]. Thus, we focus on the simple, still general, group of alternative metric f (R)
theories of gravity predicting the classical occurrence of a LR abrupt event given by [91]

f (R) = c1

[
27β4 + 150β2R− β

(
9β2 + 12R

) 3
2
+ 2R2

]
, (91)

where we recall that β =
√

3A/2 and the parameter A is observationally constrained to
approximately 2.75× 10−28 m−1, see Table 3. Given the expression for f (R), the change of
variables (60) reads

q = a

√
2c1R?

fR?

(
75β2 − 9β

√
9β2 + 12R + 2R

) 1
2
, (92a)

x =
1
2

ln
[

2c1

fR?

(
75β2 − 9β

√
9β2 + 12R + 2R

)]
, (92b)
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being fR? = 2c1

(
75β2 − 9β

√
9β2 + 12R? + 2R?

)
. The definition of the constant R? needed

for the above change of variables to be well-defined was previously discussed for the most
general case, see Equation (61). Consequently, from Equations (21) and (41) it follows [91]

R? = 4ρ0

(
1 + β

√
3
ρ0

ln 100

)2

+ 6β

√
ρ0

3

(
1 + β

√
3
ρ0

ln 100

)
. (93)

On the other hand, for the purpose of computing the effective potential entering the
mWDW equation, the inverse of the relation (92b) applies. This is

R(x) = 84β2 +
1

4c1
fR? e2x ± 54β

√
1

48c1
fR? e2x + 2β2. (94)

However, only the positive branch is compatible with R being an increasing function of x
and R > R?. Thus, we choose the positive sign in the preceding expression. Thereafter, the
effective potential in the mWDW equation becomes [91]

V(q, x) = −U(x)q6, (95)

where

U(x) =Ũ

{
1 + 1644

c1β2

fR?

e−2x + 205992
c2

1β4

f 2
R?

e−4x

+ 36βe−x
(

1 + 336
c1β2

fR?

e−2x
)√

3c1

fR?

(
1 + 96

c1β2

fR?

e−2x
)

− 12β

√
3c1

fR?

e−x

[
1 + 330

c1β2

fR?

e−2x + 18βe−x

√
3c1

fR?

(
1 + 96

c1β2

fR?

e−2x
)]

×
[

1 + 339
c1β2

fR?

e−2x + 18βe−x

√
3c1

fR?

(
1 + 96

c1β2

fR?

e−2x
)] 1

2
}

, (96)

being Ũ := fR?/(48c1λ2R?) a constant. Contrary to the previous section, a change of vari-
ables such as (78) will no longer be able to make the potential one-variable-dependent and,
therefore, a separation ansatz such as (82) is not appropriate in this case. Instead, note that
the U(x) part of the effective potential converges very quickly to a constant value when the
model is observationally constrained. This feature suggests an adiabatic semiseparability
type ansatz for the wave function of the universe. This is based on the so-called Born-
Oppenheimer (BO) ansatz originally formulated in the context of molecular physics [125]
and first introduced in the framework of quantum cosmology in references [126–128]. Fur-
thermore, in reference [91] we have argued that the scalar curvature can be considered
more fundamental from a geometrical point of view than the scale factor, justifying that
the following ansatz à la Born-Oppenheimer should apply

Ψ(q, x) = ∑̃
k

bk̃χk̃(q, x)ϕk̃(x), (97)

where we recall that x depends only on R, whereas q contains both R and a, see the
definitions in (60). Additionally, bk̃ represents the amplitude of each solution and k̃ is
related to the associated energy. (Please do not confuse k̃ with the spatial curvature k which
has been set to zero). As a result of this ansatz, the mWDW equation (69) becomes

h̄2q2 ϕk̃
∂2χk̃
∂q2 − h̄2 ϕk̃

∂2χk̃
∂x2 − 2h̄2 ∂χk̃

∂x
dϕk̃
dx
− h̄2χk̃

d2 ϕk̃
dx2 + U(x)q6χk̃ ϕk̃ = 0. (98)
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The contribution of the second and third terms in the above expression can be neglected by
virtue of the adiabatic assumption5. Therefore, Equation (98) implies

h̄2 d2 ϕk̃
dx2 − k̃2 ϕk̃ = 0, (99)

h̄2q2 ∂2χk̃
∂q2 +

[
U(x)q6 − k̃2

]
χk̃ = 0. (100)

The former equation can be directly solved. The solutions are exponential and trigonometric
functions on x, depending on the sign of k̃2. These are [91]

ϕk̃(x) = d1 exp

(√
k̃2

h̄
x

)
+ d2 exp

(
−
√

k̃2

h̄
x

)
, (101)

where d1 and d2 are integration constants. The solutions for χk̃, on the other hand, are
obtained assuming that the potential U(x) behaves as a quasiconstant. Please note that this
approximation is based on the fact that U(x) converges very quickly to a constant value
when observational constraints on the parameter A are taken into account. Hence, the
solutions are [91]

χk̃(q, x) =
√

q


u1J

1
6

√
1+ 4k̃2

h̄2

(√
U(x)
3h̄

q3

)
+ u2Y

1
6

√
1+ 4k̃2

h̄2

(√
U(x)
3h̄

q3

)
, (102)

being u1 and u2 integration constants, cf. 9.1.53 of [92]. Thus, near the LR abrupt event,
when both q and x diverge6, the resulting wave function of the universe becomes

Ψ(q, x) ≈
√

6h̄
π

1

U(x)
1
4 q

∑̃
k

bk̃

[
ũ1 exp

(
i
√

U(x)
3h̄

q3

)
+ ũ2 exp

(
−i
√

U(x)
3h̄

q3

)]

×
[

d1 exp

(√
k̃2

h̄
x

)
+ d2 exp

(
−
√

k̃2

h̄
x

)]
, (103)

where the integration constants ũ1 and ũ2 now depend on k̃2, see discussion in reference [91].
Since U(x) > 0 and tends to a constant value when x grows, the wave function cancels at
the LR abrupt event when one of the integrations constants is set to zero. This is d1 = 0
when k̃2 is positive. Hence, the DeWitt criterion can be, indeed, satisfied. This points
towards the avoidance of the LR abrupt event in the quantum realm of metric f (R) theories
of gravity. Nevertheless, as discussed for the case of the BR in the previous section, the
fulfilment of the DW criterion is conditioned to the cancellation of one of the integration
constants in Ψ. Accordingly, if future investigations claim for the physical importance of
the dismissed solution, then it would have to be concluded that the DW criterion may not
always be satisfied.

4.4. The LSBR in f (R) Quantum Cosmology

Finally, we present the quantum fate of the LSBR abrupt event predicted in the metric
f (R) theories of gravity (52) obtained in Section 3.3. Moreover, following a line of reasoning
similar to that presented in the previous sections, we consider c2 = 0 in (52) as a necessary
assumption to analytically obtain the corresponding mWDW equation. Therefore, we focus
on the simple, still general, f (R) cosmological model exhibiting a future LSBR abrupt event
given by

f (R) = c1

(
9A2 − 18AR + R2

)
. (104)

This model has been already studied in the f (R) quantum geometrodynamics approach,
see reference [90]. In the next part of this section, we not only review the conclusion there
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presented but also provide a different, less restrictive and more general, approximation
when solving for the wave function.

For the f (R) gravity model (104), the change of variables (60) reads

q =a

√
2c1R?

fR?

(R− 9A)
1
2 , (105a)

x =
1
2

ln
[

2c1

fR?

(R− 9A)

]
, (105b)

being fR? = 2c1(R? − 9A). Following the spirit for a physically meaningful definition of
the constant R? given in Equation (61), and in view of Equations (23) and (49), we use

R? = 4ρ0 + 3A[1 + 4 ln(100)], (106)

where we recall that a? = 100a0 has been set, for the sake of concreteness, as the moment
in the expansion history from which we can safely assume that DE is the only relevant
component of the universe [see discussion below Equation (61)].

Subsequently, the mWDW equation for the particular f (R) expression considered in
Equation (104) reads

[
h̄2q2 ∂2

∂q2 − h̄2 ∂2

∂x2 + W(x)q6
]

Ψ(q, x) = 0, (107)

where W(x) is

W(x) = W̃

(
1 + 36

c1 A
fR?

e−2x + 288
c2

1 A2

f 2
R?

e−4x

)
, (108)

with W̃ := fR?/(24c1λ2R?) a constant. It should be noted that (107) resembles the form
of the corresponding mWDW equation for the LR case presented in the previous section.
In fact, the W(x) part of the effective potential also converges quickly to a constant value
when A is observationally constrained. Therefore, we consider here the very same BO
approximation discussed in the previous section7. That is ansatz (97),

Ψ(q, x) = ∑̃
k

bk̃χk̃(q, x)ϕk̃(x), (109)

where bk̃ represents the amplitude of each solution and k̃ is related to the associated energy,
do not confuse it with the spatial curvature k which has been neglected.

Accordingly to the results presented in the previous section, mutatis mutandis, the total
wave function of the universe near the LSBR abrupt event reads

Ψ(q, x) ≈
√

6h̄
π

1

W(x)
1
4 q

∑̃
k

bk̃

[
ũ1 exp

(
i
√

W(x)
3h̄

q3

)
+ ũ2 exp

(
−i
√

W(x)
3h̄

q3

)]

×
[

d1 exp

(√
k̃2

h̄
x

)
+ d2 exp

(
−
√

k̃2

h̄
x

)]
, (110)

where ũ1 and ũ2 now depend on k̃2. The validity of the BO approximation in this case is
verified in Appendix B. Since W(x) > 0 and tends to a positive constant value when x
grows, the wave function cancels at the LSBR abrupt event when one of the integrations
constants is set to zero. This is d1 = 0 when k̃2 is positive. Hence, the fulfilment of the De-
Witt criterion points towards the avoidance of the LSBR abrupt event in the quantum realm
of metric f (R) theories of gravity. Nevertheless, as stated before, if future investigations
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find out the importance of the dismissed solutions, then it would be concluded that the
DW criterion may not always be satisfied.

5. Conclusions

The BR, LR and LSBR are cosmic curvature doomsdays predicted in some cosmologi-
cal models where the superaccelerated expansion of the universe leads to the disintegration
of all bounded structures and, ultimately, to the tear down of space–time itself. Within
the context of GR, these cosmological catastrophes are intrinsic to phantom DE models,
although a phantom fluid may also induce other cosmic singularities. For a FLRW back-
ground, these events can be characterized by the behavior of the scale factor a, the Hubble
rate H and its cosmic time derivative Ḣ near the singular fate, see Table 1. More importantly,
some of these models have been shown to be compatible with the current observational
data, see, for instance, reference [57]. Therefore, our own universe may evolve towards
some of these (classical) doomsdays. Nevertheless, quantum gravity effects can ultimately
become significant and smooth out, or even avoid, the occurrence of these classically
predicted singularities. In that sense, quantum cosmology is the natural framework for
addressing the quantum fate of cosmological singularities. Among the different approaches
to quantum cosmology, we have focused on the canonical quantization of cosmological
background due to DeWitt’s pioneering paper [74]. In this scheme, the DW criterion can
be understood as a sufficient but not necessary condition for the avoidance of a classical
singularity. Thus, the classical singularity is potentially avoided if the wave function of the
universe vanishes in the nearby configuration space. This criterion has been successfully
applied in GR for the phantom DE models considered in Section 2, which predict a classical
fate à la BR, LR and LSBR, see references [66,72,73]. Consequently, this hints towards the
avoidance of these cosmological doomsdays for those specific phantom DE models.

On the other hand, since the background late-time classical evolution can be equiv-
alently described in the context of GR or within the framework of alternative theories of
gravity, it is interesting to wonder whether the DW criterion is still fulfilled in the quantum
realm of a different underlying theory of gravity. To find that out, reconstruction meth-
ods can be applied to obtain the general group of alternative theories of gravity able to
reproduce the same expansion history as that of a given general relativistic model. Thus,
in Section 3, we have collected the different f (R) theories of gravity found among the
literature that produce the same asymptotic background expansion as the phantom DE
models summarized in the preceding Section 2. Consequently, these f (R) models predict
the classical occurrence of a BR, LR or a LSBR abrupt event. For the evaluation of the quan-
tum fate of these classical models, we have followed the f (R) quantum geometrodynamics
approach introduced by Vilenkin [75], where the Wheeler-DeWitt equation is adapted for
the case of f (R) theories of gravity. Within this framework, the application of the DW
criterion has been discussed, showing that it is possible to find solutions to the mWDW
equation with a vanishing wave function for the aforementioned cosmic events. Therefore,
as it happens when the gravitational interaction is that provided by GR, this result hints
towards the avoidance of these cosmological doomsdays within the scheme of metric f (R)
theories of gravity [89–91].

It should be noted, however, that the validity of the wave functions obtained in this
review is subject to the fulfilment of the conditions discussed in the appendices. Thus, for
the avoidance of the BR singularity, for instance, we found our approximations to the wave
function of the universe to be legit only for very tiny values of the parameter A, indeed
smaller even than those found in reference [57] where a strong ansatz was imposed on the
possible values of w. Of course, by relaxing such an ansatz tinier values of A are compatible
with cosmological observations; see, for example, references [37–39] among others. On
the other hand, it should be also noted that we have applied the quantization procedure
only to some particular solutions to the reconstruction method, i.e., we have quantized just
some specific f (R) functions from the more general family of metric f (R) gravity found
to classically predict a future fate à la BR, LR or LSBR. Furthermore, certain boundary
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conditions have also been imposed when solving for Ψ to obtain vanishing solutions at the
singular points. These conditions typically involve the cancellation of one of the integration
constants. Therefore, a whole subgroup of solutions to the mWDW equation has been
disregarded as unphysical. If future investigations show the importance of the dismissed
solutions, then it would be concluded that the DW criterion may not always be fulfilled for
solutions of physical interest.

The pioneering investigations presented in this paper have raised additional questions
that should be addressed. From a classical point of view, the metric f (R) theories under
consideration should be further analyzed, investigating their compatibility with different
observational constraints, as those coming from Solar System tests. On the other hand, it
would be also interesting to consider whether semiclassical effects may be important when
approaching the quantum realm and, in that case, how they will affect the disintegration
of bounded structures. Furthermore, we should highlight that strictly speaking, the DW
criterion is not a sufficient condition to guarantee the avoidance of classical singularities. To
have a complete analysis, one should obtain the expectation values of the relevant operators.
Nonetheless, the calculation of expectation values and probability distributions is related
to various open questions in quantum cosmology that still must be properly addressed
in the framework of quantum geometrodynamics. Specifically, the correct boundary or
initial conditions, the Hilbert space structure and the classical-quantum correspondence,
see reference [106]. Finally, we hope that the topics summarized in this work and the
presented open questions will motivated further investigations.
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Appendix A. Validity of the Wave Function Used to Describe the BR

When solving the mWDW equation for the BR singularity, we have neglected the
contribution of the third term in (81). This approach is valid as long as the corresponding
solutions satisfy

C
3

h̄2θ
∂χk̃
∂θ

∂ϕk̃
∂z
�
(

1− C2

36

)
h̄2θ2 ϕk̃

∂2χk̃
∂θ2 , h̄2χk̃

∂2 ϕk̃
∂z2 ,

C2

36
h̄2θϕk̃

∂χk̃
∂θ

,
γ− 1
6λ2γ

θ6χk̃ ϕk̃. (A1)

According to that approximation, the solutions for χk̃ and ϕk̃ are presented in Equations (85)
and (86). Therefore, the terms we kept in Equation (81) are

(
1− C2

36

)
h̄2θ2 ϕk̃

∂2χk̃
∂θ2 ≈ −

√
6λ̃3h̄

π

(
1− C2

36

)
θ

6− 3(24−C2)
2(36−C2) ∑̃

k

bk̃

[
ũ1 exp

(
i

λ̃

3h̄
θ3
)

+ ũ2 exp
(
−i

λ̃

3h̄
θ3
)][

d1 exp

(√
k̃2

h̄
z

)
+ d2 exp

(
−
√

k̃2

h̄
z

)]
, (A2)

h̄2χk̃
∂2 ϕk̃
∂z2 ≈
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, (A3)
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, (A4)
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However, the terms that we have neglected behave asymptotically as
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h̄2θ
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∂θ
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− d2 exp
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−
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k̃2

h̄
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. (A6)

We recall that the integration constants d1 must be set to zero to fulfil the DW criterion
at the BR when k̃2 positive. Thus, to obtain the compliance region of the performed
approximation we compare the largest of the neglected terms with the smallest of the saved
ones. This is the ratio

ε =

∣∣∣∣∣
B
3 h̄2θ∂θχk̃∂z ϕk̃

h̄2χk̃∂2
z ϕk̃

∣∣∣∣∣ ≈
2
3k̃

γ− 2
γ− 1

λ̃θ3. (A7)

This ratio keeps below one if γ− 2 is sufficiently small to compensate the increase of the
variable θ towards the BR singularity. Therefore, for γ ≈ 2, this approximation is valid
throughout the semiclassical regime towards the BR singularity, where θ increases but
not sufficiently rapidly to compensate the small value of γ− 2. In the expression (36) for
the metric f (R) theory of gravity predicting the BR singularity, this would correspond
to having a small parameter A and c+ = 0, since γ+ diverge at A → 0. Consequently,
this argument would favor small deviations from the ΛCDM model. It is worth noting
that the values estimated for A in reference [57] are not small enough to ensure ε � 1;
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however smaller values for A are compatible with the fits claimed in other references (see,
for example, references [37–39]). Thus, we consider this approximation to Ψ valid for the
appropriate γ value.

Additionally note that in this section, we have enhanced the discussion on the viability
of the performed approximations for Ψ originally presented in reference [89], where the
authors have focused only on the particular case of k̃ = 0 when addressing the validity of
the wave function there found.

Appendix B. Validity of the BO Approximation for Ψ

During the application of the BO-type ansatz (97) performed in Sections 4.3 and 4.4,
we have considered that χk̃(q, x) depends adiabatically on x. Therefore, we have neglected
the contribution of some parts in their corresponding mWDW equations. This approach is
valid as long as the corresponding solutions satisfy

h̄2 ϕk̃
∂2χk̃
∂x2 , 2h̄2 ∂χk̃

∂x
dϕk̃
dx
� h̄2q2 ϕk̃

∂2χk̃
∂q2 , h̄2χk̃

d2 ϕk̃
dx2 , U(x)q6χk̃ ϕk̃. (A8)

As a result of this approximation, the solutions for ϕk̃ and χk̃ obtained for the case of the LR
abrupt event are presented in Equations (99) and (100), respectively (see also reference [91]).
Then, the terms we keep in (98) read

h̄2q2 ϕk̃
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. (A10)

However, the neglected terms behave asymptotically as
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Please note that for k̃2 positive, the constants d1 must be zero to have a vanishing wave
function at the LR. Thus, the validity of the BO approximation can be verified comparing
the largest of the neglected terms with the smallest of the saved ones. This is the ratio ε,

ε =

∣∣∣∣∣
h̄2 ϕk̃∂2

xχk̃

h̄2χk̃∂2
x ϕk̃

∣∣∣∣∣. (A13)

For the case of the LR abrupt event analyzed in Section 4.3 that ratio reads
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ε ≈ U′(x)2

U(x)
q6

36|k̃2| . (A14)

Consequently, the approximation is valid as long as ε � 1. To evaluate this condition,
note that

U′(x)2
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≈ 36
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[
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40
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βe−x +
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e−3x
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, (A15)

when β is observationally constrained, see Table 3. Thus, in the configuration space near
the LR cosmic event, we have

ε ≈ β2

λ2R?|k̃2| e
−2xq6, (A16)

where both q and x diverge. Finally, ε � 1 near the LR if β is sufficiently small, i.e., for
small value of A. Please note that this corresponds, in fact, to the observationally preferred
situation [57]. (We recall that A is of order 10−28 m−1 when observationally constrained,
see Table 3). Therefore, when the parameters of the theory are observationally constrained,
the approximation is valid throughout the semiclassical regime towards the LR abrupt
event; where the variables q and x increase but not sufficiently rapidly to compensate the
small value of β2. Hence, for the purpose of the present work, i.e., to analyze the fulfilment
of the DW criterion in the configuration space close to the LR, this approximation is valid.

On the other hand, for the verification of the validity of the BO approximation per-
formed in Section 4.4, U(x) must be exchanged for W(x) in the preceding formulas. There-
fore, considering the expression for W(x) given in (108), the ratio ε becomes

ε ≈ W ′(x)2

W(x)
q6

36|k̃2| ≈
6c1 A2

λ2R? fR? |k̃2| e
−4xq6. (A17)

Following the same line of reasoning as that presented before, this ratio keeps below 1
since the parameter A for the LSBR is of order 10−54 m−2, see Table 3. Therefore, the BO
approximation applied in Section 4.4 is valid throughout the semiclassical regime towards
the LSBR abrupt event.

Notes
1 Since the BR, the LR and the LSBR doomsdays are intrinsic to phantom-like DE models, we limit our discussions to a positive

parameter A, which leads to w < −1. For an analysis of the most general case, we refer the reader to the reference [52].
2 This is trivial to check when α ≤ 1. For the case of α > 1, on the other hand, the expansion of the universe stops at a finite value

of the scale factor, namely amax, such as the denominator in Equation (8) never becomes negative [see Equation (13)].
3 Alternatively to this interpretation, the wave function Ψ can be linked in a heuristic way with the probability distribution. In

that sense, having a vanishing wave function could be interpreted as having zero probability of reaching that point in the
configuration space. Nevertheless, this interpretation is based on the existence of squared integral functions and a consistent
probability interpretation of the wave function. The problem is that these assumptions would require a minisuperspace with a
proper Hilbert space nature, and that is not obvious to be always doable for a quantum cosmology based on the WDW equation.

4 For a different approach to the asymptotic form of the wave function Ψ see reference [89].
5 The validity of this approximation is checked in Appendix B.
6 This corresponds to R → ∞ and a arbitrary, which was argued to be the main condition for the appearance of a curvature

singularity. Nevertheless, the results in this section would not change if we had considered both a, R→ ∞ instead.
7 Please note that in reference [90] we have used a different ansatz for solving the mWDW equation (107). Since the exponential

terms appearing in (108) are strongly suppressed not only by the observational value of the parameter A, but also by the
divergence of x, we have considered only the asymptotic value of the function W(x), i.e., we have approached the effective
potential in (107) to asymptotically depend only on the variable q. However, as argued in [91], subdominant contributions to
W(x) have imprints in the shape of Ψ near the abrupt event. Those subdominant contributions are, in fact, important when
comparing different wave functions that share a common asymptotic regime.
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Abstract: In this paper, we discuss classical and quantum aspects of cosmological models in the
Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that
obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize
this classical model in a canonical way, establishing the corresponding Wheeler–DeWitt equation in
the minisuperspace, and analyze the quantum solutions. When the energy conditions are violated,
corresponding to the case ω < − 3

2 , the energy is bounded from below and singularity-free solutions
are found. However, in the case ω > − 3

2 , we cannot compute the evolution of the scale factor by
evaluating the expectation values because the wave function is not finite (energy spectrum is not
bounded from below). However, we can analyze this case using Bohmian mechanics and the de
Broglie–Bohm interpretation of quantum mechanics. Using this approach, the classical and quantum
results can be compared for any value of ω.

Keywords: Brans–Dicke theory; bounce models; de Broglie–Bohm interpretation

1. Introduction

General Relativity (GR) theory is a highly successful theory that describes gravitational
interactions of the universe. It has successfully survived observational tests in the solar
system, and its predictions about the emission of gravitational waves by binary systems
were confirmed. However, there are strong indications that the theory is incomplete.
For example, it cannot account for the observed gravitational anomalies, mainly in the
cosmological context, and thus it is necessary to introduce the hypothesis of dark matter and
dark energy to explain cosmological observational data within GR’s framework. Another
reason is the initial singularity at the beginning of the universe and at the final stage of
some class of stars, which are generally predicted by the GR theory. These drawbacks led
to many possible extensions of the GR that can address those problems. The prototype
of alternative theory of gravity is Brans–Dicke theory (BD). Historically, it is one of the
most important modifications to the standard GR theory, which was introduced by Brans
and Dicke [1] as a possible implementation of Mach’s principle in a relativistic theory
(eventually, it did not work out as we will discuss later).

It is expected that a quantum formulation of GR might solve some of its problems,
especially those related to the existence of singularities. However, there are many obstacles
to this quantization [2,3]. Several attempts have been made to overcome the difficulties that
appear when combining the principles of the GR theory and Quantum Mechanics (QM), be
it via canonical methods or other procedures, like loop quantization or string theory. A sim-
plified approach, like the quantization of the Einstein–Hilbert action in the minisuperspace
in the presence of matter fields, shows that it is possible to obtain cosmological models
without singularities. The construction of a quantum cosmological model encounters
many problems, even when the minisuperspace restriction is used. The first one is the
absence of an explicit time coordinate due to the invariance by time reparametrizations
in the classical theory [4,5]. There are different ways to solve this problem. One of them
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is to allow the matter fields to play the role of time, which can be achieved, for example,
through Schutz’s description of a fluid [6]: its corresponding canonical formulation results
in a Schrödinger-type equation since the conjugate momentum associated with the matter
variables appears linearly in the Hamiltonian. We will employ this approach in the analysis
to be exposed in the present text.

Another point of discussion is a choice of the suitable formalism to interpret the
quantum theory and thus obtain specific predictions. This is a very sensible question. The
usual Copenhagen interpretation is based on a probabilistic formalism, using concepts
such as decoherence and a measurement mechanism through the spectral theorem. It is
not ideal for a system consisting of a unique realization as it is the universe. Nevertheless,
many adaptations of the Copenhagen interpretation are possible, like the Many World [7]
or the Consistent Histories [8]. One alternative is the de Broglie–Bohm (dBB) interpretation
of quantum mechanics [9,10], one we will address in this work. The dBB approach keeps
the concept of trajectories of a given system, and a probabilistic analysis is not fundamental
in this scheme [11].

In this work, we will investigate the BD theory. The reason to analyze this theory,
which has been thoroughly studied in many contexts, is that it reserves some interesting
and even unexpected features which deserve to be discussed in more detail. Classically,
cosmological models constructed from the BD theory may lead to non-singular scenarios
if the energy conditions are violated, as it happens in the GR theory. Such violations of
the energy conditions occur when the Brans–Dicke parameter varies in the domain of
ω < −3/2. Surprisingly, it is also possible to obtain a non-singular model in the BD
theory even if the energy conditions are satisfied. We will discuss this possibility using
radiation as the matter content. The situation becomes more complex when we turn to
quantum models: a consistent quantum model, from the point of view of the Copenhagen
interpretation, is possible when ω < −3/2, since only in this case is the energy bounded
from below; if the energy conditions are satisfied, the spectrum of energy is not bounded
from below. However, in both cases, the analysis becomes possible even if we use the dBB
interpretation of quantum mechanics. Moreover, the use of the dBB formalism allows a
comparison between the classical and quantum models in the BD theory, at least to some
simple configurations. This possibility will be explored in the present work, revealing
many peculiarities at the classical and quantum levels.

The paper is organized as follows: in Section 2, we review the classical BD theory. In
Section 3, we present a non-singular model with radiative fluid in BD theory that obeys
the energy conditions and does not contain ghosts. Section 4 presents the quantization of
the model with a Lagrangian with a non-minimally coupled scalar field and matter fluid,
establishing the corresponding Wheeler–DeWitt equation in the minisuperspace. Finally,
we analyze the quantum solution via dBB interpretation in Section 5. Our conclusions are
revealed in Section 6.

2. A Short Review of the Brans–Dicke Theory

The Brans–Dicke theory was proposed as a modification of the relativistic theory of
gravity to include two new features: the possibility of a dynamical coupling to gravity
and Mach’s principle. Dirac had suggested earlier that the gravitational coupling in
Einstein’s theory might not be a constant, implying it could vary with time, at least in
the cosmological context [12]. This idea was further developed by Jordan [13], but the
rigorous implementation was made by Brans and Dicke in their seminal 1961 article [1].
They replaced the gravitational coupling by the inverse of a scalar field φ, such that

G ∝
1
φ

. (1)

A simple but elegant solution to implement this idea in a relativistic context is to consider
in the action a non-minimal coupling between the new scalar field φ and the geometry
represented by the Ricci scalar. The introduction of a kinetic term coupled by an arbi-

310



Universe 2021, 7, 286

trary parameter ω complemented the theory, preserving the minimal coupling between
gravity and matter and assuring the invariance by the full diffeomorphism group and the
consequent conservation of the energy–momentum tensor.

The presence of a long-range scalar field was connected initially with the intention
to implement the Mach’s principle. The most common of many formulations of Mach’s
principle states that the inertial property of a given body results from its interaction with
all matter present in the universe. It is not easy to implement such an appealing idea.
General Relativity was considered to be a Machian theory since it relates the geometry
of space-time to the matter distribution, but it has non-Machian features, such as the
locality of the relation between space and matter and initial conditions for the matter
fields. Perhaps, these issues could be circumvented by introducing a long-range scalar
field as it occurs in the BD theory. In a Machian relativistic theory, the only solution in
the absence of matter should be the Minkowski one. This is not the case for GR or for
BD theory. In other words, both theories failed as a proposal to implement the Mach
principle. However, introducing the scalar field φ non-minimally coupled to gravity led to
many phenomenological applications and intriguing results: it opens new possibilities in
comparison with the GR original framework.

The BD action reads as

S =
∫

d4x
√
−g
{

φR− ω

φ
φ;µφ;µ

}
+
∫

d4x
√
−gLm(gµν, Ψ), (2)

where ω is a coupling constant and Lm is the matter term [1], with Ψ indicating generically
the matter fields.

It is commonly understood that, in the ω → ∞ limit, BD theory coincides with
GR [14,15]. Although it is true in most situations, this statement is not valid in general.
When ω � 1, the field equations show that �φ = O

(
1
ω

)
, so we have

φ =
1

GN
+O

(
1
ω

)
, (3)

Gµν = 8πGNTµν +O
(

1
ω

)
, (4)

where GN is Newton’s gravitational constant and Gµν is the Einstein tensor. However,
there are some examples [16–18] where exact solutions cannot be continuously deformed
into the corresponding GR solutions by taking the ω → ∞ limit. In this case, the solutions
decay as

φ =
1

GN
+O

(
1√
ω

)
. (5)

Moreover, there is a particle solution that admits the appropriate asymptotic behavior
given by Equation (3) but no GR limit [19].

From the action (2), the whole theory is derived. The field equations are obtained
through the variation of the action (2) with respect to the metric and scalar field,

Rµν −
1
2

gµνR = 8π
Tµν

φ
+

ω

φ2

(
φ;µφ;ν −

1
2

gµνφ;αφ;α
)
+

1
φ
(φ;µ;ν − gµν�φ), (6)

�φ = 8π
T

3 + 2ω
. (7)

The coupling with the curvature in the action (2) can be avoided if we perform a
conformal transformation on the metric gµν such that

gµν = φ−1 g̃µν. (8)
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With this,we change our frame of reference. With the reference frame g̃µν, one could
interpret the scalar field as a matter field, and thus recover general relativity. We, however,
want to remain closer to Brans and Dicke’s original idea of the gravitation not being purely
geometrical, and thus the scalar field does not account for a matter content. The original
frame is known as Jordan’s frame, and, after the conformal transformation (8), it is called
Einstein’s frame. In this latter, the action becomes

S =
∫

d4x
√
−g̃
{

R̃− εξ;µξ ;µ
}
+
∫

d4x
√
−gLm

(
e−κξ g̃µν, Ψ

)
, (9)

where we have defined

φ = eκξ , (10)

κ =
1√∣∣∣∣ω + 3

2

∣∣∣∣

, (11)

ε = sign
(

ω +
3
2

)
. (12)

The resulting field equations are (ignoring the tildes in the redefined geometric terms),

Rµν −
1
2

gµνR = 8πe−2κξ Tµν + ε

(
ξ;µξ;ν −

1
2

gµνξ;ρξ ;ρ
)

, (13)

�ξ = ε4πTe−2κξ . (14)

Please note that this set of equations implies a non-usual expression for the conservation
laws, which is due to the non-minimal coupling between the scalar field and matter.

Thus, in the Einstein frame, the case ε = 1 (ω > − 3
2 ) corresponds to an ordinary scalar

field with positive energy density, while, for ε = −1 (ω < − 3
2 ), the kinetic term of the

scalar field changes sign, and it becomes a phantom field with negative energy density.
In the special case ω = −3/2 with a redefinition of the matter fields, the GR theory is
recovered. When the matter field is given by radiation, the non-minimal coupling between
the scalar field and the matter component is also broken since T = 0 for a radiative fluid.
We will use this fact later.

Currently, the limits on the parameter ω are very stringent [20]. Cosmological
constraints lead to values for ω of the order of some hundreds. Binary pulsars push
these bounds to dozen of thousands. Hence, the BD theory essentially becomes GR
in most of the cases, as mentioned before. Despite this, BD theory continues to be
relevant for several reasons. For example, for a particular value of ω = −1, the action (9)
coincides with the effective string action for the dilatonic sector. In this case, the action (9)
acquires some duality properties that have been explored in the Pre-Big Bang scenarios,
in which there is a contracting phase in the evolution of the universe before the actual
expanding phase. In fact, for ω = −1, the action (2) in the cosmological context is invariant
by the transformation,

a→ 1
a

, φ→ φ− 2 ln a, (15)

where a is the scale factor. Therefore, an expanding universe can be mapped into a contracting
universe. For an excellent recent review of Pre-Big Bang scenarios, we refer to [21]. Even if
there is a clear discrepancy with the observational constraint on the value of ω, it is possible to
take into account a possible dependence of ω on energy scales that may reconcile observations
with theoretical considerations. This may be achieved, for example, by supposing that ω is a
function of the scalar field φ, ω = ω(φ).
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Perhaps, one of the most delicate aspects concerning the pre-big bang scenario deals
with the evolution of the perturbations in the primordial universe, which becomes highly
discrepant with GR and, at the same time, strictly constrained by observations. In general,
predictions for the evolution of perturbations depend on the transition from the contracting
phase to an expanding phase. A possible solution to this problem may be found by studying
perturbations behavior, taking into account the string configuration underlining the pre-big
bang model since the transition may occur at the large curvature regime. Such analysis is
not an easy task, technically and conceptually. Similar proposals, like the ekpyrotic scenario
based on brane-world structures coming from string theories, have been developed in the
literature [22].

In what concerns the primordial universe, we may also mention the extended inflationary
model using the original proposal based on a cosmological constant [23] but implemented in
the context of the BD theory. It is possible to obtain the transition to the radiative phase, but
only if the value of the parameter ω is relatively small, in contradiction with the constraints
mentioned above. In such a case, it is necessary to find a mechanism to change the value of
ω during the universe’s evolution since the energy scale may depend on this parameter, as
already evoked above.

Multidimensional theories, when compactified to four dimensions, leads to action
similar to the BD, with

ω = −d− 1
d

. (16)

In this case, gauge fields can appear, depending on the original configuration, with non-
trivial coupling [24,25].

The proposal of modified gravity theories spiked a revival in the interest in the BD
theory. Modified gravity theories were conceived mainly to address the problem of the
acceleration of the universe without introducing a new exotic component in the universe
called the dark energy. There are many types of the modified gravity theories. For example,
in the Horndesky theories, the most general Lagrangian includes the scalar field in a
non-trivial way and leads to second-order equations of motion. In fact, the BD theory can
be considered the first of the modified theories, and it was formulated long before the
Horndesky classification. Another class of modified gravity theories is the f (R) theories.
They are based on a nonlinear generalization of the Einstein–Hilbert action. Interestingly,
the f (R) theories can be recast as the BD theory, with ω = 0 and a potential term that
depends on the form of the f (R) function. In general, all modified gravity theories must
introduce a screening mechanism to reconcile the large-scale and small-scale constraints.
According to these screening mechanisms, the supplementary degree of freedom associated
with the scalar field does not propagate in a dense region (compared to the averaged
cosmological density). The BD theory, when reformulated in the Einstein frame, gives the
prototype of the chameleon mechanism, one of the most important screening mechanisms:
the conformal transformation used to reformulate the BD theory in the Einstein frame
introduces a non-minimal coupling between matter and scalar field, making the mass of
the scalar field depend on the density of the medium, as it can be verified introducing a
potential term in the set of Equations (13) and (14).

Intriguing results on the quantization of the BD theory adds to the relevance of the
theory. Analysis on quantum cosmological scenarios using the BD theory was made in
Refs. [26,27]. In Ref. [26], the authors considered the Einstein frame and used the WKB
formalism to recover the notion of time. The result reveals a curious behavior: the quantum
effects become relevant in a late phase of the expansion of the universe, contrary to
expectation. Due to this property, the initial singularity existing in the FLRW models can
not be avoided. In [27], the study was extended to the Jordan frame through the Bohm–de
Broglie formalism to compute the quantum evolution of the universe. In this case, the
opposite scenario was found: the quantum effects become important mainly in the early
universe, and the initial singularity can be avoided.
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We must also mention the study of the resulting quantum Schrödinger-like equation
from the point of view of its self-adjointness properties [28], which are essential to employ
the spectral theorem. The results indicated that, for the case ω < −3/2, which corresponds
to a phantom scalar field, it is possible to recover the self-adjointness of the quantum
operator. We will discuss this in more detail in the forthcoming sections.

3. Bouncing Solutions and the Energy Conditions

The most common solution to avoiding a singularity in cosmological models is the
introduction of exotic types of matter fields, for example, a scalar field with negative energy
density. On the other hand, to obtain a bouncing solution in classical General Relativity,
violation of the energy conditions is required. In this section, after briefly reviewing the
bouncing scenarios, we present a non-singular model with radiative fluid in BD theory
that obeys the energy conditions and does not contain ghosts [29]. To do so, we first briefly
analyze the solutions determined by Gurevich et al. [30] for the cosmological isotropic and
homogeneous flat universe with a perfect fluid with an equation of state p = nρ, where the
parameter n is given by 0 ≤ n ≤ 1. Then, we focus on the analysis of these solutions in the
case of radiative fluid.

The study of bouncing models is motivated by the search for cosmological solutions
without singularities. Bouncing models have been widely studied to solve the initial-
singularity problem and as an addition or alternative to inflation to describe the primordial
universe because they can explain, in their own way, the horizon and flatness problems
and justify the power spectrum of primordial cosmological perturbations inferred by
observations [31–33].

In such models, an initial singularity is replaced with a bounce—a smooth transition
from contraction to expansion. To obtain a bounce, one needs to change the value of the
Hubble parameter H ≡ ȧ(t)

a(t) , which appears to be negative during the contracting phase, to
a positive value for the following expanding phase. One of the options to switch the sign
of the Hubble function lies within GR. It usually requires the violation of the null energy
condition (NEC) [34]

ρ + p ≥ 0, (17)

where ρ is energy density, and p is pressure as usual. In most cases, the energy conditions
reflect the nature of matter fields, “ordinary” (attractive effects) or “exotic” (repulsive
effects). However, as we will see later, the bounce can be achieved through some non-
standard coupling between the fields existing in a given theory.

In the early stages of the expansion of the universe, the curvature is not essential
since the matter components are more relevant for the dynamic than the curvature term
due to their dependence on the scale factor, and we can restrict our further analysis to the
quasi-Euclidean variant of the isotropic model. In this case, for a flat FLRW metric,

ds2 = N2dt2 − a2(t)
(

dx2 + dy2 + dz2
)

, (18)

with N2 = 1, the classical field Equations (6) and (7) reduce to

3
(

ȧ
a

)2

= 8π
ρ

φ
+

ω

2

(
φ̇

φ

)2

−3
ȧ
a

φ̇

φ
, (19)

2
ä
a
+

(
ȧ
a

)2

= −8π
p
φ
− ω

2

(
φ̇

φ

)2

− φ̈

φ
− 2

ȧ
a

φ̇

φ
, (20)

φ̈ + 3
ȧ
a

φ̇ =
8π

3 + 2ω
(ρ− 3p), (21)

ρ̇ + 3
ȧ
a
(ρ + p) = 0. (22)
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The general solutions in [30] are obtained for ω < − 3
2 and ω > − 3

2 . In the first case,
there is violation of the energy conditions for the scalar field in Einstein’s frame. In the latter
case, the energy conditions for the scalar field are satisfied as we will discuss in this section.

The solutions for the scale factor and scalar field for ω < − 3
2 are

a = a0

[
(θ + θ−)

2 + θ2
+

] σ
2A e±

√
2
3 |ω|−1

A arctan θ+θ−
θ+ , (23)

φ = φ0

[
(θ + θ−)

2 + θ2
+

](1−3n)/2A
e∓3(1−n)

√
2
3 |ω|−1

A arctan θ+θ−
θ+ , (24)

where σ = 1 + ω(1 − n), 2A = (1 − 3n) + 3σ(1 − n), a0 is an arbitrary constant, and
θ− > θ+ are integration constants. The time coordinate θ is connected with the cosmic time
t by definition,

dt = a3ndθ. (25)

When θ → ∞, the scale factor a does not vanish. The infinite contraction has a minimum
amin, and it is followed by the expansion. Thus, this model admits a cosmological bounce.

For ω > − 3
2 , the general solutions are

a(θ) = a0(θ − θ+)
ω/3(σ∓ζ)(θ − θ−)ω/3(σ±ζ), (26)

φ(θ) = φ0(θ − θ+)
(1∓ζ)/(σ∓ζ)(θ − θ−)(1±ζ)/(σ±ζ), (27)

where ζ =
√

1 + 2
3 ω. In this model, a regular bounce can be obtained for 1

4 < n < 1 and

− 3
2 < ω ≤ − 4

3 . The case n = 1 is unusual and does not admit bounce solution [19].
Henceforth, we shall focus on the universe filled with radiative fluid, represented

by the equation of state p = 1
3 ρ. In this case, the solutions for ω > − 3

2 are given by the
following expressions:

a(η) = a0(η − η+)

1
2± 1

2
√

1+ 2
3 ω (η − η−)

1
2∓ 1

2
√

1+ 2
3 ω , (28)

φ(η) = φ0(η − η+)
∓ 1√

1+ 2
3 ω (η − η−)

± 1√
1+ 2

3 ω , (29)

where η is the conformal time and η± are constants such that η+ > η−. In Figure 1, we plot
the scale factor and scalar field for the lower sign. The solutions for ω < − 3

2 are

a(η) = a0[(η + η−)2 + η2
+]

1
2 e
± 1√

2
3 |ω|−1

arctan η+η−
η+

, (30)

φ(η) = φ0e
∓ 2√

2
3 |ω|−1

arctan η+η−
η+

. (31)

In the case of the lower sign in Equations (28) and (29), we obtain bounce solutions for
− 3

2 < ω < 0. Nevertheless, there is a curvature singularity at η = η+ for− 4
3 < ω < 0, even

if the scale factor diverges at this point. However, for − 3
2 < ω ≤ − 4

3 , bounce solutions are
always regular without curvature singularity. In this case, there are two possible scenarios
of the evolution of the universe due to the time reversal invariance. In the first one, the
universe begins at η = η+, with a→ ∞ and an infinite value for the gravitational coupling
(φ = 0). It evolves to the other asymptotic limit with a→ ∞, although with φ constant and
finite. The second option is the reversal behavior of the first one for −∞ < η < −η+. In
both cases, the cosmic times varies as −∞ < t < ∞.
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Figure 1. Behavior of the scale factor and scalar field in the case of the radiative fluid (Equations (28) and (29), lower sign)
for ω = −1.43.

The dual solution in the Einstein frame for − 3
2 < ω ≤ − 4

3 is given by

b(η) = b0(η − η+)
1/2(η − η−)1/2 (32)

with b = φ1/2a and contains an initial singularity. This can be considered as a specific case
of “conformal continuation” in the scalar-tensor gravity proposed in [35].

Let us show that the energy conditions for the scalar field are satisfied for ω > − 3
2 . In

general, in order to have a bounce solution, violation of the energy conditions is required.
Using the Friedmann and Raychaudhuri equations, we represent the strong and null energy
conditions in GR as

ä
a

= −4πG
3

(ρ + 3p) > 0 (33)

−2
ä
a
+ 2
(

ȧ
a

)2

= 8πG(ρ + p) > 0. (34)

We reformulate the BD theory in the Einstein frame so that it would be possible to use
the energy condition in this form. One can see that both energy conditions are satisfied
as long as ω > − 3

2 . This is in agreement with the fact that, in the Einstein frame, the
cosmological models are singular unless ω < − 3

2 . However, in the original Jordan frame,
there are non-singular models for − 3

2 < ω < − 4
3 . However, in this range, the scalar

field and the matter component obey the energy condition. The effects that lead to the
absence of the singularity come from the non-minimal coupling. In Figure 2, we present
the effective energy condition, defined in the left-hand side of Equations (33) and (34),
considering the effects of the non-minimal coupling. If we analyze only the left-hand side
in Equations (33) and (34), the effects of the interaction due to the non-minimal coupling
are included, and the energy conditions can be violated even if the matter terms do not
violate them. For more details, see Ref. [29].

1 2 3 4 5

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

η

1 2 3 4 5

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

η

Figure 2. Behavior of the “effective” strong energy condition (left) and “effective” null energy (right) condition for ω = −1.43
represented in the left-hand side of Equations (33) and (34), taking into account the effects of the non-minimal coupling.

It is important to observe that only in the case of radiative fluid is it possible to obtain
a model without singularity preserving the energy conditions, at least in the BD theory. It
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is true also for the model with flat spatial sections. For a non-flat universe, one can obtain a
singularity-free scenario even in General Relativity if the strong energy condition—but not
necessarily the null energy condition—is violated.

4. Canonical Quantization of the BD Theory

In the early Universe, when the cosmo is compressed in a Planck scale, quantum effects
become relevant, and the quantization of the classical models may be a necessity. Quantum
cosmology stands on this principle, considering a wave description of the universe that
satisfies the Hamiltonian constraint of the theory. In this section, we will investigate the
canonical quantization of the BD theory in the minisuperspace, considering the FLRW
metric (18). We shall quantize the Hamiltonian constraint Htot ≈ 0 (where “≈” means
weak equality. See, for example, [36]) to obtain the Wheeler–DeWitt Equation ĤtotΨ = 0,
with Ψ being the wave function of the universe, and using the canonical operators (h̄ = 1),

x → x̂ : ψ(x)→ xψ(x) ; πx → π̂x : ψ(x)→ −i∂xψ(x). (35)

The total HamiltonianH = Htot is formed by the gravitational part and the Hamilto-
nian of the matter content,H = HG +HM. To findHM, let us consider a model of early-
universe filled with a radiative fluid. Using Schutz formalism [6], the super-Hamiltonian
of the fluid is given by

HM =
N
a

πT , (36)

where T is directly related to the entropy of the fluid [37]. With this, the canonical quanti-
zation of the total Hamiltonian in the original Jordan’s frame is

∂2
aΨ +

p
a

∂aΨ +
6
ω

φ2

a2

{
a
φ

∂a∂φΨ−
(

∂2
φΨ +

q
φ

∂φΨ
)}

= −12i
(3 + 2ω)

ω
φ∂TΨ, (37)

where p, q are ordering factors for the quantization of the momenta squared. For more
details on the computation of (37), see Ref. [37]. Notice, however, that here we use a
different sign convention.

The calculation is similar in Einstein’s frame, considering the transformation (8). In
this case, the canonical quantization results in

∂2
bΨ +

p̄
b

∂bΨ− ω̃
φ2

b2

{
∂2

φΨ +
q̄
φ

∂φΨ
}
= −i∂TΨ. (38)

Here, again, we have that p̄ and q̄ are ordering factors.
Notice that Equations (37) and (38) are Schrödinger-like, that is,

ĤΨ = i
∂

∂t
Ψ, (39)

if we consider the matter field playing the role of time. We can, therefore, treat it as a
quantum system to analyze this cosmological scenario in the early-universe. The first step
is to verify the conditions for the effective Hamiltonian operators of these models to be
self-adjoint. It is known [37] that the Hamiltonian operator of this quantized BD model
with a radiative fluid can be self-adjoint only if q = q̄ = 1. On the other hand, we have the
quantum equivalence between Jordan’s and Einstein’s frames [38] if, and only if, p = p̄ = 1,
and thus we can use Einstein’s frame.

Now, in Einstein’s frame, we choose the coordinate

φ = e
√

12
|3+2ω| σ (40)

instead of φ. With this, the relation between the scale factor in Jordan’s and Einstein’s
frames is
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a = e
− σ√

|1+ 2
3 ω| b. (41)

In terms of the new variable σ, the Schrödinger Equation (39) is

∂2
bΨ +

1
b

∂bΨ− ε
1
b2 ∂2

σΨ = −i∂TΨ. (42)

The measure of the Hilbert space is such that

〈ψ|ψ〉 =
∫ ∞

−∞

∫ ∞

0
ψψ∗b dbdσ. (43)

The regular solution for the Equation (42) is

Ψ(b, σ) = A(k, E)Jν(
√

Eb)ei(kσ−ET), ν =
√
−ε|k|, (44)

where k is a separation constant. There is also another solution written in terms of the Bessel
function J−ν(x), which is not regular at the origin, at least when ε = −1. For this reason,
we will disregard it at the moment. We will choose ε = −1; for this case, the Hamiltonian
operator is bounded from below, and it is essentially self-adjoint for −1 ≤ p̄ ≤ 3 (see [37]),
which is our case. Thus, ν = |k|. Let us choose the coefficient A(k, E) such that the wave
packet becomes

Ψ(b, σ, T) =
1
N

∫ ∞

0

∫ +∞

−∞
e−k2

x|k|+1e−αx2
J|k|(xb) eikσdkdx, (45)

where N is a normalization factor, and

α = γ + iT, x =
√

E, (46)

with γ a positive real parameter. The integration in x gives us [39],

Ψ(b, σ, T) =
1
N

∫ +∞

−∞
e−k2+ikσ b|k|

(2α)|k|+1
e−

b2
4α dk. (47)

To find the normalization factor N, we should remember that

〈Ψ, Ψ〉 =
∫ ∞

0

∫ ∞

−∞
ΨΨ∗ b dbdσ = 1, (48)

and thus

N2 =
∫ ∞

0

∫ ∞

−∞

[∫ ∞

−∞
e−k2 b|k|

(2α)|k|+1
e−

b2
4α eikσ dk

]

·
[∫ +∞

−∞
e−k′ 2 b|k

′ |

(2α∗)|k′ |+1
e−

b2
4α∗ e−ik′σ dk′

]
bdb dσ.

Integrating over σ, k′, and k, and defining u = b/2|α|, we obtain

N2 = 4π

√
π

8

∫ ∞

0
u2e−γu2

[
1−Φ

(
ln u√

2

)]
du

= 4π

√
π

8

[√
π

4γ
3
2
− g(1)(γ)

]
,

where Φ(x) is the error function, and
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g(1)(γ) =
∫ ∞

0
u2e−γu2

Φ
(

ln u√
2

)
du. (49)

Since −1 < Φ(x) < 1 and
∫ ∞

0 u2e−γu2
is strictly positive, we have

|g(1)(γ)| <
√

π

4γ
3
2

. (50)

Therefore, N2 is positive, as expected.
We can now calculate the expected values of the scale factor b and scalar field σ. For

the scale factor,
〈b〉 = 〈Ψ|b|Ψ〉. (51)

Similarly to the calculation of the normalization factor, integrating in σ and k′, we have

〈b〉 =
8π|α|

N2

√
π

8

∫ ∞

0
u3e−γu2

[
1−Φ

(
ln u√

2

)]
du

=
8π|α|

N2

√
π

8

[
1

2γ2 − g(2)(γ)
]

,

where

|g(2)(γ)| =
∣∣∣
∫ ∞

0
u3e−γu2

Φ
(

ln u√
2

)
du
∣∣∣ < 1

2γ2 . (52)

Since |α| =
√

γ2 + T2, and defining

Ω(γ) =
8π

N2

√
π

8

[
1

2γ2 − g(2)(γ)
]
= 2




γ−2 − 2g(2)(γ)√
π

2γ
3
2
− 2g(1)(γ)


, (53)

which is strictly positive, the expected value of b is

〈b〉 = Ω(γ)
√

γ2 + T2. (54)

By definition, γ > 0. Therefore, 〈b〉 > 0, that is, there is no singularity at T = 0. Moreover,
for T � γ, at late times, 〈b〉 → T.

Using the fact that
∫

f (x)δ′(x− x0)dx = −
∫

f ′(x)δ(x− x0)dx, a similar calculation
for σ results in

〈σ〉 = −2πi
N2

∫ ∞

0

∫ +∞

−∞
e−k2 b|k|+1

(2α)|k|+1(2α∗)
e
−
(

γb2

4|α|2

)

∂k

[
e−k2 b|k|

(2α∗)|k|

]
dkdb.

The integral over k is zero because the function is odd with respect to this parameter. Thus,

〈σ〉 = 0. (55)

This does not mean, however, that the scalar field φ is a constant, since the expectation
value allows fluctuations. Notice that we have a symmetrical bouncing in both frames
because of Equation (41).

5. Analysis of the Solution via the de Broglie–Bohm Approach

In the previous section, we introduced a quantum model of the BD theory, identifying
the universe with a wave function that obeys a Schrödinger-like equation. Thus, we
proceeded with the usual methods of quantum mechanics to analyze the behavior of the
scale factor, which is directly connected with the volume of the universe. However, in the
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case of quantum cosmology, we must give up on the usual Copenhagen interpretation of
QM, since it requires an external observer to cause the wave function to collapse into one
state. An alternative is the many-world interpretation, which considers every state of the
wave function as real, existing in parallel with each other. Our universe, therefore, is one of
many. This interpretation does not require the collapse of the wave function, and so we
can investigate different states separately from the wave packet.

The de Broglie–Bohm (dBB) interpretation, on the other hand, does not consider a
wave description of the universe at all. Instead, it is a dynamical theory in which real
trajectories can be obtained in the configuration space of the quantum system. Those
trajectories are observer-independent, and, therefore, the de Broglie–Bohm interpretation
does not rely on any collapse mechanism. This interpretation was formulated as a causal
alternative to the probabilistic Copenhagen interpretation still in the early years of the
quantum era [40,41], and it has replicated most of the classic results of quantum mechan-
ics. In the dBB interpretation, observers are also described by quantum operators to be
applied on a wave function that satisfies the Schrödinger equation. The wave function
dictates the equations of motion to find the trajectories. In Bohmian mechanics, Ψ(xi, t) is
decomposed as

Ψ(xi, t) = R(xi, t)eiS(xi ,t) (56)

and the probability density of the trajectory is given by ρ(xi, t) = |Ψ(xi, t)| = R2(xi, t). The
Bohmian trajectories are realized through the momenta defined as

pj = ∂jS =

(
i
2

)ΨΨ∗ ,j −Ψ∗Ψ,j

|Ψ|2 . (57)

Since it is not probabilistic, the observers in the dBB do not necessarily need to be repre-
sented by self-adjoint operators.

This ontological interpretation of the quantum theory has its critics, who argue that
other interpretations may be better-suited [42], or take issue with the so-called hidden vari-
ables which determine the behavior of the trajectories in a many-body configuration [43].
Still, because of its distinct characteristic, the dBB interpretation is a suitable candidate to be
applied in the quantization of cosmological scenarios [44,45], where the wave function be-
comes a guide to the possible observer-independent evolution of the universe. Notice that,
contrary to the Copenhagen interpretation, the dBB interpretation of quantum mechanics
does not necessarily need to work in the Hilbert space.

Let us compare these two approaches in particular cases. In the previous section, we
have already made the computation using the expectation values finding, quite generally,
that the expectation value for the scalar field is zero and the expectation value for the
scale factor is the same as found in the corresponding case in GR. We will now analyze
the predictions for the evolution of the universe using the dBB formulation. We will work
initially in the Einstein frame. Remember the usual solution to the Equation (42) given in
Equation (44):

Ψ(b, σ, T) = A(k, E)Jν(
√

Eb)ei(kσ+ET), ν =
√
−ε|k|. (58)

The construction of the wave packet exposed in the previous section is not convenient
here. The reason is that the integration is made in the interval −∞ < k < ∞, but the terms
coming from the order of the Bessel functions depend on |k|. Hence, the integration on the
whole interval does not allow for obtaining a tractable form for the wave packet in view of
using the de Broglie–Bohm approach. Let us consider the general wave packet given by

Ψ(b, σ, T) =
∫ ∞

0

∫ +∞

−∞
A(k)xν+1e−(γ+iT)x2

Jν(xb)eikσdkdx, (59)

with the definition x =
√

E and ν = |k|. The integration in x leads to
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Ψ(b, σ, T) =
∫ +∞

−∞
A(k)

bν

(α)ν+1 e−
b2
4α eikσdk. (60)

With this, we investigate the behaviors of the scale factor and the scalar field in some special
cases, and compare them with the results of the previous section.

5.1. The Scalar Field Is Absent

Let us consider the case where the factor A is given by a delta function. If we choose
A(k) = δ(k), which means the world where ν = 0, the contribution of the scalar field
vanishes and the wave function is such that

Ψ(b, σ, T) =
e−

b2
4α

α
. (61)

Notice that this does not mean we recover General Relativity. This would be one world of
the many in a BD theory of gravitation. Considering Equation (48), it is straightforward to
verify that the norm of the wave function (61) is finite and time-independent. Similarly to
the calculation in the last section, we can compute the expected value of the scale factor:

< b >=
1

N2

∫ ∞

0

e
−γ b2

2|α|2

|α|2 b db =
1

γN2

√
γ2 + T2, (62)

where N here is the normalization factor of the wave function (61), naturally. Therefore, in
this world, a bounce occurs, and, for late times, that is, when T � γ, 〈b〉 → T.

For the Bohmian trajectories (57), we use the phase of the wavefunction (61), which is,
in this case,

S = T
b2

4|α|2 − arctan
(

T
γ

)
. (63)

Remembering that the conjugate momentum is pb = ḃ/2, we obtain for the Bohmian trajectories,

ḃ =
bT
|α|2 . (64)

The solution of this differential equation is b = b0
√

γ2 + T2, which is the same result as
before using expectation values. In a Bohmian analysis, this universe also has a bounce.

The results exposed in the previous section show quite generically that wave packets
with constant finite norm lead to a zero expectation value for σ. From now on, we explore
possibilities where we circumvent this restriction but at the price of having wave packets
that are not finite, what is not an obstacle when dBB formulation is used, see Ref. [11].

5.2. A Single Scalar Mode

Let us consider now the superposition function such that A(k) = δ(k− k0), where k0
is a positive constant. This implies to consider a single scalar mode behaving like a plane
wave. The wave function reads as

Ψ(b, σ, T) =
bν0

(α)ν0+1 e−
b2
4α eik0σ, (65)

with ν0 =
√−εk0. We will analyze the Bohmian scenario for both ε = 1 and ε = −1.

Let us start with ε = −1. In this case, the phase of the wave function becomes

S =
b2

4|α|2 T − (k + 1) arctan
(

T
γ

)
+k0σ. (66)
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The presence of the term k0σ changes the previous analysis, since now the variable σ is
featured in the wave function. The guidance equations become:

ḃ =
bT
|α|2 , (67)

σ̇b2 = 12k0, (68)

and their solutions are,

b = b0

√
γ2 + T2, (69)

σ = σ0 arctan
(

T
γ

)
. (70)

The scalar field is no longer a constant. In the original Jordan frame, Equation (69) yields

a ∝ exp


−

arctan
(

T
γ

)

√
|1 + 2

3 ω|



√

γ2 + T2. (71)

Again, we have a non-singular solution recovering the classical solution asymptotically,
but now the bounce in this case is asymmetric. Asymmetric bouncing models have been
studied in Ref. [46].

Now, for the case ε = +1, in an observer-dependent interpretation, this becomes a
problematic situation since the energy E is not bounded from below. The signature of
the Schrödinger equation is hyperbolic instead of elliptic. However, we can follow the
same step as before to obtain the phase of the wave function and to compute the Bohmian
trajectories. The main new feature now is that the order of the Bessel function is imaginary,
ν = ik. Hence, the phase of the wave function (60) for this case is

S = k0 ln
b
|α|2 +

b2

4|α|2 T − arctan
(

T
γ

)
+k0σ. (72)

The equations for the Bohmian trajectories become

ḃ =
2k0|α|2

b
+

T
|α|2 b, (73)

σ̇ = −12
k0

b2 . (74)

The solutions are

b = b0

√
γ2 + T2

√
σ0 − k̄0 arctan

(
T
γ

)
, (75)

σ = 3 ln
{

σ0 − k̄0 arctan
(

T
γ

)}
(76)

where b0 and σ0 are constants and k̄0 = 36k0/(b2
0γ).

To return back to the scale factor in the Jordan frame, we use

a = φ−1/2b = e
− σ√

1+ 2
3 ω . (77)

Hence,

a = a0

√
γ2 + T2

{
σ0 + k̄0 arctan

(
T
γ

)}r

, (78)
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with

r =
1
2

√
1 + 2

3 ω + 6
√

1 + 2
3 ω

. (79)

Notice that the solutions (75) and (76) are non-singular only if σ0 > π
2 k̄0 and σ0 > 0.

The classical solution is recovered asymptotically. This fact reveals again the very peculiar
features when the energy conditions are satisfied.

We can compute the quantum potential that results from the modified Hamilton–
Jacobi equation in the dBB formulation of quantum mechanics [11], which is given by

VQ =
∇2R

R
, R =

√
Ψ∗Ψ. (80)

The Laplacian operator is defined in the minisuperspace with variables b and σ. For the
cases studied in this subsection, the result is the expected: the quantum potential reaches
its maximum value at the bounce, and decreases to zero asymptotically where the classical
solutions are recovered.

In performing the study above, we have used the Bessel function given in a (44). It can
be explicitly verified that, if we have used the Bessel function of negative order, which is
not regular at the origin, the results would be the same with a reversal of the time, T → −T.

5.3. Multiple Scalar Modes

We can combine different scalar modes. One example can be achieved by
the combination,

A(k) = δ(k− k0) + ηδ(k + k0), (81)

with η = ±1. With a similar computation, we obtain, for the positive sign, cos k0σ instead
of eik0 and for a negative sign sin k0σ. In both of these cases, the scalar field is not present
in the phase of the wave function, and we recover the same solutions already given in the
case that the scalar field is absent.

6. Conclusions

The Brans–Dicke theory is one of the oldest proposals of a modification to the theory
of general relativity. Although it has been studied for over sixty years, the Brans–Dicke
theory continues to reveal intriguing aspects. Some of these were discussed in the present
work concerning classical and quantum scenarios for the early universe. First of all, it is
possible to obtain a singularity-free cosmological solution if the Brans–Dicke parameter
ω varies as −3/2 < ω < −4/3. In this range, the energy conditions are satisfied in the
Einstein frame: the avoidance of the singularity is driven by the non-minimal coupling.

When we turn to the quantum scenario in the minisuperspace, other curious features
appear. The energy is bounded only for ω < −3/2, that is, when the energy condition is
violated in the Einstein frame. On the other hand, in the case of ω > −3/2, the energy
conditions are satisfied, but the energy is not bounded from below, so it becomes problem-
atic to employ the usual interpretation scheme based on the Copenhagen formulation of
quantum mechanics: the wave function is not finite anymore.

This issue motivated us to consider the de Broglie–Bohm interpretation of quantum
mechanics. The previous results are found again if ω < −3/2. However, when ω > −3/2,
we have either a singular or non-singular solution. This implies that, in the interval − 3

2 <

ω < − 4
3 , the classical model displays singularity-free scenarios, while the quantum models

may display either singular or non-singular solutions. This result raises the following
question: can such results occur in more general modified gravity theories belonging to the
Horndesky class?
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We add to the previous discussion some additional remarks. First of all, it must be
verified to what extent the results reported here depend on the wave packet construction
and the choice of the time variable. On the other hand, the problems of convergence of
the wave function, when the energy conditions are obeyed, is somehow general in the
presence of scalar fields since it leads to a hyperbolic signature in the Hamiltonian and,
consequently, in the Schrödinger-type equation. However, such a well-known fact acquires
new features that were briefly described above. The analysis displayed in the present
work shows that the well-studied Brans–Dicke cosmological models present interesting
properties at classical and quantum levels as well, no matter which interpretation is chosen.
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Abstract: Quantum theory of a test field on a quantum cosmological spacetime may be viewed
as a theory of the test field on an emergent classical background. In such a case, the resulting
dressed metric for the field propagation is a function of the quantum fluctuations of the original
geometry. When the backreaction is negligible, massive modes can experience an anisotropic Bianchi
type I background. The field modes propagating on such a quantum-gravity-induced spacetime
can then unveil interesting phenomenological consequences of the super-Planckian scales, such
as gravitational particle production. The aim of this paper is to address the issue of gravitational
particle production associated with the massive modes in such an anisotropic dressed spacetime. By
imposing a suitable adiabatic condition on the vacuum state and computing the energy density of
the created particles, the significance of the particle production on the dynamics of the universe in
Planck era is discussed.

Keywords: loop quantum cosmology; quantum fields in curved spacetime

1. Introduction

Observation of cosmic microwave background (CMB) implies that the classical uni-
verse is homogeneous and isotropic on scales larger than 250 million light years. Based
on the standard ΛCDM model of cosmology, the Friedmann–Lemaître–Robertson–Walker
(FLRW) solution of Einstein’s field equations provides a suitable explanation of such near
perfect isotropy of the CMB and other astrophysical observables. Nevertheless, there is
not yet a decisive answer to the question of whether or not the quantum structure of the
universe in the super-Planckian regime has the same symmetry as observed in the CMB
and how such structure can be traced in the observational data.

According to the standard model of cosmology, the structure formation at large
scales are described via (inhomogeneous) perturbations at smaller scales in the early
universe. Quantum field theory in classical, curved spacetime provides a good approximate
description of such phenomena in a regime where the quantum effects of gravity are
negligible [1,2]. Within such framework, the issue of the gravitational particle production
induced by the time-dependent background in an expanding universe and its backreaction
effect is of significant importance [3,4]. Nevertheless, when tracing further back in time,
where the curvature of the universe reaches the Planck scales, the quantum effects of
gravity become important. This might lead to additional phenomena that are expected to
be important when exploring the dynamics of the early universe.

Loop quantum cosmology (LQC) is a promising candidate to investigate the quan-
tum gravity effects in Planckian regime [5]. It follows the quantization scheme of loop
quantum gravity (LQG), which is a background independent, non-perturbative approach
to the quantization of general relativity [6–8]. This approach has provided a number of
concrete results: the classical big bang singularity is resolved and is replaced by a quantum
bounce [9–12]; the standard theory of cosmological perturbations has been extended to
a self-consistent theory from the bounce in the super-Planckian regime to the onset of
slow-roll inflation [13–17]. Further phenomenological consequences and observational
predictions of LQC can be found, e.g., in Refs. [17–29], respectively.
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The cosmological quantum backgrounds in LQC establish a fruitful ground to explore
the quantum theory of inhomogeneous fields propagating on it. In a dressed metric
approach, when the full quantum Hamiltonian constraint of the gravity-matter system
is solved, an effectively dressed geometry emerges for the field modes. Depending on
whether the field is massless or massive, various spacetime metrics can raise for the dressed
background geometry. The emergent metric components, if the backreaction between the
fields and the geometry is discarded, depend, generically, on the fluctuations of the original
quantum metric operator only. For massive modes, quantum gravity effects may induce a
small deviation from the initial isotropy [19,24]. If the backreaction is considered, other
properties, such as emerging a mode-dependent background, can raise, which leads to the
violation of the local Lorentz symmetry [18,20]. Even in the absence of the backreaction
between the states of the gravity and matter fields, a backreaction effect may arise due
to the gravitational particle production, which can challenge the validity of the test field
approximations employed in the dressed metric scenario [22].

Motivated from the above paragraphs, our purpose in this article is to address some
phenomenological issues associated with the massive test field propagating on a quantum
cosmological spacetime. In particular, we will consider a scenario in which an anisotropic
dressed geometry emerges for the massive modes due to quantum gravity effects and
then revisit the occurrence of the gravitational particle production on such an anisotropic
dressed background. Such effects will have important consequences in the super-Planckian
regime and at the onset of the classical inflationary epoch. We thus organize this paper
as follows. In Section 2, we will consider the propagation of a massive test field on
a quantized FLRW spacetime. We will derive an effective evolution equation for the
field and obtain a suitable anisotropic dressed background for the field propagation. In
Section 3, we will study the theory of the quantum field by considering the many infinite
modes on the emergent anisotropic spacetime. We will then explore the problem of the
gravitational particle production by choosing a convenient, adiabatic vacuum state in the
super-Planckian regime. Finally, in Section 5, we will present the conclusion and discussion
of our work.

2. Quantum Fields on a Quantum FLRW Spacetime

In this section, we study the quantum theory of a massive scalar field on a quantum
FLRW background. Firstly, we will analyze the quantum theory of a scalar field in the
classical Friedmann universe. Next, we will quantize the background and obtain a quantum
evolution equation for the composite state of the gravity-perturbation system. Finally, in
the last step, we will extract an effective evolution equation for the field mode degrees of
freedom, due to which we can extract an effective anisotropic background for propagation
of the massive modes.

2.1. Quantum Field on a Cosmological Classical Spacetime

We start with considering a massive scalar field propagating on a more general classical,
anisotropic background spacetime. In particular, we take a Bianchi type I model whose line
element is represented by

gabdxadxb = −N2
x0
(x0)(dx0)

2 +
3

∑
i

a2
i (x0)

(
dxi
)2

, (1)

where Nx0 is the lapse function and ai the scale factor in the xi-direction. The coordinates
(x0, x) are chosen such that x0 ∈ R is a generic time coordinate, and x ∈ T3 (i.e., a 3-torus
with the coordinates xj ∈ (0, `j)).

We consider a real, minimally coupled scalar field, ϕ(x0, x), with a mass m, propagat-
ing on the background (Equation(1)). Having the Lagrangian density for ϕ(x0, x), with a
quadratic potential,

Lϕ = −1
2

[
gab∇a ϕ∇b ϕ + m2 ϕ2

]
, (2)
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the equation of motion is obtained as

(gab∇a∇b −m2)ϕ = 0. (3)

On the x0 = const slice, by performing the Legendre transformation, we take a canon-
ically conjugate momentum πϕ to the field ϕ. Then, the classical solutions of Equation (3)
for the pair (ϕ, πϕ) can be Fourier expanded as1

ϕ(x0, x) =
1

`3/2 ∑
k∈L

ϕk(x0) eik·x, (4a)

πϕ(x0, x) =
1

`3/2 ∑
k∈L

πk(x0) eik·x, (4b)

with L = L+ ∪L− being a 3-dimensional lattice:

L+ = {k : k3 > 0} ∪ {k : k3 = 0, k2 > 0} ∪ {k : k3 = k2 = 0, k1 > 0}, (5a)

and

L− = {k : k3 < 0} ∪ {k : k3 = 0, k2 < 0} ∪ {k : k3 = k2 = 0, k1 < 0}, (5b)

spanned by k = (k1, k2, k3) ∈ (2πZ/`)3, where Z is the set of integers [13,18].
Let us decompose the field modes into the real and imaginary parts as

ϕk(x0) =
1√
2

[
ϕ
(1)
k (x0) + iϕ(2)

k (x0)
]
. (6)

Then, the reality condition implies that ϕ
(1)
k = ϕ

(1)
−k and ϕ

(2)
−k = −ϕ

(2)
k . By introducing

a new variable Qk,

Qk(x0) =





ϕ
(1)
k (x0), if k ∈ L+,

ϕ
(2)
−k(x0), if k ∈ L−,

(7)

associated to the real variables ϕ
(1)
k and ϕ

(2)
k , we can rewrite the field modes ϕk as

ϕk(x0) =
1√
2
[Qk(x0) + iQ−k(x0)]. (8)

Likewise, the decomposition of the momentum πk as

πk(x0) =
1√
2

[
π
(1)
k (x0) + iπ(2)

k (x0)
]
, (9)

in terms of the real variables π
(1)
k and π

(2)
k , and introducing the new variable Pk (conjugate

to Qk above), as

Pk(x0) =





π
(1)
k (x0), if k ∈ L+,

π
(2)
−k(x0), if k ∈ L− ,

(10)

yields

πk(x0) =
1√
2
[Pk(x0) + iP−k(x0)]. (11)

The conjugate variables (Qk, Pk) satisfy the Poisson bracket, {Qk, Pk′} = δk,k′ .
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Using the Equations (7) and (10), the Hamiltonian of the scalar test field, ϕ, can be
written as the sum of the Hamiltonians, Hk(x0), of the decoupled harmonic oscillators,
each given in terms of (Qk, Pk):

Hϕ(x0) := ∑
k∈L

Hk(x0) =
Nx0(x0)

2|a1a2a3| ∑
k∈L

(
P2

k + ω2
k(x0)Q2

k

)
, (12)

where ωk(x0) is a time-dependent frequency, defined by

ω2
k(x0) := |a1a2a3|2

[
3

∑
i=1

(
ki
ai

)2
+ m2

]
. (13)

Note that Qk is the field amplitude for the mode characterized by k.
To quantize the field, we follow the Schrödinger representation. While the background

spacetime is left as the classical, the quantization of Qk for a fixed mode k resembles that
of a quantum harmonic oscillator with the Hilbert space H(k)

Q = L2(R, dQk), where (Qk, Pk)

are promoted to operators on H(k)
Q as

Q̂kψ(Qk) = Qkψ(Qk) and P̂kψ(Qk) = −ih̄
(
∂/∂Qk

)
ψ(Qk). (14)

Then, the Hamiltonian operator Ĥk generates the time evolution of the state ψ(Qk)
via the Schrödinger equation

ih̄∂x0 ψ(x0, Qk) =
`3Nx0

2V

(
P̂2

k + ω2
k Q̂2

k

)
ψ(x0, Qk), (15)

where V = `3|a1a2a3| denotes the physical volume of the universe.
By setting x0 = φ in Equation (15) as an internal time parameter, the evolution of the

state ψ(Qk) with respect to φ on a Bianchi-I background with components
(

Ñφ, ãi(φ)
)

reads

ih̄∂φψ(φ, Qk) =
Ñφ

2|ã1 ã2 ã3|
[

P̂2
k + ω̃2

k(φ)Q̂
2
k

]
ψ(φ, Qk), (16)

where

ω̃2
k(φ) =

(
3

∑
i

k̃2
i

ã2
i
+ m̃2

)
(ã1 ã2 ã3)

2. (17)

Clearly, one gets an isotropic background for the field by ã1(φ) = ã2(φ) = ã3(φ) ≡ ã(φ).

2.2. Quantization of the Background

In our model herein this paper, we will assume that the field, ϕ, propagates on an
isotropic FLRW spacetime in a super-Planckian regime so that this isotropic background has
to be quantized. However, the reason for constructing a general formalism of the field on
an anisotropic background in the previous subsection is for the purpose of comparison,
when an effectively dressed spacetime emerges from the isotropic quantum background.
We will show that the emergent effective spacetime can have the same structure of an
anisotropic Bianchi-I geometry for the field propagation.

Let us assume a harmonic time gauge, x0 = τ, and set the isotropic components as
a1 = a2 = a3 = a(τ) in Equation (1). Then, Nτ = a3(τ), and the Hamiltonian (12) becomes

H(iso)
ϕ = ∑

k
Hτ,k :=

1
2 ∑

k

(
P2

k + ω2
τ,k Q2

k

)
, (18)

where
ω2

τ,k(τ) = k2a4(τ) + m2a6(τ). (19)
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We note that the massless scalar field, φ(τ), still serves as an internal time parameter.
In quantum theory, we will quantize not only the test field but also the background

geometry. We will assume that the backreaction of the quantum field on the background
quantized spacetime is negligible. This yields an evolution for the wave function, ψ(Qk),
of the test field with respect to the internal time φ. Let Ho

kin = Hgrav ⊗Hφ denote the
background Hilbert space, which consists of the Hilbert space of the gravity sector and that
of the scalar clock variable φ; the matter sector is quantized according to the Schrödinger
representation, Hφ = L2(R, dφ). Likewise, the Hilbert space of the field modes reads
H(k)

ϕ = L2(R, dQk), as before. Subsequently, the full kinematical Hilbert space of the system
for a single mode k is given by H(k)

kin = Ho
kin ⊗H

(k)
ϕ .

In LQC, the background Hamiltonian constraint operator,

Ĉo = Ĉgrav + Ĉφ, (20)

is well-defined onHo
kin; the physical states Ψo(φ, ν) ∈ Ho

kin are those lying on the kernel of
Ĉo and are solutions to the self-adjoint constraint Equation: [30]

Nτ ĈoΨo(ν, φ) = − h̄2

2`3 (∂
2
φ + Θ)Ψo(ν, φ) = 0. (21)

The quantum number ν is the eigenvalue of the background volume operator, V̂o = ̂̀3a3,
which acts on the states Ψo(φ, ν) ∈ Ho

kin as

V̂o Ψo(ν, φ) = 2πγ`Pl|ν|Ψo(ν, φ). (22)

Moreover, Θ is a difference operator that acts on Ψo(ν), involving only the volume
sector ν. Taking only the positive frequency solutions to Equation (21), we get a Schrödinger
equation for the background as

− ih̄∂φΨo(ν, φ) = h̄
√

ΘΨo(ν, φ) =: ĤoΨo(ν, φ). (23)

The solutions yield a physical Hilbert space,Ho
phys, equipped by the inner product

〈Ψo|Ψ′o〉 = ∑
ν

Ψ∗o (ν, φ0)Ψ′o(ν, φ0), (24)

for an “instant” φ0 of the internal time.
For a composite state Ψ(ν, Qk, φ) ∈ H(k)

kin of the geometry-test field system, the action of
the total quantum Hamiltonian constraint, Ĉτ,k, is written as [13]

Ĉτ,kΨ(ν, Qk, φ) =
(

Nτ Ĉo + Ĥτ,k
)
Ψ(ν, Qk, φ) = 0, (25)

where Ĥτ,k is the Hamiltonian operator of the kth field mode,

Ĥτ,k =
1
2

[
P̂2

k +
(

k2 â4 + m2 â6
)

Q̂2
k

]
. (26)

By replacing Equation (21) into the constraint Equation (25), we obtain

−ih̄∂φΨ(ν, Qk, φ) =
[

Ĥ2
o − 2`3Ĥτ,k

] 1
2 Ψ(ν, Qk, φ), (27)

which represents a quantum evolution of Ψ(ν, Qk, φ) with respect to the internal time φ. In
a test field approximation, when the backreaction effect is omitted, the expression under
the square root can be expanded up to the first-order terms, as [13]

− ih̄∂φΨ(ν, Qk, φ) ≈
(

Ĥo − Ĥφ,k
)
Ψ(ν, Qk, φ). (28)
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In expanding the right-hand-side of Equation (27) to derive the equation above, we
regarded Ĥo as the Hamiltonian of the heavy degree of freedom, whereas Ĥφ,k, defined by

Ĥφ,k := `3Ĥ−
1
2

o Ĥτ,kĤ−
1
2

o , (29)

was considered as the Hamiltonian of the light degree of freedom (i.e, a perturbation
term). In this approximation, it is suitable to separate the total state of the system as

Ψ(ν, Qk, φ) = Ψo(ν, φ)⊗ ψ(Qk, φ). (30)

To explore the quantum evolution of a pure test field state, ψ(Qk, φ), on a time-
dependent background, it is more convenient to employ an interaction picture. Thus,
we introduce

Ψint(ν, Qk, φ) = e−(iĤo/h̄)(φ−φ0)Ψ(ν, Qk, φ), (31)

In this picture, the geometry evolves by Ĥo through Equation (23) for any Ψo ∈ Ho
kin

in the Heisenberg picture,

Ψo(ν, φ) = e(iĤo/h̄)(φ−φ0)Ψo(ν, φ0). (32)

Plugging this into Equation (31), we get

Ψint(ν, Qk, φ) = Ψo(ν, φ0)⊗ ψ(Qk, φ). (33)

Thereby, the geometrical sector in the composite state Ψint(ν, Qk, φ) becomes frozen
in the instant of time φ0 so that Ψint represents a time-dependent test field state, ψ, solely.

By replacing Equation (33) into the evolution Equation (28) and tracing out the geo-
metrical state, Ψo(ν, φ0), a quantum evolution for ψ(Qk, φ) is obtained as

ih̄∂φψ =
1
2

[
〈Ĥ−1

o 〉P̂2
k +

(
k2〈Ĥ−

1
2

o â4(φ)Ĥ−
1
2

o
〉
+ m2〈Ĥ−

1
2

o â6(φ)Ĥ−
1
2

o
〉)

Q̂2
k

]
ψ, (34)

where 〈·〉 denotes the expectation value with respect to Ψo(ν, φ0). It is clear that the use
of the interaction picture in Equation (34) provided the Heisenberg description for the
quantum geometrical elements; that is, the geometry state, Ψo(ν, φ0), is fixed at time φ = φ0,
while the geometrical operator, â(φ) = V̂1/3

o (φ)/`, evolves in time as

â(φ) = e−(iĤo/h̄)(φ−φ0) â e(iĤo/h̄)(φ−φ0). (35)

Therefore, Equation (34) represents a φ-evolution of the field, ψ(Qk, φ), on a time-
dependent (classical) background, which is similar to the one we had in classical spacetime
(cf. Equation (16)).

2.3. Emergence of Anisotropic Dressed Spacetimes

Equation (34) can be interpreted as an evolution equation for the field modes on an
(effective) classical spacetime, whose components are generated by the expectation values
of the original isotropic quantum geometry operators with respect to the unperturbed state
Ψo. To explore the properties of such effective spacetime, we can compare Equation (34),
for the evolution of the state ψ, with the corresponding Equation (16), for the same state ψ,
on an anisotropic classical background. This comparison yields a set of relations between
parameters of the Bianchi I geometry, (Ñφ, ãi, k̃i, m̃), and those of the isotropic quantum
geometry, (â, Ĥo, k, m), as
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Ñφ = `3|ã1 ã2 ã3|
〈

Ĥ−1
o
〉
, (36a)

3

∑
i=1

k̃2
i

ã2
i

Ñφ |ã1 ã2 ã3| =
3

∑
i=1

k2
i `

3〈Ĥ−1/2
o â4Ĥ−1/2

o
〉
, (36b)

Ñφ m̃2 |ã1 ã2 ã3| = `3m2〈Ĥ−1/2
o â6Ĥ−1/2

o
〉
. (36c)

Note that â ≡ â(φ) and 〈Ĥ−1
o 〉 = ( p̃φ)−1. Equation (36a–c) provide an underdeter-

mined system of five equations with eight unknowns (Ñφ, ãi, k̃i, m̃). Thus, to be able to
solve this system, we need to impose some arbitrary conditions on these parameters to
reduce the number of unknowns to five. Different classes of solutions by imposing various
conditions on the variables and their physical consequences were discussed in [24]. As an
example, we will present two classes of such solutions; one is produced by a massless test
field, m = m̃ = 0, and the other is provided by the dressed massive modes, m̃, m 6= 0.

For a massless test field, m = 0, we will immediately obtain m̃ = 0. In this case, we
will have four equations for the seven unknown parameters (Ñφ, ãi, k̃i). Therefore, we will
still need three more conditions to be able to solve the system in Equation (36a,b). The
simplest choice is k2

i = k̃2
i (for each i) so that ã2

1 = ã2
2 = ã2

3 = ã2. Then, we obtain

ã4 =

〈
Ĥ−1/2

o â4(φ)Ĥ−1/2
o

〉
〈

Ĥ−1
o
〉 , (37a)

Ñφ = `3〈Ĥ−1
o
〉 1

4
〈

Ĥ−1/2
o â4(φ)Ĥ−1/2

o
〉 3

4 = `3 p̃−1
φ ã3 ≡ N̄φ. (37b)

If m, m̃ 6= 0 and m̃ 6= m, we will have different ranges of solutions (cf. [24]). However,
for our purpose in this paper, we will consider only a specific solution by imposing the
condition k̃i = αiiki (with i = 1, 2, 3). This yields

Ñφ =
N̄φ

λ
, (38a)

ãi =
αii
λ

ã, (38b)

m̃4 = m4λ4
〈

Ĥ−1/2
o â6(φ) Ĥ−1/2

o
〉2〈Ĥ−1

o
〉

〈
Ĥ−1/2

o â4(φ)Ĥ−1/2
o

〉3 , (38c)

where λ ≡ (α11α22α33)
1/2 is a constant. Note that, as a special subcase, when αii = 1 (so

λ = 1), the wave vector becomes undressed, k̃i = ki, and an isotropic dressed scale factor,
ã1 = ã2 = ã3 = ã, identical to Equation (37a), is obtained. However, here, different from
the isotropic case above for m = 0, a nonzero dressed mass is obtained as

m̄2 = m2
〈

Ĥ−1/2
o â6(φ)Ĥ−1/2

o
〉〈

Ĥ−1
o
〉 1

2

〈
Ĥ−1/2

o â4(φ)Ĥ−1/2
o

〉 3
2

=
m̃2

λ2 . (39)

This solution represents an isotropic dressed spacetime with the scale factor ā(φ), over which
a massive mode with the mass m̄ and an undressed wave-vector k = (k1, k2, k3) propagate.

3. QFT on the Dressed Spacetime

To date, we have seen that the massive field modes propagating on an isotropic quan-
tum geometry can explore a classical anisotropic dressed background, g̃ab (see, e.g., Equa-
tion (38a–c), which is the solution of Equation (36a–c). In this section, we will study
the QFT and the issue of the gravitational particle productions on such an emergent
anisotropic spacetime.
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3.1. Field Equation on the Dressed Anisotropic Background

We suppose that the scalar field, ϕ, propagates on the dressed Bianchi I background

g̃abdxadxb = −Ñ2
φ(φ)dφ2 +

3

∑
i=1

ã2
i (φ)

(
dxi
)2

, (40)

whose components are given as the solutions to Equation (36). For convenience, we
introduce the new variables

c̃(φ) := (ã1 ã2 ã3)
2
3 = (c̃1 c̃2 c̃3)

1
3 and c̃i(φ) := ã2

i (φ), (41)

and consider a conformal time parameter, η̃, defined by

Ñφdφ = Ñη̃dη̃ = c̃1/2dη̃ ⇒ dη̃ = `3〈Ĥ−1
o 〉c̃(φ)dφ. (42)

Let us now take an auxiliary field, χk ≡
√

c̃(η̃) ϕk. Then, in terms of the above
variables, the equation of motion reads

χ′′k +

[
ω̃2

η̃,k(η̃)−
c̃′′

2c̃
+

c̃′2

4c̃2

]
χk = 0, (43)

where a prime stands for a differentiation with respect to η̃, and ω̃η̃,k is given by

ω̃2
η̃,k(η̃) = c̃−2


k2

〈
Ĥ−

1
2

o â4Ĥ−
1
2

o
〉

〈Ĥ−1
o 〉

+ m2
〈

Ĥ−
1
2

o â6Ĥ−
1
2

o
〉

〈Ĥ−1
o 〉


. (44)

Notice that in simplifying equations above, we have used the relations between
components according to Equation (36).

The frequency from Equation (44) is specified only when the solutions for c̃(η̃) are
determined. It turns out that only two classes of solutions for c̃ exist, which depend on the
conditions on the field mass:

(i) For massive field with undressed mass, m̃ = m 6= 0, the relation for c̃(η̃) has the form

c̃(η̃) =

〈
Ĥ−

1
2

o â6Ĥ−
1
2

o
〉 1

3

〈Ĥ−1
o 〉

1
3

. (45)

(ii) For a massive field with the dressed mass, m̃ 6= m, or a massless field, c̃(η̃) has the
solutions of the form

c̃(η̃) = ξ2
〈

Ĥ−
1
2

o â4Ĥ−
1
2

o
〉 1

2

〈Ĥ−1
o 〉

1
2

= ξ2 ã2(η̃), (46)

where ξ is a parameter that distinguishes the anisotropic solutions from the isotropic
one and depends on the conditions imposed on the additional unknown variables ãi’s
and k̃i’s of the system in Equation (36). The case ξ2 = 1 associates with the isotropic
solution, whereas the case ξ 6= 1 denotes the anisotropic solutions (cf. Equations (37)
and (39) for different classes of the solutions).

3.2. The Adiabatic Condition and the Vacuum State

Any solution χk(η̃) to the Klein–Gordon equation (Equation (43)) can be expanded as

χk(η̃) =
1√
2

[
aku∗k (η̃) + a∗−kuk(η̃)

]
, (47)
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where ak and a∗k are constants of integration, and uk(η̃) are the general mode solutions of
Equation (43),

u′′k +
(

ω̃2
η̃,k(η̃)−Q(η̃)

)
uk = 0, (48)

with Q ≡ c̃′′/2c̃− c̃′2/4c̃2. These modes, together with their complex conjugates, u∗k (η̃),
form a complete set of orthonormal basis under the scalar product

W(u∗k , uk) := uku∗′k − u∗k u′k = 2i. (49)

In quantum theory, ak and a∗k become annihilation and creation operators, âk and â†
k,

satisfying the commutation relation
[
âk, â†

k′
]
= h̄`3δk,k′ , (50)

where all other commutation relations vanish. For the positive frequency solutions, a choice
of the basis, uk(η̃), determines a vacuum state, |0〉, which is defined as the eigenstate of
the annihilation operators obeying the equation âk|0〉 = 0. Different families of the mode
solutions distinguish different vacuum states. Accordingly, a Fock space is generated by
repeatedly acting the operator â†

k on a chosen vacuum state. Thereby, the evolution of the
quantum fields on the quantum-gravity-induced dressed spacetime is determined. Now,
the general (auxiliary) field solutions, χ(η̃, x), can be expanded as

χ(η̃, x) =
1
`3 ∑

k
χk(η̃, x), (51)

where
χk =

1√
2

[
aku∗k (η̃)e

ik·x + a∗kuk(η̃)e−ik·x
]
. (52)

To have a well-defined vacuum state for the mode solutions, the (effective) frequency

Ω2
k(η̃) = ω̃2

η̃,k(η̃)−Q(η̃), (53)

should be positive. Thus, the wave-number must satisfy k2 ≥ k2∗, where

k2
∗(η̃) :=

Q(η̃)c̃2(η̃)〈Ĥ−1
o 〉

〈
Ĥ−

1
2

o â4Ĥ−
1
2

o
〉 −m2

〈
Ĥ−

1
2

o â6Ĥ−
1
2

o
〉

〈
Ĥ−

1
2

o â4Ĥ−
1
2

o
〉 , (54)

introduces a physical wavelength, λ∗(η̃) ≡ 2π
√

c̃(η̃)/k∗, which provides an upper bound
for the wavelengths of the physical mode functions, i.e., λ ≤ λ∗. Therefore, modes with
short wavelengths (i.e., large momenta), λ� λ∗, characterize the vacuum states in short
distances, i.e., the ultra-violet (UV) regimes. This regime contains a limit of arbitrary slow
time, η̃, variation of the metric functions called the adiabatic regime. We will, henceforth,
explore the mode functions describing the physical vacuum and particles associated with
this adiabatic regime.

A positive-frequency, adiabatic vacuum mode can be defined by a generalized WKB
approximate solution to the Klein–Gordon equation, as in [31],

uk(η̃) =
1√

Wk(η̃)
exp

(
− i

∫ η̃
Wk(η)dη

)
. (55)

Substituting this relation in Equation (48), we obtain a relation for Wk(η) as

W ′′k
Wk
− W ′k

W2
k
− 1

2
W ′2k
W2

k
+ 2
(

W2
k −Ω2

k

)
= 0. (56)
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An appropriate function can be chosen for Wk(η̃), such as [32]

Wk(η̃) =
[
Y(1 + ε2)(1 + ε4)

] 1
2 , (57)

where Y ≡ Ω2
k = ω̃2

η̃,k −Q and

ε2 := −Y−
3
4 ∂η̃

(
Y−

1
2 ∂η̃Y

1
4

)
, (58)

ε4 := −Y−
1
2 (1 + ε2)

− 3
4 ∂η̃

{
[Y(1 + ε2)]

− 1
2 ∂η̃(1 + ε2)

1
4

}
. (59)

To get the solutions for uk(η̃), one needs to solve Equation (56) for W(η̃). However,
instead of solving (56) exactly, one way is to generate asymptotic series in orders of time
η̃ derivatives of the background dressed metric. Terminating this series at a given order
will specify an adiabatic mode uk(η̃) to that order. Up to an order n (being the power of η̃-
derivatives of ãi), denoted O(

√
c̃/kλn+ε)n+ε (with positive real number ε), the asymptotic

adiabatic expansion of Wk is defined to match

Wk(η̃) = W(0)
k + W(2)

k + · · ·+ W(n)
k , (60)

and is obtained for higher order estimates by iteration.
When computing the expectation value of the energy-momentum operator of the scalar

field, 〈0̃|T̂ab|0̃〉, with respect to the adiabatic vacuum, |0̃〉, associated to the mode function
(Equation (55)), one encounters the UV divergences issues. All of these UV divergences are
contained within the terms of adiabatic order equal to and smaller than four (cf. [33] and
the appendix of Ref. [24]). Thus, the (adiabatic) regularization of the energy density and
pressure of the scalar field are obtained from subtractions of the divergences contained
within the adiabatic terms up to the fourth order; for example, the renormalized energy
density of the field is given by

〈0̃|ρ̂ϕ|0̃〉ren =
h̄

`3 c̃2 ∑
k

(
ρk[uk(η̃)]− ρk[uk(η̃)]

)
, (61)

where ρk is the energy density of each mode, uk(η̃), and ρk is the energy density associated
with the mode, uk, up to the fourth adiabatic order. We will, thus, restrict ourselves to
the fourth-order adiabatic states only2. Then, by setting n = 4, we define Wk(η̃) to match
the terms in Equation (60) that fall slowly in ω̃η̃,k, rather than considering the exact mode
solutions of Equation (48). Accordingly, we consider an appropriate asymptotic condition
(up to the order four) at which the field’s exact mode functions, uk(η̃), match the adiabatic
functions, uk(η̃), as

|uk(η̃b)| =
∣∣uk(η̃b)

∣∣
(

1 +O
(√

c̃/kλ4+ε

)4+ε
)

, (62a)

|u′k(η̃b)| =
∣∣u′k(η̃b)

∣∣
(

1 +O
(√

c̃/kλ4+ε

)4+ε
)

, (62b)

where η̃ = η̃b is a natural choice for the preferred instant of time given at the quantum
bounce in LQC. When a mode function, uk(η̃), satisfies the conditions (62) at some initial
time η̃b, it will satisfy it for all times η̃. Therefore, an observable vacuum, |0〉, associated to
uk(η̃) will be of the fourth order for all times.

Following the above discussion, we thus discard the adiabatic order terms higher than
four in Equation (57) and write

Wk(η̃) = ω̃η̃,k(1 + ε2 + ε4)
1
2 , (63)
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where ε2, ε4 are defined by

ε2 = ε2 − ω̃−2
η̃,k Q

= −1
4

Y−2Y′′ +
5

16
Y−3(Y′)2 − ω̃−2

η̃,k Q, (64)

ε4 = ε4 − ε2 ω̃−2
η̃,k Q

= −1
4

Y−1(1 + ε2)
−2
[
ε2
′′ − 1

2
Y−1Y′ε2

′ − 5
4
(1 + ε2)

−1(ε2
′)2
]
− ε2 ω̃−2

η̃,k Q, (65)

and ε2 is given by

ε2 = −1
4

Y−2Y′′ +
5

16
Y−3(Y′)2. (66)

The leading order term of ε2 is of the second order, whereas the leading order in ε4 is
four. Thus, ε2 contains terms of orders two, four and higher, i.e,

ε2 = ε
(2)
2 + ε

(4)
2 + Higher order terms, (67)

and ε4 contains the leading order term four, i.e.,

ε4 = ε
(4)
4 + Higher order terms. (68)

It should be noticed that we have considered only terms until the fourth order in their
expressions (for more details, see [24]).

4. Gravitational Particle Production

Our aim in this section is to study the gravitational particle production in the herein
quantum gravity regime due to quantum field on the anisotropic dressed background.

Once a vacuum state, |0̃〉, is specified due to the positive frequency solutions, vk(η̃),
of Equation (48), a Fock space,HF, for the quantum field ϕ is generated. Let {vk} and {vk}
be two sets of WKB solutions given by Equation (55) in the herein adiabatic regime. These
mode functions form two normalized bases3 for HF, so they can be related to each other
through the time-independent Bogolyubov coefficients, αk and βk, as

vk(η̃) = αkvk(η̃) + βkv∗k (η̃). (69)

The Bogolyubov coefficients satisfy the relation |αk|2 − |βk|2 = 1 via the condition
in Equation (49). Comparing Equations (69) and (52), it follows that the creation and
annihilation operators associated with two families of mode functions (i.e, those with and
without ‘underline’) are related as

âk = αk âk + β∗k â†
k. (70)

Working in the Heisenberg picture, an initial vacuum state of the system, say |0̃〉
connected to the ‘underlined’ modes, vk(η̃), is the vacuum state of the system for all times.
Then, the number operator, N̂k = (h̄`3)−1 â†

k âk, associated to the particles in vk mode, gives
the average number of particles in the |0̃〉 vacuum. Thus, the vk-mode-related vacuum
state contains

Nk := 〈0̃|N̂k|0̃〉 = |βk|2, (71)

particles in the vk-mode vacuum.
Let us rewrite the mode solution, vk, in the WKB approximation from Equation (55), as4

vk(η̃) =
1√

Wk(η̃)

[
αkek(η̃) + βke∗k (η̃)

]
, (72)
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where

ek(η̃) := exp
(
− i

∫ η̃
dη Wk(η)

)
. (73)

Taking the time (η̃) derivative of vk(η̃), we obtain

v′k(η̃) = −i
√

Wk

[
αkek(η̃)− βke∗k (η̃)

]
. (74)

Inverting Equations (72) and (74) yields a relation for βk as

βk =

√
Wk
2

(
vk −

i
Wk

v′k

)
ek. (75)

Since the initial condition in LQC is fixed at the quantum bounce, η̃ = η̃b, by setting
αk = 1 and βk = 0 at η̃ = η̃b, we assume that no particle is created at the bounce. This
yields the following conditions on vk:

vk(η̃b) = 1/Wk(η̃b) and v′k(η̃b) = −iWk(η̃b) vk(η̃b), (76)

where ek(η̃b) = 1. Then, for any time η̃ > η̃b, the number of particles produced becomes

Nk(η̃) =
1
4

(
Wk |vk|2 + W−1

k |v′k|2 − 2
)

. (77)

Here, for convenience, we have dropped the ‘underline’ for the mode functions after
the bounce (η̃ > η̃b), i.e., we assume vk ≡ vk(η̃b) and vk(η̃) ≡ vk(η̃) for η̃ > η̃b.

Having the number of particles produced per mode,Nk(η̃), at a given time η̃ > η̃b, we
can compute the total number density of production, N (η̃), as the limit of ∑kNk(η̃) in a
box of volume `3 → ∞, divided by the volume of the universe, V = `3|ã1 ã2 ã3| = `3 c̃3/2, as

N (η̃) =
`3

V ∑
k
Nk(η̃) =

1
4c̃3/2 ∑

k

(
Wk |vk|2 + W−1

k |v′k|2 − 2
)

. (78)

The energy density of the created particles reads $k(η̃) ≡ Wk(η̃)Nk(η̃) for each mode.
Thus, the total energy density is obtained by summing the overall modes as

ρpar =
1
c̃2 ∑

k
$k(η̃), (79)

where

$k(η̃) =
1
4

(
|v′k|2 + W2

k |vk|2 − 2Wk

)
. (80)

At the bounce, η̃ = η̃b, the energy density of production is zero, $k(η̃b) = 0, as
expected. However, for η̃ > η̃b, particles will be produced as the universe expands. In
the following, we will analyze the energy density of production in the assumed adia-
batic regime.

Following the (adiabatic) regularization scheme, the energy density of created particles
is obtained as

ρ
(ren)
par =

1
c̃2 ∑

k

(
$k[vk(η̃)]− $k(η̃)

)
, (81)

where

$k(η̃) =
1

16

[
(ω̃′k,η̃)

2

ω̃3
k,η̃

+ ω̃k,η̃
(
ε
(2)
2
)2 −

(ω̃′k,η̃)
2

2ω̃3
k,η̃

ε
(2)
2 +

ω̃′k,η̃

ω̃2
k,η̃

ε
′(3)
2

]

= $
(0)
k + $

(2)
k + $

(4)
k . (82)
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It turns out that $k does not fall off faster than k−4 when k→ ∞. The zeroth adiabatic

order term in Equation (82) is zero, $
(0)
k = 0, and the divergences are included in the second

and fourth-order terms (for massive modes). For the massless modes, the divergences
are included only in the fourth-order term. Therefore, the renormalized energy density
of created particles, Equation (81), can be obtained by subtracting the adiabatic vacuum
energy of the particle productions up to the fourth order. When considering the higher
order terms (more than the fourth order) in the adiabatic mode functions, vk(η̃), associated
to the vacuum state |0〉, particles are produced and the total energy density of the created
particles is proportional to 1/c̃2(η̃). For an isotropic case (either massive or massless),
where c̃ = ã2, we get ρ

(ren)
par ∝ 1/ã4(η̃), which scales as radiation. This is a similar situation

derived in [22]. Therefore, unlike the classical FLRW cosmology, even massless modes
contain nonzero particle production due to quantum gravity effects.

In the standard classical cosmology, the WKB ansatz yields a divergent asymptotic
series in the adiabatic parameter so that the particle production phenomenon is associated
with the violation of the WKB approximation or the region where the WKB approximation
is not fulfilled very well [34]. However, in the present setting, since the spacetime region
transitions between the super-Planckian and sub-Planckian regimes, where the nature
of the background geometry differs from the original classical isotropic spacetime to an
anisotropic dressed geometry due to quantum gravity effects, the changes in the vacuum
and creation of particles are inevitable.

In the pre-inflationary scenario considered in [22], by assuming a massless field in
an isotropic quantum cosmological background, ã(η̃) = c̃1/2(η̃), an integration range was
chosen in Equation (79) by the window of observable modes of the CMB. Therein, it has
been argued that when taking a UV cutoff at the characteristic momentum kb = k∗(η̃b) =√

ã′′(η̃)/ã(η̃)|η̃b ≈ 3.21 mPl and an infra-red (IR) cutoff at k∗(η̃) =
√

ã′′(η̃)/ã(η̃) = λ−1∗ for
all η̃ > η̃b, being the physical energy of particles after they reenter the effective horizon,
the energy density of created particles becomes

ρpar = 0.012 m4
Pl/ã4(η̃). (83)

This gives the energy density of particles produced in the region k∗ ≤ k ≤ kb. Thus,
the main contribution to the production of particles is the modes whose wavelengths, λ,
hold the range λb ≤ λ ≤ λ∗, i.e., the modes that reenter λ∗ after the bounce during the
pre-inflationary phase and will only reexit λ∗ again in the slow-roll inflationary phase.

This implies that the energy density of particles produced in the quantum gravity
regime, which scales as relativistic matter, is significant comparing to the background
energy density. The background energy density during the slow-roll inflation is dominant
over the backreaction of particle productions. However, it should be guaranteed that the
production density is still dominant in the pre-inflationary phase before beginning the
slow-roll phase. By assuming that the elapsed e-foldings between the bounce and the onset
of inflation is about 4–5 e-folds, the energy density of the backreaction is smaller than the
background energy density as ρpar . 〈ρ̂ϕ〉 ≈ 2× 10−5 m4

Pl. However, the analysis in [22]
indicates that the energy density (Equation (83)) is two orders of magnitude larger than
the required upper bound, 2× 10−5 m4

Pl, as estimated for the density of particle creation
during the pre-inflationary phase. It turns out that the backreaction of produced particles
cannot be neglected so that a more careful analysis of the backreacted wave function for
the background quantum geometry is needed.

The above argument indicates that when starting from Equation (27), the backreaction
of the field modes on the quantum background is not negligible; therefore, the total wave
function, Ψ(ν, Qk, φ), cannot be decomposed as Ψ = Ψo ⊗ ψ. It may even make a further
constraint on expanding the right-hand-side of Equation (27) to derive the evolution
Equation (28). Nevertheless, if we suppose that the approximation in Equation (28) is
valid, the presence of the backreaction would lead to a modification of the total state as
Ψ = Ψo ⊗ ψ + δΨ (cf. [18,20]). Taking into account such modification, the dispersion
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relation of the field, propagating on the emergent effective geometry, will be modified
such that the local Lorentz symmetry becomes violated. In such a scenario, each mode
feels a distinctive background geometry, which depends on that mode; a rainbow dressed
background emerges. On such backgrounds, the standard approach for studying the
infinite number of field modes fails, and an alternative procedure should be employed (e.g.,
see [35]). For other approaches in canonical quantum gravity, where the quantum theory
of cosmological perturbations and their backreactions are implemented, see, e.g., [36–42].

5. Conclusions and Discussion

In this paper, the quantum theory of an (inhomogeneous) massive test field, ϕ, propa-
gating on a quantized FLRW geometry is addressed. The background geometry constitutes
of a homogeneous massless scalar field, φ, as matter source, which plays the role of internal
time in quantum theory. From an effective point of view, due to quantum gravity effects on
the background geometry, quantum modes of the field can experience a dressed spacetime
whose geometry differs from the original FLRW metric. If the backreaction of the field
modes, Qk, on the background is discarded, within a test field approximation, the full quan-
tum state of the system can be decomposed as Ψ(ν, Qk, φ) = Ψo(ν, φ)⊗ψ(Qk, φ); Ψo and ψ
are the quantum states of the (unperturbed) background and the field modes, respectively.

In the interaction picture, an evolution equation emerges for ψ(Qk, φ), which resem-
bles the Schrödinger equation for the same field modes propagating on a time-dependent
dressed spacetime, whose metric components are functions of the quantum fluctuations of
the FLRW geometry. For massive and massless modes, there exists a wide class of solutions
for the effective dressed background metric. The massless modes can only experience
an isotropic and homogeneous dressed background with a dressed scale factor, ã(φ) (cf.
see [13]). The massive modes, however, yield a general class of solutions for the emergent
dressed geometries that resembles the anisotropic Biachi I spacetimes. Likewise, the scale
factors (ã1, ã2, ã3) of the consequent dressed Bianchi-I metric are functions of fluctuations
of the isotropic quantum geometry.

Given a dressed anisotropic spacetime, as a solution discussed above, we reviewed the
standard quantum field theory on such a background. More precisely, we investigated the
issue of gravitational particle production associated with the field modes on the dressed
Bianchi I geometry in a suitably chosen adiabatic regime. This led to some backreaction
issues in the super-Planckian regime, which may affect the dynamics of the early universe.
To have a regularized energy-momentum operator of the test field, the adiabatic vacuum
state was chosen up to fourth-order terms. We computed the energy density of the particle
production within this adiabatic limit. The divergences in the energy density of the
produced particles were regularized within the fourth-order adiabatic terms and the
remaining terms change as ρ

(ren)
par ∝ 1/(ã1 ã2 ã3)

4/3. Some phenomenological issues related
to such particle production were discussed. It was demonstrated that the backreaction due
to the particle production in the super-Planckina regime may have significant effects on
the evolution of the universe and may subsequently modify the existing pre-inflationary
scenario of LQC [16] (cf. [22]).
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Notes
1 We consider an elementary cell V by fixing its edge to lie along the coordinates (`1, `2, `3). We then denote the volume

of V by V̊ = `1`2`3 ≡ `3, and restrict all integrations in the Fourier integral to this volume.
2 Note that our aim at the moment is just to avoid the UV divergence terms when regularizing the energy-momentum

of the field. However, to have a more complete mode solution, in particular, when exploring the issues of the particle
productions or backreaction effects, as we will see later, higher order terms in Wk(η̃) should be taken into account.

3 They satisfy the normalization condition (Equation (49)) for the mode functions.
4 It should be noticed that the standard WKB ansatz may yield a divergent asymptotic series in the adiabatic parameter.

Thus, when investigating the particle production in a time-dependent background, an optimal number of terms
in that series should be chosen so that the resulting truncated WKB series becomes exponentially small. Such
precision would still be insufficient to describe particle production from vacuum. Therefore, an adequately precise
approximation should be employed by improving the WKB ansatz [34].
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Abstract: We analyze the issue of dynamical evolution and time in quantum cosmology. We emphasize
the problem of choice of phase space variables that can play the role of a time parameter in such a
way that for expectation values of quantum operators the classical evolution is reproduced. We show
that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the
super-Hamiltonian to be equal to unity in all of the phase space. We also discuss the question of switching
between different internal times as well as the Montevideo interpretation of quantum theory.

Keywords: classical and quantum cosmology; Wheeler-DeWitt equation; time

1. Introduction

The problem of “disappearance of time” in quantum gravity and cosmology is well
known and has a rather long history (see, e.g., References [1–3] and references therein). Let
us briefly recall the essence of the problem. Not all of the ten Einstein equations in the
four-dimensional spacetime contain the second time derivatives: four of them include only
the first time derivatives and are treated as constraints. The presence of such constraints is
connected with the fact that the action is invariant under the spacetime diffeomorphisms
group. To treat this situation, it is rather convenient to use the Arnowitt-Deser-Misner
formalism [4]. The Hilbert-Einstein Lagrangian of General Relativity contains the Lagrange
multipliers N and Ni, which are called lapse and shift functions. There are also the dynam-
ical degrees of freedom connected with the spatial components of the metric gij and with
the non-gravitational fields present in the universe. In order to use the canonical formalism,
one introduces the conjugate momenta and makes a Legendre transformation. Then, one
discovers that the Hamiltonian is proportional to the linear combination of constraints mul-
tiplied by the Lagrange multipliers [5]. Thus, the Hamiltonian vanishes if the constraints
are satisfied. This can be interpreted as an impossibility of writing down a time-dependent
Schrödinger equation. This problem can be seen from a somewhat different point of view. If
one applies the Dirac quantization procedure [6], then the constraint in which the classical
phase variables are substituted by the quantum operators should annihilate the quantum
state of the system under consideration. Gravitational constraints contain momenta, which
classically are time derivatives of fields, but their connection to the classical notion of
time vanishes in the quantum theory, where momenta are simply operators satisfying
commutation relations. The main constraint arising in General Relativity is quadratic in
momenta and gives rise to the Wheeler-DeWitt equation [5,7]. It is time-independent, but
we know that the universe lives in time. Where is it hidden?

Generally, all the explanations of the reappearance of time are based on the identifica-
tion of some combination of the phase space variables of the system under consideration (in
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our case, the whole universe) with the time parameter. Then, the Wheeler-DeWitt equation
is transformed into the Schrödinger-type equation with respect to this time parameter. As
is well known, in gauge theories or, in other words, in theories with first class constraints,
one should choose the gauge-fixing conditions (see, e.g., References [8,9]). If we choose a
time-dependent classical gauge-fixing condition, we can define a classical time parameter
expressed by means of a certain combination of phase variables. Some other variables
are excluded from the game by resolving the constraints. As a result, one obtains a non-
vanishing effective physical Hamiltonian that depends on the remaining quantized phase
space variables. This Hamiltonian governs the evolution of the wave function des! cribing
the degrees of freedom not included in the definition of time. Then, one can reconstruct a
particular solution of the initial Wheeler-DeWitt equation, corresponding to the solution
of the physical Schrödinger equation. The above procedure was elaborated in detail in
Reference [10], and, in Reference [11], it was explicitly applied to some relatively simple
cosmological models. It is important to note that, in this approach, the time parameter and
the Hamiltonian are introduced before the quantization of the physical degrees of freedom.

Another approach is based on the Born-Oppenheimer method [12–15], which was very
effective in the treatment of atoms and molecules [16]. This method relies on the existence
of two time or energy scales. In the case of cosmology, one of these scales is related to the
Planck mass and to the slow evolution of the gravitational degrees of freedom. The other
one is characterized by a much smaller energy and by the fast motion of the matter degrees
of freedom. The solution to the Wheeler-DeWitt equation is factorized into a product of
two wave functions. One of them has a semiclassical structure with the action satisfying
the Einstein-Hamilton-Jacobi equation and the expectation value of the energy-momentum
tensor serving as the source for gravity; the semiclassical time arises from this equation.
The second wave function describes quantum degrees of freedom of matter and satisfies
the effective Schrödinger equation. However, the principles of separation between these
two kinds of degrees of freedom in the two approaches described above are somewhat
different. The comparison of these approaches and attempts to establish correspondence
between them were undertaken in References [17–20].

We have already said that the very concept of time is in some sense classical. However,
the time parameter, which arises when we work with the Wheeler-DeWitt equation, is
a function of the phase space variables, which are quantum operators. Thus, we should
“freeze” the quantum nature of these variables when using them to introduce time, and
the time parameter should be such that expectation values of operators evolve classically.
Here, we arrive to the main question of this review, which was stimulated by the relatively
unknown paper by Asher Peres [21] with a rather significant title “Critique of the Wheeler-
DeWitt equation”. While we do not agree with the conclusions of this paper, we find it
thought-provoking and worth analyzing. The author of Reference [21] assumes that the
time parameter should be chosen in such a way that the classical equations of motion are
satisfied not only on the constraint surface but in all of the phase space. We will show that
this condition is neither necessary nor sufficient.

In Reference [21], just like in our papers [11,17], a very simple model was considered—
a flat Friedmann universe filled with a minimally coupled scalar field. Despite its simplicity,
this model appears to be rather instructive. In the recent paper, Reference [22], it is studied
in detail in the framework of the relational approach to quantum theory and quantum
gravity developed in the series of preceding papers [23–26]. In References [27,28], the
ideas of the relational or quantum reference frame approach are further developed. These
papers attracted attention of the authors of Reference [29], where their connection with the
Montevideo interpretation of quantum theory is studied [30–34].

The structure of this paper is the following: In the next section, we present for com-
pleteness some basic formulae of the Arnowitt-Deser-Misner formalism and the Dirac quan-
tization of gravity, arriving to the general form of the Wheeler-DeWitt equation. In the third
section, we present a simple toy model, which was analyzed by us in References [11,17],
as well as by Peres in Reference [21]. Section 3.1 contains the description of the classical
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dynamics of the model—a flat Friedmann universe filled with a minimally coupled mass-
less scalar field. In Section 3.2, we present the Hamiltonian formalism, Wheeler-DeWitt
equation and the gauge fixing procedure for this model in the spirit of References [10,11,17].
As is done in Reference [21], in Section 3.3, we introduce the time parameter by using
direct analysis of the Poisson brackets, without the super-Hamiltonian constraint. We
show that, in Reference [21], an essential additional free parameter was overlooked and
that our approach in References [10,11,17] corresponds to one choice of this parameter,
whereas, in Reference [21], a different choice was made. In Section 3.4, we reproduce the
results of 3.3 by using a canonical transformation and constructing the corresponding
generating function. In Section 3.5, we show that only our choice of the free parameter
and the explicit implementation of the super-Hamiltonian constraint permits to obtain
the quantum evolution that is in agreement with the classical one. Section 4 contains the
comparison of our results with those obtained in Reference [22] and the discussion of some
related questions. In the last section, we discuss the obtained results and possible future
directions of research.

2. The Arnowitt-Deser-Misner Formalism, Dirac Quantization and the
Wheeler-DeWitt Equation

To make the transition from the Lagrangian formalism to the Hamiltonian formalism,
one should break the relativistic covariance and introduce a variable that will play the role
of time. The 3+1 foliation of the pseudo-Riemannian manifold serves exactly this purpose
(see, e.g., Reference [35] for a very clear and detailed exposition of the 3+1 formalism). Con-
structing 3+1 foliation of the spacetime begins with an embedding of a three-dimensional
hypersurface into a four-dimensional spacetime. Such an embedding can be realized by
defining a scalar function t(p) on a four-dimensional manifold (here, p denotes a point on
the manifold). A hypersurface can then be defined as a level surface of this function. The
gradient of t(p) is a one-form that annihilates the vectors tangent to this hypersurface. The
vector field obtained from the contraction of this gradient with the contravariant spacetime
metric (we can call it ~∇t) is orthogonal to the tangent spaces of the hypersurface. If this
hypersurface is spacelike, then the orthogonal vector is timelike and can be normalized.
The normalized vector field is called the unit normal vector field and is denoted by~n.

We can now define the three-dimensional induced metric γij on the hypersurface by
using the pullback operation of the spacetime metric gµν to the three-dimensional hyper-
surface. The induced metric will play the role of phase space variables in the Hamiltonian
formalism of General Relativity. On the hypersurface, we define a covariant derivative D
associated with the induced three-metric γij. Then, one can introduce the corresponding
three-dimensional Riemann–Christoffel curvature tensor, which describes the internal
geometry of the hypersurface. To describe the position of a three-dimensional hypersurface
inside a four-dimensional spacetime, we also define an extrinsic curvature tensor. To this
end, one introduces the Weingarten transformation that maps a tangent vector ~u into the
covariant derivative ∇~u~n (associated with the metric gµν) of~n along ~u. To show that the
vector ∇~u~n is also tangent to the hypersurface, it is enough to prove that it is orthogonal to
the normal vector~n. In this section, it is convenient for us to use the spacetime signature
(−,+,+,+). Then, the unit normal vector satisfies the relation~n2 = −1; hence,

~n · ∇~u~n =
1
2
∇~u(~n

2) = 0.

By contracting the Weingarten operator with the induced metric, one obtains a symmetric
tensor, which we shall call the extrinsic curvature Kij:

Kijviuj ≡ −γijvi(∇~u~n)
j, (1)

where~v and ~u are tangent vectors, and i, j run over the spatial coordinates. In what follows,
Greek indices run over all spacetime coordinates, whereas Latin indices run only over
the spatial coordinates. As will be shown, the extrinsic curvature is related to the time
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derivatives of the induced metric and the corresponding conjugate momenta and, hence,
plays a very important role in the Hamiltonian formalism.

The next step is the construction of the projector from the spacetime to the hyper-
surface. This projector transforms any vector ~u into the vector ~u + (~u ·~n)~n. In the index
notation, this projector can be represented as

γα
β = δα

β + nαnβ. (2)

One can easily see that (2) acts as an identity operator for vectors tangent to the hyper-
surface, whereas it annihilates vectors orthogonal to the hypersurface. Obviously, the
projector can act not only on vectors, but also on arbitrary tensors. We can also introduce
an extension of tensors defined on the hypersurface by treating them as a tensors defined
in the spacetime. The principle is the following: the contraction of the extended tensor
with vectors should give the same result as the contraction of the original one if the vectors
are tangent to the hypersurface and give zero if at least one of the vectors is orthogonal to
the hypersurface.

Interestingly, the extended version of the induced metric can be obtained from (2) by
lowering its index with the spacetime metric,

γαβ = gαβ + nαnβ. (3)

For the extrinsic curvature, the extended expression has the following form:

Kαβ = −∇βnα − aαnβ, (4)

where the acceleration vector~a is defined as~a ≡ ∇~n~n.
Using the projector (2), one can find the difference between the covariant derivative

∇ and the covariant derivative D acting on the vector fields tangent to the hypersurface:

D~u~v = ∇~u~v + Kijviuj~n. (5)

This difference is directed along the vector normal to the hypersurface and depends on the
extrinsic curvature.

Now, we can try to express the four-dimensional curvature tensor in terms of the
three-dimensional Ricci tensor and the extrinsic curvature. The corresponding equations
are called Gauss-Codazzi relations. Using the Ricci identity for the covariant derivative D,

DµDνuα − DνDµuα = (3)Rα
βµνuβ, (6)

the analogous identity for the covariant derivative∇ and the projector (2), one can show that

γ
µ
α γν

βγ
γ
ρ γσ

δ Rρ
σµν = (3)Rγ

δαβ + Kγ
α Kδβ − Kγ

β Kαδ, (7)

where (3)Rγ
δαβ is the Riemann curvature tensor (also called intrinsic curvature) associated

with the induced metric γαβ. By contracting this identity with respect to the indices α and
γ, we obtain the following relation:

γ
µ
α γν

βRµν + γαµγ
ρ
βnνnσRµ

νρσ = (3)Rαβ + KKαβ − KαµKµ
β , (8)

where K ≡ Kµ
µ . Now, we can contract this relation with the contravariant induced metric

γαβ and obtain
R + 2nµnνRµν = (3)R + K2 − K j

i K
i
j, (9)

where we used that Kν
µKµ

ν = K j
i K

i
j.
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We can also apply the Ricci identity to the vector nα and project the result on the
hypersurface; this results in

γ
γ
ρ γ

µ
α γν

βnσRρ
σµν = DβKγ

α − DαKγ
β . (10)

By contracting this relation with respect to the indices α and γ, we obtain

γν
βnσRσν = DβK− DνKν

β. (11)

An embedding of a three-dimensional spacelike hypersurface into a four-dimensional
spacetime is not sufficient for the construction of the Hamiltonian formalism: one should
also know the time evolution of the embedded hypersurface. In other words, we need the
complete 3+1 foliation of the spacetime. Thus, we need to introduce a family of spacelike
hypersurfaces that cover the whole spacetime and are parametrized by the parameter t,
which we shall later identify with time. We start by defining the famous lapse function N
(this name was invented by J.A. Wheeler in 1964 [36]):

~n = −N~∇t. (12)

The lapse function plays a very important role in both the 3+1 foliation of a four-dimensional
spacetime and in the Hamiltonian formalism of General Relativity. It is also convenient to
introduce another vector field orthogonal to the spacelike hypersurfaces of the foliation,
the normal evolution vector ~m:

~m = N~n. (13)

If we start at the hypersurface parameterized by t and move along an integral curve of the
vector field ~m, denoting the change of the curve’s parameter by δt, we will find ourselves
at the hypersurface parameterized by t + δt. One can obtain different useful relations
involving the vector fields ~n and ~m and the lapse function N. The acceleration a can be
expressed as

aα = Dα ln N. (14)

The Lie derivative of the induced metric along the normal evolution field is

L~mγαβ = −2NKαβ, (15)

while the Lie derivative of the induced metric along the unit normal field is

L~nγαβ = −2Kαβ. (16)

Now, we can complete the expression for R in terms of (3)R, the extrinsic curvature
and the lapse function. We apply the Ricci identity to the normal unit vector and project
the result two times on the hypersurface and one time on the normal direction. As a result,
we obtain

γαµγν
βnρnσRµ

ρνσ =
1
N

L~mKαβ +
1
N

DαDβN + KαµKµ
β . (17)

Combining this equation with Equation (8), we obtain

γ
µ
α γν

βRµν = − 1
N

L~mKαβ −
1
N

DαDβN + (3)Rαβ + KKαβ − 2KαµKµ
β . (18)

Taking the trace of this equation with respect to the metric γ gives

R + nµnνRµν = (3)R + K2 − 1
N

L~mK− 1
N

DiDi N. (19)
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Now, we can combine this equation with Equation (9) and arrive at the following expression:

R = (3)R + K2 + KikKij − 2
N

L~mK− 2
N

DiDi N. (20)

However, to transition to the Hamiltonian formalism, one should use the explicit
time derivatives of field variables. Thus, we shall identify the parameter t, defining the
hypersurfaces of the 3+1 foliation, with time. Then, we can introduce the vector field ∂

∂t .
This vector field is tangent to the integral curves, which are the curves along which the
three spatial coordinates are constant. The action of this vector field on the gradient of the
function defining 3+1 foliation is equal to unity, but, at the same time, it is not necessarily
orthogonal to the spacelike hypersurfaces. Thus, we can write the following identity

∂

∂t
= N~n + ~N, (21)

where ~N is the shift vector field. This vector field is orthogonal to the normal and the
components of the metric in terms of the coordinates t and xi, where i = 1, 2, 3, are given
by the expression

ds2 = −(N2 − Ni Ni)dt2 + 2Nidtdxi + γijdxidxj. (22)

The components of the contravariant metric are

g00 = − 1
N2 , gi0 =

Ni

N2 , gij = γij − Ni N j

N2 . (23)

The determinant of the four-dimensional metric is

g = −N2γ. (24)

From Equation (21), it follows that the Lie derivative of a tensor field along the normal
evolution vector ~m is

L~mT = L ∂
∂t

T − L~NT. (25)

Using (25), it is easy to show that

L~mKij =

(
∂

∂t
− L~N

)
Kij, (26)

and

Kij = −
1

2N

(
∂γij

∂t
− Di Nj − DjNi

)
. (27)

From Equation (27), we see that the time derivative of the spatial metric is related to the
extrinsic curvature. Now, the Hilbert-Einstein action

∫
d4x
√
−gR (28)

can be expressed as

S =
∫

dt
∫

d3x
√

γN((3)R + KijKij − K2). (29)

We can finally make the Legendre transformation to transition to the Hamiltonian formal-
ism. The time derivatives of the lapse and shift functions are not present in the action; thus,
they will play the role of Lagrange multipliers. The corresponding conjugate momenta
are equal to zero and should remain equal to zero during the evolution. The momenta
conjugate to the components of the three-metric γij are defined as usual,
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πij =
∂L
∂γij

=
√

γ(Kγij − Kij). (30)

We can resolve Equation (30) with respect to the extrinsic curvature:

Kij =
1√
γ

(
1
2

γijγklπ
kl − γikγjlπ

kl
)

. (31)

Using (27) and (31), we find

∂γij

∂t
= Di Nj + DjNi +

N√
γ
(2γikγjlπ

kl − γklγijπ
kl). (32)

Now, using (29)–(32), we can calculate the Hamiltonian density

H = πij ∂γij

∂t
−L = NH⊥ + Ni Hi, (33)

where

H⊥ =
1√
γ

(
γikγjl −

1
2

γijγkl

)
πijπkl −√γ(3)R, (34)

Hi = −γikDjπ
jk − γijDkπ jk. (35)

The expression (34) represents the super-Hamiltonian constraint, which has a rather
complicated structure. The expressions (35) are the supermomenta constraints and are
responsible for the independence of the geometry of the three-dimensional spatial sections
of the spacetime on the particular choice of spatial coordinates. These constraints consti-
tute a system of first class constrains, i.e., the Poisson brackets between them are again
proportional to the constraints. Namely, they have the following form:

{H⊥(~x), H⊥(~y)} =
∂δ(~x,~x)

∂xi (γij(~x)Hj(~x) + γij(~y)Hj(~y)),

{Hi(~x), H⊥(~y)} = H⊥(~y)
∂δ(~x,~y)

∂xi ,

{Hi(~x), Hj(~y)} = Hi(~x)
∂δ(~x,~y)

∂xi + Hi(~y)
∂δ(~x,~y)

∂xj . (36)

Remarkably, if we add an action of matter fields to the action (28), the structure of the Hamil-
tonian density will not changed and will still be proportional to the linear combination
of constraints. The super-Hamiltonian constraint will acquire an additional term equal to
the energy density of the corresponding field, while the supermomenta will acquire terms
equal to the mixed temporal-spatial components of the corresponding energy-momentum
tensor [37–39].

To quantize the theory, we should substitute all the phase space variables with the
corresponding operators and the Poisson brackets (36) with the corresponding commu-
tators. Naturally, such a substitution raises the question of consistency of the quantum
version of the relations (36). In string and superstring theories, analyzing this question
resulted in the discovery of the dimensionalities of spacetimes where these theories can
be consistently realized. The corresponding analysis in General Relativity is more com-
plicated and the number of works concerning this topic is rather limited. Here, we can
mention Reference [40], where the Hamiltonian BFV-BRST method of the quantization of
the constrained systems [41–43] was applied to analyze the system (36) in relatively simple
models in quantum cosmology.

If one considers simple models where it is possible to choose a coordinate system
in such a way that the shift functions and the corresponding supermomenta constraints
are absent, then the problem of the consistency of the quantized relations (36) vanishes,
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and it is necessary to consider only the super-Hamiltonian constraint. As we have already
explained in the Introduction, applying the operator version of this constraint to the wave
function of the universe gives the Wheeler-DeWitt equation. However, even in this case,
we stumble upon some technical and conceptual problems. Thus, the rest of this paper will
be devoted to the analysis of these problems based on the consideration of a very simple
model—a flat Friedmann universe filled with a massless scalar field.

3. Flat Friedmann Universe with a Massless Scalar Field
3.1. Classical Dynamics

Let us consider the simplest toy model—a flat Friedmann universe with the metric

ds2 = N2(t)dt2 − a2(t)dl2, (37)

where N is, as usual, the lapse function, and a(t) is the scale factor. (In this section, we shall
use a different convention for the signature of the spacetime to simplify the comparison with
the papers [17,21].) This universe is filled with a massless spatially homogeneous scalar
field φ(t) minimally coupled to gravity. For this minisuperspace model, the Lagrangian
can be written as

L = − L3M2 ȧ2a
2N

+
L3φ̇2a3

2N
, (38)

where M is a conveniently rescaled Planck mass, and L is a length scale, introduced to
provide the correct dimensionality for the Lagrangian. It will be convenient to use another
parametrization of the scale factor

a(t) = eα(t). (39)

Then,

L = − L3M2α̇2e3α

2N
+

L3φ̇2e3α

2N
. (40)

The variation of the Lagrangian (40) with respect to the lapse function N gives the first
Friedmann equation

M2α̇2 = φ̇2, (41)

while its variation with respect to φ gives the first integral of the Klein-Gordon equation

L3φ̇e3α

N
= pφ = const. (42)

Here, pφ is the conjugate momentum, which is conserved during the classical time evolution
of our universe. It will be convenient to choose the cosmic time t as a time parameter,
which is equivalent to fixing N = 1. Upon substituting Equation (42) into Equation (41),
we find that, for the expanding universe and 0 ≤ t ≤ ∞,

e3α = 3
|pφ|
ML3 t, (43)

and for the contracting universe, when −∞ < t ≤ 0,

e3α = −3
|pφ|
ML3 t. (44)

In what follows, we will consider the expanding universe and choose the positive sign for
pφ without losing generality.
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3.2. Hamiltonian formalism, Wheeler-DeWitt Equation, and the Gauge Fixing Procedure

On introducing the conjugate momenta pφ (see Equation (42)) and

pα = − L3M2α̇e3α

N
, (45)

and making the Legendre transformation, we see that the Hamiltonian is

H = N

(
− p2

αe−3α

2M2L3 +
p2

φe−3α

2L3

)
= NH, (46)

where H is nothing but the super-Hamiltonian constraint. From Equations (41), (42), and (45),
it is obvious that the Hamiltonian is constrained to vanish:

H = 0. (47)

The action in the Hamiltonian form is

S =
∫

dt(pαα̇ + pφφ̇− NH). (48)

On performing the procedure of the Dirac quantization of the system with con-
straints [6], we obtain the Wheeler-DeWitt equation:

Ĥ|Ψ〉 = 0. (49)

Here, the operator Ĥ arises when we substitute the phase space variables by the corre-
sponding operators and fix some particular operator ordering, and |Ψ〉 is the quantum
state of the universe. Now, we shall choose the simplest operator ordering, such that

Ĥ = e−3α̂

(
− p̂2

α

2M2L3 +
p̂2

φ

2L3

)
. (50)

It will be convenient to consider the quantum state |Ψ〉 in the (α, pφ) representation. Thus,
the Wheeler-DeWitt equation will have the following form:

(
∂2

∂α2 + M2 p2
φ

)
Ψ(α, pφ) = 0. (51)

The general solution of this equation is

Ψ(α, pφ) = ψ1(pφ1)e
iM|pφ |α + ψ1(pφ2)e

−iM|pφ |α. (52)

We are going to derive the effective Schrödiger equation for the physical wave function
and the physical Hamiltonian following the recipe described in detail in References [10,11].
First of all, we have to introduce a time-dependent gauge-fixing condition. Let us try to
use the following one:

ξ(α, pα, t) =
L3M2e3α

3pα
− t = 0. (53)

This gauge condition coincides with the classical solution of the Friedmann equation,
giving the dependence of the scale factor a on the cosmic time t. Then, on requiring the
conservation of the gauge condition in time and using the equation

dξ

dt
=

∂ξ

∂t
+ N{ξ, H} = 0, (54)
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where the curly braces mean the Poisson brackets, one can easily see that the lapse function
is equal to unity as it should be. If we solve the constraint (47) and use the gauge-fixing
condition (53) to define the time, the action (48) can be written in the following form

S =
∫

dt(pφφ̇− Hphys), (55)

where the physical Hamiltonian is

Hphys =
Mpφ

3t
. (56)

The corresponding Schrödiger equation is

i
∂ψphys(pφ, t)

∂t
= Hphysψphys(pφ, t) =

Mpφ

3t
ψphys(pφ, t). (57)

The solution of this equation is

ψphys(pφ, t) = ψ̃(pφ)e−
iMpφ

3 ln t. (58)

Using Equation (53), one can express the time t as a function of the variables α and pφ;
hence, we come back to one of the two branches of the general solution of the Wheeler-
DeWitt equation (52). Let us note that the probability density ψ̃∗ψ̃ corresponding to the
function (58) does not depend on the cosmic time t, and this function can be normalized.

Interestingly, we can take one of the branches of the general solution of the Wheeler-
DeWitt equation and express the variable α as a function of time and of the variable pφ. On
considering this function as the physical wave function satisfying the Schrödinger equation,
we can calculate its partial time derivative to find the physical Hamiltonian. The results
will coincide with those of Equation (56). Note that, to obtain these results, we have used
the super-Hamiltonian constraint.

3.3. Introducing Time without Using the Super-Hamiltonian Constraint

In Reference [21], the author considers the same model in slightly different notations.
We will analyze his approach using our notations. The main feature of the approach
developed in Reference [21] is the requirement that the time parameter, as a combination of
phase space variables, should be such that its Poisson bracket with the super-Hamiltonian
is equal to 1 not only on the constraint surface but on all of the phase space. Note that
this is not the case for the time parameter chosen in Reference [17] and described in the
preceding subsection. Let us now consider our arguments from this point of view and
compare them with those in Reference [21].

We would like to introduce a time parameter by identifying it with some function
of phase space variables. It would be convenient to choose it in such a way that the time
parameter coincided with the cosmic time, which is equivalent to the fixing of the lapse
function N = 1. This fixation of the time parameter is equivalent to the gauge fixing of
the type

χ(t, α, pα, φ, pφ) = t− χ̃(α, pα, φ, pφ) = 0. (59)

By taking the time derivative of Equation (59), we obtain the condition of the gauge
conservation

1 = N{χ̃,H}, (60)

where {, } is the classical Poisson bracket.
Thus, to have N = 1, we should choose the function χ̃ in such a way that

1 = {χ̃,H}. (61)

352



Universe 2021, 7, 219

Obviously the choice of the function χ̃ is not unique. We can choose a function that depends
only on geometrical variables α and pα. Let us try the following:

χ̃(α, pα) = −
L3M2e3α

3pα
. (62)

As we have seen in Section 3.1, the classical solution of the Friedmann equation of the
model under consideration is

a(t) = a0t1/3, (63)

or
α(t) = ln a0 +

1
3

ln t, α̇ =
1
3t

. (64)

Substituting Equation (64) into Equation (45) with N = 1 gives

pα = − L3M2a3
0

3
. (65)

From (64), (65), and (62), we can confirm that

χ̃(α, pα) = t. (66)

Calculating the Poisson bracket of the function χ̃(α, pα) with the super-Hamiltonian (46),
we obtain

{χ̃,H} = 1
2

(
1 +

M2 p2
φ

p2
α

)
, (67)

which is different from 1. However, if we use the constraint H = 0, we see that on the
constraint surface our Poisson bracket is equal to 1. Now, we can consider the function
χ̃(α, pα) as a new phase space variable T and find its conjugate momentum. The momentum

pT = − p2
αe−3α

L3M2 (68)

satisfies the relation
{T, pT} = 1, (69)

as it should be. Besides,

{T, φ} = {T, pφ} = {pT , φ} = {pT , pφ} = 0.

Now, we can make the canonical transformation from α, pα to T, pT, without involving the
variables pφ and φ. This gives us an opportunity to write the reduced physical Hamiltonian as

Hphys = −pT = − p2
αe−3α

L3M2 . (70)

Using Equations (62), (66), and (46), we can rewrite the expression (70) as follows (up to a sign)

Hphys = −pT =
Mpφ

3t
. (71)

Thus, we have reproduced the formula obtained in Section 3.2.
In Reference [21], Peres considered the same model (in slightly different notations and

with different normalizations and variables). He wanted to introduce the time parameter
that would coincide with the cosmic time and looked for the function of the phase space
variables whose Poisson bracket with the Hamiltonian is equal to 1. This function would
play the role of the cosmic time. To find this function, he solved the second-order equa-
tions of motion of the model, without using the super-Hamiltonian constraint (first-order
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equation of motion). Thus, his time parameter should be represented by the phase space
variables everywhere and not only on the constraint surface. Otherwise, he says, the
method would not be consistent.

In practice, one can find the corresponding function without solving equations of
motion, but by simply looking for the function of the phase space variables whose Poisson
bracket with the super-Hamiltonian is equal to 1 everywhere. Obviously, such a function
cannot depend only on the geometrical phase variables α and pα, but should also depend
on pφ. After some calculations, we find the following function

TP =
2M2L3e3α

3(Mpφ − pα)
. (72)

One can easily check that its Poisson bracket with the super-Hamiltonian is equal to unity
in all of the phase space and not only on the constraint surface. If we resolve the constraint
and choose the appropriate sign, i.e., Mpφ = −pα, (72) transforms into the function T
introduced earlier (see (62)). There is also another function

TP1 = − 2M2L3e3α

3(Mpφ + pα)
. (73)

Its Poisson bracket with the super-Hamiltonian is identically equal to one. It coincides with
our function T if we resolve the constraint as Mpφ = pα.

Now, let us look for the momentum conjugate to the new phase space coordinate TP:
by requiring that {TP, PTP} = 1, we obtain

PTP =
e−3α

M2L3

(
−1

2
p2

α + Ap2
φ +

(
M
2
− A

M

)
pφ pα

)
, (74)

where A is a free real parameter. Note that, in Reference [21], the existence of this additional
freedom of choice is overlooked, and the conjugate momentum has a definite expression
without free parameters.

In Reference [21], the super-Hamiltonian is represented as a sum of two terms. One
of these terms coincides with the momentum PTP given by the expression (74), whereas
the remaining term does not depend on PTP . It is this second term that plays the role of
the physical Hamiltonian. Such an interpretation is based on the following reasoning. The
action of the super-Hamiltonian on the quantum state is equal to zero. The conjugate
momentum PTP can be represented as

PTP = −i
∂

∂TP
. (75)

Then, from

H|ψ〉 = (PTP + Hphys−P)|ψ〉 =
(
−i

∂

∂TP
+ Hphys−P

)
|ψ〉 = 0, (76)

it follows that
i

∂

∂TP
|ψ〉 = Hphys−P|ψ〉. (77)

Thus, we have obtained the Schrödinger equation where TP plays the role of time and
Hphys−P is the physical Hamiltonian. Explicitly,

Hphys−P = H− PTP =
e−3α(M2 − 2A)pφ(Mpφ − pα)

2L3M3 . (78)
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We can get rid of the factor e−3α using our new variable TP:

e−3α =
2M2L3

3TP(Mpφ − pα)
. (79)

Substituting the expression (79) into Equation (78) gives the following expression for the
physical Hamiltonian

Hphys−P =
(M2 − 2A)pφ

3Mt
, (80)

where t ≡ TP.
The expression (80) has some interesting features.

1. It has the same structure as the expression (71); namely, it is proportional to the
momentum pφ and inversely proportional to the cosmic time parameter t.

2. The expression for the time parameter as a function of phase space variables was
obtained without using the constraintH = 0.

3. The combination of the phase variables representing the cosmic time parameter was
chosen in such a way that its Poisson bracket with the super-Hamiltonian is equal to
1 in all of the phase space and not only on the constraint surface.

4. There is a free parameter A in the expressions (74) and (80). The existence of such a
freedom was not noticed in Reference [21]. Indeed, one can see that the expression for
PTP and, hence, for Hphys−P in Reference [21], corresponds to the choice

A = −M2

2
.

Our physical Hamiltonian (71) arises if we choose

A = 0.

5. Although we did not use the classical constraint to introduce the time parameter
as a function of the phase space variables, when defining the physical Hamiltonian,
we used the fact that the quantized super-Hamiltonian eliminates the physical state.

Let us stress that it is our physical Hamiltonian (71) that is compatible with the
corresponding classical evolution of the model.

So far, we have demonstrated that the whole family of reduced physical Hamiltonians,
which depend on a free parameter A, corresponds to the same choice of the classical cosmic
time parameter. How can this parameter be fixed? Let us write the Schrödinger equation
for the Hamiltonian (80):

i
∂ψ(pφ, t)

∂t
=

(M2 − 2A)pφ

3Mt
ψ(pφ, t). (81)

Its solution is

ψ(pφ, t) = ψ(pφ) exp

(
−i

(M2 − 2A)pφ

3M
ln t

)
, (82)

where the function ψ(pφ) should satisfy the normalizability condition
∫

dpφψ∗(pφ)ψ(pφ) = 1. (83)

The expectation value of the momentum

〈pφ〉 ≡ 〈ψ(pφ, t)|pφ|ψ(pφ, t)〉 =
∫

dpφ pφψ∗(pφ)ψ(pφ) (84)
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does not depend on time, just like its classical analogue. What happens with the expectation
value of the scalar field φ?

〈φ〉 ≡ 〈ψ(pφ, t)|φ|ψ(pφ, t)〉 = i
∫

dpφψ∗(pφ, t)
∂ψ(pφ, t)

∂pφ

= 〈φ〉t=1 +
M2 − 2A

3M
ln t, (85)

where

〈φ〉t=1 ≡ i
∫

dpφψ∗(pφ, t)
dψ(pφ, t)

dpφ

is the expectation value at t = 1.
Let us now find the classical evolution of the scalar field φ. Using the Lagrangian (40) and

making variation with respect to the lapse function N, we obtain the following constraint in
the Lagrangian formalism

M2α̇2 = φ̇2. (86)

Note that this constraint does not depend on the choice of the time parametrization. Let us
choose the solution as follows

φ̇ = Mα̇. (87)

We have already mentioned that α̇ = 1
3t (see Equation (64). Thus,

φ̇ =
M
3t

. (88)

We see that (88) and (85) are compatible if A = 0, i.e., if the reduced Hamiltonian is equal
to our Hamiltonian (71).

3.4. Hamilton-Jacobi Type Equation and the Choice of the Time Parameter and of the Hamiltonian

As a matter of fact, the author of Reference [21] gives his definition of time and of
the Hamiltonian using the solution of the Hamiltonian-Jacobi type equation and not the
method of direct construction of new canonical variables, which we used in the preceding
subsection. One can try to find out if the solution of the corresponding partial differential
equation can fix these variables in an unambiguous way. We will show in this subsection
that this not the case and that the arbitrariness, which was not noticed in Reference [21], is
still present.

Let us introduce the volume variable

v ≡ a3 ≡ e3α. (89)

In terms of this variable, the Lagrangian (38) is as follows:

L = − L3M2v̇2

18Nv
+

L3φ̇2v
2N

. (90)

We can put N = 1 because we will be looking for the time parameter that coincides with the
cosmic time (the author of Reference [21] calls it “auxiliary time τ”). After this, we can write
the Euler-Lagrange equation with respect to v, which is nothing but the second Friedmann
equation:

2v̈v− v̇2 +
9p2

φ

L3M2 = 0, (91)

where we have used the relation
φ̇ =

pφ

L3v
. (92)
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Now, we can find the solution of the second Friedmann Equation (91) without using the
first Friedmann equation (the super-Hamiltonian constraint). With the initial condition
v(0) = 0, the solution is

v(t) = Kt2 + 3
pφ

L3M
t, (93)

where K is an arbitrary constant. Using the expression (93), we can calculate explicitly the
expression for the super-Hamiltonian. Indeed,

v̇ = 2Kt + 3
pφ

L3M
. (94)

Then,

pv = − L3M2

9
v̇
v

, (95)

and

H = − 9
2M2L3 vp2

v +
1

2L3

p2
φ

v
= −2

9
KL3M2. (96)

Thus, we see that the super-Hamiltonian does not depend on time and is proportional to
the constant K. If we take into account the first Friedmann equation, or, in other words
the super-Hamiltonian constraint, the constant K should be equal to zero. Note that the
dependence of the volume on time given by Equation (93) arises naturally in the universe
filled with dust and a massless scalar field, which behaves as a stiff matter (see, e.g.,
Reference [44]). On the other hand, this behavior arises in the generalized unimodular
theory of gravity [45], where the lapse function is treated not as a Lagrange multiplier but as
a certain function of the determinant of the spatial metric. If one chooses the lapse function
to be a constant (or in other words, chooses a gauge fixing condition corresponding to
the cosmic time), an effective dust arises in the universe. If the lapse function is inversely
proportional to the determinant of the spatial metric, one has the unimodular theory of
gravity, and an effective cosmological constant appears [46,47].

Now, using Equations (93)–(95), we can easily express the time parameter t as a
function of the phase variables v, pv and pφ:

t =
2M2L3v

3(Mpφ − 3vpv)
. (97)

It is easy to check that this expression coincides with the Formula (72), which we obtained
by simply looking for the combination of the phase variables whose Poisson bracket with
the super-Hamiltonian equals to 1 in all of the phase space. Note that the constant K does
not enter into this expression.

The next step is to find the canonical momentum conjugate to the new coordinate
given by the expression (97). In the preceding subsection, we did it using the definition of
the Poisson bracket. In Reference [21], the author constructed the corresponding canonical
transformation. For this purpose the generating function of the type F1 (see, e.g., Refer-
ence [48]) was used. The generating function can be written as S(q, Q), where q are the old
coordinates, while Q are the new coordinates. Then,

pk =
∂S
∂qk , (98)

Pµ =
∂S

∂Qµ . (99)
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Now, as a first new coordinate we choose the coordinate T, which coincides with the
expression of the right-hand side of Equation (97). It will be convenient for us to go back to
our old variable α. Thus,

T =
2M2L3e3α

3(Mpφ − pα)
. (100)

As a second new coordinate we choose

Q = pφ. (101)

Obviously, the Poisson bracket between the expressions (100) and (101) is equal to zero.
From Equation (100), we have

pα = MQ− 2
3

M2L3e3α

T
. (102)

The generating function for which we are looking depends on four variables:

S = S(α, φ, T, Q). (103)

Thus,

pα =
∂S
∂α

= MQ− 2
3

M2L3e3α

T
. (104)

The general solution of this equation is

S(α, φ, T, Q) = MQα− 2
9

M2L3e3α

T
+ S̃(φ, T, Q). (105)

We can impose an additional constraint on the function S̃. The partial derivative of the
generating function with respect to φ should give us pφ = Q. Hence,

∂S
∂φ

=
∂S̃
∂φ

= pφ = Q. (106)

Then,
S̃ = φQ + S̄(T, Q). (107)

We still have some freedom of choice for the function S̄(T, Q). To make the comparison
with the results of the preceding two subsections simpler, let us choose it as follows:

S̄(T, Q) =
2
3

(
M
2

+
A
M

)
Q ln T, (108)

where A is an arbitrary constant.
Now, we can find the momentum PT using the Formula (99):

PT = − ∂S
∂T

= −2
9

M2L3e3α

T2 − 2
3

(
M
2

+
A
M

)
Q
T

. (109)

It is easy to check that, if we go back to the old phase space variables α, φ, pα, pφ, the
Formula (109) coincides with the Formula (74). Thus, using the canonical transformation
and the generating function we came to the same result as was obtained by the direct study
of the corresponding Poisson brackets. Naturally, the effective physical Hamiltonian is
given by the Formula (80).

3.5. Can the Choice A 6= 0 Correspond to Some Classical Evolution?

At the end of Section 3.3, we saw that, if A is different from zero (for example, if
A = −M2

2 , as was implicitly chosen in Reference [21]), then the quantum evolution is not
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compatible with the classical: the time derivative of the expectation value of the field is
given by

d〈φ〉
dt

=
M2 − 2A

3Mt
, (110)

instead of
d〈φ〉

dt
=

M
3t

. (111)

We can ask if the classical counterpart of (110) exists in the theory where the super-
Hamiltonian constraint is not imposed. To answer this question, let us recall that the
relation between the momentum pφ, the time derivative of the scalar field φ̇ and the
volume v = a3 = e3α,

pφ = L3vφ̇, (112)

does not depend on imposing the super-Hamiltonian constraint and follows simply from the
Klein-Gordon equation for the scalar field. By combining Equations (110) and (112), we obtain

v(t) =
3pφ M

L3(M2 − 2A)
t. (113)

On the other hand, from the second Friedmann equation and the Klein-Gordon equation, we
obtain the expression (93). We see that it cannot coincide with (113) unless A = 0.

4. Switching Internal Times and the Montevideo Interpretation of Quantum Theory

In the recent paper by Reference [22], the author considers the same simple model that
we discussed in the preceding section. His approach to the problem of time and related
problems in quantum gravity was laid out in References [23–26]. The author states that the
question of the quantum notion of general-relativistic covariance received little attention;
he addresses this question by using quantum reference frames. One of the main points of
Reference [22] is the explicit and detailed study of switching between different internal
times. The toy model is very convenient from this point of view. Indeed, all the calculations
can be done analytically, and the obtained formulae are rather simple. There is also another
advantage: the symmetry between the logarithm of the scale factor and the scalar field.
This symmetry is especially clear if one looks at the super-Hamiltonian constraint (46)–(47),
which we can conveniently rewrite as follows:

p2
α −M2 p2

φ = 0. (114)

Generally, we find an essential correspondence between the approaches of Refer-
ences [10,11,17,22] and Section 3.2 of the present paper. Indeed, Ref. [22] uses a method that
“identifies a consistent reduction procedure that maps the Dirac quantized theory to the
various reduced quantized versions of it to different choices of quantum reference systems.
It identifies the physical Hilbert space of the Dirac quantization as a reference-system-
neutral-quantum superstructure and the various reduced quantum theories as the physics
described relative to the corresponding choice of reference system.” Hence, the quantum
state annihilated by the Dirac constraint (or, in other words, satisfying the Wheeler-DeWitt
equation) does not have a direct physical interpretation. This opinion coincides with ours.
We also stressed that the physical (probabilistic) interpretation arises when we construct
the time parameter from a part of the phase space variables and this parameter, as well
as its conjugate momentum, are excluded from the effective Hamiltonian by using the
constraint. Let us note that the author of Reference [22] also uses the constraint at all the
stages of his procedure, in contrast to the author of Reference [21].

Because of the symmetry of our model, there are four natural ways to introduce a
time parameter or, in other words, a quantum clock [22]. One can choose a function of
the scale factor as a time variable, and, in this case, the wave function will depend on the
scalar field, or one can consider the scalar field as a quantum clock. Two other choices
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arise when we use Equation (114) to exclude the momentum conjugate to the time variable
from the effective Hamiltonian. In the language of Reference [22], it is called “trivialize the
constraint to the internal time to render it redundant”.

In Section 3.2, the function of the scale factor was chosen to be the internal time. Let
us try to describe the switching between different internal times in our terms. We assign
the role of time to a suitable function of the scalar field φ. Solving jointly the Friedmann
Equation (41) and the Klein-Gordon Equation (42) gives

φ(t) =
M
3

ln
t
t0

, (115)

where t0 is a constant. Now, we can introduce a new canonical variable

T = T0 exp
(

3φ

M

)
; (116)

its conjugate momentum is

pT =
Mpφ

3T0
exp

(
−3φ

M

)
=

Mpφ

3T
. (117)

Using the algorithm described in Section 3.2 and the constraint (114), we obtain the follow-
ing effective physical Hamiltonian:

Hphys−pα
= ± pα

3t
, (118)

where the sign “±” corresponds to the two options existing in the quadratic form of the
constraint (114). It is easy to see that the form of the Hamiltonian (118) is quite similar
to that of (56). Likewise, the solution of the corresponding Schrödinger equation ψ(pα, t)
has the structure quite similar to that of (58). The switching between two choices of time
gives similar results due to the symmetry and simplicity of the model as was noted in
Reference [22]. The two options—the time related to purely geometric characteristic of the
universe and the time connected with the scalar field—look quite natural in this model.
However, other choices also exist. For example, instead of α and φ, we can introduce a
different pair of canonical variables:

T = T0 exp
(

3
2M

(φ + Mα)

)
,

β = Mα. (119)

The conjugate momenta are

pT =
2Mpφ

3T0
exp

(
− 3

2M
(φ + Mα)

)
,

pβ = −pφ +
pα

M
. (120)

Implementing the procedure described above, we arrive at the effective Hamiltonian

Hphys−pβ
=

Mpβ

3t
, (121)

which again has the same form as Hamiltonians considered before.
We should mention that the internal time parameters that do not mix the geometrical

variable α and the matter variable φ look more natural and are more convenient for work
with. However, it is not always so. When one considerers the models where the scalar field
is non-minimally coupled to gravity, it is more convenient to introduce an internal time
parameter that mixes the geometrical and the matter variables; see, e.g., References [49,50].
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Further elaboration of the procedure of switching between internal times [27,28] has
some implications for the Montevideo interpretation of quantum mechanics [29]. To discuss
this topic, let us first recapitulate the main features of this interpretation [30–34].

As with all interpretations of quantum mechanics, the main target of the Montev-
ideo interpretation is the problem of measurement. This problem can be formulated as
the necessity to understand how the principle of superposition and the linearity of the
Schrödinger equation can be reconciled with the fact that, in every measurement, we see
only one outcome. The Copenhagen interpretation suggests that there are two realms—the
quantum and the classical—and there is a complementarity between them. The Montevideo
interpretation is based on the principle that the quantum description of reality is the only
fundamental one. This is akin to the Many-Worlds interpretation of quantum mechan-
ics [51,52]. The distinguishing feature of the Montevideo interpretation is its attention to the
notion of time in quantum theory. The clear distinction is made between the quantum clock,
which is connected with some quantum variable and is an operator, and the coordinate
time. It is important that there are quantum limits on the precision of the time measurement
by quantum clocks. First of all, there is the well-known time-energy uncertainty relation
or Mandelstam-Tamm relation [53]. Besides, the presence of gravity implies that there
are additional constraints on the resolution of quantum clocks. Thus, according to the
Montevideo interpretation, while the quantum system has a unitary evolution with respect
to the coordinate time, its evolution with respect to the quantum clock is non-unitary, and a
pure state transforms into a mixed one. This means that the corresponding density matrix
evolves not according to the quantum Liouville (von Neumann) equation but according to
the equation with some additional terms of the Lindblad type [54,55]. This equation has
the following form

∂ρ(T)
∂T

= i[ρ(T), H] + σ(T)[H, [H, ρ(T)]] + · · · , (122)

where T is a quantum clock time. It is written in Reference [29] that the Inclusion of
the of quantum gravitational notion of time in the spirit of the papers [27,28] makes the
construction based on the Montevideo interpretation more solid. In this connection we
see an interesting technical problem. Can we starting with different definitions of internal
time, like those considered in Reference [22] and in the present paper, to obtain the forms
of the function σ(T) responsible for the non-unitary evolution of the density matrix? It
would be curios to see how it works at least for simple toy models.

Before finishing this section, we would like to say once again that from the point of
view of classification of different interpretations of quantum mechanics, the Montevideo
interpretation is rather close to the Everett interpretation but with a special emphasis on
the role of time and gravitational effects. Besides, the branching that arises in the Everett
interpretation as a result of a measurement-like process becomes approximate. On the other
hand, the Montevideo interpretation can be considered as one of the approaches to the
synthesis of gravity and quantum theory. Investigations of a possible influence of gravita-
tional effects on quantum physics have a rather long history [56–61]. The authors proposing
the Montevideo interpretation stress that they do not modify quantum mechanics. They
simply consistently take into account the gravitational effects, which results in resolution
of some long-standing problems of quantum theory. An interesting example of quite a
different attitude to the problem of synthesis between quantum theory and gravity is the
recently proposed Correlated Worldline Theory [62–65]. In the framework of this theory,
the generalized equivalence principle is implemented and new path integrals representing
the generating functionals are obtained. The linearity of the quantum theory disappears,
but is restored in the limit when the gravitational interaction is switched off. Thus, we see
another interesting problem here: what happens with the notion of time in this new theory?
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5. Discussion

In this review various ideas concerning the problem of time in quantum gravity and
cosmology were studied by using a simple model of a flat Friedmann universe filled with a
massless minimally coupled scalar field. This model was studied in a relatively old paper,
Reference [21], and in some new works [11,17,22]. Why does this model attract the attention
of researchers? It is very simple, and all the calculations can be done analytically for classical
and quantum dynamics. At the same time, most of the problems can be seen by looking at
this simple example. What would change if we included a non-vanishing mass? As we can
see from the pioneering paper of Reference [66], even classical dynamics becomes very rich
and there are no exact solutions. One can also consider scalar fields with other potentials.
For example, for a constant potential one can find the exact solutions of the Wheeler-DeWitt
equation [11]; the same is true for an exponential potential [67]. However, these more
complicated minisuperspace models give almost no additional insight. The same can be
said about more realistic models, which contain anisotropies or/and perturbations. To
introduce an internal time or a quantum clock, one usually uses macroscopic variables,
such as the scale factor and the homogenous mode of a scalar field. Thus, one can try to
understand the basic features of the internal time by playing with relatively simple models,
which we tried to do in the present review.

Upon analyzing the method of introduction of time without using the super-
Hamiltonian constraint, we found a flaw in the calculations of Reference [21] and demon-
strated that some freedom of choice of variables was overlooked. One can represent (at
least partially, but it was enough for our analysis) this freedom by a single parameter A.
Choosing this parameter as A = 0 gives the evolution of the quantum average of the scalar
field that coincides with its classical counterpart; with any other choice (including the
one implicitly made in the Reference [21]) there is not a sensible classical counterpart. On
the other hand, the correct expression for the effective Hamiltonian was obtained in the
framework of the formalism where the super-Hamiltonian constraint was used at all the
stages of the problem [10,11,17]. Thus, it can be concluded that the introduction of new
variables with the desired value of the Poisson brackets in all of the phase space is ne! ither
necessary nor sufficient for a reasonable treatment of the Wheeler-DeWitt equation.

Nevertheless, the paper written by A. Peres is, certainly, thought-provoking because it
makes the reader think about such complicated questions as the problem of time in quan-
tum cosmology, the correct treatment of the Wheeler-DeWitt equation, the transition to the
Hamiltonian formalism in theories that possess reparametrization invariance, and, last but
not least, the complicated interrelations between the classical and quantum theories. The
author of Reference [21] advocates the Copenhagen interpretation of quantum mechanics.
He writes: “On the other hand, quantum theory, unlike general relativity, is not a “theory of
everything”. Its mathematical formalism can be given a consistent physical interpretation
only by arbitrarily dividing the physical world into two parts: the system under study,
represented by vectors and operators in a Hilbert space, and the observer (and the rest of
the world), for which a classical description is used”. The reference to the famous paper by
Niels Bohr [68] is given in the Introduction of Reference [21].

In all the calculations and considerations of Section 3 of the present paper, the treat-
ment of time as a classical variable and the comparison between the classical and quantum
evolutions are used. At the same time, a different point of view becomes more and more
popular among researchers working in quantum cosmology. It is related to the many-
worlds interpretation of quantum mechanics [51,52] and to the idea that the quantum
theory is the only fundamental theory. The classical behavior emerges only in some limits
and contexts (see, e.g., Reference [69] for a recent review). If we accept the fundamental
character of the quantum theory, we should expect the appearance of some quantum
properties of time, considering that the time parameter in quantum gravity and cosmology
is a combination of quantum operators. Here, this “quantumness” was in a way frozen, but
this phenomenon can hardly have a universal character. Is it possible to see some flashes
revealing the true quantum nature of time?
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Let us note that ideas concerning this quantum nature of time were already discussed
in some works. For example, in Reference [70], a simple cosmological model, similar to
that in the present paper but with the massive scalar field, was considered. Using the Born-
Oppenheimer approach, the authors factorized the solution of the Wheeler-DeWitt equation
into two parts: one depending only on the geometrical variables (scale factor), and the
other depending also on the matter variables and the perturbations of the homogeneous
background. The purely geometrical part of the wave function is responsible for the
emergence of time, while the other part describes the quantum evolution of the matter
degrees of freedom with respect to this time parameter. It was discovered that, to make this
definition of time reasonable, it is necessary to use some kind of course-graining procedure.
Without this procedure the time variable behaves in a strange, oscillatory way.

The idea of Reference [70] was further developed in Reference [71], where the attempt
to construct a “non-semiclassical” wave function of the universe was undertaken, and the
possible observable effects, such as the influence of this non-classicality on the spectrum of
the cosmic microwave background, were predicted.

Some interesting features of time and causality in quantum gravity were studied in Refer-
ences [72–74]. As is known, when introducing the higher-derivative terms in the gravitational
action to make it renormalizable, one encounters the problem of unitarity. To resolve this
problem, the author of References [72–74] introduduces particles which he calls “fakeons”. The
propagators of these particles are not of Feynman type, and the standard notion of causality
is not valid for them. Thus, one can say they live in a “different time”. This is even more
evident in References [75,76]. To study the structure of the propagator of the graviton, the
authors introduce the notion of the so-called “Merlin modes”, which live in a time that runs
backwards. These states are highly unstable, their appearance does not break the causality on
the observable distances.

In our opinion, the question of genuine quantum nature of time and its relation to the clas-
sical evolution is one of the most interesting and challenging problems of quantum cosmology.
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coexist with serious objections against the conceptual and physical viability of its current formulations.
This contribution presents a non-technical case study of the recent claim that loop quantum cosmology
might alleviate anomalies in the observations of the cosmic microwave background.

Keywords: loop quantum cosmology; observations

“Speculation is one thing, and as long as it remains speculation, one can un-
derstand it; but as soon as speculation takes on the actual form of ritual, one
experiences a proper shock of just how foreign and strange this world is.” [1]

1. Introduction

Quantum cosmology is a largely uncontrolled and speculative attempt to explain the
origin of structures that we see in the universe. It is uncontrolled because we do not have a
complete and consistent theory of quantum gravity from which cosmological models could
be obtained through meaningful restrictions or approximations. It is speculative because
we do not have direct observational access to the Planck regime in which it is expected to
be relevant.

Nevertheless, quantum cosmology is important because extrapolations of known
physics and observations of the expanding universe indicate that matter once had a density
as large as the Planck density. Speculation is necessary because it can suggest possible
indirect effects that are implied by Planck-scale physics, but manifest themselves on more
accessible scales. Speculation is therefore able to guide potential new observations.

Speculation becomes a problem when it is based on assumptions that are unmentioned,
poorly justified, or, in some cases, already ruled out. When this happens, speculation is
turned into a ritual followed by a group of practitioners who continue to believe in their
assumptions and ignore outside criticism. The uncontrolled nature of quantum cosmology
makes it particularly susceptible to this danger.

A recent example is the claim [2] that loop quantum cosmology may alleviate various
anomalies in observations of the cosmic microwave background. Given the commonly
accepted distance between quantum cosmology and observations available at present, this
claim, culminating in the statement that “these results illustrate that LQC has matured
sufficiently to lead to testable predictions,” is surprising and deserves special scrutiny, all
the more so because a large number of conceptual and physical shortcomings have been
uncovered in loop quantum cosmology over the last few years (all citations from [2] refer
to its preprint version).

Upon closer inspection, we encounter a strange world in the claims of [2] accord-
ing to which, to mention just one obvious misjudgment, “many of the specific technical
points [of a recent critique of the methods used in the analysis] were already addressed,
e.g., in [42, 64, 65] and in the Appendix of [66]” even though [42, 64, 65, 66] were published
between nine and twelve years before the recent critique that they were supposed to
have addressed.
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Clearly, the authors of [2] have not sufficiently engaged with relevant new criticism.
There is therefore a danger that their work is based on rituals. Our analysis will, unfortu-
nately, confirm this suspicion. A dedicated review of these claims is especially important
because they have been widely advertized, for instance in a press release. 1

The present paper provides a close reading of these claims and highlights various
shortcomings. It therefore serves as a case study of the complicated interplay between
quantum cosmological modeling and observations. A detailed technical discussion of
some of the underlying problems of current versions of loop quantum cosmology was
already given in [3]. The analysis here is held at a non-technical level and is more broadly
accessible. It highlights conceptual problems that are relevant for [2], but were not con-
sidered in [3], for instance concerning suitable justifications of initial states in a bouncing
cosmological model.

Since the focus of our exposition was on quantum cosmology, other questions that may
well be relevant for an assessment of the claims of [2] are not discussed. These questions
include a proper analysis of all early-universe observables in addition to a select number of
anomalies and the possible role of sub-Planckian unknowns such as further modifications
of gravity not considered in [2] or uncertainties about the energy contributions in the early
universe; see for instance [4–6] for related examples and reviews.

2. Inconsistencies

The model constructed in [2] was based on several key assumptions made elsewhere
in the literature on loop quantum cosmology:

Assumption 1. In loop quantum cosmology, there are quantum-geometry corrections that imply a
bounce of the universe at about the Planck density;

Assumption 2. During quantum evolution through the bounce and long before and after, the
quantum state of the universe remains sharply peaked as a function of the scale factor;

Assumption 3. Although the dynamics is modified and geometry is quantum, general covariance
in its usual form is preserved on all scales, including the Planck scale;

Assumption 4. At the bounce, the spatial geometry and matter distribution are as homogeneous and
isotropic as possible, restricted only by uncertainty relations for modes of perturbative inhomogeneity.

These assumptions are necessary for the model to work as it does. For instance, the
bounce (Assumption 1) and spatial symmetries (Assumption 4) imply a certain cut-off in the
primordial power spectrum that quickly turns out to be useful in the context of anomalies
in the cosmic microwave background. A sharply peaked state (Assumption 2) and general
covariance (Assumption 3) make it possible to analyze the model by standard methods
of spacetime physics, using line elements and well-known results from cosmological
perturbation theory [7].

Upon closer inspection, however, it is hard to reconcile these assumptions with
established physics. Some of them are even mutually inconsistent. We first discuss these
inconsistencies and then examine how the authors tried to justify their assumptions.

2.1. Bounce

In general relativity, there are well-known singularity theorems that prove the exis-
tence of singularities in the future or the past, under certain assumptions such as energy
inequalities or the initial condition of a universe expanding at one time [8,9]. In their most
general form, these theorems do not require the specific dynamics of general relativity, but
only use the properties of Riemannian geometry, such as the geodesic deviation equation.
Loop quantum cosmology can avoid the big bang singularity and replace it by a bounce
only if it violates at least one of the assumptions of singularity theorems. Just having a
theory with modified dynamics compared with general relativity is not sufficient.
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Loop quantum cosmology does not question that the universe is currently expanding,
thus obeying the same initial condition commonly used to infer the singular big bang (it is
known that the specific modeling of an expanding universe can be weakened so as to evade
singularity theorems [10], but loop quantum cosmology does not avail itself of this option).
Moreover, as emphasized in [2], “These qualitatively new features arise without having
to introduce matter that violates any of the standard energy conditions.” According to
Assumption 3, spacetime in loop quantum cosmology remains generally covariant on all
scales (described by a suitable line element) and therefore obeys the general properties of
Riemannian geometry. Loop quantum cosmology does modify the gravitational dynamics,
but this is not a required ingredient of singularity theorems.

Since all the conditions of singularity theorems still hold, according to the explicit or
implicit assumptions in [2], loop quantum cosmology should be singular just as classical
general relativity. How can it exhibit a bounce at high density? For a detailed resolution of
this conundrum, see [11].

2.2. Peakedness

Setting aside special dynamics such as the harmonic oscillator, quantum states generi-
cally spread out and change in complicated ways as they evolve. For a macroscopic object,
such as a heavy free particle, it takes longer for such features to become significant than for
a microscopic system, but they are nevertheless present.

In late-time cosmology, it is justified to assume that a simple homogeneous and
isotropic spatial geometry of a large region describes the dynamics very well. At late times,
a state in quantum cosmology may therefore be assumed to remain sharply peaked because
it describes a large region that is conceptually analogous to a heavy free particle.

When such a state is extrapolated to the big bang, however, very long time scales
are involved. Is it still justified to assume that the state does not change significantly and
spread out during these times? Moreover, if the usual assumption of a homogeneous and
isotropic geometry is maintained for a tractable description of quantum cosmology, such a
region would have to be chosen smaller and smaller as we approach the big bang, not only
because of the shrinking space of an expanding universe in time in reverse, but also, and
more importantly, because attractive gravity implies structure formation within co-moving
volumes. As the big bang is approached, a valid homogeneous approximation of quantum
cosmology more and more resembles quantum mechanics of a microscopic object.

Because we do not know what a realistic geometry of our universe at the Planck
scale should be, we do not know how macroscopic it may still be considered to be in a
homogeneous approximation. The only indication is the Belinskii–Khalatnikov–Lifshitz
(BKL) scenario [12] of generic spacetime properties near a spacelike singularity, which
suggests that there is no lower limit to the size of homogeneous regions in classical general
relativity. Quantum gravity is expected to modify the dynamics of general relativity, but it
is not known whether and at what scale it would be able to prevent the BKL-type behavior.

This result suggests that a microscopic description should be assumed in the Planck
regime. However, according to [2], “One can now start with a quantum state Ψ(a, φ) that is
peaked on the classical dynamical trajectory at a suitably late time when curvature is low,
and evolve it back in time towards the big bang using either the WDW equation or the LQC
evolution equation. Interestingly the wave function continues to remain sharply peaked
in both cases.” Why should quantum cosmological dynamics be such that it maintains a
sharply peaked state even over long time scales that include a phase in which the evolved
object should be considered microscopic?

2.3. Covariance

According to Assumption 1, the bounce in loop quantum cosmology is supposed
to happen because quantum geometry modifies the classical dynamics: “Of particular
interest is the area gap—the first non-zero eigenvalue ∆ of the area operator. It is a
fundamental microscopic parameter of the theory that then governs important macroscopic
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phenomena in LQC that lead, e.g., to finite upper bounds for curvature.” There is supposed
to be a certain quantum structure of space that leads, among other things, to a discrete
area spectrum.

However, the description of perturbative inhomogeneity in [2] or the underlyingin [13]
assumes that this quantum geometry can be described by a line element. To be sure, co-
efficients of the “dressed” metric in this line element contain quantum corrections, but
it has not been shown that a quantum geometry with some discrete area spectrum can
be described by any line element at all, even at the Planck scale, where discreteness is
supposed to be significant enough to change the dynamics of the classical theory. While
specific corrections in metric coefficients have been derived, the claim that they should
appear in a line element of some Riemannian geometry has not been justified.

There are now several no-go results [14,15] that demonstrate violations of covariance
in regimes envisioned by the authors of [2]. A proof that Riemannian geometry and line
elements can nevertheless be used in their context would therefore require a detailed
discussion of how these no-go results can be circumvented. However, there is no hint
of such an attempt. It is worth noting that problems with covariance have also occurred
in a different application of the same formalism to black holes, in which several other
physical problems were quickly found [16–19]. The spacetime description assumed in [2]
is therefore unreliable.

Given the uncertain status of what structure spacetime geometry should have in the
presence of modifications from loop quantum cosmology, the meaning of “finite upper
bounds for curvature” that are supposed to be implied by the discrete area spectrum
is unclear.

2.4. Symmetry

Spatial homogeneity and isotropy are assumed at various places in [2]. First, in older
papers referred to for justifications of some claims, quantum evolution is numerically
computed for states of an exactly homogeneous and isotropic geometry, using methods
from quantum cosmology. Secondly, states for inhomogeneous matter perturbations on
such a background are assumed to preserve the symmetry as much as possible while
obeying uncertainty relations.

2.4.1. Background

An attempt was made in [2] to justify these assumptions: “On the issue of simplicity
of the LQC description, we note that in the 1980s it was often assumed that the early
universe is irregular at all scales and therefore quite far from being as simple as is currently
assumed at the onset of inflation. Yet now observations support the premise that the early
universe is exceedingly simple in that it is well modeled by a FLRW spacetime with first
order cosmological perturbations. Therefore, although a priori one can envisage very
complicated quantum geometries, it is far from being clear that they are in fact realized in
the Planck regime.”

However, this attempted justification is invalid because the scale probed by early-
universe observations referred to in this statement is vastly different from the Planck scale
in which the outcome is applied. Cosmic inflation was proposed precisely to address,
among other things, the homogeneity problem even if the initial state may be much less
regular, and inflation is still used in most models of loop quantum cosmology. In such
scenarios, large-scale homogeneity at later times does not show in any way that the universe
must have been homogeneous at the Planck scale.

The assumed homogeneity is also in conflict with the claimed discrete structure of
space that, according to Assumption 1, might imply a bounce. The authors of [2] never
addressed the relevant question of how their symmetry assumptions can be reconciled
with a discrete geometry on ultraviolet scales that is supposed to imply all the claimed
effects (in other words, the authors ignored the trans-Planckian problem of inflationary
cosmology [20–22]). Of course, suitable superpositions of discrete states may lead to a
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continuum of expectation values even of operators that have a discrete spectrum. However,
if this argument were used as a possible explanation of homogeneity, it would put in doubt
the strong emphasis on a single eigenvalue ∆ of the area spectrum that is claimed to govern
the new dynamics.

2.4.2. Perturbations

The authors of [2] used symmetry assumptions not only for the background on which
inhomogeneous modes evolve, but also for the modes themselves, described perturba-
tively. These modes cannot be exactly symmetric because they are subject to uncertainty
relations and therefore have, at least, non-zero fluctuations even if their expectation values
may be zero. It is claimed that these modes should be as symmetric as possible in the
bounce phase, that is have zero expectation values and fluctuations such that they saturate
uncertainty relations.

The homogeneity assumption for perturbations is motivated by Penrose’s Weyl curva-
ture hypothesis [23], introduced in [2]: “Finally, the principle that determines the quantum
state Ψ(Q, φ) of scalar modes involves a quantum generalization of Penrose’s Weyl cur-
vature hypothesis in the Planck regime near the bounce, which physically corresponds to
requiring that the state should be ‘as isotropic and homogeneous in the Planck regime, as
the Heisenberg uncertainty principle allows’.” However, conceptually, there is a significant
difference between these two proposals. Penrose’s hypothesis was given in a big bang
setting in which the initial state (close to the big bang singularity) was to be restricted
by geometrical considerations. As always, one may question the specific motivation for
a certain choice of initial states, but there are no physical objections provided general
conditions (such as uncertainty relations) are obeyed.

The symmetry assumption employed for matter perturbations in [2] is of a very
different nature. It is used to determine an initial state only of our current expanding phase
of the universe, but it is set in a bounce model with a pre-history before the big bang. The
symmetry assumption for matter perturbations is therefore a final condition for the collapse
phase and violates determinism. Potential violations of deterministic behavior have indeed
been derived in models of loop quantum cosmology in the form of signature change at high
density [24–26]. However, Reference [2] did not use this option, which would in fact be in
conflict with the line element they assumed to formulate a wave equation for cosmological
perturbations. Moreover, the derived versions of signature change would set the beginning
of the Lorentzian expanding branch of the universe later than assumed in [2], at the very
end of the bounce phase in which modifications from loop quantum cosmology subside.

Setting aside the question of determinism, a restriction of the state during the bounce
phase, a transitory stage, is not an initial condition, but rather an assumption about the
state to which preceding collapse may have led. It is then questionable that gravitational
collapse of a preceding inhomogeneous universe should lead to a bounce state that is as
homogeneous as possible, respecting uncertainty relations. In this scenario, the collapse
of a preceding universe is supposed to have led to a very homogeneous state at the
Planck density of more than one trillion solar masses in a proton-sized region. Given
the inherently unstable nature of gravitational collapse, one would rather expect that
any slightly overdense region in a collapsing universe would quickly become denser and
magnify initial inhomogeneities that had been present when collapse commenced.

It is hard to see how collapse could, instead, lead to a state that is as homogeneous as
possible. Such an assumption would at least require a dedicated justification, in particular
because it directly implies the crucial features of a new scale in loop quantum cosmology
that is then used to alleviate anomalies. Unfortunately, no attempted justification can be
found in [2].

Upon closer inspection, the arguments given in [2] were even circular. The very
setup that led the authors to their formulation of a homogeneous initial condition already
assumed the near homogeneity of a collapsing universe: The specific statement in [2]
referred to “the Planck regime near the bounce” and implicitly assumed that (in the
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Riemannian geometry, according to Assumption 3) there is a time coordinate such that
“the bounce” happens everywhere within a large region at the same time. However, if
the collapsing geometry is inhomogeneous, overdense regions will become denser during
collapse and reach the Planck density earlier than their neighbors. Once they bounce and
start expanding, it is not obvious that a simple near-homogeneous slicing with a uniform
bounce time still exists (this process suggests a multiverse rather than a single nearly
homogeneous universe [27]).

There is no unique bounce time in this picture, and therefore, an implicit assumption
(a meaningful “near the bounce”) used in the condition of initial homogeneity is unphysical.
Crucial statements such as “In our LQC model, the physical principles used to select
the background quantum geometry imply that the corresponding ΛCDM universe has
undergone approximately 141 e-folds of expansion since the quantum bounce until today.”
therefore remain unjustified.

2.5. Attempted Justifications

The authors of [2] realized that some of these assumptions should be justified, while
they were apparently unaware of additional implicit assumptions that they did not mention.

1. The bounce is justified by quantum-geometry corrections from loop quantum gravity,
but the conflict with singularity theorems has apparently gone unnoticed;

2. The peakedness of states is justified by referring to detailed numerical studies of
evolving states in loop quantum cosmology. However, the authors failed to notice
that these studies implicitly assume that the universe is still macroscopic (large-
scale homogeneity), even in the Planck regime, ignoring structure formation within
co-moving regions in a collapsing universe, as well as BKL-type behavior;

3. Covariance is justified only vaguely by referring to wave equations for perturbations
on a background, without asking the relevant question of whether modified pertur-
bation and background equations can still be consistent with a single metric that is
being perturbed;

4. In their discussion of initial conditions for perturbations, the authors seemed to be
unaware of problems posed by the pre-history of a collapsing universe.

3. A Brief Engagement with the Previous Critique

It is instructive to analyze the brief, but rapid-fire response given in [2] to the previous
criticism of certain claims in loop quantum cosmology [3]. As already mentioned in the
Introduction, the authors stated that “Many of the specific technical points were already
addressed, e.g., in [42, 64, 65] and in the Appendix of [66].” However, the references
provided tried (but failed [28,29]) to address an older issue, cosmic forgetfulness [30,31],
that did not play a major role in the recent discussion of [3] (since the publication of these
older papers, cosmic forgetfulness has been strengthened to signature change).

3.1. Effective Descriptions

The authors of [2] went on and stated that “First, although ‘effective equations’ are
often used in LQC, conceptually they are on a very different footing from those used
in effective field theories: One does not integrate out the UV modes of cosmological
perturbations. The term ‘effective’ is used in a different sense in LQC: these equations
carry some of the leading-order information contained in sharply peaked quantum FLRW
geometries Ψ(a, φ).” (Note that the authors were hedging their statement by correctly
saying that “these equations carry some of the leading-order information” (emphasis added).
The fact that they carry only some, but not all of the leading-order information is a problem
in itself that will not be discussed here; see [3,32] for details.).

The admission that “the term ‘effective’ is used in a different sense in LQC” does not
make this formalism more meaningful. It is in fact one of the major problems in current
realizations of the framework of loop quantum cosmology. Equations of loop quantum
cosmology are used on vastly different scales, in the Planck regime to analyze the possibility
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of a bounce, and at low curvature to justify a peaked late-time state. A suitable effective
theory (not in the sense used, according to [2], in loop quantum cosmology) would be
needed to determine how parameters of the model may change by infrared or ultraviolet
renormalization. The authors were simply assuming that a single effective theory without
any running parameters can be used to describe the quantum universe on a vast range of
scales. There is no justification for this assumption.

In addition, the authors referred not only to different scales in cosmology, but also to
different geometries, including those of black hole horizons: When they justified certain
parameter choices for the dynamics of loop quantum cosmology, they made statements
such as “The eigenvalues of [the area operator] ÂS are discrete in all γ-sectors. But their
numerical values are proportional to [the Barbero–Immirzi parameter (a quantization
ambiguity)] γ and vary from one γ sector to another.”, “In LQG, a direct measurement of
eigenvalues of geometric operators would determine γ. But of course such a measurement
is far beyond the current technological limits.”, and “Specifically, in LQG the number
of microstates of a black hole horizon grows exponentially with the area, whence one
knows that the entropy is proportional to the horizon area. But the proportionality factor
depends on the value of γ. Therefore if one requires that the leading term in the statistical
mechanical entropy of a spherical black hole should be given by the Bekenstein-Hawking
formula S = A/4`2

Pl, one determines γ and thus the LQG sector Nature prefers.”
These statements refer to at least three different regimes of some underlying theory

of loop quantum gravity: direct microscopic measurements of eigenvalues, macroscopic
black hole horizons, and the entire universe at various densities. It is simply assumed
that the same value of γ (as well as other parameters) may be used in all these situations
without suitable renormalization. The only justification attempted for this assumption is
the statement that “the term ‘effective’ is used in a different sense in LQC”, which ignores
the physical reasons for standard ingredients in effective theories.

The possibility of running is also ignored in statements such as “In IV C, we will
show that the interplay between LQC and observations is a 2-way bridge, in that the CMB
observations can also be used to constrain the value of the area gap ∆, the most important
of fundamental microscopic parameters of LQG.”, “As we saw in section III, the area gap
∆ is the key microscopic parameter that determines values of important new, macroscopic
observables such as the matter density and the curvature at the bounce. Its specific value,
∆ = 5.17`2

Pl, is determined by the statistical mechanical calculation of the black hole entropy
in loop quantum gravity (see, e.g., [55, 56, 59, 60]).”, and “Clearly, the value ∆ ≈ 5.17`2

Pl
chosen in Sec. III C and used in this paper, is within 68% (1σ) confidence level of the
constraint obtained from Planck 2018. This not only indicates a synergy between the
fundamental theoretical considerations and observational data, but also provides internal
consistency of the LQC model.”

3.2. Covariance

In their reply to [3], the authors stated that “As we will see in Section III B, equations
satisfied by the cosmological perturbations are indeed covariant.” In Section III.B, however,
less than half a sentence was devoted to this important question: “Note also that the
equation is covariant w.r.t. [the dressed metric] g̃ab and g̃ab rapidly tends to the classical
FLRW metric of GR outside the Planck regime.” This attempted justification of covariance
apparently refers to the equation (�̃+ Ũ/ã2)Q̂ = 0 for modes Q̂, with certain functions Ũ
and ã of the background scale factor. However, nowhere did the authors address the crucial
question of whether background g̃ab, which defines the d’Alembertian �̃, and perturbation
Q̂ can, after modifications, still be obtained from a single covariant metric (obeying the
tensor-transformation law), as in the underlying classical theory.

The authors’ statement about covariance refers only to transformations of the pertur-
bative mode, Q̂, and therefore to small inhomogeneous coordinate changes that preserve
the perturbative nature. In addition, potentially large homogeneous transformations of the
background time coordinate, such as transforming from proper time to conformal time,
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are relevant in cosmological models of perturbative inhomogeneity. The usual curvature
perturbations are not invariant with respect to these transformations [33]. The authors’
statements had nothing to say about the question of whether their model of modified
perturbation equations is covariant with respect to large transformations of background
time. The failure of covariance in the underlying construction was shown in [14].

3.3. Symmetry

We already addressed the authors’ erroneous view that observations can be used to
justify near homogeneity in the Planck regime. The authors finally stated that “Nonetheless,
one should keep in mind that, as in other approaches to quantum cosmology, in LQC the
starting point is the symmetry reduced, cosmological sector of GR. Difference from the
Wheeler-DeWitt theory is that one follows the same systematic procedure in this sector as
one does in full LQG. But the much more difficult and fundamental issue of systematically
deriving LQC from full LQG is still open mainly because dynamics of full LQG itself is still
a subject of active investigation.” Here, they were attempting to construct a false binary
choice between exactly isotropic models of symmetry-reduced geometries, on one hand,
and calculations in full loop quantum gravity without any symmetry assumptions, on
the other. If this choice were correct, one might as well give up because exactly isotropic
models are unrealistic, and the full theory is intractable.

What the authors were missing is a proper effective theory that not only amends
isotropic equations by certain leading-order corrections, but also tries to go beyond strictly
isotropic models by parameterizing all the ignorance in the parameter choices implied by
the intractable nature of full loop quantum gravity. Without such an effective description,
which does not require direct calculations in the full theory and is therefore feasible, but
would not be as simple as the authors assumed, no observational claims can be reliable.

4. Conclusions

How can we reconcile the claim that “these results illustrate that LQC has matured
sufficiently to lead to testable predictions” [2] with the availability of several serious and
independent concerns that have shown in recent years how loop quantum cosmology, as
it is commonly practiced, has overlooked a large number of important conceptual and
physical requirements? In the present paper, we provided detailed evidence to show
that [2] merely ignored or insufficiently addressed relevant criticism. Moreover, the main
new claims of [2] are implied rather directly by specific assumptions that remain unjustified.
We summarize these observations in this concluding section.

In their quest to show that loop quantum cosmology naturally resolves anomalies in
observations of the cosmic microwave background and therefore makes testable predictions,
the authors of [2] used or introduced several conceptually distinct assumptions. Some
of these assumptions, including those about bounces and covariance, are questionable
within loop quantum cosmology. Others, for instance about free parameters, rely on an
oversimplified presentation of loop quantum cosmology as some special version of an
effective theory that could be used to describe the dynamics of quantum gravity on a vast
range of scales, including the Planck regime, without any running parameters.

Yet another set of assumptions, referring to the state of perturbations and their spatial
homogeneity, is independent of loop quantum cosmology, but has been packaged with
the other assumptions in a way that gives the erroneous impression of a single coherent
theory. Moreover, these assumptions are physically questionable because they implicitly
make strong and unrealistic claims about the generic final state of a collapsing universe.
We are observing a single universe that might perhaps have emerged from a special version
of preceding collapse as envisioned by the authors. However, by simply formulating
the desired behavior as an assumption without addressing a possible relationship with a
pre-history, the authors hid its restrictive nature and ultimately failed to explain the initial
state of cosmological perturbations and the observed microwave background.
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The authors of [2] were aware of the previous criticism and gave a half-hearted attempt
to address it. In Section 3, we saw how inadequate their response was. To summarize, the
cited papers that supposedly addressed “many of the specific technical points”, made in [3],
had been published between nine and twelve years before this recent critique. The crucial
question of general covariance in models of quantum gravity, discussed from different
viewpoints for instance in [34,35], was acknowledged in [2] only by the misleading “as we
will see in Section 3 B, equations satisfied by the cosmological perturbations are indeed
covariant” to announce a brief statement “note also that the equation is covariant w.r.t.
[the dressed metric] g̃ab” that reflects a misunderstanding of the issue of covariance in the
setting of modified perturbation equations (not only perturbations, but also the background
must be included in a covariance analysis [14]).

Notably, there are also points of critique that the authors of [2] did not bother to
address. An important example, in addition to the prevalence of quantization ambiguities,
is the implicit assumption in current formulations of loop quantum cosmology that the
universe remains large-scale homogeneous (over at least several hundred Planck lengths)
even at the Planck density. As explained in [3], this assumption is related to the incor-
rect implementation of effective descriptions in loop quantum cosmology. Without this
unjustified and unmentioned assumption, the authors of [2] would not even be able to
formulate their restrictive condition that cosmological perturbations be as homogeneous
as possible at the bounce. This assumption ultimately leads to a suppression of power
on large scales of the cosmic microwave background and allows claims about resolved
anomalies. However, this assumption is not only unjustified, but it is also based on another
and implicit assumption that had already been ruled out.

Therefore, the results of [2] relied on several major assumptions, made explicitly
or implicitly, that turned out to be unjustified. The authors’ claims therefore went well
beyond the usual level of speculation that is common (and unavoidable) in quantum
cosmology. Their response to objections that have been published during the last few years
was inadequate in some cases and non-existent in others. Ashtekar et al. created a cosmic
tangle of rituals that they no longer wish to be questioned.
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Abstract: We present a short review of possible applications of the Wheeler-De Witt equation to
cosmological models based on the low-energy string effective action, and characterised by an initial
regime of asymptotically flat, low energy, weak coupling evolution. Considering in particular a
class of duality-related (but classically disconnected) background solutions, we shall discuss the
possibility of quantum transitions between the phases of pre-big bang and post-big bang evolution.
We will show that it is possible, in such a context, to represent the birth of our Universe as a quantum
process of tunneling or “anti-tunneling” from an initial state asymptotically approaching the string
perturbative vacuum.

Keywords: string cosmology; quantum cosmology; Wheeler-DeWitt equation

1. Introduction

In the standard cosmological context the Universe is expected to emerge from the big
bang singularity and to evolve initially through a phase of very high curvature and density,
well inside the quantum gravity regime. Quantum cosmology, in that context, turns out
to be a quite appropriate formalism to describe the “birth of our Universe”, possibly in a
state approaching the de Sitter geometric configuration typical of inflation (see, e.g., [1] for
a review).

In the context of string cosmology, in contrast, there are scenarios where the Universe
emerges from a state satisfying the postulate of “asymptotic past triviality” [2] (see [3]
for a recent discussion): in that case the initial phase is classical, with a curvature and a
density very small in string (or Planck) units. Even in that case, however, the transition to
the decelerated radiation-dominated evolution, typical of standard cosmology, is expected
to occur after crossing a regime of very high-curvature and strong coupling. The birth of
our Universe, regarded as the beginning of the standard cosmological state, corresponds in
that case to the transition (or “bounce”) from the phase of growing to decreasing curvature,
and even in that case can be described by using quantum cosmology methods, like for a
Universe emerging from an initial singularity.

There is, however, a crucial difference between a quantum description of the “big
bang” and of the “big bounce”: indeed, the bounce is preceded by a long period of
low-energy, classical evolution, while the standard big bang picture implies that the space-
time dynamics suddenly ends at the singularity, with no classical description at previous
epochs (actually, there are no “previous” epochs, as the time coordinate itself ends at the
singularity). In that context the initial state of the Universe is unknown, and has to be
fixed through some ad hoc prescription: hence, different choices for the initial boundary
conditions are in principle allowed [4–9], leading in general to different quantum pictures
for the very early cosmological evolution. Such an approach, based in particular on “no-
boundary” initial conditions, has been recently applied also to the ekpyrotic scenario [10],
leading to the production of ekpyrotic instantons [11,12]. In the class of string cosmology
models considered in this paper, in contrast, the initial state is uniquely determined by
a fixed choice of pre-big bang (or pre-bounce) evolution (see, e.g., [13–17]), which starts
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asymptotically from the string perturbative vacuum and which, in this way, unambiguously
determines the initial “wave function” of the Universe and the subsequent transition
probabilities.

In this paper we report the results of previous works, based on the study of the
Wheeler–De Witt (WDW) equation [18,19] in the “minisuperspace” associated with a
class of cosmological backgrounds compatible with the dynamics the low-energy string
effective action [20–26]. It is possible, in such a context, to obtain a non-vanishing transition
probability between two different geometrical configurations—in particular, from a pre-
big bang to a post-big bang state—even if they are classically disconnected by a space-
time singularity. There is no need, to this purpose, of adding higher-order string-theory
contributions (like α′ and loop corrections) to the WDW equation, except those possibly
encoded into an effective (non-local) dilaton potential (but see [27,28] for high-curvature
contributions to the WDW equation). It will be shown, also, that there are no problems
of operator ordering in the WDW equation, as the ordering is automatically fixed by the
duality symmetry of the effective action. Other possible problems—of conceptual nature
and typical of the WDW approach to quantum cosmology—however, remain, like the the
validity of a probabilistic interpretation of the wave function [29], the existence and the
possible meaning of a semiclassical limit [30], the unambiguous identification of a time-like
coordinate in superspace (see however [23], and see [31] for a recent discussion).

Let us stress that this review is dedicated in particular to string cosmology back-
grounds of the pre-big bang type, and limited to a class of spatially homogeneous geome-
tries. It should be recalled, however, that there are other important works in a quantum
cosmology context which are also directly (or indirectly) related to the string effective
action, and which are applied to more general classes of background geometries not neces-
sarily characterised by spatial Abelian isometries, and not necessarily emerging from the
string vacuum.

We should mention, in particular, the quantum cosmology results for the bosonic
sector of the heterotic string with Bianchi-type IX geometry [32] and Bianchi class A ge-
ometry [33]; solutions for the WDW wave function with quadratic and cubic curvature
corrections [34] (typical of f (R) models of gravity), describing a phase of conventional
inflation; two-dimensional models of dilaton quantum cosmology and their supersymmet-
ric extension [35]; WDW equation for a class of scalar-tensor theories of gravity with a
generalised form of scale-factor duality invariance [36,37]. We think that discussing those
(and related) works should deserve by itself a separate review paper.

This paper is organized as follows. In Section 2 we present the explicit form of the
WDW equation following from the low-energy string effective action, for homogeneous
backgrounds with d Abelian spatial isometries, and show that it is free from operator-
ordering ambiguities thanks to its intrinsic O(d, d) symmetry. In Section 3, working in
the simple two-dimensional minisuperspace associated with a class of exact gravi-dilaton
solutions of the string cosmology equations, we discuss the scattering of the WDW wave
function induced by the presence of a generic dilaton potential. In Section 4 we show that
an appropriate quantum reflection of the wave function can be physically interpreted as
representing the birth of our Universe as a process of tunnelling from the string perturbative
vacuum. Similarly, in Section 5, we show that the parametric amplification of the WDW
wave function can describe the birth of our Universe as a process of “anti-tunnelling” from
the string perturbative vacuum. Section 6 is finally devoted to a few conclusive remarks.

2. The Wheeler-De Witt Equation for the Low-Energy String Effective Action

In a quantum cosmology context the Universe is described by a wave function evolving
in the so-called superspace and governed by the WDW equation [18,19], in much the
same way as in ordinary quantum mechanics a particle is described by a wave function
evolving in Hilbert space [38], governed by the Schrodinger equation. Each point of
superspace corresponds to a possible geometric configuration of the space-like sections of
our cosmological space-time, and the propagation of the WDW wave function through this
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manifold describes the quantum dynamics of the cosmological geometry (thus providing,
in particular, the transition probabilities between different geometric states).

The WDW equation, which implements the Hamiltonian constraint H = 0 in the
superspace of the chosen cosmological scenario, has to be obtained, in our context, from
the appropriate string effective action. Let us consider, to this purpose, the low-energy, tree-
level, (d + 1)-dimensional (super)string effective action, which can be written as [39–41]

S = − 1
2λd−1

s

∫
dd+1x

√
−g e−φ

(
R + ∂µφ∂µφ− 1

12
HµναHµνα + V

)
, (1)

where φ is the dilaton [42], Hµνα = ∂µBνα + ∂νBαµ + ∂αBµν is the field strength of the
NS-NS two form Bµν = −Bνµ (also called Kalb-Ramond axion), and λs ≡ (α′)1/2 is the
fundamental string length parameter. We have also added a possible non-trivial dilaton
potential V(φ).

For the purpose of this paper it will be enough to consider a class of homogeneous
backgrounds with d Abelian spatial isometries and spatial sections of finite volume, i.e.,
(
∫

ddx
√−g)t=const < ∞. In the synchronous frame where g00 = 1, g0i = 0 = B0i, and

where the fields are independent of all space-like coordinates xi (i, j = 1, .., d), the above
action can then be rewritten as follows [43,44]:

S =
∫

dt L(φ, M), L = −λs

2
e−φ

[
(φ̇)2 +

1
8

Tr Ṁ(M−1 )̇ + V
]

. (2)

Here a dot denotes differentiation with respect to the cosmic time t, and φ is the so-called
“shifted” dilaton field,

φ = φ− ln
√
−g, (3)

where we have absorbed into φ the constant shift − ln(λ−d
s
∫

ddx). Finally, M is the
2d × 2d matrix

M =

(
G−1 −G−1B

BG−1 G− BG−1B

)
, (4)

where G and B are, respectively, d × d matrix representations of the spatial part of the
metric (gij) and of the antisymmetric tensor (Bij). For constant V, or for V = V(φ), the
above action (2) is invariant under global O(d, d) transformations [43,44] that leave the
shifted dilaton invariant, and that are parametrized in general by a constant matrix Ω
such that

φ→ φ, M→ ΩT MΩ, (5)

where Ω satisfies

ΩTηΩ = η, η =

(
0 I
I 0

)
, (6)

and I is the d-dimensional identity matrix. It can be easily checked that, in the particular
case in which B = 0 and Ω coincides with η, Equation (5) reproduces the well-known
transformation of scale-factor duality symmetry [45,46].

From the effective Lagrangian (2) we can now obtain the (dimensionless) canoni-
cal momenta

Πφ =
δL

δφ̇
= −λsφ̇e−φ, ΠM =

δL
δṀ

=
λs

8
e−φ M−1ṀM−1, (7)

and the associated classical Hamiltonian:

H =
eφ

2λs

[
−Π2

φ
+ 8Tr(M ΠM M ΠM) + λ2

s Ve−2φ
]
. (8)

The corresponding WDW equation, implementing in superspace the Hamiltonian con-
straint H = 0 through the differential operator representation Πφ = ±iδ/δφ, ΠM =
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±iδ/δM, would seem thus to be affected by the usual problems of operator ordering, since
[M, ΠM] 6= 0.

The problem disappears, however, if we use the O(d, d) covariance of the action (2),
and the symmetry properties of the axion-graviton field represented by the matrix (4),
which satisfies the identity Mη = ηM−1. Thanks to this property, in fact, we can identi-
cally rewrite the axion-graviton part of the kinetic term appearing in the Lagrangian (2)
as follows:

Tr Ṁ(M−1 )̇ = Tr
(

ṀηṀη
)
. (9)

The corresponding canonical momentum becomes

ΠM = −λs

8
e−φ ηṀη, (10)

and the associated Hamiltonian

H =
eφ

2λs

[
−Π2

φ
− 8Tr(η ΠM η ΠM) + λ2

s Ve−2φ
]

(11)

has a flat metric in momentum space, and leads to a WDW equation
[

δ2

δφ
2 + 8Tr

(
η

δ

δM
η

δ

δM

)
+ λ2

s Ve−2φ

]
Ψ(φ, M) = 0 (12)

which is manifestly free from problems of operator ordering.
Finally, it may be interesting to note that the quantum ordering imposed by the dualiy

symmetry of the effective action is exactly equivalent to the order fixed by the condition of
reparametrization invariance in superspace.

To check this point let us consider a simple spatially isotropic background, with Bij = 0
and scale factor a(t), so that Gij = −a2(t)δij. The effective Lagrangian (2) becomes

L(φ, a) = −λs

2
e−φ

(
φ̇

2 − d
ȧ2

a2 + V
)

, (13)

with associated canonical momenta

Πφ =
δL

δφ̇
= −λsφ̇e−φ, Πa =

δL
δȧ

= λsd
ȧ
a2 e−φ, (14)

and Hamiltonian constraint:

2λse−φ H = −Π2
φ
+

a2

d
Π2

a + λ2
s Ve−2φ = 0. (15)

The differential implementation of this constraint in terms of the operators Πφ → ±i∂/∂φ,
Πa → ±i∂/∂a has to be ordered, because [a, Πa] 6= 0. It follows that in general, for the
kinetic part of the Hamiltonian Hk = −Π2

φ
+ a2Π2

a/d, we have the following differen-
tial representation

Hk =
∂

∂φ
2 −

a2

d
∂2

∂a2 − ε
a
d

∂

∂a
, (16)

where ε is a numerical parameter depending on the imposed ordering. However, if
we perform a scale-factor duality transformation φ → φ, a → ã = a−1 (which exactly
corresponds to the class of transformations (5) for the particular class of backgrounds that
we are considering), we find

Hk(a) = Hk(ã) +
2
d
(ε− 1) ã

∂

∂ã
. (17)
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The duality invariance of the Hamiltonian thus requires ε = 1 (which, by the way, is
also the value of ε that we have to insert into Equation (16) to be in agreement with
the general result (12) if we consider the particular class of geometries with B = 0 and
G = −a2 I). See also [36,37] for the WDW equation with a generalised form of scale-factor
duality symmetry.

Let us now consider the kinetic part of the Hamiltonian operator (15), which is given
as a quadratic form in the canonical momenta ΠA = (Πφ, Πa), written in a 2-dimensional
minisuperspace with a non-trivial metric γAB and coordinates xA = (φ, a), such that:

Hk = −Π2
φ
+

a2

d
Π2

a ≡ γABΠAΠB, γAB(φ, a) = diag
(
−1,

d
a2

)
. (18)

If we impose on the differential representation of the Hamiltonian constraint the condition
of general covariance with respect to the given minisuperspace geometry [47], we obtain

Hk = −γAB∇A∇B = − 1√−γ
∂A(
√−γγAB∂B) ≡

∂

∂φ
2 −

a2

d
∂2

∂a2 −
a
d

∂

∂a
, (19)

and this result exactly reproduces the differential operator (16) with ε = 1. The duality
symmetry of the action, and the requirement of reparametrisation invariance in superspace,
are thus equivalent to select just the same ordering prescription, as previously anticipated.

3. Quantum Scattering of the Wheeler-De Witt Wave Function in Minisuperspace

For an elementary discussion of this topic, and for the particular applications we
have in mind—namely, a quantum description of the “birth” of our present cosmological
state from the string perturbative vacuum—we shall consider the homogeneous, isotropic
and spatially flat class of (d + 1)-dimensional backgrounds already introduced in the
previous section, with Bµν = 0, g00 = 1 and scale factor a(t). We shall thus work in a
two-dimensional minisuperspace, spanned by the convenient coordinates (φ, β) where
β =
√

d ln a. With such variables the effective Lagrangian (2) takes the form

L(β, φ) = −λs
e−φ

2

[
φ̇

2 − β̇2 + V(β, φ)
]
, (20)

and the momenta, canonically conjugate to the coordinates φ, β, are given by

Πφ =
δL

δφ̇
= −λsφ̇e−φ, Πβ =

δL
δβ̇

= λs β̇ e−φ. (21)

The Hamiltonian constraint (15) becomes

−Π2
φ
+ Π2

β + λ2
s V(β, φ) e−2 φ = 0, (22)

corresponding to an effective WDW equation
[
∂2

φ
− ∂2

β + λ2
s V(β, φ) e−2φ

]
Ψ(β, φ) = 0. (23)

For V = 0 we have the free D’Alembert equation, and the general solution can be written
in terms of plane waves as

Ψ(β, φ) = ψ±β ψ±
φ
∼ e∓ikβe∓ikφ. (24)

Here k > 0, and ψ±β , ψ±
φ

are free momentum eigenstates, satisfying the eigenvalue equations

Πβ ψ±β = ±k ψ±β , Πφ ψ±
φ
= ±k ψ±

φ
. (25)
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Let us now recall that, for V = 0, the equations following from the effective La-
grangian (20) admit a class of exact solution describing four (physically different) cosmo-
logical phases, two expanding and two contracting, parametrized by [13,15–17]:

a(t) ∼ (∓t)∓1/
√

d, φ(t) ∼ − ln(∓t), (26)

They are defined on the disconnected time ranges [−∞, 0] and [0,+∞], and are related
by duality transformations a → a−1, φ → φ and time-reversal transformation, t → −t.
They may represent the four asymptotic branches of the low-energy string cosmology
solutions even in the presence of a non-vanishing dilaton potential, provided the effective
contribution of the potential is localized in a region of finite extension of the (φ, β) plane,
and goes (rapidly enough) to zero as φ, β→ ±∞.

The above solutions satisfy the condition

φ̇ = ±
√

d
ȧ
a
= ±β̇, (27)

so that, according to the definitions (21), they correspond to configurations with canonical
momenta related by Πβ = ±Πφ. By recalling that the phase of (expanding or contracting)
pre-big bang evolution is characterized by growing curvature and growing dilaton [15,16]
(namely, φ̇ > 0, Πφ < 0), while the curvature and the dilaton are decreasing in the

(expanding or contracting) post-big bang phase (where φ̇ < 0, Πφ > 0), we can conclude,
according to Equations (21), (25), that the classical solutions (26) of the string cosmology
equations admit the following plane-wave representation in minisuperspace in terms of
ψ±β , ψ±

φ
:

• expansion −→ β̇ > 0 −→ ψ+
β ,

• contraction −→ β̇ < 0 −→ ψ−β ,

• pre-big bang (growing dilaton) −→ φ̇ > 0 −→ ψ−
φ

,

• post-big bang (decreasing dilaton) −→ φ̇ < 0 −→ ψ+
φ

.

Let us now impose, as our physical boundary condition, that the initial state of our
Universe describes a phase of expanding pre-big bang evolution, asymptotically emerging
from the string perturbative vacuum (identified with the limit β → −∞, φ → −∞). It
follows that the initial state Ψin must represent a configuration with β̇ > 0 and φ̇ > 0,
namely a state with positive eigenvalue of Πβ and negative (opposite) eigenvalue of Πφ,
i.e., Ψin ∼ ψ+

β ψ−
φ

.
In such a context, a quantum transition from the pre- to the post-big bang regime can

be described as a process of scattering of the initial wave function induced by the presence
of some appropriate dilaton potential, which we shall assume to have non-negligible
dynamical effects only in a finite region localized around the origin of the minusuperspace
spanned by the (φ, β) coordinates. In other words, we shall assume that the contributions
of V(φ) to the WDW equation tend to disappear not only in the initial but also in the final
asymptotic regime where β→ +∞, φ→ +∞. As a consequence, also the final asymptotic
configuration Ψout, emerging from the scattering process, can be represented in terms of
the free momentum eigenstates ψ±β and ψ±

φ
.

However, unlike the initial state fixed by the chosen boundary conditions—and
selected to represent a configuration with Πβ > 0 and Πφ < 0—the final state is not
constrained by such a restriction and can describe in general different configurations. In
particular, the scattering process may lead to configurations asymptotically described by
a wave function Ψout which is a superposition of different momentum eigenstates: for
instance, waves with the same Πβ > 0 and opposite values of Πφ, i.e., Ψout ∼ ψ+

β ψ±
φ

(see
Figure 1, cases (a) and (b)); or waves with the same Πφ < 0 and opposite values of Πβ, i.e.,
Ψout ∼ ψ−

φ
ψ±β (see Figure 1, cases (c) and (d)).
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Figure 1. Four different classes of scattering processes for the incoming wave function describing a
phase of expanding pre-big bang evolution, asymptotically emerging from the string perturbative
vacuum (straight, solid line). The outgoing state is represented by a mixture of eigenfunctions of Πβ

and Πφ with positive and negative eigenvalues.
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Figure 1. Four different classes of scattering processes for the incoming wave function describing a
phase of expanding pre-big bang evolution, asymptotically emerging from the string perturbative
vacuum (straight, solid line). The outgoing state is represented by a mixture of eigenfunctions of Πβ

and Πφ with positive and negative eigenvalues. See the main text for a detailed explanation of the
four different cases (a–d) illustrated in this figure.

It may be interesting to note that those different configurations may be interpreted
as different possible “decay channels” of the string perturbative vacuum [24]. Also, it
should be stressed (as clearly illustrated in Figure 1) that one of the two components of
the outgoing wave function Ψout must always correspond to the “transmitted” part of the
incident wave Ψin, namely must correspond to a state with Πβ > 0 and Πφ < 0, represented
by ψ+

β ψ−
φ

. However, the “reflected” part of the wave function may have different physical
interpretations, also depending on the chosen identification of the time-like coordinate
in minisuperspace [23,25]: the β axis for the cases (a) and (d), the φ axis for the case (b)
and (c).

It turns out that only the cases (a) and (c) of Figure 1 represent a true process of
reflection of the incident wave along a spacelike coordinate (the axes φ and β, respectively).
In case (a), in particular, the evolution along β is monotonic, the Universe always keeps
expanding, and the incident wave Ψin is partially transmitted towards the pre-big bang
singularity (with unbounded growth of the curvature and of the dilaton, β → +∞, φ →
+∞), and partially reflected back towards the expanding, low-energy, post-big bang regime
(β → +∞, φ → −∞). As we shall show in Section 4, this type of quantum reflection can
also be interpreted as a process of “tunnelling” from the string perturbative vacuum.
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The cases (b) and (d) of Figure 1 are qualitatively different, as the final state is a super-
position of modes of positive and negative frequency with respect to the chosen timelike
coordinate (the axes φ and β, respectively). Namely, Ψout is a superposition of positive and
negative energy eigenstates, and this represents a quantum process of “parametric amplifi-
cation” of the wave function [48,49] or, in the language of third quantization [50–54]—i.e.,
second quantization of the WDW wave function—a process of “Bogoliubov mixing” of
the energy modes (see, e.g., [55,56]), associated with the production of “pairs of universes”
from the vacuum. For that process, the mode “moving backwards” with respect to the
chosen time coordinate has to be “reinterpreted”: as an anti-particle in the usual quantum
field theory context, as an “anti-universe” in a quantum cosmology context.

Such a re-interpretation principle produces, as usual, states of positive energy and
opposite momentum. It turns out, in particular, that the case (d) of Figure 1 describes—after
the correct re-interpretation—the production of universe/anti-universe pairs in which both
members of the pair have positive energy and positive momentum along the β axis. Hence,
they are both expanding: one falls inside the pre-big bang singularity (φ→ +∞), but the
other expands towards the low-energy post-big bang regime (φ→ −∞). As we shall show
in Section 5, this quantum effect of pair production can also be interpreted as a process of
“anti-tunnelling” from the string perturbative vacuum.

4. Birth of the Universe as a Tunnelling from the String Perturbative Vacuum

To illustrate the process of quantum transition from the pre- to the post-big bang
regime as a wave reflection in superspace we shall consider here the simplest (almost trivial)
case of constant dilaton potential, V = V0 = const ( see also [37], and see, e.g., [20] for more
general dynamical configurations). With this potential the classical background solutions
for the cosmological equations of the effective Lagrangian (20) are well known [57], and
can be written as

a(t) = a0

[
tanh

(
∓
√

V0t/2
)]∓1/

√
d
, φ = φ0 − ln

[
sinh

(
∓
√

V0t
)]

, (28)

where a0 and φ0 are integration constants.
These solutions have two branches, of the pre-big bang type (φ̇ > 0) and post-big bang

type (φ̇ < 0), defined respectively over the disconnected time ranges t < 0 and t > 0, and
classically separated by a singularity of the curvature and of the effective string coupling
(exp φ) at t = 0. For t→ ±∞ they approach, asymptotically, the free vacuum solution (26)
obtained for V = 0. It is important to note, also, that each branch of the above solution
can describe either expanding or contracting geometric configurations, which are both
characterized by a constant canonical momentum along the β axis, given (according to
Equation (21)), by

Πβ = λs β̇ e−φ = ±k, k = λs
√

V0 e−φ0 . (29)

Let us now apply the WDW Equation (23) to compute the (classically forbidden)
probability of transition from the pre- to the post-big bang branches of the solution (28).
We are interested, in particular, in the transition between expanding configurations, and
we shall thus consider the quantum process described by the case (a) of Figure 1, with a
wave function monotonically evolving along the positive direction of the β axis (also in
agreement with the role of time-like coordinate asssigned to β). In that case β̇ > 0, and
the conserved canonical momentum (29) is positive, Πβ > 0. By imposing momentum
conservation as a differential condition on the wave function,

ΠβΨk(β, φ) = i∂βΨk(β, φ) = k Ψk(β, φ), (30)

we can then separate the variables in the solution of the WDW Equation (23), and we obtain

Ψ(β, φ) = e−ikβψk(φ),
(

∂2
φ
+ k2 + λ2

s V0e−2φ
)

ψk(φ) = 0. (31)
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The general solution of the above equation can now be written as a linear combination
of Bessel functions [58], AJν(z) + BJ−ν(z), of index ν = ik and argument
z = λs

√
V0 exp(−φ). Consistently with the chosen boundary conditions for the pro-

cess illustrated in case (a) of Figure 1 (namely, with the choice of an initial wave function
asymptotically incoming from the string perturbative vacuum), we have now to impose
that there are only right-moving waves (along φ) approaching the high-energy region and
the final singularity in the limit β → +∞, φ → +∞. Namely, waves of the type ψ−

φ
—see

Equations (24) and (25)—representing a state with φ̇ > 0 and Πφ < 0. By using the small
argument limit of the Bessel functions [58],

lim
φ→+∞

J±ik

(
λs
√

V0 e−φ
)
∼ e∓ikφ, (32)

we can then eliminate the Jν(z) component and uniquely fix the WDW solution (modulo
an arbitrary normalization factor Nk) as follows:

Ψk(β, φ) = Nk J−ik

(
λs
√

V0 e−φ
)

e−ikβ. (33)

Let us now consider the wave content of this solution in the opposite, low-energy
limit φ→ −∞, where the large argument limit of the Bessel functions gives [58]

lim
φ→−∞

Ψk(β, φ) =
Nk e−ikβ

(2πz)1/2

[
e−i(z−π/4)ekπ/2 + ei(z−π/4)e−kπ/2

]

≡ Ψ−k (β, φ) + Ψ+
k (β, φ), (34)

and where the two wave components Ψ−k and Ψ+
k are asymptotically eigenstates of Πφ with

negative and positive eigenvalues, respectively. Hence, we find in this limit a superposition
of right-moving and left-moving modes (along φ), representing, respectively, the initial,
pre-big bang incoming state Ψ−k (with Πφ < 0, i.e., growing dilaton), and the final, post-big
bang reflected component Ψ+

k (with Πφ > 0, i.e., decreasing dilaton). Starting from an
initial pre-big bang configuration, we can then obtain a finite probability for the transition
to the “dual” post-big bang regime, represented as a reflection of the wave function in
minisuperspace, with reflection coefficient

Rk =

∣∣Ψ+
k (β, φ)

∣∣2
∣∣Ψ−k (β, φ)

∣∣2 = e−2πk. (35)

The probability for this quantum process is in general nonzero, even if the corresponding
transition is classically forbidden.

It may be interesting to evaluate Rk in terms of the string-scale variables, for a region
of d-dimensional space of given proper volume Ωs. By computing the constant momentum
k of Equation (29) at the string epoch ts, when β̇(ts) =

√
d(ȧ/a)(ts) '

√
dλ−1

s , and using
the definition (3) of φ, we find

Rk ∼ exp

{
−2π

√
d

g2
s

Ωs

λd
s

}
, (36)

where the proper spatial volume is given by Ωs = ad(ts)
∫

ddx, and where gs = exp(φs/2)
is the effective value of the string coupling when the dilaton has the value φs ≡ φ(ts). Note
that, for values of the coupling gs ∼ 1, the above probability is of order one for the formation
of spacelike “bubbles” of unit size (or smaller) in string units. In general, the probability
has a typical “instanton-like” dependence on the coupling constant, Rk ∼ exp(g−2

s ).
It may be observed, finally, that an exponential dependence of the transition proba-

bility is also typical of tunnelling processes (induced by the presence of a cosmological
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constant Λ) occurring in the context of standard quantum cosmology, where the tunnelling
probability can be estimated as [6,29,59,60]

P ∼ exp

{
− 4

λ2
PΛ

}
(37)

(λP is the Planck length). That scenario is different because, in that case, the Universe
emerges from the quantum era in a classical inflationary configuration, while, in the string
scenario, the Universe is expected to exit (and not to enter) the phase of inflation thanks to
quantum cosmology effects.

In spite of such important differences, it turns out that the string cosmology result (36)
is formally very similar to the result concerning the probability that the birth of our
Universe may be described as a quantum process of “tunneling from nothing” [6,29,59,60].
The explanation of this formal coincidence is simple, and based on the fact that the choice
of the string perturbative vacuum as initial boundary condition implies—as previously
stressed—that the are only outgoing (right-moving) waves approaching the singularity
at φ → +∞. This is exactly equivalent to imposing tunneling boundary conditions, that
select “... only outgoing modes at the singular space-time boundary” [29,60]. In this sense, the
process illustrated in this Section can also be interpreted as a tunneling process, not “from
nothing” but “from the string perturbative vacuum”.

5. Birth of the Universe as Anti-Tunnelling from the String Perturbative Vacuum

In this Section we shall illustrate the possible transition from the pre- to the post-big
bang regime as a process of parametric amplification of the WDW wave function, also
equivalent—as previously stressed—to a quantum process of pair production from the
vacuum. We shall consider, in particular, an example in which both the initial and final
configurations are expanding, like in the case (d) of Figure 1.

What we need, to this purpose, is a WDW equation with the appropriate dilaton
potential, able to produce an outgoing configuration which is a superposition of states
with positive and negative eigenvalues of the momentum Πβ (see Figure 1). Since we are
starting from an initial expanding (pre-big bang) regime, it follows that the contribution
of the potential has to break the traslational invariance of the effective Hamiltonian (22)
along the β axis (i.e., [Πβ, H] 6= 0), otherwise the final configuration described in case (d)
of Figure 1 would be forbidden by momentum conservation.

We shall work here with the simple two-loop dilaton potential already introduced
in [26], possibly induced by an effective cosmological constant Λ > 0, appropriately
suppressed in the low-energy, classical regime, and given explicitly by

V(β, φ) = Λ θ(−β) e2φ = Λ θ(−β) e2φ+2
√

dβ. (38)

The Heaviside step function θ has been inserted to mimic an efficient damping of the
potential outside the interaction region (in particular, in the large radius limit β→ +∞ of
the expanding post-bb configuration). The explicit form and mechanism of the damping,
however, is not at all a crucial ingredient of our discussion, and other, different forms of
damping would be equally appropriate.

With the given potential (38) the effective Hamiltonian is no longer translational
invariant along the β direction, but we still have [Πφ, H] = 0, so that we can conveniently
separate the variables in the WDW Equation (23) by factorizing the eigenstates (25) of the
canonical momentum Πφ, and we are lead to

Ψ(β, φ) = eikφψk(β),
[
∂2

β + k2 − λ2
s Λ θ(−β) e2

√
dβ
]
ψk(β) = 0. (39)

The above WDW equation can now be exactly solved by separately considering the two
ranges of the “temporal coordinate” β, namely β < 0 and β > 0.
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For β < 0 the contribution of the potential is non vanishing, and the general solu-
tion is a linear combination of Bessel functions Jµ(σ) and J−µ(σ), of index µ = ik/

√
d

and argument σ = iλs
√

Λ/d e
√

dβ. As before, we have to impose our initial boundary
conditions requiring that, in the limit β→ −∞, the solution may asymptotically represent
a low-energy pre-big bang configuration with Πβ = −Πφ = k, namely (according to
Equations (24) and (25)):

lim
β→−∞

Ψ(β, φ) ∼ ψ+
β ψ−

φ
∼ eikφ−ikβ. (40)

By using the small argument limit (32), and imposing the above condition, we can then
uniquely fix (modulo a normalization factor Nk) the solution of the WDW Equation (39),
for β < 0, as follows:

Ψk(β, φ) = eikφ Nk J−ik/
√

d

(
iλs
√

Λ/d e
√

dβ
)

, β < 0. (41)

In the complementary regime β > 0 the potential (38) is exactly vanishing, and the
general outgoing solution is a linear superposition of eigenstates of Πβ with positive and
negative eigenvalues, represented by the frequency modes ψ±β of Equations (24) and (25).
We can then write

Ψk(β, φ) = eikφ
[

A+(k)e−ikβ + A−(k)eikβ
]
, β > 0, (42)

and the numerical coefficients A±(k) can be fixed by the two matching conditions imposing
the continuity of Ψk and ∂βΨk at β = 0.

Let us now recall that the so-called Bogoliubov coefficients |c±(k)|2 = |A±(k)|2/|Nk|2,
determining the mixing of positive and negative energy modes in the asymptotic outgoing
solution [55,56], also play the role of destruction and creation operators in the context
of the third quantization formalism [50–54], thus controlling the “number of universes”
nk = |c−(k)|2 produced from the vacuum, for each mode k. It turns out, in particular,
that such a transition from the initial vacuum to the final standard regime, represented
as a quantum scattering of the initial wave function, is an efficient process only when the
final wave function is not damped but, on the contrary, turns out to be “parametrically
amplified” by the interaction with the effective potential barrier [48,49]. This is indeed
what happens for the solutions of our WDW Equation (39), provided the dilaton potential
satisfies the condition k < λs

√
Λ [26] (as can be checked by an explicit computation of our

coefficients A±(k)).
In order to illustrate this effect we have numerically integrated Equation (39),

with the boundary conditions (40), for d = 3 spatial dimensions. The results are
shown in Figure 2, where we have plotted the evolution in superspace of the real part of
the WDW wave function, for different values of k (the behavior of the imaginary part is
qualitatively similar). We have used units where λ2

s Λ = 1, so that the effective potential
barrier of Equation (39) is non-negligible only for very small (negative) values of β (the
grey shaded region of Figure 2). Also, we have imposed on all modes the same formal
normalization |Ψk|2 = 1 at β→ −∞, to emphasize that the amplification is more effective
at lower frequency.
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Figure 2. Evolution in superspace of the Wheeler–De Witt (WDW) solution which illustrates the
anti-tunnelling effect produced by the effective potential barrier (grey shaded region) due to the
dilaton potential (38). The wave function is not damped but parametrically amplified provided
k < λs

√
Λ, and the effect is larger for smaller k.

Concerning this last point, we can find an interesting (and reasonable) interpretation
of the condition k < λs

√
Λ by considering the realistic case of a transition process occurring

at the string scale, with β̇ ∼ λs, with coupling constant gs, and for a spatial region of proper
volume Ωs. In that case, by using the result (36) for the momentum k expressed in terms of
string-scale variables, we can write the condition of efficient parametric amplification in
the following form:

k ∼ g−2
s (Ωs/λd

s )<∼ λs
√

Λ. (43)

It implies that the birth of our present, expanding, post-big bang phase can be efficiently
described as a process of anti-tunnelling—or, in other words, as a forced production of
pairs of universes—from the string perturbative vacuum, in the following cases: initial
configurations of small enough volume in string units, and/or large enough coupling gs,
and/or large enough cosmological constant in string units. Quite similar conclusions were
obtained also in the case discussed in the previous section.

In view of the above results, we may conclude that, for an appropriate initial con-
figuration, and if triggered by the appropriate dilaton potential, the decay of the initial
string perturbative vacuum can efficiently proceed via parametric amplification of the
WDW wave function in superspace, and can be described as a forced production of pairs
of universes from the quantum fluctuations. One member of the pair disappears into the
pre-big bang singularity, the other bounces back towards the low-energy regime. The
resulting effect is a net flux of universes that may escape to infinity in the post-big bang
regime (as qualitatively illustrated in Figure 3), with a process which can describe the birth
of our Universe as “anti-tunnelling from the string perturbative vacuum”.
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Figure 3. Birth of the universe represented as an anti-tunneling (parametric amplification) effect of the
wave function in superspace, or – in the language of third quantization – as a process of pair production
from the string perturbative vacuum.
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6. Conclusions

The quantum cosmology scenarios reported in this review are based on the low-energy,
tree-level string effective action, which is physically appropriate to describe early enough
and late enough cosmological phases, approaching, respectively, the initial perturbative
vacuum and the present cosmological epoch.

Such an action cannot used to classically describe the high-curvature, strong coupling
regime without the inclusion of higher-order corrections. However, when at least some
of these corrections and of possible non-perturbative effects are accounted for by an
appropriate dilaton potential, the WDW equation obtained from the low-energy action
action permits a quantum analysis of the background evolution, and points out new
possible interesting ways for a Universe born from the string vacuum to reach more
standard configurations, and evolve towards the present cosmological regime. In such a
context, the possible (future) detection of a stochastic background of cosmic gravitons with
the typical imprints of the pre-big bang dynamics (see, e.g., [61]) might thus represent also
an “indirect” indication that some quantum cosmology mechanism has been effective to
trigger the transition to the cosmological state in which we are living.
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