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Small ruminants, such as sheep and goats, are mostly raised in smallholder farming
systems widely distributed throughout the world. For some geographical areas, they cover
an important economic, environmental and sociological role. Sheep and goats present
some advantages over other large ruminants: their grazing preferences enable them to
feed on weeds and shrubs; for their small size they require less space and are less likely
to damage and compact soils; they are easier to work with and are cheaper to buy and
maintain. The range of products produced by small ruminants is easy to market because
demand is high, yet largely unfulfilled [1]. The ability to respond to the increasing market
demands, in terms of the type of products or quality standards required, is crucial for the
survival of the existing farming systems. Not only farmers, but the whole traditional ovine
and caprine dairy product chain should be encouraged to adapt to meet consumer needs.
In the last few decades, consumer demands have challenged toward higher productivity,
sustainability, and safety, protecting at the same time the product’s uniqueness. Innovation
(implementing novel strategies in all the steps of the production chain) cannot prescind
from the scientific research to test, control and validate novel strategies. Aimed at this goal,
modern analytical platforms are blooming, often supported by sophisticated statistical
data analysis. In this special issue, as a scientific contribution toward the innovation of
the small ruminants dairy system, we addressed, by different approaches, issues such as
effects of diet on milk quality, breeding systems, seasonality of milk production, uniformity
of products, exportability, and shelf life.

Worldwide, sheep and goats are raised within a wide spectrum of feeding systems that
lie within the two extremes: extensive vs. intensive. Extensive grazing refers to the use of
large areas of unimproved natural land—rangeland—for free-roaming grazing livestock; on
the contrary, in the intensive grazing, the animal feed comes mainly from artificial, seeded
pastures. Today, in many areas, the traditional grazing on natural pastures of native flora
systems has been ameliorated by pasture with selected plants, diet supplements, and other
strategies for the animals’ well-being, for environmental and economical sustainability and
to overcome the seasonality of dairy supply. Given that the small ruminant husbandry
is based mainly on smallholder farming, diet and hours spent outdoors by animals vary
greatly without stringent protocols, making it difficult to assess and validate the best
procedures. One of the studies of this Special Issue has tackled this issue, comparing
the milk metabolite profiles of Sarda sheep bred in Sardinia (Italy) by two relatively
small farmers under two grazing systems, that differed by the access to selected pasture,
time of grazing and quantity of cereal grain (g/day/head) in the diet [2]. Multivariate
statistical analysis of the GC-MS metabolite profile integrated with parameters obtained
by the MIR calibration procedures, such as milk urea, allowed to highlight metabolites
linked to the type of feeding system. Effects of the diet on milk from Sarda sheep bred
in Sardinia were also addressed by the work of Manis et al. [3], where changes in milk
components upon integration of diet with cocoa husks, an agricultural by-product of
tropical countries, were evaluated. Agricultural by-products are fed to animals by over
80 percent of owners, the type and amount of which varies seasonally and depends on
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the region. In the Mediterranean basin, the effects of local agricultural by-products (grape,
olive, tomato, citrus pulp and myrtle residues) in the diet of small ruminants is amply
studied; however, today, the great availability of agro-industrial by-products produced
worldwide opens the door to novel products to be tested. Manis et al. [3] assessed that
diet integration with cocoa husks induced level changes in milk metabolites, as detected
by UHPLC-QTOF-MS, implicated in the thyroid hormone metabolism and ubiquinol-10
biosynthesis. However, Manis et al. (2021) also observed that the major driver of metabolite
changes was the sampling time; in fact, the design of experiment involved the collection of
milk samples from treated and control groups along 4 weeks, thus spanning from the late
spring to summer. Seasonality of milk composition is characterized by periods of “peak”
milk production, after which milk yield declines in summer, as animals go from the mid
to late stages of their lactation, and this is more marked in extensive breeding systems,
due to changes in the quality and availability of natural pasture. Seasonality of milk fatty
acid (FA) composition was studied by Nudda et al. [4], which turned their attention from
the amply studied health beneficial omega-3 FA and conjugated linoleic acid (CLA) to the
odd and branched chain classes of FA. The latter, long neglected, have recently sparked
interest in the scientific community due to an inverse relationship with the development of
human diseases. Besides the seasonality of the content of these FA in goat and sheep milk,
their “transferability” to the derived cheese has been assessed. The detailed FA profile of
cheese confirmed the higher nutritional quality of sheep cheese for beneficial FA, including
odd and branched chain FA, compared to goat cheese, and the importance of the period of
sampling in the definition of the FA profile.

In order to protect typicity of agricultural/food products, the European Commission
has appointed different foods originating from a specific geographical area with the PDO
(Protected Designation of Origin) label, which describes the product and reports a disci-
plinary to be followed. Heat treatment of milk is one of the specifics of cheese disciplinary;
milk for cheese manufacturing can be raw or pasteurized/heat-treated. If not, specified
manufacturers are free to apply their more convenient milk treatment. Fiore Sardo (PDO)
cheese is the oldest ovine cheese of Sardinia (Italy), being historically produced by shep-
herds in very small artisanal cheese factories. It must be obtained exclusively using raw
whole milk from the Sarda Sheep breed. However, the use of heat-treated milk for Fiore
Sardo production has been associated with common industrial processing practices in spite
of the specifications indicated in the PDO disciplinary. Among the analytical techniques
able to discriminate cheese made from raw or heat-treated milk, Anedda et al. [5] have
successfully tested the nuclear magnetic resonance (NMR) relaxometry. Water molecules
in cheese could be described, at a first approximation, as either free or bound (hydration
water molecules), and NMR can give an estimate of the two populations. Fiore Sardo from
raw or heat-treated milk showed different percentages of the two water pools, with the
latter cheese exhibiting more bounded water. One explanation is a shift of the calcium
phosphate from soluble to colloidal state due to the thermal treatment. Micellar calcium
phosphate is a highly hydrated colloid, and Ca and P association to casein and micelle
hydration are strictly related phenomena that have a marked effect on NMR relaxometry.
Going further, Anedda et al. [5] defined a new parameter that takes into consideration both
the water population in the two states (free and bound) and the time it takes to relax (T2).
This new parameter better discriminated raw from heated milk cheese and highlighted
the low variability in industrial cheese samples. Among cheese, PDO Pecorino Romano,
obtained from raw sheep milk, is one of the most popular and exported Italian ovine
cheeses. The United States, the leading export destination, where this cheese is mainly used
as an ingredient in the food industry, have doubts about the safety of Pecorino Romano pro-
duced from unpasteurized milk and the Food and Drug Administration (FDA) is frequently
evaluating whether to propose more restrictive requirements on the sale of unpasteurized
Pecorino Romano. Indeed, cheese made from unpasteurized milk can represent a risk
for consumers due to the possible presence of some pathogenic bacteria. Lai et al. [6]
monitored the survival of the pathogenic bacteria Listeria monocytogenes, Salmonella spp.,
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Staphylococcus aureus, and Escherichia coli O157:H7 during ripening of Pecorino Romano
cheese. Whole sheep milk was inoculated with bacteria and divided into two aliquots and
only one underwent thermization, then Pecorino Romano was produced from the two
batches of milk and the analyzed samples of cheese, collected after 1, 90, and 150 days
of ripening, only samples differed for the milk heat treatment. After 24 h, a reduction in
bacterial loads was observed for all pathogens in cheese produced from raw milk, while
in cheese produced with thermized milk, the bacterial load was below detection. After
90 days of production, all the cheeses were microbiologically safe. Authors concluded
that when Pecorino Romano cheese is produced under PDO specifications, either from
raw or thermized milk, a combination of factors, including the speed and extent of curd
acidification in the first phase of the production, together with an intense salting and a long
ripening time, preclude the possibility of growth and survival of a number of pathogenic
bacteria [6]. In the Mediterranean area, to revive the ovine dairy industry, the development
of new fresh dairy products is increasing. In order to prolong their shelf life, contamina-
tions from mold and yeast must be avoided. In the work of Scano et al. [7], the use of
natural alternatives, such as autochthonous Lactobacillus strains, to synthetic preservatives
has been tested on different species of mold. The strains were considered potential good
candidates to be used in cheese manufacturing as bioprotective cultures. By a GC-MS
metabolomics approach, authors highlighted those metabolites mostly involved in the
antifungal activity in vitro. This research can be considered a further step towards the use
of biopreservatives in the dairy industry.

For this valuable collection of research, editors would like to thank all the authors
who submitted their papers to this special issue, the reviewers with their constructive
comments, and the editorial staff of Dairy.
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Abstract: This study aimed to evaluate the effects of different feedings on main traits and polar
and semi-polar metabolite profiles of ovine milk. The milk metabolome of two groups of Sarda
sheep kept under different grazing systems were analyzed by gas chromatography coupled with
mass spectrometry (GC-MS) and multivariate statistical analysis (MVA). The results of discriminant
analysis indicated that the two groups showed a different metabolite profile, i.e., milk samples
of sheep kept under Grazing System 1 (GS1) were richer in nucleosides, inositols, hippuric acid,
and organic acids, while milk of sheep under Grazing System 2 (GS2) showed higher levels of
phosphate. Statistical analysis of milk main traits indicates that fat content was significantly higher
in GS1 samples while milk from GS2 sheep had more urea, trans-vaccenic acid, and rumenic acid.
MVA studies of the associations between milk main traits and metabolite profile indicated that the
latter reflects primarily the long chain fatty acid content, the somatic cell count (SCC), and lactose
levels. All together, these results demonstrated that an integrated holistic approach could be applied
to deepen knowledge about the effects of feeding on sheep’s milk composition.

Keywords: GC-MS; metabolomics; feeding systems; sheep dietary supplement; ovine milk

1. Introduction

Compared to the rest of the world, where bovine milk represents the most common dairy source,
the Mediterranean area is characterized by a significant number of sheep flocks designated to milk
rather than meat production [1]. Sardinia, Italy, is one of the leading Mediterranean regions in
the production of sheep dairy products. Sheep breeding and pecorino cheese manufacturing have
strong economic and cultural links with this region. Though most of the herds in Sardinia are still
under traditional grazing on natural pastures of native flora [1], pasture with selected plants and
diet supplements have been introduced to ameliorate milk quality, the well-being of sheep, and for
environmental and economical sustainability [2]. The effects of these feeding systems on milk quality
should be studied. It is widely recognized that diet and season play a major role in modulating
chemical composition of ruminant’s milk. It has been assessed that the main components of sheep’s
milk appear to be less influenced by the type of farming system (indoors vs. outdoors) than by the
feeding system (pasture alone vs. pasture plus feed supplements) [3], and milk urea measure has been
successfully proposed to evaluate the energy contents of a diet [4]. Most of the studies on the effects of
feeding systems on sheep milk quality are focused on the production of health beneficial fatty acids
(FA), such as rumenic acid (C18:2 cis-9, trans-11) and linolenic acid (C18:3, cis-9,12,15) [5], as well as
on the effects of polyphenols on milk quality and animal performances [2,6]. Differences in ovine
milk and cheese composition due to barley and corn supplement to dry pasture have been recently
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studied by Caprioli et al. [7]. They assessed positive effects on milk retinol and alpha-tocopherol
contents and cheese volatiles. Although several researches have studied different aspects of ovine
milk main composition [1,8–11], there is still little information in literature regarding the metabolite
profile of sheep’s milk [12–14], as most of the works focused on cow’s milk. One of the most valuable
approaches for the investigation of metabolite profiles in a biological system is metabolomics [15].
Through the application of a gas chromatography coupled with mass spectrometry (GC-MS) based
metabolomic approach, it has been possible to study different metabolic pathways linked to quality
and other aspects of milk production [16–19], such as mastitis [12], diet [20], and ketosis [21]. In this
study, by a GC-MS metabolomics approach, the milk metabolite profiles of sheep bred in Sardinia
under different feeding systems were investigated in association with measured milk main traits such
as fat, proteins, caseins, lactose, and urea.

2. Materials and Methods

2.1. Chemicals and Reagents

All the solvents were purchased from Sigma Aldrich, Darmstadt, Germany. Pyridine, methoxamine
hydrochloride, potassium chloride, N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and analytical
standards presented a purity greater than 95% (Sigma Aldrich, Darmstadt, Germany). Water was produced
using a MilliQ purification system (Millipore, Milan, Italy).

2.2. Animals and Pasture

A total of seventy milk samples were collected from Sarda breed sheep. Animals belonged to
two different flocks kept under two different grazing systems (GS1 and GS2) located in the same
geographical area (coordinates 40◦7’48.5” N, 8◦40’42.9”, E and 40◦11’15.1” N, 8◦41’38.1” E for GS1 and
GS2, respectively) and underwent two different feeding systems (Table 1). In particular, one flock (GS2)
was housed from 6 p.m. to 5 a.m. and during the day (10 a.m. to 14 p.m.), it had access to natural
pasture while was allowed to graze in a selected pasture (Avena sativa 70%, Hordeum vulgare 15%,
and Trifolium incarnatum 15%) only for 1–2 h in the afternoon. GS2 flock had ad libitum access to dry
forage (from the selected pasture) during night. During the day, the GS1 flock had unlimited access to
natural pasture. The natural pasture available for both flocks was composed by Ferula communis, Thapsia
garganica, Asphodelus ramosus, Pteridium aquilinum subsp. Aquilinum, Urginea maritima, and Trifolium
repens. Twice a day, both flocks received barley and corn grains (50/50 w/w) before milking (500 and
200 g/head/d for GS1 and GS2 groups, respectively), with an average dry matter intake (DMI) of 438
and 175 g/d/head for GS1 and GS2 groups, respectively (Table 1). The feeding systems were those
usually adopted by the farmers, so they did not represent an additional management and manual
labor or a stress for the animals. GS1 flock was composed of approximately 100 ewes and the GS2 flock
of 120 ewes. The weight of animals was estimated as 43 ± 6 for GS1, and 40 ± 5 for GS2 and a body
condition scoring (BCS) of 3.3 ± 0.2 for GS1 and 3.0 ± 0.2 for GS2.

Table 1. Description of the two diet systems.

Schedule Grazing System 1 (GS1) Grazing System 2 (GS2)

Day-grazing Natural pasture 1

10–12 h/d

Natural pasture 1

4–6 h/d
Selected pasture 2

1–2 h/d

Milking
Barley and corn grains (50/50)

500 g/head/d
DMI 3 = 437.5 g/head/d

Barley and corn grains (50/50)
200 g/head/d

DMI = 175 g/head/d

Night Forage ad libitum
1 polyphite natural pasture: Ferula communis, Thapsia garganica, Asphodelus ramosus, Pteridium aquilinum
subsp. Aquilinum, Urginea maritima, and Trifolium repens; 2 selected pasture for direct grazing and to obtain
forage: 70% Avena sativa, 15% Hordeum vulgare and 15% Trifolium incarnatum; 3 DMI = dry matter intake.
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2.3. Samples Collection

The morning individual milk samples were collected in spring 2019 from 70 pluriparous Sarda
breed sheep in their late lactation period. Milk samples (n= 37 for GS1 and n= 33 for GS2) were collected
in sterilized tubes through manual milking. Each milk sample was added with the preservative
bronopol (2-bromo-2-nitro-1,3-propanediol) and divided in two aliquots. One was analyzed by the
Sardinian Regional Animal Farmers Association (Associazione Regionale Allevatori, ARA, Sardegna)
milk laboratory, and the other was stored at −20 ◦C for GC-MS analysis, which was performed within
two days from collection. The milk samples were provided by the ARAS within the International
Committee for Animal Recording (ICAR) program.

2.4. Milk Composition Analysis

Fat, proteins, caseins, lactose, and urea contents, freezing points (expressed in Horvet degree),
and pH values were obtained with a Milkoscan FT6000 (Foss, Hilleroed, Denmark) following the
procedure ISO 9622:2013 (ISO 9622:2013 IDF 141:2013). The fatty acid (FA) content was determined by
Fourier-transform IR spectroscopy predictions as described by Caredda et al. [22]. Somatic cells were
counted following the procedure ISO 13366-2-2006 (ISO 13366-2 IDF 148-2 2006) by a Fossomatic 5000
(Foss, Hilleroed, Denmark).

Milk yield was registered for each ewe at the morning milking and the total amount of milk
produced by the two groups was recorded.

2.5. GC-MS Analysis

Thawed milk (1 mL) was subjected to ultrasounds for 15 min, and 0.1 mL were extracted following
the Folch procedure [23] using 0.375 mL of a methanol and chloroform mixture (2/1, v/v). Samples were
vortexed every 15 min up to 1 h, when 0.38 mL of chloroform and 0.09 mL of aqueous KCl 0.2 M
solution were subsequently added. Samples were vortexed again and centrifuged for 15 min at 15294
g (Eppendorf 5810R, Milan, Italy). Two hundred μL of the hydrophilic supernatant were dried in glass
vials using a nitrogen stream and then derivatized using 0.05 mL of methoxamine chloride dissolved
in pyridine at 10 mg/mL, homogenized for 20 s, and kept at room temperature for 17 h. Then, 100 μL
of MSTFA were added and samples were vortexed. After 1 h, 600 μL of hexane were added and
samples homogenized again before GC-MS analysis. A Hewlett Packard 6850 gas chromatograph,
a 5973 mass selective detector, and a 7683B series injector (Agilent Technologies, Palo Alto, CA,
USA) were used to analyze samples using helium as the carrier gas at 1.0 mL/min flow. One μL of
sample was injected in split-less mode and separated using a 30 m × 0.25 mm × 0.25 μm DB-5MS
column (Agilent Technologies, Palo Alto, CA, USA). The temperatures for the inlet, interface, and
ion source were 250 ◦C, 250 ◦C, and 230 ◦C, respectively. The oven temperature was programmed to
increase from 50 to 230 ◦C by 5 ◦C/min over 36 min and kept at this temperature for 2 min. The mass
range was set between 50 and 550 m/z using and electron voltage of 70. MSD ChemStation software
(Agilent Technologies, Santa Clara, CA, USA) was used to elaborate the data. The GC-MS spectra
deconvolution was performed by the AMDIS tool in the NIST08 library. Retention time and relative
mass spectra of each compound were compared with the related analytical standards with the aim to
identify those compounds previously recognized by consulting the NIST14 library of the National
Institute of Standards and Technology (Gaithersburg, MD, USA), and the library developed at the Max
Planck Institute of Golm (http://gmd.mpimp-golm.mpg.de/). Chromatograms in the AIA format were
then uploaded to the XCMS Online platform [24]. The output of XCMS consisted in a 70 X 1230 matrix
where each variable corresponded to the intensity value of an m/z ion at a specific retention time value.
GC-MS features that annotated to bronopol with a retention time of 21.84 min were excluded.
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2.6. Statistical Data Analysis

To obtain descriptive information on the data and to calculate the means and their standard
deviations, we performed univariate analysis with the software OriginPro2016 (OriginLab, Northampton,
MA, USA). When the two groups of samples were compared, the null hypothesis (“the means
are not significantly different among the two sets of samples”) was tested by using the unpaired
samples two-tailed Student t-test. The output of XCMS pipeline was submitted to MVA, and
analysis were performed as implemented in SIMCA-P+ software (version 14.1, Umetrics, Umeå,
Sweden). Variables were mean centered and scaled to unit variance. At first, for sample distribution
overview we performed a Principal Component Analysis (PCA) [25]. Subsequently, to identify
discriminant metabolites between the two milk typologies, we performed an Orthogonal Partial
Least-Squares-Discriminant Analysis (OPLS-DA). The obtained variable importance in projection (VIP)
scores summarize the contribution of each variable to the model. In this work, GC-MS features showing
VIP values greater than 1 underwent manually to a supervised analytes identification. A metabolite
was considered significant only when at least two of its most abundant mass fragments and a retention
time deviation <0.05 min were found in the list of VIP > 1. For quantification purposes for each
metabolite, we considered the intensity of the most abundant mass fragment. Milk metabolite profiles
were correlated to the measured main traits by a single-Y Partial Least-Squares (PLS) regression. The
quality of the models was evaluated based on the cumulative parameters R2Y and Q2Y estimated by
the default leave-1/7th-out cross validation in the corresponding PLS-DA models, as implemented in
SIMCA-P+ program. The models were considered significant only when the difference between R2Y
and Q2Y was <0.50 [26].

3. Results

3.1. Main Traits

The milk yield was higher in the sheep kept under grazing system 2 (GS2 flock, 784 ± 73 g/d)
compared to (GS1 flock, 581 ± 64 g/d). The milk content of proteins, caseins, fat, lactose, FA, and other
milk traits (expressed as mean ± SD) are reported in Table 2.

Milk of GS1 sheep showed a statistically higher fat content when compared to the GS2 group
(5.9 ± 1.0 and 4.8 ± 1.2 g/100 mL, p < 0.001). An average milk fat level of 6-7 g/100 mL was reported for
the Sarda breed [9]. It is well known that the milk fat content has a high variability, especially when
compared with proteins and lactose levels, being strongly influenced by the feeding composition [3].
In the GS1 milk samples, consistently with their higher levels of fat, saturated and unsaturated long
chain (C14-C18) FA linked to diet were found at higher levels, with the exception of n-3 FA. Contents
of the de novo synthetized FA produced by the mammary gland (C4:0, C6:0, C8:0, C:10, C12:0) were
found similar to those previously reported in literature for the Sarda breed sheep [27]. Differently from
all other de novo FA, the concentration of C4:0 was statistically higher in GS1 samples. A different
behavior of C4:0 with respect to the other de novo synthetized FA was already observed in sheep’s [27]
and cow’s [28] milk. Genetic studies confirmed the independence of C4:0 from de novo mammary FA
synthesis [29].

Among milk FA, due to their health benefits [30], a particular attention has been paid to rumenic
acid, trans-vaccenic acid (C18:1 trans-11), and linolenic acid. Levels of trans-vaccenic acid (3.7 ± 0.5 vs.
3.0 ± 0.7 g/100 g of fat in the GS2 and GS1 groups, respectively) and rumenic acid (2.0 ± 0.2 vs. 1.6
± 0.3 g/100 g of fat in the GS2 and GS1 groups, respectively) were significantly higher in GS2 milk.
Milk products are the only food that naturally contain trans-vaccenic acid and rumenic acid produced
by the ruminal biohydrogenation and the mammary Δ-9 desaturation pathways [1]. The pasture plays
a pivotal role in increasing milk levels of trans-vaccenic acid and rumenic acid [5]. The preferred
precursor of trans-vaccenic acid and of rumenic acid is the dietary linoleic acid. Oats, one of the plants
in the selected pasture of GS2, is rich in linoleic acid and this fact can explain the higher content of
trans-vaccenic acid and rumenic acid in the GS2 group.
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Table 2. Descriptive statistics and means comparison of composition parameters of milk from sheep
kept under grazing system 1 (GS1) and 2 (GS2).

GS1 (n = 37) GS2 (n = 33)

Component mean SD a mean SD P b

Fat (g/100 mL) 5.9 1.0 4.8 1.2 ***
Proteins (g/100 mL) 5.6 0.6 5.8 0.4
Caseins (g/100 mL) 4.3 0.5 4.4 0.4
Lactose (g/100 mL) 4.8 0.4 4.9 0.3
SCC c (103 cell/mL) 1421 1337
SCC (GM) d 119 175
Urea (mg/100 mL) 24 5 41 8 ***
Freezing point (milliHorvet) −581 8 −582 7
pH 6.9 0.1 6.8 0.1
Chlorides (mg/100 mL) 141 46 129 32
Total solids (g/100 mL) 16.4 1.5 15.5 1.2 **
SNF e (g/100 mL) 10.8 0.5 11.0 0.5
Fatty acids (FA) (g/100 mL)
Saturated FA 3.5 0.6 2.9 0.7 ***
Unsaturated FA 1.8 0.3 1.4 0.4 ***
Monounsaturated FA 1.4 0.3 1.1 0.3 ***
Polyunsaturated FA 0.44 0.07 0.36 0.09 ***
n-6 FA 0.12 0.04 0.09 0.04 ***
n-3 FA 0.12 0.03 0.13 0.02
C4:0 0.22 0.04 0.18 0.05 ***
C6:0 0.15 0.03 0.15 0.03
C8:0 0.12 0.03 0.12 0.03
C10:0 0.32 0.09 0.35 0.10
C12:0 0.16 0.05 0.17 0.04
C14:0 0.5 0.1 0.4 0.1 ***
C16:0 1.3 0.3 1.0 0.3 ***
C18:0 0.6 0.2 0.4 0.2 ***
C18:1 0.8 0.3 0.5 0.2 ***
C18:2 0.13 0.04 0.11 0.03 ***
C18:1 trans-11 (g/100g of fat) 3.0 0.7 3.7 0.5 ***
C18:3 n-3 (g/100g of fat) 1.7 0.3 1.7 0.2
C18:2 cis-9, trans-11 (g/100g of fat) 1.6 0.3 2.0 0.2 ***

a SD standard deviation; b p = probability student t-test, *** p < 0.001; ** p < 0.01; c SCC = somatic cell count; d GM =
geometric mean; e SNF = solids-not-fat.

A parameter strictly connected with the quality of ewe’s diet is the milk urea content, which is
representative of urea levels of blood and other body fluids. Milk urea is a breakdown product of
proteins and thus is considered a useful management tool to evaluate the metabolism and intake of
proteins, minimizing potential negative effects on animals [4]. High milk urea content is associated
with a worsening of animal welfare condition and different ruminant’s pathologies, such as fertility
and subclinical mastitis [31]. High urea content has been related both to the characteristics of the
pasture with young sward poor in fiber and rich in highly fermentable proteins and/or non-protein
nitrogen. High levels of dietary proteins can cause animal health and reproduction problems as well
as the impairment of the milk characteristics and technological properties [4,32,33]. Sheep’s milk of
GS1 had significantly less urea than GS2 (24 ± 5 vs. 41 ± 8 mg/100 mL). However, both values are
within the reported ovine milk urea level ranges [2,9], although some GS2 samples reached values of
60 mg/100 mL, which is a clear sign of unbalanced nutrition [2], while GS1 had values comparable
with those found in summer season [9] when pasture is dry and poor. The higher urea content in GS2
can be due to a higher soluble protein content in the selected pasture and lower energy intake due to a
probably insufficient grains ration.
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3.2. Metabolomics

Forty-six polar and semi polar metabolites were identified and reported in Table S1. In Figure 1,
the GC-MS chromatograms of milk samples from sheep kept under the two different grazing systems
(GS1 and GS2) are shown. The former exhibits, in the range of 33–36 min, besides peaks annotated
as lactose, a different chromatographic pattern, when compared to GS2, attributed to disaccharides
such maltose and others. This fact is probably linked to a greater consumption of natural polyphite
meadow, known to be rich in fiber, and to a higher portion of grains rich in starch in the GS1 feeding
system (Table 1).

 

 

Figure 1. Representative GC-MS chromatograms of milk metabolites from sheep kept under grazing
system 1 (GS1) (b) and grazing system 2 (GS2) (a).

To have an overview of samples similarities and dissimilarities we performed a PCA of GC-MS
features. As shown in the score plot reported in Figure S1, milk samples clustered in two groups
and GS2 milk samples were more scattered. Clustering indicated that the different feeding systems
influenced the metabolite milk profile. In order to find discriminating metabolites between the two
groups of sheep’s milk samples, we performed a pair-wise OPLS-DA. The discriminant analysis
correctly classified milk samples. Score plot is shown in Figure 2, and we report the metabolites that
mostly contributed to sample classification in Table 3.

Further information can be obtained by associating the whole metabolite profile to the main traits,
this approach can indicate whether modifications of a single trait are accompanied by modification
of the whole metabolite profile. Results of the PLS analysis reported in Table 4 indicate that the
metabolite profile is correlated to the content of the long chain FA, among which rumenic acid and
trans-vaccenic acid, the most studied indexes of different pastures in the diet [5]. No n-3 FA, neither de
novo synthetized FA were found to be significantly linked to the metabolite profiles. Correlations
between metabolites and SCC and lactose milk content were already observed [14,16].
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Table 3. Pair-wise OPLS-DAa discriminant metabolites between milk from sheep kept under grazing
system 1 (GS1) and grazing system 2 (GS2).

GS1 GS2

Metabolite VIP b Metabolite VIP
Maltose 1.86 Unk#1 c 1.50
Myo-inositol 1.83 Unk#2 1.49
Malic acid 1.48 Phosphate 1.28
Hippuric acid 1.38
Scyllo-inositol 1.27
Succinic acid 1.25
Uridine 1.24
Glutaric acid 1.18
Inosine 1.10
Gluconic acid 1.09

a Components = 1 + 2, R2Y = 0.96, Q2Y = 0.89; b VIP, variable importance in the projection of the OPLS-DA,
only identified metabolites having VIP values > 1 are reported; c Unk, not annotated metabolite.

Table 4. Results of PLS correlating the whole GC-MS metabolite profile (n = 1200 features) to each
composition main traits of sheep’s milk samples (n = 70).

Component R2Y Q2Y R2 − Q2

C18:2 cis-9, trans-11 0.95 0.64 0.31
C18:1 0.93 0.64 0.29
C18:1 trans-11 0.92 0.56 0.36
Monounsaturated FA 0.91 0.59 0.32
n-6 FA a 0.85 0.54 0.31
Polyunsaturated FA 0.85 0.54 0.31
C18:0 0.84 0.54 0.30
Unsaturated FA 0.84 0.56 0.28
SCC (log) 0.84 0.66 0.18
Lactose 0.83 0.61 0.22
Chlorides 0.81 0.59 0.22
pH 0.77 0.55 0.22
Urea 0.59 0.54 0.05
C18:2 0.35 0.24 0.11
C4:0 0.35 0.25 0.10
Fat 0.34 0.25 0.09
C16:0 0.33 0.25 0.08
Saturated FA 0.32 0.20 0.12
C18:3 n-3 0.30 0.14 0.16
C14:0 0.27 0.16 0.11
Total solids 0.23 0.12 0.11
Freezing point n b

SNF c n
n-3 FA n
C10:0 n
C12:0 n
Proteins n
Caseins n
C8:0 n
C6:0 n

a Fatty acids (FA); b n = analysis failed; c SNF = solids-not-fat.
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Figure 2. Pair-wise OPLS-DA score plot of GS2 (n = 33, empty circles) and GS1 (n = 37, empty boxes)
milk samples, based on their GC-MS features. Components = 1 + 2, R2Y = 0.96, Q2Y = 0.89, discriminant
metabolites along the predictive axis (x-axis) are reported in Table 3.

4. Discussion

GS1 milk samples showed higher levels of maltose, inosine, and uridine (Table 3). An increase of
maltose and purine/pyrimidine cycle metabolites was observed in the rumen and milk of dairy cows
fed with an increasing proportion of diet cereal grains [34–36], in agreement, as reported in Table 1,
ewes in the GS1 received more concentrate than the GS2 group. Inosine and uridine belong to the
non-protein-nitrogen (NPN) fraction of milk. These nucleosides are bioactive components with health
beneficial effects [37]. Milk of sheep under GS1 showed higher levels of inositols (myo-inositol and
scyllo-inositol, Table 3). Free inositols occur naturally in the environment as a bioactive component of
living cells. Milk is a significant source of myo-inositol and for its role in neonatal nutrition, this polyol
is often added to infant formulas to prevent a potential deficiency during early neonatal growth
stage [38]. As well as urea, myo-inositol is osmolyte and the lower level of this polyol in GS2 can
counterbalance their high urea content. Among the discriminant metabolites listed in Table 3, gluconic
acid was found upregulated in the GS1 milk samples. Gluconic acid is the product of the glucose
oxidation [39]. It has been demonstrated that in the rumen epithelium, butyrate (C4:0) and glucose
oxidation mechanisms compete [40], and in the light of this observation we can hypothesize that the
GS1 animals with a diet richer in concentrate and therefore in starch have more glucose available as
substrate for the oxidizing enzymes, therefore saving more butyrate which is significantly higher in
milk samples of the GS1 animals compared to GS2 (Table 2).

As shown in Table 3, hippuric acid, malic acid, and succinic acid were found in higher levels in
GS1 milk samples. The content of hippuric acid in milk has been linked to the presence of polyphenols
in forages [41]. Greater levels of hippuric acid in milk from pasture-based feeding systems have
previously been reported in milk from goats and cows [19,36,42] and this molecule has been proposed
as biomarker of pasture-derived milk [36,42]. In accordance, we found higher levels of hippuric acid in
the milk of sheep allowed to graze on natural pasture for a longer time and thus used as biomarker for
ovine milk. Malic acid and succinic acid are intermediates in the succinate and propionate pathway of
ruminal bacteria for carbohydrate fermentation. Their higher levels in GS1 group could be linked to a
greater consumption of natural polyphite meadow rich in fiber and grains when compared to GS2
group (see Table 1).

Compared to the GS1 samples reported in Table 3, milk of the GS2 group showed higher phosphorus
content. A relationship between phosphorus and casein milk content is expected since this mineral is
bound to casein micelles. Besides protein, lactose content can also affect the phosphorus content of milk
since inorganic phosphorus is generated during the formation of lactose in the mammary gland and
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subsequently secreted into milk [43]. Although significant relationships between milk phosphorus and
both protein and lactose contents were found [44], a considerable portion of the phosphorus content
of milk remained unexplained, implying that other factors may affect milk phosphorus levels [45].
Feeding management is another important factor that can influence mineral concentration in milk.
One source of organic phosphorus is phytate, which contributes to the majority of phosphorus in
grains [46]. Ruminants can utilize phosphorus from phytate because ruminal microorganisms are
capable of synthesizing phytase enzyme, which can release a phosphate group from the phytate [47].
Ruminal phytate hydrolysis is influenced by the type of grain, processing of feed ingredients, and
supplemental exogenous phytase enzyme [48,49]. Lastly, as for the highly discriminant not-annotated
metabolites (Unk#1 and Unk#2) characterizing GS2 milk samples, further studies will be carried out by
GC-TOFMS to elucidate their chemical structure.

5. Conclusions

In summary, grazing system 1 led to a higher milk yield, more trans-vaccenic acid, and rumenic
acid. Although accompanied by high urea levels, grazing system 2 was associated with higher fat and
presence of metabolites linked to the grain supplements.

Our results suggest that the GC-MS metabolite profiles of ovine milk well reflect variations in diet
with respect to pasture and concentrate supplementation and is strongly associate with the content of
health beneficial FA. Further work with an ampler data set over a longer period of time will be carried
out by this approach with the aim of establishing a model to classify milk and dairy products from
sheep grazing natural pasture.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-862X/1/1/4/s1,
Figure S1: PCA score plot, Table S1: GC-MS metabolite characteristics.
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Abstract: This study was conducted to assess, for the first time, the survival of the pathogenic bacteria
Listeria monocytogenes, Salmonella spp., Escherichia coli O157:H7, and Staphylococcus aureus during the
ripening of protected designation of origin (PDO) Pecorino Romano cheese. A total of twenty-four
cheese-making trials (twelve from raw milk and twelve from thermized milk) were performed under
the protocol specified by PDO requirements. Sheep cheese milk was first inoculated before processing
with approximately 106 colony-forming unit (CFU) mL−1 of each considered pathogen and the
experiment was repeated six times for each selected pathogen. Cheese composition and pathogens
count were then evaluated in inoculated raw milk, thermized milk, and cheese after 1, 90, and 150 days
of ripening. pH, moisture, water activity, and salt content of cheese were within the range of the
commercial PDO Pecorino Romano cheese. All the cheeses made from raw and thermized milk were
microbiologically safe after 90 days and 1 day from their production, respectively. In conclusion,
when Pecorino Romano cheese is produced under PDO specifications, from raw or thermized milk,
a combination of factors including the speed and extent of curd acidification in the first phase of the
production, together with an intense salting and a long ripening time, preclude the possibility of
growth and survival of L. monocytogenes, Salmonella spp., and E. coli O157:H7. Only S. aureus can be
still detectable at such low levels that it does not pose a risk to consumers.

Keywords: cheese safety; foodborne pathogens; sheep milk; Listeria monocytogenes; Salmonella spp.;
Escherichia coli O157:H7; Staphylococcus aureus; raw milk; thermization

1. Introduction

Consumer demand for unpasteurized milk cheeses is constantly increasing because of their more
intense flavor and varied aroma than those of pasteurized milk cheeses [1–3]. However, especially when
made from unpasteurized milk, cheese can hold a risk for the consumer, because of the possible presence
of some pathogenic bacteria such as Listeria monocytogenes, Salmonella spp., Staphylococcus aureus,
Campylobacter spp., Brucella spp., and pathogenic Escherichia coli [3–5]. Based on a data collection
of dairy products-associated outbreaks in the United States from 1993 to 2006, Langer et al. [6]
determined that outbreaks attributed to the consumption of unpasteurized dairy products were
approximately 150 times more frequent, based on the unit of consumption than those related to
pasteurized milk or pasteurized milk products. Likewise, Costard et al. [7] reported that in the United
States, from 2009 to 2014, the consumption of unpasteurized dairy products caused 840 times more
disease and 45 times more hospitalizations than that of pasteurized products.
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Among the pathogenic agents, L. monocytogenes, Salmonella spp., Shiga toxin-producing E. coli
(STEC) as the serotype O157:H7 and enterotoxin-producing S. aureus are the most involved in
foodborne outbreaks related to the consumption of raw milk cheese in industrialized countries [3,5].
These foodborne pathogens usually cause disease with acute symptoms restricted to the gastrointestinal
tract such as diarrhea, abdominal cramps, nausea, vomiting, and limited in time and severity [8].
However, in some cases, they can cause serious diseases such as hemolytic uremic syndrome and
thrombotic thrombocytopenic purpura associated to E. coli O157:H7 or meningitis and septicemia
caused by L. monocytogenes, with a significant mortality rate in vulnerable groups such as infants,
elderly, and immunocompromised adults [9,10].

These pathogenic bacteria can originate in raw milk by direct excretion from animals infected
udder, by fecal contamination or from the farm environment more generally [5,11]. The foodborne
pathogens can reach cheeses via contaminated milk or through the dairy plants environment and the
processing equipment [4]. A recent survey shows how L. monocytogenes was first detected in a newly
established cheese-making facility just nine months after the starting of the production [12]. Moreover,
some pathogens like L. monocytogenes and S. aureus can colonize abiotic surfaces by forming biofilms,
that make the bacteria immune to the action of antimicrobial agents [13,14]. Thus, they can persist for a
long time in the manufacturing environment, where these microorganisms could be a potential cause of
cross-contamination of the dairy products. Workers can also be an important source of contamination
as a result of improper handling and some of them could be asymptomatic carriers of S. aureus [15,16].

The growth and survival of microbial pathogens during cheese-making is hindered by several
factors such as milk heat treatments, curd cooking, rate of curd acidification by starter cultures,
final product pH, salt addition, and competition with the native microflora present in milk [17].
Despite these hurdles, foodborne pathogens can express an adaptive response to different sublethal
stresses, essential for their survival in harsher environments. Moreover, pathogenic bacteria adapted
to a sublethal stress may exhibit cross-protection with enhanced resistance to different stresses [18–20].
Several challenge studies have shown that some foodborne pathogens are able to survive during the
manufacturing and ripening of different kinds of cheese made from raw milk [9,21–23]. Some authors
especially report that L. monocytogenes, Salmonella spp., and E. coli O157:H7 remained detectable after
selective enrichment even for more than 200 days of ripening [24–26].

However, no studies have investigated the behavior of foodborne pathogens during the production
and ripening of Pecorino Romano cheese. Pecorino Romano is an Italian protected designation of
origin (PDO) semi-cooked hard cheese, which must be made exclusively from raw or thermized whole
sheep milk, according to the PDO specifications [27]. PDO Pecorino Romano cheese is the most popular
ovine cheese produced in Italy and it has a very important role from the economic point of view.
Indeed, Pecorino Romano is one of the most exported Italian cheeses in the world [28]. The United
States, with an export quota of around 13,000 tons in 2019, is the leading export destination, where this
cheese is mainly used as an ingredient in the food industry [29].

Typically Pecorino Romano cheese has about 32% of moisture, a water activity (aw) value of
around 0.85, and a pH value between 5.07 and 5.31. This cheese usually has a high salt content that
ranges from 4.5% to 8.3%. The minimum ripening period is 150 days for the table cheese, while grating
cheese requires 240 days [28].

Although unpasteurized milk cheeses are commonly consumed in a large number of countries,
some of them, the United States primarily, have doubts about the safety of these products. For instance,
the Food and Drug Administration (FDA) is frequently evaluating whether to propose more restrictive
requirements on the sale of unpasteurized milk cheeses, like Pecorino Romano cheese [30,31].
Despite the healthiness of this product, also indirectly attested from the lack of foodborne infection or
intoxication episodes bound to the consumption of this cheese, experimental studies are important to
investigate the fate of pathogenic bacteria during Pecorino Romano cheese manufacturing and ripening.
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The main objective of this work was to investigate the survival of L. monocytogenes, Salmonella spp.,
E. coli O157:H7, and S. aureus, during the ripening of PDO Pecorino Romano cheese made from raw or
thermized milk.

2. Materials and Methods

2.1. Experimental Design

Experimental productions of Pecorino Romano cheese were carried out according to PDO
specifications, using cheese-making facilities of Agris Sardegna (Olmedo, Italy). Although PDO
Pecorino Romano cheese is now exclusively produced from thermized milk, PDO specifications do not
exclude the use of raw milk. Therefore, we performed two series of experimental cheese-makings,
from raw milk (RM) and thermized milk (TM). Each series consisted of twelve cheese batches,
three replicates for each selected pathogen. On the same day two experimental cheese-makings were
performed starting from a single batch of raw whole sheep milk inoculated with a given pathogenic
microorganism, the first one from raw milk and the second one after thermization of the same
sheep milk.

2.2. Bacterial Strains and Inoculum Preparation

Seven strains of L. monocytogenes, two of Salmonella spp., three of E. coli O157:H7, and five of
S. aureus were used (Table 1). We have chosen both reference and wild strains, the latter were isolated
from milk and dairy products. Each inoculum was prepared from a culture containing different strains
(reference and wild strains) of the same species.

Table 1. Pathogen strains used in Pecorino Romano cheese-making trials.

Microorganism Strain a Collection b

Listeria monocytogenes ATCC 15313 ATCC 1

ATCC 19114 ATCC 1

ATCC 9525 ATCC 1

ATCC 153/3 ATCC 1

2 IZSLER 2

90 IZSLER 2

V7 IZSLER 2

Staphylococcus aureus ATCC 14458 ATCC 1

ATCC 25923 ATCC 1

401 IZS 2

466 IZS 2

64494 IZS 2

Salmonella spp. Typhimurium ATCC 6994 ATCC 1

Enteritidis 670 IZSLER 2

Escherichia coli O157:H7 ATCC 43984 ATCC 1

47 IZLER 2

719 IZLER 2

a Strain designation provided by collection. b Collection: ATCC, American Type Culture Collection, USA; IZSLER,
Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Italy; IZS, Istituto Zooprofilattico
Sperimentale della Sardegna, Italy. 1 Reference strains. 2 Wild strains isolated from milk and dairy products.

Inoculum preparation included several steps. Briefly, all strains were conserved in Microbank
beads (Biolife, Milan, Italy) at −18 ◦C. For each experiment, the strains were previously reactivated
in brain heart infusion broth (Biolife, Milan, Italy). The pre-inoculation preparation included serial
passages on trypticase soy broth (TSB, Oxoid, Thermo Fisher Scientific, Basingstoke, UK). Two milliliters
of each strain culture were inoculated on 35 mL of TSB and incubated overnight at 37 ◦C under
continuous stirring. Then, for each species (L. monocytogenes, Salmonella spp., E. coli O157:H7 and
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S. aureus), subcultures have been combined in equal quantity and centrifuged at 6000 rpm for 10 min.
Subsequently, the supernatant was discarded and the pellet was resuspended in physiological saline
solution (NaCl 0.85%, pH 7). The optical density at 600 nm (Perkin Elmer Lambda 25 UV/VIS
Spectrophotometer, Perkin Elmer, Waltham, MA, USA) was determined and counts were confirmed by
serial decimal dilution and inoculation in the following selective agar media: Agar Listeria according to
Ottaviani and Agosti (ALOA, Biolife, Milan, Italy) plates for L. monocytogenes; Baird Parker plates with
Rabbit Plasma Fibrinogen supplement (RPF, Biolife, Milan, Italy) plates for S. aureus; cefixime tellurite
sorbitol MacConkey agar plates (CT-SMAC, Biolife, Milan, Italy) for E. coli O157:H7; xylose lysine
deoxycholate agar plate (XLD, Microbiol, Uta, Italy) for Salmonella spp. The agar plates were incubated
at 37 ◦C for 24 h.

2.3. Cheese Production and Sampling

Each time, 700 L of raw whole bulk sheep milk collected from the “Bonassai” experimental farm
of Agris Sardegna, were used. The milk was previously inoculated, under gentle stirring, with a
multi-strain bacterial suspension of the same pathogenic microorganism to get a final concentration of
approximately 106 CFU mL−1 and then was split into two 350 L aliquots, for RM and TM cheese-makings.
In TM trials, milk was subsequently heated to 65 ◦C, without resting at the set temperature and quickly
cooled down to coagulation temperature (38 ◦C). Then, the manufacturing process (RM and TM)
followed the same procedure reported in Figure 1. Two vats were used alternately, one for RM trial
and one for TM trial, in order to eliminate any vat variation. A thermophilic freeze-dried starter
culture (FD-DVS CO-02, CHR Hansen, Hoersholm, Denmark) including Streptococcus thermophilus and
Lactobacillus delbrueckii subsp. bulgaricus was added at a concentration of 106 CFU mL−1.

Three cheese wheels of approximately 25 kg at 1 day were obtained from each cheese-making,
for a total of 36 RM and 36 TM cheeses wheels. After molding, cheeses were subjected to drainage in
hot room at 36 ◦C until reaching pH 5.20–5.30 and then at 20 ◦C up to 18–24 h. Dry salting and ripening
were conducted in controlled conditions (10–12 ◦C and 78–85% relative humidity). In particular,
cheeses were dry salted after 48 h (first application) from the manufacture. Later, during the first 90 days
of ripening, cheeses were salted three more times, respectively after 12, 26, and 56 days. After 90 days,
at the end of the salting, cheeses were washed, dried, and aged for two more months, for a total of
5 months of ripening. The cheese was sampled after 1, 90, and 150 days for physico-chemical analysis
while inoculated raw milk, thermized milk, and cheese were sampled to enumerate pathogenic bacteria.

2.4. Physico-Chemical Analysis

All physico-chemical analysis were performed in duplicate. Samples of curd and cheese were
analyzed for pH (pH-meter Basic 20+, Crison Instruments S.A., Alella, Spain). The following
parameters were determined for the cheese samples: moisture (ISO 5534:2004) [32]; sodium chloride,
determined by potentiometric titration with AgNO3 (ISO 5943:2006) [33] (automatic titrator, model DL55,
Mettler-Toledo GmbH, Schwerzenbach, Switzerland); water activity (aw), determined at 25 ◦C
(Aw Sprint instrument, Axair Ltd., Novasina Division, Lachen, Switzerland).

2.5. Microbiological Analysis

Aliquots of 25 mL or g for qualitative detection and 10 mL or g for quantitative detection were
taken from each sample and used to prepare a suspension with appropriate diluents. The following
parameters have been then researched:

(a) Listeria monocytogenes. Detection and enumeration were performed according to ISO 11290-1:2017
and ISO 11290-2:2017, respectively [34,35]. For detection, samples were mixed with Fraser broth
base (Oxoid, Thermo Fisher Scientific, Basingstoke, UK), homogenized 90 s in a Stomacher
Lab Blender 400 (International PBI S.p.A., Milan, Italy), and incubated for 24 h at 30 ◦C
(primary enrichment). Subsequently, 100 μL of primary enrichment were transferred to
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10 mL of Fraser broth supplemented by Fraser selective supplement (Oxoid, Thermo Fisher
Scientific, Basingstoke, UK), which were incubated for 24 h at 37 ◦C (secondary enrichment).
From primary and secondary enrichments, aliquots of 100 μL were streaked onto selective
differential medium plates: Agar Listeria according to Ottaviani and Agosti (ALOA, Biolife,
Milan, Italy) and Listeria selective agar (Oxford formulation, Oxoid, Thermo Fisher Scientific,
Basingstoke, UK) and incubated for up to 24–48 h at 37 ◦C. All isolates with typical L. monocytogenes
characteristics were subjected to morphological and biochemical proofs as confirmatory tests.

For the enumeration of L. monocytogenes ten-fold serial dilutions were made and aliquots of 100 μL
were plated in duplicate on the surface of ALOA agar plates which were incubated for 48 h at 37 ◦C.
Presumptive L. monocytogenes colonies were counted after confirmatory tests.

(b) Staphylococcus aureus. Detection and enumeration were performed according to ISO
6888-2:2004 [36]. Samples were weighed and mixed with buffered peptone water (BPW, Microbiol,
Uta, Italy), ten-fold serial dilutions were prepared and aliquots of 100 μL were plated in duplicate
on Baird Parker plates with Rabbit Plasma Fibrinogen supplement (RPF, Biolife, Milan, Italy)
and incubated for 24–48 h at 37 ◦C.

(c) Escherichia coli O157:H7. The detection was performed according to ISO 16654:2001/A1:2017 and
four successive stages were necessitated [37].

(1) Enrichment of the test portion homogenized in modified tryptone soya broth containing
novobiocin (mTSB + N, Biolife, Milan, Italy) with incubation at 41.5 ◦C for 6 h and
subsequently for a further 12 h to 18 h.

(2) Separation and concentration of microorganisms by means of immunomagnetic particles
coated with antibodies to E. coli O157:H7.

(3) Isolation by subculture of the immunomagnetic particles with adhering bacteria onto
cefixime tellurite sorbitol MacConkey agar (CT-SMAC, Biolife, Milan, Italy) and sorbitol
MacConkey agar (SMAC, Biolife, Milan, Italy) incubated at 37 ◦C for 24 h.

(4) Confirmation of typical colonies.

E. coli O157:H7 count was determined by ten-fold serial dilutions and direct plating (100 μL in
duplicate) on CT-SMAC agar plates incubated at 37 ◦C for 24 h. Typical E. coli O157:H7 colonies were
subjected to confirmatory tests and were then enumerated.

(d) Salmonella spp. The detection was performed according to ISO method 6579-1:2017 [38].
The method required the following successive stages. A pre-enrichment in buffered peptone water
(BPW, Microbiol, Uta, Italy) at 37 ◦C for 24 h. A selective enrichment in Rappaport-Vassiliadis with
soy broth (RVS, Oxoid, Basingstoke, UK) and Müller-Kauffmann tetrathionate-novobiocin broth
(MKTTn, Microbiol, Uta, Italy) for 24 h at 41.5 and 37 ◦C, respectively. Aliquots of the selective
broths were streaked onto two selective isolation agar media, xylose lysine deoxycholate agar
(XLD, Microbiol, Uta, Italy) and Salmonella detection and identification agar (SMID, BioMérieux,
Marcy L’Etoile, France). The agar plates were incubated at 37 ◦C for 24 h. Confirmation of suspect
colonies was carried out by biochemical and serological testing.

For the enumeration of Salmonella spp. ten-fold serial dilutions were prepared and aliquots of
100 μL were double plated on XLD agar plates which were incubated at 37 ◦C for 24 h. Presumptive
Salmonella spp. colonies were subjected to confirmatory tests and were then counted.
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Figure 1. Experimental flow diagram of protected designation of origin (PDO) Pecorino Romano cheese
production. RH = relative humidity.
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2.6. Statistical Analysis

Microbial loads were log transformed and expressed as means and standard deviation (SD).
The means and SD of physico-chemical parameters were determined from twelve cheese-makings for
each experimental series (RM and TM). Analysis of variance was carried out using Minitab statistical
package release 16 (Minitab Inc., State College, PA, USA). The general linear model procedure was
used to verify the effects of the two studied factors “milk heat treatment” (2 levels) and “ripening time”
(3 levels) on the microbial loads and physico-chemical parameters, as far as their interaction is concerned.
The comparison between means was performed using Tukey’s significant difference test (p < 0.05).
Data were also analyzed by the Pearson correlation to measure the degree of the linear relationship.

3. Results and Discussion

3.1. Physico-Chemical Properties of Cheese

Figure 2 and Table 2 show the pH values in RM and TM cheese-making trials at different
time. The pH values differed significantly between RM and TM (p < 0.05) in various step of cheese
manufacturing process. As shown in Figure 2, after molding was completed, RM curd had a higher pH
than TM curd (6.4 vs. 6.2, respectively; p < 0.05). This difference suggests a slight delay in the starter
culture acidification activity in the early stage of RM cheese-making. This time lag could be due to
the bacteriostatic activity of milk proteins such as lactoferrin, lactoperoxidase, and immunoglobulins
since it normally decreases with milk heat treatments [39]. We cannot exclude that the competition of
the starter culture with the native microflora of raw milk may also be involved in this delay of the
acidification process. During drainage in hot room at 36 ◦C, a difference in pH values between RM
and TM cheese-making was kept, however, this gap became less evident after two hours of drainage.
Moreover, the lower SD in TM acidification curve shown in Figure 2 suggests a more regular and
repeatable trend of the acidification process during TM cheese-making compared to RM one.
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Figure 2. Acidification profiles of Pecorino Romano cheese produced from raw (RM), and thermized
milk (TM). Twelve replicates for each cheese-making technology. Error bars indicate standard deviations.
Different letters at the same time point indicate significant differences (p < 0.05).
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Table 2. Physico-chemical parameters of Pecorino Romano cheese at different ripening times, obtained
from raw (RM) and thermized milk (TM). Values are given as means ± standard deviation.

Ripening Time Day 1 Day 90 Day 150 Significance

Thermal
Treatment

RM TM RM TM RM TM T R T × R

Parameters

pH 5.3 ± 0.1 a 5.21 ± 0.03 a 5.3 ± 0.1 a 5.0 ± 0.1 b 5.3 ± 0.1 a 5.0 ± 0.1 b ** ** **
Moisture (%) 42 ± 1 a 42 ± 1 a 32 ± 1 bc 32.5 ± 0.3 b 32 ± 2 bc 31.2 ± 0.4 c NS *** *

Aw 0.970 ± 0.005 b 0.983 ± 0.002 a 0.89 ± 0.01 c 0.880 ± 0.005 cd 0.880 ± 0.02 cd 0.873 ± 0.004 d NS *** ***
NaCl/DM (%) 0.15 ± 0.01 c 0.21 ± 0.01 c 6.3 ± 0.2 b 7.2 ± 0.3 a 6.4 ± 0.2 b 7.3 ± 0.2 a *** *** ***

Values in the same line with different superscript letters differ significantly (Tukey’s test, p < 0.05). DM = dry matter;
Aw = water activity; RM = cheese from raw milk; TM = cheese from thermized milk; T = thermal treatment;
R = ripening time. NS, p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

As shown in Table 2, the pH values in RM and TM cheeses were significantly affected by the
milk thermization treatment (p < 0.01) and ripening time (p < 0.01), furthermore the interaction
between these factors was significant (p < 0.01). Despite the slight delay in the acidification process,
after 1 day, RM and TM cheeses were not statistically different for pH values (5.3 and 5.21, respectively).
On the contrary, after 90 and 150 days of ripening, RM and TM cheeses differed significantly for
pH values (p < 0.01). In particular, pH in RM cheeses remained substantially unchanged during
ripening (around 5.3), while pH in TM cheeses showed a slight decrease, reaching an average pH value
of 5.0 at 150 days. The evolution of pH during cheese ripening is due to several factors involved in the
metabolism of the main components of the cheese: hydrolysis of the residual lactose, which involves
a decrease in pH, and degradation of proteins that, instead, leads to an increase in pH value [40,41].
Pecorino Romano cheese is characterized by modest proteolysis due to the intense salting that limits
the activity of the proteolytic enzymes. On the other hands, lipolysis is more accentuated mainly
because of the use of exogenous lipases contained in the lamb paste rennet, used for milk coagulation.
These enzymes catalyze the biochemical process of triglyceride hydrolysis resulting in the release of
short-chain fatty acids that can contribute to a decrease in the pH during ripening [28,42]. Finally,
it is important to point out that the pH values found both for RM and TM cheeses are in the range of
variation found in commercial PDO Pecorino Romano cheese [28].

In Table 2 we report also the remaining physico-chemical properties of RM and TM cheese,
at different time of ripening. The milk thermization treatment did not significantly affect the moisture
content, which instead was significantly influenced by ripening time and its interaction with heat
treatment (respectively, p < 0.001 and p < 0.05). No significant differences were found between RM and
TM cheese at each observed ripening time. The major changes in moisture occur in the first 90 days
of ripening in both TM and RM cheeses, while the decrease from 90 up to 150 days was statistically
significant only in TM cheese (p < 0.05). Moisture content was approximately 42% in cheese after 1 day
and 31–32% in cheese after 90 and 150 days of ripening, according to Addis et al. [28,42].

As reported for moisture content, also the aw values were significantly affected by the ripening time
and its interaction with heat treatment (p < 0.001) (Table 2). The aw, significantly differed in RM and
TM 1 day cheeses, and dropped significantly from approximately 0.98–0.97 (TM and RM, respectively)
up to 0.89–0.88 at the end of the salting process (90 days), then slightly decreased tendentially (p > 0.05)
at 150 days. The aw values at the end of ripening (150 days) were higher than those reported by
Addis et al. [28]. However, these authors referred to longer aged Pecorino Romano cheese (7–8 months).

At the end of the salting process (90 days), the NaCl on dry matter (DM) content was significantly
lower in RM cheeses (6.3%) compared to TM cheeses (7.2%). Salt content slightly increased, up to the
end of ripening (6.4% and 7.3%, respectively in RM and TM cheeses). This difference in NaCl content
between RM and TM cheeses could be due to the intrinsic variability of the dry salting technique.
However, NaCl values are comparable to those of commercial Pecorino Romano cheese, which is
characterized by high and variable salt content [28].

These results showed that the experimental cheeses met the typical requirements of PDO Pecorino
Romano cheese. Moreover, the different cheese-making technology (RM and TM) seems to affect only
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in part the characteristics of the product at the end of the ripening period, which substantially has the
same peculiarities of the Pecorino Romano cheese available on the market.

3.2. Pathogenic Bacteria Counts in RM Cheese-Making Trials

The pathogens counts in raw milk are given in Table 3. Pathogenic bacteria levels in raw milk
pointed out the accuracy of the technique used for the inoculum preparation. Indeed, all the counts
were around 6 log10 CFU mL−1, as established from the experimental protocol. Table 4 shows the
pathogens counts in cheese at different ripening stages. A reduction in bacterial loads was observed
for all pathogens in 1-day old cheese. L. monocytogenes and Salmonella spp. showed the major
reduction, with a decrease of about 4 log10. The number of viable E. coli O157:H7 decreased by about
2.5 log10, while S. aureus counts showed a reduction by about 0.5 log10. The behavior of the pathogenic
bacteria was likely in part attributed to the number of viable cells lost with the whey separation
and partly to the combined effect of various hurdles occurring during the first phase of Pecorino
Romano cheese manufacturing, such as competition with the starter culture, acidification, and curd
cooking [17,43]. Conversely, other studies showed an increase in pathogens counts during the early
stages of cheese-making in different unpasteurized milk cheeses. Bellio et al. [21] reported a growth of
2 log cycle in E. coli O157:H7 levels during the first 24 h of PDO Fontina cheese production, despite a
curd cooking phase at 48 ◦C. Similar findings were also given by other authors in Cacioricotta, Cheddar,
and Gouda cheeses [9,24]. Chatelard-Chauvin et al. [26] found that L. monocytogenes increased by
about 3.5 log10 in Cantal cheese at 24 h. An increase in Salmonella spp. populations over 1 log10 was
observed in Gouda and Cheddar cheeses in the first 24 h of manufacturing [25,44]. In our study,
S. aureus fell slightly, however, some authors observed a growth in S. aureus counts in the early stages
of cheese production [45,46]. These authors considered that the increase in pathogenic bacteria counts
during the early stages of cheese-making could be due both to an actual bacterial growth and to the
entrapment of pathogens cells within the curd, during curd contraction and whey separation. In our
study, the reduction in pathogens population levels during the early stages of cheese manufacturing
might be related not only to the aforementioned hurdles to bacteria growth and survival but also to a
protracted curd breaking (about 6 min) into extremely fine grains (3–5 mm). This is a typical feature of
Pecorino Romano cheese-making technology which could lead to a higher level of pathogens viable
cells lost in the cheese whey.

All tested pathogens, despite a reduction, were still present in 1-day old cheese in relevant bacterial
loads. However, it must be pointed out that in the present study, high inoculum levels were used,
which are difficult to find in practice, to simulate the worst-case scenario of contamination. Overall,
our results are in agreement with other studies that indicate the ability of the pathogenic bacteria to
overcome the obstacles of the first phase of cheese-making, first of all, acidification, probably owing to
an acid tolerance response (ATR) widely reported in the literature [18–20].

Table 3. Results of pathogens counts (log10 CFU mL−1) in sheep milk before and after thermization.
Values are given as means ± standard deviation. Escherichia coli O157:H7: ATCC 43984, 47, 719.
Salmonella spp.: Typhimurium ATCC 6994, Enteritidis 670. Listeria monocytogenes: ATCC 15313,
ATCC 19114, ATCC 9525, ATCC 153/3, 2, 90, V7. Staphylococcus aureus: ATCC 14458, ATCC 25923, 401,
466, 64494.

Pathogens Raw Milk Thermized Milk Significance

E. coli O157:H7 6.1 ± 0.1 a 2.6 ± 0.5 b ***
Salmonella spp. 6.5 ± 0.4 a 3.3 ± 0.4 b ***

L. monocytogenes 6.01 ± 0.02 a 3.6 ± 0.3 b ***
S. aureus 6.5 ± 0.1 a 3.7 ± 0.5 b ***

Values in the same line with different superscript letters differ significantly (Tukey’s test, p < 0.05). *** p < 0.001.
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Table 4. Results of pathogens counts (log10 CFU g−1) in Pecorino Romano cheese at different ripening
times, obtained from raw (RM), and thermized milk (TM). Values are given as means ± standard
deviation. Escherichia coli O157:H7: ATCC 43984, 47, 719. Salmonella spp.: Typhimurium ATCC 6994,
Enteritidis 670. Listeria monocytogenes: ATCC 15313, ATCC 19114, ATCC 9525, ATCC 153/3, 2, 90, V7.
Staphylococcus aureus: ATCC 14458, ATCC 25923, 401, 466, 64494.

Ripening Time Day 1 Day 90 Day 150 Significance

Thermal Treatment RM TM RM TM RM TM T R T × R

Pathogens

E. coli O157:H7 3.5 ± 0.1 a 0 b 0 b 0 b 0 b 0 b *** *** ***
Salmonella spp. 2.3 ± 0.3 a 0 b 0 b 0 b 0 b 0 b *** *** ***

L. monocytogenes 2.01 ± 0.02 a 0 b 0 b 0 b 0 b 0 b *** *** ***
S. aureus 5.9 ± 0.3 a <1 b <1 b <1 b <1 b <1 b *** *** ***

Values with different superscript letters differ significantly (Tukey’s test, p < 0.05). RM = cheese from raw milk;
TM = cheese from thermized milk; T = thermal treatment; R = ripening time. *** p < 0.001.

Table 4 also shows the pathogens counts at the end of salting (90 days) and the end of the
ripening period (150 days). At the experimental conditions, all inoculated pathogens except S. aureus,
were not detectable after 90 days, even after selective enrichment. This result was confirmed in
150-days old cheese. S. aureus counts were below the detection limit for direct plating enumeration
method (<1 log10 CFU g−1), both in cheese at 90 and 150 days of ripening. In the early phase of
cheese-making (24 h), the pathogenic bacteria were subjected to initial stress because of the curd
cooking and fast acidification. Afterwards, in the first 90 days of ripening, a significant correlation
was found between microbial loads and aw, moisture and NaCl content. In particular, all the studied
pathogens exhibited a strong positive correlation with moisture (E. coli O157:H7, R2 = 0.987, p < 0.001;
L. monocytogenes, R2 = 0.982, p < 0.001; Salmonella spp., R2 = 0.987, p < 0.001; S. aureus, R2 = 0.993,
p < 0.001) and aw (E. coli O157:H7, R2 = 0.971, p < 0.001; L. monocytogenes, R2 = 0.982, p < 0.001;
Salmonella spp., R2 = 0.971, p < 0.001; S. aureus, R2 = 0.948, p < 0.001). Conversely, a strong negative
correlation was found between microbial count and salt content (E. coli O157:H7, R2 = −0.998,
p < 0.001; L. monocytogenes, R2 = −0.997, p < 0.001; Salmonella spp., R2 = −0.987, p < 0.001; S. aureus,
R2 = −0.996, p < 0.001).

Several studies show the ability of pathogenic bacteria to survive in cheeses even beyond 90 days of
ripening. Nevertheless, none of these had similar physico-chemical properties to those of PDO Pecorino
Romano cheese (pH ≤ 5.4; moisture ~32%; aw < 0.90; NaCl 4–8%), together with a long ripening
period. Ioanna et al. [9] reported that E. coli O157:H7, when inoculated in milk at 2 log10 CFU mL−1,
survived in 90 days-old Cacioricotta cheese with a bacterial load greater than 4 log10 CFU g−1.
Similar findings were observed in Fontina cheese at 80 days of ripening [21]. In Cheddar and Gouda
cheeses, E. coli O157:H7 was detectable after an enrichment procedure for up to around 300 days,
with an initial raw milk inoculation of about 20 CFU mL−1, which was far lower than that used in
the present study [24]. E. coli O157:H7 appears to be one of the pathogens having the greatest ability
to overcome environmental stresses and it is also infectious at very low doses (5–50 viable cells) [47].
Therefore, proving its complete inactivation is relevant. Viable cells of Salmonella spp. were detectable
in Gouda cheese for more than 200 days [25]. However, in Feta and Tulum cheese, with a salt content
close to that of Pecorino Romano cheese, Salmonella spp. was no more found after 20 and 90 days,
respectively [48,49]. L. monocytogenes was detectable for more than 250 days in Cantal cheese [26].
In agreement with our study, Wusimanjiang et al. [50] observed that L. monocytogenes, when inoculated
in milk at 3 log10 CFU mL−1, reached undetectable levels after 28–35 days of ripening in a cheese with
a salt content similar to that of Pecorino Romano cheese (4–10% on DM basis).

According to Regulation (EC) No 2073/2005, Pecorino Romano cheese, already at 90 days,
belongs to ready-to-eat foods that do not support the growth of L. monocytogenes, since its aw value
is less than 0.92. For these products, the Regulation establishes a tolerance for L. monocytogenes up
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to 100 CFU g−1 [51]. The cheeses we obtained were Listeria-free at 90 days, despite the high initial
inoculum in cheese milk.

S. aureus, unlike the other pathogens, was still present in high population levels in 1-day old cheese.
Since S. aureus is halotolerant, it could find the proper environment to survive or even grow during or
after the salting process, as some authors have already reported [52,53]. However, according to the
growth limits of S. aureus stated by Valero et al. [54], the conditions of ripening and the characteristics
of Pecorino Romano cheese: ripening temperature (10–12 ◦C), constant low pH (~5.3), and decreasing
of aw from 0.97 to 0.89 in the first 90 days of ripening, were enough severe to prevent proliferation and
also to reduce the survival of S. aureus as shown by the results (<1 log10 CFU g−1). These findings were
in agreement with those observed by Pexara et al. [45] in Feta cheese with a salt content close to that of
Pecorino Romano cheese.

Unlike the other bacteria tested in this study, the pathogenicity of S. aureus is due to the possible
production of different enterotoxins in contaminated food. A level above 105 CFU mL−1 or g−1 of S. aureus
can produce an infective enterotoxins concentration of about 1 μg [55]. Therefore, Regulation (EC)
No 2073/2005 sets the limit in cheeses for coagulase-positive staphylococci (including S. aureus)
at 105 CFU g−1 [51]. Above this limit, the presence of staphylococcal enterotoxins is expected, and there
is a need to perform assays for enterotoxins detection, which must be absent in 25 g. However,
staphylococcal enterotoxins production seems to be strongly limited in cheeses by the antagonistic
effect of lactic acid bacteria. Microbial competition together with unfavorable environmental
conditions, such as low pH, limits the growth of S. aureus and strongly downregulate virulence
genes expression [52,53,56]. In particular, a rapid acidification in the first 6 h of cheese-making,
as reported in our study (Figure 2), seems to be critical for S. aureus growth and enterotoxins
production [46]. Furthermore, in our work, we simulated a worst-case contamination scenarios
by employing unrealistically high starting S. aureus levels and despite this, the cheese-making
conditions prevented the proliferation of S. aureus. Future studies will be carried out to examine the
presence of staphylococcal enterotoxins in Pecorino Romano cheese produced from milk contaminated
with S. aureus.

3.3. Pathogenic Bacteria Counts in TM Cheese-Making Trials

In Table 3 are reported the pathogens counts in milk (before and after thermization). Thermization is
a sub-pasteurization heat treatment usually performed at 57–68 ◦C for 10–20 s to reduce the number
of spoilage bacteria, with minimum collateral heat damage to milk components and thus provide
a suitable environment for the growth of the added starter cultures [57]. Unlike the pasteurization,
the thermization process is not able to ensure the complete inactivation of pathogenic microorganisms
but, especially if they are present in high initial levels, it can only reduce their number, as confirmed by
the pathogens counts in thermized milk shown in Table 3. In our study, we used a batch thermization at
65 ◦C, without resting at the set temperature. All the pathogens showed a reduction of around 3 log10

after thermization, starting from a bacterial count of about 6 log10 CFU mL−1 (Table 3). These rates
of thermal inactivation are close to those reported by other authors, although a comparison with the
time-temperature conditions reported in our work is not easy [58,59]. These studies highlight the
heterogeneity in thermal resistance not only in different microbial groups but also between different
strains of the same species. In particular, different strains of E. coli and S. aureus showed varying
degrees of heat resistance, while L. monocytogenes and Salmonella spp. strains displayed a more uniform
thermal susceptibility [59]. Hence, it is important to underline that a multi-strain inoculum should be
used to represent the behavior of a given pathogen, as done in our work. The data reported in Table 3
show that counts levels in thermized milk did not differ significantly among the four pathogenic
microorganisms, which indicate similar thermal tolerance under the conditions applied in the present
study. However, we cannot exclude that some of the strains used in our study were more susceptible
toward heat than others.
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After 1 day from the production, L. monocytogenes, E. coli O157:H7, and Salmonella spp.
dropped below the detection limit and were no longer detectable up to 150 days, even after an
enrichment procedure, as shown in Table 4. S. aureus counts were also below the detection limit for
the direct plating enumeration method (<1 log10 CFU g−1) from 1 day up to the end of the ripening
period. As already reported for RM trials, it was not possible to assess exactly the amount of the
pathogens decrease related to the bacteria loss through the whey separation compared to the pathogens
counts reduction due to the several environmental hurdles during the first stage of cheese-making.
The latter may have a greater impact on TM trials, especially as a consequence of milk thermization,
a second less severe thermal stress (curd cooking), and the faster and more intense acidification. In fact,
after molding, the curd had a lower average pH value in TM trials (6.24) compared to RM trials
(6.41). This difference was kept during the drainage process (Figure 2). Besides, as reported in Table 4,
the microbial counts in RM and TM cheeses were significantly affected by milk thermization treatment
(p < 0.001), as well as ripening time (p < 0.001). Furthermore, the interaction between these factors was
also significant for pathogens counts (p < 0.001).

The introduction of the thermization in Pecorino Romano cheese-making is a further obstacle
to the possible growth and survival of pathogens. In addition to other hurdles (curd cooking and
acidification), it makes the cheese microbiologically safe before the salting process. In the case of RM
cheeses, it is instead necessary to wait until the end of the salting process (90 days) to consider safety of
the product. In any case, this happens 60 days before the mandatory minimum period for marketing
PDO Pecorino Romano cheese (150 days).

Hence, our study shows that the production process of Pecorino Romano cheese both from
raw and thermized milk is enough restrictive for the survival of the pathogens we have examined,
except for S. aureus which may be still present in such low levels that it does not represent a hazard to
the consumers. Currently, thermization is practiced by all producers of PDO Pecorino Romano cheese
since this treatment has the advantage in standardizing the microbiological properties of the cheese
milk by reducing the total microbial count and containing the undesirable bacteria, to obtain a constant
quality of the product. This is a key element for a product aimed at an international market, such as
Pecorino Romano cheese.

4. Conclusions

Cheeses made from unpasteurized milk are known to pose a health risk to the consumers.
According to PDO specifications, Pecorino Romano cheese can be produced from raw or thermized
whole sheep milk. In this study, Pecorino Romano cheese was produced from unpasteurized (raw and
thermized) milk inoculated with L. monocytogenes, Salmonella spp., E. coli O157:H7, or S. aureus, in high
initial loads (106 CFU mL−1). The results demonstrated that the cheese-making process may ensure
the microbiological safety of this cheese after the minimum ripening period (150 days) established by
the PDO specifications. In particular, the obtained cheese was free from microbiological hazard after
90 days and 1 day, when manufactured from raw and thermized milk, respectively. These results could
encourage cheese manufacturers to diversify Pecorino Romano cheese by using raw milk, which is
currently almost not used, for its production, to provide the market with a product having a more
intense flavor than that made from thermized milk. This is the first preliminary work to evaluate the
survival of selected pathogenic bacteria during Pecorino Romano cheese ripening. Further studies are
necessary to investigate the behavior of the pathogens in the early stages of manufacturing in order
to understand more in depth on how their survival is hampered by different factors. The eventual
production of staphylococcal enterotoxins will also be tested in subsequent investigations.
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Abstract: The inverse association between the groups of odd-chain (OCFA) and branched-chain
(BCFA) and the development of diseases in humans have generated interest in the scientific commu-
nity. In experiment 1, the extent of the passage of odd- and branched-chain fatty acids (OBCFA) from
milk fat to fresh cheese fat was studied in sheep and goats. Milk collected in two milk processing
plants in west Sardinia (Italy) was sampled every 2 weeks during spring (March, April and May). In
addition, a survey was carried out to evaluate the seasonal variation of the OBCFA concentrations in
sheep and goats’ cheeses during all lactation period from January to June. Furthermore, to assess the
main differences among the sheep and goat cheese, principal component analysis (PCA) was applied
to cheese fatty acids (FA) profile. Concentrations of OBCFA in fresh cheese fat of both species were
strongly related to the FA content in the unprocessed raw milk. The average contents of OBCFA were
4.12 and 4.13 mg/100 mg of FA in sheep milk and cheese, respectively, and 3.12 and 3.17 mg/100 mg
of FA in goat milk and cheese, respectively. The OBCFA concentration did no differed between milk
and cheese in any species. The content of OBCFA was significantly higher in sheep than goats’ dairy
products. The OBCFA composition of the cheese was markedly affected by the period of sampling
in both species: odd and branched FA concentrations increased from March to June. The seasonal
changes of OBCFA in dairy products were likely connected to variations in the quality of the diet.
The PCA confirmed the higher nutritional quality of sheep cheese for beneficial FA, including OBCFA
compared to the goat one, and the importance of the period of sampling in the definition of the fatty
acids profile.

Keywords: sheep and goat milk; cheese; odd and branched chain fatty acids

1. Introduction

The fatty acid (FA) composition of dairy products has assumed considerable interest
in consumers from a nutritional and healthy point of view. Indeed, specific FA of dairy
products can affect human health and can have an important role in the prevention of
metabolic diseases. This increasing attention is also demonstrated by recent studies that
investigated the feasibility of improving milk FA profile in sheep and goats though breeding
schemes [1–3]. A significant amount of attention has been focused in the last decade on
polyunsaturated fatty acid of the omega3 family (PUFA n-3) and conjugated linoleic acid
(CLA) concentrations of dairy products. Moreover, the groups of odd-chain fatty acids
(OCFA) and branched-chain fatty acids (BCFA), long neglected due to their low incidence
on the total amount of FA, have sparked interest in the scientific community due to an
inverse relationship with the development of human diseases.

In particular, the group of BCFA comprises mainly saturated fatty acids characterized
by the presence of one or more methyl groups in the iso or anteiso position. Such molecules
represent the main FAs in some microorganisms (e.g., Bacilli and Lactobacilli), and they
can be also observed in mammal tissues. In laboratory animals these FA evidenced anti-
inflammatory properties [4], reduced the incidence of necrotizing enterocolitis and altered
the ecology of the gastrointestinal microorganisms in a neonatal rat model [5].
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Dairy 2021, 2

The OCFA, which include pentadecanoic (C15:0) and heptadecanoic (C17:0) acids
and their isomeric forms, are mostly derived from ruminal bacteria cell wall and then
partitioned firstly to organs and tissues and, therefore, detectable in ruminant-derived
foods. Thus, dairy foods or ruminant fats represent the major dietary source of OCFA
for humans.

Moreover, the milk concentrations of C15:0 and C17:0 are considered biomarkers of
rumen microbial fermentation and microbial de novo lipogenesis [6]. In addition, the mam-
mary gland plays a role in their synthesis by using propionate [7], and the subcutaneous
adipose tissue and, therefore, after their mobilization, can be incorporated into milk fat [8].

Humans are not able to synthetize C15:0 and C17:0 so they could be considered
valuable markers of dairy fat intake [9,10]. The role of these FA in human health has
recently been reinforced in view of new biological and nutritional observations. The C15:0
and C17:0 have been inversely associated with cardiovascular disease [11–14] and incidence
of type 2 diabetes [15–18]. The direct role of C15:0 in attenuating pro-inflammatory state,
cytotoxicity in human cell lines, anemia, and dyslipidemia lowering glucose and cholesterol
in vivo has been recently evidenced [19].

Among the different factors influencing the OBCFA concentration in milk and dairy
products, animal diet is the main one. Indeed, the diet of animals can modulate microbial
growth in the rumen, de novo microbial FA synthesis and the uptake of blood circulating
FA by the mammary gland. Variations in milk OBCFA have been observed in response
to lipid supplementation [20–22], change in forage to concentrate ratio [23] and use of
by-products rich in bioactive compounds [24]. Changes in the OBCFA concentration in milk
has been also observed with lactation stage [25] and with energy balance of animals [26],
probably as a consequence of the fat mobilization from adipose tissue and the extent of
mammary uptake for milk fat synthesis [27].

In Mediterranean areas, almost all sheep milk is processed into cheese, and milk fatty
acid profile has important effects on cheese fat quality under nutritional point of view.
The total transfer from milk into cheese of fatty acids of nutritional interest, as PUFA n-3
and CLA, has been reported in sheep [28], but effects of cheese-making technology has
been also evidenced [29]. However, the mechanisms influencing the relationship between
OBCFA concentrations in unprocessed milk and the derived dairy products are still unclear.
The presence of FA in the FA composition of different microorganism can be of significant
importance for the dairy industry where different microbial cultures, as starters, are widely
used for making different products. The consequence could be the change of the native
OCFA and BCFA milk concentrations after processing in cheese or other dairy products.

The aims of this study were (a) to evaluate the extent of OBCFA transfer from ovine
and caprine milk to cheese (Experiment 1); (b) to describe the seasonal variation of OBCFA
in sheep and goat cheeses (Experiment 2). Both were sequentially investigated with two
independent surveys.

2. Materials and Methods

In Experiment 1, bulk tank milk of Sarda breed sheep and Sardinian goats and cheeses
were collected from processing plants in North Sardinia for sheep (n. 2) and in west Sardinia
for goats (n. 2). Samples were taken every two weeks during spring (March, April and
May) for a total of 12 milk samples per species. The transfer of OBCFA from milk to fresh
cheeses after 24 h from processing was evaluated.

In Experiment 2, mild sheep and goat cheeses, with a ripening time of about 20–30 days,
were sampled monthly from January to July from nine sheep cheese-making plants located
in different areas of Sardinia (Guspini, Nurri, Marrubiu, Macomer, Dorgali, Oliena, Onifai,
Thiesi, Berchidda), five plants of which produced also goat cheese. The samples collection
started in January, which corresponds to the begin of lactation both in sheep and goats
reared in Sardinia’s breeding system. The goats cheese samples were from four lots/month
from January to April and three different lots/month from May to July for a total of
25 goat cheese samples. The sheep cheese samples were Pecorino Sardo PDO type from
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8 lots/month from January to May, and from four different lots/month in June and July for
a total of 48 sheep cheese samples.

The determination of FA concentrations in milk and cheese samples was carried out
by a gas chromatographic method, as previously described [20]. Briefly, after the lipid
extraction, a base-catalyzed trans-esterification FIL-IDF standard procedure [30] was used
to prepare FA methyl esters (FAME). Identification of individual FAME was allowed by
comparing their retention time with that of a series of analytical standards. Those included
the Supelco 37 component FAME MIX (Supelco, Bellefonte, PA, USA), the GLC-110 MIX
(Matreya Inc. Pleasant Gap, PA, USA) and some individual BCFA (Matreya Inc. Pleasant
Gap, PA, USA). Identification of OBCFA was also supported by the consultation of previous
studies [31,32]. The FA concentration was reported as mg/100 mg of total FAME.

Using R software (R Core Team, 2020), general linear model (GLM) was applied to
data on OBCFA and others main nutritional FA (R Core Team, 2020). The considered fixed
effects were species (sheep and goat) and product type (milk and cheese) for experiment 1,
whereas species and month for Experiment 2. Significative differences were declared at
p < 0.05.

Principal component analysis (PCA) was applied on sixty-three FA profile of sheep
and goats’ cheeses using prcomp R function. A total of 42 FA was considered and, therefore,
42 principal components were extracted. Before PCA, all considered FA were scaled to
ensure unit variance.

3. Results and Discussion

Means (±SE) of fat concentration in milk and cheese of sheep and goat, respectively
were 6.16% (±0.26) and 5.42% (±0.03), 28.81% (±0.65) and 21.17% (±0.54).

3.1. Experiment 1: Fatty Acid Transfer from Milk to Cheese

FA composition in milk and cheese for sheep and goats is reported in Table 1. In total,
10 OBCFA were identified in both types of milk (Table 1), including 3 OCFA (C13:0, C15:0
and C17:0), 4 isoBCFA (isoC14:0, isoC15:0, isoC16:0, and isoC17:0) and 3 anteisoBCFA
(anteisoC13:0, anteisoC15:0 and anteisoC17:0).

Among them, C15:0 and C17:0 were the most abundant fatty acids, in agreement with
other research on sheep [33], goats and cows [34,35]; these OCFA accounted for 29% and
16% of the total concentration of OBCFA, respectively. In our study, C13:0 represents only
2.3%, value that agrees with the observations in dairy cows in which it represents 2% of
OCFA [34] or it has not been found [36], but lower than values previously reported in
sheep’s milk, where accounted for 6.3% of total OCFA [33].

Concentrations of individual OBCFA in the fat of fresh cheeses did not differ from that
of raw unprocessed milk (p > 0.05) in both species: it means that overall, OBCFA content of
milk is not significantly modified by cheese making processes, both in sheep and goats.

In sheep milk, the content of total OBCFA is higher than that observed in goat milk,
due to a higher content of isoBCFA form of C15:0, C16:0 and C17:0, and anteiso C15:0
and C17:0 (p < 0.05). No differences among species have been observed only for isoC13:0
and isoC14:0. The differences between species could be related to their different feeding
regimen, as OBCFA in milk may change according to the bacterial population present in the
rumen and, particularly, because of the differences in their relative abundance. Differences
in OBCFA concentrations between these the species can occur also because of different
extents of de novo synthesis of these FA in the mammary gland, differential efficiency of
intestinal absorption, and differential storage of some OBCFA in adipose tissue, followed
by their release during periods of fat mobilization.

The C17:1c9 was not detected in sheep and it was found in negligible amount in goat
milk and fresh cheese. In the mammary gland, the delta-9 desaturase activity can promote
the metabolization of some odd-chain fatty acids; only the conversion of C17:0 to C17:1cis9
has been found of quantitative importance in cows [37]. It has also been reported with
a mean concentration of 0.2% in milk of Assaf ewes raised in controlled and intensive
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farming system [33]. Therefore, the lack of C17:1c9 in Sarda dairy ewes might be related to
specific environmental condition related to the typical extensive breeding system of Sarda
dairy ewes and Sardinian goats.

The total content of OBCFA in sheep milk is higher in this experiment than that
reported for cows [36] and sheep (3.19 g/100 g of total FA) [33]. Differences could be
related to different feeding strategies at farm level, as grazing pasture, or vegetable lipid
supplementation, forage to concentrate ratio or other dietary factors, that deserve to be
further investigated.

Table 1. Odd and branched chain fatty acid in milk and cheese of sheep and goat species.

Sheep Goat p-Value

Milk Cheese SEM 1 Milk Cheese SEM 1 MvsC 2 Species

Fat, % 6.15 28.81 5.42 21.17 * *
Fatty acid 3

iso C13:0 0.015 0.022 0.002 0.018 0.017 0.004 ns ns
iso C14:0 0.105 0.102 0.006 0.107 0.111 0.005 ns ns
iso C15:0 0.288 0.278 0.016 0.233 0.236 0.023 ns **
iso C16:0 0.288 0.290 0.006 0.239 0.253 0.018 ns **
iso C17:0 0.420 0.406 0.009 0.159 0.170 0.015 ns **
anteiso
C13:0 0.050 0.052 0.010 0.066 0.073 0.014 ns *

anteiso
C15:0 0.560 0.546 0.010 0.374 0.392 0.043 ns **

anteiso
C17:0 0.495 0.502 0.008 0.381 0.399 0.031 ns *

C13:0 0.095 0.080 0.011 0.070 0.072 0.009 ns *
C15:0 1.178 1.214 0.052 0.880 0.893 0.073 ns **
C17:0 0.668 0.656 0.029 0.787 0.749 0.031 ns **

C17:1 cis9 0.000 0.000 0.000 0.007 0.002 0.007 ns *
BCFA 2.22 2.20 0.037 1.45 1.51 0.128 ns *
OCFA 2.00 2.00 0.075 1.65 1.67 0.083 ns *

OBCFA 4.22 4.20 0.103 3.16 3.12 0.216 ns *
1 SEM = standard error of means; 2 MvsC = Milk vs. Cheese; 3 Fatty acids: expressed as mg/100 mg of FAME; ** p ≤ 0.01, * p < 0.05, ns not
significant p ≥ 0.05.

3.2. Experiment 2: Seasonal Variation of Branched and Odd Chain FA

Seasonal variation of individual and group of branched and odd chain fatty acid has
been investigated by collecting cheese samples throughout all lactation period of sheep
and goats, that in Sardinia, as in all Mediterranean environmental conditions, occurs from
January (start of lactation) to July (when animals are dry off).

The temporal evolution of these FA in cheese showed an increase of total OCFA and
BCFA in both species (p < 0.05) across all the sampling period (Figure 1a,b); the highest
contents of these FA were observed in the cheese produced with milk in advanced lactation,
which corresponds also to the hot season. The increase of OBCFA across lactation has been
previously reported in dairy cows [34].

Among individual OCFA, the content of odd C15:0 during lactation followed the same
pattern of the total OCFA, being the main representative of this group of FA (Figure 2a),
whereas C17:0 showed constant concentration during the early and mid-lactation, then
increased at the end of lactation, in June and July for both species (Figure 2b). As far as
the changes of individual BCFA during lactation are concerned, both anteisoC15:0 and
anteisoC17:0 (Figure 2c,d) followed a similar pattern observed for total BCFA.
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Figure 1. Temporal evolution of (a) odd chain fatty acids (FA) and (b) branched chain FA from January to July in cheeses
from sheep (light grey line) and goats (dark grey line) milk.
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Figure 2. Temporal evolution of (a) C15:0, (b) C17:0, (c) anteisoC15:0) and (d) anteisoC17:0 from January to July in sheep
(light grey line) and in goats (dark grey line) cheeses.

Changes in the animals’ diet during the period under investigation, and in particular
the progressive modification of pasture grazed by animals, can be the most probable
explanation for the observed FA patterns. In fact, the typical lactation curve of the Sarda
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sheep breed follows the natural availability, both in quantitative and qualitative terms, of
pastures [38]. As lactation progress, there is a worsening of nutritional quality of pasture
characterized by increase of fiber and a reduction of protein and FA contents, especially
alpha-linolenic acid (C18:3n3), which concentrations decrease in mature grass [39,40].
This is supported by evolution of C18:3in cheeses samples as lactation progress (data not
reported), that confirmed the pattern of Sarda ewes previously observed [28].

Different mechanisms could be hypothesized to explain this pattern. One mechanism
could be related to the decrease of polyunsaturated fatty acids (PUFA) in the pasture
that could have reduced the toxic effect of unsaturated lipids on microbial growth [41,42],
especially of cellulolytic bacteria [43]. This could increase the rumen microbial abundance,
followed by higher rumen outflow of fatty acid of microbial origin. A second possible
explanation could be the positive association between OBCFA and dietary fiber as with
progress of lactation there is an increase of neutral detergent fiber (NDF), especially acid
detergent lignin (ADL) in pasture. This is supported by previously observation in dairy
goats where dietary NDF was found the most important factor of variation in lipid compo-
sition of bacteria; and in dairy cows where the proportion of odd- and branched-chain FA
increased and those of even-chain saturated FA decreased with increasing forage [44].

The contents of almost all OBCFA in goat cheese differed from that of sheep, con-
firming the findings of the experiment 1. It is noteworthy that the goat’s milk processed
into cheese in this Mediterranean area comes from animals raised in extensive system,
characterized by natural pastures rich also in shrubs and essences of the Mediterranean
maquis, which contains tannins. These different pasture conditions among species could be
a possible explanation of the different concentrations in OBCFA observed between sheep
and goats [45].

In order to assess the overall differences among sheep and goat cheese in terms of FA
composition, a multivariate statistical analysis was carried out on the detailed FA profile.
In particular, PCA was used because it is a useful instrument to reduce the complexity of a
multivariate space, such as that of FA of cheese, and has demonstrated to be able to separate
samples (e.g., of different origin, dietary treatment, season of production, lactation stage),
based exclusively on the FA composition [46–48]. An important application of PCA could
be, as an example, the authentication of dairy products according to their lipid profile [49].

The first five principal components (PCs) explained the 80% of the total variance, with
the two first PCs accounting for more than 50% (PC1 and PC2, 36% and 22%, respectively).
The plot of the scores of the PC1 and PC2 (Figure 3a) allows the clustering of cheeses
according to the season of milk production (PC1) or to their species of origin (PC2). Cheeses
produced during winter–early spring season had positive scores for PC1, whereas those
produced during late-spring–summer season had negative scores. Regarding the PC2, goat
and sheep cheese had positive and negative scores, respectively. In the same plot, can be
also observed that the Fa profile of sheep cheese was characterized by a larger variability
compared to goat one, across the seasons of production.

The loadings of the first two PCs are plotted in Figure 3b. PC loadings can be used
to describe and explain the main FA differences among the clusters of cheese observed in
Figure 3a, i.e., the plot of the scores (cheese produced in different season or from milk of
different species).

The original variables (i.e., single fatty acids) exhibiting the highest loading values for
the 2 PCs (both negatives and positives) can be used to describe the main differences, in
terms of FA, among samples belonging to the cheese of the two species and, also, produced
in different seasons.

PC1 had high positive loadings for short chain FA (C4:0, C6:0, C8:0, C10:0), alpha
linolenic acid, vaccenic and rumenic acid. High negative loadings for PC1 were observed
for different long chain saturated FA (C20:0, C22:0, C24:0) and for the C18:1cis-9. This
pattern was quite consistent with the milk (and cheese) FA variation during seasons, due to
the worsening of pasture quality: in particular, the decrease of alpha-linolenic, vaccenic and
rumenic acids in dairy products is correlated to the decrease in pasture of alpha-linolenic
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acid content from winter to summer. In addition, PC1 loadings can be also related to the
lactation progress (high short chain FA in early lactation and increase in C18:1 cis-9 in mid
and late lactation, in response to the energy requirement). This double effect of pasture
quality and animal lactation stage on the FA composition of cheese (particularly in sheep
cheese) was recently reported by [48]. As aforementioned, it is likely to be a consequence
of the typical seasonality of lambing of Sarda dairy sheep.

PC2 had larger negative loadings for rumenic acid, C4:0 and some OBCFA, in par-
ticular, anteisoC15:0, C15:0, and some isomer of C18:1, including vaccenic acid. Higher
positive loadings of PC2 were observed for C18:0 and C10:0. This pattern suggested a
better FA composition of sheep cheese, from a nutritional point of view, considering that
FA with negative loadings for PC2 (including some OBCFA), and, therefore, mostly related
to sheep cheese, have been associated to beneficial aspect on human health, that were the
subject of this work. Due to its nutritional importance, the rumenic acid (most abundant
and important CLA isomer) should be mentioned. This FA has been received particular
attention due to the important beneficial healthy effects shown in vitro, animal and human
as well [50,51]. The higher concentration in sheep milk (and cheese) compared to that of
goat has previously been reported [45].

 

(a) 

Figure 2. Cont.
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(b)

Figure 3. Scores (a) and loadings (b) plots of the two first principal components explaining 36 and 22% of the total variance,
respectively. In Figure 3a, circle identifies goat cheese, triangle identifies sheep cheese; green symbols identified cheese
produced in winter early spring, red symbols identified cheese produced in early spring–summer.

4. Conclusions

Results of the present survey showed that odd and branched chain fatty acids concen-
trations in the fat of fresh cheese is related to their content in both sheep and goats’ milk.
The seasonal evolution evidenced that OBCFA concentrations in milk fat increase with
advancing lactation, probably due to variation in feeding technique typical of extensive
system of Mediterranean area characterized by animal grazing on pasture. As lactation
progress, the pasture availability and quality gets worse, leading to a reduction in the
content of PUFA and protein and to an increase in fiber content. These results showed that
cheese could be an important source of OBCFA, but the concentration could vary according
to the lactation stage. The use of PCA on the detailed FA profile of cheese confirmed the
higher nutritional quality of sheep cheese for beneficial FA including OBCFA compared to
the goat one, and the importance of the period of sampling in the definition of the fatty
acids profile.
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Abstract: The aim of this work was to evaluate, by an untargeted metabolomics approach, changes
of milk metabolites induced by the replacement of soybean hulls with cocoa husks in the ewes’ diet.
Animals were fed with a soybean diet integrated with 50 or 100 g/d of cacao husks. Milk samples
were analyzed by an ultra high performance liquid chromatograph coupled to a time of flight mass
spectrometer (UHPLC-QTOF-MS) platform. Multivariate statistical analysis showed that the time of
sampling profoundly affected metabolite levels, while differences between treatments were evident
at the fourth week of sampling. Cocoa husks seem to induce level changes of milk metabolites
implicated in the thyroid hormone metabolism and ubiquinol-10 biosynthesis.

Keywords: mass spectrometry; animals management; thyroid hormone metabolism; ubiquinol-
10 biosynthesis

1. Introduction

In the Mediterranean basin, where dairy sheep and goats breeding is widespread,
the use of agricultural by-products in the diet of small ruminants is an ancient practice.
Today the great availability of agro-industrial by-products produced worldwide opens
the door to other products to be tested. Noteworthy, the use of co-feeds can contribute
to reducing the impact associated with ruminant’s management. Several positive aspects
were observed when agro-industrial by-products (e.g., grape, olive, tomato, citrus pulp
and myrtle residues) were included in the diet of small dairy ruminants. In particular,
it has been reported that the diet implementation with these by-products has beneficial
effects on ruminal metabolism, animal health, and quality of derived products [1–3].

Cocoa husks represent the part of cocoa pod left over and are the principal by-products
derived from Theobroma cacao L., representing an important crop for many tropical develop-
ing countries. Cocoa husks are obtained after the removal of the cocoa beans, the principal
commercial product of cocoa processing [3]. Husks represent 70–75% of the fruit weight [4]
and, besides limited local use, are considered as waste [5]. Cocoa pod husks along with
other industrial by-products such as cocoa bean shells, cocoa bean meal and cocoa germ
can be used as feed especially in the developing countries.

Purine alkaloids, including theobromine, theophylline and caffeine, and other methyl-
xanthines, play a substantial role in pharmacology and food chemistry. A limited number
of plant species accumulates purine alkaloids, such as caffeine and theobromine, which
are synthesized from xanthosine, a catabolite of purine nucleotides. The most widely
distributed methylxanthine in the plant kingdom is the antioxidant caffeine, which accu-
mulates in leaves and seeds of tea (Camellia sinensis), coffee (Coffea arabica) and a limited
number of other species. Considerable amounts of theobromine are stored in the seeds of
cacao (Theobroma cacao) [6]. Moreover, from a pharmacokinetic point of view, theobromine
can be easily adsorbed, with a low protein binding affinity and distributed into body
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tissues with no specific tissue accumulation [7]. Despite the positive health benefits of
consuming foods containing purine alkaloids [8] one of the limits in the use of cocoa
husks as supplementary feed for animals is the fact that in certain amount, theobromine,
can be toxic [9]. The EU Scientific Opinion of the Panel on Contaminants in the Food
Chain reported that when exposed to theobromine dairy cows showed reduced milk yield,
increase in fat levels, and adverse effects such as hyperexcitability, sweating, increase in
respiration and heart rates [10]. Reported levels of theobromine in cocoa husk meal are
in the range of 1.5–4.0 g per kg of feed material and UE regulations set for ruminants the
maximum levels of theobromine in feed materials at 300 mg/kg. On the other side, cocoa
husks on a dry matter basis (DM) are a good source of neutral detergent fiber (NFC 38–
44%) and high variable concentrations of non-fiber carbohydrate (NFC 17.5–47% on DM),
crude proteins (CP 2.1–9.1% on DM), and lipids (ethyl esters 0.6–4.7% on DM); phenolic
compounds account for 4.6–6.9% of gallic acid/100 g DM. However, the high content of
acid detergent lignin (19.6% on DM) derived from cocoa pericarp affects the digestibility of
this by-product, limiting its further use in animal feeding [11].

Metabolomics is a largely used branch of omics sciences used to explore the com-
position, relative levels, dynamics, and interactions amongst metabolites in an organism
or biological system in response to various stimuli, diet or treatments. In the field of
dairy, metabolomics has been used for example in the authentication of beef production
systems [12], in the milk to investigate metabolite differences of healthy, subclinical, and
clinical mastitis cows [13] or sheep milk grazed on different grazing systems [14], while in
cheese samples used for discriminate cheese produced from raw or thermized milk [15].

To our knowledge, experimental data on theobromine carry over in milk are not
available, as well as the metabolic effects of cocoa husks diet supplementation. In a
previous work, milk and blood parameters of ewes supplemented with different doses of
cocoa husks were evaluated [5]. In this experiment DMI and milk yield were not affected;
however, milk protein content increased with cocoa husk supplementation. Furthermore,
the cocoa husks supplementation lowered milk somatic cell count (SCC), suggesting a
beneficial role of these by-products on mammary health status. Both systemic and local
health conditions were good as evidenced by hematological parameters and electrophoretic
profile of serum protein fractions [5]. Both systemic and local health conditions were good
as evidenced by hematological parameters and electrophoretic profile of serum protein
fractions [5]. Taking into consideration these results, we decided to investigate the potential
beneficial nutritional outcomes by exploring, for the first time, milk metabolite profile
changes of healthy ewes fed with a diet supplemented with 100 g/d per head soybean
hulls that were replaced with 50 and 100 g/d per head of cocoa husks, respectively. In
order to pursue these objectives, we used a liquid chromatography mass spectrometry
metabolomics platform and multivariate statistical analysis.

2. Materials and Methods

The experiment was approved by the Ethics Committee of the University of Sassari
(no. 54584/2018).

Animals and diets. As previously described [5], twenty-four Sarda dairy ewes in mid
lactation stage (120 days in milking), at third parity, with an average body weight of 42.5 kg
were divided into three homogenous groups. Each experimental group received a total
mixed ration (2.58 kg/d per head) as the basal diet and received (a) a supplement of
100 g/d per head of soybean hulls (CH0 group); (b) half of the soybean hulls supplement
was replaced with 50 g/d per head of cocoa husks (CH50 group); and (c) soybean hulls
was totally replaced with 100 g/d per head of cocoa husks (CH100 group). Theobromine
concentration was 130 ± 12 and 253 ± 27 mg/kg of DM for the CH50 and CH100 diets,
respectively. The CH was administered individually during milking, mixed with beet pulp
to increase palatability. The experiment lasted 8 weeks (from May to June 2018), with the
last 4 weeks of sampling collection. Individual milk samples were collected weekly at
morning milking.
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Chemicals. Sigma Aldrich (Milan, Italy) reagents were used for the analysis. Bi-distilled
water was obtained with a MilliQ purification system (Millipore, Milan, Italy).

Sample preparation for UHPLC-QTOF/MS analysis. Individual milk samples from the
morning milking were stored into sterile plastic Falcon tubes at −80 ◦C before analysis.
Prior to UHPLC-QTOF/MS analysis, the 107 individual sheep milk samples were thawed
and thoroughly vortex mixed. A total of 150 μL of milk samples were transferred to
Eppendorf tube containing 10 uL of the internal mixture of standards (Splash, Lipidomics,
Sigma Aldrich, Milan, Italy) and added with 525 μL of methanol and 525 μL of MTBE.
Samples were then mixed by vortexing for 1 min. Next, samples were centrifuged at
4000 rpm for 15 min. Subsequently, a second round of centrifuge was performed at
12000 rpm for 5 min. Before transferring to autosampler vials, the supernatant was filtered
through a 0.22 μm MS nylon syringe filter.

UHPLC-QTOF/MS analysis. After extraction with MTBE/methanol, the supernatant
of milk samples was analyzed with a 6560 Q-TOF (Agilent Technologies, Palo Alto, CA,
USA) coupled with an Agilent 1290 Infinity II LC system. An aliquot of 1.0 μL from each
sample was injected in a Kinetex 5 μm EVO C18 100 A, 150 mm × 2.1 μm column (Agilent
Technologies, Palo Alto, CA, USA). The column was maintained at 50 ◦C at a flow rate
of 0.5 mL/min. The mobile phases consisted of (A) methanol:water (90:10, v/v) with
ammonium acetate (10 mM) and (B) acetonitrile:methanol:2-propanol (20:30:50, v/v) with
ammonium acetate (10 mM). The chromatographic separation was obtained using the
following gradient—0 min 70% B kept for 1 min; 1–3.5 min 86% B; 3.5–10 min 86% B;
10.1–17 min 100% B; 17.1–19 min 70% B. The analytical setup used was equipped with an
Agilent jet stream technology source which was operated in both positive and negative
ion modes with the following parameters: gas temperature,200 ◦C; gas flow (nitrogen)
10 L/min; nebulizer gas (nitrogen), 50 psig; sheath gas temperature, 300 ◦C; sheath gas flow,
12 L/min; capillary voltage 3500 V for positive and 3000 V for negative; nozzle voltage 0 V;
fragmentor 150 V; skimmer 65 V, octapole RF 7550 V; mass range, 40–1700 m/z; capillary
voltage, 3.5 kV; collision energy 20 eV in positive and 25 eV in negative mode. An Agilent
MassHunter software was used for instrument control (revision B.09.00).

Multivariate statistical data analysis (MVA). The QTOF-MS data were submitted to
the web platform XCMS [16]. The workflow allows feature detection, retention time
correction, alignment, annotation, statistical analysis, and data visualization. Retention
time, m/z values, and intensities of each feature obtained from XCMS were then submitted
to multivariate statistical analysis (MVA), as implemented in SIMCA-P+ software (version
14.1, Umetrics, Umeå, Sweden). Prior to MVA, QTOF-MS features were mean centered and
scaled to unit variance column-wise. Principal component analysis (PCA) was performed to
investigate sample distributions, deviating features and prevailing trends. This technique
reduced the dimensionality of data set retaining most of the variance. Results are shown
as scatter plots of scores and loadings in the first principal components, reporting sample
and variable displacement in the hyperplane, respectively. The partial least squares-
discriminant analysis (PLS-DA) and its orthogonal variant (OPLS-DA) were performed for
classification of samples and identification of the most discriminant variables. The quality
of the models was evaluated based on the cumulative parameters R2Y and Q2Y, the latter
estimated by cross validation, and tested for overfitting using a y-table permutation test
(n = 400). The variable importance in projection (VIP) score summarizes the contribution of
each variable to the model. The VIP scores in the predictive component were analyzed and
only those metabolites having VIP values > 1 were considered as discriminant between the
classes [17].

3. Results and Discussion

This untargeted metabolomics approach on dairy ewes was conceived to provide a
molecular and biological insights on milk metabolite changes induced by a diet integrated
with 50 or 100 g/d of cacao husks. Moreover, we designed this cost-efficient metabolomics
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study to measure predictive metabolite biomarkers to be used in exploring feed suitability
and efficiency.

For these purposes, a total of 107 sheep milk samples were analyzed with a UHPLC-
QTOF/MS platform, (Figure S1 reported the LC-MS chromatograms). After analysis,
raw mass spectrometry data acquired were then uploaded to the XCMS platform, which
generated an average of 7700 and 3300 features for the positive and negative modes,
respectively. The XCMS outputs were submitted to multivariate statistical analysis using
the software SIMCA.

A PCA was performed to explore similarities of milk sample metabolic profiles of
the three diets over the experimental sampling period. Results indicated that metabolic
similarities of milk samples were mainly due to the time of sampling, as clearly visible in
the score plots shown in Figure 1 for the positive and negative ionization modes.

 
(a) 

 
(b) 

Figure 1. Principal component analysis (PCA) score plots of milk samples. Samples are colored by week of treatment (first,
blue; second, red; third, green; and fourth, light blue circles). Metabolite data collected in the liquid chromatography-mass
spectrometry (LCMS) (a) positive and (b) negative ionization modes.

Information collected for the two ionization modes yielded similar results (i.e., samples
collected in the two first weeks of treatment clustered together as a result of similar
metabolite profile, while milk samples from the third and the last week of experiment
can be easily differentiated along the second principal component (PC2) in the positive
and negative ionization modes). Interestingly, the same pattern was observed for milk
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yield, as shown in Figure S2, whereby the first two weeks gave comparable average values
for all the group samples, followed by a drastic milk yield drop after the second week
of sampling (from the 13 to 26 of June). A decrease of milk yield and lactose content
and an increase in fat and protein content, due to a milk concentration effect, during the
late-spring/summer seasons were already reported as a natural evolution of the lactation
curve in dairy Sarda sheep [18]. Probably these milk qualitative and quantitative changes
due to lactation seasonality have caused an overall modification of the metabolic profiles
captured by the PCA.

Attempts to differentiate samples based on the diets (CH0, CH50, and CH100) were
carried out by performing three-classes PLS-DA for each time point for positive and
negative modes. The multivariate statistical analysis failed to discriminate samples for the
first three weeks of sampling (data not shown) whereas at the fourth week of treatment,
samples were properly classified, with high statistical confidence (Figure S3), indicating that
the effects of the cocoa husks supplementation on milk metabolic profile were evident only
in the last time point. Subsequently, with the purpose of finding discriminant metabolites,
pairwise OPLS-DA were carried out comparing the three groups of milk samples collected
in the last week of treatment (Figure 2). In Tables 1 and 2 we reported the list of discriminant
metabolites, their biological significance, and regulation in sheep milk samples.

R2Y = 0.99, Q2Y = 0.68, Q2perm = 0.0, 0.017 
(a) 

 
R2Y = 0.99, Q2Y = 0.75, Q2perm = 0.0, 0.0089 

(c) 

 
R2Y = 0.99, Q2Y = 0.86, Q2perm = 0.0, 0.077 

(b)

 
R Q2perm = 0.0, 0.042

(d)

Figure 2. Score plots of pairwise orthogonal partial least squares-discriminant analysis (OPLS-DA) of milk samples data in
liquid chromatography-mass spectrometry positive ((a) CH0 vs. CH100 and (b) CH50 vs. CH0), and negative ((c) CH0 vs.
CH100 and (d) CH50 vs. CH0) ionization modes. CH0 = green circles; CH50 = red boxes; CH100 = light blue triangles.
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Table 1. Orthogonal partial least squares-discriminant analysis (OPLS-DA) main discriminant metabolites as variable
importance for prediction (VIP > 1) detected in positive ionization modes.

Positive Ionization Mode
RT (min) m/z Adduct Metabolite VIP Regulation Pathway Involved

1.14 279.1603 [M+H]+ α-carboxyethyl-hydroxychroman 2.21 down Vitamin E
metabolism

6.57 707.5197 [M+K]+ 2-methoxy-6-(all-trans-
octaprenyl)phenol 1.93 down Ubiquinol-10

biosynthesis

5.77 717.5652 [M-H2O+H]+ 1,2-dipalmitoyl-
phosphatidylcholine 1.81 down

1.26 631.4714 [M-H2O+H]+ dipalmitoyl phosphatidate 1.80 down

0.64 336.0713 [M+H]+ β-nicotinamide D-ribonucleotide 1.55 up NADH synthesis

0.61 145.0504 [M-H2O+H]+ 1,5-anhydro-D-fructose 1.43 up

0.64 158.0415 [M+2H]2+ geranyl diphosphate 1.40 up

0.63 118.0876 [M-NH3+H]+ L-ornithine 1.26 up Urea cycle

0.66 321.0601 [M-H2O+H]+ 5-amino-1-(5-phospho-D-
ribosyl)imidazole-4-carboxamide 1.15 up Purine metabolism

8.69 817.6885 [M-H2O+H]+ 6-methoxy-3-methyl-2-all-trans-
decaprenyl-1,4-benzoquinol 1.07 down Ubiquinol-10

biosynthesis

Table 2. Orthogonal partial least squares-discriminant analysis (OPLS-DA) main discriminant metabolites (VIP>1) detected
in negative ionization modes.

Negative Ionization Mode
RT (min) m/z Adduct Metabolite VIP Regulation

0.62 179.0572 [M-H]− theobromine 2.43 up
0.64 211.0842 [M-H]− phenylalanine 2.34 up

6.17 710.6315 [M-2H2O-H]− tetraiodothyroacetate 1.75 down Thyroid hormone
synthesis

6.48 833.6484 [M-H]− 3,4-dihydroxy-5-all-trans-
decaprenylbenzoate 1.61 down Ubiquinol-10

biosynthesis

6.15 812.6624 [M+Cl]− L-thyroxine 1.60 down Thyroid hormone
synthesis

11.38 369.3014 [M+CH3COO]− phytenate 1.58 down Phytol degradation
0.72 815.0952 [M+CH3COO]− 5′,5′ ′ ′-diadenosine triphosphate 1.49 up Purine metabolism
0.65 259.0235 [M-H]− hexose 6-phosphate 1.40 up
0.64 478.9864 [M+Na-2H]− 8-oxo-GDP 1.36 up
0.61 267.0740 [M-H]− inosine 1.20 up Purine metabolism
7.33 311.2968 [M-H]− arachidic acid 1.08 up
11.41 489.3955 [M+CH3COO]− α-tocopherol 1.03 down
0.66 142.0214 [M-2H2O-H]− L-cysteinyl-glycine 1.00 up
1.58 435.2918 [M+CH3COO]− all-trans/10′-apo-β-carotenal 1.00 up Carotenoid cleavage

From the analysis of discriminant metabolites, as summarized in Tables 1 and 2, we
found that the addition of cocoa husks in the dairy lactating sheep diet affected levels
of different metabolites which are involved in different metabolic pathways, including
ubiquinol synthesis and thyroid hormone metabolism. In particular, we found that in milk
samples of lactating ewes the thyroid hormone L-thyroxine (T4) and tetraiodothyroacetate,
or tetrac (T4A), were down regulated for both CH50 and CH100 groups, thus suggesting
a modification of the thyroid hormone metabolism. Levels of T4 and T4A are shown in
Figure 3, indicating that, in the first two weeks of treatment, group samples showed similar
average values. Levels where higher in the third week and in the last week CH50 and
CH100 groups showed lower values when compared to CH0.
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(a) (b) 

Figure 3. Box plots of (a) thyroxine (T4) and (b) tetraiodothyroacetate (T4A) levels in milk samples for the CH0, CH50, and
CH100 groups in the last four weeks of treatments (week 1 = blue, 2 = red, 3 = green, 4 = cyan).

The thyroid hormones T4 and 3,5,3′-triiodo-L-thyronine (T3) are regulated at many
metabolic levels. In addition to deiodination (thyroid hormone metabolism I pathway),
other routes of thyroid hormone metabolism have been described and metabolically ac-
tive metabolites have been identified. In the thyroid hormone metabolism pathway (via
degradation), small amounts of T4 may also be oxidatively deaminated at the alanine side
chain to yield T4A. The oxidative deamination due the kidney L-amino acid oxidase seems
the most probable explanation [19,20]. The acetic acid analogues of thyroid hormones are
formed in the liver and other peripheral tissue by a two-stage process involving transami-
nation followed by oxidative decarboxylation [21]. T4A may be conjugated to form ether
glucuronides or ester glucuronides of these metabolites may form by conjugation of the
phenolic hydroxyl group, or carboxyl group respectively [20].

Thyroid hormones in milk should derive from circulating blood, then undergoing both
desiodative and non-desiodative metabolism. A reduction in milk T4 could; therefore, be
derived from a reduction in circulating T4 levels or from the reduction in T4 level available
at the mammary gland, due to the effect of interferents on the transporters of thyroid
hormones, or, finally, by increased desiodation of T4. The reduction of milk T4A level
seems the logical direct consequence of the reduction of T4, deriving the T4A directly from
T4. Thyroid hormones play a relatively important role in lactational processes. In small
ruminants and, in particular, in free grazing animals which are subjected to seasonality,
endogenous (breed, age, gender, physiological state) and environmental factors (climate,
season, with a primary role of nutrition) are able to impact on thyroid activity and hormone
blood levels [22]. During heat stress, an increase of blood T4 concentration and a decrease
of milk production were reported in sheep [23,24]. This trend was evident also in our
milk samples, which were collected in June, where, during the experimental period, in
the CH0 group the milk T4 levels inversely follow the milk production trend (Figures
S2 and S4). Differently from CH0, in the last week of sampling, milk T4 levels dropped
in the CH50 and CH100 groups (Figure S4), thus indicating a goitrogenic effect of cocoa
husks on milk T4. In the rat, Wolff and Varrone (1969) reported that methyl-xanthines (i.e.,
theobromine, theophylline, and caffeine) showed a goitrogenic effect and are; therefore,
to be considered weak anti-thyroid agents if present in the diet at concentrations varying
between 5–20 microM [25]. Further studies will be carried out to better evaluate this effect
in sheep, measuring the volume of the thyroid glands and the concentration of T4 and TSH
in ewes’ blood after consumption of cocoa husks. At the milk level, which only contains
traces of iodothyronines, which; therefore, do not represent a significant nutrient of the
milk itself, as opposed to iodine, any reduction in concentration should not be particularly
relevant for its nutritional value.
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Notably, phenylalanine was found up-regulated in CH50 and CH100 milk samples.
Considering that phenylalanine is the precursor of tyrosine and the thyroid hormone T4 is
a tetraiodinated derivative of tyrosine [22], this fact confirms a dysregulation of thyroid
hormones metabolism.

The discriminant metabolites: 2-methoxy-6-(all-trans-octaprenyl)phenol, 6-methoxy-3-
methyl-2-all-trans-decaprenyl-1,4-benzoquinol, and 3,4-dihydroxy-5-all-trans-decaprenyl
benzoate, involved in the ubiquinol-10 biosynthesis, were found down regulated in milk
samples of the CH50 and CH100 groups with respect to CH0 (Table 1). Coenzyme Q
(CoQ10), also known as ubiquinone, is an essential component of the mitochondrial
respiratory chain and participates in aerobic cell respiration. The reduced ubiquinol form
of CoQ10 is a chain-breaking antioxidant, decreasing oxidative damage caused by lipid
peroxidation within mitochondria. The cocoa husks feeding regime, showed markedly
lower levels of intermediate metabolites of the CoQ10 pathway compared to the controls. To
the best of our knowledge, no studies of theobromine effects on CoQ10 pathway have been
widely reported, but interference of phenolic compounds has been found in liver of rats [26].
Specifically, the authors found that pentagalloylglucose, which is a component of tannic
acid, was able to interfere with the CoQ10 pathway: At low concentration inhibiting the
electron transport system, while at high concentration impairing the structural integrity of
the mitochondrial membrane. Consistently, CoQ10 was found to affect the pharmacokinetic
parameters of theophylline [27], an alkaloid of the xanthine family.

Remarkably, in the negative ionization mode we found different discriminant metabo-
lites involved in the purine metabolism (Table 1). Inosine is a purine nucleoside formed by
deamination of adenosine and, in the context of purine metabolism, is further transformed
to hypoxanthine by the enzyme phosphate alpha-D-ribosyltransferase and then to xanthine
and to uric acid. The fact that inosine was found upregulated in milk samples of sheep
consuming cocoa husks may be associated to the inhibition of the enzyme phosphate alpha-
D-ribosyltransferase, in order to reduce the increase of xanthines and uric acid derived
from the metabolism of theobromine.

Our experimental findings are in accordance with scientific opinion of EFSA [10] on
theobromine as an undesired substance in animal feed. In the EFSA report, theobromine
was reported as showing moderate acute toxicity on dog and rodents, while in horses,
which are particularly susceptible to theobromine, the liver and thyroid were affected, and
pigs showed growth retardation, diarrhea and lethargy. Particular attention should be paid
on the levels of theobromine and other alkaloids present in the industrial by-products in
the preparing of the dairy sheep’s diet.

4. Conclusions

In this paper we show evidence, with an untargeted metabolomics approach, that
sheep milk metabolite profiles are profoundly altered on the basis of an eight-week diet
containing 50 and 100 g/d of cocoa husks. In particular these effects were more pronounced
in the eighth week, at the end of the treatment. Moreover, this approach allowed us to
highlight changes in multiple metabolic pathways. Importantly, the thyroid hormone L-
thyroxine (T4) and tetraiodothyroacetate (T4A) were found down regulated for both CH50
and CH100 groups, thus suggesting a modification of the thyroid hormone metabolism.
Furthermore, different ubiquinol-10 biosynthesis metabolites were found down regulated
in milk samples of the CH50 and CH100. Biochemical mechanisms related to these changes
remain unclear, while thyroid hormones levels should be further investigated in the ewes’
blood. In conclusion, taking into account these results, particular attention should be paid
when using cocoa by-products in small ruminant feed management.

Supplementary Materials: The following are available online at https://www.mdpi.com/2624-862
X/2/1/11/s1: Figure S1. Milk sample overlaid chromatograms of CH0, CH50, and CH100 groups
acquired in positive (a) and negative (b) ionization mode. Figure S2. Temporal evolution of milk
yield in the control (CH0) and in the two cocoa husks supplemented groups (CH50 and CH100).
Figure S3. Partial least square discriminant analysis (PLS-DA) score plots of milk samples of the
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experimental groups (CH0, CH50, and CH100) collected in the last week of treatment. Lipid data
collected in the LCMS positive (top, R2Y = 0.62, Q2Y = 0.27) and negative (bottom, R2Y = 0.98, Q2Y
= 0.63) ionization mode. Figure S4. Temporal evolution of thyroxine (T4) milk levels in the control
(CH0) and in the two cocoa husks supplemented groups (CH50 and CH100).
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Abstract: Fiore Sardo (FS), a traditional Italian cheese, is present in the market as a heterogeneous
variety of products. The use of heat-treated (HT) milk is forbidden by the official production protocol,
but no official analytical method able to detect heat application is yet available. Here, a combined
magnetic resonance imaging (MRI) relaxometry and image analysis approach to recognize FS made
from raw milk is presented. Artisanal FS cheeses were produced from raw milk (RC) by five shepherds
in accordance with the official protocol. They were compared to HT-milk counterparts (HTC).
Additionally, industrially manufactured commercial FS cheeses (I) were also purchased and compared
to RC and HTC. Relaxometry data of FS indicated the presence of two water populations; the ratio of
characteristic relaxation time constant T2 and area fraction (Score, Ṩ) of the fastest relaxing population
was used to compare RC, HTC and I samples. RC from HTC were successfully discriminated, the
latter exhibiting lower Ṩ (enhanced protein hydration). I cheeses exhibited the lowest Ṩ values,
sometimes comparable to HTC. Since visual appearance of RC and HTC is appreciably different,
an image analysis deep learning approach using MRI and photographic pictures was adopted to
discriminate the two productions, with promising percentages (>93%).

Keywords: magnetic resonance imaging (MRI); image analysis; Fiore Sardo; cheese; microstructure;
dairy chemistry; thermised milk; raw milk; protected designation of origin

1. Introduction

Protected Designation of Origin (PDO) describes a group of agricultural/food prod-
ucts originating from a specific geographical area, for which production, processing and
preparation must take place according to a recognised know-how [1].

In the European Union, 185 cheeses are registered as PDO products; this number rises
to 231 if cheeses registered as Protected Geographical Indications (PGI) are considered [2].
A first classification of these products can be made based on milk processing. A total of 91
cheeses out of 231 (PDO + PGI) compulsorily require the use of raw milk; in other cases,
the use of both raw and pasteurized/heat-treated milk is allowed. The lack of a specific
requirement allows producers to freely decide how to process milk, leading to cheeses
characterized by very different attributes [3].

The effects of milk heat treatment on cheese features have been extensively investi-
gated and explained. From a microbiological and sensory point of view, the heat treatment
depletes pathogens along with the characteristic microbiota, resulting in a more uniform
final product that exhibits a less characteristic flavour profile compared to the raw milk
counterpart [4]. From a technological point of view, though the application of a heat treat-
ment guarantees improved hygienic conditions during processing and a better safety of the
final product, it can result in an impaired coagulation and syneresis and in an alteration of
cheese rheology and texture [5,6].
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Fiore Sardo PDO (FS) cheese is the oldest cheese of Sardinia (Italy), being historically
produced by shepherds in very small artisanal cheese factories. It must be obtained ex-
clusively using raw whole milk from the Sarda Sheep breed. The official cheesemaking
protocol still follows the ancient traditional process [7]. The peculiarities of the manufactur-
ing process confer to Fiore Sardo a firm, crumbly and grainy texture, which easily breaks
into flakes, and a savoury, piquant and smoky flavour [8–11]. Market offer is characterized
by a quite heterogeneous variety of Fiore Sardo PDO, with very different quality attributes,
with almost 90% of the product supplied by the dairy industry (Agris Sardegna, 2015).

In particular, the use of heat-treated milk for FS production has been associated with
common industrial processing practices [12–15]. Previous studies concluded that this
practice cannot be excluded [16] and that it is not unrealistic that some FS are manufactured
using heat-treated milk, against the specifications indicated in the EC Regulation. From a
scientific point of view, several chemical and physical characteristics of some productions
were found to be reasonably explained by assuming the effects of thermal treatments
on milk [16]. This is also supported by the fact that no official analytical methods able
to discriminate between ewe milk cheese obtained from raw and thermised milk are
available [17].

Some analytical techniques able to discriminate products made from raw milk and
heat-treated milk have been proposed for product quality safeguards [17–21].

Analytical approaches based on nuclear magnetic resonance (NMR) relaxometry are
particularly interesting. This technique was previously applied to describe the thermal
denaturation of whey proteins and other milk components. Lambelet et al. [22], for example,
demonstrated that irreversible thermal denaturation of whey proteins can be detected by
low-field NMR. They observed that when NMR transverse relaxation rates were plotted
versus heating temperature, a sigmoid curve was obtained, with relaxation rate values
showing a steep increase from about 60 ◦C to about 80 ◦C, and a flex corresponding to milk
thermisation/pasteurization temperatures usually adopted in dairy industrial processing
(64 ◦C to 72 ◦C range). Later work by the same research group extended the results to
other milk components and dyalized skim milk [23], suggesting the suitability of NMR
relaxometry for measuring the thermal denaturation of milk proteins. Recent works, based
on a high sample numerosity and exploiting an experimental setup more closely resembling
real industrial processing conditions, demonstrated that the effect of heat treatment on milk
is transferred to NMR relaxometry characteristics of both rennet curd and aged cheese. Raw
and heat-treated milk [24] and derived curds [25,26] could be successfully discriminated by
benchtop low-field NMR relaxometry. A similar discriminative ability of NMR relaxometry
was also observed in ewe milk mature cheese by high-field magnetic resonance imaging
(MRI) [19].

The aforementioned investigations demonstrated the sensitivity of NMR relaxation
parameters to key cheesemaking processes (mainly thermal treatments of milk) in real dairy
systems (whole milk, curds, mature cheese), suggesting the suitability of NMR relaxometry
as a valid and useful tool in quality control activities in the dairy industry and for the
safeguard of typical dairy productions.

In this study, heat treatments of milk were intentionally applied to produce FS cheese,
and NMR relaxometry of raw and heat-treated FS were compared. Moreover, a comparison
between artisanal and some industrial FS, the latter purchased from the market and visibly
different from the typical FS PDO, was carried out for a more comprehensive evaluation
of the effect of production chain on relaxometry features and aiming to optimize the
exploitation of NMR relaxometry to assess the adherence to the official production protocol.
MRI was used to compare heat-treated samples to their raw counterparts. A supplemental
investigation was also carried out by exploiting image analysis protocols on a selected
subset of MRI images and digital pictures in order to correlate process-induced changes
with MRI image features and the visual appearance of samples.

56



Dairy 2021, 2

2. Materials and Methods

Two sets of experiments were carried out, as summarized in Table S1. The first dataset
(Dataset 1) was acquired by analysing samples made by different artisanal producers in
different seasons. Additionally, a selection of industrial cheeses was purchased from the
local market and subjected to the same analytical protocol used to characterize samples
from Dataset 1.

2.1. Production of Fiore Sardo (FS) Cheese
2.1.1. Dataset 1

Five shepherds (S1, S2, S3, S4, S5) who were artisanal manufacturers of Fiore Sardo
were selected for cheese sample production. Each shepherd produced a total of 20 cheese
wheels in two different seasons (March–April 2019, Season 1; January–February 2020,
Season 2; 100 cheese wheels in total for the two seasons). Ten wheels out of 20 were
produced from raw milk, while the remaining ten were produced from the same milk
after thermisation. Milk thermisation was carried out in different industrial plants, using
plate heat exchanger modules. Cheesemaking was performed according to the official
cheesemaking protocol [7,9], but milk thermisation was used for selected samples. Aged
cheese samples were collected after 105 and 180 days of ripening in each shepherd’s cellar.
One quarter portion of each cheese wheel was sampled at each of the abovementioned
time points, for a total of 10 wheels per producer per ripening time, 5 of which were made
from raw milk (RC) and 5 from heat-treated milk (HTC).

2.1.2. Dataset 2

Industrial FS cheeses with similar ripening (6–8 months) were purchased from the
local market in different seasons (January–November). Both cheeses manufactured by
industrial dairy factories (11 samples) and from a maturer industry (2 samples) were
purchased. Maturer industries buy Fiore Sardo from artisan producers and ripen these
cheeses in their industrial cellars for several months, until they can be released to the
market, i.e., after at least 105 days of ripening, according to the official cheesemaking
protocol. Fiore Sardo PDO cheeses from the maturer industry are sold with the industrial
brands, but milk is processed by shepherds and small artisans according to traditional
processes [9]. A schematic representation of sample production and experimental plans
(relative to both Dataset 1 and Dataset 2) is reported in Figure S1 (Supplementary Material).

2.2. Magnetic Resonance Imaging (MRI) Analysis

Each analytical sample of cheese subjected to MRI analysis represented the most
central part of the cheese wheel, as schematically depicted in Figure S2.

In brief, each quarter was carefully cut in the portion corresponding to the wheel
centre to obtain one cylindrical sample (diameter 2.3 cm, height 3–4 cm) to easily fit into
a 50 mL Falcon tube. All samples were equilibrated to 22 ◦C for 1 h before MRI analysis.
MRI experiments were performed using a Bruker Avance 300 MHz equipped with a
microimaging Micro2.5 probe (Bruker Biospin, Karlsruhe, Germany) at room temperature
(approximately 22–24 ◦C). A conventional Carr Purcell Meiboom Gill (CPMG) spin echo
sequence was used with the following parameters: single 1 mm slice; echo time (TE) =
7.907 ms; repetition time (TR) = 3 s; echoes = 64; matrix = 128 × 128; number of excitations
= 1–3; acquisition time = 25 min. To selectively analyse signals from water, the fat signal
was suppressed, taking advantage of the different chemical shifts of fat and water at 7.05
T, with a 90◦ selective pulse applied before the conventional CPMG spin echo sequence
at a frequency offset of 3.5 ppm with respect to water (preparatory fat saturation scheme
provided by Bruker Topspin). All MR images were characterized by a signal to noise ratio
higher than 100.
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The AnalyzeNNLS software package was used to deconvolute the multi-exponential
transversal relaxation time (T2) decay of water proton signals [27]. Bruker MRI image data
were converted into multiecho image data (MEID) files (Matlab, R2020b, The Mathworks,
Sherborn, MA). Regions of interest (ROIs) were manually drawn on the MEID file (five ROIs
for each image) and automatically processed to obtain the geometric mean T2 (T2 relaxation
time constant, corresponding to the maximum intensity of the peak, on a logarithmic scale)
and the area fraction (obtained by dividing the sum of the T2 distribution within a desired
region between T2 min and T2 max by the sum of all T2 distributions).

2.3. Moisture Content

Moisture content was measured using the rapid determination method for cheese
(130 ◦C, 90 min; [28]).

2.4. Statistical Analysis

The effect of thermisation was evaluated by comparing MRI parameters (geometric
mean T2 and area fractions) between RC and HTC by using univariate Student’s t-test. An
additional statistical comparison (one-way ANOVA, followed by Tukey post-hoc test) was
performed to compare each shepherd’s (i.e., artisanal) production to the industrial and
maturer industry cheeses. Industrial cheeses (11 samples) were considered as a unique
group of data, as were maturer cheeses (2 samples). Both tests were carried out with the
MetaboAnalyst tool (https://www.metaboanalyst.ca, v.5, accessed 20 November 2020) [29],
considering a significance threshold limit of p < 0. 05. Box plots were obtained using
MetaboAnalyst.

2.5. MRI Data Conversion

T2 MRI Bruker Paravision raw 2dseq data from full Dataset 1 were first converted to
Neuroimaging Informatics Technology Initiative (NIfTI, .nii) format using Bru2nii software
(Bruker2NIfTI v1.0.20180303: by Matthew Brett, Andrew Janke, Mikaël Naveau, Chris
Rorden, Windows 64-bit) with a resizing factor of 10. Then, the 64 slices from each NIfTI file
were converted in JPEG format using a Matlab script first developed by Alex Laurence [30].
Only MRI images derived from the first MSME slice (TE = 7.907 ms) were used for deep
transfer learning classification purposes.

2.6. Photographic Acquisition and Processing of Cheese Paste Surfaces

Snapshots of the surface of Fiore Sardo cheese from Dataset 1 produced in Season 1 at
105 days of ripening were taken using a Machine Vision System (MVS) assembled in our
laboratory. Briefly, our MVS consisted of a portable plastified (PVC) white light-box (24
× 23 × 22 cm) equipped with a USB LED strip of white-light-emitting diode lamp (input
5 V, lumen 550, colour temperature 6500 K), assembled on a metallic support and directed
upwards at a 90◦ angle with a cardboard box wall (Figure S3). Photos were taken without
flash using a 25-megapixel-wide camera integrated in a Galaxy A50 smartphone. Cheese
quarters were placed under a dark background and manually adjusted to be below the
camera with a fixed distance of 25 cm. All operations were carried out in a dark room
to minimize the effect of outside light. The acquired images (Joint Photographic Expert
Group—JPEG; 24-bit colour depth, spatial resolution 3072 × 2048 pixels) were stored on a
removable memory card. Images were finally processed by removing black background
and manually cropped by using in-house-modified scripts available in the Matlab Image
Processing Toolbox (Matlab, R2020b, The Mathworks, Sherborn, MA, USA).

Both digital pictures and MRI images were reordered in a concatenated folder structure
according to the scheme illustrated in Figure S4. Each subfolder, related to the two ripening
stages for each season, was separately compressed in zip format as input data for the deep
learning classification described in the following section.
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2.7. Deep Transfer Learning Based Classification

The proposed classification method relies on the deep transfer learning approach
based on deep neural network (DNN) architectures. DNNs consist of a series of functions
that take an input and return a predicted label. For this purpose, labeled input data
were initially split into a training dataset (i.e., the set of data used to fit the model) and a
validation dataset (i.e., the set of data used to provide an unbiased evaluation of a model
fit on the training dataset while optimizing, or tuning, the model parameters). In brief,
labeled input data pass through the DNN network using a loss function to evaluate how
well the model performs at correctly identifying the true classes. The model optimizes for
this loss function by computing the gradient of the loss function with respect to the model
parameters. In parallel, the validation process optimizes the model parameters iteratively
to minimize the loss and perform validation of the trained model [31]. Six pre-trained
DNN frameworks were tested: ResNet [32], AlexNet [33], VggNet [34], SqueezeNet [35],
DenseNet [36] and Inception-Net [37]. All models were implemented using the learning
framework Pytorch, written in Python v. 3.7 and integrated into the open source GPU
web server Google Colaboratory [38]. For the training step, all six DNN frameworks were
trained under the following conditions: number of epoch = 1000; batch size = 8; learning
rate = 0.001; momentum = 0.9. When the loss function converged and stabilized, the
training step was automatically stopped and the training model saved. For the validation
set, 20% of the training dataset data was used, and a 5-fold cross validation was performed
to evaluate the performance of each model. Each model was trained 5 times on each dataset,
and related performance parameters (training and validation accuracy and loss as well as
training time) were computed. Finally, for all pre-trained models, the average values of
the five replicates were calculated and listed in tables in order to compare classification
performance.

3. Results and Discussion

3.1. MRI Analysis of Dataset 1

NMR relaxation of protons can occur only if stimulated by a fluctuating field of proper
frequency that would induce the spin transition, in a non-spontaneous relaxation process
that finally leads to equilibrium magnetization. Longitudinal relaxation, defined by the
constant T1, is triggered by field fluctuations at the Larmor frequency. Contrarily, in solid
or semi-solid systems such as cheese, the major contribution of transverse relaxation,
described by T2, comes from the slow molecular dynamics of the studied liquid at zero
Larmor frequency. For this reason, observed T1 values usually present a very broad
distribution, while populations are sharper and generally better defined for T2. We chose
the latter NMR relaxometry constant to describe the analysed cheeses.

Informative relaxometry features of the samples can be derived by analysing the mul-
tiexponential decay of the transverse magnetization from CPMG experiments at variable
interpulse spacing [19,27,39]. Fitting of CPMG decays of MRI images of FS cheeses indi-
cated a multiexponential behaviour (i.e., two T2 populations), deriving from the presence
of two water proton pools (Figure 1).

Multiexponential decay of the transverse component of NMR magnetization arises
from the combined effect of diffusive and chemical exchange phenomena. In this condition,
water molecules in cheese could be described, at a first approximation, as either free water
or hydration water molecules (i.e., water embedded in the protein matrix and strongly
interacting with it). Of course, the term “free” could be misleading, since water dynamics
in this fraction are in fact much slower than in bulk water. NMR relaxometry is able to
clearly detect the presence of different water pools, since water molecules sample different
domains within the time scale of the CPMG experiment (i.e., the interpulse spacing). When
diffusion is slow (and/or when relaxation domains are large), water molecules in the
free water domain and hydration water retain their characteristic relaxation times, and
multiexponential distribution is observed (e.g., in aged cheese); when diffusion is fast
(and/or heterogeneity of domains is small) (e.g., in protein solutions, milk and curd),
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relaxation of water in different compartments is averaged, and proton transverse relaxation
is mainly monoexponential [24,39,40].

Figure 1. Representative T2 distribution profile of an aged FS cheese at 300 MHz. Two proton
populations are observed, characterized by geometric mean T2 values (T21 and T22) and area fractions
of each population (AF1 and AF2).

At high field, diffusive exchange of water and fast chemical exchange between water
protons, labile protein protons, and exchangeable protons in small molecules (such as
sugars, vitamins, etc.) play a significant role in characterizing the observed relaxation
distributions (Figure 1).

It was shown that in skim milk chemical exchange is mainly modulated by whey
proteins [40], but in whole milk, the role of fat globules should be taken into account,
since fat influences NMR relaxometry results [24]. In addition, it is clear that in cheese
fat, protons might reasonably have a role in defining the observed NMR relaxometry
profiles [41]. However, in the following discussion, the effect of fat protons on the observed
T2 distributions can be reasonably neglected, since fat signal has been saturated by a solvent
suppression pulse in the MRI sequence, as previously explained [19].

For each pool, the mean area fractions (AF1 and AF2) and the corresponding T2 values
(i.e., the maximum intensity of each peak, T21 and T22) were obtained (Table 1).

These data are in agreement with previous studies on aged ewe milk cheese and FS
PDO [19], which also reported a first T2 population relaxing in the range of 7–12 ms and
a second one at 45–53 ms. The main novelty with respect to the mentioned data consists
of the fact that the cheeses analysed in the present work were all made by following
the official cheesemaking protocol of FS PDO, except for the thermal treatment of milk.
Furthermore, a larger amount of data were used here to preliminarily validate observed
data trends; the present results were indeed acquired during a much larger lag time (two
production seasons), and two ripening times (105 and 180 days) were compared. Moreover,
products from five different artisanal producers plus industrial Fiore Sardo PDO cheeses
were analysed.
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Statistical analysis of MRI relaxometry values (Table 1) indicated significant differences
in T21 and T22 values between RC and HTC cheeses. Evaluation of AF suggested the
same consistent trend, with a significantly larger amount of protons in the faster relaxing
population (AF1) in HTC cheeses than in RC. This is in quite good agreement with previous
results on MRI relaxometry of heat-treated milk cheeses [19] and on the sensorial evaluation
of Fiore Sardo cheese, suggesting that sensorial attributes and relaxometric features may
correlate to each other and that they are both more appreciably affected by milk properties
and cheesemaking processes than ripening [11].

Since for each production reported in Table 1 (S1–S5) the same milk was used, the
manufacturing process was carried out by the same dairyman, and ripening time was
exactly the same for both treatments (RC and HTC), the only factor that accounts for the
observed relaxometry differences is milk thermisation.

From a previous investigation [19] and in accordance with pertinent literature [42–44],
the fast relaxing proton pool (described by the pair T21; AF1) can be associated with
a fraction of water molecules strongly interacting with protons and entrapped in the
para-casein network (protein hydration water); the slower population (T22; AF2) can be
associated with more mobile water molecules, which less strongly interact with the cheese
protein network (which is sometimes referred to as bulk or “free” water).

Several different mechanisms may reasonably affect observed transverse relaxation
rates. The first mechanism is related to an altered proportion between more mobile (free)
water pools and water in the vicinity of the protein surface (hydration water), which is
reasonably well described by AF1 [16,19,45]. This mechanism is in turn modulated by the
diffusive exchange rate between water entrapped within the protein network of cheese,
confined in cheese holes or pores and hydration water, and chemical exchange [39,46]
between water protons and labile protein protons (mainly whey proteins [40]). The second
mechanism involves internal water molecules in casein micelles, sometimes referred to
as “bound” water molecules, which represent structural water molecules in the internal
cavities, engaged in slowly modulated intermolecular dipole couplings with protein pro-
tons [46]. A significant effect of these “bound” water molecules on the observed proton
transverse relaxation rate has been already suggested in dairy systems [40]. A third mech-
anism is explained by considering changes in the correlation time of macromolecules as
a function of the ripening and processing methods [16,47]. Finally, relevant contribution
could be expected from the mineral equilibrium of milk and its effect on micelles hydration.
Equilibrium between colloidal (solid) and soluble calcium phosphate is in fact affected by
temperature [48,49]; this has also been observed in Fiore Sardo cheeses manufactured from
raw or heat-treated milk [6]. In particular, higher total calcium was found in Fiore Sardo
produced from raw milk than from thermised milk, and it was hypothesized that mineral
equilibrium in milk was shifted from soluble calcium to insoluble colloidal calcium as an
effect of a high treatment temperature, leading to a higher retention of calcium in Fiore
Sardo from raw milk [6]. Micellar calcium phosphate is a highly hydrated colloid, which
greatly influences proton transverse relaxation. Ca and P association to casein and micelle
hydration are strictly related phenomena, having a marked effect of NMR transverse relax-
ation of protons [40,48,49]. Heat treatment of milk was in fact found to cause precipitation
of calcium phosphate and correspondingly affect proton T2 [48].

3.2. MRI Analysis of Dataset 2

Industrial Fiore Sardo samples were characterized by the presence of two water proton
pools, in agreement with results on artisanal samples RC and HTC discussed above. Mean
area fractions (AF1 and AF2) and T2 values (T21 and T22) are shown in Table 2.

Both relaxation time constants T2 and area values AF were consistent with the HTC
artisanal cheeses analysed in Dataset 1, with the exception of samples from the maturer
industry (I12, I13).

Both the increase of AF1 and the decrease of T21 are the result of a strong interaction
between water protons and the para-casein protein network of cheese, i.e., of cheese protein
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hydration. From a certain point of view, AF1 more directly describes the level of protein
hydration, being determined by the amount of protons in this pool. However, a decrease
of the T21 value, being the result of the weighted average between the (long) T2 of protons
in free water pools and that (very short) of labile protein protons, characterized by a
different chemical shift and affected by the typically long reorientational times of biological
macromolecules, can be indirectly influenced by the amount of protein hydrating water.

Aiming to find suitable and objective descriptors of the relaxometric changes induced
in cheese by milk thermisation, we define a new parameter, namely the Score (Ṩ) factor, as
a representative indicator of the state of cheese microstructure. The Score (Ṩ) is defined as
follows:

S = T21/AF1 (1)

where T21 and AF1 are the relaxation time and the area fraction of population 1, respectively,
of the MRI T2 distribution profile (Figure 1). Based on what was discussed above, the lower
the Score, the more affected cheese microstructure is by milk thermisation. Correspondingly,
the higher the Score, the less influenced are cheese proteins by any thermal effect on milk,
i.e., milk can be considered as raw or untreated.

The calculated Ṩ values (Season 1 and Season 2) are presented in Figure 2.
Even at first glance, two considerations can be made when observing Figure 2: first,

thermisation of milk in HTC cheeses (red symbols) leads to a reduction of Ṩ with respect
to their raw RC counterparts (blue symbols); second, RC samples show much higher Ṩ
variability than their HTC counterparts.

Table 2. T21 and T22 values and correspondent mean area fractions AF1 and AF2 of industrial FS
cheeses (M = Mean; SD = Standard Deviation).

T21 T22 Area 1 Area 2

M SD M SD M SD M SD

I1 8.301 0.055 40.337 0.100 0.835 0.002 0.157 0.002

I2 10.032 0.056 52.046 0.141 0.891 0.001 0.102 0.001

I3 9.214 0.038 45.078 0.035 0.814 0.001 0.178 0.001

I4 8.523 0.030 29.646 0.043 0.871 0.002 0.120 0.002

I5 8.018 0.024 51.936 0.047 0.697 0.002 0.294 0.002

I6 8.742 0.020 44.319 0.042 0.836 0.001 0.156 0.001

I7 9.318 0.023 51.352 0.133 0.858 0.012 0.130 0.000

I8 9.462 0.022 51.054 0.058 0.813 0.001 0.180 0.000

I9 9.463 0.018 51.058 0.037 0.813 0.001 0.180 0.001

I10 9.466 0.114 48.470 0.292 0.876 0.002 0.117 0.002

I11 9.188 0.047 46.314 0.131 0.843 0.001 0.150 0.001

I12 7.702 0.098 34.887 0.084 0.575 0.004 0.415 0.004

I13 7.301 0.029 34.772 0.013 0.545 0.002 0.442 0.002

Cheeses from one producer (S5) showed subtle, though significant, NMR relaxometry
changes upon milk thermisation (blue and red circles are superimposed in Figure 2). In fact,
for producer S5, both AF1 and T21 values always showed only slightly significant changes
when RC and HTC cheese samples were compared at 105 days of ripening and at 180 days
in Season 1 (Table 1). It should be considered that, at the shortest ripening time allowed for
Fiore Sardo commercialization (105 days of ripening), the effect of water redistribution and
protein hydration might still be not sufficient in order to clearly discriminate RC from HTC.
In these cases, NMR relaxometry analysis should be replicated after a longer ripening time
to obtain clearer results (Figure 2b,d). If a discrimination between RC and HTC is still not
present at six months of ageing, then very likely milk has been overheated to some extent,
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and cheese features are not comparable to raw milk cheeses anymore. This result can be
explained by assuming that, though thermisation was not intentionally performed in S5
production, raw milk was likely subjected to excessive heat before rennet addition. In fact, it
is worth recalling here that, even at an artisanal level, milk is always treated to some extent
during cheesemaking, since rennet is usually added when milk reaches, upon heating, a
temperature in the range of approximately 35 and 38 ◦C, depending on the season, site,
climate and usual practices of production. Among Fiore Sardo artisan producers, milk
heating, according to traditional cheesemaking processes, is mostly carried out by directly
warming up (often by means of an industrial stove gas cooker) a copper boiler containing
raw milk. In some other cases, but still at artisanal level, more modern stainless steel
multipurpose cheesemaking tanks are used to heat milk by means of water vapour in
somewhat larger dairy plants. Only bigger industrial dairy plants adopt flow pasteurizers
equipped with sophisticated plate heat exchanger modules, in order to perform more
controlled high temperature–short time heat treatments. This consideration could explain
the very subtle difference between the NMR relaxometry parameters of RC and HTC
cheeses at 105 days and 180 days of ripening in S5 samples.

Figure 2. Score factors (Ṩ) of Fiore Sardo cheeses from Dataset 1: 105 days (a) and 180 days (b) of
ripening, Season 1 (March–April 2019); 105 days (c) and 180 days (d) of ripening, Season 2 (January–
February 2020). Blue circles represent samples made from raw milk (RC) and red circles represent
cheeses made starting from heat-treated milk (HTC).

Notably, S5 and other shepherd’s productions show superimposed error bars in
Figure 2. This is mainly due to the large variability of RC and to similar technological
considerations as already discussed for S5.

As explained above, the score value Ṩ represents and describes the status of water
molecules more tightly interacting with the paracasein network of cheese. Low score values
(i.e., higher AF1 and/or lower T21) indicate a high degree of protein hydration, arising from
either ripening [16,45] or from the effect of heat treatments [19]. For cheeses having the
same ripening time, the effect of the thermal treatment of milk on the following processing
steps [5] dominates relaxation.

In fact, previous studies carried out at variable fields by fast field cycling NMR
relaxometry (FFC-NMR) have demonstrated that the hydration of cheese proteins is affected
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by cheese ageing [45,47]. Further FFC-NMR studies have demonstrated that, for a given
ageing time, cheese protein hydration can also be significantly affected by the different
processing methods preceding cheese maturation [16]. As discussed above, two similar
Fiore Sardo cheeses, which only differ in their heat treatment of milk, also differ in their
NMR relaxometry characteristics. The reasons for the observed relaxometry differences
can be found in cheese microstructure (such as fractal dimension, protein proton to water
proton ratio, water mobility and protein hydration) [16].

The variability of Score values (Ṩ) within each group and among groups of cheeses
is presented in the form of box plots in Figure 3. Standard deviations of RC of shepherds
(blue boxplot) were generally larger than the other groups. Median values of RC are
higher than all other groups, followed by maturer cheeses, HTC and industrial samples,
with the latter showing the lowest median values. RC samples show considerably higher
interquartile range than HTC and much larger whiskers. This could be reasonably ascribed
to both the effect of the artisanal manufacturing process on cheese microstructure and to the
microbiological complexity of the systems arising from the use of raw milk. In fact, while
artisanal cheesemaking entails mainly manual practices, industrial production implies
more standardized protocols and a higher degree of process automation. In addition,
previous reports on raw and heat-treated milk cheeses demonstrated a larger variability of
raw-milk cheeses than pasteurized-milk cheese counterparts, and it was suggested that
the effect of heat on milk proteins, indigenous enzymes and microbial flora of milk may
reduce variability, resulting in a more homogeneous peptide profile, sensory properties
and NMR relaxation parameters for pasteurized-milk cheese [19,50,51].

Figure 3. Box plots of the Score values (Ṩ) of each group of cheeses (RC, HTC, industrial and maturer
cheeses).

Differences in the manufacturing process are reflected in different physico-chemical
and sensory features, resulting in the distinctiveness of each wheel from the same shepherd.
While heating milk to 35–38 ◦C, necessary for a proper action of rennet, is usually not
strictly standardized in terms of temperature control, industrial processing is carefully
controlled. Mild thermal treatments of raw milk, typical of artisanal practices, allow for the
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preservation of the microorganisms that represent a sort of fingerprint of each shepherd’s
production. The development of indigenous milk microflora and the related molecular
changes (e.g., changes in pH, proteolysis and lipolysis during ripening, etc. [5]) occurring
during the following processing steps, together with the exclusively manual manufacturing
operations on curd, are reflected in the microstructural, molecular and sensory properties
of the final cheese, making every wheel a unique product. That is why artisanal Fiore
Sardo PDO cheeses are very different from each other, being strongly linked to the territory
and to the specific production practices. It is interesting to note, in this regard, that milk
and curd handling practices for making Fiore Sardo are passed down from generation to
generation and often differ from each other in subtle, but likely relevant, details. On the
other hand, when heat is applied to the same milk, though (almost) the same manufacturing
practices are carried out by the same cheesemongers, part of the characteristic microflora is
depleted and milk functionality is altered [51,52]. The Ṩ data distribution in HTC cheeses
indeed indicated a reduced heterogeneity in comparison to RC. The box plot of industrial
cheeses more clearly shows that the spreading of Ṩ values is considerably reduced and
very narrow in comparison to both RC and HTC. This is mostly ascribable to industrial
practices, where cheesemaking is strictly controlled and standardized in terms of both
microbiological conditions and technological operations. It is worth noting that industrial
Fiore Sardo samples were purchased from different industrial producers, so the observed
low interquartile range should be considered quite representative of the standardization of
the industrial production in the market and cannot be ascribed to a specific producer.

Mean and standard deviations of Score values Ṩ for all groups of samples (RC, HTC, I
and maturer), together with their statistical significances, are presented in Table 3.

Table 3. Statistical comparison of Score (Ṩ) values (ANOVA, p < 0.05) of the four groups of Fiore Sardo samples, namely RC,
HTC (produced in Season 1 and Season 2), maturer and industrial cheeses. Each shepherd production (RC and HTC) was
individually compared to maturer and industrial cheeses; data are expressed as Mean ± Standard Deviation; means sharing
the same superscript letters are not significantly different from each other; the letter “a” is assigned to the higher mean.

RC HTC Maturer Industrial

S1

Season 1
105 days 14.99 ± 1.70 a 11.17 ± 0.62 c 13.39 ± 0.18 b 10.92 ± 0.62 c

180 days 23.83 ± 4.83 a 14.22 ± 1.22 b 13.39 ± 0.18 b 10.92 ± 0.62 c

Season 2
105 days 20.25 ± 2.38 a 16.43 ± 1.60 b 13.39 ± 0.18 c 10.92 ± 0.62 d

180 days 14.78 ± 1.00 a 11.38 ± 1.45 c 13.39 ± 0.18 b 10.92 ± 0.62 c

S2

Season 1
105 days 16.18 ± 1.85 a 11.87 ± 0.90 c 13.39 ± 0.18 b 10.92 ± 0.62 d

180 days 11.90 ± 0.81 b 10.57 ± 0.48 c 13.39 ± 0.18 a 10.92 ± 0.62 c

Season 2
105 days 24.10 ± 3.44 a 15.74 ± 1.59 b 13.39 ± 0.18 c 10.92 ± 0.62 d

180 days 13.86 ± 1.74 a 11.58 ± 0.86 b 13.39 ± 0.18 a 10.92 ± 0.62 c

S3

Season 1
105 days 13.12 ± 1.19 a 11.19 ± 0.90 b 13.39 ± 0.18 a 10.92 ± 0.62 b

180 days 13.33 ± 1.29 a 9.86 ± 0.73 c 13.39 ± 0.18 a 10.92 ± 0.62 b

Season 2
105 days 13.02 ± 0.51 a 11.98 ± 0.82 b 13.39 ± 0.18 a 10.92 ± 0.62 c

180 days 14.47 ± 0.94 a 11.53 ± 0.70 c 13.39 ± 0.18 b 10.92 ± 0.62 d

S4

Season 1
105 days 12.00 ± 0.97 b 11.18 ± 0.75 c 13.39 ± 0.18 a 10.92 ± 0.62 c

180 days 17.74 ± 4.27 a 11.48 ± 0.75 bc 13.39 ± 0.18 b 10.92 ± 0.62 c

Season 2
105 days 15.65 ± 3.68 a 13.23 ± 0.40 b 13.39 ± 0.18 b 10.92 ± 0.62 c

180 days 13.41 ± 1.77 a 11.42 ± 0.96 b 13.39 ± 0.18 a 10.92 ± 0.62 b

S5

Season 1
105 days 11.58 ± 0.56 b 11.57 ± 0.81 b 13.39 ± 0.18 a 10.92 ± 0.62 c

180 days 12.74 ± 0.81 a 12.76 ± 1.39 a 13.39 ± 0.18 a 10.92 ± 0.62 b

Season 2
105 days 12.93 ± 1.10 a 13.08 ± 0.53 a 13.39 ± 0.18 a 10.92 ± 0.62 b

180 days 25.61 ± 2.79 a 14.05 ± 0.69 b 13.39 ± 0.18 b 10.92 ± 0.62 c
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In general, ANOVA results suggested a consistent differentiation among the four
groups of cheeses. Industrial Fiore Sardo showed the lowest Ṩ values in all comparisons,
except for one case (i.e., S3 180 days, Season 1), which had Ṩ values higher than HTC
only. RC often had significantly higher Ṩ values than other groups of cheeses, except for
two cases (i.e., S4 and S5, 105 days, Season 1), when maturer cheeses showed higher Ṩ.
This result can be explained by considering that maturer cheeses were purchased after
approximately 6–8 months of ripening. In some other cases, Ṩ values were comparable
for RC, HTC and maturer cheeses. Statistical comparison of HTC and industrial cheeses
usually resulted in a significantly lower Ṩ for the latter, but they were comparable in five
cases. Maturer samples were never comparable to industrial samples.

Based on the aforementioned statistical evaluations, some conclusions can be drawn
on the manufacturing process of each group of samples and on the quality features of the
resulting cheeses. RC and HTC were entirely produced following artisanal procedures.
Maturer cheeses share the same artisanal processing but were ripened in industrial-like
conditions, in refrigerated cellars with controlled humidity and temperature. Despite
different ripening conditions, RC and maturer cheeses were described by very similar Ṩ
values, clearly suggesting that technological transformations that precede ripening confer
to cheeses a common relaxometric behaviour described by comparable Ṩ. RC and maturer
cheeses were generally described by higher Ṩ than industrial cheeses, although ANOVA
suggested that RC, HTC and maturer cheeses can still differ to some extent among each
other in terms of the new quality-related parameter, Ṩ. Since the RC and HTC cheeses of
each shepherd were technologically processed in the same way, the decrease in Ṩ observed
between RC and HTC (Figure 3), supported by ANOVA comparisons (Table 3), can be
reasonably and solely related to the application of a heat treatment of the milk. On the other
hand, industrial samples, besides having a much narrower Ṩ variability (Figure 3) clearly
exhibited considerably and significantly lower Ṩ values with respect to the other three
groups of cheeses. These relaxometric behaviours could be reasonably associated with the
features of industrial productions, for which milk and curd processing and handling are
more mechanized and standardized, ensuring more uniform features in the final products,
as previously reported [16]. Moreover, a contribution to the low Ṩ may arise from the
application of a heat treatment to the milk that is consistent with common industrial
processing practices, as realistically suggested [12–15]. Interestingly, the discrimination
ability of Ṩ and its potential in identifying relevant quality features of Fiore Sardo cheeses
does not seem to be affected by different seasons of lactation (i.e., to milk compositional
quality), being instead more strictly related to milk processing. This consideration derives
from the significant statistical differences among the four groups of samples, regardless
the season (Figure 3, Table 3). As far as ripening conditions are concerned, the significant
role of ripening cannot be excluded. However, the effect of ripening conditions seems to
be less influential than the milk and curd processing practices preceding cheese ageing.
This makes NMR relaxometry a suitable analytical tool for characterizing the effect of heat
treatments of milk on quality features of Fiore Sardo cheese.

3.3. Moisture Content

The moisture content of all cheese samples are reported in Table S2.
Moisture content was not influenced by heat treatment, indeed showing no consistent

trend in RC and HTC samples. This is in contrast to MRI parameters, which showed
consistent changes according to heat treatments. Since MRI parameters T21 and AF1 could
be considered representative of the portion of water in the samples, such changes could not
be related to total moisture content [19]. In addition, for industrial samples, no noticeable
correlation was found between MRI parameters and moisture content.

Water status can be described at different scales of investigation—at a macroscopic
level by moisture content and at a molecular level by MRI—and can lead to different
information about the analyzed matrix. Moisture content is representative of the extractable
water molecules by drying in certain conditions and is among the most common parameters
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used to describe food quality. However, it should not be considered as an exhaustive
parameter as it does not give any information on water proton pools in the system (if any)
and their interactions with the protein matrix in cheese [53].

3.4. Image Analysis of Fiore Sardo Pictures and MRI Images

Representative pictures of the visual appearance of RC and HTC at the minimum
allowed ripening time for Fiore Sardo PDO (i.e., 105 days) are shown in Figure 4.

Figure 4. Representative images of the visual appearance of RC, HTC and industrial samples:
Producer S1, Season 2, 105 days of ripening, Fiore Sardo from raw milk (upper row) and from
heat-treated milk (lower row) (a); details of RC (b) and HTC (c) samples ripened 105 days upon
cutting; industrial Fiore Sardo purchased from a local market, with at least 105 days of ripening (d).

Even at first sight, RC, HTC and industrial cheeses appear very different from each
other. The HTC samples surface appears more homogeneous, smoother and with fewer
holes, while RC cheeses are more grainy, friable and show more and bigger holes. When
cut with a knife, RC cheeses are prone to easily break and crumble, while HTC appear
more creamy and can be cut very easily and without breaking into pieces.

The different visual appearances of HTC samples with respect to RC cheeses is rea-
sonably ascribable to the modifications resulting from the heat treatment of milk, which
is known to have, in Fiore Sardo PDO, multiple consequences on cheese composition,
microstructure and texture, which in turn affect appearance and sensory properties in
general [6,10,52].

In general, MRI images confirmed, by a non-invasive approach, what already appeared
at a first visual inspection of samples. RC cheeses exhibited a coarser paste, often with
multiple cracks and holes, while HTC samples exhibited a smoother and more homogenous
paste (Figure S5).

Two kinds of scientific considerations can be made based on the MRI images acquired.
On one hand, as discussed above, MRI images give relaxometric information that is able to
provide useful insights on the state of biopolymers and on the mobility of the system at
molecular level. On the other hand, important information can be derived from the texture
of MRI images by performing a detailed image analysis.

In recent years, image analysis techniques rapidly emerged not only at the academic
level but also as rapid, economic, consistent and objective inspection techniques in the
agricultural and food industry [54,55]. In particular, for the dairy industry sector, modern
computer vision and image analysis methods have been used to evaluate cheese external
or internal quality attributes such as colour, shape, texture, amount and distribution of
added ingredients or production defects [56–58].
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In this study, we pave the way for a deep-learning-based method for the classification
of Fiore Sardo cheese images. The method consists of using data collected both from MRI
and from a computer vision system based on photographic images taken with a smartphone
camera. Deep learning is a subfield of artificial intelligence (AI) concerned with specific
algorithms for thinking simulations and data processing inspired by the neurons of the
brain [31]. Deep-learning-based image classification has proven to be highly effective in
image classifying, object detection and other computer vision related problems [59,60].

All pre-trained DNN models run well in the open web GPU_Google colab service,
with compatible and relatively short training times. For both MRI and photo datasets,
the best classification result was achieved by the SqueezeNet model (Tables S3 and S4).
In particular, for the T2 weighted MRI images, the SqueezeNet model exhibits a training
accuracy from 93% to 98%, with the highest validation score (100%) (Table S3). As far as
the photo dataset is concerned, SqueezeNet shows a training accuracy of 96%, with the
same validation of 100% (Table S4).

The other pre-trained models (ResNet, AlexNet, VggNet, Densenet and Inception-
net) also exhibit satisfactory performance results, ranging from a minimum of 72% to a
maximum of 92%, with related validation ranging from 77% to 100% (Tables S3 and S4).

We propose here an IA approach to classify photos and T2 weighted MRI images of
Fiore Sardo cheese made with raw or thermised milk, by applying a deep neural network
(DNN), which includes several chained layers of processing between the input (photos or
MRI images) and the output (classification/label of the input image).

As with most state-of-the-art IA methods, deep learning models usually require fitting
thousands or millions of input data; thus, their application to those studies where the
sample size is limited appears prohibitive. To address this challenge, the deep transfer
learning approach offers a more suitable alternative. Transfer learning is the method by
which the model uses the knowledge gained during the training of a relatively large dataset
in a different but related problem (i.e., image classification and recognition). During the
transfer learning process, only the selected classifier(s) is trained in the new network,
while the features learned from the large dataset are transferred. Therefore, with the deep
transfer learning approach, we do not need to retrain the entire network for a new dataset,
thus allowing the training of deep learning models with relatively few data, reduced
computational power and less training time [61].

With the main disadvantage of the present study being the relatively low number of
available cheese samples, compared to the large data size usually needed for training deep
learning frameworks, we chose to transfer the learning technique by testing six pre-trained
DNN frameworks (ResNet, AlexNet, VggNet, SqueezeNet, DenseNet and Inception-Net),
a widely used approach for addressing classification and image recognition challenges of
MRI data.

In the end, all tested pre-trained DNNs yielded promising performances, giving
an average classification accuracy of over 72% and over 93% in particular for the best
performing SqueezeNet model (Tables S3 and S4). We did not perform further accuracy
tests of the DNN pre-trained model in this study; however, we are proposing to implement
and optimize this model in a dedicated study when more data are available.

4. Conclusions

Our data demonstrate that NMR relaxometry is able to assess molecular mobility
changes induced in cheese by the most common industrial thermal treatments carried out
on milk. In the present work, the experimental plan was optimized to exclude possible
confounding factors. The same milk was used for producing both raw-milk or thermised-
milk cheese. Moreover, analyses were repeated in different seasons, and the products from
different producers were compared. Results were compared with a selection of industrial
Fiore Sardo cheeses purchased in the local market.

NMR relaxometry data of Fiore Sardo cheese indicated the presence of two water
populations, described by characteristic T2 relaxation times and area fractions. In particular,
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the first and fastest relaxing population showed a good predictive value. In order to obtain
a relaxometric descriptor of FS cheese microstructure and molecular mobility, a new quality-
related parameter was introduced, namely the Score factor (Ṩ). The Ṩ describes cheese in
relation to the hydration status of the casein network and the state of the water-fat-protein
network in cheese. We were able to discriminate FS cheeses produced from raw (RC)
and heat-treated milk (HTC), with the latter exhibiting a lower Ṩ, indicating an enhanced
hydration of the casein network. Industrially manufactured FS cheeses had generally lower
Ṩ values than RC and HTC. Samples from the maturer industry, which buys cheeses before
ripening and ages cheeses in industrial-like refrigerated cellars, showed similar values to
artisanal cheeses, suggesting that NMR relaxometry is more sensitive to changes occurring
in the cheesemaking steps preceding ripening. A further discriminative approach was
finally carried out by processing acquired MRI images and photos with an IA method
based on pre-trained deep learning algorithms. Preliminary classification results suggested
that this innovative approach is promising in providing suitable discrimination between
RC and HTC Fiore Sardo cheese.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/dairy2020023/s1, Figure S1: sample production and sampling scheme for MRI analysis, Figure
S2: MRI sample preparation scheme, Figure S3: Computer Vision System (CVS) for photographic
analysis, Figure S4: Image Dataset Directory and File Structure used, Figure S5: Representative T2
weighted MRI images of Fiore Sardo cheeses, Table S1: Production of FS cheeses and datasets, Table
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Abstract: Lactobacillus strains with the potential of protecting fresh dairy products from spoilage
were studied. Metabolism and antifungal activity of different L. plantarum, L. brevis, and L. sakei
strains, isolated from Sardinian dairy and meat products, were assessed. The metabolite fingerprint
of each strain was obtained by GC-MS and data submitted to multivariate statistical analysis. The
discriminant analysis correctly classified samples to the Lactobacillus species and indicated that, with
respect to the other species, L. plantarum had higher levels of organic acids, while L. brevis and L. sakei
showed higher levels of sugars than L. plantarum. Partial Least Square (PLS) regression correlated
the GC-MS metabolites to the antifungal activity (p < 0.05) of Lactobacillus strains and indicated
that organic acids and oleamide are positively related with this ability. Some of the metabolites
identified in this study have been reported to possess health promoting proprieties. These overall
results suggest that the GC-MS-based metabolomic approach is a useful tool for the characterization
of Lactobacillus strains as biopreservatives.

Keywords: Lactobacillus; antifungal activity; fresh cheese; biopreservation; GC-MS; metabolomics

1. Introduction

In the Mediterranean area, to revive the ovine dairy industry, the development of
new fresh dairy products is increasing. Taking into account that the physico-chemical
characteristics of these products greatly favor the growth of pathogenic and spoilage
microbes, many research activities have been devoted to finding solutions to protect
fresh dairy products from deterioration and to prolong their shelf life while preserving
the organoleptic and nutritional properties. Furthermore, in recent years, the increased
request for natural foods has challenged the food producers and researchers to find natural
alternatives to synthetic preservatives. Among natural food preservation techniques, bio-
preservation has gained particular attention; this term refers to the use of microbial strains
or metabolites able to inhibit the growth of spoilage and pathogenic microbes in foods
and thus improving safety and extending their shelf-life [1]. Lactic acid bacteria (LAB),
naturally present in many fermented and not fermented foods of animal and vegetable
origin, are considered good candidates as bio-preservative, as they possess numerous
functional properties related to the improvement of food safety and health benefits [2,3].
Among LAB, several strains belonging to the genus Lactobacillus, frequently present in
milk and cheese as the prevalent nonstarter LAB, have shown distinct antimicrobial and
antifungal activities [4]. Additionally, Lactobacillus sakei strains, characteristic of meat
products, have shown antifungal activity [4]. The latter strains can be found in raw meat
products stored under vacuum and refrigerated, as well as in fermented sausages, due to
their metabolic properties and phenotypic features that are particularly well adapted to
growth and survival under the conditions found during meat processing and storage [5,6].
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The antifungal activity of LAB may be related to the synergistic action of several
compounds, e.g., organic acids (acetic acid, lactic acid, propionic acid, and phenyllactic
acid), hydrogen peroxide, cyclic dipeptides, proteinaceous compounds (bacteriocins), and
fatty acids [2,7], and it is recognized that the capacity to synthetize these compounds is a
strain-linked trait [4]. In our previous work, we found that selected Lactobacillus strains of
food origin could control mold contamination without altering the sensory characteristics
in miniature Caciotta ovine cheese, produced in a laboratory scale [4]; one limitation of
this study is that the compounds responsible for the antifungal activity were not studied.
Metabolomics is one of the most valuable techniques for the study of metabolite profiles
in food matrices [8], and gas chromatography coupled with mass spectrometry (GC-MS)
is a well-suited analytical platform for the study of microbial metabolites [9,10]. By the
combined approach of GC-MS and multivariate statistical data analysis it was possible
to find links between metabolites of dairy products and their microbial profiles [11]. The
aim of this work was to test the suitability of this approach for the identification of the
metabolites involved in the bioprotective characteristics of autochthonous Lactobacillus
strains isolated from Sardinian dairy and meat products and to seek correlations between
metabolites (or group of metabolites) and antifungal activity. To this goal, we studied the
polar and semi-polar low molecular weight metabolites present in the cultured broth of
different Lactobacillus strains. Antifungal activity of these strains against mold species,
commonly occurring in cheese spoilage, was also assessed and results correlated to the
GC-MS data by multivariate regression analysis.

2. Materials and Methods

2.1. Microorganisms and Cultivation Conditions

A total of 9 autochthonous Lactobacillus strains (3 Lactobacillus plantarum, 2 Lactobacillus
brevis, and 4 Lactobacillus sakei), deposited in the MBDS culture collection (www.mbds.it,
accessed on 25 May 2021) were studied. They were isolated from ovine raw milk and
artisanal cheeses (L. plantarum and L. brevis), and sausages (L. sakei) manufactured in
Sardinia (Table 1), and they were classified on the basis of phenotypic characteristics and
molecular methods through polymerase chain reaction amplification. Lactobacillus strains
were stored at −20 ◦C in DeMan Rogosa Sharpe (MRS) broth (Microbiol, Cagliari, Italy)
with 15% (v/v) glycerol and routinely cultivated on MRS agar plates for 48 h at 30 ◦C in
microaerophylia. Each strain was subcultered twice in MRS broth prior to experimental use.
Carbohydrate fermentation profiles of the Lactobacillus strains was assessed and reported
in Table S1.

Table 1. List of the Lactobacillus strains and food origin.

Species Strains Origin Molecular Identification MBDS #

Lactobacillus plantarum 4/16898 Raw sheep’s milk Species- specific PCR [12] UNICAB27
Lactobacillus plantarum 1/14537 Raw sheep’s milk Species- specific PCR [12] UNICAB32
Lactobacillus plantarum C1/15 Sheep’s cheese Species- specific PCR [12] UNICAB212

Lactobacillus brevis DSM 32516 Sheep’s cheese 16S rRNA gene sequencing
Universal primers F357-R518 [13] UNICAB24

Lactobacillus brevis M8/1 Sheep’s cheese 16S rRNA gene sequencing
Universal primers F357-R518 [13] UNICAB456

Lactobacillus sakei S3 Artisanal sausage 16S rRNA gene sequencing
Universal primers Y1-Y2 [14] UNICAB457

Lactobacillus sakei S5 Artisanal sausage 16S rRNA gene sequencing
Universal primers Y1-Y2 [14] UNICAB458

Lactobacillus sakei S4 Artisanal sausage 16S rRNA gene sequencing
Universal primers F357-R518 [13] UNICAB459

Lactobacillus sakei S3/1 Artisanal sausage 16S rRNA gene sequencing
Universal primers Y1-Y2 [14] UNICAB460
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2.2. Extraction of Extracellular Samples

Cell-free supernatants were obtained from approximately 15 mL of overnight cultures
of the Lactobacillus strains in MRS broth at 30 ◦C. Then, the cells were separated by cen-
trifugation at 7000× g, for 20 min at 4 ◦C and supernatant was taken and filtered through
a cellulose acetate membrane filter (0.2 μm pore size) to eliminate residual bacterial cells.
Cell-free supernatant was distributed in 1 mL aliquots, then dH2O (10 mL) and internal
standard (0.2 μmol of 10 mmol solution of 2,3,3,3-d4 D,L-alanine) were added to each
sample. Three replicate samples were prepared for each Lactobacillus strain cell-free super-
natant. Un-inoculated MRS broth samples were collected as control. An aliquot of 100 μL
of each sample was stored at −80 ◦C.

2.3. In Vitro Antifungal Activity of Lactobacillus

Antifungal activity of Lactobacillus strains against Alternaria alternata (UNICAM2), Cla-
dosporium herbarum (UNICAM10), Paecilomyces variotii (UNICAM17), and Penicillium chryso-
genum (ATCC 9179) indicator strains was assessed in vitro using the agar plate method
previously described [4]. The inhibitory activity against the fungal strains Aspergillus flavus
(ATCC 46283), Fusarium oxysporum (UNICAM12), and Mucor recurvus (UNICAM15), which
develop faster than lactobacilli, was assessed using the dual-culture overlay assay [4].
For all assays, the antifungal activity of each strain was determined by measuring the
width of the halo around the bacterial streaks, according to the following 4 steps in a
semiquantitative scale: (1) ≥8 mm, (2) 5–7 mm, (3) 3–4 mm, and (4) <3 mm.

2.4. Sample Preparation for GC-MS Analysis

Samples were thawed on ice and subsequently 375 μL of a methanol and chloroform
mixture (2/1, v/v) was added. After 1 h, 380 μL of chloroform and 90 μL of aqueous
KCl 0.2 M were added. Samples were vortexed for 10 s and centrifuged at 15,294× g for
10 min at 4 ◦C. A volume of 200 μL of the aqueous fraction was taken and transferred
into 1.5 mL sterile glass vials with 10 μL of a 80 mg/L of 2,2,3,3-d4-succinic acid solution.
The aqueous fraction was then dried by a nitrogen stream, and derivatized with 40 μL of
MSTFA (N-Trimethylsilyl-N-methyl trifluoroacetamide). Samples were kept for 30 min at
70 ◦C, before adding 600 μL of hexane and then vortexed.

2.5. GC-MS Analysis

Samples were analyzed with a Hewlett Packard 6850 Gas Chromatograph, 5973 mass
selective detector, and 7683B series injector (Agilent Technologies, Palo Alto, CA, USA)
with helium as carrier gas at a flow of 1.0 mL/min. One microliter of each sample was
injected with 1 min of split flow delay and resolved on a 30 m × 0.25 mm × 0.25 μm DB-
5MS column (Agilent Technologies, Palo Alto, CA, USA). Inlet, interface, and ion source
temperatures were 250, 250 and 230 ◦C, respectively. Oven starting and final temperatures
were set at 50 and 230 ◦C, respectively, with a rate of 5 ◦C/min for 36 min and then for 2 min
at a constant temperature. Electron impact mass spectra were recorded from m/z 50 to 550
at 70 eV. Metabolite annotation was achieved by mass spectra comparison with analytical
standards, in house library and the NIST14 database (National Institute of Standards and
Technology, Gaithersburg, MD, USA).

2.6. Multivariate Statistical Data Analysis

As input for multivariate statistical data analysis (MVA), a 27 × 59 matrix, composed
of samples × the intensities of the most abundant fragment ion for each metabolite, was
constructed. MVA were performed using the software SIMCA-P+ (version 14.1, Umetrics,
Umeå, Sweden). GC-MS variables were mean centered and scaled to unit variance. The
principal component analysis (PCA) was carried out to study the sample distributions and
presence of outliers. For classification of samples to the three classes of Lactobacillus, and to
find discriminant metabolites, the supervised partial least squares-discriminant analysis
(PLS-DA) was used. Importance of the variables in PLS-DA was assessed by considering the
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variable importance in the projection (VIP) values. Results of PLS-DA are shown as scatter
plot of scores and loadings in the first two principal components, and as a list of metabolites
having VIP > 1 attributed to each class of samples on the basis of their coefficients. In the
Coefficients Overview Plot the X-variable coefficients, together with their standard errors
in cross-validation, for the Y-class are shown. The supervised partial least squares (PLS)
regression was applied for the study of linear relationships between antifungal activity
and metabolite profiles. Antifungal activity scores were organized in the Y matrix. Results
are shown as PLS loading weights plot in first and second components that displays the
relation between the X-variables (GC-MS data) and the Y-variables (antifungal activity).
Metabolites positively correlated with antifungal high activity lie next to the Y-variable,
metabolites negatively correlated lie in the opposite side of the plot. The quality of the
PLS and PLS-DA models and the proper number of principal components were assessed
on the basis of the cumulative parameters R2Y and Q2Y (prediction power calculated in
cross-validation), and of their difference value, with a <0.50 threshold.

3. Results

3.1. GC-MS Metabolite Profiles of Lactobacillus Species

The hydrophilic extracts of samples were analyzed by GC-MS and 59 low molecular
weight metabolites were annotated and reported in Table S2. Short-chain carboxylic
acids (such as lactic acid, citric acid, succinic acid, and phenyllactic acid), amino acids
(valine, leucine, isoleucine, threonine, and pyroglutamic acid), mono- and disaccharides,
and polyols were annotated together with fatty acids and analogues, such as oleamide.
Analysis of MRS broth chromatograms indicates that it was mainly composed by mono-
and disaccharides, citric acid, phosphate, and amino acids essential for growth (results not
shown).

To assess differences among the three species of Lactobacillus, a PLS-DA was carried
out. The discriminant analysis, with a high degree of confidence, well classified samples
(score plot in Figure 1a), indicating that the 3 Lactobacillus species showed overall different
metabolite profiles. By analysis of the loading plot (Figure 1b) and metabolite VIP scores
reported in Table 2 (coefficients of metabolites are shown in Figure S1), the fermentation
medium of L plantarum was found to contain more lactic acid, 3-hydroxy butyric acid
(BHBA), 2-hydroxy isovaleric acid (AHVA), 2-hydroxy isocaproic acid (AHCA), succinic
acid, 3-phenyllactic acid, and malic acid, together with lower levels of mono- and disaccha-
rides than L. brevis and L. sakei. In contrast, L. sakei showed more sugars. When compared
to the other two Lactobacillus species, L. brevis had more monosaccharides, AHVA, and
4-gamma-aminobutyric acid (GABA) and L. sakei showed higher levels of disaccharides.
L. plantarum and L. sakei showed higher levels of pyroglutamic acid. The higher level of
saccharides in L. sakei and L. brevis than in L. plantarum was confirmed by the measured
carbohydrates fermentation profiles reported in Table S1, where the L. plantarum strains,
compared to the other 2 species, showed the better fermentation activity.

Broth sugar consumption from Lactobacillus strains and production of organic acids
are confirmed by Pearson correlation values between GC-MS data depicted as a heat map
in Figure S2. In this map, it is clearly visible that organic acids were strongly positively
correlated with themselves (r > 0.75) and negatively correlated (r < 0.75) with saccharides
(the linear strong negative relationship r = −0.97 between glucose and lactic acid is clearly
visible in the Figure S3).
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(a) 

 
(b) 

Figure 1. PLS-DA of GC-MS data, R2Y = 0.93 and Q2Y = 0.88, over 2 validated components. (a) score plot (Lb, Lp, and Ls = L.
brevis, L. plantaris, and L. sakei, respectively); (b) loading plot, red hexagons = organic acids; green circles = amino acids; light
blue stars = saccharides and polyols; yellow circles = fatty acids and analogues; black diamond = loadings of Lactobacillus
classes. Unknown metabolites are not displayed. Metabolites are abbreviated as in Table S2.

Table 2. PLS-DA VIP a scores of discriminant GC-MS metabolites.

L. plantarum b L. brevis L. sakei

Metabolite Class c VIP Metabolite Class VIP Metabolite Class VIP

3-hydroxy butyric
acid (BHBA) OA 1.25 Fructose S 1.66 Maltose S 1.65

2-hydroxy isovaleric
acid (AHVA) OA 1.51 Erithritol S 1.64 Sucrose S 1.23

Arabitol S 1.32 2-hydroxy isovaleric
acid (AHVA) OA 1.51 Glucose S 1.20

2-hydroxy isocaproic
acid (AHCA) OA 1.24 Mannose S 1.45 Talose S 1.20

Lactic Acid OA 1.20 Arabitol S 1.32 Pyroglutamic acid AA 1.09

3-phenyllactic acid OA 1.18 4-aminobutyric acid
(GABA) AA 1.24 Erythrose S 1.04

Malic acid OA 1.17 Sucrose S 1.23 Threalose S 1.03
Succinic acid OA 1.13 Stearic acid FA 1.21

Pyroglutamic acid AA 1.09 Talose S 1.20
Erythrose S 1.04 Threalose S 1.03

a Variable importance in the projection, R2Y = 0.93 and Q2Y = 0.88 over 2 validated components; b Lactobacillus species with higher level of
the metabolite, as indicated by the coefficients; c OA = organic acids, AA = amino acids and analogues, S = saccharides and polyols, FA =
fatty acids and analogues.
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3.2. Metabolite Profiles of Lactobacillus Strains

A visual analysis of chromatograms suggests that all the strains consumed sugars and
produced lactic acid, though to a different extent, and synthetized oleamide. L. plantarum
1/14537 and L. brevis DSM 32516 consumed almost all the citric acid of broth origin
(data not shown). To study the different production/consumption of metabolites by the
nine Lactobacillus strains, metabolites indicated by the PLS-DA as the most discriminant
between the three species, together with oleamide, were individually measured and results
reported as column plot with means and standard deviations (Figure 2). Phenyllactic acid,
AHCA, BHBA, AHVA, and malic acid were produced at a greater extent by L. plantarum.
Pyroglutamic acid was mainly produced by all the L. plantarum strains and L. sakei S3/1.
L. brevis M8/1 produced the greatest, by far, quantity of GABA, confirming that different
Lactobacillus strains within the same species can have their own individual metabolism.

  

  

  

  

Figure 2. Relative abundance of metabolites in each strain: green L. plantarum (1 = 1/14537, 2 = 4/16898, 3 = C1/15); light
blue L. brevis (4 = DSM 32516, 5 = M8/1 S4); yellow L. sakei (6 = S4, 7 = S3, 8 = S3/1, 9 = S5). Y-axis values are in A.U. and
refer to the intensity of a selected m/z ion fragment. Abbreviation of metabolites as in Table S2.
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3.3. Antifungal Activity and Correlations with Metabolite Profiles

Antifungal activity of Lactobacillus strains was also studied. Seven mold species were
chosen for their widespread presence in cheese spoilage and for their ability to produce
mycotoxins [4]. As shown in Figure 3, the strains exhibited a wide range of antifungal
activity, dependent on both fungal species and Lactobacillus strain. All L. plantarum strains
and L. brevis DSM 32516 showed the strongest activity with inhibition zones greater than
8 mm against all the fungal strains. The L. sakei strains were the less active, with S4 strain
showing inhibition zones less than 3 mm against M. recurvus, P. variotii, and P. chrysogenum.
A. alternata and C. herbarum growth was strongly affected (inhibition zone higher than
8 mm) by all the Lactobacillus strains except for L. sakei S5 which had an inhibition zone
lower than 8 mm.

Figure 3. Antifungal activity of Lactobacillus strains: inhibition zones against A. alternata, C. herbarum,
M. recurvus, P. variotii, F. oxysporum, A. flavus ATCC 46283, P. chrysogenum ATCC 9179.

These results are in agreement with a previous study [4] where single L. plantarum
C1/15 strain or multiple Lactobacillus strains (L. plantarum 4/16898, 1/14537 and L. brevis
DSM 32516) were able to significantly inhibit the growth of P. chrysogenum and A. flavus
when used as adjunct cultures in the production of miniature Caciotta cheese. With respect
to the single L. plantarum strain (C1/15), the multiple Lactobacillus strain combination
resulted more active against the fungal strains tested confirming the synergistic action of
different antimicrobial compounds highlighted in the current study [4]. To correlate the
metabolite profile of strains to the antifungal activity a PLS regression of GC-MS data was
carried out considering the extent of the antifungal activity as Y variable. The resulting
loading plot in the first two principal components with superimposed scores of antifungal
activity is shown in Figure 4.

In this plot, metabolites that lie next to the antifungal activity have positive relationship
with this latter, metabolites in the opposite side of the plot, passing from the origin are
inversely related with the activity. On the basis of these rules, we can note that organic
acids and arabitol were directly involved in the activity against P. chrysogenum, P. variotii,
and M. recurvus. Oleamide was correlated with A. flavus and F. oxysporum.
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Figure 4. PLS variable loadings plot of GC-MS data (X-variables) superimposed with antifungal activity (Y-variables).
R2Y = 0.89 and Q2Y = 0.65 over 5 validated components. Black triangles = Y coefficients for antifungal activity; red hexagons
= organic acids; green circles = amino acids; light blue stars = saccharides and polyols; yellow circles = fatty acids and
analogues; black diamond = loadings of Lactobacillus classes. Unknown metabolites are not displayed. Metabolites are
abbreviated as in Table S2.

4. Discussion

The inherent ability of Lactobacillus to produce compounds antagonistic to food micro-
bial contaminants as a part of their natural defense mechanism can provide the dairy food
industry with natural and healthier alternatives to chemical preservatives [15], especially
for fresh products. The antifungal activity of Lactobacillus has been related to the synergistic
effect of several compounds, and part of these compounds shows nutraceutical properties.

Compared to the other species here studied, L. plantarum strains showed more organic
acids, among which 3-phenyllactic acid, which shows a broad spectrum of antimicrobial
properties, is effective against bacteria and fungi including yeast [16]. In sourdough bread
started with L. plantarum 21B, the onset of growth of Aspergillus niger was delayed 7 days,
with respect to bread started with a L. brevis strain not producing phenyllactic acid [17].
However, it has been reported that phenyllactic acid is active against fungal species only
at mg mL−1 concentrations, suggesting an overall antifungal effect in association with
other factors produced by LAB [17]. 3-Phenyllactic acid is a by-product of phenylalanine
metabolism in Lactobacillus, where phenylalanine is transaminated to phenylpyruvic acid
and further reduced to 3-phenyllactic acid by 2-hydroxy dehydrogenase [15]. GABA is
another product of amino acid metabolism, biosynthesized by microorganisms through
decarboxylation of glutamate by glutamate decarboxylase [18]. GABA is an important
bioactive compound and its production by various microorganisms has been actively
explored [18]. Higher levels of GABA were detected solely in the L. brevis M8/1 strain.
Besides lactic acid, a number of 2-hydroxy organic acids, that show antimicrobial proper-
ties [10], are generally produced by Lactobacillus. Organic acids levels were found correlated
with the antifungal activity against P. chrysogenum, P. variotii, and M. recurves. L. plantarum
was found to produce hydroxy organic acids, some of which (AHVA and AHCA) have
shown antifungal proprieties [10]. In particular, AHCA has been studied for its potential in
inhibiting cell growth and biofilm formation of the pathogenetic Aspergillus and Candida
species in topical use [19,20]. One of the most important virulence factors of C. albicans
is the ability to form biofilms that protect this yeast against endogenous and exogenous
inhibitory substances, in fact almost 65% of microbial infections in humans are biofilm-
related [19]. The effects of oral administration of lactobacilli against biofilm-associated
infections have been studied [21]. All the strains synthetized oleamide, not present in
the broth, and levels of this compounds have been correlated with the antifungal activity
against A. flavus and F. oxysporum. Oleamide in an amide of oleic acid present in small
amount in animal brains and can be produced by microorganisms [22]. In dairy products’
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fermentation processes, oleamide is synthesized from oleic acid, which is an abundant
component in these food products, owing to lipase enzymatic amidation [23]. Epidemi-
ological and clinical data have shown that fermented dairy products possess preventive
effects against dementia, including Alzheimer’s disease, and those effects have been linked
to oleamide [23]. This compound has been identified as the agent responsible for reducing
microglial inflammatory responses and neurotoxicity [23]. Oleamide is also an endoge-
nous bioactive signaling molecule that acts in various cell types and could elicit different
biological effects [23]. Among the wide range of functions, the most acknowledged one
is its sleep-inducing effect [24]. It has been found that L. plantarum 1/14537 and L. brevis
DSM 32516 consumed almost all the citric acid of broth origin. Citric acid fermentation
by LAB could lead to acetoin and diacetyl production which are aromatic compounds.
However, obligately heterofermentative lactobacilli such as L. brevis when present at high
levels and facultatively heterofermentative lactobacilli such as L. plantarum, under certain
conditions, by co-metabolization of citrate and different sugars may produce great amount
of CO2, giving rise to holes, splits and blowing defects of aged cheeses [25]. L. brevis strains
are also characterized by other biochemical properties such as production of CO2 from
glucose and ammonia from arginine, as shown in Table S1, that are generally used as tool
for lactobacilli classification [26]. Moreover, L. brevis could contribute to the degradation of
arginine in cheese that can lead to ornithine accumulation by the arginine-urease or the
arginine deaminase pathways [27]. On the other hand, ornithine and other free amino acids
could be decarboxylated to putrescine and other biogenic amines that in high concentration
could be responsible for toxic effect on human health.

In conclusion, results of this study provide reference data for interpreting the differ-
ences in the metabolite profiles of Lactobacillus strains isolated from different fermented
food products and their correlation with antifungal activity in vitro. These autochthonous
strains could be considered potential good candidates to be used in cheese manufacturing
as bioprotective cultures and for in situ production of postbiotic substances. However,
further studies in cheese model systems are warranted to evaluate in situ positive metabolic
activities such as organic acids production, GABA and oleamide formation, as well as
negative activities including biogenic amines production and the potential to cause blowing
defects in the initial and later stages of ripening.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/dairy2030026/s1, Figure S1: PLS-DA coefficient overview plot; Figure S2: Heat map of Pearson
correlation values of GC-MS data matrix; Figure S3: Correlation plot of lactic acid (X-axis) vs. glucose
(Y-axis) levels. Table S1: Carbohydrates fermentation profiles of Lactobacillus strains; Table S2: List
of GC-MS metabolites.

Author Contributions: Conceptualization, P.C., M.B.P., S.C., and P.S.; Methodology, P.S., A.M., and
M.B.P.; Software, P.S.; Validation, P.S. and M.B.P.; Formal Analysis, P.S., A.M., and M.B.P.; Writing—
Original Draft Preparation, P.S., P.C. and M.B.P.; Writing—Review and Editing, P.S., P.C., S.C. and
M.B.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not report data available.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stiles, M.E. Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 1996, 70, 331–345. [CrossRef]
2. Crowley, S.; Mahony, J.; van Sinderen, D. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives.

Trends Food Sci. Technol. 2013, 33, 93–109. [CrossRef]
3. Schnürer, J.; Magnusson, J. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 2005, 16, 70–78. [CrossRef]
4. Cosentino, S.; Viale, S.; Deplano, M.; Fadda, M.E.; Pisano, M.B. Application of autochthonous Lactobacillus strains as biopreserva-

tives to control fungal spoilage in Caciotta cheese. BioMed. Res. Int. 2018, 2018. [CrossRef] [PubMed]

81



Dairy 2021, 2

5. Champomier-Vergès, M.C.; Chaillou, S.; Cornet, M.; Zagorec, M. Lactobacillus sakei: Recent developments and future prospects.
Res. Microbiol. 2001, 152, 839–848. [CrossRef]

6. Zagorec, M.; Champomier-Vergès, M.C. Lactobacillus sakei: A starter for sausage fermentation, a protective culture for meat
products. Microorganisms 2017, 5, 56. [CrossRef]

7. Dalié, D.K.D.; Deschamps, A.M.; Richard-Forget, F. Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A
review. Food Control 2010, 21, 370–380. [CrossRef]

8. Cevallos-Cevallos, J.M.; Reyes-De-Corcuera, J.I.; Etxeberria, E.; Danyluk, M.D.; Rodrick, G.E. Metabolomic analysis in food
science: A review. Trends Food Sci. Technol. 2009, 20, 557–566. [CrossRef]

9. Chaudhary, A.; Verma, K.; Saharan, B.S. A GC-MS Based Metabolic Profiling of Probiotic Lactic Acid Bacteria Isolated from
Traditional Food Products. J. Pure Appl. Microbiol. 2020, 14, 657–672. [CrossRef]

10. Siedler, S.; Balti, R.; Neves, A.R. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr. Opin.
Biotechnol. 2019, 56, 138–146. [CrossRef] [PubMed]

11. Pisano, M.B.; Scano, P.; Murgia, A.; Cosentino, S.; Caboni, P. Metabolomics and microbiological profile of Italian mozzarella
cheese produced with buffalo and cow milk. Food Chem. 2016, 192, 618–624. [CrossRef]

12. Quere, F.; Deschamps AUrdaci, M.C. DNA probe and PCR-specific reaction for Lactobacillus plantarum. J. Appl. Microbiol. 1997, 82,
783–790. [CrossRef] [PubMed]

13. Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophore-
sis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700.
[CrossRef]

14. Young, J.P.W.; Downer, H.L.; Eardly, B.D. Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction-
based sequencing of a 16S rRNA gene segment. J. Bacteriol. 1991, 173, 2271–2277. [CrossRef] [PubMed]

15. Naz, S.; Cretenet, M.; Vernoux, J.P. Current Knowledge on Antimicrobial Metabolites Produced from Aromatic Amino Acid
Metabolism in Fermented Products. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education;
Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp. 337–346.

16. Chaudhari, S.S.; Gokhale, D.V. Phenyllactic acid: A potential antimicrobial compound in lactic acid bacteria. J. Bacteriol. Mycol.
Open Access 2016, 2, 00037. [CrossRef]

17. Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M. Purification and characterization of novel
antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 2000, 66, 4084–4090.
[CrossRef]

18. Tajabadi, N.; Baradaran, A.; Ebrahimpour, A.; Rahim, R.A.; Bakar, F.A.; Manap, M.Y.A.; Mohammed, A.S.; Saari, N. Overexpres-
sion and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis 362 for high gamma-aminobutyric acid
production. Microbial. Biotechnol. 2015, 8, 623–632. [CrossRef]

19. Nieminen, M.T.; Novak-Frazer, L.; Rautemaa, V.; Rajendran, R.; Sorsa, T.; Ramage, G. A Novel Antifungal Is Active against
Candida albicans Biofilms and Inhibits Mutagenic Acetaldehyde Production In Vitro. PLoS ONE 2014, 9, e97864. [CrossRef]

20. Sakko, M.; Moore, C.; Novak-Frazer, L.; Rautemaa, V.; Sorsa, T.; Hietala, P.; Järvinen, A.; Bowyer, P.; Tjäderhane, L.; Rautemaa, R.
2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses 2014, 57, 214–221. [CrossRef]

21. Vuotto, C.; Longo, F.; Donelli, G. Probiotics to counteract biofilm-associated infections: Promising and conflicting data. Int. J. Oral
Sci. 2014, 6, 189–194. [CrossRef] [PubMed]

22. Kwon, J.H.; Hwang, S.E.; Han, J.T.; Kim, C.J.; Rho, J.R.; Shin, J.E. Production of oleamide, a functional lipid, by Streptomyces sp.
KK90378. J. Microbiol. Biotechnol. 2001, 11, 1018–1023.

23. Ano, Y.; Nakayama, H. Preventive effects of dairy products on dementia and the underlying mechanisms. Int. J. Mol. Sci. 2018,
19, 1927. [CrossRef] [PubMed]

24. Cravatt, B.F.; Prospero-Garcia, O.; Siuzdak, G.; Gilula, N.B.; Henriksen, S.J.; Boger, D.L.; Lerner, R.A. Chemical characterization of
a family of brain lipids that induce sleep. Science 1995, 268, 1506–1509. [CrossRef]

25. Blaya, J.; Barzideh, Z.; LaPointe, G. Symposium review: Interaction of starter cultures and nonstarter lactic acid bacteria in the
cheese environment. J. Dairy Sci. 2018, 101, 3611–3629. [CrossRef] [PubMed]

26. Axelsson, L. Lactic Acid Bacteria: Classification and Physiology. In Lactic acid Bacteria, Microbiological and Functional Aspects;
Salminem, S., von Wright, A., Ouwehand, A., Eds.; Marcel Dekker: New York, NY, USA, 2004; Volume 139, pp. 1–66.
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