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Janusz Miśkiewicz, Dorota Bonarska-Kujawa

Evolving Network Analysis of S&P500 Components: COVID-19 Influence of Cross-Correlation
Network Structure
Reprinted from: Entropy 2022, 24, 21, doi:10.3390/e24010021 . . . . . . . . . . . . . . . . . . . . . 287

Emanuele Bernardi, Lorenzo Pareschi, Giuseppe Toscani and Mattia Zanella

Effects of Vaccination Efficacy on Wealth Distribution in Kinetic Epidemic Models
Reprinted from: Entropy 2022, 24, 216, doi:10.3390/e24020216 . . . . . . . . . . . . . . . . . . . . . 313

Carlos Saenz de Pipaon Perez, Andrea Zaccaria and Tiziana Di Matteo

Asymmetric Relatedness from Partial Correlation
Reprinted from: Entropy 2022, 24, 365, doi:10.3390/e24030365 . . . . . . . . . . . . . . . . . . . . . 335

Janusz Miśkiewicz
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Preface to ”Three Risky Decades: A Time for

Econophysics?”

Our Special Issue we publish at a turning point, which we have not dealt with since WWII.

The interconnected long-term global shocks such as the coronavirus pandemic, the war in Ukraine,

and catastrophic climate change have imposed significant humanitary, socio-economic, political, and

environmental restrictions on the globalization process and all aspects of economic and social life

including the existence of individual people. The planet is trapped—the current situation seems to be

the prelude to an apocalypse whose long-term effects we will have for decades. Therefore, it urgently

requires a concept of the planet’s survival to be built—only on this basis can the conditions for its

development be created. The Special Issue gives evidence of the state of econophysics before the

current situation. Therefore, it can provide excellent econophysics or an inter-and cross-disciplinary

starting point of a rational approach to a new era. This requires the ability to study various coexisting

critical phenomena and processes. It seems to us that the combination of physics and economics

makes this possible.

Our current Special Issue is divided into nine topic sections (see Sec. 5. Content in Editorial).

The topics of the sections show the research diversity of econophysics, even though it contains

only a fragment of the topics that are of interest to econophysics (a subjective choice made by the

Guest Editors).

Sections i and ix contain review/holistic articles on econophysics through the ”glasses” of science

of complexity in its historical context, including its present state and perspectives.

Section ii contains works devoted to time series analysis, i.e., analyzing the fundamental

empirical data on which econophysics is based. Modern econophysics began its life by analyzing

empirical data, such as time series.

The time series analysis has led to identifying an independent research stream correlation,

memory, dependence, and relatedness. This subject is the content of section iii.

One of the youngest but already established trends in econophysics is the analysis of

cryptocurrency markets, especially their similarities and differences concerning traditional financial

markets. We present this trend in section iv.

Perhaps the oldest and, at the same time, the most developed part of the research areas of modern

econophysics are financial markets and stock exchanges are included in this. We have included

articles on this topic in section v.

Research on the company market has only recently become established in econophysics.

Moreover, it is difficult to overestimate the importance of this market for economic and social life.

For example, it is a base without which the existence of stock exchanges would not make sense.

Section vi contains articles on this topic.

The concept of the relationship between thermodynamic formalism and economics, originating

from Paul Ehrenfest, and especially the idea of entropy, has already been absorbed by economics. We

have included the works devoted to this direction in section vii.

Ubiquitous financial risk is one of the thematic pillars of econophysics. This subject could not be

missing from our Special Issue. We included it in section viii.

xi



An excellent supplement to this Special Issue is our earlier Topical Issue (last

update 30 June 2021) entitled: “Econophysics and Sociophysics in Turbulent World”,

which can be accessed via the following link: https://www.sciencedirect.com/journal/

physica-a-statistical-mechanics-and-its-applications/special-issue/10ZXGBDQBD0.

We believe that we have provided extensive inspiration on the path of Special Issues, especially

to the young generation.

Ryszard Kutner, Christophe Schinckus, and H. Eugene Stanley

Editors
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Editorial

Three Risky Decades: A Time for Econophysics? †

Ryszard Kutner 1,*, Christophe Schinckus 2 and Harry Eugene Stanley 3

1 Faculty of Physics, University of Warsaw, Pasteur Str. 5, PL-02093 Warsaw, Poland
2 School of Business, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M8, Canada;

chris.schinckus@ufv.ca
3 Department of Physics, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA; hes@bu.edu
* Correspondence: ryszard.kutner@fuw.edu.pl
† This Special Issue is dedicated to the founder of econophysics, Professor Harry Eugene Stanley on the

occasion of his 80th birthday anniversary.

1. Motivation

The Special Issue comes out in the increasing accumulation of negative global tensions
in many areas. The year 2022 seems the most unpredictable of the post-second world war
years—a true sanitary/humanitary, climatic, and socio-economic thriller. Among these
global challenges, two far-from-stationary (or unstable) phenomena and processes (operat-
ing at various spatio-temporal scales) need to be mentioned: (1) the pandemic shock and
its economic effects [1], as well as the enormous social frustrations it generates, and (2) the
climatic change that is progressing at an alarming pace, resulting in rapidly increasing
migrations on a global scale. These aspects overlap, of course, with the tension between
different cultures, religions, political systems, and the rivalry of superpowers. Finally, we
must bear in mind the impact of local phenomena and processes (such as those caused by
Brexit or the attack on the Capitol—both due to solid social polarization). To a greater or
lesser extent, all of these are burdened by media information that is playing an increasing
role in our society through its growing social impact. In such a context, characterized by
extreme/rare and super-extreme events combined with tremendous volatility and giant
fluctuations as well as the extraordinary ease of the spread of information and epidemics,
our everyday life became more and more uncertain and even more turbulent—all aspects
of our society are impacted by these global and local factors. All these, combined with the
surprising helplessness of central banks and international financial institutions, result in the
decline of the level of investment, an increase in unemployment, extraordinary involvement
of states in the economy, inflation, and stagnation, and consequently, a recession.

Given the long-term correlations, multiscale/multifractality, criticality, and complexity
of the challenges mentioned above, an interdisciplinary science is essential to structure,
understand and eventually predict the way our societies can evolve. By combining scientific
methods that is, utilizing physics to study socio-economic realities, econophysics and
sociophysics offer necessary interdisciplinary approaches.

Increasing sanitary, climatic, and socio-economic uncertainty can take several forms
and impact markets through various market bubbles and collapses (increasing all forms of
risk). In this challenging time overwhelmed by information and data, an interdisciplinary
approach such econophysics and sociophysics can be particularly useful in rationalizing
and reducing the aforementioned risks. This Special Issue illustrates how the combination
of scientific fields can provide fruitful conceptual frameworks to understand the current
unprecedented transformation of our society.

In conjunction with a previous issue [2,3], this current Special Issue shows the multi-
branch nature of econophysics and sociophysics topics and the diversity of econophysicists’
and sociophysicists’ interests, reflecting the diversity of the world around us. It pushes for
not only a qualitative but, above all, quantitative description of reality from very different,
complementary points of view. As a society, we are ready to acquire, collect, develop and

Entropy 2022, 24, 627. https://doi.org/10.3390/e24050627 https://www.mdpi.com/journal/entropy1
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publish empirical data, cause analysis, analysis of effects, analysis of mechanisms, and
statistical forecasting and proposed actions. The condition is transparency/widespread
availability of unadulterated empirical data collected by various independent institutions
and portals. We have presented the content of our Special Issue in Sec. V below.

This Special Issue is published under the extraordinary situation—it is a testimony of
the pre-current war world, bearing witness and summarizing the era that is just passing.
Now we face the challenge of understanding and describing the world to come—the world
in which globalization ties with the reevaluation of pre-current war paradigms.

2. Remarks on Prehistory

Econophysics does not come from nowhere and it can be related to some early works
developed by some: Louis Bachelier (LB) and especially Jan Tinbergen (JT). Although the
former was an expert in mathematical physics, the latter was an active physicist.

Louis Bachelier defended his doctoral dissertation in 1900 [4] under the supervision of
Henri Poincaré—his research introduced the hypothesis on the stochastic nature of financial
markets. It has been just 100 years since Jan Tinbergen began studying mathematics and
physics at the University of Leiden (the Netherlands) with Paul Ehrenfest who appeared
on the photo below (see Figure 1).

 
Figure 1. Group of Paul Ehrenfest students and friends (Leiden 1924). From the left to the right:
Gerhard Dieke, Samuel Goudsmit, Jan Tinbergen, Paul Ehrenfest, Ralf Kronig, and Enrico Fermi.
Public photo was taken from the Internet.

In 1926 Jan Tinbergen graduated from university. In 1929 he defended his doctoral
thesis entitled “Minimumproblemen in de natuurkunde en de economie” under the super-
vision of Paul Ehrenfest. This thesis is the first attempt in the intellectual history to combine
natural and economic sciences through a strictly quantitative approach by using physics
as theoretical reference. Jan Tinbergen’s work was directly influenced by his supervisor’s
(Paul Ehrenfest) research interest including, among other things, the analogy between ther-
modynamic formalism and economic processes. Generally speaking, Tinbergen initiated
the idea of using physics in economics. Jan Tinbergen was the first Nobel Prize laureate
(which he received it with Radgar Frisch) in economics in 1969 and he is nowadays seen as
the father of econometrics.

Bachelier and Tinbergen laid down the epistemological foundations for a more quanti-
tative approach of the socio-economic reality. This path became gradually inspiring and
generated a constant increase in interest, as illustrated below.

Figure 2 shows a histogram for annual publications in the area of science that we call
econophysics today. The plot was built on publications extracted using over 70 charac-
teristic vital names and phrases from nearly 45 journals registered with Web of Science
(WofS) database.

2
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Figure 2. Depending on the time, the annual number of publications (NP) related to the use of
physics methods in economics and finance. There are two different regions characterized by different
values of the growth factor 1/τ. Namely, NP~exp (t/τ), where τ = 25.23 [Year] for the range 1900–
1938, and τ = 8.58 [Year] for the range 1939–2019. We have marked the following events in the
plot. “LB” (in 1900) marks the appearance of the doctoral dissertation (mentioned in the text) by
Louis Bachelier, “JT Leiden” (year 1921) dates Jan Tinberger joining the University of Leiden, “JT
Nobel” (year 1969) means the receipt of the Nobel Prize by Jan Tinbereger, “Santa Fe” marks the
ground-breaking conference of the Santa Fe Institute (1987) mentioned in the text, “Kolkata” means
the historic conference in Kolkata (India, 1995) and “Lądek” the conference in Lądek Zdrój (Poland,
1998)—both related significantly to econophysics. The last two conferences were the precursors of
cyclical econophysics conferences held to this day: Econophysics Symposium (FENS in Poland since
2004) and Econophysics Colloquium (organized by Tiziana Di Matteo in various countries since 2005)
as well as conferences organized in this century by Wei-Xing Zhou (East China University of Science
and Technology) and Hideki Takayasu (Nikkei Institute, Sony, Tokyo, Japan). The plot was made by
Jarosław Klamut, the PhD-student of one of us (RK). The plot was published with his consent.

The histogram begins in 1900, the year of the publication of the above-mentioned
doctoral dissertation by Louis Bachelier [4]. The exponential growth of the histogram is
divided into two time periods. The first period was from 1900 to 1938 and the second from
the outbreak of World War II in 1939 to 2019. The growth rate of 1/τ for the first period is
about three times lower than for the second period. Moreover, an approximately ten-year
publication “gap” in the latter half of this later period is clearly visible.

In 1987, in the very center of above-mentioned gap, a conference was held by the Santa
Fe Institute, chaired by two Nobel Prize laureates: economist Kenneth Joseph Arrow—
Nobel Prize in Economic Sciences (1972) together with John Hicks for their pioneering
contributions to general economic equilibrium theory and welfare theory, and physicist
Philip Warren Anderson—Nobel Prize in Physics (1977) together with Nevill Francis Mott
and John Hasbrouck Van Vleck for their fundamental theoretical investigations of the
electronic structure of magnetic and disordered systems. This pioneering conference aimed
to answer the question: how economics can benefit from physics, computer science, and
biology. This conference initiated a cascade of publications that continues to this day. We
can formally treat the right slope of the publication gap shown in Figure 2, as the beginning
of modern econophysics [5].

3. Remarks on History

There is a good reason for this Special Issue: the year that has just passed marked the
third decade of a new way of dealing with economics through the lens of a physics-based
approach on a large scale. Since then, there has been an increasing number of publications

3
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(included in the WofS database) devoted to what is now called econophysics. The origins
of this movement are complex and manifold. A possible catalyst for this increase is the
famous conference at the Santa Fe Institute in 1987, organized indeed by Kenneth Arrow
and Philip Anderson. The latter was a co-founder of the Institute, which had been brought
into being three years earlier. The mission of the Institute has been defined as „Searching
for Order in the Complexity of Evolving Worlds”—the above-mentioned event fits perfectly
into it.

The purpose of this event was to see how economics could benefit from physics,
computer science, and biology. Econophysics may be related to the ground-breaking
work (“Lévy walks and enhanced diffusion in Milan stock exchange”) written by the
physicist Rosario N. Mantegna in Physica A (1991)—this article, considered by many
to be the beginning of modern econophysics, showed that we had entered in an era of
extreme and rare events as we experience it almost every day. In addition to these potential
origins, other important works also contribute to the development of research related
to econophysics: among others, one can quote, “Statistical properties of deterministic
threshold elements—the case of market price” by H. Takayasu, H. Miura, T. Hirabayashi, K.
Hamada in Physica A (1992), or “The Black-Scholes option pricing problem in mathematical
finance: Generalization and extensions for a large class of stochastic processes” by J-P.
Bouchaud and D. Sornette in J. Phys. I France (1994). We have just cited some of these
works here, realizing that this is a subjective selection that reflects our point of view. In
this Special Issue, all perspectives on econophysics are welcome, even though they might
generate controversial discussions or opposite viewpoints. The authors will have the
opportunity to put forth their way of presenting and working with econophysics.

The new era evoked above cannot be characterized through the classical Brownian
and Gaussian behavior (Wiener process) originally discovered by Louis Bachelier in his
dissertation [4]; instead, the statistical characterization of our contemporary world is more
in line with a Lévy flight process over multiple timescales identified by Mantegna in his
article on the Milan Index mentioned above. In this context, the central limit theorem has
been replaced by the Lévy–Khintchine generalized central limit theorem. These findings
have been confirmed by later works—see Mantegna-Stanley in Nature (Vol. 376(6), 1995).

In a short period of time, an avalanche of publications created an apparently impossible
bridge between physics and socio-economic sciences (especially financial markets). In
this Special Issue, eminent scholars have been invited, all of whom have significantly
contributed to econophysics. We hope their writings will illustrate and exemplify the
history of econophysics, the current trends in the field, as well as its future perspectives.
We voluntarily keep open the scope of this Issue leaving to the authors’ decision what
they consider to be the milestones of econophysics and how they see its future. We want
econophysics to be presented from different points of view, even though these views might
be contradictory or sources of internal scientific tensions. Our work “Econophysics and
sociophysics: Their milestones & challenges” in Physica A (2019) can be used as a source
of inspiration for the celebration of the development of econophysics. As Guest Editors,
we believe that the Special Issue will be scientifically attractive and inspiring. The 30th
anniversary is in opportunity to show econophysics as a living and developing field of
science related to many other fields. This Special Issue does not aim to be a museum but
instead an inspiring collection of writings opening up prospects for the future of the field.

This Special Issue is also a way to present econophysics to the general public and
to scholars who are external to the field: its achievements, its challenges, and even the
controversial opinions/internal tensions and sometimes contradictions that might have
emerged in the field. As Guest Editors, we are keen to show that econophysics is alive and
inspiring—especially in the context of the global challenges with which we are faced.

4. Conclusions

We conclude this Editorial with an illustration (shown in Figure 3) characterizing the
relationship between econophysics/sociophysics and the fields related to complexity.
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Figure 3. Schematic indication of the wealth of areas of the complex science with which econophysics
and sociophysics are related. Public drawing was taken from the Internet.

This Special Issue provides 33 articles, we have arranged them, for convenience,
in 9 sections exemplifying these epistemic interactions. This arrangement is ambiguous
because many works cover several research directions.

However, it is impossible to frame the entire wealth of contemporary econophysics and
sociophysics in a single Special Issue. Nevertheless, we hope that we present to the readers
work containing new inspiring concepts and an overview of the crucial achievements of
econophysics and sociophysics so far.

5. Content

As evoked above, econophysics has many connections with several subfields and this
Special Issue aimed at capturing this intellectual richness. With this purpose, the content of
this issue can be summarised as follows:

i. Econophysics as a Complex System: History, Economic Freedom, State of the art,

and Econophysics Perspectives

Economic freedom: The Top, the Bottom, and the Reality. I. 1997–2007 by Marcel
Ausloos and Philipe Broniet

Plotting the Words of Econophysics by Gianfranco Tusset
Development of Econophysics: A Biased Account and Perspective from Kolkata by

Bikas K. Chakrabarti and Antika Sinha
Radical Complexity by Jean-Philippe Bouchaud
Three Decades in Econophysics—From Microscopic Modelling to Macroscopic Com-

plexity and Back by Alex Smolyak and Shlomo Havlin
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Valuing the Future and Discounting in Random Environments: A Review by Jaume
Masoliver, Miquel Montero, Joseph Perello, J. Doyne Farmer, and John Geanakop

ii. Time Series Analysis

Relationship between Continuum of Hurst Exponents of Noise-like Time Series and
the Cantor Set by Maria C. Mariani, William Kubin, Peter K. Asante, Joe A. Guthrie, and
Osei K. Tweneboah

Financial Return Distributions: Past, Present, and COVID-19 by Marcin Watorek, Jarosłw
Kwapień, and Stanisław Drożdż

iii. Correlation, Memory, Dependence and Relatedness

Continuous Time Random Walk with Correlated Waiting Times. The Crucial Role of
Inter-trade Times in Volatility Clustering by Jarosław Klamut and Tomasz Gubiec

Understanding Changes in the Topology and Geometry of Financial Market Correla-
tions during a Market Crash by Peter Tsung-Wen Yen, Kelin Xia, and Siew Ann Cheong

Understanting the Nature of the Long-Range Memory Phenomenon in Socioeco-
nomic Systems by Rytis Kazakevičius, Aleksejus Kononovicius, Bronislavas Kaulakys, and
Vygintas Gontis

Are Mobility and COVID-19 Related? A Dynamic Analysis for Portuguese Districts by
Antonio Casa Nova, Paulo Ferreira, Dora Almeida, Andreia Dionisio, and Derick Quintino

Evolving Network Analysis of S&P500 Components: COVID-19 Influence of Cross-
Correlation Network Structure by Janusz Miśkiewicz and Dorota Bonarska-Kujawska

Effects of Vaccination Efficacy on Wealth Distribution in Kinetic Epidemic Models by
Emanuele Bernardi, Lorenzo Pareschi, Giuseppe Toscani, and Mattia Zanella

Asymmetric Relatedness from Partial Correlation by Carlos Saenz de Pipaon Perez,
Andrea Zaccaria, and Tiziana Di Matteo

iv. Currency and Cryptocurrency Markets

Network Analysis of Cross-Correlations on Forex Market during Crises. Globalisation
on Forex Market by Janusz Miśkiewicz

Neural Networks for Estimating Speculative Attacks Models by David Alaminios,
Fernando Aguilar-Vijande, and José Ramón Sánchez-Serraino

What Drives Bitcoin? An Approach from Continuous Local Transfer Entropy and
Deep Learning Classification Models by Andrés Garcia-Medina and Toan Luu Duc Huynh

Cryptocurrency Market Consolidation in 2020–2021 by Jarosław Kwapień, Marcin Wą-
torek, and Stanisław Drożdż

v. Stock Market

Analysis of Individual High-Frequency Traders’ Buy–Sell Order Strategy Based on
Multivariate Hawkes Process by Hiroki Watari, Hideki Takyeasu, and Misako Takayasu

The Stock Market Model with Delayed Information Impact from a Socioeconomic
View by Zhiting Wang, Guiyuan Shi, Mingsheng Shang, and Yuxia Zhang

A Maximum Entropy Model of Bounded Rational Decision-Making with Prior Beliefs
and Market Feedback by Benjamin Patrick Evans and Mikhail Ptokopenko

Heterogeneous Criticality in High Frequency Finance: A Phase Transition in Flash
Crashes by Jeremy D. Turiel and Tomasso Aste

A New Look at Calendar Anomalies: Multifractality and Day-of-the-Week Effect by
Darko Stosic, Dusan Stosic, Irena Vodenska, H. Eugene Stanley, and Tatjana Stosic

vi. Company Market

Learning Your Options: Option-Based Model of Export Readiness and Optimal Export
by Kirill Ilinski

Multifractal Company Market: An Application to the Stock Market Indices by Michał
Chorowski and Ryszard Kutner

On the Mortality of Companies by Peter Richmond and Bertrand M. Roehner
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vii. Economics vs. Thermodynamics

Econophysics and the Entropic Foundations of Economics by J. Barkley Rosser, Jr.
Energy, Entropy, Constraints, and Creativity in Economic Growth and Crises by Reiner

Kümel and Dietmar Lindenberger

viii. Financial Risk

Aspects of a Phase Transition in High-Dimensional Random Geometry by Axel Prüser,
Imre Kondor, and Andreas Engel

Optimizing Expected Shortfall under an l1 Constraint—An Analytic Approach by
Gábor Papp, Imre Konndor, and Fabio Cacciol

ix. Holistic View

Victory Tax: A Holistic Income Tax System by Donald J. Jacobs
Highway Freight Transportation Diversity of Cities Based on Radiation Models by Li

Wang, Jun-Chao Ma, Zhi-Qiang Jiang, Wanfeng Yan, and Wei-Xing Zhou
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Abstract: We recall the historically admitted prerequisites of Economic Freedom (EF). We have
examined 908 data points for the Economic Freedom of the World (EFW) index and 1884 points for
the Index of Economic Freedom (IEF); the studied periods are 2000–2006 and 1997–2007, respectively,
thereby following the Berlin wall collapse, and including 11 September 2001. After discussing EFW
index and IEF, in order to compare the indices, one needs to study their overlap in time and space.
That leaves 138 countries to be examined over a period extending from 2000 to 2006, thus 2 sets of
862 data points. The data analysis pertains to the rank-size law technique. It is examined whether the
distributions obey an exponential or a power law. A correlation with the country’s Gross Domestic
Product (GDP), an admittedly major determinant of EF, follows, distinguishing regional aspects, i.e.,
defining 6 continents. Semi-log plots show that the EFW-rank relationship is exponential for countries
of high rank (≥20); overall the log–log plots point to a behaviour close to a power law. In contrast, for
the IEF, the overall ranking has an exponential behaviour; but the log–log plots point to the existence
of a transitional point between two different power laws, i.e., near rank 10. Moreover, log–log plots
of the EFW index relationship to country GDP are characterised by a power law, with a rather stable
exponent (γ � 0.674) as a function of time. In contrast, log–log plots of the IEF relationship with the
country’s gross domestic product point to a downward evolutive power law as a function of time.
Markedly the two studied indices provide different aspects of EF.

Keywords: Economic Freedom of the World index; Index of Economic Freedom; rank-size law
technique; power law behaviour; exponential behaviour

1. Introduction

Numerous empirical studies [1] pretend to show that Economic Freedom (EF) favours
economic growth, prosperity, poverty reduction, and has many other beneficial effects,
beside being also a necessary condition for the development of democracy. However,
before proposing modern theories of Economic Freedom, it seems that one should first
wonder about the EF definition, and have proofs that Economic Freedom exists. The goal
of this paper is to study the world EF situation before the recent (21st century) economic
crisis. A second paper is intended for later years as explained below. In brief, this is due to
different definitions and changes in geo-political economic conditions. It is expected that
the paper can be useful for econo-physicists and other researchers, due to the somewhat
original approach, more numerical, i.e., along the lines of econophysics thought.

The oldest of these publications, The Wealth of Nations by Adam Smith in 1776, shows
that the preservation of individual freedom to pursue their own interests is due to the
necessity of creating a social and more prosperous civilisation [2]. On the other hand,
protectionism and trade performed under a monopoly (like that of the British empire at
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the time of Adam Smith) serves the purpose of preserving the status quo and privileging a
handful of elites. Frederic Bastiat shows, in Economics Harmonies [3], that all human actions
lead to care and harmony if these actions are motivated by private considerations. Thus,
Bastiat recommends, or even advocates, “liberty” [4], in our own words, EF contains so
much creativity that it leads to many opportunities for bettering human life.

But what is “Economic Freedom” (EF)? A simple definition among many similarly
proposed by others may be as follows: The freedom of the economy is the freedom to
produce, exchange and consume any goods and services acquired without use force, fraud,
or theft.

In order to have a more complete appraisal of EF, one might consider James Gwartney
and Robert Lawson’s article [5]. Gwartney and Lawson do not give a proper term for
economic freedom, but claim to provide all the conditions to be met in order to obtain
“economic freedom”: in brief, the foundations of any “economic freedom” is respect for
the “rule of law”, of property and privacy, i.e., “right to own”, and demands freedom for
agents wishing to enter into contracts, i.e., “freedom to contract”. Thus, before, measuring
EF and discussing such measures, let us briefly examine the framework in the following
three subsections.

1.1. Rule of Law

Many theoreticians of economic liberalism maintain that the aim of the prerequisites
for EF is the establishment of a rule of law; e.g., [6]. A “rule of law” (“Etat de droit”) is an
institutional system in which the government and the individuals are subject to the law.
This right shall apply in an identical way to each individual and to all economic agents.

This principle of equality of individuals before the law is the guarantee that the
fundamental rights of citizens will not be violated by those in power. It also excludes any
form of privilege, i.e., the application of the law with the purpose of favouring one group
of people over another. It restricts also any arbitrary application of the law. Otherwise, one
of these “misactions“ would lead to a restriction of economic freedom.

1.2. The Right to Own

The second prerequisite for EF is the respect of the individual rights to own property.
To achieve this, a system must be established which ensures the right to use (usus) and to
profit ( f ructus) from this property. The system shall also ensure the right to transfer this
property to another person as long as they are both consenting.

These fundamental rights are the guarantees that individuals will be able to be
autonomous and will have the opportunity to seek to achieve their own goals. Many
economists, such as Milton Friedman [7,8] or Murray Rothbard [9,10], consider the right of
ownership as the most fundamental of the rights, of all other rights. It guarantees individu-
als to have individual freedom and allows for better personal development than otherwise,
under a regime of coercion. It also reduces uncertainty and encourages investment by
creating favourable conditions for economic development.

Empirical studies [11] show that countries with a right to own have an economic
growth rate almost twice larger than countries where this right is not respected. According
to (the Peruvian economist) Hernando de Soto [12], a large part of the poverty in third
world countries is caused by the system’s lack of favouring some equality and by the
absence of a right of ownership.

1.3. Freedom to Contract

A contract is an agreement between two or more parties, having the purpose of
establishing obligations at the expense of each of those parts. The freedom to contract
contains therefore the right to choose the parties with which the contract is formed and to
agree on the content of this contract (what to give, to do, or not to do). The parties have the
right to choose the subject of the contract, but once the contract has been made, they are
obliged to fulfil the terms of the contract.
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The main economic function of contracts is to transfer rights of one individual’s
property to another person.

1.4. Other Definitions of Economic Freedom

The Gwartney and Lawson definition [5] is an ideal one, but accepted by classic liberal
economists. It is intimately linked to a respect for the law which in so doing protects
individuals against external aggression that would aim to take ownership of their property.
This definition is valid only in a “non-negative legal context”.

There are many other definitions of EF but none is unanimously accepted. Examples
of “economic freedom” in a “positive law context” are given by Amartya Sen [13]; Amartya
Sen argues for an understanding of freedom in terms of capacity of an individual to
achieve his/her own goals. Notice that in a similar line of thought, Goodin, Rice, Parpo,
and Eriksson [14] propose to measure “freedom”, even outside financial or economic
considerations, from the available time that people have in participating in an activity so
chosen by them.

1.5. Paper Content

However, before a theory of economic freedom is proposed, should one not first have
proofs of where and when economic freedom exists? In fact, these questions demand a study
of other highly fundamental research questions, in particular about the measurement(s) of
economic freedom(s?) themselves, and on the meaning of the measures (so called “indices”).
Immediately tied to the former and the latter, the correlations with other socio-economic
measures should be considered in order to provide stylised data for some preparation of
modelling, later on with determinants or/and components. These are huge challenges
having led to a vast literature.

Thus, even though the literature is enormous, on many aspects, we have only consid-
ered some, in our opinion, very elementary but fundamental, ground level basis, accepting
two types of measures, explicitly defined in Section 2: the Economic Freedom of the World
(EFW) index and the Index of Economic Freedom (IEF). We have examined 908 data points
for the EFW index and 1884 points for the IEF; the studied periods cover 2000–2006 and
1997–2007, respectively, thereby following the 9 November 1989 Berlin wall collapse and
including 11 September 2001. Notice that we presently exclude the 2008 financial crisis,
and the following years, due to recent economic, geopolitical, changes, and because a new
definition of the IEF was recently implemented. Some further work is intended over the
more recent period (to be paper II.) in order to provide a complementary analysis. Paper II
will also contrast the findings, whence prompting any dynamic aspect.

In order to compare the indices, one needs to study their overlap in time and space.
That leaves 138 countries to be examined over a period extending from 2000 to 2006,
thus 2 sets of 862 data points. Since each country presents a combination of freedoms,
and restrictions to freedoms, it is of interest to observe whether the country ranking contains
or hides such a variety of dimensions. Due to the aimed scope of this paper, we will only
consider the most often admitted primary determinant of a country’s economic growth
(EG), i.e., the country’s Gross Domestic Product (GDP).

Thus, our data analysis pertains to the rank-size law technique. It is going to be
examined whether the measures of EF have a statistical distribution which follows either
an exponential or a power law. This is a sort of research question not considered in the
classical realms of economics, but should be of interest in econophysics. A correlation
with the country’s gross domestic product (GDP) follows, distinguishing regional aspects,
i.e., defining 6 continents.

The table of contents of this paper may be as follows:
In Section 2, we recall the definition and content of the Economic Freedom of the

World (EFW) Index and the Index of Economic Freedom (IEF), respectively.
In Section 3, we present the extracted data, i.e., 908 data points for the EFW index and

1883 for the IEF on the studied periods, 2000–2006 and 1997–2007, respectively.
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In Section 4, we provide the empirical laws, on one hand, the rank-size laws for both
indices, plus, on the other hand, the (regression) relationship between such indices and the
gross domestic product of the countries of interest. We also provide a study of regional
aspects through a grouping of countries according to their geographic positions.

In Section 5, we provide conclusions pointing to the weak evolution of indices over
the considered time interval. We suggest lines for further research.

2. Economic Freedom Indices

We position our paper within the scholarly contributions having investigated, on one
hand “measures of Economic Freedom” in modern times, and the link between EF and
EG. Our article explores this possibility by means of a regional analysis, which we conduct
on two indicators. Let us summarise the literature from such points of view.

2.1. Economic Measures
2.1.1. Economic Freedom of the World (EFW) Index

The Economic Freedom of the World (EFW) Index, published by the Fraser Insti-
tute [15], is the result of a project spanning 20 years. It was developed after a set of
conferences given by Milton Friedman and Michael Walker between 1986 and 1994, in a
project gathering more than 60 of the greatest economists of the time [16]. The aim was
to create a (“strong”) base with quantifiable and objective data following a transparent
procedure. Thus, anyone could use the index, whatever their goals and political ideals.

The EFW index measures the degree of economic freedom in 5 major “areas”:

• The size of the government, i.e., public expenditure, taxes, influence on the economy
• The legal structure which guarantees the right to own
• The access to a healthy currency
• Freedom in international trade
• Regulation of costs, work and economy

For each of these 5 domains, several variables are measured, resulting in a set of 21
components included in the index. Each component is placed on a scale going from 0 to 10.
The value 0 refers to zero freedom while the value 10 represents total freedom. Once these
components are quantified, they are averaged in order to obtain the index value.

Several methods have been studied for doing such an average: without being exhaus-
tive, one considers the weight equivalent to each component; another gives an inversely
proportional weight to the standard error of the distribution of the component in the vari-
ous studied countries. A third method calls upon a panel of economists who estimate the
weight that each component must have; the final weight being the average weight obtained
from the panel members’ appraisals. A fourth method uses the primary component analysis
technique to determine each weight. This latter method has the advantage of reducing the
importance of anomalies (outliers) in estimating correlations between the components.

Since none of these methods is really satisfactory (from our investigations, the index
does not seem to be very sensitive to changes in weight), the weight choice is not further
discussed, and taken as the most simple one. Thus, an equal weight for each component is
chosen in the forthcoming analysis here below. The index, so constructed, provides a value
between 0 and 10 for each country. A country with an index value close to 10 is a country
where “economic freedom” is “very large”. A country with a value close to 0 is a country
where EF is “non-existent”.

Of course, it is expected that each country presents a “combination of freedoms”.
Recently, Lawson et al. [17] have reviewed the determinants of EF, with a time dependent
point of view. Some of the most consistent findings are that current levels of EF are strongly
correlated with past levels. Lawson et al. deduce that freer countries have more difficulty
continuing to improve their economic freedom.
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2.1.2. Index of Economic Freedom (IEF)

Another measure of economic freedom, published by the Heritage Foundation [18] and
the Wall Street Journal [19], is the Index of Economic Freedom (IEF), which was initiated in
1995 [20].

The index was built on a set of 10 specific components [21]:

• Tax freedom: measures the importance of fiscal fees imposed by the government on
the income of individuals and businesses.

• Government spending: measures the total government spending.
• Free trade: it measures the absence of commercial barriers, affecting the import and

export of goods or services.
• Investment freedom: measures the freedom of capital flows.
• Financial freedom: measurement of the independence from the government of credit

and banking systems.
• Property rights: they are measures of the ease with which individuals acquire a

property of their own.
• Corruption: measures the importance of corruption in the economic world.
• Business undertaking freedom: measures the ease with which it is possible to create,

develop and close a business.
• Monetary freedom: measures price stability in relation to a price control.
• Labor Code (This item has been added in 2007. Moreover, in 2017, the Heritage Foun-

dation made some methodological changes; the IEF has 12 components nowadays.
The new components are “Judicial Effectiveness” belonging to the Rule of Law pillar
and “Fiscal Health” as the new factor of the Government size pillar.): it measures
the ease with which workers and companies interact without restriction from the
state government.

Some of these components are the results of an assembly of additional measures. Each
of these components is measured on a scale of 0 to 100. The value 100 represents the
maximum freedom. The index was obtained in averaging these 10 components (with an
equal weight for each of them).

Notice that more recently, Dialga and Vallée [22] dealt with “methodological issues
in the Index of Economic Freedom”, indicating that two components, “1. Tax Freedom”
and “Government Spending”, which define the “2. Government Size” pillar, are negatively
correlated to the other “pillars”, whence making the index very unstable and thus impairing
the country ranking.

2.2. Economic Growth

Most empirical studies, e.g., [23–27] provide evidence that economic freedom, as mea-
sured by the Economic Freedom of the World Index, is related to economic growth, income,
standard of living, low corruption, etc. Much evidence shows that economic freedom
leads to economic growth even where countries have limited political freedom [28–30].
The reverse is not true. The case of IEF is less studied [31]. In most cases, the question turns
upon the level of importance of the various independent variables.

One of the first papers that explored the relationship between EF and growth was by
Islam [32]. The first study concerning the analysis of the link between different components
of EF and economic growth seems due to Ayal and Karras [25]. However identifying which
aspects of EF are more conducive to growth has proven difficult, due to multicollinearity
among the index areas [33]. Due to the more basic aim of our paper, we will not discuss
any further regression models nor (Granger) causality in the freedom–growth relationship,
here, whence reducing to a somewhat limited literature review. Nevertheless, for some
completeness, let us point out a few papers, either considering EF–EG from the EFW [34,35]
or the IEF [31] point of view.
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2.3. Criticism/Limitations

These types of indices are often criticised for their methodology. Some “economists”
criticise the economic basis on which such indices are based. They consider the measures to
be too restrictive and demand that they should include a broader range of freedom concepts.
Others, such as John Miller [36], argue that the relationship found for example between a
high life level and such indices is the biased result of choices made in the construction of
some index. Others, like Heckelman and Stroup [37], criticise the method used in order to
average components, which they consider to be arbitrary. See also the previous mention of
Dialga and Vallée’s recent finding [22].

3. Data

In order to study the spread of EF around the world, its evolution during this past
decade, and subsequently its impact on the richness of the world, it is necessary to obtain
the values of the EFW index and of the IEF together with the gross domestic product for
the studied countries

The EFW index values, obtained from the portal www.freetheworld.com, accessed
on 30 October 2006 [38], are provided for 140 countries in the 2000–2006 period, i.e., over
7 years. The values of the IEF can be found on the site of the “Heritage Foundation” [39].
The indices are given for 157 countries in the (12 years) period 1997–2007. The values of the
Gross Domestic Product per capita (GDP) of countries for corresponding periods may be
downloaded from the IMF website [40]. All values are annual data.

We point out that it was unfortunately necessary to exclude certain countries for which
the data was unavailable for various reasons. This is, for example, the case of Iraq. Iraq’s
second war has made the measurement of economic indicators quite dubious: the values
obtained for the IEF and EFW indices or for GDP could not be considered to be significant.
That being said, there are still 908 data points for the EFW index and 1784 for the IEF for
the studied periods.

3.1. Statistical Characteristics of Indices Distribution

The first step in the study of the indices concerns the distribution of their values. The
histograms and cumulated probability densities of the EFW and of the IEF are reproduced
in Figures 1 and 2, respectively. The main statistical characteristics (mean, standard
deviation, variance, coefficient of variation, skewness and kurtosis) of these distributions
are included in Table 1.

Figure 1. (a) Economic Freedom of the World (EFW) histogram for 908 data points, i.e., when available
for all (140) countries and for all (7) years; (b) cumulative probability density for the EFW and normal
distribution fit with mean μ = 6.49 and variance σ2 = 0.96.
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Figure 2. (a) Index of Economic Freedom (IEF) histogram for 1784 data points; (b) cumulative proba-
bility density for the IEF and normal distribution fit with mean μ = 58.79 and variance σ2 = 143.34.

Figures 1 and 2 suggest that both indices follow a normal law slightly displaced to
the right, i.e., to values greater than the median values, whence the negative skewness.
This impression is reinforced by the average values of the indices: 6.49 for the EFW index
and 58.79 for IEF, see Table 1. These two averages are greater than the corresponding
median values: 5 in the case of EFW and 50 in the IEF. The skewness is negative for both
indices: −0.3567 for the EFW index and −0.2373 for the IEF, see Table 1, confirming that the
probability densities are no longer important for values above the median. These features
show that the economies of the studied countries are generally more free than constrained.

Table 1. Summary of (rounded) main statistical characteristics of the economic freedom indicators
distributions, i.e., the Economic Freedom of the World (EFW) index and Index of Economic Freedom
(IEF), according to the examined time interval ΔT for the number N of data points.

ΔT N Mean St.Dev. Var. CoV. Skewn. Kurt.
(yrs) (μ) (σ) (σ2) (σ/μ)

EFW 7 908 6.49 0.98 0.96 0.151 −0.3567 3.3670
IEF 12 1784 58.79 11.97 143.34 0.2036 −0.2373 3.5416

In order to confirm that the distributions follow a normal law, a Kolmogorov–Smirnov
(KS) test is performed. The results of the tests are shown in Table 2. The KS distances,
DKS = 0.0399 for EFW and 0.0310 for IEF, are lower than the “critical values“ of the normal
distribution, 0.0449 for EFW and 0.0321 for the IEF. In addition, p−values, 0.1088 for the
EFW index and 0.0633 for the IEF, are above the 5% significance level; thus the KS tests are
considered to lead to statistically significant features. It is therefore possible to conclude
that the EFW index and IEF values follow a normal law with μ = 6.49 and 58.79 and variance
σ2 = 0.96 and 143.34 respectively, i.e., the standard distribution (SD) is equal to 0.98 and
11.98, respectively.

3.2. EFW Index in Year 2006

For example, consider a specific year, 2006. Table 3 shows the EFW index values for
the 20 freest countries for the year 2006. Hong Kong, Singapore, and New Zealand occupy
the first 3 places. The rest of the top 20 is made up of the great Anglo-Saxon countries
(USA, Canada, Australia) and European countries (Switzerland, United Kingdom, Ireland,
Estonia, Iceland, Denmark, Finland, Austria, Netherlands, Germany, Slovakia). It should
be noted that there is one South American country, Chile (in 6th position) and one country
from the Arabian Peninsula, Kuwait (in 19-th position).
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Table 2. Kolmogorov–Smirnov (KS) test for the adjustment of data from EFW and IEF to a normal
distribution. The distances of KS (DKS) and the p-values indicate that KS tests are statistically
significant. It is therefore allowed to conclude that the EFW and IEF values follow a normal law,
with μ= 6.49 and 58.79 and variance σ2 = 0.96 and 143.34, respectively.

Kolmogorov–Smirnov (KS) Test EFW IEF

p-value 0.1088 0.0633
Gaussian Distribution Critical Value 0.0449 0.0321

Significance Level 0.05 0.05
Number of data points 908 1784

DKS 0.0399 0.0310

In constrast, Table 4 shows the EFW index for the 21 least free countries in 2006. It
is remarkable that the least free countries are mainly grouped in Africa: 16 out of the 21
last countries.

Table 3. 2006 Economic Freedom of the World (EFW) Index values for the 20 freest countries.

2006 EFW Ranking

Rank Country 2006 Rank Country 2006

1 Hong-Kong 8.94 11 Estonia 7.89
2 Singapore 8.57 12 Iceland 7.8
3 New Zealand 8.28 13 Denmark 7.78
4 Switzerland 8.20 14 Finland 7.69
5 United Kingdom 8.07 15 Austria 7.66
6 Chile 8.06 16 Netherlands 7.65
7 Canada 8.05 17 Germany 7.64
8 Australia 8.04 18 Taiwan 7.63
8 United States 8.04 19 Kuwait 7.62
10 Ireland 7.92 20 Slovak Rep. 7.61

Table 4. 2006 Economic Freedom of the World (EFW) Index values for the 21 least free countries.
Unlike the 20 freest countries on the planet, the 21 least free countries are almost all in Africa (16 of
the 21).

2006 EFW Ranking

Rank Country 2006 Rank Country 2006

121 Ethiopia 5.64 131 Burundi 5.23
121 Ukraine 5.64 131 Rwanda 5.23
123 Burkina Faso 5.63 133 Chad 5.12
124 Algeria 5.57 134 Central Africa Rep. 5.01
125 Syria 5.54 134 Guinea-Bissau 5.01
126 Malawi 5.42 136 Venezuela 4.76
127 Gabon 5.37 137 Niger 4.67
128 Nepal 5.35 138 Congo, Rep. of 4.64
129 Togo 5.33 139 Myanmar 4.19
130 Congo, Dem. Rep. 5.25 140 Angola 4.10

141 Zimbabwe 2.67

3.3. IEF in Year 2006

Similarly, Tables 5 and 6 list the IEF values for the 20 freest countries and the 20 least
free countries, respectively. The former British colonies still dominate the ranking. Hong
Kong and Singapore occupy the top 2 places in the ranking. The big Anglo-Saxon (United
States, United Kingdom, Australia, and Canada) countries are also in the top 20. Among all
the regions of the world, Europe has the largest number of countries in the top 20 (9 of the
20 countries are European).
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As in the case of the EFW index, a large majority of the “less free” countries are in
Africa (10 out of 20 countries). The (last) Communist Countries (North Korea and Cuba)
are appearing in the 2 last places of the ranking.

Table 5. 2006 Index of Economic Freedom (IEF) values for the 20 freest countries.

2006 IEF Ranking

Rank Country 2006 Rank Country 2006

1 Hong-Kong 88.6 11 Iceland 75.8
2 Singapore 88.0 12 Denmark 75.4
3 Ireland 82.2 12 Netherlands, The 75.4
4 New Zealand 82.0 14 Luxembourg 75.3
5 United States 81.2 15 Estonia 74.9
6 United Kingdom 80.4 16 Japan 73.3
7 Australia 79.9 17 Finland 72.9
8 Switzerland 78.9 18 Bahamas, The 72.3
9 Chile 78.0 19 Barbados 71.9
10 Canada 77.4 20 Cyprus 71.8

Table 6. 2006 Index of Economic Freedom (IEF) values for the 20 least free countries.

2006 IEF Ranking

Rank Country 2006 Rank Country 2006

138 Chad 50.0 148 Iran 45.0
139 Haiti 49.2 149 Venezuela 44.6
140 Nigeria 48.7 150 Turkmenistan 43.8
140 Burundi 48.7 150 Congo. Rep. of 43.8
140 Uzbekistan 48.7 152 Angola 43.5
143 Laos 47.5 153 Burma 40.0
143 Belarus 47.5 154 Zimbabwe 33.5
145 Togo 47.3 155 Libya 33.2
146 Guinea-Bissau 46.5 156 Cuba 29.3
147 Sierra Leone 45.2 157 Korea. North 4.0

3.4. Regional Evolution of Economic Freedom

In order to study the geographical distribution of economic freedom, it is possible to
calculate an “average freedom value” for the six major continents (Africa, Asia, Europe,
North America, Oceania, and South America). The distribution of countries by continent
is carried out by following the geographical scheme of the United Nations Statistics Divi-
sion [41]. This partition has been chosen because it has been developed with the aim of
conducting statistical studies relevant to the various regions. However, the calculation of
such an average selected is not a simple arithmetic mean. It does not make sense to give a
similar weight to the United States and e.g., to Ecuador, to China, or to Vietnam. Instead,
we consider that the weight should depend on the country’s contribution to the world
economy, for example through the GDP. Thereafter, the weight is given by

wi =
GDPi

∑N
j=1 GDPj

(1)

where wi represents the weight of the country i and GDPj, the internal product country j.
The evolutions of the EF for the 6 continents, obtained by this method are reproduced

in Figure 3 for the EFW index, and in Figure 4 for the IEF.
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Figure 3. Yearly evolution of the Economic Freedom of the World (EFW) Index for the six continents
(Africa, Asia, Europe, North America, Oceania, and South America). The index calculation for a region
results from a weighted averaging of the indices of the countries belonging to the specific region. The
weight of a country is the ratio of the GDP of the country to the GDP of the world economy.

Figure 4. Yearly evolution of the Index of Economic Freedom (IEF) for the six continents (Africa, Asia,
Europe, North America, Oceania, and South America). The index calculation for a region results from
a weighted averaging of the indices of the countries belonging to the specific region. The weight of a
country is in the ratio of the GDP of the country to the GDP of the world economy.

For the EFW index, Figure 3 shows that Oceania is the the freest of the six regions,
with an index value � 8 , relatively stable of the 7 years. Europe, North America, and Asia
are ex aequo with a value � 7.5, which represents the world average value. Africa is the less
free region and South America does not fare much better.

For the IEF, Figure 4 also shows that Oceania is the freest region with an ever increasing
value. It goes from 73.36 in 1996 to 81 in 2007. Europe and North America follow the same
evolution and have almost identical values. Asia regresses in terms of “economic freedom”,
even though there is a slight improvement in the last two years. It goes from 72.2 to 67.9
with a minimum value equal to 66.4 in 2005. Africa is again the least free region of the
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world, but progresses over the 12 years period. Overall, the world average freedom is
rising from 68 in 1996 to 71 in 2007.

The “rate changes” appear to be different from one index to the other; this is due to the
periods of study. Indeed, if the study period is restricted to 2000–2006 for the IEF, the results
so obtained for both indices are almost identical. The slight differences are explained by
the fact that the IEF is “more conservative” than the EFW; the IEF leads to values lower
than EFW for a country. This topic is discussed further in Section 3.6.

3.5. Exponential Versus Power Law Behaviour

In this section, countries are ranked according to the value of the indices in a conven-
tional order: a low ranking indicates that the country belongs to the group of the freest
countries in the world. Conversely, a “high” rank means that the country has an index
value, whence a low EF as compared to others.

The goal here is to determine, the so called “rank-size” law, once the countries are
ranked, in particular whether the indices follow an exponential or a power law (These
are the two most simple analytical functions carried over from statistical physics to econo-
physics; whence their mathematical origin is well known and not further discussed.), i.e.,

INDEX ∼ eλr (2)

or
INDEX ∼ rν (3)

where r is the rank of the country; λ and ν are characteristic exponents. The latter equation
corresponds to the (so called Zipf) rank-size law [42], if ν = −1.

Figure 5a,c,e shows that the EFW has an exponential behaviour for countries with a
rank higher than 20. The value of the exponent decreases a little bit more each year and
ends up to stabilise at �−0.0049 in 2005 and 2006 (see Table 7). The low error bars (less
than 0.0001) and the high value regression coefficient (the regression coefficient is greater
than 93%) confirm that the data perfectly follow the exponential law.

Figure 5b,d,f shows the power-law behaviour of the EFW. Table 8 reports the values
of the exponent of the power law for the 6 studied years. It does not vary much between
2001 and 2004; it falls to −0.0743 in 2005 and −0.007 in 2006. Here again, the effectiveness
of the regressions is high, between ∼89% and 93%. This indicates that the data follows a
power law.

For the IEF, the semi-log graphs, see Figure 6a,c,e, indicates an exponential behavior
according to the rank of countries. The exponent decreases every year, going down from
−0.006 in 1996 to −0.0036 in 2007 (see Table 9). The regression coefficient shows that the
exponential law has been “perfectly” followed since 2003, a year for which the efficiency of
the regression exceeds 90%.

Unlike the EFW index, for which the data follow a power law for all ranks, Figure 6b,d,f
shows a transition point between 2 different power law for the IEF, near rank 10. The expo-
nent of the law for countries with a rank below 10 “increases“ over the years, from −0.0931
in 1996 to −0.0518 in 2007. The exponent for countries with rank higher than 10 remains
relatively stable �−0.016 over the 12 years here studied (see Table 10).

It should be noted that countries with low EF (those which have a very high rank)
follow neither a power law nor an exponential law; this feature holds for both indices.
The difficulty of performing economic measures for these countries can explain that the
index values are fraught with errors that are not possible to compensate. These countries
are often those with a minimally developed economy, weakly connected to their outside
world, apparently subject to the will of a dictator.
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Figure 5. Examples of semi-log [(a,c,e)] and log–log [(b,d,f)] plots of the rank-size relation between
the Economic Freedom of the World (EFW) index and the country rank for the years 2000, 2003, and
2006, respectively: the semi-log plots show that the relationship is exponential for countries of high
rank (≥20); the log–log plots point to a behaviour close to a power law.
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Figure 6. Examples of semi-log [(a,c,e)] and log–log [(b,d,f)] plots of the rank-size relation between
the Index of Economic Freedom (IEF) and the country rank for the years 1997, 2002 and, 2007,
respectively; the semi-log plots show that the IEF ranking has an exponential behaviour; the log–log
plots point to the existence of a transitional point between two different power laws, i.e., near rank 10.
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Table 7. Yearly evolution of the λ exponent in the assumed empirical exponential law between the
EFW index and the rank (r), the standard error (Δλ), its relative value (Δλ/λ), and the efficiency (R2)
of the regression. The low error bar values (less than 0.0001) and the effectiveness of the regressions
(≥93%) confirm that the data are perfectly following the exponential law.

EFW ∼ eλr

Year λ Δλ Δλ/λ R2

2000 −0.0043 0.0001 0.0272 0.9316
2001 −0.0039 0.0001 0.0257 0.9388
2002 −0.0037 0.0001 0.0208 0.9591
2003 −0.0035 0.0001 0.0129 0.9839
2004 −0.0035 0.0001 0.0068 0.9954
2005 −0.0029 0.0001 0.0107 0.9889
2006 −0.0029 0.0001 0.0113 0.9876

3.6. Comparison of Both Indices

The purpose of this section is to compare the indices, whence it is necessary to restrict
the observation “period“ at the largest but common year interval. We should also take into
account the countries common to both sets. That leaves 138 countries to be examined over
a period extending from 2000 to 2006, i.e., 2 sets of 862 data points.

To have a meaningful comparison, it is best to “normalise“ the index values in an
observation interval; here we choose the interval to be [0, 1]. To do so, it is sufficient to
divide the values of the EFW index by 10 and those of the IEF by 100.

The distributions of the 862 data points are reproduced in Figure 7 for both indices.
The average of the EFW values is �0.6542, while the average for the IEF is slightly lower at
�0.6118. This shows that the EFW gives, on average, an index value slightly greater than
that given by the IEF for the same country (see below in Table 11).

Figure 7. Histogram of (a) Economic Freedom of the World (EFW) and (b) Index of Economic
Freedom (IEF) values for the 862 data points, common to both indices, normalised over [0, 1].

In order to confirm that the IEF is more conservative than the EFW index, it is interest-
ing to represent the EFW values according to the IEF values. This is done in Figure 8. By
calculating the linear regression coefficient, the slope is found to be 0.7294. This value is
markedly less than 1, whence confirming that the EFW gives index values greater than the
IEF for a given country.
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Figure 8. Scatter plot of the relationship between the Economic Freedom of the World (EFW) index
and the Index of Economic Freedom (IEF) normalised values. The regression slope points to a linear
relationship of ∼0.7294. This value, statistically significant, lower than 1, confirms that the IEF is
“more conservative“ than the EFW index. The worst EFW country (Zimbabwe) position is emphasised
for framing of the data.

Table 8. Yearly evolution of the ν exponent in the empirical power law between the EFW and the
rank (r), the standard error (Δν), its relative value (Δν/ν), and the efficiency (R2) of the regression.
The low error bar values (Δν/ν � 3%) and the effectiveness of the regressions confirm that the data is
well following a power law.

EFW ∼ rν

Year ν Δν Δν/ν R2

2000 −0.0992 0.0034 0.0343 0.9161
2001 −0.0907 0.0029 0.0314 0.9285
2002 −0.0890 0.0029 0.0328 0.9226
2003 −0.0872 0.0032 0.0369 0.9038
2004 −0.0857 0.0034 0.0393 0.8924
2005 −0.0743 0.0023 0.0306 0.9319
2006 −0.0700 0.0024 0.0344 0.9154

4. Relationship between Economic Freedom and Wealth of Countries

As recalled here above, many studies show a strong relationship between economic
freedom and the wealth of a country, i.e., between EF and the country gross domestic
product (GDP). In this section, the goal is to evidence this relationship.

A graphic representation of EF according to the GDP, on Figures 9 and 10, shows that
the relationship translates into a power law, i.e., thereby defining the exponent γ,

INDEX � GDPγ . (4)
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A positive exponent (γ > 0) indicates a “positive relationship“ between EF and the GDP.
This would mean that the freest countries are the richest ones. A negative exponent
indicates a negative correlation: the freest countries would be the less rich ones.

The existence of this law is very important from an economic point of view. Indeed,
it allows us to know the wealth which a country should have as a function of its level of
economic freedom. By estimating the influence that a government decision will have on
the economic freedom index of that country, it is possible to directly measure the impact
of a government policy on the economy of the country. Moreover, the existence of this
(simple) law will enable countries to be classified according to their position on the power
law. Countries that are located above the law are countries that have a lower gross domestic
product than they should for their level of economic freedom. These countries can be said
to be ‘underperforming’.

On the other hand, the countries that are located below the law are countries that
have a gross domestic product greater than that which it should have. These countries are
‘over-performing’.

On Table 9, we report the exponential law parameter (λ) between the IEF and the
rank (r) of the IEF, the Standard Error (Δλ) and its Relative Error (Δλ/λ), together with
the efficiency of the regression (R2). The λ value decreases each year (in absolute value); it
increases from −0.006 in 1996 to −0.0036 in 2007. The efficiency of the regression shows
that the data follow an exponential law, rather perfectly since 2003, when the efficiency of
the regression exceeds 90%.

Table 9. Yearly evolution of the λ exponent in the empirical exponential law between the IEF and the
rank (r), the standard error (Δλ), its relative error (Δλ/λ), and the efficiency (R2) of the regression.
The low error bar values (Δλ/λ � 2 to 4%) and the effectiveness of the regressions confirm that the
data are closely following a power law.

IEF ∼ eλr

Year λ Δλ Δλ/λ R2

1996 −0.0060 0.0003 0.0422 0.8087
1997 −0.0055 0.0002 0.0405 0.8124
1998 −0.0057 0.0002 0.0385 0.8211
1999 −0.0054 0.0002 0.0416 0.7919
2000 −0.0051 0.0002 0.0382 0.8185
2001 −0.0050 0.0002 0.0345 0.8508
2002 −0.0049 0.0002 0.0381 0.8235
2003 −0.0044 0.0001 0.0212 0.9374
2004 −0.0043 0.0001 0.0241 0.9215
2005 −0.0041 0.0001 0.0246 0.9180
2006 −0.0037 0.0001 0.0238 0.9223
2007 −0.0036 0.0001 0.0227 0.9285

On Table 10, we report the (Zipf) rank-size law exponent (ν) between the IEF and
the rank (r) of IEF, the Standard Error (Δν), the Relative Standard Error (Δν/ν), and the
yearly regression coefficients (R2), for the observed different regimes. While the exponent
for countries of rank below 10 decreases over the years the exponent for countries of
rank higher than 10 remains relatively stable, near the value −0.016 over the 12 years of
the study.
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Table 10. Yearly evolution of the Zipf law exponent (ν) between the IEF and the rank (r) of IEF,
the Standard Error (Δν), the Relative Standard Error (Δν/ν), and the Regression Coefficient (R2).
While the exponent for countries of rank below 10 decreases over the years, the exponent for countries
of rank higher than 10 remains relatively stable, near the value −0.016 over the 12 years of the study.

IEF ∼ rν

r ≤ 10 r ∈ [10 − 100]

Year ν Δν Δν/ν R2 ν Δν Δν/ν R2

(%) (%) (%) (%)

1996 −0.0931 0.0071 7.60 95.58 −0.1820 0.0056 3.09 92.16
1997 −0.0889 0.0073 8.26 94.82 −0.1647 0.0053 3.25 91.43
1998 −0.0808 0.0099 12.28 89.24 −0.1505 0.0044 2.92 92.96
1999 −0.0797 0.0079 9.90 92.73 −0.1477 0.0029 1.95 96.73
2000 −0.0807 0.0089 10.97 91.21 −0.1504 0.0030 1.98 96.63
2001 −0.0723 0.0058 8.02 95.11 −0.1634 0.0042 2.54 94.57
2002 −0.0624 0.0074 11.80 89.97 −0.1651 0.0022 1.36 98.38
2003 −0.0686 0.0070 10.17 92.35 −0.1704 0.0031 1.81 97.18
2004 −0.0690 0.0092 13.35 87.52 −0.1690 0.0024 1.45 98.16
2005 −0.0717 0.0095 13.26 87.67 −0.1678 0.0024 1.40 98.28
2006 −0.0564 0.0047 8.29 94.78 −0.1522 0.0022 1.45 98.17
2007 −0.0518 0.0038 7.33 95.88 −0.1516 0.0022 1.47 98.11

On Table 11, we report the main characteristics (average and standard deviation) of
the normalised EFW and IEF data for the 138 countries out of the 7 years (i.e., 862 data
points). The EFW mean is slightly higher than that for the EFW data. The coefficient of
variation (σ/μ) shows a weak dispersion in both cases.

Table 11. Summary of (rounded) main statistical characteristics for the so called “normalized” EFW
and IEF distributions of the economic freedom indicators, according to the number of countries Nc,
the examined time interval ΔT, whence the number N of data points.

Variable Nc ΔT N Mean StDev CoV
(Years) (μ) (σ) (σ/μ)

EFW 138 7 862 0.6542 0.0948 0.1449
IEF 138 7 862 0.6118 0.1094 0.1788

On Table 12, we list countries (The ISO 3166-1 code is used to facilitate the presentation
of data) for which the EFW Index does not comply with the power law, i.e., the data points
are located outside the area limited by twice the standard deviation from the power law.

Table 12. List of countries for which the EFW Index does not comply with the power law, i.e., are
located outside the area limited by twice the standard deviation from the power law.

EFW

Year Countries

2000 DZA-COD-MMR-ZWE
2001 DZA-ZWE
2002 DZA-COD-MMR-VEN-ZWE
2003 DZA-MMR-VEN-ZWE
2004 DZA-COD-VEN-ZWE
2005 DZA-COD-VEN-ZWE
2006 AGO-COD-MMR-VEN-ZWE

Figures 9 and 10 clearly show that all countries, with a few exceptions obey the power
law. The variation coefficient (σ/μ) shows a weak dispersion on both cases, because the
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countries are almost all in an interval corresponding to twice the standard deviation. For
the EFW, the countries that pose a problem are Algeria, the Republic of Congo, Burma, and
Zimbabwe, but also Venezuela since 2002. As regards the IEF, the problematic countries
are more numerous: among these are Angola, Bosnia, Iran, Laos, Libya, and Zimbabwe.
Venezuela is only an IEF problem since 2004. The lists of such countries are included in
Tables 12 and 13 for each year of interest. In Table 12, we report the list of countries i for
which the EFW Index values do not comply with the power law. In Table 13, we report the
list of countries i for which the IEF Index does not comply with the power law.

Figure 9. Examples of log–log plot of the Economic Freedom of the World (EFW) Index with respect to
country’s gross domestic product (GDP) for the years (a) 2000, (b) 2003, and (c) 2006. This relationship
is characterised by a power law, with an exponent γ � 0.674. The dotted lines encompass the region
for which the data is within twice the standard deviation away from the trend.

The exponent γ values for the period 2000 to 2006 relationship between EFW and
GDP are reported in Table 14, while the γ values for the IEF for the 1996 to 2007 period are
shown in Table 15. In the case of the EFW (see Table 14), the exponent of the law in question
remains stable on the 7 years with an average value � 0.0674. Notice that the regressions
coefficients for the EFW–GDP relation are not as high as in the case of the exponential
and power (rank-size) laws. For the IEF, there are 3 periods on the 12 years during which
the exponent holds different behaviours. For the 1996 to 2000 years, the exponent has an
average value equal to 0.0948, which remains stable around this value over these 5 years.
The second phase, which extends over the years 2001 to 2005, is a transition period during
which the value of the exponent falls down. It ends up to some stabilisation around 0.0666
during the third period (2006–2007). The efficiency of the regressions is not very good,
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except for the third period during which R2 is approaching 50%. Therefore, it may be
conjectured that the IEF corrections, added in 2006, are bearing fruit.

Figure 10. Examples of log–log plots of the Index of Economic Freedom (IEF) relationship to the
country’s gross domestic product (GDP) for the years (a) 1997, (b) 2002, and (c) 2007. This relationship
is characterised by an evolutive power law. The dotted lines limit the region for which the data are
located within a maximum distance equal to twice the standard deviation; the few outliers have been
removed for calculating the power law exponent γ.

Table 13. List of countries fo which the IEF does not comply with the power law, i.e., are located
outside the area limited by twice the standard deviation from the power law.

IEF

Year Countries

1996 AGO-AZE-IRN-LBY
1997 AGO-IRN-LBY-SUR
1998 AGO-BIH-IRN-LOA-LBY-UZB
1999 AGO-BIH-COG-IRN-LAO-LBY-UZB
2000 AGO-COG-IRN-LOA-LBY
2001 BLR-BIH-LOA-LBY
2002 BIH-IRN-LBY-SRB-SYR-ZWE
2003 BLR-BIH-LBY–SYR-ZWE
2004 BLR-LBY-SYR-VEN-ZWE
2005 LBY-VEN-ZWE
2006 AGO-COD-LBY-TKM-VEN-ZWE
2007 AGO-COD-LBY-TKM-VEN-ZWE
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Table 14. Yearly evolution of the power law exponent (γ) between the EFW and GDP, the standard
error (Δγ), the relative error bar (Δγ/γ) and the efficiency (R2) of the regression. The power law
exponent remains rather stable over the 7 years with an average value � 0.0674 (±0.004).

EFW ∼ GDPγ

Year γ Δγ Δγ/γ R2

2000 0.0744 0.0061 0.0824 0.5490
2001 0.0669 0.0061 0.0917 0.4959
2002 0.0636 0.0062 0.0978 0.4636
2003 0.0641 0.0059 0.0922 0.4847
2004 0.0705 0.0057 0.0814 0.5410
2005 0.0667 0.0062 0.0934 0.4540
2006 0.0653 0.0062 0.0952 0.4443

Table 15. Yearly evolution of the power law exponent (γ) between the IEF and GDP, the standard
error (Δγ), the relative error (Δγ/γ), and the efficiency (R2) of the regression. There are 3 periods to be
noticed in which the exponent adopts different behaviours. For the years 1996 to 2000, the exponent
has an average value �0.0948 and remains stable (�0.09) for about 5 years. The second phase spreads
over the years 2001 to 2005, is a transitional period during which the value of the exponent falls
down. It ends up stabilising around 0.0666 on the third and latest period (2006–2007). Notice that the
regression coefficient (R2) is not very high.

IEF ∼ GDPγ

Year γ Δγ Δγ/γ R2

1996 0.0940 0.0117 0.1248 0.3255
1997 0.0935 0.0109 0.1163 0.3439
1998 0.0994 0.0113 0.1140 0.3435
1999 0.0956 0.0112 0.1166 0.3261
2000 0.0915 0.0099 0.1086 0.3583
2001 0.0870 0.0098 0.1131 0.3472
2002 0.0824 0.0101 0.1224 0.3107
2003 0.0802 0.0075 0.0940 0.4332
2004 0.0773 0.0073 0.0947 0.4313
2005 0.0728 0.0070 0.0956 0.4267
2006 0.0662 0.0064 0.0961 0.4208
2007 0.0670 0.0062 0.0922 0.4414

In Table 15, we report the power law exponent (γ) between the IEF and GDP, the stan-
dard error (Δγ), the relative error (Δγ/γ), and the (R2) regression coefficient. There are
3 periods to be noticed in which the exponent adopts different behaviours. For the years
1996 to 2000, the exponent has an average value �0.0948 and remains stable for about
5 years. The second phase, which is spread over the years 2001 to 2005, is a transitional
period during which the value of the exponent falls down. It ends up stabilising around
0.0666 on the third and latest period (2006–2007). Notice that the regression coefficient is
not very high: R2 ∼ 0.376.

5. Conclusions

Let us recall the research questions: can one find an empirical law for describing the
economic freedom (EF) of nations through the main measure indices, i.e., the Economic
Freedom of the World (EFW) index [38] and the Index of Economic Freedom (IEF) [39]?
What simple empirical laws can be found through a simple analysis of rank-size laws?
Are such laws of interest for discussing the main determinant, according to the literature,
i.e., each country’s GDP?

We have taken some data pertaining to the 1997–2007 period, that is before 2008, thus
before a recent “financial crisis”, in order not to involve “multiple exaggerated develop-
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ments” [43], but nevertheless in order to include a drastic turning point, 11 September
2001, following another geo-economico-political event, the fall of the Berlin wall. We have
pointed out that the study of EF should develop over two distinct periods, at this time,
mainly because the index’s 2008 definition of economic freedom has been modified. In so
doing we have selected data, leading to 138 countries examined over a period extending
from 2000 to 2006, thus 2 sets of 862 data points.

We have found that the rank distributions obey either an exponential or a power law
or a mixed behaviour. The EFW rank relationship is exponential for countries of high
rank (≥20), but log-log plots point to a behaviour close to a power law when considering
the whole sample. In contrast, the IEF overall ranking has an exponential behaviour.
Interestingly, IEF rank-size rule log-log plots point to the existence of a transitional point
between two different power laws, i.e., near rank 10.

Besides, the IEF appears to be “more conservative” than the EFW index.
Moreover, when searching for (analytical law) correlations between the country GDP

and either EF indices (we have not looked for regressions between these macroeconomic
variables and the various “pillars” of the indices, the literature is already abundant), we
have distinguished regional aspects, i.e., defining six continents. We find that the EFW
index relationship to country GDP is characterised by a power law, with a rather stable
exponent (γ � 0.674) as a function of time. In contrast, the IEF relationship with the
country’s gross domestic product points to a downward evolutive power law parameter as
a function of time. Markedly the two studied indices provide different aspects of EF.

In so doing, we add numerical considerations to the literature, as should be somewhat
expected by econophysics research, for this special issue, but presenting to others a different
perspective. The rank-size law approach seems original for the present topics. It brings
some information on the “statistical universality” of EF during the considered time interval.
Thus we expect to open gates for rigorous approaches, i.e., stressing objectiveness in the
modelling, rather than ideological bases.

Thereafter, suggestions for further research can be listed: among others, one could
consider other time intervals; for example including the 2008 financial crisis, and nowadays
considering the COVID-19 pandemic. This is left for our expected paper II. On the other
hand, It would be nice to have more “economic considerations” and “historical considera-
tions”, looking at each pillar separately in more detail. For example, one could consider
some renormalisation of the indices, taking into account, size (and type) of governments,
size of country populations, inflation rates, foreign direct investments, health burden, etc.,
on one hand, and on the other hand, migration factors, religious factors, education levels,
trade union strengths, pandemic constraints, local climate, etc., all of which presents quite
a numerical challenge to econophysicists.
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Abstract: Text mining is applied to 510 articles on econophysics to reconstruct the lexical evolution
of the discipline from 1999 to 2020. The analysis of the relative frequency of the words used in
the articles and their “visualization” allow us to draw some conclusions about the evolution of the
discipline. The traditional areas of research, financial markets and distribution of wealth, remain
central, but they are flanked by other strands of research—production, currencies, networks—which
broaden the discipline by pushing towards a dialectical application of traditional concepts and tools
drawn from statistical physics.

Keywords: lexical evolution of econophysics; text as data; correspondence analysis

1. Introduction

The introduction in physics of a new kind of statistical law, or, better, simply a proba-
bilistic law, which is hidden under the customary statistical laws, forces us to reconsider
the basis of the analogy with the [ . . . ] statistical social laws. It is indisputable that the
statistical character of social laws derives, at least in part from the manner in which the
conditions for phenomena are defined. It is a generic manner, i.e., strictly statistical, allow-
ing countless complexes of different concrete possibilities. On the other hand, [ . . . ] we
are induced to ask ourselves whether there also exists here a real analogy with social facts,
which are described with a somewhat similar language (p. 258) [1].

These words were written by a great theoretical physicist, Ettore Majorana, as a
preamble to an article, The Value of Statistical Laws in Physics and the Social Sciences, on
the convergence of natural and social sciences that Majorana wrote around 1930 before
disappearing in 1938.

Majorana was hoping that physics and social sciences (including economics) would
move in the direction of a shared language. If the social sciences, economics in particular,
had always looked to classical physics as a model of scientific rigor, Majorana wanted the
new physics and social sciences to converge on a common statistical field.

Majorana’s message introduces the short journey we are about to make in the discipline
of econophysics, that more than others have taken up the invitation to develop a research
area in which natural and social sciences converge. Although there have been episodes
that have anticipated some of its contents—from the far Bachelier random walk (1900) [2]
and Pareto Law (1896–1897) [3] to the more recent Farjoun, and Machover Laws of Chaos
(1983) [4], to name just a few—econophysics was born in the early nineties of the last
century, with the celebrated article by Nunzio Mantegna on the Lévy walks (1991) [5].
Therefore, it has thirty years, maybe few to understand if it has been able to collect and
develop Majorana’s message, but enough for the definition of its own disciplinary identity.

Econophysics is a broad and magmatic field in terms of content and methods, as is well
highlighted by at least a dozen highly scientific texts that deal in detail with the statistical,
mathematical and theoretical facets of this new field. To understand if econophysics is
moving in the direction desired by Majorana, if indeed that common language is on the
horizon, we will consider the scientific articles on econophysics published during these
years, analyzing them from a linguistic point of view, aware that words mean contents,
methods, objectives.
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The encounter between natural sciences and social sciences raises a theme that cannot
be ignored and that goes beyond the very search for a common language: it is the theme
of laws. In the world of relationships between individuals, of human behavior, are there
social and economic laws that can be compared to the invariant laws that characterize the
natural world? Econophysics does not ignore the problem, indeed it has made it a topic
of discussion.

The linguistic reconstruction of econophysics will therefore be an opportunity to un-
derstand how positions are evolving on this point, to understand if the search for laws that
characterizes physics represents a dominant feature also in the activity of econophysicists.

Section 2 presents the literature and our research methods. Section 3 illustrates the
frequency of the main lexical cluster words identified in the texts considered as shining
light on the evolution of the econophysics lexical corpus. Section 4 focuses on the possible
correlation between the identified lexical clusters. Section 5 is devoted to the visual repre-
sentation and analysis of econophysics words. Section 6 contains some concluding remarks.

2. Literature, Methods, and Results

Econophysics has known various moments in which it has discussed itself. The
debate on empirical regularities that took place between the two components, economists
and physicists, in 2006 [6,7], should be mentioned, as well as prolonged research on
individual theoretical and methodological aspects of the discipline [8–13]. Also articles
that periodically take stock of the state of econophysics should also not be ignored [14,15].

To try to understand the directions that econophysics is taking, we reconstructed its
lexical development over the period from 1999 to 2020. The technique is that of “text as
data” to define the frequency matrix of words used in econophysics articles. This matrix
is then used for the realization of a scatterplot as a picture of the evolution of the lexicon
of econophysics.

The approach to “text as data” proposed here can be defined as “bags of words” [16],
i.e., the texts are broken down into words and short combinations of words (single or in
segments of two or three), whose frequency is counted in relation to the year or quarter
of publication, the latter considered ‘active variables’. Therefore, the words and segments
constitute the ‘tokens’, placed in a row of a large matrix that in each column presents the
active variables chosen, in our case quarters and whole years. Thus, words and the text
segment become the starting point of our analysis. In short, the words and segments that
populate text are statistically analyzed to identify meta-trends and meta-behaviors that
would not otherwise be immediately apparent.

For construction of the matrix and, thus, the scatterplot, 510 econophysics articles
published between the years 1999 and 2020 were used, mainly in Physica A (287 or 56%),
partly in The European Physical Journal B (165, 32%), and a minority (58, 12%) from other
journals (Physical Review E, Contemporary Physics and few others). In the article only the
words were used: therefore, the mathematical or statistical content is not taken into account.

Of course, this is only a fraction of the econophysics articles that have appeared since
1991. Nor would it be materially possible to analyze all the articles (each article must
be cleaned to be included in the overall corpus). In selecting the articles, we used the
following criteria.

First, we relied on the search engines of the sites of the two area journals considered
Phys. A and Eur. Phys. J. B, which have been attentive to econophysics since the early days
of its appearance. Rather than moving on the basis of a definition of econophysics, we
relied on existing internal classifications.

For each of these journals, the choice of articles is proportional to the distribution
of econophysics articles that have appeared in the various years (e.g., the 287 articles in
Phys. A should be representative of the 1616 articles that the Phys. A website identifies
as econophysics articles for the same period). The distribution of articles by subareas
(the clusters) reflects the distribution of topics among the articles in the year examined.

The priority given to these two journals (Phys. A and Eur. Phys. J. B) stems from
their emphasis on econophysics. Few articles published in other journals were included
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because they were particularly significant, often for the insights into the significance of the
discipline they contained.

The impossibility, for now, of constructing a large corpus on the basis of most of
the articles on econophysics published in journals of different subject areas limits the
interpretative scope of an analysis constructed on the frequency of words. We believe,
however, that, although not complete, the sample used here is sufficient to have a first
significant result of the relative distribution of words and, therefore, of the sub-areas of
research, during the period considered.

Words are certainly among the protagonists of our story, an idea that can be schema-
tized in three steps. First, we treated the words and segments contained in the articles
like our data, while the period of publication represents the variable under which words
and segments are grouped. Thus, the early step was to construct a large matrix contain-
ing the frequencies of the overall words and articulated by quarter/year. The matrix or
contingency tables contains 6915 rows (words/segments) and 88 columns (quarters from
1999 to 2020). All grammatical terms of 2 and 3 syllables and all words with fewer than
6 occurrences were removed from the corpus.

The analysis of the words contained in the matrix allows us to extract some lexical
clusters that facilitate the modeling of the evolution of the econophysics lexical corpus. FIN*
includes all words/segments concerning financial topics; DIST* the same for the broad
area of distribution of wealth, income and other variables, often an object of sociophysics
analysis. “Power law” is not included because considered more a tool than an object, as
could be income or wealth; PROD* includes words/segments referring to the industrial
and production world; CURR* refers to words concerning any kind of currency circulation,
including cryptocurrency; and NETW* including all words concerning networks and
complex networks.

To investigate the attitude towards the search for invariant laws, we introduced two
other lexical clusters, STAT* and NONST*, which include words/segments related, the first
one, to contents proper to statistical physics (“power law”, “multifractality”, “stationarity”
are included here), more properly macro that do not imply the analysis of individual choices
of agents; the second, to an analysis of ‘rumors’, of non-stationarity, of specificities often ev-
ident on the micro level (“minority game”, “agent-based”, “reflexivity”, “non-stationarity”
and so on) and emphasizing potential “noise”, “instability” and similar phenomena.

The second step is to regress the time series organized into quarters from 1999 to 2020
regarding the lexical clusters above to determine the extent to which they are treated in
isolation or together and how the STAT*-NONST* relationship of the debate is integrated
into the treatment of other content. One can rightly question the use of VAR regression for
time series regarding words, but it is more than an exact measure of potential causality,
here we are interested in identifying trends to guide us in our treatment of the large topics
above. The quantitative analysis is functional to the qualitative analysis developed in the
next step.

Finally, the third step is dedicated to visualization and analysis of the words over the
period considered here. We decided to adopt correspondence analysis as the most appropri-
ate analytical method to visualize the words/segments contained in the papers in relation
to the above active variables. This is an exploratory data processing technique belonging to
multivariate statistics and designed to analyze the above matrixes containing frequencies,
that is, measures of correspondence between rows and columns. Correspondence analysis
was well suited to our purpose because our study lacked an a priori hypothesis to verify;
it enabled us to identify systematic relationships between variables, without any prior
expectations regarding the nature of these relationships [17,18].

Scatterplots showing the outcomes of this linguistic analysis are grounded on relative
frequencies. Axes of the scatterplot were selected according to the level of inertia, i.e., the
variance exhibited by the active variables. In other words, the active variables (in this case,
whole years) were arranged according to the variance characterizing their own lexicon.
The two pairs of active variables with the greatest distance in their lexicon identified the
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horizontal and vertical axes. Then we could also work with illustrative or case variables,
i.e., words belonging to rows that can be pinpointed on the scatterplot showing the dis-
tribution of the dataset, and then associated with the active variables. This step helps to
clarify the characteristics of the lexicon used by econophysicists.

The multiplicity of the active variables generates the multidimensionality of the data
matrix. Exploratory factorial analysis enables this multidimensionality to be reduced by
transforming data into noncorrelated variables and building factorial or semantic axes that
constitute “points of view” on the phenomenon observed (p. 62) [19]. These points of view
are contextual in that they display relationships across a broad corpus of texts by reducing
the amount of information. Specific software is needed to analyze such a large dataset, so
we used Automatic Lexical and Textual Processing for the Analysis of Content (TALTAC)
and R to manage the corpus (both led to similar matrices), and SPAD to extract the figures
relating to our study.

Briefly, the results of this lexical analysis. Econophysics tends to gradually widen
its field of application, extending it to an increasing number of economic and social phe-
nomena. This is a process which undoubtedly broadens the sphere of influence as well as
the competence of the discipline. This process, however, pushes towards a dialectical, not
dogmatic, application of the principles inherited from statistical physics: suffice it to men-
tion the universality of the laws or the invariance of scale. This dialectical process, more
common to the social sciences than to the natural sciences, does not weaken econophysics,
on the contrary, it makes it more dynamic and alive. However, its application implies a
challenge for econophysics, which remains, or aspires to remain, a natural science.

3. Measuring Lexical Clusters

To obtain a preliminary viewpoint, we reconstructed trends in the relative frequency
of the five clusters. Figure 1 shows the results of this calculation in quarters since 1999.
Since data are relative frequencies, the number of articles per quarter was used to calculate
the total number of words on which to calculate the relative frequency of those words of
interest to us. Clearly, we referred to the average number of words per article. Thus, each
frequency is calculated on the total number of words appearing in the articles considered
in that quarter.

Figure 1. Econophysics main lexical clusters from 1999 to 2020.
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Taking a quick look at Figure 1, what stands out is the prominence in terms of the
relative frequency of the lexical cluster FIN* and partially of DIST*.

In particular, FIN*, which includes words referring to options, stocks, and all financial
products, represents a constant in the interest of econophysicists but, contrary to what
one might imagine when thinking about the financial origins of econophysics, it becomes
dominant, from the perspective of lexical frequencies, from 2012 onwards, reaching various
peaks, those of highest intensity in 2015, 2017 and 2019. DIST*, distribution of wealth
and income, represents, since the early years of the period considered here, an important
topic in the research of econophysicists, characterized by some peaks in different peri-
ods (the highest in the third quarter of 2008, and smaller ones in 2005, 2007, 2014 and
2020 respectively).

The trend of the PROD* cluster, including the reference to the real economy, is in-
teresting. The attraction of econophysicists to industrial and production issues, without
presenting relevant peaks, appears to present greater strength since mid-2014. As we will
see later, these are the years in which interest in networks, financial and otherwise, grows.

The CURR* topic only exploded after 2014 and later, when cryptocurrency became the
subject of analysis by econophysicists. Often treated as a financial asset, cryptocurrencies
are also of interest as a means of circulation, an aspect that has prompted us to keep them
separate from financial securities. Also included in this topic are all words that refer to
monetary circulation, a recurring theme in the treatises on econophysics.

Although it indicates an approach rather than an area of economic/financial activity,
we have also included here network, NETW*, whose prominence has grown, especially
after the first years of the last decade, to the point of becoming an autonomous research
area with respect to econophysics, an aspect that also explains its decreased frequency
among the words of the discipline after 2015.

Stationarity or nonstationarity as well? To try to reconstruct the prevailing orientation
among econophysicists, we have reported in Figure 2 the trend of two lexical clusters
expressing the two possibilities. In the STAT* cluster we find those words/segments that
indicate a preference for an econophysics faithful to physical statistics that analyzes the
behavior of aggregates independently of that of individuals, searches for power laws
and scale-invariance. The NONST* cluster, on the other hand, takes into account the
development in the direction of nonstationarity, scale-dependence, reflexivity, behavior of
individual agents not just aggregates, including agent-based computation.

Figure 2. Lexical clusters on STAT* and NONST* approaches from 1999 to 2020.
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The figure shows that econophysics is not solely the discipline of statistical physics
devoted to aggregates. Interest in the two directions coexists showing various peaks of
NONST* as well as STAT* peaks.

4. Correlation between Lexical Clusters

Is econophysics a discipline that deals primarily with financial markets? Or does it
touch on a wide range of aspects of economic and financial life? Can relative frequencies tell
us anything about the relationship between the topics (lexical clusters) that are the subject
of econophysics work? Once the main lexical clusters were defined, we tried to study their
evolution from 1999 to 2020. As a first step, we tried to understand whether the various
research strands have, over time, constituted a single disciplinary corpus or have remained
substantially separate, also in light of the debate on the macro or micro-orientation of the
discipline. The idea is to test the existence of causality and correlations between lexical
clusters represented by time series related to word frequencies.

To seek such hypothetical causalities or correlations, we start by testing Granger
causality between the available time series: FIN*, DISTR*, PROD*, CURR* and NETW*.
Adopting a level of confidence of 5 percent, we have identified the following outcomes
(see Table A1 in Appendix A):

FIN*, DIST*, PROD* and NETW* are lexical clusters that have no causality or correla-
tion between them. These sub-areas grow, expand, but within hypothetical sub-disciplinary
boundaries. Thus, the lack of correlation between them should be read.

• Both DIST* and NETW* affect CURR*, which is equivalent to saying that the debate
on currency circulation is influenced by the debates on distribution and production,
mainly that on distribution, if we consider the two p-values (Table A1). As the CURR
lexical cluster is the most recent in terms of development, the causality of which it is
the subject is, perhaps, symptomatic of a lesser stiffening or closure of these sub-areas.

• Finally, the debate over NETW* is affected by the debate over STAT*.

The interesting fact is that FIN*, DIST*, PROD*, and NETW* represent a world unto
themselves, not talking to each other or being influenced by other debates.

The two lexical clusters STAT* and NONST* concerning the more the approach than
the content yielded the following outcomes.

• The STAT* orientation is conditioned by the FIN*, DIST*, NETW* and by the same
NONST* cluster.

• The NONST* orientation does not affect any cluster, but is influenced by FIN*, DIST*,
and NETW*.

The latter two causalities feed into the dialectical process above. Causality concerns
not only STAT, which descends from statistical physics, but also NONST*, which instead
challenges it. Hence the intertwining of the two lexical clusters, observable in Figure 2.

Finally, considering STAT* and NONST* in isolation, one cannot ignore the Granger
causality from the latter to the former. Indeed, together with the observation of the
absence of autocorrelation in the time series of the two variables, such causality induces
an interpretation of this type: the centrality of statistical physics, power law and scale
invariance need to be frequently reaffirmed in the face of the doubts evoked by NONST*
words/segments.

These (few) causal relationships are only statistical hypotheses, however, and need to
be validated. Consistently with the approach of our work, we opt for a textual validation:
rather than seeing whether the above statistical hypotheses can be refuted or not, we use
these hypotheses as a key to interpret how econophysics’ lexicon changes over time.

5. Visualizing the Words of Econophysics

Recalling the English adage that ‘a picture is worth a thousand words’, our analysis
of the texts produced during the crisis can be enriched by taking a further step and
moving from number to image (image of words, in this case). The scatterplots presented
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here “can be regarded as maps” of the use of words and segments concerning topics
in the econophysics corpus. The scatterplot simply “communicates [...] information”
(p. 5) [17]. Correspondence analysis provides “ways for describing data, interpreting data,
and generating hypotheses” without a theoretical model or preconceived hypothesis.

How can we interpret the scatterplot obtained by correspondence analysis? If a given
word/segment is close to an active variable (a given year, for instance), this means that
it characterizes speeches or discussion papers published at the time. On the other hand,
words/segments that are common to most or all active variables (years) considered are to
be found in the center (centroid) of the figure.

The scatterplot is constructed using a second matrix that differs from the one used for
above figures solely because of the active variables (columns), the first quarters (88) and
now years (22). In contrast, the words/segments (rows) remain the same (6915).

Our word/segment cloud lies in a c − 1 dimensional space, where c is the number
of active variables, the 22 years in our case. The choice of coordinates to be represented
is such as to ensure the widest representation of words/segments consistent with their
distance (in row and column) from the mean profiles located in the center of the plane. In
short, the widest linguistic variability is guaranteed.

If i = 1, ..., r are the words/segments considered here, j = 1, ..., c the active variables i.e.,
the years analyzed, n the total of words/segments occurrences, ni. the total of the matrix
i-row, n.j the total of the matrix j-column, we can express the distance, d, between two
words/segments i and i’ as Pearson chi-square distance (χ2) in the form:

d2(i, i′
)
=

c

∑
j=1

n
n.j

(nij

ni.
−

ni′ j

ni′ .

)2
(1)

The Euclidean distance weighting in Equation (1) results in a reassessment of the
low-frequency components and a scaling of the high-frequency components. The very low
frequencies (less than 6 occurrences) were removed to prevent them from weighing too
heavily in the distance calculations due to the weighting (p. 107) [19].

Briefly, the scatterplot in Figure 3 shows the evolution of the vocabulary of econo-
physics articles. On the axes we find the inertia, which can be considered as an index of
lexical change: the higher its value, the higher the variability of the words contained in the
analyzed texts. In our case, it is quite low on both axes: 10.02 and 6.81 percent. This means
that this representation explains only 16.83 percent of the total variability. By changing the
combination of axes, we get lower values of total inertia. This result can be interpreted
by stating that, in these twenty-two years, the vocabulary of econophysicists has changed
little and very gradually. The movement can be read clockwise. Arranging the years in
a sufficiently orderly sequence shows that the change has been gradual, but continuous.
We will focus on the gradually introduced changes in the lexicon of econophysics, but the
low variance makes it clear that previously used words and segments continue to be used.
In other words, as new concepts are entered, the previous ones were retained. The most
common words or segments, such as “Brownian motion”, “statistical physics,” “power
law,” found around the origins of the axes, are not shown because they were shared by
most of the articles.

The lexicon used in econophysics in the period under consideration follows a sort
of clockwise trajectory that goes from the left side of the axis to the fourth quadrant on
the lower right, passing through the second and first quadrants. To make its interpreta-
tion easier, the lexical path has been divided into five phases, each of which is lexically
characterized by marking a stage in the construction of the vocabulary of econophysics.
The titles attributed to each phase look more to marginal novelty than to the main body of
scholarship from that period, reiterating the interest in change at the margin.
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Figure 3. The vocabulary of econophysics between 1999 and 2020.

Briefly, reviewing the five phases will help us understand if and how the topics at the
heart of econophysics have changed and how the orientation towards STAT* and NONST*
has changed over time. Remember that words/segments are positioned in relation to years
is done based on their respective relative frequencies, calculated on the set of words used
in each year in the articles considered between 1999 and 2020.

About the distribution of words/segments in general, we can observe how it is rather
spherical in the first four phases, signifying a rather weak inertia, while it shows a dilation
in the fifth phase (2018–2020), proof that in the last years here considered the lexicon
tends to show evident and not only gradual signs of change. The years 2019 and 2020
contribute 18.3 and 12.8 percent, respectively, to the formation of the horizontal axis and
12.2 and 31.3 percent, respectively, to the formation of the vertical axis. There are not many
words/segments that characterize the fifth phase, but they show considerable weight in
structuring the entire word/segment distribution.

5.1. Phase I—Statistical Aggregates

The first phase, subarea I of Figure 3, corresponds to the first six years, from 1999 to
2004. During this period, the new research area was presumably reinforcing its method-
ological and conceptual pillars drawn from statistical physics: “gases”, “Brownian motion”,
“option pricing” and “Lévy distribution” testify that we are in the world of statistical
physics applied mainly to financial markets. The idea that the theoretical properties of
gases could be extended to a market composed of many agents, each operating as a particle,
aroused great interest. The goods exchanged could be of any kind, including the income
distributed throughout the economy as a whole. During this early phase, the discipline’s
focus is primarily on the outcome of the many unpredictable exchanges that occur in a
market, not on what causes them or on the decision-making process of the agents. Statistical
econophysics shows more interest in “predictions” of future prices or rather future price
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changes than in understanding how the market works. The direct challenge to economic
theory anchored in individualism and the role of the representative agent is plain.

The aggregates of statistical physics produce distributions that cannot ignore what
Mandelbrot [20,21] has shown, namely, that the distribution function of asset prices deviates
significantly from Gaussian. Part of the subsequent development of econophysics is the
result of this debate, including the need to normalize “stationary distributions.”

About distribution, “Power law” appears in this first phase, but within econophysics,
“power law” is something of a focal point that has allowed and contributed to the dis-
cipline’s ability to stay within the confines of its inheritance from physics. Perhaps it
is inappropriate to talk about power law science [22], but its popularity stems from the
common belief that “small occurrences are extremely common, while large occurrences are
extremely rare.”

Taking a brief look at the stances taken on power law, can well represent the opinion
of the early physicists engaging in socio-economic research: “Physicists are often fascinated
by power laws. The reason for this is that complex, collective phenomena do give rise to
power laws which are universal, that is, to a large degree independent of the microscopic
details of the phenomenon. The power laws emerge from collective action and transcend
individual specificities” (p. 105) [23]. However, power law models “contain multiplicative
noise” and “lead to nonuniversal exponents that depend on the value of the parameters”.
It thus becomes necessary to model observations at the microscopic level to explain the
decay of volatility correlations on this level (p. 112) [23]. Agent-based microscopic models
were still advocated by Ausloos et al., for the same purpose, i.e., to determine “scaling
exponents and universal laws” (p. 2) [24]. However, “although [power law] is probably not
the universal law that some have claimed it to be, it is certainly a powerful and intriguing
concept that potentially has applications to a variety of natural and man-made systems.”
(p. 346) [25].

Single agents, however, do not disappear in the aggregates of statistical physics, even
in this first phase focused on statistical sets. The word “agents” itself weighs in at a signifi-
cant 0.2 and 0.6 percent in determining the horizontal and vertical, respectively (the 100 per-
cent is obtained by summing the individual contributions of the 6915 words/segments to
the formation of the horizontal and vertical axes). Various types of noise can make their
appearance in the study of aggregate phenomena or distributions. Typically, these noises
are related to microscopic analyses of how markets work. This explains the presence in
the first subarea of segments such as “minority game”, a variant of Brian Arthur’s El Farol
bar problem [26], and “minority group”, typical of computational models based on agents
making decisions based on their memory of what happened in the past. Agent-based
analysis, which has developed independently, is thus gradually being drawn into the
galaxy of econophysics, given the need to explain microphenomena. Agent-based analysis
has also generated an abundant literature on models based on assumptions very different
from those that characterize statistical aggregates.

A sort of dialectic between macro and micro, between scale invariance and multi-
scale, between stationarity and non-stationarity makes its appearance since the first phase
originating that causation between NONST* and STAT* mentioned above.

5.2. Phase II—Stationary or Nonstationary Processes?

Econophysics was a discipline that reached maturity in a few years. As Figure 3 shows,
the period from 2005 to 2009 appears, in fact, characterized by those words that define its
identity: “stylized facts”, “Pareto law”, “wealth distribution” and so on. Consistent with
DIST’s peak of the years 2006–2008 visible in Figure 1, “distribution” becomes a key word
in econophysics, identifying an area of research, the distribution of wealth, that has begun
to represent a specific field in the discipline. Since those years, it has been possible to state
that wealth/income distribution analysis and financial market research have represented,
not without overlap, the two main areas of research in the discipline.

When talking about income distribution and price changes, the notion (crucial for
econophysics) of “stylized facts” is quite common. Simply put, these are phenomena that
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are primarily visible at the meso and macro levels, and usually lack a micro theoretical
foundation. A stylized fact allows generalization without reference to time or spatial
contextualization. Although the notion of “stylized fact” is widely accepted by statistical
physicists aiming to explain aggregate or macro phenomena, it remains shrouded in a kind
of vagueness, perhaps a legacy of its economic origin. Some recognized and universal
stylized facts—such as distribution laws, option pricing and risk control—sit alongside
less accepted stylized facts, such as trends in GDP or inflation. However, stylized facts also
remain central to their use in the study of financial markets [27].

However, even at a stage when econophysics recognizes its roots in statistical physics,
it does not fail to discuss them, thus making this discipline a living field of research.

It is a fact that deviations of price time series from random walk behavior and “price
distribution” have been studied, moving also in the direction of stylized self-organizing
facts. “Self-organizing” and “self-organization” together with “group of agents” highlight
the novelty of this phase. A system characterized by self-organizing criticality is able to
move towards a stable critical regime that is characterized by long-range correlations and
free-scale power laws. From an economic perspective, we can look at the ability of markets
to organize themselves by means of intermediate actors, such as groups of firms or sectors,
or even uncoordinated agents [28]. If markets are able to converge toward stability, there is
no need to analyze their internal or micro dynamics.

The transition from the microstate to the macrostate level or “phase transition” is part
of the analysis of markets and socio-economic systems. “Self-organization” has a role in
any phase transition. In 2007, Newman wrote: “There has been much excitement about
self-organized criticality as a possible generic mechanism for explaining where power-law
distributions come from [ . . . ] Self-organized critical models have been put forward not
only for forest fires, but for earthquakes, solar flares, biological evolution, avalanches and
many other phenomena” (p. 347) [25].

But self-organization does not necessarily mean homogeneity of agents. The models
postulated the distinction between inactive agents (“chartists”) and active agents (“funda-
mentalists”), and the feedback between price fluctuations and the number of active agents,
implicitly admitting that agents can decide whether or not to enter the financial market
based on their “predictions” regarding price changes. The choice involves a price dynamic
that does not guarantee that the probability distribution will remain stationary over time.
On the contrary, there may be a “nonstationary distribution” (p. 386) [29].

Not only that. The evolution of the income distribution debate has involved the
assumption that agents have “saving propensities” [30] or saving parameters [31], which
affect the volume of exchange between agents, viewed as particles colliding to exchange en-
ergy. When saving is allowed, the intensity of this exchange decreases, and the distribution
consequently takes on a new shape (p. 166 ff) [32].

The ability of markets to organize themselves in a stable manner has been discussed.
“Thermodynamics,” which appears in the previous step, is connected to “stationarity”
and “non-stationarity.” The latter reminds us of what McCauley wrote in that very year:
“There is no reliable analogue of energy in economics, and there are very good reasons
why no meaningful thermodynamic analogy can be constructed” [7]. Thermodynamic
equilibrium would require a stationary equilibrium, whereas markets and production
are not stationary, nor are increases in the time series, with the consequence that growth
processes can be understood by considering not only their variation over time, but also
their initial conditions.

Time matters. With respect to financial markets, “non-stationarity” in time series could
be caused by secular trends or other long-term factors that do not permanently characterize
the observed phenomenon. In other words, the parameters of a process or distribution
may change. This aspect distinguishes economics from physics. Clearly, nonstationary
processes force us to set aside the ergodic condition and to reconsider “non-ergodicity” as
a norm in economic processes (p. 3180) [33]. Are there concepts from physics that cannot
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be applied to economics? However, the parallel between natural and social sciences, rich
in both similarities and differences, continues to be at the heart of econophysics.

5.3. Phase III—Zero-Intelligent Agents

We know that aggregates gave rise to empirical events because of so many causes
that it was impossible to explain them by adopting a deductive approach. Phenomena
were the product of too many causes to be investigated. Decision-making processes were
ignored. However, are the interacting agents/particles that animate these phenomena
incapable of making decisions? Are they zero intelligence [10,34]? Zero intelligence, the
lexical protagonist of the third phase (2010–2012), must be conceived referring not to the
decision-making capacity of agents, but to the inability to link the global outcome under
observation to the behavior of the underlying microstructures. Agents are random factors,
therefore assumptions about their behavior are not necessary to obtain stylized facts. The
direction seems diametrically opposed to that of perfect rationality.

While minority game models have been proposed primarily to explain some stability
and stationarity weaknesses at the aggregate level, zero-intelligence units are introduced
into agent-based computation to assert “implicit microfoundations”: individuals represent
“black boxes” that are sources of unpredictable noise subject to objective constraints. Usu-
ally, microfoundations are explicit because the choice (optimization) mechanism is fully
specified and functions as an essential explanatory factor. Here, agents are efficient even if
their rationality is not explicit. What matters is the macro phenomenon, regardless of any
individual rationality.

The point is not to assert that agents are purposeless and act randomly: zero-intelligence
means that starting from individual behavior or rationality, macro phenomena cannot be
predicted. In short, since rationality has no observable impact on market data, the rational-
ity hypothesis may be superfluous.

This development of the macro-micro relationship, the true crux of econophysics, is not
the only new element of this third phase, which is also distinguished by the prominence
given to other fields. In fact, econophysics begins to be widely interested in the real
economy in production and enterprises. A broad econophysics approach to production (the
so-called “classical econophysics”) has been proposed by Cockshott, Cottrell, Michaelson,
Wright and Yakovenko, in a volume published in 2009, Classical Econophysics [33]. The title
is explained in the following terms by the authors of the first part of the book: classical
physics, from Galileo to Bohr plus classical economics, from Smith to Marx. We could say:
econophysics devoted to work and energy on the one hand, and classical political economy
focused on economic development on the other. The goal is actually even more ambitious
than building an econophysics from classical physics and economics: the authors identify
several categories that could unify the two disciplines, physics and economics.

Classical econophysics is close to the field of political economy, as highlighted by the
treatment of “value”—a concept forgotten by neoclassical economics, and reinterpreted
here based on “simulation data, empirical data, and statistical mechanics arguments”
(p. 3) [35]. There is much interplay between physics and economics: from energy/value
and energy/utility parallelism to fluid/monetary flow, to the common ground of tech-
nological innovation [36]. However, it is the relationship between thermodynamics and
economics (hardly a new topic), with its burden of “entropy” and information, that remains
at the heart of any econophysics view of production. In a nutshell, the point is: thermody-
namics implies the conservation of energy, a principle that so far has not been confirmed in
economic processes.

5.4. Phase IV—Emergent Properties

No concept is abandoned, but in the fourth phase (2013–2017) the frontiers of econo-
physics seem to be expanding, as highlighted by the repeated use of “complex systems.” A
“complex system” is “a system with a large number of mutually interacting parts, often
open to their environment, that self-organize their internal structure and dynamics with
new and sometimes surprising ‘emergent’ macroscopic properties” (p. 3196) [37]. The
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macroprospective is anchored in the idea that particles have “emergent properties,” i.e., that
[emergent properties] produce effects that are only visible at the macro level. Emergent
properties originate from self-organization due to nonlinear interactions between humans
or heterogeneous agents. It should be recognized that statistical econophysics does not
provide a clear formulation for the occurrence of emergent properties. Econophysics looks
at emergent properties because at the macro dimension. It is also interesting that physicists
confess that they cannot predict the exact shape of these phenomena [38]: analysis of
emergent properties requires tools other than those drawn from statistical physics.

The point is that the concept of “emergent property” was primarily devised by Keynes
in economics, not physics, but has never been adequately developed in modern economics.
Perhaps this is because, unlike econophysicists, economists base their reasoning on a move-
ment from micro-level structures to complex global-level structures. Emergent properties
involve phenomena that can only be observed at macro-level structures, where objects are
irreducible to their components. They cannot be microfounded. Statistical physics states
that it is not necessary to define the properties of particles or components. What matters
are their effects at the macro level where the emergent properties are visible.

Emerging properties of systems are produced at the meso/macro level, the study
of which requires new concepts: network is one of them. The occurrence of the words
“network” peaked in 2014, after increasing considerably in 2012 and 2013 (weighing for the
0.2 per cent of horizontal axis and 0.7 percent of vertical one). The network shaped
a real trend in econophysics studies during that period. The study of aggregates of
indistinct particles/agents, followed by attention to the self-organizing capabilities of
these particles/agents, paved the way for connections between agents and/or sets of
agents, and their ability to build networks in financial and economic contexts. Graph
theories provide the mathematical basis for the scientific description of networks. In 2014,
Slanina wrote: “Numerous interdependences we find in society can be expressed in terms
of a collection of networks, each of them mapping a certain aspect of pairwise interactions
among humans or human collectives, or even products of human activities” (p. 222) [39].

Bargigli and Tedeschi wrote: “Network theory deals with the structure of interaction
within a multiagent system. Consequently, it is naturally interested in the statistical
equilibrium of these systems [ . . . ] Following this path, we come close to the idea [ . . . ]
of reconstructing macroeconomics under the theoretical framework of statistical physics
and combinatorial stochastic processes” (p. 2) [40]. The need to understand interactions
at the meso and macro level fostered the growth of network analysis, which gradually
became one of the foundations of “macroeconophysics”. However, it is precisely the
increased attention that has fostered its consolidation as an independent research area with
respect to econophysics, as highlighted by the distribution of articles in Physica A in which
“econophysics” and “network analysis” identify two distinct subareas.

One aspect of the explosion of attention to “network analysis” is a further broadening
of financial market studies, as shown by the peaks in Figure 1. De Area Leão Pereira et al.
(p. 258) [41] gave the first reason for this when they wrote: “The use of complex networks in
financial markets has enabled a new view, mainly to measure the financial interaction between
stock exchanges, assets, banks or companies. In this case, the nodes are usually assets, banks
or countries.” Complex networks add the interdependence of markets as a necessary condition
for studying the fragility of financial systems. As with emergent properties and other topics,
“network analysis” is brought back into the realm of statistical physics.

The segment “complex networks”, which occurred more often than “complex system”
in 2017, does not only refer to the financial world. It also includes production and business
networks, reinforcing econophysics in the direction of the real economy as well as the
financial economy. Econophysics was born with financial markets, and finance remains at
the heart of this discipline. The question, however, is which econophysics is best suited to
investigate production.

After rediscussing the temporal dimension, the other dimension to consider is space:
terms such as “international network” and “macroeconomics” testify to a particular and

42



Entropy 2021, 23, 944

gradual shift to great spaces. In 2016, Paul Ormerod wrote, “There is a great opportunity
for econophysicists in the area of macroeconomics. Mainstream [DSGE] models are felt to
be unsatisfactory, both by policy-makers and by mainstream economists” (p. 3288) [42].
Reference to communities of production networks [43] shifts econophysics to a spatial
dimension that inevitably draws attention to the multiple connections that link productive
or financial vertices at the international level. At these vertices we can find institutions,
firms, industries, central banks, as well as agents. Econophysics is thus enriched by macro-
econophysics, an important new field that opens up possibilities and raises challenges.

Consistently with these macro developments, the fourth is also the subarea comprising
topics such as monetary and banking relationships, an operational field that, until then,
has played a marginal role in econophysics [44].

5.5. Phase IV—Cryptophysics

Looking at Figure 1, one may wonder if there is a discontinuity between the fifth
phase, which covers the years 2018 to 2020, and the previous phase. Some of the topics
reported—bitcoin, cryptocurrency and sentiment analysis—seem far removed from the
tradition of econophysics. “Sentiment” weighs 1 percent of the horizontal axis. A few
trends can be detected.

First, it seems that econophysics is looking increasingly at macroeconomics and the
real economy. The area is populated with words like “worker”, “factory,” “productivity”
and “profit”. It is decidedly interesting that a word as “profit” contributes in determining
the axes (0.3 and 0.1 respectively). Are we facing a definitive shift to the real phenomena
of the economy? Only in part. However, an “economic” strand of research seems to be
consolidating, covering the firm [45], the price of crude oil (analyzed both financially
and as a commodity) [46], capital income [47] and economic policy [48]. “Oil” weighs
1.1 percent in the horizontal axis and 0.8 percent in the vertical axis. “Crude oil” for 0.6
and 0.2 respectively. Innovations in methods and analytical tools are anchored in content
with increasing areas of overlap with economics.

One may wonder why the attention to productive and industrial or economic-social
issues does not explode, even if a growth of interest in real economy is undoubted. The
doubt that arises is that econophysics remains tied to concepts and tools that, in a sense,
prevent a decisive enlargement of the research area.

Second, the CURR* lexical cluster emerges strongly here. The word “bitcoin” alone
contributes 3 percent of the horizontal axis and 2.3 percent of the vertical axis. Not
only bitcoin, but “cryptocurrency” contributes 0.4 and 0.6 in structuring the axes and
“cryptocurrencies” 0.3 and 0.5 respectively. Bitcoins are analyzed as financial assets and
means of exchange [49–52]. According to this qualitative analysis, FIN* and CURR*
converge. The same “gold” matters for 0.3 and 0.6 of horizontal and vertical axis. From
the centrality of “option pricing” in the early years, to the relevance of “cryptocurrency
pricing” in recent years [53,54].

Third, the consolidation of the “quantum walk” as a development of the now histor-
ical “random walk” opens new fields of application that, at least from a lexical point of
view, seem to change econophysics. The “quantum communication” leads to “quantum
cryptographic protocols” [55] (semi-quantum key distribution, among others), which seem
to open to further enrichment of econophysics. In terms of content, the four mentioned
above and CURR* in particular seem to be sufficient to contain also these developments
that pertain mainly to the instrumental aspect.

All that being said, FIN* and DIST* remain the two central topics in econophysics [56–59],
gradually joined by PROD*, CURR* and NETW*. The core of econophysics does not change,
although the focus on specific phenomena induces continuous enlargement of the toolbox.

To conclude, Figure 3 shows that in the years 2018–2020 our word cloud undergoes
a dilation and the distance between the words/segments that characterize those years
and the core lexicon of econophysics tends to increase, as evidenced by the widespread
presence at this stage of words/segments that weigh in the structuring of the scatterplot.
This means that the use of the new words/segments has less need of the lexical apparatus

43



Entropy 2021, 23, 944

typical of statistical mechanics, which is located around the origin of the axes, than was
previously the case when new terms were introduced.

6. Concluding Remarks

A first conclusion of this lexical investigation is that econophysics can certainly be
included among the attempts of synthesis between natural scientific language and economic
and social language. Figure 3 speaks to both worlds, natural and social.

The words/segments legacy of statistical physics lie in the center (centroid) of the
Figure 3, which, however, tells us that there is a dialectical relationship between this core
of words/segments and words that over the years take over the scene, conditioning in
some way the scientific debate within econophysics. It happened with the word “agents”
in the first phase; with the word “network” but also “crude oil” in the fourth phase; with
“bitcoin,” “cryptocurrency,” “sentiment,” “gold” in the fifth and most recent phase. This is
how the lexicon of econophysics evolves.

Does this dialectical process affect the propensity of econophysicists to seek “power
laws” and invariant laws? Jovanovic and Schinckus stated: “The implicit disciplinary
assumptions that econophysicists have regarding the identification of statistical laws
come from the hypothesis of the universality of power laws. To put it in other words,
econophysics inductively expects to identify a power law” (p. 37) [12]. However, the
finding that linguistic variability increases in the last stages considered here (the fourth
and fifth), together with the increased frequency of the NONST* lexical cluster from
2017 onwards (see Figure 2), leads us to conclude that the search for invariant laws is a fact
that is far from being definitively established in econophysics.

The discipline seems to evolve on the basis of a different and less obvious point of
attraction than “power law”: the dialectical process that arises from the application and
questioning of concepts and methods often drawn from statistical physics. The application
of a complex, non-reductionist approach to observed phenomena seems to lead to the
continued use of dialectical, if not contrasting concepts, as suggested by the oscillating
values of the STAT* and NONST* time series.

In Figure 2 there is no bifurcation. The development of econophysics seems to depend
on the intertwining and contamination between these conflicting concepts, rather than on
the assertion of one orientation or the other, STAT* or NONST*.

The process of consolidation and enlargement of lexical clusters on the one hand
reinvigorates the debate on stationarity and non-stationarity, in short, on the application
of statistical physics to economic and social relations, on the other, it is the product of
that debate.

Figure 3 and the lexical analysis of these twenty-two years show that the evolution
of econophysics does not depend so much on the consolidation of certain principles,
approaches or visions as on their continuous questioning and enrichment with other
contents and areas.

To conclude, the effectiveness of “power law” does not seem to be a consequence of its
universality, but rather of its non-dogmatic use which requires continuous verification. A
conclusion that also seems relevant to the other pillars of econophysics—“scale invariance,”
“multifractality,” and so on—and to the overall application of statistical physics to the
social sciences.
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Appendix A

Table A1 reports a series of χ2 tests through which we verify if the explanatory variable
Granger causes the dependent one. In particular, for the sake of synthesis, we only consider
those tests with a p-value below the usual 5% confidence level. More in general, the p-value
displayed in the last column represents the confidence we have to reject the null hypothesis
that the explanatory variable does not Granger cause the dependent one.

Table A1. Granger causality test on lexical clusters.

Dependent Variable Explanatory Variable χ2 DF p-Value

CURR DIST 20.766 2 0
CURR NETW 5.897 2 0.05
NETW STAT 8.067 2 0.018
STAT FIN 8.726 2 0.013
STAT DIST 7.067 2 0.029
STAT NETW 7.154 2 0.028
STAT NONST 9.992 2 0.007

NONST FIN 11.469 2 0.003
NONST DIST 6.649 2 0.036
NONST NETW 6.260 2 0.044
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Abstract: We present here a somewhat personalized account of the emergence of econophysics as an
attractive research topic in physical, as well as social, sciences. After a rather detailed storytelling
about our endeavors from Kolkata, we give a brief description of the main research achievements in
a simple and non-technical language. We also briefly present, in technical language, a piece of our
recent research result. We conclude our paper with a brief perspective.
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1. Introduction

Countless attempts and research studies, mostly in physics, to model and comprehend
the economic systems are about a century old. For the last three or four decades, major
endeavor have been made and some successes have been achieved and published, notably
under the general title ‘Econophysics’. The term was coined at a Kolkata conference held
in 1995 by Eugene Stanley, who later in an interview said “ ... So, he (Bikas) started to have
meetings on econophysics and I think the first one was probably in 1995 (he decided to
start it in 1993–1994). Probably the first meeting in my life on this field that I went to was
this meeting. In that sense Kolkata is — you can say — the nest from which the chicken was
born ...” [1]. The entry on Econophysics by Berkeley Rosser in the New Palgrave Dictionary
of Economics (2nd Edition [2]) starts with the sentence “According to Bikas Chakrabarti (...),
the term ‘econophysics’ was neologized in 1995 at the second Statphys-Kolkata conference
in Kolkata (formerly Calcutta), India, by the physicist H. Eugene Stanley ...” See also
Figure 1 (and Reference [3]). It may be mentioned here that in a more generalized sense,
the term ‘Sociophysics’ was introduced more than a decade earlier by Serge Galam and
coworkers [4] (also see Reference [5]).

As we will discuss in the next section, economics, like all the natural sciences (physics,
chemistry, biology, geology, etc.), are, epistemologically speaking, knowledge or truth
acquired through induction from observations (natural or controlled in the laboratories)
using inductive logic and analyzed or comprehended using deductive logic (like math-
ematics). The divisions of natural sciences between the streams, like physics, chemistry,
biology, and geology, are for convenience and are man-made. ‘Truth’ established in one
branch or stream of natural science does not become ‘false’ or wrong in another; only the
importance often vary. This helps in the growth of an younger branch of science through
interdisciplinary fusion of established knowledge from another older established branch;
astrophysics, geophysics, biophysics, and biochemistry had been earlier examples. Econo-
physics has been the latest one, and this special issue of Entropy attempts to capture the
history, success and future prospect of econophysics research studies.
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Figure 1. Histogram plot of yearwise numbers of entries containing the term econophysics against the
corresponding year. The data are taken from Google Scholar (dated 31 December 2020). It may also be
noted from Google Scholar that, while this 25-year old econophysics has today typical yearly citation
frequency of order 1.3 × 103, more than 100-year old subjects, like astrophysics (Meghnad Saha
published his thermal ionization equation for solar chromosphere in 1920), biophysics (Karl Pearson
coined the term in his 1892 book ‘Grammar of Science’), and geophysics (Issac Newton explained
planetary motion, origin of tides, etc., in ‘Principia Mathematica’, 1687), today (31 December 2020)
have typical yearly citation frequencies of order 32.5 × 103, 26.8 × 103, and 38.6 × 103, respectively.

In the next five sections (essentially following the structure and section-titles, sug-
gested by the Editors of this special issue), we discuss in non-technical language, allow-
ing them to be accessible to the uninitiated younger students and researchers (except in
Section 4, where we present some new result of our research). True to the spirit suggested
by the Editors, the second section has been presented in the form of a ‘Dialogue’ using the
format of questions and answers between us, the coauthors.

2. What Attracted You to Econophysics?

As mentioned earlier, this section is formatted in the form of a dialogue (question and
answer) between the coauthors.

AS: What attracted you to Econophysics? Can you briefly recount?
BKC: Meghnad Saha, founder of Saha Institute of Nuclear Physics (named so after

his death in 1956), had been a pioneering Astrophysicist (known for the Saha Ionization
formula in astrophysics), had also thought deeply about the scientific foundation of many
social issues (see, e.g., Reference [6]). In early seventies, our undergraduate-level text book
on heat and thermodynamics had been ‘Treatise on Heat’ [7], written by Saha together
with Biswambhar Nath Srivastava (first published in 1931). This turns out to be the earliest
textbook where the students were encouraged, in the section on Maxwell-Boltzmann
distribution in kinetic theory of ideal gas, to compare it with the anticipated ‘gamma’
distribution of income in the society (see the page from Reference [7] reproduced in
Reference [6]). If taken seriously, it asks the students to model the income distribution in a
society, which maximizes the entropy (assuming stochastic market transactions)!

AS: Before you go further, let me ask why should one think of applying statistical
physics to society in the first place?

BKC: One Robinson Crusoe in an island cannot develop a running market or a func-
tional society. A typical thermodynamic system, like a gas, contains Avogadro number
(about 1023) of atoms (or molecules). Compared to this, the number (N ) of ‘social atoms’ or
agents in any market or society is of course very small (say, about 102 for a village market to
about 109 in a global market). Still such many-body dynamical systems are statistical in na-
ture and statistical physical principles should be applicable. Remember, each constituents
particle in a gas follows some well-defined equations of motion (say, Newton’s equation for
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classical gases or Schrödinger’s equation for quantum gases), yet for the collective behavior
of gases (or liquids or solids) we need to average over the ‘appropriate’ statistics for their
stochastic behavior in such ‘many-body’ systems and calculate the emerging collective
or thermodynamic properties of the entire system. Motivation to go for the ‘appropriate’
statistics to estimate the collective behavior or response of the society comes, therefore, very
naturally. In the case of human agents in a society, the corresponding equations governing
individual behavior are much more difficult and still unknown and unpredictable, yet
many collective social behavior are quite predictable; ask any traffic engineer or engineers
designing stadium evacuation in panic situation.

AS: Which problem of economics did Saha and Srivastava try to analyze using
Maxwell-Boltzmann distribution or statistical mechanics of ideal gas?

BKC: As can be seen from the example they had put to the readers, they indicated to the
students the problem of income and wealth inequalities (they assumed Gamma-function-
like income distribution in Reference [7]; reproduced in Reference [6]). They suggested
to them that the ‘entropy maximization’ principle, along with conservation of money (or
wealth), across the market (with millions of transactions between the agents, buyers, and
sellers) must be at work in such ‘many-body’ social or market systems. This will result in
the consequent and inevitable inequality (equal distributions being entropically unstable
against stochastic fluctuations, leading to steady state unequal distributions).

AS: That is quite interesting. Can you elaborate a bit more and explain a bit of
statistical physics specifically for the classical ideal gas?

BKC: Let me try. One can present the derivation of the energy distribution among the
constituent (Newtonian) particles of a (classical) ideal gas in equilibrium at a temperature
T as follows: If n(ε) represents the number density of particles (atoms or molecules of a
gas) having energy ε, then one can write n(ε)dε = g(ε) f (ε, T)dε. Here, g(ε) denotes the
‘density of states’ giving g(ε)dε as the number of dynamical states possible for any of the
free particles of the gas, having kinetic energy between ε and ε + dε (as counted by the
different momentum vectors �p corresponding to the same kinetic energy: ε = |p|2/2m,
where m denotes the mass of the particles).

Since the momentum �p is a three-dimensional vector, g(ε)dε ∼ |p|2d|p| ∼ (
√

ε)dε.
This is obtained purely from mechanics. For completely stochastic (ergodic) many-body
dynamics or energy exchanges, maintaining the the energy conservation, the energy distri-
bution function f (ε, T) should satisfy f (ε1) f (ε2) = f (ε1 + ε2) for any arbitrary choices of
ε1 and ε2. This suggests f (ε) ∼ exp(−ε/Δ), where the factor Δ can be identified from the
equation of state for the gas (positive sign in the exponential is neglected because of the ob-
servation that the number decreases with increasing energy). This gives n(ε) = g(ε) f (ε) ∼
(
√

ε) exp(−ε/KT). Knowing this n(ε), one can estimate the average pressure P the gas
exerts on the walls of the container having volume V at equilibrium temperature T and
compare with the ideal gas equation of state PV = NKT (K denoting the Boltzmann con-
stant). The gas pressure can be estimated from the average rate of momentum transfer by
the atoms on the container wall, and one can compare with that obtained from the afore-
mentioned equation of state and identify different quantities; in particular, one identifies
Δ = KT.

AS: How does one then extend this to the markets?
BKC: Yes, let us consider the trading markets, where there is no production (growth)

or decay. In addition, the total amount of money (considered equivalent to energy) and
number of traders (or agents, considered as particles or ‘social atoms’) remain fixed or
constant throughout the trades. Since in the market money remains conserved as no one
can print money or destroy money (will end-up in jail in both cases) and the exchange of
money in the market is completely random, one would again expect, for any buyer-seller
transaction in the market, f (m1) f (m2) = f (m1 + m2), where f (m) denotes the equilibrium
or steady state distribution of money m among the traders in the market. This then, in a
similar way, suggests f (m) ∼ exp(−m/Δ′), where Δ′ is a constant. Since there cannot be
any equivalent of the particle momentum vector for the agents in the market, the density
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of states g(m) here is a constant (any real-number value of m corresponds to one market
state). Hence, the number n(m) of traders or agents having money m will be given by
n(m) = c exp(−m/Δ′), where c is a constant. One must also have

∫ M
0 n(m)dm = N, the

total number of traders in the market, and
∫ M

0 mn(m)dm = M, the total amount money in
circulation in the market (or country). This gives, the effective ‘temperature’ of the economy
Δ′ = M/N, the average available money per trader or agent in this closed-economy (as no
growth, migration of laborers, etc., are considered). This gives exponentially decaying (or
Gibbs-like) distribution of money in the market (unlike the Maxwell-Boltzmann or Gamma
distribution of energy in the ideal gas), where most of the people become pauper (n(m) is
maximum at m = 0).

AS: Is this exponentially decaying income or wealth distribution realistic for any economy?
BKC: That discussion will take us to the recent studies by econophysicists and data

comparisons. We will defer those to the next section (Section 3). Indeed, some success of the
model (sketched above) in capturing the real data has been explored extensively by Victor
Yakovenko and his group from Maryland University. We, in Kolkata, explored what could
make the distribution more like a Gamma distribution, as Saha and Srivastava indicated in
their book [6] to be an observed phenomenon. We also tried to capture the Pareto tail of
such a distribution. Avoiding detailed discussion here, we only refer here to three popular
papers [8–10] in this context. The model sketched above essentially follows [6,8]. In this
model, the exchanged money or wealth in each trade (equivalent to any of the particle-
particle collision in Ideal gas) is completely random, subject to conservation of money (or
wealth). A trader, acquiring a lot in earlier trades may lose the entire amount of money or
wealth in the next trade as the total money (wealth) will be conserved if the partner trader
gets that. If one introduces a saving propensity of each trader, so that each trader saves a
fraction of their individual money (wealth) before the trade and exchanges randomly the
respective rest amount in the trade (keeping total money or wealth again conserved) the
resulting steady state distributions capture the above mentioned desirable features. One
can easily see that, unlike in the Kinetic-exchange model described above, the possibility for
any trader (with non-vanishing saving propensity) to become an absolute popper vanishes,
as that will require that trader to lose in every trade. Consequently, the exponential
distribution becomes unstable with effect to any non-vanishing saving propensity and the
stable distribution will become Gamma-like for uniform saving propensity of the traders [9]
and initially Gamma-like but crossing over to Pareto-like power-law decay when traders
have non-uniform saving propensities [10]. These results are non-perturbative results;
any non-vanishing saving propensity will induce these features; the saving propensity
magnitudes only determine the most-probable income (wealth) or the income (wealth)
crossover point for Pareto tail of the distribution.

AS: Can we come back to your journey towards econophysics? Apart from Saha-
Srivastava’s book, any influence from other books, especially from economics?

BKC: After Graduation and Post-Graduation from Calcutta University, I joined, in
early 1975, the Saha Institute of Nuclear Physics as a Research Fellow in Condensed Matter
Statistical Physics for my Ph.D. degree. By that time I had a huge personal collection of
(mostly cheap editions, reprinted in India), general books, text books, other books and
monographs in subjects outside physics; primarily in philosophy and economics. I had at-
tempted closer studies of some them including: The Problems of Philosophy, Bertrand Russell
(Cambridge Univ.), Oxford Univ. Press, Oxford (1959); Mathematical Logic & the Foundations
of Mathematics: An Introductory Survey, Geoffrey Thomas Kneebone (Univ. London), D. van
Nostrand Co. Ltd., London, UK, (1963); The Problems of Philosophy, Satischandra Chatterjee
(Univ. Calcutta), Calcutta Univ. Press, Kolkata (1964); The Philosophy of Wittgenstein, George
Pitcher (Princeton Univ.), Prentice-Hall Inc., New Delhi, India, (1964); An Introduction
to Philosophical Analysis, John Hospers (Univ. Southern California), Prentice-Hall Inc.,
New Delhi (1971); Economics, Paul A. Samuelson (MIT), Tata-McGraw Hill, New Delhi
(1971); and Economic Theory & Operations Analysis, William J. Baumol (Princeton Univ.),
Prentice-Hall Inc., New Delhi (1978).
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I tried to go through some of the isolated chapters or sections of these books, which I
could understand, enjoyed, or liked most. Occasionally, I got excited and tried my own
analysis, following them, on some interesting problems or discussions coming in my way.
One such piece was a paper on ‘Indeterminism and Freedom’ by Bernard Berofsky of
Columbia University, published in 1975, perhaps in Philosophical Quarterly. Among
others, it also alluded to quantum physics in defending his thesis on freedom. I wrote a
note detailing my criticisms and posted that to the author. The author, from the Department
of Philosophy, Philosophy Hall, Columbia University in the City of New York, wrote to me
the following letter on 17 June 1975 (see Figure 2):

Figure 2. Reply (dated 17 June 1975) from Bernard Berofsky of the Philosophy Department of
Columbia University to BKC on his criticisms of Bernard’s paper on ‘Indeterminism and Freedom’.

AS: Obviously, you did not follow his suggestion, in fact, cordial invitation, to switch
over to Philosophy. Why did you not?

BKC: Though I was seriously thinking of switching over to philosophy in a formal
way, following Bernard’s suggestion, some quick apparent success in my physics research
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publications with the newly developed Renormalization Group theory in those days kind
of blinded me and left me with two minds. Somehow, I failed to take a decision and
continued with my physics research until I practically forgot about the other choice! In
late 1978, I submitted my Ph.D. thesis in Condensed Matter Physics to the University of
Calcutta and got the degree in 1979, and, by the end of that year, I left for post-doctoral
research studies in the Theoretical Physics Department of the University of Oxford and the
Institute of Theoretical Physics, University of Cologne.

I came back and joined the Saha Institute of Nuclear Physics as Lecturer in 1983, and I
started my research in statistical physics with four Ph.D. students joining me simultane-
ously (including Subhrangshu Sekhar Manna, who later developed the ‘Manna Model’,
belonging to the ‘Manna Universality Class’). Soon the statistical physics research in our
group became so engaging and happening (with sixteen Ph.D. students, so far, getting
their Ph.D. degrees and several of them becoming quite well known later for their pio-
neering research studies and still collaborating with me), I did not get much time until
early nineties when I decided to try some research on ‘economics-inspired physics’. I went
back to the problem Saha and Srivastava addressed in their textbook mentioned above
and I co-organized a conference in January 1995, together with some established Indian
statistical physicists and (reluctant!) economists as participants. In the Proceedings of the
Conference, I published (together with an economist Sugata Marjit) my first paper [11]
dealing with statistical physics of Income distribution and related problems.

By the end of the year, as a part of the StatPhys-Kolkata II (series of International
Conferences organized by us in Kolkata every 3–4 years, latest event StatPhys-Kolkata X,
held end of 2019), we had organized a special session on ‘Economics-Inspired Physics’ and
Eugene Stanley in his talk coined the term ’Econophysics’ and had put that in the title of
his paper [12] published in the Proceedings of the conference in Physica A, vol 224 (1996).

Though econophysics was quite risky as a topic of Ph.D. research in the late nineties
(even today; still no faculty position in econophysics in our country, or for that matter,
hardly exists elsewhere in the world), two brave students (Anirban Chakraborti and
Arnab Chatterjee) expressed forcefully their desire to join the research on eventual topic of
‘econophysics’. I was also fortunate, my colleague Sitabhra Sinha also joined us in such
investigations. In the last 25 years, since that conference, significant developments have
taken place in the subject, and many of them will be covered this special issue of Entropy.

AS: We will come back to those developments later. I understand, most of the papers
on econophysics research studies are published in physics journals and not in economics
journals. What is the cultural level of appreciation by the intellectuals today?

BKC: This is indeed very difficult to answer. To tell very frankly, the response so
far is not very supportive or encouraging! Although, it must be mentioned, the term
econophysics has now entered in dictionaries of economics (see, e.g., Reference [2]) and
Encyclopedias of social science and philosophy (see, e.g., Reference [13]). That brings me
to an interesting, rather recent, correspondence with my old philosopher ‘guide’ Bernard
Berofsky in January 2013, after thirty-seven years! This was quite accidental, when I came
across in my internet search a new book published by him. I contacted him (giving a link
to my homepage) saying, “sorry, I could not follow your advice so far and had been very
shy to contact you. Now that I have become sixty, I acquired sufficient courage and ...".
Bernard immediately responded (see Figure 3) praising the development of econophysics
due to the philosophical impulses of physicists.
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Figure 3. Mail from Bernard Berofsky of the Philosophy Department of Columbia University, in
response to BKC’s surprise contact mail in 2013 (after almost thirty-seven years!), appreciating
and identifying the development of econophysics as one due to the “physicist(s) with synthesizing
impulses of a philosopher ... (using) philosophical impulses in a most creative and fecund manner”.

AS: Do you see really a philosophy behind econophysics?
BKC: Yes, indeed. I wrote about it earlier also (see, e.g., References [13,14]). I am

not aware of all the documents on the mutual connection between philosophy and econo-
physics. I mentioned earlier about the entry on Econophysics in the Encyclopedia of
Philosophy and Social Sciences [13]. I came to know of a rather recent entry on Social
Ontology in The Stanford Encyclopedia of Philosophy [15] which, in the context of ‘social
atomism’, writes “The idea is to model societies as large aggregates of people, much as
liquids and gases are aggregates of molecules, ...”. Then, after introducing the readers to
two historical examples of Quetelet in 1848 [Adolphe Quetelet, 1848, Du système social
et des lois qui le régissent, Paris: Guillaumin] and of Spencer in 1895 [Herbert Spencer,
1895, The Principles of Sociology, New York: Appleton] it says “Contemporary represen-
tatives include models in sociophysics and econophysics (see Chakrabarti et al., 2007)
... [which] take a society or market to be an aggregate of these interacting individuals
[Bikas K. Chakrabarti, Anirban Chakraborti and Arnab Chatterjee, 2007, Econophysics and
Sociophysics: Trends and Perspectives, Hoboken, NJ: Wiley]”.

Let me now go back to the main to the main discussion and reiterate my basic argument
in favor of considering economics as a natural science. Our knowledge about truth can,
epistemologically speaking, be either deductive or inductive. Mathematics is an usual
example of the deductive knowledge (though not all of it can be deduced from axiomatic
logic); mathematical truths do not require any laboratory test or ‘observational’ support
from the ‘nature’ to prove or validate them. Linguistically speaking, it is like the tautology
“A bachelor does not have wife”. One does not need to check each and every bachelor
to confirm truth of the statement—the first part of the sentence confirms the second part.
The same is true about the statement “two plus two equals four”. Mathematical truths are
analytical truths; left-hand side equals (in every intention and content) the right-hand side.
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Mathematics, therefore, is not directly a natural science [16–18], though it has been at the
root of the logical structure of many natural sciences, particularly physics. Natural sciences,
however, are basically inductive in nature. They are based on natural or (controlled)
laboratory observations. The statement “The sun rises every twenty four hours on the east
in the morning” is not a tautology nor an analytical truth. Though east may be defined as
the direction, and morning may be defined by the time of sunrise, that it rises every twenty
four hours is an inductive (or empirically observed) truth and, therefore, tentative (and
not like mathematical truths, which are analytical and certain). Natural sciences start with
observations and end in observations, using both inductive reasoning or logic; in-between,
they often employ the tools of deductive logic, mathematics (as most condensed form of
deductive logic).

AS: So, the tools of mathematics and logic are employed to find and establish relation-
ships among these ‘natural’ observations to develop natural sciences. Where does then
economics belong to?

BKC: That is the crucial question. Intermediate analysis using mathematics is just
applied mathematics, and can not be considered as (pure) mathematics. Any branch
of natural science does that. Economics has been and will be a part of natural science,
where natural observations, not much of controlled or laboratory observations, need to
be analyzed employing deductive logic and mathematics. Economics, therefore, should
naturally belong to natural sciences!

AS: Agreed. But why econophysics?
BKC: You see, in natural sciences today, there are several branches or disciplines, like
physics, chemistry, biology, geology, etc. The differences are not natural and certainly
nature did not create them: they are human creations. The demarcations among these
disciplines are not always clear. As we mentioned earlier, there are clear differences (in the
nature of logic employed) between mathematics and natural sciences. But that does not
extend to the branches of natural sciences. In a white light spectrum, our color perception
continuously change from violet to red (without any sharp boundary) as the wavelength
changes in this collection of electromagnetic waves. Similar are the cases of the different
branches of natural science. They are not strictly differentiable; are historical in origin
and continued by us for our own convenience (during upbringing; like perhaps religion;
both are man-made). Of course, it is hard today to be an expert in the whole of even
one branch of natural science. We, therefore, try to learn and acquire expertise in one
sub-branch or a sub-sub-branch of natural science. An unique feature of the sub- or sub-
sub-branches of natural science is that an established ‘truth’ or a ’fundamental law’ in
one branch does not become ’false’ or ’wrong’ in another; only importance varies from
discipline to discipline; quantum physics or gravity laws do not become invalid or wrong in
chemistry or biology or mineralogy. Only gravity laws may be less important in chemistry
or biology or mineralogy, and vice-versa. Models of geomagnetism in earth science cannot
be built upon a law contradicting Maxwell’s laws of electromagnetism. Developments
in younger branches in science, therefore, profitably utilized earlier established laws or
ideas in older branches of natural science. Many of the early successful scientists (even
some mathematicians) happen to have been identified as physicists, and, consequently,
physics has become like an ‘elder brother’ among natural sciences, and it is now equipped
with a huge armory of ideas, laws and models to comprehend the nature. Economics as a
relatively newer entrant to natural science can, therefore, expect gainful advantages from
such econophysical attempts!

AS: I remember you once told me that the concept of modeling dynamics of physical
systems and of economics systems are fundamentally different. Can you elaborate the
point in this context?

BKC: I do not remember which point we had been discussing. However, there is
a typical one which may be discussed. Modeling dynamics of a physical system, like
a particle, using, say, the Newton’s equation of motion, gives its dynamical state at a
later time t by solving the equation of motion and utilizing the information regarding its
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dynamical state at an earlier time (say, at t = 0; called initial conditions). Exact solutions
may not be possible as in the thermodynamic or many-body systems, but based on the
statistical characterization of the state of the system at an earlier time, the dynamical
formulation helps solving the statistics of the system for any future time. The economic
agents or organizations, even under nominally identical economic situation, may have
(continually upgradeable) anticipation about the future and the model dynamics need to
accommodate, along with their initial economic state, such anticipatory factors (which
are continually adjusted or learned through the ongoing dynamics itself!) to solve for the
future. Such self-consistent ‘learning’ dynamics of physical systems are not typical, though
some recent many-body game theoretic models, with iterative learning for optimal use of
scarce resources as in the binary-choice Minority Game (see, e.g., Reference [19]), or many-
choice Kolkata Paise Restaurant Problem (see, e.g., Reference [20]) naturally incorporate
such evolving learning features in the self-correcting dynamics themselves. We will discuss
some details of the later problem here. In any case, these studies are new and still very
limited in scope.

AS: To summarize, though many of you had started your econophysics research stud-
ies more than twenty five years back, since Gene Stanley coined the term econophysics in
1996 (in his publication [12] in the Proceedings of the second StatPhys-Kolkata Conference),
and many more physicists joined after that, the subject is not established yet.

BKC: You are partly right. In fact, physicists have long been trying to formulate
and comprehend various problems of economics. As mentioned before, since 1931, the
statistical physics modeling of income and wealth distributions are being tried. However,
these older physics attempts had been sporadic and isolated ones; physicists, successful
in such attempts, like Jan Tinbergen (Economics Nobel Prize winner in 1969; had Ph.D. in
statistical Physics under Paul Ehrenfest of Leiden University), had to migrate to economics
department. Since 1996 (more correctly perhaps since 1991, when Rosario Mantegna
published his paper [21] on Milan stock exchange data modeling), however, the situation
has changed considerably. Physicists are now investigating economics problems along
with their students and colleagues from the same department and are publishing their
econophysical research papers in physics journals (in around 2000, Econophysics had been
assigned the Physics and Astronomy Classification Scheme (PACS) number 89.65Gh by the
American Institute of Physics).

I personally think, however, that an intensive and successful branch of econophysics
research started with Scott Kirkpatrick and coworkers in 1983 when they proposed [22]
the idea and technique of ‘Simulated Annealing’ (or ‘Classical Annealing’) to get practi-
cal solutions of the computationally hard multi-variable optimization problems, like the
(managerial) economics problem of the Traveling Salesman Problem (TSP), using tuning
(annealing) of Boltzmann-type fluctuations (simulating thermal ones) to escape from the
local minima to reach eventually one of the (degenerate) global minima of the cost function
(travel distance). This is a very successful story of the application of (statistical) physics
to solve a problem which in nature and basic intent a (financial) economics problem in-
volving multi-variable optimization. It may be noted in this connection that the technique
has since been applied to all branches of science, as well as technology, and the original
paper [22] has received major attention of scientists and engineers (so far having received
more than 48,000 citations, according to Google Scholar). This idea still continues leading
to a very intriguing and active domain of research in computationally hard problems of
optimizations, using statistical physics and physics of spin glasses. This eventually led to
the concept and technique of ‘Quantum Annealing’ (or of ‘Stochastic Quantum Comput-
ing’), where simulated quantum fluctuations (instead of simulated thermal fluctuations)
are profitably used to tunnel through high but narrow local barriers [23], separating the
global minima or solutions (see, e.g., Reference [24] for a brief review on solving TSP using
quantum annealing). As I discussed earlier in my Econophysics-Kolkata Story [25], we
started in 1986 (see Section 3.1) investigations on the statistical physics of the TSP. Soon
my student Parangama Sen joined the effort [26]. (She eventually concentrated more on
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Sociophysics and developed, among others, the Biswas-Chatterjee-Sen model, see, e.g.,
Reference [27], for collective opinion formation together with our students Soumyajyoti
Biswas and Arnab Chatterjee. In this connection, let me take the opportunity to acknowl-
edge the contributions of my other students, Srutarshi Pradhan, Asim Ghosh and Sudip
Mukherjee, Suchismita Banerjee, and, of course, you, Antika, and of my colleagues in the
Kolkata-econophysics group, namely Anindya Sundar Chakrabarti, Manipushpak Mitra,
and Satya Ranjan Chakravarty, allowing us to make some significant contributions to
econophysics, which we are going to summarize in the next section.)

AS: So, you think that successful research studies in econophysics already started with
the Simulated Annealing paper by Kirkpatrick et al. in 1983, although econophysics re-
search studies on more popular economics problems started in 1990s and, more specifically,
after Stanley coined the term in 1996?

BKC: Yes, you are right. We will discuss in little more details (in the next section;
Section 3.1) the impact of statistical physics in developing the Simulated (Classical or
Quantum) Annealing techniques for the financial computation problems involving multi-
variable optimization of the Traveling Salesman type. The inspiring success of the classical
annealing technique, initiated by the Simulated Annealing method, has led to several in-
triguing developments in statistical physics and to many applications in computer science.
Further potential extension in the context of solving NP-hard problems using quantum an-
nealing has become one of the core research topic today in quantum many-body (statistical)
physics and in quantum computation. Indeed I consider this outstanding development of
simulated (classical or quantum) annealing techniques (starting with Kirkpatrick et al. [22];
also see Reference [23]) for the Traveling Salesman type multi-variable optimization prob-
lems to be a landmark achievement in the true spirit of econophysics. Of course, the
present phase of econophysics research activities stemmed from several influential papers,
analyzing financial market fluctuations, by Rosario Mantegna and Eugene Stanley and
in particular following the publication of Kolkata Conference Proceedings paper [12] by
Stanley et al. in 1996.

3. Major Achievements and Publications of the ‘Kolkata School’

Physicist Victor Yakovenko and economist J. Barkley Rosser in their pioneering inter-
disciplinary collaborative review [28] in the Reviews of Modern Physics (2009) on econo-
physics of income and wealth distributions, discussed about some of the ‘influential’ and
‘elegant’ papers from the ‘Kolkata School’. We will briefly summarize in this section some
of our major research studies in econophysics (including those on wealth distributions).

3.1. Traveling Salesman Problem and Simulated (Classical & Quantum) Annealing

As already discussed, the Traveling Salesman Problem or TSP is, in its intent and structure,
a computationally involved financial management problem (see, e.g., References [29,30]). The
problem can be easily defined as a geometric one. Suppose in an unit square area there are
N random dots, representing the cities. The salesman has to make a visit to all the cities and
come back with minimum travel cost. The travel cost to visit all these cities will depend
on the total travel distance of the tour. Each component of the travel distance between
any two cities can be taken as the Euclidean distance (or as appropriate for the spatial
metric, say Cartesian) between them. One can easily check that there are N!/2 (growing
faster than exponential in N) distinct tours or trips to visit all the N cities. Obviously, all
of these trips do not have identical value (‘cost’) for the total travel length (D), and the
problem is to find the trips(s) which will correspond to the minimum travel distance D.
Searching over all the possible trips soon becomes impossible as N becomes large, and
there is no perturbative way to improve on any randomly chosen travel path to reach the
global solution. At any point or city on a tour, there are N order choices for the next move
or visit and the optimization problem of the total travel distance is truly a multi-variable
one. It may be noted that the problem becomes trivial in one dimension (homes or offices
placed randomly on a straight road), where the salesman can start from one end of the
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road and finish at the other end). Generally, for two dimension onwards, search time for
such a minimum ‘cost’ (from among exp(N) number of trips or configurations), cannot be
bounded by any (deterministic) polynomial in N (NP-hard problem).

From now onwards, let us concentrate our discussion on TSP in two dimension. The
scale of the total travel distance, however, can be easily guessed using a ‘mean field’ picture.
If N randomly placed points (cities) fill an unit (normalized) area, then the ‘average’ or
‘mean’ area per city is 1/N, giving nearest neighbor distance to be of order 1/

√
N and total

travel distance D = Ω
√

N. Numerical estimates suggests Ω � 0.71 [31].
The problem is truly global in nature. Choice of the next city to visit depends on

the position of even the farthest city in the country. However, one can approximately
solve the problem (see References [32,33]) by reducing it to an effective one-dimensional
problem where the country (unit square) is divided into hypothetical parallel strips of
width w and the salesman visits the cities within each strip in a ‘directed’ way and the
total travel distance D is optimized with respects to single variable w (optimal value then
grows as

√
N) and gives (see, e.g., References [32,33]) Ω � 0.92. Another way is to put the

cities randomly with concentration ρ on the lattice sites of, say, an unit square lattice. The
lattice constraint can help then the calculation of the optimal travel distance. The optimal
(normalized) travel path length then scales as D = Ω

√
ρ. At ρ = 1, the lattice constraints

would immediately imply that the global search problem reduce to a local one and all the
space filling Hamiltonian walks would correspond to optimized tour with Ω = 1. In the
approximate single variable solution (minimization of D with respect to w) indicated above,
the strip width w grows as 1/

√
ρ as ρ decreases. For ρ → 0, however, the lattice constraints

disappear, and the problem reduces to TSP on continuum as defined earlier (NP-hard,
w → ∞, with Ω � 0.71 [31]). Where does the problem become NP-hard? This study was
initiated by us (see References [26,34–37]) and they indicated (also Reference [32]) that the
TSP on dilute lattices becomes NP-hard only at ρ → 0 (though this is not settled yet and
some arguments support that it crosses over to NP-hardness at ρ = 1− or as soon as ρ
becomes less than unity).

As already mentioned earlier (in Section 2), a major computational breakthrough of
TSP and other such multi-variable optimization problems came from the 1983 seminal
paper on Simulated Annealing’ [22] by Kirkpatrick et al., who proposed a novel stochas-
tic technique, inspired by the metallurgical annealing process and statistical physics of
frustrated systems.

Imagine a bowl on the table, and you need to ‘locate’ its bottom point. Of course, one
can calculate the local depths (from a reference height) everywhere along the inner volume
of the bowl and search for the point where the local depth is maximum. However, as every
one would easily guess, a much simpler and practical method would be to allow rolling of
a marble ball along the inner surface of the bowl and wait for locating its resting position.
Here, the physics of the forces of gravity and friction allows us to ‘calculate’ the location of
the bottom point in an analog way! Algorithm-wise, it is simple. For any possible move,
if the changed ‘cost’ function has lower value, one should accept the move and reject it
otherwise. Success for the search of the minimum is guaranteed. In principle, a similar
trick would work for cases where the bowl becomes larger and its internal surface gets
modulated, as long as the surface contour or ‘landscape’ has valleys all tilted towards the
same bottom point location. Computationally hard problems arise when these valleys
are separated by ‘barriers’, which are (macroscopically) high. The simulated annealing
suggests a way out to overcome (at least for finite height barriers) by allowing moves
costing higher to have (Gibbs-like) lower probability of acceptance.

To search for the optimized cost (travel distance in TSP or energy of the ground state(s)
in spin glasses) at eventually vanishing level of noise (or ‘simulated temperature’), one
starts from a high noise (temperature) ‘melt’ phase, and tune slowly the noise level. In this
‘simulated’ process, the (classical) noise at any intermediate level of annealing allows for
the acceptance of the changed ‘costs’ ΔD in distance or energy D: 100% acceptance of the
move if ΔD < 0 and acceptance of the move with a Gibbs-like probability ∼ exp(−ΔD/T)

59



Entropy 2021, 23, 254

for moves with increased in cost (ΔD > 0)). As the noise level (T) is slowly reduced
during the annealing process, the gradually decreasing probability of accepting higher cost
values, allows the system to come out of the local minima valleys and settle eventually in
(one of) the ‘ground state’ (with minimum D) of the system. For slow enough decrease of
noise T(t) with time t, one can estimate the quasi-equilibrium (thermal) average of the cost
function < D > at ant time t and derive the effective ‘specific heat’ value δ < D > /δT as
a function of t. One needs to be very slow (|dT/dt| very small) when the effective specific
heat increases with decreasing T, indicating the ‘glass’ transition point and anneal at faster
rates on both sides of the transition point.

As has been indicated in the earlier section, it has been a remarkably successful trick for
‘practical’ computational solutions of a large class of multi-variable optimization problems,
as in most multi-city travel cost optimizations and similar multi-variable optimizations
(see, e.g., References [29,30,38,39]).

Though some ‘reasonable’ optimization can be achieved very quickly using appropri-
ate annealing schedules, the search time for reaching the lowest cost state or configuration
for NP-hard problems, however, grows still as exp(N). The bottleneck could be iden-
tified soon. Extensive study of the dynamics of frustrated random systems, like the N
spin (two state Ising) glasses, particularly of the Sherrington-Kirkpatrick variety (see, e.g.,
Reference [23] also for a TSP version of the quantum annealing), showed that its (free)
energy landscape (in the ‘glass’ phase), is extremely rugged, and the barriers, separating
the local valleys, often become N order implying the search for the degenerate ground
states from 2N (or N!/2) states is NP-hard (for the N-city TSP). In the macroscopic size
limit (N approaching infinity), therefore, such systems effectively become non-ergodic or
localized, and the classical (thermal) fluctuations, like that in the simulated annealing, fail
to help the system to come out of such high barriers (at random locations or configurations,
not dictated by any symmetry) as the escape probability is of order exp(−N/T) only.
Naturally, the annealing time (inversely proportional to the escape probability), to get the
ground state of the N-spin Sherrington-Kirkpatrick model, cannot be bounded by any
polynomial in N.

The idea proposed by Ray et al. [40] was that quantum fluctuations in the Sherrington-
Kirkpatrick model can perhaps lead to some escape routes to ergodicity or quantum
fluctuation induced delocalization (at least in the low temperature region of the spin glass
phase) by allowing tunneling through such macroscopically tall but thin (free energy or
cost functions) barriers which are difficult to scale using classical fluctuations. This is based
on the observation that escape probability due to quantum tunneling, from a valley with
single barrier of height N and width w̃, scales as exp(−

√
Nw̃/Γ), where Γ represents the

quantum (or tunneling) fluctuation strength (see Figure 4). This extra handle through
the barrier width w̃ (absent in the classical escape probability of order exp(−N/T)) can
help in a major way in its vanishing limit. Indeed, for a single narrow (w̃ → 0) barrier of
height N, when Γ is slowly tuned to zero, the annealing time to reach the ground state
or optimized cost, will become N independent (even in the N → ∞ limit; δ-function
barriers are transparent to quantum fluctuations, while classical or thermal annealing to
escape from such a barrier is impossible)! It has led to some important clues. Of course,
complications (localization) may still arise for many such barriers at random ‘locations’.
In any case, with this observation and some more developments, the quantum annealing
technique was finally launched through the subsequent publications of a series of landmark
papers (both theoretical and experimental; see Reference [23]) and through a remarkable
practical realization of the quantum annealers by the D-wave Group [41].
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Figure 4. While optimizing the cost function of a computationally hard problem (like the minimum
travel distance for the Traveling Salesman Problem (TSP)), one has to get out of a shallower local
minimum, like the configuration C (travel route), to reach a deeper minimum C’. This requires jumps
or tunneling, like fluctuations, in the dynamics. Classically, one has to jump over the energy or the
cost barriers separating them, while quantum mechanically one can tunnel through the same. If
the barrier is high enough, thermal jump becomes very difficult. However, if the barrier is narrow
enough, quantum tunneling often becomes quite easy. Indeed, assuming the tall barrier to be of
height N and width w̃, one can estimate (see, e.g., Reference [42]) the tunneling probability through
the barrier to be of order exp[−(w̃

√
N)/Γ], where Γ denotes the strength of quantum fluctuations

(instead of the the classical escape probability of order exp[−N/T], T denoting the thermal or classical
fluctuation strength).

Let us now conclude this subsection. Simulated Annealing technique, invented by
Kirkpatrick et al. in 1983 [22], has since been applied extensively also to solve problems
of collective decision making in economics and social sciences (see, e.g., Reference [43]
for a recent review). As mentioned earlier [25], our group started investigations on sta-
tistical physics of TSP in 1986. The intriguing physics of Simulated Annealing inspired
us to explore the possible further advantages of quantum tunneling (to allow escape
through macroscopically tall but thin barriers in some NP-hard cases), where classical
annealing (using thermal fluctuations) fails. This led finally to the quantum extension
or to the invention of the quantum annealing technique, where our initial contributions
(References [23,40]) are considered to be important and pioneering. See, e.g., Reference [24]
for a brief review and Reference [44] for some recent discussions on the advantages of apply-
ing quantum annealing method to solve TSP. Quantum annealing is a very active research
field today in quantum statistical physics and computation (see, e.g., References [45,46] for
recent reviews).

3.2. Social Inequality Measure and Kolkata Index

Social inequality, particularly income or wealth inequality in, are ubiquitous. There
are several indices or coefficients, used to measure them, the oldest and most popular one
being the Gini index [47].

It is based on the Lorenz curve or function [48] L(x), giving the cumulative fraction
of (total accumulated) income or wealth possessed by the fraction (x) of the population,
when counted from the poorest to the richest (see Figure 5). If the income (wealth) of every
one would be identical, then L(x) would be a straight line (diagonal) passing through the
origin. This diagonal is called the equality line. The Gini coefficient (g) is given by the area
between the Lorenz curve and the equality line (normalized by the area under the equality
line: g = 0 corresponds to equality and g = 1 corresponds to extreme inequality.

We proposed [49] the Kolkata index or k-index given by the ordinate value of the
intersecting point of the Lorenz curve and the diagonal perpendicular to the equality
line (also see References [50–54]). By construction, 1 − L(k) = k, saying that k fraction of
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wealth is being possessed by (1 − k) fraction of the richest population. As such, it gives a
quantitative generalization of the approximately established (phenomenological) 80–20
law of Pareto [55], saying that, in any economy, typically about 80% wealth is possessed by
only 20% of the richest population. Defining the complementary Lorenz function L(c)(x) ≡
[1 − L(x)], one gets k as its (nontrivial) fixed point (while Lorenz function L(x) itself has
trivial fixed points at x = 0 and 1). k-index can also be viewed as the normalized h-index [56]
for social inequality; h-index is given by the fixed point value of the nonlinear citation
function against the number of publications of individual researchers. We have studied the
mathematical structure of k-index in Reference [53] (see Reference [54] for a recent review)
and its suitability, compared with the Gini and other inequality indices or measures, in the
context of different social statistics, in References [49–52]. In addition, see Reference [57]
for redefining a generalized Gini index and Reference [58] for a recent application in
characterizing the statistics of the spreading dynamics of COVID-19 pandemic in congested
towns and slums of the developing world.

Figure 5. Lorenz curve (in red) or function L(x) here represents the fraction of accumulated wealth
against the fraction x of people possessing that, when arranged from the poorest to the richest.
The diagonal from the origin represents the equality line. The Gini index (g) can be measured by
the area (S) between the Lorenz curve and the equality line (shaded region), normalized by the
total area (S + S′ = 1/2) under the equality line: g = 2S. The complementary Lorenz function
L(c)(x) ≡ 1− L(x) is shown by the green line. The Kolkata index (k) can be measured by the ordinate
value of the intersecting point of the Lorenz curve and the diagonal perpendicular to the equality
line. By construction, L(c)(k) = 1 − L(k) = k, saying that k fraction of wealth is being possessed by
(1 − k) fraction of richest population.

In summary, inspired by the observations of richer structure (self-similarity) of the
(nonlinear) Renormalization Group equations near the fixed point (see, e.g., Reference [59]),
or of the nonlinear chaos-driving maps near the fixed point (see e.g., Reference [60]) and
noting that inequality functions, such as the Lorenz function L(x) or the Complementary
Lorenz function L(c)(x), to be generally nonlinear, we studied their nontrivial fixed points.
As mentioned earlier, Lorenz function L(x) has trivial fixed points (at x = 0 and 1), while
the Complementary Lorenz function L(c)(x) ≡ 1 − L(x) has a nontrivial fixed point at
x = k, the Kolkata index [49]. It also offers a tangible interpretation: k-index gives the
fraction k of the total wealth possessed by the rich (1 − k) fraction of the population and
gives a quantitative generalization of the Pareto’s 80–20 law [55]. As discussed earlier, it
can also be viewed as a normalized h-index of social inequality. Some unique features
of Kolkata Index (k) may be noted: (a) Gini and other indices are mostly some average
quantities based on the Lorenz function L(x), which has trivial fixed points. k is a fixed
point of the Complementary Lorenz function L(c)(x) and, if one considers the simplest form
of Lorenz function L(x) = x2, then k = (

√
5 − 1)/2, inverse of the Golden Ratio [51]. (b) k
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gives the fraction of wealth possessed by the rich 1 − k fraction of the population. As such,
it provides a quantitative generalization of the Pareto’s 80-20 law (see, e.g., Reference [55]).
The observed values of k index for most of the cases of social inequalities [50–54] seem to
fall in the range 0.80-0.86 (though have much smaller values today for world economies,
presumably because of various welfare measures). (c) k-index is equivalent to a normalized
version of the Hirsch-Index (h). While h corresponds to the fixed point of the publication
success rate (measured by the integer numbers of citations) falling off nonlinearly with
number of papers by individual academicians, k corresponds to the fixed point (fraction) of
1− L(x), where L(x) gives the nonlinearly varying fraction of cumulative wealth possessed
by the increasing (from poor to rich) fraction of population in any society.

3.3. Kinetic Exchange Model of Income and Wealth Distributions

We have discussed already in Section 2 some details of the Kinetic Exchange model
of income and wealth distributions. In an ideal gas, in thermal equilibrium, the number
density n(ε) of (Newtonian) particles (atoms or molecules) having kinetic energy ε is
given by

n(ε) = g(ε) f (ε, T) ∼
√
(ε) exp(−ε/Δ), (1)

where Δ is a constant, the density of states g(ε) ∼ √
ε (coming from the counting of

three-dimensional momenta vectors which correspond to the same kinetic energy) and
f (ε) ∼ exp(−ε/Δ) (coming from stochastic, or entropy maximizing, scatterings between
the particles, conserving their total kinetic energy). As discussed already in Section 2, to
get the ideal gas equation of sate PV = NKT, where P and V denote, respectively, the
pressure and volume of the gas at absolute temperature T, by calculating the pressure from
the average transfer of momentum of the particles per unit area of the container (using
Equation (1), Reference [7]), one identifies, Δ = KT.

Following similar arguments [7,8] (also see Reference [28] ), one gets (as discussed in
Section 2) for the steady state distribution of the number n(m) of agents in the market with
income or wealth m.

n(m) = g(m) f (m) = c exp(−m/Δ′), (2)

where f (m) ∼ exp(−m/Δ′), with g(m) a constant c (unlike in expression (1)), and Δ′ as
constants for the trading market. This is because, in a trading market, there is no production
(growth) or decay, and the total amount of money (equivalent to energy in Kinetic theory
of ideal gas), as well as the number of traders (buyers and sellers), remain fixed. Stochastic
money exchanges in the trades involving indistinguishable buyers and sellers (who change
their roles in different trades), keeping the buyer-seller total money in any trade to remain
constant, lead to a distribution given by expression (2). This is also because there cannot be
any equivalent of the particle momenta vectors for the agents in the market and hence the
density of states g(m) here is a constant. One must also have

∫ M
0 n(m)dm = N, the total

number of traders in the market, and
∫ M

0 mn(m)dm = M, the total amount of money. These
give the effective temperature of the market Δ′ = M/N, the average money in circulation
in the market (economy).

As documented in several books and reviews (see, e.g., References [7,61,62]), the
income or wealth distributions in any society have a Gamma function-like dip near zero
income or wealth (unlike in the exponential distribution case discussed above, where the
number density of pauper is the maximum). In addition, as is well known [62,63], the tail
end of the distribution is known to be much more fat, described by the Pareto power law,
and not by the thin exponentially decaying distribution.

As mentioned in the earlier section, following Saha and Srivastava’s indication in their
book [7], we explored how the kinetic theory of trading markets indicated above could be
extended to accommodate a Gamma-like distribution at the least and explore further to
capture the Pareto tail of such a distribution, as well.

We noted that many of the economics text books, in their chapters on Trades, discuss
the saving propensity of the traders (habit of saving a fraction of the income or wealth
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possessed by the trader and do trade with the rest). We immediately realized [9,10], if
one introduces the saving propensity of each trader, so that each trader saves a fraction of
their individual money (wealth) before the trade and allows (random) exchanges of the
rest amount in the trade (keeping the total money or wealth, including the saved portions,
conserved), the traders will never become paupers. Unlike in the random exchange case (as
in kinetic theory of gases, where one trader may lose its entire amount of money or wealth
to the other in any trade), here, to lose the entire amount of money acquired at any point
of time, the trader has to lose every time after that as the trader continues the successive
trades (and, consequently, the saved portion becomes infinitesimal). The number density
of paupers (having zero wealth) will become zero for any non-vanishing saving fraction
of the traders and the exponential distribution will become unstable and the resulting
steady state distributions will capture the above mentioned desirable features. This is a
non-perturbative result; any amount of saving by the traders will induce this feature.

With uniform saving, the exponential distribution collapses and the stable distribution
becomes Gamma-like [9] (also see Reference [64] for a micro-economic derivation of the
kinetic exchange equations from the Cobb-Dauglas utility maximization with money saving
propensity of the traders, and Reference [65] for extended microeconomic formulation of
Kinetic exchange models, having economic growths, by incorporating additional saving of
the production in the utility maximization equation). The steady state distribution becomes
initially Gamma-like but crossing over to Pareto-like power-law decay when traders have
non-uniform saving propensities [10]. The saving propensity magnitudes determine the
most-probable income (wealth) and the income (wealth) crossover point for Pareto tail of
the distribution (see References [63,66,67] for details).

It may be mentioned in this connection that one kind of saving by the traders, con-
sidered early by our group (including the students Anirban Chakrabarti and Srutarshi
Pradhan) can, in fact, lead to wealth condensation or extreme inequality. When two ran-
domly selected traders agree to trade (in the so-called ’Yard Sale’ trade mode), such that
the richer one among them will retain or save the extra money or wealth compared to that
of her trade partner, the dynamics will eventually lead to aggregation of the entire amount
of money or wealth in the hand of one trader, and the dynamics will stop. This happens
because once any trader becomes pauper (loses entire amount of money or wealth), no
other trader (with money) will engage in trade with her. Although this Yard Sale model has
this uninteresting wealth condensation feature, it showed some interesting slow dynamics,
and Anirban published that result [68]. Later, it was shown that inclusion of tax in the
model, in the sense that a fraction of money is collected by the Government (non-playing
member of the system) in every trade and, after some period of collections, redistributes
the money among all (by investing on general social facilities, like road, hospital, etc.,
constructions, used equally by all in the society). Because of this general upliftment, the
paupers come back to the trades and interesting steady state money distribution can emerge
and such models of wealth distribution have become an active area of research (see, e.g.,
Reference [69] for a popular review on this development).

Kinetic model of gases and the kinetic theory is the first and extremely successful
many-body theory in physics. Economic systems, markets in particular, are intrinsically
many-body dynamical systems. Kinetic exchange models of markets may, therefore, be
expected to provide the most successful models of market systems. In the kinetic exchange
model, when one of the trader of a randomly chosen pair of traders is deliberately the
poorest one at that instant of time (trade), the dynamics induces a self-organization in the
market such that a ‘poverty line’ is spontaneously developed so that none of the trader
remains below the emerged (self-organized) poverty threshold (see References [70,71] and
references therein).

3.4. Statistics of the Kolkata Paise Restaurant Problems

Kolkata had, long back, very cheap fixed price ‘Paise Restaurants’ (also called ‘Paise
Hotels’; Paise is, rather was, the smallest Indian coin). These ‘Paise Restaurant’ were
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very popular among the daily laborers in the city. During lunch hours, these laborers
used to walk down (to save the transport costs) from their place of work to one of these
restaurants. These restaurants would prepare every day a (small) number of such dishes,
sold at a fixed price (Paise). If several groups of laborers would arrive any day to the same
restaurant, only one group would get their lunch, and others would miss their lunch that
day. There were no cheap communication means in those days (like mobile phones) for
mutual communications, for deciding the respective restaurants. Walking down to the next
restaurant would mean failing to report back to work on time! To complicate this collective
learning and decision-making problem, there were indeed some well-known rankings of
these restaurants, as some of them would offer tastier items compared to the others (at
the same cost, Paise, of course), and people would prefer to choose the higher rank of the
restaurant, if not crowded! This ‘mismatch’ of the choice and the consequent decision not
only creates inconvenience for the prospective customers (going without lunch), would
also mean ‘social wastage’ (excess unconsumed food, services, or supplies somewhere).

A similar problem arises when the public administration plans and provides hospi-
tals (beds) in different localities, but the local patients prefer ‘better’ perceived hospitals
elsewhere. These ‘outsider’ patients would then have to choose other suitable hospitals
elsewhere. Unavailability of the hospital beds in the over-crowded hospitals may be
considered as insufficient service provided by the administration, and, consequently the
unattended potential services will be considered as social wastage.

This kind of games [72] (see References [20,73] for recent reviews), anticipating the
possible strategies of the other players and acting accordingly, is very common in society.
Here, the number of choices need not be very limited (as in standard binary-choice formula-
tions of most of the games, for example, in Minority Games [19,20,73]), and the number of
players can be truly large! In addition, these are not necessarily one shot games, rather the
players can learn from past mistakes and improve on their selection strategies for choosing
the next move. These features make the games extremely intriguing and also versatile,
with major collective or emerging social structures, not comparable to the standard finite
choice, non-iterative games among finite number of players. Such repetitive collective
social learning for a community sharing past knowledge for the individual intention to be
in minority choice side in successive attempts are modeled by the ‘Kolkata Paise Restaurant’
(KPR) problem or, in short, by the ‘Kolkata Restaurant’ problem.

KPR is a repeated game, played among a large number of players or agents having no
simultaneous communication or interaction among themselves. In KPR, the prospective
players (customers/agents) choose from restaurants each day (time) in parallel decision
mode, based on the past (crowd) information and their own (evolved or learned) strategies.
There is no budget constraint to restrict the choice (and hence the solutions). Each restaurant
has the same price for a meal but having a different rank, agreed upon by all the customers
or players.

For simplicity, we may assume that each restaurant can serve only one customer
(generalization to any fixed number of daily services for each would not change the
complexion of the problem or game). If more than one customer arrives at any restaurant
on any day, one of them is randomly chosen and is served, and the rest do not get meal that
day. Information regarding the prospective customer or crowd distributions for the earlier
days (up to a finite memory size) is made available to everyone. Each day, based on own
learning and the developed (often mixed) strategies, each customer chooses a restaurant
independent of the others. Each customer wants to go to the restaurant with the highest
possible rank while avoiding a crowd so as to be able to get the meal there. Both from
individual success and social efficiency perspective, the goal is to ‘learn collectively’ to
utilize effectively the available resources.

The KPR problem seems to have a trivial solution: suppose that somebody, say a
dictator (who is not a player), assigns a restaurant to each person the first day and asks
them to shift to the next restaurant cyclically, on successive days. The fairest and most
efficient solution: each customer gets food on each day (if the number of plates or choices
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is the same as that of the customers or players) with the same share of the rankings as
others, and that too from the first day (minimum evolution time). This, however, is NOT
a true solution of the KPR problem, where each customer or agent decides on his or her
own every day, based on complete information about past events. In KPR, the customers
try to evolve learning strategies to eventually to arrive at the best possible solution (close
to the dictated solution indicated above). The time for this evolution needs also to be
optimized; for example, a very efficient strategy, having convergence time which grows
with the number of players (even linearly), is unsuitable for most of the social games, as
our life-span is finite, and (in a democracy) the number of players or competitors cannot be
restricted or bounded.

There have been many limiting formulations and studies using tricks from statistical
physics and quantum physics (see, e.g., References [20,73–81]) and generalizations in
computer science (see, e.g., Reference [82]) and mobility (vehicle on hire) markets (see, e.g.,
References [83,84] ). We will present briefly in the next section some specific results of a
new study on the nature phase transition and resource utilization in KPR with number of
customers less (still very large) than the number of restaurants.

4. Some New Results for Statistics of the KPR Problem

Here, we consider the case where λN agents decide to choose among N available
resources (for λ < 1). Every day each restaurant prepares one dish for lunch and serve
it to the visitor. If, on some day, any restaurant is visited by more than one agent, then
one of them is randomly chosen and served the prepared dish; the rest leave and have to
starve for that day. Thus, every agent is required to make her choice such that the chosen
restaurant will be visited alone by her (at most one agent arriving each restaurant) to assure
her lunch that day. As λ is less than unity here, a fraction (1 − λ) of restaurants will any
way go vacant any day. Additionally, a fraction (1 − f (t)) of restaurants will go vacant on
day (t) because of overcrowding at some restaurants due to fluctuations in choices of the
prospective customers. On any day t, the average social success factor f for the agents, can
be measured as

f (t) =
N

∑
i=1

[δ(ni(t))/λN], (3)

with δ(n) = 1 for n = 1 and δ(n) = 0 otherwise; ni(t) denotes the number of agents
arriving at the ith (rank) restaurant on day t. [1 − f (t)] gives the fraction of wastage due to
fluctuation of choices and [(1 − λ) + (1 − f (t)] gives the fraction of restaurants not visited
by any agent on day t. The goal is to achieve f (t) = 1 preferably in finite convergence time
(τ), i.e., for t ≥ τ, or at least as t → ∞.

As usual, a dictated solution is extremely simple and efficient: A dictator asks everyone
to form a queue for visiting the restaurants in order of their respective positions in the queue
and then asks them to shift their positions by one step (rank) in the next day (assuming
periodic boundary condition). Everyone gets the food and the steady state (t-independent)
social utilization fraction f = 1. This is true even when the restaurants have ranks (agreed
by all the agents or customers).

However, in democratic set-up, this dictated solution is not acceptable and the agents
or players are expected to evolve their strategy to make the best minority choice inde-
pendently (without presence of any dictator), using the publicly available information
about the past record of crowd sizes in different restaurants, such that each arrives alone
there in the respective restaurant and gets the dish. The more successful such collec-
tive learning, the more is the aggregated utilization fraction f . Earlier studies (see e.g.,
References [20,72,74,85–88] strategies for KPR game. Recently authors in Reference [81]
have proposed two such stochastic strategies (strategy I and strategy II) where the agents
collectively learn to make their decisions utilizing the publicly available history of crowd
size of the last day’s chosen restaurant. Below, we briefly discuss them.
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Strategy I:

On day t, an agent goes back to her last day’s visited restaurant k with probability

p(I)
k (t) = [nk(t − 1)]−α, α > 0. (4)

If nk(t − 1) > 1, each of the nk(t − 1) agents or players try to arrive at the same k-th
restaurant next day t with the above probability and chooses a different one (k

′ 	= k) among
any of the neighboring restaurants nr on day t, with probability

p(I)
k′

(t) = (1 − p(I)
k (t))/nr. (5)

Strategy II:

On day t, an agent tries to go back to the same restaurant as chosen the earlier day
(t − 1) with probability

p(I I)
k (t) = 1, if nk(t − 1) = 1 and (6)

p(I I)
k′

(t) = p < 1, if nk(t − 1) > 1 (7)

for choosing any of the nr neighboring restaurants (k
′ 	= k).

4.1. Numerical Results

We have numerically studied the steady state dynamics of the KPR game where
every day λN agents decide which restaurant to choose and visit among N restaurants
following both the strategies I and II. We consider here infinite dimensional arrangement
for restaurants, where the number of nearest neighboring restaurants nr to each is (N − 1),
and the cost to visit any of them is the same for all the time. The maximum social utiliza-
tion f obtained from Equation (3) (from the point of view of agents or players) will be
denoted further by f a. Each day (iteration), parallel choice decisions by each are processed
(following either strategy I or II) and used to compute f a. Steady state is identified as
the state when f a does not change (within a predefined error margin) for the next (say,
hundred) iteration.

On day t, ni(t − 1), agents decide to revisit last day’s visited restaurant (i) with
probability p(I)

k (t) (Equation (4)) or probability p(I I)
k (t) (Equation (6)), or else choose any

other (k′ 	= k) from among any of the (N − 1) neighboring restaurants for both the
strategies (Equations (5) and (7)). After the system stabilizes, ( f a(t) becomes practically
independent of t, the average statistics of f a(t) are noted as [ f a(I)] or [ f a(I I)], respectively,
for strategies I and II. We find the power law fits for the steady state wastage fraction
(1 − f a(I)) ∼ (1 − f a(I I)) ∼ (λ − λc(N))β with β = 1.0 ± 0.05 (see Figures 6 and 7) and
τ(I) ∼ τ(I I) ∼ (λc(N) − λ)−γ with γ = 0.5± 0.07 (see Figures 8 and 9) in both of the
strategies I and II. Varying λ, the steady state results of f a, τ for different system sizes
(N = 500, 1000, 2000), with α = 0.05, 0.25, 0.5, 1.0 in strategy I or p = 0.2, 0.4, 0.6, 0.8 in
strategy II are considered here. All simulations are done taking maximum N = 2000
with numbers of iteration/run of order 106. For finite system sizes, the effective critical
points λc(N) (where f a becomes unity or τ reaches its peak value) obtained numerically for
different system sizes (N) and are analyzed using finite size scaling method in Figure 10.
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Figure 6. Plots of (1 − f a(I)) against λ − λc(N) following strategy I at (a) α = 0.05, (b) α = 0.25, (c)
α = 0.5, (d) α = 1.0. A power law holds for (1 − f a(I)) ∼ (λ − λc(N))β, where β = 1.0 ± 0.05. The
insets show direct relationship between (1 − f a(I)) and λ (for strategy I).

Figure 7. Plots of steady state convergence time τ(I) from strategy I against λc(N)− λ at (a) α = 0.05,
(b) α = 0.25, (c) α = 0.5, (d) α = 1.0. A power law holds for τ(I) ∼ (λc(N) − λ)−γ, where
γ = 0.5 ± 0.05. The insets plot direct relationship between τ(I) and λ for different system sizes (for
strategy I), also showing the variation of λ as α increases.
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Figure 8. Plots of (1 − f a(I I)) versus λ − λc(N) following strategy II at (a) p = 0.8, (b) p = 0.6, (c)
p = 0.4, (d) p = 0.2. A power law holds for (1 − f a(I I)) ∼ (λ − λc(N))β with β = 1.0 ± 0.05. The
insets show direct relationship between variations of (1 − f a(I I)) against λ (for strategy II).

Figure 9. Plots of steady state convergence time τ(I I) against λc(N)− λ following strategy II at (a)
p = 0.8, (b) p = 0.6, (c) p = 0.4, (d) p = 0.2. A power law holds for τ(I I) ∼ (λc(N)− λ)−γ with
γ = 0.5±0.07. The insets give direct relationship between τ(I I) and λ for different system sizes (for
strategy II), also showing the variation of λ as p decreases.
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Figure 10. Extrapolation study of the effective finite size critical density of agents λc(N). The system
size dependence is numerically fitted to 1√

N
and we estimate λc from λc ≡ λc(N → ∞). The

extrapolated values of λc are 0.99, 0.92, 0.85, 0.75 for α = 0.05, 0.25, 0.5, 1.0 (strategy I) (a), and are
0.9, 0.8, 0.7, 0.6 for p = 0.8, 0.6, 0.4, 0.2 (strategy II) (b).

It may be mentioned that, in general, for the estimation of errors in the exponents
β and γ in Figures 6–9, we tried linear fits (without any intercept) for log y versus log x,
using best fits mostly for the intermediate range data points for all N values until they start
deviating (due to extreme fluctuations near λ = λc and towards their saturation values
for λ approaching unity [74,81]) and anticipating their universal mean field values in this
infinite dimensional system. From the slopes of these best fit lines for different α or p
values, we extract the universal exponent values and their standard deviations. We give
this higher error in the estimate of the unified (and universal) estimate of γ.

4.2. Summary

KPR is a multi-agent multi-choice repeated game where players try to learn from
their past successes or failures, utilizing publicly available information on the crowd sizes
at different restaurant in the past to decide which restaurant to visit that day such that
she would be alone there for being served the only prepared dish. Here, asymmetric
case such that λN (λ < 1) agents are considered against N restaurants, for sufficiently
large N. End of each day (iteration), we have measured social utilization for agents
f a(t) = ∑N

i=1[δ(ni(t))/λN] where ni(t) denotes number of customers visiting ith restaurant
on day t.

As shown in Figure 6 (for strategy I) and Figure 8 (for strategy II), the social wastage
fraction (1 − f a) vanishes at the effective critical point λc(N) with the critical exponent β
value near unity. In addition, from Figure 7 (for strategy I) and Figure 9 (for strategy II), we
see that the the convergence or relaxation time t, required for f a to stabilize, divergence near
the same critical points λc(N) for the respective strategies, with the exponent γ value about
1/2. Additionally, the finite size scaling analysis λc(N) ∼ λc + const.N−1/(dν), where λc
corresponds to λc(N) for N going to infinity and d corresponds to the effective dimension,
suggests the effective correlation length exponent dν value to be around 2 for both the
strategies, as expected for such mean field (infinite range systems).

In Reference [81], we have studied the dynamics of the KPR game following the same
two strategies for the case λ = 1. For λ = 1.0, where the critical points λc (for both the
strategies) vanish, the universality class (values of the critical exponents β and γ were
observed to be distinctly different, and this point needs further investigations. We may,
however, note that, since at λ = 1, the number of both agents and restaurants are same
(N), full social utilization (where f a = 1 = f r, occurring at α = 0+ for strategy I and at
p = 1− for strategy II) induces an additional frustrating constraint in the collective choice
dynamics involved here.

The KPR game models have been extended already and used to study real life prob-
lems, like resource allocation in Internet of Things [82], vehicle for hire [83], matching in
mobility markets [84], etc. We hope the KPR game models will be utilized much more
effectively in the context of much wider practical areas of collective learning dynamics
and choices.
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5. Future of Econophysics: Some Perspective

One often says that the main purpose of economic activity is to optimize the limited
funds of labor and capital, natural and technical resources and capital resources, to satisfy
our (practically) unlimited needs. “Economic science is therefore the science of efficiency,
and as such, it is a quantitative science.” [89] (also see Reference [90]). We have already
argued [14] in Section 2 that epistemologically economics belongs to natural science (and
not mathematics). It begins with observation which are to be analyzed using logic or
mathematics and eventually should end in observation, as in all natural sciences. Since
1990s, most Universities of the world offer Science Graduation degrees (Bachelor of Science
or Master of Science degrees) in economics (in addition to Bachelor of Arts or Master of
Arts from Fine Arts or Humanities Departments).

Robert Solow [91] pointed out that, in the 1940s, economics had been basically a
descriptive and institutional subject for a ‘gentleman scholar’. The textbooks of those days
were ‘civilized’ and discursive. ... “Formal analysis were minimal and it made economics
the domain of intuitive economists”. He concluded his summary of the state of economics
near the end of the 20th century “with a paraphrase of Oscar Wilde’s description of a fox
hunt - ‘the unspeakable in pursuit of the inedible’-saying that perhaps economics was an
example of ‘the over-educated in pursuit of the unknowable’.” [91]. Despite the ongoing
controversies today in the field of economics, the “New Millennium economists are far
more comfortable with what they do after the changes in the structure and content of
economics over the last half century” [92]. The root cause of these changes have been
identified by Colander [92] to be due to the rise of Complexity Science since early 1980s. In
fact, concepts from physics had continually been absorbed into the main stream economic
formulation of ideas and models. As Venkat Venkatasubramanian noted in his recent
book [93], “Concepts such as equilibrium, forces of supply and demand, and elasticity
reveal influence of classical mechanics on economics. The analytical model of utility-based
preferences can be traced back to Daniel Bernoulli, the great Swiss mathematical physicist
from nineteenth century. One of the founders of neoclassical economics, Irving Fisher,
was trained under the legendary Yale physicist, Jisiah Willard Gibbs, a co-founder of the
discipline of statistical mechanics. Similarly, Jan Tinbergen, who shared the first Nobel
Prize in Economics in 1969, was the doctoral student of the great physicist Paul Ehrenfest
at Leiden University”.

Indeed, more specifically as discussed in Section 2, we would like to correlate these
changes to occur following the successful development in econophysics of the Simulated
Annealing technique [22] in 1983 for Traveling Salesman type multi-variable optimization
problems, and other successive developments in econophysics of analyzing correlations
in stock prices (see, e.g., Reference [3,21]) or the kinetic exchange modelings of income
and wealth distributions (see, e.g., References [28,63]). The statistical physics of TSP, as
an example of successful developments in econophysics, had already been introduced in
our 2010 econophysics textbook [32], which has been the only ‘suggested textbook’ (since
inception in 2012) of the formal course on econophysics, offered (by Diego Garlaschelli) at
the Physics Department of the Leiden University (see the course prospectus for 2012–2013
through that of 2020–2021 [94]), where one of the first Nobel-laureates in economics Jan
Tinbergen came from.

Econophysics has come as an exceptional development in interdisciplinary sciences
(see, e.g., Reference [95] for a popular exposition on this development). Historically,
economics, more specifically social sciences, belonged to the Humanities departments and
not of Science. For earlier interdisciplinary developments of Astrophysics, Biophysics, or
Geophysics, the scenario and ambiance had been quite different. The mother departments
had been parts of the same science schools and even the corresponding resources, like
books, journals, and also the faculty, had strong overlaps and could be shared. The marriage
negotiations for Econophysics have been difficult, though extremely desirable and natural;
as the saying goes: “marriage between the King of natural sciences with the Queen of
social sciences!”
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Regular interactions and collaborations between the communities of natural scientists
and social scientists are, however, rare, even today! Though, as mentioned already, interdis-
ciplinary research papers on econophysics and sociophysics are regularly being published
at a steady and healthy rate, and a number of universities (including Universities of Bern,
Leiden, London, Paris, and Tufts University) are offering the interdisciplinary courses on
econophysics and sociophysics, not many clearly designated professor positions, or other
faculty positions for that matter, are available yet (except for econophysics in Universities
of Leiden and London). Neither are there designated institutions on these interdisciplinary
fields, nor separate departments or centers of studies for instance. Of course, there have
been several positive and inspiring attempts and approaches from both economics and
finance side (see, e.g., References [96,97], along with a number of those [66,67,98–100] from
physics, which have already been appreciated in the literature). Indeed, the thesis [101]
in August 2018, Department of History and Philosophy of Science, University of Cam-
bridge, by financial economist Christophe Schinckus (one of the co-editors of this special
issue), says that “In order to reconstruct the subfield of econophysics, I started with the
group of the most influential authors in econophysics and tracked their papers in the
literature using the Web of Science database of Thomson-Reuters (The sample is composed
of: Eugene Stanley, Rosario Mantegna, Joseph McCauley, Jean-Pierre Bouchaud, Mauro
Gallegati, Benoît Mandelbrot, Didier Sornette, Thomas Lux, Bikas Chakrabarti and Doyne
Farmer). These key authors are often presented as the fathers of econophysics simply
because they contributed significantly to its early definition and development. Because of
their influential and seminal works, these scholars are actually the most quoted authors in
econophysics. Having the 10 highest quoted fathers of econophysics as a sample sounds an
acceptable approach to define bibliometrically the core of econophysics”. In addition, the
entry on ‘Social Ontology’ in The Stanford Encyclopedia of Philosophy [15], as discussed in
Section 2, confirms positive impact of such econophysics and sociophysics research studies
on the overall modern philosophical outlook of social sciences.

We may note, however, a recently published highly acclaimed massive (580 page)
book [96] on economics (‘landmark volume’, said E. Roy Weintraub, ‘creative, elegant
and brilliant work’, said W. Brian Arthur and ‘written by master economists’, said D.
Colander) by (Late) Martin Shubik (Ex-Seymour Knox Professor Emeritus of Mathematical
Institutional Economics, Yale University and Santa Fe Institute) and Eric Smith (Santa
Fe Institute) discussed extensively on econophysics approaches and in general on the
potential of interdisciplinary research studies inspired by the developments in natural
sciences. Getting somewhat excited, I wrote to Martin Shubik in late 2016 that their book
can also serve as an outstanding ‘white-paper’ document in favor of a possible Proposal
for an International Center for Interdisciplinary Studies on Complexity in Social Sciences.
He immediately responded and gave his impression about the difficulties involved and
indicated very briefly about the minimal financial and structural requirements (both my
letter to him and his response is appended below (Figures 11 and 12).
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Figure 11. The first part of the email conversation between (late) Martin Shubik and BKC. Sec-
ond part (email from BKC; appended to this part) is continued in Figure 12. The precise sug-
gestions made in this immediate response indicate Shubik’s prior plan for such ‘interdisciplinary
institutes’ in economics.

Figure 12. Email conversation in the end of 2016 between (late) Martin Shubik and BKC regarding
interdisciplinary developments in economics and the possibility of setting up an International Center
for Interdisciplinary Studies on Complexity in Social Sciences. This email from BKC was appended
to the response email (Figure 11) from Shubik. The (Yale) date and time mark in the mail-header (and
that for BKC’s in Figure 11, on arrival in Kolkata) indicate hardly any time gap between the two and
the readiness with the precise suggestions indicate Shubik’s prior thinking in similar line.
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This ready and specific comments by Shubik clearly suggests that he actually had
thought about the need of such an International Center for fostering interdisciplinary
research which needs to be more inclusive than, for example, the Santa Fe Institute. The
model of the Abdus Salam International Center for Theoretical Physics (ICTP), Trieste
(funded by UNESCO and IAEA), was considered to provide helpful guidance for us here.
It was contemplated, if an ICTP-type interdisciplinary research institute could be initiated
for research studies on econophysics and sociophysics (see, e.g, Reference [102]). Though
Shubik (who died in 2018 at the age of 92) agreed also to be one of its founding members, we
could not make any progress yet. We may also note that Dirk Helbing and colleagues have
been trying for an European Union funded ‘Complex Techno-Socio- Economic Analysis
Center’ or ‘Economic and Social Observatory’ for the last decade or so (see Ref. [103]
containing the White Papers arguing for their proposed project). We are also aware that
Indian Statistical Institute had taken a decision to initiate a similar Center in India (see
‘Concluding Remarks’ in Reference [104]).

Hope, some such international visiting centers will come up soon and with them the
spread of such interdisciplinary ideas will achieve more coherence and will lead to major
success in such research studies.

Author Contributions: Data curation, A.S.; Writing—review & editing, B.K.C. and A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge all our colleagues (mentioned by name in Section 2) for
the collaborations. BKC is grateful to J.C. Bose National Fellowship (DST, Govt. of India) grant
for support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gangopadhyay, K. Interview with Eugene H. Stanley. IIM Kozhikode Soc. Manag. Rev. 2013, 2, 73–78. [CrossRef]
2. Rosser, J.B., Jr. Econophysics. In New Palgrave Dictionary of Economics; Durlauf, S.N., Blume, L.E., Eds.; Palgrave Macmillan:

London, UK, 2008; Volume 2, pp. 729–732.
3. Mantegna, R.N.; Stanley, H.E. An Introduction to Econophysics; Cambridge University Press: Cambridge, UK, 2000.
4. Galam, S.; Gefen, Y.; Shapir, Y. Sociophysics: A mean behavior model for the process of strike. J. Mathe. Sociol. Scimago 2000,

9, 1–13.
5. Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Springer: New York, NY, USA, 2012.
6. Chakrabarti, B.K. Econophysics as conceived by Meghnad Saha. Sci. Cult. Indian Sci. News Assoc. 2018, 84, 365–369.
7. Saha, M.N.; Srivastava, B.N. A Treatise on Heat; Indian Press: Allahabad, India, 1931; p. 105.
8. Dragulescu, A.; Yakovenko, V.M. Statistical mechanics of money. Eur. Phys. J. B-Condens. Matter Complex Syst. 2000, 17, 723–729.

[CrossRef]
9. Chakraborti, A.; Chakrabarti, B.K. Statistical mechanics of money: How saving propensity affects its distribution. Eur. Phys. J.

B-Condens. Matter Complex Syst. 2000, 17, 167–170. [CrossRef]
10. Chatterjee, A.; Chakrabarti, B.K.; Manna, S.S. Pareto law in a kinetic model of market with random saving propensity. Phys. A

Stat. Mech. Appl. 2004, 335, 155–163. [CrossRef]
11. Chakrabarti, B.K.; Marjit, S. Self-organisation and complexity in simple model systems: Game of life and economics. Indian J.

Phys. IACS 1995, 69B, 681–698.
12. Stanley, H.E.; Afanasyev, V.; Amaral, L.A.N.; Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Leschhorn, H.; Maass, P.; Mantegna, R.N.;

Peng, C.-K. Anomalous fluctuations in the dynamics of complex systems: From DNA and physiology to econophysics. Phys. A
Stat. Mech. Appl. 1996, 224, 302–321. [CrossRef]

13. Chakrabarti, B.K. Econophysics. In Encyclopedia of Philosophy and the Social Sciences; Kaldis, B., Ed.; Sage: Thousand Oaks, CA,
USA, 2013; Volume 1, pp. 229–230.

14. Chakrabarti, B.K. Can economics afford not to become natural science? Eur. Phys. J. Spec. Top. 2016, 225, 3121–3125. [CrossRef]

74



Entropy 2021, 23, 254

15. Epstein, B. Social Ontology. In The Stanford Encyclopedia of Philosophy; Stanford University: Stanford, CA, USA, 2018. Available
online: https://plato.stanford.edu/entries/social-ontology/ (accessed on 8 January 2021).

16. Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1910; Volume I.
17. Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1912; Volume II.
18. Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1913; Volume III.
19. Challet, D.; Marsili, M.; Zhang, Y.-C. Minority Games: Interacting Agents in Financial Markets; Oxford University Press: Oxford, UK, 2005.
20. Chakrabarti, B.K.; Chatterjee, A.; Ghosh, A.; Mukherjee, S.; Tamir, B. Econophysics of the Kolkata Restaurant Problem and Related

Games: Classical and Quantum Strategies for Multi-Agent, Multi-Choice Repetitive Games; Springer: Cham, The Netherland, 2017.
21. Mantegna, R.N. Lévy walks and enhanced diffusion in Milan stock exchange. Phys. A Stat. Mech. Appl. 1991, 179, 232–242.

[CrossRef]
22. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
23. Das, A.; Chakrabarti, B.K. Colloquium: Quantum annealing and analog quantum computation. Rev. Modern Phys. 2008,

80, 1061–1081. [CrossRef]
24. Santoro, G.E.; Tosatti, E. Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. J. Phys. A

Math. Gener. 2006, 39, R393–R431. [CrossRef]
25. Chakrabarti, B.K. Econophys-Kolkata: A short story. In Econophysics of Wealth Distributions; Chatterjee, A., Yarlagadda, S.,

Chakrabarti, B.K., Eds.; Springer: Milan, Italiy, 2005; pp. 225–228.
26. Sen, P.; Chakrabarti, B.K. Travelling salesman problem on dilute lattices: Visit to a fraction of cities. J. Phys. 1989, 50, 255–261.

[CrossRef]
27. Sen, P.; Chakrabarti, B.K. Sociophysics: An Introduction; Oxford University Press: Oxford, UK, 2014.
28. Yakovenko, V.M.; Rosser, J.B., Jr. Colloquium: Statistical mechanics of money, wealth, and income. Rev. Modern Phys. 2009, 81, 1703.

[CrossRef]
29. Orman, A.J. Williams, H.P. A survey of different integer programming formulations of the travelling salesman problem. Optim. Econom.

Financ. Anal. 2006, 9, 93–108.
30. Rasmussen, R. TSP in Spreadsheets–a Guided Tour. Int. Rev. Econom. Educ. 2011, 10, 94–116. [CrossRef]
31. Percus, A.G.; Martin, O.C. Finite size and dimensional dependence in the Euclidean traveling salesman problem. Phys. Rev. Lett.

1996, 76, 1188–1191. [CrossRef] [PubMed]
32. Sinha, S.; Chatterjee, A.; Chakraborti, A.; Chakrabarti, B.K. Econophysics: An Introduction; John Wiley & Sons: New York, NY, USA, 2010.
33. Beardwood, J.; Halton, J.H.; Hammersley, J.M. The shortest path through many points. In Mathematical Proceedings of the Cambridge

Philosophical Society; Cambridge Press: Cambridge, UK, 1959; Volume 55, pp. 299–327. [CrossRef]
34. Chakrabarti, B.K. Directed travelling salesman problem. J. Phys. A Math. Gen. 1986, 19, 1273–1275. [CrossRef]
35. Dhar, D.; Barma, M. Chakrabarti, B.K.; Taraphder, A. The travelling salesman problem on a randomly diluted lattice. J. Phys. A

Math. Gen. 1987, 20, 5289–5298. [CrossRef]
36. Ghosh, M.; Manna, S.S.; Chakrabarti, B.K. The travelling salesman problem on a dilute lattice: A simulated annealing study.

J. Phys. A Math. Gen. 1988, 21, 1483–1486. [CrossRef]
37. Chakraborti, A.; Chakrabarti, B.K. The travelling salesman problem on randomly diluted lattices: Results for small-size systems.

Eur. Phys. J. B-Condens. Matter Complex Syst. 2000, 16, 677–680. [CrossRef]
38. Bonomi, E.; Lutton, J.-L. The N-city travelling salesman problem: Statistical mechanics and the Metropolis algorithm. SIAM Rev.

1984, 26, 551–568. [CrossRef]
39. Zhou, A.-H.; Zhu, L.-P.; Hu, B.; Deng, S.; Song, Y.; Qiu, H.; Pan, S. Traveling-salesman-problem algorithm based on simulated

annealing and gene-expression programming. Information 2019, 10, 7. [CrossRef]
40. Ray, P.; Chakrabarti, B.K.; Chakrabarti, A. Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry

breaking due to quantum fluctuations. Phys. Rev. B 1989, 39, 11828–11832. [CrossRef] [PubMed]
41. Johnson, M.W.; Amin, M.H.S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.

Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [CrossRef] [PubMed]
42. Mukherjee, S.; Chakrabarti, B.K. Multivariable optimization: Quantum annealing and computation. Eur. Phys. J. Spec. Top. 2015,

224, 17–24. [CrossRef]
43. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 1–15. [CrossRef]
44. Dong, Y.; Huang, Z. An Improved Noise Quantum Annealing Method for TSP. Int. J. Theor. Phys. 2020, 59, 3737–3755. [CrossRef]
45. Tanaka, S.; Tamura, R.; Chakrabarti, B.K. Quantum Spin Glasses, Annealing and Computation; Cambridge University Press:

Cambridge, UK, 2017.
46. Albash, T.; Lidar, D.A. Adiabatic quantum computation. Rev. Modern Phys. 2018, 90, 015002. [CrossRef]
47. Gini, C. Measurement of inequality of incomes. Econ. J. 1921, 31, 124–126. [CrossRef]
48. Lorenz, M.O. Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 1905, 9, 209–219. [CrossRef]
49. Ghosh, A.; Chattopadhyay, N.; Chakrabarti, B.K. Inequality in societies, academic institutions and science journals: Gini and

k-indices. Phys. A Stat. Mech. Appl. 2014, 410, 30–34. [CrossRef]
50. Ghosh, A.; Chatterjee, A.; Inoue, J.; Chakrabarti, B.K. Inequality measures in kinetic exchange models of wealth distributions.

Phys. A Stat. Mech. Appl. 2016, 451, 465–474. [CrossRef]

75



Entropy 2021, 23, 254

51. Chatterjee, A.; Ghosh, A.; Chakrabarti, B.K. Socio-economic inequality: Relationship between Gini and Kolkata indices. Phys. A
Stat. Mech. Appl. 2017, 466, 583–595. [CrossRef]

52. Sinha, A.; Chakrabarti, B.K. Inequality in death from social conflicts: A Gini & Kolkata indices-based study. Phys. A Stat.
Mech. Appl. 2019, 527, 121185.

53. Banerjee, S.; Chakrabarti, B.K.; Mitra, M.; Mutuswami, S. On the Kolkata index as a measure of income inequality. Phys. A Stat.
Mech. Appl. 2020, 545, 123178. [CrossRef]

54. Banerjee, S.; Chakrabarti, B.K.; Mitra, M.; Mutuswami, S. Social Inequality Measures: The Kolkata index in comparison with
other measures. Front. Phys. 2020, 8, 562182. [CrossRef]

55. Available online: https://en.wikipedia.org/wiki/Pareto_principle (accessed on 28 January 2021).
56. Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572.

[CrossRef] [PubMed]
57. Subramanian, S. More tricks with the Lorenz curve. Econ. Bull. 2015, 35, 580–589.
58. Sahasranaman, A.; Jensen, H.J. Spread of Covid-19 in urban neighbourhoods and slums of the developing world. arXiv 2020,

arXiv:2010.06958.
59. Fisher, M.E. Renormalization group theory: Its basis and formulation in statistical physics. Rev. Modern Phys. 1998, 70, 653–681.

[CrossRef]
60. Feigenbaum, M.J. Universal behavior in nonlinear systems. Phys. D Nonlinear Phenom. 1983, 7, 16–39. [CrossRef]
61. Chatterjee, A.; Yarlagadda, S.; Chakrabarti, B.K. Econophysics of Wealth Distributions; Springer: Milano, Italiy, 2005.
62. Chatterjee, A.; Chakrabarti, B.K. Kinetic exchange models for income and wealth distributions. Eur. Phys. J. B 2007, 60, 135–149.

[CrossRef]
63. Chakrabarti, B.K. Chakraborti, A.; Chakravarty, S.R.; Chatterjee, A. Econophysics of Income and Wealth Distributions; Cambridge

University Press: Cambridge, UK, 2013.
64. Chakrabarti, A.S.; Chakrabarti, B.K. Microeconomics of the ideal gas like market models. Phys. A Stat. Mech. Appl. 2009, 388,

4151–4158. [CrossRef]
65. Quevedo, D.S.; Quimbay, C.J. Non-conservative kinetic model of wealth exchange with saving of production. Eur. Phys. J. B 2020,

93, 186. [CrossRef]
66. Pareschi, L.; Toscani, G. Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods; Oxford University Press: Oxford,

UK, 2013.
67. Ribeiro, M.B. Income Distribution Dynamics of Economic Systems: An Econophysical Approach; Cambridge University Press: Cam-

bridge, UK, 2020.
68. Chakraborti, A. Distributions of money in model markets of economy. Int. J. Modern Phys. C World Sci. 2002, 13, 1315–1321.

[CrossRef]
69. Boghosian, B.M. Is Inequality Inevitable? Sci. Am. 2019, 321, 70–77. [CrossRef]
70. Iglesias, J.R. How simple regulations can greatly reduce inequality. arXiv 2010, arXiv:1007.0461.
71. Ghosh, A.; Basu, U.; Chakraborti, A.; Chakrabarti, B.K. Threshold-induced phase transition in kinetic exchange models.

Phys. Rev. E 2011, 83, 061130. [CrossRef] [PubMed]
72. Chakrabarti, A.S.; Chakrabarti, B.K.; Chatterjee, A.; Mitra, M. The Kolkata Paise Restaurant problem and resource utilization.

Phys. A Stat. Mech. Appl. 2009, 388, 2420–2426. [CrossRef]
73. Chakraborti, A.; Challet, D.; Chatterjee, A.; Marsili, M.; Zhang, Y.-C.; Chakrabarti, B.K. Statistical mechanics of competitive

resource allocation using agent-based models. Phys. Rep. 2015, 552, 1–25. [CrossRef]
74. Ghosh, A.; Chatterjee, A.; Mitra, M.; Chakrabarti, B.K. Statistics of the kolkata paise restaurant problem. New J. Phys. 2010, 12, 075033.

[CrossRef]
75. Sharif, P.; Heydari, H. Quantum solution to a three player Kolkata restaurant problem using entangled qutrits. arXiv 2011,

arXiv:1111.1962.
76. Sharif, P.; Heydari, H. An introduction to multi-player, multi-choice quantum games: Quantum minority games & kolkata

restaurant problems. In Econophysics of Systemic Risk and Network Dynamics; Abergel, F., Ed.; Springer: Milano, Italy, 2013;
pp. 217–236.

77. Ghosh, D.; Chakrabarti, A.S. Emergence of distributed coordination in the Kolkata paise restaurant problem with finite informa-
tion. Phys. A Stat. Mech. Appl. 2017, 483, 16–24. [CrossRef]

78. Banerjee, P.; Mitra, M.; Mukherjee, K. The economics of the Kolkata Paise Restaurant problem. Sci. Cult. Indian Sci. News Assoc.
2018, 84, 26–30.

79. Sharma, K.; Anamika; Chakrabarti, A.S. Chakraborti, A.; Chakravarty, S. The Saga of KPR: Theoretical and experimental
developments. Sci. Cult. Indian Sci. News Assoc. 2018, 84, 31–36.

80. Tamir, B. Econophysics and the Kolkata Paise Restaurant Problem: More is different. Sci. Cult. Indian Sci. News Assoc. 2018,
84, 37–47.

81. Sinha, A.; Chakrabarti, B.K. Phase transition in the Kolkata Paise Restaurant problem. Chaos Interdiscip. J. Nonlinear Sci. 2020,
30, 083116. [CrossRef] [PubMed]

76



Entropy 2021, 23, 254

82. Park, T.; Saad, W. Kolkata paise restaurant game for resource allocation in the Internet of Things. In Proceedings of the 2017 51st
Asilomar Conference on Signals, Systems, and Computers, IEEE Xplore, Pacific Grove, CA, USA, 29 October–1 November 2017;
pp.1774–1778.

83. Martin, L. Extending Kolkata Paise Restaurant Problem to Dynamic Matching in Mobility Markets. Jr. Manag. Sci. 2019, 4, 1–34.
84. Martin, L.; Karaenke, P. The Vehicle for Hire Problem: A Generalized Kolkata Paise Restaurant Problem. In Workshop on

Information Technology and Systems; Technical University of Munich: Seoul, Korea, 2017.
85. Ghosh, A. Chakrabarti, A.S.; Chakrabarti, B.K. Kolkata Paise Restaurant problem in some uniform learning strategy limits.

In Econophysics and Economics of Games, Social Choices and Quantitative Techniques; Springer: Berlin, Germany, 2010; pp. 3–9.
86. Ghosh, A.; De Martino, D.; Chatterjee, A.; Marsili, M.; Chakrabarti, B.K. Phase transitions in crowd dynamics of resource

allocation. Phys. Rev. E 2012, 85, 021116. [CrossRef] [PubMed]
87. Ghosh, A.; Chatterjee, A.; Chakrabarti, A.S.; Chakrabarti, B.K. Zipf’s law in city size from a resource utilization model. Phys. Rev.

E 2014, 90, 042815. [CrossRef]
88. Chakrabarti, B.K. Kolkata restaurant problem as a generalised el farol bar problem. In Econophysics of Markets and Business

Networks; Springer: Milan, Italy, 2007; pp. 239–246.
89. Allais, M. Economics as a Science. Cah. Vilfredo Pareto 1968, 6, 5–24. Available online: https://www.jstor.org/stable/40368894

?seq=1 (accessed on 28 January 2021).
90. Frey, B.S. Economics As a Science of Human Behaviour: Towards a New Social Science Paradigm, 2nd ed.; Springer: New York, NY, USA, 1999.
91. Solow, R.M. How did economics get that way and what way did it get? Daedalus 1997, 126, 39–58. [CrossRef]
92. Colander, D. New millennium economics: How did it get this way, and what way is it? J. Econ. Perspect. 2000, 14, 121–132.

[CrossRef]
93. Venkatasubramanian, V. How Much Inequality Is Fair? Mathematical Principles of a Moral, Optimal, and Stable Capitalist Society;

Columbia University Press: New York, NY, USA, 2017.
94. Leiden University. Econophysics e-Prospectuses for 2012–2013. 2020–2021. Available online: https://studiegids.universiteitleiden.

nl/en/courses/34804/econophysics or https://studiegids.universiteitleiden.nl/courses/99643/econophysics (accessed on 28
January 2021).

95. Dash, K.C. The Story of Econophysics; Cambridge Scholars Publishing: Newcastle Upon Tyne, UK, 2019.
96. Shubik, M.; Smith, E. The Guidance of an Enterprise Economy; MIT Press: Cambridge, MA, USA, 2016.
97. Jovanovic, F.; Schinckus, C. Econophysics and Financial Economics: An Emerging Dialogue; Oxford University Press: Oxford, UK, 2017.
98. Richmond, P.; Mimkes, J.; Hutzler, S. Econophysics and Physical Economics; Oxford University Press: Oxford, UK, 2013.
99. Slanina, F. Essentials of Econophysics Modelling; Oxford University Press: Oxford, UK, 2013.
100. Aoyama, H.; Fujiwara, Y.; Ikeda, Y.; Iyetomi, H.; Souma, W. Macro-Econophysics: New Studies on Economic Networks and Synchro-

nization; Cambridge University Press: Delhi, India; Cambridge, UK, 2017.
101. Schinckus, C. When Physics Became Undisciplined An Essay on Econophysics; University of Cambridge: Cambridge, UK, 2018.

Available online: https://www.repository.cam.ac.uk/bitstream/handle/1810/279683/Chris_Thesis_FINAL.png?sequence=
5&isAllowed=y (accessed on 28 January 2021).

102. Chakrabarti, B.K. International Center for Social Complexity, Econophysics and Sociophysics Studies: A Proposal. In New
Perspectives and Challenges in Econophysics and Sociophysics; New Economic Windows Series; Abergel, F., Ed.; Springer: Cham,
The Newtherland, 2019; pp. 259–267.

103. Helbing, D.; Balietti, S.; Bishop, S.; Lukowicz, P. Understanding, creating, and managing complex techno-socio-economic systems:
Challenges and perspectives (Visioneer White Papers). Eur. Phys. J. Spec. Top. 2011, 195, 165–186. [CrossRef]

104. Ghosh, A. Econophysics Research in India in the last two Decades. IIM Kozhikode Soc. Manag. Rev. 2013, 2, 135–146. [CrossRef]

77





entropy

Perspective

Radical Complexity

Jean-Philippe Bouchaud 1,2

Citation: Bouchaud, J.-P. Radical

Complexity. Entropy 2021, 23, 1676.

https://doi.org/10.3390/e23121676

Academic Editors: Ryszard Kutner,

H. Eugene Stanley and Christophe

Schinckus

Received: 9 November 2021

Accepted: 3 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Capital Fund Management, 75007 Paris, France; jean-philippe.bouchaud@cfm.fr
2 Académie des Sciences, 75006 Paris, France
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quantitative finance and econophysics: (i) models of price changes; (ii) linear correlations and random
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1. From Random Walks to Rough (Multifractal) Volatility

Since we will never really know why the prices of financial assets move, we should
at least make a model of how they move. This was the motivation of Bachelier in 1900 [1]
when he wrote in the introduction of their thesis that contradictory opinions in regard to (price)
fluctuations are so diverse that at the same instant buyers believe the market is rising and sellers
that it is falling. He went on to propose the first mathematical model of prices: the Brownian
motion. He then built an option pricing theory that he compared to empirical data available
to him, which already revealed, quite remarkably, what is now called the volatility smile!
(Looking at his table on p. 30, one clearly see a smile that flattens with the maturity of the
options, as routinely observed nowadays. As we now understand, this flattening comes
from the slow convergence of returns towards Gaussian random variables as the time-lag
increases, see, e.g., [2]).

After 120 years of improvements and refinements, we are closing in on a remarkably
realistic model, which reproduces almost all known stylised facts of financial price series.
However, are we there yet? As Benoît Mandelbrot once remarked: In economics, there can
never be a “theory of everything”. However, I believe each attempt comes closer to a proper under-
standing of how markets behave. In order to close the gap and justify the modern mathematical
apparatus that has slowly matured, we will need to understand the interactions between
the behaviour of zillions of traders—each with their or her own investment style, trading
frequency, risk limits, etc. and the price process itself. Interestingly, recent research strongly
suggests that markets self organise in a subtle way, as to be poised at the border between
stability and instability. This could be the missing link—or the holy grail—that researchers
have been looking for.

For many years, the only modification to Bachelier’s proposal was to consider that
log-prices, not prices themselves, are described by a Brownian motion. Apart from the
fact that this modification prevents prices from becoming negative, none of the flaws of
the Bachelier model were seriously tackled. Notwithstanding, the heyday of Brownian
finance came when Black and Scholes published their famous 1973 paper, with the striking
result that perfect delta-hedging is possible. However, this is because, in the Black–Scholes
world, price jumps are absent and crashes impossible. This is, of course, a very problematic
assumption, especially because the fat-tailed distribution of returns had been highlighted
as soon as 1963 by Mandelbrot, who noted, in the same paper, that large changes tend to be
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followed by large changes, of either sign, and small changes tend to be followed by small changes, an
effect now commonly referred to as “volatility clustering” and captured by the extended
family of GARCH models.

It took the violent crash of October 1987, exacerbated by the massive impact of Black–
Scholes’ delta-hedging, for new models to emerge. The Heston model, published in 1993,
is among the most famous post-Black–Scholes models, encapsulating volatility clustering
within a continuous time, Brownian motion formalism. However, similar to GARCH, the
Heston model predicts that volatility fluctuations decay over a single time scale; in other
words, periods of high or low volatility have a rather well defined duration. This is not
compatible with market data: volatility fluctuations have no clear characteristic time scale;
volatility bursts can last anything between a few hours and a few years.

Mandelbrot had been mulling about this for a long while and actually, in 1974, pro-
posed a model to describe a very similar phenomenon in turbulent flows called “multi-
fractality”. He adapted their theory in 1997 to describe currency exchange rates, before
Bacry, Muzy and Delour formulated a more convincing version of the model in 2000,
which they called the Multifractal Random Walk (MRW) [3]. With a single extra parameter
(interpreted as a kind of volatility of volatility), the MRW satisfactorily captures many
important empirical observations: fat-tailed distribution of returns and long-memory of
volatility fluctuations. In 2014, Gatheral, Jaisson and Rosenbaum introduced their now
famous “Rough Volatility” model [4], which can be seen as an extension of the MRW with
an extra parameter allowing one to tune at will the roughness of volatility, while it is fixed
in stone in the MRW model. Furthermore, indeed, empirical data suggest that volatility is
slightly less rough than what the MRW posits. Technically, the Holder regularity of the
volatility is H = 0 in the MRW and found to be H ≈ 0.1 when calibrated within the Rough
Volatility specification.

The next episode of the long saga came in 2009 when Zumbach noticed a subtle, yet
crucial aspect of empirical financial time series: they are not statistically invariant upon
time reversal [5]. The past and future are not equivalent, whereas almost all models to that
date, including the MRW, did not distinguish the past from future. More precisely, past
price trends, whether up or down, lead to higher future volatility but not the other way
round. In 2019, following some work by P. Blanc, J. Donier and myself [6], A. Dandapani,
P. Jusselin and M. Rosenbaum proposed to describe financial time series with what they
called a “Quadratic Rough Heston Model” [7], which is a synthesis of all the ideas reviewed
above. It is probably the most realistic model of financial price series to date. In particular,
it provides a natural solution to a long standing puzzle, namely the joint calibration of
the volatility smile of the S&P 500 and VIX options, which had eluded quants for many
years [8]. The missing ingredient was indeed the Zumbach effect [9].

Is this the end of the saga? From a purely engineering point of view, the latest version
of the Rough Volatility model is probably hard to beat. However, the remaining challenge
is to justify how this particular model emerges from the underlying flow of buy and sell
trades that interacts with market makers and high-frequency traders. Parts of the story are
already clear; in particular, as argued by Jaisson, Jusselin and Rosenbaum in a remarkable
series of papers, the Rough Volatility model is intimately related to the proximity of an
instability [10] (see also [11]) that justifies the rough, multi-timescale nature of volatility.
However, what is the self-organising mechanism through which all markets appear to settle
close to such a critical point? Could this scenario allow one to understand why financial
time series all look so much alike; stocks, futures, commodities, exchange rates, etc., share
very similar statistical features, in particular in the tails. Beyond being the denouement
of a 120-year odyssey, we would be allowed to believe that the final model is not only a
figment of our mathematical imagination, but a robust, trustworthy framework for risk
management and derivative pricing. The next step will be to generalise these models in
a multivariate setting, capturing the various channels through which price fluctuations
propagate between different stocks and asset classes. The description of linear correlations
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is already a headache (see next section), but they are in fact not enough to capture the
complexity of non-linear dependence in financial markets, which we discuss in Section 3.

2. Random Matrix Theory to the Rescue

Harry Markowitz famously quipped that diversification is the only free lunch in
finance. This is nevertheless only true if correlations are known and stable over time.
Markowitz’ optimal portfolio offers the best risk-reward tradeoff, for a given set of pre-
dictors, but requires the covariance matrix—of a potentially large pool of assets—to be
known and representative of the future realised correlations. However, the empirical deter-
mination of large covariance matrices is fraught with difficulties and biases. Interestingly,
the vibrant field of the “Random Matrix Theory” has provided original solutions to this
big data problem and suggests droves of possible applications in econometrics, machine
learning or other large dimensional models.

However, even for the simplest two-asset bond/equity allocation problem, the knowl-
edge of the forward looking correlation has momentous consequences for most asset
allocators in the planet. Will this correlation remain negative in the years to come, as it has
been since late 1997, or will it jump back to positive territories? However, compared to
volatility, our understanding of correlation dynamics is remarkably poor, and, surprisingly,
the hedging instruments allowing one to mitigate the risk of bond/equity correlation
swings are nowhere as liquid as the VIX itself.

Thus, there are two distinct problems in estimating correlation matrices. One is lack
of data; the other one is time non-stationarity. Consider a pool of N assets, with N large.
We have at our disposal T observations (say daily returns) for each of the N time series.
The paradoxical situation is this: even though each individual off-diagonal covariance is
accurately determined when T is large, the covariance matrix as a whole is strongly biased
unless T is much larger than N itself. For large portfolios, with N of a few thousands, the
number of days in the sample should be in the tens of thousands—say 50 years of data.
This is simply absurd: Amazon and Tesla did not even exist 25 years ago. Maybe use
5-minute returns then, increasing the number of data points by a factor 100? Yes, except
that 5-minute correlations are not necessarily representative of the risk of much lower
frequency strategies, with other possible biases creeping in the resulting portfolios.

So in what sense are covariance matrices biased when T is not very large compared
to N? The best way to describe such biases is in terms of eigenvalues. One finds that
the smallest eigenvalues are way too small and the largest eigenvalues are too large.
This results, in the Markowitz optimisation program, in a substantial over-allocation on a
combination of assets that happened to have a small volatility in the past, with no guarantee
that this will persist looking forward. The Markowitz construction can therefore lead to a
considerable under-estimation of the realised risk in the next period.

Out-of-sample results are of course always worse than expected, but Random Matrix
Theory (RMT) offers a guide to (partially) correct these biases when N is large. In fact, RMT
gives an optimal, mathematically rigorous, recipe to tweak the value of the eigenvalues
so that the resulting “cleaned” covariance matrix is as close as possible to the “true” (but
unknown) one in the absence of any prior information on the direction of the eigenvectors.
Such a result, first derived by Ledoit and Péché in 2011 [12], is already a classic and
has been extended in many directions (see, e.g., [13,14]. Its operational implementation
and the quality of out-of-sample predictions were extensively reviewed in [15–17]. The
underlying mathematics, initially based on abstract “free probabilities”, are now in a
ready-to-use format, very similar to Fourier transforms or Ito calculus (see [17] for an
introductory account). One of the exciting and relatively unexplored directions is to add
some financially motivated prior, such as industrial sectors or groups, to improve upon the
default “agnostic” recipe.

Now the data problem is solved as best as possible, but the stationarity problem
pops up. Correlations, similar to volatility, are not fixed in stone but evolve with time.
Even the sign of correlations can suddenly flip, as was the case for the S&P500/Treasuries
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during the 1997 Asian crisis. After 30 years of correlations staunchly in positive territory
(1965–1997), bonds and equities have been in a “flight-to-quality” mode (i.e., equities
down and bonds up) ever since. More subtle, but significant, changes of correlations
can also be observed between single stocks and/or between sectors in the stock market.
For example, a downward move of the S&P500 leads to an increased average correlation
between stocks. Here again, RMT provides powerful tools to describe the time evolution
of the full covariance matrix [18,19].

As I discussed in the previous section, stochastic volatility models have made signifi-
cant progress recently and, now, encode feedback loops that originate at the microstructural
level, see also Section 4. Unfortunately, we are very far from having a similar theoretical
handle to understand correlation fluctuations, although Matthieu Wyart and I had pro-
posed a self-reflexive mechanism in 2007 to account for correlation jumps, such as the one
that took place in 1997 [20]. Parallel to the development of descriptive and predictive mod-
els, the introduction of standardised instruments that hedge against such correlation jumps
would clearly serve a purpose. This is especially true in the current environment [21] where
inflation fears could trigger another inversion of the equity/bond correlation structure,
which would be possibly devastating for many strategies that—implicitly or explicitly—rely
on persistent negative correlations. Markowitz diversification free lunch can sometimes
be poisonous!

3. My Kingdom for the Right Copula

As I just discussed, assessing linear correlations between financial assets is already
hard enough. What about non-linear correlations then? If financial markets were kind
enough to abide to Gaussian statistics, non-linear correlations would be entirely subsumed
by linear ones. However, this is not the case: genuine non-linear correlations pervade the
financial world and are quite relevant, both for the buy side and the sell side. For example,
tail correlations in equity markets (i.e., stocks plummeting simultaneously) are notoriously
higher than bulk correlations. Another apposite context is the Gamma-risk of large option
portfolios, the management of which requires an adequate description of quadratic return
correlations of the underlying assets.

In order to deal with non-linear correlations, mathematics has afforded us with a
seemingly powerful tool—“copulas” [22]. Copulas are supposed to encapsulate all possible
forms of multivariate dependence. However, in the zoo of all conceivable copulas, which
one should one choose to faithfully represent financial data?

Following an unfortunate but typical pattern of mathematical finance, the introduction
of copulas twenty years ago has been followed by a calibration spree, with academics
and financial engineers alike frantically looking for copulas to best represent their pet
multivariate problem. However, instead of first developing an intuitive understanding of
the economic or financial mechanisms that suggest some particular dependence between
assets and construct adequate copulas accordingly, the methodology has been to brute-force
calibrate copulas straight out from statistics handbooks. The “best” copula is then decided
from some quality-of-fit criterion, irrespective of whether the copula makes any intuitive
sense at all.

This is reminiscent of local volatility models for option markets: although these models
make no intuitive sense and cannot describe the actual dynamics of the underlying asset, it
is versatile enough to allow the calibration of almost any option smile. Unfortunately, a
blind calibration of some unwarranted model (even when the fit is perfect) is a recipe for
disaster. If the underlying reality is not captured by the model, it will most likely derail in
rough times—a particularly bad feature for risk management (recall the use of Gaussian
copulas to price CDOs before the 2008 crisis). Another way to express this point is to
use a Bayesian language: there are families of models for which the "prior" likelihood
is clearly extremely small because no plausible scenarios for such models emerge from
market mechanisms. Statistical tests are not enough—the art of modelling is precisely to
recognise that not all models are equally likely.
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The best way to foster intuition is to look at data before cobbling up a model and come
up with a few robust “stylised facts” that you deem relevant and that your model should
capture. In the case of copulas, one interesting stylised fact is the way the probability that
two assets have returns simultaneously smaller than their respective medians depends
on the linear correlation between the said two assets. Such a dependence exists clearly
and persistently in stocks, and strikingly, it cannot be reproduced by most “out-of-a-book”
copula families.

In particular, the popular class of so-called “elliptical” copulas is ruled out by such
an observation. Elliptical copulas assume, in a nutshell, that there is a common volatility
factor for all stocks: when the index becomes more or less volatile, all stocks follow suit. A
moment of reflection reveals that this assumption is absurd since one expects that volatility
patterns are at least industry-specific. However, this consideration also suggests a way
to build copulas specially adapted to financial markets. In Ref. [23], R. Chicheportiche
and I showed how to weld the standard factor model for returns with a factor model for
volatilities. Perhaps surprisingly, the common volatility factor is not the market volatil-
ity, although it contributes to it. With a relatively parsimonious parameterisation, most
multivariate “stylised facts” of stock returns can be reproduced, including the non-trivial
joint-probability pattern alluded to above.

I have often ranted against the over-mathematisation of quant models, favouring
theorems over intuition and convenient models over empirical data. The reliance on
rigorous but misguided statistical tests is also plaguing the field. As an illustration related
to the topic of copulas, let me consider the following question: is the univariate distribution
of standardised stock returns universal, i.e., independent of the considered stock? In
particular, is the famous “inverse-cubic law” [24,25] for the tail of the distribution indeed
common to all stocks?

A standard procedure for rejecting such an hypothesis is the Kolmogorov–Smirnov
(or Anderson–Darling) statistics. Furthermore, lo and behold, the hypothesis is strongly
rejected. However, wait—the test is only valid if returns can be considered as independent,
identically distributed random variables. Whereas returns are close to being uncorrelated,
non-linear dependencies along the time axis are strong and long-ranged. Adapting the
Kolmogorov–Smirnov test in the presence of long-ranged “self-copulas” is possible [26]
and now leads to the conclusion that the universality hypothesis cannot be rejected by
such a test. Intuitively, this is because the presence of long-range correlations in volatility
drastically limit the effective size of the data set. We have much less independent data than
we think.

Here again, thinking about the problem before blindly applying standard recipes is of
paramount importance to get it right. Furthermore, of course, if the “inverse-cubic law” is
indeed universal, as again recently advocated in [25], we should try to understand why.
Despite many efforts in that direction, it is fair to say that there is no consensus on the
underlying mechanism responsible for such a critical-like behaviour, see Sections 1 and 4.

The finer we want to hone in on the subtleties of financial markets, the more we
need to rely on making sense of empirical data and to remember what the great Richard
Feynman used to say: It does not matter how beautiful your theory is, it does not matter how
smart you are. If it does not agree with experiment, it is wrong.

4. High-Frequency Trading and Market Stability

In the midst of the first COVID lockdown, the 10th anniversary of the infamous
May 6th, 2010 “Flash Crash” went unnoticed. At the time, fingers were pointed at High-
Frequency Trading (HFT), accused of both rigging the markets and destabilising them. Re-
search has since then confirmed that HFT results in significantly lower bid-ask spread costs
and, after correcting for technological glitches and bugs, does not increase the frequency of
large price jumps. In fact, recent models explain why market liquidity is intrinsically unsta-
ble: managing the risk associated to market-making, whether by humans or by computers,
unavoidably creates destabilising feedback loops. In order to make markets more resilient,
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research should focus on better market design and/or smart regulation that nip nascent
instabilities in the bud.

Since orders to buy or to sell arrive at random times, financial markets are necessarily
most of the time unbalanced. In such conditions, market-makers play a crucial role in
allowing smooth trading and continuous prices. They act as liquidity buffers that absorb
any temporary surplus of buy orders or sell orders. Their reward for providing such a
service is the bid-ask spread—systematically buying a wee lower and selling a wee higher
and pocketing the difference.

What is the fair value of the bid-ask spread? Well, it must at least compensate the cost
of providing liquidity, which is adverse selection. Indeed, market-makers must post prices
that can be picked up if deemed advantageous by traders with superior information. The
classic Glosten–Milgrom model provides an elegant conceptual framework to rationalise
the trade-off between adverse selection and bid-ask spread but fails to give a quantitative,
operational answer (see, e.g., [27] for a recent discussion). In a 2008 study [28], we came up
with a remarkably simple answer: the fair value of the bid-ask spread is equal to the ratio
of the volatility to the square-root of the trade frequency. This simple rule of thumb has
many interesting consequences.

First, it tells us that for a fixed level of volatility, increasing the trade frequency
allows market-makers to reduce the spread and, hence, the trading costs for final investors.
The logic is that trading smaller chunks more often reduces the risk of adverse selection.
This explains in part the rise of HFT as modern market-making and the corresponding
reduction in the spreads. Throughout the period 1900–1980, the spread on US stocks
hovered around a whopping 60 basis points, whereas it is now only a few basis points [29].
In the meantime, volatility has always wandered around 40% per year—with of course
troughs and occasional spikes, as we discuss below. In other words, investors were paying
a much higher price for liquidity before HFT, in spite of wild claims that nowadays
electronic markets are “rigged”. In fact, after a few prosperous years before 2010, high-
frequency market-making has become extremely competitive and average spreads are now
compressed to minimum values.

From this point of view, the economic rents available to liquidity providers have
greatly decreased since the advent of HFT. However, has this made markets more stable,
or has the decrease in the profitability of market-making also made them more fragile?
The second consequence of our simple relation between spread and volatility relates to
this important question. The point is that this relation can be understood in a two-way
fashion: clearly, when volatility increases, the impact of adverse selection can be dire for
market-makers who mechanically increase their spreads. Periods of high volatility can
however be quite profitable for HFT since competition for liquidity providing is then
less fierce.

However, in fact, higher spreads by themselves lead to higher volatility since transac-
tions generate a larger price jump—or even a crash when liquidity is low and the order
book is sparse. Thus, we diagnose a fundamental destabilising feedback loop, intrinsic to
any market-making activity:

volatility −→ higher spreads and lower liquidity −→ more volatility.

Such a feedback loop can actually be included in stochastic order book models (such
as the now commonly used family of “Hawkes processes” [30]). As the strength of the
feedback increases, one finds a phase transition between a stable market and a market
prone to spontaneous liquidity crises, even in the absence of exogenous shocks or news [31].

This theoretical result suggests that when market-makers (humans or machines) react
too strongly to unexpected events, liquidity can enter a death spiral. However, it is difficult
to blame them since they are at risk of losing a full year of profit in a single adverse jump.
As an old saying goes, liquidity is a coward, it is never there when it is needed. Liquidity can
only be gossamer.
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Such a paradigm allows one to understand why a large fraction of price jumps occur
without any significant news—rather, they result from endogenous, unstable feedback
loops [32,33]. Empirically, the frequency of 10-sigma daily moves of US stock prices has
been fairly constant in the last 30 years, with no significant change between the pre-HFT
epoch and more recent years [27]. Even the 6th May 2010 Flash Crash has a pre-HFT
counterpart: on May 28th 1962, the stock market plunged 9% within a matter of minutes,
for no particular cause, before recovering—much of the same weird price trajectory as
in 2010. Our conjecture: markets are intrinsically unstable and have always been so. As
noted in Section 1 above, this chronic instability may lie at the heart of the turbulent,
multiscale nature of financial fluctuations and the universal power-law of the distribution
of returns [24,25].

Can one engineer a smart solution that make markets less prone to such dislocations?
From our arguments above, we know that the task would be to crush the volatility/liquidity
feedback loop by promoting liquidity provision when it is on the verge of disappearing.
One idea would be to introduce dynamical make/take fees, which would make cancella-
tions more costly and limit order posting more profitable depending on the current state
of the order book. These fees would then funnel into HFT’s optimisation algorithms and
(hopefully) drive the system away from the regime of recurrent endogenous liquidity crisis.

5. Radical Complexity and Scenario Based Macro-Economics

Good science is often associated with accurate, testable predictions. Classical eco-
nomics has tried to conform to this standard and developed an arsenal of methods to come
up with precise numbers for next year’s GDP, inflation and exchange rates, among (many)
other things. Few, however, will disagree with the fact that the economy is a complex sys-
tem, with a large number of heterogeneous interacting units of different categories (firms,
banks, households, public institutions) and very different sizes. In such complex systems,
even qualitative predictions are hard. Thus, maybe we should abandon our pretense of
exactitude and turn to another way to do science based on scenario identification. Aided
by qualitative (agent based) simulations, swans that appear black to the myopic eye may
in fact be perfectly white.

The main issue in economics is precisely about the emergent organisation, cooperation
and coordination of a motley crowd of micro-units. Treating them as a unique representa-
tive firm or household risks throwing the baby out with the bathwater. Understanding and
characterising such emergent properties is however difficult: genuine surprises can appear
from micro- to macro-. One well-known example is the Schelling segregation model: even
when all agents prefer to live is mixed neighbourhoods, myopic dynamics can lead to
completely segregated ghettos [34]. In this case, Adam Smith’s invisible hand badly fails.

More generally, slightly different micro-rules/micro-parameters can lead to very
different macro-states: this is the idea of “phase transitions”; sudden discontinuities (aka
crises) can appear when a parameter is only slightly changed. Because of feedback loops
of different signs, heterogeneities and non-linearities, these surprises are hard, if not
impossible, to imagine or anticipate, even aided with the best mathematical apparatus.

This is what I would like to call “Radical Complexity”. Simple models can lead to
unknowable behaviour, where “Black Swans” or “Unknown Unknowns” can be present,
even if all the rules of the model are known in detail. In these models, even probabilities
are hard to pin down, and rationality is de facto limited. For example, the probability of
rare events can be exponentially sensitive to the model parameters and, hence, unknowable
in practice [35]. In these circumstances, precise quantitative predictions are unreasonable.
However, this does not imply the demise of the scientific method. For such situations, one
should opt for a more qualitative, scenario-based approach, with emphasis on mechanisms,
feedback loops, etc., rather than on precise but misleading numbers.

Establishing the list of possible (or plausible) scenarios is itself difficult. We need
numerical simulations of Agent-Based Models (ABMs). While it is still cumbersome to
experiment on large-scale human systems (although more and more possible using web-
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based protocols), experimenting with ABMs is easy and fun and indeed full of unexpected
phenomena. These experiments in silico allow one to elicit scenarios that would be nearly
impossible to imagine because of said feedback loops and non-linearities. Think, for
example, of the spontaneous synchronisation of fireflies (or of neuron activity in our
brains). It took nearly 70 years to come up with an explanation. Complex endogenous
dynamics is pervasive but hard to guess without appropriate tools.

Experimenting with Agent-Based Models is interesting on many counts. One hugely
important aspect is, in my opinion, that it allows to teach students in a playful, engaging
way how complex social and economic systems work. Such simulations would foster their
intuition and their imagination, much like lab experiments train the intuition of physicists
about the real world beyond abstract mathematical formalism. Of course, similar to physics
curriculums, experimenting with ABMs should be taught in parallel to, and not instead of,
standard analytical models.

Creating one’s own world and seeing how it unfolds clearly has tremendous pedagog-
ical merits. It is also an intellectual exercise of genuine value: if we are not able to make
sense of an emergent phenomenon within a world in which we set all the rules, how can
we expect to be successful in the real world? We have to train our minds to grasp these
collective phenomena and to understand how and why some scenarios can materialise
and others not. The versatility of ABMs allows one to include ingredients that are almost
impossible to accommodate in standard economic models and explore their impact on
the dynamics of the systems [36,37], in particular the inability of some of these a priori
well-behaved economic models to ever reach equilibrium [38]. For a recent review of
macroeconomic ABMs, see, e.g., [39].

ABMs are often spurned because they are generally hard to calibrate, and therefore,
the numbers they spit out cannot and should not be taken at face value. (For an interesting
discussion of why ABMs are not yet part of mainstream economics, see [40,41]). They
should rather be regarded as all-purpose scenario generators, allowing one to shape one’s
intuition about phenomena to uncover different possibilities and reduce the realm of Black
Swans. The latter are often the result of our lack of imagination or of the simplicity of our
models, rather than being inherently impossible to foresee.

Expanding the study of toy-models of economic complexity will create a useful corpus
of scenario-based, qualitative macroeconomics [36,42,43], perhaps boosted by the recent
Nobel prize of Giorgio Parisi. Instead of aiming for precise numerical predictions based
on unrealistic assumptions, one should make sure that models rely on plausible causal
mechanisms and encompass all plausible scenarios, even when these scenarios cannot
be fully characterised mathematically. A qualitative approach to complexity economics
should be high on the research agenda. As Keynes said, it is better to be roughly right than
exactly wrong.
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Abstract: We explore recent contributions to research in Econophysics, switching between Macro-
scopic complexity and microscopic modelling, showing how each leads to the other and detailing the
everyday applicability of both approaches and the tools they help develop. Over the past decades,
the world underwent several major crises, leading to significant increase in interdependence and,
thus, complexity. We show here that from the perspective of network science, these processes become
more understandable and, to some extent, also controllable.

Keywords: econophysics; dynamics of complex networks; cascading failure; network science

1. Introduction

Historically, physical science deals with everything that surrounds us, from the small-
est to the largest objects of our universe, with the small exception of life, which is mostly
explored by biology, and human life specifically, which is handled by psychology, eco-
nomics and many other sciences trying to find regularities, causalities and in general
better understand our daily lives. The general implicit guiding principle of physics, re-
ductionism, impeded physicists researching domains that are (at least to some extent)
irreducible. The winds started to change about half a century ago, with the understanding
that emergence is an important property in many realistic systems [1], and the mathematical
apparatus developed in statistical physics is very useful in modelling and analyzing many
everyday phenomena [2,3].

Written in the late 18th century, Adam Smith’s Wealth of Nations [4] is considered
the starting point of economic theory. Since then, theory broke into micro and macro,
as well as a multitude of schools and approaches, from the simple to extremely complicated,
from linear to partial differential equations. From the microscopic modelling perspective,
the one looking at asset prices, the prevailing assumption was that prices [5] or price
changes [6] follow a Gaussian random walk. This assumption means, on one hand, that the
future could not be predicted from the present, and more importantly, risk from movement
of assets was easily quantifiable and manageable. The macroscopic view deals with national
income, gross domestic product (GDP), employment, production and typically does not
concern itself with individual constituents. While it is clear that the macro is made up of
the micro, the scales and layers between the individual economic agent or the single change
in price of an asset and the contribution of a certain sector to the next year’s GDP make it
impossible to deduce one based on the other, or even assess their mutual dependence.

A major difference between physics and economics is the difficulty to set up controlled
experiments. In physics, observation of nature will typically lead to hypotheses that could
be translated into experiments to test them. In economics, with the possible exception
of behavioural economics often tested on college students [7,8], observation is the only
possible way to evaluate theory. While the macro-level view provides limited chances to
assess accuracy, on the micro level it is to some extent easier. Asset prices, for example,
are easily observable, with fine-grained information available and accessible. Those lend
themselves to in-depth analysis, if not actual experimentation. Several real-life extreme
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events, such as Black Monday, a single day in October 1987 that saw the main index of the
US stock market plunge over 20%, the collapse of a Nobel laureate backed fund, Long Term
Capital Management L.P. in 1998 following several local crises and the economic meltdown
following the housing market bubble together with predatory lending and a large web
of financial derivatives tied to the housing market, gave experimental evidence to the
immense interconnectedness of the micro and the macro, and the severe underestimation
of risk by many of the prevalent economic theories.

These two aspects benefited greatly from research conducted by physicists over the last
several decades under the common topic of a relatively new field of Econophysics [9–12]. In
this brief review we shortly discuss a sample of several studies that focus on the micro- and
macroscopic modelling and analysis to familiarize the interested reader in the usefulness
and potential of both perspectives. We wish to highlight the close relationship between the
micro and the macro, specifically showing how and where models from physics applied
to economic and financial entities bring about the emergent properties that make the field
of econophysics so challenging and interesting. From the early insights and models [13],
their extensions [14,15] through what has become known as stylized facts [16] of the
financial markets, including behaviour of prices and their volatility, and to the inherent
connectivity driving global risk [17], tools and methods from physics and complexity
sciences [18,19], such as phase transitions [2,3,20], fractal and multifractal analysis [21]
and network science [22–25], all help to understand the intricacies of our economic and
financial lives. The following sections will move back and forth between the micro and
macro perspective highlighting some recent research driving econophysics forward.

2. Macro-Complexity, or the Interconnectedness of All Things

The physical infrastructure that surrounds us is a good starting point for the macro to
micro journey and back. While it may not seem obvious, interdependence in infrastructure
is critical to its continuous operations and resilience [26,27]. Figure 1 shows a schematic
of various dependencies between different elements of such infrastructure. Those may be
immediate (water, electric power) or longer-term (fuel, long-range transportation) but it is
clear that efficient operation of every element depends either directly or indirectly on every
other element. A prototypical example of interdependent network and connected infras-
tructures exhibit non-trivial and seemingly unpredictable transitions from operational to
failed [28,29], unexpected critical junctions and positive, as well as negative, feedback loops.

Various theoretical models have been developed to analyze the resilience and onset
of failure on such networks over the past decade or so [23,30–45], shedding light on the
importance of degree distributions, intra- and inter-layer connectivity and mitigation strate-
gies. We note here this list is far from exhaustive and focuses mainly on contributions
from network science. Extensive literature exists from an economics perspective, and we
refer to publications such as [46–48] and references therein as important examples of a
complimentary view. As with the system under investigation, those models often take a
probabilistic, generating function approach as their starting point. In its most fundamental
form, a degree generating function is defined as G0(x) = ∑∞

k=0 pkxk [49], where taking the
kth derivative and equating x to zero gives the probability of having a degree of k. Taking
this idea further, various connectivity constraints can be built into the generating functions
and probabilities can be calculated to represent objects of interest, such as a surviving
component size, given a defined connectivity and initial failure. Thus, if we have an initial
model of how our networks are set up and connected, and we can specify how they fail,
we can determine what they will look like when the process of failure plays out.
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Figure 1. Interdependence in critical infrastructure. This schematic, after [50], shows the rich
dependency coupling between different networks. Each circle is a complex network in its own right,
with its degree distribution, connectivity and potential for random or intentional failure. These
dynamics are greatly exacerbated due to the introduction of inter-network dependence. Each of
the networks described requires some critical resource from one or more of the other networks to
operate smoothly with failure in networks providing said critical resources may propagate failures to
other networks.

These models are very powerful in the sense that they allow us to predict the infinite-
time states of systems under cascading failures in the presence of complex interactions.
The solution of the model showed that, due to dependencies, a microscopic failure of a
single node can yield a macroscopic cascade and an abrupt collapse of the system [51,52].
They do suffer from some drawbacks, however. From the technical perspective, generating
functions become very cumbersome for non-trivial or, worse yet, empirical distributions.
We can solve them for simple cases such as regular, random (Erdos-Renyi, ER) networks,
and for scale free (SF, power-law) distributed ones. However, we know these mathemat-
ically convenient constructs do not represent real networks. For example, they can not
consider spatial embedding constraints. Nevertheless, it was shown by Bashan et al., both
analytically and via simulations, that spatially embedded interdependent networks are
far more vulnerable to microscopic failures [52]. Moreover, a recent analytical study that
considered spatiality and cascading failures in modular interdependent networks was
carried out by Vaknin et al. [53]. Lastly, because they deal with probabilities over the
entire system, these macroscopic models have a hard time dealing with specificities such as
individual nodes or small systems. When looking for answers at the level of the individual
power plant or internet hub, macroscopic models are less helpful.
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3. Microscopic Failure and Recovery Models—From the Lab to the Exchanges

To gain better insight into the behaviour of our system, more specifically, to enable
analysis of its dynamical properties in addition to the long-term state, we turn to specifying
individual node dynamics, which may include probabilities for failure [54] as well as
recovery depending on its internal state and the state of its neighbours [55,56]. The methods
described in the previous section are still useful and allow us to calculate steady state
solutions for various parameters and detect non-trivial transitions between those states,
but only when we switch our view to a microscopic one, and let a simulated system run
its course can we discover the rich dynamics. Importantly, analytical solutions typically
assume infinite time and size, while in life the actual time scales may be very important
and systems are more often than not small in thermodynamic terms.

In particular, we may specify our model such that nodes in our network may fail
spontaneously, fail under the influence of their neighbours or, if they are in a failed state,
spontaneously recover with a certain probability density over a time period. As shown
in Figure 2, a system under a simple failure-recovery model behaves highly non-trivially
over time, not only spending long periods of time in its “active” or “failed” states, but also
exploring transitions from one to the other without completing them due to the hysteresis
region. As discussed in [55], this behaviour and the resulting bi-modal distribution of the
system is very similar to the observed in financial markets when evaluating the fraction of
companies listed in various indices with positive vs. negative returns.
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Temporal dynamics, small scales and fluctuations around the analytical solutions
all highlight the importance and practical use of microscopic modelling. An instructive
example was developed in Ref. [57]. The model specifies a risk-propagation mechanism on
a bipartite Bank-Asset network, Figure 3. A bipartite network of banks and the assets on
their books is set up, along with several parameters governing initial shock and levels of
propagation at a node level. Then, an initial shock to an asset results in loss of value for a
bank holding that asset. Enough such shocks may lead to a failure of a bank, leading to
subsequent devaluation of the assets on its books. Importantly, the simple model allows
one to build back up from the micro to the macro. In Ref. [57], the authors analyze the
sensitivity of the whole system to various loan classes showing close relations with the
events of real life. Below we discuss how such models can be taken a step further.

Figure 3. A microscopic model of a bank–asset risk propagation model. The relatively simple and
intuitive model is very instructive and facilitates further modelling and analysis. The Bank’s holdings
are distributed between multiple assets and the assets are held by various banks. An initial reduction
in the value of an asset leads to an impact to the values of all the banks exposed to it. For some banks
the exposure is large enough to cause the bank to fail leading to further sell-off of its assets inducing
a potential cascade. After [57].

4. Failure and Immunization in Real, Macroscopic Networks

The microscopic model presented in the previous section gives us powerful tools to
stress-test our system against various potential failures and estimate their relative impor-
tance. There is, however, more to be done. As discussed in Ref. [58], given a specification of
the failure process, the microscopic model can reveal nodes in the network that, more than
others, propagate failure. These nodes do not display any high centrality values, and yet
ensuring their protection from failure helps keep the network intact relatively cheaply
in terms of number of nodes protected. Importantly, those nodes can be identified with
only knowledge of their local neighborhood, without complete information of the entire
network. Partial knowledge does not interfere with the performance of the suggested
method. All that is needed is knowledge of the failure mechanism in order to devise an
efficient mitigation strategy.

It is now possible to expand the local node-level insights up to a network-level view.
Both in simulations and, more importantly, in real networks, we can use the microscopic
model for macroscopic benefit. Figure 4 shows just that. The left panel visualizes a
network of banks (right) and sovereign debt (left). The top right panel shows the fragility
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of the network under the default of various states given a certain threshold (colour bars).
Most countries failing lead to cascading failure across the entire system for the lowest
threshold, and many cause significant damage even with a high one. Protecting the nodes,
the microscopic model highlights enable the entire network to remain mostly intact under
most failing conditions.

Figure 4. A macroscopic experiment showing the structure and cascading failure dynamics of a
real Bank-Asset network. (a) The bipartite network, left part are the sovereign assets, right are the
holding banks. Node size reflects the capital (either held or invested), edge colour shows size of
holding, the darker the larger. (b) Survival of the unprotected network. The x-axis shows the initial
failing sovereign debt asset, while the y-axis shows the number of remaining nodes. The colours
show different levels of sensitivity. The higher the sensitivity, the bigger the impact needed to cause a
failure. With the exception of very small countries, most failing sovereign debts cause a cascading
failure of the entire network, some even for relatively resilient conditions. (c) The same network
as (b) but with the defense mechanism in place, even the most sensitive networks do not undergo
a complete cascading failure with the protection, leading to a much more stable overall economic
environment. After [58].

Extending the model to other networks, failure mechanisms and topologies allow to
protect many types of networks, bipartite or otherwise, from cascading failure stemming
from unknown source. That feature is very important due to the inherent unknowability
of every source of risk. Once the mitigation strategy is able to not care where the cascade
starts, we know it will serve us well no matter the manifestation of risk. Mitigation and
recovery models discussed here offer possible paths to alleviation of systemic financial risk.
Those models highlight vulnerabilities and potential protection or recovery methods but
are not yet applied (to our knowledge) in decision making by regulators. Thus, the practical
ability of such approaches to positively impact economics is yet unknown.

The networks discussed here are created from exposure between various entities. Econo-
physics allows us to explore and analyze networks whose impact on the economy goes beyond
the financial. Next, we explore another network constructed from the micro that gives tools to
understand the economy as a whole. For that, we turn to mobility networks.
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5. Micro-Mobility to Macroeconomics—From Cell Phones to GDP Estimates during
a Pandemic

The year 2008 taught us important lessons about risk management, and made us
understand that diversification, previously thought to be a strong risk-immunization
technique, can fail catastrophically. We found out to which extent various financial and
economic entities were interconnected, how that connectivity was often hidden from
sight and how extreme its ramifications can be. Excess greed in the lending market for
houses in the United States led to a credit crunch that almost toppled the entire global
economic system. The abyss was avoided only by massive government bail-out plans,
echoes of which are still with us today, more than a decade later. The year 2019 brought
about a very different type of stress factor—this time a pandemic, a virus first recorded in
Wuhan, China, and quickly spread throughout the globe. Response varied greatly between
different countries, with many different non-pharmaceutical interventions (NPIs) taking
place. Some pursued tight lockdown measures while others refrained from implementing
strict limitations, striving for social distancing and herd immunity. Estimating the success of
these measures is beyond the scope of this review, but the measures taken had indubitable
consequences from an economic perspective. Global and local limitations on mobility
led multi-national companies as well as individuals to find themselves disconnected,
without air travel or public transportation, and with most businesses closed.

In recent years, proliferation of cellular devices with accurate GPS sensors, coupled
with multiple companies that gather and process the data, exposed large amounts of fine-
grained mobility data to researchers [59]. Several directions of research explored effects of
lockdown and similar restrictions through the perspective of mobility networks [60–64].
Many of those deal with the effects of restrictions on epidemic spreading and vice versa,
but some focus on the economic and social ramifications of the restrictions.

In Ref. [63], the authors start from the microscopic mobility patterns of individuals
and construct a country-wide network of mobility in Italy, before, during and after the
first lockdown. Various parameters of the emerging networks are analyzed, from the
perspectives of scaling, dynamics and resilience. Interestingly, strong relations are found
with two major economic indicators. Statically, i.e., using a historical point in time, regional
mobility levels correlate strongly with official levels of regional GDP. Further, using a fast-
moving estimate of the GDP based on several measures (and on its own shown to match the
actual GDP when available), they show how well changes in levels of mobility correspond
to changes of GDP, and from that they derive the local (regional) estimates of GDP (Figure 5),
in near-real time, by far faster than official calculations. This estimate, easily calculated
from available data, could allow decision makers to gauge the magnitude of economic
impact to various regions following planned restrictions. Thus, again, a microscopic model
gives macroscopic visibility into system behaviour and stability.
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(c) (d)

(e) (f)

Figure 5. From micro to macro, inferring the economy from mobility, after [63]. (a) The correlation
between the GDP levels of individual Italian provinces for 2017 and the weighted province degree.
Log of values is shown to highlight the relation holds regardless the strongest province economies.
Inset: shifted correlation to validate the significance of the relationship. (b) The Average weighted
degree, teal, left axis; and the estimated real-time GDP, red, right axis. (c–f) The Province-based GDP
forecast based on mobility data for Turin, Padua, Como and Pisa Provinces. The thick line is the
average forecast, with the shaded area showing the 25–75 percentile range.

6. Trading, Failure and Centrality—From Local Thresholds to Global Importance

Finally, we bring together some of the methodologies described before to compare
different countries and sectors and their importance to the global economy. The authors in
Ref. [65] apply a model very similar to the one described in Section 3 after [57], only instead
of banks and assets the network is comprised of various industries trading with each other.
They then use sensitivity of the network to failure of a network’s constituent to assess its
relative importance. That is, similarly to the threshold shown in Figure 4, the higher the
threshold above which the network undergoes cascading failure, the more important a
sector or a country is. Figure 6a shows the progression of failure in the described network
in a different setting than a bank–asset network. Figure 6b shows the results of the analysis.
Surprisingly, through the lens of sensitivity to failure and examining the top one through
eight sectors, the main drivers of economic activities that historically were in the United
States have shifted to other geographies, with China taking the lead for the top component
nearly two decades ago and surpassing in all eight top components around 2010.

It is noteworthy to highlight the contrast between the approach taken in [58] as
mentioned in Section 4 and the one presented in [65]. While both approaches center around
the onset of cascading failure given a specific failure mechanism, the next step is almost
exactly opposite. The former approach designs a defense mechanism that, when functioning
properly, is agnostic the specifics of the failure’s origin. The latter, on the other hand, uses
exactly that magnitude of impact to determine relative importance. Both models can be
expanded and refined, each on its own, but the unifying theme, tying together different
sections discussed above, highlights the strength of micro- and macroscopic modelling
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in the application of network science and econophysics for analysis of actual economic
systems, their strengths and weaknesses.
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Figure 6. Tying things together, after [65]. (a) The propagation of cascading failure over a network
of interacting industries and countries. Triangles and circles are different countries with interaction
between and within countries facilitating the cascade. (b) A critical threshold exists beyond which
the network fails. The higher the threshold, the more sensitive the network is to that failure. Looking
at the top 1, 4 and 8 such critical thresholds a pattern emerges whereby Chinese sectors take a more
central position in the networks.

7. Discussion

Throughout this paper we reviewed several research contributions over the last few
years showcasing the immediate applicability of modelling and simulation methods ex-
panded from statistical physics and network theory to various aspects of economics, finance
and everyday life. From the big picture is system-level appreciation of the interdepen-
dence and nontrivial relations that are present in our most fundamental infrastructure,
through fine-grained, local models of interaction that mirror high frequency trading asset
behaviour to estimation of local and global economic behaviour in normal and highly
anomalous times. These, and many other contributions, give us both new perspectives
on known phenomena and mitigation tools in order to manage them such that they do
not lead to massive damage. Even with this wide range of topics covered and approaches
demonstrated, this is but a grain in the wide landscape of research conducted over the
past decades, and evolving still, bridging the gap between methods and discoveries from
physics to social and economic life.

Our economy, a textbook case of complex, adaptive system, is comprised of multiple
time scales, types of interactions and agents driven by fear, greed, hope and desire, aiming
to improve their state compared to themselves and others, poses a great challenge not
typically encountered in physics, where particles’ knowledge of governing rules does not
change their behaviour. Yet, many patterns emerge over time that show that, nonetheless,
there are regularities and laws governing some of the observable outcomes. There are
arguably many more open questions, from big to small, yet to be answered pertaining to
everyday life in its various aspects (economics, epidemiology, mobility, transportation and
many more) compared to“classical” physics, and the growing body of research is a strong
corroboration of that. The development of network science, econophysics and sociophysics
has laid the directions, but the journey is far from over.
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Abstract: We address the process of discounting in random environments, which allows valuation of
the future in economic terms. We review several approaches to the problem regarding different well-
established stochastic market dynamics in the continuous-time context and include the Feynman–Kac
approach. We also review the relation between bond-pricing theory and discounting and introduce
both the market price of risk and the risk neutral measure from an intuitive point of view devoid of
excessive formalism. We provide the discount for each economic model and discuss their key results.
We finally present a summary of our previous empirical studies for several countries on the long-run
discount problem.

Keywords: discounting; bond pricing; real interest rates; econophysics

1. Introduction

The introduction around three decades ago of the view and methods of statistical
physics into economics and finance signaled the appearance of a new interdisciplinary
aspect of physics, which is sometimes called “econophysics” [1–3]. The fact that financial
prices are random with sudden and uncontrollable ups and downs has been long-known;
however, the first step towards a systematic mathematical analysis of price randomness
was taken by Bachelier in 1900, who proposed a model for the market dynamics in which
the prices follow ordinary Brownian motion [4].

However, Bachelier’s model is not completely satisfactory because, in such a represen-
tation, prices can be either positive or negative, contradicting one of the most fundamental
tenets of economics, the “principle of limited liability”, which affirms that prices cannot
attain negative values. This limitation in Bachelier’s model was remedied more than six
decades later by Osborne [5] by assuming the geometric Brownian motion where prices are
described by the exponential of the ordinary Brownian motion and, hence, they can never
attain negative values.

Let us denote by S(t) a speculative price (or an economic index) at time t. In the
continuous time framework, the geometric Brownian motion assumes that

S(t) = S0ex(t), (1)

where S0 = S(t0) is the price at some initial time t0 and x(t), the so-called return, is
described by the ordinary Brownian motion, that is to say, by the stochastic differential
equation

dx(t) = mdt + σdW(t), (2)
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where W(t) is the standard Wiener process with zero mean and unit variance. Note that the
return is assumed to be a diffusion process with constant drift m and diffusion coefficient
σ. In this model, the return is a Gaussian process with the mean and variance given,
respectively, by m and σ2. The price is, hence, a log-normal process, and the geometric
Brownian motion is also called the log-normal model.

Despite the log-normal model being used in countless financial applications, it has
certain limitations [6], which have given rise to several generalizations. One of them
assumes that the return is a more complex diffusion process obeying a stochastic equation
of the form

dx(t) = f (x, t)dt + g(x, t)dW(t), (3)

which is interpreted in the sense of Itô. In this case, returns, and hence prices, are driven by
an external “force” and by multiplicative noise, which, in the most general case, depend
explicitly on the time and on the return level. Function f (x, t) drives prices, and function
g(x, t) modulates the intensity of the fluctuations around the deterministic motion set
by f (x, t). In any case, and regardless of the values taken by x(t), the prices given by
Equation (1) are always nonnegative, thus, keeping the principle of limited liability.

Another significant shortcoming of the geometric Brownian motion model is the
absence of both “fat tails” and skewness in the distribution of log-prices (i.e., returns).
Indeed, empirical distributions of log-prices not only show fat tails—meaning that extreme
losses and profits have a higher probability than those of the log-normal model—but also
an asymmetric shape in the sense that losses are usually more probable than profits [6]. In
order to address these and other problems, intense research has been prompted both in
mathematics and physics, which, among others, may involve the use of the Lévy process as
driving noise (instead of the Wiener process). One of the most popular alternative financial
models—proposed by Mandelbrot [7] and Fama [8] in the early 1960s—is provided by
substituting the Wiener process by the Lévy process, which can take into account the
appearance of fat tails in the probability distribution of prices, a widely accepted empirical
fact [6]. A major inconvenience of the non-Poissonian Lévy jump processes is, however,
their lack of finite moments apart from (at most) the first one, which does not seem to be
case in empirical data [6]. or models in which the variance σ2 (or the noise intensity g) is a
random process, such as in the so-called “stochastic volatility models” [9–11].

In economics and finance, one of the most consequential developments is that of
“discounting”, which essentially attempts to answer the crucial question of what the price
will be in the future. In other words, discounting weighs the future relative to the present.
Traditionally, the weighting procedure has been performed through a decreasing exponen-
tial. Thus, under a constant interest rate r, continuously compounded, a dollar invested
today at time t = 0 yields ert dollars at time t [12]; hence, one dollar in any future time t is
worth e−rt today. This statement is true under constant and fixed rates; however, in real life,
rates are random, and this uncertainty makes it completely unrealistic to represent rates
by constant quantities or even by deterministic functions of time, and, as a consequence,
random models for rates must be addressed.

The problem of discounting is widely known in finance where it has been thoroughly
studied closely related to bond pricing particularly over short periods of time [13]. Dis-
counting, particularly in the long run, is of importance not only in the context of finance but
to many other aspects of the global economy. For instance, we may consider the long-term
environmental planning, which is certainly sensitive in relation to climate action. Thus, in
an oversimplified way, an environmental problem, which costs X to fix at a time t is worth
an investment of e−rtX today.

This analysis assumes that the interest rate remains constant between today and the
distant future t. The rate r becomes a key magnitude to decide whether it becomes more
beneficial to take action today with a significant investment or whether the discount gives
negligible value to today’s investment. The choice of discount rate is perhaps the biggest
factor influencing the debate on the urgency of the response to global warming as it relates
today’s investments with potential climate-related losses in future [14]. No wonder that, in
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recent years, obtaining a long-run discount rate valid for decades ahead has been the object
of intense controversy.

Thus, Nicholas Stern, in an influential report commissioned by the UK government,
advocated for a long-run discount of 1.4% [15], which on a 100-year horizon implies a
present value of 25% (meaning that the future is worth 25% as much as the present). On
the other hand, Willian Nordhaus proposed a discount rate of 4% [16] (implying a present
value of 2%) and even the higher value of 6% [17], which implies a present value of 0.3%.
Stern has been widely criticized for using such a low rate [18–20], and the question is far
from being settled.

Economists present a variety of reasons for discounting, particularly for environmen-
tal problems in the long run. These reasons include, among others, ethical considera-
tions [21,22], impatience, economic growth [23] and arguments based on the maximization
of utility functions that are mostly chosen for mathematical convenience [24], all of them
ingrained in a phenomenological expression called the Ramsey formula [25], which consti-
tutes the standard approach to discounting in the economics literature (particularly in the
long-run) [14].

From an empirical point of view, any practical economist involved in environmental
debates might consider the average of historical interest rates, which occurred in the last
200 hundred years to estimate the forward discount rate (which is 2.7% in the less unstable
countries [26]) or take the average of Wall Street forward looking models, with price bonds
of maturity as long as 30 years. Unfortunately, due to historical fluctuations of real interest
rates, the appropriate rate is considerably below such averages [26].

In econophysics, the problem of discounting, despite its relevance, is virtually un-
known. The main purpose of this paper is to offer a survey of the problem devoid of
excessive formalism and abstraction as well as to review some of our recent work on the
problem [26–30]

2. The Process of Discounting—Fundamentals

Let us denote by M = M(t) a given quantity of wealth at time t. In economics, the
increment of M(t) is assumed to be proportional to the quantity itself and the duration
of the variation. For a continuous and instantaneous infinitesimal variation, this can be
written as

dM(t) ∝ M(t)dt. (4)

This starting phenomenological law is built on the empirical observation that the
larger M(t), the greater its variation at a given time along with the simpler assumption that
such a variation is linear in M(t) and not, for instance, quadratic.

2.1. Definitions and General Setting

We define the interest rate as the relative time derivative

r(t) ≡ 1
M(t)

dM(t)
dt

=
d ln M(t)

dt
, (5)

i.e., the rate is the time derivative of the logarithm of wealth. Let us incidentally note that
the linearity shown in Equation (4) is equivalent to assume that r(t) is independent of M(t).

In the simplest case, the law (4) represents a direct proportionality, that is to say, r(t) is
constant and and from (5), we see that

dM(t) = rM(t)dt, (6)

where r is the constant interest rate that has units of 1/(time) (wealth is assumed to be
dimensionless). By direct integration, we have the usual exponential law [12]

M(t) = er(t−t0)M(t0), (7)
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which connects wealth at some time t0, for instance, today (which, without loss of generality,
we can take equal to zero) with wealth at some future time t > t0.

The growth law (6) appears in many branches of natural and social sciences. Thus, in
radioactivity, if N(t) represents the number of active nuclei at time t, the usual hypothesis
is that this number decreases as

dN(t) = −λN(t)dt.

where λ > 0 is the decay constant. Similar considerations apply to many other situations,
as in chemical reactions or population dynamics, to name a few.

As we mentioned above, discounting is the procedure of linking wealth at different
times. This is done through the discount function defined as

δ(t) ≡ M(0)
M(t)

, (8)

where M(0) is today’s wealth. In the case of constant rates, we see from Equation (7) that
this function is given by the decreasing exponential

δ(t) = e−rt. (9)

The assumption of constant rates is actually unrealistic. A first generalization would
be to assume that rates are known functions of time r = r(t). In such a case, the growth
law (6) would be given by

dM(t) = r(t)M(t)dt, (10)

which, after integrating, yields

δ(t) = exp
(
−

∫ t

0
r(t′)dt′

)
. (11)

However, the assumption of rates being given by constants or by deterministic func-
tions of time is unjustified, in particular over long periods of time. Financial interest rates
are typically described as random, as the many models for stochastic interest rates appear-
ing in the literature [13,31,32]. In other words, r(t) is a random function of time, and in
consequence the discount function δ(t) given by Equation (11) is a stochastic process. The
effective discount function is then defined as the average of δ(t),

D(t) = E

[
exp

(
−

∫ t

0
r(t′)dt′

)]
, (12)

taken over all possible realizations of r(t). The function r(t) can, in principle, be any
random process. However, the most natural and simplifying assumption is that rates are
Markovian processes with continuous paths—that is, they are diffusion processes [13]. This
approach was proposed after the success of taking an identical approach to model stock
prices with log-normal process in 1959 and contrasting with empirical data [5]. The first
interest rate model was proposed by O. Vasicek in 1977 [33] and during the same decade
when stochastic differential equations became crucial to obtain European option prices.
Therefore, rates are solutions to stochastic differential equations of the form

dr = f (r)dt + g(r)dW(t), (13)

where W(t) is the Wiener process and the stochastic differential equation is interpreted in
the sense of Itô. We assume that drift f (r) and noise term g(r) do not depend explicitly on
time, that is to say, the time dependence is only implicit through r = r(t), which means that
the interest rate process is time homogeneous and may be stationary [34]. This is certainly
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an idealization because real markets do not appear to be time-homogeneous, at least over
long periods of time [35].

On the other hand, explicit expressions for f (r) and g(r) should be proposed based
on characteristics obtained by actual data, which is observed to have a reversion toward
a mean value, and it is thus claimed to attain a stationary regime in contrast with, for
instance, stock market price evolution where no stationary behavior is observed. We return
to the comparison between models and empirical data in Section 4.

In order to obtain an operative expression for the effective discount function (12), we
define the additional random process

x(t) =
∫ t

0
r(t′)dt′. (14)

The interpretation of x(t) is apparent after substituting Equation (5) into Equation (14) and
integrating. We find

x(t) = ln
M(t)
M(0)

⇒ M(t) = M(0)ex(t),

which can be taken as an alternative definition of the accumulated return x(t).
Substituting Equation (14) into Equation (12), we see that the effective discount func-

tion can be written as
D(t) = E

[
e−x(t)

]
,

which implies that, in terms of the probability density function (PDF) p(x, r, t|r0) of the
bidimensional diffusion process (x(t), r(t)), we can write

D(t|r0) =
∫ ∞

−∞
dr

∫ ∞

−∞
e−x p(x, r, t|r0)dx, (15)

where we have included the dependence on the initial rate, r0 = r(0), in the discount
function D(t|r0).

From Equations (13) and (14), we see that the bidimensional process (x(t), r(t)) is
defined by the following pair of stochastic differential equations

dx = rdt,

dr = f (r)dt + g(r)dW(t). (16)

Therefore, the joint density obeys the (forward) Fokker–Planck equation (FPE) [34]

∂p
∂t

= −r
∂p
∂x

− ∂

∂r
[ f (r)p] +

1
2

∂2

∂r2 [g
2(r)p], (17)

with the initial condition
p(x, r, 0|r0) = δ(x)δ(r − r0). (18)

After solving the initial-value problem (17)—(18) and obtaining the joint PDF
p(x, r, t|r0), the discount function follows from Equation (15). There are, however, two
different approaches for achieving it. One of them, which is standard in the financial litera-
ture, is based on the backward Fokker–Planck equation, and this is called the Feynman–Kac
approach [13]. A second procedure is based on Fourier analysis [27]. We will explain both
approaches next.

2.2. The Feynman–Kac Approach

Using this method, one obtains a partial differential for the discount function D(t|r0),
which is based on the backward Fokker–Planck equation for the joint density p(x, r, t|r0).
In what follows, we assume that t0 	= 0 and denote x0 = x(t0). By definition, x0 = 0 (cf.
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Equation (14)). However, we temporally keep x0 	= 0 and set x0 = 0 at the end of the
calculation when needed.

The backward FPE for the PDF p(x, r, t|x0, r0, t0) that corresponds to the bidimensional
process (16) is [34]

∂p
∂t0

= −r0
∂p
∂x0

− f (r0)
∂p
∂r0

− 1
2

g2(r0)
∂2 p
∂r2

0
, (19)

with the final condition as t0 → t,

p(x, r, t|x0, r0, t) = δ(x − x0)δ(r − r0). (20)

Let us observe that the problem (19)—(20) is invariant under translations of both time
and x0. We thus define the new variables

t′ = t − t0, x′ = x − x0, (21)

so that
∂p
∂t0

= − ∂p
∂t′

,
∂p
∂x0

= − ∂p
∂x′

,

and Equation (19) reads

∂p
∂t′

= −r0
∂p
∂x′

+ f (r0)
∂p
∂r0

+
1
2

g2(r0)
∂2 p
∂r2

0
. (22)

Under this change of variables, we also have

p = p(x, r, t|x0, r0, t0) = p(x, r, t|x − x′, r0, t − t′) = p(x′, r, t′|r0),

where the last equality comes from the invariance under time and x translations, that is,

p(x, r, t|x0, r0, t0) = p(x − x0, r, t − t0|r0).

Consequently, the final condition (20) becomes the initial condition

p(x′, r, t′ = 0|r0) = δ(x′)δ(r − r0). (23)

Having set the backward FPE in the form given by Equation (22), we next obtain the
equation satisfied by the effective discount D(t|r0). To this end, we multiply Equation (22)
by e−x′ and integrate over x′ and r, we have

∂

∂t′

∫ ∞

−∞
dr

∫ ∞

−∞
e−x′ pdx′ = −r0

∫ ∞

−∞
dr

∫ ∞

−∞
e−x′ ∂p

∂x′
dx′

+

[
f (r0)

∂

∂r0
+

1
2

g2(r0)
∂2

∂r2
0

] ∫ ∞

−∞
dr

∫ ∞

−∞
e−x′ pdx′. (24)

From Equation (15), we see that∫ ∞

−∞
dr

∫ ∞

−∞
e−x′ p(x′, r, t′|r0)dx′ = D(t′|r0). (25)

On the other hand, integrating by parts, the first integral on the right hand side of
Equation (24) and using (25), we have∫ ∞

−∞
dr

∫ ∞

−∞
e−x′ ∂p

∂x′
dx′ =

∫ ∞

−∞
dr

∫ ∞

−∞
e−x′ p(x′, r, t′|r0)dx′ = D(t′|r0), (26)
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where we have considered the boundary condition (otherwise implicit in the definition of
D given in Equation (15))

lim
x′→±∞

[
e−x′ p(x′, r, t′|r0)

]
= 0.

Substituting Equations (25) and (26) into Equation (24) and setting t0 = 0, which
implies t′ = t [cf. Equation (21)], we finally obtain

∂D
∂t

= −r0D + f (r0)
∂D
∂r0

+
1
2

g2(r0)
∂2D
∂r2

0
, (27)

with the initial condition (cf. Equations (23) and (25))

D(0|r0) = 1. (28)

The method for obtaining the discount function D(t|r0) by solving the initial-value
problem (27)—(28) is called the Feynman–Kac approach, and Equation is (27) the Feynman–Kac
equation. In some applications (see, for instance, Section 3), it is convenient to consider
t0 	= 0 so that t′ = t − t0 	= t. In these cases, it is appropriate to denote D = D(t|r0, t0) and
the Feynman–Kac Equation (27) reads

∂D
∂t0

= r0D − f (r0)
∂D
∂r0

− 1
2

g2(r0)
∂2D
∂r2

0
, (29)

with the final condition D(t|r0, t) = 1.

2.3. The Fourier Transform Approach

An alternative method for obtaining the discount function is based on the joint charac-
teristic function—that is, on the Fourier transform of the joint density,

p̃(ω1, ω2, t|r0) =
∫ ∞

−∞
e−iω2rdr

∫ ∞

−∞
e−iω1x p(x, r, t|r0)dx. (30)

One of the chief advantages of working with the characteristic function is that obtaining
the effective discount is straightforward. Indeed, comparison of Equation (15),

D(t|r0) =
∫ ∞

−∞
dr

∫ ∞

−∞
e−x p(x, r, t|r0)dx,

with Equation (30) shows that

D(t|r0) = p̃
(
ω1 = −i, ω2 = 0, t|r0

)
. (31)

Therefore, in order to obtain the discount function, we only need to know the joint charac-
teristic function of the bidimensional process (x, r). The procedure is quite advantageous
in linear cases. In a forthcoming section, we will apply this approach to some standard
models of interest rates.

2.4. Adding Risk Aversion

As we will see in the next section, the process of discounting just described is very
closely related to an important problem in finance called bond pricing. In the context
of bond pricing, there can be two kinds of investors. For one hand, if investors are risk
neutral, then bond prices can be modeled based on the data generating measure p, which
is the solution of the Fokker–Planck Equation (17) with the initial condition (18). This is
sometimes called the Local Expectation Hypothesis (LEH) [36,37]. Nonetheless, a more general
assumption is that investors are sensitive to risk.

In such a case, bonds are somewhat more accurately priced using an artificial density
p∗ usually called a risk-neutral (or risk-correcting) probability measure. Both magnitudes,
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the data generating measure p and the risk-neutral measure p∗, are related through a
quantity that is denoted by q(r, t) and called market price of risk, which, as described in the
next section, is the extra return per unit of risk that investors demand to bear risk. This
additional return is thus determined by a function q = q(r, t) that, in its most general
form, may depend on the rate r and current time t, although the most usual assumption
is that q = q(r) only depends on the rate [33]. Following a standard procedure for bond
pricing [33,38], which we will present in Section 3, one takes risk into account by replacing
the drift f (r) by f ∗(r),

f (r) → f ∗(r),

where
f ∗(r) = f (r) + g(r)q(r), (32)

and q(r) ≥ 0 is the market price of risk. The form of q(r) is, in principle, unknown and has
to be conjectured. The simplest and most common assumption is that q(r) = q is constant,
in such a case, the value of q may be more easily estimated from empirical data. Now, the
risk-neutral measure p∗(x, r, t|r0) is given by the Fokker–Planck Equation (17) with f (r)
replaced by f ∗(r); that is,

∂p∗

∂t
= −r

∂p∗

∂x
− ∂

∂r

[[
f (r) + g(r)q(r)

]
p∗

]
+

1
2

∂2

∂r2

[
g2(r)p∗

]
, (33)

with the initial condition given by

p∗(x, r, 0|r0) = δ(x)δ(r − r0). (34)

In an analogous way, the discount function adjusted for risk will now be given by the
Feynman–Kac Equation (27) with f (r) replaced by f ∗(r). Or, using the Fourier method,
the discount function will be given in terms of the risk-neutral characteristic function,
p̃∗(ω1, ω2, t|r0), by (cf. Equation (31))

D(t|r0) = p̃∗
(
ω1 = −i, ω2 = 0, t|r0

)
. (35)

3. Pricing Bonds—The Term Structure of Interest Rates

Pricing bonds is a traditional objective in finance and intimately related to the problem
of discounting. It constitutes a vast subject with countless studies, many of them rather
abstract, which have appeared in the mathematical finance literature over the last decades.
We present a short and intentionally simple, yet rigorous, introduction to the subject devoid
as much as possible of technicalities and mathematical subtleties and refer the interested
reader to more specialized works for further information [13].

A bond is a financial instrument that one purchases now and that provides a payment
in the future. From a more technical point of view, we say that a (discount) bond is a
default-free claim on a specified sum of money to be delivered at a given future date called
the maturity time. Such claims are bought and issued by investors. Let us denote by B(t0, t)
the price at time t0 of a discount bond maturing at time t ≥ t0, with unit maturity value,

B(t, t) = 1.

Let us incidentally note that, if the final maturity price is not 1 (say, B(t, t) = β) then the
price of the bond at t0 would be βB(t0, t).

Bonds are classified according to the time interval to maturity τ defined as

τ = t − t0.

Thus, if τ = 10 years, we talk about a 10-year bond that is traded at t0 (for instance,
today) with price B(t0, t0 + 10) and that, after 10 years, has unit value. Similarly for a 3-year
bond, 3-month bond, etc.
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The central question is to know the backward evolution of the bond price, from unit
maturity to the initial purchasing price B(t0, t). Note that the problem is virtually iden-
tical to the problem of discounting discussed in Sect. II, with the sole difference that, in
discounting, we look for the forward evolution from a known initial value to an unknown
final value, while, in bond pricing, the situation is reversed, since we know the final value
but not the initial one.

In order to proceed further, we define the instantaneous rate of return b(t0, t) (also called
forward rate) as the relative time variation of the bond price (compare with Equation (5))

b(t0, t) ≡ 1
B(t0, t)

∂B(t0, t)
∂t0

=
∂ ln B(t0, t)

∂t0
. (36)

The knowledge of the forward rate b(t0, t) allows us to relate the initial price B(t0, t)
and the maturing price B(t, t) = 1. Indeed, the integration of the above equation directly
leads to

B(t0, t) = exp
[
−

∫ t

t0

b(t′0, t)dt′0

]
. (37)

The close analogy between bond pricing and discounting is now apparent. Indeed, the
comparison of Equation (37) with Equation (11) shows that B(t0, t) is the equivalent of the
discount function δ(t) and that the forward rate b(t0, t) is the equivalent of the discount rate
r(t). However, in what follows, we will use the notation r(t) not for the forward rate b(t0, t)
but for the so-called spot rate (also called nominal rate), which we define in Equation (39).

Another quantity of interest is the yield to maturity y(t0, τ) defined by

y(t0, τ) ≡ − 1
τ

ln B(t0, t0 + τ) ⇒ B(t0, t0 + τ) = e−τy(t0,τ). (38)

From (37), we see that

y(t0, τ) =
1
τ

∫ t0+τ

t0

b(t′0, t)dt′0,

that is to say, the yield is the time average of the forward rate over the maturity period τ.
A final quantity is needed, the spot or nominal rate, which is defined as the limit of the

yield when the maturity tends to 0. In dealing with bonds, one sometimes uses, for the
nominal rate, the notation n(t0) instead of r(t0)—the later reserved for real interest rates,
which can be negative due to inflation (see Section 3).

r(t0) ≡ lim
τ→0

y(t0, τ) = lim
τ→0

[
1
τ

∫ t0+τ

t0

b(t′0, t)dt′0

]
. (39)

Solving the indeterminacy by expanding the integral in powers of τ, we see that the spot
rate is given in terms of the forward rate by

r(t0) = b(t0, t0). (40)

In other words, the spot rate is the instantaneous forward rate.
Let us finally note that a loan of amount M subscribed at time t0 with an interest rate

r(t0) (the spot rate) will, at time t0 + dt0, increase in value to M + dM, where

dM = r(t0)Mdt0. (41)

Indeed, at any time t0, the value of the spot rate r(t0) is the instantaneous increase of the
loan value, that is, r(t0) = d ln M(t0)/dt0 (compare with Equation (36)). All of this clearly
heightens the close similarities with discounting mentioned above.

However, subsequent values of the spot rate are not necessarily certain. We will see
next, the consequences of this fact on the time evolution of the bond price B(t0, t).
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3.1. Dynamics of the Bond Price

Suppose the spot rate r(t0) is not deterministic but random. In such a case, and
analogously to discounting, the usual assumption is that r0 = r(t0) is a Markovian ran-
dom process with continuous trajectories; that is, a diffusion process obeying a stochastic
differential equation of the form

dr0 = f (r0)dt0 + g(r0)dW(t0), (42)

where W(t0) is the standard Wiener process. We assumed that the drift and the noise
intensity are independent of time, thus, the time dependence of these coefficients is implicit
through r0 = r(t0). We know that this implies invariance under time translations, and we
can set t0 = 0 when needed without loss of generality.

We will now obtain the time evolution of the bond price B(t0, t) from the purchasing
time t0 to maturity t, and to this end, we follow Oldrich Vasicek [33]. Let us first observe
that the most natural hypothesis consists in assuming that the bond price B is a function of
the initial spot rate r0 = r(t0) and write

B = B
[
t0, t|r(t0)

]
. (43)

In this way, B(t0, t|r0) represents the price of a bond issued at time t0 and maturing at time
t, given that the initial interest rate is r0 = r(t0). The infinitesimal variation of the bond
price is then defined by

dB = B
[
t0 + dt0, t|r(t0 + dt0)

]
− B

[
t0, t|r(t0)

]
.

We expand in Taylor series up to second order

B
[
t0 + dt0, t|r(t0 + dt0)

]
= B

[
t0, t|r(t0)

]
+

∂B
∂t0

dt0 +
∂B
∂r0

dr0

+
1
2

[
∂2B
∂t2

0
dt2

0 +
∂2B
∂r2

0
dr2

0 + 2
∂2B

∂t0∂r0
dt0dr0

]
+ · · · .

Substituting for Equation (42) and taking into account that dW(t0) = O(dt1/2
0 ) [34,39], we

write

dB =

[
∂B
∂t0

+ f (r0)
∂B
∂r0

]
dt0 + g(r0)

∂B
∂r0

dW(t0) +
1
2

g2(r0)
∂2B
∂r2

0

[
dW(t0)

]2
+ O(dt3/2

0 ).

However,
[
dW(t0)

]2
= dt0 (in mean square sense) [34,39], and, up to the first order in dt0,

we obtain

dB =

[
∂B
∂t0

+ f (r0)
∂B
∂r0

+
1
2

g2(r0)
∂2B
∂r2

0

]
dt0 + g(r0)

∂B
∂r0

dW(t0). (44)

Defining

μ(t0, t|r0) ≡
1
B

[
∂B
∂t0

+ f (r0)
∂B
∂r0

+
1
2

g2(r0)
∂2B
∂r2

0

]
, (45)

and
σ(t0, t|r0) ≡ − 1

B
g(r0)

∂B
∂r0

, (46)

we see from (44) that the bond price satisfies the stochastic differential equation

dB
B

= μ(t0, t|r0)dt0 − σ(t0, t|r0)dW(t0), (47)
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showing that the bond price is also a diffusion process.
Averaging Equation (47) and recalling that E[dW(t0)] = 0, we see that

μ(t0, t|r0) = E

[
1
B

dB
dt0

]
,

which proves that μ(t0, t|r0) is the average of the instantaneous rate of return [cf.
Equation (36)] at time t0 on a bond with maturing date t, given that the current spot
rate is r0. In an analogous way, one can easily show that σ2(t0, t|r0) is the variance [33].

We therefore see from the above development that the bond price is a random quantity
but with a final fixed price (the maturity price). The question is: what is the (initial) price
that an investor has to buy (or sell) a bond at time t0 maturing at time t = t0 + τ with
the current spot rate r0? One possible answer would be proceeding as in discounting to
take the average over all possible realizations of the bond price. However, this procedure
implies that the expected rate of return of a bond is invariant under risk variation—that is,
under changes of the variance σ2(t0, t|r0)—a fact that investors always have in mind.

We explain next a procedure resulting in a deterministic bond price, which takes
into account the risk aversion of investors (in practice this is only true to some extend
because the mathematical procedure assumes that the market is driven by Gaussian white
noise—that is, the Wiener process, which is an idealized noise presenting, among other
shortcomings, no fat tails, a key characteristic of real markets [6]).

3.2. The Market Price of Risk

Consider an investor who, at time t0, sells an amount M1 of a bond maturing at time
t1 and, at the same time, buys an amount M2 of another bond with a different maturing
date t2. The total worth of the portfolio, thus, constructed is M = M2 − M1. Note that each
amount Mi (i = 1, 2) is a multiple of the bond price B(t0, ti|r0) (i = 1, 2) and, hence, they
also obey the stochastic differential Equation (47). That is,

dMi
Mi

= μ(t0, ti|r0)dt0 − σ(t0, ti|r0)dW(t0).

As a consequence, the infinitesimal variation dM = dM2 − dM1 of the worth of the portfolio
changes over time according to

dM =
[
μ(t0, t2|r0)M2 − μ(t0, t1|r0)M1

]
dt0

−
[
σ(t0, t2|r0)M2 − σ(t0, t1|r0)M1

]
dW(t0). (48)

Suppose we choose the amounts M1 and M2 such that

M1 =
M

σ1 − σ2
σ2, M2 =

M
σ1 − σ2

σ1, (49)

where M = M2 − M1 and σi = σ(t0, ti|r0) (i = 1, 2). Hence M1 is proportional to σ2, while
M2 is proportional to σ1. With this choice, we have

σ2M2 − σ1M1 = σ2
σ1M

σ1 − σ2
− σ1

σ2M
σ1 − σ2

= 0,

and the random term in Equation (48) vanishes. This renders the portfolio composed of
such amounts of the two bonds instantaneously riskless:

dM =
M

σ1 − σ2
(μ2σ1 − μ1σ2)dt0, (50)
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where μi = μ(t0, ti|r0). The rate of return rM of this portfolio is

rM ≡ 1
M

dM
dt0

=
μ2σ1 − μ1σ2

σ1 − σ2
.

In order to avoid arbitrage opportunities—that is, making profits without taking any
risk—the rate rM must be equal to the spot rate r0. If not, the portfolio can be purchased by
taking funds borrowed at the spot rate, or otherwise sold and the profits lent out to accom-
plish a riskless arbitrage [33]. Therefore (compare also Equation (41) with Equation (50))

r0 =
μ2σ1 − μ1σ2

σ1 − σ2
.

Rearranging terms, we find (μ1 − r0)/σ1 = (μ2 − r0)/σ2, so that

μ(t0, t1|r0)− r0

σ(t0, t1|r0)
=

μ(t0, t2|r0)− r0

σ(t0, t2|r0)
.

This equation is valid for arbitrary maturities t1, t2, . . . , it then follows that the ratio
[μ(t0, t|r0)− r0]/σ(t0, t|r0) must be independent of the maturity time t.

Let us denote by q(t0|r0) the common value of such a ratio for a bond of any maturity
date, given that the current spot rate (at time t0) is r0,

q(t0|r0) ≡
μ(t0, t|r0)− r0

σ(t0, t|r0)
, (t ≥ t0). (51)

The quantity q(t0|r0) is called the market price of risk, as it gives the variation of the expected
rate of return on a bond (specified by the risk premium μ − r0) per an additional unit risk
(specified by the standard deviation σ). The market price of risk q(t0|r0) is the so-called
Sharpe ratio [40] of the excess return μ − r0.

Note that, if q = 0, the spot rate r0 = r(t0) and the average rate of return μ coincide.

μ(t0, t|r0) = r(t0)

(t = t0 + τ) meaning that the expected instantaneous rates of return on bonds are the same
for all maturities.

3.3. The Term Structure Equation and the Risk-Neutral Measure

The introduction of the market price of risk implies a non-random bond price
B = B(t0, t|r0), which, in turn, allows a deterministic equation for B. In effect, rewrit-
ing Equation (51) as

μ(t0, t|r0)− r0 = σ(t0, t|r0)q(t0|r0),

and substituting μ and σ for their definitions given in Equations (45) and (46), we have

1
B

[
∂B
∂t0

+ f (r0)
∂B
∂r0

+
1
2

g2(r0)
∂2B
∂r2

0

]
− r0 = −q(t0|r0)

1
B

g(r0)
∂B
∂r0

,

which, after rearranging terms, yields

∂B
∂t0

= r0B − [ f (r0) + g(r0)q(t0|r0)]
∂B
∂r0

− 1
2

g2(r0)
∂B
∂r2

0
. (52)

This equation, called the term structure equation, is a partial differential equation for
B(t0, t|r0), that is obtained once we know the random character of the spot rate process
r(t) (through its drift f and noise intensity g) and once the market price of risk q(t0|r0) is
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specified. Bond prices are thus obtained after solving the deterministic Equation (52) with
the final condition:

B(t, t|r0) = 1. (53)

Let us observe that the term structure Equation (52) for the bond price B is identical
to the Feynman–Kac Equation (27) for the discount function D as long as we make the
following change of drift

f (r0) −→ f (r0) + g(r0)q(t0|r0). (54)

On the other hand, as we have seen in Section 2, the solution of the Feynman–Kac
Equation (27) for the discount function D(t|r0) is written as the average (cf. Equation (15))

D(t|r0, t0) =
∫ ∞

−∞
dr

∫ ∞

−∞
e−x p(x, r, t|r0, t0)dx,

where p(x, r, t|r0, t0) is the probability density function of the bidimensional diffusion
process (x(t), r(t)) defined by Equation (16),

dx = rdt, dr = f (r)dt + g(r)dW(t).

Now the analogy between the term structure Equation (52) and the Feynman–Kac Equation (29)
suggests that we can write the bond price B(t0, t|r0) as an average over the different real-
izations of the spot rate r(t0). However, this averaging procedure is taken using a modified
PDF called the risk-free measure. Thus, it can be proven in a more rigorous way that [32,33]

B(t0, t|r0) =
∫ ∞

−∞
dr

∫ ∞

−∞
e−x p∗(x, r, t|r0, t0)dx, (55)

where p∗(x, r, t|r0, t0) is the risk-free measure that is the PDF of the bidimensional process
(x(t0), r(t0)) defined by the following pair of stochastic differential equations that include
the market price of risk (see Equation (54)):

dx = rdt,

dr = [ f (r) + g(r)q(t|r)]dt + g(r)dW(t). (56)

That is, p∗ is the solution to the FPE

∂p∗

∂t
= −r

∂p∗

∂x
− ∂

∂r

[[
f (r) + g(r)q(t|r)

]
p∗

]
+

1
2

∂2

∂r2 [g
2(r)p∗], (57)

with the initial condition

p∗(x, r, t0|r0, t0) = δ(x)δ(r − r0). (58)

Since, as we have shown in Section 2.2, the Feynman–Kac approach to discounting
is equivalent to the Fourier method described in Section 2.3, we can apply the latter to
directly obtain the bond price knowing only the risk neutral PDF, without having to solve
the Feynman–Kac Equation (52) with condition (23). Indeed, the characteristic function of
the risk neutral density p∗ is the joint Fourier transform

p̃∗(ω1, ω2, t|r0, t0) =
∫ ∞

−∞
e−iω2rdr

∫ ∞

−∞
e−iω1x p∗(x, r, t|r0, t0)dx,

which, after comparing with Equation (55), yields

B(t0, t|r0) = p̃∗
(
ω1 = −i, ω2 = 0, t|r0, t0

)
. (59)
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Finally, once we know the bond price, the yield to maturity y(t0, τ|r0) (also called the
term structure of interest rates) is readily evaluated from Equation (38):

y(t0, τ|r0) = − 1
τ

ln B(t0, t0 + τ|r0). (60)

The graphic representations of y(t0, τ|r0) as a function of t0 and for different values of the
maturity interval τ are called yield curves and are of prime importance for practitioners.

4. Standard Models

Throughout the above development, it is clear that, in order to proceed further in
the discounting process (as well as in pricing bonds), we need to identify the specific
diffusion process chosen for modeling rates. Such a choice is mostly based on the analysis
of empirical data [26,29]. Clearly, in any proposed market model, there are idealizations,
otherwise a complete treatment of the problem would be very problematic, not to say
impossible, not only analytically but computationally as well.

In addition to assuming a diffusive behavior for the market, the first of such ideal-
izations is supposing that the market is stationary, i.e., the structural conditions of the
market do not change over time. However, and in particular after the 1980s, market cir-
cumstances have largely changed due to a great increase of transaction volumes along with
transparency and, to a lesser extend, changes in investor perspectives. In this review, we
only address stationary models, although we are working on new models dealing with
some non-stationary features of the market [29,35], and we refer the interested reader to
these works for further information.

On the other hand, there is a property of the market that appears to be well founded
on empirical grounds. This is the property of mean reversion meaning that prices tend to
return to some fundamental value, called the normal level, which is typically identified as
the long-time (i.e., stationary) mean value. The simplest method of introducing this feature
in the diffusion market model is to assume a linear drift of the form f (r) = −α(r − m),
where α > 0 is the strength of the reversion to the normal level, identified by m.

In such a case, the drift acts like a linear restoring force driving r(t) towards m as time
increases. Despite that the introduction of mean reversion might create some arbitrage
opportunities, the property of mean reversion is widely accepted in the literature [6], and
we previously discussed this issue in the context of option pricing when considering the
Ornstein–Uhlenbeck model [41].

4.1. Bonds and Real Rates

Before proceeding with the introduction of some standard models for the market
evolution, we briefly explain the link between bonds and (real) interest rates.

Financial economists have developed a large number of models of interest rate pro-
cesses to enable them to price bonds and other cash flows. In these models, interest rates are
described by positive random processes since financial interest rates rarely take negative
values. Although the models could be, in principle, extended to arbitrary horizons, they
have only been studied carefully over time horizons of up to 30 years, since bonds are
seldom issued for periods longer than this.

On the other hand, environmental economists are interested in the real behavior of
the economic growth over longer horizons, in contrast to financial economists who are
typically more interested in nominal rates over shorter periods of time. The behavior of
real and nominal rates usually differ as, due to inflation, real rates can take on negative
values. In this way, real rates r(t) are generally defined by the so-called Fisher procedure:

r(t) = n(t)− i(t), (61)

where i(t) is the inflation rate that is usually generated from consumer price indexes as
we will explain in the next section. The quantity n(t) represents nominal rates, which are
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typically constructed out of government bonds and are usually positive (even though, in
recent years, nominal rates have taken slightly negative values). In order to explain the close
relationship between nominal rates and bonds, let us first recall that nominal rates were
called spot rates in the previous section on bond pricing where we used the notation r(t)
instead of n(t). We thus define the spot (i.e., nominal) rate as (see Equations (39) and (40))

n(t) ≡ lim
τ→0

[
1
τ

∫ t+τ

t
b(t′, t)dt′

]
= b(t, t), (62)

where b(t′, t) is the forward rate for bonds defined in Equation (36) (see also Equation (37)),
that is

b(t′, t) =
∂ ln B(t′, t)

∂t′
⇒ B(t′, t) = exp

[
−

∫ t

t′
b(t′′, t)dt′′

]
where B(t′, t) is the price at time t′ of a (government) bond maturing at time t ≥ t′. Let us
recall the definition of the yield to maturity y(t, τ) given in Equation (38),

y(t, τ) ≡ − 1
τ

ln B(t, t + τ) ⇒ B(t, t + τ) = e−τy(t,τ)

(τ ≥ 0), so that

y(t, τ) =
1
τ

∫ t+τ

t
b(t′, t)dt′

and comparing with Equation (62), we see that, in terms of the yield nominal rates, n(t)
can be defined as

n(t) = lim
τ→0

y(t, τ). (63)

Thus, for empirical analysis, the yield can be used as an estimator of the nominal rates:

n(t) ∼ y(t, τ), (64)

and the accuracy of such an estimator increases as τ → 0. We will return to this discussion
in the next section.

In this way, taking nominal rates corrected by inflation as a proxy of economic growth,
we recently demonstrated [26,29,30] through a detailed empirical study on many countries
that real interest rates are negative around 25 % of the time (see next section). To under-
stand how discounting depends on the random process used to characterize interest rates,
we focused on three different models and obtained exact analytical expressions for the
discount function [27]. The three models describe to, varying degrees, a number of relevant
characteristics observed in the data, while being simple enough to allow for complete
analytical treatment. The main results are summarized in Table 1.

The first model is based on the Ornstein–Uhlenbeck (OU) process—also called the
Vasicek model in the financial literature [13]—which allows for negative rates and is, there-
fore, suitable for pricing environmental problems. The model has a stationary probability
distribution and exhibits reversion to the mean, which means that the process tends to
return to its average stationary value. We will review this model below.

The second and third models that we considered are given by the Feller and log-
normal processes, respectively. For these processes, the rates cannot be negative. The Feller
process—also known as the Cox–Ingersoll–Ross (CIR) model [42]—has reversion to the
mean and stationary probability distribution.

This is one of the most popular models in finance [13], and we recently reviewed
the main properties of the Feller process in previous works [27,43]. A third model, also
implying positive rates, is the log-normal process (occasionally called the Dotham model in
the financial literature [44]). The model does not have reversion to the mean nor a stationary
distribution. Despite these shortcomings, the log-normal process has also been used in the
financial literature mainly because it is positive and allows for analytical treatment [13].
We refer the interested reader to our previous work [27] for details on this model.

115



Entropy 2022, 24, 496

As remarked in the introduction, we are primarily interested in valuing the far future
for environmental problems rather than the short time discount of finance, the latter
implying positive interest rates, while the former involves positive as well as negative
rates. For this reason, we next review in more detail the Vasicek model allowing for both
positive and negative rates than the CIR and log-normal models of which we only present
a sketched review.

Table 1. Key statistical features for three standard models: the Vasicek (Ornstein–Uhlenbeck), the
Cox–Ingersoll–Ross (Feller) and the log-normal models. The average and variance are provided in
terms of the model parameters to better compare the asymptotic behavior of D(t). The asymptotic
discount is provided by showing an exponential decay with a long-run rate of discount r∞ for the
Vasicek and the Cox–Ingersoll–Ross models and also in the log-normal case for a specific combination
of parameters (k2/2 < α, mild fluctuations). The parameter δ is defined in Equation (111).

Model E[r(t)] Var[r(t)] D(t → ∞) r∞

Vasicek m k2/α exp(−r∞t) m − k2/2α2

Feller m mk2/(2α) exp(−r∞t) 2m
1+

√
1+2k2/α

Log-normal r0eαt r2
0e2αt[ek2t − 1] constant (k2/2 > α) −−

exp(−r∞t) (k2/2 < α) (α − k2/2)/δ

t−1/2 (k2/2 = α) −−

4.2. The Vasicek (Ornstein–Uhlenbeck) Model

In this model, the rates are described by the Ornstein–Uhlenbeck process [33], which
is a diffusion model with linear drift and constant noise intensity:

dr(t) = −α[r(t)− m] + kdW(t), (65)

where r(t) is the rate and W(t) is the Wiener process. The parameter m (the normal level)
is the mean value to which rates revert, k > 0 is the amplitude of fluctuations, and α > 0
is the strength of the reversion to the mean. These parameters have to be estimated from
empirical data.

In this case, the Fokker–Planck equation for the joint density p(x, r, t|r0) of the bidi-
mensional process (x(t), r(t)), given by Equation (17), reads

∂p
∂t

= −r
∂p
∂x

+ α
∂

∂r
[(r − m)p] +

1
2

k2 ∂2 p
∂r2 , (66)

with the initial condition
p(x, r, 0|r0) = δ(x)δ(r − r0). (67)

The joint Fourier transform of these equations results in a simpler initial-value problem
for the joint characteristic function p̃(ω1, ω2, t|r0), which can be readily solved to yield the
Gaussian density [27]

p̃(ω1, ω2, t|r0) = exp
{
−A(ω1, t)ω2

2 − B(ω1, t|r0)ω2 − C(ω1, t|r0)
}

, (68)

where A(ω1, t), B(ω1, t) and C(ω1, t) are given by [27]

A(ω1, t) =
k2

4α

(
1 − e−2αt

)
, (69)

B(ω1, t|r0) = ir0e−αt +
k2ω1

2α2

(
1 − 2e−αt + e−2αt

)
+ im

(
1 − e−αt

)
, (70)
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and

C(ω1, t|r0) = iω1r0
1
α

(
1 − e−αt)+ k2ω2

1
2α3

[
αt − 2

(
1 − e−αt)+ 1

2

(
1 − e−2αt

)]
+imω1

[
t − 1

α

(
1 − e−αt)]. (71)

The characteristic function of the rate r(t) is obtained by setting ω2 = 0 in Equation (68),
which also results in the Gaussian density

p̃(ω2, t|r0) = exp
{
− k2

4α

(
1 − e−2αt

)
ω2

2 − i
[
r0e−αt + m

(
1 − e−αt)]ω2

}
, (72)

and in the stationary state (t → ∞), we have

p̃st(ω2) = e−(k2/4α)ω2
2−imω2 =⇒ pst(r) =

( α

πk2

)1/2
e−α(r−m)2/k2

, (73)

which proves that the normal level m is the stationary mean value,

m = E[r(t)]. (74)

It can also be shown that the correlation function of the process, defined as the average

C(τ) = E
[
r(t + τ)r(t)

]
−
[
E
[
r(t)]

]2,

(τ ≥ 0) in the stationary state reads [27]

C(τ) = (k2/2α)e−ατ , (75)

which means that α−1 is the correlation time, τc, of the rate. Indeed,

τc ≡
1

C(0)

∫ ∞

0
C(τ)dτ = α−1.

Let us observe that the volatility, σ2 = C(0), is independent of the normal level and given by

σ2 = k2/2α. (76)

The discount function D(t|r0) is also obtained from Equations (68)–(71) although, in
this case, after setting ω1 = −i and ω2 = 0 (cf. Equation (31)). We have

ln D(t) = − r0

α

(
1 − e−αt)

+
k2

2α3

[
αt − 2

(
1 − e−αt)+ 1

2

(
1 − e−2αt

)]
− m

[
t − 1

α

(
1 − e−αt)],

which, after rearranging terms, can be written as

ln D(t) = −
(

m − k2

2α2

)
t +

1
α

[
m − r0 −

k2

4α2

(
3 − e−αt)](1 − e−αt), (77)

where r0 = r(0) is the initial rate. Note that, as t → ∞ (in fact when t  α−1, i.e., for times
much greater than the correlation time α−1) Equation (77) shows at once that the discount
function of the Vasicek model has the typical exponential decay

D(t) � e−r∞t, (78)

117



Entropy 2022, 24, 496

where
r∞ = m − k2/2α2, (79)

is the long-run discount rate. Let us note that the long-run rate can be defined as the limit

r∞ = − lim
t→∞

ln D(t)
t

, (80)

as long as the limit exists. Let us also note the important fact that r∞ is smaller than the
mean value of the return given by the normal level m. This reduction is quantified by the
“noise-to-signal” ratio k/α, which means that either a long persistence (recall that this is
equivalent to long correlation time, i.e., α small) or an increase of the noise fluctuations (i.e.,
k large) reduce the long-run discount rate as compared with the average rate m.

Finally, we easily see from Equation (77) that, as t → 0, the discount function approx-
imates to D(t) � e−r0t, which would correspond to a fixed interest rate without random
fluctuations or deterministic changes.

Risk Aversion

As mentioned above, risk aversion is taken into account by introducing the market
price of risk q(r) and changing the drift according to Equation (32). For the Vasicek model,
in which f (r) = −α(r − m) and g(r) = k, we have

f ∗(r) = −α(r − m) + kq(r), (81)

and assuming q(r) = q to be a constant independent of r, we write

f ∗(r) = −α(r − m∗), (82)

where
m∗ = m +

qk
α

. (83)

Since the modified drift f ∗(r) has the same form that f (r), we conclude that the adjusted-
for-risk discount function will be given by Equation (77) after the replacement m → m∗. In
particular, the adjusted long-run discount now reads (cf. Equation (79))

r∗∞ = m +
qk
α

− k2

2α2 . (84)

We thus see that the long-run discount depends on the historical rate m; however, this
is shifted by two terms. The first term raises the long-run rate due to the market price of
risk. The second shift lowers it by an amount given by the ratio of uncertainty (as measured
by k) and persistence (as measured by α). We rewrite Equation (84) as

r∗∞ = m +
k
α

(
q − k

2α

)
. (85)

This shows that the overall shift in the long-run discount rate will be positive or negative
depending on the size of the market price of risk and on the noise-to-signal ratio between
the volatility parameter and the reversion rate.

It is not surprising that the market price of risk raises the long term rate; however, it is
not so obvious that uncertainty and persistence can lower it. Indeed, for any given mean
interest rate m, by varying k and α, the long-run discount rate r∞ can take on any value less
than m, including negative values, while, at the same time, the standard deviation σ can
also be made to take on any arbitrary positive value.

A negative long-run rate is due to the amplification of negative real interest rates
r(t). Computation of the discount function involves an average over exponentials, rather
than the exponential of an average. As a result, periods where interest rates are negative
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are amplified and can easily dominate periods where interest rates are large and positive,
even if the negative rates are rarer and weaker. It does not take many such periods to
substantially reduce the long run interest rate.

To summarize, in the Vasicek model, and even taking into account risk aversion, the
long-run discounting rate can be much lower than the mean and, indeed, can correspond
to low interest rates that are rarely observed.

4.3. The Cox–Ingersoll–Ross (Feller) Model

In the financial literature, one of the most accepted models for interest rates is the
Cox–Ingersoll–Ross (CIR) model [42] where rates follow the Feller process described by
drift and noise intensity given, respectively, by [45]

f (r) = −α(r − m), g(r) = k
√

r. (86)

The Feller model is thus a diffusion process described by the stochastic differential equation

dr(t) = −α
[
r(t)− m

]
dt + k

√
r(t)dW(t), (87)

where W(t) is the standard Wiener process, and, as in the OU process, m > 0 represents
the mean stationary rate (the normal level), and α−1 is the correlation time [27]. Let us note
that, in one-dimensional diffusions, the diffusion coefficient is given by the square of the
noise intensity, and we thus see that the Feller process has a linear diffusion vanishing
at the origin. This turns the origin into a singular boundary, which results in significant
properties for the process [43].

As in the Vasicek model, the linear drift results in a restoring force, which, in the
absence of noise, makes the process decay toward the normal level m. On the other hand,
the state-dependent noise intensity k

√
r for large values of r magnifies the effect of noise,

while when r goes to zero, this effect vanishes. Therefore, as the process approaches the
origin, the drift drags r towards m. Hence, since m > 0, starting at some positive value
r0 > 0 the process cannot attain negative values with the overall result that the Feller process
always remains positive.

Previous works [27,43] that we reviewed rather thoroughly presented the properties of
the Feller process, and we refer the reader to these works for more detailed information. The
process is not Gaussian, and the stationary PDF as t → ∞ is the Gamma distribution [27]

pst(r) =
(2α/k2)θ

Γ(θ)
rθ−1e−(2α/k2)r, (88)

where
θ =

2αm
k2 (89)

is a positive and dimensionless constant that combines all the parameters of the model into
a single expression. As mentioned above, a major characteristic of the Feller process is that
r(t) cannot attain negative values, which makes the model a convenient tool for pricing
bonds, which are never negative [13].

In the Feller model, the joint density of the discounting process (x(t), r(t)) defined in
Equation (16) obeys the Fokker–Planck equation (FPE) (cf. Equations (17) and (18))

∂p
∂t

= −r
∂p
∂x

+ α
∂

∂r
[(r − m)p] +

k2

2
∂2

∂r2 (rp), (90)

with the initial condition
p(x, r, 0|r0) = δ(x)δ(r − r0). (91)
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The joint Fourier transform, Equation (30), turns Equations (90)–(91) into a more
manageable problem:

∂ p̃
∂t

=

(
ω1 − αω2 − i

k2

2
ω2

2

)
∂ p̃

∂ω̃2
− iαmω2 p̃, (92)

p̃(ω1, ω2, 0|r0) = e−iω2r0 . (93)

Equation (92) is a linear partial differential equation of first order whose solution can be
obtained by the method of characteristics, and we refer the interested reader to our work [27]
for a detailed information. Once we know the solution p̃(ω1, ω2, t|r0), the discount function
is then obtained through Equation (31) with the result [27]

D(t) =

[
2λe−(λ−α)t/2

(λ + α) + (λ − α)e−λt

]θ

exp
{
− 2(1 − e−λt)r0

(λ + α) + (λ − α)e−λt

}
, (94)

where θ is defined in Equation (89) and

λ =
√

α2 + 2k2. (95)

Notice that λ > α and the time scale represented by λ−1 is smaller than the correlation time
α−1.

In this case, the long-run discount rate, defined by the limit (cf. Equation (80))

r∞ = − lim
t→∞

ln D(t)
t

,

is directly obtained from Equation (94) with the result

r∞ =
1
2
(λ − α)θ, (96)

and, as in the Vasicek model, the effective discount reduces to the expected exponential
decay

D(t) � e−r∞t (t → ∞). (97)

Substituting into Equation (96) the expressions for θ and λ given in Equations (89) and (95),
we write

r∞ =
2m

1 +
√

1 + 2k2/α2
, (98)

which clearly shows that the long-run discount rate is always smaller than the stationary
average rate:

r∞ < m.

Figure 1 shows the discount function D(t) along with the quantity − ln D(t)/t (cf.
Equation (80)) and compare them with the Vasicek model with equivalent parameters.
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Figure 1. The Vasicek and Cox–Ingersoll–Ross discount functions. The parameters used are those
corresponding to the United States and are provided by Table 5 of Ref. [29] (see Section 5). In the
top figure, we plot the discount function D(t), while in the bottom figure, we plot the log ratio
− ln D(t)/t. In the top figure, we observe the asymptotic exponential decay of the discount after
more than a hundred years, while in the bottom figure, we clearly see the existence of a long-run
discount rate for the Vasicek model (cf. Equation (80)). The initial rate r0 is arbitrarily taken to be 1%.
In both models, we assume no market price of risk q(r) = 0 (the Local Expectation Hypothesis).

Risk Aversion

For the Feller process, the adjusted drift for risk defined in Equation (54) reads

f ∗(r) = −α(r − m) + kq(r)
√

r, (99)

where q(r) is the market price of risk as discussed in the previous section. For any function
q(r) (including a constant market price of risk q), this adjusted drift leads to an unsolvable
Fokker–Planck equation with no analytical expression for the adjusted discount and the
long-run discount rate. It is, nonetheless, possible to obtain analytical expressions for these
quantities if the market price of risk has the following functional form

q(r) = q
√

r, (100)
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where q ≥ 0 is a positive quantity. In such a case, we may write

f ∗(r) = −α∗(r − m∗), (101)

where
α∗ = α − kq, m∗ =

αm
α − kq

. (102)

The adjusted drift has the same form as f (r). Therefore, the adjusted discount function
will be given Equation (94) with the replacements α → α∗ and m → m∗, and the long-run
discount is (cf. Equation (98))

r∗∞ =
2m∗

1 +
√

1 + 2k2/α∗2
. (103)

From the definitions of α∗ and m∗, we easily see that α∗ ≤ α and α∗m∗ = αm. Hence,
writing r∗ as

r∗∞ =
2α∗m∗

α∗ +
√

α∗2 + 2k2
≥ 2αm

α +
√

α2 + 2k2
= r∞,

so that r∗∞ ≥ r∞, and, if the market price of risk has the form given in Equation (100), then,
in the CIR model, risk always increases the long-run discount rate regardless of the noise
intensity and persistence.

4.4. The Log-Normal Model

In this model, rates are described by the the geometric Brownian motion (log-normal
process), and the model is determined by the stochastic differential equation

dr
r

= αdt + kdW(t), (104)

where r is the interest rate, α and k are constant parameters. α may be positive or negative,
whereas k is always positive, and W(t) is the standard Wiener process. Equation (104) can
be integrated at once yielding

r(t) = r0 exp
{(

α − k2

2

)
t + kW(t)

}
, (105)

showing that r(t) is never negative (r0 > 0). Therefore, the log-normal model is more suited
for modeling nominal interest rates and bonds in finance than for the long-run real rates of
environmental economics. Contrary to the OU and Feller processes, the log-normal process
does not show reversion to the mean. Indeed, as t increases, we see from Equation (105)
that the rate either diverges when α > 0 or goes to zero if α < 0. In an equivalent way, one
can also show from Equation (105) that the mean and variance of the process are [27]

〈r(t)〉 = r0eαt, Var[r(t)] = r2
0e2αt

(
ek2t − 1

)
.

The discount associated with the log-normal process model was studied in 1978 by
L. U. Dothan [44], and, in finance, it is sometimes refereed to as the Dothan model. As it
allows for analytical treatment, it is one of the models used in the literature [13]. For this
model, the FPE for the joint density of the discounting processes (x(t), r(t)) is given by (cf.
Equation (17))

∂p
∂t

= −r
∂p
∂x

− α
∂

∂r
(rp) +

1
2

k2 ∂2

∂r2 (r
2 p), (106)

122



Entropy 2022, 24, 496

with the usual initial condition given by Equation (18). The Fourier transform of this
expression leads to the following equation for the characteristic function p̃(ω1, ω2, t|r0)

∂ p̃
∂t

= (ω1 + αω2)
∂ p̃

∂ω̃2
+

1
2

k2ω2
2

∂2 p̃
∂ω̃2

2
(107)

and the initial condition (91). Equation (106) is a partial differential equation of second
order, which cannot be solved by the method of characteristics, and we refer the interested
reader to our work [27] for more information on how to solve Equation (107) using the
time–Laplace transform. Hence—and contrary to Vasicek and CIR models where it is
possible to obtain exact expressions for the discount function D(t)—for the log-normal
case, we can only achieve the exact expression of its Laplace transform,

D̂(s) =
∫ ∞

0
e−stD(t)dt.

The resulting formula—written as an integral of special functions, the Kummer function—is
rather intricate, and we will not write it here (see [27] for more information). However,
from the exact expression for D̂(s), we can obtain asymptotic expressions as t → ∞ of the
discount function D(t) in real time. This is done using the so-called Tauberian theorems,
which relate the small s behavior of D̂(s) with the long-time behavior of D(t) [46,47]. The
final result is the following asymptotic expression for the discount function D(t) in the
long run as t → ∞ [27]

D(t) ∼

⎧⎪⎨⎪⎩
constant k2/2 > α,
e−r∞t k2/2 < α,
t−1/2 k2/2 = α.

(108)

The asymptotic form of the discount function thus depends on the values taken by
the ratio α/k2 between the strength of the constant deterministic drift α and the amplitude
of fluctuations given by k2/2 (which can be considered the “signal-to-noise ratio” of this
model).

(i) The case k2/2 > α corresponds to strong fluctuations, where the noise intensity
k2/2 is greater than the drift parameter α. In this case, the discount tends to a constant
value (for the actual value of this constant, see [27]).

(ii) The case k2/2 < α corresponds to mild fluctuations for which the determinis-
tic drift is stronger than noise. In such a case, the discount function has the expected
exponential decay

D(t) ∼ e−r∞t, (109)

with a long-run rate of discount given by [27]

r∞ =
1
δ

(
α − k2

2

)
, (110)

where δ > 1 is a positive numerical factor that only depends on the ratio 2α/k2 and reads

δ = ψ
(

2α/k2
)
+

1
2α/k2 − 1

, (111)

where ψ(·) is the digamma function.
Let us write Equation (109) in a more characteristic form. Indeed, from Equation (105),

we see that

E

[
ln

r(t)
r0

]
=

(
α − k2

2

)
t,
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and, with the help of Equation (109), we write Equation (109) as

D(t) ∼ exp
{
−1

δ
E

[
ln

r(t)
r0

]}
, (112)

(t → ∞ and k2/2 < α). Note that the average E[ln r(t)/r0] is what a practitioner would take
as an estimate of the discount rate up to time t within the log-normal model. Since δ > 1,
the analytical result (112) shows that the actual long-run rate of the model is a fraction of
the average rate. We indicated elsewhere that the long-run discount rate is at most 73 % of
the average rate [26].

In this way, when 2α/k2 > 1, the log-normal model follows a similar pattern to that of
the OU and Feller models: In all of them, the long-run rate is smaller than the average rate.
This general statement is a direct consequence of Jensen’s inequality, which states that the
average of a convex function is greater than or equal to the function of the average; that is,
E[ f (X)] ≥ f (E[X]). Assuming f to be the decreasing exponential and X as the cumulative
process x(t) defined in Equation (14), it follows immediately that the long-run rate r∞ must
be always less than or equal to the average rate. Nonetheless, our procedure quantifies the
difference among averages [27].

(iii) The critical case α = k2/2, in which deterministic motion and fluctuations are
balanced, leads to the hyperbolic discount function as obtained by Farmer and Geanako-
plos [48,49]. The hyperbolic D(t) is substantially greater than any exponential decaying
function, showing that there is no long-run rate of interest in this case. In fact, the long-run
rate of interest is 0; however, that does not convey as precise information as saying that
D(t) is approximately k/

√
t for all large t. Since the sum (i.e., the integral) of all these D(t)

is infinite, such D(t) assigns infinite value to any permanent positive flow of consumption:
the infinite future is infinitely valuable.

Risk Aversion

Let us very briefly comment on the inclusion of risk aversion in the Dothan model.
For the log-normal process f (r) = αr and g(r) = kr and

f ∗(r) = [α + kq(r)]r.

Assuming a constant market price of risk, q(r) = q ≥ 0, we have

f ∗(r) = α∗r, α∗ = α + q.

Again, f ∗(r) has the same form than f (r), and all previous results will apply after making
the replacement α → α + q.

5. Some Empirical Results

In order to choose an appropriate model for rates that would allow us to obtain realistic
long-run discount functions, we performed a rather complete empirical study on interest
rates combined with inflation. Our study follows the line partly initiated by Newell and
Pizer [50] (see also [51]). To our knowledge, there are few empirical studies on real rates
with some exceptions. We remark here the recent and excellent survey by Giglio et al. on
the housing market in London and Singapore [52–54], which allowed for a rather realistic
estimation of long-run discount rates.

Our first concern was knowing how the discount process depended on the underlying
random process that characterizes interest rates. To this end, we collected data for the
nominal interest rates and inflation of fourteen countries over time spans ranging from 87
to 318 years [26]. The countries in our sample are Argentina (ARG, 1864–1960), Australia
(AUS, 1861–2012), Chile (CHL, 1925–2012), Germany (DEU, 1820–2012), Denmark (DNK,
1821–2012), Spain (ESP, 1821–2012), United Kingdom (GBR, 1694–2012), Italy (ITA, 1861–
2012), Japan (JPN, 1921–2012), Netherlands (NLD, 1813–2012), Sweden (SWE, 1868–2012),
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the United States (USA, 1820–2012) and South Africa (ZAF, 1920–2012). The data are
summarized in Table 2.

Table 2. List of the countries analyzed. CPI stand for Consumer Price Index. Data has different
specificities, particularly in terms of empty records as has been reported elsewhere [26,29]. *, We have
taken the discount (ID) rate since the government bond yield data was not available.

Country CPI Bond Yield From To Records

Italy CPITAM IGITA10 12/31/1861 09/30/2012 565
annual from 12/31/1861 quarterly
quarterly from 12/31/1919

Chile CPCHLM IDCHLM 03/31/1925 09/30/2012 312
quarterly quarterly

Canada CPCANM IGCAN10 12/31/1913 09/30/2012 357
quarterly quarterly

Germany CPDEUM IGDEU10 12/31/1820 09/30/2012 729
annual from 12/31/1820 quarterly
quarterly from 12/31/1869

Spain CPESPM IGESP10 12/31/1821 09/30/2012 709
annual from 12/31/1821 quarterly
quarterly from 12/31/1920

Argentina CPARGM IGARGM 12/31/1864 03/31/1960 342
annual from 12/31/1864 quarterly
quarterly from 12/31/1932

Netherlands CPNLDM IGNLD10D 12/31/1813 12/31/2012 189
annual annual

Japan CPJPNM IGJPN10D 12/31/1921 12/31/2012 325
quarterly quarterly

Australia CPAUSM IGAUS10 12/31/1861 09/30/2012 564
annual from 12/31/1861 quarterly
quarterly 12/31/1991

Denmark CPDNKM IGDNK10 12/31/1821 09/30/2012 725
annual from 12/31/1821 quarterly
quarterly from 12/31/1914

South Africa CPZAFM IGZAF10 12/31/1920 09/30/2012 329
quarterly quarterly

Sweden CPSWEM IGSWE10 12/31/1868 09/30/2012 135
annual annual

United Kingdom CPGBRM IDGBRD ∗ 12/31/1694 12/31/2012 309
annual annual

United States CPUSAM TRUSG10M 12/31/1820 10/30/2012 183
annual annual

Since all but two of our nominal interest rate processes are for 10-year government
bonds, which pay out over a 10-year period, we smoothed out inflation rates with a 10-year
moving average and subtracted the annualized inflation index from the annualized nominal
rate to compute the real interest rate, as explained in the previous section by means of the
Fisher’s procedure (cf. Equation (61)),

r(t) = n(t)− i(t),

where n(t) is the nominal rate and i(t) is the inflation rate. The particular case of the United
States is plotted in Figure 2.
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Figure 2. The construction of real interest rates r(t) in terms of the nominal rates n(t) and inflation
i(t) (Fisher’s procedure). Large fluctuations and negative rates are shown here for the United States
(USA).

In our empirical analysis, the nominal rates are determined by IG rates constructed
from the 10-year Government Bond Yield y(t, τ) with τ= 10 years. Thus, looking at
Equations (63) and (64), we estimate the nominal rates by

n(t) ∼ y(t, τ = 10 years).

Let us recall that denoting, by B(t, t + τ), the government bond issued at time t and
maturing at time t + τ with unit maturity, B(t, t) = 1, the yield y(t, τ) is defined as (cf.
Equation (38))

y(t, τ) ≡ − 1
τ

ln B(t, t + τ) =⇒ B(t, t + τ) = e−τy(t|τ).

One can argue that τ = 10 years is not a short period of time in order to consider
y(t, τ = 10 years) a very accurate estimator of n(t) (cf. Equations (63) and (64)). Al-
though this may be true, we must bear in mind that 10 year bonds are the shortest bonds
available for most of the countries analyzed.

The inflation rate is estimated through the Consumer Price Index (CPI) as

i(t) ∼ 1
τ

ln
[
I(t + τ)/I(t)],

where I(t) is the aggregated inflation up to time t, and τ =10 years. The relation between
I(t) and the Consumer Price Index (CPI) is

I(t + τ) = I(t)
τ−1

∏
j=0

[
1 + C(t + j)

]
,

where C(t) is the time series of the empirical CPI. The instantaneous rate of inflation i(t) is,
therefore, estimated by the quantity i(t + τ), which is written in terms of the CPI reads

i(t) ∼ i(t + τ) =
1
τ

τ−1

∑
j=0

ln
[
1 + C(t + j)

]
.

A remarkable characteristic observed for all countries is that real interest rates fre-
quently become negative as the real interest rates are mostly dominated by inflation i(t) > 0
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(see Figure 2). In some cases, as we can see in Table 3 (see also Figure 2), negative real
rates show high frequency and long periods of time, and, on average, real interest rates are
negative one quarter of the time.

Table 3. The OU (Vasicek) model parameter estimation in yearly units using stationary averages.
“Neg RI” provides the time percentage and the number of years with negative real interest rates.
The columns m̂, k̂ (in %) and α̂ are estimates from the country time series; r̂∞ (in %) is evaluated
from Equation (79). The Min and Max columns give reasons regarding the level of robustness of the
estimation as they provide the minimum and the maximum values of the parameter estimation for
four data blocks of equal length. The parameter α is estimated by fitting the empirical correlation
function to an exponential (cf. Equation (75)) after using the whole data block. Countries in boldface
are those considered historically more stable with positive long-run rates r̂∞ > 0.

Country Neg RI m̂ Min Max k̂ Min Max α̂ r̂∞

Italy 28% (40y) −0.3 −9.1 5.6 6.9 0.8 10.1 0.22 −5.4
Chile 56% (43y) −6.8 −20.2 12.0 25.2 5.6 44.1 0.40 −26
Canada 22% (20y) 2.9 0.1 6 2.3 1.1 2.0 0.26 2.5
Germany 14% (25y) −10.7 −51.0 4.0 33.9 0.9 61.4 0.20 −160
Spain 25% (45y) 5.7 −0.5 13.5 2.9 1.2 3.6 0.06 −6.4
Argentina 20% (17y) 2.4 −2.9 6.8 6.2 2.8 6.7 0.39 1.1
Netherlands 17% (33y) 3.2 0.8 5.4 1.6 0.8 2.2 0.14 2.4
Japan 33% (26y) −2.2 −7.8 4.0 9.7 1.1 13.2 0.24 −10
Australia 23% (33y) 2.6 −0.7 4.9 2.3 0.7 2.8 0.19 1.9
Denmark 18% (33y) 3.2 1.5 4.3 2.3 1.1 2.9 0.23 2.7
South Africa 43% (36y) 1.8 −2.2 5.5 2.5 1.2 2.0 0.21 1.1
Sweden 28% (38y) 2.3 −0.3 3.9 2.5 0.6 3.4 0.25 1.9
United Kingdom 14% (45y) 3.3 1.4 4.3 1.9 1.0 2.4 0.19 2.8
United States 31% (36y) 2.6 1.0 4.0 1.8 1.2 2.1 0.18 2.1

Stable countries 23% (33y) 2.7 −0.14 5.0 2.6 1.04 2.94 0.23 2.1
Unstable counntries 31% (36y) −2.9 17.7 1.8 16 1.9 26.5 0.22 −42

This makes the Feller and log-normal models—as well as any other model assuming
positive interest rates [13]—less interesting or at least less appropriate to model real interest
r(t) = n(t)− i(t) instead of solely considering nominal rates n(t). It is, however, necessary
to remember the fact that nominal rates can indeed become negative as has recently been
observed in Western economies. We, therefore, confined the empirical work to the OU
(Vasicek) model and then assumed the Local Expectation Hypothesis [36–38], according to
which, we live in a risk neutral world, and the market price of risk is zero. Let us recall,
as explained in Section 3, that the market price of risk q = q(r, t) may be any function
of the rate and time. There is, hence, no unique expression for it. Thus, in Section 4, we
presented several expressions of the long-run rate, which include risk in different forms
for all market models analyzed. The usual assumption in the literature [33,38] is that the
price of risk is a constant that is independent of time and the value of the rate but without
any empirical justification. This is a sensitive issue since data is quite scarce, particularly
in environmental applications, for obtaining a credible estimation of q. Moreover, to our
knowledge, in environmental problems, the estimations of the long-run rates do not take
into account, nor even mention, the market price of risk [14–16,50,54]. In any case, we do
not lessen the importance of taking into account some kind of risk in estimating log-run
rates; however, unfortunately, with the data available to us, we cannot make any reliable
estimation of q. For this reason, we have not taken into account the market price of risk,
assuming risk-neutral investors and following the Local Expectation Hypothesis. In any
case, the question is under consideration).

We can estimate the parameters m, α and k of the Vasicek model to each of the data
series. There are several possible procedures. One of the possible methods is to deal with
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stationary averages. The parameter m can be estimated through the stationary mean value
of the rate (cf. Equation (74))

m = E[r(t)].

Parameters α and k can be estimated via the correlation function of the Ornstein–Uhlenbeck
process. Thus, from Equation (75), we have

C(t − t′) =
k2

2α
e−α|t−t′ |.

The empirical correlation can then be fitted by an exponential, which in turn allows us
to estimate α (measured in 1/year units) for each country. The parameter k is obtained
from the empirical standard deviation σ2 = E[|r(t)− m|2], and for the Vasicek model, it is
given by

k = σ
√

2α.

The resulting parameters are shown in Table 3. The minimum and maximum values for
each country allows us to show that parameters may indeed fluctuate over different periods
of time.

Finally, the long-run discount rate can be evaluated from Equation (79),

r∞ = m − k2/2α2.

For this calculation, we neglected the market price of risk as mentioned above.
The countries studied can be divided into two groups. Nine countries have long-run

positive rates (boldface in Table 3). The average historical rate for these nine countries
is m = 2.7 % while the average long-run rate is r∞ = 2.1 %, which, on average, is 29 %
lower than m. Five countries with less stable behavior have long-run negative rates and an
exponentially increasing discount.

Four cases of this group have a negative average rate m due to at least one period of
runaway inflation; the exception is Spain, which has a (highly positive) mean real interest
rate but still has a long-run negative rate. Convergence in this case to the long-run rate
happens within 30 years and typically within less than a decade. This contrasts with other
treatments, which assume that short term rates are always (or nearly always) positive and
predict that the decrease in the discounting rate happens over a much longer timescale,
which can be measured in hundreds of years [50,51,55–58].

Alternatively, we can estimate parameters using the well-established maximum likeli-
hood procedure. For the Vasicek model, the maximum likelihood estimation is extensively
documented in the financial mathematics literature (see for instance [13]). The approach
differs from the previous one as it focuses attention on two consecutive steps of our time
series (generally consecutive years) and takes the conditional probability to perform the
estimation. Table 4 shows that the most inaccurate estimator is α̂, an unsurprising fact since
the estimation of α is known to be quite difficult for the Vasicek model [59]. The last two
columns in Table 4 include the long-run interest rate estimator r̂∞ and its error calculated
through error propagation.

Only four countries (the Netherlands, Sweden, the United Kingdom and the United
States) show a positive long-run rate, r∞ > 0. This estimation procedure leads to more
negative r∞. This feature can be attributed to the fact that, in most of the countries,
estimating α via the maximum likelihood brings smaller values, which in turn leads to
more drastic corrections to the long-run rate as r∞ is inversely proportional to α (remember
that r∞ = m − k2/2α2). This effect is particularly relevant in most turbulent countries
during last century (e.g., Germany) thus signaling a more intense lack of stationarity in
empirical data. The averaged r∞ over all countries estimated via maximum likelihood is
also sensitively smaller.

However, if we focus the attention on stable countries (with r∞ > 0) both estima-
tion procedures bring quite similar results (see, for instance, the United States case in
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Tables 3 and 4, 2.1% versus 1.8%). As in the previous estimation procedure, we also ne-
glected the effects of risk aversion and the market price of risk.

The Vasicek model is therefore the only one among the three classic models allowing
for negative rates, and for this reason, both the Feller and the log-normal models have
been excluded from our analysis. However, for the Cox–Ingersoll–Ross (Feller) model, it is
possible to redefine the model by shifting the process y = r − rmin where rmin < 0.

The estimation through the maximum likelihood procedure and its error analysis
is then possible [59], and Figure 1 includes the shifted Cox–Ingersoll–Ross discount and
compares it with the equivalent result assuming the Vasicek model. We demonstrated in
Ref. [29] how to redefine the Feller process and how maximum likelihood estimation could
be possible.

Table 4. Maximum likelihood estimation of the long-run interest rate for the Vasicek model. m̂
estimates of the mean real interest rate in 1/years (in %). α̂ estimates the characteristic reversion time
in 1/years. The squared root of k̂2 is given in terms of 1/(year)3 (multiplied by 104 to be comparable
with the results in Table 3). These estimators are accompanied by the square root of the variance
of each estimator. r̂∞ estimates the long-run real interest rate with 1/year (in %). Negative values
of r̂∞ imply that the discount function is asymptotically increasing. The standard error is obtained
through error propagation. The last two rows show the average over all countries with the more
stable countries (r∞ > 0) and the less stable countries (r∞ < 0). The error provided corresponds to
the standard deviation of the r̂∞ for the different countries.

Country m̂ σm̂ α̂ σα̂ k̂2 σk̂2 r̂∞ σr̂∞

Italy 1.97 15.95 0.0056 0.0089 0.1146 0.068 −177.8 19.2
Chile −5.79 31.46 0.0201 0.0227 31.07 2.49 −391.7 44.2
Canada 2.66 3.91 0.0142 0.0178 0.275 0.021 −4.15 3.94
Germany −9.45 66.95 0.0071 0.0089 41.72 2.19 −4094 228
Spain 6.71 6.92 0.0167 0.0137 2.371 0.126 −35.78 7.28
Argentina 3.15 7.09 0.0228 0.0231 2.240 0.171 −18.31 7.27
Netherlands 5.99 0.78 0.1648 0.0550 1.797 0.243 5.66 0.78
Japan 5.02 24.68 0.0053 0.0114 1.396 0.109 −243.1 31.4
Australia 3.97 4.50 0.0089 0.0112 0.223 0.013 −10.29 4.58
South Africa 2.69 4.72 0.0154 0.0193 0.435 0.034 −6.49 4.77
Sweden 2.79 1.66 0.0676 0.0317 1.692 0.206 0.95 1.67
Denmark 4.10 2.59 0.0161 0.0133 0.315 0.017 −1.97 2.61
United Kingdom 3.42 0.62 0.1635 0.0326 3.137 0.253 2.83 0.62
United States 3.19 1.23 0.0603 0.0257 1.003 0.105 1.81 1.24

Stable countries 3.85 1.07 0.1140 0.0362 1.907 0.202 2.81 1.08
Unstable countries 1.50 16.86 0.0132 0.0150 8.120 0.523 −498.4 35.3

6. Discussion

We reviewed one of the most important aspects of economics and finance, i.e., the
problem of discount, which weights the future relative to the present. The problem is
clearly very relevant in finance over relatively short time spans; however, it is even more
crucial for long-run planning in addressing environmental problems on how to act now
with measures to mitigate the effects of climate change.

To our knowledge, this is a rather unknown issue to the econophysics community, and
this review is particularly intended for this group. We thus addressed the problem with
a simple approach and yet with a high level of rigor and generality. In this way, we also
developed the traditional method used in mathematical finance to address the problem,
i.e., the Feynman–Kac approach. In addition, we reviewed the bond pricing theory and its
close similarity with discounting and presented a short introduction to the term structure
of interest rates along with the market price of risk.

We obtained quantitative results on the problem by studying, in some detail, three
standard models for the dynamical evolution of rates. These models are based on the
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Ornstein–Uhlenbeck process (the Vasicek model), thus, allowing for both positive and neg-
ative rates and also on the Feller and log-normal processes for positive rates. We presented
the exact results for the discount function and asymptotic expressions as t → ∞ leading to
the long-run discount rate, and we discussed the modifications of these expressions when
the market price of risk is taken into account.

An important conclusion is that, for all models, the long-run discount rate is always
less than the long-time average rate. This is a conclusion that necessarily has to have
consequences in any long-run economic planning. Finally, we reviewed our recent empirical
study on 14 different countries, which obtained numerical values for the parameters that
appear in the Vasicek model. We demonstrated two different estimation procedures and
briefly discussed their differences and similarities.
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Abstract: In this paper, we have modified the Detrended Fluctuation Analysis (DFA) using the
ternary Cantor set. We propose a modification of the DFA algorithm, Cantor DFA (CDFA), which uses
the Cantor set theory of base 3 as a scale for segment sizes in the DFA algorithm. An investigation
of the phenomena generated from the proof using real-world time series based on the theory of the
Cantor set is also conducted. This new approach helps reduce the overestimation problem of the
Hurst exponent of DFA by comparing it with its inverse relationship with α of the Truncated Lévy
Flight (TLF). CDFA is also able to correctly predict the memory behavior of time series.

Keywords: Cantor set; fractals; homeomorphism; detrended fluctuation analysis; Hurst exponent

1. Introduction

A ternary Cantor set is a set built by removing the middle part of a series when
divided into three parts and repeating this process with the remaining shorter segments. It
is the prototype of a fractal [1]. A fractal is a geometric object that has similar statistical
properties to itself on all scales. If a fractal object is successively magnified, it looks similar
or exactly like the original shape of the fractal. A similar pattern exhibited at increasingly
smaller scales is often known in fractal mathematics as self-similarity [2,3]. In time series,
self-similar phenomena describe the event in which the dependence in the time series
decays more slowly than an exponential decay. Typically, it follows a power-like decay [4].
Scaling methods exist for quantifying the power-law exponent of the decay function such as
Rescaled Range Analysis (R/S), Detrended Fluctuation Analysis (DFA) and the Truncated
Lévy Flight (TLF).

The Rescaled Range Analysis (R/S) method by Hurst subdivides integrated time
series into adjacent segment sizes and examines the range (R) of the integrated fluctuations.
Then, a measure of dispersion, usually standard deviation (S), is determined as a function
of segment size. A power law governs the approximate relationship between the Rescaled
Range Analysis’ statistic (R/S) and the segment size [5].

The Detrended Fluctuation Analysis (DFA) by Peng et al. (1994) is a technique that
quantifies the same power-law exponent of the R/S method. Addressing difficulties in
determining correct power-law exponents of the R/S method in non-stationary time series
resulted in the introduction of the DFA. Unlike the R/S method, the DFA uses a local
detrending approach (usually linear regression) in the segments of the integrated series.
For time series with higher-order trends, polynomial fit replaces the linear regression
approach of the DFA [6]. This provides its power-law exponents’ protection against
effects of nonstationarity and pollution of time series by external signals while eliminating
spurious detection of long memory [7]. Empirical evidence has shown that the DFA
performs well compared to other variance scaling methods including the R/S methods
when estimating power-law exponents.
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Usually, characterizing stochastic processes empirically requires the study of determin-
ing asymptotic probability density distributions (pdf) and temporal correlations. Brownian
motion models the evolution of a particle’s position over time with the assumption that
the movement of the particle follows a diffusive process with Gaussian distribution. This
model did not describe accurately real-world time series because kurtosis of associated
pdf is greater than that of the Gaussian distribution [8,9]. The Truncated Lévy Flight (TLF)
model originated as a means to address the difficulties of the Brownian motion for working
in long-range correlation scales. The scaling exponent (0 < α ≤ 2) of the TLF measures
the memory behavior in time series that follows a diffusion process with Gaussian and
non-Gaussian distributions [10].

In [11], a clear comparison was made between DNA and economics by the authors,
showing the underlining similarities that allow researchers to model seemingly different
phenomena using the same or slightly modified models. In the same manner, these variance
scaling models have the added advantage of being used to model long memory effects
in different fields where stochastic processes occur [2,7]. Thus, be it DNA sequencing,
financial markets, geophysical time series etc., scaling methods have been used to detect
long/short memory behaviors.

Scaling approaches serve as means of characterizing the dependence of observations
separated in time series dominated by stochastic properties. Applications with DFA have
been done in DNA sequences [6,12,13], neural oscillations [14], detection of speech pathol-
ogy [15], heartbeat fluctuation in different sleep stages [16], describing cloud breaking [17],
gearbox fault diagnosis [18], analysis of fetal cardiac data [19], streamflow in the Yellow
River Basin in China [20], evaluation near infrared spectra of green and roasted coffee
samples [21], just to mention a few.

Empirical evidence has shown that the DFA has the tendency of overestimating
the scaling exponent [2,22]. We have not come accross any literature at the moment
that describes a definite approach in the segment division step of the DFA algorithm.
However, we observe that estimates of power-law exponents are influenced by the scale
of choice [23,24]. Our goal in this work is to propose a definite non-overlapping segment
division approach in the DFA algorithm (CDFA) that utilizes the theory of the ternary
Cantor set. We show that using this approach we are able to rightly determine the correct
scaling exponent to detect the memory behavior of the time series as well as reducing
the over-fitting nature of the DFA. This approach has the advantage of generalizing the
segment division step in the DFA algorithm. The Hurst exponents obtained from the CDFA
method are then compared with the exponents of the DFA and the TLF on real time series.

In Section 2, we present proof of the relationship between the continuum of Hurst
exponents of the DFA and Cantor set. We also present the scaling methods TLF, DFA and
CDFA in this section. In Section 3, we present results and discussions from our investi-
gation noting that for noise-like time series, anti-persistence, white noise and persistence
behavior in time series imply 0 ≤ H < 0.5, H = 0.5 and 0.5 < H ≤ 1 respectively. The over-
estimation of DFA’s Hurst exponent decreasing with the Cantor scales is also discussed in
this section. Section 4 concludes the paper.

2. Methods

2.1. The Truncated Lévy Flight (TLF)

We provide a brief overview of the Truncated Lévy Flight (TLF) model in this sub-
section. The most general representation of the Lévy stable distribution is denoted by the
characteristic function:

K(q, α) = exp{iμq − σα | q |α [1 + iβ.sign(q).φ(q, α)]} (1)

where,

φ(q, α) =

{
(2/π) ln(q), α = 1
− tan(πα/2), α 	= 1.
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The stability exponent α ∈ (0, 2] defines the asymptotic decay of the pdf. σ ∈ (0, ∞)
measures dispersion. Skewness parameter β ∈ [−1, 1] measures asymmetry of the distribu-
tion. μ ∈ (−∞, ∞) is a scalar which determines the “location” or shift of the distribution.
The sign x is the signum function of x ∈ R defined as sign(x) = x/|x|. The problem is that
the variance of the distribution in (1) is finite but is not stable. This is because, large cut-off
l results in slow convergence and a smaller cut-off l may result in abrupt tail [8]. In [25],
the author generated a TLF to address the convergence problem by using a decreasing
exponential cut-off function. Thus, the process in Equation (1) is truncated to obtain the
TLF given by:

T (q, α) =

{
c K(q, α), | q | ≤ l

0, | q | > l
(2)

for some normalizing constant c, stability exponent α ∈ (0, 2] and cut-off length l. The char-
acteristic function of the TLF in Equation (2) is given by

ln[T (q, α)] =
2πAl−αt

[
1 − ((ql/σ)2 + 1)α/2 cos(α arctan(ql/σ))

]
αΓ(α) sin(πα)

. (3)

To determine the best scaling exponent (α) from characteristic equation in (3), we
adjust the values of A, the cut-off parameter l and the scaling exponent α simultaneously
to fit the characteristic function to the data.

2.2. Detrended Fluctuation Analysis (DFA)

Given the noise-like time series ψ, we find the integrated series

Y = ∑
k
(ψk − < ψ >). (4)

to determine the Root Mean Squared Fluctuations (RMSF) from Equation (5) below

F(s) =

{
1
N ∑

j

[
Yj − Ys

j

]2
}1/2

(5)

A log–log plot of the RMSF against the series length s produces a directly proportional
relation given by

F(s) ∝ sH

logF(s)− Hlog(s) = K, (6)

where H := Hurst exponent of the DFA and Hmin ≤ H ≤ Hmax [4].

2.3. Cantor Detrended Fluctuation Analysis (CDFA)

In this subsection, we prove that the subspace [Hmin, Hmax] of Hurst exponents is
homeomorphic to [0, 1] of the Cantor set. We also present an illustration of the Cantor set
and the algorithm for the CDFA.

Theorem 1. A map f : [Hmin, Hmax] → [0, 1] between the topological spaces of Hurst exponents
of noise-like time series and the Cantor set is a homeomorphism if it has the following properties:

• f is a bijection;
• f is continuous;
• the inverse function f−1 is continuous.

If two topological spaces admit a homeomorphism between them, we say they are
homeomorphic: they are essentially the same topological space.
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Proof. Let Hmin ≤ H ≤ Hmax and 0 ≤ y = f (H) ≤ 1, then the map f : [Hmin, Hmax] →
[0, 1] gives

Hmin − Hmin ≤ H − Hmin ≤ Hmax − Hmin (7)

0 ≤ H − Hmin
Hmax − Hmin

≤ 1. (8)

Thus,

y = f (H) =
H − Hmin

Hmax − Hmin
. (9)

Now, we need to prove that the map f is homeomorphic to the Cantor set.
The map f (H) is said to be bijective if and only if f (a) = f (b) for all a, b implies that

a = b. From
f (a) =

a − Hmin
Hmax − Hmin

and f (b) =
b − Hmin

Hmax − Hmin
,

f (a) = f (b)

=⇒ a − Hmin = b − Hmin

=⇒ a = b.

Thus, the map f (H) is a bijection.
The map f (H) is continuous at some value c in its domain if f (c) is defined, the limit

of f as H approaches c exists and the function value of f at c equals the limit of f as H
approaches c. The function f (c) is defined as

f (c) =
c − Hmin

Hmax − Hmin
. (10)

The limit of f as H approaches c equals

lim
H→c+

f (H) = lim
H→c−

f (H) =
c − Hmin

Hmax − Hmin
. (11)

The left- and right-sided limits are equal from (11). Therefore,

lim
H→c

f (H) =
c − Hmin

Hmax − Hmin
. (12)

Hence we observe that the right hand side of Equation (10) is equal to right hand side
of Equation (12). Thus, it follows that

lim
H→c

f (H) = f (c) =
c − Hmin

Hmax − Hmin
.

Thus, the map f is continuous at some value H = c for a differentiable fractal.
The inverse function of f (i.e., f−1(H)) exists.

y = f (H) =
H − Hmin

Hmax − Hmin
(13)

(Hmax − Hmin)y = H − Hmin (14)

H = Hmin + (Hmax − Hmin)y (15)

Interchanging H and y gives

y = f−1(H) = Hmin + (Hmax − Hmin)H, (16)

the inverse function of f (H).
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The inverse map f−1 is continuous at some value s in its domain if f−1(s) is defined,
the limit of f−1 as H approaches s exists and the function value of f−1 at s equals the limit
of f−1 as H approaches s. f−1(s) is defined as

f−1(s) = (1 − s)Hmin + sHmax. (17)

The limit of f−1 as H approaches s equals

lim
H→s+

f−1(H) = lim
H→s−

f−1(H) = Hmin + (Hmax − Hmin)s. (18)

⇒ lim
H→s

f−1(H) = Hmin + (Hmax − Hmin)s. (19)

Since the right hand side of Equation (17) equals the right hand side of Equation (19) it
implies that,

lim
H→s

f−1(H) = f−1(s) = (1 − s)Hmin + sHmax.

Thus, the inverse map f−1 exists and is continuous at some value H = s.
Therefore, the map f (H) is a homeomorphism and H ∈ [Hmin, Hmax] is homeomorphic

to [0, 1] of the Cantor set for noise-like time series.

2.3.1. Illustration of the Cantor Set

In this subsection, we take real-world noise-like time series and remove middle thirds
up to four (4) levels so that it is similar to the Cantor set. This phenomenon is depicted in
Figure 1 [26]. It shows that the segments appear the same at different scales in successive
magnifications of the Cantor set from levels C0 to C6. C0 depicts the original time series
with no missing parts and C6 represents the remaining time series after removing middle
thirds for the sixth time. For the sake of experimentation, we limit our scope to levels from
C0 to C3.

Figure 1. Fractal behavior of a ternary Cantor set.

2.3.2. Definition

The subset of intervals of the Cantor set is defined recursively as:

1. C0 = [0, 1];

2. C1 =
(

1
3 , 2

3

)
;

3. Cn = Cn−1
3 ∪

(
2
3 + Cn−1

3

)
for n ≥ 2.

The ternary Cantor set is defined as C = [0, 1] \ (∪∞
n=1Cn). The level C0 indicates

the interval we begin with. For C1, [0, 1] is divided into 3 sub-intervals and the middle
sub-interval

(
1
3 , 2

3

)
is removed. For C2, each of the remaining intervals from C1 are divided

into 3 sub-intervals and their middle sub-intervals
(

1
9 , 2

9

)
and

( 7
9 , 8

9
)

are removed. This
procedure can continue indefinitely by removing open middle third sub-interval of each
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interval obtained in the previous level. Due to issues with the dimension of the Cantor
sets (i.e., dimension of 0.631 < 1), we rescale the integrated series ψt by dividing each
observation by the maximum data point:

ψt =
Ψt

max(Ψt)
.

s.t. ψt ∈ [0, 1].

2.3.3. Algorithm of the CDFA

Here, we present a modification of the DFA algorithm called CDFA to generalize the
segment division step of the DFA. The CDFA algorithm consists of four (4) main steps:

1. given the time series ψt of length N, find the integrated series shifted by the mean
< ψ >,

Yj =
j

∑
i=1

(ψi − < ψ >).

2. the cumulatively summed series Yj is then segmented into equal non-overlapping
segments of various sizes Δs. Δs is based on the Cantor set theory scale (Δs = 3n,
n ≥ 0). The number of non-overlapping segments is calculated as:

NΔs ≡ int
(

N
Δs

)
= int

(
N
3n

)
.

The Cantor set scaling function is computed for multiple segments to highlight both
slow- and fast-evolving fluctuations that control the structure of the time series.

3. Root Mean Squared Fluctuation (RMSF) is computed for multiple scales of the inte-
grated series:

F(Δs) ≡
{

1
2NΔs

2NΔs

∑
j=1

[
Yj − YΔs

j

]2
}1/2

where j denotes the sample size of segments NΔs. We compute RMSF from j = 1
to 2NΔs not NΔs. We sum from beginning to end and from end to beginning, then
an average of the values is calculated so that every data point is considered. Con-
versely, the large segments interweave many local periods with both small and large
fluctuations and therefore average out their differences in magnitude.

4. the least squares regression fit of F(Δs) versus the Cantor scales Δs on a log–log scale
produces the power-law notation computed for multiple scales:

F(Δs) ∝ (Δs)Hc

log(F(Δs)) = Hclog(Δs) + log(C),

where Hc := Hurst exponent of the CDFA which measures memory behavior in the
noise-like time series.

2.3.4. Real Time Series

In Figure 2, the time series multifractal (upper panel), monofractal (middle panel) and
white noise (lower panel) used in the experiment are noise-like biomedical time series with
8000 rescaled sample data points each [27]. The red trajectory depicts the random walk of
the respective series. Observe that the fractal depicted by the multifractal time series at the
peak looks very similar to the entire monofractal time series. Thus, comparing the series in
the upper panel to the middle panel, the multifractal series has many fractals compared to
the one for the monofractal series. We determine DFA’s Hurst exponents for the remaining
series after removing the middle thirds of each series at each level. It should be noted that
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the white noise time series has a structure independent of time with Hurst exponent close
to H = 0.5 whereas noise-like monofractal and multifractal time series exhibit persistence
behavior s.t. 0.5 < H ≤ 1.

Figure 2. Biomedical time series plots.

3. Results

Below are tables of results of power-law exponents from the implementation of the
DFA algorithm on the respective time series. Note from Figure 1 that

1. C0 denotes the entire time series (with 8000 data points) and produces one Hurst
exponent H1 shown in row 1 of Tables 1–3;

2. C1: after removing middle third of the time series for the first time, we have two(2) set
of data with respective data points 2666 and 2667 and corresponding Hurst exponents
H1 and H2 as shown in row 2 of Tables 1–3;

3. C2: we have four (4) data sets remaining after deleting middle third for the second
time. The data sets have 888, 889, 888 and 889 observations, respectively. Thus, we
obtain four(4) Hurst exponents, namely, H1, H2, H3 and H4 as shown in row 3 of
Tables 1–3;

4. C3: deleting middle third for the third time produces eight (8) partitions of data with
296 data points each. Each of the data sets produces a Hurst exponent resulting in
eight (8) exponents H1, H2, H3, H4, H5, H6, H7, and H8 in total. These exponents
are shown in the last rows of Tables 1–3.

It should be noted that the same data points from partitioning correspond to the white
noise, monofractal, and multifractal time series. The Hurst exponents also follow respectively.

Table 1. DFA’s Hurst Exponents of White noise time series.

Levels Hurst Exponents

C0 H1 = 0.50
C1 H1 = 0.50, H2 = 0.45
C2 H1 = 0.54, H2 = 0.45, H3 = 0.52, H4 = 0.42

C3
H1 = 0.50, H2 = 0.54, H3 = 0.4, H4 = 0.49, H5 = 0.59, H6 = 0.43, H7 = 0.42,

H8 = 0.57

From Table 1, we observe closeness of the Hurst exponents of the white noise series to
H = 0.5 for all levels from C0 to C3. This confirms the phenomena that are exhibited in the
fractal nature of the Cantor set in white noise time series. No matter how many sections of
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a white noise series are removed, the left-over series still exhibits similar characteristics as
the whole white noise series.

Table 2. DFA’s Hurst exponents of monofractal time series.

Levels Hurst Exponents

C0 H1 = 0.79
C1 H1 = 0.80, H2 = 0.68
C2 H1 = 0.81, H2 = 0.69, H3 = 0.74, H4 = 0.68

C3
H1 = 0.65, H2 = 0.80, H3 = 0.63, H4 = 0.72, H5 = 0.78, H6 = 0.68,

H7 = 0.67, H8 = 0.79

Table 2 present Hurst exponents between 0.5 and 1 (0.5 < H ≤ 1) for long memory
monofractal time series for levels C0, C1, C2 and C3. The phenomena exhibited in the
monofractal time series from the table above are similar to the fractal nature of the Cantor
set. The series left behind after removing the middle thirds of the monofractal time series
exhibits similar statistical properties as the whole.

Table 3. DFA’s Hurst exponents of multifractal time series.

Levels Hurst Exponents

C0 H1 = 0.86
C1 H1 = 0.86, H2 = 0.75
C2 H1 = 0.75, H2 = 0.88, H3 = 0.70, H4 = 0.78

C3
H1 = 0.82, H2 = 0.69, H3 = 0.77, H4 = 0.97, H5 = 0.69, H6 = 0.70,

H7 = 0.91, H8 = 0.90

Hurst exponents of the multifractal time series lie within the range 0.5 < H ≤ 1 for
all levels C0, C1, C2 and C3 from Table 3. This illustrates the fractal phenomena depicted
by the Cantor set where successive magnification of the Cantor produces a copy of itself.
This can be seen in Figure 1. Thus, self-similar behavior persists after removing the middle
thirds of the whole series up to the level C3. Results from Tables 1–3 confirm that successive
magnification of noise-like time series shows a similar pattern at increasingly smaller scales.
Thus, the statistical characteristics of part of noise-like series are similar to that of the whole.
This phenomenon is commonly known in fractals as self-similarity.

Figures 3–8 shows the log–log fits of RMSF and scales of the white noise, monofracal
and multifractal bio-medical series using the DFA and the CDFA. The first two (2) plots
(i.e., Figures 3 and 4) present fits of the white noise using the DFA and CDFA. The next
two (2) plots (i.e., Figures 5 and 6) illustrate the fit of monofractal series using the DFA and
CDFA. The last two(2) plots (i.e., Figures 7 and 8) show fits of the multifractal series using
the DFA and the CDFA.

Table 4 above has six (6) columns of results in total. The first column (H) represents
the Hurst exponents of the DFA, the second column (Hc) denotes the Hurst exponents of
the CDFA and the difference between the exponents in the first two columns are found
in the third column. The column for α denotes the scaling exponents of the TLF. The last
two columns represent the multiplication of the Hurst exponents of the DFA (H) and the
scaling exponent of the TLF (α), as well as the multiplication of the Hurst exponents of the
CDFA (Hc) and the scaling exponents of the TLF. Upon investigating Hurst exponents of
white noise, monofractal and multifractal time series using the DFA and CDFA, we observe
differences in their exponents, as shown in Table 4. Hurst exponent of white noise time
series changes slightly but that of the monofractal and multifractal time series changes
about 1%. The slight changes in the exponents are a result of subdividing the time series as
multiples of 3 (ternary base) at each level using the CDFA. This helps to curb the problem
of overestimation associated with DFA. Notwithstanding the differences between the
exponents, they still depict the same processes modeled herein (i.e., noise-like time series).
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The exponent of the white noise is close to 0.5 whereas that of the noise-like monofractal
and multifractal series lie within the range 0.5 < H ≤ 1, depicting long-memory behavior.

Table 4. Comparison of scaling exponents of DFA(H) & CDFA(Hc) & TLF (α) on noise-like
time series.

Time Series H Hc Difference α Hα Hcα

White noise 0.5 0.4997 0.0003 1.97 0.985 0.9844
Monofractal 0.79 0.781 0.009 1.28 1.0112 0.9997
Multifractal 0.86 0.851 0.009 1.17 1.0062 0.9976

Figure 3. Log–log fit of white noise time series using DFA.

Figure 4. Log–log fit of white noise time series using CDFA.
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Figure 5. Log–log fit of monofractal time series using DFA.

Figure 6. Log–log fit of monofractal time series using CDFA.
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Figure 7. Log–log fit of multifractal time series using DFA.

Figure 8. Log–log fit of multifractal time series using CDFA.

4. Discussion

The results obtained from the Tables 1–4 suggest that segment size may not always be
hard-coded in the DFA algorithm based on the length of the time series in question. Espe-
cially for time series with odd lengths, the process can be automated using the fractal phe-
nomena of the Cantor set to obtain equal segment sizes and satisfactory Hurst exponents.

Furthermore, multiplying Hurst exponents of the DFA and CDFA with the scaling ex-
ponents (α) of the Truncated Lévy flight (TLF) suggests that Hc is a better estimate. For the
monofractal and multifractal noise-like time series, we observe that Hcα is approximately
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equal to 1 while Hα exceeds 1. This deviates from the inverse relationship between the
Hurst exponents and the scaling exponents of the TLF for Gaussian noise as discussed
in the paper [4]. This highlights the overestimation of the Hurst exponent of the DFA
approach that happens in practice.

5. Conclusions

In this work, we have proposed a modification to the DFA algorithm by utilizing the
theory of the tenary Cantor set in the segment division step. The Cantor DFA (CDFA) has
been compared to the α exponent of the truncated Lévy model and the Hurst exponent of
the DFA. We have in addition proved that the interval of the Hurst exponent of the DFA is
homeomorphic to the Cantor set. We confirm the results from the proof by illustrating the
fractal phenomena exhibited by the Cantor set using real-world time series in Tables 1–3.

Our results from numerical simulations show that the CDFA generates better estimates
of Hurst exponents. The CDFA proposed in this work automates the segment sizes in the
DFA algorithm using the number base 3 theory of the Cantor set, where the time series is
divided into multiples of 3 at each level. This modification helps to curb the overestimation
problem of the Hurst exponent (H) of the DFA by determining segment sizes based on
the fractal phenomena depicted by the Cantor set while correctly predicting the memory
behavior of the series in question.

The results are shown in Table 4 where the Hurst exponent of the CDFA is compared
with that of the DFA and the scaling exponents (α) of the TLF. In [4], a relationship
was established between the Hurst exponent of the DFA and the α exponent of the TLF.
The CDFA is also shown to satisfy this relation, thus making it possible to extract the α
exponent of the TLF from the Hurst exponent of the CDFA.

The CDFA approach can be applied to time series with odd lengths, time series
whose lengths are not easily divisible by even numbers, time series whose lengths do not
permit equal segmentation, etc. These kinds of series exist in several industries, including
financial, geophysics, health and the like. Another application of the CDFA would be to
act as a control model for the ordinary DFA to reduce the chances of overestimation of the
Hurst exponent.

Since this is a modification of the DFA, there is the need to simulate CDFA with
different data sets having varying characteristics for which the DFA has been shown to
correctly detect their scaling behavior. An example will be DNA sequences, financial
markets, etc., for further comparison of the model performance against the DFA.

For future work, we seek to investigate the robustness of the CDFA as stated earlier
by simulating the model with data sets from different fields, including, but not limited
to, DNA sequences, financial markets and geophysical data. In the case of “big data”, we
seek to extend the CDFA by “parallelizing” the sequential code of the CDFA (PCDFA) to
improve its efficiency in simulation.
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Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

DFA Detrended Fluctuation Analysis
CDFA Cantor Detrended Fluctuation Analysis
TLF Truncated Lévy Flight
R/S Rescaled Range Analysis
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Abstract: We analyze the price return distributions of currency exchange rates, cryptocurrencies, and
contracts for differences (CFDs) representing stock indices, stock shares, and commodities. Based
on recent data from the years 2017–2020, we model tails of the return distributions at different time
scales by using power-law, stretched exponential, and q-Gaussian functions. We focus on the fitted
function parameters and how they change over the years by comparing our results with those from
earlier studies and find that, on the time horizons of up to a few minutes, the so-called “inverse-cubic
power-law” still constitutes an appropriate global reference. However, we no longer observe the
hypothesized universal constant acceleration of the market time flow that was manifested before in an
ever faster convergence of empirical return distributions towards the normal distribution. Our results
do not exclude such a scenario but, rather, suggest that some other short-term processes related to a
current market situation alter market dynamics and may mask this scenario. Real market dynamics
is associated with a continuous alternation of different regimes with different statistical properties.
An example is the COVID-19 pandemic outburst, which had an enormous yet short-time impact on
financial markets. We also point out that two factors—speed of the market time flow and the asset
cross-correlation magnitude—while related (the larger the speed, the larger the cross-correlations on
a given time scale), act in opposite directions with regard to the return distribution tails, which can
affect the expected distribution convergence to the normal distribution.

Keywords: return distributions; power-law tails; stretched exponentials; q-Gaussians; financial
markets; COVID-19

1. Introduction

A proper risk assessment is one of the key prerequisites of any prospective financial
investment. Even for an asset of moderate volatility, underestimating the probability of
occurrence of an event of a given magnitude can lead to severe outcomes. Among the
methods of dealing with risk assessment is the determination of a correct probability dis-
tribution function for asset price fluctuations in order to construct an adequate model of
that asset’s price dynamics. This issue has been of central interest since the early years of
econometrics. It was Bachelier who proposed a model of the stock option price dynamics
based on an uncorrelated random walk with a Gaussian distribution of fluctuations [1].
Later, it was found that the Gaussian noise hypothesis was only a poor approximation of
the empirical data, which shows non-vanishing higher moments of the fluctuation distri-
butions, i.e., skewness and positive excess kurtosis. Based on an observation of the cotton
price dynamics, Mandelbrot proposed to model the logarithmic price increments (returns)
with a process of Lévy flights, which is described by a heavy-tailed probability distribution
function that is stable [2,3]. These distributions are defined by their characteristic function
as they do not have a closed analytic form. However, their tails decrease as a power law in
the limit of large x:

Lα(x) ∼ 1
|x|1+α

, x → ±∞, (1)
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where 0 < α < 2.
According to Mandelbrot [4], such a process can account for the absence of a con-

vergence of the aggregated return distribution to the normal distribution as expected by
the central limit theorem (CLT). The heavy tails are thus viewed as a natural limit of the
aggregated independent or weakly dependent factors provided they are described by the
stable distributions. However, this hypothesis has a weak point because the empirical data
cannot exhibit the infinite variance required to maintain the distribution stability under
aggregation. After the pioneering work of Mandelbrot, many researchers investigated
financial time series in order to verify his outcomes. For example, Fama reported that the
daily returns of stocks are better approximated by the infinite-variance distribution than
the normal distribution or a mixture of the normal distributions [5]. The Lévy stability
of the return pdfs in their central parts was also confirmed, among others, by Blume
(α ≈ 1.7 − 1.8) [6], Teichmoeller (α ≈ 1.6) [7], and Blattberg and Gonedes (α ≈ 1.6) [8].
Some reports pointed out that, although central parts of the return distribution can be
approximated by the stable distributions, the same cannot be said about the distant parts
of their tails, which decay faster than expected. Officer found that the tails of the daily
and monthly return distributions are no doubt thicker than Gaussian but at the same time
thinner than Lévy-stable [9]. Barnea et al. observed that the daily return distributions
for some stocks are well approximated by stable distributions, while for other stocks,
they are not [10]. Much later, Young and Graff reported that the real-estate annual return
distribution can be fitted by a stable function using α ≈ 1.5 [11].

Along with the research on empirical data, much effort was devoted to developing
models that could mimic the market dynamics. Among such models, the subordinated
stochastic processes do not require an assumption of the Lévy-stable character of the
underlying dynamics and assume that the price movement is a Brownian motion that takes
place in time, which itself is a stochastic process with positive increments and finite variance
(e.g., a lognormal process) [12]. In practice, the subordinating process is assumed to be
volume or transaction number. As an alternative, Engle proposed that the distribution tails
are heavy because of the heteroskedasticity of the return-generating process, in which large
returns are caused by a locally large variance of the process [13]. Mantegna and Stanley
found a dual structure of the stock index return distribution (S&P500 index during the
years 1984–1989), with its central part being in agreement with a Lévy-stable distribution
and with exponentially decaying distant tails [14]:

Ltr
α,γ(x) ∼ 1

|x|1+α
e−γ|x|, γ > 0. (2)

While considering the aggregated returns at different time horizons, they did not
find any trace of a convergence to the normal distribution. Based on these findings, they
proposed a new model for the price return dynamics: a truncated Lévy flight process. They
also showed that the heteroskedastic model (GARCH) does not fit the data well [14]. This
type of distribution (α ≈ 1.6–1.7) was also reported from an analysis of the same S&P500
index recorded over a longer interval (1986–2000). In contrast, the aggregated returns
showed a crossover to a CLT regime around a time scale of 20 days [15].

Plerou et al. and Gopikrishnan et al. presented two parallel, comprehensive studies of
the stock market high-frequency data representing stock price returns for 1000 American
companies and S&P500 index returns [16,17], in which they observed the cumulative
distribution function tails obtained from aggregated returns over a substantial spectrum of
time scales from 5 min (stocks) and 1 min (index) to 4 years. They found that the return
distributions have power law tails, with the exponent 2.5 < α < 4 depending on a stock.
However, despite the fact that they did not fit the Lévy-stable domain (α < 2), these
distributions were invariant under a change in the time scale up to Δt = 16 days. Only for
the sampling intervals longer than 16 days, a slow transition to a normal distribution was
observed [16]. An analogous invariance of the return distribution shape with the power
exponent α ≈ 3 under the time-scale change was observed for the S&P500 index, but in
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that case, the crossover occurred earlier at Δt = 4 days. Only for the time scales longer than
4 days, a slow convergence to a Gaussian distribution was seen. A similar behavior was
found in the indices from other stock markets (Nikkei & Hang-Seng) [17]. This surprising
behavior of the stock markets led the authors to formulate the so-called “inverse cubic
law”—a conjecture that the power-law tails of the return distributions with the scaling
exponent α ≈ 3 are a universal property of all stock markets at short and medium time
scales [18]. Indeed, similar statistical characteristics were found by other researchers in
data collected from other stock markets [19–35], Forex [36], commodity markets [36,37],
and the cryptocurrency market [36,38–40].

The only possible explanation of this result is that the analyzed data violated the
assumptions of the central limit theorem, i.e., the returns were significantly correlated.
Indeed, the cross-correlations among the stock returns representing different companies
are an obvious characteristics of all stock markets [34,41–45]. It was shown that the inter-
stock cross-correlation strength has a strong impact on the index return distributions and
can even modify their tail behavior, leading to a kind of alternation between different
power-law regimes: stable and unstable [43]. On the other hand, the cross-correlations
between different stock markets can also induce a significant regime change [21,22]. The
existence of autocorrelation in returns is a more delicate issue: while the returns reveal
some short-term memory lasting for a few minutes, the existence of long-term memory
is doubtful [16,17,24,46,47], even though there were reports stating that the returns can
show some autocorrelation or persistence over long terms [48–52]. On the other hand,
there is consensus over a fact that the long-term autocorrelation is present in absolute
returns (volatility) and in some more fundamental observables such as fluctuations in
stock market orders, transaction size, and market liquidity [53–55]. The existence of a
return autocorrelation can be considered an important factor that can destroy market
efficiency [56,57]. These ubiquitous manifestations of the inverse cubic scaling in the
financial data encouraged Gabaix et al. to propose a model that was able to account for
this phenomenon [58]. According to this model, the inverse-cubic return fluctuations were
a result of two processes: the volume fluctuation that forms a probability distribution
function with the tail index 1.5 and a specific square-root form of the price impact function,
which together produce a tail index equal to 3 [58]. However, Farmer and Lillo pointed out
that the price impact function is specific to individual markets and even to individual stocks;
thus, it cannot produce any universal behavior. Also, the dependence on transactions is
slower than the square root and the volumes are not power-law distributed, so they cannot
lead to a power-law behavior of the returns with α ≈ 3 [59]. The price changes are driven
by more factors than simply volume and transaction number fluctuations—it can be the
order book structure, for example [60,61]. Moreover, there is plenty of published evidence
that various financial assets either do not have the power-law distribution tails [29,62–67]
or their scaling exponent α differs from 3 even for the short time scales [36,68–73]. Given
these results together, the inverse cubic scaling cannot be considered a universal property of
financial returns and, thus, cannot be called “a law”. However, it manifests itself sufficiently
often to allow us to view it as one of the possible reference models describing the empirical
return distribution tails (there is a plethora of volatility models, which takes into account
various factors; a review of such models can be found in Poon and Granger [74]).

The power law tails of the return distributions, which are among the financial stylized
facts, can be reproduced with a broad range of the scaling exponent by means of various
models based on stochastic processes [63,75–83], including multiplicative processes [84–86],
the minority game and other agent-related dynamics [87–91], as well as spin dynam-
ics [23,92].

Apart from power-law functions, the tail behavior of the return distributions can also
be approximated by exponential functions and stretched exponential functions [93]. The
latter are defined by the following expression:

f (x) ∼ exp x−β, 0 < β < 1. (3)
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Such a functional form allows for the stretched exponents to locally resemble the
power laws. There were many published studies in which the return distributions were
approximated successfully by the exponents, and some researchers advocate using these
functions instead of the power laws [23,29,31,63–67,69,80,94,95]. Another type of exponen-
tial function that is sometimes considered in the context of financial data is the Laplace
distribution function p(x) ∼ exp(−|x|). This function can also demonstrate heavy tails.
It was observed that some empirical return distributions can be approximated by this
function [62,96].

The functions that have been discussed so far do not exhaust the possible models
that can be used to approximate the empirical return distributions. In a financial context,
a particularly important class is the q-Gaussian functions. They were derived as a part
of the formalism of nonextensive statistical mechanics based on the Tsallis nonadditive
entropy [97]:

Sq = kB
1 −

∫
[p(x)]qdx

q − 1
, (4)

where p(x) is some probability distribution and kB is a positive constant. Under certain
conditions, this entropy is maximized by a family of q-Gaussian distributions given by

Gq(x) ∼ expq[−Bq(x − μq)
2], (5)

where
expq x = [1 + (1 − qx]

1
1−q , Bq = [(3 − q)σ2

q ]
−1, (6)

provided that 0 < q < 3 and that μq and σ2
q are q-mean and q-variance, respectively. The

q-Gaussians generalize both the normal distribution (q = 1) and the Lévy distributions
(5/3 < q < 3). Their attractiveness comes from the fact that, for the correlated random
variables, the q-Gaussians become stable distributions. Moreover, their tail behavior can
also resemble the power laws [98]. As the price returns are correlated, one can expect
that these functions can describe the statistical properties of returns. Indeed, there is a
growing evidence that the q-Gaussian distributions can approximate the empirical return
distributions [30,32,66,99–101].

The q-Gaussians are among the functions borrowed from the nonextensive statistical
mechanics that were exploited in this context. Another example is the q-exponent given by
Equation (6), which was also reported to fit the empirical returns from a stock market [102].
Finally, some researchers consider the normal-inverse Gaussian function to be a prospective
model that can successfully be fitted to the data [71].

This short review of the return distribution modeling approaches shows that there
is a cornucopia of the reported results that were even contradictory sometimes. The
only firm observation that is shared by all the studies is that the return distributions
reveal heavy tails, at least at short time scales. On medium and long time scales, the
situation depends strongly on a data set, a market, and a financial instrument. Drożdż
et al. attempted to resolve this problem by noticing that the most well-known results
regarding the return distributions, i.e., Mandelbrot’s Lévy stability (α < 2) [4]; Mantegna
and Stanley’s truncated Lévy flights [14]; Plerou and Gopikrishnan’s unstable power-law
tails (α ≈ 3), which are persistent under aggregation of the returns until the time scales
of days or even a month [16,17]; and their own results with the α ≈ 3 regime already
breaking at the time scale of hours [24], were based on the data covering different epochs:
1816–1958 (Mandelbrot), 1984–1989 (Mantegna), 1926–1995 (Plerou and Gopikrishnan),
and 1998–1999 (Drożdż). One can follow the whole historical process of the financial
market development, introduction of new financial instruments, technological innovations,
transition from the classic “floor-based” markets to the digital markets, computing power
increase, telecommunication revolution, etc. from past to present. This inevitably leads
to the constantly increasing number of investors, transactions, and pieces of information
that arrive at the market. These are accompanied by the increasing amount of money and
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information processing speed, which, if taken together, result in an overall acceleration of
the market time flow. Any unit of time nowadays corresponds to a much longer interval in
the past. From this perspective, the market properties once observed, say, at a daily scale,
now can be observed at scales of hours, minutes, or even seconds. This may be the very
reason why Mandelbrot observed the Lévy-stable distributions that are hardly seen today
and why Plerou and Gopikrishnan reported the crossover to the CLT-related convergence
of distribution tails at the time scale of many days, while today, such a behavior is observed
within hours or minutes. This hypothesis formulated by Drożdż et al. was later supported
by other analyses as well [24,30,32,69,72].

However, based on data covering a given time interval, one can observe an analogous
phenomenon by considering, e.g., the stocks representing companies with different capital-
ization. Since there is statistically a relation between the capitalization of a company and the
number of transactions involving its stock shares, the highly capitalized stocks “feel” that
time flows faster than their lower-capitalized counterparts. In consequence, the properties
of the corresponding return distributions substantially differ between both groups, with
the former displaying thicker tails than the latter [24,34,35,100,103]. Qualitatively similar
observation can be made by comparing the distributions for the data from the markets of
different developmental stage, e.g., the mature markets and the emerging markets. The
former are characterized by higher liquidity and a higher transaction number than the
latter; therefore, generally, the situation is parallel to the previous cases. Studies of the data
from the emerging markets report thick tails with small scaling exponents more frequently
than the mature markets [25,26,28,52,66,94,104–110].

Another issue related to return distributions is their asymmetry between positive and
negative parts. It was investigated in various works as it is also an important factor in
investment risk assessments (the gain–loss asymmetry). Typically, this property was tested
by means of the third moment (skewness) of return distributions, in which a negative
value means a higher probability of a significant gain with respect to a significant loss
while a positive value means the opposite. The negative skewness is associated, thus, with
a positive tail of the distribution being heavier than the negative tail. There are mixed
outcomes of the empirical data reported in the literature, including indications of either
positive, negative, or neutral skewness as well as the scaling exponent difference between
the left and the right tails (in the case of power-law tails) dependent on the analyzed time
intervals, markets, and securities (e.g., References [14,16,17,20,28,31,36,62,71,94,111–119]).
However, even though a difference between the positive and negative tails exists in the
data, it has a much weaker impact on the distribution shape and the related investment risk
than the heavy tails. Therefore, in many studies reported in the literature, only absolute
returns are considered, neglecting their actual signs (e.g., References [16,17,24,30,32,39]).
As our study is focused on an investigation of the tail exponent stability with respect to the
time scale Δt and, based on literature and our previous experience, we expect larger effects
due to the time-scale change than due to the left–right tail asymmetry, we neglect the return
sign and consider both tails together by analyzing the absolute return values. In fact, our
major new finding is that, in recent years, the market’s “internal” time stopped accelerating
with respect to our ordinary “clock” time. Other factors also affect the convergence of
return distributions to the Gaussian with increasing Δt, especially those that cause extreme
volatility and strong cross-correlations between assets such as COVID-19. We discuss the
interplay of these two factors in the following sections.

The remainder of our paper is organized as follows: in Section 2, we present the data
sets that were analyzed; in Section 3, we discuss the results; and in Section 4, we collect the
main conclusions of our study.

2. Data

We analyzed recent tick-by-tick recordings of the contracts for differences (CFDs)
representing (1) six major stock market indices, CAC40 (Euronext), DAX30 (Deutsche
Börse), FTSE100 (London SE), DJIA (New York SE), S&P500 (New York SE & NASDAQ),
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and NASDAQ100 (NASDAQ); (2) 240 U.S. stock shares and 30 stock shares with the highest
capitalization from Germany, France, and the U.K. (see Appendix A for their list); (3) four
commodities, U.S. crude oil (CL), high grade copper (HG), silver (XAG), and gold (XAU);
(4) the currency exchange rates (not CFDs) involving five major currencies, USD, EUR, GBP,
CHF, and JPY; and (5) two cryptocurrencies, bitcoin (BTC) [120] and ethereum (ETH) [121].
The commodity CFD prices are expressed in U.S. dollars. The data comes from Dukascopy
(the index, stock share, commodity CFDs, and currency exchange rates) [122] and Kraken
exchange (cryptocurrencies) [123] and covers 4 years from January 2017 to December 2020
(except for the stock share CFDs that cover a shorter interval starting from January 2018).
Different instrument types have different trading hours, with the stock market index and
commodity CFDs quoted from Monday to Friday (00:00–23:00 hours CET, daylight saving
time-adjusted), the stock share CFDs quoted from Monday to Friday (U.S.: 15:30–22:00
CET, European: 09:00–17:30 CET), the currency exchange rates quoted around the clock
from Monday to Friday, and the cryptocurrency exchange rates quoted continuously 24/7.

Price P(t) of an asset is defined at the moment of transaction only and remains
undefined otherwise. Therefore, in order to construct an evenly sampled time series of
the price quotations, we assume that the price remains constant between the consecutive
transactions, which is standard practice. The quotations of all the instruments were sampled
with Δt= 1 s, 10 s, 1 min, 10 min, and 1 h frequency and transformed into the normalized
logarithmic returns rΔt according to

rΔt = (RΔt − μR)/σR, RΔt(t) = log(P(t + Δt))− log(P(t)), (7)

where μR and σR are the mean and standard deviation of RΔt(t), respectively, and Δt is a
sampling interval. For each asset, we obtained five time series representing the returns for
different time scales Δt. Figure 1 shows the evolution of P(t) for various assets that are
analyzed in our work. The COVID-19 outburst in the U.S. in March and April 2020 that
had a strong impact on all financial markets has been distinguished by vertical lines. A few
corresponding time series of the normalized returns rΔt(t) with Δt = 1 min are shown in
Figure 2 together with a simulated Gaussian noise of the same length.
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Figure 1. Evolution of the CFD price and exchange rate quotations of various assets over the 4 year
interval 2017–2020 (data source: Dukascopy [122]) and the cryptocurrency prices (data source:
Kraken [123]). The quotations have been standardized in order to facilitate comparison. The vertical
dashed lines indicate the COVID-19 outburst in March–April 2020.

Figure 2. Time series of the standardized 1-min returns of sample financial instruments, S&P500
CFDs, gold CFDs (XAU/USD), and EUR/USD, together with a Gaussian noise of the same length.
Note the leptokurtic character of the empirical data.
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3. Results

For each individual time series of the absolute normalized returns, we created a
cumulative distribution function and investigated how fast its tail decays. In order to
quantify the tail behavior, we fit the empirical histograms with selected models that are of
the highest significance in this context: the power-law function, the stretched exponential
function, and the q-Gaussian function. Figure 3 shows sample return distributions with
the three best-fitted models of interest. We refer the reader to the specific subsections for
a discussion on the asset statistical properties; here, we consider only the fits. In each
panel, it is evident that the power-law function (dashed line) is able to reproduce the
empirical histograms in their far-tail region while it fails to describe the central part of
the distributions completely. The stretched exponential and q-Gaussian functions perform
much better in the central parts, while only the latter works well in the tails. However, as
the q-Gaussian and power-law functions converge to the same behavior in the tail regions
and as both the parameters α and q are related with each other via a relation,

q =
3 + α

1 + α
, (8)

henceforth, we omit the q-Gaussian fit parameter q and explicitly give the fitted values of α
and β only. For simplicity, we also omit the acronym “CFD” and use the asset names only,
but one has to realize that the CFD contracts and the assets they refer to are not the same
financial entities and that the statistical properties of the former may not necessarily reflect
the properties of the latter.

Figure 3. The least-square best fits of the power-law function (red dashed), the stretched exponential (green dotted), and
the q-Gaussian function (blue dash-dotted). Sample cumulative distribution functions of the returns for the EUR/USD
exchange rate (top) and the S&P500 index CFDs (bottom) are shown with different sampling intervals Δt from 1 s to 1 h.
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3.1. Stock Market Indices

Let us start with the cumulative return distributions of the stock market index CFDs
representing six principal indices, NASDAQ100, DJIA, S&P500, DAX30, FTSE100, and
CAC40, and the five time scales, 1 s, 10 s, 1 min, 10 min, and 1 h. Figure 4 shows that the
return distribution for the three U.S. indices (NASDAQ100, S&P500, and DJIA) does not
show an inverse cubic decay. Dow Jones is the closest, but this may be due to the fact that
this index has the least number of aggregated stocks (30 vs. 100 and 500). As the time scale
Δt increases, we observe a gradual decrease in the thickness of the distribution tails, but
this decrease is not so large that a convergence to the normal distribution could firmly be
involved. The best power-law fits for Δt = 1 s are α ≈ 3.9 (S&P500), 3.8 (NASDAQ100),
and 3.6 (DJIA). For a complete record of the fitted power-law and stretched exponential
function parameters, see Table 1. For longer time scales, the tails appear to be significantly
thinner only for NASDAQ100, and for Δt = 1 h, they reach α ≈ 4.6. For DJIA and S&P500,
we do not observe any convergence to the normal distribution, and therefore, we assume
that there is no such convergence for the scales up to 1 h. A strong discrepancy between
the inverse cubic and the empirical distribution is also visible in the case of DAX30. For the
returns with Δt = 1 s, we obtain the power law with α ≈ 3.5, and for the higher scales, we
have a trace of α → 4; however, this is by no means a monotonous increase.

Table 1. Estimated tail exponent α and stretched exponent parameter β for the aggregated distributions of the CFD returns
for select stock market indices.

Index Param. Δt = 1 s Δt = 10 s Δt = 1 min Δt = 10 min Δt = 1 h

DAX30 α 3.5 3.7 3.9 3.7 2.7
β 0.37 0.64 0.63 0.45 0.38

CAC40 α 3.6 3.8 3.7 3.6 4.8
β 0.38 0.62 0.40 0.42 0.63

FTSE100 α 2.8 3.4 3.7 3.5 4.6
β 0.51 0.39 0.81 0.68 0.52

DJIA α 3.6 3.7 3.3 3.3 3.0
β 0.37 0.41 0.68 0.41 0.37

S&P500 α 3.9 3.9 3.6 3.5 3.0
β 0.4 0.47 0.39 0.56 0.37

NASDAQ100 α 3.8 4.0 3.8 3.6 4.5
β 0.41 0.44 0.36 0.42 0.47

The return distribution for the FTSE100 and CAC40 indices are different. Especially in
the case of the latter, we observe an approximate inverse cubic decay α ≈ 3 for Δt = 1 s. It
is also clearer than in the previous cases that the tails become much thinner with increasing
scale, and for Δt = 1 h, we see α → 5. In the case of FTSE100, we do not deal with a
homogeneous distribution but, rather, with two or more different distributions imposed.
This is visible especially for the shortest time scale, where α < 3. As the scale increases, we
see a behavior similar to that of CAC40, although it is even more pronounced due to the
thicker tail at 1 s.

These results can be compared to those obtained for the high-frequency data from
1998–1999, which included both DJIA and DAX30 [24]. The distributions for the shortest
scale analyzed (Δt = 5 min) displayed tails close to those of the inverse cubic ones (even
more in the case of DJIA than DAX30), but a crossover was visible for the scales Δt > 2 h
for DJIA and Δt > 30 min for DAX30. Due to the limited maximum scale considered
in the present study, we cannot conclude what the DJIA distributions for the 2 h scale
look like, but it seems that, for the shorter scales, these distributions are slightly thinner
than before. With regards to the results for the S&P500 and DAX30 data from the years
2004–2006 [32], the tail slope decrease was power-law starting from α ≈ 4 for Δt = 1 min to
α ≈ 6 for Δt = 1 h for the American index and from α ≈ 3.5 to α ≈ 5 for the German index,
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respectively. These results differ from what we obtained here for the years 2017–2020.
It seems that the tendency of the inverse cubic scaling regime to shift towards shorter
time scales has at least stopped. The distribution tails also scale worse now than before.
However, one has to notice that the years 2004–2006 were characterized by much lower
volatility than the years 2017–2020, with a lack of comparably significant, dramatic events,
which can have some impact on the results.

Figure 4. Cumulative distribution functions of the CFD returns for stock market indices NQ100 (NASDAQ), DJIA (New York
SE), S&P500 (both New York SE and NASDAQ), DAX30 (Deutsche Börse), FTSE100 (London SE), and CAC40 (Euronext).
Different sampling intervals (time scales) are shown from 1 s to 1 h. The inverse cubic scaling α = 3 (dashed line) and the
stretched exponential with β = 0.5 (dotted line) are shown in each panel to serve as a guide.

3.2. Individual Stocks

The return distributions for all individual stocks collected from four mature markets:
the U.S., German, British, and French ones are shown in Figure 5. For the shortest time
scale analyzed, three markets display approximate inverse cubic scaling of their tails:
α ≈ 3.2 (U.K. and France) and α ≈ 3.3 (Germany), while the U.S. market shows a larger
exponent: α ≈ 3.6 (see Table 2). With increasing Δt, the distribution tail becomes thinner,
and already for Δt = 10 s, the exponent reaches ≈3.5 (the European markets) and ≈4.0 (the
U.S. market). This seems to be the quickest departure from the α ≈ 3 behavior observed
so far for individual stocks. The scaling index increases gradually up to Δt = 10 min, but
for 1 h, this picture is altered and only the U.S. stocks show a further increase (α ≈ 5.0),
while the exponent either stops—Germany—or even decreases—the U.K. and France (for
these two longest scales, the stretched exponential function fits the empirical distribution
better). This makes the situation less clear, but such a non-monotonous behavior was also

156



Entropy 2021, 23, 884

observed for some scales in [16] despite a much larger set of stocks considered there (1000).
In that study (the years 1994–1995), α ≈ 5.0 was observed for the returns sampled every
50–70 trading days. Later studies reported that the scaling regime with α ≈ 3 already
broke at Δt = 2 h for 30 DJIA stocks and at Δt = 5 min for 30 DAX stocks [24] (1998–1999)
and then that α ≈ 3 was valid up to Δt = 1 min and α ≈ 5 was reached for Δt = 2 h [32]
(1000 U.S. stocks, 1998–1999). In fact, even though in Table 2 we do not observe a convincing
convergence of the empirical distributions for the European stocks towards the normal
distribution, our results show that contemporary stocks experienced an accelerated time
flow compared with the past. Of course, since we analyzed the CFD contracts instead of
the stock share spot quotations as in [16,24,32], we have to be careful in drawing decisive
conclusions from the comparison between these two asset types.

Figure 5. Cumulative distribution functions of the CFD returns for the stock shares representing different markets: the U.S.
market (USA), the German market (GER), the U.K. market (UK), and the French market (FR). In each case, the aggregated
distributions for 30 stocks with the largest capitalization are shown. Different time scales are shown from 1 s to 1 h. The
inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5 (dotted line) are shown in each panel to
serve as a guide.

The faster convergence of aggregated returns nowadays, compared with a more or less
distant past, is among others a consequence of a decreasing autocorrelation time [16,24,32].
On the other hand, somehow, an opposite process is the increase in the cross-correlation
magnitude among different stocks, which leads to stronger violation of the CLT assumption
about random variable independence and thickening of distribution tails for the stock
market indices, which can cause a later crossover to the CLT regime. For the shortest
scales available for analysis of the order of an inter-trade interval, the cross-correlations are
relatively weak due to strong noise and a longer time needed for information to spread over
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the market. However, by increasing Δt, we also increase the cross-correlation magnitude,
which can eventually reach a saturation level with a magnitude dependent on the stocks
considered (the same industrial sector vs. different sectors, whether the stocks are included
in the same index, etc.) [34,41,44,124]. If we review the available results on this problem,
we can see that, in 1971, the saturation of the cross-correlation coefficient for the stocks of
the largest capitalization was reached at Δt ≈ 1 day [41], while it was 1/2 h for 1998–1999
for the largest companies and a few hours for the medium-sized companies [44]. In order to
learn how much time is needed for the cross-correlation magnitude to saturate nowadays,
we calculated the Pearson cross-correlation coefficients Cij(Δt) (i, j = 1, . . . , 30) for all pairs
of stocks within each of the markets studied here. Figure 6 shows the results for the mean
coefficient 〈Cij〉 together with a mean length of the zero-return sequences in the analyzed
time series and the largest eigenvalue of the 30 × 30 correlation matrix C(Δt) in which the
elements are Cij for a given Δt and a given market. We also added two sets of U.S. stocks
that represent medium-sized and small capitalization stocks. For all sets of stocks, a trace
of saturation is observed already at the time scales of a few minutes, which is much less
than the numbers presented above that from earlier works. This validates our statement
that the market time “felt” by the assets accelerates. There is also a clear dependence of the
mean cross-correlation coefficient on stock capitalization: the larger the capitalization, the
stronger the correlation Figure 6.

Table 2. Estimated tail exponent α for the aggregated distributions of the CFD returns for 30 U.S. stocks with the largest,
medium, and small capitalizations and 30 stocks representing selected European markets.

Market Param. Δt = 1 s Δt = 10 s Δt = 1 min Δt = 10 min Δt = 10 h

U.S. large α 3.7 4.0 3.9 4.0 5.0
β 0.47 0.54

U.S. medium α 3.7 4.1 3.8 4.0 4.0
β 0.41 0.48

U.S. small α 3.5 3.7 3.8 3.9 4.5
β 0.46 0.56

Germany α 3.3 3.6 3.8 4.2 4.2
β 0.49 0.56

U.K. α 3.2 3.5 3.9 4.2 3.6
β 0.51 0.48

France α 3.2 3.4 3.5 3.7 3.5
β 0.50 0.44

It is well-known that the cross-correlations are not stationary and that they strongly
fluctuate across time [34,125,126]. Figure 7 displays the evolution of 〈Cij(t)〉 calculated
in 30-day windows over the years 2018–2020. Two time scales are considered: 1 s and
1 h. 〈Cij(t)〉 fluctuates with a larger amplitude for Δt = 1 h than for Δt = 1 s. One of the
periods associated with the largest values of 〈Cij(t)〉 is 9–27 March 2020 (the COVID-19
pandemic outburst in the U.S.), when the markets underwent strong turbulence [39]. As
the cross-correlations were particularly strong during that period, we suspect that it could
contribute substantially to the tail shape of the stock return distributions.

To verify this hypothesis, we removed this period from the time series and constructed
artificial stock indices by aggregating the returns for all stocks belonging to the same set.
Figure 8 shows both the complete distributions and the resultant no-COVID ones. After
removing the COVID-19 outburst period, the distribution tails became substantially thinner,
which is particularly evident for Δt = 1 h (see Table 3). This supports our hypothesis
that strong cross-correlations among the stocks can prevent stock indices from showing
CLT convergence for short time scales. In this case, the stretched exponential function fits
the empirical distribution better than the power-law function (Table 3). The numbers in
this table illustrate how the stock-stock correlation strength can influence the stock index
returns. While the stretching parameter β is comparable for each group of the U.S. stocks
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at Δt = 1 s, it becomes significantly different at Δt = 1 h, where the medium and small
companies have thinner tails than the large companies. This is because the former are less
cross-correlated than the latter and the distributions can more easily converge towards a
Gaussian in this case, even though the medium and small companies should experience
a slower time flow than the large ones, which acts towards tail thickening. From this
example, we can see that both effects compete against each other and that the actual tail
behavior depends on the interplay of both factors.

Figure 6. (Top) The mean Pearson cross-correlation coefficient 〈Cij〉(Δt) for the CFD returns as a function of time scale Δt
for 30 companies, with the largest capitalization representing four stock markets, French (FR), German (GER), British (UK),
and American (US), and for 30 companies with medium and small capitalization from the American market. Averaging was
carried out over all pairs i, j with i > j and i, j = 1, . . . , 30. (Middle) The same was performed as above, but here, the zero
returns were filtered out before calculating the correlation coefficients. (Bottom) The largest eigenvalue of the correlation
matrix C(s) constructed from the Pearson cross-correlation coefficients Cij(s) for the same sets of stock share CFDs.
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Figure 7. Evolution of the mean Pearson cross-correlation coefficient 〈Cij〉(Δt)(t) for the CFD returns of 30 companies, with
the largest capitalization representing four stock markets, French (FR), German (GER), British (UK), and American (US),
and for 30 companies with medium and small capitalization from the American market. The coefficient was calculated in a
moving window of length of 30 days, and averaging was carried out over all pairs i, j with i > j and i, j = 1, . . . , 30. Two
time scales with Δt = 1 s and Δt = 1 h are shown in each case.

Table 3. Estimated tail exponent α and stretched exponent parameter β for the aggregated distributions of the CFDs returns
for 30 artificial stock indices representing different markets and different stock capitalization groups from the U.S. market.
The results for the complete data and the data without the COVID-19 outburst in March 2020 (denoted nC) are shown
for comparison.

Market # Stocks Param. Δt = 1 s Δt = 1 s (nC) Δt = 1 h Δt = 1 h (nC)

U.S. large 30 α 5.5 5.1 3.0 5.7
β 0.51 0.49 0.49 0.56

U.S. mid 30 α 4.7 4.4 2.7 6.6
β 0.43 0.41 0.48 0.72

U.S. small 30 α 4.4 4.4 5.2 5.5
β 0.43 0.41 0.74 0.76

Germany 30 α 3.7 3.8 2.3 3.9
β 0.45 0.43 0.32 0.50

U.K. 30 α 4.0 4.6 2.7 4.7
β 0.41 0.42 0.46 0.66

France 30 α 3.9 4.0 2.7 6.2
β 0.41 0.42 0.41 0.74
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Figure 8. Cumulative distribution functions of the returns of an artificial index constructed as a sum of the stock share CFD
quotes I(t) = ∑i Pi(t) for the 30 largest companies representing four stock markets, the U.S. market (USA), the German
market (GER), the U.K. market (UK), and the French market (FR). Two time scales with Δt = 1 s and Δt = 1 h are shown and
denoted by solid lines. In addition, the analogous distributions constructed from the CFD return time series after removing
the COVID-19 outburst period corresponding to the strongest cross-correlations among the stock shares (9–27 March 2020)
are denoted by dashed lines. The inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5
(dotted line) are shown in each panel to serve as a guide to the eye.

3.3. Currencies

Unlike the stock indices, the return distributions for the exchange rates show the
presence of increasingly thinner tails if the time scales increase, and hence, a faster con-
vergence towards the normal distribution (Figure 9). If fitted by a power function, the
differences between the individual exchange rates are smaller than those of the indices
and generally exhibit an inverse cubic decay for smaller Δts: for Δt = 1 s, they vary from
α ≈ 3.0 (USD/JPY, GBP/USD) to α ≈ 3.4 (EUR/USD) and, for Δt = 1 h, from α ≈ 4.2
(EUR/JPY) to α ≈ 5.5 (GBP/CHF) with the exception of GBP/JPY (α ≈ 2.8). The numbers
are collected in Table 4. The scaling exponent α ≈ 3 was observed in many studies of the
Forex data, including References [39,116,124,127,128]. If the stretched exponential function
is used, the best-fitted parameter β reads for Δt = 1 s from β = 0.37 (EUR/JPY) to β = 0.48
(GBP/JPY, USD/CHF) and, for Δt = 1 h, from β = 0.49 (EUR/USD, USD/JPY) to β = 0.87
(GBP/USD). The mean values of the scaling exponent for the analyzed time scales are
ᾱ = 3.2 (1 s), ᾱ = 3.1 (10 s), ᾱ = 3.2 (1 min), ᾱ = 3.7 (10 min), and ᾱ = 5.0 (1 h). The inverse
cubic scaling can therefore now be identified for scales shorter than 10 min. These scale
are longer than those in the years 2004–2008 for the 1-min scale ᾱ = 3.9 [124]. (It has to be
noted, however, that those earlier results were obtained by fitting the q-Gaussian functions
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instead of the power-law functions, which may make it difficult to compare the results
properly even though the relation given by Equation (8) holds). We thus observe a slower
convergence to the normal distribution now than before for Δt = 1 h: ᾱ = 5.9 (2004–2008)
vs. ᾱ = 4.8 (2017–2020). However, if the obtained results are compared with those from the
study [116] for the years 1987–1993, the acceleration becomes visible: ᾱ = 3.9 (1987–1993)
vs. ᾱ = 4.8 (2017–2020). In that case, the inverse cubic scaling was still visible for the
30-min scale, which is much longer than both in 2004–2008 and 2017–2020. This can be
interpreted as the acceleration of the market time resulting in a faster convergence to the
normal distribution in the 2000s, but later, this phenomenon of the effective time scale
shortening disappeared.

Figure 9. Cumulative distribution functions of the major currency exchange rate returns: Swiss franc (CHF), euro (EUR),
British pound (GBP), Japanese yen (JPY), and the U.S. dollar (USD). Different time scales are shown from 1 s to 1 h. The
inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5 (dotted line) are shown in each panel to
serve as a guide.
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Table 4. Estimated tail exponent α and stretched exponent parameter β for the aggregated return distributions for the
selected currency exchange rates and the cryptocurrency prices: BTC/USD and ETH/USD.

Exchange Rate Param. Δt = 1 s Δt = 10 s Δt = 1 min Δt = 10 min Δt = 1 h

CHF/JPY α 3.2 3.3 3.4 3.6 5.2
β 0.48 0.37 0.51 0.41 0.61

EUR/CHF α 3.3 3.6 4.0 3.9 5.2
β 0.40 0.39 0.41 0.40 0.78

EUR/GBP α 3.1 2.9 2.9 3.6 5.1
β 0.42 0.34 0.33 0.48 0.75

EUR/JPY α 3.3 3.1 3.1 4.0 4.2
β 0.37 0.29 0.39 0.64 0.58

EUR/USD α 3.4 3.2 3.4 4.4 5.2
β 0.39 0.35 0.37 0.55 0.65

GBP/CHF α 3.1 2.9 2.9 3.5 5.5
β 0.40 0.36 0.40 0.42 0.50

GBP/JPY α 3.1 2.9 3.0 3.4 2.8
β 0.48 0.34 0.36 0.54 0.37

GBP/USD α 3.0 2.9 2.9 3.3 5.1
β 0.40 0.33 0.34 0.39 0.87

USD/CHF α 3.2 3.1 3.3 4.1 5.2
β 0.45 0.52 0.38 0.48 0.62

USD/JPY α 3.0 2.9 3.0 3.5 5.2
β 0.40 0.34 0.36 0.56 0.54

BTC/USD α 2.9 3.1 3.2 3.2 3.7
β

ETH/USD α 2.8 3.1 3.2 3.3 4.3
β 0.50

3.4. Cryptocurrencies

The cryptocurrency market is strongly related to Forex and its significance has risen
steadily since its beginning [38,39]. The most important assets traded on this market in
terms of their capitalization and volume are bitcoin (BTC) and ethereum (ETH). Their
return distributions are shown in Figure 10. For Δt up to 10 min, the power-law function
approximates the data well, with the tail exponent displaying the same inverse cubic
scaling for BTC and ETH: α ≈ 2.8 (1 s), α ≈ 3.1 (10 s), α ≈ 3.2 (1 min), α ≈ 3.3 (10 min).
In contrast, for Δt = 1 h, the crossover is observed and the tail exponent rises to α ≈ 3.7
for BTC and to 4.2 for ETH. (The stretched exponential function does not fit the data in
the tail region, except on the 1 h scale for ETH) A good agreement between the empirical
distributions of the cryptocurrency price returns expressed in major regular currencies
and the inverse cubic scaling paradigm has already been reported [38–40,128], and it was
interpreted as a sign of maturation (it used to be even more heavy-tailed with α ≈ 2.2
before 2014 [38,73]). A crossover for the same scale Δt = 1 h has also been reported [128].

A more time-resolution-oriented analysis [129] showed that the BTC dynamics can
actually be compounded with alternating phases of fluctuations with different statistical
properties. For example, during the COVID-19 outburst in March 2020, the BTC returns
were characterized by α ≈ 1.8, which corresponds to the Lévy stability, but typically, the
scaling index resided between 2.0 and 3.5 during the years 2019–2020 [129]. In contrast,
the Lévy-stable distribution of daily returns with α ≈ 1.3 was reported to fit the BTC
empirical data (the years 2011–2017) in [130], but there, the model was fitted to the whole
distributions, not only the tails, and the analyzed period also covered the early years of the
cryptocurrency market when it was immature. These may be a source of the discrepancy
mentioned above.
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Figure 10. Cumulative distribution functions of the bitcoin-dollar exchange rate returns (BTC/USD) and the ethereum-
dollar exchange rate returns (ETH/USD). Different time scales are shown from 1 s to 1 h. The inverse cubic scaling α = 3
(dashed line) and the stretched exponential with β = 0.5 (dotted line) are shown in each panel to serve as a guide.

3.5. Commodities

Figure 11 shows the return distributions for the commodity CFDs (see also Table 5).
Out of the commodities considered in our study, gold (XAU) has the strongest decay with
increasing Δt: α ≈ 2.6 (1 s), α ≈ 3.1 (10 s), α ≈ 3.6 (1 min), α ≈ 3.6 (10 min), and α ≈ 4.2
(1 h). This has to be compared to α ≈ 2.5 for daily returns covering the years 1969-1999 [37]
and 5-min returns covering the years 2012–2018 [36]. It is instructive to address why the
tail for Δt = 1 s is so thick that α falls significantly below 3. We therefore identified a period
of the largest gold price fluctuations, which occurred at the COVID-19 outburst in the U.S.
during March and April, and removed it from the time series. The resulting distributions
are shown in Figure 12 (left panel) for Δt = 1 s, 1 min, and 1 h (dashed lines) together
with the complete ones (solid lines). It is evident that, for Δt = 1 s, the thickest part of the
tail becomes thinner α ≈ 3.2, while no significant alternation is observed for Δt = 1 min
(α ≈ 3.6) and 1 h (α ≈ 4.2). The distribution tails roughly agree in this case with the inverse
cubic scaling on time scales that become increasingly short with time.

Compared to gold, silver (XAG) shows stronger invariance under the time scale
change: α increases from 2.8 (1 s) to 3.0 (1 h), while it was 2.5 (positive tail) and 2.8 (neg-
ative tail) for the daily returns over the years 1969–1999 [37]. High-grade copper return
distributions (HG) reveal the most wandering behavior: its scaling exponent goes from
α ≈ 3.7 (1 s) through α ≈ 3.6 (10 s), α ≈ 3.1 (1 min), and α ≈ 3.9 (10 min) to α ≈ 2.7 (1 h)
compared to α ≈ 2.6 (negative tail; daily data) and α ≈ 2.8 (positive tail) for the years
1971–1999 [37].
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Table 5. Estimated tail exponent α and stretched exponent parameter β for the aggregated distributions of the CFDs returns
for the selected commodities: high-grade copper (HG), crude oil (CL), silver (XAG), and gold (XAU).

Commodity Param. Δt = 1 s Δt = 10 s Δt = 1 min Δt = 10 min Δt = 1 h

HG α 3.8 3.6 3.1 3.9 2.7
β 0.42 0.49 0.36 0.45 0.25

CL α 2.6 2.3 2.3 2.0 2.5
β 0.48 0.29 0.28 0.41 0.43

XAG α 2.8 2.9 2.9 3.0 3.0
β 0.47 0.36 0.37 0.38 0.43

XAU α 2.6 3.1 3.6 3.6 4.2
β 0.49 0.62 0.42 0.51 0.85

Figure 11. Cumulative distribution functions of the CFD returns for commodities: high-grade copper
(HG), the U.S. crude oil (CL), silver (XAG), and gold (XAU). Different time scales are shown from
1 s to 1 h. The inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5
(dotted line) are shown in each panel to serve as a guide.

Crude oil return distributions (CL) have the thickest tails with the scaling exponent
2.0 ≤ α ≤ 2.6 and with no signature of the CLT convergence. In parallel to what was
observed for gold, we removed the COVID-19 outburst period from the time series and
calculated the distributions again—see Figure 12 (right panel). Such incomplete signals
are characterized by α = 3.0 for Δt = 1 s and α ≈ 2.7 for Δt = 1 h. These numbers
have to be compared with α ≈ 2.9 (negative tail) and α ≈ 3.1 (positive tail) reported
for the WTI oil daily returns covering the years 1988–1998, with α ≈ 2.0 (negative tail)
and α ≈ 2.8 (positive tail) reported for the crude oil daily returns covering the years
1983–1999 [37], and with α ≈ 3.0 (negative tail) and α ≈ 3.1 (positive tail) for the WTI oil
5-min returns covering the years 2012–2018 [36]. As those values do not differ much from
each other, there is no evidence that the crude oil returns change their global dynamics
over time. However, during the market turbulence that happened during the COVID-19
pandemic, the dynamics did change considerably, which was manifested by thickening the
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distribution tail for all considered time scales. It is noteworthy that the crude oil was the
asset that was affected the strongest by the pandemic: in April 2020, the price of the May
series of WTI oil futures even dropped below 0.

Figure 12. Cumulative distribution functions of the CFD returns for gold (XAU) and the U.S. crude
oil (CL) after removing the COVID-19 outburst period (March–April 2020). Different time scales are
shown from 1 s to 1 h. The inverse cubic scaling α = 3 (dashed line) and the stretched exponential
with β = 0.5 (dotted line) are shown in each panel to serve as a guide.

4. Summary

In this study, we analyzed high-frequency quotations of the CFD contracts associated
with the stock market indices, the stocks themselves, and the selected commodities as
well as with the most frequently traded currency exchange rates and the cryptocurrency
prices. All of the data sets covered the years 2017–2020 except for the stock share CFDs,
which covered the years 2018–2020. We analyzed the returns at a few different time scales
from 1 s to 1 h and constructed the return distributions in order to investigate their tails.
Our principal objective was to compare the tail behavior of the distributions derived from
contemporary data with the behavior of the distribution tails in the past for the same
assets. We applied the power-law function and the stretched exponential one to model the
empirical distributions. A hypothesis that we planned to verify was the one formulated
in [24,32,34], which states that, together with the acceleration of the information flow and
processing across the financial markets, we can observe a significant change in the statistical
properties of the returns at a particular time scale related to an effective acceleration of the
market time with all of the possible consequences of this fact.

The results are mixed. On the one hand, the stock market indices (DJIA, DAX30,
and S&P500, for which the present results can be compared directly with earlier works)
do not show any further signatures of the time acceleration compared with the data
from 1998–1999 and 2004–2006. It seems that the acceleration that was reported in [24,32]
stopped or was only a temporary effect. Such effects were already reported before for
Asian markets [35,69] as well as in this work regarding the stocks, so they may be a source
of the observed behavior. On the other hand, the results for the individual stock groups
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show that the market time acceleration can still be ongoing, but it is masked at the level
of indices owing to the cross-correlations among the stocks that are now stronger and
developing faster than even during the years 2004–2006 [32]. That particular time interval
(2004–2006) was characterized by a volatility much smaller than in recent years, which
witnessed large market events such as the flash crash on 5 February 2018, the coronavirus-
related unsteadiness in early 2020 and the subsequent rally ending with new record highs
of S&P500 in August, the oil price drop in April 2020, etc. Large events, especially large
falls, elevate the market correlation level, which can influence the statistical properties of
data, including the distribution of returns. The auto- and cross-correlations are involved in
an interesting interplay between two opposite-acting factors. The first factor is the market
time flow speed, which works for market efficiency by shortening the period when the
market autocorrelations are admissible. This factor shifts gradually the low-α behavior and
the central limit theorem’s realm to ever shorter time scales. The second factor is the asset
cross-correlation strength, which causes thickening of the tails and decreases in α and β.
It also violates the assumption of random variable independence and prevents the CLT
from affecting the aggregated returns. This interplay and its consequences are interesting
enough to be worthy of some more attention in future analyses. In particular, they can be
responsible for the reported behavior of the return distributions in different time periods
and suppressing the effects of the market time acceleration.

Currency exchange rates also no longer feel the market time acceleration such as that
during 2004–2006 [32], but now, not only is there no further time scale shortening but
also a moderate step backwards is observed: the inverse cubic scaling is seen at longer
time scales than in 2004–2006 but is still significantly shorter than that during the years
1987–1993 [116]. The cryptocurrencies (BTC and ETH) show the same crossover scale as
before—equal to 1 h [131]. Since this market is relatively young, it underwent a phase of
strong market time acceleration after 2013, and now, it seems to be stabilized. It is still
the market that shows the most exemplary inverse cubic scaling behavior across different
scales out of all the markets analyzed in this work. Gold price CFDs show a clear difference
between the present results and the distribution tails over the years 1969–1999 [37] and
2012–2018 [36] with increased tail slope during the recent years. In contrast, there is no
clear change in the tail slope regarding silver, high-grade copper, and crude oil.

It should be noted, however, that the CFD contract price quotations analyzed here
are not precisely the same as the related asset spot price quotations, which the authors
of other works dealt with. This difference may partially account for the difference in the
outcomes. Finally, the COVID-19 pandemic outburst that took place in March–April 2020
in the U.S. constituted a strong perturbation to all the markets, caused large-amplitude
price fluctuations, and led to a strong increase in the cross-correlations among many assets.
For example, it resulted in decreasing distribution tail slopes for the CFD returns for crude
oil and gold. Even more significant were the bitcoin fluctuations, which become Lévy
stable for the pandemic-outburst period.

In general, our results indicate that the monotonous shift in the time scales at which
different types of dynamics can be observed in the financial data as well as the related
continuously accelerating market time from past to present are oversimplified. In fact, there
can be an underlying long-term trend of this type, but it is “decorated” with short-term
phases of abrupt acceleration and, then, deceleration and stagnation. Our results indicate
that the real market dynamics consists of continuous alternation of different regimes with
different statistical properties that can form the overall impression of the market evolution
direction. Together with the aforementioned problem of how the asset cross-correlations
and the shortening autocorrelations compete against each other in shaping the statistical
properties of data, it opens an intriguing direction for future work.
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Appendix A

Table A1. List of stocks that are included in the stock sets considered in Section 3.2. Capitalization is given in billions (109)
of currency units.

U.S. Large U.S. Medium U.S. Small U.K. Large German Large French Large

Ticker USD Ticker USD Ticker USD Ticker GBP Ticker EUR Ticker EUR

AAPL 2000 BIDU 68.6 CAG 18.7 RDSB 107.4 VOW3 140.6 VK 330.9
MSFT 1784 NSC 68.1 MGM 18.4 ULVR 105.7 SAP 126 MC 288

AMZN 1537 CL 67.7 CAH 18.3 AZN 94.2 SIE 112.5 OR 181.3
GOOGL 1378 SHW 67 CTL 18.1 RIO 88.7 ALV 89.5 SAN 105.2

FB 805 SO 65.9 ULTA 17.6 HSBA 86.4 DTE 81.8 FP 102.8
BABA 625 APD 63.1 OMC 16.3 DGE 70.4 DAI 80.6 AIR 78.9
BRKB 593 ICE 62.6 TIF 16 BATS 62.3 BAS 65.3 KER 74.8
TSM 592.8 D 60.9 DVN 14.8 BP 59 MRK 62.3 SU 73.8
TSLA 582 ADSK 59.5 AAL 14.7 RB 46.3 DPW 57.6 AI 65.9
JPM 473 ADI 56.6 WYNN 14.5 BLT 44.2 BMW 57.3 BNP 65.1

V 458 ILMN 56.2 WHR 14.1 PRU 40.6 VNA 56.7 CS 54.9
JNJ 438.5 PGR 55.9 L 13.8 AAL 39.5 ADS 52.8 SAF 51

WMT 383.5 VRTX 55.8 SJM 13.7 GLEN 38.1 BAYN 52.3 DG 50.8
MA 360 BSX 54.8 TEVA 12.7 VOD 37.7 IFX 47.6 RI 42.1

UNH 358.2 EMR 54.7 IPG 11.5 REL 35.5 HEN3 38.5 BN 37.8
DIS 337 NOC 53.7 DVA 11.5 LSE 35.3 MUV2 37 ACA 36.3
PG 336 HUM 53.3 NWL 11.4 BARC 31.7 PAH3 28.7 EDF 35.4

BAC 331 MET 53.1 GPS 11.3 NG 30.7 DB1 26 VIV 30.4
HD 324 PBR 53 TAP 11.3 LLOY 30.3 EOAN 26 ENGI 29.3

NVDA 318 REGN 51 CF 9.7 CPG 26.7 RWE 23.2 ORA 27.8
PYPL 277 TWTR 50 NRG 9.2 CRH 26.3 CON 22.8 SGO 26.8
INTC 261 KHC 49.9 KSS 9.1 EXPN 23.4 DBK 21.2 CAP 24.9

CMCSA 252.6 NEM 49.8 MRO 8.7 RBS 22.4 FRE 20.9 LR 21.3
XOM 243 F 49 X 6.9 AHT 20.1 BEI 20.5 UG 19.4

VZ 243 DG 48.6 MAT 6.9 WOS 20.1 FME 18.4 GLE 19.2
KO 231.6 ITUB 48.4 APA 6.8 ABF 19.4 HEI 15.3 ALO 16.2

NFLX 228 MAR 48 AA 6.1 CCL 18.1 TKA 7.1 EN 13
ADBE 224 FCX 47.7 JWN 6 TSCO 17.6 CBK 6.6 PUB 12.7
CSCO 222 KMB 47 M 5.1 LGEN 16.9 LHA 6.6 VIE 12.6

T 217.9 LVS 46.8 EQT 5.1 ANTO 16.7 LXS 5.5 CA 12.3
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124. Drożdż, S.; Kwapień, J.; Oświęcimka, P.; Rak, R. The foreign exchange market: Return distributions, multifractality, anomalous

multifractality and the Epps effect. New J. Phys. 2010, 12, 105003.
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Abstract: In many physical, social, and economic phenomena, we observe changes in a studied
quantity only in discrete, irregularly distributed points in time. The stochastic process usually
applied to describe this kind of variable is the continuous-time random walk (CTRW). Despite the
popularity of these types of stochastic processes and strong empirical motivation, models with a
long-term memory within the sequence of time intervals between observations are rare in the physics
literature. Here, we fill this gap by introducing a new family of CTRWs. The memory is introduced
to the model by assuming that many consecutive time intervals can be the same. Surprisingly, in
this process we can observe a slowly decaying nonlinear autocorrelation function without a fat-
tailed distribution of time intervals. Our model, applied to high-frequency stock market data, can
successfully describe the slope of decay of the nonlinear autocorrelation function of stock market
returns. We achieve this result without imposing any dependence between consecutive price changes.
This proves the crucial role of inter-event times in the volatility clustering phenomenon observed in
all stock markets.

Keywords: continuous time random walk; intertrade times; volatility clustering

1. Introduction

In many physical, biological, and economic systems we can identify elementary
events occurring irregularly in time . Additionally, the times between those events can be
interdependent in a non-trivial manner, which can lead to complex behavior. Therefore, it
is no surprise that point processes are of high interest to researchers and their applications
are widely studied [1,2]. Two of the most popular models are autoregressive conditional
duration (ACD) [3] and the Hawkes model [4,5]. The canonical versions of both models
include short-range dependencies (for ACD see [3,6–11]; for Hawkes see [12–20]). Both of
them, however, have been extended to describe long-range memory (for ACD see [21–31];
for Hawkes see [32–42]).

Real-world stochastic processes have numerous features which can be associated
with elementary events. For instance, in the transaction data from a stock market we
observe the events—the transactions occurring in specific moments—and their features:
the price and volume of each transaction. Inter-trade times from stock market transaction
data are a perfect example of a point process. However, in order to describe the price of
transactions, which we do below, one must go beyond the framework of point processes,
which does not incorporate features of the elementary events. A natural generalization is
the continuous-time random walk (CTRW).

The CTRW was the first proposed formalism to describe the dynamics of a variable
changing its value in unevenly spaced points in time. Point processes extended to fit this
phenomenon are called marked point processes [16]. Moreover, the distribution of time
intervals between those points can be arbitrary. This formalism was introduced in 1965
by Montroll and Weiss [43] and since then it has been applied in a broad range of fields,
ranging from astrophysics to economics and the social sciences. For a detailed review,
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see [44]. In the canonical CTRW, both increments of the observed process and waiting times
(inter-event times) are i.i.d. random variables. An exemplary trajectory of such a process is
shown in Figure 1.

Figure 1. The example trajectory of the continuous-time random walk (CTRW), consisting of jumps of
process values Δxn preceded by waiting times Δtn. In the canonical CTRW, Δtn and Δxn are i.i.d. ran-
dom variables drawn from the distributions ψ(Δtn) and h(Δxn), respectively. In this paper, we
consider the CTRW model with long-term dependence in the series of waiting times Δt1, Δt2, . . . , Δtn.

All kinds of random walks, starting with normal diffusion, through anomalous dif-
fusion (both subdiffusion and superdiffusion) to Levy flights, can be described within
the CTRW formalism. This can be achieved by using specific distributions of waiting
times or increments (especially with heavy tails) and by considering memory in waiting
times, increments, or coupling between them. The CTRW models with correlated incre-
ments were initially proposed to study lattice gases [45–47]. More recently, they have been
used to model high-frequency financial data [48–60]. On the other hand, CTRW models
with correlated waiting times are not well-studied. With the exception of a few recent
attempts [52,61,62], these models have not been analyzed nor used to model empirical
data. This fact is surprising in light of the recent popularity of point processes such as
ACD and the Hawkes process. The aim of this work is to fill this gap. We propose a
new CTRW model which incorporates dependencies of inter-event times. Our intention
is to model long-range memories in the sequence of waiting times, an aim inspired by
numerous empirical examples [63–69]. Our model is simple yet general enough to explain
the properties of empirical data. That makes it a perfect candidate for future applications
and a relevant reference point for future work.

The paper is organized as follows. In Section 2, we present the motivation behind
the model, with correlated waiting times based on financial data. Next, in Section 3 we
propose a way to include dependencies between the waiting times, in particular the long-
range memory. In Section 4, we solve the CTRW model with correlated waiting times by
calculating its propagator, moments, and the autocorrelation function (ACF) of increments.
We then fit our model to tick-by-tick transaction data from the Warsaw Stock Exchange in
Section 5. Finally, we provide a summary of our work in Section 6. Two appendices at the
end provide a clarification of the mathematical methods that we have used.

2. Motivation

Models with interdependent waiting times are used to describe electron transfer [63],
the firing of a single neuron [64], interhuman communication [65], and the modeling of
earthquakes [66–69]. An excellent example of a process with correlated inter-event times
that we will describe in this manuscript is tick-by-tick transaction price data from the stock
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market [70]. These data are very convenient to use, as they are of high quality and easily
accessible in large amounts.

Firstly, let us recall two basic stylized facts observed in the majority of stock mar-
kets [71].

• In the ACF of time-dependent log-returns, we observe short-term negative autocorre-
lation.

• However, we observe slowly decaying positive autocorrelation for the ACF of absolute
values of time-dependent log-returns.

The latter is considered to be reminiscent of the volatility clustering phenomenon.
Of course, these are not the only or the most significant stylized facts, but these two do

not directly depend on the log-return distribution. The list should also contain the broad
distribution of log-returns [72]; multi-fractality [73,74]; universal scaling of the distribution
of times between large jumps [75,76]; and the slow, power-law decay of the correlation
between these times. We will further discuss the latter in this manuscript. Usually, the
CTRW models used to describe high-frequency stock market data consider waiting times
Δtn as inter-transaction times, and process increments Δxn as logarithmic returns between
consecutive transactions. Taking into account the so-called bid-ask bounce phenomenon
allows CTRW processes to reproduce the first stylized fact of short-term negative autocor-
relation [58,77,78]. In this type of models, waiting times Δtn are i.i.d. variables and only
the dependence between Δxn and Δxn−1 is considered. Unfortunately, models considering
only this type of dependencies turned out to be unable to describe the time ACF of absolute
values of price changes [60]. Technically, it is possible to obtain a CTRW model reproducing
both stylized facts, but it requires a power-law waiting-time distribution ψ(Δt). However,
this solution is not satisfying as we can obtain waiting-time distribution directly from the
empirical data of inter-transaction times. It turns out that this distribution is far from a
power-law one [58]. These results suggest that the source of the second stylized fact is not
in the distributions of increments h(Δx) and waiting times ψ(Δt), but in the dependence
between consecutive Δx and Δt values.

Let us start with an empirical analysis of the step ACF of series Δtn and |Δxn|. We
observe approximately power-law memories in waiting times and absolute values of price
changes; see Figure 2a. For a lag (in the number of steps) � 3, the autocorrelation of |Δxn| is
higher than the autocorrelation of Δtn, but for a lag > 3 it is otherwise. This result suggests
that in the limit of long times, the dependence between waiting times may be more critical
than dependence between price changes. To verify this hypothesis we perform a shuffling
test. We compare the time ACF of price changes’ absolute values for four samples of time
series. The first one is the original time series of tick-by-tick transaction data. The second
time series keeps the price changes Δxn in the original order but shuffles the order of
waiting times Δtn. This way, we obtained a time series keeping all dependencies between
price changes Δxn, but without any dependencies between waiting times Δtn. In the third
time series, we kept the original waiting times Δtn but shuffled the price changes Δxn. In
the last, fourth time series, both Δtn and Δxn were shuffled. Let us emphasise that all four
time series have the same, unchanged distributions ψ(Δtn) and h(Δxn). The results are
shown in Figure 2b. As expected, we observe the slow, almost power-law decay of the
time ACF for the first empirical time series. Surprisingly, removing dependencies between
waiting times does not change the time ACF in the limit of t → 0, but significantly increases
its slope of decay in the long-term. On the other hand, removing dependencies between
price changes decreases the time ACF, dividing it by an almost constant factor but does not
change the slope of the decay. The removal of all dependencies still leads to a positive time
ACF, resulting from the non-exponential empirical distribution of waiting times.
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Figure 2. Figures 2 and 3 were prepared using transaction data for KGHM (one of the most liquid
Polish stocks) from period of January 2013 to July 2017. Both figures are on a log-log scale. (a) The
plot of normalized empirical step ACF of Δt and |Δx|. Both functions decay like a power-law. For lag
= 1, the autocorrelation of |Δx| is higher. However, it decays faster, and for long times the memory
in waiting times is stronger. (b) The plot of the normalized time ACF of |Δx| for four time series.
The presented lines are for empirical data (thick black), empirical price changes, and intra-daily
shuffled waiting times (dotted red); intra-daily shuffled price changes and empirical waiting times
(dash-dotted green); and intra-daily independently shuffled price changes and waiting times (thin
blue). Considering only empirical dependencies of waiting times reproduces the ACF, which decays
with almost the same slope as the empirical one.

The empirical observations presented above convinced us that it is necessary to
consider long-range dependencies between waiting times within CTRW to reproduce the
slowly decaying ACF of price changes’ absolute values observed in the financial data.

Please note that in Figure 2, we analyzed the step ACF for lags up to 100 and the
time ACF for times up to 1000 s. The procedure used to estimate the time ACF was
presented in [58] and is a modification of the classical slotting technique introduced in [79].
Such limits were chosen due to the length of trading sessions (around 8 h or 1000 trades).
Unfortunately, these limits are not long enough to detect power-law dependencies. The only
way to increase these limits is by joining all sessions into one sequence. In this procedure,
we merge the end of one session with the beginning of the following one (we omit overnight
price changes). These two periods of the sessions are different, as we observe intraday
activity in financial data [80]. The session begins with short inter-transaction times and a
high standard deviation of price changes. Usually, up to the middle of the session, average
inter-trade times increase, and the standard deviation of price changes decreases. The
situation reverts again close to the end of the session. This phenomenon is called the lunch
effect [81]. We use the canonical method to remove intraday non-stationarity by dividing
each waiting time by the corresponding average waiting time, depending on the time that
has elapsed since the beginning of the session for each day of the week separately [82,83].
The comparison of the step ACFs of waiting times for non-stationarized and stationarized
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data is presented in Figure 3a. As a result of this procedure, we obtain the power-law
decay over four orders of magnitude of lag. In Figure 3b, we present the time ACF of price
changes’ absolute values for stationarized data, which also exhibit power-law decay over
four orders of magnitude of time lag. It is now reasonable to ask what the relationship is
between the decay exponents of these autocorrelations. Fortunately, the model studied in
this paper gives a strict answer to this question.

Figure 3. All intraday data (waiting times and corresponding price changes) are joined into one data
set. (a) The plot shows the normalized step ACF of Δt for non-stationary and stationarized cases.
The stationarizing procedure is described in the main text. (b) The plot of the normalized time ACF
of |Δx| with stationarized waiting times. Both stationarized autocorrealations decay like a power-law
with similar slope.

3. Process of Waiting Times

Let us now focus on the sequence of inter-transaction times Δt1, Δt2, . . . , Δtn, . . .. We
are now looking for the point process to describe this series, which will be suitable for use
in CTRW. For this reason, we need analytically solvable models. Moreover, we would like
to use the empirical distribution of inter-event times ψ(Δtn) and observe the power-law
step ACF, as shown in Figure 3a. Even these two simple conditions exclude ACD models
and Hawkes processes from our considerations. We are not interested in ACD models, as
the power-law ACF can be obtained only within the fractional extension. In the Hawkes
process, both the waiting time distribution and autocorrelation depend on the memory
kernel [15,84]. Therefore, they cannot be set independently. As the Hawkes process is
defined solely by its kernel, both waiting time distribution and autocorrelation depend
on it. Thus, it would be difficult (if it is possible at all) to reproduce both empirical WTD
and ACF at the same time. This feature of the Hawkes process hampers its use in the
description of empirical data.

As the solution to our search, we propose a simple point process in which waiting
times Δt are repeated. In a very general sense, our proposition can be interpreted as
a discretized version of CTRW, adapted to the role of the point process. Let us briefly
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describe this analogy. Within the canonical CTRW, values of the process are represented
by a spatial variable, and the time is continuous. The spatial variable remains constant for
a given period of continuous waiting time. Now, we define the point process by the series
of waiting times. Here, the number of repetitions νi of the same value of waiting time is
the analog of waiting time in the canonical CTRW. The exemplary realization of such an
adapted process of waiting times is shown in Figure 4.

We require the waiting times Δtn (values of the process in the discrete subordinated
time n) to come from the distribution ψ(Δtn) (Δtn > 0), with a finite mean 〈Δt〉. We define
νi as the number of repetitions of the same waiting times (drawn independently for each
series of repetitions). Let νi be the i.i.d. random variables with the distribution ω(νi). In
general, it can be any distribution, but to recreate the power-law step ACF of waiting times
we will focus on a fat-tailed distribution with a finite first moment 〈ν〉. In particular, we
use the zeta distribution with parameter ρ

ωρ(k) = k−ρ/ζ(ρ); ζ(ρ) =
∞

∑
i=1

i−ρ, ρ > 1, (1)

where ζ(ρ) is Riemann’s zeta function. Its expected value is equal to 〈ω〉 = ζ(ρ−1)
ζ(ρ)

for
ρ > 2 and the variance is finite for ρ > 3. The cumulative distribution function is given by
Hk,ρ
ζ(ρ)

, where Hk,ρ = ∑k
i=1 i−ρ is the generalized harmonic number. Let us introduce Ω(k) =

∑∞
i=k ω(i) as a sojourn probability. We have Ω(k) = 1 − Hk−1,ρ

ζ(ρ)
for the zeta distribution.

2
3

4
51

Figure 4. The example realization of the process of waiting times, the values of which correspond
to the waiting times Δtn of the point process used in the primary CTRW process. Process values
Δt1, Δt2, . . . , Δtn come from the values Δt1, Δt2, . . . , Δtk repeated ν1, ν2, . . . , νk times, respectively.
Number of repetitions νi are drawn from the distribution ω(νi). In the example above: ν1 = 1, ν2 =

3, ν3 = 2, . . . and Δt1 = Δt1, Δt2 = Δt3 = Δt4 = Δt2, Δt5 = Δt6 = Δt3, . . ..

We define a soft propagator of the process of times P(Δt; n|Δt0, 0), which is the
conditional probability density that the waiting time, which was initially (at n = 0) in the
origin value (Δt = Δt0), is equal to Δt after n steps. The soft propagator can be expressed
by

P(Δt; n|Δt0, 0) = δ(Δt − Δt0)Ωfirst(n) + [1 − Ωfirst(n)]ψ(Δt), (2)
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where Ωfirst(n) is the sojourn probability obtained from ωfirst(n), which is the stationarized
distribution of the repetition of the first waiting time:

ωfirst(n) = ∑n′=1 ω(n + n′)
∑n′′=0 ∑n′=1 ω(n′′ + n′)

=
∑n′=1 ω(n + n′)

∑n=1 nω(n)
=

∑n′=n+1 ω(n′)
〈ω〉 ,

Ωfirst(n) = ∑i=n ∑n′=i+1 ω(n′)
〈ω〉 =

∑i=1 iω(i + n)
〈ω〉 =

〈ω〉 − nΩ(n + 1)− ∑n
i=1 iω(i)

〈ω〉 .
(3)

The first term of the right-hand side of Equation (2) is the probability that the process value
will stay constant (equal Δt0) after n jumps. The second term indicates that there will be a
process value jump with probability 1 − Ωfirst(n), so new process values will be completely
independent, drawn from the distribution ψ(Δt).

Restricting ourselves to ω(n) in the form of the zeta distribution, we can obtain

Ωfirst(n) = 1 − n
〈ω〉 +

nHn,ρ

ζ(ρ − 1)
− Hn,ρ−1

ζ(ρ − 1)
, (4)

and hence the propagator given by Equation (2). The step autocovariance of waiting times
Δtn can be expressed as

cov(n) = 〈ΔtiΔti+n〉 − 〈Δti〉 〈Δti+n〉 = 〈ΔtiΔti+n〉 − 〈Δt〉2 , (5)

where symbol 〈. . .〉 means taking the average. Note that Δti+n = Δti with probability
p = Ωfirst(n). With probability 1 − p, the Δti is independent. This leads to

cov(n) = p 〈Δt2〉+ (1 − p) 〈Δt〉2 − 〈Δt〉2 = σ2
Δt p = σ2

ΔtΩ
first(n). (6)

We are interested in the asymptotic form of autocorrelation for n  1. We can use following
approximation (Theorem 12.21 from [85])

ζ(ρ)− Hn,ρ ≈ n1−ρ

ρ − 1
. (7)

Finally, we obtain the normalized step ACF

corr(n) =
cov(n)
cov(0)

≈ n−(ρ−2)

ζ(ρ − 1)(ρ − 2)(ρ − 1)
. (8)

The step ACF of waiting times decays like a power-law and the decay exponent is ρ − 2.
It is worth emphasizing that even considering only ρ > 2, required for the existence of a
finite average number of repetitions, we can obtain any value of the decay exponent.

4. The Primary Process

Now we are ready to define the primary CTRW process with repeating waiting times.
This process is characterized by two key properties:

• changes of the process value Δxn are i.i.d. random variables from the distribution
h(Δx), with finite variance σ2

x (and thus finite first two moments μ1 and μ2),
• waiting times Δtn come from the process described in Section 3.

Note that we do not assume any dependence within the series of consecutive changes
of the process value Δx1, Δx2, . . . , Δxn. We do not make any further assumptions about the
shape of distributions h(Δx). The memory in this process is present only in the sequence
of waiting times.

Let us start the analysis of the properties of this process with the following observa-
tion. As the changes Δxn are independent, the changes above any given threshold occur
independently. Knowing the result in (8), we can calculate the autocorrelation of the series
of inter-occurrence times between changes above or below any threshold. The details of
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the derivation are presented in Appendix B. It turns out that we also obtain power-law
decay with the exponent −(ρ − 2), the same as in (8).

Moreover, we managed to obtain the soft propagator of the primary CTRW pro-
cess and the characteristics derived from it. The details of calculations can be found in
Appendix A. Here we present selected results, namely, the first two moments and the time
autocorrelation of changes, in the limit of long times (t → ∞). We consider analytical terms
(t, t2, t3, . . .) and the most significant power-law term when ρ is non-integer.

Using results from Appendix A, the first moment of the process for t → ∞ can be
approximated as

m1(t) = L−1
[
−i

∂P̃(k; s)
∂k

∣∣∣
k=0

]
(t) ≈ μ1

〈Δt〉 t + μ1
α{ψ}

Γ(4 − ρ)
t3−ρ, ρ ∈ (2; 4), (9)

where L−1[·](t) is the inverse Laplace transform, P̃(k; s) is the propagator of the process
in the Fourier–Laplace domain, Γ(·) is Euler’s gamma function, and α{ψ} is a complex
functional of ψ, which has to be calculated separately for each ψ. The most important
term is typical, linear behavior, but we observe an additional power-law term. The second
moment can be written in the form

m2(t) = L−1
[
−∂2P̃(k; s)

∂k2

∣∣∣
k=0

]
(t)

≈ μ2
1

(
t

〈Δt〉

)2
+ σ2

x
t

〈Δt〉 + μ2
1β{ψ} t

〈Δt〉 + μ2
1

γ{ψ}
Γ(5 − ρ)

t4−ρ, ρ ∈ (2; 5),

(10)

where β{ψ}, γ{ψ} are complex functionals of ψ, which have to be calculated separately
for each ψ. From the first two moments of the process, we calculate the process variance
(still considering only analytical and the most important power-law term)

σ2(t) = m2(t)− m2
1(t) ≈

(
σ2

x + μ2
1β{ψ}

) t
〈Δt〉 + μ2

1
γ{ψ}

Γ(5 − ρ)
t4−ρ, ρ ∈ (2; 5). (11)

It is worth mentioning that for variance the power-law term from the second moment is
more important than the power-law term from the first moment. We can observe normal
diffusion for ρ > 3. However, there is superdiffusion in the case of ρ ∈ (2; 3). We obtain
ballistic diffusion in the limit ρ → 2.

Having the first two moments, one can calculate velocity ACF, which is equivalent to
normalized ACF of changes for fixed sampling for the stationary process

C(t) =
1
2

∂2m2(t)
∂t2 −

(
∂m1(t)

∂t

)2

⇒ C(t) ≈ μ2
1

1
Γ(3 − ρ)

κ{ψ}t2−ρ, (12)

where κ{ψ} =
(

γ{ψ}
2 − 2α{ψ}

〈Δt〉

)
, for ρ ∈ (2; 4). In the limit of t → ∞ and μ1 	= 0 we observe

a power-law decay of ACF with the exponent ρ − 2. In the case of μ1 = 0, it can be proven
that this exponent is ρ − 1, so the decay is faster (A5).

It is crucial to emphasize that in Equations (9)–(12) for ρ exceeding the mentioned
range, there is still a power-law term with the same dependence on μ1 and the same time
exponent. However, the dependence of the amplitude on ρ takes a different, more complex
form.

5. Empirical Results

We use the constructed process to investigate the role of correlated inter-trade times
in the volatility clustering effect. We consider this process as a toy model, describing
high-frequency financial data. The value of the process represents the logarithm of the
stock price. We can treat transactions as events that change the price. Therefore, the
inter-transaction times correspond to waiting times in our model. The jumps represent
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the difference in the logarithmic prices of consecutive transactions, which are logarithmic
returns [52].

The CTRW formalism allows us to obtain the autocorrelation of price returns. More-
over, the same formalism can be used to obtain the nonlinear ACF of absolute increments.
This can be achieved by using different jump distributions h(Δx). To model the process of
price changes in time, we should use the symmetric distribution h(Δx), as the empirical
distribution of returns is symmetrical. As a result, we obtain the vanishing mean μ1 = 0
and the quickly decaying ACF of returns. To derive the nonlinear ACF of absolute returns,
we define the new CTRW process, and by calculating its linear ACF, we obtain the nonlinear
ACF of price increments. Following [60], if as h(Δx) we use only the positive half of the
previous distribution multiplied by 2, we deal with the case of non-zero drift and obtain
an artificial, monotonically increasing process. As μ1 	= 0, we obtain the slow power-law
decay of the autocorrelation of absolute returns, as in the empirical results presented as a
solid black line in Figure 2b.

Since we assumed only one type of memory in our model, introduced by the distribu-
tion ω(ν), we cannot expect that the model will be able to reproduce exact values of the
empirical nonlinear ACF of the absolute returns. The model, however, should be able to
reproduce its slope (as in Figure 2b, in which the green dash-dotted line reproduces the
slope of the solid black line). The theoretical slope is obtained analytically and is equal
2 − ρ. It is worth emphasizing that the slope does not depend on the distribution of price
changes h(Δx) or waiting times ψ(Δt) and is fully determined by the single parameter
ρ, characterizing the distribution ω(ν). This fact significantly simplifies the comparison
with the empirical data, as we are required to estimate only one parameter ρ. On the
other hand, the assumption of repeated waiting time is a technical method introducing
memory. We cannot expect to observe such a phenomenon in the empirical time series. The
parameter ρ is a measure of the memory present in the sequence of consecutive waiting
times. Therefore, we estimate this parameter using the slope of the step ACF of waiting
times, which is equal to 2 − ρ in the model. It is a surprising and potentially essential
fact that the exponent of the decay of the nonlinear time ACF is the same as in the step
ACF of waiting times. This result motivates us to compare these two values for empirical
financial data. Of course, in the empirical data we also observe a long-term positive step
ACF of |Δx|, which was not included in our model. Therefore, we can expect that the
slope of time ACF of |Δx| should be slightly higher than the slope of the step ACF of Δt.
Since a long-term nonlinear autocorrelation is usually interpreted as a reminiscence of
the volatility clustering phenomenon, it is interesting to check what part of the observed
volatility clustering effect can be explained only by memory between inter-trade times.
We present the results for the five most traded stocks from the Warsaw Stock Exchange
in Table 1 (ordered by the number of transactions), with the average inter-trade time not
being greater than 30 s.

Table 1. Table with fitted slopes of the empirical stationarized step ACF of waiting times and the
time ACF of price changes’ absolute values for the five most liquid stocks from the WSE. The time
ACF slopes are close to the corresponding step ACF slopes. The analysis was performed on the
tick-by-tick market data from the public domain database [70]. The data covers the period from
3 January 2013 to 14 July 2017. For instance, the data set for KGHM contains 3,096,625 transactions.

Company Step ACF Δt Slope Time ACF |Δx| Slope

KGHM −0.25 ± 0.04 −0.25 ± 0.02
PKOBP −0.33 ± 0.08 −0.30 ± 0.02

PZU −0.26 ± 0.03 −0.28 ± 0.04
PGE −0.33 ± 0.07 −0.36 ± 0.03

PEKAO −0.33 ± 0.04 −0.37 ± 0.04
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We see that our model can estimate the slope of time ACF with an accuracy of
around 10%. Moreover, our model can successfully reproduce the power-law decay of
the autocorrelation of inter-occurrence times between changes below or above any given
threshold reported in [75,76]. Please note that the decay exponent predicted by our model
−(ρ − 2), with empirical values presented in the Table 1, is close to 0.31, as reported in [76].

6. Conclusions

We introduced a new continuous-time random walk (CTRW) model with long-term
memory within a sequence of waiting times. We use a simple model of repeating waiting
times instead of commonly-used point processes such as the ACD and the Hawkes process.
Despite its simplicity, our model of repeating waiting times has a few valuable properties. It
is stationary, can be treated analytically, and the distribution of waiting times and memory
in its series can be set independently.

As we observe many phenomena with dependencies between waiting times, possible
applications of this family of CTRW models go beyond the exemplary application presented
here.

However, in this manuscript, we applied the proposed model to describe high-
frequency financial time series. We asked ourselves which commonly known properties of
the financial time series can be reproduced by the long-term memory introduced in our
model, only by means of the repeating waiting times. We have to emphasize that part of
these properties, known as stylized facts, depend on the waiting time distribution ψ(Δt)
and price change distribution h(Δx). As we are not trying to study the general ability of
continuous-time random walk to describe the high-frequency financial time series, we have
not studied the broad distribution of log-returns [72], multi-fractality [73,74], or universal
scaling of the distribution of times between large jumps [75,76]. We have analyzed the
decay of the nonlinear time autocorrelation function of log-returns and the decay of the
step autocorrelation function of times between large jumps. Although we considered only
memory in a sequence of waiting times, we managed to show that long-term dependencies
in waiting times are crucial in explaining the volatility clustering effect and results in the
power-law decay of both measures mentioned above.

Our results indicate that the dependence between consecutive price changes is not
the primary carrier of long-range memory in the volatility clustering phenomenon. To
verify these results, we conducted another simulation. We prepared autocorrelated series
of waiting times according to the Fourier filtering method (for example, described in [86]).
Similarly, as in our model, both the slopes of the step ACF of WTs and the time ACF of
absolute returns were the same. This verification confirms our conclusion and indicates
that it is general, independently of the origin of the autocorrelation between inter-trade
intervals.
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Appendix A

In this Appendix, we sketch the solution for calculating the moments of the process in
the limit of long times. All increments of the process Δx are independent, so first we will
focus only on the number of jumps. We calculate the probability Pn(t) for n ≥ 0, which is
the probability that it will be exactly n jumps up to time t, P0(t) can be obtained directly
from the definition, as the probability of no jumps in the time t is

P0(t) = Ψ(t) ⇒ P̃0(s) = Ψ̃(s), (A1)

where Ψ(·) is the sojourn probability for the waiting time distribution. For n ≥ 1 the
process will be described by the number of series of waiting times k, the waiting times in
each series Δti , and the number of repetitions of waiting times in each series νi.

Of course, in each series the number of repetitions has to be at least one, so the number
of series k cannot be larger than the number of jumps n. Particularly, the cumulative number
of jumps in all k series must equal the total number of jumps: ν1 + ν2 + · · ·+ νk = n. All
considered jumps have to happen before looking time t, so the total time elapsed has
to be smaller than t: ν1Δt1 + ν2Δt2 + · · · + νkΔtk ≤ t. Let us call the period between t
and the last jump δt = t − ∑ Δtiνi > 0. For the simplicity of notation, let us redefine
Ω(ν) = ∑∞

n=ν+1 ω(n).
Looking at the process at time t, we can be in one of two situations. There has been k

series of WTs so far. The next k + 1-th series has just begun, or we could still be in the k-th
series. Therefore, the soft propagator Pn(t) for n ≥ 1 can be written as a sum of two parts:

1. The k-th series of waiting times Δtk repeated νk times, ended before time t, and the
process is still in the same position (the next waiting time will be from the new
series). The probability of an individual event can be written as the product of these
probabilities:

(a) probabilities ψ(Δti) that there was waiting time Δti in the i-th series for each
series 1, . . . , k;

(b) probabilities ω(νi) that the repetition number was νi in the i-th series for each
series 1, . . . , k;

(c) probability Ψ(δt) that the new WT Δtk+1 is larger than δt, because there was
no jump in this period;

(d) probability Ω(0) = 1 that the new repetition number νk+1 is at least one. By
definition, this probability is one;

To calculate the total probability, we need to consider the aggregated probability of all
individual events. This means considering all possible sets of variables k, νi, Δti. To
do this, we need to sum over all possible k and νi and integrate over all possible Δti.

2. The process is, during the series of WTs Δtk, repeated νk times so far. The probability
of an individual event can be written as the product of these probabilities:

(a) probabilities ψ(Δti) that there was waiting time Δti in the i-th series for each
series 1, . . . , k;

(b) probabilities ω(νi) that the repetition number was νi in the i-th series for each
series 1, . . . , k − 1;

(c) probability Ω(νk) that there will be at least one more repetition of the k-th WT.
This means that the total number or repetitions in this series is larger than νk
observed so far;

As before, we need to consider the aggregated probability of all individual events to
calculate the total probability. In this case, we have another constraint for Δtk , which
has to be larger than δt, because in other cases, there should be another jump before
time t.

Summing the above requirements, we can write the formula for the soft propagator:
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Pn(t) =
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

∫
Δt1,...,Δtk

0<δt

ψ(Δt1) . . . ψ(Δtk)Ψ(δt)ω(ν1) . . . ω(νk)dΔt1 . . . dΔtk

+
n

∑
k=1

∑
ν1,...,νk

ν1+...+νk=n

∫
Δt1,...,Δtk

0<δt<Δtk

ψ(Δt1) . . . ψ(Δtk)ω(ν1) . . . ω(νk−1)Ω(νk)dΔt1 . . . dΔtk.
(A2)

Next, we calculate the Laplace transform (t → s) and Z transform (n → z) to obtain

P̃(z; s) = P̃0(s) + P̃z(s) =
1
s

1
1 − f̃ (z; s)

[
1 + F̃(z; s)− z(F̃(z; s) + f̃ (z; s))

]
, (A3)

where f̃ (z; s) = ∑∞
ν=1 z−νψ̃(sν)ω(ν) and, analogically, F̃(z; s) = ∑∞

ν=1 z−νψ̃(sν)Ω(ν). No-
tice that the full soft propagator with included jumps can be easily expressed as the Z
transform of P̃n at the point z = h̃(k)−1

P̃(k; s) =
∞

∑
n=0

P̃nh̃n(k) = P̃(z; s)
∣∣∣
z=h̃(k)−1

=
1
s

1 + F̃(h̃(k)−1; s)− h̃(k)−1(F̃(h̃(k)−1; s) + f̃ (h̃(k)−1; s))
1 − f̃ (h̃(k)−1; s)

.

(A4)

The first two moments of the process can be calculated as derivatives of the propagator at
the point k = 0:

m̃1(s) = −i
∂P̃(k; s)

∂k

∣∣∣
k=0

=
μ1

s
J0 + j0
1 − j0

,

m̃2(s) = −∂2P̃(k; s)
∂k2

∣∣∣
k=0

=
2μ2

1
s

j1(J0 + j0) + (1 − j0)(J1 + j1 − J0 − j0)
(1 − j0)2

+
μ2

s
J0 + j0
1 − j0

,

(A5)

where we introduced

jn = j(n; s) =
∞

∑
ν=1

νn ψ̃(sν) ω(ν), Jn = J(n; s) =
∞

∑
ν=1

νn ψ̃(sν) Ω(ν). (A6)

Next, we focus on the specific power-law memory. We set the distribution of the number
of repeats to be zeta distribution with the parameter ρ: ω(ν) = ν−ρ

ζ(ρ)
, ρ > 2. The parameter

ρ has to be bigger than two because the distribution of the number of repeats must have
a finite mean not to break ergodicity. Furthermore, we expand the moments into series,
assuming very small s (so for long times). To do that, we need expansions of j(n; s) and
J(n; s) for n = {0, 1} < (ρ − 1). One can express j(n; s) as the power-law sum

j(n; s) =
1

ζ(ρ)

∞

∑
ν=1

ψ̃(sν) ν−(ρ−n) =
sρ−n−1

ζ(ρ)

∞

∑
ν=1

ψ̃(sν) (sν)−(ρ−n) s︸ ︷︷ ︸
I

. (A7)

The behaviour of sum I can be estimated by integrals∫ ∞

2s
ψ̃(x)x−(ρ−n)dx < I <

∫ ∞

s
ψ̃(x)x−(ρ−n)dx. (A8)
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Therefore, we can approximate sum I into the series and finally obtain

j(n; s) = Cnsρ−n−1 + C0
n + C1

ns + C2
ns2 + C3

ns3 + · · · . (A9)

One can calculate

C0
n = j(n; 0) =

1
ζ(ρ)

∞

∑
ν=1

ν−(ρ−n) =
ζ(ρ − n)

ζ(ρ)
≥ 1. (A10)

Moreover, we can notice that
C0

1
C1

0
= − 1

〈Δt〉 . (A11)

Similarly, we approximated

J(n; s) = Dnsρ−n−2 + D0
n + D1

ns + D2
ns2 + D3

ns3 + · · · . (A12)

Constant terms are:

D0
0 =

ζ(ρ − 1)
ζ(ρ)

− 1 = C0
1 − C0

0, D0
1 =

ζ(ρ − 2)− ζ(ρ − 1)
2ζ(ρ)

=
C0

2 − C0
1

2
. (A13)

This gives the form of the first moment

m̃1(s) ≈
μ1

s

(
C0

1 + D0sρ−2
) C0

C1
0

sρ−2 − 1

sC1
0

= −μ1

s2
C0

1
C1

0
− μ1

s4−ρ

D0 +
C0C0

1
C1

0

C1
0

, (A14)

concerning only terms increasing with time (s−α, α > 1)—the analytical and the most
important power-law one. Switching to time variables, we obtain:

m1(t) = L−1[m̃1(s)] ≈
μ1

〈Δt〉 t − μ1

D0 +
C0
〈Δt〉

C1
0Γ(4 − ρ)

t3−ρ. (A15)

The second moment can be expressed as

m̃2(s) ≈
2μ2

1

〈Δt〉2 s−3 − μ2
1

4C2
0 + 3C1

0 〈Δt〉+ 2C1
1 〈Δt〉+ 2D1

0 〈Δt〉+ C0
2 〈Δt〉2

2C1
0 〈Δt〉2 s−2

− μ2
1

D0 + C1 − D1 + 2 C0
〈Δt〉

C1
0 〈Δt〉 sρ−5 +

μ2

〈Δt〉 s−2.

(A16)

This gives us the variance in the time domain presented in the main text.

Appendix B

In our model, we can consider waiting times between extreme events. We define an
extreme event as an event occurring on average every 〈N〉 steps. The autocovariance of
waiting times between n extreme events COV(n) can be written as

COV(n) =
∞

∑
W=n−1

∞

∑
K1=1

∞

∑
K2=1

K1

∑
i=1

K2

∑
j=1

NB(W; n − 1)NB(K1; 1)NB(K2; 1)cov(j + i + W − 1), (A17)

where cov(·) is defined by Equation (5) and NB(k, n) is a negative binomial distribution
with k trials, given n successes and the probability of success 1

〈N〉 :

NB(k, n) =
(

k − 1
n − 1

)(
1

〈N〉

)n(
1 − 1

〈N〉

)k−n
. (A18)
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The simpler form of this autocovariance can be derived thus:

COV(n) =
(

1
〈N〉

)n−1 ∞

∑
x=0

(
1 − 1

〈N〉

)x
cov(x + n)

(
x + n

n

)
. (A19)

Next, we calculate its Z-transform

ĈOV(z) = 〈N〉 ĉov

⎛⎝ 1
〈N〉−1
〈N〉 + 1/〈N〉

z

⎞⎠, (A20)

where
ĉov(z) =

1
ζ(ρ − 1)

z
(z − 1)2

[
(z − 1)ζ(ρ − 1)− ζ(ρ) + Liρ,z−1

]
(A21)

and Liρ,z−1 is a polylogarithm function. Setting z = exp(s), we can show that the most
important power-law term is sρ−3, which corresponds to a power-law decay COV(n) ∼
n−(ρ−2), analogically to Equation (8).

References

1. Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modelling Extremal Events: For Insurance and Finance; Stochastic Modelling and
Applied Probability; Springer: Berlin/Heidelberg, Germany, 2013.

2. Daley, D.J.; Vere-Jones, D. An Introduction to the Theory of Point Processes, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003.
3. Engle, R.F.; Russell, J.R. Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica

1998, 66, 1127–1162. [CrossRef]
4. Hawkes, A. Spectra of some self-exciting and mutually-exciting point processes. Biometrika 1971, 58, 83. [CrossRef]
5. Hawkes, A. Point spectra of some mutually-exciting point processes. J. R. Stat. Soc. B 1971, 33, 438. [CrossRef]
6. Dufour, A.; Engle, R.F. Time and the Price Impact of a Trade. J. Financ. 2000, 55, 2467–2498. [CrossRef]
7. Engle, R.F.; Lange, J. Predicting VNET: A model of the dynamics of market depth. J. Financ. Mark. 2001, 4, 113–142. [CrossRef]
8. Engle, R.F.; Russell, J.R. Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive

conditional duration model. J. Empir. Financ. 1997, 4, 187–212. [CrossRef]
9. Bauwens, L.; Giot, P. The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks. Ann.

D’éConomie Stat. 2000, 60, 117–149. [CrossRef]
10. Grammig, J.; Maurer, K.O. Non-monotonic hazard functions and the autoregressive conditional duration model. Econom. J. 2000,

3, 16–38. [CrossRef]
11. Pacurar, M. Autoregressive conditional duration models in finance: A survey of the theoretical and empirical literature. J. Econ.

Surv. 2008, 22, 711–751. [CrossRef]
12. Hawkes, A.G. Cluster models for earthquakes—Regional comparisons. Bull. Int. Stat. Inst. 1973, 45, 454.
13. Ogata, Y. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Ann. Inst. Stat. Math. 1978,

30, 243. [CrossRef]
14. Brillinger, D. The identification of point process systems. Ann. Probab. 1975, 3, 909. [CrossRef]
15. Oakes, D. The Markovian self-exciting process. J. Appl. Probab. 1975, 12, 69. [CrossRef]
16. Daley, D.J.; Vere-Jones, D. An Introduction to the Theory of Point Processes. Volume I, 2nd ed.; Probability and its Applications;

Springer: Berlin/Heidelberg, Germany, 2003; pp. 22–469.
17. Bowsher, C. Modelling security market events in continuous time: Intensity based, multivariate point process models. J. Econom.

2007, 141, 876. [CrossRef]
18. Chavez-Demoulin, V.; Davison, A.C.; McNeil, A.J. Estimating value-at-risk: A point process approach. Quant. Financ. 2005,

5, 227–234. [CrossRef]
19. Hewlett, P. Clustering of order arrivals, price impact and trade path optimisation. In Proceedings of the Workshop on Financial

Modeling with Jump Processes, Palaiseau, France, 6–8 September 2006.
20. Large, J. Measuring the resiliency of an electronic limit order book. J. Financ. Mark. 2007, 10, 1. [CrossRef]
21. Beran, J.; Feng, Y.; Ghosh, S. Modelling long-range dependence and trends in duration series: An approach based on EFARIMA

and ESEMIFAR models. Stat. Pap. 2015, 56, 431–451. [CrossRef]
22. Jasiak, J. Persistence in Intertrade Durations. Finance 1999, 19, 166–195. [CrossRef]
23. Karanasos, M. The Statistical Properties of Exponential ACD Models. Quant. Qual. Anal. Soc. Sci. 2008, 2, 29–49.
24. Beran, J.; Feng, Y. Iterative Plug-in Algorithms for SEMIFAR Models: Definition, Convergence, and Asymptotic Properties. J.

Comput. Graph. Stat. 2002, 11, 690–713. [CrossRef]
25. Beran, J.; Feng, Y. SEMIFAR models—A semiparametric approach to modelling trends, long-range dependence and nonstationar-

ity. Comput. Stat. Data Anal. 2002, 40, 393–419. [CrossRef]

186



Entropy 2021, 23, 1576

26. Deo, R.; Hsieh, M.; Hurvich, C.M. Long memory in intertrade durations, counts and realized volatility of NYSE stocks. J. Stat.
Plan. Inference 2010, 140, 3715–3733. [CrossRef]

27. Deo, R.; Hurvich, C.M.; Soulier, P.; Wang, Y. Conditions for the propagation of memory parameter from durations to counts and
realized volatility. Econom. Theory 2009, 25, 764–792. [CrossRef]

28. Sun, W.; Rachev, S.; Fabozzi, F.J.; Kalev, P.S. Fractals in trade duration: Capturing long-range dependence and heavy tailedness
in modeling trade duration. Ann. Finance 2008, 4, 217–241. [CrossRef]

29. Ghysels, E.; Jasiak, J. GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model. Stud. Nonlinear Dyn. Econom.
1998, 2, 4. [CrossRef]

30. Hautsch, N. Econometrics of Financial High-Frequency Data; Springer: Berlin/Heidelberg, Germany, 2012; pp. 13–371.
31. Bhogal, S.K.; Thekke Variyam, R. Conditional duration models for high-frequency data: A review on recent developments. J.

Econ. Surv. 2019, 33, 252–273. [CrossRef]
32. Hawkes, A.G. Hawkes processes and their applications to finance: A review. Quant. Financ. 2018, 18, 193–198. [CrossRef]
33. Bacry, E.; Mastromatteo, I.; Muzy, J.F. Hawkes Processes in Finance. Mark. Microstruct. Liq. 2015, 1, 1550005. [CrossRef]
34. Daley, D.J.; Vere-Jones, D. An Introduction to the Theory of Point Processes. Volume II, 2nd ed.; Probability and its Applications;

Springer: Berlin/Heidelberg, Germany, 2008; pp. 18–573.
35. Chavez-Demoulin, V.; McGill, J. High-frequency financial data modeling using Hawkes processes. J. Bank. Financ. 2012, 36, 3415.

[CrossRef]
36. Bacry, E.; Dayri, K.; Muzy, J.F. Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency

financial data. Eur. Phys. J. B 2012, 85, 157. [CrossRef]
37. Bacry, E.; Muzy, J.F. Hawkes model for price and trades high-frequency dynamics. Quant. Financ. 2014, 14, 1147–1166. [CrossRef]
38. Filimonov, V.; Sornette, D. Quantifying reflexivity in financial markets: Toward a prediction of flash crashes. Phys. Rev. E 2012,

85, 056108. [CrossRef] [PubMed]
39. Filimonov, V.; Sornette, D. Apparent criticality and calibration issues in the Hawkes self-excited point process model: Application

to high-frequency financial data. Quant. Financ. 2015, 15, 1293–1314. [CrossRef]
40. Hardiman, S.J.; Bercot, N.; Bouchaud, J.P. Critical reflexivity in financial markets: A Hawkes process analysis. Eur. Phys. J. B 2013,

86, 442. [CrossRef]
41. Hardiman, S.J.; Bouchaud, J.P. Branching-ratio approximation for the self-exciting Hawkes process. Phys. Rev. E 2014, 90, 062807.

[CrossRef]
42. Jaisson, T.; Rosenbaum, M. Limit theorems for nearly unstable Hawkes processes. Ann. Appl. Probab. 2015, 25, 600–631.

[CrossRef]
43. Montroll, E.W.; Weiss, G.H. Random Walks on Lattices. II. J. Math. Phys. 1965, 6, 167–181. [CrossRef]
44. Kutner, R.; Masoliver, J. The continuous time random walk, still trendy: Fifty-year history, state of art and outlook. Eur. Phys. J. B

2017, 90, 50. [CrossRef]
45. Kutner, R. Correlated hopping in honeycomb lattice: Tracer diffusion coefficient at arbitrary lattice gas concentration. J. Phys.

Solid State Phys. 1985, 18, 6323. [CrossRef]
46. Kehr, K.; Kutner, R.; Binder, K. Diffusion in concentrated lattice gases. Self-diffusion of noninteracting particles in three-

dimensional lattices. Phys. Rev. B 1981, 23, 4931–4945. [CrossRef]
47. Haus, J.W.; Kehr, K.W. Random walk model with correlated jumps: Self-correlation function and frequency-dependent diffusion

coefficient. J. Phys. Chem. Solids 1979, 40, 1019–1025. [CrossRef]
48. Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Phys. Stat. Mech. Its Appl. 2000, 284, 376–384.

[CrossRef]
49. Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E. Fractional calculus and continuous-time finance II: The waiting-time distribution.

Phys. Stat. Mech. Its Appl. 2000, 287, 468–481. [CrossRef]
50. Raberto, M.; Scalas, E.; Mainardi, F. Waiting-times and returns in high-frequency financial data: An empirical study. Phys. Stat.

Mech. Its Appl. 2002, 314, 749–755. [CrossRef]
51. Scalas, E.; Gorenflo, R.; Mainardi, F. Uncoupled continuous-time random walks: Solution and limiting behavior of the master

equation. Phys. Rev. E 2004, 69, 011107. [CrossRef]
52. Scalas, E. The application of continuous-time random walks in finance and economics. Phys. Stat. Mech. Its Appl. 2006,

362, 225–239. [CrossRef]
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Abstract: In econophysics, the achievements of information filtering methods over the past 20 years,
such as the minimal spanning tree (MST) by Mantegna and the planar maximally filtered graph
(PMFG) by Tumminello et al., should be celebrated. Here, we show how one can systematically
improve upon this paradigm along two separate directions. First, we used topological data analysis
(TDA) to extend the notions of nodes and links in networks to faces, tetrahedrons, or k-simplices
in simplicial complexes. Second, we used the Ollivier-Ricci curvature (ORC) to acquire geometric
information that cannot be provided by simple information filtering. In this sense, MSTs and PMFGs
are but first steps to revealing the topological backbones of financial networks. This is something
that TDA can elucidate more fully, following which the ORC can help us flesh out the geometry
of financial networks. We applied these two approaches to a recent stock market crash in Taiwan
and found that, beyond fusions and fissions, other non-fusion/fission processes such as cavitation,
annihilation, rupture, healing, and puncture might also be important. We also successfully identified
neck regions that emerged during the crash, based on their negative ORCs, and performed a case
study on one such neck region.

Keywords: econophysics; financial markets; correlation filtering; minimal spanning tree; planar
maximally filtered graph; topological data analysis; SGX; TAIEX

1. Introduction

At the turn of the 20th century, Bachelier suggested in his PhD thesis that stock prices
follow geometric Brownian motions and worked out some of the consequences [1]. This
was a major breakthrough at that time, when few expected any theoretical understanding
of the stock market. In his thesis, Bachelier assumed that the prices of term contracts follow
a normal distribution. Osborn then proposed that it is the rate of return that follows a
normal distribution [2]. Later, Mandelbrot and Fama independently found early evidence
to suggest that this is not true, and the return distribution has fat tails better fitted by a
Levy stable distribution with b = 1.7 [3,4]. Mandelbrot then proposed modeling financial
returns using fractional Brownian motion [5] and, later, multifractals [6]. Parallel efforts to
understand the complexity of financial markets using agent-based models and evolutionary
computing were also undertaken at the Santa Fe Institute by Palmer et al. [7]. Up until
this point in time, physicists studied economics problems sporadically, and this body of
knowledge was not yet known as econophysics.

Widely recognized to be the start of econophysics are the 1991 paper by Mantegna [8]
and the 1992 paper by Takayasu and his co-workers [9]. Then, in 1995, Stanley coined
the name econophysics during the Statphys-Kolkata conference at Kolkata, India [10]. This
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marked a watershed moment in the field. After 1995, more physicists worked on economic
and financial problems, publishing their results and findings in physics journals. These
events ushered in the field of econophysics, where physicists (and mathematicians, as well
as computer scientists) brought insights from their own fields to the study of economics
and finance. Over the next two decades, econophysicists witnessed several breakthroughs.
The earliest success of econophysics is the application of random matrix theory (RMT,
which is a statistical theory developed to explain the energy spectra of heavy nuclei) to the
stock market [11–14]. In RMT, one treats noise as a kind of symmetry, and thus information
represents some form of symmetry breaking. This allows physicists to discriminate between
noise and signal in financial markets. The next significant milestone in econophysics was
a more compelling demonstration of fat tails in return distributions by Mantegna and
Stanley [15,16], and also by Mittnik et al. [17]. These two groups estimated b = 1.4 for the
Levy stable distribution.

Many other breakthroughs then followed, including the fitting of price time se-
ries to a log-periodic power-law (LPPL), which allowed precise predictions of market
crashes [18,19], as well as the discovery of dragon kings [20] by Sornette, understanding
and modeling of the Gibbs–Pareto distribution of wealth and income by Chakrabarti et al. [21]
and Yakovenko [22], characterization of the actual Brownian motion in the price fluctua-
tions [23,24], and the development of the DebtRank metric for measuring systemic risk in
financial networks [25]. Other network approaches have also started appearing in econo-
physics recently. These include recurrence networks (RNs), visibility graphs (VGs), and
transition networks (TNs). Recurrence networks were proposed by Marwan, Donner and
their co-workers in 2009 [26,27] and are used to study the statistical properties of daily
exchange rates [27]. Since the seminal work by Lacasa in 2008 [28], many groups have
started using VGs to analyze financial time series, including exchange rates [29], stock
indices across different countries [30], the macroeconomics series of China [31], and market
indices in the US [32]. A recent article by Antoniades et al. [33] used the TN to investigate
the Vosvrda macroeconomic model, but thus far no one has tested the approach on real
financial time series data.

Other recent breakthroughs include the application of inverse statistics (IS) in finance.
IS, which is deeply rooted in fluid dynamics, and related in particular to the phenomenon
of turbulence, is an old yet challenging problem. For the last two decades, many concepts
have been borrowed from past studies on turbulence and applied to financial problems.
One of them was the use of forward statistics, which aims to answer the question “given
a fixed time horizon, what are the typical returns that an investor will realize in that
period?”. In addition, Jensen [34] proposed the inverse statistics, by turning the question
around, to ask “for a given return on an investment, what is the typical time required
to realize it?”. This latter question is no less pertinent and is more relevant to practical
financial management. If IS such as the above can be computed, investors could earn
market-beating profits.

Using the IS as a probe, Jensen, Simonsen, and Johansen, published a series of papers
starting in the mid-2000s [35–38] to study many economic phenomena. They focused
particularly on the Gain-Loss Asymmetry (GLA) in financial markets. GLA refers to the
observation that, in a financial market, positive prices have different dynamics from the
negative ones. After testing stock indices in the US such as the DJIA [35], Nasdaq, and
the S&P 500 [37,39], those in other countries such as Austria [40], Korea [41], and 40 other
world indices [39], and other instruments such as FOREX [38], mutual funds [42], it was
found empirically that negative returns took shorter average times to realize compared
to positive returns of the same magnitude. To explain how GLA occurs in real markets,
models with a fear factor have been developed [43–46]. However, factors other than fear of
loss might also explain the GLA [47]. A comprehensive survey on IS can be found in the
review article by Ahlgren et al. [48].

In this Special Issue, we celebrate the breakthrough that is one of Mantegna’s crowning
achievements, which is the application of the minimal spanning tree (MST) to unravel
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hierarchical structures in financial markets [49]. We will start by reviewing the essence of
Mantegna’s insight, and the body of works that followed him (including the systematic
embedding of cross correlations onto a hierarchy of surfaces with different genera [50]).
We then describe attempts to overcome the limitations of the MST by going to hypergraph
approaches [51–54]. A hypergraph is a natural extension of a graph, where instead of
having each edge join only two nodes, an edge can join any number of nodes. Unfortunately,
the hypergraph approach is difficult to implement starting from pairwise correlations, so
we argue that the more promising approach to extract deeper insights into the hierarchical
structure in financial markets is through topological data analysis (TDA) [55–58]. In TDA, the
idea is to go beyond the concepts of nodes (0-simplex), links (1-simplex), and the network
that they form to a simplicial complex, which can contain (k > 1)-simplices as constituents.

In a recent paper [59], we demonstrated how TDA can be used to understand the
topological changes that accompany market crashes. For such extreme events in financial
markets, one of the key questions not well answered through the use of MSTs or planar
maximally filtered graphs (PMFGs) is how the hierarchy of cross correlations between
stocks re-organizes itself. In particular, an important class of topological changes is the
merging between disjoint clusters (or their time reversal—the splitting of a cluster into
disjoint clusters). We found, by tracking how the Betti numbers β0, β1, and β2 change over
market crashes, that β0 (the number of connected components) is small at the beginning
of a market crash and increases as the market crash progresses. This tells us that we
have a giant connected component in the market just before the crash, and as the market
crashed, this broke up into many smaller components. The nature of this breaking up
can be understood in greater detail through β1 (the number of “holes” in the connected
components), and β2 (the number of “voids” in the connected components) (see Figure 1).
Based on β1 and β2, we realized that a particular crash occurred in two stages. In the
first stage, the topology of the giant connected component became more complex, as
some “voids” grew outwards to become “holes”. In the second stage, the number of
“holes” decreased precipitously, presumably the result of handle-breaking events. These
handle-breaking events are not simple, because the number of “voids” increases in this
stage. Finally, the giant connected component broke up completely into many connected
components that have simple topologies (few “holes” and “voids”).

hole
void

Figure 1. A manifold with a “hole” as well as a “void”.

In addition to the TDA, we found another promising approach for extending the
information filtering paradigm of MSTs and PMFGs. This is through calculating discrete
versions of the Ricci curvature, either the Ollivier-Ricci curvature (ORC) for networks, or
the Forman-Ricci curvature (FRC) for simplicial complexes. To identify which stocks in a
network or simplicial complex make up the neck or bridge region between two densely
connected clusters, the naive approach would be to identify them visually. Naturally, this
is laborious and inefficient. It turns out the ORC is ideal for this task, because links in the
neck regions have negative ORC. More importantly, the breaking up of a manifold into
two involved the stretching and narrowing of the neck region through a process called
Ricci flow. Physical fission processes closely resemble Ricci flow, even when the objects
undergoing fragmentation are networks or simplicial complexes. In such discrete Ricci
flows, the ORC or FRC become more negative over time to produce finite-time singularities.
Our motives in computing the ORC are threefold: First, we would like to identify the
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neck regions by looking for where in the network the ORCs are negative. Second, by
looking at how the negative ORCs are changing, we would like to predict when we run
into finite-time singularities. These are when the fissions occur. Finally, from the natures of
the singularities, we would like to understand the drivers for the different fissions.

To make the case for TDA and Ricci curvature analysis, we organized our paper as
follows. In Section 2, we will review applications of the MST in econophysics. In Section 3,
we will explain how the PMFG can provide more details on correlations between stocks,
by keeping more links than in the MST. In fact, there is a hierarchy of maximally filtered
networks on closed surfaces with increasing genera (the PMFG being the simplest, on a
sphere with genus g = 0) that we can explore to understand the structure of correlations
between stocks. Unfortunately, the algorithms for obtaining higher-order filtered networks
become increasingly difficult to implement, which explains why the PMFG is not as
popular as the MST. In fact, we found only one previous work that demonstrated how
to filter the weighted links of an artificial complex network onto a torus (with genus
g = 1) [60]. In Section 4, we describe the ideas behind TDA, and suggest that this is
the natural extension going beyond MST and PMFG. To make our case, we explore four
toy models for fusions and fissions, and thereafter use their TDA signatures to explain
non-trivial topological changes observed in the cross correlations between stocks during
a market crash in the Taiwan Stock Exchange (TWSE). In Section 5, we define what Ricci
curvature is for smooth surfaces, and describe how this can be generalized to discrete
networks and simplicial complexes, in the form of Ollivier-Ricci curvature and Forman-
Ricci curvature, respectively. We then explain why we need Ricci curvature analysis to
distinguish between different stages of fission processes that are topologically equivalent,
before demonstrating this power for one of the toy models. Finally, we use the Ollivier-
Ricci curvature to analyze a sequence of PMFGs obtained from the cross correlations of
TWSE stocks in overlapping time windows leading up to the market crash of interest,
before ending with a comparative case study of two neck regions. In Section 6, we present
the conclusions.

2. The Minimal Spanning Tree

In Figure 2, we show the matrix of Pearson cross correlations

Cij =
1
T ∑T

t=1(xi,t − x̄i)
(
xj,t − x̄j

)
√

1
T−1 ∑T

t′=1
(

xi,t′ − x̄i
)2

√
1

T−1 ∑T
t′′=1

(
xj,t′′ − x̄j

)2
(1)

between 561 stocks in the Singapore Exchange (SGX) within the period January 2008
to December 2009. In Equation (1), the time series xi = (xi,1, . . . , xi,t, . . . , xi,T) and xj =

(xj,1, . . . , xj,t, . . . , xj,T) with average x̄j = 1
T ∑T

t=1 xj,t can be the daily prices, daily price
differences (also known as the daily returns), or daily log-returns (which are practically
identical to the daily fractional returns) of stocks i and j. Their time averages are x̄i =
1
T ∑T

t=1 xi,t and x̄j =
1
T ∑T

t=1 xj,t. In Section 4.3, we used the daily returns for our topological
data analysis. This is acceptable for short time periods, e.g., six months, because the price
levels do not change by much. For longer time periods, for example, two years, as in the
example associated with Figure 2, we used the daily fractional returns, so that we do not
have the problem of increasing weights when the price levels become significantly higher
at the end of the time period.

Before the rows and columns are reordered, it is impossible to discern any correlational
structures in the SGX stocks. After reordering the rows and columns, we find the strong
correlations organized into diagonal blocks, with weaker correlations between them. We
also see that within the largest diagonal block in Figure 2b, the correlations are not uniform,
but are further organized into diagonal sub-blocks. In hindsight, doing the reordering of
rows and columns to reveal these correlational structures in the SGX was a straightforward
task, since they have been shown to exist in other markets [61–65]. Mantegna was the first
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to suspect such hierarchical organizations exist in stock markets and proposed methods to
elucidate such structures. Like us, Mantegna employed hierarchical clustering methods to
carry out the reordering of rows and columns. However, clustering methods are based on
pairwise distances, so the first problem that he had to solve was mapping the conventional
Pearson cross correlations, which do not satisfy the three axioms of a distance metric, to
pairwise distances. After discussions with Sornette (see Ref. 14 in [49]), Mantegna adopted
the mapping

Dij =
√

2(1 − Cij) (2)

going from a cross correlation Cij between stock i and stock j to a pairwise distance Dij,
which satisfies the strong triangle inequality Dij ≤ max{Dik, Dkj}. Mantegna then investi-
gated the correlational structures in the component stocks of the Dow Jones Industrial
Average (DJIA) and Standards and Poors 500 (S&P 500) indices, using single-linkage hi-
erarchical clustering. Based on these results, Mantegna argued that US stocks do not
react equally strongly to the various economic factors, but do so in groups synonymous
with those discovered by random matrix theory [66]. This corroboration between Man-
tegna’s 1999 MST paper and Plerou et al.’s 1999 RMT paper was an important discovery at
that time.

(a) (b)

Figure 2. (a) The cross-correlation matrix for 561 stocks in the SGX from January 2008 to December
2009. In this figure, red correlations are strongly positive, blue correlations are strongly negative,
while green correlations are close to zero. No structures can be discerned in this figure, because
the stocks are arranged in alphabetical order. (b) After reordering the rows and columns of the
cross-correlation matrix, we found strong correlations organized into diagonal blocks, with weaker
correlations between them. Material from: Teh et al., Cluster fusion-fission dynamics in the Singapore
stock exchange, Euro. Phys. J. B, published 2015 [67], Springer Nature Switzerland AG.

However, the greatest impact of this 1999 paper was the use of the minimal spanning
tree (MST) as a caricature of the correlational structures between stocks. A tree is a graph
with no cycles, and the MST was introduced as early as the 1950s as a special subgraph
of a weighted graph containing cycles. In Figure 3a, we show the algorithm attributed to
Kruskal [68] for constructing an MST, as well as an example in Appendix A. Following
Mantegna’s lead, many others (including ourselves) started publishing papers on the MSTs
of different markets in, for example, the US [69–75], UK [76], Korea [77,78], Japan [79],
China [80], India [81], Indonesia [82], and Africa [83]. We also find the MST applied to
different classes of financial instruments: market indices [81,84–86], bonds and interest
rates [87–89], currencies [90–95], commodities [96–101], overnight loans in an interbank net-
work [102], housing market indices of different countries [103], to name just a few. Beyond
Mantegna’s test of the temporal stability of the MST representation (where he changed
the time period slightly, recomputed the cross correlations, and drew the MST again) [69],
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Onnela et al. also used the MST to visualize the progression of a market crash [70,104].
Other applications include Sun et al. [105,106] and Jiang et al. [107] using the MST to detect
insider trading in stock markets, as well as Onnela et al. [70,73], Tola et al. [108], and
Coelho et al. [109] using the MST for portfolio selection. The popularity of the MST in
econophysics should be clear from this quick survey, and interested readers can refer to the
reviews [110,111] for even more references.

(a) 
Algorithm Kruskal’s algorithm 
1: procedure Build MST ( ) 
2:    Start with a fully disconnected graph  
3:    
4:    
5:    
6:   for ordered by increasing  do 
7:       Verify that  and  are not in a predetermined path 
8:      if there is no path between  then  
9:         connect i, j 
10:        
11:    is the resulting MST 
12:   return   

 
 

(b) 
Algorithm Planar maximally filtered graph algorithm 
1: procedure Build PMFG ( ) 
2:    Start with a maximum correlation , and draw a link 
between i, and j, i.e.   
3:   ,  
4:   if a new link preserve the planarity of the graph, do 
5:        
6:   else    
7:       reject  
8:   if all nodes are incorporated into a simple graph, do 
9:         Stop    
10:  else 
11:        Go to step 3 
12:  return   

 

Figure 3. Pseudo codes for (a) minimal spanning tree and (b) a planar maximally filtered graph.

3. The Planar Maximally Filtered Graph (PMFG)

The successes of the MST in econophysics inspired many other network studies.
For example, to understand the same finance and economics problems, many groups
experimented with other types of networks [112–119]. Others, such as Chen et al. [120],
experimented with artificial markets on small world networks, scale-free networks, and
multilayer networks, to find noticeable differences in market sentiments on these different
networks. We even found work focusing on developing complex network metrics that can
be used to track the evolution of financial markets across different states (for further infor-
mation, see the review by Kennett and Havlin [121]). Working more or less separately from
network scientists, economists approach the network structure of financial markets from
the broader perspective of market microstructure. The National Bureau of Economic Research
has a market microstructure research group that, it says, “· · · is devoted to theoretical,
empirical, and experimental research on the economics of securities markets, including the
role of information in the price discovery process, the definition, measurement, control, and
determinants of liquidity and transactions costs, and their implications for the efficiency,
welfare, and regulation of alternative trading mechanisms and market structures” [122].
According to a quant school [123], market microstructure deals with issues of market
structure and design, price formation and price discovery, transaction and timing cost,
volatility, information and disclosure, and market maker and investor behavior. In short,
market microstructure is a sub-field of economics that assumes a network structure as a
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given in financial markets, but introduces additional economic metrics that would help
policy makers regulate market dynamics. To this end, we see more network metrics used
in economics, and they have become more widely accepted by traditional economists. For
example, in a recent paper, Tellez et al. distinguished between secured and unsecured
interbank loans, and concluded that the Katz centrality and DebtRank are appropriate
measures of systemic risk for the unsecured interbank network, while PageRank is more
correlated with the interest rate spread in a secured interbank network [124].

Against this backdrop, one of the most important developments following the popu-
larization of the MST was by Tumminello et al., who took the correlation filtering approach
one step further. In econophysics, the MST is typically constructed starting from the cross-
correlation matrix, which has N(N − 1)/2 independent components. However, the MST
only keeps N − 1 � N(N − 1)/2 of these. These (N − 1) MST links are clearly important,
but we may also wonder whether some of the discarded links might be just as important.
Tumminello et al. realized that we can obtain a hierarchy of filtered graphs by projecting
the strongest cross correlations onto surfaces with different genera g [50]. The simplest
such projection onto a sphere (g = 0) is the planar maximally filtered graph (PMFG). This
keeps 3N − 6 links, which is more than in the MST but still small. In fact, all the MST
links are contained in the PMFG. One advantage of using the MST (which is also true
for the PMFG) is that we keep exactly the same number of links for the same number of
nodes. This can be less biased than using a correlation threshold value because a small
change in the threshold value may lead to a large change in the number of links kept.
After the PMFG was introduced, we found the following econophysics papers applying
it [86,125–129]. Unfortunately, the PMFG algorithm (see Figure 3b for said algorithm,
and an example in Appendix A) is difficult to parallelize. Therefore, for larger data sets,
Massara et al. developed a related algorithm called the triangulated maximally filtered graph
(TMFG) [130].

4. Topological Data Analysis

In this section, we explain how to go beyond MSTs and PMFGs in our understand-
ing of complex dynamics in financial markets by making use of methods developed for
topological data analysis (TDA). In Section 4.1, we explain what the shortcomings of MSTs
and PMFGs are, what we can understand and what we cannot, and why it is natural to
turn to TDA. Following this, in Section 4.2 we briefly explain the ideas behind different
TDA methods. We also describe three contrasting toy models for two manifolds to merge
together, and a fourth toy model that is like a combination of the first three in Appendix B,
before using the TDA signatures for each toy model to understand a real-world market
crash in Section 4.3.

4.1. Why Topological Data Analysis?

In most of the MST and PMFG papers, econophysicists merely correlated the topolo-
gies of the networks obtained with events in the market, with little or no further explanation.
When the MSTs or PMFGs of two successive time periods were compared, analysis is in
terms of links created or deleted, but the market may have different numbers of connected
components in the two time periods. A more thorough analysis would be to superimpose
these connected components and the filtered graphs, to better understand the underlying
reasons for link-level changes to the networks. However, when we project market cross cor-
relations onto a MST or a PMFG, we always worry that we may be throwing out important
information. Furthermore, by focusing on link-level changes, we are also implicitly assum-
ing that changes to cross correlations can be understood in terms of pairwise interactions
between stocks. Already, there are suggestions on the existence of important complex sys-
tem dynamics that have to be described in terms of many-body interactions. For example,
in gene expression networks, there are signs that important functions involve interactions
between three or more genes [131–134]. The same is possibly also true for financial markets,
but to identify such interactions, we must go beyond network descriptions of such systems.
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The explanation for complex topological changes to the cross correlations between
stocks lies ultimately with overlapping portfolios [135–140]. Simply put, each entity on the
market owns multiple stocks, and because there are more entities than there are stocks,
their portfolios necessarily overlap. Even for this bipartite system of entities and stocks,
a network description would be an over-simplification. Based on the signals it receives
and is capable of processing, an entity periodically optimizes its portfolio by buying and
selling stocks. These trading activities generate signals for other entities in the market, who
then react to optimize their own portfolios. These interactions at the portfolio level are not
open information, but we can observe changes to the prices of stocks, and hence the cross
correlations that these interactions produce. Over time, portfolios may accumulate so many
changes that the cross correlations between stocks at different times become topologically
distinct. Signatures of these topological changes can be seen in the MST [73,104,141] and
PMFG [75,86,142] representations.

In their seminal work, Tumminello et al. explained how to project more and more
cross correlations onto the surfaces of manifolds with increasing genera [50]. By keeping
more links, we keep more of the information in the cross correlations. At the same time,
we admit more complex groups (such as simplices) of cross correlations. Then, instead of
asking about degree distributions and hubs, we can examine the distribution of k-simplices
in the network, and how different simplices are connected to each other. The network
obtained from the projection of cross correlations to a manifold with a large genus g should
then be treated as a simplicial complex, i.e., a connected graph of simplices. In fact, in
one of the PMFG papers [130], the authors pointed out that MSTs and PMFGs should
already be recognized as simplicial complexes. There is thus potential for an improved
understanding of the topological structure of cross correlations in terms of simplices, but
somehow Massara et al. did not pursue it further to the natural TDA conclusion.

Recently, we published a TDA paper in the Frontier in Physics Special Issue “From
Physics to Econophysics back to Physics: Methods and Insights” [59]. In this paper, we
worked out the TDA signatures for (1) coalescing spheres, (2) torus to horn torus to spindle
torus to sphere, and (3) sphere to ellipsoids, and used these toy models to develop a
hypothesis on market crashes corresponding to the fragmentation of a multiply connected
manifold with a non-zero genus. In this hypothesis, we have the creation of holes as well
as handle-breaking events that accompany fragmentations associated with market crashes.
We then presented preliminary evidence confirming the existence of hole creation and
handle-breaking events. In this paper, we would like to go deeper to understand how a
handle breaks, or its time-reversed event, which is how two disjoint manifolds fuse with
each other.

4.2. What Is Topological Data Analysis?

TDA is a suite of mathematical tools developed by Edelsbrunner, Zomorodian, Carls-
son, and Singh to analyze the topological properties of complex data sets [55–57]. Built
on the foundations of topology [143–147], group theory [148,149], linear algebra [150,151],
and graph theory [152–154], TDA has since became a popular field in applied mathematics,
and has also found many applications in data analytics [58]. For more information on the
history and developments of TDA, readers can consult these review articles [155–158].

In its simplest terms, TDA is a novel way to unravel the topological features of raw
data, which can be in the form of point clouds, distance matrices, networks, or digital
images. To perform a TDA, we first imagine a control parameter called the proximity
parameter or filtration parameter ε. This is the radius of an imaginary ball centered at each
of the data points, which we call 0-simplices. When we increase ε, the balls will grow
outwards and eventually overlap with other balls. When the balls of data points i and
j overlap, we draw a link between i and j, and say that the two data points now form a
1-simplex {i, j}. As ε increases further, there will be more overlaps, and if the k + 1 data
points {i1, i2, . . . , ik+1} are such that the balls of iα and iβ overlap, for all pairs of (iα, iβ) in
the set, then we say that {i1, i2, . . . , ik+1} forms a k-simplex. The topological information
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contained in the data set can then be expressed in terms of the distribution of k-simplices,
k = 0, 1, . . . , and how they are connected to each other into a simplicial complex. For different
ε, we have different connected subsets of the simplicial complex. The homology group H
of a simplicial complex summarizes, in a group-theoretic way, the connectivities between
k-simplices of different dimensions. As we analyze Hn, the n-dimensional subgroup of
H, for n = 0, 1, . . . over the filtration process, we will discover simplices that remain the
same over a large range of ε, as well as those that exist fleetingly over very small ranges
of ε. We call the former the persistent homology of the data set, and based on these we
construct useful TDA metrics such as barcodes, persistent diagrams, persistent landscapes,
and also persistent Betti numbers. In addition, we combine these to design other tools,
such as persistence-weighted kernels, or persistent entropy, and other persistent functions.
To allow readers to more easily to grasp the general idea, we show cartoons in Figure 4 to
demonstrate how TDA can be applied to a data cloud.

Figure 4. In the top row, we show a schematic diagram showing a data cloud and how the filtration
process results in various overlapping outcomes for balls of different proximity parameters ε. In the
bottom row, we show the barcodes obtained by scanning through the full range of ε. In this figure, we
partition the barcodes into those for 0-dim simplices, which we indicate using the Betti number β0,
and those for 1-dim simplices, which we indicate using the Betti number β1. In a barcode diagram,
the barcode for a 0-dim simplex (a node) always starts at ε1 = 0, since all points are present at the
start of the filtration process. The barcode of a 0-dim simplex ends at ε2 > ε1, when the point is
incorporated into a higher-dimensional simplex. In contrast, the barcode of a 1-dim simplex (a link)
starts at ε1 > 0, when two balls of radius ε1 touch. The barcode of this 1-dim simplex then ends at
ε2 > ε1, when a third ball with radius ε2 (which may be part of another simplex) touches the first
two. At the values of ε shown in the top row, we can also see β0 going from 18 → 11 → 4 → 1, and
β1 going from 0 → 0 → 1 → 2, respectively.

Recently, TDA has found applications in many areas. These include computer net-
work structures [159–161], computational biology [162–168], image analysis [169–172],
vision [170], data analysis [58,173–176], shape recognition [177], and amorphous mate-
rial structures [178,179]. More recently, we found the use of TDA in the reconstruction
of brain functional networks [180,181], the analysis of financial markets [182,183], and
haze detections [184,185]. In fact, TDA has become so much of a cottage industry that
many softwares have become available for non-experts. These include Javaplex [186],
Dipha [187], jHoles [188], Simpers [189], R-TDA [190], GUDHI [191], PHAT [192], Per-
sus [193], Dinoysus [194], Ripser [195], as well as those reviewed by Otter et al. [155], and
Pun et al. [158].
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To the best of our knowledge, so far only very few works [182,183,196,197] had applied
persistent homology and TDA to the study of trading networks, banking systems, and
market crashes. The work closest to ours is that by Gidea and Katz in 2018, who treated the
daily log-returns of S&P 500, DJIA, NASDAQ, and Russell 2000 as a four-dimensional data
point [183]. They then slided a w-day time window one day at a time to create a sequence of
point-cloud data sets that covered the Dotcom Crash of 2000, as well as the Global Financial
Crisis of 2007–2009. The topological features they identified from the filtration process are
high-order temporal correlations at various time scales. They then devised an Lp norm
that can differentiate between persistent landscapes in two time windows, revealing early
warning signals preceding crashes. Building on top of this work by Gidea and Katz, as
well as the econophysics literature on MSTs and PMFGs, we will report in this paper an
understanding of market crashes at levels of detail never before accomplished.

4.3. Using TDA to Understand Market Crashes

In this subsection, we examine the cross-correlation matrices of 671 stocks in the
Taiwan Stock Exchange (TWSE) in successive six-month time windows that are seven days
apart, and attempt to use the toy-model results in Appendix B to understand the fusion
and fission processes associated with the March 2020 crash in greater details. In particular,
we would like to ask “how many of each kind of processes do we find?” and “are there
combinations of more than one kind of processes?” To answer these questions, we first
organize in Table 1 the Betti numbers read off at the largest filtration parameters, for time
windows between 1 August 2019 and 31 March 2020. Here, we see that, over the four time
windows of August 2019, we have β0 = 1, β1 = 6.5, and β2 = 33.75 on average. Then, in
the first two time windows of September 2019, while β0 = 1 and β2 = 40 remained similar
to those in August 2019, β1 changed from an average of β1 = 6.5 to β1 = 1.5. For the next
three time windows, the topological changes appear to have accelerated. Using the same
εmax = 1.1 over the five time windows, we found that the number of simplices increased
dramatically from 10 million in the first time window of September 2019 to 85 million in
the last time window of September 2019. In this last time window of September 2019, the
Javaplex program failed to return any Betti numbers. It was only when we decreased the
maximum filtration parameter from εmax = 1.1 to εmax = 1.0, that the number of simplices
was reduced to 17 million, giving us β0 = 6, β1 = 19, and β2 = 17.

Table 1. The calculated Betti numbers up to k = 2, total links, εmax, and total number of simplices
for TWSE during 1 August 2019 to 31 March 2021, which covers the COVID-19 crash with a sliding
window of seven days.

Date β0 β1 β2 Links εmax Simplices

(1 August 2019–31 January 2020) 1 6 23 27,675 1.1 3,444,963

(8 August 2019–8 February 2020) 1 9 31 37,696 1.1 15,194,973

(15 August 2019–15 February 2020) 1 5 33 43,708 1.1 31,321,288

(22 August 2019–22 February 2020) 1 6 48 46,507 1.1 41,178,428

(1 September 2019–01 March 2020) 1 2 40 46,944 1.1 42,079,525

(7 September 2019–8 March 2020) 1 1 40 47,482 1.1 44,068,045

(15 September 2019–15 March 2020) 2 8 19 58,201 1.1 39,877,266

(22 September 2019–22 March 2020) 65 17 1 36,504 0.75 40,871,885

(1 October 2019–31 March 2020) 91 8 1 37,640 0.65 57,119,884

To put these β0 changes in the proper context, let us recall that we analyzed 671 stocks
in the TWSE. When ε = 0, none of these would be within the ε-ball of each other, and
thus we found β0 = 671. As ε increases, links start to form between stocks, and β0 would
decrease. After some point, the change in β0 would be dominated by the gaps between
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clusters of stocks. If there are three such clusters, we would find β0 = 3 over a wide range
of ε, before it drops to 2, and then eventually to 1. This is the picture we should have in
mind when we say that the persistent Betti number is β0 = 3. However, for the last few
time windows, we cannot be sure that the β0 found by Javaplex are its persistent values.
Physically, it is meaningful to compare persistent Betti numbers. It is also meaningful
(but less so) to compare Betti numbers for a given value of ε. However, it is meaningless
to compare Betti numbers obtained with different filtration parameters if they are not all
persistent. Based on our past experience, there seems to be an analogy between the filtration
parameter and the temperature of a thermodynamic system. Normally, a 10% change in
the filtration parameter ε results in a corresponding 10% change in the number of simplices
(akin to the number of arrangements whose logarithm gives us the entropy [181,198]), and
hardly any changes to the Betti numbers, if we have already arrived at their persistent
values. However, when the system is close to a critical point, a small change in temperature
can produce a large change in the number of accessible states (analogous to simplices). To
put it simply, our analysis of the Betti numbers suggests that the cross correlations in the
first six time windows were more or less similar topologically, whereas for (15 September
2019, 15 March 2020) and subsequent time windows, the Betti numbers became extremely
sensitive to ε over a broad range of ε, suggesting a non-trivial topological transition over the
last three time windows. Another signature of this topological transition is the persistence
weakening phenomenon that we observed in our earlier paper [59], where we found first
a slow increase in the number of simplices, and then a rapid increase in the number of
simplices after some threshold.

With the above in mind, let us consider the topological changes going from the second
time window to the third time window, where we are confident that the Betti numbers
obtained are persistent. Between these two time windows, we found that Δβ0 = 0,
Δβ1 = −4, and Δβ2 = +2. Comparing these against the results of Appendix B, we realized
that there were no fusions (Δβ0 < 0) or fissions (Δβ0 > 0), and therefore, none of the toy
models we considered in Appendix B would be able to explain the changes to β1 and β2.
In fact, for these first few time windows, the changes to β1 appeared to be independent
of changes to β2, i.e., the creation/annihilation of holes seems to be independent of the
creation/annihilation of voids. Some possible mechanisms for doing so are shown in
Figure 5a–f. Although these time windows were still far from the crash, the picture of the
market dynamics they suggest is more complex than we expected. We might need to go to
higher-order Betti numbers to fully elucidate this dynamics.

In Appendix C, we showed that it is possible to have persistent Betti numbers (and
thus equally meaningful pictures) at different scales. However, this makes the identification
of the persistent β0 more difficult, because we need to identify the filtration parameter
values at which the lifetimes change most rapidly. Frequently, these are close to the
largest scale, and cannot be easily seen from a full barcode (see Supplementary Material).
To perform this multiscale analysis, we need to restrict ourselves to the longest-living
barcodes, as shown in Figure 6 for the seventh of our nine time periods, i.e., (15 September
2019, 15 March 2020). In this figure, we find four persistent β0 values at different scales.
For the lowest of these four scales, from 0.91 ≤ ε ≤ 0.93, we have β0 = 19. Thereafter, from
0.955 ≤ ε ≤ 097, we have β0 = 11, and then β0 = 6 for 0.985 ≤ ε ≤ 1.015, and β0 = 4 for
1.02 ≤ ε ≤ 1.04). In Figure 6, the filtration parameter ends at ε = 1.05. If we continue to
increase ε, it is likely that we would find another persistent β0 = 2 at a higher scale. Unlike
for the seventh time period, which illustrated our ideas in Figure A6 very well, similar
analyses for the eighth (22 September 2019, 22 March 2020) and ninth (1 October 2019, 31
March 2020) time periods would not yield equally convincing results, because the number
of simplices at ε ≈ 1 is far too large for Javaplex to handle. We also do not expect to find
strongly persistent β0 to emerge at the scales of εmax = 0.76 for the eighth time window,
and εmax = 0.65 for the ninth time window.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Topological changes that does not involve fusion or fission: (a) cavitation, in which a void
forms within a manifold, (b) annihilation, in which a void within a manifold disappears, (c) rupture,
in which a void breaks through the surface of the manifold, (d) healing, in which the surface of the
manifold closes over a cavity to form a void, (e) another example of rupture, with the growing cavity
proceeding to (f) puncture the manifold, forming a hole. The Betti number signatures of these changes
are: (a) Δβ2 = +1, (b) Δβ2 = −1, (c) Δβ2 = −1, (d) Δβ2 = +1, (e) Δβ2 = −1, and (f) Δβ1 = +1.

To wrap up this section, we now understand that it is only meaningful to compare
persistent Betti numbers or the Betti numbers at a fixed ε. However, we also realized from
our analysis in Figure A6 that persistent Betti numbers can emerge at multiple scales, and
the way to find them is to check where the lifetimes change most rapidly in the barcodes.
Although we could not elucidate the persistent Betti number changes for the eighth and
ninth time periods (for the March 2020 crash in the TWSE), our analyses of the first few
time periods, as well as the seventh time period, are already a testament to the power of
TDA. Without TDA, we would not have even guessed the roles of non-fission processes.
Certainly, analyses based on the MST and PMFG would not be able to detect nucleation,
rupture, and puncture events. Naturally, we need to ask whether such events are important,
since these topological changes are not as drastic as fusion or fission. In any case, we must
first be able to detect these events before we can evaluate how important they are relative
to fusions and fissions. One hint that they might not be of negligible importance is the
observed sequences of changes to β2 and then to β1 before β0 changes. Therefore, any
method that can detect Δβ1 and Δβ2 has the potential to provide early warning for fusion
or fission events with |Δβ0| > 0.

Vietoris-Rips (dim 0)
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Figure 6. Visualization of the H0 barcodes of TWSE in the seventh period (15 September 2019, 15
March 2020). We restrict our attention to 0.9 ≤ ε ≤ 1.05, so that we can inspect the finer details. In
this figure, the persistent β0 are highlighted as the pink shaded regions.
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5. Going Beyond TDA: Ricci Curvature

Up to this point, we have a very detailed picture of global topological changes to the
TWSE over the March 2020 crash. However, metrics such as Betti numbers cannot tell us
which stocks participate in which stage of the changes. We can of course manually inspect
the output of Javaplex to identify persistent simplices and then track their changes over
the time windows. As can be imagined, this is extremely laborious. We would certainly
like to have a metric that would automatically pick out not all persistent simplices, but
those in the midst of rapid changes. It turns out that such a metric exists, after applied
mathematicians recently adapted the idea of Ricci curvature to networks.

5.1. Ricci Curvature and Ricci Flow

To understand Ricci curvature and Ricci flow, we need to start with the Riemannian
metric gμν, which allows us to specify the distance d(x, y) between any two points x, y on a
surface. The Riemannian metric gμν is also important for the calculation of area. To explain
this, let us introduce a disk B(x, r) of radius r centered at x. This is the set of all points
y whose distance d(x, y) to x is less than r. On a Euclidean plane, the area |B(x, r)| of
B(x, r) would be πr2. On a Riemannian surface, however, this area can deviate from πr2.
To understand this deviation, let us imagine a disk on the surface of a sphere. Through
elementary calculus, we can show that the area of such a disk is a little less than πr2, and
we can understand this deficit as due to the scalar curvature

R(x) := lim
r→0

πr2 − |B(x, r)|
πr4/24

(3)

on the surface of the sphere. One of the main disadvantages of using the scalar curvature
is that we do not know whether the curvatures along different directions are the same, or
different. Therefore, we extend the notion of the scalar curvature to directional curvatures
by defining the Ricci curvature as

Ric(x)(ν, ν) := lim
r→0

lim
θ→0

1
2 θr2 − |A(x, r, θ, ν)|

θr4/24
, (4)

for an angular sector A(x, r, θ, ν) inside a small disk B(x, r), which has a small angular
aperture θ (measured in radians) centered around some direction ν (a unit vector) ema-
nating from x. Here, |A(x, r, θ, ν)| is the area of the small angular sector, and Ric(x)(ν, ν)
is the inner product of the Ricci curvature tensor along the ν direction. If Ric(x) has the
same value for all ν, we say that the curvature of the surface is isotropic at x. Otherwise,
the curvature at x is anisotropic.

The definition in Equation (4) allows the Ricci curvature to be computed intrinsically,
i.e., without embedding the surface in a higher-dimensional space. This property is impor-
tant when we generalize the Ricci curvature to networks. Going back to surface of a sphere,
we will find that Ric(x) has the same positive value at every x, and for every direction
ν. Therefore, the Ricci curvature on the surface of a sphere is not only isotropic, it is also
positive. For a planar surface, the Ricci curvature is also isotropic at all points, but its value
is zero. For an arbitrary two-dimensional surface, the Ricci curvature at a given point will
vary from some maximum value to some minimum value. These two values are called
the principal curvatures of the surface at the given point. In general, for an n-dimensional
surface, the Ricci curvature will vary between n principal curvatures, each of which can be
positive, negative, or zero. A highly readable explanation can be found in Terence Tao’s
blog [199].

The Ricci curvature plays an important role in Einstein’s theory of general relativ-
ity [200]. Even though Einstein worked through the Riemann curvature tensor Rρ

μσν, to
get to the Ricci curvature Rμν = ∑ρ,σ Rρ

μσν and the scalar curvature R = ∑μ,ν Rμν, we note
that the Riemann curvature tensor is coordinate-dependent, while the Ricci curvature and
scalar curvature are both coordinate-independent. It therefore makes perfect sense that
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only coordinate-independent quantities can enter Einstein’s field equations. Another appli-
cation of the Ricci curvature is its use to measure the growth of volumes of distance balls,
transportation distances between balls, divergence of geodesics, and meeting probabilities
in coupled random walks [201].

Due to its intrinsic character, the Ricci curvature is also the central concept behind the
theory of Ricci flow,

d
dt

g = −2Ric, (5)

which is the mathematical theory that describes how manifolds deform. Informally, Ricci
flow is the process of stretching the Riemannian metric g (increasing distance between
points) in directions of negative Ricci curvature, and contracting g (decreasing distance
between points) in directions of positive Ricci curvature. The stronger the curvature, the
faster the stretching or contracting of the metric. In principle, one can use this equation to
perform Ricci flow on a manifold for as long a period of time as one wished. In practice,
however, it is possible for a manifold to develop singularities (where the curvature becomes
infinite) during the Ricci flow. In three dimensions, many complicated singularities are
possible. For instance, one can have a neck pinch, in which a cylinder-like “neck” of the
manifold shrinks under Ricci flow, until at one or more places along the neck, the cylinder
has tapered down to a point.

In pure mathematics, the theory of Ricci flow was instrumental in the proof of the
Poincare conjecture (see Appendix D). So how does Ricci flow connect to what we care
about in complex systems, or econophysics in particular? Conventionally, before one
looks into the dynamics of a complex system, the first parsimonious step will always be to
examine only the backbone (the “topology”) of the dynamics. From this perspective, MSTs,
PMFGs, graphs, networks, manifolds, or simplicial complexes are different constructs to
inform us what this backbone is like. After constructing the backbone, and making sure
that it is roughly correct, we then add the “geometry” of the dynamics in as a natural
second step, and a natural and coordinate-independent way to quantify this would be
to use the Ricci curvature. Therefore, it is important not to go directly into the geometry,
before getting a perspective on the topological panorama, because the same curvature value
can often mean different things when they are put onto different topologies. For example,
the n-sphere and the n-torus are topologically different manifolds, but they could still have
similiar average curvatures. Therefore, the use of curvature alone cannot distinguish them.
This is also why the correct procedure should always work on the topologies first, before
putting the curvatures back, to acquire the correct geometrical information.

From the viewpoint of theorists, the use of differentiable manifolds to describe complex
system dynamics is rigorous. In real-world problems, however, manifold constructs are
difficult to implement, due to computational limitations. Hence, our plan B often involves
the coarse-graining of smooth manifolds. The way this works is to first collect real-world
time series cross-section data and calculate their correlation matrices, before visualizing
them in terms of networks or simplicial complexes to extract their topological characteristics.
From this perspective, we are interested in the breaking of bridges, or the fusion of clusters.
For differentiable manifolds, the different types of singularities that can be encountered
in two-dimensional Ricci flow have been completely worked out [202], and partially so
for Ricci flow in three dimensions [203,204]. For higher dimensions, these are still poorly
understood [205]. For networks and simplicial complexes, we need to start with discrete
versions of the Ricci curvature. These are the Ollivier-Ricci curvature (ORC) [206,207] and
the Forman-Ricci curvature (FRC) [208,209]. The former is applied to networks, whereas
the latter is devised for simplicial complexes. It has been found that the ORC is “related
to” various graph invariants, ranging from local measures, such as the node degree and
clustering coefficient, to global measures, such as betweenness centrality and network
connectivity [210]. Thus far, ORC has been used to broadly investigate properties of
the internet [210], gene expression networks related to cancer [211], and the structural
connectivity of an animal brain [212], as well as to assist in specific tasks such as community
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detection [213,214], the measurement of market fragility, and the estimation of systemic
risk [215]. In this work, we focus on using the ORC, and defer the application of the FRC
to future works.

To define the ORC in mathematical terms, we start with an unweighted graph G = (V, E)
with vertex set V = {xi}i=1,...,n and edge set E = {ek(xik , xjk )}k=1,...,m;ik ,jk∈V , where n is the
total number of vertices and m is the total number of edges. Let Nx be the neighborhood of
a vertex x ∈ V. To introduce a curvature measure on a graph, Ollivier associated curvature
with transport processes, much like the original concept of curvature being related to the
parallel transport of one tangent vector along another. On a graph, the natural transport
process to consider is a random walk, and the natural analog of parallel transport is how
the hopping probabilities μx(x′) from a vertex x ∈ V to its neighbors x′ ∈ Nx change to the
hopping probabilities μy(y′) from a vertex y ∈ V to its neighbors y′ ∈ Ny as we move the
geodesic distance d(x, y) from x to y. This change can be quantified by the first Wasserstein
distance, also known as the earth mover distance

W1(μx, μy) = inf ∑
x′∈Nx

∑
y′∈Ny

d(x′, y′)ξxy(x′, y′) (6)

where inf is the infimum, and ξxy(x′, y′) represent the amount of “mass” moved from x′

to y′, so that, after all movements, the hopping probabilities change from μx to μy. In the
original paper by Ollivier, and others after him, the hopping probabilities μx are defined as

μx(x′) =

{
1

|Nx | , if x′ ∈ Nx;

0, otherwise,
(7)

where |Nx| is the total number of neighbors inNx. In the eighth example of his 2009 paper [207],
Ollivier considered a lazy random walk, and used a modified set of hopping probabilities

μx(x′) =

⎧⎪⎪⎨⎪⎪⎩
1
2 , if x′ = x;

1
2|Nx | , if x′ ∈ Nx;

0, otherwise.

(8)

This modification is useful, because in general, random walk on a graph G does not always
lead to a stationary probability distribution, whereas a lazy random walk always do. Finally,
in terms of W1(μx, μy), the ORC can be defined as

ORC(x, y) := 1 − W1(μx, μy)

d(x, y)
. (9)

This can be obtained using a linear programming procedure to optimize W1(μx, μy), as
shown in Appendix E. In this Appendix, we computed W1(μx, μy) for two arbitrary nodes
x and y on the network G, but in Equation (9), as part of the definition for ORC(x, y), we
compute W1(μxik

, μxjk
) only for edges ek(xik , xjk ) ∈ E. For the more common graphs, i.e.,

tree graphs, grid graphs, complete graphs, or bipartite graphs, ORC(x, y) can be evaluated
in simple mathematical forms.

5.2. Ollivier-Ricci Curvature Analysis of TWSE

After confirming using the toy model in Appendix F the utility of negative ORCs
to identify neck regions, we turn our attention to the TWSE March 2020 crash. The neck
regions in the simplicial complexes across this market crash should also be thin and weakly
connected parts that are most likely to be associated with rapid changes. Since the ORC
computation requires a graph as input, we have to produce one starting from the Pearson
cross correlations. Therefore, in the first part of this subsection, we limited ourselves to
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one time period (1 October 2019, 31 March 2020), and explore different ways to create the
input graph.

Naively, we can create a complete network in which all links are present, but with
different weights. However, such a network will always look like a fur ball when visualized,
making it difficult for us to discern the various neck regions. Therefore, the first thing
we tried is threshold filtering, i.e., we draw a link between stocks i and j if Cij > C0. The
Python function that computes the ORC can accept as input disconnected graphs, but we
adjusted C0 until we obtain a fully connected graph. Unfortunately, for this (1 October
2019, 31 March 2020) time period, the fully connected graph obtained for the TWSE has
166,831 links. After visualization it still looks like a fur ball, impeding our investigations of
topological changes in the network.

The next thing we tried is the minimal spanning tree, which can be constructed using
the Kruskal algorithm shown in Figure 3a. Compared to a fur ball, the MST is more
informative, especially when we used the force atlas layout [216]. In this layout, shown in
Figure 7, nodes that are connected by short links have strong Pearson cross correlations,
whereas those that are connected by long links have weak Pearson cross correlations. This
geometrical feature of the layout allows us to discern clusters of strongly correlated nodes,
separated from each other by weak correlations with bridging nodes. However, in the
MST only, N − 1 links are retained for N nodes. These are very few, so we checked how
many important links were rejected by the MST in the nine periods, using two measures
of importance: (1) correlations larger than the minimum correlation incorporated into the
MST, and (2) correlations larger than the minimum correlation associated with the hub of
the MST. These are shown in Table 2. Indeed, a large number of cross correlations larger
than (1) were rejected in all nine time periods, and especially in the last two time periods.
However, the importance measure (1) may be too strict, since we know that for all nodes to
be connected in the MST, we frequently have to incorporate weak cross correlations. Based
on importance measure (2), which is the correlation level set by the hub, the number of
rejected cross correlations is significantly fewer, except during the fifth, seventh, and ninth
time periods.

(a) (b)

Figure 7. (a) The minimal spanning tree of 671 stocks on the TWSE, computed from their Pearson
cross correlations between 1 October 2019 and 31 March 2020. In this figure, the black nodes represent
stocks, while the colored links represent the most important cross correlations between stocks
discovered using the Kruskal algorithm. If a link is red, it has negative ORC, whereas if a link is
blue, it has positive ORC. We also sketched the seven clusters in the minimal spanning tree, using
links with the most negative ORCs as a guide. (b) Enlarging the highlighted region in the minimal
spanning tree shown in (a), we find that the links between closely spaced nodes have positive ORCs
(and thus are shown in blue).
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Table 2. In this table on the nine time periods of the TWSE, we show how many stronger cross correlations were rejected in
favour of weaker ones, because they would lead to the inclusion of cycles in the MSTs.

Period 1 2 3 4 5 6 7 8 9

Cmin 0.442 0.429 0.420 0.416 0.444 0.436 0.429 0.428 0.368

Links Rejected 40,519 61,601 76,327 83,437 72,813 76,895 98,935 251,601 333,363

C(hub)
min 0.707 0.781 0.689 0.823 0.545 0.729 0.697 0.912 0.730

Links Rejected 2357 977 7971 661 38,811 5607 11,389 977 121,433

Therefore, the last filtering we tried is the planar maximally filtered graph (PMFG),
adapting the Python example in https://gmarti.gitlab.io/networks/2018/06/03/pmfg-
algorithm.html, accessed on 5 May 2021. As we have described in Section 3, this information
filtering method was first proposed by Tumminello et al. [50]. We should add that in recent
implementations, the Boyer–Myrvold planarity test [217] has replaced the Kuratowski
theorem [153] for checking that the graph remains planar at different stages. The resulting
PMFG is shown in Figure 8i. By allowing cycles, clusters are more compact in the PMFG.
Additionally, 3(N − 2) links were kept. This is an intermediate number that is still easy to
visualize, and contains more of the important cross correlations. In particular, we observed
that the cluster at the bottom of the visualization is connected to the rest of the network
through two necks (instead of one). However, if we use the same two measures of link
importance as for the MST, we see in Table 3 even more important cross correlations rejected
in the PMFGs.

After deciding to use the PMFG visualization across all time periods, we tried to
identify neck regions that persisted over several time periods to better understand how
the market crash proceeded. Therefore, we used the final layout of the first time period as
the initial layout of the second time period, the final layout of the second time period as
the initial layout of the third time period, and so on and so forth. We had hoped that the
PMFGs for successive periods would be sufficiently similar that we could identify features
across them. Unfortunately, as we can see from Figure 8, this is not the case, even when we
reduced the number of iterations to 100 for the force atlas layout algorithm.

Table 3. In this table on the nine time periods of the TWSE, we show that many stronger cross correlations were rejected in
favour of weaker ones, because they would lead to the loss of planarity in the PMFGs.

Period 1 2 3 4 5 6 7 8 9

Cmin 0.018 0.103 0.097 0.012 −0.209 −0.044 −0.044 −0.079 −0.124

Links Rejected 245,846 224,312 237,712 286,892 380,440 313,430 340,352 415,946 429,102

C(hub)
min 0.407 0.401 0.459 0.448 0.545 0.597 0.454 0.600 0.705

Links Rejected 49,414 70,804 59,990 69,216 37,290 24,406 86,074 149,254 103,006

Due to this problem, we abandoned our original ambitious plan to automatically
identify all neck regions and their changes. Instead, we manually analyzed the neck region
that changed the most dramatically over the market crash. To begin, we first plotted in
Figure 9 the number of links with strongly negative ORCs (<−0.5) over the time periods.
As we can see, the number of such links increased as we approached the March 2020 market
crash, but the number also increased in the third and fourth periods before falling back
to levels close to the first and second periods. By checking the number of links with ORC
<−0.45 and the number of links with ORC < −0.55, we see that these features are robust
and associated with strongly negative ORCs. It appears therefore that a rising number of
links with strongly negative ORCs is also an early warning indicator of a market crash.
This was first observed by Sandhu et al. [215].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Sequence of PMFGs of 671 stocks on the TWSE, computed from their Pearson cross
correlations for the time periods (a) 1 August 2019–31 January 2020, (b) 8 August 2019–8 February
2020, (c) 15 August 2019–15 February 2020, (d) 22 August 2019–22 February 2020, (e) 1 September
2019–1 March 2020, (f) 8 September 2019–8 March 2020, (g) 15 September 2019–15 March 2020, (h) 22
September 2019–22 March 2020, (i) 1 October 2019–31 March 2020. In this figure, the black nodes
represent stocks, while the colored links represent the most important cross correlations between
stocks discovered using the Kruskal algorithm. The links are colored according to their ORCs, with
red being negative, green being approximately zero, and blue being positive.

Figure 9. Number of links with ORC < −0.5 over the different time periods (shown in orange):
(1) 1 August 2019–31 January 2020, (2) 8 August 2019–8 February 2020, (3) 15 August 2019–15
February 2020, (4) 22 August 2019–22 February 2020, (5) 1 September 2019–1 March 2020, (6) 8
September 2019–8 March 2020, (7) 15 September 2019–15 March 2020, (8) 22 September 2019–22
March 2020, (9) 1 October 2019–31 March 2020. Additionally, the number of links with ORC < −0.45
(blue dashed lines) and the number of links with ORC < −0.55 (green dashed lines) are also shown.
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After inspecting the lists of links with ORC < −0.5, we focused on two links, (176,
193) and (176, 393), which (1) appeared frequently in the PMFGs across the nine time
periods, and (2) had consistently negative curvatures. These three stocks are: (176) Tung
Thih Electronic Co., Ltd., Taoyuan City, Taiwan (3552.TWO); (193) C-Tech United Corp.,
New Taipei City, Taiwan (3625.TWO); and (393) Taiwan Semiconductor Co., Ltd., New
Taipei City, Taiwan (5425.TWO). (176) Tung Thih Electronic Co., Ltd. is a large company
in the Auto Parts industry, with market capitalization 15.11 billion TWD, whereas (193)
C-Tech United Corp. is a medium-size company in the Electrical Equipments & Parts
industry, with market capitalization of 1.45 billion TWD. The last company, (393) Taiwan
Semiconductor Co., Ltd., is another large company in the Semiconductors industry, with
a market capitalization of 10.5 billion TWD. To put the sizes of these companies into the
proper perspective, we compare them against TSMC (2330.TWO), the largest chip maker
in the world and one of the largest companies in Taiwan, with a market capitalization of
14.73 trillion TWD. The ORCs of these links over the nine periods are shown in Table 4.
Over the period of study, there are no PMFG links between 193 and 393.

From Table 4 we see that ORC(176, 393) is less strongly negative, and change more
slowly than ORC(176, 193). Since the link (176, 193) did not appear in the last time period,
we suspect that the cluster associated with 193 has completely broken off from the cluster
associated with 176. More importantly, comparing Table 4 and Figure 9, we see that the
appearance of (176, 193) in the PMFG coincided with the periods when the number of
links with strongly negative curvature was increasing. This suggests that the link (176, 193)
might have formed in the third time period, broke off in the fifth time period and thereafter
reformed in the sixth time period, before finally breaking up in the last time period. Such
a sequence of events would surely be interesting to elucidate, but a detailed story might
be better suited for a future study that we hope to do using the Generalized Forman-Ricci
curvature [218] to more closely track how these fusions and fissions unfold. To wrap this
paper up, let us visualize the clusters that these three nodes participate in over the last
three time periods.

Table 4. Ollivier-Ricci curvatures of the links (176, 193) and (176, 393) in the PMFGs over the nine
time periods. If the curvature value is left blank, the two nodes are not connected in the PMFG.

Period ORC (176, 193) ORC (176, 393)

1 August 2019–31 January 2020
8 August 2019–8 February 2020

15 August 2019–15 February 2020 −0.61 −0.53
22 August 2019–22 February 2020 −0.64 −0.41
1 September 2019–1 March 2020 −0.39
8 September 2019–8 March 2020 −0.59 −0.39

15 September 2019–15 March 2020 −0.55
22 September 2019–22 March 2020 −0.37 −0.28

1 October 2019–31 March 2020 −0.07

In network science, in addition to global layout algorithms for visualizing entire
networks, we also find ego-centric visualizations centered on a node that are of interest.
In Figure 10, we chose 176, 193, and 393 to be the three centers we would like to visualize
around. Then, we included all nodes in the immediate neighborhoods of 176, 193, and
393, and colored the links they have with 176, 193, and 393 red if they have ORC < −0.2
(strongly negative), green if −0.2 ≤ ORC ≤ 0.2 (roughly zero), and blue if ORC > 0.2
(strongly positive). Next, we drew only green and blue links between the neighbors of 176,
193, and 393, omitting red links between them. Finally, we colored simplices bound by
green or blue links yellow. In this way, we keep the number of nodes and number of links
to be visualized in Figure 10 to manageable numbers.
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Figure 10. Rough sketch of the fission sequence in the TWSE from time window (a) 15 September
2019–15 March 2020 to time window (b) 22 September 2019–22 March 2020 to time window (c)
1 October 2019–31 March 2020. In this figure, we include the nodes 176, 193, and 393 for all three time
windows. In each time window, we include all the nearest neighbors of 176, 193, and 393. We show
all the links between these nodes with 176, 193, and 393, and color them red if their ORC < −0.2,
green if their −0.2 ≤ ORC ≤ +0.2, and blue if their ORC > +0.2. Finally, we show all green and
blue links between these nearest-neighbor nodes, and color all simplices bound by green or blue
links, to help visualize the clusters in the neighborhoods of 176, 193, and 393. Note that the members
of these clusters are dynamic, suggesting strong mixing of cross correlations in the TWSE.

From this figure, we see in the seventh time period (15 September 2019–15 March 2020)
that 176, 193, and 393 lied at the peripheries of the clusters they belong to respectively. We
know that these nodes were at the peripheries of their respective clusters, because in their
ego-centric visualizations, they would be surrounded by mostly green or blue links if they
were part of the cores of their clusters. In this time period, 176 and 193 were connected
directly through a red link, but the two of them were connected to 393 through 318 (Asia
Electronic Material Co., Ltd., Zhubei, Taiwan (4939.TWO), Electronic Components). In the
eighth time period (22 September 2019–22 March 2020), we see that the clusters containing
176 and 193 had merged, even though the two nodes were still at the fringe of this merged
cluster, and still connected by a red link. 193 remained unlinked to 393, but 176 had
“robbed” 318 from 393, but was now directly linked to 393 through a red link, as well
as via 389 (AVY Precision Technology Inc., Taipei City, Taiwan (5392.TWO), Electronic
Components) and 468 (Netronix Inc., Hsinchu City, Taiwan (6143.TWO), Communication
Equipment). 176 also had other red links with the cluster 393 belonged to. Finally, in the
last time period (1 October 2019–31 March 2020), we see that the cluster 193 belonged to
had completely broken off from 176 (within the PMFG visualization for the entire network).
Interestingly, 193 retained its link to 607 (Firich Enterprises Co., Ltd., New Taipei City,
Taiwan (8076.TWO), Computer Hardware) from the eighth time period, and regained its
connection to 318, at the same time made a new connection to 196 (Newmax Technology
Co., Ltd., Taichung, Taiwan (3630.TWO), Electronic Components). Going from the eighth
time period to the ninth time period, the biggest change (related to 176, 193, and 393) would
be the clusters associated with 176 and 393 merging into a giant cluster. In this giant cluster,
176 and 393 were still peripheral nodes, but there was now a green link between them.
In addition, 176 and 393 were also connected by green links through 178 (eGalax_eMPIA
Technology Inc., Taipei City, Taiwan (3556.TWO), Semiconductors) and 190 (AimCore
Technology Co., Ltd., Hsinchu City, Taiwan (3615.TWO), Electronic Components). In
the eighth time period, 178 was connected to 176 by a green link, but not connected to
393, whereas 190 was connected to 393 by a green link, and to 176 by a red link in this
time period.

To summarize, changes to the neck regions between 176, 193, and 393 appeared to
be very sudden, even when we slid the time window by only seven days. This suggests
the need to slide the time window through a smaller time step, to properly track changes
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to the network of stocks. However, to use such small time steps meaningfully, we will
have to use intra-day time series data, instead of the daily data that we used in this paper.
Furthermore, none of the fusions and fissions in Figure 10 resemble the simple toy models
A or C (single neck, with fixed or varying dimensionality) described in the Appendix, even
though it appears that these do start at the periheries of clusters. However, some aspects
(multiple distant necks) of these events are similar to what happens in toy models B or D.
In this sense, we are starting to understand why re-organizations of cross correlations in
the financial market lead frequently to topological features such as voids.

6. Conclusions

Over the past 20 years, state-of-the-art information filtering methods such as the MST
and the PMFG have revolutionized the field of econophysics, and also made contributions
to other closely related disciplines. In this paper, we suggested two related directions to
extend this information-filtering paradigm. The first is through topological data analysis
(TDA), and the second is through the calculation of Ollivier-Ricci curvature. The former
improves our understanding of the topological backbones of financial networks, whereas
the latter puts the geometrical information back onto the topological backbones.

In the TDA, we explored four toy models of fusions, namely (1) the merging of two
ellipsoidal surfaces, (2) the merging of two biconvex surfaces, (3) the merging of two
anisotropic ellipsoidal surfaces through a sequence of higher-dimensional connections,
and finally (4) the merging of two random irregular surfaces. By applying the insights
extracted from this exploration to a recent crash in the TWSE, we found the number of
simplices increasing slowly with increasing filtration parameter ε half a year before the
market crash, and rapidly with increasing ε close to the crash. This suggests a non-trivial
topological transition accompanied the market crash. However, we found that the four
fusion/fission models proposed were not able to fully explain the topological changes, and
additional processes (cavitation, annihilation, rupture, healing, and puncture) that do not
involve fusion or fission, were needed to explain the changes in Betti numbers.

Moving beyond TDA, we used the Ollivier-Ricci curvature to quantify the distri-
bution of curvatures in PMFGs constructed from the correlation matrices of the TWSE.
We explained that positive ORCs correspond to stock components deep within a cluster,
whereas negative ORCs pinpointed the neck (bridge) regions that connect distinct clusters.
When we examined the PMFGs for nine periods between August 2019 and March 2020,
we found dramatic topological changes between successive periods. This prevented us
from systematically identifying all topological changes that were specifically associated
with neck regions in the PMFGs. Instead, we look only at two neck regions—associated
with the links (176, 193) and (176, 393)—that featured prominently during this period.
These three nodes are: (176) Tung Thih Electronic Co., Ltd, (193) C-Tech United Corp.,
and (393) Taiwan Semiconductor Co., Ltd. During the last time period, (176, 193) was no
longer found in the PMFG, while the curvature of (173, 393) became nearly zero. Using
ego-network visualizations of these three nodes and selective visualization of links between
them, we saw that all three nodes lie on the peripheries of the clusters they belonged to.
In the seventh time period, all three clusters were distinct. In the eighth time period, the
cluster containing 176 merged with the cluster containing 193. Finally, in the ninth time
period, this cluster broke up into a small cluster containing 193, while the larger cluster
containing 176 proceeded to merge with the cluster containing 393.

Supplementary Materials: MATLAB and Python scripts for TDA are available at https://doi.org/10
.21979/N9/8XMZGF, accessed on 21 February 2021, whereas MATLAB and Python scripts and data
files for Ricci curvature analysis are available at https://doi.org/10.21979/N9/EO5QON, accessed
on 19 July 2021. The barcodes for the four toy models in Appendix B and the barcodes for the nine
time periods of the TWSE in Section 4.3 are also available online at https://www.mdpi.com/1099-4
300/23/9/1211/s1.
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Appendix A. Construction of MST and PMFG

For readers interested in how to put the algorithms in Figure 3 into practice, let us
use the Pearson cross correlations between 10 Asian stock market indices as an example.
These 10 stock market indices are shown in Table A1, and their ordered cross correlations
are shown in Table A2.

To construct the MST for these 10 Asian indices, we start from the largest cross
correlation C2,7 = 0.705 in Table A2, to draw a link between node 2 (Hong Kong) and node
7 (South Korea). We then proceed to go through the cross correlations within Table A2 in
decreasing order, to add a link between node 2 and node 10 (Singapore), node 7 and node
8 (Taiwan), node 1 (Japan) and node 7, . . . , until we reach C2,3 = 0.472 between node 2
and node 3. To arrive at the tree graph shown in Figure A1a, we have rejected eight links,
because they would result in cycles if we accepted them.

Table A1. List of ten Asian stock market indices.

i Country/Region Index

1 Japan Nikkei 225 Index
2 Hong Kong Hang Seng
3 China Shanghai Stock Market Composite Index
4 Thailand SET Index
5 India BSE Sensex Index
6 Indonesia Jakarta Stock Index
7 South Korea KOSPI Index
8 Taiwan TSE Index
9 Malaysia Kuala Lumpur Composite Index

10 Singapore Straits Times Index

According to Table A2, C2,4 = 0.466 is the next cross correlation to be considered.
Indeed, if we add a link between node 2 and the new node 4 (Thailand), no cycles are
created. Therefore, we accept this new link, to end up with the tree graph shown in
Figure A1b.

After adding the link between node 2 and node 4, the next link we should consider is
C4,5 = 0.447 according to Table A2. However, as we can see, adding this link that is colored
red in Figure A1c, accepting this link between node 4 and node 5 (India) leads to a cycle in
the network. Therefore, we reject the link between node 4 and node 5. Thereafter, we reject
six more links, before adding a link between node 6 (Indonesia) and node 8 to complete the
MST in Figure A1d.
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Table A2. Ordered list of Pearson cross correlations between the ten Asian indices shown in Table A1.

i j Cij i j Cij i j Cij

2 7 0.705 2 4 0.466 5 9 0.331
2 10 0.669 4 5 0.447 5 6 0.316
7 8 0.642 8 9 0.438 1 4 0.304
1 7 0.616 5 8 0.426 4 8 0.295
2 5 0.608 7 9 0.421 3 7 0.277
2 8 0.598 4 7 0.413 4 6 0.275
1 2 0.574 2 9 0.412 3 8 0.267
8 10 0.554 1 5 0.410 3 10 0.258
7 10 0.551 6 8 0.405 4 9 0.253
5 7 0.509 1 9 0.395 3 9 0.228
1 10 0.506 4 10 0.385 3 5 0.227
9 10 0.500 2 6 0.383 1 6 0.222
5 10 0.495 6 10 0.382 3 4 0.199
1 8 0.474 6 9 0.378 1 3 0.197
2 3 0.472 6 7 0.364 3 6 0.129
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Figure A1. Intermediate and final stages in constructing the MST of 10 Asian indices: (a) after adding
a link between node 2 and node 3; (b) after adding a link between node 2 and node 4; (c) after
rejecting the red link between node 4 and node 5, due to the appearance of the cycle (5, 2, 4) in the
network. Finally, (d) all 10 nodes are linked in the MST, after adding the link between node 6 and
node 8.

Next, we construct the PMFG for the 10 Asian indices. Again, we start from the largest
cross correlation C2,7 = 0.705 in Table A2, to draw a link between node 2 and node 7. Then,
we go through the cross correlations within Table A2 in decreasing order, and arrive at the
network shown in Figure A2a after adding a link between node 8 and node 10, without
rejecting any stronger links.

According to Table A2, the next link that we should add is between node 7 and node
10. When we first draw this in Figure A2b, the link between node 7 and node 10 overlaps
the link between node 1 and node 2. However, this does not necessarily imply that the link
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must be rejected. If we move node 1 to the other side of 5–2–7–8, but keeping it within the
loop formed by the 2–8 link, as shown in Figure A2c, we find no overlaps between links.

Similarly, when we add the next link between node 5 and node 7 in Figure A2d, the
new link overlaps with the link between node 2 and node 10. Just like when we add the
link between node 7 and node 10, we do not immediately reject this new link, but check if
the network obtained thus far can be redrawn to accommodate the new link. Indeed, by
moving node 5 into the triangle formed by nodes 2, 7, and 10, we show that the network
with the new link continues to be planar, as shown in Figure A2e.

Finally, when we attempt to add the next link between node 5 and node 10, as shown
in Figure A2f, we see that there is no rearrangement of the existing nodes and links that we
can do, for the new link to not overlap with existing links (and remain planar). Therefore,
this link has to be rejected.
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Figure A2. Intermediate stages in constructing the PMFG of 10 Asian indices: (a) after adding the
link between node 8 and node 10; (b) after adding the link between node 7 and node 10, before
checking for planarity; (c) after adding the link between node 7 and node 10, and after checking for
planarity; (d) after adding the link between node 5 and node 7, before checking for planarity; (e) after
adding the link between node 5 and node 7, and after checking for planarity; (f) after adding the link
between node 5 and node 10, before checking for planarity. After checking for planarity, this link
between node 5 and node 10 is rejected. In this figure, MST links are colored blue, PMFG links are
colored red, while links that are rejected are shown as red dashed curves.
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Appendix B. Topological Data Analysis of Toy Models of Fusions

Before we attempt to understand the complex events underlying a market crash,
we should first understand the simplest topological changes associated with the fusion
between two manifolds, or the breaking up of a manifold into multiple pieces. In this paper,
we worked out the TDA signatures of four toy models (see Figure A3): (1) fusion through a
single point of contact, (2) fusion through a 1-dimensional set, (3) fusion through a set with
increasing dimensionality, and (4) random. For these toy models, we first normalize the
distance matrices by dividing them by the largest distance, so that when we do filtrations,
the threshold will always terminate at ε = 1. According to some researchers in this field,
TDA may detect artifacts or noise due to specific data sampling methods. To eliminate
these artifacts due to data sampling, we randomized and reshuffled the data points. This
helps us focus on the more meaningful topological features in the data set. For each toy
model, we used the Javaplex software to compute the persistent Betti numbers at each
stage of the fusion. The barcodes for all stages of all toy models are also shown in the
Supplementary Material, and the persistent Betti numbers are read off from the barcodes at
the largest filtration parameter used.

(a)

(b)

(c)

(d)

Figure A3. The four fusion models investigated: (a) two elliptical manifolds merging by first touching
at a point, before developing a hyperbolic neck, and eventually having positive curvature everywhere;
(b) two biconvex manifolds merging through their rims touching to form a void that shrinks in size;
(c) a variation of (a), where the two anisotropic elliptical manifolds merging with their principal axes
not aligned. After touching at a point, the neck between the two merging manifolds first becomes
quasi-one-dimensional, before becoming fully two-dimensional; (d) the merging between two rough
surfaces with random irregularities, which can be thought of as combinations of all of the above, plus
emergent features like a hole that eventually becomes a void.

We show the results in Figure A4. For model (A), which is the reverse of the one
studied by Santos et al. [181], we found in Figure A4(A1) that while the two ellipsoids
are well separated, β0 = 2 (two distinct objects), β1 = 0 (no irreducible loops on either
ellipsoids), and β2 = 2 (one void enclosed by each ellipsoid). Then, in Figure A4(A2),
the two deformed ellipsoids are just touching, and the point of contact has the form of
a Dirac cone, which we expect to have non-trivial topological signatures of its own. As
expected, the fusing of the two ellipsoids into a single manifold is reflected in β0 = 1. We
also found β1 = 0, which tells us that there are no irreducible loops. Finally, the Dirac
point kept the two voids separated, and hence β2 = 2. As shown in Figure A4(A3), the
fusion is complete, but the neck region joining the original two ellipsoids has negative
curvature. In this situation, we found that β0 = 1 (one distinct object), β1 = 0, and β2 = 1
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(the two voids have merged). This is indeed what we expected, and it is indistinguishable
from Figure A4(A4), which is the last stage of the whole coalescence process. The neck
region has completely disappeared, and the curvature on the fused manifold is everywhere
positive. Indeed, we found that β0 = 1, β1 = 0, and β2 = 1. These Betti numbers are
identical to those of a sphere.

For model (B), we found in Figure A4(B1) that when the two biconvex shells are
separated, we have β0 = 2 (two distinct objects), β1 = 0 (no irreducible loops), and β2 = 0.
We were surprised that β2 = 0 since each shell should still enclose a void. We increased the
number of data points for this case, but β2 remains zero, presumably because the typical
gap in the voids is small, and the filtration procedure connects points across the voids. To
test this hypothesis, we sliced the point cloud of (B3) into the top and bottom halves, moved
them apart, and covered the gap in the equatorial plane between the inner and outer shells
(see Figure A5a). For the top half, we found that β0 = 1, β1 = 0, and β2 = 1. In terms of
symmetry, this tells us that for the two parts together, we will have β0 = 2, β1 = 0, and
β2 = 2. This means that a void can indeed be identified if its narrowest part is distinctly
larger than the typical distance between data points. In the next stage of the fusion, the two
biconvex shells just touched in Figure A4(B2) to form an inner spherical shell and an outer
ellipsoidal shell. As with (A2), the two two-dimensional shells also touched on a set of
measure zero (even though the set is a one-dimensional ring, instead of a zero-dimensional
point). This probably explains why β0 = 2 (i.e., the shells remain topologically distinct).
The other Betti numbers also remained the same as in (B1). Thereafter, with regard to (B3)
and (B4), we expected them to have identical topological features, and found indeed that
β0 = 1 (one distinct object), β1 = 0 (no irreducible loops), and β2 = 2 (two voids enclosed)
for the two cases. An observation we feel compelled to share is that for (B4), the density
of red points (outer ellipsoid) and the density of blue points (inner sphere) are initially
not the same, because we kept roughly the same number of blue and red points over the
whole series of point clouds from (B1) to (B4). We then found the TDA calculations for (B4)
were not complete even after four days (in contrast to (B1) to (B3), which took on average
of two days). We suspected that this was because in the filtration process, the dense blue
points at larger ε led to the emergence of very high-dimensional k-simplices. With every
increase in dimension, the total number of simplices grew exponentially, and Javaplex
slowed down. Indeed, when we performed an alternate TDA calculation in which we
reduced the number of blue points, so that their density is comparable to the density of red
points, the calculation became much faster: from longer than four days expected for the
former, to roughly four hours in the latter.

Next, for model (C), we emulated the change in dimensionality during the fusion
of two initially separated parabolic shells (Figure A4(C1)) approaching each other, by
first connecting them with a one-dimensional line (Figure A4(C2)). As the fusion pro-
gressed, we connected the two parabolic shells with a two-dimensional rectangular sheet
(Figure A4(C3)), and finally connected them with a two-dimensional cylindrical shell
(Figure A4(C4)). In (C4), we removed points from the original parabolic shells that are
within the neck region formed by the cylindrical shell to form the single surface with a
channel shown in Figure A5b. We created this toy model as an alternative to model (A),
in which the neck formation is locally isotropic. In physics, we know of materials and
processes which are anisotropic, i.e., there are easy as well as hard axes. In these materials
or processes, the neck formation is expected to go through a sequence of dimensionality
changes. For (C1) in this model, we found that β0 = 2, β1 = 0, and β2 = 0. It is understand-
able that β0 = 2, because there are two distinct parabolic shells. We also understand why
β1 = 0 (because there are no irreducible closed loops) and β2 = 0 (because the shells do
not enclose any void). When we reached (C2), the two shells became connected. Therefore,
we were not surprised to find that β0 = 1 (one distinct object). We were also not surprised
to find β1 = 0 and β2 = 0 remaining the same as for (C1). As we moved to (C3) and (C4),
we found β0 = 1, β1 = 0, and β2 = 0, the same as in (C2). We had expected differences
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between (C2), (C3), and (C4), but it seems that these differences do not manifest themselves
in the persistent Betti numbers, but require us to look more closely at the Betti curves.

A1 A2 A3 A4 

    
            

2 0 2 1 0 2 1 0 1 1 0 1 
B1 B2 B3 B4 

 
   

            
2 0 0 2 0 0 1 0 2 1 0 2 

C1 C2 C3 C4 

    

            
2 0 0 1 0 0 1 0 0 1 0 0 

D1 D2 D3 D4 

    

            
1 1 0 1 0 0 1 0 1 1 0 0 

 
Figure A4. Point clouds generated using MATLAB for different stages (1) to (4) of the four fusion
models (A–D), and their associated Betti numbers. For different cases, the number of data points are
different. For example, (A2) has more data points than the other stages of model (A), because we
implemented it as a combination of two spheroids, plus a pair of Dirac cones.
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(a) (b)

Figure A5. (a) To study how the typical gaps between data points affect the value of β2 TDA produces,
we split the point cloud in (B3) into top and bottom halves (blue points), moved them apart, and
cover the gap in the equatorial plane between the inner and outer shells with green points. Such a
structure would have a well-defined void whose average length scale is much larger than the distance
between data points. (b) To show the channel formed in the neck region of (C4), we zoomed in to the
green data points around the neck, and also rotated the view so that the channel formed by the two
connected shells can be seen clearly, especially after the data points are meshed.

Finally, for model (D), we first generated two rugged surfaces on a 20 × 20 square
grid. In Figure A4(D1), the two rugged surfaces were initially far apart, and then gradually
moved closer, until they overlap at some parts, as shown in Figure A4(D2). We did not
remove data points from the top rugged surface that penetrated the bottom rugged surface,
or data points from the bottom rugged surface that penetrated the top rugged surface. In
(D1), we have β0 = 1 (as opposed to β0 = 2 that we expected), β1 = 1 (as opposed to
β1 = 0 that we expected), and β2 = 0 (which is what we expected). In contrast, for (D2),
we have β0 = 1, β1 = 0, and β2 = 0, which are all as we expected. As the two rugged
surfaces were brought closer and started to have more overlaps as in Figure A4(D3), their
Betti numbers became β0 = 1, and β1 = 0, which were as expected, but we now had β2 = 1
(a void has been formed between the two surfaces.). As we made the two surfaces merge
further, we witnessed the change of β2 from 1 to 0 (see Figure A4(D4)). This implies that
the wrapped void formed by the two rugged surfaces in (D3), had disappeared in (D4).
We believe this observation is the result of scale-dependence of β2, discussed at the end of
Appendix C.

Appendix C. Multiscale Analysis of Persistent Betti Numbers

We cannot directly apply the results of Appendix B, and Figure 5 to analyze the
TDA results of the last three time windows, because we cannot be sure the Betti numbers
are persistent. To better understand under what conditions we can have persistent Betti
numbers, we visualize two contrasting mechanisms for fusion and fission in Figure A6.

In Figure A6a–e, fusion occurs when thresholds decrease. Since Dij =
√

2(1 − Cij), these
events correspond to increases in cross correlations. To put it more simply, we started out
having two clusters with strong intra-cluster correlations, and weak inter-cluster correla-
tions. When the inter-cluster correlations also become strong, the two clusters merge into
one larger cluster. In contrast, for Figure A6f–i, fusion occurs when thresholds increase.
These events are the result of correlations within the two original clusters weakening, to
become comparable to the intra-cluster correlations. Without strong intra-cluster corre-
lations to distinguish between their members, the two clusters effectively merged into a
large but weakly correlated cluster. In the first sequence (Figure A6a–e), the persistent Betti
number β0 is the number of 0-simplexes where the lifetime changes most rapidly in the
barcode. As we can see from Figure A6a–e, it is not difficult to identify the persistent β0 for
this sequence.
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In the second sequence, the situation is more interesting. Instead of just one set of
persistent β0, we find two sets of persistent β0 emerging at different scales. This means
that we have one picture at the lower scale, but an equally meaningful picture at the higher
scale. This also means that we need to be cautious when interpreting changes in β0 as the
result of fusions and fissions.

Similar scale-dependence can also occur for β2. Consider the situation shown in
Figure A7, where we can visually discern three voids in a (three-dimensional) point cloud.
The three voids have different sizes, and are such that the smallest void occurs in the
densest part of the point cloud, while the biggest void occurs in the sparsest part of the
point cloud. When we perform TDA on this point cloud, the smallest void would be the
first to emerge, when the filtration parameter ε1 is just large enough to create a 2-simplex
that encapsulates this smallest void. At this value of ε1, the points around the medium
void and the biggest void are too far apart for the simplices formed around them to fully
encapsulate. Therefore, over a fairly large range of filtration parameters, this is the only
persistent void we will find, and thus β2 = 1.

When we continue to increase the filtration parameter, we will eventually reach the
value ε2, which is just large enough to create a 2-simplex encapsulating the medium void.
At ε2, the smallest void remains intact, while the sparse data points around the biggest void
are still too far apart for the void to be encapsulated. If we continue to increase the filtration
parameter, then at some point ε1′ , the filtration parameter would become comparable to the
size of the smallest void, and this void disappears. Therefore, over the range ε2 < ε < ε1′ ,
there are two persistent voids, and hence β2 = 2.

Finally, at some other point ε1′ < ε3 < ε2′ , the biggest void become fully encapsulated
and emerge as a topological feature. Later on, when the filtration parameter becomes
large enough, we will find the medium void disappearing at ε2′ , and the biggest void
disappearing at ε3′ . Therefore, depending on what scale ε we are at, the persistent β2 may
be 1 or 2, before dropping down to 1, and then eventually becoming 0.

This phenomenon of β2 being scale-dependent explains the small values of β2 in (D3)
and (D4), where we expect from the rugged surfaces approaching each together to produce
lots of small voids. In other words, by the time these small voids are produced, the filtration
parameter would become so large that points on opposite sides of the void will be linked,
and thus, the small voids will disappear.
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Figure A6. Using hierarchical clustering dendrograms and their corresponding H0 barcodes to un-
derstand two fusion-and-fission sequences. In the first sequence, we first have the merging threshold
between clusters C1 and C2 decreased going from (a–b), and thereafter the merging threshold between
clusters C1+2 and C3 decreased going from (b–c). There is then a rearrangement C1+2+3 → C1′+2′

in (d), before the merging threshold between clusters C1′ and C2′ increased going from (d–e). The
fusion (1, 2, 3) → (1 + 2, 3) → (1 + 2 + 3) thus occurs with decreasing threshold, while the fission
(1′ + 2′) → (1′, 2′) occurs with increasing threshold. In the second sequence, the thresholds of C1,
C2, and C3 first increased going from (f–g), before a rearrangement C1+2+3 → C1′+2′ occurs in (h)
with comparable thresholds. Finally, the thresholds of C1′ and C2′ decreased in (i) to give two distinct
clusters. In this figure, a large distance Dij is associated with a small cross correlation Cij, and vice
versa. For each dendrogram, we also show the persistent Betti number β0 in the corresponding
barcode.

2

1 2 31′ 2′ 3′

Figure A7. In this stylized depiction of a three-dimensional point cloud, we can visually discern
three (persistent) voids. The smallest of these occurs in the densest part of the point cloud, whereas
the biggest of these occurs in the sparsest part of the point cloud. (bottom) The barcodes associated
with the emergences and disappearances of the three voids.
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Appendix D. Ricci Flow and the Poincare Conjecture

In addition to its role in helping us understand dynamical reorganizations within
complex systems, Ricci flow was also at the center of a major recent breakthrough in pure
mathematics. In 1904, the French mathematician Poincare conjectured that “any closed sim-
ply connected 3-manifold is diffeomorphic to the standard 3-dimensional sphere S3” [219],
but later believed that the same is true in any dimension. Between 1960 and 1980, the
Poincare conjectures for all dimensions were proven [220–223], except for three dimension.
This problem was recognized as mathematically hard, but also of fundamental importance,
that it was included as one of the seven Millenium Prize problems identified by the Clay
Mathematics Institute in 2000. Later, the Poincare conjecture for three dimensions was
stated in a more general form by Thurston, who conjectured that “any closed orientable
3-manifold can be canonically cut along embedded 2-spheres and 2-tori so as to decompose
into eight different geometrical pieces” [224]. In response to this challenge, Hamilton
crafted the Ricci flow model [225], and initiated a program to apply Ricci flow to solve
Thurston’s geometrization conjecture [224]. After the Poincare conjecture in three dimen-
sions was stated in more general terms, the original problem and Thurston’s generalized
geometrization conjecture went unsolved for 20 more years, until Perelman cracked the
final puzzle. With his original and ingenious “Ricci flow with surgery” approach, he
successfully expunged the singular region as a work around for solving the geometrization
conjecture, and ultimately resolved the Poincare conjecture in three dimensions [226,227].
This achievement not only won him the 2007 Fields Medal, but also made him the recipient
of the first Millennium Prize. Since 2007, many mathematicians started dabbling into Ricci
flow and related fields, creating something of a “gold rush” in this field over the past
15 years.

Appendix E. Computing the First Wasserstein Distance Using Linear Programming

In Equation (6), we defined the first Wasserstein distance (also known as the earth
mover distance) conceptually, so that it can be used in the definition of the Ollivier-Ricci
curvature. In this appendix, let us describe how the first Wasserstein distance on a network
can be computed using linear programming.

First, consider a network G with five nodes. To compute the first Wasserstein distance
between the lazy random walk probability distribution μ2 (Figure A8a) and the lazy random
walk probability distribution μ5 (Figure A8b), let us consider all possible redistributions ξij
from μ2(i) to μ5(j), such that

μ2(i) =
8

∑
j=1

ξij, μ5(j) =
8

∑
i=1

ξij. (A1)

These are our constraints.
Next, let dij be the geodesic distance between node i and node j. On an unweighted

network such as the one shown in Figure A8, the geodesic distance dij is the number of
hops needed to go from node i to node j, and can therefore only take on integer values
from 0 to 3. If there is more than one way to get from node i to node j, dij is the smallest
number of hops. With this, we can write down the matrix of geodesic distances as

D =

⎡⎢⎢⎢⎢⎣
0 1 2 2 3
1 0 1 1 2
2 1 0 2 1
2 1 2 0 1
3 2 1 1 0

⎤⎥⎥⎥⎥⎦. (A2)
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Following this, let us define the cost of moving ξij from node i to node j to be dijξij.
The total cost to make μ2 into μ5 is thus

C(μ2, μ5) =
5

∑
i=1

5

∑
j=1

dijξij. (A3)

Our goal is to minimize C(μ2, μ5), subject to the constraints in Equation (A1).
This constrained minimization problem can be recasted into a linear programming

problem, if we change the indices from i and j to a fused index k = (i, j). In terms of this
fused index, the cost function can be rewritten as

C(μ2, μ5) =
25

∑
k=1

dkξk, (A4)

while the constraints can be written as

25

∑
k=1

aikξk = μ2(i),
25

∑
k=1

bjkξk = μ5(j). (A5)

In this formulation, aik = 1 if the first index in k is i, and aik = 0 otherwise, whereas bjk = 1
if the second index in k is j, and bjk = 0 otherwise.

The standard method for solving a high-dimensional linear programming problem is
the simplex method, which can be found in numerous textbooks [228–230]. There are many
variants for the simplex method, depending on whether the optimization is a maximization
or minimization, and whether we are dealing with equality or inequality constraints. In
general, the simplex method and its variants introduce auxiliary variables called slack
variables, excess variables, or artificial variables. To illustrate how we can compute the first
Wasserstein distance described above using the simplex method, we will also have to
introduce artificial variables. Therefore, we should first eliminate redundant variables from
with the list of 25 ξk = ξij.

1

2

3

4

5

(a)

1

2

3

4

5

(b)

Figure A8. (a) The probability distribution μ2 for lazy random walk starting from node 2, and (b) the
probability distribution μ5 for lazy random walk starting from node 5, on a network with five nodes.
In (a), the probability of hopping from 2 → 2 is μ2(2) = α = 1

2 , while the probability of hopping
from 2 to its neighbors 1, 3, 4 are μ2(1) = μ2(3) = μ2(4) = 1

6 . These are shown in blue within the
destination nodes. To complete the probability distribution μ2, we also need to specify μ2(5). Since it
is not possible for the lazy random walk from node 2 to reach node 5 in a single hop, we set μ2(5) = 0,
and show this probability in red within the destination node. In (b), we continue to have μ5(5) = 1

2 ,
but since node 5 has only two neighbors, we find μ5(3) = μ5(4) = 1

4 , and show these in blue within
the destination nodes. We also show μ5(1) = μ5(2) = 0 in red within the destination nodes.

First of all, μ2(5) = 0. This cannot be broken down any further for redistribution to the
various nodes in μ5, and so we can just drop the variables ξ5j, for 1 ≤ j ≤ 5. Additionally,
μ5(1) = μ5(2) = 0, so none of the nodes in μ2 can make contributions to j = 1, 2. Hence,
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we can drop the variables ξi1 and ξi2, for 1 ≤ i ≤ 5. After eliminating these variables, we
are then left with the 12 variables

ξ13, ξ14, ξ15, ξ23, ξ24, ξ25, ξ33, ξ34, ξ35, ξ43, ξ44, ξ45. (A6)

Next, in terms of these remaining variables, we write the cost function as

C = 2ξ13 + 2ξ14 + 3ξ15 + ξ23 + ξ24 + 2ξ25 + 3ξ26 + 2ξ34 + ξ35 + 2ξ43 + ξ45. (A7)

We also write the seven equality constraints out explicitly as

ξ13 + ξ14 + ξ15 =
1
6

, (A8)

ξ23 + ξ24 + ξ25 =
1
2

, (A9)

ξ33 + ξ34 + ξ35 =
1
6

, (A10)

ξ43 + ξ44 + ξ45 =
1
6

, (A11)

ξ13 + ξ23 + ξ33 + ξ43 =
1
4

, (A12)

ξ14 + ξ24 + ξ34 + ξ44 =
1
4

, (A13)

ξ15 + ξ25 + ξ35 + ξ45 =
1
2

. (A14)

To solve the minimization problem iteratively, we need to start from an initial feasible
solution. This is not easy to guess, if we limit ourselves to the 12 variables. Therefore, we
introduce one artificial variable for each of the seven equality constraints, such that

ξ13 + ξ14 + ξ15 + a1 =
1
6

, (A15)

ξ23 + ξ24 + ξ25 + a2 =
1
2

, (A16)

ξ33 + ξ34 + ξ35 + a3 =
1
6

, (A17)

ξ43 + ξ44 + ξ45 + a4 =
1
6

, (A18)

ξ13 + ξ23 + ξ33 + ξ43 + a5 =
1
4

, (A19)

ξ14 + ξ24 + ξ34 + ξ44 + a6 =
1
4

, (A20)

ξ15 + ξ25 + ξ35 + ξ45 + a7 =
1
2

. (A21)

This allows us to set a1 = 1
6 , a2 = 1

2 , a3 = 1
6 , a4 = 1

6 , a5 = 1
4 , a6 = 1

4 , a7 = 1
2 , and all the ξ

variables to zero as our initial solution. However, as their names imply, a1 to a9 are artificial
variables, so we must be able to set their values to zero at the end of our minimization.
To ensure that this will happen, let us also add M(a1 + a2 + · · ·+ a7) to the cost function

C = 2ξ13 + 2ξ14 + 3ξ15 + ξ23 + ξ24 + 2ξ25 + 2ξ34 + ξ35 + 2ξ43 + ξ45 +

M(a1 + a2 + a3 + a4 + a5 + a6 + a7),
(A22)

where M is a large number. For this reason, this variant of the simplex method is called the
big M method.

After years of teaching the simplex method to undergraduates, mathematicians have
learned how to present the procedure in simple matrix/tabular form. The starting point
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is shown Table A3, where the coefficients of unknowns in the equality constraints have
been organized into the first seventh rows of a matrix, and the coefficients of unknowns
in the cost function organized into the eighth row. Initially, the columns V and r are not
populated. To populate column V, we inspect the coefficient matrix to identify the basic
variables. A basic variable is one that appears in one and only one row. At this start of the
optimization, it should be clear that the basic variables are the artificial variables a1 to a7.

Starting from a1 = 1
6 , a2 = 1

2 , a3 = 1
6 , a4 = 1

6 , a5 = 1
4 , a6 = 1

4 , a7 = 1
2 , and all the

ξ variables set to zero, we want to ultimately be able to obtain a value of C that does
not depend on the artificial variables a1 to a7. This can be achieved by subtracting M
times the rows where the artificial variables appear from the last row where C appears,
to produce the table shown in Table A4. In the last row of Table A4, all the coefficients
associated with the ξ variables are negative, so this is not a feasible solution. To improve
the solution, we need one of the ξ values to replace one of a as a basic variable. Looking for
the most negative entry in the last row of Table A4, we find that this is −2M, in the columns
associated with ξ33 and ξ44. We can pick either one as the entering variable to replace one of
the a’s, which will be the leaving variable. Since we will surely pick ξ44 in the next iteration,
let us for concreteness pick ξ33 as the entering variable. The final solution will not depend
on the order we pick our entering variables. For ξ33 to become an entering variable, we
determine the leaving variable by dividing the constants b by the coefficients in the ξ33
column, if this is possible, and populate the last column r. Since only two coefficients in
the ξ33 column are non-zero, we compute r only along these two rows, to obtain the ratios
1
6 and 1

4 . Since 1
6 is the smaller of the two, we choose a3 to be the leaving variable.

However, for ξ33 to replace a3 as a basic variable, it must appear only in one row. In
Table A4 it also appears in the row associated with a5, as well as the last row. Therefore, we
must perform elementary row operations to eliminate ξ33 from the a5 row, as well as to
eliminate ξ33 from the last row. After this is completed, we end up with the table shown in
Table A5. Here we see also that the cost function has improved from −2M to − 5M

3 . Since
there are still negative coefficients in the last row, we know that we can continue to improve
the cost function. In Table A5, the most negative coefficient is −2M, which appears in the
column associated with ξ44. We skipped ξ44 in favor of ξ33 the last iteration, so this is the
right time to choose ξ44 as the entering variable. Thereafter, we divide the constants b’s by
the coefficients in the row associated with ξ44, if this is possible, and look for the smallest
ratio. In this case, we find only two ratios, 1

6 and 1
4 , and the smallest ratio is associated with

a4, which will therefore be our new leaving variable.
Again, for ξ44 to become a basic variable, we must zero its coefficient in all other

rows using elementary row operations. The matrix of coefficients then become the one
shown in Table A6. We are making progress, because the cost function has improved to
− 4M

3 , and many of the coefficients associated with ξ’s have become positive in the last row.
To find the next entering variable, we continue to look in the last row for the most negative
coefficient. This would be 1 − 2M, which appears in the column associated with ξ23, as
well as the column associated with ξ24. As explained earlier, choosing ξ23 or ξ24 as the next
entering variable will not change the solution, so let us make ξ23 the next entering variable.
Then, from the ratios of the constants divided by the coefficients in the row associated with
ξ23, we see that a5 will become the leaving variable.
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Performing elementary row operations to make ξ44 a proper basic variable, we ob-
tained the table shown in Table A7. Again, the cost was improved, and more coefficients in
the last row became positive. At this stage in the iterations, the most negative coefficient is
1 − 2M, appearing in the column associated with ξ24, which we postponed handling in the
previous iteration. Therefore, we choose the next entering variable to be ξ24. Thereafter,
dividing the constants by coefficients in the column associated with ξ24, we find the next
leaving variable to be a6.

After another round of elementary row operations, we obtained the table shown in
Table A8. In this table, the most negative coefficient in the last row is 2 − 2M, appearing in
the columns associated with ξ25, and ξ45. Let us choose ξ25 to be the entering variable. For
this variable, we find the ratio 1

3 for the row associated with a2, and 1
2 in the row associated

with a7. Since 1
3 < 1

2 , we identify a2 as the leaving variable.
After elementary row operations to make ξ25 a basic variable, we obtained the table

shown in Table A9. The steady improvement to the cost function is obvious, and there are
also fewer negative coefficients in the last row. To choose the next entering variable, let
us inspect those columns with 3 − 2M in the last row. These are associated with ξ13, ξ14,
and ξ15. Since node 5 is the most important destination node, let us choose ξ15 as the next
entering variable. The ratios are 1

6 associated with a1, and 1
6 associated with a7. Since they

are the same, let us choose a1 to be our next leaving variable.
After one last round of elementary row operations, making ξ15 a basic variable, we

obtained the table shown in Table A10. Now, none of the coefficients in the last row are
negative. This means that we have found our solution, and the iterations can end. From
Table A10, we can read off the basic variables as

ξ15 =
1
6

, ξ23 =
1
12

, ξ24 =
1
12

, ξ25 =
1
3

, ξ33 =
1
6

, ξ44 =
1
6

. (23)

We can check that ξ23 + ξ24 + ξ25 = 1
12 + 1

12 + 1
3 = 1

2 , satisfying the second constraint.
Additionally, since ξ33 = 1

6 , this means that ξ34 = ξ35 = 0. Furthermore, ξ33 + ξ34 + ξ35 =
1
6 + 0 + 0 = 1

6 , satisfying the third constraint. Similarly, since ξ44 = 1
6 , we also have

ξ43 = ξ45 = 0, and ξ43 + ξ44 + ξ45 = 0 + 1
6 + 0 = 1

6 satisfies the fourth constraint. As
in the cases of the third and fourth constraints, ξ15 = 1

6 satisfies the first constraint by
itself, meaning that ξ13 = ξ14 = 0. More importantly, ξ15 + ξ25 = 1

6 + 1
3 = 1

2 , which
already satisfy the seventh constraint, so we must have ξ13 = ξ14 = 0. We also have
ξ13 + ξ23 + ξ33 + ξ43 = 0 + 1

12 + 1
6 + 0 = 1

4 , satisfying the fifth constraint, and ξ14 + ξ24 +

ξ34 + ξ44 = 0 + 1
12 + 0 + 1

6 = 1
4 satisfying the sixth constraint.

Let us observe that the above solution implies that a1 = a2 = a3 = a4 = a5 = a6 =
a7 = 0. Let us also observe that ξ13, ξ14, ξ34, ξ35, ξ43, ξ45 did not make it onto the list of basic
variables, and are thus non-basic variables. In the simplex method, non-basic variables are
automatically set to zero at the end of the optimization. We also observe that we started
out with seven artificial variables as basic variables, and iteratively replaced them with
the redistribution variables. This means that at most seven redistribution variables can
become basic, i.e., take on non-zero values at the end of the optimization. In this example,
the optimization stopped after six redistribution variables became basic. The remaining six
redistribution variables remained non-basic, and were thus set to zero, as dictated by the
simplex method.

Finally, let us observe that after we prepared the coefficient matrix for the constraints
and the cost function, including however many auxiliary variables as we need, the steps
involved in each iteration are mechanical and easy to automate. In fact, most variants of
the simplex method have been implemented in MATLAB, Python SciPy, and R as functions
that users can call with minimal preparations.
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F. Ollivier-Ricci Curvature Analysis of a Toy Model Sequence of Fusion

In Section 4.3, we saw that the Betti numbers—being topological quantities—are not
able to distinguish between parts of some models. There is, therefore, the need to go
beyond TDA. Most notably, (A3) and (A4) have the same Betti numbers, but whereas the
curvature is positive everywhere in (A4), the neck region in (A3) has negative curvature.
In this subsection, we will use model (A) to illustrate the power of the ORC.

To compute the ORC for the different phases of model (A), we created wire meshes
for the surfaces involved from (A1) to (A4) (see Figure 9), as instances of the Graph class
from networkx. We then installed GraphRicciCurvature and all the Python packages that
this depends on, before creating instances of the OllivierRicci class using the networkx
graphs as inputs, using α = 0.5 for the self-transition parameter. Finally, we called on the
compute_ricci_curvature() method in the OllivierRicci class to compute the ORCs of
all edges in the graphs.

As expected, the curvature ranged from slightly negative to slightly positive to signifi-
cantly positive in (A1). Negative curvatures started appearing in (A2), at the Dirac point,
and intensified in (A3). Finally, we have the curvature again ranging from slightly negative
to slightly positive to significantly positive in (A4), thereby allowing us to distinguish
between (A2), (A3), and (A4). The ORC changed most rapidly between (A2) and (A3).

(a) (b)

(c) (d)

Figure 9. The sequence of topological changes going from (a) two disjoint spheres, to (b) them
touching at a point to form a Dirac cone, to (c) them fusing to form a smoothed neck, to (d) eventually
rounding off to an ellipsoid with no neck. In these figures, the links are colored according to their
Ollivier-Ricci curvatures, standardized across the four scenarios from ORC = −0.5 (deep red) to
ORC ≈ 0 (green (slightly negative) and yellow (slightly positive)) to ORC = +0.5 (deep blue).
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Abstract: In the face of the upcoming 30th anniversary of econophysics, we review our contributions
and other related works on the modeling of the long-range memory phenomenon in physical,
economic, and other social complex systems. Our group has shown that the long-range memory
phenomenon can be reproduced using various Markov processes, such as point processes, stochastic
differential equations, and agent-based models—reproduced well enough to match other statistical
properties of the financial markets, such as return and trading activity distributions and first-passage
time distributions. Research has lead us to question whether the observed long-range memory is a
result of the actual long-range memory process or just a consequence of the non-linearity of Markov
processes. As our most recent result, we discuss the long-range memory of the order flow data in
the financial markets and other social systems from the perspective of the fractional Lèvy stable
motion. We test widely used long-range memory estimators on discrete fractional Lèvy stable motion
represented by the auto-regressive fractionally integrated moving average (ARFIMA) sample series.
Our newly obtained results seem to indicate that new estimators of self-similarity and long-range
memory for analyzing systems with non-Gaussian distributions have to be developed.

Keywords: long-range memory; 1/f noise; absolute value estimator; anomalous diffusion; ARFIMA;
first-passage times; fractional Lèvy stable motion; Higuchi’s method; mean squared displacement;
multiplicative point process

1. Introduction

Many empirical data sets and theoretical models have been investigated using the tool
of spectral analysis. Many researchers across different fields find the power spectral density
(abbr. PSD) of the 1/ f β form (with 0.5 � β � 1.5) to be of a particular interest [1–10], both
because of its apparent omnipresence and the implication of slowly decaying autocorrela-
tion, which indicates the presence of the long-range memory phenomenon. Long-range
memory is also one of the established stylized facts of the financial markets [11–19]. Con-
sequently, as our group was investigating 1/ f noise [20–23], we have become naturally
interested in the rapidly growing field of econophysics. The term “econophysics” was
coined by H. E. Stanley in the Statphys conference in Kolkata in 1995 [24]. Over the last
three decades, econophysics has matured both from the theoretical and the applied per-
spectives. Here, we review mostly our own and directly adjacent approaches, and we
would like to recommend a couple of broader reviews, which can be found in [25,26].

Our first publications were devoted to the modeling of the financial markets [27,28].
In those works, we have considered trades occurring in the financial markets as point
events driven by a point process proposed in [21–23]. Thanks to the organizers of the
international conference Applications of Physics in Financial Analysis 4, held in Warsaw in
2003, we were able to present our findings to econophysicists. Our first results, inspired by
interaction with the participants of the APFA 4 conference, have been published in [29,30].
We presented our ideas in a more general context of complex systems in [31,32].

Entropy 2021, 23, 1125. https://doi.org/10.3390/e23091125 https://www.mdpi.com/journal/entropy237
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Later, we took part in the COST Action P10 “Physics of Risk” and the follow-up
COST Action MP0801 “Physics of Competition and Conflicts”. Bronislovas Kaulakys and
Vygintas Gontis were executive committee members of both COST Actions, while the
other group members gave talks and poster presentations during the annual meetings and
helped organize an annual action meeting in Vilnius in 2006. This COST action meeting
has helped us embrace econophysics and be recognized as econophysicists.

While it may be natural to see trades in the financial markets as point events [27–30],
modeling volatility and return as a point process was not as straightforward. We have
developed our approach further by abstracting the point process away and considering a
continuous framework of Langevin stochastic differential equations (abbr. SDEs). First,
we have shown that the continuous interpretation of the point process model works well
for trading activity [33]; thus, we have refined the SDE approach with model for volatility
and return [34–38]. Interestingly, similar SDEs can be derived from a simple agent-based
model (abbr. ABM) [39,40], too. With time, we have developed more complicated ABMs to
account for the separation of time scales and order flow [41,42]. We have even branched
out into sociophysics [43–46] as we have understood that the herding ABM we used to
model the financial market is essentially equivalent to the well-known voter model [47–49].

For 10 months (in 2015 and 2016), Vygintas Gontis, with the support of the Baltic Amer-
ican Freedom Foundation, has stayed as a visiting researcher at the Center of Polymer Stud-
ies of Boston University. Discussions with the founding fathers of econophysics, H. E. Stan-
ley, professors Sh. Havlin, B. Podobnik, and S. Buldyrev, resulted in a paper [50]. Together,
we have considered volatility return intervals (term inspired by the studies [51–54]) of
the financial time series at various time scales. In the paper, we have shown that the
time intervals between large financial fluctuations is distributed according to a power–law
probability density function (abbr. PDF) p(τ) ∼ τ−3/2 [50]. The same distribution arise
in our models and from many other one-dimensional Markov processes [55], while the
long-range memory process would exhibit a different distribution, such as p(τ) ∼ τ2−H ,
which is a well-known result for the fractional Brownian motion (abbr. FBM) [56].

Here, we provide an overview of our approach to understanding and modeling the
long-range memory phenomenon in financial markets and other complex systems and
share our most recent result. In Section 2, we introduce the original point process and
discuss how to derive a non-linear SDE, which can reproduce the long-range memory
phenomenon. We also discuss numerous extensions of both the point process model and
non-linear SDE. Next, in Section 3, we show how we can obtain a similar SDE from a simple
herding ABM. Following the overview, we also present a novel result, which concerns
understanding the nature of the self-similarity and long-range memory phenomenon
from the perspective of fractional Lèvy stable motion (abbr. FLSM) and auto-regressive
fractionally integrated moving average (abbr. ARFIMA) time series. In Section 4, we tested
various long-range memory estimators such as mean squared displacement, method of
absolute value estimator, Higuchi’s method, and burst and interburst duration analysis on
fractional Lèvy stable motion (ARFIMA(0,d,0) time series). Finally, in Section 5, we share
our future considerations.

2. The Multiplicative Point Process, the Class of Stochastic Differential Equations, and
Their Applications

In this section, we overview how the physically motivated point process proposed
in [21–23] was applied to model trading activity and absolute returns in the financial
markets. We also discuss numerous extensions of the model into some related research
topics, such as superstatistics and anomalous and non-homogeneous diffusion.

2.1. The Multiplicative Point Process Model

Let us consider signal I(t) composed of pulses with profiles given by Ak(x):

I(t) = ∑
k

Ak(t − tk), (1)
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where tk is the event (pulse) time. There are many physical and social systems, which
generate signals of such nature: electric current [57], music [58], human heartbeat [59],
internet traffic [32], or trading activity [29] to name a few.

As most profiles of the pulses are brief, it is trivial that they would influence only
high frequencies corresponding to the typical inverse pulse length. If we are interested
in longer-term dynamics, it is sufficient to assume that the Kronecker delta function well
approximates the profile, Ak(x) = akδ(x). Many such systems are driven by the flow of
identical or similar objects, such as electrons, packets, or trades. This lets us simplify (1)
and investigate it as a temporal point process with unit events. Such a process can be either
described by the event times {tk} or by the inter-event times {τk = tk+1 − tk}.

The inter-event times are a far more convenient choice to model as they at least can
give a semblance of the stationarity, while event times are obviously non-stationary as {tk}
is monotonically increasing series. In [21–23], it was analytically shown that a relatively
slow autoregressive AR(1) Brownian motion of τk yield 1/ f fluctuations of the signal I(t).
The author of [29] has built upon this observation and introduced multiplicative point
process for the inter-event time

τk+1 = τk + σ2γτ
2μ−1
k + στ

μ
k εk. (2)

In the above, it is assumed that inter-event time fluctuates due to exogenous perturba-
tions. Perturbations are assumed to be standard uncorrelated Gaussian random variables,
εk. The general rate of change is governed by σ, while γ is the damping constant. Multi-
plicativity, specified by μ, ensures that I(t) is multifractal and has a power–law PDF. This
point process model has found its use for the analysis of 1/ f noise and long-range memory
in many diverse phenomena such as musical rhythm spectra [58], human cognition [60],
human interaction dynamics [61], turbulence [62], and few others [63–66]. Inspired by this
model, [67] has shown under which conditions 1/ f β spectrum can arise from reversible
Markov chains.

After closer examination, it should be evident that Equation (2) can be seen as an
iterative solution of a certain SDE if Euler–Maruyama method was used [68]. Hence the
corresponding Langevin SDE can be trivially recovered from the iterative relation (2):

d τ = σ2γτ2μ−1 d k + στμ d Wk. (3)

Here W is uncorrelated standard Wiener process. Note that this SDE is in the event
space (or k–space) and not in the real time. Further, this SDE must be solved by restricting
the diffusion of the inter-event time τ to some arbitrary interval [τmin, τmax] on the positive
half-plane as otherwise this SDE may not have a stationary distribution. If stationary
distribution exists, then the stationary PDF of τ is a power–law:

pk(τ) =
α + 1

τα+1
max − τα+1

min

τα, α = 2(γ − μ). (4)

Yet the main result of [29] is the power–law statistical properties of I(t). In the
limit τmin → 0 and τmax → ∞ PSD of I(t) in arbitrarily long range of frequencies has a
power–law slope:

S( f ) ∼ 1/ f β, β = 1 +
2(γ − μ)

3 − 2μ
. (5)

The number of events in a selected time window, for example number of trades per
minute, also has a power–law distribution [29]:

p(N) ∼ N−2(γ−μ)−3. (6)
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Formally, one could define the number of events in a window of length w as N[t] =∫ t+w
t I(u)d u (here the square brackets indicate that N is in discrete time). These analytical

results can be confirmed by numerical simulation (see Figure 1).

Figure 1. Statistical properties of the point process by numerically solving Equation (2): (a) sample fragment of correspond-
ing N[t] time series, (b) PDF of the inter-event times, and (c) PSD of the process. Red curves correspond to numerical results,
while black curves are theoretical power–law fits with (b) α = 0 and (c) β = 1. Model parameter values: γ = 0, μ = 0,
σ = 0.1, w = 1.

2.2. The Class of Non-Linear Stochastic Differential Equations

In [33,69–71], we have made a transition from k-space to real time and this enabled us
to model trading activity and absolute returns in the financial markets not only qualitatively,
but quantitatively, too. The transition from SDE in k-space, Equation (3), to real time is
achieved by substitution d t = τ d k, which yields:

d τ = σ2γτ2μ−2 d t + στμ−1/2 d W. (7)

Modeling inter-event time in real time makes less sense than in the k-space, so let us
change the variable to the number of events per unit time x = 1

τ . Applying Itô transforma-
tion yields:

d x = σ2
(

η − λ

2

)
x2η−1 d t + σxη d W. (8)

In the above, we have introduced a more convenient set of parameters:

η =
5
2
− μ, λ = 2(γ − μ) + 3. (9)

As far as SDE (8) corresponds to the point process defined by Equation (2), the results
for stationary PDF and PSD should apply:

p(x) ∼ x−λ, S( f ) ∼ 1/ f β, β = 1 +
λ − 3
2η − 2

. (10)

The validity of these theoretical predictions was extensively checked numerically (see
Figure 2 for a quick example) and also, in [72], proven analytically. The analytical proof
provided in [72] allows interpreting the process modeled by SDE (8) in a more general
context. In fact we can model any process possessing these power–law statistical properties,
even processes, which make less sense from the perspective of the original point process.
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Figure 2. Various slopes of PDF (a) and PSD (b) reproduced by the numerical solutions of SDE (8). Model parameter values:
σ = 1, η = 2.5 (all cases) and λ = 2 (red curves in both (a,b)), 3 (blue curves), 4 (green curves), and 5 (magenta curves).
Black dashed lines correspond to (a) p(x) ∼ x−λ with λ = 1.5 and λ = 6 (upper and lower curves), (b) S( f ) ∼ 1/ f β with
β = 0.5 and β = 2 (upper and lower curves).

Equation (8) and similar random walk models have been used to model the EUR/CHF
exchange rate [73]. It has also lead to numerous modifications by our group, which we
discuss in detail in the following subsections.

2.3. Reproducing the Long-Range Memory Using GARCH(1,1) Process

Autoregressive conditional heteroscedasticity (abbr. ARCH) family models [74–79]
are quite popular forecasting tools among professional traders as well as researchers
interested in the long-range memory phenomenon. Unlike SDEs, ARCH family models
have explicitly built-in memory, which is built-in either via explicit dependence on the
numerous previous states, infinitely many in the case of the ARCH(∞) model [80–82], or
via fractional integration procedure, which introduces memory similar to the one present in
the fractional Brownian motion, as in the fractionally integrated GARCH (abbr. FIGARCH)
model [83–85]. In [86], we have shown that it is possible to modify the GARCH(1,1) model,
which is Markovian in nature, to reproduce 1/ f spectrum.

Generalized autoregressive conditional heteroskedasticity (abbr. GARCH) processes
can be approximated by the diffusion processes. There are two competing approaches,
which yield continuous approximations of GARCH processes using sets of SDEs. One of
the approaches was proposed by Nelson [87] and the other by Kluppelberg et al. [88,89].
In the GARCH(1,1), Nelson’s approach is easier to apply, but has a drawback that the
resulting COGARCH(1,1) would be driven by two sources of noise, instead of the one in the
GARCH(1,1). Yet, we can circumvent the problem by ignoring the observed heteroskedastic
economic variable zt and focusing on the approximation of the volatility process, σ2

t , of
GARCH(1,1):

zt = σtωt, (11)

σ2
t = a + bz2

t−1 + cσ2
t−1 = a + bσ2

t−1ω2
t−1 + cσ2

t−1. (12)

In the above, ωt is the noise, while a, b, and c are the GARCH(1,1) model parameters.
For Nelson’s approach to work, we need to compute first and second moments of change in
volatility. With the usual GARCH(1,1) we obtain SDE for geometric Brownian motion [86].

Now lets introduce non-linearity into Equation (12). In [86], we have explored two
such options:

σ2
t = a + bσ

μ
t−1ω

μ
t−1 + cσ2

t−1, (13)

σ2
t = a + bσ

μ
t−1|ωt−1|μ + σ2

t−1 − cσ
μ
t−1. (14)
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Both of these options can be approximated by SDEs belonging to the class of SDEs (8)
with λ = μ and η = μ/2. Consequently both of these options reproduce 1/ f spectrum with
μ = 3. Other parameters, a, b, and c, influence only the additional terms, which restrict
the diffusion of σ2

t . Setting these values too high shrinks the interval and the power–law
distribution becomes extremely hard to observe.

2.4. Anomalous Diffusion in the Long-Range Memory Process

SDE (8) can be also seen to describe a heterogeneous diffusion in a non-linear potential.
Such diffusion leads to anomalous growth in variance [90]〈

[x(t)− 〈x(t)〉]2
〉
∼ tθ , θ =

1
1 − η

. (15)

This phenomenon is also known as anomalous diffusion [91–93]. If θ = 1 then the
process exhibits normal diffusion. Otherwise if 0 < θ < 1, the diffusion is slower than
normal and is referred to as sub-diffusion. The diffusion may also be faster, if 1 < θ < 2, in
that case it is called super-diffusion.

The anomalous diffusion can be obtained from SDE (8) only for specific parameter
values such as λ < 1 and η < 1/2 [90]. Because power–law slope of the PSD, β, varies
between 0 and 2, from Equation (10), it follows that anomalous diffusion and power–law
noise can be observed at the same time only for negative parameter η values, specifically
for η < (λ − 1)/2 and λ < 1; however, for these parameters values numerical simulation
would become very slow and inefficient [72]; therefore, we have considered generalizing
SDE (8) by considering non-Gaussian white noise.

In [94], we have considered Lévy α-stable noise. SDE equivalent to SDE (8), but with
Lévy α-stable noise takes the following form:

d x
d t

= γ(η, λ, α)xα(η−1)+1 + xηξα(t). (16)

Here, ξα(t) is a white noise, the intensity of which is distributed according to the
symmetric Lévy α-stable distribution. The characteristic function of the noise intensity is
given by:

〈exp(ikξα)〉 = exp
(
−σα|k|α

)
. (17)

Here, α is the index of stability and σ is the scale parameter. We interpret SDE (16) in
an Itô sense and it can also be written in the form

d x = γ(η, λ, α)xα(η−1)+1 d t + xη d Lα
t . (18)

Here, d Lα
t stands for the increments of Lévy α-stable motion Lα

t . If SDE (16) is solved
with reflective boundary conditions and

γ(η, λ, α) =
sin

[
π
(

α
2 − αη + λ

)]
sin[π(α(η − 1)− λ)]

Γ(αη − λ + 1)
Γ(α(η − 1)− λ + 2)

, (19)

then generalized SDE (16) generate time series with power–law steady-state PDF and
power–law PSD:

p(x) ∼ x−λ, S( f ) ∼ 1
f β

, β = 1 +
λ − 3

α(η − 1)
. (20)

Extensive numerical simulations have shown that due to the presence of the multi-
plicative Lévy α-stable noise in Equation (16) both sub-diffusion and super-diffusion can
be observed together with power–law noise even for positive η values [95]; however, no
analytical expression for anomalous diffusion exponent dependence on SDE parameters
has been derived yet.
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In Figure 3, we show a sample series of the solutions of SDE (16) and the statistical
properties of the series when the noise is Lévy α-stable noise with α = 1. The other SDE (16)
parameters were picked so 1/ f spectrum would be reproduced. As can be seen in the
subfigure (a), ongoing diffusion is disrupted by huge jumps, which are characteristic to
Lévy flights.

Figure 3. Statistical properties of the time series obtained by solving SDE with Lévy α-stable noise, Equation (16): (a) sample
fragment of the time series, (b) PDF, and (c) PSD of time series. Red curves correspond to numerical results, while black
curves are power–law best fits with exponents (b) λ ≈ 3.3, (c) β ≈ 1.

If we consider modeling only sub-diffusive processes, then we can study another
generalization of SDE (8), originally proposed in [96]. If we start with a Markovian process
described by the Itô SDE

d x(τ) = f [x(τ)]d τ + g[x(τ)]d W(τ). (21)

The drift and diffusion functions of the above SDE are given by

f (x) = σ2
(

η − λ

2

)
x2η−1, g(x) = σxη . (22)

We interpret the time τ as an internal (operational) time. For the trapping pro-
cesses that have a distribution of the trapping times with power–law tails, the physical
time t = T(τ) is given by the strictly increasing α+-stable Lévy motion defined by the
Laplace transform 〈

e−kT(τ)
〉
= e−τkα+ . (23)

Here, the parameter α+ takes the values from the interval 0 < α+ < 1. Thus, the
physical time t obeys the SDE

d t(τ) = d Lα+(τ), (24)

where dLα+(τ) stands for the increments of the strictly increasing α+-stable Lévy motion
Lα+(τ). For such physical time t the operational time τ is related to the physical time t via
the inverse α+-stable subordinator

S(t) = inf{τ : T(τ) > t}. (25)

Such subordination leads to power spectral density

S( f ) ∼
{

1
ωβ , 1 − α+ < β < 1 + α+,

1
ω1+α+

, β > 1 + α+.
, β = 1 +

α+(λ − 3)
(η − 1)

(26)

Proposed SDEs (8), (16), and (21) have served as a basis to study heterogeneous diffu-
sion in a non-homogeneous medium [90,96,97] and time subordinated processes [98,99] as
well as the effects of non-linear variable transformations [100,101].
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In paper [98], we investigated the distinction between the internal time of the system
and the physical time as a source of 1/ f noise. We have introduced the internal (operational)
time into the earlier point process [21–23] together with additional equations relating the
internal time to the physical time. In this scenario, we can still recover power–law statistical
features similar to the ones obtained by solving Equation (8). In the financial markets, the
internal time could reflect the fluctuating human activity, e.g., trading activity, yielding the
long-range correlations in the volatility. The effective approach for the solution of highly
non-linear SDEs was proposed [98] by a suitable choice of the internal time and variable
steps of integration.

The effects of non-linear variable transformations [100,101] suggest that long-range
memory in certain cases can be just a measurement effect. As far as the non-linear transfor-
mation of the observable x to y

x =
1
yδ

, (27)

with δ being the transformation exponent, yields SDE for the variable y of the same form
such as Equation (8) for x.

2.5. Inverse Cubic Law for Long-Range Correlated Processes

The inverse cubic law is an established stylized fact stating that the cumulative
distributions of various financial market time series such as the number of trades, the
trade volume, or the return [12,14,15,19]. Thus, this law is as important for the modeling
as the consideration of long-range memory and fractal scaling, which are also stylized
facts [6,12,14,15,19]. We have in proposed [102] that the non-linear SDE yields both the
power–law behavior of the PSD and the inverse cubic law of the cumulative distribution.
This was achieved using the idea that when the market evolves from calm to violent
behavior there is a decrease of the delay time of multiplicative feedback of the system in
comparison to the driving noise correlation time. This results in a transition from the Itô to
the Stratonovich sense of the SDE and yields a long-range memory process.

We start from a simple quadratic SDE

d x = x2 ◦α d W (28)

where α is the interpretation parameter, defining the α-dependent stochastic integral of the
SDE (28),

∫ T

0
f (x(t)) ◦α dWt ≡ lim

N→∞

N−1

∑
n=0

f (x(tn))ΔWtn . (29)

Here, tn = n+α
N T with 0 ≤ α ≤ 1. Natural choices of the parameter α are: (i) α = 0,

pre-point (Itô convention), (ii) α = 1/2, mid-point (Stratonovich convention), and (iii)
α = 1, post-point (Hänggi–Klimontovich, kinetic, or isothermal convention) [103].

The quadratic SDE (28) is the simplest multiplicative SDE without the drift term
symmetric for the positive and negative deviations of some observable x. More generally,
the same process can be described by the delayed SDE [103]

d x(t) = f (x(t))d t + g(x(t − δ))ζτ
t d t. (30)

Here, f (x) represents arbitrary deterministic drift of the observable x, while g(x) ef-
fectively controls the diffusion as ζτ

t is the noise term, which is assumed to have correlation
time τ. Note that the diffusion function depends on the delayed value of the observable x
(by time interval δ).

It may be shown [103] that in the limit δ → 0 and τ → 0 (under the condition
δ/τ = const) SDE (30) can be transformed into

d x = f (x(t))d t + g(x(t)) ◦α d W (31)
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with the interpretation parameter being determined by

α

(
δ

τ

)
� 1

2(1 + δ/τ)
. (32)

Under the perturbation by the white noise, in a case of τ � δ, even for a short delay
in feedback δ, we achieve the Itô outcome, because there is no correlation between the
sign of the noise ζt and the time-derivative of the feedback g(x). On the contrary, under
the perturbation by the correlated noise, τ  δ, a correlation emerges between the sign
of ζt and the time-derivative of g(x). In this case the correlation yields the Stratonovich
outcome [103].

In general, the value of α may depend on the coordinate x and/or other system’
parameters. SDE (28) with α 	= 0 may be transformed into SDE in Itô sense

d x = 2αx3 d t + x2 d W. (33)

This SDE is a particular case of the general Itô Equation (8) yielding the power–law
steady-state PDF and the power–law PSD (10). These SDEs become identical for η = 2 and
λ = 4(1 − α).

Let us note that 1/ f β noise emerges due to the large fluctuations in the time series,
while the finite time studies reveal the commonly observed magnitudes of the observable.
The common fluctuations can be modeled by the familiar in the financial application’s Itô
SDEs. On the other hand, the large rapid fluctuations of the violent market arise due to the
strong correlated influences; the processes of such a market are fast, all durations become
short in comparison to the herding correlation time, and, consequently, the market should
be modeled by the Stratonovich version of SDE.

For the modeling of such dynamics, we generalize Equations (28) and (33) with
x-dependent parameter α(x). Let

d x = 2α(x)x3 d t + x2 d W, (34)

with, e.g.,

α(x) =
1
2

[
1 − exp

{
−
(

x
xc

)2
}]

, (35)

where xc is the Itô to Stratonovich interpretations crossover parameter. Equations (34) and (35)
represent transition from Itô to Stratonovich convention with an increase in the variable
x and decrease of the delay time of multiplicative feedback for larger x, according to
the Wong–Zakai theorem [103]. Detailed numerical analysis of the model represented by
Equations (34) and (35) is presented in paper [102].

2.6. 1/ f β Noise with Distributions Other Than Power–Law

Solutions of the SDE (8) will always have power–law statistical properties of the (10)
form; however, often noise with 1/ f β PSD is distributed according to PDF, which is not
power–law, but Gaussian or some other distribution. Here, we review two different
approaches, which allow for other distributions to be observed in time series with 1/ f β

spectrum: superstatistical and coupled SDE approaches.
In [104], it was suggested that the Poissonian-like process with the slowly changing

average inter-event time may be represented as the superstatistical process exhibiting 1/ f
noise. It was assumed that the inter-event time τk, obtained by solving Equation (2), repre-
sents not the actual (observed) inter-event time, but its average (reciprocal of the event rate).
In this setup, the actual inter-event time τ̂k would be given by the conditional probability

ϕ(τ̂k|τk) =
1
τk

e−τ̂k/τk , (36)
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similar to the non-homogeneous Poisson process. This additional randomization has no
influence on the lower frequencies of the PSD and the intensity of the signal.

The PDF of the observed inter-event time τ̂k may be derived from the superstatisti-
cal model,

p(τ̂k) =
∫ ∞

0
ϕ(τ̂k|τk)pk(τk)d τk. (37)

Equations (36) and (37) generate the q-exponential distribution used in the non-
extensive statistical mechanics and many real systems [105]. Detailed analytical derivations
and the numerical verification were presented in [104].

In the paper [38], a similar superstatistical approach was taken with respect to the
intensity of the signal x, obtained by solving SDE (8). The observed series x̂ is assumed to
be generated from x series by applying exogenous noise, which is described by an arbitrary
conditional distribution ϕ(x̂|x). In this approach, the steady-state distribution of x̂ is given by

p(x̂) =
∫ ∞

0
ϕ(x̂|x)p(x)d x. (38)

Analytical and numerical analysis of inter-trade duration, the trading activity, and the
return using the superstatistical method with the exponential and normal distributions of
the local signal, driven by the stochastic process, were discussed in detail in [38].

In later sections of this paper, we show that the superstatistical approach is not the only
approach that allows us to change the observed signal PDF. The coupled SDE approach,
proposed in [99], allows for more flexibility and easier interpretation of how the statistical
properties become independent of each other. The general form of the set of coupled SDEs
was derived from the scaling properties needed for the realization of 1/ f β noise [99]

d x = f (x)y2η d t + g(x)yη d W1, (39)

d y = σ2
(

η + 1 − λ

2

)
y2η+1 d t + σyη+1

t d W2. (40)

Here, f (x) and g(x) are arbitrary drift and diffusion functions, which determine the
stationary PDF of x; W1 and W2 are uncorrelated standard Wiener processes. The first
equation describes the changes in the intensity of the signal, while the second equation
represents fluctuations in the rate of change. These coupled SDEs allow for 1/ f β spectrum
to be reproduced together with arbitrary steady-state PDF of the observed value x. It was
shown that the power–law slope of the PSD, β, of the time series of x generated by solving
SDEs (39) and (40) depends on the parameters η and λ as follows

β = 1 +
λ − 1

2η
. (41)

In Figure 4, we show that one can obtain a Gaussian distribution of x (subfigure (b))
together with 1/ f spectrum (subfigure (c)). In subfigure (a), one can visually see the impact
of the variations in the rate of change.

246



Entropy 2021, 23, 1125

Figure 4. Statistical properties of the time series obtained by solving coupled SDEs (39) and (40): (a) sample fragment of x(t)
time series, (b) PDF of the externally observed values x, and (c) PSD of x(t). Red curves correspond to numerical results,
while black curves are theoretical fits: (b) standard Gaussian PDF, (c) S( f ) ∼ 1/ f β.

2.7. Reproducing Statistical Properties of the Financial Markets

While qualitatively, the trading activity and the absolute returns have power–law
distributions and exhibit long-range memory property [14,19], corresponding empirical
statistical properties have a finer structure. In order to reproduce the empirical statistical
properties in detail, some modifications to the SDE are needed.

The author of [13] has determined that Hurst exponents of the trading activity time
series of 1000 US stocks are remarkably close: H ≈ 0.85. This implies that the PSD of the
trading activity should have a power–law slope β = 2H − 1 ≈ 0.7. The author of [13] has
also discovered the that slope of the PDFs of the trading activity also has a power–law
tail with exponent λ ≈ 4.4. It would be impossible to reproduce such values by using
SDE (8), because Equation (10) implies that if λ > 3, then β > 1. In our analysis of 26
US stocks [106], we have confirmed the slope of the PDF, but we have observed a more
complicated PSD, with two slopes instead of one (β < 1 for both slopes).

Both of these issues are resolved by a modified SDE for trade intensity, n [33]:

d n = σ2
[

η − λ

2
+

(n0

n

)2
]

n2η−1

(nε + 1)2 d t + σ
nη

nε + 1
d W. (42)

The problem of the two PSD slopes is resolved, because this SDE has two different
effective η values. For n  ε−1 the effective η is equal to the specified parameter value
(in the numerical simulations we have used η = 5/2, thus η̂1 = 5/2). For n � ε−1 the
effective η is one smaller than the specified parameter value η̂2 = η − 1 = 3/2). The
slope of the PDF increases from the value predicted in Equation (10) due to integration,
as trading activity is defined as number of trades per time window w, or in the current
parametrization, an integral of trade intensity: N[t] =

∫ t+w
t n(u)d u.

Parameter n0 and the related term in the drift function ensure that n would not become
very small as the term causes the potential to rapidly grow for n < n0. This helps us avoid
negative trade intensities, which are impossible by definition, as well as ensure some level
of minimal trading activity, which in our experience may differ for different stocks and
different markets [37,106].

In Figure 5, we have shown that the stochastic model can match statistical properties
of MMM stock traded on NYSE. While the matches are not perfect, some of the noticeable
differences can be explained by the fact that the stochastic model does not take into account
intraday seasonalities.
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Figure 5. Trading activity (a) PDF and (b) PSD for MMM stock traded on NYSE (red curve) and
the numerical solutions of SDE (42). Model parameters values: η = 2.5, λ = 4.3, σ2 = 0.045,
ε = 0.36, n0 = 0.14. Empirical and numerical PDF was obtained by considering trades in the 300 s
time window.

Reproducing statistics of absolute return requires another modification of the SDE [36].
Our empirical analysis, confirmed by the other authors [105], indicated that the q-Gaussian
distribution [38,107] seems to be a good fit for the empirical absolute return, defined as the
log–price difference, distribution. This is achieved by:

d x = σ2

[
η − λ

2
−

(
x

xmax

)2
] (

1 + x2)η−1(
1 + ε

√
1 + x2

)2 x d t + σ

(
1 + x2) η

2

1 + ε
√

1 + x2
d W. (43)

To reproduce the full complexity of the empirical data, another ingredient is needed,
namely external noise, which can be understood as an effect of news flow or the distortions
caused by the discrete order flow:

rt = ξ

{
r0 = 1 +

2
w

∣∣∣∣∫ t

t−w
x(u)d u

∣∣∣∣, q = 1 + 2/λ2

}
. (44)

This relation was inspired by the superstatistical approach (discussed in Section 2.6)
and determined by trying to fit the empirical data as best we can. We have empirically
determined that the best fit is obtained when ξ is a process that generates uncorrelated
random variates from a q-Gaussian distribution with q ≈ 1.4 (λ2 ≈ 5) and r0 being one
minute (w ≈ 60 s) moving average filter of the solutions of SDE (43). Using this model,
we were able to reproduce empirical statistical properties of stock from New York (abbr.
NYSE) and Vilnius stock exchanges (abbr. VSE) [36,37].

In Figure 6, we have demonstrated that the stochastic model reproduces empirical data
reasonably well from NYSE and VSE. Some of the noticeable differences can be observed
because we do not take into account the intraday seasonality, and we do not directly take
into account that VSE had relatively low liquidity (many one minute time intervals have
zero returns). Differing liquidity is a likely explanation for the differences seen between
NYSE and VSE, too.
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Figure 6. Comparison of empirical (a) PDFs and (b) PSDs of absolute one minute return as observed in NYSE (red curves)
and VSE (blue curves) stocks. Empirical results are compared against the model, generated by the SDE (43) and exogenous
noise Equation (44), (black curves). Model parameter values: η = 2.5, λ = 3.6, ε = 0.017, xmax = 103, λ2 = 5.

2.8. Variable Step Method for Solving Non-Linear Stochastic Differential Equations

Note that SDEs (8), (42), and (43) are not Lipshitz continuous [68]; thus, they have to
be solved by imposing boundary conditions, which would prevent the explosion of the
solutions. An alternative way to achieve Lipshitz continuity is to include additional terms
for restricting diffusion, which would have no detrimental effects on the PSD and PDF of
the time series. Such is the role of the n0 term in SDE (42) and xmax term in SDE (43).

Lacking Lipshitiz continuity causes another complication in solving the SDEs: the
standard Euler–Maruyama or Milsten methods [68] do not yield good results with reason-
able step sizes. This complication is resolved by using a variable step size. The core idea
is to use a larger step size whenever the anticipated changes would be small and use the
smaller step size whenever significant changes are coming. The mathematical form of the
variable step size is often unique to the SDE being solved, but a good rule of thumb would
be to linearize the drift and the diffusion functions. See [69,70] for more details.

For example, SDE (8) in our works is solved by the following set of difference equations:

xi+1 = xi + κ2
(

η − λ

2

)
xi + κxiεi, (45)

ti+1 = ti + κ2x2−2η . (46)

In the above κ is a small number that acts as an error tolerance parameter. The smaller
it becomes, the better xi reproduces desired statistical properties given by Equation (10),
but at the expense of numerical computation time.

Similarly, this variable step method can be also applied to SDEs with α-stable Lévy
noise. For example, we can solve SDE (16) numerically by using the following set of
difference equations

xk+1 = xk + καγxk +
κ

σ
xkξα

k , (47)

tk+1 = tk +
κα

σα
x−α(η−1)

k , (48)

where ξα
k is a random variable having α-stable Lévy distribution. This set of difference

equations should be solved only with the reflective boundaries at x = xmin and x = xmax
using the projection method [108]. In nutshell, if the variable xk+1 acquires the value outside
of the interval [xmin, xmax] then the value of the nearest reflective boundary is assigned to
xk+1. Iterative equations for SDEs (42) and (43) are a bit more complicated [36,106], but
they still remain qualitatively the same.
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Note that the introduction of the variable time step into the numerical solution of an
SDE is equivalent to introducing the subordination scheme directly into the SDE, when
internal time and physical time are related by a non-linear transformation [98].

3. Agent-Based Model of the Long-Range Memory in the Financial Markets

In the previous section, we have discussed how our group has started from the physi-
cally motivated point process model and arrived at the general class of SDEs reproducing
long-range memory phenomenon; however, this generality has its drawback: microscopic
mechanisms of the modeled systems are ignored. We then tried to investigate some existing
financial ABMs for the possibility to derive SDE of a similar form to SDE (8). We have
failed to do so with some prominent yet complicated ABMs, such as the ones proposed
in [109,110] (for more prominent ABMs of the time, which include some other candidates
we have tried, see [111]); however, we have found success with Kirman’s herding model,
initially proposed in [112] and later analyzed in financial market context by [113,114].

3.1. Kirman’s Herding Model

Kirman’s herding model can be defined via two one-step transition probabilities in a
system with two possible states:

p(X → X + 1) = (N − X)[σ1 + hX]Δt, (49)

p(X → X − 1) = X[σ2 + h(N − X)]Δt. (50)

In the above, X is the number of agents in state 1 and N is the total number of agents
within the system. Total number of agents is conserved, so the number of agents in state 2 is
trivially given by N − X. Here, Δt is a short time window during which only one transition
should be likely. Transitions may occur either due to independent behavior (governed
by parameters σi), or due to recruitment (governed by parameter h). Using birth–death
process formalism [115] it is easy to find SDE corresponding to Kirman’s herding model
with x = X/N:

d x = [(1 − x)σ1 − xσ2]d t +
√

2hx(1 − x)d W. (51)

3.2. Kirman’s Herding Model for the Financial Markets

Evidently, SDE (51) is not of the same form as SDE (8), but we have not yet discussed
the meaning of states 1 and 2. In many financial ABMs of the time, it was a common choice
to assume that agents represent chartist and fundamentalist traders [111]. Assuming that
chartist traders trade based on the wide variety of technical trading tools, which often
produce conflicting predictions, their excess demand (difference between the supply and
demand generated by the group as a whole) is given by:

Dc = r0Xc(t)ξ(t), (52)

where Xc(t) is the number of chartist traders and ξ(t) is their average mood (describing
average sentiment to buy or sell). The relative impact of the chartists’ traders in comparison
to fundamentalist traders is given by r0. Fundamentalist traders on the other hand are
often assumed to trade based on the quantity known as a fundamental price, Pf , with the
expectation that the price, P(t), in the long run, will converge towards the fundamental
price. Under this assumption, their excess demand is given by:

Df = X f (t) ln
Pf

P(t)
. (53)

Using the excess demand functions of the both groups, we can use Walras law [116] to
obtain the expression for the price [40,113]:
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P(t) = Pf exp

[
r0

Xc(t)
X f (t)

ξ(t)

]
. (54)

The log–return of the price is evidently given by:

rw(t) = ln P(t)− ln P(t − w) = r0
xc(t)
x f (t)

ζw(t). (55)

In the above, ζw(t) is the mood change function over time window w. As the mood
changes on a very short time scale and we are interested in the long-term dynamics, we
can simply assume that ζw(t) is some kind of uncorrelated noise and consider only a
more slowly varying ratio between fractions of chartists and fundamentalists. As the total
number of agents is fixed, we can define long-term component of return, modulating
return, as:

y(t) =
x(t)

1 − x(t)
. (56)

SDE for the modulating return is given by:

d y = [σ1 + (2 − σ2)y](1 + y)d t +
√

2hy(1 + y)d W, (57)

which is roughly similar to the SDE (8) with η = 3/2 and λ = σ2
h + 1.

This SDE can be generalized by introducing variable event rate τ(y) = y−α. This
addition can be explained by the fact that it is well known that returns and trading volume
correlate and the best correlation is achieved between squared returns and volume [16–18,117],
hence suggesting that α = 2 is a likely candidate. With this extension and when considering
only the highest powers of y (as the large y tend to influence the PSD), we obtain [40]:

d y = h(2 − σ2)y2+α d t +
√

2hy3+α d W. (58)

Now this SDE is completely equivalent to the SDE (8) with η = 3+α
2 and λ = σ2

h + α+ 1.
Consequently PSD of y will have a frequency range in which:

Sy( f ) ∼ 1/ f β, β = 1 +
σ2
h + α − 2

1 + α
. (59)

In the later papers, we modified this herding ABM until it was able to reproduce
the absolute return PDF and PSD close to the empirical absolute return PDFs and PSDs.
In [118], we have shown that considering mood dynamics can help in reproducing fractured
PSD. In [41], we have reliably introduced the exogenous noise, much similar to what was
achieved with the SDE driven model in [36], into this ABM, thus producing a consentaneous
model. In [119,120], we have explored the opportunities to control the fluctuations in
the artificial financial markets driven by the herding ABM, showing that the random
trading, control strategy suggested in [121], may also destabilize the market. In [42], we
have removed the assumption about the exogenous noise and replaced it with order book
dynamics, thus presenting another possible explanation for fracture in the PSD: it also arises
due to market price lagging behind the changes in the equilibrium price, Equation (54).
Notably, the order book version of the model was able to reproduce both trading activity
and absolute return statistical properties at the same time.

In Figure 7, we have reproduced one of the figures from [41] to show how well
the ABM can reproduce the empirical data from New York, Vilnius, and Warsaw stock
exchanges (abbr. WSE). Here, we have shown that the model was able to reproduce 10 min
absolute return PDFs and PSDs from the different stock exchanges, but in the original
article, more intraday time scales are covered, and seasonality was also taken into account.
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Figure 7. Comparison of empirical (a) PDFs and (b) PSDs of absolute ten minute return as observed in NYSE (red curves),
VSE (blue curves), and WSE (green curves) stocks. Empirical results are compared against the consentaneous model, defined
in [41]. Model parameter values are the same as in Figure 2 of [41].

3.3. Kirman’s Herding Model, Voter Model, and the Opinion Dynamics Context

Attentive reader with a background in opinion dynamics will likely notice that Kir-
man’s model is remarkably similar to the well-known voter model [47–49]. They are
identical, which has prompted us to question whether the voter model is truly a model
for voters, which Fernandez–Garcia et al. in [122] also raised. This has lead us to explore
and model statistical properties of spatially heterogeneous electoral data [43]. As we have
noticed segregation effects in the electoral data, we have continued our investigation by
considering the migratory nature of census and electoral data [44]. Similar approaches were
taken by others as well. Sano and Mori [123] have looked into spatiotemporal Japanese
election data in their model, assuming a noticeable fraction of stubborn voters who do not
allow for the party’s popularity to drop below a certain threshold. Braha et al. [124] have
considered spatiotemporal US election data and have also emphasized the role of opinion
leaders and spatial variability of external influences. Fenner et al. [125,126] have started
from a generative model inspired by survival analysis, but in later works transition to
the SDE framework [127,128]. Michaud and Szilva [129] have fixed issues with the model
originally proposed by Fernandez–Garcia et al. [122], mainly, they have redefined how
the noise term is handled so that the model would be more mathematically well-posed.
Marmani et al. [130] have provided a similar empirical analysis of Italian electoral data
and provided an additional perspective from the point of view of Shannon entropy.

As is common in opinion dynamics [47–49], we have also explored the influence of
network topologies on the statistical properties of Kirman’s herding model. Namely, we
have demonstrated [131] a continuous transition from extensive case, characterized by
localized interactions, Gaussian distributions, and Boltzmann entropy, to a non-extensive
case, characterized by global interactions, q-Gaussian distribution, and Tsallis entropy.
Similar results were demonstrated earlier by Alfarano and Milakovic [132], who have
explored how Kirman’s herding model works on random, Barabasi–Albert, and small-
world network topologies. Similar observations were also made in [133], but Carro et
al. have used the so-called annealed approximation, which takes into account network
structures better than the usual mean-field approximation.

Recently, we have also used the noisy voter model to model parliamentary pres-
ence [45]. A paper by Vieira et al. [134] has inspired us to look into the Lithuanian
parliamentary presence data. Unlike Vieira et al., we have observed not a ballistic diffusion
regime but superdiffusive behavior; however, both of these regimes can be obtained from
the noisy voter model with imperfectly acting agents. Namely, agents can internally intend
to attend the parliamentary session or skip, but the action itself may be random despite
being conditioned on the intended action. As Vieira et al. have used fractional diffusion
equation as a model, this result implies that it may be possible to fake long-range memory

252



Entropy 2021, 23, 1125

encoded in the fractional diffusion equation by using Markov models employing non-linear
transformations of the voter model [101].

The classical voter model incorporates only a recruitment mechanism, despite other re-
sponses to social interaction being possible. For example, diamond model [135] posits that
independence and anti-conformity mechanism may be important to understanding human
social behaviors. Similarly, Latane social impact theory [136] predicts the importance of sup-
portive interactions—namely, individuals strengthening the conviction of their like-minded
peers. While this theory was recently studied in the opinion dynamics context [137,138],
it has not been combined with the voter model. One could also consider majority-vote
models [139–141] and q-voter models [142,143] as implementing some kind of support by
the like-minded agents. In majority-vote models, recruitment is only possible if a majority
of agents have opposing opinions (therefore, the majority becomes harder to convince,
but the minority remains as susceptible to change). In most q-voter models, a group of q
agents must share an opinion to convince a single agent. We have implemented supportive
interactions by decreasing the transitions rates of the agents by an amount proportional to
the number of like-minded agents. In some cases, these modifications cause the transition
rates go to zero, which freezes the system state. Similar qualitative behavior is observed in
works, which consider non-Markovian mechanisms, such as implicit opinion freezing or
aging [144–147]. This serves as another example that highly non-linear Markovian models
can lead to similar dynamics as the dynamics generated by the non-Markovian models.

4. Searching for the True Long-Range Memory Test

We have reviewed our experience of modeling long-range memory phenomena using
Markovian models in the earlier sections. We have shown numerous examples of non-
linearity causing behaviors and dynamics reminiscent of the models with true long-range
memory (such as delayed feedback, aging, freezing, and fractional dynamics). In this
section, we present our latest endeavor to find a statistical test, which would distinguish
whether the real-life systems possess true or spurious long-range memory. We proposed
a test earlier, based on the specific first-passage times, which we refer to as the burst and
interburst duration analysis (abbr. BDA) [148–151].

Investigating empirical PDF of burst and interburst duration compared with the model
properties, we have interpreted the observed long-range memory in the financial markets by
ordinary non-linear SDEs representing multifractal stochastic processes with non-stationary
increments [152,153]. One has to take into account the interplay of endogenous and
exogenous fluctuations in the financial markets to build a comprehensive model of this
complex system [154]. Non-linear SDEs might be applicable in the modeling of other
social systems, where models of opinion or population dynamics lead to the macroscopic
description by these equations [148–151]. The description by SDEs is an alternative to
the modeling incorporating fractional dynamics, if power–law statistical properties are
observed in the empirical data.

The BDA employs the dependence of first-passage time PDF on Hurst exponent H for
the fractional Brownian motion [56,152,153,155].

FBM, FLSM, and ARFIMA [156–158] form the theoretical background of long-range
memory and self-similar processes. These processes, first of all, served for the modeling of
systems with anomalous diffusion and expected fractional dynamics [159]. We can consider
fractional models possessing true long-range memory as they have correlated increments.
Self-similar processes with non-Gaussian stable increments are essential for the modeling
of social systems as well. In the financial markets, power–law distributions of noise often
interplay with autocorrelations [160–162]. In [163], we implemented BDA for the order
disbalance time series seeking to confirm or reject the long-range memory in the order flow.
Further, we analyzed the same LOBSTER data of order flow in the financial markets [164]
from the perspective of FLSM and ARFIMA models seeking to identify the impact of
increment distributions and correlations on estimated parameters of self-similarity [165].
The revealed peculiarities of non-Gaussian fractional dynamics in this financial system
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raise new questions about whether used sample estimators are reliable. In this section, we
test various long-range memory estimators such as mean squared displacement, absolute
value estimator, Higuchi’s method, and BDA on discrete fractional Lèvy stable motion
represented by the ARFIMA sample series.

4.1. Fractional Processes with Non-Gaussian Noise

FBM serves as a model of the correlated time series with stationary Gaussian incre-
ments and generalizes the classical Brownian motion [1]. One can define FBM, BH(t), of
the index H (Hurst parameter) in the interval 0 < H < 1 as the Itô integration over classical
Brownian motion B

BH(t) =
∫ ∞

−∞

(
(t − u)d

+ − (−u)d
+

)
d B(u), (60)

where d = H − 1/2, (x)+ = max(x, 0). The parameter H in FBM quantifies fractal behavior,
long-range memory, and anomalous diffusion. This is not the case for the other more
general stochastic processes. Thus, in this contribution the Hurst parameter H is responsible
only for the fractal properties of the trajectories. We will consider fractional Lèvy stable
motion as more general process with non-Gaussian distribution Lα

H(t) representing an
integrated process of independent and stable stationary increments d Lα(u) [156]

Lα
H(t) =

∫ ∞

−∞

(
(t − u)d

+ − (−u)d
+

)
d Lα(u), (61)

where parameter d depends on H and parameter of stable distribution α, d = H − 1/α.
The parameter α characterizes special class of stable, invariant under summation, distri-
butions [166], useful in the modeling both super and sub-diffusion [159]. Here, we are
interested in the symmetric zero mean, stable distribution defined by the stability index in
the region 0 < α < 2. This new parameter is responsible for the power–law tails of the new
PDF P(x) ∼ |x|−1−α.

FBM and FLSM exhibit identical self-similar scaling behavior in statistical sense,

BH(ct) ∼ cH BH(t), Lα
H(ct) ∼ cH Lα

H(t), (62)

where x ∼ y means that x and y have identical distributions. One can establish the relation
with the fractal dimension of trajectories D = 2 − H [167]. In analogy to the notions used
in fractal geometry, these types of processes can be considered self-similar.

Mean squared displacement (abbr. MSD) is another important statistical property of
various complex systems. Mathematically it was introduced as an ensemble average of the
possible microscopic trajectories x(t) [159]

〈(x(t)− x(0))2〉 ∼ tλ, λ = 2d + 1. (63)

Note that Equation (63) is valid for the FBM, while the ensemble average of FLSM
diverges [156]. For the FBM d = H − 1/2, while for the FLSM λ is not defined. When
d < 0, one observes dynamics as sub-diffusion and for d > 0 as super-diffusion.

In experimental or empirical data analysis, one usually deals with discrete-time sample
data series {Xi}. It is challenging to decide which model to apply in the description of
empirical data when diffusion is anomalous d 	= 0, as observed dynamics in the sample
data can originate from the long-range memory or power–law of the noise. We will use the
sample MSD defined as

MN(k) =
1

N − k + 1

N−k

∑
i=0

(Xi+k − Xk)
2. (64)

Let us also introduce increment process {Yi = Xi − Xi−1}, which is extracted from
the sample data series. In the case of the FBM increment process, it is called fractional
Gaussian noise (abbr. FGN), and in the case of FLSM, it is called fractional Lèvy stable
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noise (abbr. FLSN). The authors in [156] provide evidence of FLSM non-ergodicity and that
MN(k) ∼ kλ, where λ = 2d + 1, for large N, k, and N/k. Thus, the MSD sample analysis
of time series with FLSM assumption becomes very important providing estimation of the
memory parameter d. The long-range memory usually is defined through the divergence
of autocovariance ρ(k), ∑∞

k=1 ρ(k) = ∞, [11]

ρ(k) =
1

N − k + 1

N−k+1

∑
i=1

YiYi+k = 2−1{(k + 1)2H − 2k2H + |k − 1|2H} (65)

∼ H(2H − 1)k−γ, k → ∞.

For the FGN, the exponent of autocorrelation is defined by the Hurst parameter
γ = 2 − 2H. We see that FBM is an essential long-range memory process with various
statistical properties defined by the Hurst parameter. Thus, researchers use an extensive
choice of statistical estimators to determine H and evaluate memory effects even when
investigated time series deviate from the Gaussian distribution.

Accepting a more general FLSM approach, one has to reevaluate previously used esti-
mators [163], as we now have more independent parameters. The stability index 0 < α < 2
and the memory parameter d both contribute to the observed sample properties. Since in
the Lèvy stable case, the second moment is infinite the measure of noise autocorrelation,
e.g., the co-difference [166,168], is used instead of covariance

τ(k) =∼ k−(α−αH). (66)

Note that the parameter γ = α − αH = α − αd − 1, has a strong dependency on α,
when for the Gaussian processes, it was considered just as the indicator of long-range
memory. Consequently, the previously used sample power spectral density analysis, the
rescaled range analysis [169–171], or multifractal detrended fluctuation analysis [172,173]
has to be reevaluated from the perspective of FLSM [163,165].

Earlier, we have introduced the burst and interburst duration analysis (BDA) as one more
method to quantify the long-range memory through the evaluation of H [149,152,153,163].
For the one dimensional bounded sample time series, any threshold divides these series
into a sequence of burst Tb

j and interburst Ti
j duration, j = 1, ...Nb. The notion of burst

and interburst duration follows from the threshold first-passage problem initiated at the
nearest vicinity of the threshold. The burst duration is the first-passage time from above and
interburst from below the threshold, see [149,152,153,163] for more details. The empirical
(sample) PDF (histogram) of Tj gives us the information about H, as the power–law part of
this PDF should be T2−H [56]. We have to revise the method of BDA from the more general
perspective of FLSM [165], as the question of which properties can be recovered using this
method is open and has to be investigated.

The method of absolute value estimator (abbr. AVE) works correctly even for the
time series with infinite variance [11,167,168,174]. The method is based on mean value
δn calculated from sample series Yi and evaluating its scaling with length of sub-series n.
Divide the increment series Yi into blocks of size n, so that m · n = N, and average within
each block to obtain the aggregated series Y(n)

j = 1
n ∑

jn
i=(j−1)n+1 Yi. Calculate δn

δn =
1
m

m

∑
j=1

|Y(n)
j − 〈Y〉|, (67)

where 〈X〉 is the overall series mean. Then the absolute value scaling parameter HAV can
be evaluated from the scaling relation

δn ∼ nHAV−1. (68)
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One more almost equivalent estimator of scaling properties regarding the FLSM is
Higuchi’s method [11,175]. It relies on finding fractional dimension D of the length of the
path. The normalized path length Ln in this method is defined as follows

Ln =
N − 1

n3

n

∑
i=1

1
m − 1

m−1

∑
j=1

|Xi+jn − Xi+(j−1)n|, (69)

and Ln ∼ n−D, where D = 2 − H.
We investigate four methods: AVE, Higuchi’s, MSD, and BDA for the analysis of

ARFIMA time series as a test sample of FLSM.

4.2. Numerical Exploration of the Accumulated ARFIMA(0,d,0) Time Series

Let us consider the discrete process {Xi} defined as a cumulative sum,

Xi+1 = Xi + Yi, (70)

of correlated increments {Yi}. Let the increments be generated by the ARFIMA(0,d,0)
process [158,176]:

Yi =
∞

∑
j=0

Γ(j + d)
Γ(d)Γ(j + 1)

Zi−j, (71)

with random Zi−j from the domain of attraction of an α-stable law with 0 < α ≤ 2. One
can calculate the sum in Equation (71) using the fast Fourier transform algorithm. The
approximate relation between FLSM and ARFIMA can be derived using Riemann-sum
approximation, see [176] for details.

Seeking to generate comparable time series with that analyzed in [165], the order
disbalance time series of the financial markets we choose is N = 7 × 106, nine values of
d = {−0.4,−0.3,−0.2,−0.1, 0.0, 0.1, 0.2, 0.3, 0.4} and four values of α = {2, 1.5, 1.25, 1.0}.
The sample time series for any set of parameters have been evaluated using four estimators
described above: MSD, AVE, Higuchi’s estimator, and BDA. We evaluate H as described
in the previous subsection. First of all, we partition time series Yi in subsets with 5 × 105

time steps and accumulate them to obtain 14 subseries Xi. Then, the exponent λ or the
Hurst parameter are evaluated for each subseries using MSD, AVE, and Higuchi’s sample
estimators. Finally, we calculate the mean and standard deviation of defined 14 λ and H
sets. Estimated d we calculate using d = H − 1/α or d = (λ − 1)/2 in MSD case. The
graphs in Figure 8 of estimated d versus used ARFIMA model d serve as a good test of
used estimators.

Figure 8. Comparison of the MSD (a), AVE (b), and Higuchi (c) estimator performance when estimating d from the
accumulated ARFIMA(0,d,0) series in the unbounded case, {Xi} generated by Equation (70). Different curves correspond
to the different values of the noise distribution stability parameter: α = 2 (red triangles), 1.5 (green diamonds), 1.25 (blue
squares), and 1 (black circles).

Our numerical result given in subfigure (a) confirms the theoretical prediction for
the sample MSD MN(k) ∼ k2d+1 [156] as estimated d using this relation almost coincides
with model d for all values of α. It is accepted that two estimators, absolute value and
Higuchi’s, are almost equivalent and should be applicable for the analysis of fractional
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processes with stable distribution [11,167,168,174]. Indeed, the results of our numerical
investigation, see (b) and (c) subfigures in Figure 8b,c, confirm the equivalence of these
estimators. Nevertheless, the estimated values of memory parameter d deviate considerably
from its model value, when α → 1, and these deviations are much more prominent for the
super-diffusion case d > 0. These deviations do not arise as a computational effect, as the
estimated relative standard deviation decreases from 0.15 to 0.02 for the evaluated H in the
investigated interval of d. Fortunately, this result does not contradict the study [165], where
we used these estimators to evaluate d in empirical order disbalance time series exhibiting
sub-diffusion.

It is important to note that the estimators, MSD, AVE, and Higuchi’s should work
well only for the unbounded time series when the most physical systems and processes are
of finite size and duration. In all such cases, boundary effects might become important,
and one must choose or propose more reliable estimators [167]. The BDA considered in
our previous work [149,152,153,163], probably, can serve as an alternative approach. This
method works better for the bounded time series, where more intersections of series with
the threshold can be expected. Thus, in this contribution for the BDA, we restrict the
diffusion of Xi to the interval [−Xmax, Xmax] (in our analysis we use Xmax = (105)2d+1).
This restriction is implemented as a soft boundary condition:

Xi+1 = max(min(Xi + Yi, Xmax),−Xmax). (72)

This iterative relation replaces Equation (70) in the {Xi} series generation algorithm.
We define the PDF of the burst and interburst duration Tj for the whole set of time steps
N = 7 × 106 and the series threshold equal to zero mean. Note that only in this symmetric
case PDF’s of burst and interbust duration coincide. Seeking to understand how the
diffusion restriction mechanism impacts the results of other estimators, we use the same
restriction mechanism for the 14 subseries obtained after the partition procedure. We
present the results of this analysis in Figure 9.

Figure 9. Comparison of the MSD (a), AVE (b), Higuchi (c), and BDA (d) estimator performance
when estimating d from the accumulated ARFIMA(0,d,0) series in the bounded case, {Xi} generated
by Equation (72). Different curves correspond to the different values of the noise distribution stability
parameter: α = 2 (red triangles), 1.5 (green diamonds), 1.25 (blue squares), and 1 (black circles).

Though the used diffusion restriction is relatively soft and changes the direction of
movement in the limited number of trajectories points, the results of MSD, AVE, and
Higuchi’s estimators changed very considerably—compare subfigures (a–c) with the corre-
sponding results in Figure 9. Contrary, the results obtained using H defined by BDA, see
subfigure (d), resembles AVE (b) and Higuchi’s estimator (c) subfigures from unbounded
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series Figure 9. Further investigation is needed to define the best methods and sample
estimators for evaluating parameters of fractional time series impacted by various diffusion
restrictions. The vast amount of data available from the financial markets can serve as
empirical time series considered from the perspective of FLSM.

5. Future Considerations

Here, we have reviewed our approaches to modeling the long-range memory phe-
nomenon and power–law statistics in a variety of complex systems. Our approach differs
from the usual approach taken by mathematicians in that we have used Markovian models
instead of the non-Markovian alternatives. We were able to reproduce similar behaviors
due to our models being driven by various non-linear dependencies. In the case of SDEs,
non-linearity may cause the increments of the stochastic process to be non-stationary and,
by consequence, cause spurious long-range memory [177,178]. The many models we have
built over the years are not models of true long-range memory; however, the critical ques-
tion is whether our models capture the memory as observed in the financial markets and
possibly other socioeconomic complex systems. Section 4, which describes our most recent
endeavor, hints at three components that are needed to provide an answer.

The first component is a statistical test, which should distinguish between spurious
and true long-range memory. Currently, we are considering the BDA method [148–151],
which performs reasonably well in comparison to the alternatives. The core idea of the
method is that for any one-dimensional Markovian random walk first-passage time PDF
should be a power–law with exponent −3/2 at least for some of the duration. Deviations
from this law could indicate the presence of true long-range memory. Though the method
may fail when the stochastic process is not one-dimensional, the study of what happens in
the multidimensional case, e.g., as in [99], is pending. Other challenges may also arise, as
discussed in Section 4.

The second component would be a selection of models exhibiting both spurious
and true long-range memory. Our prior research has introduced a variety of models of
spurious long-range memory; hence, the next steps would be formulating comparable
alternative models and studying properties of the existing long-range memory models.
Here, we have focused on estimating long-range memory in the fractional Lévy stable
motion (modeled using ARFIMA(0,d,0) discrete process), which is a generalization of the
fractional Brownian motion; however, in general, other models could also be considered, for
example, the multiplicative point process (see Section 2) could be generalized by replacing
uncorrelated Gaussian noise with fractional Gaussian noise. Other correlation structures
or variable pulse duration could also be considered as an extension [179]. Other notable
alternatives and extensions include continuous-time random walk [180] and complex
contagion frameworks [181,182].

The third component would be a variety of data from socioeconomic complex systems.
Many of our earlier approaches relied on high-frequency absolute return and trading
activity time series, but in our most recent works, we have shifted our attention to the order
book data obtained from LOBSTER [164]. Order book data seem to invite a more general
approach by understanding the data within FLSM or ARFIMA mindset for a broad class of
anomalous diffusion processes [157,167,168]. The vast data in social and financial systems
have to be investigated to identify and validate the fractional dynamics and long-range
memory. Our first results in this direction [163,165] question the interpretation of long-
range memory in the order flow data of financial markets. First of all, a prudent choice of
estimators based on FLSM and ARFIMA assumptions are needed. After extensive analysis
from this perspective, it would be possible to decide whether the investigated social system
exhibits true long-range memory or observed power–law statistical properties are just the
outcome of strong non-linear effects.

Research effort combining all these three components could yield a better understand-
ing of the long-range memory phenomenon as it is observed in the variety of complex
systems. The comprehensive interpretation of long-range memory observed in the financial
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and other social systems should considerably contribute to developing advanced analytical
tools for applications in financial markets. Thus, we have focused on the description and
explanation of the long-range memory phenomenon. Notably, a few more recent works
refer to or use some of our results and are more application-minded. In [73] a non-linear
SDE was derived, providing both physical and economic arguments, to study the per-
formance of EUR/CHF exchange rate. The derived SDE belongs to the class described
by (8). The author of [183] has considered the relationship between aging and long-range
memory phenomena in a couple of physics experiments: blinking-quantum-dots, single-file
diffusion, and Brownian motion in a logarithmic potential. The author of [184] has shown
that SDE (8) applies to the modeling of the dynamics on microblogging networks. The
author of [185] has considered the effects of perturbations on the stability of power–law
distributions in general with an application to wealth distributions. The author of [186]
tested the applicability of simple stochastic models to the modeling of non-stationary
behavior of intraday tick-by-tick returns. The author of [187] has tested forecast robustness
of non-linear GARCH model when time series exhibit high positive autocorrelation. Mean
reversion phenomenon was studied in Karachi Stock Exchange data from the perspective
of GARCH models in [188]. The authro of [189] has compared the performance of non-
linear SDE models against Black and Scholes model, which is one of the models used by
the practitioners. Various modifications of Heston model, another model favored by the
practitioners, are also reminiscent of SDE (8) [190]. We hope to inspire and maybe take up
more application–minded endeavors.
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Abbreviations

The following abbreviations are used in this manuscript:

ABM agent-based model
APFA Applications of Physics in Financial Analysis
ARCH autoregressive conditional heteroscedasticity
ARFIMA autoregressive fractionally integrated moving average
AVE absolute value estimator
BDA burst and interburst duration analysis
COST European Cooperation in Science and Technology
FBM fractional Brownian motion
FGN fractional Gaussian noise
FIGARCH fractionally integrated GARCH
FLSM fractional Lèvy stable motion
FLSN fractional Lèvy stable noise
GARCH generalized ARCH
MSD mean squared displacement
NYSE New York stock exchange
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PDF probability density function
PSD power spectral density
SDE stochastic differential equation
VSE Vilnius stock exchange
WSE Warsaw stock exchange
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Abstract: In this research work, we propose to assess the dynamic correlation between different mo-
bility indices, measured on a daily basis, and the new cases of COVID-19 in the different Portuguese
districts. The analysis is based on global correlation measures, which capture linear and non-linear
relationships in time series, in a robust and dynamic way, in a period without significant changes of
non-pharmacological measures. The results show that mobility in retail and recreation, grocery and
pharmacy, and public transport shows a higher correlation with new COVID-19 cases than mobility
in parks, workplaces or residences. It should also be noted that this relationship is lower in districts
with lower population density, which leads to the need for differentiated confinement policies in
order to minimize the impacts of a terrible economic and social crisis.

Keywords: correlation coefficient; detrended cross-correlation analysis; COVID-19; mobility indices

1. Introduction

The numbers of COVID-19 cases, both infections and casualties, are increasing daily
all over the world, and concerns about their effects show no decrease. Even with the
start of vaccination programs, it has not been possible to break the advance of the num-
bers, primarily because the speed of vaccination is asymmetric in different countries,
but also because, contrarily to some respiratory diseases in the past, the spread between
countries was higher [1–3]. With various negative economic and financial effects (see
References [4–10]), COVID-19 also has several other consequences in people’s lives, such
as fear and depression [11,12], suicide trends [13] or in mental health [14,15].

The substantial effects of COVID-19 are related to the lockdowns that countries had to
impose to control the spread of the disease. According to Reference [16], human behavior,
among other factors, could contribute to respiratory viral infections, even more in a context
where the superspreading conditions are not fully known [17]. However, it is crucial to
reduce the number of social contacts, as complete vaccination programs are absent or not
yet fully developed, and social-distancing measures could be the key in helping to solve
the problem [18].

The spread of COVID-19 could be related to several factors. For example, Refer-
ence [19] identified several of these factors in assessing community risk factors in Catalonia,
Spain, such as air pollution, population density, demographic and socioeconomic condi-
tions, or even land use. In addition to these factors, which could affect the incidence of
the disease in a general way, the authors also identify other factors related to the possible
individual prevalence of the disease, such as the existence of comorbidities.

The existence of social contacts could be proxied by mobility data [20], with frame-
works such as Google’s Community Mobility Reports (CMR) being able to measure that
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mobility, as it measures citizens’ mobility according to different types (for more details
about CMR, see References [21,22]).

The use of CMR and its effects in COVID-19 has already been made using different
approaches; see, for example, the studies of References [20,23–28], which, at a country
level, found that the reduction of the mobility has a direct impact on the decrease of the
infections. Reference [29] also confirms these trends and adds that reducing cases due to
mobility restrictions has a very significant effect on a 2-week basis.

At a regional level, we can find the studies of References [30,31], both for the US. Al-
though both find relevance in the effect of mobility on controlling the disease, Reference [30]
finds differences between urban and rural locations, while Reference [31] identifies that
population density has different implications in the reduction of mobility (higher density
has more impact on the reduction of mobility, for example, in stores). In Poland, Ref-
erence [32] concluded that the restrictions helped control COVID-19, although with the
difference between regions, related to the strictness of state restrictions.

During January 2021, Portugal was constantly in the news, as it was considered the
worst country in the world regarding the infections and death rate (see https://www.
politico.eu/article/portugal-coronavirus-rate-surge/, accessed on 19 May 2021). The
lifting of some restrictions during the Christmas season may have compounded this tragic
scenario. In this context, our purpose is to analyze, in a dynamic way, and based on daily
data, the relationship between citizens’ mobility and new COVID-19 infections, using
regional-level data, in this case, for Portuguese districts. Our main objective is to assess
the relevant relationship between the number of new infections of COVID-19 and citizen
mobility. Moreover, we also want to distinguish between the different types of mobility.
Differentiating the analysis between regions could give important insights for possible
future decisions about new lockdowns or lifting of restrictions.

The implementation of non-pharmacological measures has a relevant impact on the
control of the dissemination of COVID-19. In Portugal, the introduction of mandatory
personal protective equipment (PPE) such as masks, or the instructions for frequent use of
alcohol gel and washing hands, among others, started with the beginning of the pandemic
in March/April 2020. Since then, the use of PPE has remained mandatory, and the non-
pharmacological measures have not changed significantly.

In this paper, the mobility is measured considering Google CMR reports, and the
relationship between mobility and new cases is assessed through the detrended cross-
correlation analysis correlation coefficient. This non-linear framework has the ability
to capture the relationship between variables for different timescales, which could give
important information about the number of days needed to reduce infections. Moreover,
we also propose the use of a sliding windows approach, which allows analysis of the
evolution of the relationship over time.

Our main results corroborate that mobility is correlated with the number of new
COVID-19 cases. However, the mobility correlation is not equal for the different typologies:
for example, mobility in retail, recreation and groceries seems to have a higher correlation,
while in general the mobility in workplaces shows little relationship. Despite the temporal
evolution of the relationship, confirming that the lift of restrictions at Christmas had a
highly significant impact on the increase of new COVID-19 cases, we also find that the
impacts of the mobility are different across districts.

The remainder of the paper is organized as follows: in Section 2, both data and
methodology are presented, with the results being present in Section 3, while Section 4
provides discussion and conclusions for the study.

2. Data and Methodology

Since the outbreak of COVID-19, and until 13 April 2021, almost 138 million cases
were reported worldwide, with almost 3 million deaths. Portugal has about 828,000
cases and around 17,000 deaths. For cases of disease, information is available from the
Portuguese Health Ministry, through Sistema Nacional de Vigilância Epidemiológica
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(SINAVE), with the complete set of registered cases until 28 February 2021 (due to data
availability). Until this day, Portugal has had a total of 805,140 cases. Intending to analyze
the relationship between mobility and COVID-19 in the different Portuguese districts, we
considered only the information which is registered in Portuguese mainland districts due
to the availability of data about mobility. In total, the number of cases of the districts is
775,954. All the data were transformed in daily incidence for each district to perform the
correlational analysis with the information from Google CMR. In these reports, it is possible
to retrieve information about six distinct mobility indices: (i) retail and recreation (I1);
(ii) groceries and pharmacies (I2), (iii) parks (I3), (iv) transit stations (I4), (v) workplaces (I5)
and (vi) residential areas (I6). For more information about the indices and the places where
mobility is referred to, see https://www.google.com/covid19/mobility/index.html?hl=en
(accessed on 19 May 2021).

Daily data for these indices were retrieved for Portuguese districts from 15 February
2020 to 28 February 2021, in a total of 380 observations. Some districts do not have
information for the mobility indices in some days of August and September 2020, implying
that the sample is smaller for those districts (355 observations). The information about the
number of cases and the number of observations for each district are identified in Table 1.
Moreover, as some districts present missing information for some indices, the correlations
were calculated for the remainder, where data are available.

Table 1. Total number of COVID-19 cases for each district and the number of observations considered in the analysis.

District Total Cases Observations District Total Cases Observations

Aveiro 54,974 380 Leiria 24,647 380
Beja 7778 355 Lisbon 195,131 380

Braga 83,524 380 Portalegre 6936 355
Bragança 9787 355 Porto 160,398 380

Castelo Branco 10,914 355 Santarém 26,762 380
Coimbra 28,953 380 Setúbal 66,228 380

Évora 10,018 355 Viana do Castelo 16,920 355
Faro 19,594 380 Vila Real 13,972 355

Guarda 12,264 355 Viseu 27,154 355

To perform our correlational analysis, we use the detrended cross-correlation anal-
ysis coefficient (ρDCCA), proposed by Reference [33] and derived from the work of
Reference [34]. The DCCA measures the long-range cross-correlation between two series
Yi and Xi consisting on the sequence of k = 1, 2, . . . , N observations. The first step of the
DCCA consists of the calculation of the profiles:

Yk = ∑k
i=1(yi − 〈y〉) and Xk = ∑k

i=1(xi − 〈x〉) (1)

with 〈.〉 as the mean operator. Those profiles are then divided into (N − n) overlapping
boxes, from n = 4 to n = N/4 and for each box, based on the ordinary least squares, local
trends Ỹk,i and X̃k,i are calculated, for future detrend of the profiles Yk and Xk. With the
local trends, the covariance of the residuals of each box is calculated as follows:

f 2
xy(n, i) =

1
(n + 1) ∑i+n

k=1

(
Xk − X̃k,i

)(
Yk − Ỹk,i

)
. (2)

Considering the information of all the set of N − n boxes, the DCCA covariance is
calculated as follows:

F2
xy(n) =

1
(N − n) ∑N−n

i=1 f 2
xy(n, i), (3)
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which was used by Reference [33] to obtain the correlation coefficient given by the following:

ρDCCA =
F2

xy(n)
F2

x (n)F2
y (n)

. (4)

The denominator of ρDCCA consists of the fluctuation functions of the detrended
fluctuation analysis of Reference [35], which analyzes the long-range behavior of each time
series individually.

The ρDCCA is a non-linear correlation coefficient, robust to the presence of non-
stationarity, and confirms the property of −1 ≤ ρDCCA ≤ 1 according to [36–39] and
is testable according to [40]. Moreover, this is a multiscale correlation coefficient, allowing
for the analysis of the behavior between variables in different time periods. Despite the
statistical properties previously referred to, the robustness of the correlation coefficient is
confirmed by its use in different research areas (see, for example, [41–46], among others).

In this analysis, the ρDCCA will be calculated using a sliding windows approach to
analyze the evolution of the correlation over time, using windows of 250 observations. In
Table 2 we present the critical values to test the null hypothesis of absence of correlation,
considering 250 observations, as it is the dimension of the samples used in the analysis.

Table 2. Critical values to test the ρDCCA considering time series of 250 observations and different
timescales, considering a confidence level of 95% (source: Reference [40]).

Timescale Critical Value

n = 4 0.137
n = 8 0.152
n = 16 0.193
n = 32 0.271
n = 64 0.383

3. Results

As previously stated, this study uses the DCCA correlation coefficient to assess the
relationship between mobility indices and COVID-19 in Portuguese districts, also applying
a sliding windows approach in order to evaluate the evolution of the correlation over time.

Figure 1 shows the behavior of the DCCA correlation coefficient between new COVID-
19 cases and the six mobility indices, identifying the evolution over time for Portugal as a
whole. Considering the multiscale feature of the measure and the temporal dynamics, a
tri-dimensional analysis could be made. The information could be represented in different
dimensions, as we can see in Figure A1, Appendix A. There, the results for Portugal as a
whole are available, considering the correlation between the retail and recreation index
and new COVID-19 cases, in three panels. Panel (a) reinforces the difference between time
scales; in panel (b), the view is more about the evolution of the correlation over time; panel
(c) adopts a panoramic view and is the one chosen for presentation the general results
throughout the paper.

The results may be analyzed through different dimensions and perspectives, allowing
an in-depth interpretation of the results.

Firstly, in general, the behavior of the correlation of retail and recreation, groceries
and pharmacies and transit stations indices is qualitatively similar. In the very short run
(lower timescales) the correlation coefficients are relatively high, meaning that mobility
has a positive correlation with the number of new cases. However, there is a time-varying
behavior, with a significant increase at the beginning of 2021, more marked in the case of
groceries and pharmacies. Despite the continuous increase in the correlation, a peak can
clearly be noticed after Christmas, probably related to the lifting of mobility restrictions
in the country (in a season when environmental conditions could be more conducive to
the development of respiratory problems). In the middle of January 2021, the Portuguese
government took severe restrictive measures. Immediately afterwards, the correlation
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levels remained high, meaning that the mandatory restrictions to the mobility probably
had a significant correlation with the reduction in the number of new COVID-19 cases.
Over time, those measures could have had result on a progressive decline of the correlation
levels, in agreement with References [20,23–28]. Another important feature is that the peak
of the correlation is about the 7th/8th day, although in the groceries and pharmacies index
it seems to be a little bit more, but it is remarkable that the duration of the correlations (red
ones) is higher during the peak of the beginning of 2021. This means that lifting mobility
restrictions or imposing new mobility restrictions could have an expected impact in about
a week, which is consistent, for example, with the incubation period of the virus [47–49].

Figure 1. DCCA correlation coefficients between the different mobility indices and new COVID-19 cases in Portugal.

The results of the correlation of parks mobility index show different behavior and are
more constant over time. Even though it seems relevant to explain the increase of new
COVID-19 cases, the impact of this mobility type is not as high. As it measures mobility in
open spaces, it should be related to a lower capacity of contagion in those spaces.

Finally, the correlation of the workplaces and residential areas indices presents differ-
ent behavior, also considering the differences of the places to which they refer. Compared
with the previously analyzed indices, the reduced correlations in workplaces mean that
they seem to be relatively secure locals, probably due to the different measures taken by
the employers. Despite the reduced levels of the correlations compared with the previously
analyzed indices, the workplaces index seems to increase its correlation with COVID-19
cases over time during part of the sample, moving from negative to positive correlations
in mid-December and continuing to increase during January and February. Moreover,
it is important to highlight that at the beginning of 2021, the correlation is higher for
higher timescales.

The results of the correlation of the workplaces index could firstly be justified with a
period of a greater confluence of employees to their workplaces, especially before Christmas
and New Year and, after this, the sharper increase may reflect the lifting of measures to
restrict mobility during the Christmas and New Year period. Workplaces concern with
the active population, that is, mostly between 30 and 50 years old. It is in this age group
that asymptomatic cases are most significant. So, it could be a “domino effect”: people
left for Christmas, the “family bubbles” were broken, and when they returned to work,
they infected others, which could justify the increased correlation and the impact even in
longer timescales.

Regarding mobility in residential areas, as expected, it has higher moments of negative
correlations, meaning that keeping people in their homes would decrease new infections.
This finding is similar to References [30,50], both for the case of the US. However, it is
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noteworthy that some positive correlations are noted at the beginning of the analysis,
although weaker than in the other mobility indices. This could happen because during the
first months of the pandemic, most disease cases could have appeared in family circles.

As a final note referring to the statistical significance of the correlations, due to the
multidimensional analysis, it is not feasible to introduce the information of the critical
values in the figures. For this, it is necessary to identify the critical values from Table 2.
Roughly, it is possible to say that, until n = 16, orange plans mean statistical significance,
while, for higher timescales, darker oranges or blue plans are necessary.

In addition to the global analysis, we also aimed to analyze the relationship between
mobility and COVID-19 in the different Portuguese districts. To do that, we made a similar
analysis for each district, comparing it with the results presented for Portugal as a whole.
Due to space limitation, we highlight non-similar patterns on the analysis of those indices
(all the figures, organized by indices, are presented in Appendix B, in Figures A2–A7. The
existence of significant differences across districts could lead to thinking that adopting
different lockdown measures between districts should be a hypothesis to be considered.

If we consider the retail and recreation index (I1) (see Figure A2), in general, all
districts in the country show a similar correlation pattern with the national results. This
pattern is characterized by a lower correlation at the beginning of the sample period,
increasing gradually until its peak at the beginning of 2021. Despite this similar pattern, it
is important to mention districts such as Beja, Bragança, Évora, Faro, Guarda and Portalegre,
in which the correlation intensity is lower than that found for Portugal, as seen in Figure 2.
Excepting Faro, these districts are located in inland (and more rural) regions which have
lower population density levels, in line with Reference [30]. Another district that we
consider relevant to include is the Lisbon district. Between mid-November and early
February, high correlation levels are observed for the different timescales. This evidence
contrasts with that observed at the national level, which shows higher correlation levels
for the same period, mainly for short timescales. This behavior may reflect the greater
confluence of people in this type of space, not only in the period leading up to Christmas
and New Year (for the traditional festive season shopping) but also in the period that
followed (taking advantage, for example, of the traditional sales season). The fact that high
levels of correlation are observed for longer timescales may indicate the need for restrictive
measures to be adopted earlier.

These features lead us to think about the possibility of dichotomies between inland
and coast, which could allow the conclusion that mobility restrictions could have been
differentiated according to these dichotomies.

Figure 3 shows the correlation patterns between the groceries and pharmacies (I2)
mobility index and new COVID-19 cases for Beja, Évora, Lisbon, Portalegre and Setúbal.
For Beja, Évora and Portalegre, until nearly the end of 2020, this index presented a low
correlation, close to zero, lower than that found for Portugal, indicating a lesser correlation
between this type of mobility on the number of new cases for these districts. This empirical
evidence may be justified by the smaller number of spaces available in these districts, which
are still sufficiently available to serve the needs of their populations. From the beginning
of 2021 and for short timescales, these correlations have increased, which may show that
the frequency of these spaces could have a positive correlation with the emergence of
new cases. This evidence may reflect the return home at the end of the holiday season
and the onset of symptoms. These are all inland districts, with lower population density
levels, as already stated, which reinforces the possibility of the adoption of differentiated
confinement measures.
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Figure 2. DCCA correlation coefficients between retail and recreation (I1) and new COVID-19 cases in Beja, Bragança, Évora,
Faro, Guarda, Lisbon and Portalegre.

Figure 3. DCCA correlation coefficients between groceries and pharmacies (I2) and new COVID-19 cases in Beja, Évora,
Lisbon, Portalegre and Setúbal.

Regarding Lisbon and Setúbal, between mid-November and early February, high
correlation levels are observed for the different timescales. Contrary to that stated for the
Beja, Évora and Portalegre districts, Lisbon and Setúbal are districts with high population
density, which may justify the observed behavior. Furthermore, it could also be justified
not only by the high number of this kind of space but also by the increase in the number of
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people who go to those places. This could lead us to think that the adoption of different
measures (more restrictive in this case) should be considered.

In Figure 4, we have selected Beja, Coimbra, Évora, Faro and Portalegre because they
present a different pattern compared to the parks index presented in Figure 1. This index
has a lower correlation with the number of new cases, when compared to those found for
Portugal. Parks refers to open spaces, where it is known that the propagation of the virus
could be less significant. The low population density could also explain the differences of
Beja, Évora and Portalegre, as was found by Reference [51] for US counties, while Faro’s
location, on the south coast of Portugal, and the extension of its beaches, could lead to
different results (i.e., enjoying those type of open spaces cautiously could imply lower
correlation levels). Regarding Coimbra, it is also a district that is close to beaches but also
with some municipalities with reduced population density levels. It is also necessary to
highlight that, in Faro, the sliding windows correlation coefficients until November show
high negative values, meaning that the possibility of enjoying time in those open spaces
was negatively correlated with the increase of new COVID-19 cases.

 
Figure 4. DCCA correlation coefficients between parks (I3) and new COVID-19 cases in Beja, Coimbra, Évora, Faro
and Portalegre.

On the other hand, in the period following the adoption of the new confinement
measures, an increase could be noted in the correlation between this index and the number
of new cases, which may reflect the possibility of using the so-called “hygienic walks”.
Thus, the adoption of restrictive measures concerning the frequency of use of these spaces
may seem counterproductive. In other words, the fact that some of these spaces closed
completely (e.g., walled public gardens), may have led to the displacement of people to
those where only circulation was allowed (and not staying there), having an impact on the
increase in correlation, especially on short timescales.

Before we start our analysis about the transit stations (I4) index for some districts, we
would like to state that this is the only index for which some districts do not have available
information, which may be related to lesser presence of public transportation.

Figure 5 shows the correlation between the indices referring to the mobility in transit
stations and new COVID-19 cases for five different districts, all located in the north region.
In mid-January, new confinement measures were adopted by the government. They
had a national impact, which could have led to the reduction of the correlation between
this index and the number of new COVID-19 cases; however, there was no significant
correlation reduction in Aveiro, Braga and Porto. This mobility index continued to show
high correlations for short timescales with the number of new COVID-19 cases. Regarding
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Coimbra, its correlation is lower over the entire sample period and for all timescales. On
the one hand, it may indicate the security of the transport network or a lower rate of its
usage in this district. Finally, in Vila Real, we can see higher correlations in the short-term,
without significant change over time. This fact may reflect that transport habits in this
district have remained unchanged.

Figure 5. DCCA correlation coefficients between the mobility in transit stations (I4) and new COVID-19 cases in Aveiro,
Braga, Porto, Coimbra and Vila Real.

Comparing the results in workplace mobility (I5), it is possible to distinguish a different
pattern of correlations mainly in Évora and Castelo Branco, as represented in Figure 6.
These are the only districts with significant differences throughout the period under analy-
sis for the different timescales, showing a positive correlation between this index and new
COVID-19 cases. This could be related to less efficient security measures in workplaces or
the fact that they were adopted later.

Figure 6. DCCA correlation coefficients between workplace mobility (I5) and new COVID-19 cases
in Castelo Branco and Évora.

Finally, considering the residential areas (I6) index, Figure 7 shows the patterns
registered in Aveiro, Braga, Castelo Branco and Lisbon, although with different patterns.
Aveiro and Braga show the highest negative correlations after the confinement of the
beginning of 2021, probably meaning that the success of the lockdown was greater in
those districts. Regarding Castelo Branco and Lisbon, these districts are the only ones
showing a positive correlation over the entire sample period, mainly in short timescales.
This may indicate that, in these districts, the family nuclei could have caused an emergence
of new COVID-19 cases, although with different possible explanations. Lisbon is the most
populous district of the country and in some cases the quality or undersized dimensions of
the habitations could promote the increase of contagion. On the other hand, in the case of
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Castelo Branco, the situation could be related to an existent gap between the beginning of
the cases in this district and the rest of the country. For example, when the first confinement
occurred, Castelo Branco had practically no COVID-19 cases, meaning that people had
no necessity to go to their houses, i.e., confinement could be considered unnecessary in
the district.

Figure 7. DCCA correlation coefficients between the residential areas (I6) index and new COVID-19
cases in Aveiro, Braga, Castelo Branco and Lisbon.

Taking the different patterns found for the correlations between some of the six indices
and the spread of new COVID-19 cases, we would like to highlight that confinement
measures do not have the same effect on all districts, which could indicate that the adoption
of different measures in different districts could be desirable. We also highlight that there
are locations that seem to present more risk of contagion (the ones related to retail and
recreation, groceries and pharmacies and transit stations), while residential areas seem to
present a lower risk factor of contagion, as expected. Applying the DCCA coefficient, an
unexplored method to address this issue, allows us to analyze the behavior between each
mobility index and the spread of new COVID-19 cases in different timescales and leads us
to understand, for example, when peak correlations occurred and that not all the indices
have the same peak correlation.

4. Discussion and Conclusions

In this research work, the intention was to assess the correlation between the number
of contagions and the mobility indices of people. For this purpose, an approach based on
the DCCA was used, which has the capacity to assess the global correlation between serial
variables. Simultaneously, it presents robustness in the face of issues related to stationarity,
non-linearity and non-normality of the data and also allows for the analysis of the evolution
of the relationship over time. The whole sample under consideration was Portugal and its
respective districts, with daily data on the variables under analysis. It should be noted that,
despite Portugal being an interesting case study, as it was considered exemplary in the first
phase of the pandemic crisis and was catalogued as the “worst country in the world” in
January 2021, the truth is that the approach is robust and valid and can be successfully
applied to any country or region.

The global results essentially indicate that a dynamic association exists between the
different mobility indices and the new COVID-19 cases, with three main risk factors being
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identified in terms of mobility: retail and recreation (I1); groceries and pharmacies (I2)
and public transport (I4). In addition to the considerations already taken, regarding the
effectiveness of confinement to contain contagions, we can infer that some of these mobility
factors may imply the non-use of a mask in certain situations, which may justify the values
found for the retail and recreation and groceries and pharmacies indices. Take as an
example recreation (cafes and restaurants) in which the consumption of food and drink
goods prevents the use of a mask. In the case of public transport (I4), it could also be
related to the fact that people may touch the same surfaces sequentially, with the respective
risk of contagion.

When we perform the district analysis, for the majority of districts, we found similar
behavior to that of the country as a whole. However, there are some distinct behaviors
during the period under analysis and for different mobility risk factors. These differences
may be related to the low population densities of some districts, especially those inland.
Note that, for all the indices except residential areas, in general, the least densely populated
districts were the ones showing lower correlations than those of the country as a whole,
in line with the results found in Reference [31]. Regarding residential areas, Lisbon has
a higher level of correlation than the average for Portugal, which may indicate that, in
large cities, with a high population density and possibly weaker habitational conditions,
residential mobility may be a significant contagion factor. Once again, it is the districts with
the lowest population density that stand out (due to the lowest correlation) in this factor,
also related to the difference between urban and rural areas, as identified by Reference [30].

Overall, and always bearing in mind that other factors could be related to the increas-
ing number of new COVID-19 cases, as stated by Reference [19], we can conclude that
some mobility indices are more likely than others to have correlation patterns with the
contagion levels of COVID-19, which may be linked to the crowding of people, wearing
masks and hand hygiene. In addition to this, we also concluded that population density
might affect the correlation level of mobility indices with the new confirmed cases of
COVID-19. It appears that districts with lower population density have lower correlations,
which indicates that a different definition of confinement policies may be more appropriate
for controlling the pandemic and simultaneously minimizing its effects in economic and
social terms. Blindly imposing confinements leads to population revolt and the growth of
states of anxiety and general impoverishment. It is increasingly important to understand
which risk factors related to mobility most potentiate contagion and which regions and
moments tougher measures are justified in terms of containment. These results are in line,
for example, with the conclusions of Reference [28], where it is stated that re-arranging
local restrictions can be much more effective in controlling the number of COVID-19
cases without causing unnecessary economic costs than local or country-wide mobility
restrictions.

The results obtained in this study and the respective conclusions may be an important
contribution to political decision-making about measures to be taken to contain the amount
of contagion and, possibly taking measures which are differentiated by district and/or
region, combining them with the available different non-pharmacological measures, which
have been relatively stable during the period under analysis.

It is important to state again that the focus is on the method and respective abilities,
which has proven to be robust and adequate, providing accurate and detailed information
about the variables that have the greatest correlation with the number of COVID-19 infected
persons. It is also relevant to highlight that the increased mobility in Portugal was made
considering the break in social distancing, especially between family and close social
meetings. Given this, we believe that there is a high probability that the increased mobility
had a strong impact on the increase in numbers of people infected with COVID-19, given
the tendency for breaking social distancing, especially in the Christmas period.
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Appendix A

Figure A1. Representation of the DCCA correlation coefficient between the retail and recreation
mobility index and new COVID-19 cases in Portugal. Panel (a) reinforces the analysis through the
time-scale view; panel (b) reinforces the analysis through the view of the temporal evolution; panel
(c) shows a panoramic view of the results.
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Appendix B

 

 
Figure A2. DCCA correlation coefficients between the retail and recreation index and new COVID-19 cases in the complete
set of Portuguese districts.
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Figure A3. DCCA correlation coefficients between the groceries and pharmacies index and new COVID-19 cases in the
complete set of Portuguese districts.
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Figure A4. DCCA correlation coefficients between the parks index and new COVID-19 cases in the complete set of
Portuguese districts.
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Figure A5. DCCA correlation coefficients between the transit stations index and new COVID-19 cases in the complete set of
Portuguese districts.
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Figure A6. DCCA correlation coefficients between the workplaces index and new COVID-19 cases in the complete set of
Portuguese districts.
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Figure A7. DCCA correlation coefficients between the residential areas index and new COVID-19 cases in the complete set
of Portuguese districts.
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Abstract: The economy is a system of complex interactions. The COVID-19 pandemic strongly
influenced economies, particularly through introduced restrictions, which formed a completely
new economic environment. The present work focuses on the changes induced by the COVID-19
epidemic on the correlation network structure. The analysis is performed on a representative set
of USA companies—the S&P500 components. Four different network structures are constructed
(strong, weak, typically, and significantly connected networks), and the rank entropy, cycle entropy,
averaged clustering coefficient, and transitivity evolution are established and discussed. Based on the
mentioned structural parameters, four different stages have been distinguished during the COVID-
19-induced crisis. The proposed network properties and their applicability to a crisis-distinguishing
problem are discussed. Moreover, the optimal time window problem is analysed.

Keywords: network analysis; structural entropy; time series analysis; COVID-19

1. Introduction

1.1. Literature Review

The crucial and most obvious features of economic systems are cooperation and inter-
action, e.g., supply chains, ownership dependencies, cooperation networks, and financial
networks. The companies and their activities form complex networks of relationships and
dependencies [1–3]. The idea that the economy can be considered as a complex system can
be found at the end of the XX century in economic literature, e.g., [4]. The features of the
network depend on various parameters, such as technology, law, regulations, culture, climate,
weather, resources, and many other parameters. Among various aspects of economic activity,
the financial market plays a special role. Besides fundraising for the business, they allow
monitoring the condition of enterprises and even whole economic sectors. The stock market
indices are regularly published and are considered to be not only a measure of the change of
companies’ group values, but also a test of the economy’s status [5]. Therefore, within this
study, the cross-correlations among stock time series of S&P 500 index components are
analysed. This index was chosen because it is based on quotations of 500 shares of the
largest stocks that trade on the New York Stock Exchange and NASDAQ. Considering
the importance of those companies, as well as their variety and number, this set can be
considered to be representative of the USA’s economy and, therefore, can be the basis of
the analysis of cross-correlations among them. Particularly, these stocks can be analysed
from the point of view of cross-correlation network structures formed by those companies.
The cross-correlation analysis consists of two steps: the distance (usually based on linear
correlation [6]) matrix calculation and its analysis by constructing a network of random ma-
trix approaches [7–9]. The alternative cross-correlation analysis should be here mentioned.
Recently, detrended cross-correlation analysis based on detrended fluctuation analysis
(DFA) [10] and their modifications have been very popular; see the recent review [11],
or the power law classification scheme [12]. However, the most popular strategy is based
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on the network construction and its structure analysis [13,14]. The most popular choice is
the minimum spanning tree (MST) analysis [3,9,15–21]. MST application results primarily
from the portfolio optimisation problem [22], but is also due to the proper recovering of the
industrial sectors [3,6]. Besides MST analysis, the second most commonly used group of
methods are those which construct networks based on assumed threshold [23]. This approach
is used also in this paper—the distance matrix is filtered assuming that nodes are connected
when the distance fulfills a given condition. Within this analysis, the properties of the most
typical, weak, strong or significant correlations are investigated. The network generation
procedures are described in detail in Section 3. The main aim of the paper is the description of
the structural changes observed during the COVID-19 pandemic and their comparison to the
changes in cross-correlation network properties during other, recently observed crises.

Another important aspect is the influence of the external parameters on the network
structure. It is a truism to say that the state of the market depends on the macroeconomic
situation. Particularly, the reaction of the market to crashes is also widely discussed from
the point of view of network structure, e.g., [9,24,25], or in the analysis of globalization
processes [26–28]. However, the present pandemic situation should not be considered as the
typical shock but rather a change of the “economic environment”. The most important fact
is that the pandemic was expected and induced serious changes in the economy. The gov-
ernment, due to the pandemic situation, introduced special rules lasting a relatively long
time. The restrictions form special conditions which are expected to change the structure of
cross-correlations among companies. The network structure of shares’ cross-correlations
is the subject of interest of various studies [9,21,29]. A natural extension of time series
analysis through the network methods is evolving network analysis, since the economy
time series are non-stationary, and thus, should be described by an evolving network rather
than a static network. Evolving network theory was initially applied to systems natu-
rally described by network structures, such as social networks [30], scientific collaboration
networks [31] and economy time series [8,25,32,33], to mention a few examples.

1.2. COVID-19 History

Although the COVID-19 epidemic is a contemporary event, for the convenience of
future readers, a short description of the epidemic key points in the USA is presented below.

December 2019 The first known cases have been identified in Wuhan, China.
January 2020 The epidemic spreads to other provinces of China.
February 2020 Italy is affected with a rapidly growing number of infected and fatal cases.
March 2020 The USA overtakes China and Italy with the highest number of confirmed
cases in the world.

The present situation is the subject of various studies. More detailed history and
discussion on the influence of pandemic on stock markets from the standard time series
analysis point of view can be found at [34–38].

1.3. Paper Structure

The present paper is organised as follows. Section 2 describes the data analysed.
The Section 3 defines the methods used: the statistical distance, the network construction
algorithms and the network parameters (node entropy, cycle entropy, averaged clustering
coefficient and transitivity) calculated and analysed in the study. Section 4 presents the
obtained results, including the evolution of the node and cycle entropy and the averaged
clustering coefficient and transitivity. It is worth stressing that the parameters introduced
here (the node and the cycle entropy) are sensitive to economic crises. Moreover, the per-
formed analysis shows that the structure of the defined networks changes significantly in
the crisis. The main outcome of the paper is the analysis of a representative group of USA
companies and the observation of their reaction to changing economic situations. A very
promising outcome of the study is that four periods during the COVID-19 pandemic are
distinguished, which shows that the reactions to various factors are different and that this
analysis is capable of observing this.
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2. Data

The study is based on the S&P 500 index components’ daily time series in the interval
from 2016.01.04 to 2021.03.26. There are a total of 1315 data points in each of the time series.
The S&P500 index consists of the largest stocks of the New York Stock Exchange and NAS-
DAQ (National Association of Securities Dealers Automated Quotations). Considering the
importance of stock indices for the assessment of the state of the economy, we can conclude
that the entities on which the S&P 500 index is based constitute a representative group that
allows the observation of important processes taking place in the economy. Furthermore,
this index is based on a broad range of companies of different sectors; therefore, it can be
considered representative for the USA economy. The time interval is chosen such that it
contains a period before the COVID-19 pandemic. It is worth noticing that the pandemic
period is before the broad availability of vaccination, so the observed changes are the effects
of the institutional response to the pandemic situation. The inclusion of different periods is
particularly important because the algorithm of the study is new and has never been tested.

The time series were downloaded from the web page Available online: https://stooq.
pl (accessed on 28 March 2021). Although the index is based on 500 quotes, after inspection
of the data, 432 time series were chosen for the analysis due to missing data. The list of
quotations used for the analysis is presented in Appendix A.

The time series were converted into logarithmic daily return time series (so-called
log-returns) according to Equation (1),

LogR(A)i = log
ai

ai−1
, (1)

where A represents the time series, and ai represents the i-th element of the time series A.
The evolution of the mean value of stocks included in the study is presented in

Figure 1. By analysing the evolution of the mean quote in Figure 1, it should be noticed
that it has the form of a visible growing trend with periods of significant fluctuations.
The fluctuations correspond to periods of rapid growth followed by a significant drop
in value—price bubbles or crises resulting from external factors. The major fluctuations
which should be pointed out are the beginning of 2016 (which is the result of two shocks,
the Chinese stock market and USA stock market selloffs), the third quarter of 2017, the first
quarter of 2018, the second half of 2018 (the cryptocurrency crash), minor fluctuations in
the middle of 2019 and a dramatic drop at the beginning of 2020 related to the COVID-19
pandemic. In general, the fluctuations seen in the mean value of quotes are also present
in the averaged log-returns evolution graph seen in Figure 1, particularly in the left and
right plots, respectively. It is worth noting that the range of fluctuations at the beginning
of 2020 was ≈ 0.2, while the others observed in the period 2016–2019 did not exceed 0.07;
therefore, the fluctuations resulting from the pandemic shock were approximately 3 times
bigger than the other shocks. Within the analysed period, COVID-19 is the dominating
factor in financial markets.
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Figure 1. (Left) Evolution of the mean value of 432 quotes included in the study. (Right) Evolution
of the averaged log-returns of 432 quotes included in the study.
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3. Methods

Considering the fact that the evolution of the network structure is investigated in
this study, the sliding window technique was applied. The essence of this method is
that a fragment of a fixed length (the time window size) is selected from the time series.
An analysis is performed for this fragment, and subsequently, the beginning and the end
are shifted by one point and all calculations are repeated. The procedure is repeated until
the time window reaches the end of the series.

The analysis carried out in this work can be divided into the following main steps:

1. Distance matrix calculations;
2. Network construction;
3. Network feature analysis.

3.1. Distance Matrix

The distance between the log-returns time series is calculated based on the ultrametric
distance [26,27,39,40] as in Equation (2),

DM(A, B)t,T =

√
1
2
(1 − ρ(A, B)t,T), (2)

where the correlation ρ(A, B)t,T is calculated using Pearson correlation coefficient, as in
Equation (3):

ρ(A, B)t,T =
〈AB〉t,T − 〈A〉t,T〈B〉t,T

σ(A)t,Tσ(B)t,T
. (3)

where the indices ()t,T denote the interval (t, t + T). T stands for the time window size. The
distance DM, when equal to zero, indicates a perfect linear correlation between time series,
while a distance DM equal to one is obtained in the case of a lack of linear correlation
(which does not mean that the time series are not correlated by other functions [39]).

In the literature, there is an alternative formulation of Equation (2), the ultrametric
distance, which utilizes different normalization techniques [20]. Of course, the normal-
ization does not affect the conclusions. The ultrametric distance DM is calculated for all
possible pairs of time series, and the results are presented in the form of the distance matrix.
The distance matrix DM is symmetrical due to the definition of the ultrametric distance
Equation (2).

3.2. Network Construction

Considering the fact that each distance matrix contains (n(n−1)
2 different elements,

here it gives 93096 different numbers. The analysis of the distance matrix requires the
construction of higher-order structure—networks. Although in the literature the minimum
spanning tree (MST) is one of the most popular structures [6,16,18,19,41,42], it imposes a
very strong bias on the generated network. For example, due to the imposed tree structure,
it is impossible to observe cliques, which are quite important elements of economic relation-
ship analysis. In the case of MST analysis, with some additional effort, it is also possible to
distinguish clusters [16], but such analysis is not straightforward due to the tree structure.
MST analysis often distinguishes one prominent node, eg. [16,42], but in different network
structures, the node could be a member of a clique and such a conclusion of its special role
would be not possible.

Therefore, in this paper, the threshold method is used. The distances are categorised
into defined groups, and, in each case, the network is constructed based on the appropriately
filtered distance matrix.
Distance categorisation:

• Strongly connected time series—the companies are connected when the distance is
shorter than the first quartile of the distances in the analysed distance matrix, so the
network is built on a set of the 25% shortest links;
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• Weakly connected time series—the companies are connected when the distance is
longer than the third quartile of the distance in the analysed distance matrix, so the
network is built on a set of the 25% longest links;

• The most typical connections—the companies are connected when the distance be-
tween them is longer than the first quartile and shorter than the third quartile of the
distances in the analysed distance matrix, so the network is built on this set of 50% of
the links;

• Significantly connected time series—the companies are connected in the network
when the distance between them is shorter than the median of the distances in the
analysed distance matrix, so the network is built on a set of 50% of the links.

The examples of the network generated in the study are presented in the Appendix B.
Due to the huge number of graphs generated in the analysis (the time series length di-
minishes by the time window size) and the size of the networks, only a few examples are
presented focusing on the state before the COVID-19 pandemic (July/August 2019) and
two examples during the pandemic (March 2020 and August/September 2020).

On the other hand, the MST analysis allows the dominating node to be distinguished,
usually with the highest number of links, eg. GE in [16]. However, this result partially
depends on the imposed tree structure. In the threshold method, such situations are less
probable, and a very high number of companies have a high number of links, so such
prominent nodes are not observed.

3.3. Network Analysis

The last step of the analysis is the network parameter calculations. Considering the fact
that, in the study, more than a thousand networks are constructed (due to the sliding window
technique) and each network consists of 432 nodes, the direct analysis is tremendous. On the
other hand, the general state of the system can be characterised by calculating appropriately
chosen parameters.

The study aims to observe changes in the structure of the network of correlations.
In the case of economic systems, some structures are of special interest. Usually one of the
very first issues analysed is the leadership, or the presence of dominating companies, which
are network hubs. The second most important structures are clusters that correspond to
strongly cooperating companies or sets with strong mutual relationships, e.g., belonging to
the same highly specialised sector, with the same ownership or sharing another common
factor. The question of the presence of dominating companies is answered by the rank node
analysis, which ranks nodes with respect to the number of links. It was shown in [22,32,42]
that during crises, the dominating structure is a star-like network with a well-defined
centre. On the other hand, in independently developing companies, one can expect that the
statistical distances among time series would be similar (with some fluctuations). Moreover,
the most interesting aspects, from the point of view of questions raised, are the changes
in the network structure. Thus, the measure which properly exposes such structures and
their changes is Shannon entropy. Therefore, the rank node distribution is characterised by
information entropy; here it will be called rank node entropy and defined by Equation (4),

SN = − ∑
i∈L

pi ln pi (4)

where L represents the list of all observed ranks, and pi represents the probability of the
i-th rank node.

The second feature investigated is the formation of particular structures, specifically
triangles and cycles. The triangles expose the companies forming closely interacting groups;
analogously, cycles are the groups with significant relationships (a chain of dependence).
These two parameters are analysed by the calculation of transitivity and cycle entropy. The
transitivity is defined as the fraction of all possible triangles in the graph.
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T = 3
#triangles

#triads
(5)

where triad indicates two edges with a shared vertex. The cycle entropy is defined as the
information entropy of the cycle length distribution:

SC = − ∑
i∈C

pi ln pi (6)

where C indicates the list of all observed cycle lengths, and pi represents the probability of
observing a cycle of the length i.

The last analysed network parameter is the clustering coefficient, which is the standard
characteristic of the link density. Here, the averaged clustering coefficient is used, which is
defined by Equation (7):

C =
1
n ∑

v∈G
cv, cv =

2T(v)
deg(v)(deg(v)− 1)

(7)

where T(v) is the number of triangles through node v, and deg(v) represents the degree of
node v.

The last element of the analysis procedure to define is the time window length. Con-
sidering the analysis of daily time series, three time window lengths have been chosen:
5 days, 20 days, and 60 days, which correspond to the week, month, and quarter periods,
respectively.

A summary of the analysis algorithm is as follows:

1. Choose the representative set of companies (shares);
2. Verify the integrity of the time series and their length (should be identical);
3. Normalise the time series by converting them to the daily log-return time series;
4. Choose the time window size;
5. For each of the time series, starting at the beginning, take the interval of the time

window length and calculate the time series correlation (distance) matrix;
6. Based on the correlation matrix, generate the network. Here, four possible strategies

are considered: (i) strongly, (ii) weakly, (iii) most typical, (iv) significantly connected
networks, so the following steps should be repeated for each network type;

7. Calculate the network’s characteristics: rank entropy, cycle entropy, averaged cluster-
ing coefficient and transitivity;

8. Move the starting point by one point and repeat steps 5-8. Continue until the end of
the time series length is reached.

Finally, the time evolution of the network characteristics is received and discussed.

4. Results

4.1. Week Size Time Window, T = 5d

The analysis begins with the shortest time window T = 5d. The evolutions of the
strongly, weakly, most typically, and significantly connected network properties are pre-
sented in Figures 2–5. As was mentioned in Section 3.2, each of the structures is focused
on different features of the system. The first network presented, which is of strongly
connected companies, is built under the assumption that the companies are connected
when the distance between them is shorter than the first quartile of the distances in the
given distance matrix. The evolution of rank entropy, cycle entropy, averaged clustering
coefficient, and the transitivity in the considered period are presented in Figure 2.

In the rank entropy evolution chart, one can distinguish the maximum state, which
corresponds to the periods of “normal” trading, i.e., beyond crisis periods. Furthermore,
similar observations can be made for the other rank entropy graphs independent of the
time window size and the network structure considered; in all of them, stable maximum
entropy is observed, suggesting that there exists a stable level of the rank distribution
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entropy. Besides the presence of the maximum rank entropy state, there are periods when
the rank entropy is clearly smaller. At the beginning of 2016, which corresponds to the first
fluctuation period in the considered interval, the rank entropy decreases from the value
of 5 to 3. An analogous change is observed in the middle of 2017, the first quarter of 2018,
and the crisis moment of 2019. The lowest values of rank node entropy are observed in the
second quarter of 2020, which correlates with the development of the COVID-19 pandemic.
Moreover, the evolution of the rank entropy reflects different stages of the reaction to the
pandemic. At the end of 2019, it was obvious that the pandemic would spread all over the
world, so in the beginning of January 2020 the first decrease in the rank entropy is observed
as the result of news. Afterwords, the network structure began returning to the typical
state. However, when the first cases were observed in USA, and consequently, the number
of hospitalised persons began rapidly growing, the rank entropy decreased, reaching the
lowest observed value and indicating significant changes in the network structure of the
strongly connected companies.
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Figure 2. Network feature evolution in the case of the strongly connected companies, i.e., the
distance between them is shorter than the first quartile of distances in the analysed distance matrix.
The time window T = 5d. The top left figure represents rank entropy, the top right represents
cycle entropy, the bottom left represents the averaged clustering coefficient, and the bottom right
represents transitivity.

The cycle entropy is focused on the cycle distribution length. In contrast to the rank
entropy, the week time window analysis of the cycle entropy (Figure 3) does not show
a clear stable maximum state. The cycle entropy in the period between crushes takes a
value in the interval between 0.7 and 1.3, but during crises, the cycle entropy decreases
to the value 0.1 (high fluctuation periods). It seems that during crises, most of the cycles
are broken and the cycle entropy takes a very low value. In contrast to the rank entropy,
the cycle entropy does not allow the severity of crises to be measured, since the same level
is obtained for the crises at the beginning of 2016, the middle of 2017, the first and second
quarter of 2019 and the COVID-19-induced crisis in 2020. Therefore, the cycle entropy
achieves the lowest observed values relatively faster.

Besides the new measures introduced here (rank entropy and cycle entropy), the stan-
dard network parameters—averaged clustering coefficient and transitivity—are also sensi-
tive to the COVID-19-induced crisis. Particularly, the transitivity obtains a very high value
at the beginning of 2020. However, similarly to the cycle entropy, the transitivity does not
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allow the severity of the crises to be measured. The COVID-19 crash is characterised by
similar values as the other crashes. The averaged clustering coefficient seems to be a less
useful parameter in measuring crises strength because the highest values are observed
in the first quarters of 2018 and 2019. When analysing the results of the network of the
strongly correlated companies, it should be taken into account that this network is based
on 25% of the most correlated time series, so this assumption may induce a dichotomous
state of the network structure: crises and not crises.
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Figure 3. Network feature evolution in the case of the weakly connected companies, i.e., the distance
between them is longer than the third quartile of the distances in the analysed distance matrix.
The time window T = 5d. The top left figure represents rank entropy, the top right represents
cycle entropy, the bottom left represents the averaged clustering coefficient, and the bottom right
represents transitivity.

The evolution of the weakly connected companies’ network parameters seems to be
complementary to the strongly connected time series. In this case, the analysis is focused
on the structure of the networks connected by a long statistical distance. The results for
the week time window are presented in Figure 3. Analogously to the case of strongly
connected companies, the rank entropy graph has a clear maximum value (≈5). The crash
periods are correlated with a significant decrease in the rank entropy, and, similarly to the
already discussed case, the lowest rank entropy is observed in the first and second quarter
of 2020, which corresponds with pandemic development in the USA. The decrease in the
rank entropy indicates the increase in differences in rank distributions, which is a quite
natural process—during crises, a star-like network is dominating [22,32,41,42]. The two
other coefficients analysed, i.e., the averaged clustering coefficient and transitivity, present
a very noisy graph. In this very short time window, the fluctuations are dominating and do
not allow any particular network features to be distinguished.

The results of the most typically connected companies are presented in Figure 4. In this
case, the analysis is focused on the companies among which the distance is within the first
and third quartile. Therefore, the network excludes extreme cases but shows the structure
of typical connections among companies. The rank entropy graph, similar to the already
discussed cases, is sensitive to significant price fluctuations. During crashes, the rank
entropy value visibly decreases. On the other hand, the network during normal trading is
characterized by rank entropy SN ≈ 5. In contrast to the strongly and weakly correlated
networks, after the large decrease in rank entropy related to the COVID-19 pandemic,
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the system does not return to the standard state at the level SN ≈ 5, but is in the interval
SN ∈ (4, 4.5). Of course, the initial shock was the strongest one, particularly as it was
followed by strong restrictions. However, in the second half of 2020, the situation did not
return to the normal situation as the economy was still affected by the pandemic, and the
rank entropy of the typically connected company network seems to be sensitive to this fact.
The cycle entropy for the typically correlated company network, similar to the strongly
and weakly correlated company networks, attains its minimal value at the time of large
fluctuation periods SC ≈ 0.1, indicating that crashes very strongly affect the cycle length
structure. Averaged clustering coefficient evolution, in contrast to the weakly collected
time series network, is sensitive to crises, having local maxima at the stock market crises.
The essential feature of this result is that the highest local maximum is correlated with
the COVID-19 period, when the largest fluctuation appeared. The latter observation is
important because it shows that this network structure is sensitive not only to the presence
of fluctuations but also to its magnitude. In the case of the last parameter, transitivity,
the graph evolution seen in Figure 4 shows that, during crises, the structure of the network
changes significantly (clearly distinguished local maxima), achieving transitivity twice as
big compared to the standard fluctuation level.
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Figure 4. Network feature evolution in the case of the most typically connected companies, i.e., the
distance between them is within the interval between the first and the third quartile of the distances
in the analysed distance matrix. The time window T = 5d. The top left figure represents the rank
entropy, the top right represents cycle entropy, the bottom left represents the averaged clustering
coefficient, and the bottom right represents transitivity.

The evolution of the network parameters of significantly connected companies is
presented in Figure 5. In this case, the analysis concentrates on highly correlated companies,
including those which are the most correlated. This is also the network based on half of the
correlations. The features of the significantly connected network are slightly surprising,
since the local minima related to the COVID-19 pandemic period are not the deepest
minima. Beginning the analysis of this type of network with the rank entropy graph, it is
seen that the smallest values of SN are observed in the 2017 crisis. The difference between
the local minima in 2017 and 2020 is ≈ 0.6, which is not very high when comparing it to
the maximum level SN ≈ 5. A similar observation is made on the cycle entropy graph,
in which SC fluctuates significantly even beyond the periods of crises. This indicates that
the time window length seems to be too short to smooth the system fluctuations. The
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averaged clustering coefficient graph of significantly connected companies at the periods
of crises achieves a value close to zero, which means that during a crisis, the cliques are
almost whipped out of the network. The transitivity of the significantly connected time
series supports the observations made on the averaged clustering coefficient graph, while
the minima correspond to crisis periods. However, the changes in the network structure are
so significant that the transitivity nearly reaches zero, indicating that triangles of correlated
companies are very rare during crises.
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Figure 5. Network feature evolution in the case of the significantly connected companies, i.e., the
distance between them is shorter than the median of the distances in the analysed distance matrix.
The time window T = 5d. The top left figure represents rank entropy, the top right represents
cycle entropy, the bottom left represents the averaged clustering coefficient, and the bottom right
represents transitivity.

To summarise the week time window analysis, the COVID-19 effect is observed at
the beginning of 2020, as seen in the decrease in the rank entropy value. It is worth noting
that the reaction of the rank entropy evolution to the price fluctuation does not depend on
the type of network considered. Of course, the obtained results differ in details, but for all
considered cases, the rank entropy graph has a “maximum level” describing normal stock
exchange market activity and significantly decreases with large fluctuations, indicating
changes in the rank node distribution.

4.2. Month Size Time Window, T = 20d

The next considered time window size was the month size time window (T = 20d).
The results are presented in Figures 6–9. The first and most visible observation of the month
window size analysis is the reduction of local fluctuations compared to the results obtained
for the week time window size, as seen in Figures 3–5.

The network features of the strongly correlated companies are presented in Figure 6.
The most obvious observation is the decrease in the noise level compared to the week
time window size analysis. The rank node entropy, as in the previous case, has a clear
maximum level (SN ≈ 5), which corresponds to the period of trading without significant
price fluctuations. However, the intervals of decrease are not in the form of rapid and
large oscillations, but have a shape of intervals, indicating that the change of structure was
observed in the whole crisis period. The significant decrease in the rank entropy by 2.5 or
more indicates a rapid and serious change of network structure. At the crash, the network
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reconstructs immediately to a new state characterised by much lower rank entropy. It can be
seen that, for the month resolution analysis of the group of strongly correlated companies,
the COVID-19-induced crises had three stages in which the rank entropy decreased abruptly.
The three other network parameters, i.e., cycle entropy, averaged clustering coefficient,
and transitivity, also decrease at this crisis; however, the value does not depend on the crisis
severity, but they achieve the lowest possible value equal to zero indicating that during a
crisis the higher-order structures, such as loops, triangles or clusters, do not exist in the
network of the most-correlated companies.
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Figure 6. Network feature evolution in the case of the strongly connected companies, i.e., the
distance between them is shorter than first quartile of distances in the analysed distance matrix.
The time window T = 20d. The top left figure represents rank entropy, the top right represents
cycle entropy, the bottom left represents the averaged clustering coefficient, and the bottom right
represents transitivity.

The weakly connected time series network features are presented in Figure 7. Similarly
to the strongly correlated network case, the rank entropy evolution for the network of the
weakly correlated companies allows the crises intervals to be distinguished. The lowest
rank entropy is observed during the COVID-19 crisis. The cycle entropy graph in the case of
weakly connected companies also has a visible drop of cycle entropy value, but the lowest
observed value is SC ≈ 0.1, which indicates that only a few types of cycles are present in
the network. In view of the already discussed cases, the averaged clustering coefficient
evolution is very interesting. The weakly correlated companies’ network structure follows a
different pattern than the already discussed network structures; during crises, the averaged
clustering coefficient takes a very high value, indicating the strong clustering of companies.
The same observation can be made by the analysis of the transitivity evolution graph; the
maximum value is obtained at the crises periods, so weakly correlated companies form
a high number of triangles. This finding correlates with the results of the network of the
strongly correlated companies, where, during crises, the complex structures disappear;
they emerge in the weakly correlated network.
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Figure 7. Network feature evolution in the case of the weakly connected companies, i.e., the distance
between them is longer than the third quartile of the distances in the analysed distance matrix.
The time window T = 20d. The top left figure represents rank entropy, the top right represents
cycle entropy, the bottom left represents the averaged clustering coefficient, and the bottom right
represents transitivity.
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Figure 8. Network feature evolution in the case of the most typically connected companies, i.e., the
distance between them is within the interval between the first and the third quartile of the distances
in the analysed distance matrix. The time window T = 20d. The top left figure represents rank
entropy, the top right represents cycle entropy, the bottom left represents the averaged clustering
coefficient, and the bottom right represents transitivity.

The results of the analysis of the network of typically connected companies are pre-
sented in Figure 8. The rank entropy graph for the network of typically connected compa-
nies is similar to the already discussed cases, which properly indicates the crisis periods
when the rank entropy decreases significantly. During the COVID-19-induced crisis, three
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stages of rank entropy value can be distinguished. However, they are not so separated
as in the case of the strongly connected company network Figure 6. The cycle entropy
graph supports the previous findings: during crises, cycles almost disappear from the
network. On the other hand, the clustering coefficient is rather high in the crisis period.
The highest averaged clustering coefficient is observed during the second quarter of 2020
(C is close to 1). An analogous observation can be made on the transitivity when the num-
ber of triangles is very high during crises. An interesting observation is made while
comparing the averaged clustering graph with the transitivity plot. In the first half of
2020, the transitivity achieved a high value (the first and second quarter of 2020), while
the averaged clustering coefficient takes a value close to one during the second quarter of
2020, at the time when the pandemic became very serious and stronger restrictions were
imposed. This observation is meaningful since the transitivity is very sensitive to price
fluctuations and immediately goes to a value close to one, while the clustering coefficient
is more robust, allowing us to not only observe the fact that the network structure has
changed but also relate the changes to the crisis severity.
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Figure 9. Network feature evolution in the case of the significantly connected companies, i.e., the
companies are connected when the distance between them is shorter than the median of the distances
in the analysed distance matrix. The time window T = 20d. The top left figure represents rank
entropy, the top right represents cycle entropy, the bottom left represents the averaged clustering
coefficient, and the bottom right represents transitivity.

The network results of the significantly connected companies are presented in Figure 9.
Here, the companies are connected in the network when the distance between them is
smaller than the median of the distance matrix, so the investigated group consists of
relatively strongly correlated companies, and the analysis is based on half of the possible
links. Comparing the results obtained in T = 20d and in T = 5d, it can be observed
that the fluctuation level is significantly reduced, but the main findings are also valid
for this analysis. The first important observation is that, in the case of the network of
significantly connected companies, the smallest value of rank entropy occurs in the middle
of 2017. This means that, from the point of view of the strongly connected companies,
the unexpected market fluctuations are much worse than even severe but predicted; the
rank entropy decrease during the COVID-19 crisis is not so strong. The cycle entropy
graph is still difficult to interpret because it is hard to indicate a clear relationship between
cycle entropy value evolution and the crash history. It is probable that the time window
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is too short and the fluctuations of the system are still hiding the crisis influence. At the
graph of the average clustering coefficient evolution, two states can be distinguished—the
normal trading period when C ∈ (0.45, 0, 75), and the states of significantly lower value
C ∈ (0, 0, 4), which corresponds to the crash interval. The market fluctuations observed at
the beginning of 2016, the middle of 2017, the first two quarters of 2019, and COVID-19 had
similar effects on the averaged clustering coefficient, which became nearly zero at those
periods. The main features observed in the averaged clustering graph Figure 9 are also
present in the transitivity graph in Figure 9, with the difference that the numerical values
characterising normal trading periods and crashes are slightly different. The transitivity of
the network of significantly connected companies for intervals without spectacular events
are in the range T ∈ (0.4, 0.6), while during crashes, these values decrease as far as zero.
Similarly to the rank entropy and the averaged clustering coefficient 9, the transitivity in
2017 went even lower than during the COVID-19 crisis, indicating slightly weaker changes
despite much more significant price fluctuations. Once again this raises the question about
the importance of the shock expectations. The correlated companies could react similarly,
so the network structure is not completely changed.

4.3. Quarter Size Time Window, T = 60d

The results of the analysis for the quarter time window size T = 60d are presented
in Figures 10–13. The quarter time window size is the longest time window considered
in this study. As one can expect, the extension of the time window size filters the higher
frequency fluctuations, allowing only the long-lasting correlations to remain, since each of
the points in the graph is based on the cross-correlation distance calculated by the interval
of 60 consecutive log-returns.

The network features of the strongly correlated companies are presented in Figure 10.
The extension of the time window size resulted in clarifying the main features of the
rank entropy graph, including the presence of a base level which describes the normal
trading periods when the rank entropy is SN ≈ 5. The crash periods demonstrate a
significantly lower value of rank entropy of SN ≈ 3. Considering the aim of the study,
the most interesting evolution is the evolution of network parameters in 2020. The rank
entropy plot shows that the network structure switched between three stages. The first
stage was observed in the first quarter of 2020, when the pandemic was expected in the
USA, and, due to the situation in China, the supply chain was affected. In the second
quarter of 2020, the rank entropy increased to SN ≈ 4, so the fact that the pandemic was
expected resulted in some increase of the rank structure complexity when it came to the
USA. However, as the situation developed and became severe in the first half of 2020,
the rank entropy dropped up to SN ≈ 2–2.4. The interesting finding is that the system
adapted to the present situation, and at the end of 2020, the rank entropy returned to the
level of the normal trading time SN ≈ 5. The cycle entropy graph, in contrast to the rank
entropy plot, does not have a stable value for normal trading, but during high fluctuation
periods, the cycle entropy drops as far as zero. Very similar observations can be made
on the averaged clustering coefficient and transitivity, suggesting that in the group of
the most correlated companies, the higher-order structures are not present during crises.
This is a new observation not previously discussed in the literature. By further analysing
the cycle entropy graph, Figure 10, during the COVID-19 pandemic, it can be observed
that after the initial drop of the cycle entropy in the first quarter of 2020, in the second
quarter, the cycle entropy increases up to a value of SC ≈ 0.5, which corresponds to the
temporary increase of the rank entropy in the same period. This supports the expressed
idea that, despite objective difficulties, the system is trying to adapt to the new situations.
After the short decrease in the middle of 2020, the cycle entropy increases, reaching a value
at the beginning of 2021 of SN ≈ 1.3. The averaged clustering plot and transitivity graph
follow a similar sequence, differing only in minor details during the periods beyond crises,
but during the crises, values of both parameters decrease up to zero indicating disappearing
complex structures among the most correlated companies. It should be stressed that the
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latter finding is observed in a very long time window, which means that during crises, long
correlations do not form a complex structure.
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Figure 10. Network feature evolution in the case of the strongly connected companies, i.e., the
distance between them is shorter than first quartile of the distances in the analysed distance matrix.
The time window T = 60d. The top left figure represents rank entropy, the top right represents
cycle entropy, the bottom left represents the averaged clustering coefficient, and the bottom right
represents transitivity.
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Figure 11. Network feature evolution in the case of the weakly connected companies, i.e., the distance
between them is longer than the third quartile of the distances in the analysed distance matrix.
The time window T = 60d. The top left figure represents rank entropy, the top right represents
cycle entropy, the bottom left represents the averaged clustering coefficient, and the bottom right
represents transitivity.
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Figure 12. Network feature evolution in the case of the most typically connected companies, i.e., the
distance between them is within the interval between the first and the third quartile of the distances
in the analysed distance matrix. The time window T = 60d. The top left figure represents rank
entropy, the top right represents cycle entropy, the bottom left represents the averaged clustering
coefficient, and the bottom right represents transitivity.
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Figure 13. Network feature evolution in the case of the significantly connected companies, i.e., the
distance is shorter than the median of the distances in the analysed distance matrix. The time window
T = 60d. SN ≈ 0.9.

The evolution of the network parameters of the weakly correlated companies is pre-
sented in Figure 11. The rank entropy evolution can be clearly divided into two categories:
the crisis periods and the time beyond. During crises, the rank entropy decreases. The low-
est value is observed at the beginning of 2016, when SN ≈ 2.5, and in the middle of 2020,
when SN ≈ 2. Similar to the previous case discussed, the COVID-19 crash period can
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be divided into three stages: the change of SN from 5 to 3, then, in the second quarter,
the rise to 4.1 and the significant drop in the middle of 2020 to 2. Afterwards, the rank
entropy returns to its typical value. This observation supports the hypothesis that the
network structure responded to the information of the incoming pandemic, then adopted
to the situation and strongly reacted to the quick increase of affected cases and restrictions.
The cycle entropy graph also supports the hypothesis of three COVID-19 stages. However,
in SC, the first and the second stage is characterised by a very low value of cycle entropy
SC ≈ 0.1, with a short rise in SC during the second quarter of 2020 to the value SC ≈ 0.3.
The averaged clustering coefficient and transitivity show that, during crises, for the net-
work of the weakly connected companies, the dominating structures are densely connected
groups, since both parameters reach values close to the maximum, particularly for the
transitivity where T ≈ 1 is observed for all crashes in the analysed intervals. The long time
window reduces the fluctuations present in shorter time windows (T = 5d, T = 20d) such
that it is possible to analyse the evolution of the weakly correlated network structure.

The most typically connected time series network features are presented in Figure 12.
The rank entropy graph shows that the most typically connected companies beyond the
crises periods form networks, the rank entropy of which is SN ≈ 5. During crises, the rank
entropy decreases significantly, e.g., in the crisis of 2016 SN ≈ 2.4, and during the COVID-
19 crisis, SN ≈ 2. In the evolution of SN in 2020, four stages can be distinguished. The first
stage was in the first quarter of 2020, where SN ≈ 3 as the stock market was scared by news
from China. The second was in the second quarter of 2020, where SN ≈ 4.2 when COVID-
19 entered the USA. The third was observed in the middle of 2020, when SN ≈ 2 when
the situation worsened significantly and serious restrictions were imposed. The fourth
stage lasted through the second half of 2020 when SN ≈ 4.6. The cycle entropy graph in
Figure 12 differs from the rank entropy in that, during crisis, cycle entropy is likely to reach
a very low value of SC ≈ 0.1. However, similar to the rank entropy, the four stages of
the COVID-19 crisis can be distinguished by the difference that, during the first quarter
in 2020 and in the third stage in half of 2020, the cycle entropy went to the same value
SC ≈ 0.1. Another important feature of the cycle entropy graph is that, in contrast to the
rank entropy plot, the cycle entropy has a nontrivial evolution between crashes, showing
the increasing complexity of the typically connected network. The two other parameters
(averaged cluster coefficient and transitivity) show that, during crises, the most typically
connected companies form a cluster or a structure close to it. Particularly high values of
the averaged clustering coefficient of SN ≈ 0.9 were observed in the middle of 2020 when
the pandemic situation was significantly worsened. The transitivity graph in Figure 12
supports the observation of four stages in the COVID-19 crisis in 2020 made in the analysis
of the rank entropy and cycle entropy of the most typically connected companies.

The analysis of the significantly connected companies over the quarter time window
size of T = 60d are presented in Figure 13. The rank entropy evolution for the network of
significantly connected companies can be divided into two stages: the crisis period, when
the rank entropy takes low values of SN ∈ (2, 4.6), and the intervals beyond crises, when
SN is relatively stable, such as SN ∈ (5, 5.4). Although in 2020 the decrease resulting from
the COVID-19 crisis is clearly visible, the stages observed in the cases of the networks of
the strongly, weakly, and typically connected companies cannot be distinguished. The cycle
entropy plot in Figure 13 shows that the cycle length distribution entropy is rather difficult
to interpret in view of crisis presence and its severity. The opposite observation can be
made for the averaged clustering coefficient and transitivity graphs. In these two graphs,
Figure 13, the crises periods are characterised by a clear decrease of those parameters.
During the COVID-19 crisis, four stages can be distinguished, similar to the networks of the
strongly, weakly, and typically connected companies. The 2020 crisis began with a decrease
in the averaged clustering coefficient from C ≈ 0.65 to C ≈ 0.04, and this coefficient
remained at this value through the first quartile of 2020. Afterwards, it increased to 0.24
and kept this value until the middle of 2020, when it decreased to 0.1. Then, in the middle
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of the third quarter, it increased to the value C ≈ 0.45. Analogous evolution is observed in
the transitivity graph Figure 13 with slightly different values but with identical periods.

5. Conclusions

The presented study analysed the impact of the pandemic on the structure of cross-
correlation networks among the most important companies on S&P500 components. The
stock market crashes strongly influence cross-correlation network structure. Four different
networks have been introduced and investigated: strongly, weakly, most typically, and sig-
nificantly connected companies. The first 2 networks are based on 25% of links while the
2 latter networks are constructed on 50% of links. In general, all constructed networks are
sensitive to large price fluctuations. Of particular interest was the crisis induced by the
COVID-19 pandemic, where four stages of the market reaction were distinguished. It is
worth stressing that the observed changes in the network structure can be related to partic-
ular features of the 2020 situation. The essential result is that the discussed changes can be
quantified by rank entropy and cycle entropy measures, as well as the standard network
parameters, such as the averaged clustering coefficient and the transitivity. The networks
of strongly connected companies react in a different way to the crisis than the networks of
weakly connected companies. Besides the type of the network and its features, the optimal
size of the time window to calculate cross-correlation has been investigated. The optimal
window size is a month, T = 20d. In the analysis based on the T = 20d cross-correlation
time window, the fluctuations are suppressed such that important trends can be seen and
discussed. On the other hand, in the analysis performed for the shortest time window
(T = 5 days), the averaged clustering coefficient and the transitivity for the network of the
significantly connected companies decreases in the crises, while for the networks of strongly
and typically connected companies, these parameters visibly increase. This situation might
be the effect of the short window time wherein the Pearson correlation coefficient is calcu-
lated on the five data point sets. This observation supports the conclusion that the optimal
time window for the analysis of the daily time series returns is a month period.

The presented results show that the proposed network structures are capable of
describing and measuring the changes resulting from crises on the stock markets. Moreover,
the introduced parameters, the rank network entropy and the cycle entropy, are useful
parameters in the analysis of structure changes and crises recognition. Particularly, the rank
entropy, which is capable of quantitatively characterising network structure changes and
those parameters, might be useful in crash analysis. On the other hand, the introduced
network structures, which are composed of strongly, significantly, typically and weakly
correlated companies, do not introduce as strong of constraints as the frequently used MST
structures. For example, the GE company, which is the centre of the MST in [16], is one
of the highly connected companies here, but is not so prominent as in the MST structure.
The number of links of GE is comparable to the median level of the number of links for a
given network type.

Besides the main results of the paper, it has been observed that the rank entropy is
likely to change its value in a step-like function, showing that, according to the market
situation, the network will change to some well-established structures. This is a very
intriguing hypothesis which deserves further study.
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Appendix A. Companies List

The analysis of this paper is based on the following companies quotes (using the
standard abbreviations):

A, AAL, AAP, AAPL, ABBV, ABC, ABT, ACN, ADBE, ADI, ADM, ADP, ADS, ADSK, AEE,
AEP, AES, AFL, AIG, AIV, AIZ, AJG, AKAM, ALB, ALGN, ALK, ALL, ALLE, ALXN,
AMAT, AMD, AME, AMG, AMGN, AMP, AMT, AMZN, ANSS, ANTM, AON, AOS, APA,
APD, APH, APTV, ARE, ARNC, ATVI, AVB, AVGO, AVY, AWK, AXP, AYI, AZO, BA, BAC,
BAX, BBY, BDX, BEN, BFb, BHF, BIIB, BK, BKNG, BKR, BLK, BLL, BMY, BPYU, BRKb,
BSX, BWA, BXP, C, CAG, CAH, CAT, CB, CBOE, CBRE, CCI, CCL, CDNS, CERN, CF, CFG,
CHD, CHRW, CHTR, CI, CINF, CL, CLX, CMA, CMCSA, CME, CMG, CMI, CMS, CNC,
CNP, COF, COG, COO, COP, COST, COTY, CPB, CPRI, CRM, CSCO, CSX, CTAS, CTSH,
CTXS, CVS, CVX, D, DAL, DD, DE, DFS, DG, DGX, DHI, DHR, DIS, DISCA, DISCK, DISH,
DLR, DLTR, DOV, DRE, DRI, DTE, DUK, DVA, DVN, DXC, EA, EBAY, ECL, ED, EFX, EIX,
EL, EMN, EMR, EOG, EQIX, EQR, EQT, ES, ESS, ETN, ETR, EW, EXC, EXPD, EXPE, EXR,
F, FAST, FB, FBHS, FCX, FDX, FE, FFIV, FIS, FISV, FITB, FL, FLIR, FLR, FLS, FMC, FRT,
FTI, FTV, GD, GE, GILD, GIS, GL, GLW, GM, GOOG, GOOGL, GPC, GPN, GPS, GRMN,
GS, GT, GWW, HAL, HAS, HBAN, HBI, HCA, HD, HES, HIG, HLT, HOG, HOLX, HON,
HP, HPE, HPQ, HRB, HRL, HSIC, HST, HSY, HUM, IBM, ICE, IDXX, IFF, ILMN, INCY,
INFO, INTC, INTU, IP, IPG, IPGP, IR, IRM, ISRG, IT, ITW, IVZ, J, JBHT, JCI, JEF, JNJ, JNPR,
JPM, JWN, K, KDP, KEY, KHC, KIM, KKR, KLAC, KMB, KMI, KMX, KO, KR, KSS, KSU, L,
LB, LEG, LEN, LH, LHX, LKQ, LLY, LMT, LNC, LNT, LOW, LRCX, LUMN, LUV, LYB, M,
MA, MAA, MAC, MAR, MAS, MAT, MCD, MCK, MCO, MDLZ, MDT, MET, MGM, MHK,
MKC, MMC, MMM, MNST, MO, MOS, MPC, MRK, MRO, MS, MSFT, MSI, MTB, MTD,
MU, NAVI, NCLH, NDAQ, NEE, NEM, NFLX, NI, NKE, NLOK, NLSN, NOC, NOV, NRG,
NSC, NTAP, NTRS, NVDA, NWL, NWS, NWSA, O, OKE, OMC, ORCL, ORLY, OXY, PAYX,
PBCT, PCAR, PCG, PDCO, PEAK, PEG, PEP, PFE, PFG, PG, PGR, PH, PHM, PKG, PKI,
PLD, PM, PNC, PNR, PNW, PPG, PPL, PRGO, PRU, PSA, PSX, PVH, PWR, PXD, PYPL,
QCOM, QRVO, RCL, RE, REG, REGN, RF, RHI, RL, RMD, ROK, ROP, ROST, RRC, RSG,
RTX, SBAC, SBUX, SCHW, SEE, SHW, SIG, SJM, SLB, SLG, SNA, SNPS, SO, SPG, SPGI,
SRCL, SRE, STT, STX, STZ, SWK, SWKS, SYF, SYK, SYY, T, TAP, TDG, TEL, TFC, TGT,
TJX, TMO, TNL, TRIP, TRV, TSCO, TSN, TXN, TXT, UA, UAA, UAL, UDR, UHS, ULTA,
UNH, UNM, UNP, UPS, URI, USB, V, VAR, VFC, VIAC, VLO, VMC, VNO, VRSK, VRSN,
VRTX, VTR, VTRS, VZ, WAT, WBA, WDC, WEC, WELL, WFC, WHR, WLTW, WM, WMB,
WMT, WRK, WU, WY, WYNN, XEC, XEL, XLNX, XOM, XRAY, XRX, XYL, YUM, ZBH,
ZION, ZTS.

Appendix B. Graph Examples

Here, a few of the network examples generated and analysed in the study are presented
(Figures A1–A4). The figures were obtained using Mathematica 11 with the “SpringElec-
tricalEmbeding” algorithm. This algorithm optimises the position of nodes with respect
to its rank. However, due to the number of nodes and links, the graphs are a bit unclear,
particularly in the case of the network of significantly connected companies in Figure A4.
However, even a cursory observation shows that the proposed structures give significantly
different results. Particularly, networks representing the state of the stock market during
the pandemic vary significantly, even though loss of network connectivity is observed.
It goes beyond the scope of this paper, but the detailed analysis of the network’s evolution
from the point of view of the role of a particular company or the reaction of a group of
companies to the pandemic situation might be very interesting; however, this is left for
another study.
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Figure A1. Examples of the graphs obtained for the network of strongly correlated companies.
The presented graphs show the network state before and in the first and second stage of the COVID-
19 pandemic. The top graphs correspond to the shortest time window T = 5d, the middle three
graphs represent networks for the month time window and the bottom graphs present the examples
for the quarter time window.
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Figure A2. Examples of the graphs obtained for the network of weakly connected companies.
The presented graphs show the network before and in the first and second stage of the COVID-19
pandemic. The top graphs correspond to the shortest time window T = 5d, the middle three graphs
represent networks for the month time window and the bottom graphs present the examples for the
quarter time window.
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Figure A3. Examples of the graphs obtained for the network of the typically connected companies.
The presented graphs show the network before and in the first and second stage of the COVID-19
pandemic. The top graphs correspond to the shortest time window T = 5d, the middle three graphs
represent networks for the month time window and the bottom graphs present the examples for the
quarter time window.
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Figure A4. Examples of the graphs obtained for the network of significantly connected companies.
The presented graphs show the network before and in the first and second stage of the COVID-19
pandemic. The top graphs correspond to the shortest time window T = 5d, the middle three graphs
represent networks for the month time window and the bottom graphs present the examples for the
quarter time window.
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26. Miśkiewicz, J.; Ausloos, M. Has the world economy reached its globalization limit? Phys. A Stat. Mech. Its Appl. 2010, 389, 797–806.

[CrossRef]
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Abstract: The spread of the COVID-19 pandemic has highlighted the close link between economics
and health in the context of emergency management. A widespread vaccination campaign is con-
sidered the main tool to contain the economic consequences. This paper will focus, at the level of
wealth distribution modeling, on the economic improvements induced by the vaccination campaign
in terms of its effectiveness rate. The economic trend during the pandemic is evaluated, resorting to a
mathematical model joining a classical compartmental model including vaccinated individuals with
a kinetic model of wealth distribution based on binary wealth exchanges. The interplay between
wealth exchanges and the progress of the infectious disease is realized by assuming, on the one hand,
that individuals in different compartments act differently in the economic process and, on the other
hand, that the epidemic affects risk in economic transactions. Using the mathematical tools of kinetic
theory, it is possible to identify the equilibrium states of the system and the formation of inequalities
due to the pandemic in the wealth distribution of the population. Numerical experiments highlight
the importance of the vaccination campaign and its positive effects in reducing economic inequalities
in the multi-agent society.

Keywords: wealth distribution; kinetic models; wealth inequalities; compartmental epidemic model-
ling; vaccination campaign; COVID-19

1. Introduction

In the early 2020s, the spread of the COVID-19 pandemic highlighted the close link
between economics and health in the context of emergency management. Because of this,
assessing the impact of an epidemic phenomenon on a country’s economy has emerged as
one of the key aspects to consider in the context of containment strategies. From a mathem-
atical point of view, a systematic approach to the study of the effects on the economies of
countries facing a severe pandemic is a very complex problem and a mathematical model
can only provide rough indications of the possible consequences, based on simplifying
assumptions about the key parameters driving the pandemic evolution. The basic idea is
to trace these phenomena back to the evolution of the so-called wealth distribution of a
country, which measures how many people belong to increasing income levels.

A first attempt to understand changes in wealth distribution in the presence of epi-
demic spread was proposed in [1] by combining the classical SIR compartmental model
of susceptible, infected and recovered individuals [2,3] with the kinetic model of wealth
distribution introduced in [4], and assuming that, due to the presence of the pandemic,
individuals in different compartments act differently in the economic process. Although the
model was developed in a relatively simplified context, it has provided a general framework
for socio-epidemiological modeling that can be easily extended to more complex dynamics,
both in terms of economic transactions [5] and in terms of epidemic interactions [6,7]. We
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mention in this direction the recent survey reported in [8] and the seminal approaches
proposed in [9–12] investigating the economic effects of infectious diseases, as well as the
study presented in [13].

More precisely, according to [4], the financial transactions in [1] were based on the
choice of two parameters. The first defines the so-called safeguard threshold, i.e., the
maximum percentage of money that the individual is willing to employ in a transaction,
and the second is the random risk inherent in the transaction, characterized by its variance
through a spread proportional to the square of the individual’s wealth. There, the time
dependence of the variance was postulated by assuming that, in the presence of a significant
epidemic spread, the variance of the risk tends to increase. This is in agreement with the
financial market reactions that were often observed during the COVID-19 pandemic to
announcements of rising numbers of infected people in several countries [14]. With the
use of the model in [1], it was possible to qualitatively observe the effects of the pandemic
in terms of a reduction in the middle class and the increase in social inequalities (see
also [15,16]).

The possibility, starting in early 2021, of launching a widespread vaccination cam-
paign has led to general optimism about the ability to improve economic performance
while limiting the health consequences of the epidemic. However, it is clear that the re-
duction of economic consequences is closely linked to the effectiveness of the vaccine in
containing infections.

In this paper we will focus, at the level of wealth distribution, on the economic im-
provements induced by the vaccination campaign in terms of its percentage of effectiveness.
The interplay between the economic trend and the pandemic will be evaluated by resorting
to a mathematical model joining a kinetic model of wealth distribution based on binary
transactions with a compartmental epidemic model including vaccinated individuals (see
also [17]). In particular, a fraction of vaccinated individuals, which is determined by the
efficacy of the vaccine, may contract the disease. Without intending to review the extensive
literature on this topic, we cite the recent papers [18–26] that highlight the possible partial
immunity provided by vaccinations. Moreover, the emergence of viral variants means that
the efficacy of the vaccine inherently non-constant and subject to collective compliance
with non-pharmaceutical interventions.

The underlying theoretical framework we consider is that of kinetic models for collect-
ive social phenomena, which allows for the linking of microscopic agent-based behavior to
emerging observable patterns [27]. In particular, mathematical modeling of wealth distribu-
tion has seen a marked development in recent decades [5,28–35], in which, at least partially,
the essential economic mechanisms that are responsible for the formation of large-scale
economic indicators such as the Pareto or Gini index have been understood [36,37].

The interplay between epidemic spread and the social economic background is de-
scribed here as the result of interactions among a large number of individuals, each of which
is characterized by the variable w ∈ R+, measuring the amount of wealth of a single agent.
In this regard, as shown in [1,8,38,39], the fundamental tools of statistical physics allow the
understanding of epidemiological dynamics by linking classical compartmental approaches
with a statistical description of economic aspects. Indeed, the multiscale nature of kinetic
theory allows for the determination of the macroscopic (or aggregate) and measurable
features of disease evolution [27,40,41].

The rest of the paper is organized as follows. Section 2 introduces the SIR-type system
of kinetic equations that includes vaccinated individuals and combines the dynamics of
wealth evolution with the spread of infectious disease in a system of interacting agents.
Next, in Section 3 we study the main mathematical properties of the system, and show that,
through a suitable asymptotic procedure, the solution of the kinetic system tends to the
solution of a system of Fokker–Planck-type equations, which exhibits explicit equilibria
of the inverse Gamma type. Finally, in Section 4, we investigate numerically the solutions
of the Boltzmann-type kinetic system, and its Fokker–Planck asymptotics, along with the
evolution of the Gini index, characterizing the wealth inequalities. These simulations
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confirm the model’s ability to describe phenomena that are characteristic of economic
trends in situations compromised by the rapid spread of an epidemic, and their variations
as a function of the effectiveness of the vaccination campaign.

2. Wealth Dynamics in Epidemic Phenomena

In this Section, we present an extension of the SIR-kinetic compartmental description
of epidemic spreading introduced in [1], which additionally takes into account the popula-
tion of vaccinated individuals. The model consists of a system of four kinetic equations
describing the evolution of wealth in the presence of an infectious disease with partial
efficacy of vaccination. The entire population is divided then into four compartments:
susceptible individuals (S), who can contract the disease; identified infectious individuals
(I), who are recognized to have contracted the disease and can transmit it; vaccinated
individuals (V), who have received a vaccine, but can still be at least partially infected
and contagious; and the recovered individuals (R), who are healed and immune. The
model can be easily adapted to include disease-related mortality and other compartments
of interest in terms of available data, such as records of hospitalized individuals. We refer
to [3,6,7,42] and the references therein for possible developments in these directions. It
should be noted that, since we are referring to an advanced epidemic situation in which we
assume the existence of a vaccine, the dynamics of unidentified asymptomatic individuals,
so significant in the early stages of the COVID-19 pandemic, has become less relevant
thanks to mass screening programs. For this reason, we have chosen to employ only one
compartment I related to the identified infected individuals. To measure the aggregate
effects of vaccination over the whole population, we have considered the compartment V
with a given vaccine efficacy.

The agents of each compartment are characterized uniquely by their wealth w ≥ 0.
Hence, we denote by fH(w, t), H ∈ {S, I, V, R}, the distributions of wealth at time t ≥ 0 in
each compartment, such that fH(w, t)dw denotes the fraction of agents belonging to the
compartment J, which, at time t ≥ 0, are characterized by wealth between w and w + dw.
The total wealth distribution density is then defined by the sum of the distributions in
all compartments

f (w, t) = fS(w, t) + f I(w, t) + fV(w, t) + fR(w, t),
∫
R+

f (w, t)dw = 1,

for all t ≥ 0. Hence, the fractions of the population belonging to each compartment are
given by

J(t) =
∫
R+

f J(w, t)dw, J ∈ {S, I, V, R}.

We denote by mJ,κ(t) the local momenta of order κ for the wealth distributions in
each compartment

mκ,J(t) =
1

J(t)

∫
R+

wκ f J(w, t)dw, (1)

and we denote with mκ(t) the moment of order κ > 0 of the wealth distribution f (w, t)

mκ(t) =
∫
R+

wκ f (w, t)dw = ∑
J∈{S,I,V,R}

J(t)mκ,J(t).

2.1. The Kinetic Model

Following [1], we assume that the evolution of the densities obeys an SIR-type com-
partmental model and that the wealth exchange process is influenced by the epidemic’s
dynamics. This gives a system of four kinetic equations for the unknown distributions
fH(w, t), H ∈ {S, I, V, R}, expressed by
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∂t fS(w, t) = −K( fS, f I)(w, t)− α fS(w, t) + ∑
J∈{S,I,V,R}

QSJ( fS, f J)(w, t),

∂t f I(w, t) = K( fS, f I)(w, t) + (1 − ζ)K( fV , f I)(w, t)− γI f I(w, t) + ∑
J∈{S,I,V,R}

QI J( f I , f J)(w, t),

∂t fV(w, t) = α fS(w, t)− (1 − ζ)K( fV , f I)(w, t) + ∑
J∈{S,I,V,R}

QV J( fV , f J)(w, t),

∂t fR(w, t) = γI f I(w, t) + ∑
J∈{S,I,V,R}

QRJ( fR, f J)(w, t),

(2)

where γ ≥ 0 is the recovery rate for the infected compartment and α ∈ [0, 1] is the
vaccination rate of individuals, whereas the term 0 ≤ 1 − ζ ≤ 1 quantifies the effectiveness
of the vaccine, in such a way that high effectiveness corresponds to values close to one
of the parameters, ζ. The operator K(·, ·) governs the transmission of the infection and is
considered to be of the following form

K( fH , f I)(w, t) = fH(w, t)
∫
R+

β(w, w∗) f I(w∗, t) dw∗, (3)

for any H ∈ {S, I, V, R}. In (3) the function β(w, w∗) ≥ 0 denotes the contact rate between
people with wealth w and, respectively, w∗. A leading example for β(w, w∗) is obtained by
choosing analogously to [1]

β(w, w∗) =
β̄

(c + |w − w∗|)ν
, (4)

where β̄ > 0, ν > 0 and c ≥ 0. According to the above contact rate, agents with similar
wealth are more likely to interact. The extrapolation of heterogeneous contact rates have
been deeply studied in mathematical epidemiology; see [1,43–47] and the references therein.

Finally, the operators QHJ( fH , f J), H, J ∈ {S, I, V, R} characterize the evolution of
the wealth in each compartment due to wealth exchange activities between agents of the
same class, or between agents of different classes H and J. Their form follows the one
originally proposed in the Cordier–Pareschi–Toscani model [4]. An interaction between
two individuals in compartment H and J with wealth pair (w, w∗) leads to a wealth pair
(w′

JH , w′
HJ) defined by relations

w′
HJ = (1 − λH)w + λJw∗ + ηHJw

w′
JH = (1 − λJ)w∗ + λHw + ηJHw∗,

(5)

with H, J ∈ {S, I, V, R}. In (5) the constants λH , λJ ∈ (0, 1) are exchange parameters
defining the saving propensities 1− λH and 1− λJ , i.e., the maximum percentage of money
that individuals are willing to employ in a general monetary transaction. Note that the
parameters are different in each compartment, underlining the differing behavior of agents
in the presence of the pandemic. The choice λV > λS, for example, reflects the fact that
susceptible non-vaccinated agents have reduced action in wealth exchanges due to various
government restrictions with respect to vaccinated individuals.

Furthermore, ηJH ≥ −λH , ηHJ ≥ −λJ are independently centered random variables
with the same distribution Θ such that Var(ηHJ) = Var(ηHJ) = σ2(t). The quantity σ2(t)
represents the market risk, which is the same for the whole population and is influenced
by the progress of the pandemic. This is in agreement with market reactions that have
been observed during new epidemic waves; see, e.g., ref. [14]. It is convenient to express
the operators QHJ( fH , f J) in weak form, i.e., the way these operators act on observable
quantities [27].
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Let ϕ(w) be a test function and let 〈·〉 denote the expectation with respect to the pair
of random variables ηJH , ηHJ in the interaction process (5). Then, for H, J ∈ {S, I, V, R} we
define the Boltzmann-type bilinear operators as follows∫

R+

ϕ(w)QHJ( fH , f J)(w, t)dw =

〈∫
R2
+

(ϕ(w′
HJ)− ϕ(w)) fH(w, t) f J(w∗, t)dw dw∗

〉
(6)

where (w, w∗) → (w′
JH , w′

HJ) as in (5) and where 〈·〉 denotes the expectation with respect
to the independent random variables ηHJ , ηHJ .

Binary interactions between individuals (5) reflect the idea that wealth exchanges occur
between pairs of agents who invest a fraction of their wealth in the presence of an equivalent
good. In each case, such investments involve nondeterministic speculative risks that can
provide additional wealth or a loss of wealth. The aggregate behavior of the population is
then provided by the operators (6), from which we obtain the emerging macroscopic trends
of the binary exchanges considered in each epidemiological compartment.

Remark 1. In the kinetic epidemic model (2) the passage from susceptible to vaccinated is governed
by a very simple dynamics that does not take into account possible vaccine limitations, as in the
first phase of the vaccination campaign. In general, the vaccination rate α may depend on several
factors such as the age and work status of individuals and time. It is worthwhile to observe that, in
addition to the natural dependency of the recovery rate γI from age [8,22,48], we may also consider
wealth-dependent recovery rates to take into account the fact that high wealth can provide access to
better hospitals in some health systems, thus ensuring a higher chance of recovery [1]. We point the
interested reader to [39] for a more detailed discussion based on the available data.

2.2. Evolution of Macroscopic Quantities

In the following, we discuss the evolution of emerging macroscopic quantities from
the kinetic model (2). Let ϕ(w) be a test function. Choosing ϕ(w) = 1 in (6), we have

∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QHJ( fH , f J)(w, t)dw = 0,

which corresponds to mass conservation, i.e., the conservation of the number of agents.
If ϕ(w) = w in (6), we get the evolution of the average wealth in each compartment,
corresponding to the first quantity not conserved in time:

d
dt

m1,H(t) =
1

H(t) ∑
J∈{S,I,V,R}

∫
R2
+

〈w′
HJ − w〉 fH(w, t) f J(w∗, t)dwdw∗

= H(t) ∑
J∈{S,I,V,R}

J(t)(λJm1,J(t)− λHm1,H).
(7)

The total mean wealth is then conserved:

d
dt ∑

H∈{S,I,V,R}

∫
R+

w fH(w, t)dw =
d
dt

m1 = 0.

The evolution of mass fractions can be easily obtained from (2) via direct integration
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d
dt

S(t) = −
∫
R2
+

β(w, w∗) fS(w, t) f I(w, t)dw dw∗ − αS(t),

d
dt

I(t) =
∫
R2
+

β(w, w∗) fS(w, t) f I(w, t)dw dw∗ + (1 − ζ)
∫
R2
+

β(w, w∗) fV(w, t) f I(w, t)dw dw∗ − γI I(t),

d
dt

V(t) = αS(t)− (1 − ζ)
∫
R2
+

β(w, w∗) fV(w, t) f I(w, t)dw dw∗,

d
dt

R(t) = γI I(t).

(8)

To obtain a closed-form evolution of the macroscopic quantities, we consider a constant rate
function, β(w, w∗) = β̄ > 0, obtained from (4) for ν = 0, and a constant-in-time market risk
σ2(t) = σ2. Under these assumptions, thanks tothe mass conservation of Boltzmann-type
operators (6), we obtain a classical SIR model with vaccination

d
dt

S(t) = −β̄S(t)I(t)− αS(t),

d
dt

I(t) = β̄S(t)I(t) + (1 − ζ)β̄V(t)I(t)− γI I(t),

d
dt

V(t) = αS(t)− (1 − ζ)β̄V(t)I(t),

d
dt

R(t) = γI I(t).

(9)

As a consequence, for large times t → +∞, we have a disease-free equilibrium state, where
I(t) → 0+, S(t) → 0+, V(t) → V∞ and R(t) → R∞ with V∞ + R∞ = 1 (see [3]).

The dynamics of mean wealth can be recovered from (7) as follows

S(t)
d
dt

m1,S(t) = S(t)(m̄1(t)− λSm1,S(t)),

I(t)
d
dt

m1,I(t) = β̄S(t)I(t)(m1,S − m1,I) + β̄(1 − ξ)V(t)I(t)(m1,V − m1,I)

+ I(t)(m̄1 − λIm1,I),

V(t)
d
dt

m1,V(t) = αS(t)(m1,S − m1,V) + V(t)(m̄1 − λVm1,V),

R(t)
d
dt

m1,R(t) = γI I(t)(m1,R(t)− m1,I(t)) + R(t)(m̄1(t)− λRm1,R(t)),

(10)

where we defined the weighted mean wealth as

m̄1(t) = ∑
J∈{S,I,V,R}

λJm1,J(t)J(t). (11)

Therefore, based on (10), we can observe that the large time behavior of the mean wealth
satisfies

2m̄∞
1 − λVm∞

1,V − λRm∞
1,R = 0.

Hence, we obtain
λVm∞

1,V = λRm∞
1,R,

together with the constraint R∞m∞
R,1 + V∞m∞

V,1 = m, based on the conservation of total
mean wealth. Thanks to the latter equalities, we can observe that the asymptotic mean
wealth in the compartments of vaccinated and recovered individuals is given by

m∞
1,V =

λR
λRV∞ + λV R∞ m, m∞

1,R =
λV

λRV∞ + λV R∞ m. (12)
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Likewise, we obtain the system for the the second moments

S(t)
d
dt

m2,S(t) = (λ2
S − 2λS + σ2)Sm2,S + S(t)m̄2 + 2(1 − λS)Sm1,Sm̄1,

I(t)
d
dt

m2,I(t) = β̄SI(m2,S − m2,I) + (1 − ζ)β̄VI(m2,V − m2,I)

+ (λ2
I − 2λI + σ2)Im2,I + Im̄2 + 2(1 − λI)Im1,I m̄1,

V(t)
d
dt

m2,V(t) = αS(m2,S − m2,V) + (λ2
V − 2λV + σ2)Vm2,V + Vm̄2

+ 2(1 − λV)Vm1,Vm̄1,

R(t)
d
dt

m2,R(t) = (λ2
R − 2λR + σ2)Rm2,R + Rm̄2 + 2(1 − λR)Rm1,Rm̄1,

(13)

where m̄1 has been defined in (11) and we have introduced the following notation

m̄2(t) = ∑
J∈{S,I,V,R}

λ2
J m2,J(t)J(t).

The evolution of the second moment for the whole system is governed by

d
dt

m2(t) = m̄2(t) + ∑
J∈{S,I,V,R}

(
mJ,2(λ

2
J − 2λJ + σ) + 2(1 − λJ)mJ,2m̄1(t)

)
J(t).

For large times, the second-order moment for susceptible and infected is such that m2,S, m2,I
→ 0+ for t → +∞. Therefore, m∞

2,V , m∞
2,R are solutions to

(λ2
V − 2λV + σ2)m∞

2,V + m̄∞
2 + (1 − λV)m∞

1,Vm̄∞
1 = 0,

(λ2
R − 2λR + σ2)m∞

2,R + m̄∞
2 + (1 − λR)m∞

1,Rm̄∞
1 = 0.

from which we get

m∞
2,R =

λ2
V(1 − λV)V∞m∞

1,Vm̄∞
1 − AV(1 − λR)m∞

1,Rm̄∞
1

AV(λ
2
R(1 + R∞)− 2λR + σ2)− λ2

Vλ2
RV∞R∞

m∞
2,V =

λ2
R(1 − λR)R∞m∞

1,Rm̄∞
1 − AR(1 − λV)m∞

1,Vm̄∞
1

AR(λ
2
V(1 + V∞)− 2λV + σ2)− λ2

Rλ2
VV∞R∞

where
AH = λ2

V(1 + H∞)− 2λV + σ2, H ∈ {V, R},

and m̄∞
1 = λVm∞

1,VV∞ + λRm∞
1,RR∞ and m∞

1,V , m∞
1,R have been obtained in (12).

Remark 2. In the general case where a non-constant incidence rate β = β(w, w∗) is considered,
the macroscopic system of equations is not closed. Depending on the specific choice of β and using
the knowledge on the equilibrium states discussed in Section 3.1 it is possible, through the classical
hydrodynamic closure of kinetic theory, to derive epidemic models where the dynamics, instead of
being homogeneous as in classical compartmental modeling, is influenced by the heterogeneous
wealth status of individuals. We refer to [8,38] for examples in this direction.

3. Properties of the Kinetic Model

In this section we study the mathematical model (2) from an analytical point of view,
by proving the well-posedness and convergence to equilibrium of the solution. To this
end, we made suitable simplification assumptions on the contact rate by restricting to the
case β(w, w∗) = β̄. We resort to classical mathematical approaches for kinetic equations
to characterize the trend to equilibrium [1,27]. In particular, taking into account methods
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for nonconservative systems—see, e.g., ref. [49]—we provide an existence and uniqueness
result. Given a function f (w) ∈ L1(R+), we define its Fourier transform as follows

f̂ (z) =
∫
R

e−iwz f (w)dw.

According to the above assumption regarding the contact rate, we rewrite (2) in weak form:

∂t

∫
R+

ϕ(w) fS(w, t)dw = −β̄I(t)
∫
R+

ϕ(w) fS(w, t)dw − α
∫
R+

ϕ(w) fS(w, t)dw

+ ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QSJ( fS, f J)(w, t)dw,

∂t

∫
R+

ϕ(w) f I(w, t)dw = β̄I(t)
∫
R+

ϕ(w) fS(w, t)dw + (1 − ζ)β̄I(t)
∫
R+

ϕ(w) fV(w, t)dw

− γI

∫
R+

ϕ(w) f I(w, t)dw + ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QI J( f I , f J)(w, t)dw,

∂t

∫
R+

ϕ(w) fV(w, t)dw = α
∫
R+

ϕ(w) fS(w, t)dw − (1 − ζ)β̄I(t)
∫
R+

ϕ(w) fV(w, t)dw

+ ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QV J( fV , f J)(w, t)dw,

∂t

∫
R+

ϕ(w) fR(w, t)dw = γI

∫
R+

ϕ(w) f I(w, t)dw + ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QRJ( fR, f J)(w, t)dw.

(14)

Hence, we consider ϕ(w) = e−izw in (14) to get

∂t f̂S(z, t) = −β̄I(t) f̂S(z, t)− α f̂S(z, t) + ∑
J∈{S,I,V,R}

Q̂SJ( f̂S, f̂ J)(z, t),

∂t f̂ I(z, t) = β̄I(t) f̂S(z, t) + (1 − ζ)β̄ f̂ I(z, t) f̂V(z, t)− γI f̂ I(z, t) + ∑
J∈{S,I,V,R}

Q̂I J( f̂ I , f̂ J)(z, t),

∂t f̂V(z, t) = α f̂S(z, t)− (1 − ζ)β̄ f̂ I(z, t) f̂V(z, t) + ∑
J∈{S,I,V,R}

Q̂V J( f̂V , f̂ J)(z, t),

∂t f̂R(z, t) = γI f̂ I(z, t) + ∑
J∈{S,I,V,R}

Q̂RJ( f̂R, f̂ J)(z, t).

(15)

Similarly to [1] the operators Q̂HJ( f̂H , f̂ J)(z, t) may be rewritten as follows∫
R+

e−iwzQHJ( fH , f J)dw = 〈 f̂H(AHJz, t)〉 f̂ J(λJz, t)− J(t) f̂H(z, t),

where
AHJ = 1 − λH + ηHJ .

We assume that the parameters of the trading activity satisfy the condition

ν = max
H,J∈{S,I,V,R}

[λ2
J + 〈A2

HJ〉] < 1. (16)

Let Ps(R+) be the set of probability measures f (w) with bounded s−moment, and, for any
pair of densities f and g in Ps(R+), let us consider the class of metrics ds defined by

ds( f , g) = sup
z∈R

| f̂ (z)− ĝ(z)|
|z|s , (17)

where f̂ and ĝ denote the Fourier transforms of f and g. Then, the distance (17) is well-
defined and finite for any pair of probability measures with equal moments up to order
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[s] (where [s] denotes the integer part of s), if s is a real number or up to s − 1, if s is an
integer [27].

Inequality (16), combined with a Fourier-based distance, allows one to obtain an
exponential convergence to equilibrium for system (2). This condition is verified whenever

σ2 < 2 min
J∈{S,I,V,R}

λJ(1 − λJ),

namely, when the market risk is not too great in relation to the saving propensities. To
study the large-time behavior of the solution to systems such as (15) we follow [1,27].
Then, we have the following result

Theorem 1. Let f J(w, t) and gJ(w, t), J ∈ {S, I, V, R}, be two solutions of the kynetic system (2),
corresponding to the initial values f J(w, 0) and gJ(w, 0) such that d2( f J(w, 0), gJ(w, 0)), J ∈
{S, I, V, R}, is finite. Then, if condition (16) holds, the Fourier-based distance d2( f J(w, t), gJ(w, t))
decays exponentially in time toward zero and the following holds:

∑
J∈{S,I,V,R}

d2( f J(w, t), gJ(w, t)) < ∑
J∈{S,I,V,R}

d2( f J(w, 0), gJ(w, 0)) exp{−(1 − ν)t}. (18)

The previous result and the Equation (18) give us the contractivity of the system in the d2
metric, which will be the essential to prove the existence theorem. Theorem 1 allows us to
further investigate the properties of the steady state f ∞

J (w), J ∈ {S, I, V, R}.
In order to obtain an existence result we need to introduce a subset of P2(R)

Dm1,m2 :=

{
F ∈ P2(R) :

∫
R

vdF(v) = m1,
∫
R

v2dF(v) = m2

}
. (19)

Following [49], it is possible to prove that Dm1,m2 is a metric Banach space with the
d2(·, ·) metric. Now, we define

D∞ := Dm∞
V,1,m∞

V,2
×Dm∞

R,1,m∞
R,2

as the product space of two sets such as (19), where the momenta are those of the steady
states for the relative distributions f J(w), for J ∈ {V, R} (we are only considering these
two classes since for large time I, S → 0+). We also recall a variant of the metric used in
Theorem 1

d2( f , g) := ∑
J∈{V,R}

d2( f J(w, t), gJ(w, t)). (20)

Now, we are able to prove the following theorem.

Theorem 2. If the initial value f0(w) = f (w, 0) ∈ D∞ and condition (16) holds, then the system

∂t fV(w, t) = ∑
J∈{V,R}

QV J( fV , f J)(w, t),

∂t fR(w, t) = ∑
J∈{V,R}

QRJ( fR, f J)(w, t),
(21)

has a unique steady state f ∞(w), and it also belongs to D∞.

Proof. Let us consider the flow map

Tt :
(
D∞, d̄2

)
→

(
D∞, d̄2

)
(22)
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which , for any time t > 0, is given by Tt( f0(w)) = f (t) = ( fV(w, t), fR(w, t)), where f (t)
is the solution of (21) at time t with f (w, 0) = f0(w) ∈ D∞. Thanks to (18) we have

d2
(
Tt( f0(w)), Tt(g0(w))

)
< d2

(
f0(w), g0(w)

)
exp{−(1 − ν)t}

which is a strict contraction for (22) with constant exp{−(1 − ν)t} < 1. Now, it is easy to
see that

(
D∞, d2

)
is a Banach space and therefore the Banach fixed-point theorem ensures

the existence and uniqueness for the steady state in D∞.

Remark 3. Similar results may be obtained in the more realistic case β(w, w∗) = β(w − w∗)
since the transmission operator K(·, ·) defined in (3) possesses, in this case, a convolution structure,
which naturally converts into a product in the Fourier space. We omit the details.

3.1. Fokker–Planck Scaling and Steady States

In the general case, it is difficult to compute analytically the large-time behaviour
of the compartmental kinetic system (2). A deeper insight into the steady states can be
obtained through the so-called quasi-invariant limit procedure [1,4,27]. The goal is to
derive a simplified Fokker–Planck model in which the study of the asymptotic properties is
much easier. It is worth mentioning that this approach is inspired by the so-called grazing
collision limit of the Boltzmann equation; see [50,51].

The driving idea is to scale interactions and trading frequency at the same time.
As a consequence, the equilibrium of the wealth distribution is reached more quickly
with respect to the time scale of the epidemic. Hence, given ε � 1 we introduce the
following scaling

λS → ελS, λI → ελI , λV → ελV , λR → ελR,

σ2 → εσ2, β(w, w∗) → εβ(w, w∗), γI → εγI ,
(23)

together with the time scaling t → t/ε. We denote as Qε
HJ(·, ·), H, J ∈ {S, I, V, R}, the

scaled interaction terms. Using a Taylor expansion for small values of ε, we get [1]

1
ε

∫
R+

Qε
HJ( fH , f J)(w, t)ϕ(w)dw

=
∫
R+

{
−ϕ′(w)(wλH J − m1,JλJ) +

σ2

2
ϕ′′(w)w2 J(t)

}
fH(w, t)dw + O(ε).

Integrating back by parts, in the limit ε → 0, we obtain the system of Fokker–Planck equations

∂ fS(w, t)
∂t

= −K( fS, f I)(w, t)− α fS(w, t) +
∂

∂w
{[wλS − m̄(t)] fS(w, t)}

+
σ2

2
∂2

∂w2 (w
2 fS(w, t)),

∂ f I(w, t)
∂t

= K( fS, f I)(w, t) + (1 − ζ)K( fV , f I)(w, t)− γI f I(w, t)

+
∂

∂w
{[wλI − m̄(t)] f I(w, t)}+ σ2

2
∂2

∂w2 (w
2 f I(w, t)),

∂ fV(w, t)
∂t

= α fS(w, t)− (1 − ζ)K( fV , f I)(w, t) +
∂

∂w
{[wλV − m̄(t)] fV(w, t)}

+
σ2

2
∂2

∂w2 (w
2 fV(w, t)),

∂ fR(w, t)
∂t

= γI(w, t) +
∂

∂w
{[wλR − m̄(t)] fR(w, t)}+ σ2

2
∂2

∂w2 (w
2 fR(w, t)),

(24)

322



Entropy 2022, 24, 216

where m̄ has been defined in (11). The above Fokker–Planck system is complemented with
the following boundary conditions

∂

∂w
[w2gJ(w, t)]|w=0 = 0 [wλJ − m]gJ +

σ

2
∂

∂w
(w2gJ)

∣∣∣∣
w=0

= 0.

We can verify under suitable assumptions that the Fokker–Planck system (24) possesses an
explicitly computable steady state [52]. Let us consider the case of a constant contact rate,
i.e., β(w, w∗) = β̄. Since for large times S, I → 0+ we find that the stationary states f ∞

V (w)
and f ∞

R (w) solve the following equations:

λV
∂

∂w

[
(w − m∞

V ) f ∞
V (w)

]
+

σ2

2
∂2

∂w2 [w
2 f ∞

V (w)] = 0,

λR
∂

∂w

[
(w − m∞

R ) f ∞
R (w)

]
+

σ2

2
∂2

∂w2 [w
2 f ∞

R (w)] = 0.

Based on the above equalities, we find that the two steady states are inverse Gamma
densities

f ∞
V (w) = V∞ κμV

Γ(μV)

e−
κ
w

w1+μV
f ∞
R (w) = R∞ κμR

Γ(μR)

e−
κ
w

w1+μR
(25)

with Pareto indices defined as follows

μV = 1 + 2
λV

σ2 , μR = 1 + 2
λR

σ2 ,

κ = (μV − 1)m∞
V = (μR − 1)m∞

R =
2λRλV

σ2(λRV∞ + λV R∞)
m.

Consequently, the global steady state is a mixture of the inverse Gamma distribution

f ∞(w) = f ∞
V (w) + f ∞

R (w), (26)

which may present a bimodal shape with a different intensity.The formation of two peaks
at the equilibrium is due to the fact that we have two different maxima corresponding to
the points

wV =
κ

μV + 1
=

λRλV
(λV + σ)(λRV∞ + λV R∞)

m, (27)

wR =
κ

μR + 1
=

λRλV
(λR + σ)(λRV∞ + λV R∞)

m, (28)

for the vaccinated and for the recovered wealth distributions, respectively. In the next
section we report on the resulting profiles for different choices of λV , λR, σ and V∞, R∞.

Remark 4. The emergence of a multimodal equilibrium wealth distribution has been classically
linked to the appearance of new inequalities in highly stressed societies; see, e.g., [15,35,53]. In
these cases, the economic segregation of part of the society leads to the pauperization of substantial
layers of the middle class. In the present case, the different economic impact played by agents in each
compartment is capable of shaping the wealth distribution towards a bimodal distribution. Indeed,
the trading propensities modeling personal responses to the economic scenario can be substantially
modified by the progression of the epidemic and the vaccine efficacy.

4. Numerical Results

In this section we study the impact of vaccination on the equilibrium of the kin-
etic system through several numerical simulations. This allows us to show the model’s
ability to describe different situations of wealth distribution in the presence of epidemic
dynamics. In particular, we will adopt standard direct simulation Monte Carlo methods
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to simulate the system of kinetic Equation (2); see [27] and the references therein. In all
the subsequent tests we will consider N = 105 agents and the densities are reconstructed
through standard histograms.

In the first test, we verify numerically the convergence of the solution to the kinetic
system (2) to the solution of the Fokker–Planck system (24) under the scaling (23). Then,
we study the emergence of wealth inequalities, measured through the Gini index, in
relation to the effectiveness of the vaccine. These results are obtained both in the case
of a constant market risk variance σ2 and in the case of a variance that depends on the
current epidemic situation. Lastly, we introduce the possibility that the effectiveness of
the vaccine is also affected by the number of positive cases. This situation mimics the
realistic case of the diffusion of viral variants for which an up-to-date vaccine may be not
immediately available.

4.1. Test 1: Long-Time Behavior and Convergence to Equilibrium

In this test, we want to observe the convergence of the numerical solution of the
kinetic system (2) to the one of the Fokker–Planck system (24) in the quasi-invariant limit
introduced in Section 3.1. We consider the simplified case where β(w, w∗) = β̄ = 0.2,
γI = 1/12 and ζ = 0.9, for which we obtained the steady distributions in (25). These values
are representative of realistic dynamics during the beginning of the COVID-19 pandemic;
see, e.g., [6–8,39,54].

At time t = 0 we consider an inverse Gamma distribution

f (w, 0) =
(μ − 1)μ

Γ(μ)

exp
(
−μ − 1

μ

)
w1+μ

, (29)

where Γ(·) is the Gamma function and μ = 10. The distributions of the epidemic compart-
ments are

fS(w, 0) = ρS f (w), f I(w, 0) = ρI f (w), fV(w, 0) = ρV f (w), fR(w, 0) = ρR f (w), (30)

where the mass fractions are ρI = 7.5 × 10−3, ρV = 0, ρR = 4 × 10−2 and ρS = 1 − (ρI +
ρV + ρR). Furthermore, we consider the value σ2 = 0.02 for the market risk. In Figure 1
we show the numerical solution at time T = 300 of (2) in the scaling regime (23) with
ε = 1, 0.5, 10−3.

In particular, provided an epidemic dynamics such that V∞ = 0.51 and R∞ = 0.49,
we give numerical evidence of the aforementioned convergence in two regimes expressing
increasing safeguard thresholds 1 − λJ , J ∈ {S, I, V, R}, for non-vaccinated agents

(i) λS = 0.15, λI = 0.10, λV = 0.30, λR = 0.20
(ii) λS = 0.10, λI = 0.05, λV = 0.30, λR = 0.15

where the same values of V∞ and R∞ are unchanged. In particular, we assume that
recovered individuals are characterized by a greater safeguard parameter. This is coherent
with the possibility of reinfection, which will be investigated in the last numerical test.

We observe that, if ε � 1, the Fokker–Planck asymptotic distribution is a consistent
approximation of the equilibrium distribution of the Boltzmann-type model. In both cases,
the global distribution is a mixture of inverse Gamma densities and in the righ-hand plot
depicted in Figure 1, we can clearly observe a bimodal shape for the wealth distribution.
To highlight this, we have drawn the maximum points of the distributions f ∞

V , f ∞
R , which

are at wV , wR, defined in (27) and (28).
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Figure 1. Test 1. Comparison of the wealth distributions at the end of the epidemic for the kinetic
system (2) with the explicit Fokker–Planck asymptotics (26) with scaling parameters ε = 1, 1

2 , 10−3.
(Left) λS = 0.15, λI = 0.10, λV = 0.30, λR = 0.20. (Right) λS = 0.10, λI = 0.05, λV = 0.30 λR = 0.15.
In both cases we fixed β̄ = 0.2, γI = 1/12, α = 0.005, ζ = 0.9 and σ2 = 0.02.

4.2. Test 2: Wealth Inequalities and Vaccination Campaign

In the second test case we analyze the emergence of wealth inequalities through the
computation of the Gini index. In particular, we concentrated on the effects linked to the
outbreak of the infection and on the impact of an effective vaccination campaign.

We fixed the epidemic parameters as follows: β̄ = 0.15, γI = 1/12 and a vaccination
rate of α = 10−2. Furthermore, we considered two different vaccine efficacies ζ = 0.95,
corresponding to a high efficacy of the vaccine, and ζ = 0.55 corresponding to a low efficacy
of the vaccine. Since we are interested in the behavior of the system up to the conclusion of
the epidemic phenomenon, the final time was fixed as T = 810, corresponding to a wide
time-span. We kept the same values for the saving propensities and market risk as those
defined for Section 4.1. Hence, we considered initial wealth distributions as in (29) and mass
fractions as in (30), with ρI = 7× 10−3, ρV = 0, ρR = 4× 10−2 and ρS = 1− (ρI + ρV + ρR).
The scaling coefficient was ε = 5 × 10−2. The resulting epidemic dynamic is reported in
Figure 2.
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Figure 2. Test 2. Evolution of the epidemic dynamics from (9) for the choice of parameters β̄ = 0.15,
γI = 1/12, α = 0.01 and ζ = 0.95 (left), ζ = 0.55 (right).
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We evaluated the Gini coefficient of the emerging equilibrium distributions. The Gini
index is commonly computed from the Lorenz curve

L(F(w)) =
∫ w

0
f ∞(w∗)w∗dw∗,

where F(w) =
∫ w

0
f ∞(w∗)dw∗ and is defined as follows

G1 = 1 − 2
∫ 1

0
L(x)dx.

This index should be understood as a measure of a country’s wealth discrepancy and it
varies in [0, 1], where in the case G1 = 0 the country is in a situation of perfect equality,
whereas G1 = 1 indicates complete inequality. A reasonable value for this parameters is in
the range [0.2, 0.5] for most Western economies [36].

In Figure 3 we show the evolution of the Gini index with the parameters described
above. We may observe that the epidemic peak leads to an increasing of inequalities that
is then absorbed for later times in relation to the efficacy of the vaccine. Consequently,
only when the vaccine is made available to the majority of the population does it actually
contribute to reducing inequalities; otherwise, it may have the opposite effect. This reminds
us of how, on a global level, the importance of making vaccines available to all countries
should be seen not only in terms of epidemics, but also in terms of reducing economic
inequalities. In all the considered cases, in the long term, the Gini index decreases thanks
to the vaccine.

0 122 243 365

0.2

0.25

0.3

Figure 3. Test 2. Evolution of Gini index under the epidemic dynamics described in Figure 2 and for
the choice of parameters λS = 0.10, λI = 0.07, λV = 0.30, λR = 0.15. Two vaccine efficacies were
considered: 95% (green) and 55% (red). In both cases we considered σ2 = 0.02.

Next, we consider the case where the market risk is related to the behavior of the
epidemic’s spread and where there is a linear relation between the market risk and the
number of people infected. The introduction of a time-dependent market risk σ2(t) mimics
an instantaneous influence of the pandemic on the volatility of a market economy, as is
often observed. Therefore, we consider the following:

σ2(t) = σ2
0 (1 + μI(t)) (31)
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where μ > 0 expresses the effective influence of the epidemic dynamics on the market
volatility and σ2

0 > 0 is an ineradicable baseline risk.
In the following, we choose μ = 50 and σ2

0 = 0.02. In Figure 4 we represent the
evolution of σ2(t) in the presence of an epidemic characterized by β̄ = 0.15, γI = 1/10.
Furthermore, we compare the Gini index in the presence of two effectiveness rates of the
vaccine, i.e., ζ = 0.95 and ζ = 0.55. We may easily observe how an increasing variability
leads to a worsening of the Gini index and, therefore, of the inequalities. The long-term
behavior of the Gini index depends, as before, on the vaccine efficacy ζ such that low
efficacy leads to increasing inequalities in the long term. This is due to the fact that as
t → +∞ we have I → 0+ and then σ2(t) → σ2

0 .
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Figure 4. Test 2. (Left) evolution of the market risk σ2(t) as defined in (31) with μ = 50 and σ2
0 = 0.02

in case of two different vaccine efficacies. (Right) evolution of Gini index under the epidemic
dynamics described in Figure 2 and epidemic-dependent market risk parameter (31).

Finally, in Figure 5 we present the evolution of the full kinetic density solution to (2)
in the scaling ε = 5 × 10−2 in the presence of fixed market risk σ2 or with the epidemic-
dependent σ2(t) discussed in (31).

4.3. Nonlinear Incidence Rate and Time-Varying Vaccine Efficacy

In this last test case, to model different frequencies of interactions between agents that
belong to the same wealth class, we introduce a wealth-dependent contact rate β(w, w∗) of
the form

β(w, w∗) =
β̄

(c + |w − w∗|)ν
, (32)

where β̄, c, ν > 0. We have depicted the above contact rate in Figure 6.
We also introduce a time-dependent efficacy of the vaccine ζ of the form

ζ(t) = ζ0 − ψ
∫ t

0

∫
R+

f I(w, t)dwds = ζ0 − ψ
∫ t

0
I(s)ds, (33)

with ζ0 ∈ [0, 1] indicating the initial efficacy of the vaccine and 0 < ψ ≤ ζ0. This time-
dependence in vaccine coverage describes, in a simplified way, the fact that with more
infected individuals it is more likely to encounter mutations of the original virus, for which
the vaccine is less effective. In the following, we compare the evolution of the wealth
inequalities in the presence of two different values ζ0.
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Figure 5. Test 2. Time evolution of the wealth distribution of the kinetic model (2) in the scaling
ε = 5 × 10−2 with vaccine efficacy ζ = 0.55 (left column) or ζ = 0.95 (right column) and with
constant market risk σ2 = 0.02 (top row) or σ2(t), defined in (31) with μ = 50. In all the evolutions
we considered λS = 0.10, λI = 0.07, λV = 0.30 and λR = 0.15. The initial distribution was defined
in (29) and (30). In the left image, we can observe the evolution of the wealth distribution for the
kinetic model (2) in the scaling parameter ε = 5 × 10−2 with ζ = 0.95, whereas, in the right image we
have the comparison between the behaviors of the Gini index with vaccine effectiveness, equal to
95% (green line) and 65% (red line). In both images we considered a variable market risk (31) with
σ2

0 = 0.02 and μ = 50 and λS = 0.10, λI = 0.07, λV = 0.30 and λR = 0.15.

Furthermore, to make the modeling more realistic, we assume the loss of immunity of
the agents in the compartment R. To this end, we have to modify the first and last equations
of the model (2) as follows

∂t fS(w, t) = −K( fS, f I)(w, t)− α fS(w, t) + γR fR(w, t) + ∑
J∈{S,I,V,R}

QSJ( fS, f J)(w, t)

∂t fR(w, t) = γI f I(w, t)− γR fR(w, t) + ∑
J∈{S,I,V,R}

QRJ( fR, f J)(w, t),
(34)

where γR ≥ 0 is the rate expressing the loss of immunity of recovered agents. Note that
this latter assumption substantially changes the epidemic dynamics, since asymptotically,
instead of a disease-free scenario, we have the emergence of endemic states [3].
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Figure 6. Test 3. Wealth-dependent contact rate β(w, w∗) of the form (32) with β̄ = 8, c = 7, ν = 2.

4.3.1. Test 3A: γR = 0

First, we consider model (2) without the modified relations (34) (or equivalently, in
the absence of reinfection, i.e., γR = 0) and, as before, a fixed recovery rate γI = 1/12
and a vaccination rate α = 0.005 with the same initial masses as those defined in (30).
Furthermore, we fixed ψ = 0.005. In Figure 7, in the top row, we show the evolution for
the fractions of the population in the case of ζ0 = 0.95 (left) and ζ0 = 0.55 (right). We may
observe how a variable efficacy of the vaccine, affected by epidemic peaks, may strongly
shape the immunity of the population, even in the presence of an initial high efficacy.
Interestingly, in this latter case, a variable efficacy leads to the emergence of secondary
peaks of infection. This is due to the presence of a smaller number of recovered persons
who, unlike vaccinated people, maintain immunity.

In Figure 7, in the bottom-left row, we can observe the evolution of the resulting
vaccine efficacy for ζ0 = 0.95, ζ0 = 0.55 and ψ = 0.005. The vaccine efficacy is degraded by
the epidemic dynamics due to the increasing of the infected compartment, with a slower
efficacy decay for high initial ζ0.

For the same choice of coefficient, in the bottom-right plot of Figure 7, we show
the evolution of the Gini coefficient in the case of variable efficacy as (33). With respect
to a vaccine with constant efficacy, the efficacy decay forces the emergence of sharper
inequalities, which is well evidenced by the evolution of the Gini coefficient.
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Figure 7. Test 3A. Top row: epidemic dynamics with wealth-dependent β(w, w∗), defined in (32) with
β̄ = 8, c = 7, ν = 2, γI = 1/12, α = 0.005 and variable ζ as in (33) with ψ = 0.005. We considered
ζ0 = 0.95 (left) and ζ0 = 0.55 (right). The initial distribution is (29) with mass fractions (30). Bottom
row: decline in vaccine efficacy due to the presence of a high number of infective people (left) and
the evolution of the Gini index (right) for a variable infection rate β(w, w∗) as in (32) and vaccine
effectiveness ζ(t) as in (33). We considered λS = 0.10, λI = 0.07, λV = 0.25, λR = 0.15 and β̄ = 8,
c = 7, ν = 2 and ψ = 0.005.

4.3.2. Test 3B: γR > 0

Finally, we consider model (2) including the modified Equation (34), with a reinfection
period of 180 days, i.e., γR = 1/180 and, as before, a fixed recovery rate γI = 1/12 and
vaccination rate α = 0.005 with the same initial masses as those defined in (30). In the first
row of Figure 8, we present two epidemic dynamics with nonlinear contact rates (32) and
the time-dependent efficacy ζ(t) defined in (33) with ψ = 1.5 × 10−4. In the left plot, we
present the case of strong initial vaccine efficacy ζ0 = 0.95 and in the right plot the case
of mild initial vaccine efficacy ζ0 = 0.45. The macroscopic dynamics present an endemic
equilibrium due to the presence of the reinfection rate γR. Furthermore, in contrast to the
previous case, in the case of reduced initial efficacy of the vaccine, a second infection wave
is seen to emerge.
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Figure 8. Test 3B. Top row: epidemic dynamics with wealth-dependent β(w, w∗), defined in (32) with
β̄ = 8, c = 7, ν = 2, γI = 1/12, γR = 1/180, α = 0.005 and variable ζ as in (33) with ψ = 1.5 × 10−4.
We considered ζ0 = 0.95 (left) and ζ0 = 0.55 (right). The initial distribution is (29) with mass
fractions (30). Bottom row: decline in vaccine efficacy due to the presence of a high number of
infected people (left) and evolution of the Gini index (right). We considered λS = 0.10, λI = 0.07,
λV = 0.25, λR = 0.15 and β̄ = 8, c = 7 and ν = 2.

Looking at the bottom-left plot, we can observe that, in the present regime of para-
meters, a strong initial vaccine efficacy is robust with respect to the efficacy decay due
to epidemic waves. On the other hand, mild initial efficacies can dissipate their positive
influence on the evolution of the infection. At the level of the evolution of the Gini index, in
the presence of reinfection, it appears even more evident that inequalities appear for large
times in the presence of mild vaccinations. Nevertheless, in transient regimes, the higher
possibility of investing wealth for vaccinated agents may create temporary inequalities.

5. Conclusions

The widespread vaccination campaign undertaken in Western countries to counteract
the evolution of the COVID-19 epidemic and its economic effects depends in large part
on the efficacy of vaccines. Mathematical models capable of predicting the evolution
of the economy in relation to the effectiveness of the vaccination campaign can play a
fundamental role in configuring possible scenarios and suggesting further measures to be
taken by governments. In this paper we analyzed, at the level of wealth distribution, the
economic improvements induced by the vaccination campaign in terms of its percentage of
effectiveness. Following the ideas developed in [1,8], the interplay between the economic
trend and the pandemic has been evaluated, resorting to a mathematical model combining
a kinetic model for wealth exchanges based on binary interactions with a classical SIR
compartmental epidemic model, including the compartment of vaccinated individuals.
Extensions of the presented methodology are possible to include disease-related mortality
and redistribution operators. Moreover, since a direct comparison of the results of similar
compartmental kinetic models—in the case of social aspects related to the transience of the
epidemic—outlined a good agreement with the actual data [8,38,39], we can assume that
the present approach is able to follow the real evolution of the economic parameters of a
country over a sufficiently long period of time. Indeed, even though the model introduced
here necessarily represents a strong simplification of an extremely complex phenomenon, its
qualitative behavior is capable of describing the essential features of the pandemic’s impact
on individuals’ wealth. A key aspect of the model is, in fact, the possibility of obtaining
explicit configurations of the stationary wealth distributions in the form of inverse Gamma
densities, with the essential parameters depending on the percentage of vaccinated and
recovered individuals, thus relating the effectiveness of the vaccination campaign to the
formation of wealth inequalities. Several numerical experiments have also been conducted
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to quantify how a highly effective vaccination campaign has a direct effect on the decrease
over time of the Gini coefficient, a classic measure of inequality in the distribution of wealth
in Western societies.
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Abstract: Relatedness is a key concept in economic complexity, since the assessment of the similarity
between industrial sectors enables policymakers to design optimal development strategies. However,
among the different ways to quantify relatedness, a measure that takes explicitly into account the time
correlation structure of exports is still lacking. In this paper, we introduce an asymmetric definition
of relatedness by using statistically significant partial correlations between the exports of economic
sectors and we apply it to a recently introduced database that integrates the export of physical
goods with the export of services. Our asymmetric relatedness is obtained by generalising a recently
introduced correlation-filtering algorithm, the partial correlation planar graph, in order to allow its
application on multi-sample and multi-variate datasets, and in particular, bipartite temporal networks.
The result is a network of economic activities whose links represent the respective influence in terms
of temporal correlations; we also compute the statistical confidence of the edges in the network via
an adapted bootstrapping procedure. We find that the underlying influence structure of the system
leads to the formation of intuitively-related clusters of economic sectors in the network, and to a
relatively strong assortative mixing of sectors according to their complexity. Moreover, hub nodes
tend to form more robust connections than those in the periphery.

Keywords: complex systems; economic complexity; relatedness; products and services; planar graph;
partial correlation

1. Introduction

In the past few years, the use of bipartite networks for the representation of real-
world complex systems has become widespread in a variety of fields and applications.
These networks are usually constructed using multi-sample, multi-variate structured data
used to model complex systems such as biological networks (enzymes and reactions [1],
genes and diseases [2], plants and pollinators [3]), movies and actors [4,5], authors and
papers [5,6], board of directors members and companies [7,8], companies and technologies
they patent [9], members of peer-to-peer networks and data provided [10], international
NGO branches and cities hosting them [11], supreme court judges and their votes [12],
and legislators and bills they sponsor [13].

A prominent example is the bipartite network formed by countries and the products
they export. This type of data has been used extensively in the field of economic complexity
(EC) [14,15] to assess various quantities of interest for the modelling of the economic devel-
opment of countries. The first one is the competitiveness of countries and the sophistication
of products [16–20], and the relatedness between products, countries, or between countries
and products [21,22]. With respect to the datasets implemented in the literature up to now,
the dataset we use in this paper adds the inclusion of services to the set of tangible products
traditionally considered in the EC literature [23,24].
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An agreed definition of relatedness still does not exist, despite the vast number of appli-
cations of this concept, that ranges from forecasting industrial upgrading [25] to its use as an
explanatory variable in a number of different contexts (see [26] and references therein). In most
cases, one computes a projection of the bipartite network (e.g., country-product) onto one of
the two sets of nodes to obtain a monopartite network (e.g., product-product) [21,22,27]; the
relatedness between the nodes of the target layer is given by the weights of the corre-
sponding links. Since the information content of the projected network is always smaller
than that in the bipartite network, the choice of the method employed to achieve this is
highly non-trivial. The resulting network should be a meaningful representation of the
bipartite network for the specific problem being tackled while minimising the information
loss due to the projection. There are several methods available in the literature to carry
out this task (see [26,28]); however, to the best of our knowledge, no one takes explicitly
into account the temporal structure, with the possible exception of the time-delayed co-
occurrences approach described in [23,29] which, however, does not take into account
the correlation between the different time series involved. This is a key element, since a
comprehensive unveiling of the complex interactions between industrial sectors clearly
requires a dynamical perspective.

In this paper, we tackle this issue by quantifying the average influence between
industrial sectors in terms of partial correlation. To do so we introduce a framework that
generalises a network generation method based on correlation-filtering called the partial
correlation planar graph (PCPG) algorithm [30] in order to allow for its use with multi-
sample multi-variate datasets. Since this methodology is particularly suitable for bipartite
networks such as the ones usually studied in EC, we have called our framework biPCPG.
The PCPG is an adaptation of the Planar Maximally Filtered Graph (PMFG) [31] which
is in turn a further step from the Minimum Spanning Tree (MST) [32]. Fruitfully applied
to financial market dynamics [33], these methods are able to capture the heterogeneity of
similarities usually found at different scales of correlation in complex systems thanks to
them employing a hierarchical clustering approach rather than a thresholding approach.
The advantage of the PMFG over the MST is that, due to its relaxed constraints, its output
network contains loops and a larger amount of information than the MST by preserving all
the hierarchical properties of the MST [31].

The PCPG [30] adapts the PMFG in order to capture asymmetric interactions among
variables in the system, thus producing a directed network. The PCPG achieves this by
employing an edge-weighting scheme based on partial correlations, which are a measure of
how the correlation of two variables is affected by a third variable. More specifically, the so-
called influence (the difference between correlation and partial correlation) is employed to
measure the similarities in the system and is used as a metric to select the edges included in
the network. In our case, this formulation of relatedness allows asymmetries to be detected
in the system.

As a result, the PCPG network is a weighted, connected, directed network that includes
the MST as a subgraph as well as allowing for other substructures such as loops and
cliques of three and four elements which add to the information content of the graph [31].
The fact that the links present in the PCPG are mostly those which correspond to the
largest correlations in the system ensures the statistical robustness of the network to a high
extent [34].

The PCPG was originally developed for its use on multi-variate datasets of only one
sample: the time series of different stocks. In our case we have the export time series,
so not only many variables (the different products) but also many samples, one of each
country. In this paper we propose an extension of the PCPG, that we call biPCPG, to allow
its application on multi-sample and multi-variate datasets, e.g., the export time series,
by product, of many countries.

Our proposed extension to the PCPG method involves the preparation of the multi-
sample dataset in order to apply the PCPG algorithm. This is achieved by structuring
the dataset into a set of correlation matrices among the time series of products exported
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by countries, averaging these, and applying the existing PCPG procedure. Following
similar principles, we also adapt an existing bootstrapping procedure (see [34]) in order to
determine the statistical reliability of the links present in the resulting network.

The contribution of this paper is many fold. Firstly, the biPCPG framework opens
the possibility of the application of the PCPG algorithm to a wide variety of datasets
with a multi-sample and multi-variate structure, including, but not limiting to, the ones
usually analysed using the EC framework. Furthermore, the data-processing methodology
introduced here could be utilised to apply other correlation-filtering algorithms for network
generation (e.g., [31,33]).

Secondly, this paper introduces a network which describes the asymmetric relatedness
among physical products (manufacturing) and services. This is an addition with respect to
the networks usually present in the literature, such as the product space [21] and product
taxonomy network [22], which are constituted only by products.

Thirdly, this paper introduces an adapted bootstrapping procedure to asses the re-
liability of the edges present in a network generated from multi-sample multi-variate
datasets. Similarly to the network-generating framework, this bootstrapping procedure
can be utilised to asses the reliability of edges in networks generated using alternative
correlation-filtering methods with datasets with this structure.

Fourthly, in order to assess the information content of the biPCPG network we calcu-
late two assortativity measures and run a community detection procedure, finding that
meaningful clusters and connections emerge, as well as a relevant complexity-related assor-
tativity. In summary, the biPCPG analysis unveils the average influence between industrial
and service sectors, efficiently encapsulating the information about the correlation structure
of the system.

Finally, we provide a Python package named “biPCPG” [35] with its documentation
hosted in [36]. The 0.1.0 version of this package was used to perform all the calculations
done in this paper, including the data-handling, biPCPG network generation, bootstrapping
procedure and calculations done on the biPCPG network. It is worth noting that the package
has a modular structure such that the data-handling and the generation of the biPCPG
network are computed independently of each other. This allows the user to, for example,
utilise the data-handling module to prepare a multi-sample multi-variate dataset for an
alternative correlation-filtering method, or to implement the PCPG algorithm on a dataset of
her choice, without the need for the dataset to have a multi-sample multi-variate structure.
To the best of our knowledge, the PCPG module in the biPCPG package is the first publicly
available Python implementation of the PCPG algorithm.

The rest of this paper is organised as follows. In Section 2, we describe the dataset used
in this investigation and the cleaning procedure performed on it. In Section 3, we describe
the set of methods to generate the biPCPG network and comment on the resulting network.
In the result sections we describe the assortativity calculations and community detection
procedure done on the biPCPG network and show the results obtained. Section 5 concludes.

2. Data Description and Preprocessing

The dataset used in this research project is an integration of the United Nations Com-
modity Trade Statistics Database (UN-COMTRADE—https://comtrade.un.org, accessed
on 13 February 2019) and the International Monetary Fund’s Balance of Payments data
(BPM6) [37], relative to physical goods and service exports respectively. This integrated
dataset was introduced in a World Bank working paper [23]. The UN-COMTRADE data
consists of the amount of exports from each country per category of products (in USD).
The categorisation of products is given by the World Customs Organization’s (WCO)
Harmonized System 2007 edition (HS2007) [38], which classifies products by using a hier-
archical six-digit code depending on the category of the product. The IMF BPM6 dataset
consists of the amount (in USD) of services provided abroad by each country and is col-
lected according to the 6th edition of its manual, provided by the International Monetary
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Fund (IMF). Henceforth, we will globally refer to the collection of products in COMTRADE
and services in BPM6 as sectors.

The hierarchical structure of the HS classification allows for an aggregation from the
most granular six-digit level, consisting in about 5000 different products, into a coarser two-
digit level. A further aggregation of a few small (in terms of export quantities) two-digit
sectors into a single two-digit sector was also performed in this dataset, leaving a total of 78,
roughly homogeneous aggregated product sectors at the two-digit level. From the BPM6
part of the dataset, there are a further 22 service sectors at a comparable level of aggregation.

The aggregated dataset used in our study is therefore comprised of 78 + 22 = 100
sectors of products and services, these are listed in Table A1 in Appendix D. The data span
a total of 22 years, from 1995 to 2016. As there are missing data points in some years for
several countries, we apply a sanitation procedure where only countries with complete
data for all sectors throughout the 22 years are kept. This reduces the dataset to from
129 countries to 99 countries. The analysed dataset has a total 99 × 100 = 9900 time series
of length 22, with no missing values, representing the amount of product exports or service
provisions in USD for each country.

In order to perform specific calculations (see Section 4.2), the 100 sectors in the dataset
must be aggregated one level further. The product sectors can be further aggregated using
what the WCO refers to as sections. The WCO provides a total of 21 sections which are
available at [38]. In this case, services sectors can be aggregated into a single “section”.
Thus, in our aggregated dataset we have a total of 22 sections of sectors—21 product
sections arising from the HS2007 classification, and one additional section containing the
service sectors from the BPM6 dataset.

Revealed Comparative Advantage Matrices

The raw data used to construct in this paper are the amount of exports Ey
c,p (in USD)

of a sector p (product or service) by a country c in year y. We compute the Revealed
Comparative Advantage (RCA) [39] as

RCAy
c,p =

ratio of c’s exports of p to the total exports of c in year y
ratio of the world’s exports of p to the total world’s exports of all sectors in year y

=

Ey
c,p

/
∑

p′∈P
Ey

c,p′

∑
c′∈C

Ey
c′ ,p

/
∑

c′∈C,p′∈P
Ey

c′ ,p′

(1)

where P and C are the sets of unique sectors and unique countries in the dataset dis-
cussed above.

The use RCA is ubiquitous in the EC literature, because removes trivial dependencies
from the sectors’ and countries’ size. When the RCAy

c,p is above 1, the country is said to
have a revealed comparative advantage in exporting a given sector in that year. Conversely,
when RCAy

c,p is below 1 the country can be thought of as not being very competitive in that
particular sector. Finally, when RCAy

c,p is equal to 1 the country has the expected (average)
share of the world’s exports in the given sector and year.

Therefore, the dataset on which we perform the following calculations consists of time
series RCAc,p = (RCAy

c,p : y ∈ Y) for 99 countries and 100 sectors, where Y is the index set
of years [1995, 2016]. The data is then shaped into a set of 22 matrices RCAy, one for each
year, where each row represents a country, each column represents a sector and each entry
is the corresponding RCAy

c,p value.
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3. Methods: The biPCPG Framework

3.1. Methodology Description

Before discussing the detailed implementation of the biPCPG methodology, here we
provide a summarised description of our procedure; a visual representation can be found
in Figure 1.

Given the multi-sample nature of the dataset analysed, a series of data-preprocessing
steps are needed before the application of PCPG. The PCPG algorithm takes a single correlation
matrix as an input and outputs a network (see Section 3.5). In order to obtain our biPCPG
network, along with reliability values for its edges from a multi-sample dataset, we need two
main procedures, a “Network generating procedure” and a “Bootstrapping procedure”.

The “Network generating procedure” is shown in the black box in Figure 1 and deals
with the data handling necessary to obtain a PCPG network from a dataset with a multi-
sample structure. In our case, we are interested in obtaining a biPCPG network where nodes
are sectors, therefore the input matrix should describe the correlations between sectors.

To find this input correlation matrix, the initial step is to shape the dataset such that,
for each country, we have a matrix where the columns are the relevant time series of each
sector. We then compute a correlation matrix for each of these time series matrices. Finally,
we average these correlation matrices over countries to obtain an average correlation matrix
which serves as the input to the PCPG algorithm, i.e., the last step in the biPCPG framework.
The output of the biPCPG algorithm is the network we refer to as G, as well as the weights
of the edges in contains, i.e., the average influence between sectors.

Figure 1. Flowchart of procedures and methods involved in obtaining the final biPCPG network.

The “Bootstrapping procedure” of our framework, shown in the grey box in Figure 1,
deals with the bootstrapping procedure necessary to asses the reliability of the edges in
the biPCPG network obtained. This starts from the country time series matrices, which are
bootstrapped R times, obtaining a “batch” of replicates each time. Each of these batches
contains C matrices, one for each country, where the rows have been drawn coherently from
their corresponding original country matrices. This is done in order to randomise the time
dimension while preserving the correlation structure across countries (see Section 3.6). We
then replicate the “Network generating procedure” described above by treating each batch
of replicates as a new dataset of country time series matrices and follow the steps to obtain
a replicate biPCPG network. This means that, for each batch, we calculate a correlation
matrix for every time series matrix, we then average across these correlation matrices and
use the average correlation matrix as an input to the PCPG algorithm. Repeating this
procedure for all R batches we obtain R replicate networks. We find the fraction of times
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each edge in G appears in the replicate networks, which is a measure of the reliability of
the edge.

3.2. Partial Correlations and Average Influence: Definitions

As described in the original PCPG paper (see [30]), the starting point of our analysis
is the partial correlation, which measures the effect that a random variable Z has on the
correlation between two other random variables, X and Y. The partial correlation ρ(X, Y :
Z) is defined in terms of the Pearson correlations ρ(·, ·) between the three variables, formally

ρ(X, Y : Z) =
ρ(X, Y)− ρ(X, Z)ρ(Y, Z)√
[1 − ρ2(X, Z)][1 − ρ2(Y, Z)]

. (2)

A small value of ρ(X, Y : Z) may be ambiguous, as this could be due to the correlations
among the three variables being small; or due to variable Z having a strong effect on
the correlation between X and Y, which is generally the interesting case. In order to
discriminate between these two cases the correlation influence or influence of variable Z on
the pair of elements X and Y is used. This is defined as

d(X, Y : Z) ≡ ρ(X, Y)− ρ(X, Y : Z). (3)

We define the average influence of variable Z on the correlations between X and all other
variables in the system as follows:

d(X : Z) = 〈d(X, Y : Z)〉Y 	=X . (4)

We anticipate that the average influence will be the input of the network building algorithm
also described in [30].

Note that, potentially, there could be certain values of measured correlations ρ(X, Y),
ρ(X, Z) and ρ(Y, Z) that lead to a measured partial correlation ρ(X, Y : Z), to be out of its
defined range [−1, 1]. In our analysis, this occurred in 0.02% of the partial correlations com-
puted. In these cases, partial correlations were set to be undefined (NaN in programming
terms) which in turn makes the influence values based on these partial correlations also
undefined. Similarly to the undefined correlation values described above, these undefined
influences are not included in calculation of average influence d(X : Z).

Some of the values obtained for ρ(X, Y), ρ(X, Y : Z), d(X, Y : Z) and d(X : Z) in
our dataset and their interpretation are discussed in Section 3.4. An important point
is that, in general, d(X : Z) 	= d(Z : X): the influence is asymmetric, and the largest
among these two quantities indicates the main direction of influence between X and Z.
For example, in our dataset when X = Glass and Z = Furniture, the average influence
of Furniture on Glass d(X : Z) = 0.03 while the corresponding reverse average influence
of Glass on Furniture d(Z : X) = 0.29, suggesting that the direction of influence is from
Glass to Furniture and not vice-versa. This, however, is an example of a clear-cut case,
where difference between the two average influence values is not small. In general, these
differences tend to be much smaller. This can be an effect of the complex relationship and
mutual interaction between the economic sectors, or a consequence of the noise present in
the data. This makes a bootstrapping procedure necessary in order to asses the statistical
confidence in the overall direction of influence, as well as the average influence values
themselves. We will discuss the bootstrapping procedure in Section 3.6.

3.3. Average Correlation Matrix

The input to the PCPG algorithm is a correlation matrix [30]. In our procedure,
to allow its use on our multi-sample dataset, this correlation matrix is replaced by an
average correlation matrix over countries. In order to obtain this average correlation matrix,
we reshape the 22 RCAy matrices into a total of C = 99 matrices, one for each country,
each consisting of T = 22 rows and P = 100 columns. We denote these TSc, c ∈ 1, . . . , C.
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In this way, the columns of each matrix TSc are the RCAc,p time series of the given country
c, where each column represents a sector p in the dataset.

In order to obtain the input matrix to the PCPG algorithm, we first find C correlation
matrices denoted Kc, c ∈ 1, . . . , C from the pair correlations between the columns of each
matrix TSc. Thus the entries of the country correlation matrix Kc are given by

(
Kc

)
p,p′

= ρ

((
TSc

)
∗,p

,
(

TSc

)
∗,p′

)
= ρ

(
RCAc,p , RCAc,p′

)
(5)

where ρ is the Pearson correlation, the subscript ∗, p denotes the column p of the matrix
and RCAc,p is the RCA time series for country c and sector p.

For each correlation value we obtain p-value via a two-sided T-test procedure [40].
Given we are performing multiple tests, we apply a False Discovery Rate (FDR) correction
to obtain adjusted p-values via the Benjamini–Hochberg (BH) procedure [41]. We choose the
BH procedure since it ultimately allows the inclusion of more information in the biPCPG
network than a more restrictive correction procedure such as the Bonferroni correction [42].
Note that the FDR correction has been extensively used in the literature for the statistical
validation of networks and, in particular, it has been previously used to validate networks
representing bipartite complex systems [43].

We reject non-statistically significant correlation samples when the adjusted p-value is
above a critical value of 0.01. In these cases, the corresponding entries to the Kc matrix are
marked as undefined. The same procedure for obtaining country correlation matrices was
also performed without the FDR correction for the 0.01 and alternative critical values. This
produced networks which have the same main features as the network presented below,
including the main hub nodes, clusters of sectors and communities detected.

Once the country correlation matrices Kc are found, we then compute the element-wise
mean of these matrices, obtaining the average correlation matrix K̄ with entries

K̄p,p′ =
1
C

C

∑
c=1

(
Kc

)
p,p′

, (6)

where row and column indices p and p′ denote economic sectors. Any undefined correlation
is discarded during the averaging process.

Note that, using this notation, the correlations ρ(·, ·) mentioned in Section 3.2, are
replaced by the average correlations K̄p,p′ described here. This leads to an equivalent
expression for the partial correlation

ρ(p, p′ : p′′) =
K̄p,p′ − K̄p,p′′ K̄p′ ,p′′√[

1 −
(
K̄p,p′′

)2
][

1 −
(
K̄p′ ,p′′

)2
] . (7)

3.4. Partial Correlation and Average Influence: Empirical Analysis

In order to clarify the meaning of the intermediate quantities that are used to build the
biPCPG network, we devote this subsection to the discussion of some empirical features.

Bearing in mind how the influence of a variable on the correlation of two other
variables is defined (see Equation (3)), we explore four examples of the results obtained
from these computations. Note that, in the description below, the variables X, Y and Z used
in the definition of Equation (3), are replaced by sectors of our system. Thus, the partial
correlation column in Table 1 describes the average correlation, K̄p,p′ , between sectors p
and p′ accounting for the effect of a third sector p′′, and similarly for the influence column.
We therefore denote these quantities ρ(p, p′ : p′′) and d(p, p′ : p′′), respectively.

Example 1 shown in Table 1 is an example of the case described in Section 3.2, which
shows a very small partial correlation due to all correlations among the three variables
being small. By definition, this makes the resultant influence value is small, which reduces
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the average influence of the sector “Other textile” on the sector “Cereals”, making the
appearance of this edge in the network less probable.

Example 2 also shows a case where the partial correlation between p and p′, accounting
for the effect of p′′, is small. However, contrary to the case in Example 1, this is due to
p′′ strongly affecting the correlation between p and p′, i.e., ρ(p, p′) ∼ ρ(p, p′′)ρ(p′, p′′).
Therefore, the resulting influence is relatively high, which increases the probability of an
edge from “Cultural” to “Audiovisual” being present in the biPCPG network. In addition,
note that the probability of an edge from “Cultural” to “Audiovisual” also increases under
these results, due to the symmetry between the p and p′ variables.

In Example 3, we have a case where the correlation between p and p′ is relatively strong
and variable p′′ has a small effect on it. This is due to the similar values of the correlation
ρ(p, p′) and the partial correlation ρ(p, p′ : p′′). Therefore, the resulting influence of
“Knitted clothing” on the correlation between the “Pigments” and “Aluminium” sectors is
close to zero.

Finally, Example 4 shows a seemingly counter-intuitive case where the correlation
between p and p′ is small while their partial correlation given p′′ is negative, yielding a
high influence. A negative partial correlation occurs when the correlation between p and
p′ is small but both p and p′ have a high correlation with p′′. In this case, the influence of
“Plastics” can be interpreted as preventing the correlation ρ(p, p′) between “Vehicles” and
“Earths and stone” from being lower, or being negative.

Table 1. Examples of values used in the computations of influence d(p, p′ : p′′).

Variable & Sector
Corr. Corr. Corr. Partial Corr. Influence
K̄p,p′ K̄p,p′′ K̄p′ ,p′′ ρ(p, p′ : p′′) d(p, p′ : p′′)

Ex. 1

p Cereals

0.024388 −0.017268 0.028770 0.024899 −0.000511p′ Telecommunication

p′′ Other textile

Ex. 2

p Audiovisual

0.283807 0.772049 0.368241 −0.000834 0.284641p′ Sea Transport

p′′ Cultural

Ex. 3

p Pigments

0.602575 0.064069 0.040062 0.601727 0.000848p′ Aluminium

p′′ Knitted clothing

Ex. 4

p Vehicles

0.025574 0.781281 0.542898 −0.760384 0.785958p′ Earths and stone

p′′ Plastics

It is important to note that the average influence values among sector pairs determine
the structure of any PCPG network (see Section 3.5). Figure 2 displays a scatter plot that
shows the correlation ρ(·, ·) and average influence d(·, ·) among all N(N − 1) = 9900 pairs
of sectors in our biPCPG network. Note that this includes data points for both d(p : p′′)
and d(p′′ : p) influences at the same horizontal coordinate as the correlation between p and
p′′ is symmetric.

This plot shows that the average influence between a pair of sectors is highly correlated
with the correlation between the same pair of sectors, showing a very narrow 95% confi-
dence interval (barely visible as it is only slightly wider than the fit line). See Appendix B
for details on the calculation of the confidence and prediction intervals shown in Figure 2.

This is not surprising given how the average influence is calculated; however, the rel-
atively high coefficient of determination R2 = 0.58 indicates that, generally, the partial
correlation values obtained are relatively small. This may be due to there actually not being
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large influences between the sectors, or due to limitations of the dataset. For example,
hidden influences between the sectors could potentially be detected in datasets with longer
time series.

In Figure 2, we can observe that most of the correlations (around 80%) are positive.
Around 10.7% of the pairs of sectors with positive correlations have an average influence
below zero. This quantity is over an order of magnitude larger than its counterpart,
the percentage of pairs of sectors with negative correlation but a positive average influence,
which is around 0.47%.

Figure 2. Plot showing correlation and average influence values among all 9900 pairs of sectors in the
system. A line of best fit among the points is shown in red along with the coefficient of determination
R2 = 0.58, with the 95% confidence interval limits in light blue and the 95% prediction interval limits
in dashed grey lines. Note the confidence interval is so narrow it is only visible at the edges of the red
best fit line upon close inspection.

3.5. Network Construction

The construction algorithm of a PCPG network starts with a list of the N(N − 1)
average influence values in decreasing order and an empty graph of N nodes and no edges,
where N is the number of variables in the system. In our case, we have N = 100 economic
sectors. We then cycle through the sorted list, starting with the largest average influence
value found, e.g., d(p : p′′), where p and p′′ are a given pair of products. The edge p′′ → p
is included in the network if and only if the resulting network is still planar and the edge
p → p′′ has not been included already. We stop adding edges if adding the next edge in
the list would break the planarity of the graph. This procedure ensures two things: (i) only
the largest among d(p : p′′) and d(p′′ : p) will be included in the network, and (ii) the final
network has 3(N − 2) edges. It is important to note that for a given input correlation matrix
of size N × N the PCPG network will always have 3(N − 2) edges and that the identity of
these edges solely depends on the correlation values in the input matrix.
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The final result of this procedure is what we refer to as the biPCPG network, G.
Naturally, we also obtain the average influence d associated to each edge in G, as well as
the network’s adjacency matrix A defined as

Ap,p′′ =

{
1 if edge p → p′′ ∈ G,
0 otherwise.

(8)

3.6. biPCPG Bootstrapping

To assess the reliability of the links in the biPCPG network, we adapt a bootstrapping
procedure originally introduced in [34]. The aim is to obtain a bootstrap value for each link
which is proportional to the reliability of the link.

We build R batches, where the matrices to be bootstrapped in each batch are the time
series matrices of all countries TSc ∀ c ∈ 1, . . . , C. From each matrix TSc, a replicate time
series matrix TSr

c ∀ r ∈ 1, . . . , R is obtained, where R = 1000 is the total number of batches.
An important feature of our procedure is how the null model, i.e., the replicate time series
matrices, is generated. For each batch, the bootstrapping of the time series matrices is done
coherently across countries. This means rows are drawn with repetition from each of the
country matrices jointly—the same row indices are selected across the matrices. In addition,
the new locations of the selected rows in their corresponding replicate matrices are exactly
the same. This way, in the replicate time series matrices, TSr

c, the time structure of the time
series is destroyed while preserving the country-level correlations.

Take, for example, the first batch, r = 1. In order to obtain the first batch of replicate
matrices TS1

c ∀ c ∈ 1, . . . , C, we randomly select a sequence of T = 22 row indices, allowing
repetitions. These row indices denote which rows from the original matrices TSc are
included in the corresponding replicates TS1

c in this batch, as well as their order. This way,
any row of a replicate matrix in this first batch will contain data points corresponding to
the same year as rows of the same index in all the other replicate matrices in the batch.

After all the replicate matrices are obtained for all countries and batches, we calculate
a replicate correlation matrix Kr

c for each of them, rejecting non-statistically significant
samples as described in Section 3.3. We then find the element-wise mean of the replicate
correlation matrices in each batch r, obtaining R replicate average correlation matrices
K̄r where

K̄r
p,p′ =

1
C

C

∑
c=1

(
Kr

c

)
p,p′

. (9)

Note that, similarly to the replicate time series matrices, in these replicate correlations
matrices the time structure of the time series is destroyed while preserving the country-
level correlations due to the way the bootstrapping has been performed.

We then apply the PCPG algorithm described in Section 3.5 to each matrix K̄r, obtain-
ing R replicate adjacency matrices, Ar ∀ r ∈ 1, . . . , R.

To compute the bootstrap value, bp,p′′ , for each link p → p′′, we evaluate the number of
time the link appears in the replicate adjacency matrices Ar, and normalise by the number
of replicates R, formally

bp,p′′ =
∑R

r=1 Ar
p,p′′

R
(10)

Each bootstrap value is therefore some number in the interval [0-1] and is proportional to
the reliability of the link.

4. Results

4.1. Descriptive Analysis of the biPCPG Network

The network G resulting from the application of the biPCPG method to our dataset
is shown in Figure 3. This network displays some interesting results with a few distinct
hub nodes. The most noticeable of these nodes are “Plastics”, “Pigments” and “Vegetables”
nodes. Hub nodes in the network also tend to have high average influence on other nodes
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in the network, this being displayed by the width of the edges stemming out of them.
The colour of the edge represents its bootstrap value. We note that the hub nodes are
also the source of most of the darker edges in the network, i.e., the most reliable edges,
especially the “Plastics” node, whose edges bootstrap values are very high.

Figure 3. The biPCPG network. The widths of the edges are proportional to the average influence
value, d(p, p′′) they represent. The colours of the edges are proportional to their bootstrap value,
bp,p′′ . The darker the edge, the more reliable it is. Node colours represent the sector section each
product and service belong to. Node sizes are proportional to out-degree. The node layout was found
using the ForceAtlas2 algorithm [44].

The resulting network also displays distinct clusters of intuitively related economic
sectors. For example, the most recognisable “food and plant” cluster can be found at
the bottom-right of the network, surrounding the “Vegetables” hub node. At the top-
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left of the network, we can observe another distinct cluster containing several sectors
related to chemicals or raw materials. Finally, on the top-right of the network, surrounding
the “Plastics” and “Pigments” nodes, one can find a “macro-cluster” formed mostly by
industrial and manufacturing sectors.

It is worth noting that, while most edges connect intuitively related sectors, the are
several cases of less-intuitive connections spread around the network. This causes the
inclusion of some of these seemingly unrelated sectors in some of the clusters mentioned
above. This is partially due the original construction of the PCPG algorithm, which ensures
a fixed number of edges to be included in the network. Therefore, edges representing
small influences among sectors could be forced to be included in the network. In our case,
the biPCPG network obtained contains around 5% of edges representing Average influence
values of 0.05 or smaller.

4.2. Assortativity Analysis

As described in Section 2, the 100 sectors in our dataset can be grouped into 22 groups
of sectors called sections. Furthermore, a key metric within the field of economic complexity
is the complexity of a product or service, which measures the capabilities needed by a
country to produce it (see Appendix A). In order to better understand the structure of this
network, and by extension the information contained in it, one can then investigate its
homophily or assortativity according to these characteristics. Roughly speaking, this is the
tendency for nodes belonging to the same group to be connected to each other. In this paper,
we make use of two different assortativity metrics which we describe below. The motivation
behind this analysis is to assess if our framework generates a meaningful network which is
able to synthesise information about the system.

4.2.1. Assortativity by Unordered Characteristics

This quantity is used to measure the assortativity between, for example, nodes with
an associated qualitative characteristic such as, in our case, sector sections, s (see Section 2).
The assortativity coefficient is defined as [45]

ss =
TrF−

∥∥F2
∥∥

1 − ‖F2‖ (11)

where entries of the matrix F are the fractions of edges in the network that connect a
vertex of section s to one of section s′, and ||X|| is the sum of all elements of a matrix
X [45]. Therefore the numerator is a quantity that measures the fraction of the edges in
the network that connect vertices of the same type (i.e., within-section edges) minus the
expected value of the same quantity in a network with the same community divisions
but random connections between the vertices. The denominator is one minus the same
expected value.

This formula gives ss = 0 when there is no assortative mixing and ss = 1 when there
is perfect assortative mixing. For a perfectly disassortative network, the value is in the
range −1 ≤ ss < 0 (see [45] for its interpretation). We evaluate this metric for the section of
sectors described in Section 2, denoting this by the subscript s.

4.2.2. Assortativity by Scalar Characteristics

A measure of assortativity for numeric quantities associated with nodes can also be
defined [45]. First, note that the entries of the matrix F are the fraction of all edges in a
network that connect nodes with associated scalar values q and q′. Note that the values
q and q′ are discrete—in our case these are the Complexity rank [17] of sectors—computed
by taking average complexity value of each product (across the available years in our
dataset) and ranking these averages from highest to smallest. The complexity of a product
or service is a well-known quantity in the economic complexity literature that describes
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the capabilities needed by a country to produce it, see Appendix A for its definition.
The numeric assortativity coefficient is defined as

sq =

∑
q,q′

qq′
(

Fq,q′ − aqbq′
)

σaσb
(12)

where aq = ∑q′ Fq,q′ , bq′ = ∑q Fq,q′ and σa and σb are the standard deviations of the distri-
butions of aq and bq′ , respectively. The value of sq is in the range −1 ≤ sq ≤ 1 with sq = 1
indicating perfect assortativity and sq = −1 indicating perfect disassortativity. Typically,
assortativity values in the range 0.3–0.7 are considered to indicate a significant community
structure in social networks (higher values are rare) [46,47].

4.2.3. Assortativity Results

The results for the two assortativity metrics defined above are as follows:

• assortativity by sector section = ss = 0.08 (0.15 without FDR correction);
• assortativity by sector mean complexity rank = sq = 0.19 (0.31 without FDR correction).

These results indicate that the structure of the resulting biPCPG network encodes
information efficiently. Firstly, the Assortativity by sector section, ss = 0.15, is positive, this
means that sectors that belong to the same section (see Section 2) tend to be connected in the
network, i.e., they influence each other. The section of each sector is reflected in Figure 3 by
the colour of the node. The most evident clustering of sectors within the same section is
found at the top of the plot where a highly connected cluster of service sectors is found.

Furthermore, the moderately high Assortativity by sector mean complexity rank, sq = 0.19,
indicates that sectors around the same level of complexity tend to influence each other.
This makes sense intuitively since, according to the economic complexity literature, these
tend to be connected in other networks that describe the relationship among products (e.g.,
product space network, product taxonomy network [21,22]).

4.3. Community Detection on the biPCPG Network

We apply a well-known community detection algorithm for directed networks based
on spectral optimisation [48]. The modularity, or quality function, to be maximised is

Qdir =
1
m ∑

p,p′′

(
Ap,p′′ −

kout
p kin

p′′

m

)
δ
(

νp, νp′′
)

(13)

where A is the adjacency matrix, kin
p and kout

p are the weighted in-degree and out-degree
of node p, m is the total edge weight in the network, νp is the community of node p and

δ
(

νp, νp′′
)
= 1 if νp = νp′′ and 0 otherwise. This method does not require any parameter

choices relating to community size or number of communities; however, adaptations of this
method that allow for these choices are available in the literature. It is worth pointing out
that, for the analysis carried out in this paper, edge-weights are all set to 1. In Equation (13),
this makes the weighted in-degree and out-degree simply the in- and out-degree as well as
fixing m = 294, the total number of edges in the network.

Since there is no universal definition for communities in directed networks, we also
apply the same community detection algorithm for the undirected version of the biPCPG
network Gund. In this case, the modularity to be maximised is given by

Qund =
1

2m ∑
p,p′′

(
Aund

p,p′′ −
kpkp′′

2m

)
δ
(

νp, νp′′
)

(14)
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where Aund is the undirected adjacency matrix which defines the undirected network Gund.
This can be obtained from the adjacency matrix, A, which defines the directed biPCPG
network G as follows

Aund
p,p′′ =

{
1 if Ap,p′′ = 1 or Ap′′ ,p = 1,
0 otherwise.

(15)

This allows us to qualitatively assess if the structure of the biPCPG network is sufficient
for reasonable communities to be detected, without the bias of the information contained
in the average influence or bootstrap values associated to edges. We implement this
algorithm via the leidenalg Python package (version 0.8.4) [49], an implementation of the
leiden algorithm for modularity optimisation.

Note that optimising modularity is an NP-hard problem [50], and therefore heuristics
have to be implemented for algorithms to be efficient. One of the steps in the leiden
algorithm used here involves selecting a random community for a node to be added to.
However, this randomness can be controlled via a seed to the random number generator.
This makes the process deterministic such that the same communities are selected every
time the algorithm is run on a given network using the same seed value. In our analysis,
we tested several seed values finding that the detected communities varied only for a few
nodes, with many seed values returning the exact same partitions. The results shown in
Section 4.3 were found using 1 as the seed, as well as for many other seed values tested.

Furthermore, we compare the the communities obtained for the directed and undi-
rected versions of the network for seed values 1, . . . , 1000 via the Adjusted Mutual In-
formation [51]. Take, for example, our set of P of N sectors and consider two partitions
of P, namely U = {U1, U2, . . . , UJ} with J pairwise-disjoint clusters found by maximis-
ing Qund for the undirected version of the network, and V = {V1, V2, . . . , VD} with D
pairwise-disjoint clusters found by maximising Qdir for the directed version of the network.
The AMI between the two partitions is then defined as

AMI(U, V) =
MI(U, V)− E{MI(U, V)}

max{H(U), H(V)} − E{MI(U, V)} (16)

where MI(U, V) is the mutual information between two partitions, E{MI(U, V)} is the
expected mutual information and H(U) and H(V) are the entropy values associated to
partitions U and V respectively. The AMI equals 1 when two partitions are exactly the
same and 0 when the MI between them equals its expected value and therefore serves as
a similarity measure for the two partitions, for further details on its calculation see [51].
In Section 4.3, we give the result for the average AMI obtained for the 1000 seed values
tested using the scikit-learn 0.23 Python package.

Community Detection Results

The community detection procedure described above yielded 5 distinct communities
when applied on the undirected biPCPG network, Gund, which we denote communities
ν = 1, . . . , 5. These communities have 31, 22, 21, 13 and 13 sectors contained in each of
them, respectively.

The detected communities in the network can be seen highlighted in Figure 4. When
comparing with Figure 3, which shows the network highlighting the section of each sector,
one can see that the detected communities partition the network into groups that contain
intuitively related sectors. For example, communities 2, 3 and 5 contain mostly nodes
related to industrial and chemical sectors, while community 1 captures the “food and plant”
cluster described above as well as some service sectors. Finally, for community 4, it is
slightly more difficult to find a common theme. However, it is worth noting that over half
of the sectors it contains are service sectors.
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Figure 4. biPCPG network, G, resulting from the application of the PCPG algorithm on the mean
correlation matrix K̄ between sectors’ RCA time series. Nodes are grouped by their community, ν,
found by maximising modularity in the network. The node layout was found using the ForceAtlas2
algorithm [44].

The information structure these communities contain can be seen when sorting rows
and columns of the average correlation matrix K̄ and average influence matrix by com-
munity index as seen in Figures A2 and A3 in Appendix C. We can observe, for example,
that brighter colours, meaning higher values, are generally found close the diagonal of
the matrices (i.e., among sectors within the same community). This is especially notice-
able for communities 1 and 2. We can also identify which rows and columns represent
service sectors, as these tend to have a lower correlation and average influence values with
non-service sectors (depicted in dark blue) and higher values among themselves.

The average adjusted mutual information obtained for the 1000 seed values tested is
0.90. This is a very high value which tells us that, on average, the partitions obtained for
the directed and undirected versions of the network were very similar. This suggests that
the community detection procedure is weakly dependent on the version of the network
(directed vs. undirected) as well as the seed value used.
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5. Discussion

In this paper we have introduced the biPCPG framework, a generalisation of the
PCPG [30] algorithm to datasets with a multi-sample and multi-variable structure that
allows a statistical significant and robust analysis, mainly by generating confidence bounds
via an adapted bootstrapping procedure. We have then applied this new procedure to a
recently introduced dataset that integrates the export of physical goods and services data.
The proposed procedure allows the generation of a network of these economic sectors
whose links represent the average influence in terms of temporal correlation. This can
be seen as an an asymmetric formulation of relatedness [26,52]. The resulting network
contains several hub nodes with high degree (namely Plastics, Pigments, Iron and steel
articles, Preparations of cereals and milk and Aluminium) as well as distinct clusters of
intuitively-related economic sectors (such as a food and plant cluster, a services cluster and
manufacturing cluster). We find that, in this network, economic sectors display a relatively
high assortativity according to their complexity rank and, to a lesser extent, their category.

6. Conclusions

In this work, we have introduced an asymmetric definition for relatedness by extend-
ing the PCPG methodology introduced in [30] for its use on bipartite datasets, which we
call biPCPG. We apply this approach to a recently introduced dataset containing the exports
of countries regarding both manufactured products and intangible services. We show that
the biPCPG methodology is able to generate a statistically robust network of economic
sectors which captures the underlying influence structure int erms of temporal correlations.

This work can be extended in a number of possible directions. First of all, the biPCPG
framework can be applied to any temporal bipartite network, such as those of common
use in economic complexity, such as the company-technology [9] or the country-scientific
field network [29]. Moreover, the adapted bootstrapping procedure can be used to other
network-generating techniques based on correlation-filtering to datasets with a multi-
sample and multi-variable structure. These techniques include those based on threshold
methods [53], the Minimum Spanning Tree [33] and the aforementioned PMFG [31], as well
as more recent techniques based on a null-model approach [54]. This would be possi-
ble by replacing the last step in our procedure, the original PCPG algorithm, with the
correlation-filtering technique of interest. Finally, it would also be particularly interesting
to apply our procedure to datasets with the same structure but longer time series, such as
financial datasets containing, for example, asset prices at the different exchanges where
they are traded.
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Abbreviations

The following abbreviations are used in this manuscript:

AMI Adjusted Mutual Information
BH Benjamini–Hochberg
biPCPG Bipartite Partial Correlation Planar Graph
BPM International Monetary Fund’s Balance of Payments data
EC Economic Complexity
FDR False Discovery Rate
HS Harmonized System
IMF International Monetary Fund
MST Minimum Spanning Tree
PCPG Partial Correlation Planar Graph
PMFG Planar Maximally Filtered Graph
RCA Revealed Comparative Advantage
UN-COMTRADE United Nations Commodity Trade Statistics Database
USD United States Dollar
WCO World Customs Organization

Appendix A. Fitness and Complexity of Economic sectors

From the matrices containing RCAc,p time series, described in Section 3.3 we can
derive the My matrix which has entries given by

My
c,p =

{
1 if RCAy

c,p ≥ 1,
0 otherwise

(A1)

where c represents a country, p represents a product (or service), and y represents a
given year.

This matrix therefore summarises the countries having a comparative advantage at
exporting the different products or services in a given year, or not. Two key quantities
from the economic complexity literature are defined using this matrix, namely the fitness of
countries and the complexity of products (or services) [17,55]. The intuition behind these
quantities is that the higher the fitness of a country the higher its capability of exporting
products of high complexity. It is therefore natural for the fitness to be proportional to
the weighted sum of the products of which it is a competitive exporter. The definition of
the complexity of a product is more subtle. In general terms, the complexity of a product
should be inversely proportional to the number of countries exporting it. We should
also note that more economically developed countries tend to have a highly diversified
export basket, while less economically developed countries tend to have a much more
limited diversification in their exports, and focused on low complexity products. Therefore,
the upper bound of a product’s complexity should be determined by the fitness of the
countries’ exporting it, with a strong bias towards lower fitness countries: if a product
is exported by lower fitness countries, its complexity can not be high. The fitness Fc of a
country and the complexity Qp of a product (or service) are therefore defined using the
following set of coupled iterative equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F̃(n)
c = ∑p McpQ(n−1)

p

Q̃(n)
p =

1

∑c Mcp
1

F(n−1)
c

→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
F(n)

c =
F̃(n)

c〈
F̃(n)

c

〉
c

Q(n)
p =

Q̃(n)
p〈

Q̃(n)
p

〉
p

(A2)

which are iterated until a fixed point is reached [56]. This fixed point has been shown to
be stable and not dependent on the initial conditions, which are set to Q̃(0)

p = 1∀p and
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F̃(0)
c = 1∀c [17]. We use the complexity of products and services in our dataset to calculate

an assortativity metric on the network G as described in Section 4.2.
It is worth noting that the dataset analysed and similar datasets explored in the

economic complexity literature exhibit a nested structure [56]. This nested structure is
manifested as a triangular structure in the My matrices when countries (rows) and sectors
(columns) are sorted by their fitness and complexity rank, respectively. This can be seen in
Figure A1, which is the My matrix for the year y = 2005.

Figure A1. Binary matrix M2005 displaying high RCAc,p values for the year 2005. Blue indicates an
entry of one and yellow an entry of zero. The triangular structure of the matrix implies a nestedness
in the data.

Appendix B. Confidence and Prediction interval calculations

The 95% confidence interval around a linear fit μ̂y|x0
done on n data points (xi, yi) n =

1, . . . , n contains the mean response of new values μy|x0
at a given value x0 with a 95%

probability. This is given by

∣∣∣μ̂y|x0
− μy|x0

∣∣∣ ≤ T.975
n−2σ̂

√√√√ 1
n
+

(x0 − x̄)2

∑n
i=1(xi − x̄)2 (A3)

where μ̂y|x0
= a + bx0 is computed from the linear fit, T.975

n−2 is the 97.5th percentile of the
Student’s t-distribution with n − 2 degrees of freedom and σ̂ is the standard deviation of
the residuals in the linear fit given by

σ̂ =

√√√√ n

∑
i=1

(yi − ŷ)2

n − 2
. (A4)

The 95% prediction interval around a linear fit ŷ0 is the interval within which a new
observation, y0, at a given value, x0, is found, with 95% probability. This is given by

|ŷ0 − y0| ≤ T.975
n−2σ̂

√√√√1 +
1
n
+

(x0 − x̄)2

∑n
i=1(xi − x̄)2 (A5)
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where ŷ0 = a + bx0 is computed from the linear fit. See [57] for a more detailed description.

Appendix C. Avg. Correlation and Avg. Influence Matrices Sorted by Community

Figure A2. Average correlation matrix K̄ sorted by communities ν found by maximising modularity.

Figure A3. Matrix showing average influence values between products d(p : p′′) sorted by commu-
nities ν found by maximising modularity. Entries in white indicate that the average influence of a
sector on itself is undefined.
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Appendix D. Sector List

Table A1. List of product (HS2007) and service (IMF BP6) sector codes in the analysed dataset.

Sector Code Sector Name Sector Code Sector Name

01 Live animals 61 Knitted clothing
02 Meat 62 Not knitted clothing
03 Fish 63 Other textile
04 Edible products of animal origin 64 Footwear
05 Other animal products 67 Feathers
06 Plants 68 Articles of stone and plaster
07 Vegetables 69 Ceramic
08 Fruits 70 Glass
09 Coffee and tea 71 Jewellery
10 Cereals 72 Iron and steel
11 Products of milling 73 Iron and steel articles
12 Seeds and medicinal plants 74 Copper
13 Vegetable extracts 76 Aluminium
14 Other vegetables 78 Lead
15 Animal or vegetable fats 79 Zinc
16 Preparations of meat or fish 81 Other base metals
17 Sugar 83 Miscellaneous articles of base metal
18 Cocoa 84 Machinery and nuclear reactors
19 Preparations of cereals and milk 85 Electrical machinery
20 Preparations of plants 86 Railway
21 Other edible preparations 87 Vehicles
22 Beverages 88 Aircraft and spacecraft
23 Residues of food industries 89 Ships and boats
24 Tobacco 90 Instruments
25 Earths and stone 93 Arms and ammunition
26 Ores 94 Furniture
27 Mineral fuels 96 Miscellaneous manuf. articles
28 Inorganic chemicals 97 Art and antiques
29 Organic chemicals BXSM_BP6_USD Manufacturing Services
30 Pharmaceutical BXSOCN_BP6_USD Construction
31 Fertilizers BXSOFIEX_BP6_USD Financial Services
32 Pigments XSOFIFISM_BP6_USD FISIM
33 Cosmetics BXSOGGS_BP6_USD Government
34 Soaps BXSOIN_BP6_USD Insurance and pension
35 Glues BXSOOBPM_BP6_USD Consulting
36 Explosives BXSOOBRD_BP6_USD R&D
37 Photo and cinema goods BXSOOBTT_BP6_USD Technical Business
38 Other Chemicals BXSOPCRAU_BP6_USD Audiovisual
39 Plastics BXSOPCRO_BP6_USD Cultural
40 Rubber BXSORL_BP6_USD Intellectual Property
41 Skins and leather BXSOTCMC_BP6_USD Computer Services
44 Wood and Cork BXSOTCMM_BP6_USD Information
46 Straw manuf. BXSOTCMT_BP6_USD Telecommunication
47 Paper BXSR_BP6_USD Maintenance
51 Wool BXSTRA_BP6_USD Air Transport
52 Cotton BXSTROT_BP6_USD Other Transport
53 Other vegetables fibres BXSTRPC_BP6_USD Postal
54 Filaments BXSTRS_BP6_USD Sea Transport
56 Felt, ropes, wadding BXSTVB_BP6_USD Business Travel
59 Textile for industries BXSTVP_BP6_USD Personal Travel
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Abstract: Within the paper, the problem of globalisation during financial crises is analysed. The
research is based on the Forex exchange rates. In the analysis, the power law classification scheme
(PLCS) is used. The study shows that during crises cross-correlations increase resulting in significant
growth of cliques, and also the ranks of nodes on the converging time series network are grow-
ing. This suggests that the crises expose the globalisation processes, which can be verified by the
proposed analysis.
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1. Introduction

The economy is a human activity where interactions are particularly important. The
mutual impacts are caused by an exchange of goods, services, and co-operation, but also
competition, company overtaking, industrial espionage, etc. In result, one can observe
a grouping among entities in the form of co-operation, branches, common interest, or
competition on the market. These effects are the subject of many research fields, e.g.,
portfolio analysis [1–4], market structure analysis [5,6], globalisation researches [7–9], and
many others.

The main tool for exploring the nature of interdependence among entities (companies,
branches, shares, countries, etc.) is the cross-correlation analysis. In fact, this term is gather-
ing a great variety of methods. Just mentioning the most often used: classical variance anal-
ysis and Pearson correlation coefficient [10–15], cointegration analysis [16–19], multifractal
analysis [20–23], random matrix theory [24–27], power law classification scheme [28–30],
or entropy-based methods [31,32].

The range of problems investigated by cross-correlation analysis is very broad, starting
from sociology, economy, econophysics [20,23,33,34], transport [35,36], genome analysis,
biology, food network, biochemistry network, science collaboration network [37], up to
sport [38], and many others.

Within this study, the globalisation is analysed by the power law classification scheme
(PLCS). In difference to other cross-correlation methods, such as detrended fluctuation
analysis (DFA) [39–45] or the Pearson coefficient-based method [12,15,46,47], which are
focused on noise correlation, PLCS is focused on trends. In the case of globalisation,
trends seem to be more important, because they reflect similarities in evolution rather
than mutual dependence and sensitivity to external impulses. Besides that, PLCS analysis
allows for observing different features—medium-range correlations. On the other hand, the
method is sensitive to long-term deterministic correlations that are related to “fundamental”
effects [48]. The research analyses the currency exchange rate time series as an objective
measure of mutual relationship and interactions among economies. The currency exchange
rates are one of the most important parameters of the economy status. There are several

Entropy 2021, 23, 352. https://doi.org/10.3390/e23030352 https://www.mdpi.com/journal/entropy357



Entropy 2021, 23, 352

platforms where the exchange of currencies occur. The best known and one of the most
important from the global point of view is the Forex market, which is focused on the
institutional market. Besides that, there are many other exchange platforms that are aimed
at individuals, such as exchange office, banks, and Internet exchange systems. The present
study focuses on the Forex exchange time series, since the main goal is the analysis of
economy globalisation, particularly cluster formation during stock market crises.

2. Methods

The power law classification scheme (PLCS) is focused on correlations of trends [28].
The algorithm will be shortly described here for the clarity of presentation and convenience
of the reader.

Let assume that there are two time series recorded simultaneously with the same
length N. In the first step, the subseries from the initial point k are taken and the Manhattan
distance between them calculated. The procedure is repeated for each k ∈ {1, . . . , N}. At
this point, the series of cumulative Manhattan distance is obtained. Each point of this series
corresponds to a different “k”. Finally, the power law function is fitted to the cumulative
Manhattan distance series. The power of the fitted function diminished by one defines the
correlation strength.

Example of Application

Let us assume that there are two time series that are generated by the linear functions:

f1(t) = a1 · t, f2(t) = a2 · t.

The data are registered in equal intervals e.g., t = 1, 2, . . . , N. The generated time series
are denoted as f1 and f2. Subsequently, the cumulative series of the Manhattan distance
between series f1 and f2 is equal to

MD(k) =
k

∑
i=1

|a1 − a2|i = |a1 − a2|
(1 + k)k

2
,

so

MD(k) =
|a1 − a2|

2
(k + k2).

The last step is the fitting of the power law function. The most popular method is fitting
the linear function to the log-log transformed data e.g., (ln(k), ln(MD(k))). Of course, the
quality of the fit depends on the series length. In the case of the analysed functions f1
and f2, the fitted exponent for the first 100 data points is equal to 1.922, but, for 1000 data
points, is equal to 1.982 and asymptotically approach 2. The observed uncertainity is the
result of numerical limitations of the computer memory while calculating the logarithm.
In order to obtain the correlation strength, one has to diminish the exponent of the fitted
function by one and finally obtains 1. Of course, this result is in agreement with the linear
relationship between the considered functions. Other examples and more detailed analysis
can be found in [28–30].

The results of PLCS analysis can be classified into two categories:

α < 0 when the correlation strength is smaller than zero—the distance between time series
is decreasing, the time series are converging.

α > 0 when the correlation strength is greater than zero—the distance between time series
is increasing, and the time series are diverging.

The special case of α = 0 is observed when the time series are overlapping [28].
In the present study, the time evolution of correlation strength is analysed; therefore,

the additional correlation window parameter is introduced Tc. The correlation strength is
calculated in a moving time window, so the appropriate subseries of the length Tc are taken
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and the correlation strength between them calculated; subsequently, the starting point is
shifted by one day and the procedure is repeated.

The application of PLCS to a time series gives symmetrical correlation matrix with
N2−N

2 unique elements (N—is the number of time series elements considered). Therefore,
to conclude, it should be further analysed. The popular strategy is to construct a network,
e.g., Minimum Spanning Tree or others. However, PLCS allows for distinguishing two
types of cross-correlation: convergent and divergent time series. Therefore, in this paper,
the following two networks are constructed:

• converging time series networks, i.e., only the nodes (representing the currency time
series) with a correlation strength smaller than one are connected, and

• diverging time series network, i.e., only the nodes with a correlation strength greater
than one are connected.

Clearly, the first type of network is focused on the time series approaching each other,
while the second on the time series increasing differences.

In the presented study, the grouping of currencies was analysed, particularly the
clique and community formation were investigated. Therefore, the following network
features were calculated: the clique size evolution, the community number, the frequency
of the connection on the graph, the evolution of the network node rank distribution, and
the rank node entropy.

Clique size evolution is obtained by calculating the size of the biggest clique for each of the
generated networks. The clique size evolution illustrates a process of unification of the
market. Indeed, if the giant clique is observed, then one type of correlation is dominating
on the market and, on the contrary, if the size of the biggest cluster is small, then the
correlation matrix consists of a variety of correlation type.
Community number is obtained by measuring the number of community structure partitions
that group nodes, such that there is a higher density of edges within the community than
between them. This parameter is weaker than the clique number, but still allows observing
grouping on Forex market.
The frequency of connection on the graph is the measure where the frequency of being
connected on the graph is analysed. The most important feature of this measure is the
ability to distinguish the most stable connections in the considered period.
Node rank distribution is the analysis where the most detailed information regarding the
graph is obtained. The rank of nodes is an important feature allowing for observing the
hierarchy of a network and is often used to determine network type [49–51]. This measure
gives very detailed information regarding the graph. It may be considered as a quick
overview of the network main features, e.g., if it is densely connected or whether each
node is only connected with a small number of links.
Rank node entropy is the Shannon entropy that is defined in the standard way (Equation (1)),
where the evolution of the entropy of node rank is calculated.

S = ∑
i
−pi ln pi, (1)

where pi is the probability of i-th rank. A summation is done over all ranks of nodes present
in the network.

Those analyses are performed for both types of networks (diverging and converging).

3. Data

3.1. Data Source

The foreign exchange market (Forex) is a global network of brokers and computers
that serves as a place of currency exchange. The market is active from Monday morning in
Asia to Friday afternoon in New York and is active 24 h per day.

The most important feature of the Forex market (and very natural) is that the exchange
is quoted in pairs in difference to stock markets, where each stokes has its value. It is
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important to mention that the arbitrage on Forex is possible in a short time scale [52–54].
This induces some bias on the analysis, because the choice of the base currency may
influence the results, particularly on the very short time scale. On the other hand, one can
distinguish a group of leading currencies, which are the most frequently traded: US dollar,
euro, and Japanese yen, which are dominating in the market. The bias resulting from the
arbitrage is reduced by PLCS feature—due to the averaging procedure. Moreover, in the
present study, the euro, as the leading currency, has been chosen as a central currency and
exchange rate time series investigated in this paper.

Within this study, the daily exchange rates registered on the Forex market were
analysed. The data set consists of 34 time series with the euro as the base currency. The
following exchange rates have been investigated: AR, CZK, AUD, DKK, BGN, EGP, BRL,
HKD, CAD, HRK, CHF, HUF, IDR, CNY, ISK, JPY, KRW, MXN, MYR, NAD, NOK, NZD,
PHP, PLN, RON, RUB, SEK, SGD, THB, TRY, TWD, UAH, USD, and ZAR. Standard
abbreviations are used. The period is from 03.09.1996 until 05.02.2020, i.e., 1000 data points.

Within the considered period, one can distinguish several crises (on a regional and
global scale). The crises are playing a special role in the presented analysis, because we
can expect highlighting the globalisation processes. To mention the most serious crises
within the considered interval: 1997—Asian financial crisis [55], 1998—Russian crisis [56],
1999—Argentine crisis [57], early 2000s recession [58], dot-com bubble [59], 2008 financial
crisis [60], 2010 European sovereign debt crisis [61], national government debt-crises
(Spanish, Greek, Russian, and Turkish), and others. Those crises are discussed in view of
the performed analysis results.

3.2. Descriptive Statistics of the Series

The exchange rate time series were converted into return time series by Equation (2).

ri(t) =
ai(t)− ai(t − 1)

ai(t − 1)
(2)

where ai denotes the analysed time series.
Table 1 presents the statistical properties of the investigated time series. The mean

value of the exchange rate returns of the considered time series was in the interval
(−0.629 × 10−4, 9.087 × 10−4), so the average daily fluctuations are rather small, and
they are close to zero. However, the range of observed returns is significant—the lowest
noticed return was −0.282, while the greatest was 0.585. The next considered parameter—
standard deviation—is particularly important, because it is broadly used as a measure of
volatility. When comparing the values of standard deviation and the mean, one can notice
that the dispersion is huge. The standard deviation is two orders of magnitude greater than
the mean. Another important piece of information is given by skewness analysis. Many
of the time series have skewness that is much different from zero, which means that the
return distribution is asymmetric. The lowest skewness is observed for CHF exchange rate
return, while the highest value is achieved for EGP. The last discussed statistical feature is
the result of kurtosis, which is much bigger than one and are leptokurtic for all considered
time series. The highest values are observed for EGP, CHF, AR, UAH, IDR, and RUB.
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Table 1. Statistical properties of the exchange rate returns.

Currency Mean Median Std Max Min Skewness Kurtosis

·10−4 ·10−4 ·10−2

AR 9.087 3.836 1.413 0.403 −0.126 11.147 261.7
CZK −0.471 −0.740 0.486 0.093 −0.064 1.291 41.6
AUD 0.324 −2.245 0.760 0.079 −0.050 0.743 10.8
DKK 0.053 0 0.048 0.079 −0.009 −0.560 84.1
BGN 1.393 0.452 0.845 0.063 −0.060 0.324 6.4
EGP 3.513 0.665 1.261 0.586 −0.075 21.336 961.4
BRL 3.334 −0.718 1.182 0.129 −0.1108 0.513 15.8
HKD −0.079 0 0.663 0.055 −0.070 −0.094 8.4
CAD −0.140 −1.480 0.674 0.044 −0.043 0.201 5.7
HRK 0.351 0.135 0.492 0.049 −0.053 0.092 18.2
CHF −0.629 0 0.468 0.088 −0.159 −6.186 304.3
HUF 1.335 0.289 0.595 0.070 −0.062 1.174 20.1
IDR 4.849 0 1.802 0.462 −0.207 5.287 134.0
CNY −0.313 0.329 0.834 0.050 −0.062 −0.102 8.4
ISK 1.392 −0.991 0.876 0.145 −0.133 1.199 71.2
JPY 0.061 2.313 0.849 0.083 −0.116 −0.606 17.0

KRW 1.050 −1.545 1.084 0.158 −0.232 −0.678 78.1
MXN 1.944 0 0.904 0.068 −0.091 0.221 10.1
MYR 1.033 −0.253 0.773 0.068 −0.070 0.129 13.0
NAD 2.782 −0.375 1.100 0.184 −0.101 1.500 25.9
NOK 0.585 −0.937 0.530 0.050 −0.082 −0.350 23.5
NZD 0.162 −3.306 0.783 0.057 −0.051 0.341 6.3
PHP 1.367 1.125 0.799 0.111 −0.130 −0.039 29.5
PLN 0.615 −1.442 0.642 0.057 −0.048 0.609 9.6
RON 5.452 0.675 0.908 0.192 −0.096 3.521 76.2
RUB 6.074 1.393 1.651 0.347 −0.282 4.050 124.6
SEK 0.570 −0.450 0.475 0.036 −0.039 0.228 8.4
SGD −0.159 0 0.595 0.043 −0.052 −0.154 7.0
THB 0.412 0.367 1.016 0.171 −0.067 1.045 25.0
TRY 9.005 4.949 1.177 0.267 −0.086 4.395 89.3
TWD 0.09 −0.232 0.654 0.068 −0.069 0.079 9.6
UAH 6.469 0 1.732 0.554 −0.215 8.250 258.0
USD −0.082 0 0.672 0.077 −0.077 −0.046 11.6
ZAR 2.768 −1.856 1.113 0.121 −0.143 0.259 18.1

Additionally, the time evolution of the mean return exchange rate is presented in
Figure 1. This graph allows for obtaining a general idea of Forex market evolution, particu-
larly to distinguish the periods of instability of the market.

2015 2016 2017 2018 2019 2020

-0.01

0.00

0.01

0.02

time

r

Figure 1. The mean value of the exchange rates return of the considered time series.
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4. Results

The moving time window technique must be used to study the time evolution of
cross-correlation. The results of the analysis depend on the correlation time window length.
The long time window smooths the fluctuations and it can hide important system features.
On the other hand, the short time window does not provide a good quality fit of the power
law, and the fluctuations are more apparent in the analysis. Therefore, PLCS algorithm was
applied for three time window lengths: Tc ∈ (20, 60, 120), which correspond to a month,
quarter, and half of the year period.

4.1. Month Time Window

The frequency of connection is the first parameter investigated here. This parameter
informs how often the correlation strength was converging or diverging, so how stable
was the correlation in the analysed period. In the case of the diverging correlation strength
network, the result is presented in Figure 2.
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Figure 2. The frequency of connection presented in descending order. The time window Tc = 20 days.
The blue line denotes a group of currencies of similar frequency of being connected on the network.

Applying the linear fit to the frequency rank allowed for distinguishing three groups
of currencies. The first group is marked by the red line: UAH, RUB, and IDR. The second
group is marked by the blue line: CHF, EGP, DKK, MYR, NOK, CNY, HKD, SGD, BRL,
AUD, KRW, NZD, and HUF. The third group is marked by the green line: RON, CZK, PLN,
JPY, SEK, CAD, TWD, PHP, THB, BGN, AR, USD, NAD, MXN, TRY, ISK, and ZAR.

In the case of the network construction based on the converging time series, i.e., the
correlation strength α < 0 the frequency of connection ranks are presented in Figure 2
and denoted as the converging network. In this case, six groups can be distinguished.
Taking more detailed analysis into account, the following groups can be pointed out: the
first, marked by the red line AR, ISK, and TRY, and the second, denoted by the blue line,
consists of CZK, NAD, DKK, HKD, and MXN. The third group, marked by the green line
consists of two members BGN, ZAR. The fourth group is the biggest EGP, USD, SEK, RON,
HRK, PLN, JPY, CAD, CNY, SGD, MYR, BRL, PHP, THB, and AUD. The two other groups
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are formed by HUF, TWD, CHF, KRW, NZD and IDR, NOK, RUB, UAH. Although both
graphs are, in some sense, complementary, divergent correlation graphs are constructed
under the condition that on the graph there are currencies with α > 0, while the divergent
graph under condition α < 0 the graphs in Figure 2 are not simple mirror images of
each other. This is because, in the analysis, the whole correlation matrix is investigated
and a given currency may be present on both types of graphs at the same time (it might
be convergent with respect to one time series and divergent with concerning another).
Particularly interesting are the groups denoted by the blue lines. These groups consist of
currencies with similar frequency of being present in the network (divergent or convergent
respectively), so the method introduces a natural categorization of time series.

Clique size evolution. In the context of correlation strength network, the cliques are
special formations. The cliques are the fully connected group of currencies, with the same
type of correlations. Figure 3 presents the clique size evolution graphs for both types of
networks. The main advantage of the clique size evolution analysis is the possibility to
observe the clique formation in time. The converging time series network that is presented
in Figure 3 shows that the biggest clusters were formed in the fourth quarter in 2014, which
can be interpreted as the moment when most of the time series were converging, so the
differences were decreasing. The clique was formed by 24 currencies. At the other maxima,
the formed clusters were not so large and they were in the interval 17–10 currencies. The
local maxima were observed in mid-2015, the second and third quarter of 2016, the first
quarter of 2017, the second and third quarter of 2018, and the second quarter of 2019. It is
also worth noticing that the average level of clique size before 2017 was on the level of 12
currencies, whereas, afterwards, the average value becomes about five time series. Thus,
the significant decrease of the clique size is noticeable.
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Figure 3. The biggest clique size evolution. Time window size Tc = 20 days.

The changes in the average size of the clique that are observed for the converging time
series graph are supported by the analysis of the clique size evolution for the diverging time
series graph Figure 3. In this case, the initial average size of the clusters was increased from
the size of about 10 currencies to more than 23 currency time series. In the high frequency
(short time window) analysis, the clique size in the diverging time series network is of high
variance, which means that there is no stable tendency. The clusters are formed temporarily.
However, the significant value of the cluster size suggests that the majority of the time
series are divergent.

The structure analysis of the network was continued by calculating the number of
communities that formed on the network. This structure community analysis is based on a
weaker constraint than the clique search. Another difference to the biggest clique size is
the number of communities is analysed instead of the biggest clique size. The number of
communities algorithm looks for the subgraph group with nodes with a higher density
of connections than the other part of the network (indifference to the clique that is a fully
connected subgraph). Figure 4 presents the results of the number of community analysis.

363



Entropy 2021, 23, 352

2015 2016 2017 2018 2019 2020
0

5

10

15

20

25

30

35

time

c
o
m
m
u
n
it
y
n
o

Converging network

2015 2016 2017 2018 2019 2020
0

5

10

15

20

25

30

35

time

c
o
m
m
u
n
it
y
n
o

Diverging network

Figure 4. Evolution of the communities number. Time window size Tc = 20 days.

Figure 4 presents the evolution of the community number that is observed for both
types of networks. Intriguing is the evolution of community number in the case of the
converging network (the correlation strength α > 0). Three levels of community number
can be distinguished in Figure 4 for the converging network these are the ground level
where a few communities are observed and two other states of 17 and 34 nodes. Such a
big number of communities suggests that they are of very small size (one or at most a few
nodes), additionally, the huge increment denotes that shift of the time window by one
day has changed the situation significantly. This can be interpreted as either the period
is extremely unstable or the correlation strength is approximately close to zero and small
changes of the data set have affected the classification of the time series. This observation
suggests that, in future applications of the method, it might be worth considering the
introduction of an additional class of time series cross-correlation α ≈ 0. Besides the two-
state period, the other local maxima are not spectacular, because they are not exceeding
seven communities.

The graph presenting the evolution of the community size for the diverging network
(Figure 4) differs significantly from the converging network. In this case, except for the
initial part at the end of 2014, the two-level behaviour is not observed. Therefore, the
diverging network seems to be more robust to the network switching effect. Similarly to
the converging network, the “baseline” of the community number can be distinguished (2–
5 communities). Several clear maximums can be distinguished in the case of the diverging
network quantity of community evolution: June 2015, April and July 2016, February 2018,
and several maxima in 2019. 2019 was the most unstable year out of those analysed when
many times the network was split into a big number of small communities.

The evolution of the community number for the converging network might suggest
that the time window size Tc is too short and fluctuations significantly influence the results
of the analysis.

Figures 5 and 6 present the evolution of the node rank histogram for converging
and diverging time series networks, respectively. When analysing the evolution of the
node rank histogram for the converging time series network shown in Figure 5, it can be
observed that in 2015 and 2016 the nodes with a significant number of links (k > 20) are
dominating. Whereas, in 2017 and later, the nodes with the low number of links (k < 15)
are dominating. A short exception is observed in 2018 (during the Chinese crisis) when
nodes with a high number of links were clearly present in the network. In 2019 and later,
the nodes with a small number of links are prevailing on the converging network.
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Figure 5. Evolution of the rank nodes histogram for converging network. The time window size
Tc = 20 days. The counts denote how many times the node of given rank (number of links) was
observed on the network.

Figure 6. Evolution of the rank nodes histogram for diverging network. The time window size
Tc = 20 days. Counts denotes how many times the node of given rank (number of links) was
observed on the network.

The evolution of the diverging time series network histograms is presented in
Figure 6. Initially, in 2015, the nodes with a small number of links are most evident,
but, since 2016, the situation has changed and the nodes with a high number of connections
are the most common on the network. It is particularly well seen at the end of 2019 and the
beginning of 2020, when nodes with the degree k > 30 are dominating on the network.
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Figure 7 presents the evolution of rank node entropy. There are no significant differ-
ences between the generated networks. Particularly interesting are the minima, which
correspond to the situation where there is a significant group of nodes of the same rank.
Although several minima can be distinguished, they do not form a clear evolution; this is
due to the noise influence. This results indicate that the time window is rather too short to
obtain a clear evolution of the system.
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Figure 7. Evolution of the rank node entropy for diverging and converging networks. The time
window size Tc = 20 days. The blue circles and green squares denote the entropy of diverging and
convergent network, respectively.

4.2. Quarter Time Window

Extending the size of the time window Tc to 60 days results in filtering high frequency
changes, which were observed in the one-month time window. Following the same scheme
of network feature analysis shown in Section 4.1, the discussion starts from the frequency of
being connected. The results are presented in Figure 8. In the case of networks constructed
with the constraint of the converging time series, the most frequent connections are ISK and
TRY, while, for the divergent time series network, the most frequent observed currencies
are UAH and RUB, which are present in 94% and 93% of the constructed network. The blue
line denotes the group of currencies with similar frequency of the network member. For the
converging time series network, the biggest group has a frequency in the interval 27–3%,
being rather low, while, in the second type of network considered here, the frequency is in
the interval 82–51%, so the probability of connection is significantly higher.

Figure 9 shows the time evolution of the biggest clique size (so the clusters of a fully
connected set of currencies). It can be noticed that the divergent and convergent time series
networks results are on average complementary—the size of the cliques in convergent
time series is growing in time, but in divergent time series are decreasing. Of course, the
graphs differ in details. Moreover, the general similarity does not apply to the position
and magnitude of extreme points. For the converging network, as in Figure 9, six local
extremes can be distinguished. The local maxima are observed in April 2015, March 2016,
May–June 2016, April–June 2017, January 2018 (which is the highest maxima of 30 nodes in
one clique), and the local minimum in June 2018. The clique size evolution in the diverging
time series network has approximately four local extremes. The first maximum is observed
at the end of 2014, which is followed by a very deep minimum in April 2015. The decrease
of the clique size is enormous, because, at the first maximum, there are 26 nodes in the
clique, while at the minimum the biggest clique consists of 5 nodes, so the biggest clique
size decreased by 21 nodes. Immediately after that minimum, the biggest clique is growing
to achieve the size of 17 nodes in August 2015. Subsequently, the clique size is relatively
slowly decreasing to the level of 4–7 nodes. The last maximum is observed in July 2018.
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Figure 8. The frequency of connection presented in descending order. The time window Tc = 60
days. The blue line denotes group of currencies of similar frequency of being connected on the
network.
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Figure 9. The biggest clique size evolution. Time window size Tc = 60 days.

Figure 10 presents the evolution of the community number. In the evolution of com-
munity number of converging networks, one can distinguish three levels: the ground
state, where the community approximately 3–6 communities, the second level of 16–17
communities, and the third level of 34 communities. Because the border between converg-
ing and diverging time series is α = 0, the bistable behaviour of the graph means that
a significant group of currencies is at the border and a small shift of the time window
position is changing their classification. A similar observation was made for the evolution
of community number for Tc = 20 days. As it was already mentioned, the additional class
of α ≈ 0 is not introduced here due to the clarity of the analysis, because the main aim
of the study is to verify the properties of the algorithm. The additional class should be
considered in such a case in, e.g., commercial analysis.
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Figure 10. Evolution of the community number. The time window Tc = 60 days.

The bistable behaviour of the size of the community size is also observed in the
diverging network shown in Figure 10 at the end of 2014. Afterwards, the bistable evolution
is not observed and several clear maxima can be noticed: June 2016, at the end of 2017, and
in April–May 2019. It can be observed that, due to the longer time window, the number of
maxima has been reduced when compared to the previously discussed case, as in Figure 4.

The evolution of the node rank histograms for converging and diverging networks
are presented in Figures 11 and 12, respectively. In both types of network, two periods can
be distinguished: the most common is the high-rank nodes or the reverse situation—the
low-rank nodes. The converging time series network, as in Figure 11, is, in general,
complementary to the diverging network case, as in Figure 12. At the end of 2014, the
low-rank nodes are dominating, while, in 2016, 2017, and 2019, the high-rank nodes are
prevailing in the histograms. Combining the results of the rank node histograms evolution
with the clique size analysis, where huge clusters are observed, as in Figure 9, it can be
concluded that the generated networks are very close to a fully connected network.

Figure 11. Evolution of the rank nodes histogram for converging network. The time window size
Tc = 60 days. Counts denote how many times the node of given rank (number of links) was observed
on the network.
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Figure 12. Evolution of the rank nodes histogram for diverging network. The time window size
Tc = 60 days. Counts denote how many times the node of given rank (number of links) was observed
on the network.

In the case of the diverging time series network, as in Figure 12, the nodes of high
rank are observed at the end of 2014, at the end of 2015, and the beginning of 2016. A very
special situation occurs at the beginning of 2015, when there is no dominating group of
nodes, but all the ranks of nodes are present in the histogram. In 2017, at the end of 2018,
and then the beginning of 2019, the networks are divided into small subgraphs. In the mid
of 2018, the increase of high-order nodes is observed—this situation can be related to the
Chinese crisis.

Figure 13 presents the entropy of the rank node distribution for the time window of
Tc = 20 days. In this case, the influence of noise is significantly reduced. The different
periods can be clearly distinguished. Initially, in 2015 the decrease of entropy is observed,
which is the effect of domination of high rank nodes in the histograms. The period of
stable high entropy follows, which lasts until the mid of 2016. Later, oscillation appears,
which are combined with the decrease of the minimum value to achieve minimum in the
beginning of 2018. In 2018, another period of maximum entropy is observed. It seems
that level 1.4 is the maximum entropy observed in these networks and can be considered
as a measure of the stability of the market. A significant lowering of the entropy may be
considered as a signature of the crisis.

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●●
●
●
●
●
●●
●●●
●
●
●●

●●●
●
●
●
●●●
●●
●●

●
●

●
●

●●
●●●●●

●●
●
●
●●●
●●
●
●
●

●●●●●
●
●

●●●●
●
●
●●●●
●

●

●●
●●●●●●

●

●
●
●
●●
●
●
●

●●●
●●
●
●

●
●●●●●
●●●●

●●
●●●●
●
●
●●
●
●●●

●

●

●

●

●

●●

●
●
●
●
●

●●
●
●
●●
●
●
●●●●●●
●●●●
●

●●
●●●
●●●

●
●●●

●

●
●
●●
●●●●●●●
●
●●
●●●●●●
●
●
●●●●●
●

●●
●
●
●●
●

●

●●●
●
●●
●
●
●●
●
●●
●●
●●●●●
●●

●
●●
●

●
●
●
●●●
●
●
●
●●●●
●
●
●
●●●●●●●●
●
●
●

●●

●
●
●

●
●
●●
●
●

●
●●●
●
●●

●

●●
●●●

●
●
●●●●
●
●
●

●●
●

●●●
●●●
●●
●●
●
●●

●
●●
●●●
●●

●●●●●●

●

●

●●●
●●●

●●

●●

●

●

●

●
●
●
●
●

●
●●
●
●●●●
●
●
●
●●
●

●
●
●●
●●
●●●●
●

●

●

●
●
●●
●

●●

●●
●

●●
●
●
●

●

●●
●

●

●

●
●
●

●

●
●

●●
●●

●

●
●

●●
●
●●
●

●●
●●●
●
●
●●●●
●●●
●●●●
●
●
●
●
●

●

●
●

●
●

●
●●
●
●
●

●
●●●

●

●
●
●
●
●
●●

●●●●●●
●

●

●●
●
●
●
●
●●●

●●
●
●●
●

●●●●●

●
●●●●●

●●
●
●
●
●
●

●
●
●●●
●
●●●●●●●
●●
●●●●
●●●●
●●
●●●●
●●
●●
●

●●
●
●●
●
●●

●
●
●●
●
●
●
●
●
●●
●●
●

●
●●●●
●●●●

●

●

●●
●

●

●●

●●
●●●●●
●●

●●
●
●

●

●●

●
●●
●

●
●●

●

●●
●
●
●
●●●●
●●●
●●●

●

●
●●●●

●●●●●●●

●
●●
●●
●

●

●
●
●
●
●
●●
●
●
●

●●

●●●
●●

●
●
●

●
●●●●
●
●●
●●●●
●●●●●●

●
●●
●●●●●●●●●
●
●
●

●●

●●
●●●●
●
●●●●●●●●●

●●
●●●

●
●

●

●
●●●
●●
●●

●●●●●
●●●●●●

●
●●●

●●

●●●
●●
●
●

●●●●●

●
●
●●

●●

●
●
●●
●
●
●
●
●●●

●
●
●
●
●●
●
●
●
●●●●
●●
●

●

●
●
●
●●●
●
●●●●

●
●●
●●●●●

●

●
●

●●
●●●●●●●●
●●
●●●●

●
●
●●●●
●●●●●
●●
●●
●●
●●●●

●
●●●●●●
●

●
●●●●●●●●●

●●●●●●●●●●●●●

●●
●
●●
●●

●

●●●
●●●
●●●●
●
●
●

●
●●
●
●●
●

●
●●●●

●

●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

■

■

■

■

■
■

■

■
■■■■

■

■

■
■■
■
■
■
■
■
■■

■■■
■■
■■

■■■

■■
■
■■■■■■■
■

■

■
■

■
■
■■■■■

■■
■
■
■■■
■
■
■
■
■

■■■
■■

■
■

■■■■

■
■
■■■■
■

■

■■
■■■■■
■

■
■■
■■■

■
■■
■■■
■■■
■

■

■■
■
■■
■■■
■

■
■
■■■■
■
■
■
■
■

■
■
■

■

■
■■

■
■■
■
■■
■■

■■
■
■
■
■■
■■■■
■■■
■■■■
■
■
■■■
■

■■■

■
■■■

■

■
■
■■■
■■■■
■■
■
■
■
■■■■■■
■
■■
■■■■
■

■■
■
■
■■
■

■

■■■
■
■■
■
■
■■
■■■
■■■■■■■
■■

■

■■
■
■
■
■
■■■

■

■
■
■■■■
■
■
■
■
■■■■■■■
■
■
■

■■

■
■■
■
■
■■■
■
■■
■
■■■■

■

■■■■■

■
■
■■
■
■
■
■
■
■■

■

■■■
■■■
■■
■■■■■

■
■■
■■■
■■

■■
■■■■
■

■

■
■
■
■■■

■
■

■
■
■

■

■

■
■
■
■
■

■
■■
■
■■
■■
■
■

■
■■

■

■

■
■■
■■
■■■■
■

■

■

■
■
■■

■

■■

■■
■

■■

■
■
■

■

■■
■

■

■

■

■
■

■

■
■

■■
■■

■

■■

■■
■■■■

■■
■■■

■■
■■■■■■■
■■■■
■
■
■
■
■
■
■
■
■■

■■
■
■■
■

■■
■
■

■

■
■
■
■

■
■■

■■■■■■
■

■

■■
■
■
■
■
■■■

■■
■

■■
■
■
■
■■
■

■
■■■
■■
■
■
■
■
■
■■

■
■■■
■
■
■■■
■
■■■■■■■■■
■■■■■■
■
■■■
■■
■
■
■

■■
■
■■
■
■
■
■■
■
■
■

■
■■■
■■
■■
■

■
■■■■
■■■■

■

■

■■
■

■

■■

■■
■■■■■
■■

■■

■

■

■

■■
■■
■
■
■

■■

■

■
■
■
■
■
■■
■■■■■
■■■

■

■
■■■■

■■■■■■■

■
■■
■■
■

■

■■

■
■
■■
■
■
■
■

■■

■
■
■
■
■
■
■■

■
■■■■
■
■■
■■■■■■■■■■

■
■■
■■■
■■■■■■

■■
■
■■
■■■
■■■
■
■■
■■■■■
■
■
■■
■■■

■
■

■

■
■■■
■■
■■
■■■■■

■
■
■
■■■

■
■■■

■■

■■■■■
■
■

■■
■■
■

■
■■■

■■

■
■
■■
■
■
■
■
■■■

■

■
■

■

■■
■
■

■
■
■■■
■
■
■

■

■
■■
■■
■■■■■
■
■■■
■■■■■

■

■
■
■■
■■■
■■
■■■
■■
■■■■

■■
■■
■■

■■■
■
■■■
■■

■
■
■■■■

■
■■■■■■
■

■
■■■■■
■■■■

■■

■■■■■■■■■■■

■
■

■
■■

■■

■

■■■
■■■
■■■■
■
■
■

■
■
■
■
■■
■

■■■
■
■

■
■
■■
■■■■
■■■■■
■■■■■■■■■■■■■■■■

■■■

2015 2017 2019
time

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Entropy

● Diverging

■ Converging

Figure 13. Evolution of the rank node entropy for diverging and converging networks. The time
window size Tc = 60 days. The blue circles and green squares denote the entropy of diverging and
convergent network respectively.
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4.3. Half Year Time Window

This subsection contains the results obtained for the longest time window Tc = 120
days. Figure 14 presents the results of the frequency of connection of nodes to the network
for both types of networks. In the case of the converging network, AR is the most frequent
currency, which is present in 83% generated graphs. This node is separated and does not
belong to any group. The first group, which can be distinguished in this analysis, consists
of five currencies: ISK, TRY, MXN, HKD, and NAD. Currencies of this group are connected
to others in 58–54% of networks. The second group consists of two currencies: ZAR and
BGN. The last group is the biggest one—26 currencies. Within this group, the frequency of
being connected is rather low: from 32% to 3%.
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Figure 14. The frequency of connection presented in descending order. The time window Tc = 120
days. The blue line denotes group of currencies of similar frequency of being connected on the
network.

The frequency of being connected on a divergent time series graph is slightly different
because only two groups of similar frequency, i.e., without significant differences between
consecutive elements, can be distinguished. The first group consists of five currencies:
NZD, MYR, BRL, SGD, and KRW, and their frequency is varying from 72% to 70%. This
group is followed by the second one: JPY, PHP, CAD, HRK, PLN, SEK, EGP, and BGN with
the frequencies from 68% to 57%.

Figure 15 presents the biggest clique size evolution for the time window Tc = 120 days.
When comparing to the previously discussed cases, i.e., Tc = 20, 60 days, the smoothing
effect of the time window size is clearly visible. In this case, the biggest clique size for
the converging time series network is asymptotically increasing with the exception in the
middle of 2018, which can be related to the Chinese stock market crisis. An analogous
maximum is observed in the graph presenting the biggest clique size evolution for the
diverging network shown in Figure 15.
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Figure 15. The biggest clique size evolution. Time window size Tc = 120 days.

Figure 16 presents the evolution of the community number on the graph for the time
window Tc = 120 days. In the case of the converging network, the observed previously
switching effect between two states for shorter time windows is also present in this case.
However, in difference to the previous analyses, there is a period when the network brakes
into separate nodes. This is the second and third quarter of 2017. At this time, in the
community number of the diverging network graph, the maximum is reaching the value
of 20 nodes. Simultaneously, the high number of communities is observed in diverging
and converging networks this suggests that no clear tendency (or significant correlation)
is present in the market. This finding agreed with the fact that, at this time, there was no
serious global crisis.
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Figure 16. Evolution of the community number. The time window Tc = 120 days.

The node rank histogram evolution that were obtained for the time window Tc = 120
days are presented in Figures 17 and 18. In both graphs, the change node rank structure
is clearly visible. In the case of converging time series network, as in Figure 17, at the
beginning of the analysed period, i.e., at the end of 2014 and in the first quarter of 2015 the
low-rank nodes are prevailing in the network, while, from 2016, the high-rank nodes are
dominating. Differently from the already analysed rank histograms evolutions for shorter
time windows (Tc = 20 and Tc = 60 days) in the case of Tc = 120 days, the process of
network transition from domination of low-rank nodes to high-rank nodes, prevailing
network is a kind of continuous process. The transformation process lasts approximately
a year when the nodes are gaining connections. The significant shift of the maximum
position of the low-rank nodes is observed in mid-2018, probably due to the Chinese stock
market crisis.
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Figure 17. Evolution of the rank nodes histogram for converging network. The time window size
Tc = 120 days. Counts denotes how many times the node of given rank (number of links) was
observed on the network.

Figure 18. Evolution of the rank nodes histogram for diverging network. The time window size
Tc = 120 days. Counts denote how many times the node of given rank (number of links) was
observed on the network.

The diverging network rank node histogram evolution, as shown in Figure 18, is
complementary to the converging series network. At the end of 2014, the high-rank nodes
are prevailing in the histogram. During 2016, the node rank frequency of occurrence is
evolving from high node rank domination to low-rank nodes prevailing in 2016. Finally,
since 2016, the low-rank nodes have dominated the network except for mid-2018.

The rank node entropy evolution that is observed in the case of the time window
Tc = 120 days is presented in Figure 19. The long time window results in significant
filtering of the time series. In this case, the most stable effects can be observed. In the
presented results, there are two such events—one in 2017 and the second in 2019. The
outcomes of the analysis for the half-year time window confirm the previous observations
that the crisis is characterised by a low value of the entropy of the rank node distribution.
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Figure 19. Evolution of the rank node entropy for diverging and converging networks. The time
window size Tc = 120 days. The blue circles and green squares denote the entropy of diverging and
convergent network respectively.

5. Conclusions

The presented study investigates the cross-correlations among currency exchange rates
on Forex market by the PLCS algorithm, followed by network analysis. The PLCS method
is focused on the trend correlations and unlike other methods, allows to observe cross-
correlation of trends. The results of this paper show that crises influence trend correlations.
The convergent and divergent networks are not simple mirrors of each other. Because
the network is constructed with the cross-correlation matrix, the introduced constraint
may reveal a different feature, e.g., the community number observed in the converging
network presents a two-state evolution that is rarely observed in a diverging network.
Particularly interesting is the biggest cluster size analysis, which is sensitive to crisis
occurrence. Particularly, the change of the cluster size can expose the severity crisis. The
third feature investigated here is the frequency of the connection, which verifies the stability
of the connection. Currencies are forming groups concerning the frequency of connections
to the network. It might give an opportunity to develop a new classification of currencies
with respect to their relationship to the group. The last performed analysis—the rank node
histogram evolution—provides the most detailed information about the structure and
evolution of the cross-correlation among currencies. The analysis of the rank node entropy
is particularly interesting. The obtained results suggest that entropy might be a synthetic
measure of crisis. Of course, this conclusion needs further analysis, but the presented
results are very promising.

A very special outcome of this analysis is that, in recent times, e.g., 2017, the struc-
ture of the observed networks has changed and depending on the type of the network
(converging or diverging) the high or low-rank nodes are prevailing. It means that the
cross-correlation in the Forex market has changed significantly. The observed changes
in the biggest clique size and the number of communities are the results of globalisation,
which are more transparent during crises. In this special condition, correlations and mutual
dependence are exposed. Of course, the results depend on the choice of central currency
and the analysis can be repeated for other central currencies. However, the main aim of
this paper was establishing new analysis methods, so the detailed analysis of the role of
the central currency choice is left for other studies. The additional results are the analysis
of the role of the time window length. The presented results allow for estimating the
window size with the requested quality of research. It is not recommended to use time
windows shorter than 20 days. Of course, extending the size of the time window improves
the quality of the results from the statistical point of view, and it filters the high frequency
changes exposing the long-term proprieties. Although this aspect was not discussed here,
longer time windows might be more appropriate for forecasting.
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Abstract: Currency crises have been analyzed and modeled over the last few decades. These currency
crises develop mainly due to a balance of payments crisis, and in many cases, these crises lead to
speculative attacks against the price of the currency. Despite the popularity of these models, they are
currently shown as models with low estimation precision. In the present study, estimates are made
with first- and second-generation speculative attack models using neural network methods. The results
conclude that the Quantum-Inspired Neural Network and Deep Neural Decision Trees methodologies
are shown to be the most accurate, with results around 90% accuracy. These results exceed the estimates
made with Ordinary Least Squares, the usual estimation method for speculative attack models. In
addition, the time required for the estimation is less for neural network methods than for Ordinary Least
Squares. These results can be of great importance for public and financial institutions when anticipating
speculative pressures on currencies that are in price crisis in the markets.

Keywords: speculative attacks; currency crisis; neural networks; deep learning; Quantum-Inspired
Neural Network

1. Introduction

A currency crisis is defined as the inability of the authorities of a country to defend a
certain parity for the exchange rate. In turn, the exchange rate crisis will occur as a result of
a speculative attack carried out by operators in the foreign exchange market, which causes
a large and sudden increase in the ability to readjust the central parity [1]. The models
of speculative attacks best known from the previous literature are the so-called first- and
second-generation models. The first-generation models are based on the incompatibility
between the economic policy of a government and its commitments to a fixed exchange
rate, which ends up leading to a speculative attack on its currency and the collapse of
the exchange regime. The first formulation of this type of model is due to Krugman [2];
second-generation ones incorporate private agents, their expectations, and interaction with
economic policy, generating the possibility of multiple equilibria and self-generated crises.
This second-generation model was built by the work of Obstfeld [3]. The experience of
countries with exchange rate crises shows that they cause significant welfare losses for
economic agents, insofar as they have generated falls in output and employment, and large
losses in international reserves without neglecting significant fiscal problems. Hence the
importance of having indicators that warn about events of excessive fragility is that they
allow the authorities to act promptly to minimize the costs associated with the outcome of
these episodes of speculative attacks in currency crises.

In the last decade, many countries have suffered a currency crisis that has led to high
pressure against the price of their currency in financial markets [4]. This has been due to
the significant deterioration of their balance of payments concerning international trade.
However, the reasons why they have suffered these falls have been varied. Countries like
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Russia and Iran suffered in recent years different important falls in the value of their cur-
rency due to the economic sanctions imposed by the United States and the European Union.
This caused a drop in their commercial activity, and therefore, an abrupt deterioration
in their international trade balances. Other African countries such as Namibia or South
Africa have also recently suffered acute currency crises due to domestic political crises and
continuing instability that has deteriorated their international image and their bilateral
and trade relations with other countries. Lastly, Latin American countries such as Mexico
or Argentina have suffered successive currency crises with consequences of speculative
attacks due to their current account crises with failed economic policies.

Different authors have analyzed speculative attacks based on macroeconomic theory,
being the object of continuous study and with strong consequences both in the economy
and in the financial markets. However, in the last decade, we can find various works on
speculative attacks with very specific objectives on the procedure in which they occur. Even
so, these studies have not obtained a great repercussion, the first- and second-generation
models created previously are currently of great importance [5–10]. Others that follow this
line of speculative attack models stand out, such as those carried out by [11–17], where
they have tried to explain the origins of speculative attacks and currency crises, managing
to establish the theory that helps to explain these phenomena. This has also been studied in
various works such as those of [15–21] discussing what type of exchange rate to establish
or what type of economic policy to choose to reduce the chances of suffering a speculative
attack. Despite this, recent previous literature has revealed difficulties in achieving a certain
degree of predictive capacity [15–17,21]. The current complexity in economic decisions and
especially in financial markets leads to the need to search for new methodologies that more
accurately estimate the models of speculative attacks. These models on speculative attacks
have always been estimated using the Ordinary Least Squares (OLS) method, as the most
widely used statistical technique in estimating these models [7–15].

In order to cover this gap, and given the importance that currency trading problems
continue to have for many countries, the present study develops different machine learning
techniques for estimating the two main popular speculative attacks models that respond
to the most current concerns of the financial situation of the currencies. To this end, the
data have been used for the cases of Mexico and Thailand, two countries that in recent
decades have shown difficulties with the price of their currencies, being targets of attacks
by numerous agents in the foreign exchange market. Specifically, the neural networks of
Perceptron Multilayer, Deep Recurrent Neural Networks, Deep Neural Decision Trees, and
Quantum-Inspired Neural Networks have been used, to be compared with the usual OLS
method. The quantum variant is the one that achieves the best results both outside the
sample and also in the forecasts of final postestimations made. Besides, the computational
methodologies used in this study improve the precision results obtained by the OLS
method. These results are repeated for both the first-generation and second-generation
models, as well as for the data used from Mexico and Thailand.

We make some contributions to the literature. We consider new estimation techniques
for forecasting the speculative attacks through the first- and second-generation models,
testing the precision and level of residuals obtained by each methodology. It has important
implications for public institutions, governments, central banks, financial institutions, and
other stakeholders concerned in the foreign exchange markets for the accurate estimation
of speculative attacks.

The present study is organized as follows: Section 2 reviews the speculative models
used in this study. In Section 3, the methods used are presented. In Section 4, the data
and the variables used in the research are detailed and the results obtained are analyzed.
Finally, the conclusions of the study and its implications are exposed.
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2. Speculative Attacks Models

2.1. First Generation Model

The models of currency crisis or balance of payments crisis try to explain why and the
logic of how a currency crisis is unleashed. Thus, the first-generation models were based,
mainly, on the fact that exchange rate crises occur due to the existence of incompatibility in
monetary and fiscal policies (both expansive) with the maintenance of a fixed exchange rate
regime in the long term. In other words, these occur in a situation in which a government
(central bank), which promised to keep the exchange rate fixed, is running constant fiscal
deficits and these are monetized by its central bank. This situation creates an incompatibility
that will mean that this exchange rate regime cannot be maintained for long. The reason
why this regime will end up collapsing is that there is a surplus of the money supply
over demand continuously and this surplus will be reduced by the central bank by selling
reserves. Thus, the central bank will lose reserves in all periods to balance the money
market. Faced with this situation of constant loss of reserves, investors, anticipating the
natural disappearance of reserves, will carry out a speculative attack on the local currency
that will lead to reserves decreasing to a “critical” value, a level that may be zero according
to the Flood and Garber model [10] or that they reach a level below the critical value [1–3].

The first-generation basic model considers that private agents (investors or specu-
lators) have perfect foresight on the future behavior of economic variables and work in
continuous time. It is a model that assumes a small and open economy, where a single
good is produced, and it is assumed that the Purchasing Power Parity (PPP) and the
discovered interest parity are met. There are two types of assets, local and foreign money,
and bonds, also local and foreign, the latter perfectly substitutes (this implies the existence
of an interest rate). The model proposes a small country, where it produces a marketable
good in the international market, whose price in the national territory (P) is defined by
the exchange rate (TC) of the national currency expressed in terms of the foreign currency
(s) multiplied by the price of the product in international markets (P *), as it appears in
expression (1),

P = sP *, (1)

The hypothesis also assumed that the price of the good abroad P * is constant and
equal to 1 (P * = 1). So, the internal price of the product will be equal to the exchange rate
(P = s).

The approach of Krugman is completed with flexible wages and prices, with produc-
tion in full employment, and the trade balance, regardless of the role of the balance of
payments in the current account model, will be the difference between production and
expenditure:

B = Y − G − C(Y − T,W) C1,C2 > 0, (2)

where B is the current account balance, Y is the level of production, G defines public
spending, C represents private consumption, T is the tax variable, and W is total household
wealth.

Regarding the asset market, the model establishes that investors can only choose
between two assets: national currency (M), and foreign currency (F), with the nominal
interest rate of both assets equal to zero. In this way, the real wealth of national residents
(W) will be equal to the sum of holdings in the national currency (M) plus those of foreign
currency (F) as defined in expression (3):

W =
M
P

+ F. (3)

Lastly, the model assumes that foreigners do not have a national currency, so (M) rep-
resents the national currency stock, and in equilibrium, it assumes that national residents
must be willing to maintain said stock. The equilibrium condition of the portfolio estab-
lishes that asset holdings in national currency are equivalent to a proportion of residents’
real wealth and that this, in turn, depends on the expected inflation rate (π). Furthermore,
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one of the assumptions of the model is that the domestic price level (P) corresponds to
the exchange rate (s), and asset holdings in national currency depend on the expected
depreciation rate of the currency, expressed in Equation (4):

M
P

= L(π)× W. (4)

Krugman considers two different economic regimes: a system with a flexible exchange
rate and a system with a fixed exchange rate. The behavior of the economy in the short
term is different depending on the exchange rate system. An increase in the expected
inflation rate under a flexible exchange rate regime produces an increase in the domestic
price level, while when the exchange rate is fixed, an increase in the expected inflation rate
implies an alteration in the composition of residents’ wealth, increasing foreign currency
assets (ΔF) and decreasing domestic currency assets. This situation causes a compensatory
change in government reserves that decrease by the same amount as holdings of foreign
currency in the hands of private residents increase:

ΔR = −ΔF = Δ
M
P

. (5)

Krugman also analyzes the dynamic behavior of the economy under both exchange
rates. In the case of flexible TC, it is assumed that the creation of money depends solely on
the financing needs of the government. Therefore, the growth of the money stock will be
determined by the differences between the government’s fiscal expenses and revenues, as
expressed in Equation (6):

M
P

= G − T. (6)

Relating public spending and money supply, under the assumption of perfect forecast-
ing of the inflation rate, Krugman shows that the demand for assets in national currency
will depend exclusively on price growth and that national residents will only be willing to
increase the proportion of national currency over foreign currency if there is a reduction in
the price level.

In a fixed exchange rate regime, it is assumed that the government has a stock of
reserves in foreign currency, which it uses to stabilize the exchange rate. This is equivalent
to saying that the price level is constant, where P = sP * and P * = 1, and therefore P = s = 0.
The private sector can only acquire assets if it decreases its spending relative to its income
and therefore, private sector savings are considered:

S = Y − T − C(Y − T,W). (7)

In this case, and because the price level is constant, the growth of residents’ wealth is
equivalent to the savings of the private sector, that is:

.
W =

.
M
P

+
.
F = S. (8)

In this way, the distribution of savings between assets denominated in national cur-
rency and assets in a foreign currency will be determined by the equilibrium condition of
the trade balance. As long as investors trust the government to maintain the price level, the
expected inflation will be zero, giving a stable relationship between wealth and deposits
in national currency. If there is an increase in the wealth of residents, a proportion L will
go to the national currency, given: M

P = L(π)× W and (1 − L). It will be used for assets in
foreign currency. The government will be able to cover its deficit by issuing new national
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currency or by using its foreign currency reserves (R). Therefore, the composition of the
state budget can be expressed:

.
M
.
P

+
.
R = G − T = g

(
M
P

)
. (9)

From this expression, it follows that if the government commits to maintaining the
exchange rate, it has no control over how it finances its deficit. Over time, both private
sector wealth and government reserves will vary. When the government runs a deficit,
its reserves decrease, even though the private sector saving is zero. In a deficit situation,
fixing the exchange rate is impossible regardless of the initial amount of reserves that the
government had and the effect derived from said fixing will generate a balance of payments
crisis, caused by a speculative attack at the moment in which the agents anticipate the
depletion of reserves.

2.2. Second Generation Model

The second-generation models differ from the first generation because they are models
of multiple equilibria, since they consider an interaction between the private sector and the
behavior of the government, giving rise to multiple solutions. These second-generation
models consider that in a country’s economy, there is an interrelation between the behavior
of the private sector and the decisions made by the public sector. Thus, a financial crisis
under this relationship can take place when international financial operators have expecta-
tions about a possible devaluation of the currency, this situation is reflected in interest rates,
which by rising try to attract national currency against the foreign currency. This scenario
can lead the government to devalue due to the cost of debt service. On the contrary, if the
private agents do not have expectations that the exchange rate will change, the interest rate
remains low and the devaluation is less likely.

Second-generation models were developed by Flood and Marion [11] to understand
crises in their self-fulfilling character. According to this mechanism, if the agents foresee
a possible devaluation of the currency, this will be reflected in the salary negotiations,
which will cause economic imbalances, including a rise in the country’s price level. These
imbalances can be corrected by the government through the exchange rate since it is set
after wage negotiations. If the government decides not to devalue, it will correct economic
imbalances avoiding an increase in inflation by reducing its control over the variables that
define the level of production. If, on the contrary, the government decides to lean towards
the flexible exchange rate, it will be feeding a process through which both the level of
wages and prices in the country will increase. Both situations are reflected in Equation (10),
which reflects the so-called cost of the exchange rate regime.

Lt = 0.5θ(pt − pt−1) + 0.5(yt − y∗)2, (10)

where pt is the national price level, yt is the country’s output at time t, y* is the output
target set by economic policy, and θ is the weight associated with deviations in inflation
from the political objective.

According to this approach, the government will decide to devalue its currency
provided that the loss for leaving the fixed exchange rate system, together with the cost
for the government of the loss of credibility of making this decision, is less than the loss
obtained for not giving up under pressure and keep the exchange rate fixed. In this model,
the existence of different levels of economic equilibrium stands out, where each level
reflects the expectations that economic agents maintain about the economic policy that
the government will carry out in the following period, since depending on the levels
of devaluation expectations, the parameters of the equation will also be different, thus
obtaining multiple results.
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3. Neural Networks Methods

3.1. Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) is a feed-forward, supervised artificial neural net-
work model that is composed of a layer of input units, another layer of output, and several
intermediate layers called hidden layers in so much so that they have no connections
with the outside world. Each input sensor would relate to the units of the second layer,
these in turn with those of the third layer, and so on. The network will aim to establish a
correspondence between a set of input data and a set of desired outputs.

Moreover, [22] show that learning in MLP was a special case of a functional approach,
where there is no assumption about the model underlying the data analyzed. This process
involves finding a function that correctly represents the learning patterns, in addition to
carrying out a generalization process that allows the efficient treatment of unanalyzed
individuals during said learning. To do this, we proceed to adjust the W weights from the
information from the sample set, considering that both the architecture and the network
connections are known. The objective is to obtain those weights that minimize the learning
error. Given, then, a set of pairs of learning patterns {(x1, y1), (x2, y2) . . . (xp, yp)}, and an
error function ε(W, X, Y), the training process implies the search for the set of weights that
minimizes the learning error E (W), as expressed in (11).

min
w E(W) = min

w ∑p
i=1 ε(W, xi, yi). (11)

Most of the analytical models used to minimize the error function use methods that
require the evaluation of the local gradient of the E(W) function and techniques based on
second-order derivatives can also be considered [23,24].

3.2. Deep Recurrent Convolution Neural Network

Recurrent neural networks (RNN) have been successfully used in many fields for
time-series prediction due to its huge prediction performance. For a simple neural network
(NN), the inputs are assumed to be independent of each other. The common structure of
RNN is organized by the output of which is depended on its previous computations [24,25].
Given an input sequence vector x, the hidden states of a recurrent layer s, and the output
of a single hidden layer y, it can be calculated as appears in expressions (12) and (13):

st = σ(Wxsxt + Wssst−1 + bs) (12)

yt = o
(
Wsost + by

)
(13)

where Wxs, Wss, and Wso denote the weights from the input layer x to the hidden layer s,
the hidden layer to itself, and the hidden layer to its output layer, respectively. bs and by
are the biases of hidden layer and output layer, respectively. σ and o are the activation
functions. The Equation (14) represents the function of vibration signals.

STFT{z(t)}(τ, ω) ≡ T(τ, ω) =
∫ +∞

−∞
z(t)ω(t − τ)e−jωt dt (14)

where z (t) is the vibration signals, ω (t) is the Gaussian window function focused around 0,
and T (τ, ω) is a complex function that describes the vibration signals over time and
frequency.

When time-frequency features {Ti} are used to estimate speculative attacks with RNN,
the convolutional operation is conducted in the state transition. To calculate the hidden
layers with a convolutional operation, the next Equations (15) and (16) are applied:

St = σ(WTS × Tt + Wss × St−1 + Bs) (15)

Yt = o
(
WYS × St + By

)
(16)
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where the term W indicates the convolution kernels. The convolutional operation has been
determined by local connections, weight sharing, and local grouping, which allow every
unit to integrate time-frequency data in the current layer. The convolution is operated
between weights and inputs and is performed in the transition of inputs to the hidden
layers.

Recurrent Convolutional Neural Network (RCNN) can be heaped to establish a deep
architecture, named “deep recurrent convolutional neural network” [25]. When DRCNN
is used to estimate speculative attacks, the last part of the model is a supervised learning
layer, which is determined as appears in Equation (17):

r̂ = σ(Wh × h + bh) (17)

where Wh is the weight and bh is the bias. The error between predicted observations and
actual ones in the training data for speculative attacks estimation can be calculated and
back propagated to train the model [25]. Considering that the actual data at time t is r, the
loss function is determined as shown in the next Equation (18):

L(r, r̂) =
1
2
‖ r − r̂ ‖2

2 (18)

Stochastic gradient descent is applied for optimization to learn the parameters. The
gradient of loss function regarding parameters Wh and bh are determined as follows in the
Equations (19) and (20):

∂L
∂Wh

= −(r − r̂)σ′(.)h (19)

∂L
∂bh

= −(r − r̂)σ′(.) (20)

3.3. Deep Neural Decision Trees (DNDT)

DNDT are DT models executed by deep-learning NNs, where a configuration of
DNDT weightings corresponds to a specific decision tree and is thus interpretable [26]. The
algorithm begins by implementing a soft binning function [27–29] to calculate the error
rate for each node, making it possible to make decisions divided into DNDT. In general,
the input of a binning function is a real scalar x, which generates an index of the containers
to which x belongs. Assuming x is a continuous variable, group it into n + 1 intervals. This
requires n cut-off points, which are trainable variables in this context. The cut-off points
are denoted as [β1, β2, . . . , βn] and are strictly ascending such that β1 < β2 < . . . < βn.

The activation function of the DNDT algorithm is implemented based on the NN
defined in Equation (21).

π = fw,b,τ (x) = softmax((wx + b)/τ), (21)

where w is a constant with value w = [1, 2, . . . , n + 1], τ > 0 is a temperature factor, and b is
defined in Equation (22).

b = [0, − β1, − β1 − β2, . . . , −β1 − β2 − · · · − βn] (22)

The NN defined in Equation (22) gives a coding of the binning function x. Additionally,
if τ tends to 0 (often the most common case), the vector sampling is implemented using the
Straight-Through (ST) Gumbel–Softmax method [30].

Given the binning function described above, the key idea is to build the DT using the
Kronecker product, assuming we have an input instance x ∈ RD with D characteristics.
Associating each characteristic xd with its own NN fd (xd), we can determine all the final
nodes of the DT, in line with Equation (23).

z = f1(x1) ⊗ f2(x2) ⊗···⊗ fd(xd) (23)
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where z is now also a vector that indicates the index of the leaf node reached by instance x.
Finally, we assume that a linear classifier on each leaf z classifies the instances that reach it.

However, the main drawback of the design is the use of the Kronecker product,
which means it is not scalable in terms of the number of characteristics. In our current
implementation, we avoid this problem using broad datasets and training a forest with
random subspace [27–30]. This involves introducing multiple trees and training each with
a subset with random characteristics. A better solution that does not require a forest of
hard interpretability involves exploiting the dispersion of the binning function during the
learning, since the number of nonempty leaves grows much slower than the total.

3.4. Quantum-Inspired Neural Networks (QNN)

The QNN is built from quantum computation techniques. These neural networks are
inspired in quantum framework. The calculation unit of this model consists of quantum
gates and their inputs and outputs are qubits. Any gate can calculate any local unit opera-
tion on the inputs. Quantum gates are interconnected by links. A quantum computational
network is a computing machine that consists of quantum gates with synchronized steps.
The calculation is done from left to right. The outputs of the gates are connected to the
inputs of others. Some of the inputs are used as input to the network. Other inputs are
connected to gates for 0 and 1 qubits. A few outputs are connected to sink gates, where ar-
riving qubits are rejected [31,32]. An output qubit can be measured across the state |0〉 and
|1〉, and is watched based on the probability amplitudes associated with the qubit [33–35].
Qubit is defined as the smallest unit of information in quantum computation, which is a
probabilistic representation. A qubit may either be in the “1” or “0” or in any superposition
of the two [36]. The state of the qubit can be defined as follows in the Equation (24):

|ψ〉= α|0〉+β|1〉, (24)

where α and β are the numbers that point out the amplitude of the corresponding states
such that |α|2+|β|2 = 1 . A qubit is defined as the smallest unit of information in quantum

computation. It is determined as a pair of numbers
[

α
β

]
. An angle θ is a specification

that represents geometrical aspects and is defined such that: cos(θ) =|α| and sin(θ) =|β|.
Quantum gates may be applied for adjusting the probabilities because of weight upgrad-
ing [31,37]. An example of rotation gate can be: expressed as appears in the expression (25):

U(Δθ) =

[
cos(Δθ) − sin(Δθ)
sin(Δθ) cos(Δθ)

]
(25)

A state of the qubit can be upgraded by applying the quantum gate explained previ-
ously. Application of rotation gate on a qubit is defined as follows in expression (26):[

α′

β′

]
=

[
cos(Δθ) − sin(Δθ)
sin(Δθ) cos(Δθ)

][
α
β

]
(26)

The next hybrid quantum-inspired neural network is proposed for forecasting specu-
lative attacks. The process is begun with a quantum hidden neuron from the state |0〉. The
superposition expressed in the Equation (27) is prepared:

√
p|0〉+

√
1 − p

∣∣∣1〉 with 0 ≤
∣∣∣p∣∣∣≤ 1, (27)
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where p represents random probability of starting the system in the state |0〉. The classical
neurons are initiated by random number generation. The output from the quantum neuron
is determined as follows in the Equation (28):

vj = f

(
n

∑
i=1

wji × xi

)
(28)

where f is a problem-dependent sigmoid or Gaussian function. The output from the
network is represented as appears in the Equation (29):

yk = f

(
l

∑
j=1

wjk × vj

)
(29)

The desired output is the ok. The squared error (E2
k) is defined in the expression (30):

E2
k =

1
2
|yk − ok|2 (30)

The learning follows the rules of the feed forward backpropagation algorithm. The
upgrading of output layer weight is defined as follows in the Equation (31):

Δwjk = ηek f ′ vj (31)

Upgrading of quantum hidden layer weight in quantum backpropagation algorithm,
the weights are upgraded by quantum gate conforming to Equation (26), so in this case,
the equation would be as it appears in the Equation (32):[

αij
′

βij
′

]
=

[
cos(Δθ) − sin(Δθ)
sin(Δθ) cos(Δθ)

][
αij
βij

]
(32)

where Δθij = − ∂E
∂θij

, the index i represents the number of outputs from quantum neuron

and the index j defines the number of outputs from network, γij
′ = γij + ηΔθij, and η is

the learning rate [36,37]. This ratio usually takes the value of 0.1.

4. Data and Variables

The present study employs a sample of the quotations of the Mexican peso (MXN)
and the Thai baht (THB). There have been two cases of currencies that have suffered
speculative attacks in the past and analyzed by previous literature [1–3]. The period
analyzed includes from 1995 to 2019, with the quotations of the currencies mentioned
concerning the US dollar. In addition, the macroeconomic data of the current account
balance, gross domestic product (GDP), consumption, total household wealth, inflation
rate, assets in foreign currency, national savings, public spending, tax revenues, foreign
currency reserves, quotation of the Mexican peso, the Thai baht against the US dollar, etc.
have been used. These data have been obtained from Yahoo Finance, Federal Reserve
Economic Data of St. Louis (FRED), and Open Data World Bank.

Besides, to check the reliability level of the models built, different test samples were
created. This sample data set has been divided into mutually exclusive two groups, i.e.,
one for training (70% of the data) and another for testing (30% of the data). As is well
known, the training data are used to fit the parameters of the models. For its part, the
testing data are used to evaluate the built model and make predictions. The percentage of
correctly classified cases (accuracy) and the root of the mean square error have been used
for the evaluation. Furthermore, for the treatment of each of the three groups, the 10-fold
cross-validation procedure has been applied with 500 iterations [33]. On the other hand, for
our estimations, we used two four-core Intel Core i7-6500 processor as computing resources
to make estimates. The code for the estimation of our methods has been performed by
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Python (3.8 version), with the support of the libraries such as NumPy, PyTorch, and QisKit
to create the mathematical routines, Deep Learning algorithms, and Quantum processing,
respectively. The MLP and OLS models have been created with MATLAB code (MATLAB
R2016b package).

5. Results

Tables 1 and 2, and Figures 1–3 show adjustment levels using accuracy, the mean
square error (RMSE), and the mean absolute percentage error (MAPE). In all computational
methods, the level of accuracy always exceeds 82.64% for testing data, while for OLS, it
reaches 75.27% for Mexico and 77.41% for Thailand. For its part, the RMSE and MAPE
levels are adequate. Therefore, computational methods improve OLS by a large margin,
with QNN being the one that best adjusts the result in terms of residuals (with 91.62%
accuracy), followed by DNDT (with 88.10%) for Mexico. In the case of Thailand, the results
improve slightly, but the order of precision is the same since the best methodology is QNN
with 92.84% in test data, followed by DNDT with 89.05%. Taken together, these results
provide a level of accuracy far superior to that of previous studies. Thus, in the work of [7],
an accuracy of around 78.2% is revealed. In the work of [9], it is close to 73.1%, and in
the study of [12], it approaches 71%. Other studies such as [1–3,5,6] achieve a precision of
even less than 70%. Therefore, the difference shown by the computational methodologies
applied in this study far exceeds the precision shown by the previous literature.

Table 1. Results of accuracy evaluation: Mexico.

First Generation Model Second Generation Model

Training Testing Training Testing

OLS

Accuracy (%) 78.45 75.27 80.02 77.41

RMSE 1.12 1.20 1.01 1.10

MAPE 0.57 0.61 0.41 0.47

MLP

Accuracy (%) 85.37 82.64 86.78 84.11

RMSE 0.93 1.07 0.81 0.95

MAPE 0.44 0.50 0.37 0.43

DRCNN

Accuracy (%) 90.04 84.30 91.95 86.18

RMSE 0.67 0.84 0.59 0.80

MAPE 0.27 0.33 0.24 0.31

DNDT

Accuracy (%) 92.15 88.10 93.62 89.05

RMSE 0.46 0.67 0.42 0.65

MAPE 0.18 0.27 0.16 0.23

QNN

Accuracy (%) 94.51 91.62 95.72 92.84

RMSE 0.35 0.54 0.34 0.64

MAPE 0.15 0.22 0.10 0.07

Table 2. Results of accuracy evaluation: Thailand.

First Generation Model Second Generation Model

Training Testing Training Testing

OLS

Accuracy (%) 78.67 76.43 80.27 78.06

RMSE 1.09 1.03 0.99 1.04

MAPE 0.54 0.55 0.43 0.52
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Table 2. Cont.

First Generation Model Second Generation Model

Training Testing Training Testing

MLP

Accuracy (%) 87.81 85.01 89.27 86.52

RMSE 0.87 1.00 0.76 0.89

MAPE 0.41 0.47 0.34 0.40

DRCNN

Accuracy (%) 92.61 86.71 94.58 88.65

RMSE 0.63 0.78 0.55 0.74

MAPE 0.25 0.31 0.22 0.28

DNDT

Accuracy (%) 93.87 89.74 95.37 90.71

RMSE 0.43 0.62 0.39 0.60

MAPE 0.17 0.25 0.14 0.21

QNN

Accuracy (%) 96.27 93.32 97.50 94.57

RMSE 0.32 0.50 0.32 0.60

MAPE 0.13 0.21 0.10 0.06

 

Figure 1. Results of accuracy evaluation: classification (%).
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Figure 2. Results of accuracy evaluation: mean square error (RMSE).

 

Figure 3. Results of accuracy evaluation: mean absolute percentage error (MAPE).
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These results demonstrate the greater stability offered by the QNN model compared
to the rest, especially in the light of the RMSE and MAPE results obtained for three other
computational methods. The results of the QNN improve the results of the popular OLS,
just as it improves the precision results shown in previous works such as [9–13]. This
set of computational methods observed as highly accurate represents a group of novel
methods that estimate the speculative attacks and therefore different from that shown in
the previous literature.

To reinforce the superiority of neural network methodologies for estimating specula-
tive attack models, the Diebold-Mariano (DM) and Harvey-Leybourne-Newbold (HLN)
tests [38,39] have been applied to compare the methodologies used and the time elapsed to
perform the estimation with each of the techniques. Table 3 reports the results of the DM
test, showing that all the neural network methodologies used are better options than OLS.
Like QNN, it is the best option compared to the rest, since the DM test ensures that the
results that exceed 1.96/−1.96 do not reject the null hypothesis at 5% of significance, and
therefore the differences observed between methodologies in the estimate are significant.
On the same line, being the result with a negative sign means that the second option
of the comparative is better than the second option. Likewise, the HLN test is adjusted
version of DM test [39], which has better small-sample properties. Both DM and HLN tests
show a significance difference between computational and statistical techniques, and the
computational superiority over conventional methods. On the other hand, Figure 4 shows
the average run time of the methodologies used for the estimation, where it is shown that
neural network methodologies need a shorter estimation time, both for training and testing
data, with QNN being the most common option efficient in terms of time use, needing 0.11
and 0.10 min to estimate with training and testing data, respectively, in the case of Mexico.
For the case of Thailand, the estimate needs 0.13 and 0.11 min to estimate with training
and testing data, respectively.

Table 3. Comparison of testing results using Diebold-Mariano (DM) and Harvey-Leybourne-
Newbold (HLN) tests.

First Generation Model Second Generation Model

DM HLN DM HLN
OLS vs. MLP −2.42 ** −2.31 * −2.57 ** −2.25 **

OLS vs. DRCNN −2.86 ** −2.57 ** −2.93 ** −2.83 **
OLS vs. DNDT −3.02 ** −2.84 ** −2.99 ** −2.67 **
OLS vs. QNN −3.17 ** −2.99 ** −3.29 ** −3.06 **

MLP vs. DRCNN −2.15 ** −2.03 * −2.47 * −2.41 *
MLP vs. DNDT −2.34 * −2.17 ** −2.63 ** −2.49 **
MLP vs. QNN −2.76 ** −2.62 ** −3.20 ** −3.07 **

DRCNN vs. DNDT −2.08 * −1.93 * −2.47 * −2.36 *
DRCNN vs. QNN −2.53 * −2.14 * −2.45 ** −2.28 *
DNDT vs. QNN −2.11 * −1.97 * −2.46 * −2.13 **

* Indicates significance at the 5% level. ** Indicates significance at the 10% level.

Postestimations

To perform multiple-step-ahead prediction to obtain greater robustness of results, we
use the iterative strategy. For this, we have trained the models for prediction for one step
and two forward steps, that is, for the moments t + 1 and t + 2 [38]. These forecasted data for
t + 1 and t + 2 are included in the data sample as actual observations. Tables 4 and 5, and
Figures 5–7 point out the accuracy and residual results (RMSE and MAPE) for one-year and
two-year forecasting horizons. For t + 1, the range of precision for the four neural networks
techniques is 83.07–90.94% overall, being in the model of QNN where the percentage of
accuracy is higher (90.94%) for the Mexican case. With the OLS method, the accuracy
decreases to 74.72–74.90%. On the same line, for the Thai case, the precision range has
been 83.34–92.63%, with QNN being again the methodology with the highest precision
(92.63%). With the OLS method, the accuracy decreases to 75.64–77.15%. For t + 2, this
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range of precision is 81.34–89.52%, being also the method of QNN in which the percentage
of accuracy is higher (89.52%) for the Mexican estimations. For the OLS method, the
accuracy decreases to the range of 72.78–73.81%. Moreover, in t + 2 for the Thai estimations,
again confirms the predictive superiority of QNN (90.54%). These results show the high
precision and great robustness of the NN techniques.

 

Figure 4. Results of time lapse for estimation.

Table 4. Multiple-step ahead forecasts in forecast horizon = t + 1 and t + 2 (Mexico).

First Generation Model Second Generation Model

t + 1 t + 2 t + 1 t + 2

OLS

Accuracy (%) 74.72 73.81 74.90 72.78

RMSE 1.32 1.38 1.19 1.42

MAPE 0.71 0.75 0.58 0.81

MLP

Accuracy (%) 83.07 81.34 84.51 80.89

RMSE 1.00 1.15 0.87 1.02

MAPE 0.47 0.54 0.40 0.46

DRCNN

Accuracy (%) 84.46 83.81 83.05 82.98

RMSE 0.72 0.90 0.63 0.86

MAPE 0.29 0.36 0.26 0.33

DNDT

Accuracy (%) 86.62 82.81 88.00 83.71

RMSE 0.50 0.72 0.45 0.69

MAPE 0.20 0.28 0.17 0.24

QNN

Accuracy (%) 89.78 87.04 90.94 89.52

RMSE 0.37 0.58 0.37 0.53

MAPE 0.16 0.24 0.11 0.15
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Table 5. Multiple-step ahead forecasts in forecast horizon = t + 1 and t + 2 (Thailand).

First Generation Model Second Generation Model

t + 1 t + 2 t + 1 t + 2

OLS

Accuracy (%) 75.64 73.57 77.15 75.12

RMSE 1.26 1.33 1.18 1.29

MAPE 0.65 0.74 0.60 0.67

MLP

Accuracy (%) 83.34 81.58 87.16 83.94

RMSE 0.93 1.07 0.81 0.95

MAPE 0.44 0.50 0.37 0.42

DRCNN

Accuracy (%) 86.13 84.64 87.96 84.54

RMSE 0.67 0.84 0.58 0.77

MAPE 0.27 0.33 0.24 0.30

DNDT

Accuracy (%) 87.20 83.37 88.59 85.27

RMSE 0.46 0.67 0.42 0.65

MAPE 0.18 0.26 0.15 0.22

QNN

Accuracy (%) 91.45 88.66 92.63 90.54

RMSE 0.35 0.54 0.32 0.48

MAPE 0.14 0.22 0.11 0.14

 

Figure 5. Multiple-step ahead forecasts in forecast horizon: accuracy.
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Figure 6. Multiple-step ahead forecasts in forecast horizon: RMSE.

 

Figure 7. Multiple-step ahead forecasts in forecast horizon: MAPE.
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6. Conclusions

This study has developed a new simulation of speculative attack models using ma-
chine learning techniques. Using data of period 1995–2019 for the cases of the currencies
of Mexico and Thailand (Peso and Baht) and applying four different NN methods in the
estimation of the first- and second-generation speculative attacks models to achieve a
robust accuracy capacity, such as MLP, DRCNN, DNDT, and QNN. This last methodology
is the one that has obtained the highest levels of precision. Most of the proposed NN
methodologies have shown a low level of error and stability in the estimates made from
speculative attack models, proving their interesting alternative to conventional statistical
methods, such as OLS.

Besides, the target has been to improve the accuracy of previous studies using different
methodologies. The results obtained in this research are higher than those obtained in the
existing literature, with an accuracy range of 82.64–92.84% using the NN methods, while
OLS method has only reached an accuracy range of 75.27–78.06%. It has also detected
new significant variables to consider in speculative attacks models in weak currencies,
allowing a high level of stability in the models developed over forecasting horizons of
t + 1 and t + 2. In contrast to previous research, this study has been able to expand the
estimation of speculative attacks in exchange rate attending to accuracy and error results.
The results have identified a set of significant variables for each methodology applied and
for each standard dependent variable. Furthermore, the time elapsed to make the estimates
is less for the proposed NN techniques compared to the time needed for the OLS method.
This makes an essential contribution to the field of computational macroeconomics and
finance. The conclusions are relevant to public managers, financial analysts, central bankers,
and other stakeholders in the foreign exchange markets, who are generally interested in
knowing which indicators provide reliable, accurate, and potential forecasts of performance
evolution. Our study suggests new explanatory significant variables to allow these agents
to analyze the performance of speculative attack models. This research has also provided a
new estimation analysis developed for speculative attacks using four NN methods, being
the QNN the most accurate. Hence, this study attempts to contribute to existing knowledge
in the field of machine learning. These new simulations of estimation can be used as a
reference to improve decision-making in public and financial institutions.

In summary, this study provides a significant opportunity to contribute to the research
line of currency crises and speculative attacks, since the results obtained have significant
implications for the future decisions of public institutions, making it possible to avoid
big negative changes of the trend of the exchange rate and the potential associated risks.
It also helps these agents send warning signals to governments and central banks and
avoid currency crisis losses derived from a huge decrease in the balance of payments.
Further research could include speculative attack models with other new variables to take
advantage of the benefits of machine learning techniques.
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Abstract: Bitcoin has attracted attention from different market participants due to unpredictable
price patterns. Sometimes, the price has exhibited big jumps. Bitcoin prices have also had extreme,
unexpected crashes. We test the predictive power of a wide range of determinants on bitcoins’ price
direction under the continuous transfer entropy approach as a feature selection criterion. Accordingly,
the statistically significant assets in the sense of permutation test on the nearest neighbour estimation
of local transfer entropy are used as features or explanatory variables in a deep learning classification
model to predict the price direction of bitcoin. The proposed variable selection do not find significative
the explanatory power of NASDAQ and Tesla. Under different scenarios and metrics, the best results
are obtained using the significant drivers during the pandemic as validation. In the test, the accuracy
increased in the post-pandemic scenario of July 2020 to January 2021 without drivers. In other words,
our results indicate that in times of high volatility, Bitcoin seems to self-regulate and does not need
additional drivers to improve the accuracy of the price direction.

Keywords: local transfer entropy; long-short-term-memory; Bitcoin

1. Introduction

Currently, there is tremendous interest in determining the dynamics and direction
of the price of Bitcoin due to its unique characteristics, such as its decentralization, trans-
parency, anonymity, and speed in carrying out international transactions. Recently, these
characteristics have attracted the attention of both institutional and retail investors. Thanks
to technological developments, investor trading strategies are benefited by digital plat-
forms; therefore, market participants are more likely to digest and create information
for this market. Of special interest is its decentralized character, since its value is not
determined by a central bank but, essentially, only by supply and demand, recovering the
ideal of a free market economy. At the same time, it is accessible to all sectors of society,
which breaks down geographic and particular barriers for investors. The fact that there
are a finite number of coins and the cost of mining new coins grows exponentially has
suggested to some specialists that it may be a good instrument for preserving value. That
is, unlike fiat money, Bitcoin cannot be arbitrarily issued, so its value is not affected by the
excessive issuance of currency that central banks currently follow, or by low interest rates
as a strategy to control inflation. In other words, it has been recently suggested that bitcoin
is a safe-haven asset or store of value, having a role similar to that once played by gold and
other metals.

The study of cryptocurrencies and bitcoin has been approached from different per-
spectives and research areas. It has been addressed from the point of view of financial
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economics, econometrics, data science, and more recently by econophysics. In these
approaches, various methodologies and mathematical techniques have been utilised to
understand different aspects of these new financial instruments. These topics range from
systemic risk, the spillover effect, autoscaling properties, collective patterns, price forma-
tion, and forecasting in general. Remarkable work in the line of multiscale analysis of
cryptocurrency markets can be found in [1]. However, this paper is motivated by using the
econphysics approach, incorporated with rigorous control variables to predict Bitcoin price
patterns. We would like to offer a comprehensive review of the determinants of Bitcoin
prices. The first pillar can be defined as sentiment and social media content. While Bitcoin
is widely considered a digital financial asset, investors pay attention to this largest market
capitalization by searching its name. Therefore, the strand of literature on Google search
volume has become popular for capturing investor attention [2]. Concomitantly, not only
peer-to-peer sentiment (individual Twitter accounts or fear from investors) [3,4] but also
influential accounts (the U.S. President, media companies) [5–7] significantly contribute
to Bitcoin price movement. Given the greatest debate on whether Bitcoin should act as
a hedging, diversifying or safe-haven instrument, Bitcoin exhibits a mixture of investing
features. More interestingly, uncertain shocks might cause changes in both supply and
demand in Bitcoin circulation, implying a change in its prices [8]. Thus, the diverse stylized
facts of Bitcoin, including heteroskedasticity and long memory, require uncertainty to be
controlled in the model. While uncertainties represent the amount of risk (compensated by
the Bitcoin returns) [9], our model also includes the price of risk, named the ‘risk aversion
index’ [10]. These two concepts (amount of risk and the price of risk) demonstrate discount
rate factors in the time variation of any financial market [11]. In summary, the appearance
of these determinants could capture the dynamics of the cryptocurrency market. Since
cryptocurrency is a newly emerging market, the level of dependence in the market structure
is likely higher than that in other markets [12]. Furthermore, the contagion risk and the
connectedness among these cryptocurrencies could be considered the risk premium for
expected returns [13,14]. More importantly, this market can be driven by small market
capitalization, implying vulnerability of the market [15]. Hence, our model should con-
tain alternative coins (altcoins) to capture their movements in the context of Bitcoin price
changes. Finally, investors might consider the list of these following assets as alternative
investment, precious metals being the first named. They are not only substitute assets [16]
but also predictive factors (for instance, gold and platinum) [17], which additionally in-
clude commodity markets (such as crude oil [18,19], exchange rate [20], equity market [21]),
and Tesla’s owner [22]). In summary, there are voluminous determinants of Bitcoin prices.
In the scope of this study, we focus on the predictability of our model, especially the
inclusion of social media content, representing the high popularity of information, on the
Bitcoin market. However, the more control variables there are, the higher the accuracy of
prediction. Our model thus may be a useful tool by combining the huge predictive factors
for training and forecasting the response dynamics of Bitcoin to other relevant information.

This study approaches Bitcoin from the framework of behavioural and financial
economics using an approach from econophysics and data science. In this sense, it seeks to
understand the speculative character and the possibilities of arbitrage through a model
that includes investor attention and the effect of the news, among other factors. For this,
we will use a causality method originally proposed by Schreiber [23], and we will use the
information as characteristics of a deep learning model. The current literature only focuses
on specific sentiment indicators (such as Twitter users [3] or the number of tweets [24,25]),
and our study crawled the original text from influential Twitter social media users (such
as the President of United States, CEO of Tesla, and well-known organizations such as
the United Nations and BBC Breaking News). Then, we processed language analyses to
construct the predictive factor for Bitcoin prices. Therefore, our model incorporates a new
perspective on Bitcoin’s drivers.

In this direction, the work of [26] uses the effective transfer entropy as an additional
feature to predict the direction of U.S. stock prices under different machine learning
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approaches. However, the approximation is discrete and based on averages. Furthermore,
the employed metrics are not exhaustive to determine the predictive power of the models.
In a similar vein, the authors of [27] perform a comparative analysis of machine learning
methods for the problem of measuring asset risk premiums. Nevertheless, they do not
take into account recurrent neural network models or additional nontraditional features.
Furthermore, an alternative approach to study the main drivers of Bitcoin is discussed
in [28], where the author explores wavelet coherence to examine the time and frequency
domains between short- and long-term interactions. In the same vein, the recent studies
employed the correlation networks and vector error correction models to explain the price
prediction and exchange spillovers [29,30]. Of course, Bitcoin prediction is more likely to
have sentimental and ‘noise’ factors differing from stock prediction.

On the other hand, there are methodologies to explain machine learning results known
as eXplainable Artificial Intelligence (XAI). Among these, two of the most popular are Local
Interpretable Model Agnostic [31] and Shapley Additive Explanation (SHAP) [32]. Both
techniques are based on disturbing the model locally. The former assumes a linear model to
obtain the score of the characteristics in terms of the importance of making predictions; the
latter uses game theory concepts to find the best feature fitting in terms of predictive gain.
In [33] these techniques are extended to include temporal dependencies and demonstrate
the need to develop XAI techniques applicable to time series. In [34,35] is proposed an XAI
method applicable to credit risk. In a similar vein, the authors of [36] mention the difficulty
of estimating out-of-sample behavior in stress scenarios. An interesting work is [37], where
it is considered a gradient boosting decision trees approximation to predict the drops of the
S&P 500 markets using a large number of characteristics. The authors claim that retaining
a small and carefully selected amount of features improves the learning model results.

However, as mentioned in the cornerstone work [31] it is not possible to explain a
highly non-linear model through local perturbations. That is, there is a high instability
derived from the characteristics of the inherent dynamical system. In addition, the examples
of the articles mentioned above run in most cases in seconds or minutes. Therefore, the
LIME and SHAP methods are appropriate mainly for machine learning models or simple
deep learning scenarios [38]. In this spirit, it is not practical to follow the traditional XAI
approach, given the computational demand derived from the number of hyperparameters
and configurations to be implemented. However, our proposal to use transfer entropy in
the variable selection process can be considered an alternative strategy to XAI. In particular,
of interest for highly non-linear dependency conditions, such as bitcoin dynamics.

Our study embodied a wide range of Bitcoin’s drivers from alternative investment,
economic policy uncertainty, investor attention, and so on. However, social media is our
main contribution to predictive factors. Specifically, we study the effect that a set of Twitter
accounts belonging to politicians and millionaires has on the behaviour of Bitcoin’s price
direction. In this work, the statistically significant drivers of Bitcoin are detected in the
sense of the continuous estimation of local transfer entropy (local TE) through nearest
neighbours and permutation tests. The proposed methodology deals with non-Gaussian
data and nonlinear dependencies in the problem of variable selection and forecasting.
One main aim is to quantify the effects of investor attention and social media on Bitcoin
in the context of behavioural finance. Another aim is to apply classification metrics to
indicate the effects of including or not the statistically significant features in an LSTM’s
classification problem.

The next Section 2 introduce the local transfer entropy, the nearest neighbour esti-
mation technique, the deep learning forecasting models, and the classification metrics.
Section 3 describes the data and their main descriptive characteristics. Section 4 presents
and highlights the main results. Finally, Section 5 highlights the implications of the results,
and future work is proposed.
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2. Materials and Methods

2.1. Transfer Entropy

Transfer Entropy (TE) [23] measures the flow of information from system Y over
system X in a nonsymmetric way. Denote the sequences of states of systems X, Y in the
following way: xi = x(i) and yi = y(i), i = 1, . . . , N. The idea is to model the signals or
time series as Markov systems and incorporate the temporal dependencies by considering
the states xi and yi to predict the next state xi+1. If there is no deviation from the generalized
Markov property p(xi+1|xi, yi) = p(xi+1|xi), then Y has no influence on X. Hence, TE is
derived using the last idea and defined as

TY→X(k, l) = ∑ p(xi+1, x(k)i , y(l)i ) log
p(xi+1|x(k)i , y(l)i )

p(xi+1|x(k)i )
, (1)

where x(k)i = (xi, . . . , xi−k+1) and y(l)i = (yi, . . . , yi−l+1).
TE can be thought of as a global average or expected value of a local transfer entropy

at each observation [39]

TY→X(k, l) =
〈

log
p(xi+1|x(k)i , y(l)i )

p(xi+1x(k)i )

〉
(2)

The main characteristic of the local version of TE is to be measured at each time n for
each destination element X in the system and each causal information source Y of the
destination. It can be either positive or negative for a specific event set (xi+1, x(k)i , y(l)i ),
which gives the opportunity to have a measure of informativeness or noninformativeness
at each point of a pair of time series.

On the other hand, there exist several approximations to estimate the probability
transition distributions involved in TE expression. Nevertheless, there is not a perfect
estimator. It is generally impossible to minimize both the variance and the bias at the same
time. Then, it is important to choose the one that best suits the characteristics of the data
under study. That is the reason finding good estimators is an open research area [40]. This
study followed the Kraskov-Stögbauer-Grassberger) KSG estimator [41], which focused on
small samples for continuous distributions. Their approach is based on nearest neighbours.
Although obtaining insight into this estimator is not easy, we will try it in the following.

Let X = (x1, x2, . . . , xd) now denote a d-dimensional continuous random variable
whose probability density function is defined as p : Rd → R. The continuous or differential
Shannon entropy is defined as

H(X) = −
∫
Rd

p(X) log p(X)dX (3)

The KSG estimator aims to use similar length scales for K-nearest-neighbour distance in
different spaces, as in the joint space to reduce the bias [42].

To obtain the explicit expression of the differential entropy under the KSG estimator,
consider N i.i.d. samples χ = {X(i)}N

i=1, drawn from p(X). Beneath the assumption
that εi,K is twice the (maximum norm) distance to the k-th nearest neighbour of X(i), the
differential entropy can be estimated as

ĤKSG,K(X) ≡ ψ(N)− ψ(K) +
d
N

N

∑
i=1

log εi,K, (4)
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where ψ is known as the digamma function and can be defined as the derivative of the
logarithm of the gamma function Γ(x)

ψ(K) =
1

Γ(K)
dΓ(K)

dK
(5)

The parameter K defines the size of the neighbourhood to use in the local density
estimation. It is a free parameter, but there exists a trade-off between using a smaller or
larger value of K. The former approach should be more accurate, but the latter reduces the
variance of the estimate. For further intuition, Figure 1 graphically shows the mechanism
for choosing the nearest neighbours at K = 3.

Figure 1. Graphical representation of nearest-neighbors selection. At a given sample point, X(i), the
max-norm rectangle contains the K = 3 nearest-neighbors.

The KSG estimator of TE can be derived based on the previous estimation of the
differential entropy. Yet, in most cases, as analysed in this work, no analytic distribution
is known. Hence, the distribution of TYs→X(k, l) must be computed empirically, where
Ys denotes the surrogate time series of Y. This is done by a resampling method, creating
a large number of surrogate time-series pairs {Ys, X} by shuffling (for permutations or
redrawing for bootstrapping) the samples of Y. In particular, the distribution of TYs→X(k, l)
is computed by permutation, under which surrogates must preserve p(xn+1|xn) but not
p(xn+1|xn, yn).

2.2. Deep Learning Models

We can think of artificial neural networks (ANNs) as a mathematical model whose
operation is inspired by the activity and interactions between neuronal cells due to their
electrochemical signals. The main advantages of ANNs are their non-parametric and
nonlinear characteristics. The essential ingredients of an ANN are the neurons that receive
an input vector xi, and through the point product with a vector of weights w, generate an
output via the activation function g(·):

f (xi) = g(xu · w) + b, (6)

where b is a trend to be estimated during the training process. The basic procedure is the
following. The first layer of neurons or input layer receives each of the elements of the
input vector xi and transmits them to the second (hidden) layer. The next hidden layers
calculate their output values or signals and transmit them as an input vector to the next
layer until reaching the last layer or output layer, which generates an estimation for an
output vector.

Further developments of ANNs have brought recurrent neural networks (RNNs),
which have connections in the neurons or units of the hidden layers to themselves and are
more appropriate to capture temporal dependencies and therefore are better models for
time series forecasting problems. Instead of neurons, the composition of an RNN includes
a unit, an input vector xt, and an output signal or value ht. The unit is designed with
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a recurring connection. This property induces a feedback loop, which sends a recurrent
signal to the unit as the observations in the training data set are analysed. In the internal
process, backpropagation is performed to obtain the optimal weights. Unfortunately,
backpropagation is sensitive to long-range dependencies. The involved gradients face
the problem of vanishing or exploding. Long-short-term memory (LSTM) models were
introduced by Hochreiter and Schmidhuber [43] to avoid these problems. The fundamental
difference is that LSTM units are provided with memory cells and gates to store and forget
unnecessary information.

The final ANNs we need to discuss are convolutional neural networks (CNNs). They
can be thought of as a kind of ANN that uses a high number of identical copies of the same
neuron. This allows the network to express computationally large models while keeping
the number of parameters small. Usually, in the construction of these types of ANNs, a
max-pooling layer is included to capture the largest value over small blocks or patches
in each feature map of previous layers. It is common that CNN and pooling layers are
followed by a dense fully connected layer that interprets the extracted features. Then, the
standard approach is to use a flattened layer between the CNN layers and the dense layer
to reduce the feature maps to a single one-dimensional vector [44].

2.3. Classification Metrics

In classification problems, we have the predicted class and the actual class. The
possible scenarios under a classification prediction are given by the confusion matrix. They
are true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
Based on these quantities, it is possible to define the following classification metrics:

• Accuracy = TP+TN
TP+TN+FP+FN

• Sensitivity, recall or true positive rate (TPR) = TP
TP+FN

• Specificity, selectivity or true negative rate (TNR) = TN
TN+FP

• Precision or Positive Predictive Value (PPV) = TP
TP+FP

• False Omission Rate (FOR) = FN
FN+TN

• Balanced Accuracy (BA) = TPR+TNR
2

• F1 score = 2 PPV×TPR
PPV+TPR .

The most complex measure is the area under the curve (AUC) of the receiver operating
characteristic (ROC), where it expresses the pair (TPRτ , 1 − TNRτ) for different thresholds
τ. Contrary to the other metrics, the AUC of the ROC is a quality measure that evaluates
all the operational points of the model. A model with the aforementioned metric equal to
0.5 is considered a random model. Then, a value significantly higher than 0.5 is considered
a model with predictive power, with a value of 1 the upper bound of this quantity.

3. Data

An important part of the work is the acquisition and preprocessing of data. We focus
on the period of time from 1 January 2017 to 9 January 2021 at a daily frequency for a
total of n = 1470 observations. As a priority, we consider the variables listed in Table 1 as
potential drivers of the price direction of Bitcoin (BTC). Investor attention is considered
Google Trends with the query = “Bitcoin”. Additionally, the number of mentions is properly
scaled to make comparisons between days of different months because by default, Google
Trends weighs the values by a monthly factor. Then, the log return of the resulting time
series is calculated.
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Table 1. Type of driver and variable name.

Type Variables

Investor attention Google Trends

Social media BBC Breaking News

Department of State

United Nations

Elon Musk

Donald Trump

Twitter-EPU Twitter-based Uncertainty Index

Risk Aversion Financial Proxy to Risk Aversion and Economic Uncertainty

Cryptocurrencies ETH

LTC

XRP

DOGE

TETHER

Financial indices Gold

Silver

Palladium

Platinum

DCOILBRENTEU

DCOILWTICO

EUR/USD

S&P 500

NASDAQ

VIX

ACWI

Tesla

The social media data are collected from the Twitter API (https://developer.twitter.
com/en/docs/twitter-api, accessed on 15 January 2021). Nevertheless, the API of Twitter
only enables downloading the latest 3200 tweets of a public profile, which generally was
not enough to cover the period of study. Then, the dataset has been completed with the
freely available repository of https://polititweet.org/ (accessed on 15 January 2021). In
this way, the collected number of tweets was 21,336, 22,808, 24,702, 11,140, and 26,169 for
each of the profiles listed on Table 1 in the social media type, respectively. The textual
data of each tweet in the collected dataset are transformed to a sentiment polarity score
through the VADER lexicon [45]. Then, the scores are aggregated daily for each profile.
The resulting daily time series have missing values due to the inactivity of the users, and
then a third-order spline is considered before calculating their differences. The last is to
stationarize the polarity time series. It is important to remember that Donald Trump’s
account was blocked on 8 January 2021, so it was also necessary to impute the last value to
have series of the same length.

The economic policy uncertainty index is a Twitter-based uncertainty index (Twitter-
EPU). The creators of the index used the Twitter API to extract tweets containing keywords
related to uncertainty (“uncertain”, “uncertainly”, “uncertainties”, “uncertainty”) and econ-
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omy (“economic”, “economical”, “economically”, “economics”, “economies”, “economist”,
“economists”, “economy”). Then, we use the index consisting of the total number of
daily tweets containing inflections of the words uncertainty and economy (Please consult
https://www.policyuncertainty.com/twitter_uncert.html for further details of the index,
accessed on 15 January 2021). The risk aversion category considers the financial proxy to
risk aversion and economic uncertainty proposed as a utility-based aversion coefficient [10].
A remarkable feature of the index is that in early 2020, it reacted more strongly to the new
COVID-19 infectious cases than did a standard uncertainty proxy.

As complementary drivers, it includes a set of highly capitalized cryptocurrencies and
a heterogeneous portfolio of financial indices. Specifically, Ethereum (ETH), Litecoin (LTC),
Ripple (XRP), Dogecoin (DOGE), and the stable coin TETHER are included from yahoo
finance (https://finance.yahoo.com/, accessed on 15 January 2021). The components of the
heterogeneous portfolio are listed in Table 1, which takes into account the Chicago Board
Options Exchange’s CBOE Volatility Index (VIX). This last information was extracted from
Bloomberg (https://www.bloomberg.com/, accessed on 15 January 2021). It is important
to point out that risk aversion and the financial indices do not have information that
corresponds to weekends. The imputation method to obtain a complete database consisted
of repeated Friday values as a proxy for Saturday and Sunday. Then, the log return of the
resulting time series is calculated. This last transformation was also made for Twitter-EPU
and cryptocurrencies. The complete dataset can be found in the Supplementary Material.

Usually, the econophysics and data science approaches share the perspective of ob-
serving data first and then modelling the phenomena of interest. In this spirit, and with
the intention of gaining intuition on the problem, the standardized time series (target and
potential drivers), as well as the cumulative return of the selected cryptocurrencies and
financial assets are plotted in Figures 2 and 3. The former figure shows high volatility in
almost all the studied time series around March 2020, which might be due to the declaration
of the pandemic by the World Health Organization (WHO) and the consequent fall of the
worlds main stock markets. The latter figure exhibits the overall best cumulative gains for
BTC, ETH, LTC, XRP, DOGE, and Tesla. It is worth noting that the only asset with a compa-
rable profit to that of the cryptocurrencies is Tesla, which reaches high cumulative returns
starting at the end of 2019 and increases its uptrend immediately after the announcement
of the worldwide health emergency.

Figure 2. Standardized time series after preprocessing, as explained in the main text.
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Figure 3. Cumulative returns of the selected cryptocurrencies and financial assets. The scale is logarithmic in the y-axis and
starts in one to be financially interpreted as the gains.

Furthermore, Figure 4 shows the heatmap of the correlation matrix of the preprocessed
dataset. We can observe the formation of certain clusters, such as cryptocurrencies, metals,
energy, and financial indices, which tells us about the heterogeneity of the data. It should
also be noted that the VIX volatility index is anti-correlated with most of the variables.

Figure 4. Correlation matrix of the preprocessed time series.

Additionally, the main statistical descriptors of the data are presented in Table 2. The
first column is the variable’s names or tickers. The subsequent columns represent the mean,
standard deviation, skewness, kurtosis, Jarque Bera test (JB), and the associated p value
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of the test for each variable, i.e., target, and potential drivers. Basically, none of the time
series passes the test of normality distribution, and most of them present a high kurtosis,
which is indicative of heavy tail behaviour. Finally, stationarity was checked in the sense of
Dickey-Fuller and the Phillips-Perron unit root tests, where all variables pass both tests.

Table 2. The symbols **, and *** denote the significance at the 5%, and 1% levels, respectively.

Variable Mean Std. Dev. Skewness Kurtosis JB p-Value

BTC 0.0025 0.0424 −0.8934 12.7470 10,073.5034 ***

Google Trends 0.0018 0.1915 0.2611 6.8510 2868.6001 ***

BBC Breaking News 0.0007 3.5295 −0.1789 15.5376 14,686.4748 ***

Department of State −0.0013 4.0610 0.0941 8.4698 4362.1014 ***

United Nations 0.0007 3.2689 0.1748 0.2747 11.9228 **

Elon Musk 0.0035 1.8877 0.0672 3.8630 906.9805 ***

Donald Trump 0.0001 4.8294 0.0461 5.2434 1670.4686 ***

Twitter−EPU 0.0009 0.3001 0.3049 3.6071 812.4777 ***

Risk Aversion 0.0001 0.0726 3.7594 165.2232 1,664,075.5884 ***

ETH 0.0034 0.0566 −0.3991 9.7009 5759.1438 ***

LTC 0.0025 0.0606 0.6919 10.5404 6870.4947 ***

XRP 0.0027 0.0753 2.2903 36.2405 81,162.9262 ***

DOGE 0.0026 0.0669 1.2312 15.0342 14,113.2759 ***

TETHER 0.0000 0.0062 0.3255 20.0952 24,581.8501 ***

Gold 0.0006 0.0082 −0.6595 5.5761 1995.0834 ***

Silver 0.0005 0.0164 −1.1304 13.0841 10,720.4362 ***

Palladium 0.0015 0.0197 −0.9198 20.5312 25,840.0775 ***

Platinum 0.0004 0.0145 −0.9068 10.7274 7196.3125 ***

DCOILBRENTEU −0.0004 0.0374 −3.1455 81.2272 403,755.7220 ***

DCOILWTICO 0.0006 0.0358 0.7362 38.4244 89,931.3161 ***

EUR/USD 0.0002 0.0042 0.0336 0.8999 49.0930 ***

S&P 500 0.0006 0.0125 −0.5714 20.5446 25,746.7436 ***

NASDAQ 0.0008 0.0145 −0.3601 11.7771 8463.6169 ***

VIX −0.0061 0.0810 1.4165 8.4537 4833.8826 ***

ACWI 0.0006 0.0115 −1.1415 20.4837 25,833.5682 ***

Tesla 0.0017 0.0371 −0.3730 5.5089 1877.5034 ***

4. Results

4.1. Variable Selection

The observed characteristics of the data in the previous section justify the use of a non-
parametric approach to determine the explainable features to be employed in the predictive
classification model. Therefore, the variable selection procedure consisted of applying the
continuous transfer entropy from each driver to Bitcoin using the KSG estimation. Figure 5
shows the average transfer entropy when varying the Markov order k, l and neighbour
parameter K from one to ten for a total of 1000 different estimations by each driver. The
higher the intensity of the colour, the higher the average transfer entropy (measured in
nats). The grey cases do not transfer information to BTC. In other words, these cases do not

406



Entropy 2021, 23, 1582

show a statistically significant flow of information, where the permutation test is applied to
construct 100 surrogate measurements under the null hypothesis of no directed relationship
between the given variables.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5. Average transfer entropy from each potential driver to BTC. The y-axis indicates the driver, and the x-axis indicates
the Markov order pair k, l of the source and target. From (a) to (j), nearest neighbours K run from one to ten, respectively.
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The tuple of parameters {k, l, K} that give the highest average transfer entropy from
each potential driver to BTC are considered optimal, and the associated local TE is kept as
a feature in the classification model of Bitcoin’s price direction. Figure 6 shows the local
TE from each statistically significant driver to BTC at the optimal parameter tuple {k, l, K}.
Note that the set of local TE time series is limited to 23 features. Consequently, the set of
originally proposed potential drivers is reduced from 25 to 23. Surprisingly, NASDAQ and
Tesla do not send significative information to BTC for any value of {k, l, K} in the grid of
the 1000 different configurations. The variations are smooth on K, but not on the Markov
order k, l. It is also notorious the negligible amounts of the flow of information at k = l = 1.

Figure 6. Local TE of the highest significant average values on the tuple {k, l, K}. NASDAQ and Tesla are omitted because
they do not send significative information to BTC for any considered value on the grid of the tuple {k, l, K}.

4.2. Bitcoin’s Price Direction

The task of detecting Bitcoin’s price direction was done through a deep learning
approach. The first step consisted of splitting the data into training, validation, and test
datasets. The chosen training period runs from 1 January 2017 to 4 January 2020, or 75%
of the original entire period of time, and is characterized as a prepandemic scenario. The
validation dataset is restricted to the period from 5 January 2020 to 11 July 2020, or 13%
of the original data, and is considered the pandemic scenario. The test dataset involves
the postpandemic scenario from 12 July 2020 to 9 January 2021 and contains 12% of the
complete dataset. Deep learning forecasting requires transforming the original data into
a supervised data set. Here, samples of 74 historical days and a one-step prediction
horizon are given to the model to obtain a supervised training dataset, with the first
dimension being a power of two, which is important for the hyperparameter selection of
the batch dimension. Specifically, the sample dimensions are 1024, 114, and 107 for training,
validation, and testing, respectively. Because we are interested in predicting the direction
of BTC, the time series are not demeaned and instead are only scaled by their variance
when feeding the deep learning models. An important piece in a deep learning model is
the selection of the activation function. In this work, the rectified linear unit (ReLU) was
selected for the hidden layers. Then, for the output layer, the sigmoid function is chosen
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because we are dealing with a classification problem. In addition, an essential ingredient
is the selection of the stochastic gradient descent method. Here, Adam optimization is
selected based on adaptive estimation of the first- and second-order moments. In particular,
we used version [46] to search for the long-term memory of past gradients to improve the
convergence of the optimizer.

There exist several hyperparameters to take into account when modelling a classifica-
tion problem under a deep learning approach. These hyperparameters must be calibrated
on the training and validation datasets to obtain reliable results on the test dataset. The
usual procedure to set them is via a grid search. Nevertheless, deeper networks with
more computational power are necessary to obtain the optimal values in a reasonable
amount of time. To avoid excessive time demands, we vary the most crucial parame-
ters in a small grid and apply some heuristics when required. The number of epochs,
is selected under the early stopping procedure. Another crucial hyperparameter is the
batch, or the number of samples to work through before updating the internal weight
of the model. For this parameter the selected grid was {32, 64, 128, 256}. Additionally,
we consider the initial learning rates at which the optimizer starts the algorithm, which
were {0.001, 0.0001}. As an additional method of regularization, the effect of dropping
between consecutive layers is added. This value can take values from 0 to 1. Our grid
for this hyperparameter is {0.3, 0.5, 0.7}. Finally, because of the stochastic nature of the
deep learning models, it is necessary to run several realizations and work with averages.
We repeat the hyperparameter selection with ten different random seeds for robustness.
The covered scenarios are the following: univariate (S1), where bitcoin is self-driven; all
features (S2), where all the potential drivers listed in Table 1 are included as features of the
model; significative features (S3), only statistically significant drivers under the KSG transfer
entropy approach are considered as features; local TE, only the local TE of the statistically
significant drivers are included as a feature; and finally the significative features + local TE
(S5) scenario, which combines scenarios (S3) and (S4). Finally, five different designs have
been proposed for the architectures of the neural networks, which are denoted as deep
LSTM (D1), wide LSTM (D2), deep bidirectional LSTM (D3), wide bidirectional LSTM (D4),
and CNN (D5). The specific designs and diagrams of these architectures are displayed in
Figure 7. In total, 6000 configurations or models were executed, which included the grid
search for the optimal hyperparameters, the different scenarios and architectures, and the
realizations on different seeds to avoid biases due to the stochastic nature of the considered
machine learning models.

The computation was done in a workstation with the following characteristics: Alien-
ware Aurora R7, Ubuntu 20.10, Processor i9-9900X 8 cores, 16 logic, 64 GB RAM, Dual
NVIDIA RTX 2080 ti, 3TB HHD. On this equipment, the computational demand extends
the execution to nearly 60 h of computation. Tables 3 and 4 present the main results for
the validation and test datasets, respectively. Table 2 explicitly states the best value for the
dropout, learning rate (LR), and batch hyperparameters. In both tables, the hashtag (#)
column indicates the number of times the specific scenario gives the best score for the
different metrics considered so far. Hence, the architecture design D3 for case S3 yields the
highest number of metrics with the best scores in the validation dataset. In contrast, in the
test dataset, the highest number of metrics with the best scores correspond to design D2 for
case S1. Nevertheless, design D5 from case S5 is close in the sense of the # value, where it
presents the best AUC and PPV scores. An important point to keep in mind is that only
during the validation stage we find models with an AUC greater than 0.6, so this metric
does not give evidence of predictive power in the testing stage.
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Figure 7. From (top) to (bottom): D1, D2, D3, D4, and D5.
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Table 3. Classification metrics on the validation dataset.

Design Case Dropout LR Batch Acc AUC TPR TNR PPV FOR BA F1 #

D1 S1 0.3 0.001 32 57.11 0.5388 84.75 25.28 56.63 40.97 55.02 67.89

S2 0.3 0.001 128 57.28 0.5391 80.33 30.75 57.18 42.40 55.54 66.80

S3 0.7 0.001 128 58.07 0.5379 74.43 39.25 58.51 42.86 56.84 65.51

S4 0.3 0.001 256 57.98 0.5304 75.41 37.92 58.30 42.74 56.67 65.76

S5 0.3 0.001 256 57.19 0.5100 87.54 22.26 56.45 39.18 54.90 68.64

D2 S1 0.3 0.001 64 59.82 0.5444 81.97 34.34 58.96 37.67 58.15 68.59

S2 0.3 0.001 32 61.14 0.5909 65.57 56.04 63.19 41.42 60.81 64.36

S3 0.3 0.001 128 62.28 0.6062 62.95 61.51 65.31 40.94 62.23 64.11 5

S4 0.5 0.0001 32 55.44 0.4964 75.08 32.83 56.27 46.63 53.96 64.33

S5 0.7 0.001 32 58.07 0.5706 63.77 51.51 60.22 44.74 57.64 61.94

D3 S1 0.3 0.001 128 56.23 0.4865 88.52 19.06 55.73 40.94 53.79 68.40

S2 0.3 0.001 64 59.65 0.5816 68.69 49.25 60.90 42.26 58.97 64.56

S3 0.3 0.001 128 60.09 0.5619 76.72 40.94 59.92 39.55 58.83 67.29

S4 0.3 0.001 32 58.16 0.5350 79.18 33.96 57.98 41.37 56.57 66.94

S5 0.3 0.001 256 59.47 0.5702 68.69 48.87 60.72 42.44 58.78 64.46

D4 S1 0.5 0.001 32 57.28 0.5276 80.16 30.94 57.19 42.46 55.55 66.76

S2 0.7 0.001 128 58.68 0.5447 66.23 50.00 60.39 43.74 58.11 63.17

S3 0.7 0.001 64 58.25 0.5468 64.26 51.32 60.31 44.49 57.79 62.22

S4 0.5 0.001 256 57.11 0.5092 78.36 32.64 57.25 43.28 55.50 66.16

S5 0.7 0.0001 32 57.11 0.5328 70.33 41.89 58.21 44.91 56.11 63.70

D5 S1 0.7 0.001 128 60.09 0.5834 72.13 46.23 60.69 40.96 59.18 65.92

S2 0.3 0.001 64 60.00 0.5683 67.70 51.13 61.46 42.09 59.42 64.43

S3 0.5 0.001 32 59.39 0.5648 68.03 49.43 60.76 42.67 58.73 64.19

S4 0.5 0.001 32 59.12 0.5572 75.57 40.19 59.25 41.16 57.88 66.43

S5 0.3 0.001 128 60.79 0.5825 70.33 49.81 61.73 40.67 60.07 65.75

In a robustness discussion, we would like to compare our predictive feature with
the existing approaches. While the current studies look at the conventional approach of
econometrics [29,30], our study sheds light on the deep learning method. Accordingly,
we had two samples (training sample and test group). Therefore, it allows us to validate
our findings with different periods. The unique, comparable study that we have found
in the area of learning models is due to [26]. However, they only show the results for two
accuracy metrics when predicting the direction of the US markets. Even so, barely the
metrics exceed the value of 0.6, and it is not clear if they are considering a test set.
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Table 4. Classification metrics on the test dataset.

Design Case Acc AUC TPR TNR PPV FOR BA F1 #

D1 S1 64.30 0.4981 90.99 11.67 67.01 60.38 51.33 77.18

S2 56.82 0.4946 74.08 22.78 65.42 69.17 48.43 69.48

S3 61.78 0.5188 79.58 26.67 68.15 60.17 53.12 73.42 2

S4 51.96 0.4898 60.70 34.72 64.71 69.06 47.71 62.65

S5 60.47 0.4842 83.66 14.72 65.93 68.64 49.19 73.74

D2 S1 60.75 0.4786 85.92 11.11 65.59 71.43 48.51 74.39

S2 52.06 0.4870 56.48 43.33 66.28 66.45 49.91 60.99

S3 53.46 0.4997 56.76 46.94 67.85 64.50 51.85 61.81

S4 55.70 0.4794 70.56 26.39 65.40 68.75 48.48 67.89

S5 50.93 0.4806 55.49 41.94 65.34 67.67 48.72 60.02

D3 S1 65.05 0.5072 95.21 5.56 66.54 62.96 50.38 78.33 3

S2 55.70 0.5248 63.38 40.56 67.77 64.04 51.97 65.50

S3 57.38 0.5176 67.32 37.78 68.09 63.04 52.55 67.71

S4 51.40 0.5051 52.96 48.33 66.90 65.75 50.65 59.12

S5 54.21 0.5094 60.56 41.67 67.19 65.12 51.12 63.70

D4 S1 61.21 0.4831 86.48 11.39 65.81 70.07 48.93 74.74

S2 48.13 0.4718 48.17 48.06 64.65 68.02 48.11 55.21

S3 47.20 0.4771 43.24 55.00 65.46 67.05 49.12 52.08

S4 45.98 0.4359 50.99 36.11 61.15 72.80 43.55 55.61

S5 51.96 0.4743 55.49 45.00 66.55 66.11 50.25 60.52

D5 S1 58.04 0.5017 78.59 17.50 65.26 70.70 48.05 71.31

S2 55.23 0.4942 62.39 41.11 67.63 64.34 51.75 64.91

S3 54.21 0.4994 63.10 36.67 66.27 66.50 49.88 64.65

S4 54.49 0.5269 62.39 38.89 66.82 65.60 50.64 64.53

S5 55.79 0.5316 61.83 43.89 68.49 63.17 52.86 64.99 2

5. Discussion

We start from descriptive statistics as a first approach to intuitively grasp the complex
nature of Bitcoin, as well as its proposed heterogeneous drivers. As expected, the variables
did not satisfy the normality assumption and presented high kurtosis, highlighting the
need to use non-parametric and nonlinear analyses.

The KSG estimation of TE found a consistent flow of information from the potential
drivers to Bitcoin through the considered range of K nearest neighbours. Even when, in
principle, the variance of the estimate decreases with K, the results obtained with K = 1 do
not change abruptly for larger values. In fact, the variation in the structure of the TE matrix
for different Markov orders k, l is more notorious. Additionally, attention must be paid
to the evidence about the order k = l = 1 through values near zero. Practitioners usually
assume this scenario under Gaussian estimations. A precaution must then be made about
the memory parameters of Markov, at least when working with the KSG estimation. The
associated local TE does not show any particular pattern beyond high volatility, reaching
values of four nats when the average is below 0.1. Thus, volatility might be a better proxy
for price fluctuations in future studies.
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In terms of intuitive explanations, we found that the drivers of Bitcoin might not
truly capture its returns in distressed periods. Although we expected to witness that the
predictive power of these determinants might play an important role across time horizons,
it turns out that the prediction model of Bitcoin relies on a choice of a specific period. Thus,
our findings also confirm the momentum effect that exists in this market [47]. Due to
the momentum effect, the timing of market booms could not truly be supported much
for further analysis by our models. In regard to our main social media hypothesis, the
popularity of Bitcoin content still exists as the predictive component in the model. More
noticeably, our study highlights that Bitcoin prices can be driven by momentum on social
media [24]. However, the selection of training and testing periods should be cautious with
the boom and burst of this cryptocurrency. Apparently, while the fundamental value of
Bitcoin is still debatable [48], using behavioural determinants could have some merits in
predicting Bitcoin. Thus, we believe that media content would support the predictability
of Bitcoin prices alongside other financial indicators. Concomitantly, after clustering these
factors, we found that the results seem better able to provide insights into Bitcoin’s drivers.

On the other hand, the forecasting of Bitcoin’s price direction improves in the valida-
tion set but not for all metrics in the test dataset when including significant drivers or local
TE as a feature. Nonetheless, the last assertion relies on the number of metrics with the
best scores. Although the test dataset having the best performance corresponds to the deep
bidirectional LSTM (D3) for the scenario univariate (S3), this case only beat three of the eight
metrics. The other five metrics are outperformed by scenarios including significative features
(S3) and significative features + local TE (S5). Furthermore, the second-best performances are
tied with two of the eight metrics with leading values. Interestingly, the last case shows
the best predictive power on the CNN model using significant features as well as local TE
indicators (D5–S5). In particular, it outperforms the AUC and PPV overall, yet AUC is in
the border of a random model. To delve into the explainable aspect, a future work will
seek to apply the Shapley-Lorentz decomposition proposed in [49,50]. There the authors
develop a global methodology, which can be associated with a generalization of AUC-ROC.

Moreover, it is important to note that the selected test period is atypical in the sense of
a bull period for Bitcoin as a result of the turbulence generated by the COVID-19 public
health emergency; this might induce safe haven behaviour related to this asset and increase
its price and capitalization. This atypical behaviour opens the door to propose future work
to model Bitcoin by the self-exciting process of the Hawkes model during times of great
turbulence.

We would like to end by emphasizing that we were not exhaustive in modelling
classification forecasting. In contrast, our intention was to exemplify the effect of including
the significant features and local TE indicators under different configurations of a deep
learning model through a variety of classification metrics. Two methodological contribu-
tions to highlight are the use of nontraditional indicators such as market sentiment, as
well as a continuous estimation of the local TE as a tool to determine additional drivers
in the classification model. Finally, the models presented here are easily adaptable to
high-frequency data because they are non-parametric and nonlinear in nature.
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Citation: Kwapień J.; Wątorek, M.;
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Abstract: Time series of price returns for 80 of the most liquid cryptocurrencies listed on Binance are
investigated for the presence of detrended cross-correlations. A spectral analysis of the detrended
correlation matrix and a topological analysis of the minimal spanning trees calculated based on
this matrix are applied for different positions of a moving window. The cryptocurrencies become
more strongly cross-correlated among themselves than they used to be before. The average cross-
correlations increase with time on a specific time scale in a way that resembles the Epps effect
amplification when going from past to present. The minimal spanning trees also change their
topology and, for the short time scales, they become more centralized with increasing maximum node
degrees, while for the long time scales they become more distributed, but also more correlated at the
same time. Apart from the inter-market dependencies, the detrended cross-correlations between the
cryptocurrency market and some traditional markets, like the stock markets, commodity markets, and
Forex, are also analyzed. The cryptocurrency market shows higher levels of cross-correlations with
the other markets during the same turbulent periods, in which it is strongly cross-correlated itself.

Keywords: financial markets; cryptocurrencies; multiscale analysis; detrended cross-correlations;
minimal spanning tree; COVID-19

1. Introduction

Over the past few years, two processes have had a particularly strong impact on
financial markets: the emergence of the cryptocurrency market [1–5] and the COVID-19
pandemic [6–12]. Each of these processes alone has already been a topic in numerous pieces
of the scientific literature, but they also were studied together [5,13–21]. Of particular
interest in this context is how the ongoing pandemic is changing the cryptocurrency
market and how this market position among the other financial and commodity markets
undergoes an accelerated evolution. The cryptocurrency market is an interesting object for
analysis from the perspective of complex systems, as it is a unique financial market whose
establishment and evolution was entirely spontaneous with no intervening government or
other regulatory institution. Thus, a process of the market’s self-organization can be traced
from the very beginning until the present.

As the cryptocurrency market properties are constantly evolving and they are still far
from being fully identified and understood, there is heavy ongoing related research that
points in various directions (see, for example, [4] for comprehensive literature listing and
pointing out several significant research voids). On the general level, the cryptocurrency
markets are studied at an angle of trading security, the vulnerability to improper trading
practices [22], and the formation of demand [23]. On the asset level, the fundamental
aspects of the market processes that drive price discovery [24,25], price fluctuations [26–28],
asset liquidity [29], and asset–asset correlations [30,31] are studied from the investor’s
perspective in order to facilitate the optimal portfolio construction both inside the cryp-
tocurrency market and across different markets, including the cryptocurrency one. An
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associated important direction of research is the possibility of market forecasting, which
includes the approach developed in econophysics that is based on a search for evidence
of the exogeneous and endogeneous market shocks, speculative bubbles, crashes, and
their precursors [32]. Among the voids, one can count the sparse analyses based on high-
frequency data, the exaggerated focus on bitcoin (BTC) alone, and the insufficient attention
paid to how different mining protocols can affect the related asset properties and how
various legal regulations being (actually or potentially) imposed on the cryptocurrency
markets can perturb both the mining and the trade [4].

From a perspective of their statistical and dynamical properties, the cryptocurrencies
neither resemble regular currencies, like the US dollar (USD) or Chinese yuan (CNH),
nor commodities, like gold or oil [33–35]. Among the major problems associated with
cryptocurrencies is their significant volatility. In consequence, even the largest and the most
capitalized cryptocurrency, BTC, is considered an asset that resides at the interface between
a standard financial asset and a speculative one [36]. Most studies of the cryptocurrency
market relations with the traditional markets reported in the literature point to relative
independence of the cryptocurrencies (see, for example, [13,31,37]). However, there were
also some reports concluding that there are temporary or stable cross-correlations or
even causality between the major cryptocurrencies and some regular currencies, like
TRY [34] and some Asian currencies, like BHT, CNH, and TWD [38], as well as between
the cryptocurrencies and commodities [37].

As a new system, it took several years for the cryptocurrency market to reveal any
signatures of maturity, like the market efficiency [39,40]. However, already prior to the crash
of April 2018, its statistical properties became similar to the properties of the other markets,
among which there were the financial stylized facts (the power-law tails of the return
distributions, volatility clustering, etc.) [5,28,40] and some other complexity traits, like
multifractality [26], and, in some aspects, it started to resemble Forex [26,41]. On the other
hand, one of the interesting facts about the cryptocurrency market’s inner structure is that,
unlike other financial markets where, typically, the highly capitalized assets have spillover
effects on the less capitalized ones, here the less capitalized assets are able to influence the
evolution of the highly capitalized ones. This can lead to more a complex structure than a
typical structure of the other markets, where causality is unidirectional [42–45].

These and other similarities and differences opened space for a concern, whether
bitcoin and other cryptocurrencies may be considered as a safe haven during market tur-
moils or whether they may be used to hedge against the traditional assets. Although the
literature on this issue is growing, the conclusions are mixed: BTC and the other major cryp-
tocurrencies are sometimes indicated as good candidates for a safe haven [15,16,18,46,47]
but the opposite can also be suggested [15,17,36,48–52], depending on the analyzed data.
Sometimes the answer can even be conditional: “yes” to a safe haven, “no” to a hedge [53].
An important risk factor of BTC and other cryptocurrencies that acts against their use for
hedging is their possible lack of fundamental value [54].

As regards the asset–asset correlations among the cryptocurrencies, it was shown that,
besides a trend going towards the stronger market cross-correlations, the cryptocurren-
cies reveal a cyclic amplification of volatility connectedness during periods of economic
instability or external shocks. However, BTC does not play a central role in driving market
volatility [42]. A different study applying different methodologies (principal component
analysis, cross-sectional dependence, and vector autoregression framework) confirmed this
finding and extended it from volatility to returns [45]. Another work reported the increased
cross-correlations among the cryptocurrencies after the bubble of 2017 as compared to the
earlier period by using the detrended fluctuation analysis [44]. The highly capitalized cryp-
tocurrencies show statistically significant time-lagged autocorrelations that may indicate
substantial market inefficiency (although not necessarily usable for profit-making) [35]. All
these works analyzed very small sets of assets, however, which significantly limited the
market insight they were able to provide. A more comprehensive study, which considered
over 50 cryptocurrencies, also brought more diversified results, and identified some assets
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that were statistically and dynamically different than the others (these were tether, holo,
maker, NEM, and nexo) [20].

In our former publications we thoroughly analyzed the cryptocurrency market evolu-
tion from its early stages of development to the current, relatively mature phase. In the
Ref. [55] we reported that the cryptocurrency dynamics over the years 2016–2019 displayed
signatures of decoupling from dynamics of the regular currencies [55]. In the Refs. [5,13]
we analyzed the cryptocurrency market properties during the pandemic onset (January
2019–October 2020). We showed that before the pandemic, over the years 2018–2019, the
evolution of the cryptocurrency market was largely independent from the evolution of the
traditional markets. We interpreted this independence as a consequence of a quiet period
on the traditional markets and a disparity in the market capitalization: the cryptocurrency
market was too small to perturb other markets, while they were too tranquil then to induce
any turmoil among the cryptocurrencies. However, in the second half of January 2020,
at the moment when the first COVID-19 case was reported in the United States, some
cryptocurrencies responded and thus lost their independence. For example, BTC gained
positive cross-correlation with JPY, CHF, and gold, which are considered as a financial safe
haven, and negative cross-correlation with other major assets, while ETH preserved its
independent dynamics longer. Later, during the outburst of the first wave of COVID-19 in
April 2020, the cryptocurrencies underwent a crash together with all the major markets,
except for a few regular currencies like JPY. This state of cross-market coupling continued
in the months that followed, both at the moments of the subsequent pandemic waves and
the market rallies. Our analyses ended in the middle of the third pandemic wave before
the introduction of anti-COVID vaccines, thus we could not report on how the markets
would respond to a decreased pandemic risk. From this angle, our present analysis can be
viewed inter alia as a continuation of those previous works based on a new data set.

In the following, we will report on our study of a set of the most liquid cryptocur-
rencies whose high-frequency price quotes cover the last 21 months. We will apply the
generalized detrended cross-correlation analysis [56–59] and study the spectral properties
of a detrended correlation matrix, as well as the topological properties of its network
representation. In the context of the current cryptocurrency research, our main objectives
are (1) to look into the most recent data that have not been covered by other works yet, and
compare results with the earlier ones, (2) to consider a set of assets that is wide as possible
provided the available data quality, and (3) to apply a methodology that is rarely used in
this context, that is, the q-dependent cross-correlation analysis that is able to filter data
according to its magnitude. In Section 2 we will briefly recollect the related formalism, in
Section 3 we present and discuss the main results, and in Section 4 we will present the
summary and conclusions.

2. Methods

Data from the cryptocurrency market, which is characterized by volatility that exceeds
volatility of the traditional markets, are not well-suited to being studied by means of the
standard correlation formalism based on the Pearson correlation [60] that requires data
stationarity. Thus, methods based on signal detrending are advised [56,61].

The q-dependent detrended correlation coefficient ρq(s) was proposed in the Ref. [59]
to quantify the detrended cross-correlations between two, typically non-stationary time
series {x(i)}i=1,...,T and {y(i)}i=1,...,T of length T. Let these time series be divided into Ms
boxes of length s starting from its opposite ends (thus, there are 2Ms boxes total). In each
box, the data points are subject to integration and polynomial trend removal:

Xν(s, i) =
i

∑
j=1

x(νs + j)− P(m)
X,s,ν(i), Yν(s, i) =

i

∑
j=1

x(νs + j)− P(m)
Y,s,ν(i), (1)
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where the polynomials P(m) of order m are applied. The next step is calculation of the local
residual variances and covariance:

f 2
XX(s, ν) =

s

∑
i=1

(Xν(s, i)− X̄ν(s))2, f 2
YY(s, ν) =

s

∑
i=1

(Yν(s, i)− Ȳν(s))2, (2)

f 2
XY(s, ν) =

s

∑
i=1

(Xν(s, i)− X̄ν(s))(Yν(s, i)− Ȳ(s)), (3)

where X̄ and Ȳ denote the local mean of X and Y, respectively. These quantities are used to
define a family of the fluctuation functions of order q:

F(q)
XX (s) =

1
2Ms

2Ms−1

∑
ν=0

[
f 2
XX(s, ν)

]q/2
, F(q)

YY (s) =
1

2Ms

2Ms−1

∑
ν=0

[
f 2
YY(s, ν)

]q/2
, (4)

F(q)
XY (s) =

1
2Ms

2Ms−1

∑
ν=0

sign
[

f 2
XY(s, ν)

]
| f 2

XY(s, ν)|q/2. (5)

The sign function in Equation (5) preserves the information that is otherwise lost after
taking the modulus of f 2

XY(s, ν), while the modulus itself excludes a possibility of obtaining
complex values of the covariance f 2

XY raised to a real power q/2 [59,62]. The q-dependent
detrended correlation coefficient is defined by the following formula:

ρXY
q (s) =

F(q)
XY (s)√

F(q)
XX (s)F(q)

YY (s)
, (6)

which generalizes for any q the standard (q = 2) detrended correlation coefficient ρDCCA [58].
The parameter q plays the role of a filter weighting the boxes ν in the sums in
Equations (4) and (5) by their variance/covariance magnitudes. For q > 2, the boxes
with large signal fluctuations are given higher weights with respect to the q = 2 case, while
for q < 2 the boxes with small fluctuations contribute more than for q = 2. Therefore, by
applying ρq, one can learn which fluctuations are the source of the observed detrended
correlation of the time series.

For a set of N parallel time series indexed by i, the q-dependent correlation coefficient
can be calculated for each time series pair (i, j) (i, j = 1, ..., N), and a q-dependent detrended
correlation matrix Cq(s) with the entries ρ

(i,j)
q (s) can be created, as well as a q-dependent

metric distance matrix Dq(s) whose entries are

d(i,j)q (s) =
√

2(1 − ρ
(i,j)
q (s)). (7)

The matrix Dq(s) can then be used to create a weighted graph, where nodes labelled by
i = 1, ..., N represent the time series and N(N − 1)/2 edges connecting the nodes i, j are
attributed the weights equal to d(i,j)q (s). A subset of the complete graph, consisting of all N
nodes and only N − 1 edges that minimize the weight sum, is a q-dependent detrended
minimum spanning tree (qMST) [63]. This tree can be constructed by means of the Prim
algorithm, for instance [64]. However, although the very algorithm is the same, such a
tree differs from the standard approach that uses the Pearson correlation coefficient and
a corresponding Pearson correlation matrix (see, for example, [55,65] for such a standard
approach applied to the cryptocurrency market).

A data set of interest is the 1 min price quotations of the 80 cryptocurrencies that were
among the most actively traded ones on the Binance platform [66] over the period from
1 January 2020 to 1 October 2021. The quotes are expressed in USD Tether (USDT) that is
a stablecoin linked to the US dollar and its value is $1.00 by design [67]. Each time series
of the price quotations is 921,600 points long and covers 640 trading days (the Binance
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platform is active 24 hours a day and 7 days a week). All the assets used in this study are
listed in Appendix A (Table A1).

3. Results and Discussion

The price quotation time series pi(tm), where m = 1, ..., T and i stands for a given
cryptocurrency ticker, were first transformed to the time series of logarithmic returns
RX(tm) = ln pi(tm+1) − ln pi(tm) and then normalized to zero mean and unit variance,
which is a standard procedure. Then, for each pair of cryptocurrencies (i, j), the q-
dependent detrended cross-correlation coefficient ρ

(i,j)
q (s) given by Equation (6) was de-

termined for a number of time scales s from s = 10 min to s = 360 min and different
values of the filtering parameter q. In what follows, we will present results obtained for
q = 1, which corresponds to a situation where the small fluctuation period variances in
Equations (4) and (5) are amplified relatively to the large ones, and for q = 4, which
corresponds to the opposite situation. Thus, we can consider the asset cross-correlations
for the quiet and turbulent periods in a separate manner.

Before we start a presentation of our results, in Figure 1 we show the historical data
of the BTC price in USD in the years 2020–2021 together with the BTC share in the total
cryptocurrency market capitalization over the same period. Among the most characteristic
events for BTC was the crash on 13 March 2020 related to the COVID-19 pandemic onset in
the United States, when BTC surged below 4107 USD, a long rally that started in October
2020 and ended on 14 April 2021 with then the all-time-high equal to 64,830 USD, a
subsequent drop-down phase that ended on 20 July 2021 at 29,324 USD, and the next
all-time-high on 20 October 2021 equal to 66,961 USD. As the BTC has been priced higher
and higher, its share in the total market capitalization drops down steadily from about 70%
in January 2020 to below 45% in October 2021, which seems to be inevitable if the number
of the actively traded cryptocurrencies grows quickly.
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Figure 1. Price evolution of bitcoin (BTC) expressed in US dollars (black) and the BTC share in the total
cryptocurrency market capitalization (magenta) over the period from 1 January 2020 to 31 October
2021. Characteristic events are indicated by vertical dashed lines and Roman numerals: COVID-19
crash in March 2020 (event I), strong bull market on cryptocurrency valuation October 2020–April
2021 (event II), all-time high on 14 April 2021 (event III), the May crash on the cryptocurrency market
(event IV), and recent rally with new all-time high on 20 October 2021 (event V).
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Since for N = 80 cryptocurrencies there are N = N(N − 1)/2 = 3160 cryptocurrency
pairs that have to be considered, it is convenient to analyze the whole set collectively by
means of the spectral analysis of the N × N q-dependent detrended correlation matrix
Cq(s), whose entries are the coefficients ρ

(i,j)
q (s). We can diagonalize it and calculate its

eigenvalues λi and eigenvectors vi (with i = 1, ..., N):

Cq(s)v
(q)
i (s) = λ

(q)
i (s)v(q)

i (s). (8)

The eigenvalues are ordered typically from the largest one (i = 1) to the smallest one (i = N).
(For simplicity, from now on we will omit the parameters q and s when dealing with the
eigenvalues and eigenvectors of Cq(s). Their value will be known from the context.)

For the financial markets, a typical eigenvalue spectrum of the Pearson-coefficient-
based correlation matrix consists of a large λ1 that is separated from the remaining eigen-
values by a considerable gap and corresponds to the average behaviour of the considered
assets (the so-called market factor), a few elevated non-random eigenvalues that corre-
spond to subsets of related assets (e.g., representing companies from the same industry
or currencies from the same geographical region), and a bulk of mean eigenvalues that
correspond to random fluctuations and, essentially, carry no genuine information. Here we
use the detrended correlation coefficient ρq instead of the Pearson coefficient [60], but our
experience shows that the corresponding matrix Cq reveals similar spectral properties [63].
The largest eigenvalue λ1 is associated with a maximally delocalized eigenvector v1 with
many significant components, while the eigenvectors representing smaller eigenvalues
are more localized, that is, few components are significant. The eigenvector structure is
usually expressed by the inverse participation ratio or the localization length [68], but here
we apply the Shannon entropy defined by

H(vi) = −
N

∑
j=1

pi(j) ln pi(j), (9)

with pi(j) = v2
i (j) (the eigenvectors are normalized to unit length, so that ∑N

j=1 v2
i (j) = 1).

If the eigenvector is maximally delocalized and all its components are equal to each other,
the Shannon entropy assumes its maximum value: H(vi) = ln N, while if there is only a
single non-zero component, the entropy vanishes: H(vi) = 0. Entropy can thus serve as a
measure of vector localization.

In order to track the evolution of the asset–asset detrended cross-correlations, we
apply a moving window of size of 7 days (10,080 data points), which was shifted by a daily
step (1440 data points) along the time series. For each window position t, based on the
80 time series of price returns, we create a detrended correlation matrix Cq(s, t) for a few
selected values of q (q = 1 and q = 4) and s (s = 10 min, s = 60 min, s = 180 min, and
s = 360 min). Next we diagonalize Cq(s, t) and derive a complete set of the eigenvalues
λi(t) and eigenvectors vi(t). Figure 2 exhibits λ1(t), H(v1(t)), and the largest squared
component v(max)

1 (t) of the eigenvector v1(t) for different time scales s and different values
of the filtering parameter q. By increasing s, we also obtain a systematically increasing λ1(t),
which reflects the increasing strength of the mean asset–asset detrended cross-correlations
for the longer time scales s. This is a well-known property of the financial and commodity
markets and it is called the Epps effect [41,69–71]. This effect has already been observed on
the cryptocurrency market and reported, for example, in the Ref. [5]. It is a consequence of
the fact that what dominates the price evolution on short time scales is noise: it takes time
to spread a piece of information among the assets, especially if the asset liquidity is small
like in the case of the cryptocurrencies. Therefore, only on the sufficiently long time scales,
the cross-correlations are able to be built up to a full extent.

Another observation is that the difference in correlation strength between s = 10 min
and s = 360 min is much stronger for q = 1 than for q = 4; the correlation strength for
large scales is also significant then. The behavior of λ1 is also different: in the case of q = 1,
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periods with a large value of λ1 are accompanied by periods of moderate value, but there
are also few periods with relatively small values of the largest eigenvalue. In turn, for q = 4
the λ1(t) evolution consists of large, but short “bursts” separated by small background
values. In the latter case, λ1 is more sensitive to changes. Looking at the λ1(t) chart for
q = 1 and the shorter s time scales, two characteristic epochs can be distinguished: (1) more
or less until October 2020, we observe a horizontal trend, where the average value of λ1
does not change much, and (2) from October 2020 to mid-2021, a strong upward trend is
noticeable. This is confirmed by looking at the Shannon entropy panel, where the behavior
of this quantity is very similar. This means that from the fall of 2020 to mid-2021, there
was a gradual increase in the strength of the market correlation and more cryptocurrencies
began to behave in a similar way. It can be said that the market has consolidated. In the
third quarter of 2021, this trend was halted, λ1 began to decrease slightly, and H(v1) was
saturated close to its maximum allowed value of approximately 4.38. Understandably,
as the delocalization of the vector v1 increases, the value of its largest component v(max)

1
decreases (see Figure 2).

Figure 3 shows the changes over time of the second largest eigenvalue λ2, the entropy
of the components of the corresponding eigenvector v2 and the changes in the value of
the largest component v(max)

2 of this vector. For both q = 1 and q = 4, the value of λ2 is
much lower than the value of λ1, which results from a much smaller number of significant
eigenvector components: entropy is lower than 4, and for q = 1, in the vast majority of
windows, its value decreases as s increases, which is the opposite of the λ1 case. For q = 4,
we do not observe such an effect. With q = 1, the global maximum of λ2 falls in July 2020,
when its value more than doubled if compared to other time intervals. Simultaneously, λ1
reached one of its lowest values, as did H(v1). At the same time, the entropy for v2 did not
change much from its typical value, but then and in the preceding period H(v2 was similar
for different time scales. For large fluctuations (q = 4), the maximum λ2 also occurred in
the same period, but was not as unique as for the smaller fluctuations (q = 1), because
λ2 reached equally high magnitude in April and May 2021. However, λ1 for q = 4 also
had its maxima at the same moments. This means that briefly in July 2020, there was a
strong correlation of a small group of cryptocurrencies, and this mainly concerned small
and medium fluctuations in their price, while the market as a whole was in a decoupling
stage. In turn, in April and May 2021 there was a stronger than usual correlation of the
entire market, with large fluctuations being particularly strongly correlated. As for the
largest component of the vector v2 and q = 1, we do not observe systematic changes in its
value for the short time scales, while for the long ones, starting from autumn 2020, there
is a growing trend that ends in mid-2021. This increase in v(max)

2 suggests that one of the
cryptocurrencies increased its dominance over other cryptocurrencies at that time. This
behavior differs from the behavior of the analogous measure described above in the case of
the vector v1, where there was a clear decrease.
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Figure 2. Time evolution of the selected spectral characteristics of the q-dependent detrended
correlation matrix Cq(s) for q = 1 (a) and q = 4 (b). A moving window of a length of 7 days shifted
by 1 day was applied for sample values of the scale: s = 10 min (red), s = 60 min (blue), s = 180 min
(green), and s = 360 min (orange). The largest eigenvalue λ1 (top panels in (a,b)), the Shannon
entropy H(v1) of the squared eigenvector components v1(j) with j = 1, ..., N (middle panels), and the
squared maximum component of the eigenvector v1 associated with λ1 (bottom panels) are shown.
The cryptocurrency prices are expressed in USDT.
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Figure 3. Time evolution of the selected spectral characteristics of Cq(s) (continuing). As in Figure 2,
two cases are shown: q = 1 (a) and q = 4 (b). A moving window of length 7 days shifted by 1 day
was applied for sample values of the scale: s = 10 min (red), s = 60 min (blue), s = 180 min (green),
and s = 360 min (orange). The second largest eigenvalue λ2 (top panels), the Shannon entropy H(v2)

of the squared eigenvector components v2(j) with j = 1, ..., N (middle panels), and the squared
maximum component of the eigenvector v2 associated with λ2 (bottom panels) are shown.
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Since a sum of all the eigenvalues must equal trace of Cq with TrCq = N, the high
values of λ1 take a significant part of each time series variance. This can suppress all
the other eigenvalues with λ2 in particular and can also have a strong impact on the
eigenvector v2. We thus prefer to look at these quantities once more after removing the
variance contribution of λ1 from the original time series of returns. In order to accomplish
this, we created an eigensignal representing λ1 as a sum of the original time series weighted
by the corresponding eigenvector components z1(tm) = ∑N

j=1 v1(j)rj(tm), where rj(tm) are
the normalized returns of a cryptocurrency j at time tm, m = 1, ..., T. We then least-square
fit the eigensignal {z1(tm)} to each original time series {rj(tm)} and subtract the fitted

component from {rj(tm)}. What remains then is a residual signal {r(res)
j }, which does not

comprise any contribution from {z1(tm)} and, thus, also from λ1:

r(res)
i (tm) = ri(tm)− αiz1(tm)− βi, (10)

where αi, βi are the parameters of a linear fit. Finally, we calculate the coefficients ρ
(i,j)
q (s)

for all the cryptocurrency pairs (i, j) and form a residual q-dependent detrended correlation
matrix C

(res)
q (s). After diagonalising it, we obtain its eigenvalues λ

(res)
i and eigenvectors

v
(res)
i . We repeat this procedure a few times for different scales s and filtering parameters q.

Figure 4 collects the results.
Now the largest eigenvalue λ

(res)
1 , which inherits some information stored previously

in λ2 but without the former clear impact of λ1, is not suppressed any more and, for
q = 1, it shows richer behaviour with more fluctuations and more pronounced maxima
(see Figure 4a). Interestingly, the large maximum of λ2 observed in Figure 3a in July 2020
disappeared almost completely here and was replaced by a series of pronounced maxima
in February, March, September, and December 2020, and a smaller one in May 2021. They
are the more visible the longer time scale is considered. From a present perspective, the
unique maximum of λ2 in July 2020 might solely be a product of a relatively small value of
λ1 in that moment, which was unable to suppress λ2 to its overall level of 4.

As regards the Shannon entropy, three phases can be distinguished: (1) from January
to May 2020, (2) from May 2020 to April 2021, and (3) from May to October 2021. In the
first and third phases there is no difference in H(v

(res)
1 ) if we consider different scales

s, while during the second phase, which largely overlapped with the bull market, the
entropy fluctuates in time and increases with increasing s. However, its saturation level for
s = 360 min in this phase is comparable with the analogous level in the other phases – this
is because H(v

(res)
1 ) for s = 10 min can be much smaller in phase (2) than in phases (1) and

(3). Dissimilarity between the phases is observed also for v(res)(max)
1 : in phase (2) its value

is substantially elevated as compared with the phases (1) and (2). These outcomes suggest
that the eigenvector v

(res)
1 became delocalised and some cryptocurrency used to contribute

more to this eigenvector during phase (2) than the other cryptocurrencies did.
For q = 4 (Figure 4b), both H(v

(res)
1 ) and v(res)(max)

1 fluctuate over the whole analysed
period more than it is observed for q = 1. The largest residual eigenvalue for q = 4 displays
local maxima in the same moments as for q = 1, but their height varies. Apart from the
maxima, typical fluctuations of λ

(res)
1 are smaller in 2021 than they used to be in 2020.
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Figure 4. Time evolution of the selected spectral characteristics of the residual q-dependent detrended

correlation matrix C
(res)
q (s) after filtering out the component corresponding to λ1. As in Figure 2,

two cases are shown: q = 1 (a) and q = 4 (b). A moving window of length 7 days shifted by 1 day
was applied for sample values of the scale: s = 10 min (red), s = 60 min (blue), s = 180 min (green),

and s = 360 min (orange). The largest residual eigenvalue λ
(res)
1 (top panels), the Shannon entropy

H(v
(res)
1 ) of the squared eigenvector components v(res)

1 (j) with j = 1, ..., N (middle panels), and

the squared maximum component of the eigenvector v
(res)
1 associated with λ

(res)
1 (bottom panels)

are shown.
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Some deeper insight into the cross-correlation structure of the cryptocurrency market
can be gained by transforming the q-dependent detrened correlation matrix Cq(s) into a
related distance matrix Dq(s), whose elements are defined by Equation (7). The latter is
used as a basis for creating a minimum spanning tree, in which each node represents a
particular cryptocurrency and each weighted edge represent the metric distance between a
pair of assets or, equivalently, the detrended cross-correlation coefficient. To facilitate com-
prehension of the MST pictures, the edge weights between the nodes (i, j) are proportional
to the coefficients ρ

(i,j)
q (s) even though the metric distances d(i,j)q (s) were used to determine

the MST edges in this work.
We created an MST for each moving window position and for the same values of s

and q as before. Owing to this, we are able to observe the evolution of the MST topology
along the considered time span. The first topological characteristics we discuss here is the
probability that a given node has a degree k. Its cumulative distributions P(X ≥ k) for a
few sample window positions are shown in Figure 5 for q = 1 (top) and q = 4 (bottom)
and for s = 10 min (red line) and s = 360 min (blue line). The MST topology expressed by
these characteristics varies between different time intervals from a centralized graph with
a single dominant node playing the role of a hub, that is, when there is a significant gap
between the largest degree kmax and the second largest degree, to a distributed graph with
a small kmax and a small difference in the degrees of the most connected nodes. The former
situation is more typical for the short time scales (s = 10 min) and the periods with small
return fluctuations (q = 1), while the latter situation occurs frequently for the long time
scales (s = 360 min) and both the small and large fluctuation periods (q = 1 and q = 4); see
Figure 5.

While increasing the scale from s = 10 min to s = 360 min, for q = 1 we observe a
systematic change of the MST topology from centralized towards more distributed. For
q = 4 there is no such a change and the topology is largely preserved. From the network
perspective, this means that the detrended cross-correlations during the strong volatility
periods are already well-developed at the 10-min time scale and, possibly, one has to
consider even shorter scales to detect any topological transition (this would require a
higher frequency of the price quotations than 1 min considered here, however). It is also
worth noting that the cumulative probability distributions in some windows show a scale-
free decay with k (the almost-straight lines in double logarithmic plots). This conclusion
supports the results reported earlier for the data covering the years 2016–2019 [5] and
2017–2018 [72].

Topological changes of the MSTs while going from past to present can be expressed by
the time evolution of the node degree ki(t) for the most connected nodes representing the
cryptocurrencies i. The results for the MSTs created based on three distinct data sets are
presented in Figure 6: (1) the original time series of the price returns, (2) the residual time
series obtained after filtering out the contribution of λ1 from the original data (both are
based on the quotes given in USDT), and (3) the time series of the price returns based on
the quotes given in BTC. The latter case allows us for effective filtering out the impact of
BTC on the other assets’ detrended cross-correlations.
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Figure 5. Node degree cumulative distribution P(X ≥ k) of the MSTs created for the cryptocur-
rency prices expressed in USDT. Results for sample moving windows are shown for q = 1 (a) and
q = 4 (b). In each panel the distributions for two temporal scales are displayed: s = 10 min (red)
and s = 360 min (blue). The nodes with the highest degree k are labelled by the corresponding
cryptocurrency ticker.
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There are the following observations:

(1) Exactly as expected from the above discussion related to Figure 5, for each data type,
the degree of the most connected nodes tends to decrease with increasing s and the
degree gap between kmax and the smaller values of ki decreases as well. For longer
time scales, the topology becomes less centralized and more “democratic” with a few
hubs of a comparable connectivity.

(2) As the most capitalized cryptocurrency, BTC remains the most connected node over
the longest time for s = 10 min and, to a lesser extent, for s = 60 min. However, for
s = 360 min, it ceases to play such a role in August 2020, when the MST becomes
decentralized permanently and the most connected node can be a cryptocurrency of
moderate capitalization (see, for example, [73] for a similar observation).

(3) It happened for s = 10 min that the periods when ETH was the most connected node
as frequently as BTC prevailed between September 2020 and February 2021. For
s = 60 min also some other assets like ONT and TRX are represented by the most
connected nodes from time to time, but it happens more because of a temporarily
diminished degree of BTC and ETH than because of their own importance.

(4) In the residual data, BTC does not play so substantial role as in the original data,
because its dominating role was largely wiped out by filtering out the λ1 contribution.
It remains, however, a hub with the second largest connectivity throughout the whole
analyzed interval for s = 10 min. If s is increased to 60 min, BTC is degraded further
on to be among a few secondary hubs with a few connections only. For both the
scales, the most connected node is FTT, but its distinguished structural position
vanishes almost completely after April 2021. For s = 360 min the MSTs always show
a decentralized topology.

(5) If the prices are expressed in BTC, kmax(t) is typically smaller (kmax < 30 out of 68)
than when they are expressed in USDT (kmax < 70 out of 80). This is the expected
property as BTC is the most connected hub in the case of the prices given in a stable
coin. For any scale, a typical situation in this case is that there is frequent alternation
of the most connected nodes: ETH, BNB, LINK, ONT, LTC, XRP, DASH, and so forth
are among the assets that have the largest degree in certain time intervals, but none
of them is able to substantially centralize the network. For long time scales, it even
occurs that the largest degree nodes are switched almost random.
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Figure 6. Evolution of the node degree ki for the most connected nodes of the MST calculated in
the seven-day-long moving window with a step of 1 day. For the prices expressed in USDT, two
cases are shown: (a) the results for the complete data set without any filtering and (b) the results for
the residual signals after filtering out a contribution from the component represented by the largest
eigenvalue λ1. The results for (c)—the prices expressed in BTC , which corresponds to filtering out
any BTC-related contribution to other assets’ evolution, are also shown. In each case, three exemplary
scales are shown: s = 10 min (top graph in each panel), s = 60 min (middle graph), and s = 360 min
(bottom graph). Different colors and line styles denote the node degree for different cryptocurrencies.

A variety of the MST topologies that can be observed in the cryptocurrency market
in different periods is illustrated in Figures 7 and 8. The top left MST in Figure 7 has
largely a star-like structure with BTC being its central node and ETH being a secondary
hub. All other nodes are peripheral in respect to these two. The bottom left tree is also
significantly centralized but now the most connected node is ETH, while BTC, FTT, and
BAT are secondary hubs. A mixed type of topology is shown in the bottom right MST,
where there are two primary hubs that are almost equivalent topologically (BTC and ETH)
and a single secondary hub (BCH). However, despite this interesting dual centrality, the
network has a part that is rather distributed. A largely distributed structure can be seen in
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the top right MST, in which only BTC possesses a significant number of the satellite nodes,
while the overall network structure is distributed and almost random.

Figure 7. Minimal spanning trees calculated from a distance matrix Dq(s) based on ρq(s) for q = 1 and s = 10 min. Each
node represents a cryptocurrency and the edge widths are proportional to value of the corresponding coefficient ρq(s). Each
MST was created for moving window of length 7 days ended at specific dates: (a) 6 April 2020, (b) 1 August 2020, (c) 9
October 2020, and (d) 25 February 2021.

While the asset–asset correlation strength can be amplified by increasing scale s,
Figure 8 shows that this operation weakens at the same time the centralized topology of
the associated MST, which can show the signatures of a decentralized network. This can be
seen by comparing the trees corresponding to the same windows in Figures 7 and 8.
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Figure 8. Minimal spanning trees calculated from a distance matrix Dq(s) based on ρq(s) for q = 1 and s = 360 min. Each
node represents a cryptocurrency and the edge widths are proportional to value of the corresponding coefficient ρq(s). Each
MST was created for moving window of a length of 7 days ended at specific dates: (a) 6 April 2020, (b) 1 August 2020, (c) 9
October 2020, and (d) 25 February 2021.

This conclusion receives additional support from the top panels of Figure 9a,b pre-
senting the mean path length as a function of time. It is defined by the following formula:

〈L(q, s, t)〉 = 1
N(N − 1)

N

∑
i=1

N

∑
j=i+1

Lij(q, s, t), (11)

where Lij is the length of the path connecting nodes i and j. The larger 〈L(q, s, t)〉 is, the
more distributed is the corresponding MST. Indeed, by considering a given window, this
quantity systematically increases with increasing s. The smallest values of the mean path
length (2 < 〈Lij(q, s, t)〉 < 3) can be seen in April-May 2020 (see also [74]), in August–
September 2020, between March and May 2021, in May 2021, and in September–October
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2021 for s = 10 min. These are the periods of the most centralised market, where a vast
majority of the nodes is connected to a central hub. In each of these periods, the maximum
node degree kmax assumes high values as well (see Figure 6a). In contrast, the elevated
values of 〈Lij(q, s, t)〉 (Lij(q, s, t) > 5) are observed in February 2020, July 2020, and between
February and May 2021.

The power-law exponent γ(q, s, t) describing slope of the cumulative probability
distribution of the node degree is shown in the middle panel of Figure 9a for q = 1 and it is
accompanied by the standard error of its least-square fit (the lower panel). It is an unstable
quantity that fluctuates between 0.5 and 2 (see also Figure 5) for the results in sample
windows. The smaller γ(q, s, t) is, the more distant kmax can be from the smaller values of
ki, but this relation does not always hold. The same quantities are shown in Figure 9b for
the case of q = 4. Now we see smaller differences between the network characteristics for
different time scales. This is the same rule as the one observed in Figure 5 for q = 4.

Topology of the MSTs representing the residual time series {r(res)
i (tm)} differs from the

original time series {ri(tm)} significantly. Because the removed component representing λ1
is connected with the strength of the average detrended cross-correlation coefficient 〈ρq(s)〉,
a lack of this component weakens the detrended cross-correlations and can thus destroy
the star-like structures within the MST. This must obviously lengthen many inter-node
paths and increase 〈Lij(q, s, t)〉. In fact, Figure 10a,b shows that 〈Lij(q, s, t)〉 > 5 over almost
the whole analyzed period for both q = 1 and q = 4. It happens sometimes that its value
reaches 10, which indicates a distributed network topology. The slope exponent γ(q, s, t)
behaves even more erratically than for the original, complete data in Figure 9, and the
standard error of the fitted values is much larger.

The same topological characteristics for the MSTs created from the time series of price
quotations expressed in BTC are presented in Figure 11a,b. Their temporal evolution seems
to be less random than in Figure 10 and resembles the picture for the USDT-based data
shown in Figure 9. For q = 1, the mean path length fluctuates along a horizontal line
at 〈Lij〉 ≈ 5 until April 2021. Then the trend line starts to decrease towards a level of
4 or even below this value. This suggests that the MST topology has gradually become
more centralized in the recent months. Such an effect is hardly visible for q = 4. A
rather high values of γ(q, s, t) above 1.5 for q = 4 confirm a more compact topology of the
corresponding MSTs than in the case of the prices expressed in USDT.

Our study of the cryptocurrency network topology can be completed with an analysis
of the network cluster structure. Obviously, in this case we have to consider the com-
plete weighted networks defined by the matrix Cq(s) instead of the MSTs. In order to
identify node clusters, we exploit the Louvain algorithm of community detection, whose
performance is counted among the best methods [75].

For the most moving window positions, the algorithm detects a few cryptocurrency
clusters, but their composition fluctuates among the windows. To show how the clusters
vary in time, we select a few significant nodes and associate them with a set of nodes they
share a given cluster with. Among the distinguished nodes that frequently play a role of
the MST cluster centers are BTC, ETH, LINK, TRX, ONT, BNB, and others. In the case
of BTC, we consider a network of all 80 cryptocurrencies expressed in USDT, while for
the other nodes, we consider a limited set of 68 cryptocurrencies expressed in BTC and
that are not pegged to US dollar. Some of the related clusters consist of a few nodes only
throughout the whole period under study, but there are also clusters consisting of a variable
number of nodes. Here we show the examples of the latter group of clusters: the clusters
to which BTC, ETH, BNB, or ONT belong. It should be noted, however, that (1) a node
representing a given cluster might not necessarily be its center in the MST representation,
(2) some clusters are merged in some windows, while they remain separate in the other
windows, and (3) the nodes can jump between clusters.
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Figure 9. Time evolution of the selected network characteristics of the MST created from a distance
matrix Dq(s). Two cases are shown: q = 1 (a) and q = 4 (b). In each case, a moving window of
length 7 days shifted by 1 day was applied for the scales: s = 10 min (red), s = 60 min (blue),
s = 180 min (green), and s = 360 min (orange). The mean path length 〈L(q, s, t)〉 (top panels),
the node degree cumulative probability distribution P(X ≥ k) power-law slope exponent γ(q, s, t)
(middle panels) together with its standard error (SE, bottom panels). The cryptocurrency prices are
expressed in USDT.
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Figure 10. The same quantities as in Figure 9 but here obtained from the residual MSTs calculated for

D
(res)
q (s) after filtering out the component corresponding to λ1. Two cases are shown: q = 1 (a) and

q = 4 (b). The cryptocurrency prices are expressed in USDT.
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Figure 11. The same quantities as in Figures 9 and 10 but obtained from the cryptocurrency prices
expressed in BTC. Two cases are shown: q = 1 (a) and q = 4 (b).

In Figures 12–15 we present the time evolution of the cluster composition for different
time scales: s = 10 min, s = 60 min, and s = 360 min, and for q = 1. For example, a full
point in the plot depicting the BTC cluster indicates that a respective cryptocurrency shares
a cluster with BTC in a particular time window. The more dense points are seen along a
horizontal line representing that cryptocurrency, the more stable is the coexistence of these
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two cryptocurrencies within the same cluster. On the other hand, the more numerous are
the points along a vertical line, the larger is the cluster at that particular moment.
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Figure 12. Composition of the BTC-related cryptocurrency cluster as a function of time for sample
temporal scales: s = 10 min (top), s = 60 min (middle), and s = 360 min (bottom). Each point on the
horizontal axis represents a non-overlapping seven-day-long moving window. Asset prices have
been expressed in USDT.
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Figure 13. Composition of the ETH-related cryptocurrency cluster as a function of time for sample
temporal scales: s = 10 min (top), s = 60 min (middle), and s = 360 min (bottom). Each point on the
horizontal axis represents a non-overlapping seven-day-long moving window. Asset prices have
been expressed in BTC, therefore any BTC-related contribution has been filtered out.
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Figure 14. Composition of the BNB-related cryptocurrency cluster as a function of time for sample
temporal scales: s = 10 min (top), s = 60 min (middle), and s = 360 min (bottom). Each point on the
horizontal axis represents a non-overlapping seven-day-long moving window. Asset prices have
been expressed in BTC, therefore any BTC-related contribution has been filtered out.
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Figure 15. Composition of the ONT-related cryptocurrency cluster as a function of time for sample
temporal scales: s = 10 min (top), s = 60 min (middle), and s = 360 min (bottom). Each point on the
horizontal axis represents a non-overlapping seven-day-long moving window. Asset prices have
been expressed in BTC, therefore any BTC-related contribution has been filtered out.

A cluster, to which BTC belongs, is typically the largest cluster in the network. By
looking at Figure 12, we see that, on the shortest time scale of 10 min, the BTC cluster’s size
increases substantially in March 2021 and remains such till the end of the analyzed time
interval. This is in agreement with the increase of the Shannon entropy H(v1) observed
in Figure 2 and it indicates that the market network has become more compact recently.
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A situation looks different for s = 60 min, because apart from the BTC cluster growth
observed in the s = 10 min case, only a slightly smaller cluster structure was seen before
mid-2020. Thus, for s = 60 min the BTC cluster shrunk considerably over the period from
July 2020 to February 2021 and it was larger outside that period. There are nodes that
accompany BTC regularly, like STX, RVN, NANO, and BEAM, and there are nodes that fall
into the BTC cluster only few times, like TRX and ETH, or even never do this, like ETH. For
s = 360 min we do not detect any comparably large cluster and the BTC cluster is much
smaller. It also tends to shrink even more after mid-2020.

The ETH cluster is much less numerous that the BTC one, which is partially due to a
smaller number of the analyzed assets, but also to the properties of this cluster. Despite this,
however, some long-term trend can be seen for s = 10 min that resulted in the temporary
cluster growth in the latter half of 2020 followed by its shrinking that lasts till the end of the
analyzed period. Such an effect cannot be noticed for the longer scales, where the density
of points remains at the same level throughout the years 2020-2021. Among the nodes that
frequently accompany ETH are BNB, LTC, BCH, and LINK.

The BNB cluster can be counted among the most numerous clusters on a par with the
ETH cluster. For s = 10 min we also observe its interim growth between September 2020
and January 2021, which overlaps with the ETH growth phase. It also overlaps with the
BTC cluster shrinking phase, which suggests that these events can be related with each
other. No significant trends can be seen for s = 60 min and s = 360 min. The nodes that
share the cluster with BNB most frequently are FTT and ETH.

Finally, the ONT cluster also shows its specific growth phase between May and July
2021 (s = 10 min and s = 60 min), outside of which no significant trend can be seen.
NEO and IOTA are the nodes that appear the most frequently in the same cluster with
ONT. In general, Figures 12–15 show highly unstable composition of the analyzed clusters.
This outcome differs from the results of some earlier studies based on data from more a
distant past that reported stability of the cryptocurrency clusters (e.g., [76]). Additionally,
the identified community structure of the market differs from the result of another study,
where a core-periphery structure was identified instead [72].

Our discussion hitherto is focused on the simultaneous time series without delays
between them. However, there is an interesting question whether the most capitalized and
liquid cryptocurrencies like BTC and ETH drive the remaining ones, which can generate
the delayed cross-correlations that can be observable. In order to address this question,
we calculated the coefficients ρ

(BTC,X)
q (s, τ) for all the cryptocurrency pairs (BTC,X) and

(ETH,X), where X stands for any cryptocurrency other than BTC and ETH. A time lag τ
that can assume two values: τ = −1 min and τ = 1 min, defines whether the BTC (ETH)
time series is advanced or lagged relatively to the second time series. For these two cases,
we calculate the average coefficients 〈ρq(s, τ)〉 for BTC and ETH (the averaging is carried
out over all other cryptocurrencies X).

Figure 16 shows the results for q = 1 and q = 4 and for the shortest scale s = 10 min
(a potential effect of 1 minute delay can be too weak to be detectable on longer scales). If
the time series of the BTC returns is considered, 〈ρq(s, τ)〉 is significantly larger for τ = 0
than for τ = ±1. For q = 1 the advanced BTC time series produces larger 〈ρq(s, τ)〉 than
the lagged one. This difference is statistically significant. For q = 4 both shifted time
series produce 〈ρq(s, τ)〉 with comparable magnitude for a vast majority of windows with
a few exceptions, where the advanced BTC time series produces slightly stronger cross-
correlations than the lagged one does. The qualitatively similar results are obtained for
the advanced and lagged ETH time series. We can therefore conclude that by shifting the
time series representing BTC or ETH we still preserve some amount of the valid detrended
cross-correlations. The relative dominance of the advanced (τ = −1 min) time series
over the lagged (τ = 1 min) ones suggest that the remaining part of the market absorbs
information that occurred first in the price fluctuations of BTC and ETH with a time needed
for this absorption being as long as a minute. An opposite process of information transfer
from the less liquid cryptocurrencies to BTC and ETH cannot be detected based on our
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data set. It must be noted, however, that both the BTC and ETH returns exhibit a detrended
autocorrelation with the length of more than 1 min. Such an autocorrelation can artificially
produce the delayed detrended cross-correlations which can manifest themselves in a
way similar to that observed in Figure 16. We cannot therefore answer the formulated
question decisively.
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Figure 16. Mean lagged q-dependent detrended cross-correlation coefficient ρq(s, τ) as a function of
time after averaging over all the considered cryptocurrencies other than BTC and ETH. Time series
representing BTC and ETH returns have been advanced (green) or delayed (red) by τ = 1 min and
compared with the original non-shifted time series (orange). Two values of the filtering parameter q
are shown: q = 1 (all fluctuations enter with the same weight, the first and third panels) and q = 4
(large fluctuations are amplified, the second and fourth panels).

Our former studies of the cryptocurrency market showed that, recently, it begun
to be positively or negatively cross-correlated in some specific periods with the tradi-
tional financial markets like the stock market, the currency exchange market, and the
commodity markets [5,13]. Among such periods of the statistically significant detrended
cross-correlations there was the COVID-19 pandemic in the United States: the very first
case on the US territory in the end of January 2020, the first COVID-19 wave outburst
in April, and the second wave development in June–July, and the subsequent pandemic
slowdown, which brought the across-market rally starting in September 2020. As we have
already collected more contemporary data that end in October 2021, we are able to extend
our analysis of the detrended cross-correlations between the cryptocurrencies and a few
other financial assets. We consider the logarithmic price returns of a few basic cryptocur-
rencies (BTC, ETH, DASH, EOS, and XMR), the main regular currencies (AUD, CAD, CHF,
CNH, CZK, EUR, GBP, JPY, MXN, NOK, NZD, PLN, and ZAR), sample commodities
(crude oil, copper, silver, and gold), and the most important stock market indices (S&P500,
NASDAQ100, Russel 2000, DJIA, FTSE, DAX, and NIKKEI). All the assets except the stock
market indices are priced in US dollars (data from Dukascopy [77]).
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Figure 17 shows the historical quotes of S&P500 and BTC together with the distin-
guished periods of the elevated detrended cross-correlations inside the cryptocurrency
markets. One can see that these periods are associated with specific market events that
are observed in the historical data: the all-market surge at the COVID-19 pandemic onset
in March-April 2020, the second pandemic wave in June–July 2020, a market rally and
the following drawdowns in September–October 2020, the cryptocurrency market rally in
March–April 2021 and a surge and a subsequent rally in September–October 2021. Looking
from a macroscopic perspective, in all these cases the coarse-grained behaviours of S&P500
and BTC were similar to each other at least for some period of time.

Figure 17. Temporal co-evolution of BTC price in USD (maroon) and the S&P500 index (blue) over
the years 2020–2021. Periods, in which ρq(s) calculated for these two assets exceed a threshold
of 0.25 for s = 360 min and q = 1 (see Figure 18), are denoted by grey vertical strips. Specific
market events are indicated by Roman numerals: I—the all-market surge at the COVID-19 pandemic
onset in March–April 2020, II—the second pandemic wave in June–July 2020, III—a market rally
and the following drawdowns in September–October 2020, IV—the cryptocurrency market rally in
March–April 2021, and V—a surge and a subsequent rally in September–October 2021.

To inspect this issue in more detail, we calculated the q-dependent detrended cross-
correlation coefficients for all the possible pairs of the considered assets. Before we did
this, we had to concord all the time series by eliminating the gaps caused by different
trading hours. The results for q = 1 and q = 4 and for s = 10 min and s = 360 min are
shown in Figure 18. For both values of the filtering parameter q, the cross-correlations are
stronger on the long time scale and weaker on the short one. Except for the maximum of
ρq(s) that occurred for q = 4 and s = 10 min in the end of June 2020, which is not present
at all for q = 4 and s = 360 min and for q = 1, all the other periods of the amplified
cross-correlations can be observed in each case. The maxima of ρq(s) calculated for BTC
and the traditional assets occur, roughly, over the same periods than the maxima of the
inner cross-correlations on the cryptocurrency market.
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Different traditional assets reveal different levels of the detrended cross-correlation
with BTC: the strongest correlations can be detected for S&P500 and other stock indices,
while the weaker but also significant ones for crude oil, copper, CAD and other regular
currencies except for JPY and, to a much smaller extent gold. The Japanese currency is
significantly anticorrelated with BTC in the periods, in which the other assets are positively
cross-correlated. This means that JPY can be used for the hedging purposes while investing
on the cryptocurrency market. After comparing the cross-correlation strength for q = 1 with
that for q = 4, we may conclude that, during the large fluctuation periods, the traditional
assets are less strongly cross-correlated with BTC than during the smaller fluctuation
periods. They also need rather long time scales to be fully built up. What can be inferred
from these results is that the detrended cross-correlations are weaker in 2021 than they
used to be in 2020, but they are still stronger than the corresponding cross-correlations
before the COVID-19 pandemic.
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Figure 18. The q-dependent detrended cross-correlation coefficient ρq(s) calculated in 10-day-long
moving windows with a 1-day step for BTC and the traditional market assets: the S&P500 index
(blue), crude oil price (CL, black), copper price (HG, brown), gold price (XAU, yellow), and a few
regular currencies expressed in the US dollars: euro (EUR, cyan), Swiss franc (CHF, orange), Canadian
dollar (CAD, light green), Japanese yen (JPY, magenta), and Norwegian krone (NOK, red). Two
temporal scales s (s = 10 min in the first and third panels, and s = 360 min in the second and fourth
panels) and two filtering parameter q values (q = 1 in the first and second panels, and q = 4 in the
third and fourth panels) are shown. The horizontal dashed line at ρq(s) = 0.25 in the second panel
denotes a discrimination threshold applied to determine the shaded regions in Figure 17.

Based on the coefficients ρ
(i,j)
q (s), where i and j labels the cryptocurrencies and tra-

ditional assets, we created the related minimal spanning trees. A few sample trees for
specific moving window positions are presented in Figure 19. It is easy to notice that
the detrended cross-correlation strength between BTC and the traditional markets, the
closest ones being the stock markets and not the currency markets is much smaller than
the analogous strength among the traditional assets representing the same market type
and even different market types. Topology of the MSTs is heterogeneous with both the
significant hubs (S&P500, AUD, EUR, and some cryptocurrency) and the long branches.
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Figure 19. Minimal spanning trees calculated from a distance matrix Dq(s) based on ρq(s) for q = 1 and s = 10 min. The
data used to create MSTs consists of cryptocurrencies (BTC, ETH, DASH, EOS, and XMR), regular currencies (AUD, GBP,
NZD, MXN, ZAR, CNH, EUR, CHF, JPY, CZK, NOK, CAD, and PLN), commodities (gold-XAU, silver-XAG, copper-HG,
and crude oil-CL), as well as stock market indices (S&P500-SP, NASDAQ100-NQ, Russel 2000, FTSE, DAX, NIKKEI, and
DJIA) in 10-day-long moving windows ended at specific dates: (a) 31 March 2020 (highly correlated markets during the
pandemic onset in the United States), (b) 19 May 2020 (maximum cross-market correlations), (c) 28 January 2021 (the
GameStop short squeeze related market turbulence accompanied by the cryptocurrency market decoupling), (d) 9 March
2021 (the elevated market cross-correlations), (e) 30 July 2021 (the cryptocurrencies starting a rally phase with minimum
cross-market correlations), and (f) 4 October 2021 (the latest phase of the cross-market correlations).
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4. Conclusions

In this paper, we studied the high-frequency time series of price returns representing
80 cryptocurrencies that were the most actively traded on the Binance platform. We focused
on the detrended cross-correlation structure of the cryptocurrency market at different time
intervals and calculated the q-dependent detrended cross-correlation coefficient ρq(s) for
all the cryptocurrency pairs and in different moving window positions. Based on these
coefficients, we analyzed the spectral properties of the detrended correlation matrix and
topology of the minimal spanning trees calculated from this matrix.

The main issue that has been pointed out is that our analysis comprises only a small
fraction of all traded cryptocurrencies, whose number exceeds 7500 [78]. However, the less
well-known and less capitalized a cryptocurrency is, the less liquid and less reliable are the
related data. This is why restricting our analysis to the most capitalized ones was crucial.
Another related issue was the MST construction, and it has already been mentioned in
Section 3 that the exact connectivity of the MST links is prone to noise effects, which is the
most significant source of possible errors. Fortunately, the more important these errors are,
the weaker the correlations, while they are less effective if the correlations are strong (this
is an issue that should be addressed independently in future work).

Our principal result is the observation that, over the last year, the cryptocurrency mar-
ket has gradually become more compact from a topological perspective. This was achieved
by the increasing market cohesion expressed by the rising average cross-correlation strength
among the cryptocurrencies. Spectrally, it was manifested by the elevated magnitude of
the largest correlation matrix eigenvalue λ1 after mid-2020, as compared with the earlier
periods. λ1 is associated with an eigenvector that becomes more and more delocalised with
time (as detected by the increasing entropy of its components). The largest component of
this eigenvector is suppressed by the delocalisation, and its absolute value decreases signif-
icantly. These effects are observed if either the large or the small fluctuation intervals are
filtered out by tuning the parameter q in ρq(s). In addition, the detrended cross-correlations
saturated faster than before (small difference between λ1 for different time scales). This is a
detrended counterpart of the classic Epps effect, which describes a process of the market
consolidation due to the cross-correlations among the assets [69–71].

The topological properties of the MSTs are in agreement with the outcomes of the
spectral analysis and show that the market becomes more centralized with time. On the
short scales, the most connected node nowadays develops more connections to other nodes
than it used to have before. The MST topology in this case is centralized and close to a
star-like structure. Usually, the role of a stable central hub is played by BTC or ETH on
the short time scales, but on the longer scales (e.g., an hour or longer), the hub is unstable
and it frequently switches among the most liquid cryptocurrencies. The corresponding
MST topology is distributed without any central hub. By increasing the scales, the mean
path length also increases and it indicates that the structure for the longer time scales is
more distributed and random than for the short scales. In this case, the market consolidates
quickly on the short time scales (e.g., 10 min), but then the fine-grained community structure
develops itself owing to the increasing cross-correlations and the average cross-correlation
level rises across the network. The structure becomes less centralized, but at this point the
market is already strongly coupled and compact.

We also calculated the detrended cross-correlation coefficients for BTC and some
selected traditional assets like the stock market indices, commodity prices, and the regular
currency exchange rates. We found that during the periods associated with the strongly
correlated cryptocurrencies, the inter-market cross-correlations are also stronger than
usual. Typically, the inter-market couplings rise in the periods of market instability like
the COVID-19-pandemic-related events and fall in the more quiet times. However, even
in such periods, the cryptocurrency market is more independent from the other markets
than those markets are independent among themselves. As the pandemic becomes a
normal component of our reality, the cross-correlations between the cryptocurrency market
and the other markets tend to decrease, but this process is more prolonged now than the
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opposite process that occurred suddenly in early 2020. It is an open issue now whether
the cryptocurrencies will at some point return to be an entirely independent market or the
correlations that can occur from time to time will remain observable.

The main issue that has to be pointed out is that our analysis comprises only a small
fraction of all traded cryptocurrencies, whose number exceeds 7500 [78]. However, the less
well-known and less capitalized a cryptocurrency is, the less liquid and less reliable are the
related data. This is why restricting our analysis to the most capitalized ones was crucial.
Another issue is related to the MST construction, which has already been mentioned in
Section 3: the exact connectivity of the MST links is prone to noise effects, which is the
most significant source of possible errors. Fortunately, these errors are the more important,
the weaker are the correlations, while they are less effective if the correlations are strong
(this is an issue that should independently be addressed in future work).
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Appendix A

Table A1. List of tickers from Dukascopy and Binance.

Dukascopy Binance

Ticker Name Ticker Name Ticker Name

BTC bitcoin BTC bitcoin LINK chainlink
ETH ethereum ADA cardano LTC litecoin
DASH dash ALGO algorand MATIC polygon
EOS eos ANKR ankr MFT hifi finance
XMR monero ARPA arpa chain MITH mithril
AUD Australian dollar ATOM cosmos MTL metal
EUR euro BAND band protocol NANO nano
GBP British pound BAT basic atention token NEO neo
NZD New Zealand dollar BCH bitcoin cash NKN nkn
CAD Canadian dollar BEAM beam NULS nuls
CHF Swiss franc BNB binance coin OMG omg network
CNH offshore renminbi BTT bittorrent ONE harmony
CZK Czech krone BUSD binance USD ONG ontology gas
JPY Japanese yen CELR celer network ONT ontology
MXN Mexican peso CHZ chiliz PAX pax dollar
NOK Norwegian krone COS contentos PERL perl
PLN Polish zloty CTXC cortex QTUM qtum
ZAR South African rand CVC civic REN ren
NIKKEI Nikkei 225 DASH dash RLC iexec
RUSSEL Russell 2000 DENT dent RVN ravencoin
DAX DAX 30 DOCK dock STX stacks
FTSE FTSE 100 DOGE dogecoin TFUEL theta fuel
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Table A1. Cont.

Dukascopy Binance

Ticker Name Ticker Name Ticker Name

DJI Dow Jones Industrial Average DUSK dusk network THETA theta
SP S&P 500 ENJ enj coin TOMO tomochain
NQ NASDAQ 100 EOS eos TROY troy
XAG silver ETC ethereum classic TRX tron
XAU gold ETH ethereum TUSD trueusd
HG high-grade copper FET fetch USDC USD coin
CL crude oil FTM fantom VET vechain

FTT ftx token VITE vite
FUN funtoken WAN wanchain
GTO gifto WAVES waves
HBAR hedera WIN winklink
HOT holo XLM stellar
ICX icon XMR ripple
IOST iost XRP monero
IOTA miota XTZ tezos
IOTX iotex ZEC zcash
KAVA kava ZIL zilliqa
KEY key ZRX 0x
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Abstract: Traders who instantly react to changes in the financial market and place orders in mil-
liseconds are called high-frequency traders (HFTs). HFTs have recently become more prevalent and
attracting attention in the study of market microstructures. In this study, we used data to track
the order history of individual HFTs in the USD/JPY forex market to reveal how individual HFTs
interact with the order book and what strategies they use to place their limit orders. Specifically, we
introduced an 8-dimensional multivariate Hawkes process that included the excitations due to the
occurrence of limit orders, cancel orders, and executions in the order book change, and performed
maximum likelihood estimations of the limit order processes for 134 HFTs. As a result, we found
that the limit order generation processes of 104 of the 134 HFTs were modeled by a multivariate
Hawkes process. In this analysis of the EBS market, the HFTs whose strategies were modeled by
the Hawkes process were categorized into three groups according to their excitation mechanisms:
(1) those excited by executions; (2) those that were excited by the occurrences or cancellations of limit
orders; and (3) those that were excited by their own orders.

Keywords: high-frequency trader; multivariate Hawkes process; econophysics; forex market

1. Introduction

To gain a deeper understanding of the mechanisms of financial markets, it is necessary
to clarify the order strategies of individual market participants. In financial markets, recent
developments in information technology have made it possible to track the transactions
of individual market participants in detail. These technological advances have led to the
analysis of the trading strategies of individual market participants and how these strategies
affect financial markets. For example, Odean [1], and Grinblatt and Keloharju [2], reported
the relationship between historical returns and market participants’ decisions to buy and
sell stocks. The position management strategies of individual market participants were
analyzed based on the data, which confirmed that these strategies actually affected market
prices in the near future [3]. Individual strategies for placing buy and sell orders in response
to market price changes were approximated using a simple mathematical model, and the
basic statistical properties of financial Brownian motion were theoretically derived based
on the kinetic theory in a manner parallel to traditional statistical physics [4–6].

In particular, high-frequency traders (HFTs) have recently attracted attention. HFTs
are algorithmic traders who can react to market changes in milliseconds and place or cancel,
buy and sell orders at high frequencies [7]. Because of the development of information
technology, they have a large presence in financial markets around the world. In fact, HFTs
accounted for 68.3% of the total trading volume in the stock market [8]. Furthermore, HFTs
currently account for the majority of orders shown in the order book [9–11]. The availability
of high-frequency trading data has triggered the academic study of HFTs [12,13]. Previous
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studies have generally agreed that HFTs make market spreads smaller and enhance market
liquidity [8,14,15]. As an indicator for predicting the short-term volatility of market prices
from the order book information, the volume-synchronized probability of informed trading
(VPIN) has been proposed and actively studied [16–20]. In addition, informed trading
using the advantage of information such as public news and confidential information has
been studied using high-frequency data [21–25]. We believe that it is crucial to gain a deep
understanding of their trading behavior in current financial markets, where HFTs provide
most of the liquidity.

In this study, we used a multivariate Hawkes process to investigate the processes
used by individual HFTs for generating sell and buy limit orders in the USD/JPY forex
market, and clarified when each HFT placed buy–sell limit orders. The Hawkes process is a
type of non-homogeneous Poisson process proposed by Hawkes [26]. As will be explained
later, it is characterized by an intensity function which determines the probability of the
occurrence of an event in a point process. It utilizes an excitation term that is affected
by past events, and can describe a point process associated with past events. Similar
ideas have been independently introduced for financial markets to explain the strong
correlation to past events, such as the “autoregressive conditional duration model” [27] and
“self-modulation processes” [28]. The Hawkes process is a useful model for interpreting
financial phenomena, in which many factors interact to produce complex aspects. In this
paper, we show that it is also useful for interpreting the behavior of HFTs. Specifically,
we introduced a multivariate Hawkes process in which the process of generating HFTs’
buy–sell limit orders is mutually excited by a total of eight events, such as the creation of
limit orders, the cancellation of limit orders, and execution in the order book, showing that
the order behaviors of many HFTs can be modeled by the Hawkes process.

Hawkes processes [29] have various applications in the financial field, such as those
related to volatility clustering [30], market activity and risk [31–33], and market impact [34].
In particular, the Hawkes process has been actively employed as an approach to the dy-
namic description of order books, where a set of order types is specified and a multivariate
Hawkes process is fitted to their timestamps [35–41]. However, there has been no study
that used a multivariate Hawkes process to investigate the order generation processes of
individual HFTs. In today’s financial markets, where the majority of order books are made
up of HFTs’ orders, our empirical results provide new information from a more micro-
scopic perspective. We believe that this study shed light on how HFTs provide liquidity to
the market.

The remainder of this paper is organized as follows. Section 2 explains the datasets
and describes the HFTs that were analyzed in this research. Section 3 introduces the
multivariate Hawkes process and describes the method used for parameter estimation.
In Section 4, a clustering analysis of 134 HFTs is introduced to categorize their strategies
based on the estimated Hawkes’ parameters. In Section 5, we discuss our results.

2. Data

First, we provide a basic description of the order data for the USD/JPY forex market
(EBS market), along with individual trader IDs (see Section 2.1). We then define the HFTs
in this market (see Section 2.2) and show some examples to explain how their buy–sell
limit order generation is linked to changes in the order book (see Section 2.3).

2.1. EBS Market Data Description

In this study, we used high-frequency data for the USD/JPY forex market provided by
the EBS. EBS is an interbank forex market and one of the largest financial platforms in the
world. Because it is an interbank market, most market participants are professional traders
from banks, hedge funds, and other financial institutions, and our forex dataset contains
their trading data. Our dataset contains information from five days (from 21:00 GMT
on 5 June 2016 to 21:00 GMT on 10 June 2016), with a total of approximately 2.8 million
orders and a transaction volume of USD 68 billion corresponding to this period. Table 1
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shows an example of the raw data we used. The data for each of the 2.8 million orders
contained not only the order type, price, volume, and timestamp (in milliseconds), but
also an anonymized trader ID that could identify who submitted the order. Using these
trader IDs, we could track individual traders’ full orders in milliseconds. In addition,
the minimum price unit that a trader could submit was JPY 0.005, and the minimum
transmission volume was USD 1 million.

Table 1. Examples of raw data. Each order datum is tied to an anonymized trader ID.

Date Order Time Trader ID Order Type USD/JPY Volume Deal Time

5 June 2016 21:00:12.946 578 Sell limit 106.515 1 –
5 June 2016 21:01:13.647 HT6 Buy cancel 105.390 2 –
5 June 2016 21:02:20.148 JR1 Buy limit 105.405 1 21:02:20.499
5 June 2016 21:02:20.499 HSH Sell market 105.405 1 21:02:20.499
5 June 2016 21:03:00.950 7KP Bid market 106.470 1 –

...
...

...
...

...
...

...
10 June 2016 20:59:20.148 HT6 Buy Limit 107.405 3 20:59:29.072

The EBS market is open 24 h a day from Monday morning to Friday at midnight, and
trading is conducted via a double auction system in the order book. Figure 1 shows a
schematic of the trading in the order book, where the horizontal axis is the price and the
vertical axis is the volume. There are six order types for trading: buy/sell limit orders,
buy/sell cancel orders, and buy/sell market orders. Limit orders are submitted at the
trader’s desired price and remain in the order book until traded or cancelled. Cancel orders
are submitted by a trader to cancel a limit order that they previously submitted. Market
orders are submitted at the current best limit price. Transactions that are executed by buy
market orders are called hit sell transactions, and transactions executed by sell market
orders are called hit buy transactions (see Figure 1). If the best price worsens (e.g., the best
sell limit price becomes higher) before the market receives the market order at the best
price, the market order is automatically invalidated. In fact, this study found that 79.5% of
the market orders were invalidated without being executed.

Figure 1. Schematic of trading in order book. In the EBS market, even a sell (buy) limit order becomes
a hit buy (sell) if a buy (sell) limit order at the same price is already in the order book.

Figure 2a shows the average trading price per 10 min window over the 5 days we
analyzed. During this period, there are no market crashes or spikes. Figure 2b shows the
number of each type of order per day, which looks stable.
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Figure 2. (a) Average trading price per 10 min window; (b) daily number of orders for the 6 types of
orders in unit of 105.

2.2. Definition of HFTs

“HFTs” is a general term for traders who place and cancel orders at high speed and
high frequency according to an algorithm, but there are various definitions. In this study,
we define an HFT as a trader who places both buy and sell limit orders and presents an
average of 500 or more limit orders per day following the previous report written by a
researcher from EBS [9]. Based on this definition, the number of HFTs was 134 out of the
1031 traders included in this 5-day data set. These 134 HFTs accounted for 89.6% of the
market’s total number of limit orders.

Figure 3a shows the histogram of the minimum time interval between orders for
each HFT. There is no description in the data to identify whether the ID is a human or a
computer; however, Figure 3a shows that most of the intervals are within 0.1 s, which are
difficult for a human to execute.

In Figure 3b, we plot the number of HFTs and non-HFTs participating in the market
every hour, indicating that the number of HFTs is relatively stable compared to non-HFTs.
Figure 3c shows the percentage of limit orders placed by HFTs every hour, demonstrating
that the majority of the limit orders are provided by the HFTs.

Figure 3. (a) Histogram of the minimum time intervals between orders for 134 HFTs individually; (b) hourly changes in the
number of HFTs and non-HFTs participating in trading; and (c) hourly change of the percentage of limit orders provided by
HFTs.

2.3. Basic Properties of HFTs

In this study, we focused on the limit order generation process of HFTs, which ac-
counted for the majority of limit orders in the order book. Naturally, the order strategies
(i.e., the processes used to submit limit orders) of HFTs differed from every algorithm.
However, it is natural for them to see the quotes in the order book when submitting their
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limit orders. Figure 4a,b plot the numbers of buy–sell limit orders per 10 min window for
three HFTs, respectively, and Figure 4c plots the numbers for six types of orders in the
order book. From Figure 4, we can observe that the numbers of buy–sell limit orders from
the three HFTs increased or decreased simultaneously and tended to be in sync. More
interestingly, the numbers of these HFTs’ buy–sell limit orders tend to be in sync with the
numbers for each type of order in the order book where all market participants’ orders are
submitted. Since the above synchronization phenomenon was confirmed for many HFTs,
we believe that many HFTs react instantaneously to some changes in the market when
submitting limit orders.

Figure 4. Numbers of (a) sell limit orders and (b) buy limit orders per 10 min window for three HFTs (green: HFT with 4th
highest order frequency; purple: HFT with 7th highest order frequency; yellow: HFT with 10th highest order frequency). (c)
Numbers for six types of orders per 10 min window in the order book (red: sell limit order; blue: buy limit order; red dotted
line: sell cancel; blue dotted line: buy cancel; orange: hit sell; sky blue: hit buy). The vertical axis of each figure shows the
number of each type of order per 10 min window, and the horizontal axis shows the time from 0:00 to 18:00 on 6 June 2016.

3. Method

The preceding section showed that the limit order generation processes of the HFTs
tended to be in sync with traders’ orders or orders in the order book. To clarify how
134 HFTs’ buy–sell limit orders react to the other order events, their order processes are
modeled by the multivariate Hawkes process. In this section, we introduce the multivariate
Hawkes process that we used in this study (see Section 3.1) and explain the parameter
estimation method based on maximum likelihood estimation (see Section 3.2). We then
describe the validity of the estimation results (see Section 3.3).
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3.1. Model

This section presents an overview of the Hawkes process and introduces our model.

3.1.1. Mathematical Notation

Let us consider point process {ti}, which is a sequence of non-negative random
variables such that ∀i ∈ N, ti < ti+1. For point process {ti}, the conditional intensity
function is defined as follows [42]:

λ(t | Ht) = lim
Δt→0

P{N(t + Δt)− N(t) = 1 | Ht}
Δt

(1)

where P{A|B} represents the probability of A under condition B, N(t) is the cumulative
number of event occurrences at time t (i.e., a counting process), and Ht is the history of
the process up to time t containing a sequence of event times {ti} (i.e., a filtration). As can
be seen from the definition, λ(t | Ht)Δt represents the probability of an event occurring in
time interval [t, t + Δt). Here, we use the shorthand notation λ(t) ≡ λ(t | Ht), assuming
the history up to time t, and we call the Poisson parameter λ(t) an intensity function.

3.1.2. Overview of Hawkes Process

The Hawkes process is a point process in which the intensity function is affected
by the occurrence of past events. Let {ti} be a point process, and N(t) be the associated
counting process, and the intensity function of the generalized Hawkes process is defined
as follows [43]:

λ(t) = c +
∫ t

−∞
φ(t − s)dN(s) = c + ∑

ti<t
φ(t − ti) (2)

where c is a positive constant showing a base intensity, and φ(t) is a kernel function that
expresses the effect of event ti from the past on the current intensity [44]. There are various
types of kernel functions, and their properties have been well studied. In this study, we
applied an exponential kernel αe−βt, which is a popular kernel function that was originally
proposed by Hawkes [26]. We call this Hawkes process a univariate Hawkes process
because it is affected by its own events.

The Hawkes process can be extended to a multivariate model in which several types of
point processes interact with each other. Let {ti} ≡ {{t1,i}, {t2,i}, . . . , {tM,i}} be M-variable
point processes, and N(t) = {N1(t), N2(t), . . . , NM(t)} be the associated counting process,
the intensity function of a multivariate Hawkes process for point process {tn,i} is defined
as follows [43]:

λn(t) = cn +
M

∑
m=1

∫ t

−∞
φn,m(t − s)dNm(s) = cn +

M

∑
m=1

∑
tm,i<t

φn,m(t − tm,i) (3)

As in the case of the univariate Hawkes process, cn is a positive constant showing
a base intensity, and φn,m(t) is a kernel function that expresses the effect of event tm,i
from the past on the current intensity. In this case, φn,m(t) = αn,me−βn,mt, with positive
constant parameters αn,m and βn,m, and the intensity function for point process {tn,i} is
given as follows:

λn(t) = cn +
M

∑
m=1

∫ t

−∞
αn,me−βn,m(t−s)dNm(s)

= cn +
M

∑
m=1

∑
tm,i<t

αn,m exp(−βn,m(t − tm,i)) (4)

Figure 5 is a schematic of this intensity function (Equation (4)). The intensity function,
λn(t), increases αnm at event time tn,i and exponentially decays with a time constant of
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1/βnm. Thus, λn(t) is excited not only by its own events, but also by other events, and the
multivariate Hawkes process can represent such mutual interactions.

Figure 5. Schematic showing an example of the time evolution of the intensity function for a
multivariate Hawkes process with the exponential kernel φn,m(t) = αn,me−βn,mt

The quantity, ρn,m, expressed in the following equation (Equation (5)) in the case of
an exponential kernel is called the branching ratio [45,46]. This is the expectation of the
number of occurrences of event n caused by the occurrence of event m. A larger value
for this number represents a greater impact of event m on event n, and this value is an
important quantity for interpreting the Hawkes process:

ρn,m ≡ αn,m

βn,m
=

∫ ∞

tm,i

αn,m exp(−βn,m(t − tm,i))dt (5)

3.1.3. Trader Model

In this study, the buy and sell limit order processes of 134 HFTs are modeled by
eight-variable Hawkes processes with exponential kernels that are excited by a total of
eight-point processes. These eight types were the target HFTs’ sell limit (TS) and buy limit
(TB), and six types of orders in the order book: sell limit (SL); buy limit (BL); sell cancel
(SC); buy cancel (BC); hit sell (HS); and hit buy (HB).

Let {ti} ≡ {{tTS,i}, {tTB,i}, {tSL,i}, {tBL,i}, {tSC,i}, {tBC,i}, {tHS,i}, {tHB,i}} be an eight-
variable point process, the intensity functions for {tTS,i} and {tTB,i} are given as follows:

λTS(t) = cTS + ∑
m∈M

∑
tm,i<t

αTS,m exp(−βTS,m(t − tm,i)) (6)

λTB(t) = cTB + ∑
m∈M

∑
tm,i<t

αTB,m exp(−βTB,m(t − tm,i)) (7)

where M ≡ {TS, TB, SL, BL, SC, BC, HS, HB}. We assume that the above intensity func-
tions (Equations (6) and (7)) represent the buy and sell limit order processes of each
HFT and examine which events affect their order generation processes. Hereafter, the
abbreviations listed in Table 2 are used for the order events.

Table 2. Abbreviations for eight types of order events. Note the six types of orders in the order book
do not include the orders of target HFTs. Therefore, {ti} differs for each HFT.

TS : Sell limit of the target HFT itself TB : Buy limit of the target HFT itself
SL : Sell limit in order book BL : Buy limit in order book
SC : Sell cancel in order book BC : Buy cancel in order book
HS : Hit sell HB : Hit buy

3.2. Parameter Estimation Using Maximum Likelihood Estimation

For Equations (6) and (7), we apply the maximum likelihood estimation method for
the parameter estimation. Because the functional forms of the intensity functions are the
same for {tTS,i} and {tTB,i}, we solve the log-likelihood functions in the following manner.
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For the point process {tTS,i}, the log-likelihood function in time interval [0, T] is given by
the following [47]:

log L(cTS, αTS, βTS) = −
∫ T

0
λTS(t)dt +

n

∑
i=1

log λTS(ti)

= −cTST + ∑
m∈M

αTS,m

βTS,m

⎡⎣ ∑
tm,i<T

{exp(−βTS,m(T − tm,i)− 1}

⎤⎦
+

n

∑
i=1

log

⎡⎣cTS + ∑
m∈M

∑
tm,j<tTS,i

αTS,mexp(−βTS,m(tTS,i − tm,j))

⎤⎦ (8)

The same formulation is also applied for log L(cTB, αTB, βTB).
These log-likelihood functions are differentiable by each parameter, and we optimized

them by Adam [48], which is a type of gradient descent method, to obtain the maxi-
mum likelihood estimators. Here, the initial values are (cTS, αTS, βTS) = (cTB, αTB, βTB) =
(0.1, 0.1, 10), and the various parameters required for Adam are set following the values
in the original reference [48]. Here, αTS, βTS, αTB, and βTB are vectors of eight variables
(e.g., αTS = (αTS,TS, αTS,TB, . . . , αTS,HS)).

It is also known that the computation of the gradients of the log-likelihood function
of the Hawkes process usually requires the computation of O(N2). However, using a
recursive formulation that can be used when the kernel function is an exponential function,
we perform maximum likelihood estimation with O(N) computational complexity (see
Ogata [49] for the recursive formulation).

In addition, the HFTs do not always continuously place orders. Therefore, if an
HFT did not place any orders for more than 15 min, we considered such period as not
participating in the trade and performed the maximum likelihood estimation for each
trader by ignoring such inactive periods.

3.3. Validity of Estimation Results

Based on a residual analysis [50], we assessed the goodness-of-fit of the point process
model. Let the intensity function for point process {ti} be λ(t), then the sequence, {τi},
of random variables, where each element is transformed by τi ≡

∫ ti
0 λ(t)dt, has the dis-

tribution of a stationary Poisson process with intensity 1, and the transformed residual
Δτi ≡ τi+1 − τi has an exponential distribution with the unit mean.

Therefore, if the estimated HFT intensities, λ̂TS(t) and λ̂TB(t), are good approxi-
mations of the true intensities, λTS(t) and λTB(t), respectively, then the transformed
residuals, Δτ̂TS,i and Δτ̂TB,i, are expected to follow the exponential distributions with the
unit mean. Here, the transformed residuals are defined as Δτ̂TS,i ≡

∫ tTS,i+1
tTS,i

λ̂TS(t)dt and

Δτ̂TB,i ≡
∫ tTB,i+1

tTB,i
λ̂TB(t)dt, respectively, which can be derived in the case of Δτ̂TS,i as an

example (Equation (9)) because the intensity function has the same form as described above:

Δτ̂TS,i = ĉTSΔtTS,i − ∑m∈M ∑tm,i<tTS,i+1

α̂n,m
β̂n,m

(exp(−β̂TS,m(tTS,i+1 − tm,i))

−exp(−β̂TS,m(tTS,i − tm,i)))
(9)

Figure 6a shows the cumulative distribution of the three HFTs’ original residuals,
ΔtTS,i, and Figure 6b shows the cumulative distribution of the same three HFTs’ trans-
formed residuals, Δτ̂TS,i. We confirmed that the transformed residuals for the three HFTs
approximately followed the exponential distribution with the unit mean, which implied
that the intensities of {tTS,i} were properly approximated. Because not all of the HFTs’
order generation processes could be modeled by the Hawkes process proposed here, the
above operations were performed for the sell and buy order processes of the 134 HFTs.

460



Entropy 2022, 24, 214

Figure 6. Cumulative distributions of ΔtTS,i (a) and Δτ̂TS,i (b) for three typical HFTs (blue: HFT with
2nd highest order frequency; orange: HFT with 4th highest order frequency; and red: HFT with 7th
highest order frequency).

Here, we apply the Kullback–Leibler divergence between the distribution of the
transformed residuals and the exponential distribution with the unit mean as a criterion to
determine whether the approximations of the intensities of each HFTs’ {tTS,i} and {tTB,i}
are appropriate. Since we estimate the intensity functions of the two-point processes for
each trader, we calculate the sum of the respective Kullback–Leibler divergences (DKL

TS+TB),
as defined by Equation (10) below:

DKL
TS+TB = ∑

j
pj(Δτ̂TS,i) log

pj(Δτ̂TS,i)

qj(Δτ̂TS,i)
+ ∑

j
pj(Δτ̂TB,i) log

pj(Δτ̂TB,i)

qj(Δτ̂TB,i)
(10)

Here, qj(τ) is the discrete exponential distribution with the unit mean, and pj(τ) is
the sampling distribution. The bin size of the discrete distribution is assumed to be 1. The
threshold of accepting DKL

TS+TB error will be determined in the next section.

4. Results

In this section, we first show that the Hawkes process introduced here successfully
approximated the intensity of the limit order generation process for 104 of the 134 HFTs by
applying the method described in Section 3.3 (see Section 4.1). We then categorize the order
generation processes of the 104 successfully estimated HFTs into three groups according to
their excitation mechanisms, and explain how each group of HFTs places their orders (see
Section 4.2).

4.1. DKL
TS+TB Calculation Results for All HFTs

Figure 7 shows a histogram of the DKL
TS+TB values for the 134 HFTs. From the histogram,

there are many HFTs whose values of DKL
TS+TB are very close to 0 and the plots are scattered

for DKL
TS+TB > 0.05, so we set the threshold as 0.05. The 104 HFTs who fell into the range

of DKL
TS+TB < 0.05 were considered to be traders whose order generation processes were

well modeled, while the rest of the 30 HFTs who fell into the range of DKL
TS+TB ≥ 0.05 were

considered to be traders whose order generation processes were poorly modeled by the
Hawkes process introduced here.

461



Entropy 2022, 24, 214

Figure 7. A histogram of DKL
TS+TB values for all 134 HFTs. Out of 134 HFTs, 104 fell within the

acceptable error threshold of 0.05, and the remaining 30 HFTs exceeded the threshold.

With the estimated parameters, the Hawkes process could be simulated using the
thinning method [51]. For example, Figure 8 compares the time series of the number
of orders per 10 min window for the real data of an HFT with DKL

TS+TB = 0.0238 and a
simulated time series. It can be confirmed that both sell limit orders (upper figure) and buy
limit orders (lower figure) successfully reproduce the behavior of the real data.

Figure 8. Comparison between simulations and real data of {tTS,i} and {tTB,i} for HFT with
DKL

TS+TB = 0.0238. The horizontal axis represents the time over a 24 h period, and the vertical
axis represents the number of order occurrences per 10 min window.

On the other hand, Figure 9 shows a comparison of the simulated and real data for an
HFT with DKL

TS+TB = 0.211, which was judged not to be properly estimated by the Hawkes
process. It can be seen that the deviations from the real data for both sell limit orders (upper
figure) and buy limit orders (lower figure) are larger than in the case of Figure 8. The
Hawkes process introduced here did not adequately explain the order generation process
for this trader with a large error, DKL

TS+TB. Because some traders could not be modeled by
the Hawkes process, in the following, we report the results of our clustering analysis of the
order generation processes of 104 HFTs after excluding 30 traders.
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Figure 9. Comparison between simulations and real data of {tTS,i} and {tTB,i} for HFT with
DKL

TS+TB = 0.211. The horizontal axis represents the time during a 24 h period, and the vertical
axis represents the number of order occurrences per 10 min window.

4.2. Results of Clustering Analysis

Here, we categorize the 104 HFTs whose limit order generation process was properly
estimated according to the similarity of their excitation mechanisms (the branching ratio),
and describe how each group of HFTs placed buy–sell limit orders and provided liquidity
to the market. As defined in Equation (5) in Section 3.3, the branching ratio, ρn,m, is an
absolute value that represents the expectation for the number of occurrences of event n
caused by the occurrence of event m. To evaluate the excitations of {tTS,i} and {tTB,i}
relative to each HFT, we introduced normalized branching ratios ρ̄TS,m and ρ̄TB,m, which
are defined by the following equations, so that the sum is equal to 1:

ρ̄TS,m ≡ ρTS,m

∑i∈M ρTS,i
(11a)

ρ̄TB,m ≡ ρTB,m

∑i∈M ρTB,i
(11b)

Because both {tTS,i} and {tTB,i} are 8-variable Hawkes processes, 16 normalized
branching rates were defined for each HFT. Figure 10 shows a dendrogram of the hierarchi-
cal clustering of the 104 HFTs using these 16 variables. For this hierarchical clustering, we
used the Ward method [52] to join clusters in the order of the decreasing sum of squares
after joining. The vertical axis in Figure 10 represents the distance between clusters with
an increase in the sum of squares when clusters A and B are joined, and is defined by the
following equation:

Δ(A, B) = ∑
i∈A∪B

‖�xi − �mA∪B‖2 − ∑
i∈A

‖�xi − �mA‖2 − ∑
i∈B

‖�xi − �mB‖2 (12)

where ||d|| denotes the Euclidean distance, and �mj is the center of cluster j.
Based on the distance between the clusters, we found it reasonable to categorize the

HFTs into three groups with the threshold distance around 3, as shown in Figure 10, and
designated them as Group A, Group B, and Group C. There were 77 HFTs in Group A, 12 in
Group B, and 15 in Group C. The number of clusters becomes larger for a lower threshold
distance, however, we confirmed that properties of any smaller groups are quite similar to
one of these three groups in the graphical representation of an interaction network to be
discussed in the following.

The remainder of this section explains the order events that excited the HFTs in each
group to place buy–sell limit orders based on the estimated Hawkes parameters.
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Figure 10. Dendrogram based on the Ward method of clustering for 104 HFTs that were successfully
modeled by the Hawkes process. The vertical axis represents the distance between the clusters, as
defined in Equation (12), and the horizontal axis shows the labels of the HFTs according to the order
frequency (red: Group A with 77 HFTs; blue: Group B with 12 HFTs; yellow: Group C with 15 HFTs).

4.2.1. Group A

Group A is comprised of 77 HFTs. The total number of limit orders in the 5 days was
approximately 850,000, which accounted for 62.5% of the total number of limit orders in
the market. Figure 11 shows the quartiles and means of the 16 normalized branching ratios
for these 77 HFTs, where (a) represents ρ̄TS,m and (b) represents ρ̄TB,m. From Figure 11a,
it can be seen that the generation of sell limit orders by the HFTs in Group A was most
excited by hit sell, which greatly exceeded the excitation from other events. In contrast,
Figure 11b shows that their buy limit order generation was most excited by hit buy, which
also greatly exceeded the excitation from other events.

Figure 11. Percentile plot of normalized branching ratios (a) ρ̄TS,m and (b) ρ̄TB,m for 77 HFTs in
group A. The vertical axis represents the normalized branching ratios by event m, and the horizontal
axis represents element m ∈ M in both figures (top bar: 75th percentile; X symbol: median; bottom
bar: 25th percentile; © symbol: the mean).

Figure 12 illustrates the network graph of the buy and sell limit orders of the HFTs
in Group A, along with all types of orders, using these normalized branching ratios.
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The size of the directed edges of the network is proportional to the mean value of the
normalized branching ratio, e.g., edges directed from HS to TS and from HB to TB represent
strong excitations.

Figure 12. Network graph of interaction between buy–sell limit orders of HFTs in Group A and all
types of orders in the order book.

In addition, because the kernel function of the Hawkes process is an exponential
function, the time constant, which is a measure of the response speed of one excitation at
a time, is given by β−1

n,m. The mean values of the estimated time constant for the HFTs in
Group A are summarized in Table 3. It is suggested that their reaction speed to an event is
approximately 0.1 s, which is reasonable for HFTs who trade at very high speeds.

Table 3. Mean values of the estimated time constant β̂−1
n,m (s) for the HFTs in Group A.

n
m

TS TB SL BL SC BC HS HB

TS 0.102 0.295 0.076 0.087 0.081 0.069 0.110 0.404
TB 0.118 0.099 0.114 0.071 0.066 0.091 0.148 0.111

4.2.2. Group B

Group B is comprised of 12 HFTs. The total number of limit orders in the 5 days was
approximately 174,000, which accounted for 12.7% of the total number of limit orders in
the market. Figure 13 shows the quartiles and means of the 16 normalized branching ratios
for these 12 HFTs. From Figure 13a, we can see that their sell limit order generation was
excited by sell limit and cancel buy, and from Figure 13b, we can see that their buy limit
order generation was excited by buy limit and cancel sell. Unlike Group A, they did not
react to execution events but were excited by the generation and cancellation of limit orders
in the order book.

Figure 13. Percentile plot of normalized branching ratios (a) ρ̄TS,m and (b) ρ̄TB,m for 12 HFTs in
Group B. The vertical and horizontal axes are the same as those in Figure 10 (top bar: 75th percentile;
X symbol: median; bottom bar: 25th percentile; © symbol: the mean).
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Figure 14 shows the interaction network of the buy and sell limit orders of the HFTs
in Group B, along with all types of orders, using the mean of the normalized branching
ratios, as in Figure 12.

Figure 14. Network graph of interaction between the buy–sell limit orders of HFTs in Group B and
all types of orders in the order book.

The mean values of the time constants for each event are summarized in Table 4. As
in the case of HFTs in Group A, these values suggest that the reaction speed to events were
to be measured in milliseconds.

Table 4. Sample means of 16 time constants, β−1
n,m(S), for HFTs in Group B.

n
m

TS TB SL BL SC BC HS HB

TS 0.099 0.100 0.681 0.109 0.110 0.285 0.101 0.099
TB 0.099 0.100 0.259 0.373 0.558 0.105 0.099 0.101

4.2.3. Group C

Group C is comprised of 15 HFTs. Their total number of limit orders in the 5 days was
approximately 95,000, which accounted for 6.9% of the total number of limit orders in the
market. From Figure 15a, it can be seen that the sell limit order generation of the HFTs in
Group C was most strongly excited by their own buy limit, and was also excited by the
sell limit and cancel buy. On the other hand, Figure 15b shows that their buy limit order
generation was most strongly excited by their own sell limit, but was also excited by buy
limit and cancel buy.

Figure 15. Percentile plot of normalized branching ratios (a) ρ̄TS,m and (b) ρ̄TB,m for 15 HFTs in
Group C. The vertical and horizontal axes are the same as those in Figures 10 and 11 (top bar: 75th
percentile; X symbol: median; bottom bar: 25th percentile; © symbol: the mean).
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Figure 16 shows the interaction network of the buy–sell limit orders of the HFTs in
Group C, along with all types of orders, as in Figures 12 and 14. The HFTs’ sell/buy limit
orders interacted with each other.

Figure 16. Network graph of interaction between buy–sell limit orders of HFTs in Group C and all
types of orders in the order book.

The mean values of the time constants for each event are summarized in Table 5. The
time constants of the excitations from TS to TB and from TB to TS were larger than 10 s,
suggesting that the excitations were sustained for a very long time compared to those
previously observed.

Table 5. Sample means of 16 time constants, β−1
n,m(S), for HFTs in Group C.

n
m

TS TB SL BL SC BC HS HB

TS 0.134 17.781 0.266 0.099 0.096 0.359 0.109 0.154
TB 11.201 0.098 0.269 0.258 0.355 0.094 0.132 0.103

5. Conclusions

In summary, we introduced a multivariate Hawkes process to model the limit order
generation processes of individual HFTs participating in the USD/JPY foreign exchange
market for 5 days and analyzed their limit order generation mechanisms. First, we con-
firmed that an eight-variable Hawkes process, which consisted of each HFTs’ own buy–sell
limit orders and the six types of orders in the order book, could adequately model the limit
order generation processes of 104 of the 134 HFTs. Then, we categorized the 104 properly
modeled HFTs into three categories based on the similarity of the excitation mechanisms
measured by the parameter values of the Hawkes process. As a result, we confirmed that
the majority of the HFTs in our dataset reacted to the execution of trades, while 12 of the
134 HFTs only reacted to limit orders and 15 of the 134 HFTs reacted to their orders. By
evaluating the time constants of the estimated excitations of individual HFTs, we found
that many HFTs responded to the most recent change in the order book in a very short
time, by placing or canceling new orders. Since HFTs currently account for the majority of
limit orders shown in the order book, the results of this analysis provide more microscopic
insight into the dynamics of the order book than previous studies.

The following issues will be studied in the future as a generalization of the present
work. The first goal is to clarify the limit order generation processes of the remaining
30 HFTs who could not be adequately modeled by the present analysis. The Hawkes
process adopted in this study only included the impact of the occurrence of a recent order
event and ignored important financial market influences such as the volume of orders,
market price fluctuations and trends, and the positions of the HFTs. We believe that the
information ignored in this study could contain variables that would explain their order
generation processes. Second, although this study only focused on the generation of limit
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orders by HFTs, it is also important to clarify the cancellation process for limit orders by
HFTs and the generation of market orders. Third, we did not pay attention to profit and loss;
however, practically, a key factor in an HFT strategy is the ability to make stable profits.

As the period of our data is very short, we did not observe any abnormal behavior in
the market; however, we cannot deny the possibility that HFTs may overreact and result
in serious synchronization during other periods or in other markets. Further studies of
the relations among Hawkes parameters and the case of crashes are needed to prevent the
excessive synchronization of biased orders of buy or sell. Our results are important since
the model we derived in this paper provides a foundation for performing such studies
through simulations. HFTs play a central role in providing liquidity to the market, and
further detailed analyses of HFT strategies will contribute to the development of modern
financial markets in general.
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Abstract: Finding the critical factor and possible “Newton’s laws” in financial markets has been an
important issue. However, with the development of information and communication technologies,
financial models are becoming more realistic but complex, contradicting the objective law “Greatest
truths are the simplest.” Therefore, this paper presents an evolutionary model independent of micro
features and attempts to discover the most critical factor. In the model, information is the only
critical factor, and stock price is the emergence of collective behavior. The statistical properties of the
model are significantly similar to the real market. It also explains the correlations of stocks within an
industry, which provides a new idea for studying critical factors and core structures in the financial
markets.

Keywords: econophysics; financial complexity; collective intelligence; emergent property; stock
correlation; detrended cross-correlation analysis

1. Introduction

With the massive use of information and communication technologies, we can collect
traceable data from almost anyone. The rise of network science [1] and computational
social science [2] have provided opportunities for innovative research in econophysics and
sociophysics. In particular, econophysics regards the financial market as a complex system
and attempts to depict it more realistically, such as the interactions between investors by
network dynamic evolution. Econophysics describes the economic system with many
interacting heterogeneous entities (people, firms, institutions, etc.), and expects to find
similar laws to the physical system. However, humans are not ideal gas molecules, it is
unclear how many and which quantities would be needed for determining and anticipating
a given macroscopic, in the sense of collective, observable [3]. Moreover, because human
beings are adaptable, the study of economic systems is bound to be a difficult problem.

Researchers have proposed numerous different mechanisms to model the microstruc-
ture of financial markets. They pursued the most detailed descriptions, such as creating
diverse agents and setting rules for interactions between agents and trading rules. Re-
searchers collected data about investors’ behavior through information technology to deal
with the variables of different individuals. But individuals rely on different risk preferences
and reference points. Even if we can reasonably describe the behavior of a single individual,
we cannot directly generalize to a group. Investors’ decisions in financial markets are not
always rational; their buying and selling decisions are affected by emotion, personality, and
bias [4,5]. People are different, and they are not rational to some extent. For individuals,
faith may be stronger than reason, personal interest may be stronger than the good of
the team, etc. Meanwhile, the COVID-19 disease is a new and dreaded event [6], and in
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the process of keeping the virus under control, people’s cognitive functioning has been
enhanced, and their behavior has been changed to some extent. For example, more people
are willing to wear a mask after the epidemic outbreak and so on. In the stock market, there
are so many unpredictable fluctuations. When new information is generated, what does it
mean for the stock market? That would hardly be positive for the stock market because
investors are different, and their cognitive processes and cognitive environment are fickle
and changeable. In the face of changes in the information environment, different investors
have different reaction capacities and speeds. After thinking about the information, even
for a specific investor, they will understand the information from a new perspective and
form their own judgment slowly. Thus, in a financial system, microstructure models are
not enough to consider the variable adaptability of investors.

Although investors are different and unpredictable, research exhibits that pieces of
statistical evidence remain stable, accordant to the stability of the statistical properties
of particle motion in physics models [7,8]. Therefore, in the studies of financial markets,
statistical results of different micro models exhibit universal characteristics. The classical
percolation model [9–11] simulates herd behavior. For any pair of agents i and j, they
are connected with a probability, and then agent i makes the buying or selling decision
with another probability. The model explains the power-law distribution of stock price
returns appropriately. The two-dimensional Ising model [12] considers investors’ imitation
of neighbors, the influence of public information, and personal traits. Here the influence
of public information is a Gaussian distribution. The investor’s decision function also
has a probability form, and the returns of the model are “fat-tailed” [13,14]. The financial
models with network topology [15] also produce the universal characteristics of real stock
markets by setting the link probability of nodes and performing decision functions. These
models share common features. First, they generate a stock trading environment in the
form of probability. Second, investors make buy-sell decisions with probability or decision
functions. More details are introduced to depict a more realistic financial market based
on these basic models and their common features. Over the past century or so, stock
trading information flow has changed from slow to intensive, investors’ literacy from
low to high, relationship from simple social relationships to complex social networks.
Individual characteristics of investors and the market environment have dramatically
changed. Stock trading rules also varied in different countries; for example, China has a
10% price limit [16]. Nevertheless, no matter what changed the environment or rules, it is
observed that universal characteristics are robust on different timescales and in different
stock markets. Therefore, in the study of the macro laws, statistical properties of the stock
market, the critical factor should not be the relationship network of investors, the speed of
information flow, or the level of literacy of investors, which researchers want to introduce.
On the other hand, collective intelligence results from intelligence, which emerges out
of collaboration and coordination of many individual agents [17]. Collective intelligence,
which Wooley et al. [18] define as the ability of a group to perform a wide variety of
tasks. They studied “collective intelligence” and demonstrated that the critical factor
characterizing “collective intelligence” is not the group members’ average or maximum
individual intelligence. Here, we view the ability of investors to make buying and selling
decisions. Investors gamble in the stock market, where supply and demand determine the
stock price, i.e., the result of their behavior is reflected in the price of the stock. Investors’
collective intelligence is the emergence of investors’ collective behavior. In this paper,
we abstract all the factors that impact the market to the only value of information. In
given information, the behavior of investors emerging with probabilities results in the
evolution of stock markets. Here, unlike the micro model that pursues a realistic and
detailed structure, we discard individual features and interaction. We present a stock price
evolution model with emergence properties in the given information in Section 2 and verify
its rationality using real market data in Section 3. We aim to find the critical factor and
capture stable macroscopic law in the ever-changing stock market.
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The paper is organized as follows: Section 2: A detailed description of the stock market
model with delayed information impact. Section 3: Statistical analysis and nonlinear
behavior of the proposed model. Section 4: Correlation analysis between stocks in the
industry.

2. Stock Price Model with Delayed Information Impact

The analysis of financial stock market prices has been found to exhibit some universal
characteristics similar to those observed in physical systems with many interacting units,
and several microscopic models have been developed to study them. Examples include
percolation models, Ising models, network models, and their extensions to social interac-
tions. Though these models are very different, they all can be used to simulate the stock
market. Because the simulation results are consistent with the statistical properties of real
market price fluctuations, these models may generate the “Newton’s laws” in financial
markets. Thus, we aim to find the possible “Newton’s laws” in these models and try to
prove it.

The classical percolation model is generated with the connection probability of neigh-
bor nodes. The Ising model is a random field with a probability, and the evolution of the
swing is closely related to the structure of space and initial state. The network model is
also generated with a probability. We find the common feature that they generate is stock
trading in the form of probability.

Mitchell and Mulherin [19] studied the relation between the number of news announce-
ments reported daily by Dow Jones & Company and aggregate measures of securities
market activity, including trading volume and market returns. They employed a distinctive
proxy for the information, i.e., the number of announcements released daily by Dow Jones
& Company. Meanwhile, the social sciences have obtained access to huge datasets based
on the internet activity of millions of users all over the world. Among the most frequently
utilized providers of data, social media such as Twitter and Facebook and search engines
Google and Yahoo play the most important roles. For example, the frequency of searched
terms has been shown to provide helpful information for forecasting various phenomena
ranging from trading volumes [20] to consumer behavior [21] and finance [22]. In summary,
information is too complicated to be considered fully in a theoretical model, let alone de-
layed information in stock markets. In previous studies, Albers et al. [23] studied “delayed
information.” In the paper, the time when relevant information is available and the time
that a decision has an effect could be decoupled. Investors might not have access to the
latest exchange rates or stock prices. They refer to this as the delayed information model.
However, we define a new concept of delayed information here. In the stock market,
information comes in various ways and at different influence levels. In general, there is
a small amount of super good news and bad news. Most of the news is ordinary. In our
model, the influence of information is an abstract concept. The influence of information
will last for some time, and the disappearance time of influence will be delayed. This is
what we refer to as delayed information.

We propose the stock price model of delayed information impact based on the common
feature and abstract information. It includes two components, i.e., the generation and
delay of market information and the emergence of collective decision-making in the given
information.

2.1. Information Generation and Delay

• Suppose the initial stock price is P0. The stock market environment is fickle daily and
is influenced by a series of stochastic events, including supply and demand, macroe-
conomic, political factors, corporate finances and performance, market sentiment, etc.
We coarse-grain all the stochastic events by information into just a single influence
value. The impact of information is an abstract concept, which is a random variable
that is normally distributed with mean 0 and standard deviation σ1, here σ1 = λP0.
Any theoretical normal distribution has a maximum of infinity and a minimum of
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minus infinity. There is an infinite range. In our model, the impact of information
is normally distributed, and it must be finite. Thus, there must be a truncation. The
truncation interval should be large enough and reasonable. The information has an
impact on the stock price, so the truncation interval has a relation with the stock price
P0. It cannot stand alone. Here, considering the extreme cases (terrible information,
great information), we set the truncation interval to be [−4σ1,+4σ1]. New informa-
tion sequence It can be obtained by random sampling from the truncated Gaussian
distribution.

• In the stock market, the influence of information is in a state of change and eventually
disappears. Thus, we introduce the delayed information. The progress of influence
disappearance is a different matter from the memory deterioration. That the influence
of information eventually disappears does not mean that the people forget the informa-
tion; it is just that the information is a dead issue. Considering that significant events
have a sustained impact on the investors, and the impact strength of the information
will delay over time, we assume that the information influence It delays linearly with
time simply, and the information influence after the i-th day I′i is expressed as

I′i =
{

It − ai, It > 0
It + ai, It < 0

(1)

where a is the delay coefficient.

2.2. Stock Price Evolution Process

The given information determines the theoretical stock price P′
t .

P′
t = Pt−1 + It + ∑i=t−1

i=0 I′i (2)

Investors participate in the game and make decisions based on the given information. Their
collective behaviors result in actual stock prices. As the investors vary from radicals or
conservatives, daredevils, or followers, etc., statistical properties of the final actual stock
price series are stable in the ever-changing stock market. The actual stock price Pt in day t
has emergence properties of collective intelligence, which is a random sampling from a
truncated Gaussian distribution Pt ∼ N

(
P′

t , σ2
2
)
. As the price fluctuation is related to the

information, here σ2 = 1
3 × |P′

t − Pt−1|. Considering the extremes, we set the truncation
interval as [−4σ2,+4σ2].

Figure 1 shows the simulated stock price series Pt and the corresponding return series
rt, P0 = 3000,σ1 = 20, a = 5. In Figure 1, volatility clustering is easily observable. High-
volatility tends to follow high-volatility, and low-volatility tends to follow low-volatility.

Figure 1. Stock price series of the proposed model and its corresponding return.
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3. Descriptive Statistics and Nonlinear Behavior Analysis

This section discusses the stock price model’s descriptive statistics and nonlinear
behavior with delayed information impact and verifies the simulation results with the
real stock market. We use real daily closing price data from 1 January 2010 to 3 December
2020 (T ≈ 2700), including the SSE (Shanghai Composite Index), SZES (Shenzhen Stock
Exchange Index), and S&P500 (S&P 500 Index) (https://finance.yahoo.com, 3 May 2021).
The simulated data length T = 3000 matches with the real data (T ≈ 2700).

3.1. Descriptive Statistics of Returns

The “Fat-tailed” characteristic of returns has been verified in extensive empirical
studies [24–26]. It is an important criterion for the reasonableness of price dynamics in the
stock model research. Here, the definition of price return is rt = lnPt − lnPt−1 [27]. The
probability density distributions of three simulated and real market returns are shown
in Figure 2a. Simulated and real return distributions are almost identical. Compared to
the Gaussian distribution, they both exhibit distinct “fat-tailed” characteristics. Table 1
shows the statistics: mean, standard deviation, maximum, minimum, skew, kurtosis, the
results of Kolmogorov–Smirnov test (K-S test) and power-law fit, where the kurtosis of
all returns is larger than three that is the kurtosis of the Gaussian distribution [28]. In
the K-S test, all p-values are very small, and all the H-values are 1, so we reject the null
hypothesis that the distribution follows the Gaussian distribution at a 5% significance level.
Figure 2b shows that the cumulative probability distributions of simulated and real market
returns follow power-law distribution P(|rt| > x) ∼ x−α, α is the power-law exponent.
The corresponding power-law exponent values in Table 1 approximately equal to 3, it
obeys the “Inverse cubic law” [29].

Figure 2. (a) The probability density distributions of simulated and empirical returns (semi-log); (b)
The cumulative distributions of simulated and empirical returns (log-log).
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Table 1. Descriptive statistics, power-law fit, and K-S test of returns.

Data Mean Std Max Min Skew Kurtosis
K-S Test

α
p-Value H

x1 0.00004 0.0172 0.1294 −0.1240 0.2987 6.6543 8.1208 × 10−9 1 3.5784
x2 −0.00002 0.0217 0.1601 −0.2125 −0.3848 9.3611 1.8554 × 10−10 1 4.0968
x3 0.00005 0.0182 0.1520 −0.1367 −0.0234 8.3799 4.2418 × 10−10 1 3.8109

S&P500 0.00004 0.0111 0.0934 −0.1066 −0.9710 15.2922 4.0739 × 10−18 1 3.4624
SSE 0.00002 0.0136 0.0060 −0.0887 −0.8969 6.1958 1.6704 × 10−10 1 3.5277

SZSE 0.00001 0.0164 0.0625 −0.0895 −0.7368 3.7987 5.8053 × 10−7 1 3.4777

3.2. Nonlinear Statistical Analysis of Returns

Some studies have investigated the nonlinear properties of financial markets [30–32].
Hsieh [30] discussed some of the methodological issues in detecting chaotic and nonlinear
behavior. Alves et al. [31] focused on the Dow Jones Index to determine the chaotic
dynamics. Zhu et al. [32] revealed the long-term memory of financial time series. Here, we
compare the nonlinear behavior of the simulated return series with the real market series.

3.2.1. Correlation Dimension Analysis

The correlation dimension method measures the complexity of dynamical systems
that distinguishes deterministic systems (including low-dimensional chaos) and stochastic
systems [33]. According to the method of Grassberger et al. [34], the correlation dimension
can be calculated when the appropriate embedding dimension m and time lag τ are selected
for the phase space reconstruction. For an m-dimensional phase space, the correlation
integral C(r) is calculated by

C(r) = lim
N→∞

2
N(N − 1)

N

∑
i,j=1,i 	=j

Θ
(
r −

∣∣Xi − Xj
∣∣) (3)

where Θ is the step function. The appropriate choice of r enables the correlation dimension
of the system D to describe as

D = lim
r→0

log2C(r)
log2r

(4)

A common method is to fit the log2C(r) and log2r using least squares, and the slope
is the correlation dimension D. For random sequences, D increases linearly with the
embedding dimension m with no saturation. While for deterministic chaotic sequences,
D increases with m to a certain position to reach saturation, and the saturation m is the
correlation dimension D of the time series attractor. Figure 3 shows the correlation integral
log2C(r) and log2r in different embedding dimensions m. Figure 4 shows the correlation
dimension. It is observed that all correlation dimensions increase with m and reach
saturation at a certain position. It can be seen that all the returns have deterministic
noise, which means the systems are chaotic. The simulated data from the proposed model
coincide with the real market data.

476



Entropy 2021, 23, 893

Figure 3. Correlation integral results of return series from SSE (a), the model (b).

Figure 4. Correlation dimension of returns from SSE and five simulated data.

3.2.2. Lyapunov Exponent Analysis, Sample Entropy Analysis, and Hurst Exponent

We further compare the nonlinear behavior of simulated and empirical rates of return
in this section. The maximal Lyapunov exponent (MLE) determines the predictability of
a dynamical system. A positive MLE is usually taken as an indication that the system is
chaotic. Consequently, any system with MLE > 0 is considered to be chaotic. We calculate
the MLE of each stock price series using the algorithm of Rosenstein et al. [35]. In Table 2,
the simulated and real returns have similar positive MLE, and indicate they are not totally
stochastic. They have a similar chaotic property to some extent.

Table 2. The maximum Lyapunov exponent (m = 10), Sample Entropy (m = 2) and Hurst exponent of
returns from the model and empirical market.

Data MLE Sample Entropy Hurst Exponent

Data1 0.0778 1.7497 0.6281
Data2 0.0762 1.6832 0.6364
Data3 0.0773 1.7033 0.6478
Data4 0.0757 1.7401 0.6152
Data5 0.0575 1.4901 0.5840
SSE 0.0628 1.7889 0.5238

SZSE 0.0842 1.8750 0.5176
S&P500 0.0639 1.4902 0.5022

Hurst exponent is used as a measure of the “long memory” of a time series, which
measures how the range of fluctuations in a time series varies over time. H ranges between 0
and 1 (excluding 0 and 1). Where H = 0.5, the time series indicates a completely uncorrelated
series. When H > 0.5, the time series has long-term memory, and when H < 0.5, the time
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series has inverse persistence, it exhibits stronger fluctuations than totally random. We
calculate the Hurst exponent by the rescaled range analysis [36]. In Table 2, the Hurst
exponent is slightly larger than 0.5, which means that the simulated and real returns have
similar long-term memory.

Sample entropy is a measure of the complexity of time series. The smaller the sample
entropy, the higher the sequence self-similarity; the larger sample entropy, the more
complex the sample sequence. We calculate the sample entropy method following Richman
et al. [37]. In Table 2, the simulated and real returns have similar sample entropy values
that indicate their similar complexity.

4. Correlation Analysis of Stocks

Portfolio theory is a framework for assembling a portfolio of assets such that the
expected return is maximized and the level of risk is minimized. Investors can reduce risk
by holding a portfolio of stocks that are not perfectly positively correlated. Diversification
can help to construct optimal investment portfolios. Charu et al. [38] use mutual infor-
mation for measuring stock correlations and construct the stock network. Sun et al. [39]
applied DCCA coefficients to construct the correlation matrix of assets. Thus, the corre-
lation between stocks is an important criterion to weigh the correlation of stock market
risk level and portfolio rationality. Studies on the properties of stock correlation show
that the stronger correlations between stocks are, the higher risk in the corresponding
asset portfolio [40]. Usually, stocks belonging to the same industry are more correlated
because they are influenced by the same external information, including natural climate,
macro policies, raw materials, and other factors [41]. The stocks in an industry have strong
positive correlations and risky portfolios, so sound investments usually cover different
industries. In our model, stock rises or falls are affected by external information; thus, the
model can be considered to study the correlation between stocks.

This section investigates the correlation of stock returns within per industry in China
using the detrended cross-correlation analysis (DCCA) [42,43] and calculates their dis-
tributions. The DCCA coefficient measures the correlation level between non-stationary
series such as financial series. ρ is the DCCA coefficient, −1 ≤ ρ ≤ 1. ρ = 1 indicates
that two time series are perfectly correlated; ρ = −1 indicates that the two time series
are perfectly anti-correlated; ρ = 0 indicates that the two time series are uncorrelated
processes. There are 28 industries in the Shenwan Industry Classification Standard. We
selected 16 industries from 1 January 2016 to 10 December 2020 (T ≈ 1200), which contain
a sufficient number of stocks (the number of stocks N > 30). We then simulated stock
data in an industry: As the initial stock price is the same, to avoid the sensitivity to initial
conditions, we selected the data from 6000 to 7500 steps in the simulation (T = 1500), then
we obtained 100 stocks under the same historical information series.

Figure 5 shows the distribution of the correlation of stock returns within an industry.
Figure 5a–c are three empirical data examples, and Figure 5d–f are three simulated ones
that are generated in different historical information series. It can be seen in Figure 5 that ρ
distributions within each of the 16 industries show a regular single-peaked distribution.
The most probable correlation coefficients ρm are around 0.3, which indicates that the model
is consistent with the real market, and most stocks have weak positive correlations within
an industry. Figure 6 shows the most probable correlation coefficients ρm within the 16
industries and the three simulated data. The three simulated data peaks are 0.34, 0.33, and
0.32; all are lying within the peak range from 0.21 to 0.43 in the real market. Moreover, since
each set of simulated data is generated in given the same historical information series, there
is probable that the stock market evolution will recur when there is similar information
series. In our model, the correlation of the simulated stock with the same historical
information can be analogized statistically to the correlation of the stocks within China’s
industry. It is a supplement method of stock correlation research that helps investors obtain
a better portfolio strategy.
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Figure 5. The distribution of ρ from Chemicals (a), Real Estate (b), Electronics (c), and three simulated data (d–f).

Figure 6. The ρm of stocks in 16 industries and three simulated data.

5. Conclusions

“Greatest truths are the simplest” is an objective law. The principles also apply to
the stock market. With the development of the stock market, the spread of information
is faster. It is easier to get information, the literacy level of the investors has improved.
They are closer to each other; their relationships are more complicated than ever, society’s
wealth has increased, etc. The empirical studies show that no matter how the stock market
environment changes, the universal characteristics (the crashes, the skewed distributions
with specific kurtosis values, the fat tails, etc.) remain stable. It means that the “Greatest
truths in stock market remain stable.” In this paper, we aim to find the “Greatest truths in
the stock market.”

We analyze three typical models (the percolation model, Ising model, and network
topology financial model) and their extensions that are used for stock market research. We
find that these models can represent the universal characteristics successfully. It means
that these models should contain the “Greatest truths in the stock market.” We find that
“they generate a stock trading in the form of probability.”

The stock market environment is variable daily and is influenced by a series of stochas-
tic events (supply and demand, macroeconomic, political factors, corporate finances and
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performance, market sentiment, etc.). We coarse-grain all the stochastic events by informa-
tion just a single influence value. The information can influence investors’ performance.
The stock price is the result of all investors’ performance. We model the progress in
probability and find that it can represent the universal characteristics.

Our model is based on the idea of “Greatest truths in the stock market.” Our results
suggest that the investors’ individual characteristic is not the critical factor; the stock
market’s micro-specialties are not the greatest truths. In the stock market, the critical
factor is information, and the stock price is the emergence of collective performance of
all investors. Besides, the model can generate different stock price series in the same
historical information, analogous to the stocks in the same industry. Similar single-peaked
distribution proving that the model can be effectively used in stock correlation research
and history recur rules. It opens a new way of selecting rational portfolios, complementing
current industry correlation research methods, and providing theoretical support. The
paper provides a helpful framework for understanding stock price evolution through the
emergence of collective performance. We find the possible critical factor and the essence of
the financial market at a macro level.
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Abstract: Bounded rationality is an important consideration stemming from the fact that agents often
have limits on their processing abilities, making the assumption of perfect rationality inapplicable to
many real tasks. We propose an information-theoretic approach to the inference of agent decisions
under Smithian competition. The model explicitly captures the boundedness of agents (limited in
their information-processing capacity) as the cost of information acquisition for expanding their
prior beliefs. The expansion is measured as the Kullblack–Leibler divergence between posterior
decisions and prior beliefs. When information acquisition is free, the homo economicus agent is
recovered, while in cases when information acquisition becomes costly, agents instead revert to their
prior beliefs. The maximum entropy principle is used to infer least biased decisions based upon
the notion of Smithian competition formalised within the Quantal Response Statistical Equilibrium
framework. The incorporation of prior beliefs into such a framework allowed us to systematically
explore the effects of prior beliefs on decision-making in the presence of market feedback, as well as
importantly adding a temporal interpretation to the framework. We verified the proposed model
using Australian housing market data, showing how the incorporation of prior knowledge alters
the resulting agent decisions. Specifically, it allowed for the separation of past beliefs and utility
maximisation behaviour of the agent as well as the analysis into the evolution of agent beliefs.

Keywords: decision-making; bounded rationality; complexity economics; information-theory; maxi-
mum entropy principle; quantal response statistical equilibrium

JEL Classification: D91; G41; D83; C61; C60; C50

1. Introduction

Economic agents are often faced with partial information and make decisions under
pressure, yet many canonical economic models assume perfect information and perfect
rationality. To address these challenges, Simon [1] introduced bounded rationality as
an alternate attribute of decision-making. Bounded rationality aims to represent partial
access to information, with possible acquisition costs, and limited computational cognitive
processing abilities of the decision-making agents.

Information theory offers several natural advantages in capturing bounded rationality,
interpreting the economic information as the source data to be delivered to the agent
(receiver) through a noisy communication channel (where the level of noise is related to the
“boundedness” of the agent). This representation has spurred the creation of information-
theoretic approaches to economics, such as Rational Inattention (R.I.) [2], and more recently,
the application of R.I. to discrete choice [3]. Another approach represents decision-making
as a thermodynamic process over state changes and employs the energy-minimisation
principle to derive suitable decisions [4].

These approaches have shown how one can incorporate a priori knowledge into
decision-making, but place no consideration to inferring these decisions based on observed
macroeconomic outcomes (e.g., a distribution of profit rates within a financial market) and
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market feedback loops. Independently, another recent information-theoretic framework,
Quantal Response Statistical Equilibrium (QRSE) [5], was developed aiming to infer least
biased (i.e., “maximally noncommittal with regard to missing information” [6]) decisions
through the maximum entropy principle, given only the macroeconomic outcomes (e.g.,
when the choice data is unobserved). However, the ways to incorporate prior knowledge
into such a system remain mostly unexplored.

In this work, we provide a unification of these approaches, showing how to incor-
porate prior beliefs into QRSE in a generic way. In doing so, we provide a least biased
inference of decision-making, given an agent’s prior belief. Specifically, we show how the
incorporation of prior beliefs affects the agent’s resulting decisions when their individ-
ual choices are unobserved (as is common in many real-world economic settings). The
proposed information-theoretic approach achieves this by considering a cost of informa-
tion acquisition (measured as the Kullback-Leibler divergence), where this cost controls
deviations from an agent’s prior knowledge on a discrete choice set. When the cost of
information acquisition is prohibitively high (i.e., when an agent is faced with limitations
through time, cognition, cost, or other constraints), the agent falls back to their prior be-
liefs. When information acquisition is free, the agent becomes a perfect utility maximiser.
The cost of information acquisition therefore measures the boundedness of the agent’s
decision-making.

The proposed approach is general, allowing the incorporation of any form of prior
belief, while separating the agents’ current expectations from their built-up beliefs. In
particular, we show how incorporating prior beliefs into the QRSE framework allows for
modelling decisions in a rolling way, when previous decisions “roll” into becoming the
latest beliefs. Furthermore, we place the original QRSE in the context of related formalisms,
and show that it is a special case of the general model proposed in our study, when the
prior preferences (beliefs) are assumed to be uniform across the agent choices. Finally,
we verify and demonstrate our approach using actual Australian housing market data, in
terms of agent buying and selling decisions.

The remainder of the paper is organised as follows. Section 2 provides a background
of information-theoretic approaches to economic decision-making, Section 3 describes
QRSE and relevant decision-making literature. Section 4 outlines the proposed model,
and Section 5 applies the developed model to the Australian housing market. Section 6
presents conclusions.

2. Background and Motivation

The use of statistical equilibrium (and more generally, information-theoretic) models
remains a relatively new concept in economics [7]. For example, Yakovenko [8] outlines the
use of statistical mechanics in economics. Scharfenaker and Semieniuk [9] detail the appli-
cability of maximum entropy for economic inference, Scharfenaker and Yang [10] give an
overview of maximum entropy and statistical mechanics in economics outlining the benefits
of utilising the maximum entropy principle for rational inference, and Wolpert et al. [11]
outline the use of maximum entropy for deriving equilibria with bounded rational players
in game theory. Earlier, Dragulescu and Yakovenko [12] showed how in a closed economic
system, the probability distribution of money should follow the Boltzmann-Gibbs law [13].
Foley [14] discusses Rational expectations and boundedly rational behaviour in economics.
Harré [15] gives an overview of information-theoretic decision-theory and applications in
economics, and Foley [16] analyses information-theory and results on economic behaviour.

Ömer [17] provides a comparison of “conventional” economic models and newly pro-
posed ideas from complex systems such as maximum entropy methods and Agent-based
models (ABM), which deviate from the assumption of homo economicus—a perfectly ra-
tional representative agent. Yang and Carro [18] discuss how a combination of agent-based
modelling and maximum entropy models can be complementary, leveraging the analytical
rigour of maximum entropy methods and the relative richness of agent-based modelling.
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One of the key developments in this area is Quantal Response Statistical Equilibrium
(QRSE) proposed by Scharfenaker and Foley [5]. This approach enabled applications of
the maximum entropy method [6,19,20] to a broad class of economic decision-making.
The QRSE model was further explored in [21], arguing that “any system constrained by
negative feedbacks and boundedly rational individuals will tend to generate outcomes of
the QRSE form”. The QRSE approach is detailed in Section 3.1.

Ömer [22–24] applies QRSE to housing markets (which we also use as a validating
example), modelling the change in the U.S. house price indices over several distinct periods,
and explaining dynamics of growth and dips. Yang [25] applies QRSE to a technological
change, modelling the adoption of new technology for various countries over multiple
years and successfully recovering the macroeconomic distribution of rates of cost reduction.
Wiener [26–28] applies QRSE to labour markets, modelling the competition between groups
of workers (such as native and foreign-born workers in the U.S.), and capturing the
distribution of weekly wages. Blackwell [29] provides a simplified QRSE for understanding
the behavioural foundations. Blackwell further extends this in [30], introducing an alternate
explanation for skew, which arises due to the agents having different buy (enter) and sell
(exit) preferences. Scharfenaker [31] introduces Log-QRSE for income distribution, and
importantly, (briefly) mentions informational costs as a possible cause for asymmetries
in QRSE. This is captured by measuring utility U as a sum U[a, x] + C(a|x), allowing for
higher costs (C) of entrance or exit into a market, where a is an action and x is a rate. Such
a separation allows for an “alternative interpretation of unfulfilled expectations”.

These developments show the usefulness of maximum entropy methods, where
we have placed particular focus on QRSE, for inferring decisions from only macro-level
economic data. However, these approaches do not consider the contribution of a priori
knowledge to the resulting decision-making process. The key objective of our study is
to generalise the QRSE framework by the introduction of the prior beliefs, as well as the
information acquisition costs as a measure of deviation from such priors.

3. Underlying Concepts

Two main concepts form the basis for the proposed model. The first is the QRSE
approach developed by [5], and the second is a thermodynamics-based concept of decision-
making derived from minimising negative free energy, proposed by [4].

3.1. QRSE

The QRSE framework aims to explain macroeconomic regularities as arising from
social interactions between agents. There are two key assumptions stemming from the idea
of Smithian competition: Agents observe and respond to macroeconomic outcomes, and
agent actions affect the macroeconomic outcome, i.e., a feedback loop is assumed. It is this
feedback that is deemed to cause the macroeconomic outcome to have a distribution that
stabilises around an average value. Given only the macroeconomic outcome, QRSE infers
the least biased distribution of decisions, which result in the observed macroeconomic
distribution using the principle of maximum entropy. This makes QRSE particularly useful
for inferring decisions when the individual decision level data is unobserved. In the
following section, we outline the key notions behind QRSE [5].

3.1.1. Deriving Decisions

Agents are assumed to respond (i.e., make decisions) based on the macroeconomic
outcome, for example, based on profit rates x. This is captured by the agents’ utility U.
However, agents are assumed to act in a boundedly rational way, such that they may not
always choose the option with the highest U, for example, if it becomes impractical to
consider all outcomes. That is, agents are attempting to maximise their expected utility,
subject to an entropy constraint capturing the uncertainty:

max ∑
a∈A

f [a|x]U[a, x] (1)
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subject to ∑
a∈A

f [a|x] = 1

− ∑
a∈A

f [a|x] log f [a|x] ≥ Hmin
(2)

where f [a|x] represents the probability of an agent choosing action a if rate x is observed.
The first constraint ensures the probabilities sum to 1, while the second is a constraint on
the minimum entropy. The minimum entropy constraint implies a level of boundedness
such that there is some limit to the agents’ processing abilities, which allows QRSE to
deviate from perfect rationality.

Lagrange multipliers can be used to turn the constrained optimization problem of
Equation (2) into an unconstrained one, which forms the following Lagrangian function:

L = − ∑
a∈A

f [a|x]U[a, x]− λ

(
∑

a∈A
f [a|x]− 1

)
+ T

(
− ∑

a∈A
f [a|x] log f [a|x]− Hmin

)
(3)

taking the first order conditions of Equation (3), and solving for f [a|x] yields:

f [a|x] = 1
Z

e
U[a,x]

T (4)

representing a choice of a mixed strategy by maximising the expected utility subject to
an entropy constraint. This problem is dual to maximising entropy of the mixed strategy,
subject to a constraint on the expected utility as detailed in Appendix A.1.

3.1.2. Deriving Statistical Equilibrium

From Section 3.1.1 we have a derivation for a decision function, where agents maximise
expected utility subject to an entropy constraint introducing bounds in the agents process-
ing abilities. In order to infer the statistical equilibrium based on observed macroeconomic
outcomes, the joint probability f [a, x] must be computed.

The joint distribution captures the resulting statistical equilibrium which arises from
the individual agent decisions. While there are many potential joint distributions, using the
principle of maximum entropy allows for inference of the least biased distribution. From an
observer perspective, maximising the entropy of the model accounts for model uncertainty,
by providing the maximally noncommittal joint distribution. To compute this, Scharfenaker
and Foley [5] maximise the joint entropy with respect to the marginal probabilities (since
individual action data is not available), by decomposing the joint entropy into a sum of the
marginal entropy and the (average) conditional entropy.

The solution for f [a|x], given by Equation (4), can be used to compute the joint
probability f [a, x], as long as marginal f [x] is determined (since f [a, x] = f [a|x] f [x]). In
order to derive f [x], the approach considers the state dependant conditional entropy,
represented as

H[A|x] = − ∑
a∈A

f [a|x] log f [a|x] (5)

Scharfenaker and Foley [5] then use the principle of maximum entropy to find the distribu-
tion of f [x] which maximises

max
f [x]≥0

H = −
∫

x
f [x] log f [x]dx +

∫
x

f [x]H[A|x]dx (6)

subject to
∫

x
f [x]dx = 1∫

x
f [x]xdx = ξ

(7)
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The first constraint ensures the probabilities sum to 1, and the second constraint
applies to the mean outcome (with ξ being the mean from the actual observed data f̄ [x]).
Importantly, there is also an additional constraint which models Smithian competition [32]
in the market. Smithian competition models the feedback structure for competitive markets,
for example, entrance into a market tends to lower the profit rates, and exit tends to raise
the profit rates. This is captured as the difference between the expected returns conditioned
on entrance, and the expected returns conditioned on exiting. This competition constraint
can be represented as

subject to
∫

x
f [x]( f [a|x]− f [ā|x])xdx = δ (8)

The combination of the conditional probabilities of Equation (4), which stipulate
that the agents enter and exit based on profit rates, and the competition constraint of
Equation (8) models a negative feedback loop that results in a distribution of the profit
rates around an average (ξ).

Again, using the method of Lagrange multipliers, the associated Lagrangian becomes

L = −
∫

x
f [x] log f [x]dx +

∫
x

f [x]H[A|x]dx−

λ

(∫
x

f [x]dx − 1
)
− γ

(∫
x

f [x]xdx − ξ

)
− ρ

(∫
x

f [x]( f [a|x]− f [ā|x])xdx − δ

) (9)

where taking the first order conditions of Equation (9), and solving for f [x] yields

f [x] =
1

ZA
eH[A|x]−γx−ρx( f [a|x]− f [ā|x]) (10)

where ZA is the partition function ZA =
∫

x eH[A|x]−γx−ρx( f [a|x]− f [ā|x])dx. Note that in
Equation (9) we use ρ as the Lagrangian multiplier for the competition constraint. Parame-
ter ρ is referred to as β in [5], we have avoided this notation to avoid confusion with the
thermodynamic β (inverse temperature) discussed in later sections.

Equations (4) and (10) comprise a fully defined joint probability. Crucially, QRSE
allows for modelling the resultant statistical equilibrium even when the individual actions
are unobserved—by inferring these decisions based on the principle of maximum entropy.

3.1.3. Limitations of Logit Response

In Section 3.1.1 we have seen how the logit response function used for decision-making
in QRSE is derived from entropy maximisation. Following the Boltzmann distribution
well known in thermodynamics, this logit response has seen extensive use throughout the
literature arising in a variety of domains. For example, the logit function is used as sigmoid
or softmax in neural networks, logistic regression, and in many applications in economics
and game theory [33,34]. However, one important development not yet discussed is the
incorporation of prior knowledge into the formation of beliefs. Up until now, we have
considered a choice to be the result of expected utility maximisation based on entropy
constraints from which the logit models have arisen. However, from psychology [35], be-
havioural economics [36,37], and Bayesian methods [38,39] we know that the incorporation
of a priori information is often an important factor in decision-making. Thus, we explore
the incorporation of prior beliefs into agent decisions in more detail in the following section
(and the remainder of the paper).

Furthermore, one criticism of the logit response arises from the independence of
irrelevant alternatives (IIA) property of multinomial logit models (which would extend to
the conditional function used in QRSE in a multi-action case), which states that the ratio
between two choice probabilities should not change based on a third irrelevant alternative.
Initially, this may seem desirable, however, this can become problematic for correlated
outcomes (of which many real examples possess). This criticism has been proved correct in
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several thought experiment studies, showing violations of the IIA assumption [40]. The
classical example is the Red Bus/Blue Bus problem [41,42].

Consider a decision-maker who must choose between a car and a (blue) bus, A =
{car, blue bus}. The agent is indifferent to taking the car or bus, i.e., p(car) = p(blue bus) =
0.5. However, suppose a third option is added, a red bus which is equivalent to the blue
bus (in all but colour). The agent is indifferent to the colour of the bus, so when faced
with A1 = {blue bus, red bus} the agent would choose p(red bus) = p(blue bus) = 0.5.
Now suppose the agent is faced with a choice between A2 = {car, blue bus, red bus}. As
per the IIA property, the ratio p(blue bus)

p(car) (from A, 0.5
0.5 ) must remain constant. So adding in

a third option, the probability of taking any a becomes p(a) = 1
3 (for all a), maintaining

p(blue bus)
p(car) = 1. However, this has reduced the odds of taking the car from 0.5 to 0.33 based

on the addition of an irrelevant alternative (i.e., the red bus in which the agent does not
care about colour of the bus). In reality, the probability for taking the car should have
stayed fixed at p(car) = 0.5, and the probability of taking a bus reduced to 0.25 each.
This reduction in the probability of p(car) does not make sense for a decision-maker who
is indifferent to the colour of the bus and is the basis for the criticism. This may not be
immediately relevant for current QRSE models (especially binary ones), but with potential
future applications, for example, in portfolio allocation, this could become an important
consideration. For example, if adding an additional stock to a portfolio which is similar
to an existing stock, it may not be desriable to reduce the likelihood of selecting other
(unrelated) stocks.

3.2. Thermodynamics of Decision-Making

A thermodynamically inspired model of decision-making which explicitly considers
information costs, as well as the incorporation of prior knowledge, is proposed by [4]. The
proposed approach can be seen as a generalisation of the logit function, where the typical
logit function can be recovered as a special case, but in the more general case manages to
avoid the IIA property.

Ortega and Braun [4] represent changing probabilistic states as isothermal transforma-
tions. Given some initial state x ∈ X with initial energy potential φ0[x], the probability of

being in state x is p[x] = e−βφ0 [x]

∑x′∈X e−βφ0 [x
′ ] (from the Boltzmann distribution). Updating state

to f [x] corresponds to adding new potential Δφ0[x]. The transformation requires physical
work, given by the free-energy difference ΔF[ f ]. The free energy difference between the
initial and resulting state is then

ΔF[ f ] = F[ f ]− F[p]

= ∑
x∈X

f [x]Δφ(x) +
1
β ∑

x∈X
f [x] log

(
f [x]
p[x]

)
(11)

which allows the separation of the prior p[x] and the new potential Δφ0[x]. In economic
sense, representing the negative of the new potential as the utility gain, i.e., U(x) =
−Δφ0[x], allows for reasoning about utility maximisation subject to an informational con-
straint, given here as the Kullback-Leibler (KL) divergence from the prior distribution [4].
Golan [43] shows how the KL-divergence naturally arises as a generalisation of Shannon
entropy (of Equation (2)) when considering prior information, and Hafner et al. [44] show
how various objective functions can be seen as functionally equivalent to minimising
a (joint) KL-divergence, even those not directly motivated by the free energy principle.
Such analysis makes the KL-divergence a logical and fundamentally grounded measure of
information acquisition costs, captured as the divergence from a prior distribution.
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Ortega and Stocker [45] then apply this formulation to discrete choice by introducing a
choice set A (space of actions), which leads to the following negative free energy difference,
for a given observation x:

− ΔF[ f [a|x]] = ∑
a∈A

f [a|x]U[a, x]− 1
β ∑

a∈A
f [a|x] log

(
f [a|x]
p[a]

)
(12)

where again a represents a choice (or action), and U the utility for the agent. The first term
of Equation (12) is maximising the expected utility, and the second term is a regularisation
on the cost of information acquisition. Again, in this representation, information cost is
measured as the KL-divergence from the prior distribution.

Taking the first order conditions of Equation (12) and solving for f [a|x] yields

f [a|x] = p[a]e
U[x,a]

T

∑a′∈A p[a′]e
U[a′ ,x]

T

(13)

where we have moved from inverse temperature β to temperature T for notational con-
venience, i.e., T = 1

β . The key formulation here is the separation of the prior probability
p from the utility gain (or the new potential from the initial potential). T then arises as
the Lagrange multiplier for the cost of information acquisition (as opposed to the entropy
constraint of QRSE, described in Section 3.1). We emphasise this aspect in later sections.

Revisiting the IIA property, the incorporation of the prior probabilities in Equation (A7)
can adjust the choices away from the logit equation, and thus managing to avoid IIA. How-
ever, if desired, the free energy model reverts to the typical logit function in the case of
uniform priors, and so this property can be recovered. In economic literature, a similar
model is given by Rational Inattention (R.I.) by [2]. The relationship between R.I. and the
free energy approach of [4,45] is detailed in Appendix C.

4. Model

In this section, we propose an information-theoretic model of decision-making with
prior beliefs in the presence of Smithian competition and market feedback. Given an agent’s
prior beliefs and an observed macroeconomic outcome (such as the distribution of returns),
the model can infer the least biased decisions that would result in such returns. Importantly,
the incorporation of prior beliefs allows for reasoning about the decision-making of the
agent based upon both their prior beliefs and their utility maximisation behaviour.

We develop upon the maximum-entropy model of inference from [5], and the thermo-
dynamic treatment of prior beliefs formalised by [4], as outlined in Section 3.

4.1. Maximum Entropy Component

The proposed approach can be seen as a generalisation of QRSE, allowing for the
incorporation of heterogeneous prior beliefs based on the free-energy principle. The key
element is the information acquisition cost, measured as the KL-divergence which arises
from the free-energy principle and has been shown to provide a fundamentally grounded
application of Bayesian inference [46]. In order to derive decisions f [a|x] for an action or
choice a (e.g., buy, hold or sell) given an observed return x (e.g., a return on investment),
we maximise the expected utility U subject to a constraint on the acquisition of information
measured as the maximal divergence d between the posterior decisions and prior beliefs
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p[a]. As mentioned, d is measured as the KL-divergence, which is the generalised extension
of the original (Shannon) entropy constraint [43] introduced in Equation (2)):

max ∑
a∈A

f [a|x]U[a, x]

subject to ∑
a∈A

f [a|x] log
(

f [a|x]
p[a]

)
≤ d

∑
a∈A

f [a|x] = 1

(14)

The Lagrangian for Equation (14) then becomes

L = ∑
a∈A

f [a|x]U[a, x]− λ

(
∑

a∈A
f [a|x]− 1

)
− T

(
∑

a∈A
f [a|x] log

(
f [a|x]
p[a]

)
− d

)
(15)

There are two distinct modelling views on such a formulation [47–50]. The first as-
sumes that specific constraints are known from the data, for example, a maximal divergence
d may be specified based on actual observations of agent behaviour. The second view,
instead, would consider the Lagrange multiplier T to be a free parameter of the model,
with the constraint d representing an arbitrary maximum value: Thus, this approach would
optimise T in finding the best fit. In this work, we take the second perspective since
underlying decision data is unavailable, and a specific restriction on divergent information
costs should not be enforced. In other words, T is considered to be a free model parameter
corresponding to different information acquisition costs, mapping to different (unknown)
cognitive and information-processing limits d.

Looking at the final term in Equation (15), in the case of homogeneous priors, log p[a]
is a constant which drops out of the solution, which is equivalent to the optimisation
problem of Equation (3), and thus, recovers the original QRSE model. In the general case,
the dependence on log(p[a]) means that T instead serves as the Lagrange multiplier for
the cost of information acquisition. Taking the first order conditions of Equation (15) and
solving for f [a|x] (as shown in Appendix A.2) yields

f [a|x] = 1
ZA|x

p[a]e
U[a,x]

T (16)

we see this as a generalisation of the logit function, which allows for the separation of the
prior beliefs and the agent’s utility function.

In the more general case, p[a] can be heterogeneous for all a. Parameter T therefore
controls the deviations from the prior (rather than from the base case of uniformity), that is,
it controls the cost of information acquisition. Following [4], we observe the following limits

lim
T→∞

f [a|x] = p[a]

lim
T→0,T≥0

f [a|x] = e
U[x,a]

T = max U[x, a]

lim
T→0,T<0

f [a|x] = e
U[x,a]

T = min U[x, a]

(17)

In the limit T → ∞ (i.e., infinite information acquisition costs), the agent just falls
back to their prior beliefs as it becomes impossible to obtain new information. In the
limit T → 0, the agent becomes a perfect utility maximiser (i.e., if information is free to
obtain, the agent could obtain it all and choose the option that best maximises payoff with
probability 1). In the T < 0 case, we see this corresponds to anti-rationality. For economic
decision-making, we can limit temperatures to be non-negative, T ≥ 0, although there
are specific cases where such anti-rationality may be useful (e.g., modelling a pessimistic
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observer or adversarial environments [4]). The relationship between temperature and
utility is visualised in Figure 1.

(a) Temperate vs. Utility (b) Inverse Temperate ( 1
T ) vs. Utility

Figure 1. The effect of decision temperature T on the resulting expected payoffs (a). for the limits
given by Equation (17). The inverse temperature 1

T (b) conveys the same information but may offer a
more useful visualisation due to the continuity.

Crucially, large temperatures (costly acquisition) do not revert to the uniform distribu-
tion (as in the typical QRSE case, unless the prior is uniform), instead reverting to prior
beliefs. This is visualised in Figure 2, and discussed in more detail in Section 4.3.

4.2. Feedback Between Observed Outcomes and Actions

Following [5], we use a joint distribution to model the interaction between the eco-
nomic outcome x, and the action of agents a.

To recover a joint probability, we need to determine f [x] (since f [a, x] = f [a|x] f [x])
which we do with the maximum entropy principle, as shown in Section 3.1. To do this, we
maximise the joint entropy with respect to the marginal probabilities. That is,

L = −
∫

x
f [x] log f [x]dx +

∫
x

f [x]H[A|x]dx − λ

(∫
x

f [x]dx − 1
)

−γ

(∫
x

f [x]xdx − ξ

)
− ρ

⎛⎝∫
x

f [x]
p[a]e

U[a,x]
T − p[ā]e

U[ā,x]
T

ZA|x
xdx − δ

⎞⎠ (18)

with

H[A|x] = − ∑
a∈A

f [a|x] log f [a|x]

= − 1
ZA|x

∑
a∈A

p[a]e
U[a,x]

T

(
log p[a] +

U[a, x]
T

− log ZA|x

) (19)

An important point to be made here is that H[A|x] still measures (Shannon) entropy.
We have seen above how the new definition for f [a|x] uses the KL-divergence as a gener-
alised extension of entropy when incorporating prior information. In Equation (19), we
do not use this divergence for an important reason. In Equation (14) we are measuring
divergence from known prior beliefs, however, now when optimising Equation (18) we
wish to infer decisions from unobserved decision data. This is where the principle of
maximum entropy comes into play, i.e., we wish to maximise the entropy of our new
choice data (which was derived from KL-divergence of prior beliefs), but we do not wish to
perform cross-entropy minimisation as we do not have the true decisions f̄ [a|x]. With this
in mind, we still utilise the principle of maximum entropy as is done in QRSE for inference
to obtain the least biased resulting decisions. This keeps the proposed extensions in the
realm of QRSE, but comparisons to the principle of minimum cross-entropy [51,52] could be
considered in future work particularly when some target distributions are known directly.
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Figure 2. Decision Functions. All cases have equivalent utility functions. Each row has equivalent
temperatures, showing how with matched parameters and utility, having an alternate prior can shift
the decision-makers preference. Each column has different priors, given along the top of the first row
to show how decision-makers decisions change based on their prior beliefs. On the left-hand side,
preference is shifted towards the buying case. Likewise, on the right-hand side, preference is given to
the selling case. The uniform case with equal preference is shown in the middle.

In Equation (18), ξ is known from the mean of the observed macroeconomic outcome,
and so this constraint is used explicitly. This is in contrast to d (and δ) which are unknown
as outlined in Section 4.1. The important distinction with Equation (18) is that the f [a|x]
functions (and H[A|x]) now use the updated expressions for f [a|x], which incorporate
the prior beliefs. Taking the partial derivative of L with respect to f [x], and solving for
f [x] gives

f [x] =
1

ZA
e

H[A|x]−γx−ρx

⎛⎝ p[a]e
U[a,x]

T −p[ā]e
U[ā,x]

T
ZA|x

⎞⎠
(20)

Equation (20) expresses the information acquisition cost in the form of the Lagrange
multiplier T (from Equation (15)), and a competition cost in the form of the multiplier ρ.

As we have a solution for f [a|x] (Equation (16)) and f [x] (Equation (20)) in terms of
prior beliefs and information acquisition costs, we can then derive all other probability
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functions using the Bayes rule. That is, we can obtain f [a, x], f [x|a] and f [a] which in turn
incorporate these prior beliefs/acquisition costs:

f [a, x] = f [a|x] f [x]

=
p[a]e

U[a,x]
T +H[A|x]−γx−ρx

⎛⎝ p[a]e
U[a,x]

T −p[ā]e
U[ā,x]

T
ZA|x

⎞⎠
ZA|xZA

(21)

We can obtain f [a] by marginalising out x from the joint distribution:

f [a] =
∫

x
f [a, x]

=
1

ZA

∫
x

1
ZA|x

p[a]e

U[a,x]
T +H[A|x]−γx−ρx

⎛⎝ p[a]e
U[a,x]

T −p[ā]e
U[ā,x]

T
ZA|x

⎞⎠ (22)

Finally, f [x|a] can then be computed by a direct application of the Bayes rule: f [x|a] =
f [a, x]/ f [a].

Given only an expected average value ξ (and the usual normalisation constraints),
we have derived a joint probability distribution, which maximises the entropy subject
to some information acquisition cost d, along with a competition cost δ. The resulting
distribution free parameters (the Lagrange multipliers) are those which fit most closely to
the true underlying distribution of returns. Thus, we have provided a generalisation of
QRSE, which is fully compatible with the incorporation of prior beliefs.

4.3. Priors and Decisions

The introduced priors affect the conditional probabilities of agent decisions by shifting
focus towards these preferred choices. The introduced priors allow the decision-maker to
place more focus on particular actions if they have been deemed important a priori.

In Section 3.2 we showed how to separate the initial energy potential and new energy
potential for distinguishing prior beliefs and utility functions. It is instructive to interpret
these again as potentials, by setting αa = T log p[a], which allows us to represent the choice
probability as

f [a|x] = 1
ZA|x

e
U[x,a]+αa

T . (23)

Equation (23) shows how α shifts the likelihood based on the prior preferences. An
example of these shifts is visualised in Figure 2. This can be interpreted as placing more
emphasis on actions deemed useful a priori as T increases. The information acquisition
cost component T then controls the sensitivity between the utility and a priori knowledge,
with a high T meaning higher dependence on prior information, and low T indicating a
stronger focus on the utility alone.

The majority of binary QRSE models use a simple linear payoff definition for utility:

U[x, a] = x − μ, U[x, ā] = −(x − μ) .

With this definition, a tunable shift parameter μ serves as the expected fundamental
rate of return. The relationship between μ and the real markets returns ξ (which was used
as a constraint in Equation (7)), serves then as a measure of fulfilled expectations (i.e., if
μ = ξ) or unfulfilled expectations (μ 	= ξ). This implies a symmetric shift parameter μ. As
a specific example, if a = sell and ā = buy, μ = 0.25 means that at x = 0.25, buyers and
sellers will be equally likely to participate in the market, i.e., f [sell|μ] = f [buy|μ] = 0.5.
In this sense, μ can be seen as the indifference point. The symmetry arises from the fact
that f [buy|x] + f [sell|x] = 1. Therefore, in the binary action case, it is possible to find a μ∗

with the uniform priors p = [0.5, 0.5] such that the decision functions will be equivalent
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to μ with any arbitrary priors p = [c, 1 − c], with c ∈ [0, 1]. In this sense, μ can be seen as
encapsulating a prior belief.

However, explicit incorporation of prior beliefs on actions is useful here as it helps to
separate the agents’ expectations in relation to their prior belief (e.g., a higher μ resulted
from needing to change from their past behaviour) and choose the actions for which an
agent should emphasise acquiring more information. The introduced prior beliefs are
strictly known before any inference is performed, whereas μ is the result of the inference
process. The separation of prior beliefs and current expectations is important, as with μ
alone this can not capture an agent’s predisposition prior to performing any information
processing. In addition, this applies more generally to any arbitrary utility functions (as
QRSE is, of course, not limited to the linear shift utility function with μ outlined above), or
when any preference is known about decisions a priori.

Consider also the three action case, A = {buy, hold, sell}, with the same utility
functions as above but with the extra utility for holding being U[x, hold] = 0. We can see
that it would be desirable if buying and selling no longer required this symmetry. The
use of priors can introduce this asymmetry, by providing separate indifference points for
buy/hold and sell/hold. Such asymmetry alters the resulting frequency distribution of
transactions, and may help to explain various trading patterns [16]. The difference of
symmetric and asymmetric buy and sell curves is shown in Figure 3. Figure 3 shows
that such functions could be recovered by introducing a secondary shift parameter μ2.
Parameter μ1 (the original μ) then becomes the indifference point for buy and hold, and
μ2 for sell and hold. This is the method proposed in [30]. Introducing priors into this
case again allows for separation of expectation μ, from prior belief and follows the same
methodology as outlined above for the binary case. Furthermore, if we set p[hold] = 0, we
recover the binary case. This highlights that the standard QRSE with binary actions and
uniform priors is a special case of the ternary action case with heterogeneous priors.

Figure 3. In the three-action case, the priors can introduce asymmetries by biasing the decision
functions. This allows for separate indifferent points (right) vs. the uniform priors implying a single
intersect (left).

From this, we can see how introducing priors alters the decision functions by allowing
agents to focus on suitable a priori candidate actions. We have also shown how the binary
case of a utility function with a shift parameter can be formalised to achieve equivalent
results with a uniform prior and altered shift parameter. However, in the multi-action case,
the priors allow for asymmetry, and in general, the priors may help with the optimisation
process (by providing an alternate initial configuration). This approach also allows for
the explicit separation of the two factors affecting an agent’s choice, by distinguishing the
contributions of prior beliefs and the utility maximisation.
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4.4. Rolling Prior Beliefs

The proposed extension is general and allows for the incorporation of any form of
prior beliefs, and in this section, we illustrate an example where the priors at time t are set
as the resulting marginal probabilities from the previous time t − 1:

pt[a] = ft−1[a]

i.e., the prior belief pt[a] is set as the previous marginal probability ft−1[a] for taking action
a (at t = 0, we use a uniform prior). Using the previous marginal probability as a prior
introduces an “information-switching” cost, where T relates to the divergence from the
previous actions, resulting in the following decision function:

ft[a|x] =
1

ZA|x
ft−1[a]e

U[x,a]
T

That is, acquiring information on top of the previous knowledge comes at a cost
(controlled by T). When the cost of information acquisition is high (large T), the agent
reverts to the previously learnt knowledge (i.e., the marginal probabilities from t − 1). In
contrast, when T is extremely small, the agent is able to acquire new information allowing
deviation from their prior knowledge at t − 1. In the special case of T = 0, information is
free, and the agent can become a perfect utility maximiser.

Given the expression for ft[a|x], we obtain the following solution for ft[x]:

ft[x] =
1

ZA
e

H[A|x]−γx−ρx

⎛⎝ ft−1 [a]e
U[a,x]

T − ft−1 [ā]e
U[ā,x]

T
ZA|x

⎞⎠

from which we can derive the joint and other probabilities, as shown in Section 4.1. This is
exemplified in Section 5, in which we examine various priors for time-dependent applications.

5. Australian Housing Market

To exemplify the model, we use the Greater Sydney house price dataset provided by
SIRCA-CoreLogic and utilised in [53,54]. This dataset is outlined in Appendix B. In [54],
an agent-based model is used to explain and forecast house price trends and movement
patterns as arising from the individual agent’s buy and sell decisions. Furthermore, the
ABM implemented bounded rational agents driven by social influences (e.g., fear of missing
out) and partial information about submarkets. While the resulting dynamics produced by
the ABM accurately match the actual price trends, the decision-making mechanism and
the bounded rationality of the agents were not theoretically grounded. In the following
section, we aim to explain how the bounded rational behaviour of the agents operating in
the housing market can be aligned with the model proposed in this study based on prior
beliefs of agents and Smithian competition within the market. With this example, Smithian
competition can be seen as agent decisions (buying or selling) affecting returns for an area,
and agents decisions also being made based on returns for particular areas, i.e., a feedback
loop is assumed in the market.

In particular, we want to explore what role an agent’s prior beliefs play in their
resulting decisions. For example, given equivalent configurations (e.g., utility and returns)
and different prior knowledge, how would the agent’s behaviour differ? Furthermore,
we would like to explore the rationality of the agents, measured in terms of the cost
of information acquisition, in order to see how the agents behave. For example, are
agents predominantly reliant on past knowledge in times of market growth, resulting in
unexpected downturns from mismanaged agent expectations? Alternatively, in deciding if
it is a good time to buy or sell, the agents may balance their past knowledge with utility
and current returns (i.e., the past knowledge would not be a predominant factor). The
proposed model is particularly suited for answering such questions due to the low number
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of free (and microeconomically) interpretable parameters, as well as the explicit separation
of prior beliefs (as opposed to previous QRSE approaches). Our goal is not to infer the
“best” prior, but rather to explore and compare dynamics resulting from various priors.
In addition, we aim to verify the conjecture that during crises, and periods exhibiting
non-linear market dynamics, macroeconomic conditions may become more heterogeneous,
and thus, non-uniform priors may outperform uniform ones in such times.

5.1. Model

We use our model of binary actions with prior beliefs introduced in Section 4.1, with
actions A = {buy, sell}. The decision functions are then given by

ft[buy|x] = 1
Zt,x

pt[buy]e
U[x,buy]

T

ft[sell|x] = 1
Zt,x

pt[sell]e
U[x,sell]

T

Zt,x = ft[buy|x] + ft[sell|x]

(24)

where we explore a range of pt (prior at time t) functions, discussing their effects on
decision-making and resulting probability distributions.

5.1.1. Priors

While the proposed approach is capable of incorporating any form of prior belief on
the choice set A, below we outline several example priors which we explore. In exploring
these priors, we highlight differences in resulting agent posterior decisions based on
various prior beliefs.

Uniform

We begin with a uniform prior. The uniform probability represents the default case of
QRSE, where each action has an equally weighted prior. In the binary case, this corresponds
to pt[a] = 0.5 for all t and a. This corresponds to an agent who is agnostic to the available
actions before observing U.

Previous

Next we look at a “previous” prior. The previous prior uses the marginal action
probabilities from the previous time step as priors to the current timestep. This means at
time t, ft[a] plays the role of a posterior probability of making a decision, however, at time
t + 1 ft[a] now serves as the empirical prior. This is the example introduced in Section 4.4.
This corresponds to pt[a] = ft−1[a] for t > 0, and pt[a] = 0.5 for t = 0. The previous
prior represents an empirical prior where the decision is conditioned on previous market
information, where T controls the level of influence from the previous market stage (in our
case, each year). A high T means high influence from the past market state, whereas low T
means focusing on current market conditions alone (as measured by U). In the extreme
case of T = ∞, a backward looking expectations [55] approach is recovered where decisions
are assumed to be a function purely of past decisions, however, in the more general case
with T < ∞, U adjusts the decisions based on the current market state.

Mean

We also consider a mean prior. The mean prior uses the average marginal action

probability from all previous timesteps. This corresponds to pt[a] =
∑t−1

t′=0
ft′ [a]

t , for t > 0,
and pt[a] = 0.5 for t = 0. This can be seen as belief evolution, where over time, the previous
decisions help build the current prior (modulated by T) at each stage.
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Extreme Priors

As two further examples, we introduce extreme priors (more for visualisation/discussion
sake as opposed to being particularly useful). The extreme buy prior corresponds to a
strong prior preference for the buy action, pt[buy] = 0.99, pt[sell] = 0.01, for all t. Likewise,
the extreme sell case is simply the inverse of the buy case, a strong prior preference for
selling, i.e., pt[sell] = 0.99, pt[buy] = 0.01, for all t.

However, the formulations provided above by no means represent an exhaustive set
of possible priors. For example, Genewein et al. [56] discuss “optimal” priors, which draws
parallels with rate-distortion theory and can be seen as building abstractions of decisions
(see Appendix C). Adaptive expectations [57] are discussed in [58–60], where priors could
be partially adjusted based on some strength term (λE), where the strength term adjusts
the contribution from some error. For example, an adaptive prior could be represented as
pt = pt−1 + λ(pt−1 − p̂t−1), where p̂t−1 is the actual known likelihood of actions from the
previous time period. With our specific housing market data, we do not have p̂, i.e., we
do not have the true buying and selling likelihoods, but if known, such information could
be used to adjust future beliefs, i.e., over time the adaptive priors would adjust decisions
based on the previously observed likelihoods (controlled by λ). The proposed approach
makes no assumption about the forms of prior beliefs, so the ideas outlined above can be
incorporated into the method outlined here by adjusting the definition of pt.

5.2. Results

We fit the distributions with the various priors outlined in Section 5.1.1 to the actual
underlying return data, to estimate how well we are able to capture this distribution
and explore the effects that these priors have on the resulting distribution. The results
are presented in Table 1, which summarises the likelihood and the percentage of the
explained variability (measured as Information Distinguishability (I.D.) [61]) compared to
the underlying distribution. We see that there are no large differences in general between
the priors in terms of the explained variability. However, the goal here is not to argue
for the “best” prior fitting the dataset in terms of the explained variability, but rather to
explore differences in the agent behaviour based on the prior knowledge (using the housing
dataset as an example). Thus, the resulting fitted distributions f [x], which are visualised in
Figure A5, are more interesting. We observe how altering prior beliefs result in different
resulting distributions and discuss how the incorporation of prior beliefs allows for a
separation of the agents’ utility maximisation behaviour from their previous knowledge.
From Figure A5 we can also see how the priors can alter the optimisation process, for
example, a good (bad) prior may help (harm) the optimisation by providing alternate
initial configurations. The extreme priors can be seen as harmful, for example, in 2012
where the resulting distributions are unable to capture the true underlying distribution.
The reason for this is being unable to find suitable T to enable appropriate divergence from
the extreme prior beliefs. In contrast, well selected priors can help the optimisation process
and result in better fitting distributions, such as in 2016 where the decisions resulting from
the mean and previous prior fit the true data significantly better than the uniform prior.

The agents’ decision functions f [a|x] are visualised in Figure A7 which makes it clear
how each prior adjusts the resulting probability of taking an action (and thus, alters the
decisions). From this, we can see different probabilistic behaviours despite having equiva-
lent utility functions and optimisation processes due to varying prior beliefs. For example,
with the extreme priors, we observe a clear shift towards the strongly preferred action.

Figure A6 shows the resulting joint distributions f [a, x], combining the results of
Figures A5 and A7, since f [a, x] = f [a|x] f [x]. Looking at the second row of each plot in
Figure A6, we can see a visual representation of how the joint probabilities adjust over time
when using the previous year as the prior belief.
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Table 1. Resuling likelihood and percentage of variability explained for each year, when compared to
the actual underlying distribution (i.e., those given in Figure A2). Optimisation is done by minimising
the negative log-likelihood between the resulting distributions and the actual distribution of returns.

Uniform Previous Mean Extreme Buy Extreme Sell

2006 1082 (93%) 1082 (93%) 1082 (93%) 885 (59%) 1005 (74%)
2007 1089 (92%) 1089 (92%) 1090 (90%) 939 (68%) 1042 (83%)
2008 998 (95%) 905 (78%) 998 (95%) 998 (95%) 998 (95%)
2009 918 (96%) 918 (96%) 866 (88%) 880 (85%) 875 (85%)
2010 857 (95%) 857 (95%) 857 (95%) 740 (62%) 857 (95%)
2011 1045 (92%) 1044 (91%) 1047 (92%) 1045 (91%) 873 (62%)
2012 1067 (96%) 1067 (96%) 1067 (96%) 162 (6%) 142 (8%)
2013 1080 (90%) 1076 (90%) 1083 (90%) 983 (77%) 1075 (91%)
2014 938 (98%) 851 (74%) 938 (98%) 875 (71%) 938 (98%)
2015 860 (96%) 860 (96%) 860 (96%) 33 (10%) 808 (71%)
2016 873 (84%) 932 (95%) 908 (86%) 817 (70%) 932 (95%)
2017 916 (97%) 916 (97%) 916 (97%) 812 (76%) 916 (97%)
2018 989 (88%) 932 (85%) 933 (85%) 955 (82%) 998 (91%)
2019 1101 (92%) 1103 (92%) 1067 (94%) 1101 (92%) 952 (76%)

The resulting marginal action probabilities are visualised in Figure 4, where we
observe clear market peaks and dips which match the actual returns of Figure 5, aligning
with the general trends observed in Figure A1. The priors work on either increasing or
decreasing the resulting marginal probabilities. For example, in the extreme sell case we
see much higher resulting probabilities for f [sell], likewise in the extreme buying case, we
see much higher probabilities for f [buy]. The general peaks/dips remain in both cases.
Overall, this shows how the prior belief can influence the resulting marginal probabilities.

Figure 4. Resulting marginal probabilities f [a] for varying priors. Green represents f [buy], and red
represents f [sell].

Figure 5. Real Average Returns.

Using the previous year’s marginal probability as a prior for the current year has
a smoothing effect on the resulting year-to-year marginal probabilities. Comparing the
previous prior with the uniform prior in Figure 4, we observe, particularly during 2015–
2018, a more defined/well-behaved step-off in f [sell]. This indicates the slowing of returns
during these years. At the same time, the uniform priors are more affected by local noise,
potentially overfitting to only the current time period, since no consideration can be given to

498



Entropy 2021, 23, 669

the past behaviour of the market. This results in larger fluctuations in the agent behaviour
as they have no concept of market history.

5.3. Role of Parameters

One of the benefits of QRSE is the low number of free parameters which results
in a relatively interpretable model. There are four free parameters in the typical QRSE
distribution: T, μ, ρ and γ, each with a corresponding microeconomic foundation. In
this section, we discuss the two main parameters of interest in this work: The decision
temperature T and agent expectations μ, and the effect that prior beliefs have on the
resulting values (and interpretation) of these parameters. We also include discussion on
the impact of decisions on resulting outcomes ρ and skewness of the resulting distributions
γ in Appendix D, since ρ and γ were less affected by the introduced extensions. There is an
additional parameter ξ (shown in Figure 5), which is not a free parameter, representing the
mean of the actual returns and serving as a constraint on the mean outcome in Equation (7).

5.3.1. Decision Temperature

The decision temperature T controls the level of rationality and deviations from an
agent’s prior beliefs. An extremely high temperature corresponds to high information
acquisition cost and results in choosing actions simply based on the prior belief. In contrast,
an extremely low temperature corresponds to utility maximisation, and in the case of free
information (T = 0) a perfect utility maximiser is recovered (i.e., homo economicus). In
the housing example used here, T relates to the ability of an agent to learn all the required
knowledge of the market, i.e. the actual profit rates for various areas. With T = 0, the
agent has perfect knowledge of the current market profitability. With T > 0, this represents
some friction with acquiring such information, e.g., it can be difficult to gather all the
required information to make an informed choice due to, for example, search costs. From
a psychological perspective, T can be a measure of the “just-noticeable difference” [62],
meaning microeconomically, T is related to the ability of an agent to observe quantitative
differences in resulting choices. High T means the agent is unable to distinguish choices
based on U, due to high information-processing costs, so instead acts according to their
previously learnt knowledge.

Since T is related to the prior, we see differences in the resulting values visualised in
Figure 6. What can be observed from looking at the general trends of T is that it peaks in
the years with high average growth (large ξ), such as 2015, as these years correspond to
a growing market, and agents require less attention to market conditions, although this
depends on the prior used.

Figure 6. Decision Temperature.

Looking at the previous marginal probability as the prior (the orange profile), we
observe in the build-up phase to 2015 increasing decision temperatures corresponding to
agents acting on these previous beliefs. As these beliefs were also positive (i.e., agents ex-
pected favourable returns), these large returns can be explained by the agents continuously
expecting this growth. This pattern changed in 2016, when the market “reverses”: Now
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the agents must focus instead on their current utility since their prior beliefs no longer
reflect the current market state. Such market reversals are categorised by low decision
temperatures, since using the previous action probabilities now becomes misinformative
(in contrast to the “building”/trend-following stages). This indicates an increased focus on
agent rationality in times of market reversals. The incorporation of prior beliefs (particu-
larly using the previous priors) is useful as it allows for the discussion to be extended in the
temporal sense (as is done here). In other words, we can consider “building” the agent’s
beliefs as possible underlying causes for market collapses and relating the rationality of
agents to the relative state of the market.

5.3.2. Agent Expectations

In microeconomic terms, parameter μ captures the agent’s expectations. A large μ
corresponds to an optimistic agent, who is expecting high returns from the market. In
contrast, a low μ corresponds to a pessimistic agent, who is expecting poor returns from
the market. As this works to shift the decision functions, there is a relation between the
prior and parameter μ, since the prior also works as shifting preferences towards a priori
preferred actions as shown in Section 4.3. There is also a relationship between μ and γ
(outlined in Appendix D.2), since γ can help to account for unfulfilled agent expectations
by adjusting the skew of the resulting distributions.

Generally, the agent’s beliefs are within the ±2.5% range (expecting between a 2.5%
quarterly growth or 2.5% dip), which corresponds to the bulk of the area under the curve
in Figure A2. This means that the agent’s expectations develop in accordance with actual
market conditions, as can be seen in Figure 7.

Figure 7. Agent Expectations vs. Actual Returns (in black).

The extreme priors result in larger absolute values of μ since larger shifts are needed
to offset the (perhaps) poor prior beliefs. This can be seen in 2014 particularly, where the
extreme sell prior has μ = 10%.

The values of previous prior μ tend to have a larger magnitude than the uniform
priors, since as mentioned, these priors can capture build-up of beliefs (and as such some
“trend-following” can be captured). For example, the year 2008 saw the lowest average
returns ξ, as shown in Figure 5. Using the previous prior, the agents’ expectations correctly
match the sign of the actual returns in 2008 (i.e., agents correctly expected a decline in
house prices). This results in more pessimistic agents than those using the uniform prior
since they can reflect on the market performance from 2007. Likewise, during 2013–2015,
the values of previous prior μ become larger than those for the uniform prior, since they are
building on the previous years expectations which were all positive. In contrast, the period
2015–2017 saw a steady decline in agents expectations of returns with previous priors,
reflecting the overall market state which appeared to be in a downward trend. The previous
priors were able to capture this trend. Using the uniform priors, the year 2016 had a higher
μ than the market peak of 2015. The reason is that uniform priors are unable to capture the
fact that the previous timestep had higher (or lower) returns than the current timestep. In
this case, the discussion can not be extended in the temporal sense of “building" on beliefs,
and agents may miss such crucial temporal information without the incorporation of prior
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beliefs. This is evidenced by the significantly lower performance of the uniform prior in
2016 in comparison to the previous prior, as shown in Table 1, highlighting the usefulness
of non-uniform (and temporal-based) priors in times of market crises and reversals.

5.4. Temporal Effects of Data Granularity on Decisions

In Section 5.2, we have analysed agent decisions over the previous 15 years, where
decisions were grouped annually. This level of granularity was chosen to examine different
agent behaviour from year to year. However, other levels of grouping can also be explored
to give an insight into the impact of noise on the inference process. For example, an
extremely granular grouping will likely result in additional noise in the decision-making
process, which may or may not be impacted by the incorporation of prior beliefs. Likewise,
a low granular grouping can be seen as “pre-smoothed”, which may work in a similar fash-
ion to the incorporation of prior temporal-based beliefs at a higher granularity, which we
have seen can smooth the resulting decisions. In this section, we examine the usefulness of
prior beliefs in such situations, providing comparisons with alternate data representations.

Two additional levels of granularity are considered, one more granular and one less
granular than the annual groupings introduced in Section 5.2. We look at quarterly data, as
well as aggregate groupings based on market state. In doing so, we have three levels for cate-
gorising agent behaviour: Quarterly, annually, and aggregated market state. This allows us to
compare resulting agent decisions across different temporal scales, comparing the differences
generated by the incorporation of prior beliefs and various data-level modifications.

The aggregate market state data groups years into “terms”, which correspond with
various “stages” of the market. These are growth and crash phases, highlighted as “Pre
Crash” (Mid 2006–2007), “Crash” (2008), “Recovery 1” (2009–Mid 2011), “Small Crash”
(Mid 2011–Mid 2012), “Recovery 2” (Mid 2012–Mid 2018) and “Recent Crash” (Mid 2018 to
2020). The overall market trends can be visualised in Figure A1 to see market returns for
each corresponding “term”.

The resulting decision likelihoods f [A] are presented in Figure 8. In analysing the
differences in resulting marginal probabilities between the various granularities, we can
observe the impact from data-level modifications, i.e., performing inference on a larger time
scale for macroeconomic observations, and how the incorporation of prior information
affects such results. In Section 5.2 we have mentioned the previous and mean priors
can have a smoothing effect on resulting decisions, in this sense, the lower granularity
groupings (the market state based grouping) can also be seen as a smoothed version of
the macroeconomic outcomes, i.e. pre-smoothing the data by considering a much larger
interval composed of several years for groupings. We see that the incorporation of prior
information helps preserve some important information in such settings. Looking at
the left-most column of Figure 8 (the uniform priors), we can see the overall “shape” of
the peaks and dips in preferences f [a] is lost with aggregate groupings. For example,
in the quarterly breakdown, there is a clear preference for selling in the later region in
the range 2014–2017, corresponding to the highest growing market, which is labelled as
“Recovery 2” in the aggregated version. When considering the “Recovery 2” with uniform
priors, such a clear preference is lost, and the “Pre Crash” and “Initial Recovery” have a
higher corresponding preference. This is because the agents can not separate past market
information from the current market state and act purely based on the current utility. In
contrast, with both the mean and the previous prior, such overall trends are preserved
across the various granularities since agents can distinguish favourable environments when
compared with previous market states (as captured by their prior beliefs). This additional
temporal insight provides an important consideration and shows that even with various
data-level smoothing or preprocessing (i.e., considering alternate data groupings) the
prior information remains useful and highlights various market states and corresponding
agent preferences.
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(a) Quarter

(b) Annual

(c) Terms

Figure 8. f [a] for varying granularities.

A key takeaway from this exploration is that the potential for temporal analysis
introduced by the prior beliefs provides additional insights into decision-making. These
insights can not be generated by simple data-level modifications. Furthermore, the decision
temperature T provides a way to modulate market state changes when considering agent
decision-making.

6. Discussion and Conclusions

Despite many well-founded doubts of perfect rationality in decision-making, agents
are often still modelled as perfect utility maximisers. In this paper, we proposed an
approach for inference of agent choice based on prior beliefs and market feedback, in which
agents may deviate from the assumption of perfect rationality.

The main contribution of this work is a theoretically grounded method for the incor-
poration of an agent’s prior knowledge in the inference of agent decisions. This is achieved
by extending a maximum entropy model of statistical equilibrium (specifically, Quantal
Response Statistical Equilibrium, QRSE), and introducing bounds on the agent processing
abilities, measured as the KL-divergence from their prior beliefs. The proposed model can
be seen as a generalization of QRSE, where prior preferences across an action set do not
necessarily have to be uniform. However, when uniform prior preferences are assumed, the
typical QRSE model is recovered. The result is an approach that can successfully infer least
biased agent choices, and produce a distribution of outcomes matching that of the actual
observed macroeconomic outcomes when individual choice level data is unobserved.

In the proposed approach, the agent rationality can vary from acting purely on prior
beliefs, to perfect utility maximisation behaviour, by altering the decision temperature.
Low decision temperatures correspond to rational actors, while high decision temperatures
represent a high cost of information acquisition and, thus, revert to prior beliefs. We
showed how varying an agent’s prior belief altered the resulting decisions and behaviour
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of agents, even those with equivalent utility functions. Importantly, the incorporation
of prior beliefs into the decision-making framework allowed the separation of two key
elements: The agent’s utility maximisation, and the contribution of the agent’s past beliefs.
This separation allowed for a discussion on the decision-making process in a temporal
sense, being able to refer to the previous decisions. This allows for investigation into the
building of beliefs over time, elucidating resulting microeconomic foundations in terms of
the underlying parameters.

It is worth pointing out some parallels with, and differences from, the frameworks
of embodied intelligence and information-driven (guided) self-organisation, in which
embodiment is seen as a fundamental principle for the organisation of biological and
cognitive systems [63–66]. Similar to these approaches, we consider information-processing
as a dynamic phenomenon and treat information as a quantity that flows between the
agent and its environment. As a result, an adaptive decision-making behaviour emerges
from these interactions under some constraints. Maximisation of potential information
flows is often proposed as a universal utility for such emergent agent behaviour, guiding
and shaping relevant decisions and actions within the perception-action loops [67–70].
Importantly, these studies incorporate a trade-off between minimising generic and task-
independent information-processing costs and maximising expected utility, following the
tradition of information bottleneck [71].

In our approach, we instead consider specific information acquisition costs incurred
when the agents need to update their relevant beliefs in the presence of (Smithian) compe-
tition and market feedback. The adopted thermodynamic treatment of decision-making
allows us to interpret relevant economic parameters in physical terms, e.g., agent’s decision
temperature T, the strength of negative feedback ρ, and skewness of the resulting energy
distribution γ. Interestingly, the decision temperature appears in our formalism as the
Lagrange multiplier of the information cost incurred when switching posterior and prior
beliefs (KL-divergence). The KL-divergence can be interpreted as the expected excess
code-length that is needed if a non-optimal code that was optimal for the prior (outdated)
belief is used instead of an optimal code based on the posterior (correct) belief. Thus, the
decision temperature modulates the inference problem of determining the true distribution
given new evidence, in a forward time direction [72]. Moreover, the thermodynamic time
arrow (asymmetry) is maintained only when decision temperatures are non-zero.

We demonstrated the applicability of the method using actual Australian housing
data, showing how the incorporation of prior knowledge can result in agents building on
past beliefs. In particular, the agent focus can be shown to shift from utility maximisation
to acting on previous knowledge. In other words, during the periods when the market has
been performing well, the agents were shown to become overly optimistic based on the
past performance.

The generality of the proposed approach makes it useful for incorporating any form
of prior information on the agent’s choice set. Moreover, we have shown that the default
QRSE is a special case of the proposed extension with uniform (i.e., uninformative) priors.
Therefore, the proposed approach can be seen as an extension of QRSE, which accounts
for prior agent beliefs based on information acquisition costs. As the QRSE framework
continues to be expanded, the generalised model proposed here could become an important
approach. Particularly, this would be useful whenever prior knowledge on agent decisions
is known, as well as in multi-action cases when the IIA property of the general logit function
is undesirable. Other relevant applications include scenarios with multiple time periods,
allowing for a detailed temporal analysis and exploration of the cost of switching between
equilibria (measured as an information acquisition cost from prior beliefs).
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Appendix A. Derivations

Appendix A.1. Decision Duality

There are two main perspectives, the first is of the agent performing actions within
the system, and the second is of the system observer [29].

Each of the two perspectives allows to capture the uncertainty faced by either the
actor or the observer, by imposing a constraint on entropy. In this section, we outline
the duality that arises from these perspectives, showing that a duality exists between
maximum entropy models, and entropy constrained models [7]. Additional discussion on
such perspectives is given in [21].

Modelling the actor corresponds to maximising the expected utility subject to a fixed
entropy constraint. This is the method outlined in Section 3.1.1. In this case, the agent
can be seen as a boundedly rational decision-maker, in that they might not have all of the
information required to make a perfectly rational choice.

The alternate perspective, modelling an observer, corresponds to maximising the
entropy of the decisions subject to a fixed expected utility. With this perspective, we
capture modelling uncertainty from the observer. The observers problem is formulated
as follows

max− ∑
a∈A

f [a|x] log f [a|x]

subject to ∑
a∈A

f [a|x] = 1

∑
a∈A

f [a|x]U[a, x] ≥ Umin

(A1)

where Umin represents the minimum expected utility. In order to see the duality of
Equations (A1) and (1), we formulate the following Lagrangian for converting
Equation (A1) into an unconstrained optimization problem.

L = − ∑
a∈A

f [a|x] log f [a|x]− λ

(
∑

a∈A
f [a|x]− 1

)
+ β

(
∑

a∈A
f [a|x]U[a, x]− Umin

)
(A2)

where again, taking the first order conditions and solving for f [a|x] yields

f [a|x] = 1
Z

eβU[a,x] (A3)

We can see Equation (A3) is equivalent with Equation (4) with β = 1
T , which highlights

an important dualism between the two perspectives.
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Appendix A.2. Decision Function

By setting the partial derivative of the unconstrained optimisation problem given in
Equation (15) with respect to f [a|x] to 0, we can obtain the following definition for f [a|x]:

dL
f [a|x] = U[a, x]− λ − T log

(
f [a|x]
p[a]

)
= 0

f [a|x] = e
U[a,x]

T −λ+log p[a]

(A4)

and, using the normalisation constraint ∑a∈A f [a|x] = 1, we obtain the following deci-
sion function

f [a|x] = 1
ZA|x

e
U[a,x]

T +log p[a]

=
1

ZA|x
p[a]e

U[a,x]
T

(A5)

with the partition function ZA|x = ∑a′∈A p[a′]e
U[a′ ,x]

T .

Appendix B. Australian Housing Market Data

Data from 2006–2020 is used. Data is split into individual years. We use the rolling
median price for each area and then measure the quarterly percentage growth rate for
the areas. The month-to-month percentage changes are visualised in Figure A1. The
distributions of the returns are visualised in Figure A2.

Figure A1. Quarterly returns in the Sydney housing market.
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Figure A2. Density plots of returns grouped by year. We can see each year follows a different shape,
but shows some striking regularities representing a statistical equilibrium.

Appendix C. Relation to Rational Inattention

In his seminal work, [2] outlined rational inattention “based on the idea that indi-
vidual people have limited capacity for processing information”. This work introduced
information-processing constraints into the macroeconomic literature, using mutual infor-
mation as a measure of such information costs.

Of particular interest are the developments of [3] who showed how to apply rational
inattention (RI) to discrete decision-making. The key contribution was the modification
to the logit function that arises from considering a cost to decision-makers from deviat-
ing from prior knowledge. In this section, we highlight the similarities of R.I. with the
thermodynamic approach of [4] and the work proposed here.

The problem to be solved is formulated as follows. A utility-maximising agent must
make a discrete choice, while it is costly to acquire information about the options A available:

max f [a, x] ∑
a∈A

∫
x

f [a, x]U[a, x]dx − T

(
− ∑

a∈A
f [a, x] log(

f [a, x]
p[x] f [a]

)

)
subject to ∑

a∈A
f [a|x] = 1

(A6)

where the first term is the expected utility, and the second a cost of information (following
Sims [2], the mutual information). We see this as a similar setup to that of [4], which also
corresponds to maximising the expected utility subject to an information cost, however,
the information cost in [4] is instead measured as the KL-divergence. A key difference
between the two is that Equation (A6) adds a dependence on f [a] into the denominator of
the information cost term. We can take the first order conditions of the resulting Lagrangian
for (A6) and solve for f [a|x], yielding:

f [a|x] = e
U(a,x)

T +log( f [a])

∑a′∈A e
U(a′ ,x)

T +log( f [a′ ])
=

f [a]e
U(a,x)

T

∑a′∈A f [a′]e
U(a′ ,x)

T

(A7)
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which is not yet fully solved, as there is a dependence on the unconditional probability f [a].
Since f [a] =

∫
x f [a|x]p[x]dx, f [a] depends on f [a|x], and f [a|x] depends on f [a], this must

(generally) be solved numerically, for example, with the Blahut–Arimoto algorithm by first
making a guess for f [a] and then iterating from there (see Caplin et al. [73] or Matějka
and McKay [3] for solutions). It is for this reason, we utilise the configuration of [4] for
the decision-making component, which depends only on the prior probabilities, and not
the unconditional action probabilities f [a] meaning an analytical solution can be obtained.
However, the R.I. framework can be seen as equivalent to choosing an “optimal” prior
in the free energy framework of [4], as both can be seen as applications of rate-distortion
theory [56].

Further discussion on the relationship between R.I. and QRSE is given in [30].

Appendix D. Additional Parameters

While μ and T are the main parameters of interest in this work, since they have a
direct contribution to the modified decision function introduced, ρ and γ are still important,
although to a lesser extent as they are indirectly impacted. ρ is the Lagrange multiplier for
the competition constraint, and γ controls the skewness of the resulting distribution.

Appendix D.1. Impact of Decisions on Outcomes

Parameter ρ measures the impact of individual decisions on housing prices. A large
ρ corresponds to a highly effective market (high impact of actions on the response). In
contrast, a low ρ corresponds to a weaker market response, and thus, lower market
effectiveness. Parameter ρ, therefore, corresponds to the strength of the negative feedback
mechanism, with the case of ρ = 0 implying no market feedback (i.e., no impact on the
outcome based on the actions). In all cases, we see relatively large ρ’s, peaking in 2013
and 2019, indicating the presence of a well-functioning feedback loop across the years. We
see little variation between the uniform, previous, and mean prior in Figure A3, perhaps
drawn from the fact the priors work as linear weightings in the difference between the
conditional action probabilities, as shown in Equation (20).

Figure A3. Competition.

Appendix D.2. Skewness

The parameter γ affects the skew of the resulting exponential distribution. This skew
arises from (potentially) unfulfilled agent expectations, i.e., where μ 	= ξ [21]. Parameter γ,
therefore, is a measure of skewness in the binary action case. In the asymmetric multi-action
QRSE case, γ is replaced by alternate μ’s explaining such skew. As mentioned, the priors
can also introduce such a skew (without the need for a γ). This is shown in the extreme buy
γ in Figure A4 which was almost always near zero, as the buying preference already creates
the skew needed to describe the underlying distribution (i.e., the skewness was already
explained by p). In contrast, extreme sell needs small γ’s to switch their (incorrect) skew.
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Figure A4. Skewness.

Negative γ corresponds to positive skewness, and positive γ corresponds to negative
skewness. In most cases here, we see (at least slightly) positively skewed distributions
(resulting in negative γ’s), with the exception of 2019, which is negatively skewed, as can
be verified in Figure A5.

Generally, γ’s for the mean, previous, and uniform priors follow similar paths, except
for the 2013–2016 years. In 2014 and 2016, γ’s for the previous priors differs from the other
priors. This can be explained by the fact that in both cases, the prior had a strong sell
preference (shown in Figure 4), meaning an adjusted γ was needed to capture the current
distributions shift correctly (and offset the influence of the prior).

Figure A5. Resulting fitted marginals distributions f [x] for each year. Each coloured line represents
a different prior (with the legend given in the top left). The blue bars show the (discretized) actual
return distribution.
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Appendix E. Probability Plots

In this section, we provide the resulting probability plots for f [x] (Figure A5), f [a, x]
(Figure A6), and f [a|x] (Figure A7) across all years analysed.

Figure A6. Resulting Joint Distributions. Red lines represent f [sell, x], and green lines represent f [buy, x]. Each plot from top to
bottom shows: Uniform, previous, mean and extreme buy and extreme sell priors (in that order).
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Figure A7. Decision functions for selling. Buying curves are excluded as they are simply the
complement (1 − sell). The green lines represent the extreme buy a priori preference, which means
the resulting probabilities of selling are shifted far to the right, i.e., the majority of the area comprises
buying actions, and only the extreme positive growth rates for sell. In contrast, the red lines represent
the sell preference, which “pulls” the area to the left, resulting in a strong resulting conditional
preference for selling.
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Abstract: Flash crashes in financial markets have become increasingly important, attracting attention
from financial regulators, market makers as well as from the media and the broader audience.
Systemic risk and the propagation of shocks in financial markets is also a topic of great relevance
that has attracted increasing attention in recent years. In the present work, we bridge the gap
between these two topics with an in-depth investigation of the systemic risk structure of co-crashes
in high frequency trading. We find that large co-crashes are systemic in their nature and differ from
small ones. We demonstrate that there is a phase transition between co-crashes of small and large
sizes, where the former involves mostly illiquid stocks, while large and liquid stocks are the most
represented and central in the latter. This suggests that systemic effects and shock propagation
might be triggered by simultaneous withdrawals or movement of liquidity by HFTs, arbitrageurs
and market makers with cross-asset exposures.

Keywords: flash crash; systemic risk; financial networks; high frequency trading; market microstructure;
phase transition; criticality

1. Introduction

Flash crashes in financial markets can be defined as extreme changes in the price of one
or multiple assets within a short interval of time. These have become increasingly relevant
for practitioners and, in particular, market makers whilst being increasingly studied and
reported in the quantitative finance literature.

The most notorious flash crash is likely that of 6 May 2010, which involved the major
U.S. stock indices (S&P, DJIA, and NASDAQ composite) and caused a ≈9% drop in the
DJIA in the 36 min it lasted for. This event led to a variety of empirical and theoretical
papers trying to understand the event and its causes, with the aim to shed light on other
black swan events too (up/down crashes). High frequency traders are at the center of
interest in a large portion of this literature; hence, we report a brief summary of their role
in markets and its regulatory concerns.

It has been shown that HFT market players contribute to price efficiency and tighter
spreads, thereby improving the price discovery process. These players and electronic
trading as a whole have become increasingly dominant in recent years to the point of
constituting a large portion of the traded volume in financial markets. On the other hand,
some characteristics of HFT players have caused other market players to raise concerns, as
the run to incredibly fast execution leaves many behind and allows HFTs to front run other
players [1]. The ability of HFTs to process information faster than other players leads to
adverse selection and its fixed cost to a size advantage for larger players, which might hurt
the overall welfare of market participants [2]. It can now perhaps be argued that the run to
faster execution is going beyond price efficiency, which benefits investors and toward an
unstable price process driven by competition between large firms. This is supported by a
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large body of literature on flash crashes, which places HFTs at the center of some disruptive
systemic events, as discussed below.

The SEC’s report on the flash crash of May 6th [3] finds that most market participants
automatically halted their trading due to hard risk constraints triggered by the sudden
price change, while some HFT firms kept trading, as it was deemed still profitable by
their algorithms. These absorbed most of the original large sell order, but once they
reached inventory or loss constraints, they started selling too. This increased the selling
pressure in the market, and some works hold that it caused HFTs to trade with each other
repeatedly (“hot potato phenomenon”), thereby increasing the traded volume (but not
the real liquidity). This apparent increase in liquidity in the form of high trading volume
caused large sell orders to get executed faster [4]. This chain of events highlights that the
phenomenon has a dangerous positive feedback loop.

The results in [5] show through simulations how reducing either (or both) the number
of HFT players or the size of the large sell order greatly reduced the size of the drawdown.
Further, other works find that black swan phenomena of duration <1.5 s are about ten
times more frequent than longer ones, and their return distribution deviates from the
canonical power law distribution of returns. The authors suggest a phase transition to
an all-machine environment at ∼1 s, as human reaction time is in the order of seconds.
The authors also investigate the time scales via additional simulations to show the rise in
extreme events and their magnitude around ∼1 s in what they define as the all-machine
phase [6,7]. Findings along those lines, on the distribution of high frequency black swan
events deviating from the canonical return distributions, were also recently published by
the authors of this work [8].

From the review above, we see that crashes of different sizes seem to involve a self-
perpetuating cycle [5] with positive feedback loops.

This type of self-excited process is also investigated in [9] for the liquidity and infor-
mation dependence between two sample assets, showing how liquidity shocks to an asset
can propagate to related ones (and by extension to the wider market).

The frequency and size (in terms of number of securities involved) of simultaneous-like
crashes in HFT is also investigated in the literature. For instance, the works by Lillo and co-
authors [10,11] investigate the dynamics of simultaneous flash crashes, and motivate their
importance by showing the growth in the number of mini crashes in recent years. Further,
they show how the number of simultaneously crashing securities has grown over the last
10 years, thereby highlighting the increasing systemic relevance of this phenomenon.

We recognize that systemic risk is traditionally defined as “the risk of a cascading
failure in the financial sector” [12]. In this work, we do not investigate interbank connectiv-
ity, but rather the connectivity of trading patterns across financial assets which can lead
to breakdowns or temporary dysfunctions in financial markets, as per the definition of
systemic risk in [13]. We phrase the concept in a slightly different manner in the context
of our work as follows. In this paper, we define systemic risk as the risk component of an
event (say a flash crash) that is given by the interconnectedness of assets, likely as a result of
correlated actions and arbitrage between market participants. This causes isolated events to
spread in the market and affect more assets, thereby increasing their impact and relevance
for all market participants. A related concept is that of “synchronization” which is the
systemic and concentration aspect that arises from the alignment and interdependence of
actions between market players (on a single asset) rather than across assets.

Our phrasing of the concept of systemic risk from [13] highlights our microstructural
investigation of the trading dynamics which lead to dysfunctions and disruptions in the
orderly functioning of financial markets. Indeed, crashes can be just due to microstructural
dynamics, but as price efficiency deteriorates and volatility spikes, investors shy away
from financial markets. Financial markets allow investors to provide companies in the
real economy with capital, and their dysfunction can turn mere trading issues into real
economic panic and crisis. Therefore, even high frequency black swan events can have
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dramatic effects on the real economy, as proven multiple times in recent history, which ties
our interpretation of systemic risk back to Ref. [12] as well.

The systemic risk posed by HFTs was investigated in the literature in the last decade.
The work by Paulin et al. [14] simulates flash crashes through agent-based modeling and
highlights the importance of market structures in the systemic propagation of extreme
events. The works by Abreu and Brunnermeier [15] and Bhojraj et al. [16] investigate the
risks of synchronization between arbitrageurs in financial markets and acknowledge its
existence. Other works investigate the systemic risk of HFT dynamics. Jain et al. [17]
investigate how low-latency HFT trading can worsen extreme systemic events in financial
markets and argue for the need to incorporate correlation and market structure in regulating
these risks. The work by Harris [18] discusses many mechanisms, among which systemic
risks originating from order routing and self-reinforcing mechanisms which cause crashes.
The review by De Gruyter [19] summarizes the systemic aspects of HFTs and market
structure, such as position correlation and herd behavior, adverse selection in orders and
crowding, as well as negative contribution to price discovery at times.

Co-crashes are becoming more frequent and systemic. It is, therefore, important to
investigate their structure. In particular, it is relevant to understand which stocks are central
to larger systemic events as well as the contagion structure between stocks in the market.
This is a central theme in market stability for regulators as well as in risk management for
market makers.

The present work joins the two themes of flash crashes and systemic risk by delving
deeper into the dynamics of simultaneous flash crashes of different sizes throughout 300
liquid stocks traded on the NASDAQ. We investigate the empirical distribution of crash
sizes and the structure of these events in the market. We also investigate whether larger
systemic events involve highly unstable stocks (which crash often) or stocks that are more
stable in their price dynamics, yet more influential to trigger larger systemic events when
subject to liquidity shocks. We apply tools from statistical physics to show the difference
between crashes which involve a small or large number of assets. We uncover a phase
transition occurring when the crash size exceeds five stocks. Implications for systemic risk
in high frequency markets are discussed from both a trading and regulatory perspective.

2. Data

In the present work, we consider a universe of 300 liquid stocks from the NASDAQ
exchange between 3 January 2017 and 25 September 2020. High frequency price data are
obtained from LOBSTER [20] and sampled to obtain non-overlapping one-minute returns.
This frequency was also adopted in [10] and other works in the literature for the detection
of price jumps, as it is understood that below this limit, microstructural noise becomes
relevant and can impact the validity of the method.

3. Method

3.1. Jump Detection

In the present work, we focus on anomalous movements in the mid-price pt and their
co-occurrence structure. To do so, we detect price jumps (up and down crashes) similarly
to [10], at least in principle, in 1 min non-overlapping returns.

Specifically, we apply the basic jump detection method from [21] and detect jumps at
the 5% significance level. The intuition behind this method is simple: we consider changes
in pt in the form of log-returns rt = log pt

pt−1
. Those are normalized so that, in the absence of

jumps, their distribution is close to being normal and stationary. The method then exploits
extreme value theory to obtain thresholds, above or below which, rt can be classified as
anomalous (i.e., a jump), with a given confidence level.

To achieve a distribution of log-returns close to normal and stationary in time, we must
normalize returns locally to account for two known regularities: daily seasonalities and
long memory effects [22–25]. Mid-price returns have been shown to have approximate zero
mean but a non-stationary variance due to the above [26]. Hence, the method empirically
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measures and discounts daily seasonality patterns and autocorrelations in return variance
from the data. This yields a time series of almost normally distributed returns with
stationary variance. Extreme value theory can then be applied as described above.

In addition to the basic features of the method for robust volatility estimation in
intraday patterns, we obtain a robust estimate of intraweek periodicity and adjust the
return series and jump detection according to [27].

As per the description above, null models are calibrated, and price jumps detected
individually for each stock. As we consider 1 min non-overlapping returns, our sampling
allows for aligned timestamps. We then consider contemporaneous price jump detection
across assets in the universe as simultaneous jumps (a single systemic event).

It is important to highlight in the context of risk that crashes are normally associated
with negative price returns of anomalous magnitude. The method used here detects both
positive and negative anomalous price movements and we consider both as they are
“jumps”. In our related work [8], we have shown how both up and down jumps are relevant
for risk, as market makers can hold inventory and be exposed in either direction. Further,
a short squeeze can potentially be more dangerous, as it is often associated with high levels
of leverage. Still, we recognize the importance of investigating down jumps (traditionally
termed “crashes”) and are looking to include a comparison between down and up jump
structures in follow-up works.

3.2. Crash Size Distribution and Firm Persistence

We investigate whether co-jumps which involve different numbers of stocks originate
from the same dynamic process and present the same distribution. We also consider
whether individual stocks are involved to the same extent across co-crashes of different
sizes or if a pattern emerges.

We define the unnormalized crash frequency for stock x, in co-crashes with m stocks
and time range t ∈ [0, T] as

fx,m =
T

∑
t=0

cx,t,m

with

cx,t,m =

{
1, if stock x is involved in a crash of size m at time t
0, otherwise

By marginalizing over the ensemble of stocks x, we obtain the frequency distribution
across co-crash sizes

fm = ∑
x

fx,m

The changes in the composition of the crashes are investigated by computing the
correlation between the involvement of firms across crashes of different sizes. Namely,
for each crash size m, we assign to each firm x a rank in decreasing order by fx,m. We then
compute the Spearman correlations between these ranks.

3.3. Statistical Testing

To support the visual intuition of our results, we apply statistical testing in the form
of null models. We applied the Spearman correlation to test for rank similarity between
the crash frequency distributions across stocks at different crash sizes m. As the frequency
distributions are noisy and fat-tailed, the correlation p-value seems hard to justify as a valid
test. Hence, we follow the idea of Mantegna et al. [28] to create a simple null model of
correlation significance.

To do so, we sample without replacement the whole list of stocks Sm according to
∝ fm from Section 3.2 to obtain a biased reshuffling Gi,m of the stocks according to their
crash frequency.
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For each shuffled list, we calculate the Spearman correlation coefficient between the
sample and the original list to form the empirical null distribution as

Dm = Spearman(Gi,m, Sm)
105

i=1

We then define the significance of the correlation between sizes m, m+ τ as the quantile
of Spearman(Sm+τ , Sm) in Dm.

3.4. Crash-Weighted Trading Volume

To investigate the relationship between the crash size and the involvement of highly
traded stocks, we define a weighted average daily dollar traded volume for each crash size,
where the weighting is given by the normalized crash frequency of each stock.

For crash size m and crash frequency distribution fx,m, as per Section 3.2, we define
the crash-weighted dollar traded volume DTVm as

DTVm =
∑x fx,m DTVx,m

fm

This measure aims to represent how more highly traded stocks are involved at different
crash sizes.

4. Results and Discussion

The plot in Figure 1a shows the frequency distribution fm of the number of stocks
involved in each flash crash. Figure 1b plots the cumulative frequency f (M ≥ m). It is
evident from both figures that they are heavy-tailed, and there is a change in the slope
around m ≈ 5 and a finite size effect at ≈ 102, which is when the crash involves a large
portion of the system (system size is 3 · 102) [29]. This kind of distribution was already
reported in [10], where the authors investigated and modeled flash crash sizes and fre-
quency as a single Hawkes process. The authors there suggest that each security’s crash
dynamics should be modeled as a self-excitation process, but they point out that this would
involve tuning a large number of parameters on very noisy data. They therefore decided
to model the collective self-excitation process of securities as the frequency of crashes (or
co-crashes) and their size. Hence, all crash sizes are treated as instances of a multi-asset
Hawkes process in [10], with no distinction between the assets involved in each crash or
their co-occurrence structure.

In the present work, we take a more granular approach and move to investigate the
structure of co-crashes and the individual susceptibility of each stock.

To further investigate the difference between small and large crash sizes, we report
in Figure 2a the Spearman correlation between the ranks of crash frequency for all stocks.
Specifically, each line reports the correlation between the rank of the companies in the
initial crash size m (correlation 1) and all other crashes of higher sizes m + τ. We indeed
observe how crashes of smaller sizes (m < 5) have a substantially different composition to
crashes of larger sizes. We instead observe that for sizes m > 5, a steady state is reached,
with a large component of the population having similar ranks in frequency across all crash
sizes. These steady states for m > 5 are significantly higher than the ones of smaller sizes,
as the structure no longer evolves significantly between higher size crashes. The plot in
Figure 2b provides a clearer visualization of this. We highlight that already at size 5, the
correlation transitions directly to the steady state, albeit a lower one with respect to the
ones for crash size 6 and above.

To validate the visual results from Figure 2, we apply the null model of correlation
significance between crash frequency distributions.

Figure 3 shows the correlation significance between the starting point m on the hori-
zontal axis and its steady state distribution ∼[m+ 2, m+ 10]. We observe the first significant
value at 1% around m = 4, which confirms the intuition from Figure 1a,b that crash sizes
up to ≈4 belong to a different process than larger crashes. Indeed smaller crashes are
dominated by less stable stocks and larger ones by very liquid stocks with high market
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capitalization. This suggests that more influential and systemic stocks are involved in
larger crashes and perhaps even trigger those. A reason for why this is not the case in small
crashes can be that these stocks are systemic enough to mostly be involved in (or perhaps
even cause) crashes of a larger size. These are then even more relevant for systemic risk.
Alternatively, only larger crashes involve enough activity to influence highly traded stocks.

(a)

(b)

Figure 1. Heterogeneous crash distribution. Log-log plot of the flash crash size distribution. We
observe that sizes lesser than 4 follow a different trend, with lower than expected frequency. This
suggests that crashes of this size and onwards do not belong to the same self-organized process,
but that this is rather a heterogeneous distribution. (a ) f (m); (b) f (M ≥ m).
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(a)

(b)

Figure 2. Crash component rank correlation. Evidence that there is a transition around m = 5 with
crashes involving a small number of companies (m < 5) being substantially differently populated
with respect to crashes involving a larger number of companies (m > 5). The plot in Figure (a) reports
the Spearman correlations of ranks in frequency between each starting crash size and higher crash
sizes. The plot in Figure (b) looks at the average correlation in the range [m + 2, m + 20] for each
value of m from Figure (a), which offers better visual intuition. (a) Spearman correlation between all
consecutive crash sizes; (b) Spearman steady-state correlation mean in [m + 2, m + 20] , ∀m.

Figure 3. Crash component significance phase transition Evidence of a transition in the dynamics of
crashes composition occurring around m = 5. The plot reports the steady-state statistical significance
of the base crash size’s frequency distribution.
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This is therefore further evidence of the occurrence of a transition in the process
between smaller and larger crashes. The slow decay of smaller crash sizes indicates how
these belong to similar distributions of non-systemic events, but as the crash size grows,
the steady state gets closer to the large crash level. This suggests that larger crashes have
some systemic characteristics.

If we take a closer look at the top ranked stocks at each size, we observe that smaller
crash sizes are dominated by very volatile and illiquid stocks, which are subject to large
jumps perhaps due to the lack of a smooth price process in their trading. We would expect
this though to make them susceptible to larger systemic events as well and, hence, stably
ranked. Yet, we observe very low to null rank correlation between individual (and small)
crash frequencies and the large crash size steady state. It seems as if these crashes are
not only non-indicative, but also, as indicated by the phase transition in Figure 3, they
belong to an unrelated ranking and distribution. We highlight that we considered rankings
and ranking correlation in order to avoid any sensitivity to large values or outliers at
smaller frequencies.

Large crash sizes involve stocks such as Microsoft (MSFT) and Apple (AAPL) as being
consistently high ranked. We highlight that these stocks are highly liquid and characterized
by a stable price process with very few price jumps. Indeed, the few times they get involved
into jumps, they are often part of larger simultaneous crashes, which involve more stable
and systemic stocks. Further, when analyzing the co-crash relations between pairs of
stocks, we observed a heavy-tailed distribution of centrality for these large systemic stocks,
which suggests a community and core-periphery-like structure of the contagion network of
co-crashes [30–34].

The above observations prompted us to conduct further analyses on the relation
between stock liquidity (where average daily dollar traded volume is used as a proxy) and
crash frequency at different crash sizes.

To validate visually and numerically our observation that highly traded stocks are
more present in large crashes, we present the plots in Figure 4. The plot in Figure 4a shows
the average daily traded volume of a stock per crash size, weighted by its crash frequency,
as per the definition in Section 3.4. This is plotted against the crash size to show a clearly
increasing trend in crash-weighted traded volume with crash size. This shows how larger
crashes see stocks with higher traded volumes being more frequently involved.

This could, however, be the consequence of a subset of crashes which involved highly
traded stocks. We therefore test this with the results in Figure 4c, which show how not only
the average crashing stock is more “liquid” in larger crashes, but also that the fraction of
crashes, which involve at least one of the top 20 stocks by traded volume in our universe,
increases with crash size.

In line with this, we test how the traded volume of each stock correlates with its crash
frequency for each crash size. We report results for the Spearman correlation coefficient
in Figure 4b, where dots are used for correlations significant to the 5% confidence level
and crosses otherwise. We see that co-crashes of size 1 and 2 seem to have an inverse or
no relation between the volume traded and crash size. At our previously identified phase
transition point m ≈ 5, we see the first significant positive correlation between the volume
traded and crash frequency, which stays somewhat stable or is slightly increasing with
crash size.

This last result is less clear than the previous one, but still shows a positive correlation
between the volume traded (a proxy for liquidity) and crash frequency at crash sizes m > 5.

The presence of liquid stocks in most large crashes observed in Figure 4c prompts
questions around the periphery structure of the different liquid stocks and implications for
systemic risk. Further work in this direction is already underway with promising results
and will be the topic of a follow-up work. The causality of such co-crash structures is also a
very important topic, albeit harder to investigate rigorously, and should be the subject of
future work.
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(a)

(b)

(c)

Figure 4. Relation of Traded Volume to crash size. The figures above show evidence of a relationship
between the traded volume of stocks and their involvement in crashes of different sizes. (a) shows
the general positive relation between crash size and the involvement of highly traded stocks. (b,c)
show how the relationship exists not only on average, but also how “liquid” stocks are more involved
throughout crashes at higher crash sizes. (a) Positive relation between crash-weighted average daily
dollar traded volume and crash size m.; (b) Spearman correlation between traded volume and crash
frequency across crash sizes m; (c) positive relation between fraction of crashes involving liquid
stocks and crash size m/.
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5. Conclusions

The present work analyses co-jump structures in high frequency markets. We in-
vestigate the distribution of co-jump sizes for 300 stocks on 1 min returns. We highlight
features of this distribution, such as the finite size effect in the tail and the divergence of
small crash frequencies from the distribution. We show how the ranking and structure of
crash frequency throughout stocks changes drastically through a phase transition between
small and large crash sizes at size 5. We quantify this with the Spearman correlation
between crash frequency ranks at different crash sizes. We then apply a null model of
crash frequency at each crash size to test the hypothesis of a phase transition. Finally, we
highlight how larger crashes are dominated not by the less liquid stocks present in small
crashes, but rather by highly liquid stocks which are present in most flash crashes as the
crash size grows. Preliminary results, which we leave for future work, find these stocks to
be systemic in communities and core-periphery like structures of co-crashes. We suggest
that these systemic events can be viewed as communities centered around these most
influential stocks.

We know from the literature that these structures can be indeed vulnerable and highly
unstable, as well as fragmented if characterized by multiple cores. One of the possible
reasons for this can be inferred from the interviews with different market players following
the crash of May 6th [3]. Many HFTs highlight the centralized risk constraints for volatility
and P&L, which cause them to withdraw from the market in the case of extreme conditions
or losses. As they constitute much of the liquidity in the market in particular for smaller
stocks, withdrawing from those causes liquidity droughts. These are often systemic, as
players have central risk constraints and withdraw from the entire market as those are
triggered. Further, as systemic stocks crash, arbitrageurs come into play to level prices
across the market, thus making the isolated event a systemic one. In this view, well-known
stocks are not systemic per se, but rather as a result of non-siloed trading by HFTs and ETFs.

In light of the present results, future works shall investigate the asynchronous price
changes of securities and model spreading dynamics of flash crashes and their directed
structure. Lead–lag investigations of causality of these larger crashes are also suggested for
future work. Already from our results, one can monitor, in particular, the most systemic
stocks from larger flash crashes for co-jumps of size 5 and higher and induce trading halts or
limitations to avoid further spreading of these systemic events. This is crucial, as our results
combined with those of [10] suggest a systemic self-excited process in both frequency and
magnitude of those crashes.

We leave the investigation of this structure for future work and highlight that this is of
high importance for practitioners and regulators when dealing with market efficiency and
stability, particularly as trading frequencies rise and electronic trading becomes widespread
across securities.

We conclude by observing that volatility and P&L-based trading breaks used by
market players may worsen these events and their systemic characteristics since they cause
liquidity withdrawals throughout stocks and market players. This introduces systemic
synchronization throughout the market and makes individual assets more susceptible to
small trading volumes. Further, we suggest to monitor the stocks we find to be systemic
throughout larger crashes to model the contagion of liquidity crises and halt trading before
these spread and distort a larger number of assets. This should also be topic of future work
aimed at smart and efficient regulation in high frequency markets.
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Abstract: Stock markets can become inefficient due to calendar anomalies known as the day-of-
the-week effect. Calendar anomalies are well known in the financial literature, but the phenomena
remain to be explored in econophysics. This paper uses multifractal analysis to evaluate if the
temporal dynamics of market returns also exhibit calendar anomalies such as day-of-the-week
effects. We apply multifractal detrended fluctuation analysis (MF-DFA) to the daily returns of market
indices worldwide for each day of the week. Our results indicate that distinct multifractal properties
characterize individual days of the week. Monday returns tend to exhibit more persistent behavior
and richer multifractal structures than other day-resolved returns. Shuffling the series reveals that
multifractality arises from a broad probability density function and long-term correlations. The time-
dependent multifractal analysis shows that the Monday returns’ multifractal spectra are much wider
than those of other days. This behavior is especially persistent during financial crises. The presence
of day-of-the-week effects in multifractal dynamics of market returns motivates further research on
calendar anomalies for distinct market regimes.

Keywords: calendar anomalies; day-of-the-week effect; market indices; multifractal detrended
fluctuation analysis

1. Introduction

Market prices should incorporate and reflect all available information at any point in
time, according to the Efficient Market Hypothesis (EMH) [1,2]. Yet, various studies [3–6]
show that financial markets often become inefficient, and their behavior no longer follows
that of a random walk. Stock markets can instead deviate from the rules of the EMH in
the form of anomalies. Anomalies can be broadly categorized into calendar, fundamental
and technical anomalies [7]. The most studied set of pricing anomalies is calendar or
seasonal anomalies that represent systematic patterns of security returns around certain
calendar points. Calendar anomalies include the day-of-the-week effect [8–11], turn-of-
the-month effect [12–15], turn-of-the-year effect [16–19] and holiday effect [20–23]. The
day-of-the-week effect refers to the tendency of stocks to exhibit significantly higher returns
on one particular day compared with other days of the week. Cross [24] first provided
evidence of day-of-the-week effects on the Standard and Poor’s index, reporting that
price returns are significantly negative on Mondays. Since then, this phenomenon has
been extensively studied and discovered in other financial markets such as specific equity
markets [25–27], exchange rates [28,29], fixed-income securities [30], crude oil [31], gold [32]
and cryptocurrencies [33]. For a detailed review of seasonal anomalies, please see [34,35].
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Financial markets have attracted much attention from researchers in related fields such
as econophysics, paving the road for new perspectives and understanding of financial mar-
kets by drawing concepts from statistical physics such as fractals and multifractals [36–39],
information theory [40,41] and network structures [42–44] (see [45] and the references
therein for a comprehensive review). While many well-known conclusions in the literature
on an array of financial markets (including market indices, stocks, exchange rates and
commodities) can be attributed to econophysics, there are still a number of important
phenomena to be investigated from this perspective. To the best of our knowledge, one
such phenomenon that remains to be unearthed is the calendar anomaly, and our study
makes a contribution in this direction.

In this paper, we use multifractal analysis to evaluate if the temporal dynamics of
market returns exhibit calendar anomalies such as day-of-the-week effects. We apply
multifractal detrended fluctuation analysis (MF-DFA) [46] to the daily returns of market
indices around the world for each day of the week (Monday returns, Tuesday returns and
so on). We then compare the multifractal parameters, the position of maximum width
and asymmetry of the multifractal spectrum, which quantify long-term correlations, the
degree of multifractality and the dominance of large or small fluctuations in the return
series for each day of the week. The economic literature states that market practitioners
have been aware of the Monday effect as early as the 1920s [47]. For some markets, this
effect disappears as the market becomes more efficient [48,49]. Other studies offer insight
into the Monday effect being more prominent toward the end of the month [50] and during
periods dominated by bad news [51]. To observe this behavior over time, we perform
time-dependent multifractal analysis on the United States (GSPC) market by calculating the
multifractal spectra of the return series in a sliding window. This computationally intensive
and relatively novel approach, which has been implemented in only a few studies [52–54],
permits us to analyze the temporal evolution of multifractal parameters which are related to
different properties of market fluctuation, leading to better understanding of the underlying
stochastic processes. The rest of this paper is organized as follows. Section 2 introduces the
MF-DFA and the time-dependent methods. Section 3 describes the market data. Section 4
presents the results, and Section 5 draws the conclusion.

2. Methods

While fractal processes are characterized by long-term correlations that are described
by a single scaling exponent, multifractal time series subsets with small and large fluctua-
tions can scale differently, and the analysis of long-term correlations results in a hierarchy
of scaling exponents [46]. Multifractal analysis of temporal series can be performed using
different methods, such as the wavelet transform modulus maxima (WTMM) method [55],
multifractal detrended fluctuation analysis (MF-DFA) method [46] and multifractal de-
trending moving average method (MF-DMA) [56]. In this work, we employ MF-DFA,
which has been found to produce reliable results [57] and has been widely used to analyze
physiological signals [58–60], geophysical data [61], weather data [62], and financial time
series [63].

The implementation of the MF-DFA algorithm can be described as follows [46]:

i The first step is the integration of the original series x(i), i = 1, . . . , N to produce

X(k) =
k

∑
i=1

[x(i)− 〈x〉], k = 1, . . . , N, (1)

where 〈x〉 = 1
N ∑k

i=1 x(i) is the average.
ii Next, the integrated series X(k) is divided into Nn = int(N/n) non-overlapping

segments of a length n, and in each segment ν = 1, . . . , Nn, the local trend Xn,ν(k) is
estimated as a linear or higher order polynomial least square fit and subtracted from
X(k).
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iii The detrended variance

F2(n, ν) =
1
n

νn

∑
k=(ν−1)n+1

[X(k)− Xn,ν(k)]
2 (2)

is calculated for each segment and then averaged over all segments to obtain the qth
order fluctuation function:

Fq(n) =

{
1

Nn

Nn

∑
ν=1

[F2(n, ν)]q/2

}1/q

, (3)

where, in general, q can take on any real value except zero.
iv Repeating this calculation for all box sizes provides the relationship between the

fluctuation function Fq(n) and box size n. Fq(n) increases with n according to a power
law Fq(n) ∼ nh(q) if long-term correlations are present. The scaling exponent h(q) is
obtained as the slope of the linear regression of log Fq(n) versus log n.

The power law exponent h(q) is called the generalized Hurst exponent, where for
stationary time series, h(2) is identical to the well-known Hurst exponent H. For positive q
values, h(q) describes the scaling behavior of large fluctuations, while for negative q values,
h(q) describes the scaling behavior of small fluctuations, while h(q) is independent of q for
monofractal time series and a decreasing function of q for multifractal time series.

The generalized Hurst exponents are related to the Renyi exponents τ(q) defined by
the standard partition function-based multifractal formalism τ(q) = qh(q)− 1. For the
monofractal signals, τ(q) is a linear function of q (as h(q) = const.) and for multifractal
signals τ(q) is a nonlinear function of q. A multifractal process can also be characterized by
the singularity spectrum f (α), which is related to τ(q) through the Legendre transform:

α(q) =
dτ(q)

dq
, (4)

f (α(q)) = qα(q)− τ(q), (5)

where f (α) is the fractal dimension of the support of singularities in the measure with
Lipschitz–Holder exponent α. The singularity spectrum of the monofractal signal is repre-
sented by a single point in the f (α) plane, whereas the multifractal process yields a single
humped function.

Multifractal spectra reflect the level of complexity of the underlying stochastic process
and can be characterized by a set of three parameters, which are determined as follows.
The singularity spectra are fitted to a fourth degree polynomial:

f (α) = A + B(α − α0) + C(α − α0)
2 + D(α − α0)

3 + E(α − α0)
4 (6)

The multifractal spectrum parameters are found as the position of the maximum
α0 = arg maxα f (α), the width of the spectrum W = αmax − αmin obtained from extrapolat-
ing the fitted curve to zero, and the skew parameter r = (αmax − α0)/(α0 − αmin), where
r = 1 for symmetric shapes, r > 1 for right-skewed shapes and r < 1 for left-skewed
shapes. These three parameters can be used to evaluate the complexity of the underlying
process. A small value of α0 means that the process is correlated and more regular in
appearance. The width W of the spectrum measures the degree of multifractality of the
process, where a wider range of fractal exponents leads to “richer” structures. The skew
parameter r indicates which fractal exponents are dominant: the f (α) spectrum is right-
skewed (r > 1), and the process is characterized by a “fine structure” (small fluctuations) if
high fractal exponents are dominant, whereas the process is more regular or smooth, the
f (α) spectrum is left-skewed (r < 1), and the fractal exponents describe the scaling of large
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fluctuations if the low fractal exponents are dominant. In summary, a signal with a high
value of α0, a wide range W of fractal exponents (higher degree of multifractality) and a
right-skewed shape (r > 1) may be considered more complex than one with the opposite
characteristics [60].

The two sources of multifratality in a time series are (1) a broad probability density
function for the values of the time series and (2) different long-term correlations for small
and large fluctuations. The type of multifractal can be found by randomly shuffling the
series and analyzing its behavior. For multifractals of the second type, the shuffled series
exhibits simple random behavior (since long-term correlations are destroyed), and the
width of the f (α) spectrum is reduced to a single point. For multifractals of the first type,
the width of the f (α) spectrum remains the same (since the probability density cannot
be removed), and for multifractals of types 1 and 2, the shuffled series shows weaker
multifractality than the original series [46].

The time-dependent MF-DFA algorithm is based on the sliding window technique
and yields a temporal evolution of multifractality in the system. Given a time series
x = x1, . . . , xN , many sliding windows zt = x1+tΔ, . . . , xw+tΔ, t = 0, 1, . . . ,

[
N−w

Δ

]
are

constructed, where w ≤ N is the window size, Δ ≤ w is the sliding step and the operator
[.] denotes taking the integer part of the argument. The values of the time series in each
window zt are then used to calculate the multifractal spectrum at a given time t using
the method described above. This allowed us to obtain time evolutions for the three
complexity parameters.

3. Data

We analyzed the time series of 19 major stock market indices that appear on the
website https://finance.yahoo.com/world-indices/ (accessed on 2 January 2022), which
are listed in Table 1. The period under study spanned the earliest recorded date for each
index up to the end of 2018. For each of the market indices with consecutive workday
closing price values S(t), t = 1, . . . , N, we calculated the daily logarithmic returns:

Rt ≡ ln
S(t)

S(t − 1)
t = 2, . . . , N, (7)

where the returns for Monday were calculated using the closing price of the previous
Friday, while for other days of the week, two consecutive workday closing price values
were used. Next, we constructed time series from the returns Rt for each day of the week
(Monday returns, Tuesday returns and so on):

Ri = {Rti , Rti+5, . . . , Rti+5[ N
5 ]
}, (8)

where i = 1, . . . , 5 denotes the index of the weekday, Rti corresponds to the first occurrence
of day i in the returns series Rt, t = 2, . . . , N and the operator [.] denotes taking the
integer part of the argument. Figure 1 reveals that the fluctuations in the returns varied
between different days. While Monday exhibited the most pronounced negative returns,
the fluctuations for other days dominated at specific time intervals. This is a well-known
day-of-the-week effect which was found for the US market [8,25].

The MF-DFA method was applied to the day-resolved returns Ri of major stock market
indices, where local trends were fitted with a second-degree polynomial m = 2. Next,
we performed a fourth-order polynomial regression on the singularity spectra f (α) to
determine the position of the maximum α0 and the zeros of the polynomial αmax and αmin.
From the polynomial fits, we calculated three measures of complexity: the position of
the maximum α0, the width of the spectrum W = αmax − αmin and the skew parameter
r = (αmax − α0)/(α0 − αmin). These parameters were then used to determine the multifrac-
tal behavior of the day-resolved price returns.
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Table 1. Information on analyzed time series for major market indices.

Market Country Index Period

All Ordinares Australia AORD 3 August 1984–26 December 2018
S&P500/ASX 200 Australia AXJO 22 November 1992–26 December 2018
BEL 20 Belgium BFX 9 April 1991–24 December 2018
IBOVESPA Brazil BVSP 27 April 1993–21 December 2018
Dow30 United States DJI 29 January 1985–26 December 2018
CAC 40 France FCHI 1 March 1990–24 December 2018
DAX Performance Germany GDAXI 30 December 1987–27 December 2018
S&P500 United States GSPC 3 January 1950–24 December 2018
S&P/TSX Composite Canada GSPTSE 29 June 1979–24 December 2018
Hang Seng Index Hong Kong HIS 31 December 1986–27 December 2018
IPSA Santiago de Chile Chile IPSA 2 January 2002–26 December 2018
Nasdaq United States IXIC 5 February 1971–26 December 2018
Jakarta Composite Indonesia JKSE 1 July 1997–27 December 2018
KOSPI Composite South Korea KS11 1 July 1997–26 December 2018
Merval Argentina MERV 8 October 1996–26 December 2018
IPC Mexico Mexico MXX 8 November 1991–26 December 2018
Nikkei 225 Japan N225 5 January 1965–27 December 2018
NYSE Composite United States NYA 31 December 1965–26 December 2018
TSEC Weighted Taiwan TWII 2 July 1997–27 December 2018

Figure 1. Time series for (a) Monday, (b) Tuesday, (c) Wednesday, (d) Thursday and (e) Friday
day-resolved price returns Ri of the United States (GSPC) market index.

4. Results

4.1. Day-of-the-Week Effect

Complexity measures derived from the singularity spectra were used to study the
multifractal behavior of the price returns for every day of the week. We first considered
multifractality in the day-resolved price returns from four distinct markets: the United
States (GSPC), South Korea (KS11), Chile (IPSA) and France (FCHI). The multifractal
spectra for each day using the four markets are illustrated in Figure 2. We observed that
the day-of-the-week effects led to significant differences in multifractal behavior: (1) the
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positions of the maxima α0 were shifted to the right (α0 > 0.5) for the Monday returns,
and (2) the spectrum widths W were wider on Monday than those for returns from other
days. There seemed to be no consistent differences in the skew parameter r, which implies
that both large and small fluctuations are present for different days of the week (e.g., see
Table 2). These results indicate that the Monday returns exhibited more persistent behavior
and richer multifractal structures, which led to more complex time series than other day’s
returns. Our findings are consistent with results obtained from [25], which indicated that
Monday had the largest anomalies (day-of-the-week effect) because of the weekend gap in
trading hours. Other days of the week did not exhibit any visible patterns in multifractal
behavior for either the position or width of the spectrum.

Figure 2. Multifractal spectrum f (α) for day-resolved price returns Ri of (a) the United States (GSPC),
(b) South Korea (KS11), (c) Chile (IPSA) and (d) France (FCHI) market indices.

Table 2. Multifractal parameters α0, W and r for day-resolved price returns Ri of major market indices.

Market
Monday Tuesday Wednesday Thursday Friday All

α0 W r α0 W r α0 W r α0 W r α0 W r α0 W r

AORD 0.547 0.570 0.837 0.585 0.684 0.590 0.547 0.628 0.815 0.549 0.549 0.963 0.574 0.603 0.771 0.583 0.579 0.942
AXJO 0.537 0.529 0.990 0.583 0.514 1.201 0.561 0.558 0.897 0.557 0.544 1.180 0.562 0.550 0.866 0.533 0.748 0.913
BFX 0.619 0.633 0.730 0.561 0.662 1.383 0.571 0.541 0.754 0.574 0.553 0.940 0.553 0.556 0.715 0.534 0.676 1.188
BVSP 0.616 0.581 1.562 0.601 0.472 0.932 0.587 0.455 1.492 0.615 0.465 0.939 0.592 0.666 0.943 0.550 0.643 0.917
DJI 0.572 0.826 0.579 0.598 0.643 0.883 0.576 0.586 0.970 0.560 0.661 0.887 0.581 0.669 1.230 0.520 0.690 0.720
FCHI 0.617 0.656 0.969 0.526 0.621 1.257 0.579 0.613 1.087 0.620 0.579 1.090 0.553 0.535 0.894 0.506 0.633 1.174
GDAXI 0.606 0.612 0.682 0.556 0.619 0.886 0.574 0.530 0.986 0.616 0.538 1.034 0.555 0.485 1.397 0.534 0.648 1.176
GSPC 0.590 0.787 0.709 0.565 0.539 0.856 0.557 0.635 0.760 0.528 0.573 0.718 0.551 0.627 1.416 0.528 0.605 0.782
GSPTSE 0.611 0.632 0.683 0.587 0.647 0.841 0.581 0.618 0.956 0.587 0.552 0.733 0.554 0.681 0.775 0.585 0.613 0.928
HIS 0.582 0.823 0.828 0.562 0.669 0.639 0.514 0.730 0.864 0.592 0.509 1.083 0.576 0.749 0.878 0.557 0.609 0.805
IPSA 0.654 0.969 0.832 0.584 0.747 0.984 0.580 0.519 1.250 0.582 0.705 0.938 0.611 0.677 1.174 0.601 0.825 0.801
IXIC 0.641 0.707 0.764 0.585 0.644 0.941 0.615 0.702 0.781 0.563 0.671 1.425 0.587 0.680 1.134 0.591 0.624 0.901
JKSE 0.598 0.848 1.352 0.539 0.674 1.335 0.582 0.725 0.877 0.560 0.566 1.802 0.500 0.907 0.881 0.570 0.518 0.769
KS11 0.607 0.707 1.190 0.539 0.421 1.140 0.540 0.637 1.195 0.590 0.535 1.026 0.526 0.616 2.180 0.530 0.633 0.945
MERV 0.651 0.520 0.927 0.537 0.625 1.265 0.537 0.681 1.163 0.611 0.647 0.652 0.540 0.602 1.135 0.574 0.534 0.985
MXX 0.580 0.805 0.890 0.542 0.666 1.088 0.548 0.577 1.039 0.606 0.690 1.150 0.552 0.557 0.967 0.548 0.617 0.951
N225 0.584 0.472 1.041 0.573 0.745 0.714 0.550 0.639 0.901 0.614 0.505 0.732 0.553 0.530 0.804 0.539 0.406 0.559
NYA 0.593 0.685 0.466 0.579 0.648 0.790 0.550 0.588 0.615 0.559 0.691 0.827 0.526 0.573 0.954 0.522 0.583 0.772
TWII 0.659 0.474 1.661 0.594 0.564 1.453 0.519 0.453 1.069 0.540 0.494 1.584 0.503 0.764 1.303 0.539 0.491 1.053
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We expanded our investigation to other markets listed in Table 1. Figure 3 reveals that
the multifractal spectra of the Monday returns were dominantly right-shifted (α0 > 0.5)
compared with other days for most analyzed markets. Notable exceptions included the
United States (DJI), Australia (AORD, AXJO), where the Tuesday returns were more persis-
tent, and Japan (N225), where the Thursday returns exhibited stronger persistency. The
width of the multifractal spectrum displayed similar tendencies to its position, where the
Monday returns possessed broader multifractal widths. Yet, we found that more markets
tended to have other days with richer multifractal structures; the multifractal spectra were
the widest for the Friday returns in Taiwan (TWII) and the Tuesday returns in Japan (N225)
and Australia (AORD), as opposed to the markets with dominant Monday returns consid-
ered so far. It has been noted that the day-of-the-week effect occurs on different distinct
days of the week for different markets [25]. Considering both parameters α0 and W, we
observed that the North American, European and some Asian (South Korea, Indonesia
and Hong Kong) and Latin American markets (Chile and Mexico) tended to show both
stronger persistency and stronger multifractality for the Monday returns, while for Aus-
tralia, Indonesia and Taiwan, this tendency was found for the Tuesday returns. This is also
in agreement with the literature, where it was found that some Asian markets displayed
a Tuesday anomaly, which is one day out of phase with North American markets due to
different time zones [64]. Patterns in the skew of multifractal spectra for a given day of
the week are again hard to discern across distinct markets, where both small and large
fluctuations exist. Values of the multifractal complexity parameter are listed in Table 2.
Our results indicate that while most markets exhibit more complex behavior for Monday
returns, some markets have other days with largest anomalies (day-of-the-week effect)
such as Tuesday, Thursday and Friday returns. This is expected from literature where it
was found that different day-of-the-week effects exist for different markets [25].

Figure 3. Complexity parameters (a) position of maximum α0, (b) spectrum width W, and (c) skew
parameter r, for day-resolved price returns of the market indices listed in Table 1, sorted from largest
to smallest.

4.2. Comparison to Bulk Behavior

The day-resolved multifractal spectra could also be compared to those for the whole
time series. The motivation for such a comparison is to provide more insight on the relation
between multifractality and the day-of-the-week effect. From Figure 3, we found that many
markets (IPSA, KS11, GSPTSE and MMX) exhibited distinct multifractal properties for a
particular day (e.g., Monday returns), while the whole series displayed similar multifractal
behavior to the bulk, or the remaining days of the week. For other markets (DJI, AXJI
and N225), the overall multifractality of the series differed widely from the multifractal
spectrum for each day of the week. This suggests that the day-of-the-week effects resulted
in different multifractalities for these markets. We could further classify the markets into
one of two multifractal behaviors: (1) bulk multifractality, which only differs for one
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particular day of the week, and (2) day-of-the-week multifractality, which is unique to
every day and differs from the bulk behavior.

4.3. Source of Multifractality

We shuffled the time series of the day-resolved returns for the four markets and
then applied MF-DFA to determine the source of multifractality. The shuffling procedure
performed 1000× N transpositions on each series and was repeated 100 times with different
random number generator seeds in order to obtain statistics such as the mean and standard
deviation. Figure 4 reveals that for the United States (GSPC), the right-hand side of the
spectrum (effect of small fluctuations) was mildly affected by shuffling on Mondays and
Fridays, while the left side of the spectrum (effect of large fluctuations) was affected
primarily on Thursdays (and less so on Wednesdays), and the position remained the same
for all of the day-resolved returns. This indicates that multifractality arose primarily from a
broad probability density function [65], and the long-term correlations had only a minor
impact on some days of the week.

Figure 4. Original and shuffled multifractal spectra f (α) for (a) Monday, (b) Tuesday, (c) Wednesday,
(d) Thursday and (e) Friday day-resolved price returns of the United States (GSPC) market.

While it may be argued that destroying correlations by shuffling leads to strictly
monofractal behavior and leaving only finite size effects, as shown for the qGaussian
distributions using MFDFA [66] and market volatility data using partition function for-
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malism [67], in the current case, shuffling left the spectrum width only slightly narrowed
down, in agreement with previous MFDFA studies of market returns [65]. Even if upon
shuffling only a finite size effect remained, different effects on different days of the week
on small and large fluctuations provided novel insight into the market behavior.

Table 3 lists the changes in spectra position (Δα0) and width (ΔW) after shuffling the
day-resolved returns for GSPC, KS11, IPSA and FCHI. We found that the Monday returns
tended to exhibit the strongest effect from shuffling, where aside from the probability
density function, long-term correlations also contributed to multifractality.

Table 3. Differences in multifractal parameters between original and shuffled day-resolved price returns.

Market
Monday Tuesday Wednesday Thursday Friday

Δα0 ΔW Δα0 ΔW Δα0 ΔW Δα0 ΔW Δα0 ΔW

GSPC 0.049 0.115 0.030 0.019 0.021 0.094 0.008 0.058 0.014 0.126
KS11 0.033 0.010 0.034 0.219 0.028 0.052 0.012 0.138 0.044 0.052
IPSA 0.073 0.200 0.022 0.119 0.028 0.069 0.023 0.064 0.051 0.098
FCHI 0.064 0.035 0.023 0.078 0.031 0.054 0.066 0.033 0.002 0.025

4.4. Time Evolution

For intuition on how the multifractal day-of-the-week effects change over time, we
could analyze the time evolutions of the multifractal spectra. We considered the United
States (GSPC) market, since the day-of-the-week effects over time here are well known [48].
For each day-of-the-week return, we constructed a sliding window of a size w = 730 days
with a sliding step Δ = 5 days, meaning that we applied the MF-DFA method over
a 14-year period in monthly intervals. Figure 5 illustrates the time evolutions of the
multifractal spectra for different day-resolved returns. We observed that the spectrum
evolved differently for each day of the week. For the Monday returns, the spectrum shifted
to the left, which means that the fluctuations became less persistent over time. Other day-
of-the-week returns either exhibited small movements in the multifractal spectra or moved
back to the same position after some time. For a more quantitative analysis, we calculated
the differences over time in the complexity parameters, namely Δα0 and ΔW, between
Monday and other day-resolved returns. Figure 6a reveals that the spectra position of the
Monday returns differed considerably from α0 of the other day returns in the first 15 years
of the recorded period, but their differences dropped to zero in the subsequent years. This
indicates the presence of strong day-of-the-week effects between 1950 and 1980 (Δα0 → 0
after 1965, where 1980 is already included because of the 14-year long sliding window),
which is consistent with the literature, where it was found that the day-of-the-week effects
diminished around 1980 [48].

Fluctuations around Δα0 = 0 after 1980 can be attributed to large financial crises that
affected the entire market, such as Black Monday in 1987 and the global financial crisis in
2008. Figure 6b illustrates the time evolutions of the differences in the spectra width ΔW
between Monday and other day-resolved returns. We observed that the Monday returns
exhibited much wider multifractal spectra than other day’s returns during either of the two
financial crises in 1987 and 2008. The Monday returns were characterized by more complex
structures and had significant day-of-the-week effects during the financial crises even after
1980, when the effects from the calendar anomalies should have vanished. A possible
explanation for this phenomena is the weekend gap in trading hours, which leads to even
more speculative behavior from investors during a crisis.
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Figure 5. Time evolution of the multifractal spectrum f (α) for (a) Monday, (b) Tuesday, (c) Wednesday,
(d) Thursday and (e) Friday day-resolved price returns of the United States (GSPC) market. A sliding
window of 14 years and monthly intervals were used for the period spanning from 1950 to 2019.

Figure 6. Time evolution of differences in complexity parameters (a) α0 and (b) W derived from
the multifractal spectra f (α) between Monday and other day-resolved price returns for the United
States (GSPC) market. A sliding window of 14 years and monthly intervals were used for the period
spanning from 1950 to 2019.
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5. Conclusions

This paper investigated the multifractal behavior of the day-of-the-week returns
for market indices worldwide. We applied the MF-DFA method to daily returns for
each day of the week (Monday returns, Tuesday returns and so on) and calculated the
multifractal spectra as well as their complexity parameters. Considering the multifractal
parameters’ positions of the maximum α0 and width W of an f (α) spectrum, we observed
that distinct multifractal properties were found for the different days of the week, where
North American, European and some Asian (South Korea, Indonesia and Hong Kong)
and Latin American markets (Chile and Mexico) tended to show both stronger persistency
(α0 > 0.5) and stronger multifractality (larger W) for the Monday returns, while for
Australia, Indonesia and Taiwan, this tendency was found for the Tuesday returns. This
finding agrees with the literature in that different day-of-the-week effects exist for different
markets [25]. Some Asian markets displayed the Tuesday anomaly, being one day out of
phase with the North American markets due to different time zones [64]. We found that
multifractality arose from a broad probability density function and long-term correlations
by analyzing shuffled series. The time-dependent multifractal analysis of the United States
(GSPC) market revealed that the multifractal spectra for the Monday returns shifted to the
left, or the fluctuations became less persistent over time. Other day-of-the-week returns
exhibited small movements in the multifractal spectra. While the authors of [48] found
that the effects from calendar anomalies vanished after 1980, in our study, we observed
that the day-of-the-week effects persisted after the 1980s. Notably, the Monday returns
exhibited much broader multifractal spectra compared with other days of the week. This
behavior was especially pronounced around Black Monday on 19 October 1987 and the
global financial crisis in 2008. A possible explanation for this phenomenon is the weekend
gap in trading hours, leading to even more speculative behavior from investors during
a crisis. Monday returns in general in the US tend to be different compared with those
of other days of the week. This anomaly has been attributed to companies’ release of
news after the financial markets close on Friday, and hence, the Monday prices reflect the
accumulated reaction of investors over the weekend. This unique behavior of financial
asset prices on Monday can be informative and useful for investment decision making and
can inform policymakers to possibly limit important news releases on Friday afternoon.
The Monday effect may be reduced by current tendencies of after-hours trading. However,
since the after-hours trading volumes are much lower than the regular trading hours, the
Monday effect is still present. Future studies should further investigate the multifractal
dynamics and day-of-the-week effects for other financial markets and extend the current
analysis to other calendar anomalies.
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Abstract: In this short note we offer a novel quantitative approach to modeling of early stages of
firm’s internalization, namely stages of accumulation of export readiness and their export debut. In
particular, we introduce a new model of export readiness and offer an explicit way of how the export
readiness can be accounted in the company share price. The model considers export readiness as
a non-observable intangible asset that changes a firm’s asset dynamics. This, in the framework of
an option-based debt-equity Merton model, affects both the equity and debt of the company. The
approach also allows one to define the contribution of export readiness to equity price and to find a
self-consistent quantitative solution to the problem of optimal export strategy and the corresponding
optimal firm’s capital allocation.

Keywords: export readiness; internationalization; options pricing

1. Foreword

This article is written specially for the issue of Entropy, to commemorate 30 years of
Econophysics, the discipline which appeared at the beginning of the 1990s at the cross-roads
of economics, mainly finance, and theoretical physics, in particular many-body systems,
thermodynamics, and phase transitions. It was driven primarily by physicists who, being
generally curious about nature but not particularly educated about the specific field at the
time, did not see any barriers to tackle almost any problem in finance they could think of.
These would be, for example, the non-liner modeling of market prices, derivatives pricing,
and non-equilibrium market dynamics, to name a few. This intellectual effort, coupled
with a cheeky belief in technical superiority and nearly barbaric economic ignorance
led to the situation when, in a relatively short period of time, truly cross-disciplinary
problems, previously overlooked or simply perceived, hopelessly too complex, were posed
and tackled.

To keep up with the tradition and in the general spirit of things, we do not want
to present here just another paper on portfolio theory, generalized Sharpe ratios, or a
new market forecasting technique—all the boringly routine daily subjects for finance
professionals, the things the author actually thinks he now knows about. Instead, we aim
to sketch here a new quantitative solution to an old problem in a field that is relatively new
to the author. We consider the problem of transition to internationalization through export,
export readiness, and forecasting of export success–the questions lying in the overlap of
several economic fields, namely Theory of the Firm, International Trade and Finance, and
Economics of Government Intervention. The proposed model utilizes objects and methods
familiar to us from the field of quantitative finance, in particular capital structure modeling
and derivatives pricing, which to our knowledge have not been used in this context before.
In this way, we try to keep up with the original Econophysics tradition of solving problems
we knew very little about until recently, using methods that earn us our daily keep.
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2. Long Introduction—Setting Up the Context

2.1. Internationalization

Accelerated globalization driven by political development, falling trade barriers,
development in shipping, and advances in technology, has resulted in nearly 6-times
growth in international trade since the 1970s. This growth is not just proportional to GDP
growth—international trade accelerated quicker and increased from 10% to 25% of GDP,
being one of the drivers of the world’s GDP increase.

Studies of how a firm undergoes internationalization—meaning how it expands sales
from its own domestic market to some foreign markets, go back nearly 50 years and span a
vast field of extensive research effort. We do not attempt here any sort of comprehensive
review or introduction in the field and aim only to identify the main branches of the
literature, especially in the context of the problem, which we address in this article. We will
try to limit the list of citations in this short note to keep the balance but interested readers
can find references in the articles for further reading. The most recent review of literature
as well as another empirical study of link export readiness and export success can be found
in the article [1].

Johanson and Vahlne in their seminal paper “The Internationalisation process of the
firm: A model of knowledge development and increasing foreign commitments” (1977) [2]
introduced what is now known as the original Uppsala model. The model views interna-
tionalization as a sequential process of firm development, from a pre-internationalization
phase, to trial export, export through a partner, establishing a foreign subsidiary, and
foreign manufacturing. In modern formulation, the model distinguishes a pre-export stage,
“experimental” export with accumulation of experience, a committed exporter stage, and a
full-integration (multi-national) stage. An updated Uppsala model (2009) [3] moved from
individual interactions to interactions of economic agents inside a business network of
contacts and a recursive learning process in this network. These are not the only model,
of course—alternatives would include internationalization through business networks [4],
“Born Globals” [5,6], model of “cultural distance” [7], among others. We, however, wanted
to start with the Uppsala model because it clearly identified the pre-internationalization
stage with its accumulation of key resources needed for a trial export as a battle ground to
understand the process of crossing from non-exporting to an exporting firm.

The pre-internationalization stage can be viewed as a stage when a firm accumulates
knowledge and resources to start an initial export [8]. The firm readies itself for export,
i.e., it accumulates export readiness ([9] defines export readiness as preparedness and
propensity to commence export). Multiple papers try to assess export readiness (as early
as 1990, [10]) and to construct quantitative algorithms to estimate—find a number, an
index—which would characterize export readiness of the firm, in hope that this number
would define the corresponding success of future export.

It became clear quite early in the study that the firm’s readiness to export should
be assessed from two angles: Operational readiness and product readiness [11]. This is
reflected now in some modern two-stage export readiness tests, which first analyzes general
organizational readiness and then overlays it with a “particular product for particular
market” analysis [12,13]. Popular research directions in this area include studies of key
factors for export readiness, construction of qualitative and quantitative questionnaires,
and an evaluation of different methodologies of digitalization of particular qualitative
characteristics/answers. All these become inputs into the construction of multiple-item
indices to measure export readiness. The indices then tested through logistic regression in
a large sample of companies to separate exporters from non-exporters. The Holy Grail of
export readiness would be to find an export readiness model that is quantitatively built
from both objective and subjective information about the company, such that it would be
able to predict future out-of-sample success of the export activity, as well as being able to
identify particular problem areas that need to be addressed to increase the chance of this
success. It would also be good if the model can time the crossing to export, adding a time
dimension to the problem, and explaining how the threshold is reached and when. Indeed,
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the firm can be “accumulating the knowledge” but never actually becomes involved in
the export. How does this jump actually happen? Only an export readiness model with
elements of the dynamics can fully and self-consistently answer the question. This article is
a step in the quest for the Holy Grail.

2.2. Million Dollar Question—Export Readiness

The problem seems very academic and almost artificial. However, there are a couple
of very practical angles to it.

2.2.1. Government Support

First of all, governments, central and regional, try to support export. The importance
of this is not purely economical but a socio-political one as well. Typically, it is done by
creating specialized agencies whose main role is to educate the firms, promote international
trade, and provide specific measures to stimulate firms to explore export sales. In Scotland,
for example, the role is played by Scottish Development International and in South Africa
it would fall to the Trade and Investment South Africa agency. Firms in Russia’s Moscow
region (actually comparable to a not-so-small country) can find support from ANO Mo-
sprom, a specialized government agency whose role is to increase the export of Moscow
region enterprises. The support has its cost, paid by taxpayers money, which has to be
spent in the most efficient way. One of ways to define the measure of this efficiency, one
of possible Key Performance Indicators for the government agencies, in this case would
be the amount of additional export generated by the firms per one dollar spent by the
agencies. Adding to this, a limit of maximal annual aid per company and requirement
on the minimal number of the supported firms per year, we come to problems regarding
the efficient selection of candidates for export stimuli. The solution has to be objective,
transparent, and sufficiently simple to be explainable because nothing is more damaging to
budget spending than implications of cronyism and corruption.

Finding a quantitative solution is not a trivial problem because it requires prediction
of future export success, which is particularly difficult for companies that have not entered
the export market yet and are only planning to do so. Unfortunately, this is also the most
practically interesting case for the agencies since the highest marginal effect of government
support measures comes from these companies, which usually belong to the Small and
Medium (SME) sector of the economy. There are literally millions of companies. One has
to have a quantitative screening process to limit this number of hopefuls to a manageable
quantity, so that a handful of “expensive” experts can look further. In short, to efficiently
distribute government resources allocated to the support, we need to estimate how ready
a non-exporting company is for export, what the corresponding probability of export
success is, and what the monetary consequences of the company’s export would be. The
latter question also requires an assumption about the internal optimal allocation of the
firm’s resources to domestic and export markets, which in turn, again requires probabilistic
assumptions about export success.

2.2.2. Corporate Robo-Advice

Government agencies cannot help every company because of the associated costs
involved in working with the candidates. Thus, they need to identify the candidates better
(this is already covered above), but also to provide everybody else with a proxy service of
export consulting, which does not require the same level of personal involvement from the
agencies and can be done at virtually zero cost using online advice portals. This is what we
call Corporate Robo-Advice, to underline the similarity with Financial Robo-Advice already
widely available to individual retail customers whose assets are not sufficient to justify full
face-to-face financial advice from specialized regulated financial advisory firms, or who are
not prepared to pay full price for the advice. Instead, customers opt to receive proxy advice,
generated online using risk profiling and asset allocation algorithms. Numerically, in
developed economies, the numbers of potential clients of both Robo-advisories are actually
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quite similar and are sufficiently large. For example, in the UK number of people currently
not receiving financial advice but wanting to receive it and one prepared to pay for it is
close to 6 mln [14]. The number of active (employer) Small and Medium (SME) firms in the
country is circa 1.4 mln, with the total number of private firms at about 5.5 mln [15]. The
number of employer firms in the US would be close to 6 mln. Only the use of algorithms to
provide tech-driven advice can help to close both “advice gaps”.

In the case of corporate clients, many agencies are keen to develop online portals
that can efficiently estimate the export potential of firms. These portals qualitatively and
quantitatively define firms’ export readiness and estimate the probability of export success,
while at the same time provide concrete advice on improving areas of operations linked
to all these quantities. Most export agencies, as well as some export-oriented banks (see
for example, HSBC [16]), already have online resources with educational literature and
simplified questionnaire-based models to estimate export readiness and, often, to highlight
problem areas. These models are mostly qualitative, lack predictive power or statistical
grounds, and play a primarily marketing role. The development of a full quantitative
model of export readiness, forecasting of success probability, and the optimal export firm’s
exposure is a necessary step in providing a quantitative advisory to SME firms in the
context of export. This includes identifying the most important factors, statistically testable
functional dependencies on these factors, particular firm’s shortfall in areas affecting these
factors, and the most cost-efficient way to improve the outcome (so-called goal-oriented
advice). This part of consulting should be an integral part of wider Corporate Robo-Advice
including treasury advice, financial planning advice, budgeting, and hedging advice.

2.2.3. Probability of Successful Export as Export Readiness Index

A historically popular approach to evaluating export readiness was a construction
of numerical index (ex. [9,17]) based on the digitization of answers to a particular export
readiness questionnaire and complementing this index with a threshold number—if an
index for a particular company was above the threshold, the company was defined as
export ready. The selection of questions was driven by a selection of factors that were
assumed to be particularly relevant for the internalization initiation. The index is usually
calibrated on a mixed set of exporting and non-exporting companies. Parametric ansatz
for the probability of future export success can be seen therefore as a particular choice,
probably most logical, of an export readiness index. The model described below for the
increasing export-preparedness of a company and the corresponding dynamics of its export
debut can be seen as an alternative approach to the construction of export-readiness indices,
being structural rather than phenomenological.

3. Challenges in Formulating the Model

Hopefully, by now the reader is convinced that the problem at hand is an interesting
one to study. So why has it not been already solved, if so much research effort and practical
investment has been already dedicated to it? This is because it is notoriously complex,
partially due to its ill-definition, multiple possible scenarios of internationalization as
well as internal firm’s dynamics, and a multitude of factors affecting both the route and
dynamics. On top of that, one of the most important factors in export readiness is the
internal motivation of management and internal (read—cultural) specifics of the firm. A
host of little issues can decide when, if at all, the firm decides to export. We argue here that
in the context of multiple random or unknown factors, the dynamics of an export debut
should be described by a stochastic process.

Before moving further, let us list common challenges which are facing every model of
transition to export.

3.1. Challenge 1—What Is the Event?

Before we calculate a probability, we need first to define an event. We need to define
the export success or a particular level of export efficiency which could be seen as a
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“success”. Is it a single, first export transaction? Is it a particular percentage of total
revenues of a company coming from export activities? Is it reaching a particular level of
export intensity (say, 10%, commonly taken as a border between “export experiment” and
“active exporters”; or may be 40% to count the firm as a “committed exporter”)? Perhaps
it is achieving a particular level of export efficiency? Or may be it is not quantitative at
all and is defined by the perception of the firm’s management of satisfactorily achieving
their export goals (which also may not be purely quantitative, such as reputation of an
international firm, personal ambition, protection against political prosecution, etc.). This
is not an idle question—all that we have just brought up as examples are, in fact, actual
measures. Ref. [18] documents 45 measures of export efficiency. It is complemented by
another paper [19], 4 years later, bringing the total listed number of different measures to
50. A comprehensive literature review [20] lists 9 main categories of determinants of export
performance and 36 main export performance measures (referencing literally hundreds of
scientific publications). The criteria to select a particular measure of export efficiency and,
therefore, a definition of export success, is dictated by a wider context of the problem for
which one has to find the probability (for example, specific target set of Key Performance
Indicators, or a target function to be optimized for a particular agency’s development
program). In practical terms, different definitions of export success will cause different
calibrations of the same model on different information sets.

3.2. Challenge 2—What Is the Time Horizon?

We are looking for a probability of the event happening. Strictly speaking, this requires
us to define a particular time window in which we observe firms to define whether the
positive outcome has happened. What is this time window? Popular choices include 2
years and 5 years. Intuitively it seems that the dynamics of 2-year and 5-year windows
are different, economically and functionally, and is led by potentially different factors. A
reasonable model must describe this shift in relative importance of the factors, as well as
potentially different functional dependencies on them. Basically, to have a self-consistent
model for the export transition, we ideally need a model that would describe all windows,
the whole term structure curve of probabilities of export success. Current Bayesian logit-
linear models of construction of export readiness indices do not address this.

3.3. Challenge 3—Why Do Different Firms with the Same Parameters Behave So Differently?

Every firm is different—different corporate cultures, different styles of management,
and a different speed of making corporate decisions (the corporate time). We can name so
many various idiosyncratic factors that it is impossible, and also not actually desirable to
account for them all. We are going to account for one of them—the corporate time, but will
treat the rest in a reduced description approach, changing to a stochastic picture of internal
firm’s dynamics and response to external macro stimuli. In this approach, similar initial
conditions will define similar statistical behavior rather than exact matched outcomes. In
short, we aim to build a stochastic model of the first (successful) export event and will
calculate the probability of a successful export as a result of this model.

3.4. Challenge 4—What Is “Physical Meaning” of Export Readiness?

Firm needs to become “export ready” before considering physical investment into
resources to access export markets. What is this “export readiness”? Increasing export-
readiness, simply according to its definition, makes a company prepared to export suc-
cessfully. Successful export changes the dynamics of assets of the company, adding new
channel for assets growth, which comes with its own associated risks. Therefore, export
readiness can be defined as a characteristic that becomes a signal variable for the change
of the asset growth process. It is an intangible asset of the company which is, mostly, not
reflected in the balance sheet of the company but is vital to defining company dynamics
and valuation.
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Thinking of intangibles in the context of change in the parameters, or even nature,
of company growth is not a new concept. Intangible assets such as skilled workforce,
patents and know-how, unique organizational design and processes, even corporate culture
represent valuable investments. Export readiness can be seen as a particular type of
intangible capital which is required in a necessary quantity to initiate export activity. This
is the approach we take in this paper.

Intangible assets are generally divided as intangible capital and intangible effort. In-
tangible capital is the stock of capital a company possesses, while intangible effort is the
expenses spent on developing and maintaining intangible capital. Different accounting
treatment and, as a consequence, different tax treatment dictates a recorded split of intan-
gible assets and, for our purposes, obscures the economic picture that could be tested. If
the intangible assets are estimated from the split of associated costs analyzing financial
information of a company, it is easier to test a positive relationship between an investment
in intangibles and export intensity [21–23], but it ignores the fact that a lot of things can-
not be priced and are not charged for. Management motivation would be one example.
Therefore, here we opted not to consider export-readiness in the resource-based view and
firm-specific asset theory [24] and model it within the assets of the firm. Instead,

Proposition 1. We see export-readiness as a stochastic variable that defines the asset process rather
than a component of the assets.

This is the main difference between our approach and the existing literature on the subject.
Thus, there is no standard way to measure a company’s intangible capital because

there is no a single accepted definition of intangibles. There are many ways to measure
it (paper [25] found nearly 700 papers related to measurements of intangible capital). In
general, they are split into cost-based and value-based concepts. However, even in the
cost-based approach, there is no single agreed method to define intangible expenses and
no standardized accounting method to account for them in financial reporting. In simple
terms—it is not clear what you need to add to the assets in the balance sheet, so that you can
use structural model for the firm valuation, based on the same model for asset dynamics
but with re-defined assets. Therefore, we here take a view that export-readiness, R, is a
special type of intangibles for which we define a process which, in turn, will affect the
dynamics of the standard (accounting) assets A of the firm. The value of the firm will then
be calculated, as in the Merton structural model, as a price of a call option on the assets
with the firm’s debt as a strike.

4. Quick Primer on the Structured Merton Model

Capital structure arbitrage models are a way to think about the relative pricing of debt
and equity of a particular company. Everybody nowadays begin their introduction to the
field with the Merton Model, for it is the simplest and most intuitive way to look at the
matter. While the model, or rather the whole framework, is referred to as the Merton Model
and his paper [26] is mostly cited in this regard, it is fair to add that Black and Sholes in
their original paper [27] already considered corporate debt in the context of derivatives
pricing. While there is an extensive body of literature on the capital structure models and
various extensions and generalization of the Merton Model, we need here only a basic
framework. Therefore, we will use its minimal set up, ignoring multiple complications and
extensions (another 50 years of research).

Let us consider a company, ABC Limited. The company’s balance sheet will show the
balance (the clue is in the word) of assets of the company and its liabilities, i.e., means of
how these assets are funded. On the one hand side there, are assets, everything which ABC
possesses. This might include machinery, stock, patents, leases, furniture, cash, etc. The
total value of these assets at time t we denote as A(t).
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On the other side, we have sources of capital that were used to finance these assets.
These sources usually include debt D maturing, say, at time T, and the Book Equity Capital
(Shareholder Funds). Book Equity balances the equation:

A(t) = D + BookEquity(t) (1)

at any moment of time and contains the initial equity investment from shareholders,
subsequent equity placing proceeds, and importantly, the accumulated Profit and Loss
of previous periods. As a little clue where it is all going, if assets do not contain some
intangibles, like export readiness, Book Equity will not reflect this either. The Market Price
of Equity, or offered share price, on the other hand will. Therefore, we need to go from
Book Equity to Market Price of Equity.

Since Debt is maturing only at time T in future, its current value is not D but less, and
it depends on the probability of the company being able to repay the debt. The insight of
the original authors cited above was that both the current value of the debt and current
value of equity do not coincide with Book (balance sheet) values but are both derivatives of
the current asset value. Indeed, if at time T when Debt matures, the value A(T) is less than
D then equity will be worthless and all assets will be sold to re-pay, as much as possible,
the Debt:

D(T) = D − (D − A(T)) ∗ θ(D − A(T)) ≡ D − (D − A(T))+.

Here θ(.) is the Heaviside function. In option pricing, this “payout” corresponds to cash D
and a short put option on the firm’s assets with strike D and maturity T.

At the same time, Equity would be equivalent to a call option:

E(T) = (A(T)− D) ∗ θ(A(T)− D) ≡ (A(T)− D)+

with strike D and maturity T. To find values of both debt and equity for the company
one has to use option pricing techniques which depend on the complexity of the asset
dynamical process. If the process is a simple log-Brownian motion:

dA = AσAdWA (2)

then one can quickly get simple analytical formulae for prices of both corporate debt and
equity. In a more general case, the prices are values of the payout functions averaged with
the transition probability of the asset values (assuming for simplicity zero interest rates):

E(t) =
∫ ∞

0
dA(A − D)+ ∗ P(A(t), t, A, T)

D(t) =
∫ ∞

0
dA(D − (D − A)+) ∗ P(A(t), t, A, T)

where P(A(t), t, A, T)dA is the probability of the Asset value finishing in interval dA
around A at time T conditional on the value of the asset being A(t) at time t.

These prices will still satisfy the balance condition of equity plus debt to be equal to
the value of assets, which in option world is known as Call-Put Parity. If, for some reason,
prices of equity and debt change so that the Call-Put Parity brakes, it causes a “risk-less”
profitable (arbitrage) trading opportunity, exactly as it happens in option trading. This
arbitrage is called Capital Structure Arbitrage to reflect that it is caused by dis-balance
between different parts of the company’s capital structure.

Options that are used above are European vanilla options, meaning that their payouts
are defined only by the value of the Asset at maturity. Black and Cox [28] removed this
assumption by stating that for the company to avoid default, the barrier D should always
remain un-breached, not only at maturity but also prior to maturity. This condition is called
the American barrier, and it models an existence of loan covenants which, if breached,
accelerate the debt repayments, thus bringing maturity forward. For our main purpose here,
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we will stick with the simplest Merton framework and will consider its basic European
formulation, adding that all the usual refinements to the model (volatility skew, random
barrier, complex debt profiles, etc.—see, for example [29]) can be added at a later stage.

5. Formulating the Model

5.1. Defining the Export Readiness Process

All studies of export-readiness first examine different factors affecting the export
readiness. There are different taxonomies of the factors. The factors can be classified as
intrinsic or external. They can be defined according to the mechanism of their action—for
example, existing contacts with foreign partners, motivation of the management, sufficiency
of financial resources, ability to manage risk, ability to modify its product, etc. These factors
are typically selected by experts for a particular export-readiness model and are reflected
in the corresponding questionnaire. Answers to the questions need to be digitized and the
rule to combine the digital answers have to be defined. Examples of these workings can be
found in [9,12,17]. The process is as much an art as it is a science and multiple trial-and-error
iterations of the models have to appear before the model becomes operational. For our goals
here we, however, will use a different classification—we will split factors between static
(necessary to begin exporting) and dynamic (able to affect (increase or decrease) export
readiness). For the combination of all static factors we will call export barriers, while the
dynamic factors will be called export stimuli. Examples of components of export barriers
would be: export licenses, knowledge of expected product support in export countries,
ability to manage foreign exchange and interest rate risks etc. Examples of components
of export stimuli would be company-sponsored foreign language lessons, government
support, and education programs to increase awareness of foreign markets, management
participation in industry networking events, etc. This classification does not remove the
problem of building corresponding questionnaires and digitalization of qualitative answers
but how it is done is not critically important for our subject here. It is enough for us to
assume that all export barriers answers are digitized and combined in a total Export Barrier
B. At the same time, the firm undertakes activities to increase/support/maintain export
readiness while also fighting export readiness decay (example, people leave which reduces
the expertise). The firm fights “Lateral rigidity” which (see [30]) is seen as one of the most
important factors in export commencing. This results in change in export readiness per
unit of time. The activity is reflected in the answers to the questionnaire. All Export Stimuli
answers are digitized and combined, scaling for a unit of time, to obtain export readiness
drift μR. Even if the definition is somewhat arbitrary, it has to be consistent across all the
companies to allow for effective model calibration. Now, let us assume that, according to a
particular questionnaire, the firm is distance B far from the export barrier and has export
drift μR. The stochastic model for the export readiness R then takes the form: Initial R(0) =
0, export indicator ξ = 0:

dR = μRdt + σRdWR

and the export event (ξ = 1) is defined as R breaching the barrier B for the first time. Export-
readiness volatility, the measure of uncertainty of the stochastic process, is a new parameter.
This parameter characterizes measure of internal company dynamics—parameter 1

σ2 can
be seen as a measure of internal company-specific time (different firms can have different
speed of taking decisions, for example) as well as a measure of firm’s susceptibility to
external noise. Export readiness R is therefore affected by random noise and by the drift
which results from combined Export Stimuli.

In this formulation, the export readiness is an unobservable, hidden variable which
reflects an increase of expertise and other resources required to begin export. It does,
however, have two important derivative quantities that depend on it and can be estimated
directly: Probability of export success and equity value of export readiness.
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5.2. Probability of Export Success

The model allows analytical expression for probability of successful export on different
time horizons, being simply the probability of breaching the barrier B for different time
windows. From these probabilities we can build a curve of export exits that is similar to the
CDS curve in credit derivatives. We can also explicitly calculate a probability distribution
of time of successful export entry as a probability distribution of first passage time in the
described above barrier problem. Explicit formulae for both quantities can be found in
any textbook on probability theory. In particular, the probability distribution of the first
passage time, the function which we will use below, for fixed barrier B and drift μR is given
by the following expression [31,32]:

Π(τ) = Πτ =
B

σR
√

2πτ3/2
exp[− (B − μRτ)2

2σ2
Rτ

] (3)

while the corresponding survival probability can be written as:

ΠT = 1 −
∫ T

0
Π(τ)dτ = Φ(

B − μRT
σR

√
T

)− exp(
2BμR

σ2
R

)Φ(
−B − μRT

σR
√

T
) (4)

where Φ(.) is Cummulative Error Function. Both types of the quantities can be used to
calibrate the model parameters to the existing information set of exporting companies,
particular questionnaires, and particular selection of measurements of export success. In
this form, the model is also able to explain the relative importance of different factors on
different time horizons, since the effects of volatility dominate on shorter time horizons
while the drift is the defining factor in the long run.

We end this sub-section with a note on the further use of the model framework rather
than the simplified model for R itself. As in the Merton model for credit default, it was
long argued that, while the hindsight of the model is definitely valuable, the log-Brownian
asset dynamics are too restrictive. It forces us, through model calibration, to use “wrong
parameters in the wrong model”. One of the approaches to estimate the probabilities of
default was suggested by Vasicek and co-authors in the form of the KMV model [33], which,
together with KMV Corporation, was acquired in 2002 and is included in services provided
by Moody’s analytics. The main role in this approach was played by the distance to default
which in the option picture corresponds to the moneyness. Using the analogy here we can
introduce Distance to Export as:

DE =
B − μT

σ2
RT

.

One can group companies according to the value of DE and plot probabilities of successful
export as functions of DE. This functional form then substitutes of the Cumulative Error
Function appearing in our simplified model and effectively corrects simplified the log-
Brownian dynamic assumption. The model can be further expanded for the practical use
applying the same technique as in the KMV model in the context of Export Readiness and
substituting Distance to Default with Distance to Export.

5.3. Equity Value of Export Readiness

The model allows one to find “observable” equity value of un-observable export
readiness. To this end we are to use the Merton model and see how the price of equity
changes due to a possible change of asset dynamics if there is a possibility of a new
export channel.

We saw above that equity price E of the company can be calculated as a price of
call option on the assets A of the company. However, now, rather than to follow asset
process (2) assets A of the company, ABC Limited will follow a modified Merton stochastic
process with a switch from pure domestic to domestic+export dynamics triggered by export
readiness variable R reaching the export barrier B.
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Simplified Toy Model

In our toy model, we substitute a simplified assumption for the asset process (2):

dA = AσAdWA

with a more complicated asset process:

dA = AμAdt + AσAdWA

where the parameters are defined as:

μA = μ0(1 − ξ) + ξμ1,

σA = σ0(1 − ξ) + ξσ1.

Here μ0 and σ0 correspond to the company’s evolution in a pure domestic market, and μ1
and σ1 correspond to evolution of the assets of the company if both domestic and export
channels are used. The variable ξ = {0, 1} is the same signal variable already introduced in
Section 5.1 in the context of dynamics of export readiness R. We also assume that processes
WA and WR are independent, in particular that:

< dWA, dWR >= 0.

In this case, equity price can be calculated as:

E(t)μR ,B =
∫ ∞

0
dA(A − D)+ ∗ PR(A(t), t, A, T)

where the transition probability PR(A(t), t, A, T) accounts now also for the switch to export.
Introducing τ as a first passage time (to export barrier B) one can see that PR(A(t), t, A, T)
can be calculated as:

PR(A(t), t, A, T) = ΠT P0(A(t), t, A, T) +
∫ T

0
dτΠτ ∗ P̃0(A(t), t, A, T)

where ΠT is the probability of not touching the barrier from time t to time T (survival
probability (4) with T substituted by T − t), Πτ is the probability of first passage time
being τ ((3) with T substituted by T − t), P0(A(t), t, A, T) is the log-normal transition
probability distribution of A

A(t) with parameters μ0 and σ0 and, finally, P̃0(A(t), t, A, T) is

the log-normal transition probability distribution of A
A(t) with parameters μ̃ and σ̃:

μ̃ =
τ

T
μ0 +

T − τ

T
μ1,

σ̃2 =
τ

T
σ2

0 +
T − τ

T
σ2

1 .

These formulae give a semi-analytical solution for the equity price in the case of possible
future exports. They also allow us to define the export readiness benefit to the shareholders,
which is not reflected in the balance sheet of the company. The quantity, which we call the
Export Readiness Benefit (ERB):

ERB = E(t)μR ,B − E(t)μR ,B=∞

defines the monetary contribution of non-observable export readiness into the price of
company equity.
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5.4. Extended Model

A more realistic but unfortunately more complicated model can be built if we explicitly
describe uncertainty in the domestic and in the export channels. In this case the asset process
will take the form:

dA = A((1 − ξ)[μddt + σA,ddWA,d]+

ξ[(ωd(t, A)μd + ωe(t, A)μe)dt + ωd(t, A)σddWA,d + ωe(t, A)σedWA,e]).

Here we introduced two sets of parameters, with subscripts i and e, which correspond
to domestic and export markets, together with a new element—weightings of capital
allocations towards the domestic and export markets, ωd and ωe. Two Brownian motions,
WA,d and WA,e describe the corresponding uncertainties in return from domestic and export
markets. In general setup, all three Brownian motions, WA,d, WA,e, and WR are mutually
correlated. The complexity of the model is not only due to the increased dimensionality
of the problem. It is also due to the dynamical nature of changes in the optimal capital
allocation between foreign and domestic markets. The weights ωd and ωe have to be found
self-consistently from the problem of optimization of a particularly selected utility function
from the firm’s equity value. This is a highly non-linear stochastic problem.

5.5. Self-Consistent Model for Optimal Export Strategy

This is still not the end of the whole story yet. The model for export-readiness process:

dR = μRdt + σRdWR

contains parameters that we have so far held constant. The company can decide to invest
more (or less) into export readiness, spending some of the cash accounted in assets (thus
adding negative drift into the asset process to account for spent cash) for change in the pa-
rameters of export readiness process—bringing more qualified staff, engaging a consulting
company, and so forth. Luckily, the problem of the first passage time with time-dependent
parameters has been solved by physicists [34] and some explicit formulae exist instead of
the simplest expressions (3) and (4), bringing back physicists into the picture. Exchanging
cash for change in the values of export barrier B and export stimuli μR is a management
decision. This decision, once again, is driven by the same utility optimization problem.
This makes the optimization problem even more complicated but now complete. The
solution of the problem, which would give optimal spending on export readiness as well
as optimal capital allocation weights, constitutes a self-consistent solution of an optimal
export problem.

Let us pose the problem more formally. One has to choose the control functions to
maximize the sharefolder value:

max(ωd(.,.),ωd(.,.), f (.,.))ET(A0, B0, μR,0, σR,0)

where
E(t) =

∫ ∞

0
dA(A − D)+ ∗ PR(A(0), 0, A, T)

and PR(A(0), 0, A, T) is the transition probability for the asset process with the explicit
“cash drain” term f (t):

dA = A((1 − ξ)[μddt + σA,ddWA,d − f (t, A)dt]+

ξ[(ωd(t, A)μd + ωe(t, A)μe)dt + ωd(t, A)σddWA,d + ωe(t, A)σedWA,e]).

The signal variable ξ is defined, as before, by the export readiness process: Initial ξ(0) = 0
and becomes ξ(τ) = 1 when the export readiness process R(τ) (R(0) = 0):

dR = μR(t)dt + σR(t)dWR

549



Entropy 2022, 24, 173

is breaching the barrier B(τ) for the first time at the first passage time τ. Time-dependent
parameters of the export readiness process then are functions of the “cash drain”, which
we take for simplicity to be linear:

dμR(t) = m ∗ f (t, A)Adt , dσR(t) = s ∗ f (t, A)Adt , dBR(t) = b ∗ f (t, A)Adt

with some company-specific efficiencies constants m,s,b.
The solution to the combined problem is not “one fits all” as internal company specifics,

the internal cost of changing export readiness parameters, and internal return profiles from
domestic and export activity depends on a particular company. Solving this problem opens
the way to a quantitative selection criteria for government agency early export support,
which we highlighted in the Introduction.

6. Conclusions

In this short note we sketched a new approach to modeling export readiness dynamics
and posed the problem of finding an optimal firm’s strategy of export debut. While the
model is quite complex and requires a combination of analytical and numerical studies, it
builds a qualitative and intuitive picture of the transition to export dynamics. The most
labor-intensive component of further work is to construct a qualitative questionnaire and
the corresponding quantitative digitalization algorithms to estimate the model parame-
ters Export Barrier B, Export Stimuli μR, and internal volatility σR for different types of
companies. As the size of the company can be one of quantitative factors affecting export
readiness, it is possible that B, μR, and σR will be asset-dependent, which will further
increase the non-linearity of the problem, causing multiple equilibria and conditional insta-
bility typical for this type of complex systems, bringing it even closer to problems studied
by Econophysics.
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Abstract: Using the multiscale normalized partition function, we exploit the multifractal analysis
based on directly measurable shares of companies in the market. We present evidence that markets of
competing firms are multifractal/multiscale. We verified this by (i) using our model that described
the critical properties of the company market and (ii) analyzing a real company market defined by
the S&P 500 index. As the valuable reference case, we considered a four-group market model that
skillfully reconstructs this index’s empirical data. We point out that a four-group company market
organization is universal because it can perfectly describe the essential features of the spectrum of
dimensions, regardless of the analyzed series of shares. The apparent differences from the empirical
data appear only at the level of subtle effects.
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1. Introduction

In the last two decades, multifractal properties have been the subject of intense re-
search in very different areas of science [1–13]. The fashion for searching for new areas of
multifractality is still ongoing. The shape, location, and spread of the spectrum of dimen-
sions (singularities)—the leading multifractality indicator—provide invaluable information
about the layout. We use the formalism [14] that describes not only systems in the state of
statistical equilibrium but also stationary states. Furthermore, we indicate that formalism
can easily be extended to transient states.

Our approach is complementary to the commonly used multifractal detrended fluc-
tuation analysis (MF-DFA) [1,2]. More precisely, in the presence of state intervention, our
concept of using (normalized) market shares for multifractal analysis of the market of
competing firms is new. It starts with a partition function expressed directly by shares.
Thanks to this, it bypasses the onerous preparation of traditional MF-DFA, based on a
fluctuation function built with the help of time series.

We demonstrate how our method works with the example of a competing company
market model published previously [15]. In this model, we assume that companies can
merge, create spin-offs, and go bankrupt in the presence of state intervention. This tendency
for firms to disappear from the market can counterbalance the tendency to design firms,
leading to critical phenomena. We examined these phenomena in our previous work [15].
In this work, we explore a different aspect of the market model of competing companies,
namely, multifractality.

Moreover, we show that the actual market of S&P 500 companies is multifractal. Finally,
we indicate that this market can be (roughly) described by the multifractal formalism, in
which companies are divided into four groups differing significantly in market shares.

The paper consists of two parts. The first part consists of Section 1 (Introduction)
together with Section 2 (Theory), which on the example of our critical company market
model [15] presents the multifractal approach. The second part presents this multifractal
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approach to the real market of the S&P 500 index. Moreover, this part compares the obtained
results for the actual market with the four-group market model.

2. Theory

2.1. Definition of Partition Function

The multifractal behavior of the market of competing firms is a new concept. We
based this concept on the characteristic for this market, the partition function given by the
formula [14]

Z(β) =
N

∑
n=1

ω
β
n , (1)

where ωn is the (normalized) market share of firm n, while N is the number of firms in
the market; both a priori given quantities we can obtain, at a given time, from simulations,
empirical data, or from theory.

We characterize the market shares of companies using the Quetelet ranking (see
Figure 1), i.e., we build a plot of cumulative distribution function (CDF) versus company
share value taken from simulation within our model.

Figure 1. Quetelet curve: the dependence of the standardized rank of companies generated within
our model, i.e., CDF, on their shares ω. It is precisely to analyze this simulation data that we use
multifractal formalism.

The partition function in the form given by Equation (1) is ready to study the multiscale
nature of the ω distribution. This multiscale nature comes from the hierarchical distribution
of firms’ sizes.

In this section, we limit ourselves to systems in steady states; therefore, we assume
that N = Nst. Recall that in our model Nst is clearly related to the level of intervention
0 ≤ q ≤ 1, its effectiveness 0 ≤ η ≤ 1, and the company’s activity 0 ≤ λ ≤ 1 [15]. Figure 2
shows a typical relationship Nst vs. q with η (=0.5) and λ (=0.9) fixed. The location of the qc
criticality threshold is clearly visible, signaling a continuous phase transition.

The partition function, Z(β), obeys two basic properties,

Z(β = 0) = N, (2)

and

Z(β = 1) = 1. (3)

Of course, Equation (2) describes the size of the multifractal substrate or company market,
while Equation (3) comes from the normalization condition of shares.
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Figure 2. The typical dependence of Λ (=Nst) vs. interventionism level q at fixed η (=0.5) and λ (=0.9).
It is a flat phase diagram where a continuous phase transition is clearly visible at qc (=0.734). All other
plots in this section have the same η and λ parameters as this plot.

Moreover, using the share limitation from below and above, we get

Z(β → ∓∞) ≈
{ (

ωmin)β, β < 0
(ωmax)β, β > 0

(4)

where ωmin and ωmax determine the marginal values of the companies’ market shares.

2.2. Scaling Relations

We continue to show that the partition function Z(β) takes the form of a power law,

Z(β) = Λ−τ(β) ⇔ τ(β) = − lnZ(β)

ln Λ
, (5)

where τ(β) is the scaling exponent, while the base/scale Λ we define below. Having the
partition function at our disposal, we can build a thermodynamic formalism on this basis.
We talk more about it in Section 2.5, where we calculate a specific heat.

To prove the correctness of the first equality Equation (5), we use two crucial scaling
exponent properties,

τ(β) = (β − 1)D(β) (6)

where D(β) ≥ 0 is the Rényi dimensions and

τ(β) = βh(β)− D(β = 0), (7)

here h(β) is a generalized Hurst exponent and D(β = 0) is the Hausdorff dimension of the
substrate/market, which for our case we can put to 1.

For β → 1 the Rényi information approaches the Shannon information that is, it
becomes the information dimension,

D(β = 1) = − 1
ln N

N

∑
n=1

ωn ln ωn. (8)

For β → 2 the partition function (1) reduces to the well-known correlation integral
C(N) of Grassbereger and Procaccia [16], i.e.,

D(β = 2) = − ln C(N)

ln N
. (9)
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Furthermore, let us also note that always D(β′) ≤ D(β) for β < β′.
Now, we can define basis Λ. We use Equation (5) for this purpose, in which we put

β = 0 followed by Equations (2) and (7). Therefore, we get Λ = N.
The above result, in combination with the scaling Equation (5), allow us to present the

scaling exponent in an explicit asymptotic form,

τ(β → ∓∞) ≈
{

−β ln ωmin

ln N , β < 0
−β ln ωmax

ln N , β > 0.
(10)

With the above results, we can now present a plot of τ(β) vs. β—this plot and its
enlarged version limited to the central values of β (from the range of [−1.5, 1.5]), are
presented in Figure 3. As one can see, τ(β) is bounded by two diagonal asymptotes defined
by Equation (10).

Figure 3. Scaling exponent τ(β) vs. exponent β (the order of scale). Its nonlinear/multifractal behavior
in the range of β ∈ [−1.0, 2.0] for interventionism level 0 < q < 1 is clearly seen (especially on the
zoomed plot). On the other hand, the plot on the right shows the existence of oblique asymptotes.
Multifractality is present if and only if they are different from each other. For example, we have
selected ten characteristic levels of interventionism here (see the legend). The sharp decrease in the
slope difference of the asymptotes for q ≈ 1 (blue dashed curves) is visible. We use the same set of q
values in all plots in Section 2.

We consider the next two extreme cases. The first, is when all but one of the company
shares disappear (the case of a monopolized market). Then, with Equations (1), (3) and (5),
we get immediately that τ(β) is undefined.

The second case is when all shares are equal (the case of the egalitarian market), i.e.,
ωn = 1

N , n = 1, 2, . . . , N. Then, with Equations (1), (3) and (5), we get

τ(β) = β − 1, (11)

i.e., the scaling exponent is a linear function of β. We continue to deal mainly with cases
distant from both of the above extreme cases.

We assume that company shares, ωn, create the nonuniform/multiscale function ωn
vs. n, a multifractal structure. In other words, we are dealing here with multifractality, the
source of which is the heterogeneous distribution of company shares.
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2.3. Rényi Dimensions and Generalized Hurst Exponent

In Figures 4 and 5, we present the Rényi dimensions, D(β), generalized Hurst expo-
nent, h(β), and their spans ΔD(β) = D(−β)− D(β) and Δh(β) = h(−β)− h(β), respec-
tively. The former two quantities are limited by identical horizontal asymptotes:

D(β → ∓∞) = h(β → ∓∞)

=

{
Dmax = hmax = − ln ωmin

ln N , β < 0,
Dmin = hmin = − ln ωmax

ln N , β > 0,
(12)

while

ΔD(β → ∞) = Dmax − Dmin

= Δh(β → ∞) = hmax − hmin

= ln
(

ωmax

ωmin

)
. (13)

Equations (12) and (13) are a direct result of the asymptotic scaling exponent properties
given by Equation (10) and by Equations (6) and (7), respectively.

Figure 4. Dependence of Rényi dimensions D on β. A sharp drop in the ΔD(β) span is clearly visible
on the right plot for large values of |β| and q ≈ 1 (blue dashed curve). This is the result of the behavior
of the τ(β) vs. β curve shown in Figure 3.

Figure 5. The dependence of the generalized Hurst exponent h and its span Δh on β. A sharp drop in
the Δh(β) span is clearly visible for large values of |β| and q ≈ 1 (blue dashed curve). It is the result
of the behavior of the τ(β) vs. β curve shown in Figure 3.
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2.4. Spectrum of Dimensions

We now designate the most crucial multifractality signature, i.e., the spectrum of
dimensions (singularities), f , given by the Legendre transformation,

f (α) = β(α)α − τ(β(α)), (14)

where the local dimension (singularity or Hölder exponent) is

α(β) =
dτ(β)

dβ
= − 1

ln N
∑n ω

β
n ln ωn

∑n ω
β
n

. (15)

Therefore, we obtain a helpful equality locating the maximum spectrum of dimensions
f (α(β = 0)),

α(β = 0) = − 1
N ln N ∑

n
ln ωn. (16)

and we get, analogously as in Equation (12),

α(β → ∓∞) ≈
{

αmax = − ln ωmin

ln N ,
αmin = − ln ωmax

ln N .
(17)

As one can see from Equation (12), the quantities D, h, and α have the same lower and
upper bounds.

Furthermore, from Equations (14) and (15) we get

β =
d f (α)

dα
. (18)

In Figure 6, we present the dependence of local exponent α and its span Δα on β.

Figure 6. Dependence of the local singularity α on β. A sharp drop in the Δα(β) span is clearly visible
on the right plot for large values of |β| and q ≈ 1 (blue dashed curve). This is the result of the behavior
of the τ(β) vs. β curve shown in Figure 3.

In Figure 7, we present the dependence of the local singularity span Δα on q at fixed
β = 5.0.
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Figure 7. Dependence of the local singularity span Δα on q at fixed β = 5. A slight but distinct peak
locates near qc = 0.735, which defines the criticality threshold used by us at earlier work [15]. We also
included a magnification of this peak.

Figure 8 shows he dependencies of f on α and on β. The α(β) vs. β plot (like D(β) and
h(β) vs. β ones) is limited by two horizontal asymptotes given by Equation (17). This is a
direct result of the asymptotic properties of Equation (10).

Figure 8. Dependence of spectrum of dimensions, f , from α (left plot) and β (right plot). There is a
visible nonlinear dependence of the shape f on the level of interventionism q. Moreover, there is a
wide spread in the spectrum of singularities Δα. As expected, the same applies to the dependence of
f on β. In addition, there is a slight asymmetry of f , i.e., γ > 0, herein.

We present below useful quantities, which characterize the spectrum of singularities:

(i) f 0 = f (α(β = 0) = α0) = D0 = D(β = 0), which results from Equations (7), (14) and

(18), and moreover we get d f (α)
dα |β=0 = 0;

(ii) for β = 1 we immediately get from Equation (18) d f (α)
dα |β=1 = 1, therefore f 1 =

f (α(β = 1)) = α(β = 1) = α1;
(iii) for β → −∞ we get from Equations (14) and (15), that f max = f

(
α = αmax = − ln ωmin

ln N

)
= 0 and d f (α)

dα |β→−∞ = −∞; similarly for β → ∞ we get f min = f
(

α = αmin = − ln ωmax

ln N

)
= 0 and d f (α)

dα |β→∞ = ∞;
(iv) the maximum span of f we determine as follows, Δα||β|→∞ = αmax − αmin = 1

ln N

ln
(

ωmax

ωmin

)
. We continue to use the simplified designation Δα = Δα||β|→∞;
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(v) the following asymmetry factor can be used to determine the degree of asymmetry f ,

γ||β|→∞ = α(β=0)−αmin

αmax−α(β=0) , where α(β = 0) is given by Equation (16). We continue to use
the simplified designation γ = γ||β|→∞.

It should be emphasized that in general f (α = αmin, αmax) 	= 0. This happens when at
least one of the boundary values ωmin, ωmax is degenerated. This is discussed in Section 3.2
for a four-group company market model.

The large span Δα visible in Figure 8 indicates a great volatility of competing firms on
the market. At the same time, we deal with a wide variety of companies only when it also
occurs that N  1. However, the shift of the spectrum of dimensions to higher values of α
signals the dominance of smaller companies on the market. Let us note that we would deal
with a weak multifractality if and only if the span Δα � 1.

One can also analyze asymmetry of f using the coefficient γ. If γ > 1, then we are
talking about the advantage on the market of large companies, as opposed to the situation
of γ < 1. The marginal case γ = 1 corresponds to the balanced situation.

2.5. Specific Heat

We can now define the specific heat c of the system/market on the reciprocal of the
temperature β, as follows [4,14,17]:

c(β) = −β2
(

∂2(βF/V)

∂β2

)
V

=
1

ln N
β2

(
∂2 lnZ

∂β2

)
N

,

(19)

where 1
V βF = − 1

ln N lnZ , while F is the free energy of a company market, and V = ln N here.
The dependence of c(β) on β is presented in Figure 9. Apparently, this dependence

is anomalous (both for positive and negative values of β) because it has a local peak,
analogous to the Schottky peak for the specific heat of the solid [18,19] related to its internal
degrees of freedom. Let us add that the disappearance of c(β = 0) in β = 0 results directly
from the second formula (19). Such clear peaks are the result of highly differentiated values
of the shares, ωi, that define partition function Z . They play the role of internal degrees
of freedom here. We proof that Z composed of only two different shares ωmax and ωmin

already leads to the anomalous peaks of specific heat.

Figure 9. Dependence of specific heat, c, for a constant volume (V = ln Nst) on β. The anomalous
behavior of c is apparent due to the presence of Schottky peaks for both the positive and negative
values of β.
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3. Discussion and Concluding Remarks

3.1. Multifractality of Real Company Market

As an example of the method’s application, we exploit the ‘S&P 500 Companies
by Weight’ page (from the day 12 November 2021). (The data was taken from the page
https://www.slickcharts.com/sp500. Accessing to this page is common and unlimited all
the time). The available empirical data covers approximately 70–80% of the total US stock
market capitalization. These empirical data directly provide the market daily share values
of individual companies, i.e., the data we need.

Let us characterize the market shares of companies using the Quetelet ranking (see
Figure 10), i.e., we build a cumulative distribution function (CDF) versus company share
value plot. The market structure is visible:

• the market segmentation into the overwhelming majority of companies with a small
market share (around 0.01 or less)

• five companies with a market share between 0.02 and 0.03
• three companies with the highest market share between 0.04 and 0.065.

Figure 10. Quetelet curve: the empirical dependence of the standardized rank of companies, belonging
to the S&P 500 index, i.e., CDF, on their shares ω. It is precisely to analyze this data that we use
multifractal formalism.

In such a situation, the question of the actual dominance of companies on the market
is justified: will small companies dominate large ones, or is the opposite case. For this
purpose, we use the multifractal analysis described in Section 2.

It is worth realizing that if the CDF was built on a power, exponential, or Gaussian
distribution, we would not be dealing with multifractality. In the first case, the scaling
exponent τ(β) would be a linear function of β, in the second case it would be logarithmic,
and in the third case, it would be a linear combination of logarithmic and linear functions.

We continue to investigate the empirical relationship shown in Figure 10 with the
multifractality approach shown in Section 2. When using Equations (1) and (5), we find the
relationship τ(β) vs. β, but we do not go into whether the market is in a steady-state or not,
i.e., the number of firms in the index N = N(t) 	= Nst may fluctuate around 500 and shares
may depend on time. We can use it here because the above considered method applies to
both stationary and non-stationary states.

The above-mentioned relationship, τ(β) vs. β, is shown in Figure 11. The presented
dependence is a nonlinear function of β, which allows us to carry out the next steps of
the method.
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Figure 11. Dependence of τ(β) vs. β for the company market from the S&P 500 index. The left plot is
a magnification of the β range belonging to the [−1.5, 2.0] interval. The right plot shows the one in
the full β range, i.e., belonging to the [−10, 10] interval. In the assumed plot’s resolution of the whole
(right) graph, it is impossible to distinguish the results of the four-group company market model (red
curve) from the empirical (black) curve.

In Figure 12, we presented the dependence of the generalized Hurst exponent on the
β exponent. Its span is sufficient for the one of the spectra of singularities presented in
Figure 13 (cf. the black curve) to define a solid multifractality.

Figure 12. Dependence of the generalized Hurst exponent h(β) on the β exponent. Its span is sufficient
for one of the spectra of dimensions presented in Figure 13 (both curves have there a common span)
to define a solid multifractality. There are slight/subtle local differences between the two curves in
both figures (black: the empirical one; red: the four-group company market).

In Figure 14, we show the specific heat c(β) vs. β. As in Section 2.5, we see peaks
analogous to the Schottky peak—for both positive and negative values of β. There are
differences in the predictions of the approach described below in Section 3.2 (in red) from
the empirical curve (in black). These are hyper-fine deviations, as they appear at the level
of the second order derivative of the scaling exponent τ.

We remind that subtle deviations (of the first order, i.e., at the level of the first deriva-
tive) are observed for the Hurst exponent as well as spectral dimension f (Figures 12 and 13,
respectively). Deviations regarding the τ curve itself are imperceptible (on the scale of the
right plot in Figure 11).
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Figure 13. Dependence of the spectrum of dimensions f (α) vs. α for the company market from the
S&P 500 index (black curve). The f asymmetry favoring large firms is visible. For comparison, we
have included the spectra of dimensions for the four-group company market represented by the
red curve.

Figure 14. Anomalous dependence of specific heat c(β) vs. β for the company market, for example,
from S&P 500 index. As can be seen, the model of four-group company market shows apparent
differences from the empirical data only at the level of the second τ derivative, i.e., at the level of
hyper-fine effects.

3.2. Real Market vs. Four-Group Company Market

Now, we answer the question: how should the market of companies be grouped/
organized in order not to violate its diversity, i.e., to recreate its empirical spectrum of
dimensions presented in Figure 13 (black curve). It is about its location and the basic shape
defined by (αmin, f min), (α1, f 1), (α0, D0), and (αmax, f max) (see Figure 15 for details).

We use for this purpose the following expression for the scaling exponent (based on
the multifractal formalism presented in Section 2),

τ(β) = − lnZ4(β)

ln N
= − 1

ln N

× ln
(

M
(

ωmin
)β

+ K1ω
β
1 + K2ω

β
2 + L(ωmax)β

)
, (20)

where Z4(β) means the partition function obtained from Equation (1) for the four-group
company market. This section shows that such a division is enough to recreate the localiza-
tion and shape of the spectrum of dimensions and other multifractality characteristics such
as the scaling exponent, Hurst exponent, local exponent, and specific heat. We can show that
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two- and three-group company markets are not suitable for describing the multifractality
of real company markets. For example, they cannot reproduce a location or a span of the
spectrum of dimensions correctly.

Our specific goal is to clearly determine eight unknowns: the size of each of the four
groups of companies M, K1, K2, L and their shares ωmin, ω1, ω2, ωmax. At least for the four-
group company market, we can unambiguously determine the eight wanted unknowns.

Figure 15 shows an example schematic image of spectrum of dimensions—reading
the coordinates of some of these points from this spectrum of dimensions allows us to
determine the variables we are looking for. We show how to practically do this below.

Figure 15. An example plot of the spectrum of dimensions f vs. α for the company market con-
sisting of the four groups. Characteristic coordinates that we read from the graph, define the con-
ditions (considered in the main text), which help us to determine the unknowns M, K1, K2, L and
ωmin, ω1, ω2, ωmax.

The normalization condition takes the form

Z4(β = 1) = Mωmin + K1ω1 + K2ω2 + Lωmax = 1, (21)

while the size of the market is fixed,

Z4(β = 0) = M + K1 + K2 + L = N. (22)

The point is that N is fixed either as a stationary value or an instantaneous value of the
number of firms in the market. Therefore, we take it from empirical data.

We emphasize that Equations (21) and (22) are the first two equations from the system
of equations that allow us to find the above-mentioned unknowns we are looking for.
Because the shares of ωmin and ωmax are read directly from the empirical data, in order to
find the remaining unknowns, we need four more equations, which we consider below.

From Equation (20), and Definitions (5) and (15), we get

α(β) =
dτ(β)

dβ
= − 1

ln N
1

Z4(β)

× [M
(

ωmin
)β

ln ωmin + K1ω
β
1 ln ω1

+ K2ω
β
2 ln ω2 + L(ωmax)β ln ωmax] (23)
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From the definition of the spectrum of dimensions (14), we obtain its boundary values
for our case,

f min = f (αmin = α(β → ∞)) =
ln L
ln N

,

f max = f (αmax = α(β → −∞)) =
ln M
ln N

, (24)

which can also be read (to good approximation) from the empirical f shown in Figure 13
(black curve). Thus, the number of unknowns is reduced to two, namely, to ω1 and ω2. It
should be emphasized that only in the special case, when M or L are equal to 1, i.e., when
the marginal values of companies’ market shares are non-degenerate, do the boundary
values of the spectrum of dimensions (24) disappear. It happens precisely in the case of the
empirical data we use here.

Another needed quantity, which we read from the empirical f shown in Figure 13
(black curve), is the location of the center of the peak f given by the formula,

α(β = 0) = − 1
N ln N

×
(

M ln ωmin + K1 ln ω1 + K2 ln ω2 + L ln ωmax
)

. (25)

The same applies to the point of contact f (α(β = 1)) = α(β = 1). Therefore,

α(β = 1) = − 1
ln N

× [Mωmin ln ωmin + K1ω1 ln ω1

+ K2ω2 ln ω2 + Lωmax ln ωmax]. (26)

Both of the above equations have been obtained from Equation (20) and definition (15).
Now we calculate unknowns K1 and K2 from Equations (21) and (22) as the function

of ω1 and ω2. We substitute the obtained quantities into Equations (25) and (26). Thus,
we reduce our problem to two transcendental equations. For our case, M = L = 1, these
equations can be converted to the form

α(β = 0)N ln N + ln
(

ωminωmax
)

= (N − 2)
ω1 ln ω2 − ω2 ln ω1

ω2 − ω1
+ Ω

ln
(

ω1
ω2

)
ω2 − ω1

, (27)

and

α(β = 1) ln N + ωmin ln ωmin + ωmax ln ωmax

= (N − 2)
ω1ω2

ω2 − ω1
ln
(

ω2

ω1

)
+ Ω

ω1 ln ω1 − ω2 ln ω2

ω2 − ω1
, (28)

(where Ω = 1 − ωmin − ωmax), which are more convenient for a numerical solution. Thus
we have reduced our problem to the above two transcendental equations.

Table 1 presents the empirical data needed here regarding the first and last components
of the S&P 500 index of 12 November 2021, consisting (on this day) of N = 505 companies.

Based on these empirical data, we solve numerically Equations (27) and (28) and
obtain ω1 = 0.00065 and ω2 = 0.0101. Therefore, we have K1 = 439 and K2 = 64. Thus, in
our case, we obtain non-degenerate share margins and strongly degenerate (though very
different) intrinsic share values. The resulting spectrum of dimensions we presented in
Figure 13 by means of a red curve. Likewise, we have presented the remaining results in
Figures 11, 12 and 14 by means of red curves.
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Table 1. Empirical data on the first and last components of the S&P 500 index as of 12 November 2021.

No. Company ωmin ωmax M L

1 AAPL (Apple Inc., Cupertino, CA, USA) − 0.06866056 − 1

505 NWS (New Corporation Class B, New York, NY, USA) 0.00006948 − 1 −

We emphasize that the obtained result is universal in the sense that, starting from the
four-group market of companies, we obtain enough equations to describe the location and
shape of the multifractality characteristics.

3.3. Conclusions

It is worth realizing how distributions induce common multifractal structures. There-
fore, it is not so much about searching for such structures, but about the possibility of
comparing them with each other, i.e., answering the question of which structures are more
multifractal and which are less. For this, they must first be classified according to their
symmetry and degeneration. The larger the logarithm of these steps, the higher these
elevations are.

The degree of asymmetry in the multifractal structure is determined by the γ asymme-
try coefficient. If γ = 1, we have a symmetric multifractal structure. If γ > 1, we have left
asymmetry, while for γ < 1, we have right asymmetry.

The degree of degeneration of the marginal shares determines the elevation of the
edges of the spectral dimensions: the left one depends on the degree of degeneration
of the maximum share, and the right one depends on the degree of degeneration of the
minimum share.

In this way, we have divided multifractal structures into nine groups, where both
asymmetries and degenerations match themselves like the symmetry of the left and right
hands (see Figure 16 for illustration, there, for example, the first plot in the first column
and the last plot in the third column). Only within each group can we introduce a measure
that allows us to organize the multifractal structure. The above classification is possible
due to the fact that asymmetry and degeneration are independent of each other.

Figure 16. Schematic classification of spectrum of dimensions due to asymmetry γ and degeneration
(M, L).
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Suppose two multifractal structures have the same span of the spectrum of dimensions
and location. One is more multifractal than the other if its degeneration levels are less than
the corresponding other.

Another special case is when both multifractal structures’ degeneracy levels are equal,
while the structures differ in span. Then the more multifractal structure is for, the larger
span structure plus f 1.

We introduce a precise definition of the linear multifractal capacity, M, utilizing a
definition based on Figure 15 and Equation (24),

M = Δα + f 1 + M−1 + L−1. (29)

Notably, there is no differentiation of multifractality due to location α0. The proposed
phenomenological measure of multifractal capacity, M, is a partial in the sense that it does
not take into account the entire fine structure of the spectrum of dimension f .

In conclusion, in this paper, we examine the multifractality/multiscaling coming from
shares and not from correlations. In this sense, this work is complementary to our previous
one [15]. As a reference case, we have discussed the instructive example of the four-group
company market. We have shown that (within the zero-order approximation) each market
can be reduced to a four-group company market, which should facilitate market analysis.

Finally, we can say that this is the first time such a multifractal analysis of the market
of competing companies has been performed.

Notably, we can apply the approach to any series of shares, e.g., shares of turnover vol-
umes on the stock exchange and shares of companies’ quotations on the stock exchange. In
short, the approach can be applied to any normalized series of positively defined elements.
Moreover, our approach makes it possible to examine the evolution of multifractality of
company market especially in the vicinity of crash regions. That is why it is so important to
study in the near future the relationship between multifractality and criticality suggested
by Figure 7.
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Abstract: Using data from both the US and UK we examine the survival and mortality of companies
in both the early stage or start-up and mature phases. The shape of the mortality curve is broadly
similar to that of humans. Even small single cellular organisms such as rotifers have a similar shape.
The mortality falls in the early stages in a hyperbolic manner until around 20–30 years when it begins
to rise broadly according to the Gompertz exponential law. To explain in simple terms these features
we adapt the MinMax model introduced by the authors elsewhere to explain the shape of the human
mortality curve.

Keywords: mortality; companies; start-up; FTSE100; Gompertz; MinMax; survival probability distribution

1. Introduction

In 1999, one of the authors of this paper (PR) arrived in Ireland to spend what became
a decade in Trinity College. During that year he had the opportunity to attend the first ever
European Physical Society sponsored conference on econophysics in Dublin. During the
meeting he obtained a copy of the book ‘An Introduction to Econophysics’ by Rosario N
Mantegna and H Eugene Stanley. As for many other physicists, that meeting and the book
inspired new research directions. This paper is the latest in a series that have emerged from
that initial revelation over two decades ago.

In a series of recent papers [1–3] the present authors have studied human mortality
demonstrating how the shape of the mortality function has a bathtub type of shape where
the infant mortality decreases with age whereas in old age it increases (Figure 1). In medical
terminology infancy refers to new born under one year of age. However, in reality the
decrease of the death rate continues until the age of 10, For humans, the increase of the death
rate is described by the well-known law of Gompertz [4]. This law can be summarized
for by saying that the death rate doubles approximately every 10 years of age. Even the
mortality of small animals such as rotifers [3] exhibit similar behaviour as is shown within
the inset in Figure 1.

It has been suggested in the literature that non-biological systems obey a similar law
however evidence of such behaviour in non-biological systems is not easy to find. Very
recently Richmond et al. [5] studied the mortality of systems consisting of soap films and
confirmed the bathtub nature of such systems. However, the systems were relatively small
and towards the end of life, whilst the mortality increased there was no clear evidence
of Gompertz behaviour. In this paper we present evidence for company mortality which
mirrors the behaviour shown in Figure 1. The mortality of start-up companies decreases
according to a hyperbolic law whereas the mortality of mature companies increases and
the long-term trend is in accordance with the Gompertz law. This is shown in the next
section. In Section 3, we present a simple model with offers and explanation as to why such
behaviour can be expected for complex systems. We close with comments and thoughts for
further studies.
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Entropy 2022, 24, 208

Figure 1. Infant versus old age human mortality. The data are for the US over the period 1999–2016.
Between birth and the age of 10 (note the log-log scale) the infant mortality rate falls off as a power
law: μ(x) = A/xγ where the exponent γ is 0.99 and usually of the order of 1. After the infant phase
comes the aging phase (note the linear-log scale) during which the death rate increases exponentially:
μ(x) = μ(0) exp(αx) in agreement with Gompertz’s law and for humans α = 0.079. Source: Wonder-
CDC data base for detailed mortality data.

2. The Mortality of Companies

2.1. Start-Up

Much has been written about the survival of start-up companies. Usually this is
directed to reasons why such companies fail and do not manage to survive the so-called
valley of death in which companies fail due to inadequate working capital. Many other
reasons can lead to failure, poor management, marketing, etc. Here, we are not concerned
with these micro details rather we shall explore the mortality from a physics perspective
looking for general features which characterize the mortality of all companies. For our
purposes, a useful dataset is provided at LinkedIn in a paper by McIntyre [6]. Here, can be
found survival data for cohorts of companies from their start-up year of 1994 through to
2021. More data is provided for similar cohorts beginning in 1995 and all years through to
2020. Each dataset consisted of over 500,000 companies ensuring good statistics. Earlier data
for the period 1947–1954 is given by Steidl [7]. Steidl differentiates between manufacturing,
retail and service industries. We show in Figure 2, survival probabilities for both data sets.
The broad trend is similar but clearly the data for 1947–1954 falls more steeply than that for
more recent years.

From this data for the survival probability, σ(t), we can compute numerically the
‘force of mortality’, or more simply the mortality, μ(t). By definition this is the conditional
probability that given a person is alive at time t, they will die in within the time interval
[t, t + Δt]. It is equivalent to the rate of death conditional on life at time t. It follows from
this formal definition that it is equal to the ratio of the unconditional survival probability
density and the survival probability at time t:

μ(t) = − 1
σ(t)

Δσ(t)
Δt

The Steindl data is fitted extremely well by a hyperbolic function as can be seen on
Figure 3. For the average values we find σ(t) = 0.60t−0.48. This allows us to compute the
mortality directly by simple differentiation. Thus μ = 0.48t−1.0 However, from the figure it
is readily seen that neither an exponential nor a hyperbolic function fits the McIntyre data
and a simple first order difference procedure was used to compute annual values for the
mortality which does however follow a hyperbolic function over much of the timescale.
Thus, both McIntyre and Steindl data sets decay in a similar way following closely the
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hyperbolic trend y = A/xγ. Decaying with a power law of −1, the Steindl data follow the
value observed for human mortality. The more recent data decays more slowly.

Figure 2. Survival probabilities for US start-up companies over the period 1947–1954 and 1994–2021.
Data sources: McIntyre [2] and Steindl [3].
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Figure 3. Age specific mortality for US start-up companies using data shown in Figure 2.

However, it may be seen in Figure 3 that for the recent McIntyre data there is hint of a
minimum in the mortality versus time after approximately 20 years which is roughly the
same as the minimum observed for humans. Such a minimum is not yet evident in the data
of Steindl which only available for up to 10 years.

2.2. Mortality of Mature Companies

Having easy access to the UK FTSE100 index we chose to begin here. Comparing the
composition for the FTSE 100 when it was first established in 1984 with that in 2021 we can
establish 53 companies missing from the 2021 index. The company pages on Wikipedia
then provides dates for both birth and death.

At this point a word of caution is in order. Within this list some companies did
die in the sense of going bankrupt. However, others were taken over or merged into
another company. Here, we did not differentiate between these different modes of ‘death’.
Takeovers and mergers were simply regarded as a point of death. Clearly a takeover
or merger ‘deaths is different in nature to a simple bankruptcy. In a sense such a death
may not be dissimilar to deaths which occur in some biological systems such as that of
a caterpillar as it becomes a butterfly. However, our dataset here is small and we leave
further investigation of this point for another study for which a larger index or examination
of multiple indices is required.

The lifetime of our 53 companies varies from 13 to 259 years. The one with the shortest
lifetime is an oil company; the longest is a brewery. In between we see many types of
company. For example: food production, electronics and telephone companies, banks and
investment trusts. Figure 4 shows the survival probability of the 53 companies. This was
computed simply using the data sets.

Unlike the data for early-stage companies, the survival probability shown in Figure 4
for the set of mature companies is clearly not smooth. Applying the route used previously
to compute the mortality leads to a result which exhibits a number of anomalous sharp
peaks which remain despite extensive smoothing of the data. One of us (PR) is grateful
to an anonymous referee for pointing out the folly of this procedure. To work around this
problem we followed a different procedure. From the data for the survival probability, we
first computed the negative of the logarithm. Numerical derivatives were then computed
from the resulting data using the central difference approximation yielding the mortality.
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This procedure has the added benefit of avoiding the numerical division by the survival
probability, thus:

μi = − Lnσi+1 − Lnσi−1

ti+1 − ti−1

Figure 4. Survival probability for 53 FTSE100 companies which ceased trading between 1921 and
1984, the date the FTSE100 began being compiled.

The result is shown in Figure 5. The dots are computed data points and whilst there is
scatter, the solid curve which an exponential fit corresponding to Gompertz behaviour fits
reasonably well.

Finally, Figure 6 shows both sets of data (start-up and mature companies together in
the manner of Figure 1 for human mortality.) The left-hand curve for small companies is
plotted on a log-log scale; the mature company data is shown on a log-linear scale. The
ordinate scales are identical.

The general trend follows that for human mortality shown in Figure 1. Start-up or
early life mortality falls in a hyperbolic fashion; mature mortality trends upwards in the
manner of Gompertz. From Figure 3, we have noted that the minimum for the more recent
start-up company data seems to be around 25 years. However, from the figure it is clear
there is a gap between where the deathrate appears to rise (~20–30 years) for the early-stage
companies and the level at which mature companies has reached at the same age. However,
the earlier data from Steindl falls more steeply and assuming no change in the trend the
gap could be better closed with a minimum between the mortalities of early stage and
mature companies of around 30–40 years. Why might the McIntyre data be so different?
We know from studies of human mortality that data from different time eras can behave
in this way. For example, modern medicine reduced substantially the mortality for babies
with congenital defects. Here, we have two data sets for small companies taken from quite
different time eras. The period 1947–1954 was a period of reconstruction after World War 2
and the nature of small companies then depended on large amounts of capital investment
as indeed had been the case since the industrial revolution. However, with the advent
of modern computers, the situation changed. Since the 1990s it has been to start up a
company with little capital being dependent more on knowledge and computers than
intensive amounts of capital. Microsoft for example was set up by Bill Gates in his garage
and Google began as an undergraduate project. Using a biological term, we might say we
are comparing two different species of company before and after the 1990. We would see
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similar discrepancies comparing say, human infant mortality with the mortality of adult
elephants. Ideally, we should have data for a cohort of similar companies which have
evolved in similar environments. Our FTSE100 data is taken over an era extending from the
late 20th century back to the 17th century. Therefore, it seems not unreasonable to compare
against this mature data with the earlier Steindl data than the McIntyre data. Perhaps even
earlier data for the start-up companies might trend even more steeply downwards. A much
larger group of similar mature companies might be collected from US data. The S&P 500
perhaps although the time period will be more limited going back perhaps only to the
middle of the 19th century. More time needs to elapse before we shall see sufficient data for
mature companies to compare with the McIntyre data.

Figure 5. The mortality of the FTSE100 data on a linear plot. The data was computed using the method
outlined in the text. The solid line is an exponential fit corresponding to Gompertz like behaviour.

Figure 6. The left-hand graph is the small company mortality data plotted on a log-log plot; the
right-hand graph is the mortality data for mature companies plotted on a log-linear plot. The ordinate
scales for the mortality or annual deathrate are identical for both data sets. The abscissa for the early-
stage companies is a logarithmic and extends to 50 years of age; the abscissa for the mature companies
is a linear scale extending from 50 years to 250 years. The solid lines are the same regression fits
shown in the earlier figures with details within the insets. However, here we have extended the early
stage data trend line further out to around 30 years.
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An interesting point is that, whereas for humans medical advances have led to a de-
crease in mortality, for companies, it seem over time the mortality of early stage companies
has increased. The opportunity to set up a company with little capital makes it easier to
begin a business, but then perhaps it is also easier too to stop trading. Finally, we note in
passing that based on the data we have and extrapolating the trend beyond the maximum
data point to where it reaches a value of unity, the results predict a maximum company life
time of 283 years. This assumes no takeovers or mergers—which we have seen is not the
case. Nevertheless, it will be interesting—for others!—to see if this outcome holds in the
modern world.

3. The Minmax Model of Mortality

To explain the different forms of early and mature life mortality Richmond and
Roehner offered a ‘MinMax’ model where the system was decomposed into elements
each of which could function correctly or fail in a random way. For full details we refer the
reader to the publication [1]. Here, for completeness we summarize the idea and results. In
the case of the human these various elements could be thought of as the different organs
(for example: heart lung, brain, etc.). For companies we might think of various departments
or functions of the company such as marketing, finance, production etc.) such as shown
schematically in Figure 7.

Figure 7. Illustration of the decomposition of an organism into vital organs and the difference
between early life and mature life mortality mechanisms. The upper diagrams illustrate early life
death. It is the consequence of the failure of a single vital organ. The lower diagrams show a mature
death which is a consequence of uniform deterioration of all the vital organs. The graphs on the
right-hand side show the implications of these mechanisms in terms of age-specific death rates:
decreasing for early life as observed in infant death rates, increasing for mature death as seen in
old-age.

We need a way to describe mathematically whether each element as well as the whole
is functioning effectively or not. For simplicity we normalize the life span, Xi, of the
elements to [0, 1] where 1 represents the maximum life span of an element. Moreover, all
elements are supposed identical.

3.1. Mature Mortality

In the model we define the ultimate death of the company to have occurred when
all elements of the organization have failed. For the simple 4 element system shown in
Figure 8 this may be expressed by saying that if X1 = 0.5, X2 = 0.3, X3 = 0.7, X4 = 0.1 then the
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age of death is represented by the random variable Z = 0.7, in other words, Z = Max(X1, X2,
X3, X4). In [1] we give the complete derivation of the density function fp(x) for p elements
in terms of the density f (x) and cumulative distributions F(x) for the single elements:

fM,p(x) = p f (x)Fp(x)

Figure 8. (a,b) MinMax model density functions for a set of random variables which represent
age specific deathrates in early stage and mature companies. When the elemental structure of the
company becomes large, deathrates for mature companies become exponential.

For the simple case of a random variable with a uniform density over the interval (0,
1); in this case: for x ∈ (0,1): f (x) = 1, F(x) = x. Thus for x ∈ (0,1): fZ(x) = pxp − 1. This
function, shown in Figure 8b for p = 2, 4, 8, 15, is a power law function that increases fast
with age. This is consistent with a Weibull distribution but when p becomes large it has the
shape of an exponential which is qualitatively consistent with Gompertz’s law according to
which the probability of death increases exponentially with age.

3.2. Early-Stage Company Death

Again using the same ideas, early stage death would mean that the age of death is:
W = 0.1, the is W = Min(X1, X2, X3, X4). Again we refer the reader to [1] where it is shown
that for p elements in terms of the density f (x) and cumulative distributions F(x) for the
single elements the density function for early death is

fW,p = p f (x)[1 − F(x)]p−1

For the simple model above we see that fW,p(x) = p[1 − x]p−1. Consequently, the
probability of early-stage death, illustrated in Figure 8a is a decreasing function of age,
consistent with what is expected for infant mortality.

4. Discussion and Conclusions

The interesting conclusion is that the broad trend of company mortality mimics that
of humans. Perhaps this is not surprising since companies reflect human behaviour and
ingenuity. As for human mortality, the minmax model gives some insight into the behaviour
of company mortality. Small companies are known to fail as a result of a particular problem:
a new product fails to succeed in a market, new finance is not forthcoming or production is
found to be problematic. However, large companies that have evolved beyond the early
stage can usually compensate for single department problems. Moreover, it would seem
from the data that the trend in early-stage mortality is for it to have risen over the years.
Could this be due to it being easier for an entrepreneur to set up a business? Moreover,
with the need for limited capital investment relative to earlier times, could it be easier to
close down a failing business?

576



Entropy 2022, 24, 208

From the minmax idea then we can understand the general shape of the mortality
curve and as far as we are aware, this work is the first to show this behaviour for a non-
biological system. However, why should the minimum occur around the age of 20–30 years
in the manner of human mortality? Could this be linked to the complete passing of the
first generation of employees over to a new group who are fully able to grapple with
management of complexity as opposed to the skills offered by the initial entrepreneurs?
More studies with new data sources are needed to explore this in more detail.
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Abstract: This paper examines relations between econophysics and the law of entropy as founda-
tions of economic phenomena. Ontological entropy, where actual thermodynamic processes are
involved in the flow of energy from the Sun through the biosphere and economy, is distinguished
from metaphorical entropy, where similar mathematics used for modeling entropy is employed to
model economic phenomena. Areas considered include general equilibrium theory, growth theory,
business cycles, ecological economics, urban–regional economics, income and wealth distribution,
and financial market dynamics. The power-law distributions studied by econophysicists can reflect
anti-entropic forces is emphasized to show how entropic and anti-entropic forces can interact to
drive economic dynamics, such as in the interaction between business cycles, financial markets, and
income distributions.
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1. Where Econophysics Came From

It has long been argued as for example by Mirowski [1] that economic theorists have
drawn on ideas from physics, with an especially dramatic and influential example being
Paul Samuelson’s Foundations of Economic Analysis [2] from 1947. However, while the
influence of physics concepts in Samuelson, as well as many economists much earlier, was
enormous and openly acknowledged, it was only much later that the term econophysics
would be coined, reportedly at a conference in 1995 Kolkata, India [3] by H. Eugene Stanley,
who as a longtime editor of Physica A has played a crucial role in publishing many papers
that have been identified as representing and advancing this approach, with the term first
appearing in print in 1996 [4]. Curiously when it came to define this multidisciplinary
neologism, the emphasis given by Mantegna and Stanley [5] was not upon the ideas or
specific theoretical methods involved, but rather on the people doing it: “the activities of
physicists who are working on economics problems to test a variety of new conceptual
approaches deriving from the physical sciences”.

This freshly defined approach involving physicists in particular, sometimes in con-
junction with economists, quickly became a self-conscious cottage industry, even though
arguably similar efforts had been going on for a long time, if not specifically by self-
identified physicists, although some econophysicists have argued that an early inspiration
for their work was Ettore Majorana in 1942 [6], whose untimely death gave him dramatic
attention as he argued for the profound identity of statistical methods used in social sci-
ences and physics. Important influences on the self-identified econophysicists included
statistical mechanics [7,8] and also self-organized criticality models derived from mod-
els of avalanches [9] and earthquakes [10]. These approaches led to studies of many
subjects in the early days, generally finding distributions that did not follow Gaussian
patterns characterizable solely by mean and variance. These subjects included financial
market returns [11–18], economic shocks and growth rate variations [19,20], city size
distributions [21,22], firms size and growth rate patterns [4,23,24], scientific discovery
patterns [25,26], and the distribution of income and wealth [27–29].
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While the emerging econophysicists identified themselves as being physicists, an
important impetus to their activities came from the intense discussions between economists
and physicists at the Santa Fe Institute starting in the late 1980s [30,31]. While some of
the economists defended existing economic theory, these discussions often emphasized
dissatisfaction with its ability to explain empirical phenomena exhibiting non-Gaussian
distributions with skewness and “fat tails” leptokurtosis [32–34]. While indeed most of
the economists in these discussions disavowed some of the models developed by the
econophysicists, the irony is that some of these models introduced by the physicists
that could generate such higher moments as well as scaling properties were originally
developed by economists, with the most important example of this being the Pareto
distribution [35].

2. The Important Role of the Pareto Distribution

This important distribution that shows so many characteristics interesting to econo-
physicists was initially developed by the socio-economist Vilfredo Pareto in 1897 [35].
If N is the number of observations of a variable exceeding x, and A and α are positive
constants, then

N = Ax−α. (1)

Scaling can be seen as:
ln(N) = lnA − αln(x), (2)

with it possible to stochastically generalize this by replacing N with the probability an
observation exceeds x. The log–log form of this is conveniently linear.

Much like the more recent econophysicists, Pareto’s original focus was on income
distribution, and he believed (inaccurately) that he had found the universally true value
of 1.5 for a. In 1931, Gibrat [36] countered Pareto’s argument with the idea that instead
income distribution followed the lognormal form of the Gaussian distribution that can arise
from a random walk, first studied by Bachelier in 1900 [37], with Einstein adopting it to
model Brownian motion [38]. However, further studies suggest that combining these two
provides a better description of income distribution, with the upper end of the distribution
showing a Pareto pattern and lower portions showing lognormal Gaussian forms [39–42].

As it was, the Gaussian random walk would come to dominate a great deal of the
modeling of price dynamics and financial market dynamics, including the widely used
Black–Scholes formula [43]. Ironically, this triumph of what became the standard economic
approach was engineered by the physicist M.F.M. Osborne in 1959 [44]. His model of
dynamic prices, with p as the price, R the price increase return, B as the debt, and σ as the
Gaussian standard deviation, is given by:

dp = Rpdt + σpdB. (3)

Nevertheless, parallel developments inspired by Pareto went on through the twen-
tieth century, with some using the stable Lévy distribution developed in 1925 [45] as a
generalization of Pareto’s distribution. Applications included looking at scientific discov-
ery patterns [46] and city sizes [47]. A singular figure later in the century would be the
father of fractal geometry, Benoit Mandelbrot [48,49], who directly posed the rival Pareto
distribution as being able to model price dynamics [50] in 1963, in contrast to Osborne’s
argument. In 1977, Iriji and Simon [51] applied this to firm size distributions, a finding
generally ignored until verified by Rob Axtell in 2001 [52].

3. The Influence of Statistical Mechanics

Arguably, the earliest influence of physics on economics was due to Canard in 1801 [53],
who posed supply and demand as being “forces” opposing each other in a physics sense.
However, a more specific influence on conventional economics would be statistical mechan-
ics, developed by J. Willard Gibbs in 1902 [7]. As noted earlier, Samuelson in 1947 [2], who
drew the influence from Irving Fisher [54], drew on Gibbs’s approach for his reformulation
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of standard economic theory, a development much criticized by Mirowski [1], who derided
all as economists exhibiting “physics envy”.

More recently, there have been a variety of economists using statistical mechanics
to develop stochastic models of various economic dynamics, including work by Hans
Föllmer in 1974 [55], and then in the 1990s, just as the econophysicists were getting
going by Blume [56], Durlauf [31] (pp. 83–104) and [57], Brock [58], Foley [59], and
Stutzer [60]. Stutzer applied the maximum entropy formulation of Gibbs with the conven-
tional Black–Scholes model [43], drawing on Arrow–Debreu contingent claims theory [61].
Brock and Durlauf [62] would formalize the general approach within the context of socially
interacting heterogeneous agents maximizing utility in a discrete choice setting.

To a substantial degree, most econophysicists were not aware of either the more
recent work along these lines, much less the deeper work further in the past, with this
leading to some of them making unfortunately exaggerated claims about the originality and
transformative nature of what they were doing. These problems were discussed in a critical
essay called “Worrying trends in econophysics” by Gallegati et al. in 2006 in Physica A [63].
They identified the following as problematic trends: missing knowledge of the existing
economics literature, a readiness to believe there may be universal empirical regularities in
economics not really there unlike in physics, much use of unrigorous statistical methods
sometimes just looking at figures, and relying on inappropriate theoretical foundations
such as invalid conservation principles. McCauley responded [64], taking a hard line, that
economic theory is so worthless that it should be totally replaced by ideas coming from
physics. Reviewing these arguments, Rosser [65,66] agreed that economists often make
vacuous assumptions, despite excessively unreal assumptions damaging usefulness of
models. One way to deal with this is to have more joint research between economists
and physicists.

4. Forms of Entropy

In the Gibbsian statistical mechanics, the question of maximizing entropy is a crucial
element, which leads us to the question of what entropy is. Its original formulation came
from Ludwig Boltzmann [67], although it was not as many thought the form that appeared
on his grave [68] that has long received a great deal of attention. The statistical mechanics
problems involve aggregating out of individual molecular interactions to observe systemic
averages, such as temperature out of such a motion in a space. Letting S be entropy, kB be
the Boltzmann constant, and W be the statistical weight of the system macroscopic state
(also known as the “thermodynamic probability”), then the following equation can be
written as:

S = kB ln W, (4)

where the configurational statistical weight of the macrostate of the system, W, defines the
number of ways (configurations) of the arrangement of N of the identicalideal classical gas
molecules in the microstates of the system (constituting a given macrostate), where Ni is
the number of the identical molecules in the microstate i. The author uses this physical
interpretation later in the work, given N is the sum of over the n available microstates of
the system each given by Ni. Then according to Chakrabarti and Chakraborty [69], this
implies that one is dealing with factorials multiplying each other as:

W = N!/ΠNi!. (5)

From this, Boltzmann entropy can be rewritten as:

S = kB ln (N!/ΠNi!). (6)

Moreover, the transition to the thermodynamics of an ideal classical gas at a tem-
perature of T > 0 requires additional conditions to be taken into account, concerning the
consistency of the total number of molecules of the gas, N, and the total energy, E, of
all molecules.
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Gibbs [7] famously declared that “mathematics is a language”, which indeed he
viewed as applying to his analysis of entropy within statistical mechanics. However, while
we can view the mathematical formulation of Boltzmann entropy as a linguistic matter,
it describes the real physical phenomenon of thermodynamics. Thus, it can be viewed
as being ontological entropy [70], as it can be applied to more abstract phenomena with
less linkage to definite physical processes, thus allowing them to be labeled metaphorical
entropy. The first application beyond thermodynamics was information patterns in the form
of Shannon entropy [71]. This describes H—the probability distribution of informational
uncertainty states for message i that reflects the whole set of information concerning the
relevant microstate, H(p1 . . . pn). Therefore, informational entropy involves adding up the
individual log probabilities times their probabilities to give [71–73]:

H(p1 . . . pn) = −kBΣpilnpi. (7)

An obvious question arises as to how this widely used and influential metaphorical
entropy measure relates to the ontological one of Boltzmann. In fact, they are proportional
to each other as the number of possible states, N, approaches infinity, because pi = Ni/N,
resulting in [74,75]:

S = kBNΣpilnpi. (8)

5. Ontological Entropy, Econophysics, and the Foundations of Growth

Ontological entropy lies at the heart of the econophysics foundation of economic
growth due to the profound importance of energy both through the role of steam engines
in industrial production and electricity and in agriculture through the thermodynamic
transmission of solar energy through the larger global biosphere. The origin of under-
standing thermodynamics came from Sadi Carnot [76] in 1828 and later more fully Rudolf
Clausius [77]. In 1971, Nicholas Georgescu-Roegen, [78] argued that the openness of the
global biosphere to the sun allows temporarily overcoming the law of entropy [79]. Even
so, there is a limit to solar energy, which implies limits for economic activity. However in an
open system, anti-entropic forces can operate to develop order in local areas, drawing on
the argument of Schrödinger [80] that life is ultimately an anti-entropic process involving
the drawing of energy and matter from outside the living organism until it dies. Georgescu-
Roegen also argued for this to extend to broader material resource inputs, subject to a form
of the law of entropy. More broadly for Georgescu-Roegen [78] (p. 281), “the economic
process consists of a continuous transformation of low entropy into high entropy, that is,
into irrevocable waste, or, with a topical term, into pollution”.

Many ecological economists [81,82] have supported the idea of entropy as an ontolog-
ical limit to growth. However, while this is clearly true, others have noted that the limit is
many orders of magnitude above other limits that are more immediate [83–85]. Drawing
down stored fossil fuel energy sources generates climate-changing pollution by releasing
CO2 and thus further limiting growth. Others note the unlimited ingenuity of the human
mind, with Julian Simon [86] (p. 347) arguing that “those who view the relevant universe
as unbounded view the second law of thermodynamics as irrelevant to the discussion”.

6. Ontological Entropy and Economic Value

Another argument has seen ontological entropy as the fundamental source of economic
value in a parallel to the labor theory of value. The earliest version of this dates to the
turn of the twentieth century in arguments by “energeticist” physicists [87–89]. Julius
Davidson [90] saw the economics law of diminishing returns based on the law of entropy,
with the law of diminishing marginal returns, probably the only “economic law” that has no
exception to it. Davis [91] claimed “economic entropy” underlies the utility of money, but
Lisman [92] argued this is not how thermodynamics operates in physics. Samuelson [93]
ridiculed such arguments as a “crackpot”, even as he drew on entropic ideas of Gibbs [7]
and Lotka [81].
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Lotka [81] (p. 355) himself noted limits to this argument: “The physical process is
a typical case of ‘trigger action’ in which the ratio of energy set free to energy applied is
subject to no restricting general law whatsoever (e.g., a touch of the finger upon a switch
may set off tons of dynamite). In contrast with the case of thermodynamics conversion fac-
tors, the proportionality factor is here determined by the particular mechanism employed”.
Georgescu-Roegen [78] saw value as ultimately coming from utility rather than entropy.
Thus, most people value the high-entropy beaten egg more highly than the low-entropy
raw egg, and nobody valuing low-entropy poisonous mushrooms, due to utility rather
than entropy.

7. Thermodynamic Sustainability of Urban–Regional Systems

The ontological entropic analysis of urban and regional systems sees them driven by
the second law of thermodynamics based on actual energy transfers as argued by Rees [94],
Balocco et al. [95], Zhang et al. [96], Marchinetti et al. [97], and Purvis et al. [98]. Alan
Wilson [99] reviews both ontological and metaphorical approaches to the entropic analysis
of urban and regional systems.

Considering urban–regional systems as open and dissipative systems, experiences
allows the analysis of sustainability, depending on their energy and material flows [81,100].
In open systems, entropy can rise or fall, as energy and materials flow into them, in contrast
to closed systems where entropy can only rise. This is the key to Schrödinger’s [80] that
life is an anti-entropic process with organisms drawing in energy-generating structure
and order while life lasts. Anti-entropy is also known exergy [101] and also negentropy or
“negative entropy”.

Three concepts to distinguish are Stotal as total entropy, Si as inside entropy, and So as
outside entropy. Assuming the statistical independence between both the internal states
and the external states, then their dynamic relationship can be written as:

dStotal/dt = dSi/dt + dSo/dt, with dSi/dt > 0. (9)

Given that dSo/dt can be either sign, when negative with an absolute value greater
than that of Si, then total entropy may fall as the system absorbs energy and materials
creating order, with entropy increasing outside as waste and disorder leave the system.
Wackernagel and Rees [102] state, “Cities are entropic black holes” implying, as they
produce large ecological footprints, their sustainability becomes impaired.

The maximum amount of the useful work possible to reach a maximum entropy
condition of zero has been called exergy by Rant [101] initially for chemical engineering.
This term is essentially identical to the term “chemical potential” and also “Gibbs-free
energy”. Rant’s original formulation holds, when B is the exergy, U is the internal energy,
P is the pressure, V is the volume, T is the temperature, S is the entropy, μi is the chemical
potential of component i, and Ni is the moles of component i, implying:

B = U + PV − TS + ΣμiNi. (10)

Recognizing that this is an isolated system implies:

dB/dt ≤ 0 ↔ dS/dt ≥ 0. (11)

The right-hand side of Equation (11) simply holds for an isolated system, from which
we see the anti-entropic nature of exergy, determining the irreversible spontaneous time
evolution (or “time arrow”).

Balocco et al. [95] consider exergy in construction and building depreciation in Castel-
nuovo Beardenga near Siena, Italy, relying on an adaptation by Moran and Sciubba [103]
of Rant’s model. Studying particularly the input–output of the construction industry, it is
seen that those built in 1946–1960 provide higher sustainability than newer ones.
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Zhang et al. [96] use entropy concepts to study sustainable development in Ningbo,
China, a city near Shanghai, relying on ideas in [95,102,104,105]. They examine both
ontological and metaphoric information entropy measures, as they consider four distinct
aspects. The first two are sustaining input entropy and imposed output energy, arising
from production. The second two constitute the urban system’s metabolic functions,
regenerative metabolism and destructive metabolism, which linked to pollution and its
cleanup, a measure of environmental harmony. These contrast developmental degree
and harmony degree, with the finding during the 1996–2003 period that these two went
in opposite directions, with the developmental degree rising (associated with declining
entropy) and the harmony degree falling (associated with rising entropy). Thus, we see
Chinese urban development sustainability issues clearly.

The dependence versus autonomy of systems on their environment, derived from
dissipative structures of open systems considered by Prigogine [100], was formulated by
Morin [106] and then used by Marchinetti et al. [97]. This finds urban systems development
between autarchy and globalization, either extreme unsustainable, advocating a balanced
path they see urban–regional systems as ecosystems operating on energy flows [107] based
on a complex wholes emerging out of interacting micro-level components [108].

8. An Anti-Entropic Econophysics Alternative in Urban–Regional Systems

Opposing this entropic version urban and regional systems structure is a power law
version. In higher-level distributional systems, entropy ceases to operate and become
irrelevant. This reflects a balance of entropic and exergetic forces operating in the relations
and distributions within urban–regional systems [109].

Power-law distributions of econophysics reflect dominant anti-entropic forces [70],
and urban size distributions seem to show these [22]. For the Pareto power-law distribution
of city sizes [35], P is the population, r is the rank, with A and α are constants, implying:

rPrα = P1. (12)

For α = 1, the population of rank r is written as:

Pr = P1/r. (13)

This is the rank-size rule of Auerbach [110] from 1913 and generalized in 1941 as Zipf’s
law, claimed to be applied to many distributions [47]. Since Auerbach [110] proposed it and
Lotka [81] challenged it, there has been much debate regarding the matter. Many urban
geographers [111] claim it is a universal law. Many economists have doubted this, saying
there is no reason for it, even as urban sizes may show power-law distributions [112,113].
However, Gabaix [22] says Zipf’s law holds in the limit if Gibrat’s law is true with growth
rates, independent of city sizes.

US city size distributions seem to have shown power-law distributions from 1790 to
the present, although not precisely following the rank-size rule (the size of Los Angeles
is now larger than half the size of New York), according to Batten [112]. A meta-study of
many empirical studies by Nitsch [114] finds widely varying estimates over these studies,
although showing an aggregate mean of α = 1.08, near Zipf’s value. Berry and Okulicz-
Kozaryn [111] say Zipf’s law strongly holds if one uses consistent measures for urban
regions across studies, especially the largest ones for megalopolises. Anyway, city size
distributions seem to be power-law-distributed, suggesting dominance by anti-entropic
econophysics forces in this matter.

Long viewed as foundational for economic complexity, increasing returns may pro-
vide a basis for power-law distributional outcomes [115]. Three different kinds of these
have been identified for urban systems: firm-level internal economies [116], external ag-
glomeration between firms in a single industry providing localization economies [117], and
external agglomeration economies across industries generating yet larger-scale urbaniza-
tion economies [118].
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Papageorgiou and Smith [119] and Weidlich and Haag [120] have shown that rising
agglomeration economies can overcome congestion costs to manifest urban concentration.
However, such models have been partially replaced by “new economic geography” ones
emphasizing economies of scale appearing in monopolistic competition studied by Dixit
and Stiglitz [121]. Fujita [122] first applied this approach to urban–regional systems,
although Krugman [123] received much more attention for his version [124].

9. General Equilibrium Value and Metaphorical Entropy

Metaphorical Shannon entropy offers a different approach than Arrow–Debreu general
equilibrium theory of value. Arrow and Debreu views equilibrium as a fixed point set
of steady prices. However, in the reality of a stochastic world, equilibrium may be a
probability distribution of prices that are constantly varying everywhere at any point in
time for any commodity that can be modeled entropically. The Arrow–Debreu solution
is a special case of Lebesgue measure in the space of outcomes. Initially conceived by
Föllmer [55], Foley [59] developed it, followed by Foley and Smith [125].

Foley [59] assumes all possible transactions within an economy have equal probability,
implying a statistical distribution of behaviors in the economy where a particular trans-
action is inversely proportional to the exponential of its equilibrium entropy price. This
is a shadow price derived from a Boltzmann–Gibbs maximum entropy set. The special
case when “temperature” is zero implies Walrasian general equilibrium. The solution is
not necessarily Pareto optimal, and it allows for possible negative prices as Herodotus ob-
served in ancient Babylonian bridal auctions, where they sold brides in descending prices
that started out positive but then would go negative [126]. Foley emphasizes the crucial
importance of constraints in this approach, as one finds in the Arrow–Debreu model.

If there are m commodities, n agents of type k who make a transaction x of which there
is hk[x] proportion of agents type k out of r, which make transaction x out of an offer set A, of
which there are mn, then multiplicity W of an assignment for n agents assigned to S actions,
each of them s, which gives the probabilistic states across these possible transactions as:

W[ns]] = n!/(n1! . . . ns!...nS!). (14)

Shannon entropy of this multiplicity involves summing over these proportions simi-
larly to Equation (7) and is written as:

H{hk[x]} = −Σk=1
rWkΣxeAhk[x]. (15)

This formulation maximizes entropy subject to certain non-empty feasibility con-
straints, thus giving the Gibbs solution:

Hk[x] = exp[−Πx]/Σxexp[−Πx], (16)

with Π is the entropy shadow price vectors.

10. Metaphorical Entropic Financial Modeling

Schinkus [127] points out that econophysicists are more willing than most economists
to approach data open to more possible distributions or parameter values, while favor-
ing ideas from physics, including entropy for financial modeling. According to Dioni-
sio et al. [128] (p. 161):

“Entropy is a measure of dispersion, uncertainty, disorder and diversification
used in dynamic process, in statistics and information theory, and has been
increasingly adopted in financial theory”.

Using the entropy law with Shannon or Boltzmann–Gibbs distributions can model
distributions involving lognormality, both exhibiting normal Gaussian characteristics,
Michael J. Stutzer [60,129] has drawn on both types of entropy to model Black–Scholes [43]
formuli. In [129], he uses Shannon entropy, like Cozzolino and Zahner [130], allowing
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them to derive lognormal stock price distributions at the same time, similar to what Black
and Scholes [43] did in deriving their options formuli without using entropy measures.
Stutzer [129] considered a discrete form version modeling a stock market price dynamic by:

Δp/p = μΔt + σ
√

ΔtΔz, (17)

with p is the price, Δp is the random shock, Δt is the time interval, and the second term on
the right hand side is the random shock, distributed ~ N(0, σ2Δt).

The order-maximizing solution for the neutral density of relative entropy-minimizing
conditional risk given by the integral is written as:

arg mindQ/dP

∫
log dq/dp dq, (18)

which satisfies a martingale restriction with q as a quantity:

rΔt − E[(Δp/p)(dq/dp)] = 0. (19)

Thus, the Black–Scholes option-pricing formula can be derived from a martingale
product density arising from relative entropy minimizing conditional risk for an asset
subject to IID normally distributed shocks. Stutzer understood this does not generate non-
Gaussian distributions such as econophysics power law ones. He poses using Generalized
Auto Regressive Conditional Heteroskedastic (GARCH) processes as an alternative.

More recent studies have expanded the forms of entropy used in studying financial
market dynamics. Thus, transfer entropy has been used by Jizba et al. [131] to study differ-
ences in related financial times series focusing on spike events by Dimpli and Peter [132]
to study cryptocurrency dynamics and by Kim et al. [133] for directional stock market
forecasting. In addition, permutation entropy has been used in a variety of financial market
econophysics applications [134].

11. Using Statistical Mechanics to Model Income and Wealth Distributions

Income and wealth dynamical systems can be driven by interactions between power-
law distributions and non-power-law ones. Wealth dynamics apparently exhibit power-
law distributions, while income distribution dynamics look to consist of entropy-related
Boltzmann–Gibbs distributions. The former seem to drive the top 2–3 percent of income
distributions, while the latter seem to drive income distributions below that level in the
UK and US [28,40].

Entropy came to be used in generalizations of various income distribution measures as
early as 1981, when Cowell and Kuga [135] presented a generalized axiomatic formulation
for additive measures of income distribution. Adding two axioms to the standard model
allowed a generalized entropy approach to subsume the well-known Atkinson [136] and
Theil measures [137]. The former can distinguish the skewness of tails, while latter has more
generality, with Bourgignon [137] showing the Theil to be the only zero-homogeneous
decomposable “income-weighted” inequality measure. Adding a sensitivity axiom to
others, Cowell and Kuga [135] argued a generalized entropy concept implies the Theil index,
even as some argued that this linking was a challenge, with Montroll and Schlesinger [138]
(p. 209) declaring

“The derivation of distributions with inverse power tails from maximum entropy
formalism would be a consequence only of an unconventional auxiliary condition that
involves the specification of the average of a complicated logarithmic function”.

It is unsurprising that both wealth and financial market distribution dynamics exhibit
power-law distributions taking into account their close link, given Vilfredo Pareto’s [35] role
in discovering them. Initially trained to be an engineer, Pareto came to study the dynamic
social classes relations manifested by income distribution. He claimed a universally true
pattern that held throughout “the circulation of elites” he studied, but he was wrong, with
ironically his method superior for the study of wealth distributions. He claimed incorrectly
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that because of the constancy of the income distribution pattern, little can be performed to
equalize income, because changes in political leadership simply substitutes one power elite
by another with no income distribution change. However, large changes occurred, so his
approach went “underground”, reappearing for other uses such as for urban metropolitan
size distributions [111].

The sociologist, John Angle [139], revived using Pareto’s power-law distribution for
studying income and wealth distribution dynamics starting in 1986. Then, econophysicists
followed up with this, with their finding that wealth distributions follow Pareto’s power
law view well [27,140,141].

The question arises as to whether we are dealing with ontological or “merely” metaphor-
ical models in studying wealth and income distributional dynamics. Some see the stochastic
elements in these distributions associated with thermodynamical processes fundamentally
driving the distributional dynamics of income and wealth. However, these do not appear
to be direct ontological processes as with Carnot’s steam engines. More likely, these reflect
dynamics associated with no substantial changes in public distributional policies.

Yakovenko and Rosser [40] show a model with an entropic Boltzmann–Gibbs dynam-
ics for lower-income distribution and a Paretian power-law distributions for higher-level
income dynamics. There is an assumption of the conservation of money or income or
wealth, which has not held in recent years as top-level incomes have exploded although it
did much more so in earlier decades. This is consistent with lognormal entropic dynamics
appropriate for the majority of the population below a certain level where wage dynamics
predominate, while a Pareto power law is more appropriate for the top level whose income
is more determined by wealth dynamics.

Assuming money conservation, m, the Boltzmann–Gibbs entropic equilibrium distri-
bution has probability, P, with m seen as:

P(m) = ce−m/Tm, (20)

with c is a normalizing constant, and Tm is the “money temperature” thermodynamically,
equaling the money supply per capita. The portion of the income distribution below about
97–98 percent seems to be well modeled by this formulation.

If there is a fixed rate of proportional money transfers equaling γ, then the Gamma
distribution rather than the Boltzmann–Gibbs distribution better describes the stationary
money distribution with a power-law prefactor, mβ, such that:

β = −1 − ln2/ ln(1 − γ). (21)

This Boltzmann–Gibbs version more simply relates to a power law equivalent than
that posed by Montrell and Schlesinger [138]. The connection between the models of wealth
and income distributions is described as:

P(m) = cmβe−m/T. (22)

Letting m grow stochastically disconnects this outcome from the maximum entropy
solution [142], so the stationary distribution becomes Fokker–Planck equation-driven mean
field situation, not Boltzmann–Gibbs distribution, although inverse Gamma in [27,142] is
a Lotka–Volterra form showing w as the wealth per person and J as the average transfer
between agents, with σ being the standard deviation:

P(w) = c[(e−J/σσw)/(w2+J/σσ)]. (23)

This model provides an empirical explanation of income distribution consistent with
Marxist and other classical economic views of socio-economic class dynamics [41,42,143].

Figure 1 exhibits this in the log–log form for the 1997 US income distribution, with the
Boltzmann–Gibbs section for the lower 97 percent of the distribution being nonlinear on
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the left-hand side, while the Pareto section is linear in logs on the right-hand side showing
the top 3 percent of the income distribution (Figure 4.5 of [144]).

Figure 1. Log–log United States Income Distribution, Boltzmann–Gibbs, and Pareto Sections in 1997
from Yakovenko (Figure 4.6) [144].

There has been further use of variations on the Gamma distribution in studying
market dynamics, with Moghaddim et al. [145] using the Beta Prime distribution to study
housing market inequality dynamics.

12. The Revenge of Metaphorical Entropy as Bubbles Crash

Financial market dynamics interact with income and wealth distribution dynamics
during speculative bubbles following a Minsky process [146–148]. During major bubbles,
the top portion of the income and wealth distributions rises noticeably relative to the
lower portion. Anti-entropic dynamics drive this process and its reversal, when the bubble
crashes, hence the “revenge of entropy”. Thus, during a bubble, this upward movement of
the Paretian portion also moves its boundary with the Boltzmann–Gibbs portion leftward.

The Great Depression brought the end of the “Gilded Age” after a major financial
crash that appears to have lowered the top end of the income distribution, as noted by
Smeeding [149]. The 2007–2009 Great Recession had several different bubbles happening,
leading to a more complex outcome, with the housing bubble crash badly hurting the
middle class, while crashes of the stock market and derivatives markets predominantly
hurt the wealthy. The US stock market fell from more than half its value to its bottom
in 2009, with total wealth declining by 50 percent. Top 10 percent wealth declined by
13 percent, while top 1 percent wealth declined by 20 percent [149]. However, the stock
market quickly turned around, rising more rapidly than in the 1930s or after 2000, while
the US housing market grew more slowly. Thus, wealth inequality declined for a while
during 2008–2009. It increased again after that as the rising stock market aided those at the
top, while the continuing problems of the US housing market held back the middle class.
This was the Minsky dynamic at work in a more complex form than seen at other times.

Support for this can be seen looking at the end of the dotcom bubble in 2000, even
though somewhat weak, as indicated in Figure 2 (Figure 4.7) [144] showing the log–log
relation for the US income distribution for the years 1983–2001, with further discussion
in [150] and extension to a sample of 67 nations in [151]. Mostly, the Boltzmann–Gibbs
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section barely moved, but there were small annual changes in the Paretian part, manifesting
gradually increasing inequality over time. However, there is an exception here, the change
between 2000 and 2001, with 2000 being the end of the dotcom bubble. This time interval
exhibited a reversal, with the 2001 Paretian portion lying below the 2000 portion. This is
consistent with a revenge of entropy following the dotcom bubble crash, as the 1990s came
to an end.

 

Figure 2. Log–log US Annual Income Distribution during 1983–2001 from Yakovenko
(Figure 4.7) [144].

13. Conclusions

The term “econophysics” is of recent vintage, barely a quarter of a century old. How-
ever, the idea behind it that ideas and even laws of physics have strongly influenced
economicss in a variety of ways is certainly correct. One of such ideas that has deep
connections with the newer econophysics is the concept of entropy, which has been applied
to many parts of economics, including general equilibrium theory, growth theory, business
cycles, ecological economics, urban and regional economics, income and wealth distribu-
tion patterns, and financial market dynamics. Some of these applications are ontological in
the sense of drawing directly on the second law of thermodynamics as the actual physical
driving force involved, such as understanding energy flows through the biosphere and the
economy from the Sun. Others are metaphorical, as they draw on models of information
theory or other non-specifically physical models using the mathematics of entropy theory.
Econophysics has also long emphasized the ubiquity of power-law distributions for many
economic phenomena, which in some areas arise from anti-entropic processes that conflict
with entropic tendencies. This can generate an underlying dynamic, with an especially
dramatic example involving the dynamics of income distribution interacting with business
cycles and related financial market dynamics.

Funding: The APC was funded by James Madison University.

Conflicts of Interest: The authors declare no conflict of interest.

589



Entropy 2021, 23, 1286

References

1. Mirowski, P. More Heat than Light: Economics as Social Physics: Physics as Nature’s Economics; Cambridge University Press:
Cambridge, UK, 1989.

2. Samuelson, P.A. Foundations of Economic Analysis; Harvard University Press: Cambridge, MA, USA, 1947.
3. Chakrabarti, B.K. Econophys-Kolkata: A short story. In Econophysics of Weatlh Distributions; Chatterjee, A., Yarlagadda, S.,

Chakrabarti, B.K., Eds.; Springer: Milan, Italy, 2005; pp. 225–228.
4. Stanley, H.E.; Afanasyev, V.; Amaral, I.A.N.; Buldyrev, S.V.; Goldberger, A.I.; Havlin, S.; Leschhorn, H.; Masss, P.; Mantegna, R.N.;

Peng, X.-K.; et al. Anomalous fluctuations in the dynamics of complex systems from DNA and physiology to econophysics. Phys.
A 1996, 224, 302–323. [CrossRef]

5. Mantegna, R.N.; Stanley, H.E. An Introduction to Econophysics: Correlations and Complexity in Finance; Cambridge University Press:
Cambridge, UK, 1999.

6. Majorana, E. Il valore delle leggi statistiche nelle fisica e nelle scienze. Scientia 1942, 36, 58–66.
7. Gibbs, J.W. Elementary Principles of Statistical Mechanics; Dover: New York, NY, USA, 1902.
8. Spitzer, F. Random Fields and Interacting Particle Systems; American Mathematical Society: Providence, RI, USA, 1971.
9. Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus Press for Springer: New York, NY, USA, 1996.
10. Sornette, D. Why Stock Markets Crash: Critical Events in Complex Financial Systems; Princeton University Press: Princeton, NJ, USA, 2003.
11. Mantegna, R.N. Lévy walks and enhanced diffusion in Milan stock exchange. Phys. A 1991, 179, 232–242. [CrossRef]
12. Levy, M.; Solomon, S. New evidence for the power-law distribution of wealth. Phys. A 1997, 242, 90–94. [CrossRef]
13. Bouchaud, J.-P.; Cont, R. A Langevin approach to stock market fluctuations and crashes. Eur. Phys. J. B 2000, 6, 542–550.

[CrossRef]
14. Gopakrishnan, P.; Plerou, V.; Amaral, I.A.N.; Meyer, M.; Stanley, H.R. Scaling of the distributions of financial market indices.

Phys. Rev. E 1999, 60, 5305–5316. [CrossRef]
15. Lux, T.; Marchesi, M. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 1999, 397, 498–500.

[CrossRef]
16. Sornette, D.; Johansen, A. Significance of log-periodic precursors to financial crashes. Quant. Financ. 2001, 1, 452–471. [CrossRef]
17. Farmer, J.D.; Joshi, S. The price dynamics of common trading strategies. J. Econ. Behav. Organ. 2002, 49, 149–171. [CrossRef]
18. Li, H.; Rosser, J.B., Jr. Market dynamics and stock price volatility. Eur. Phys. J. B 2004, 39, 409–413. [CrossRef]
19. Bak, P.; Chen, K.; Scheinkman, J.; Woodford, M. Aggregate fluctuations from independent sectoral shocks: Self-organized

criticality in a model of production and inventory dynamics. Ric. Econ. 1993, 47, 3–30. [CrossRef]
20. Canning, D.; Amaral, I.A.N.; Lee, Y.; Meyer, M.; Stanley, H.E. A power law for scaling the volatility of GDP growth rates with

country size. Econ. Lett. 1998, 60, 335–341. [CrossRef]
21. Rosser, J.B., Jr. Dynamics of emergent urban hierarchy. Chaos Solitons Fractals 1994, 4, 553–562. [CrossRef]
22. Gabaix, X. Zipf’s law for cities. Q. J. Econ. 1999, 114, 739–767. [CrossRef]
23. Takayasu, H.; Okuyama, K. Country dependence on company size distributions and a numerical model based on competition

and cooperation. Fractals 1998, 6, 67–79. [CrossRef]
24. Botazzi, G.; Secchi, A. A stochastic model of firm growth. Phys. A 2003, 324, 213–219. [CrossRef]
25. Plerou, V.; Amaral, I.A.N.; Gopakrishnan, P.; Meyer, M.; Stanley, H.E. Similarities between the growth dynamics of university

research and competitive economic activities. Nature 1999, 400, 433–437. [CrossRef]
26. Sornette, D.; Zajdenweber, D. Economic returns of research: The Pareto law and its implications. Eur. Phys. J. B 1999, 8, 653–664.

[CrossRef]
27. Bouchaud, J.-P.; Mézard, M. Wealth condensation in a simple model of economy. Phys. A 2000, 282, 536–545. [CrossRef]
28. Drăgulescu, A.A.; Yakovenko, V.M. Exponential and power law probability distributions of wealth and income in the United

Kingdom and the United States. Phys. A 2001, 299, 213–221. [CrossRef]
29. Chatterjeee, A.; Yarlagadda, S.; Chakrabarti, B.K. (Eds.) Econophysics of Wealth Distributions; Springer: Milan, Italy, 2005.
30. Anderson, P.W.; Arrow, K.J.; Pines, D. (Eds.) The Economy as a Complex Evolving System; Addison-Wesley: Redwood City, CA, USA, 1988.
31. Arthur, W.B.; Durlauf, S.N.; Lane, D.A. (Eds.) The Economy as a Complex Evolving System II; Addison-Wesley: Reading, PA, USA, 1997.
32. McCauley, J.L. Dynamics of Markets: Econophysics and Finance; Cambridge University Press: Cambridge, UK, 2004.
33. Chatterjee, A.; Chakrabarti, B.K. (Eds.) Econophysics of Stock and other Markets; Springer: Milan, Italy, 2006.
34. Lux, T. Applications of statistical physics in finance and economics. In Handbook of Complexity Research; Rosser, J.B., Jr., Ed.;

Edward Elgar: Cheltenham, UK, 2009; pp. 213–258.
35. Pareto, V. Cours d’Économie Politique; R. Rouge: Lausanne, Switzerland, 1897.
36. Gibrat, R. Les Inégalités Économiques; Sirey: Paris, France, 1931.
37. Bachelier, L. Théeorie de la spéculation. Ann. Sci. L’école Norm. Supér. 1900, III-17, 21–86. [CrossRef]
38. Einstein, A. Über die von der molekularkinetischen theorie der warme geforderte bewegung von der ruhenden flūsstigkeiten
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Abstract: The neoclassical mainstream theory of economic growth does not care about the First and
the Second Law of Thermodynamics. It usually considers only capital and labor as the factors that
produce the wealth of modern industrial economies. If energy is taken into account as a factor of
production, its economic weight, that is its output elasticity, is assigned a meager magnitude of
roughly 5 percent, according to the neoclassical cost-share theorem. Because of that, neoclassical
economics has the problems of the “Solow Residual”, which is the big difference between observed
and computed economic growth, and of the failure to explain the economic recessions since World
War 2 by the variations of the production factors. Having recalled these problems, we point out
that technological constraints on factor combinations have been overlooked in the derivation of the
cost-share theorem. Biophysical analyses of economic growth that disregard this theorem and mend
the neoclassical deficiencies are sketched. They show that energy’s output elasticity is much larger
than its cost share and elucidate the existence of bidirectional causality between energy conversion
and economic growth. This helps to understand how economic crises have been triggered and
overcome by supply-side and demand-side actions. Human creativity changes the state of economic
systems. We discuss the challenges to it by the risks from politics and markets in conjunction with
energy sources and technologies, and by the constraints that the emissions of particles and heat from
entropy production impose on industrial growth in the biosphere.

Keywords: energy; economic growth; output elasticities; entropy production; emissions; optimization

1. Introduction

Seventy-five years ago Nazi-Germany collapsed. The allied soldiers who liberated the concentration
camps, and the camps where more than two million Soviet prisoners of war were starved to death,
shocked the world by the documentations of the atrocities commited by a member of European civilization.
After unconditional surrender on 8 May 1945, Germany was left with devastated cities, a shattered
economy and moral misery.

The rivalry of economic systems and the fortunes of political change saved Germans from more
than the usual revenge by the winners of a war. This was especially true for the ones in the west zones
as established by the ruling of the Yalta and Potsdam conferences. The antagonism between capitalist
market economics of the western occupying powers, who administered what became the Federal
Republic of Germany (FRG), and socialist planned economics of the Soviet Union, who occupied what
became the German Democratic Republic (GDR), turned allies into adversaries. Tensions between
them were enhanced by the Korean War 1950–1953. To strengthen the western camp the FRG was
allowed to benefit from the Marshall Plan [1]. Via this European Recovery Program the USA transferred
13.12 billion dollars (corresponding to 139 billion dollars today) between 1948 and 1952 to war-torn
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Europe. In contrast, the industrial capital goods of the GDR were transferred to the Soviet Union
as reparations.

The so-called “economic miracle” of the FRG, which started in 1949 with the currency reform that
brought the Deutsche Mark (DM), was based on a growing capital stock, rebuilt and modernized by
skilled labor, and cheap oil from the newly discovered oil-fields in the Middle East, Indonesia and the
Americas: Between 1950 and 1970 the price of 1 barrel of crude oil on the world market had fallen
from about 20 to 12 US$2014, and economic growth in the western industrialized democracies was up
to 7% annually.

Complementing the retrospect on German crash and recovery by the following tale from
a physicist [2] shall indicate the limits-to-growth reason that enticed him and other people outside
economics to start thinking about economic growth: “Having experienced how industrializiation
improves life while I grew up in postwar Germany and then did physics research at the University
of Illinois, I joined a project of scientific cooperation between the FRG and the Republic of Colombia.
My task was to participate in the development of a master program in physics at the Universidad del
Valle. My excellent Colombian colleagues considered the formation of good physicists and engineers as
one prerequisite for progress in the industrialization of a, in many aspects, still agrarian society. Right in
the beginning they asked me to teach thermodynamics. ‘Anything but this. Thermodynamics is boring’,
I objected. ‘Read Reif’s book Statistical and Thermal Physics’ [3], they suggested. I did—and for the first
time I really understood entropy. When two years later The Limits to Growth was published [4], I was
deeply shocked. I told my Colombian students that the world would run into trouble because of the
Second Law of Thermodynamics, if the developing countries would follow the path of industrialization
Europe and the USA have treaded so far—At the celebration of ‘50 years Physics Department of the
Universidad del Valle’ in 2013, some of my former students, now physics professors, told me that
they well remember how much I had been shocked.—After three unforgettable years in Colombia I
returned to Germany. After having settled at the Julius-Maximilians-Universität I got in touch with
economists, and in addition to teaching theoretical physics and continuing research in solid state
theory I offered courses on thermodynamics and economics. Good students joined research in this
field, and experienced economists helped.”

Mostly in plain language, the present article presents a synopsis of the resulting studies on energy
and entropy in economic growth. It includes an outlook on options of how to deal with the crises ahead.
The review is limited in the extent it covers the literature on energy economics. More on that can be
learned from, e.g., Eichhorn et al. [5], Ayres and Warr [6], Hall and Klitgaard [7], Herrmann-Pillat [8],
and Ayres [9]. The mathematics, on which our principal findings are based, is packed in an appendix.

2. Basic Physics

Whenever something happens, energy is converted and entropy is produced. This summarizes
the First and the Second Law of Thermodynamics. More precisely, the First Law on the conservation of
energy says that energy consists of the never changing sum of exergy and anergy. Exergy (with x) is the
valuable part of energy, which can be converted into any form of work that is needed to cause a change,
and anergy is the useless part of energy, e.g., heat dumped into the environment. Primary energy such
as solar radiation, water power, and—in principle, at sufficiently high process temperatures—fossil
and nuclear fuels as well, are 100 percent exergy. The Second Law on the increase of entropy—which
is the physical measure of disorder—states that irreversible processes produce entropy. All processes
that are not infinitely slow are irreversible. They are triggered by removals of constraints.

Energy-converting activities in natural and economic systems are irreversible. Their entropy
production involves heat and particle emissions and destroys exergy. Furthermore, if their impact
on the biosphere cannot be balanced by thermal radiation into space and processes activated by the
exergy radiated from the Sun to Earth, the living species and their societies face problems of adaptation
to environmental changes. In principle, pollution by particles such as SO2, NOx, dust, CO2, and by
radioactive waste as well, can be mitigated by appropriate removal techniques and sufficient exergy
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inputs [10] (Section 3.6). However, even if the emissions of carbon dioxide and other infrared-active
trace gases can be curbed so drastically that the anthropogenic greenhouse effect need not worry us
any longer, an increasing use of energy from earth-internal sources will cause considerable climate
changes, once the heat barrier at about 3 × 1014 Watts (W) of anthropogenic waste-heat emissions will
be surpassed. In 2018, global primary energy consumption was 1.75 × 1013 W, and the power of solar
radiation received by Earth is 1.2 × 1017 W. [11]

Nicholas Georgescu-Roegen was the first economist to point out the importance of entropy for
economic and social evolution in his seminal book The Entropy Law and the Economic Process [12].
It stimulated new research on thermodynamics and economics [13–16]. However, claiming to have
discovered a “fourth law of thermodynamics” on the dissipation of matter [17,18] he had created some
confusion. This was resolved, when it became clear that the dissipation of matter is included in the
Second Law of Thermodynamics [19] via the particle-current-density terms, which are one component
of the non-negative density of entropy production derived in non-equilibrium thermodynamics [20];
see also [10] (p. 154ff) and [21].

The empirical laws on energy conservation and entropy production are the most powerful laws of
nature. Any theory that is against them is doomed to failure.

3. Wealth Production and Growth in Conventional Economics

3.1. Concepts of Agrarian Society

In 1776, Adam Smith’s “The Wealth of Nations” was published, James Watt’s first steam engines were
installed in commercial enterprises, and the “Declaration of Independence” was approved by the Second
Continental Congress in Philadelphia. “The Wealth of Nations” founded market economics, the steam
engine triggered the industrial revolution, and the “Declaration of Independence” proclaimed the human
rights, among them “life, liberty, and the pursuit of happiness.” The human rights and market economics
would not have become ruling principles of free societies had not steam engines and more advanced heat
engines provided the energy services that liberate humans from drudgery.

The 18th century had only the Aristotelian notion of energeia as a philosophical concept for action
or force; entropy was unknown. Adam Smith’s economic world was that of the agrarian society,
in which the wealth of nations had been produced for about 10,000 years by the factors capital, labor,
and land [22]. Nobody saw that energy is present in so many forms such as light, fire, flowing water,
wind, wood, wheat, meat, gun powder, and coal.

Only in the 19th century, when investigating the processes of industrial production, people in
the natural sciences and engineering discovered energy and entropy and their pivotal role in these
processes. In addition, today we know that our universe started about 14 billion years ago, when all
its energy, concentrated in a “point”, exploded in the Big Bang. Since then all entities of the physical
world have evolved from energy, while entropy increases.

In the tradition of Adam Smith, conventional neoclassical textbook economics has worked with
the production factors capital, labor, and land until these days. The modern concept of capital
includes all energy-conversion devices and information processors, and all buildings and installations
necessary for their protection and operation. Energy activates the capital stock and labor handles
it. Nevertheless, energy is usually not considered to be a factor of production, despite Tryon’s early
observation: “Anything as important in industrial life as power deserves more attention than it
has yet received from economists . . . A theory of production that will really explain how wealth is
produced must analyze the contribution of the element energy.” [23] Rather, energy has been and still
is considered as just one of the many elements in the basket of natural resources, about which the
Nobel laureate in economics R.M. Solow [24] stated: “The world can, in effect get along without natural
resources”, adding, however, that “if real output per unit of resource is effectively bounded—cannot
exceed some upper limit of productivity which in turn is not far from where we are now—then
catastrophe is unavoidable.” Since the useful component exergy of the “natural resource” energy is
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unavoidably diminished by entropy production in every economic process, real output per unit of
energy is effectively bounded. Are we, therefore, heading for catastrophe?

3.2. Economic Growth, Its Actual Importance, and Neoclassical Theory

Obviously, people fear that industrial free-market economies cannot evolve in stability without
the economic growth we have known so far. The growth of gross domestic product (GDP) is considered
to be vital for the following reasons. The GDP sums up all salaried economic activities that produce
the output of value added within a country. It is measured in monetary units [25]. It includes services
that mitigate the damages from accidents, crime, pollution, and other harmful occurrences, such as the
abuse of drugs and alcohol, and it excludes the domestic care of people for their children and parents,
housekeeping by family members, and community services. Thus, it does not measure the overall well
being of a country’s population. This is common knowledge. Nevertheless, the growth of GDP and
the growth of the output of economic sectors such as agriculture, industry and services, are of eminent
political and social importance, because GDP measures economic activities. People appreciate these
activities, notwithstanding their negative side effects, and go where the action is; this drives the rural
exodus to the urban centers. One important reason is that economic activities provide jobs, especially
when economic growth opens up new fields whose jobs make up for the traditional jobs that are lost to
progress in automation. Thus, voters tend to reelect governments that rule in times of growth, and oust
the ones they hold responsible for economic recessions. Migrants from less industrialized parts of
the world with low GDP/capita risk their lives to get into highly industrialized countries with high
GDP/capita. When in 2020 the Covid-19 pandemic drove the world into the deepest recession since the
turn of the century, many billions of US Dollars, Yuans, Yens, and Euros were spent by governments,
indebting their countries heavily, in order to reestablish economic growth.

The mainstream neoclassical economic theory of production and growth describes the output
Y of goods and services, which is the gross domestic product or parts thereof, by a function of the
inputs of capital K and labor L [26]. One special type of such a macroeconomic production function,
the Cobb-Douglas function of K and L, had been used by Solow [27,28] in his ground-breaking
contribution to the theory of economic growth. He discovered what is called the “Solow residual”.
This residual is the big difference between the observed economic growth and the much smaller
theoretical growth computed with the empirical data of capital and labor. Solow proposed that
“technological progress” is responsible for that part of growth that capital and labor cannot explain.
Since then, neoclassical growth theory has been based on production functions Ync(K, L; t) with the
factor inputs K and L and a “technological progress” component that depends on time t and is
determined by minimizing the Solow residual.

3.3. Oil-Price Shocks

Between 1973–1975 the oil price on the world market nearly tripled when OPEC “punished the
West” for supporting Israel in the Yom-Kippur war. The resulting first oil-price shock interrupted the
strong economic growth enjoyed after World War 2 especially by the G7 countries Canada, France,
the FRG, Italy, Japan, the United Kingdom, and the USA [29,30]. For instance, within these two years
the output slumped by more than 5 percent and by nearly 6 percent in the industrial sectors of the USA
and the FRG, respectively; simultaneously, these sectors’ energy use dropped by more than 7 percent
in the USA and more than 8 percent in the FRG [31] (p. 200). Another recession was caused by the
second oil-price shock between 1979–1981, when the inflation-corrected market price of oil doubled,
shooting up to its 20th century maximum, as a consequence of Iraq’s attack on revolutionary Iran and
the curb of oil supply from these two major exporters.

The drastic downturns and upswings of economic output and energy use, induced by the oil-price
shocks, led economists, in studies such as that by [32–36], to treat energy E as a third factor of
production on an equal footing with capital K and labor L, and describe output and its growth by
different types of production functions Ync(K, L, E; t). In a controversial discussion on whether the
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first oil-price shock could have been related to the 1973–1975 recession in the USA, the econometrician
Denison [37] argued: “Energy gets about 5 percent of the total input weight in the business sector
. . . the value of primary energy used by nonresidential business can be put at $42 billion in 1975,
which was 4.6 percent of a $ 916 nonresidential business national income. . . . If . . . the weight of energy
is 5 percent, a 1 percent reduction in energy consumption with no changes in capital and labor would
reduce output by 0.05 percent.”

Denison’s argument is based on the cost-share theorem, one of the pillars of neoclassical growth
theory. The cost-share theorem says that a production factor’s economic weight—more precisely:
its output elasticity, see below—must be equal to the factor’s share in total factor cost. In the G7 countries
the cost shares have been roughly 25 percent for capital, 70 percent for labor, and 5 percent for energy.
Thus, a 7 percent reduction of energy input, as it was observed for the industrial sector of the USA
between 1973 and 1975, should have resulted in a (5 percent)×(7 percent) = 0.35 percent reduction of
output. As mentioned above, the actually observed output reduction was more than 5 percent.

Consequently, neoclassical production functions Ync(K, L, E; t) with cost-share weighting of K, L, E
neither reproduce the recessions and recoveries spurred by the oil-price explosions, nor can they get
rid of Solow residuals without neoclassical “technological progress” functions. From the perspective
of orthodox economics energy, even if taken into account as a production factor, matters little in
economic growth.

This may lead to illusions about easy paths to sustainability: W. Nordhaus received the 2018
Nobel Price in Economics for his research on climate economics. In his book “A Question of Balance.
Weighing the Options on Global Warming Policies” [38] (p. 34) he weighs energy’s contribution to
production and growth by its cost share [39–43]. Neoclassical growth models are used in integrated
assessment models of climate change. Climate activists invoke “the results of science” and demand a
rapid and “courageous” exit from the use of oil, gas and coal, which presently satisfy more than 83%
of world energy demand. If energy really had an economic weight of only a few percent, a precipitous
ban of fossil energy technologies would not cause major economic problems, even if investments in
renewables, which are to substitute fossil fuels, should fall way behind. Sufficient were “to wake up
politicians” so that they promote the appropriate “technological progress”— whatever that may be.

The dominating role of technological progress “has led to a criticism of the neoclassical model:
it is a theory of growth that leaves the main factor in economic growth unexplained”, as the founder
of neoclassical growth theory, Robert M. Solow, stated himself [44]. Endogenizing technological
progress [45–47] does not change the disdain of energy.

The cost-share theorem, which assigns the few-percent weight to energy, results from the conditions
for the equilibrium in which an economy is supposed to evolve. These conditions fix the output
elasticities of capital, labor and energy in mainstream economics. Roughly speaking, the output
elasticity of a production factor gives the percentage of output change when the factor changes by
1 percent [48]. It indicates the economic weight, or productive power, of a production factor.

4. Economic Equilibrium and Technological Constraints

Economic growth depends on the preferences of people and technical possibilities. Aspects that
matter are:

1. The economic actors choose the quantities of factor inputs at time t according to the expected
demand for output.

2. Neoclassical economics assumes:

(a) Entrepreneurs select the factor combinations that maximize profit or overall welfare;
the latter is represented by time-integrated utility. (Preferences that may result from
drives for power and grandeur are not considered.) The optimized factor combinations
define the equilibrium in which the economy is supposed to evolve.

(b) All combinations of K, L, E are possible.
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3. Engineering experience, however, is that not all factor combinations are possible:

(a) One cannot feed more energy into the machines of the capital stock than they are designed
for. If one would try, the machines would break down. Thus, the degree η(K, L, E) of
capital’s capacity utilization cannot exceed 100%.

(b) The possibility of substituting capital and energy for labor by increasing automation increases
with the decreasing mass and volume of information processors. Where the transistor
replaces the vacuum tube, it is the density of transistors on a microchip that matters.
This density, however, is limited by Joule heating and heat conductivity [49]. Thus, the degree
of automation at a given time t, ρ(K, L, E), cannot exceed some technological limit ρT(t),
which trivially, cannot exceed 100%.

The cost-share theorem is invalid, if one or more of the underlying assumptions 1, 2(a), or (2b)
are invalid. For the sake of the argument, we do not question 1 and (2a), but focus only on (2b).
It turns out to be sufficient to refute the assumption of the general validity of the cost-share theorem
by including the constraints 3(a), 3(b) in the optimization of profit/cost, or overall welfare [10,50].
For this, the constraints η(K, L, E) ≤ 1 and ρ(K, L, E) ≤ ρT(t) are written in the form of equalities
fη(K, L, E; t) = 0, fρ(K, L, E; t) = 0 with the help of slack variables Kρ, Lη , Eη , which are added to
K, L, E in the explicit equations for η(K, L, E) and ρ(K, L, E). Optimization subject to the technological
constraints in the form of equalities is done by adding these constraints, multiplied by the Lagrange
multipliers λη and λρ, to the objective function. In the case of profit optimization the objective function
is output Y(K, L, E; t) minus total factor cost pKK + pLL + pEE, where pK, pL, pE are the prices per unit
of K, L, E. Defining (K, L, E) ≡ (X1, X2, X3) and (pK, pL, pE) ≡ (p1, p2, p3), and doing the optimization
one obtains the equilibrium conditions, which say: The output elasticities of capital ε1, labor ε2,
and energy ε3 must be

εi =
Xi [pi + si]

∑3
i=1 Xi [pi + si]

, i = 1, 2, 3 . (1)

Here si ≡ −λη
∂ fη

∂Xi
− λρ

∂ fρ

∂Xi
are (generalized) shadow prices, which map the technological constraints

into monetary terms. “Generalized” indicates that there are additional “soft” constraints that prevent
entrepreneurs from managing the economy in the state where a technological constraint is exactly
binding. In such a state, there would be only two instead of three independent variables (K, L, E) and,
thus, less freedom to adjust production to changes of demand or factor availability. Between 1960
and 1990 the industrial sector of the FRG evolved on a path in the cost mountain that is high above
the neoclassical cost minimum and more or less parallel to the barrier from the binding constraint
η(K, L, E) = 1 [50]. From experience, entrepreneurs are aware of the technological constraints and
steer clear of the barriers formed by them. Only by calling upon “soft constraints” their behavior
agrees with the assumption 2(a) of textbook economics. Anyway, decisive is that entrepreneurs know
that the assumption 2(b) is wrong. At the energy prices we have known so far, the cost-share theorem
is invalid. Optimization of time-integrated utility yields equilibrium conditions such as Equation (1)
with somewhat modified si [50].

If there were no technological constraints, the Lagrange multipliers λη and λρ would be zero,
so would be the si, and Equation (1) would be reduced to the cost-share theorem that fixes the
output elasticities of neoclassical production functions Ync(K, L, E; t): The numerator is the cost of the
production factor Xi, the denominator is the cost of all factors, and the quotient is the cost share.

The technological constraints on factor combinations, ignored in the derivation of the cost-share
theorem, drive the wedge between neoclassical growth theory and what really happens in modern
economies [51,52].
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5. Wealth Production and Growth: A Biophysical Analysis

5.1. General Outline

The cost-share theorem misleads investigations of economic growth. An alternative biophysical
analysis disregards this generally invalid theorem. From neoclassical economics it only adopts the
concept of the macroeconomic production function [53–55].

Biophysical production functions Y(K, L, E; t) have the independent variables K(t), L(t) and
E(t) [56], which the economic actors choose within given technical and legal constraints according to
the expected demand for goods and services and the ends they pursue by their economic activities.
The Mathematical Appendix, Section 8, presents the basic equations for computing non-neoclassical
output elasticities (compatible with (3a) and (3b) of Section 4 above) and the corresponding production
functions. The following summarizes that.

Y(K, L, E; t) is a state function of the economic system—just as internal energy and entropy
are state functions of thermodynamic systems in (local) equilibrium. As such Y(K, L, E; t) depends
only on the actual magnitudes of the variables K(t), L(t), E(t) and not on the path in (KLE)-space
along which the system has arrived at them. Consequently, at any fixed time t, the growth
rate of output, dY/Y, is unequivocally determined by the growth rates of capital dK/K,
labor dL/L, and energy dE/E, and the respective output elasticities. In total, the growth equation is
dY/Y = α · dK/K + β · dL/L + γ · dE/E + δ · dt/Δt, where the last term takes into account a possible
explicit time dependenc of Y. The second-order mixed derivatives of Y with respect to K, L, E must be
equal. The resulting three partial differential equations for the output elasticities of capital, α, labor,
β, and energy, γ, are coupled by the requirement of “constant returns to scale”, which means that
α + β + γ = 1 at any fixed time t [57]. They have innumerable solutions. The trivial solutions are the
constants α0, β0, γ0 = 1 − α0 − β0. Non-trivial, i.e., factor-dependent output elasticities are obtained
from (asymptotic) boundary conditions that incorporate economic developments such as the one
described by the law of diminishing returns. This law, one of the most famous laws of economics [58],
says: “At a given state of technology the additional input of a factor, at constant inputs of the other
factors, results in an increase of output. Beyond a certain point, however, the additional return from an
additional unit of the variable factor will decrease. This decrease is due to the fact that one unit of the
increasing factor is combined with less and less quantities of the fixed factors.”

Y(K, L, E; t) abstains from the neoclassical “technological progress function”. It depends explicitly
on time, if the technology parameters, which result as integration constants of the differential equations,
do so. The parameters are determined by minimizing the deviations of theoretical from empirical
growth, subject to the conditions that output elasticities must be non-negative. They change in
time when human ideas, inventions and value decisions, which summarily are called “creativity”,
change the state of economic systems; δ in the growth equation is the output elasticity of creativity.
Creativity, in this context, has positive and negative components such as human rights, the transistor,
and to foster agreement, on the one hand, and racism, cheating software in the exhaust control of
Diesel cars, and to obstruct cooperation, on the other hand.

5.2. Observed and Computed Economic Growth

Biophysical production functions have been applied to economic growth in highly industrialized
countries since 1982 [31]. Recent results for the USA and the FRG from 1960-2013 are reported
by Lindenberger et al. [59]. Figure 1 is an example from the sector “Industries” (I) of the FRG.
There, the strongest variations of empirical output and inputs occurred. Since 1990 these variations
have been influenced by the only territorial enlargement of a major industrial country after World
War 2. They test the sensitivity of production functions to technological and structural changes,
and political and psychological perturbations as well. Two production functions were utilized for the
reproduction of the observed growth: On the one hand the energy-dependent Cobb-Douglas function
YCDE, Equation (7), whose constant output elasticities turn out to be α0 = 0.41, β0 = 0.06, γ0 = 0.53,
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and on the other hand the LinEx function YL1, Equation (9), with factor-dependent output elasticities,
whose time-averages result to be ᾱ = 0.28, β̄ = 0.08, γ̄ = 0.64, and δ̄ = 0.13.
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Figure 1. Growth from 1960 to 2013 of the empirical output y = Y/Y1960 in the industrial sector of
the Federal Republic of Germany (FRG), black squares, and theoretical growth computed with the
energy-dependent Cobb-Douglas function, red circles (left), and the LinEx function, red circles (right).
Empirical growth of capital k = K/K0, labor l = L/L0, and energy e = E/E0 (bottom). The base year
t0, to which output and inputs are normalized, is 1960. Y1960 = 453.5 × 109 DM1991 [59].

YL1 is the simplest production function of the LinEx-function family, whose members depend
linearly on one factor, here E, and exponentially on the quotients of the other factors. More complicated
LinEx functions are given in [10,59]. They are all special forms of the general linearly homogeneous,
twice differentiable, energy-dependent production functions that solve the growth Equation (2).
The latter are shown by Equations (10)–(12) of the Mathematical Appendix, Section 8.

Noteworthy features of empirical and theoretical growth in Figure 1 are:

1. Between 1960 and 1990 the energy-dependent Cobb-Douglas function with its constant
output elasticities reproduces observed growth nearly as well as the LinEx function with its
factor-dependent output elasticities. After 1990 LinEx is much better. (Its adjusted coefficient of
determination is R̄2 = 0.99 and the Durbin-Watson coefficient is dw = 1.75; the statistically best
values are 1 and 2, respectively.) Both the time-averaged LinEx and the constant Cobb-Douglas
output elasticities are for energy much larger and for labor much smaller than these factors’
cost shares. Please note that also the sum of the time-averaged LinEx output elasticities that are
related to routine and “creative” activities of humans, β̄ + δ̄, stays well below energy’s output
elasticity γ̄.

2. Creativity’s component “value decisions” was activated, when, unexpectedly, the winners of
World War 2 agreed to let divided Germany reunite in 1990: Factor inputs and output increase
abruptly in 1990. (The LinEx technology parameter “energy demand of the capital stock” does
the same [59].)
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3. The bidirectional causality that rules the coupling of energy and economic growth shows in the
four economic recessions and recoveries and the simultaneous downs and ups of the energy
input. Two of them were caused by supply and two by demand, and three were enhanced by
feedbacks between the two. The supply side triggered the first and the second oil-price shock
1973–1975 and 1979–1981: The oil-price explosions, caused by OPEC, made investors worry
about shortages of power fuel for their machines so that they substantially reduced investments.
A demand-side element amplified the shocks: Part of the consumers’ buying power had been
skimmed by the oil producers. Thus, consumers demanded less goods and services. To satisfy
the reduced demand from investors and consumers less energy was needed for production.
When the oil-price stopped shooting up, the shocks subsided, and growth of output and energy
consumption restarted. Demand-side triggering occurred, when between 1965 and 1966 the ruling
conservative-liberal coalition of the FRG became unstable. The resulting economic uncertainties
led to reductions of investment, consumption and energy use. Then, for the first time after
WW 2, the social democrats became part of the federal government. The new coalition restored
confidence in the country, ended the economic crisis, and with increasing demand for goods and
services energy consumption rose again. Similarly, the global financial crisis 2007–09 was due
to a demand-side trigger: After the global breakdown of stock markets, demand for goods and
services slumped, machines went idle and did not need energy, until banks were saved by the
taxpayers’ money so that confidence in the economy came back, and demand for output and
energy rose. On the other hand, the burst of the US mortgage bubble, which caused the initial
crash of the US stock market, is related by Murray and King [60] to a supply-side effect: Before
2007, the oil price had risen to more than 100 US$2014/barrel. The higly indebted homeowners in
the American suburbs were confronted with exploding costs for commuting to their jobs and
could not pay their mortgage interests any more.

4. The overall growth of output follows the empirical growth of the capital stock. The latter’s
flattening and even decrease reflects outsourcing in German industry. The share of the industrial
sector in the GDP of the FRG decreased from 51.7% in 1970 to 39.6% in 1992 to 27.1% in
2009 [10] (p. 193) Especially, energy-intensive and polluting industries have been shifted to
developing countries and emerging economies. This has stopped the growth of the industrial
capital stock and contributes substantially to the reduction of German energy consumption and
CO2-emissions. The decrease of labor input, which is also observed in the total economy of the
FRG [10,59], is due to outsourcing and increasing automation.

Growth of output with its ups and downs in the total economies of the FRG and the USA from 1960
to 2013 is also well reproduced by the LinEx function and its factor-dependent output elasticities [59] .
Again, the time-averaged output elasticities turn out to be for energy much larger and for labor much
smaller than those factors’ cost shares. Manrique-Dias and Lemus-Polonia [61] computed economic
growth in Colombia from 1925 to 1997. The LinEx function, with “electricity consumption” as the
energy variable E, reproduces the empirical growth of Colombian GDP satisfactorily. The output
elasticities have time averages similar to the ones of the total economy of the FRG and patterns of
temporal variations that somehow resemble those of the total US economy.

Using “useful work” instead of primary energy in a formally modified LinEx function Ayres and
Warr [6] computed economic growth in the USA and Japan from 1900 to 2005 (excluding 1941–1948)
in good agreement with observed growth. Useful work is the exergy that works directly from the
machines on materials plus the physical work performed by animals. The data on it in [62] incorporate
efficiency improvements of the energy-converting systems. The magnitudes of the output elasticities
that result from this analysis contradict the cost-share theorem, too. This analysis stimulated more
research on “exergy economics”, such as [63]. Earlier studies on the pivotal role of energy in economic
growth led Hall et al. to emphasize “the need to reintegrate the natural laws with economics” [64] .

Computation of future economic growth could be done via scenarios concerning entrepreneurial
choices of capital, labor, and energy, in which the crises ahead will challenge creativity. For this,
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models such as the HARMONEY model [65], a long-term dynamic growth model that endogenously
links biophysical and economic variables in a stock-flow consistent manner, may be useful.
Furthermore, production functions with output elasticities that take into account the impact of emission
mitigation [21], may also serve as analytical tools. Consistent data on capital, labor, and energy in
different sectors of the economy will be important. Studies on past growth have shown that inconsistent
data lead to breakdowns of production-function estimations. The sources and structures of the data
used in our most recent study on energy and economic growth are documented in [59] (Appendix 3).

6. Crises and Creativity

The strong coupling between energy and economic growth via bidirectional causality has shown
especially in times of crises. There have been and will be crises related to politics and markets,
and crises involving natural challenges and human responses.

6.1. Politics and Markets

Initially, the two economic recessions in 1973–1975 and 1979–1981 were called “energy crises”.
However, “oil-price shocks” better indicates the psychology involved. After the oil-price had settled
on its 1975 level, the shock wore off, and output resumed growth despite the tripled oil price. The cost
share of all energy carriers in total factor cost was still much lower than energy’s productive power.
Even the next oil-price explosion in 1979 did not change this. However, it caused the second shock
and the resulting recession. After the Iraq-Iran war the oil-price collapsed [66], the economic actors in
the market economies relaxed, and growth restarted from about the 1978 level. To the recovery also
contributed the development of nuclear energy, the discovery of new, non-OPEC oil fields, and the
reinvestment of petro dollars in the G7 countries. Here, the solutions to the crises came from the
easing of tensions in international politics and markets, the opening up of new energy sources, and the
self-interest of the owners of surplus petro dollars.

The 1965–1967 crisis in the FRG ended with the recovery of political stability. The 2007–2009
financial and economic crisis was overcome when central banks, especially the FED and the ECB, did
“Whatever it may take” to help tattered firms with direct or indirect subsidies and battered states with
bond purchases and cuts of interest rates. This contributed to the mounting public debt and losses on
bank deposits.

On May 5, 2020, the Federal Constitutional Court of the FRG, after several years of legal
deliberations, ruled that the Public Sector Purchase Program (PSPP) of the ECB has violated the
principle of comparativeness insofar as government bonds were also purchased with the aim to keep
the inflation rate close to 2%. According to the estimation of the ECB, if inflation were less, deflation
would hamper economic growth. Actual inflation had been below the 2% level, because the price
of a barrel of crude oil had dropped from nearly 120 US$2014 in 2012 to less than 40 US$2014 in 2014.
Since then it had been fluctuating somewhat until the end of the decade. The prices of most other
consumption goods, however, had risen so much that consumers did not delay spending in expectation
of deflation. However, obviously, the ECB considers energy as just another commodity. A better
understanding of the impact of energy and its price on economic growth by decision makers would
have avoided that, in the worst case, the Central Bank of Germany will be forced to withdraw from
the ECB.

Eichhorn and Solte analyzed the global financial system. They point out that in 2008,
new indebtedness of public sector entities world wide was higher than global savings performance,
and that global securitized assets exceeded the global stock of central bank money—the only legal
tender—by a factor of 50. In the 40 years before, global financial and tangible assets grew more
rapidly than global value added (GDP). If the past trends of interest and return on investment (ROI)
were to continue in the future, by the year 2030 all of global GDP would be necessary to service the
accumulated debts. Nothing would be left to pay employees. [67] (pp. 190–193).
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In the long run the most dangerous crises in the field of politics and markets may originate from
the inequalities of wealth distribution on national and international scales and their consequences of
civic unrest and international conflicts. The inequality of income distribution within several OECD
countries has been measured by the Luxembourg Income Study [68] by means of the Gini coefficients
G, 0 ≤ G ≤ 1, which result from those countries’ Lorentz curves [10] (p. 185). The larger G the higher
the inequality. According to the study, in the mid-1980s G was close to 20% for Finland, Sweden and
Norway, and it exceeded 30% for Switzerland, Ireland, and the USA. The global inequality of wealth
distribution in 2005 is indicated by the shares of the rich and the poor in world’s private consumption
of goods and services per wealth/poverty level [10] (p. 232f), [69]. The wealthiest 10 percent of world’s
population had a share of 59% of world’s private consumption, whereas the share of the world’s poorest
50 percent was just 7.2%. By 2005 approximately half the world’s population lived in cities and towns,
where one out of three urban dwellers (approximately 1 billion people) was living in slum conditions.
In developing countries some 2.5 billion humans were forced to rely on biomass—fuelwood, charcoal
and animal dung—to meet their energy needs for cooking; this sort of biomass is usually not included
in the international energy statistics.

Lawrence, Liu, and Yakovenko [70] analyze the global probability distribution of energy
consumption per capita around the world from 1980–2010. This impressively complements the
statistics on global wealth distribution. Their Lorentz curves “Fraction of World Energy Consumption”
vs. “Fraction of World Population” involve the USA, USSR/Russia, France, the UK, China, Brasil,
and India, and correspond to Gini coefficients G of 0.66 in 1980, 0.64 in 1990, 0.62 in 2000, and 0.55 in
2010. Thus, within 30 years the global inequality of energy consumption per capita has decreased [71].
However, still 70 percent of the world’s population in developing and emerging economies had a
fraction of less than 40 percent of world energy consumption in 2010. The remaining more than
60 percent of energy consumption went to the 30 percent of world population in the industrialized
countries. Many of the latter belong to the wealthiest ones, with high shares of private consumption and
small inequalities of income distribution, i.e., Gini coefficients not much above 30%, as mentioned above.

The statistical findings on the distributions of wealth and energy consumption support the
econometric findings that energy is an important factor in the production of wealth.

Since the 1960s, the programs of development assistance have aimed at fostering the well
being of the people in the developing countries by (a) increasing their countries’ GDP and (b) by
reducing the inequalities of internal wealth distribution. Aim (a) has been reached to some extent
by promoting industrialization and energy consumption world wide. Progress in reaching aim
(b) has been slow. It may be advanced by appropriate energy taxation and/or an international
agreement on preventing the flight of capital from the developing countries to the highly industrialized
countries. However, the threats from emissions and climate change because of entropy production
may endanger even further progress towards aim (a). In addition, even more disquieting, Lawrence,
Liu and Yakovenko deduce from the principle of maximum entropy production that one may never
achieve a less unequal distribution of global energy consumption than the one represented by the
Lorentz curve with a Gini coefficient of 0.5 in [70] (Figure 3). The expectation that this may also lead
to a corresponding stable global inequality in the distribution of CO2-emissions has been recently
confirmed [72]. Are we approaching a stagnation in which “the world is likely to stay put in the present
state of global inequality”, because “human development for centuries was driven by geographic
expansion, but this era is over” [70] (p. 5573)?

Space industrialization with solar power satellites, discussed below, may provide a way out of
stagnation. It may also provide the last resort (for some), if outbreaks of supervolcanoes with high
extinction potential that lurk below the Yellowstone Park and the Phlegraean Fields materialize.

6.2. Natural Challenges and Human Responses

1. Risk assessments of energy resources and technologies
On March 11, 2011, one of the worst earthquakes in the history of Japan, and the tsunami it caused,
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destroyed the Fukushima 1 nuclear power facility erected right on the Pacific ring of fire on the
east coast of Japan. The earthquake severed the connection to the electricity grid and the Tsunami
inundated the emergency generators of four reactor blocks, built just 10 m above sea level.
The emergency shutdown of three reactors worked well. A fourth reactor had been deactivated,
and its nuclear fuel rods were cooled in the fuel pit. Because of the lack of cooling, the nuclear
waste heat from β-decay could not be removed, three reactors suffered core meltdowns, and the
fourth exploded, most likely because of oxygenhydrogen formation in the hall containing the
fuel pit [73,74]. On the whole, the radioactive emissions caused by the Fukushima accident were
10 to 20% of the catastrophe in Chernobyl, where a graphite-moderated reactor blew up in a
failed safety experiment. Prior incidents in Japanese nuclear power stations in 2005 and 2007
had already shown that their design, adopted from reactors in the USA, had not been modified
properly to meet the known risks that exist in Japan. One had decided to accept them.

In the 2009 electoral campaign for the German Bundestag, the ruling coalition under chancellor
Dr. Merkel promised that it would extend the legal operation time for the German water-moderated
nuclear reactors by up to 14 years. Otherwise, it was said, Germany would not be able to meet her
aims of reducing CO2-emissions. The coalition was reelected with a comfortable majority, and the
parliament passed the law on the operation-time extension. Right after the Fukushima catastrophe,
in a U-turn of German energy policy called “Energiewende”, the government of Dr. Merkel
proposed the total exit from nuclear power, and the parliament decided it. Eight reactors were
shut off right away, and of the remaining nine the last one is scheduled to cease operation in
2022. In a mix-up of “known risk” and “residual risk” Dr. Merkel told the public that the
reason for the U-turn was the underestimation of the residual risk of German nuclear reactors.
Actually, the probability that an accident as in Fukushima would occur in Germany is equal to
the probability of a heavy earthquake in Germany and that a tsunami destroys the emergency
generators of four nuclear power plants in the country.

Germany claims a cutting edge in climate protection [75,76]. Experience will show, how she
lives up to that claim. After the banning of nuclear power without changing the German road
map for reducing CO2-emissions, renewable energies must fill the gap in electricity generation
that would open up, if coal and lignite power plants would be abolished as planned originally.
Success or failure of renewable energies will decide, whether, in the end, the “Energiewende”
will turn out as either a positive or a negative element of creativity. The uncertainty results from
the phenomenon of size-dependent risk perception, which is a fundamental problem faced by energy
policy everywhere: When an energy source contributes noticeably to the energy supply of an
economy, its inevitable side effects will affect the environment. If people notice them, there will
be protests, often pursuant to the NIMBY (Not In My BackYard) principle. Side effects that go
unnoticed for some time, may become big problems in the future.

Renewables are an example. In 2018 they contributed just 4% to global primary energy
consumption [77]. In Germany, their total share in primary energy was about 13%, with the
shares of biomass, wind, and photovoltaics being 7.1%, 2.8%, and 1.1%, respectively [78].

(a) Biomass dominates. It is a storage of solar energy and well accepted by the population.
However, the National Academy of Sciences (Leopoldina) points out that biomass has a
bad Energy Return on (Energy) Investment (EROI) [79], mostly below 3, that its production
threatens biodiversity, damages soil quality, pollutes ground water, rivers and lakes,
and that financially it has the highest price per saved ton of CO2 [80].

(b) Wind power is heavily attacked by civic movements. The given reasons are: Onshore
wind turbines make noise, cast whirling shadows, kill birds, and spoil the landscape.
The high-voltage transmission lines that shall carry electric power from offshore wind
parks in the wind-rich north of Germany to southern Germany are rejected for esthetic
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reasons and their land requirements. The protesters ignore that the specific total
life-cycle CO2-emissions of wind parks are only 10–20 g CO2 per kilowatt-hour of electric
energy—similar to those of nuclear power plants—and the lowest of all renewables.

(c) Photovoltaics (PV), whose specific total life-cycle CO2-emissions range from 70 to 150 g
CO2 per kilowatt-hour, is still well accepted. To keep it that way the government has
tried to limit the payments of the electricity consumers to the providers of PV power to
10–11 billion Euros annually [21]. Looking into the future, GreenMatch, “a comprehensive
guide designed to help you navigate the transition to renewable energy” [81] points out
the need to recycle PV panels when their life cycle ends: “If recycling processes were not
put in place, there would be 60 million tons of PV panels waste lying in landfills by the
year 2050; since all PV cells contain certain amounts of toxic substances that would truly
become a not-so-sustainable way of sourcing energy.” GreenMatch estimates the amount
of solar panel waste (in tons) to be for (a) the USA in 2016: 6500 t, 2030: 400,000 t, 2050:
7500,000 t, (b) Germany in 2016: 3500 t, 2030: 400,000 t, 2050: 4300,000 t, (c) Saudi Arabia
in 2016: 200 t, 2030: 3500 t, 2050: 450,000 t. The energy requirements for recycling these
quantities of PV waste, and the associated emissions and cost, remain to be estimated.

2. Pandemics
The economic instruments to fight the 2007-09 financial and economic crisis have been reactivated
in the Corona crisis that started with the outbreak of the Covid-19 pandemic in Wuhan, China,
by the end of 2019. Since then, severe constraints on the interaction between people have been
imposed by governments all over the world and successively strangulated commercial, artistic
and educational activities. Employment slumped. This has dwarfed the demand for many goods
and services, their production ceased, and so did the demand for energy. Occasionally, the oil
price even became negative, when the producers of conventional oil and the US-producers
of oil from fracking would not or could not reduce oil production, while all the oil-storage
facilities were filled up. As in the 2007-09 crisis, the actions of governments and central banks
to stabilize economies—and this time also public health—boost public debt. To complicate
things, health and environmental protection must be balanced with economic and social losses.
The G7-countries are especially vulnerable to the constraints imposed on personal interactions in
times of pandemics such as Corona, because the share of their service sectors in both employment
and GDP has been roughly 70% since the turn of the century [10] (p. 193)

3. Limits to growth in the biosphere
Two ways of dealing with the thermodynamic limits to industrial growth in the biosphere are
(a) to adapt to them via transition to a post-growth economy, and (b) to surmount them via
space industrialization.

(a) Niko Paech [82] proposes that the highly industrialized societies adapt to the ecological
constraints that exist on the surface of Earth, by changing lifestyles and patterns of
supply. This implies a cultural change to sufficiency, and it involves three levels: local
subsistence, a regional economy, and a significantly shriveled residual industry. To cushion
the reductive transition socially, especially to achieve full employment, a reallocation of
the reduced time for gainful occupation will be necessary. 20 h of conventional labor,
which are the basis for a reduced monetary income, can be complemented by another 20 h
of working for self-sufficiency. Indigenous production, extension of service life, collective
use of capital goods etc. will help to continue the use of modern consumption functions
and simultaneously realize a higher degree of economic autonomy. Firms can support
this development by contributing in many ways to satisfying needs without actually
producing new goods.
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Contrary to happy “green” utopias, Niko Paech’s transition scheme to a post-growth
economy is sober and realistic. Sober, because it clearly tells people what drastic changes
of personal behavior will be necessary. Realistic, because it combines well-known elements
of the stationary societies, in which human civilizations have evolved during the last
10,000 years, with the production facilities of the industrial age, whose growth dynamics
now threatens the stability of the biosphere. The problem is that the stationary societies
of the past had rigid social structures with little social mobility. Traveling for pleasure
was unusual.

Nieto et al. [83] applied an ecological macroeconomics model to the Energy Roadmap 2050
(ER2050) of the European Union; this roadmap has ambitious emission-mitigation targetes,
to be achieved by reducing energy use and a transition to renewables. Their “results show
that GDP growth and employment creation may be halted due to energy scarcity if
the ER2050 targets are met even considering great energy efficiency gains. In addition,
the renewables share would increase enough to reduce the energy imports dependency,
but not sufficiently to meet the emission targets. Only a Post-Growth scenario would be
able to meet the climate goals and maintain the level of employment.”

In the present Covid-19 pandemic, people suffer from and complain about constraints
on professional and leisure activities, many of which are linked to industrialization.
Perhaps we can learn from the pandemic how well modern humans will accept the
changes of lifestyle, and of the production and distribution of wealth, which may be
necessary for adaptation to the stationary society of a Post-Growth age.

(b) Ancient and modern history tell tales of expansion, when resources become scarce and
pioneers, full of vigor and zest for action, set out for new territories with wide-stretching
frontiers. The scarce resource of the past was fertile land, whose plants capture the solar
energy needed by humans and animals.

Presently, scarce is the space that, without harmful side effects, can absorb the emissions
of industrial energy conversion. However, vast is the space beyond the biosphere.
For more than four billion years it has absorbed all heat and particle emissions that
accompany the production of life-giving sunlight by nuclear fusion in the core of the Sun.
Being aware of this, since the early 1970s, and for about two decades, young, middle-aged,
and old scientists from many disciplines had tried to promote a grand design of using
extraterrestrial resources to surmount the limits to growth. It implies delivery of clean
electric energy to Earth via solar power satellites (SPS) and the production of them in
space-manufacturing facilities by people who live in large habitats that orbit around the
Lagrange libration point L5. The sources of most of the required energy and materials
would be the Sun and the Moon.

Peter E. Glaser from Arthur D. Little, Inc., proposed and patented solar power
satellites [84–86]. They are to be stationed in geosynchronous Earth orbit, always above the
same point on the equator at a maximum distance of 35,785 km. They convert sunlight into
electric energy, either by photovoltaic cells or by solar thermal dynamic systems. Klystrons
convert the electric energy into microwaves of about 3-GHz frequency, which are beamed
from a transmitting antenna, diameter 1km, of the satellite to a receiving antenna on Earth,
diameter 10 km. There, the microwave energy is reconverted into electricity, which is
fed into the public grid. Typical generating capacities of SPS are 5000–10,000 MW at bus
bar on Earth. The total mass of a SPS is between 34,000 and 86,000 t. This and more,
e.g., Boeing’s SPS design and NASA’s system studies, is documented in [87–89].
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The big problem is transportation of people and initially required materials to low Earth
orbit via chemical rockets. After the catastrophes of the Challenger and Columbia
space shuttles in 1986 and 2003, the USA terminated the Space Shuttle Program in 2011.
Since then, for the transportation of US astronauts to the International Space Station
(ISS), the USA have bought seats in the Russian Sojus rockets. Finally, US billionaires are
coming to the rescue of the US space program. For instance, Elon Musk’s commercial
“Space X” enterprise builds reusable rockets and space capsules for the transportation
of freight and astronauts. There are plans to return to the Moon and go to Mars [90].
China is vigorously pursuing such plans, too. Once on the Moon, one could resuscitate the
grand scheme of Princeton physics professor Gerard K. O’Neill to catapult Moon-material
via electromagnetic mass drivers [10] (p. 88f) to catchers in the libration point L2 and
transfer it to space-manufacturing facilities. There, SPS and habitats for the people
who construct and maintain them, would be built [91–94]. Outside the gravitational
abysses of planets, traveling large distances requires little energy. O’Neill’s scheme to
open up “The High Frontier” of space for humanity led Representative Olin Teague
to present the “House Concurrent Resolution 451” [93] to the 95 Congress of the USA
on 15 December 1977. It was referred to the Committee on Science and Technology
and closes with the words: “Whereas the ‘High Frontier’ of Space does provide valid
opportunities whereby we can conserve and enhance humanity’s existence on Earth,
including but not limited to such social and economic benefits as greater employment,
a cleaner environment, new energy sources, new knowledge and understanding. ..: Now,
therefore be it Resolved by the House of Representatives (the Senate concurring) ...: the Office
for Technology Assessment specifically is requested to organize and manage a thorough
study and analysis to determine the feasibility, potential consequences, advantages and
disadvantages of developing as a national goal for the year 2000 the first manned structures
in space for the conversion of solar energy and other extraterrestrial resources to the
peaceable and practical use of human beings everywhere.”

On November 9, 1989 the Berlin Wall came down. Thereafter, the Iron Curtain dissolved, and the
Cold War with its threat of humankind’s self-destruction ended. However, the competitive
pursuit of power, ingrained in human nature, continues. In the 20th century, those who ruled the
seas and the air dominated the world. In the 21st century, the powers in space will become the
masters of Earth. If the colonization of space is forgone, humans must tame their competitive
drives and dedicate their resources and creativity to dealing with the thermodyamic limits to
growth. In either case, cooperation between individuals and nations in strict observation of the
constraints from human and natural laws will be needed more than ever.

7. Summary and Conclusions

The laws of physics on energy conversion and entropy production have stimulated economic
growth analyses via biophysical production functions of capital, labor, and energy. They are solutions
of a set of differential equations and their asymptotic boundary conditions. Three efficiency-related
integration constants may become time dependent when human ideas, inventions and value decisions,
in short: “creativity”, change the state of the economy. The biophysical production functions and
their estimation disregard the cost-share theorem of neoclassical economics, because it is flawed:
When optimizing profit or overall welfare, one must take into account the technological constraints
on factor combinations; these, however, were ignored in the neoclassical derivation of the cost-share
theorem. This theorem, which assigns only a small economic weight to energy, is invalid at the low
energy prices we have known so far.

The biophysical analyses well reproduce the observed economic growth and its crises in major
industrial countries during more than 50 years. The resulting economic weights (output elasticities)
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are for energy much larger and for labor much smaller than these factors’ shares in total factor cost.
While creativity is qualitatively decisive in the long run, its quantitative contribution to growth is
much smaller than the one that neoclassical growth theory assigns to “technological progress”.

In highly industrialized countries the growth of gross domestic product, and parts thereof, follows
the growth of the capital stock. Despite the outsourcing of energy-intensive industries and the shifting
of production to the service sector, in times of economic recessions and recoveries economic output
and energy consumption decrease and increase simultaneously. This shows the bidirectional causality
between energy and economic growth, which follows from energy’s economic role of activating the
capital stock.

Since energy conversion is a powerful driver of industrial growth, and since it is inevitably
coupled to emissions of particles and heat via the entropy law, the stability of the biosphere is
threatened. Understanding the production and growth of wealth, and careful assessments of the risks
and opportunities involved with energy sources and the technologies of their use, are necessary
for successful adaptation to the ecological constraints on growth. Experiences from past crises
should be remembered. Once the feasible options for adequate technological and social changes
are identified, people will hopefully follow creative leadership on the most promising path of future
economic evolution.

8. Mathematical Appendix

The total differential of the production function Y(K, L, E; t), divided by the production function
itself, yields the growth equation:

dY
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dL
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are the output elasticities (productive powers) of capital, labor, and energy, respectively. δ in Equation (2)
results formally from the explicit time dependence of the production function via time-dependent
technology parameters and economically from the influences of human ideas, inventions and value
decisions on economic evolution. These influences are summarized by the concept of creativity;
Δt = t − t0, where t0 is an arbitrary base year with the factor inputs K0, L0, E0.

Since Y(K, L, E; t) is a state function, its second-order mixed derivatives with respect to K, L, E
must be equal. Calculating these derivatives from the growth Equation (2) one obtains the
integrability conditions
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The growth equation is integrated at a fixed time t, when the production factors are
K = K(t), L = L(t), E = E(t). The integral of the left-hand side from Y0(t) to Y(K, L, E; t) is ln Y(K,L,E;t)

Y0(t)
.

It is equal to the integral of the right-hand side:

F(K, L, E)t ≡
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]
ds . (5)

This integral can be evaluated along any convenient path s in factor space from an initial point P0

at (K0, L0, E0) to the final point P at (K(t), L(t), E(t)). With ln Y(K,L,E;t)
Y0(t)

= F(K, L, E)t the production
function becomes

Y(K, L, E; t) = Y0(t) exp {F(K, L, E)t} . (6)
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The integration constant Y0(t) is the monetary value of the basket of goods services at time t, if it
were produced by the factors K0, L0, and E0. If creativity were dormant during the time interval t − t0,
Y0(t) would also be equal to the output at time t0.

The partial differential Equations (4) turn into three coupled partial differential equations for α

and β, if one uses γ = 1− α− β according to “constant returns to scale”, as substantiated in Section 5.1.
The trivial solutions of these differential equations are the constant output elasticities α0, β0 and

γ0 = 1 − α0 − β0. With them, and Equations (5) and (6), one obtains

YCDE(K, L, E; t) = Y0(t)
(

K
K0

)α0
(

L
L0

)β0
(

E
E0

)1−α0−β0

. (7)

This is the simplest energy-dependent production function. It bears the names of Cobb and
Douglas, who had constructed a function of such structure, but without energy, in the 1920s.
The Cobb-Douglas function of capital and labor has been and still is frequently used in neoclassical
economics. The simplest non-trivial solutions are the factor dependent output elasticities
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The output elasticity of capital, α, satisfies in the simplest way the law of diminishing returns, β is the
simplest solution of the partial differential equation that couples α and β, and γ results from constant
returns to scale. (More details on the factor dependencies of α and β in view of the capital stock’s
degrees of utilization and automation are given in [10,31].) With them and Equations (5) and (6) one
obtains the (first) LinEx function
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exp
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)
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(
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)]
. (9)

The parameter c measures the energy demand of the fully utilized capital stock, and the parameter
a is a measure of capital’s effectiveness in producing output when activated by energy and handled
by labor. The technology parameters a and c become time dependent, when creativity is active.
They, and Y0(t), are determined by minimizing the sum of squared errors over all observation
times ti, i.e., SSE = Σi|Yempirical(ti)− Ytheoretical(ti)|2, subject to the constraints α ≥ 0, β ≥ 0, γ ≥ 0;
the Levenberg-Marquardt algorithm in combination with the Ceres Solver statistics program was
applied to this problem of non-linear optimization in [59] (p. 9).

The most general production function, in which the output elasticity of energy is known from
γ = 1− α− β, and α and β have to be determined from their three coupled partial differential equations
and appropriate asymptotic boundary conditions, is

Y = EF
(

L
K

,
E
K

)
. (10)

Production functions of the general type (10), especially the LinEx function (9), have been used to
analyze economic growth in [6,10,31,50,59,61,64], and references therein [95].

The most general production function, in which the output elasticity of labor is known from
β = 1 − α − γ, whereas α and γ have to be determined from their three coupled partial differential
equations and appropriate asymptotic boundary conditions, is

Y = LG
(

L
K

,
E
K

)
. (11)

A special, LinEx-type function of this form has been used to describe the growth of service
industries, which also include increasingly digitized processes, e.g., in banking, insurance, and public
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administration [96]. Another type may be interpreted as describing the evolution of economies in an
early state of industrialization.

Finally, the most general production function, in which the output elasticity of capital is known
from α = 1 − β − γ, and β and γ must be determined from their three coupled partial differential
equations and appropriate asymptotic boundary conditions, is

Y = KH
(

L
K

,
E
K

)
. (12)

The simplest LinEx-type production function of this form may describe a future state of total digitization.
F ,G,H are twice differentiable with respect to L/K and E/K.
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Abstract: A phase transition in high-dimensional random geometry is analyzed as it arises in a
variety of problems. A prominent example is the feasibility of a minimax problem that represents the
extremal case of a class of financial risk measures, among them the current regulatory market risk
measure Expected Shortfall. Others include portfolio optimization with a ban on short-selling, the
storage capacity of the perceptron, the solvability of a set of linear equations with random coefficients,
and competition for resources in an ecological system. These examples shed light on various aspects
of the underlying geometric phase transition, create links between problems belonging to seemingly
distant fields, and offer the possibility for further ramifications.
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1. Introduction

A large class of problems in random geometry is concerned with the collocation
of points in high-dimensional space. Applications range from optimization of financial
portfolios [1], binary classifications of data strings [2] and optimal stategies in game
theory [3] to the existence of non-negative solutions to systems of linear equations [4,5], the
emergence of cooperation in competitive ecosystems [6,7], and linear programming with
random parameters [8]. It is frequently relevant to consider the case where both the number
of points T and the dimension of space N tend to infinity. This limit is often characterized
by abrupt qualitative changes reminiscent of phase transitions when an external parameter
or the ratio T/N vary and cross a critical value. At the same time, this high-dimensional
case is amenable to methods from the statistical mechanics of disordered systems offering
additional insight.

Some results obtained in different disciplines are closely related to each other without
the connection always being appreciated. In the present paper, we discuss some particular
cases. We will show that the boundedness of the expected maximal loss, as well as the
possibility of zero variance of a random financial portfolio is closely related to the existence
of a linear separable binary coloring of random points called a dichotomy. Moreover, we
point out the connection with the existence of non-negative solutions to systems of linear
equations and with mixed strategies in zero-sum games. On a more technical level and for
the above-mentioned limit of large instances in high-dimensional spaces, we also make
contact between replica calculations performed for different problems in different fields.

In addition to uncovering the common random geometrical background of seemingly
very different problems, our comparative analysis sheds light on each of them from various
angles and points to ramifications in their respective fields.

Entropy 2021, 23, 805. https://doi.org/10.3390/e23070805 https://www.mdpi.com/journal/entropy617
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2. Dichotomies of Random Points

Consider an N-dimensional Euclidean space with a fixed coordinate system. Choose T
points in this space and color them either black or white. The coloring is called a dichotomy
if a hyperplane through the origin of the coordinate system exists that separates black
points from white ones, see Figure 1.

To avoid special arrangements like all points falling on one line, the points are required
to be in what is called a general position: the position vectors of any subset of N points
should be linearly independent. Under this rather mild prerequisite, the number C(T, N)
of dichotomies of T points in N dimensions only depends on T and N and not on the
particular location of the points. This remarkable result was proven in several works,
among them a classical paper by Cover [2]. Establishing a recursion relation for C(T, N),
the explicit result was derived:

C(T, N) = 2
N−1

∑
i=0

(
T − 1

i

)
. (1)

Figure 1. Two colorings of three points in two dimensions. In the left one, black and white points
can be separated by a line through the origin; this coloring therefore represents a dichotomy. For the
right one, no such separating line exists.

If the coordinates of the points are chosen at random from a continuous distribution,
the points are in a general position with the probability one. Since there are in total 2T

different binary colorings of these points and only C(T, N) of them are dichotomies, we
find for the probability that T random points in N dimensions with random coloring form
a dichotomy with the cumulative binomial distribution:

Pd(T, N) =
C(T, N)

2T =
1

2T−1

N−1

∑
i=0

(
T − 1

i

)
. (2)

Hence, Pd(T, N) = 1 for T ≤ N, Pd(T, N) = 1/2 for T = 2N and Pd(T, N) → 0 for T → ∞.
The transition from P � 1 at T = N to P � 0 at large T becomes sharper with increasing N.
This is clearly seen when considering the case of constant ratio

α :=
T
N

(3)

between the number of points and the dimension of space for different values of N, which
shows an abrupt transition at αc = 2 for N → ∞, cf. Figure 2.

For later convenience, it is useful to reformulate the condition for a certain coloring to
be a dichotomy in different ways. Let us denote the position vector of point t, t = 1, . . . , T,
by ξt ∈ RN and its coloring by the binary variable ζt = ±1. If a separating hyperplane
exists, it has a normal vector w ∈ RN that fulfills

ζt = sign(w · ξt), t = 1, . . . , T, (4)

where we define sign(x) = 1 for x ≥ 0 and sign(x) = −1 otherwise. With the abbreviation

rt := ζtξt, (5)
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Equation (4) translates into w · rt ≥ 0 for all t = 1, . . . , T which for points in a general
position, is equivalent to the somewhat stronger condition

w · rt > 0, t = 1, . . . , T. (6)

A certain coloring ζt of points ξt is hence a dichotomy if a vector w exists such that (6) is
fulfilled, that is, if its scalar product with all vectors rt is positive. This is quite intuitive,
since by going from the vectors ξt to rt according to the (5), we replace all points colored
black by their white-colored mirror images (or vice versa). If we started out with a
dichotomy, after the transformation, all points will lie on the same side of the separating
hyperplane. The meaning of Equation (6) is clear: For T random points in N dimensions
with coordinates chosen independently from a symmetric distribution, there exists with
probability Pd(T, N) a hyperplane such that all these points lie on the same side of the
hyperplane. This formulation will be crucial in Section 3 to relate dichotomies to bounded
cones characterizing financial portfolios.

Figure 2. Probability Pd(T, N) that T randomly colored points in a general position in N-dimensional
space form a dichotomy as a function of the ratio α between T and N for different values of N. The
transition between the limiting values P = 1 at α = 1 and P = 0 at large α becomes increasingly
sharp when N grows.

Singling out one particular point s = 1, . . . , T, this in turn implies that there is, for any
choice of s, a vector w with

w · rt > 0, t = 1, . . . , T, t 	= s and w · (−rs) < 0. (7)

Consider now all vectors r̄ of the form

r̄ = ∑
t 	=s

ctrt, with ct ≥ 0, t = 1, . . . , T, t 	= s, (8)

that is, all vectors that may be written as a linear combination of the rt with t 	= s and
all expansion parameters ct being non-negative. The set of these vectors r̄ is called the
non-negative cone of the rt, t 	= s. Equation (7) then means that −rs cannot be an element of
this non-negative cone. This is clear since the hyperplane perpendicular to w separates
−rs from this very cone, an observation that is known as Farkas’ lemma [9]. Therefore, if a
set of vectors rt forms a dichotomy no mirror image −rs of any of them may be written as
a linear combination of the remaining ones with non-negative expansion coefficients

∑
t 	=s

ctrt 	= −rs, ∀ct ≥ 0. (9)

Finally, adding rs to both sides of (9), we find

∑
t

ctrt 	= o, with ct ≥ 0, t = 1, . . . , T, and ∑
t

ct > 0, (10)
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where o denotes the null vector in N dimensions. Given T points rt in N dimensions
forming a dichotomy, it is therefore impossible to find a nontrivial linear combination of
these vectors with non-negative coefficients that equals the null vector.

Additionally, this corollary to the Cover result is easily intuitively understood. Assume
there were some coefficients ct ≥ 0 that were not all zero at the same time, and that realize

∑
t

ctrt = o. (11)

If the points rt form a dichotomy, then according to (6), there is a vector w that makes a
positive scalar product with all of them. Multiplying (11) with this vector, we immediately
arrive at a contradiction, since the l.h.s. of this equation is positive and the r.h.s. is zero.

Note that the inverse of (10) is also true: if the points do not form a dichotomy, a
decomposition of the null vector of the type (11) can always be found. This is related to the
fact that the non-negative cone of the corresponding position vectors is the complete RN .
For if there were a vector b ∈ RN that lies not in this cone by Farkas’ lemma, there would
be a hyperplane separating the cone from b. However, the very existence of this hyperplane
would qualify the points rt to be a dichotomy in contradiction to what was assumed.

In the limit N → ∞, T → ∞ with α = T/N, keeping the problem of random di-
chotomies constant can be investigated within statistical mechanics. To make this connec-
tion explicit, we first note that no inequality in (6) is altered if w is multiplied by a positive
constant. To decide whether an appropriate vector w fulfilling (6) may be found or not, it
is hence sufficient to study vectors of a given length. It is convenient to choose this length
as

√
N, requiring

N

∑
i=1

w2
i = N. (12)

Next, we introduce for each realization of the random vectors rt an energy function

E(w) :=
T

∑
t=1

Θ

(
−∑

i
wirt

i

)
, (13)

where Θ(x) = 1 if x > 0, and Θ(x) = 0; otherwise it is the Heaviside step function. This
energy is nothing but the number of points violating (6) for a given vector w. Our central
quantity of interest is the entropy of the groundstate of the system, that is, the logarithm of
the fraction of points on the sphere defined by (12) that realize zero energy:

S(κ, α) := lim
N→∞

1
N

ln

∫
∏N

i=1 dwi δ(∑i w2
i − N) ∏αN

t=1 Θ
(
∑i wirt

i − κ
)∫

∏N
i=1 dwi δ(∑i w2

i − N)
. (14)

Here, δ(x) denotes the Dirac δ-function, and we have introduced the positive stability
parameter κ to additionally sharpen the inequalities (6).

The main problem in the explicit determination of S(κ, α) is its dependence on the
many random parameters rt

i . Luckily, for large values of N deviations of S from its typical
value, Styp becomes extremely rare and, moreover, this typical value is given by the average
over the realizations of the rt

i :

Styp(κ, α) = 〈〈S(κ, α)〉〉. (15)

The calculation of this average was performed by a classical calculation [10] which gave
rise to the result:

Styp(κ, α) = extr
q

[
1
2

ln(1 − q) +
q

2(1 − q)
+ α

∫
Dt ln H

(
κ −√

qt√
1 − q

)]
, (16)

where the extremum is over the auxiliary quantity q, and we have used the shorthand notations
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Dt :=
dt√
2π

e−
t2
2 and H(x) :=

∫ ∞

x
Dt. (17)

More details of the calculation may be found in the original reference, and in chapter 6
of [11]. Appendix A contains some intermediate steps for a closely related analysis.

Studying the limit q → 1 of (16) reveals

Styp(κ, α)

{
> −∞ if α < αc(κ)

→ −∞ if α > αc(κ),
(18)

corresponding to a sharp transition from solvability to non-solvability at a critical value
αc(κ). This is because κ = 0 finds αc = 2 in agreement with (2), cf. Figure 2.

Note that Cover’s result (2) holds for all values of T and N, whereas the statistical
mechanics analysis is restricted to the thermodynamic limit N → ∞. On the other hand,
the latter can deal with all values of the stability parameter κ, whereas no generalization of
Cover’s approach to the case κ 	= 0 is known.

3. Phase Transitions in Portfolio Optimization under the Variance and the Maximal
Loss Risk Measure

3.1. Risk Measures

The purpose of this subsection is to indicate the financial context, in which the ge-
ometric problem discussed in this paper appears. A portfolio is the weighted sum of
financial assets. The weights represent the parts of the total wealth invested in the various
assets. Some of the weights are allowed to be negative (short positions), but the weights
sum to 1; this is called the budget constraint. Investment carries risk, and higher returns
usually carry higher risk. Portfolio optimization seeks a trade-off between risk and return
by the appropriate choice of the portfolio weights. Markowitz was the first to formulate
the portfolio choice as a risk-reward problem [12]. Reward is normally regarded as the
expected return on the portfolio. Assuming return fluctuations to be Gaussian-distributed
random variables, portfolio variance offered itself as the natural risk measure. This setup
made the optimization of portfolios a quadratic programming problem, which, especially
in the case of large institutional portfolios, posed a serious numerical difficulty in its time.
Another critical point concerning variance as a risk measure was that variance is symmetric
in gains and losses, whereas investors are believed not to be afraid of big gains, only big
losses. This consideration led to the introduction of downside risk measures, starting
already with the semivariance [13]. Later it was recognized that the Gaussian assump-
tion was not realistic, and alternative risk measures were sought to grasp the risk of rare
but large events, and also to allow risk to be aggregated across the ever-increasing and
increasingly heterogeneous institutional portfolios. Around the end of the 1980s, Value at
Risk (VaR) was introduced by JP Morgan [14], and subsequently it was widely spread over
the industry by their RiskMetrics methodology [15]. VaR is a high quantile, a downside
risk measure (note that in the literature, the profit and loss axis is often reflected, so that
losses are assigned a positive sign. It is under this convention that VaR is a high quantile,
rather than a low one). It soon came under academic criticism for its insensitivity to the
details of the distribution beyond the quantile, and for its lack of sub-additivity. Expected
Shortfall (ES), the average loss above the VaR quantile, appeared around the turn of the
century [16]. An axiomatic approach to risk measures was proposed by Artzner et al. [17]
who introduced a set of postulates which any coherent risk measure was required to satisfy.
ES turned out to be coherent [18,19] and was strongly advocated by academics. After a
long debate, international regulation embraced it as the official risk measure in 2016 [20].

The various risk measures discussed all involved averages. Since the distributions
of financial data are not known, the relative price movements of assets are observed at
a number T of time points, and the true averages are replaced by empirical averages
from these data. This works well if T is sufficiently large; however, in addition to all the
aforementioned problems, a general difficulty of portfolio optimization lies in the fact that
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the dimension N of institutional portfolios (the number of different assets) is large, but the
number T of observed data per asset is never large enough, due to lack of stationarity of
the time series and the natural limits (transaction costs, technical difficulties of rebalancing)
on the sampling frequency. Therefore, portfolio optimization in large dimensions suffers
from a high degree of estimation error, which renders the exercise more or less illusory
(see e.g., [21]). Estimation of returns is even more error-prone than the risk part, so several
authors disregard the return completely, and seek the minimum risk portfolio (e.g., [22–24]).
We follow the same approach here.

In the two subsections that follow, we also assume that the returns are independent,
symmetrically distributed random variables. This is, of course, not meant to be a realistic
market model, but it allows us to make an explicit connection between the optimization
of the portfolio variance under a constraint excluding short positions and the geometric
problem of dichotomies discussed in Section 2. This is all the more noteworthy because
analytic results are notoriously scarce for portfolio optimization with no short positions.
We note that similar simplifying assumptions (Gaussian fluctuations, independence) were
built into the original JP Morgan methodology, which was industry standard in its time,
and influences the thinking of practitioners even today.

3.2. Vanishing of the Estimated Variance

We consider a portfolio of N assets with weights wi, i = 1, . . . , N. The observations rt
i

of the corresponding returns at various times t = 1, . . . , T are assumed to be independent,
symmetrically distributed random variables. Correspondingly, the average value of the
portfolio is zero. Its variance is given by

σ2
p =

1
T ∑

t

(
∑

i
wirt

i

)2

= ∑
i,j

wiwj
1
T ∑

t
rt

i r
t
j =: ∑

i,j
wiwjCij, (19)

where Cij denotes the covariance matrix of the observations. Note that the variance of a port-
folio optimized in a given sample depends on the sample, so it is itself a random variable.

The variance of a portfolio obviously vanishes if the returns are fixed quantities that
do not fluctuate. This subsection is not about such a trivial case. We shall see, however,
that the variance optimized under a no-short constraint can vanish with a certain probability
if the dimension N is larger than the number of observations T.

The rank of the covariance matrix is the smaller of N and T, and for N ≤ T the
estimated variance is positive with the probability one. Thus, the optimization of variance
can always be carried out as long as the number of observations T is larger than the
dimension N, albeit with an increasingly larger error as T/N decreases. For large N
and T and fixed α = T/N, the estimation error increases as α/(α − 1) with decreasing
α and diverges at α ↓ 1 [25,26]. The divergence of the estimation error can be regarded
as a phase transition. Below the critical value αd := 1, the optimization of variance
becomes impossible. Of course, in practice, one never has such an optimization task
without some additional constraints. Note that because of the possibility of short-selling
(negative portfolio weights), the budget constraint (a hyperplane) in itself is not sufficient
to forbid the appearance of large positive and negative positions, which then destabilize
the optimization. In contrast, any constraint that makes the allowed weights finite can act
as a regularizer. The usual regularizers are constraints on the norm of the portfolio vector.
It was shown in [27,28] how liquidity considerations naturally lead to regularization. Ridge
regression (a constraint on the �2 norm of the portfolio vector) prevents the covariance
matrix from developing zero eigenvalues, and, especially in its nonlinear form [29], results
in very satisfactory out-of-sample performance.

An alternative is the �1 regularizer, of which the exclusion of short positions is a
special case. Together with the budget constraint, it prevents large sample fluctuations
of the weights. Let us then impose the no-short ban, as it is indeed imposed in practice
on a number of special portfolios (e.g., on pension funds), or, in episodes of crisis, on the
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whole industry. The ban on short-selling extends the region where the variance can be
optimized, but below α = 1 the optimization acquires a probabilistic character in that the
regularized variance vanishes with a certain probability, and the optimization can only be
carried out when it is positive. (Otherwise, there is a continuum of solutions, namely any
combination of the eigenvectors belonging to zero eigenvalues, which makes the optimized
variance zero).

Interestingly, the probability of the variance vanishing is related to the problem of
random dichotomies in the following way. For the portfolio variance (19) to become zero,
we need to have

∑
i

wirt
i = 0 (20)

for all t. If we interchange t and i, we see that according to (11), this is possible as long as
the N points in RT with position vectors�ri := {rt

i} do not form a dichotomy. Hence, the
probability for zero variance is from (2)

Pzv(T, N) = 1 − Pd(N, T) = 1 − 1
2N−1

T−1

∑
i=0

(
N − 1

i

)
=

1
2N−1

N−1

∑
i=T

(
N − 1

i

)
. (21)

Therefore, the probability of the variance vanishing is almost 1 for small α, decreases to the
value 1/2 at α = 1/2, decreases further to 0 as α increases to 1, and remains identically zero
for α > 1 [30,31]. This is similar but also somewhat complementary to the curve shown in
Figure 2. Equation (21) for the vanishing of the variance was first written up in [30,31] on
the basis of analogy with the minimax problem to be considered below, and it was also
verified by extended numerical simulations. The above link to the Cover problem is a new
result, and it is rewarding to see how a geometric proof establishes a bridge between the
two problems.

In [30,31], an intriguing analogy with, for example, the condensed phase of an ideal
Bose gas was pointed out. The analogous features are the vanishing of the chemical
potential in the Bose gas, resp. the vanishing of the Lagrange multiplier enforcing the
budget constraint in the portfolio problem; the onset of Bose condensation, resp. the
appearance of zero weights (“condensation” of the solutions on the coordinate planes)
due to the no-short constraint; the divergence of the transverse susceptibility, and the
emergence of zero modes in both models.

3.3. The Maximal Loss

The introduction of the Maximal Loss (ML) or minimax risk measure by Young [32]
in 1998 was motivated by numerical expediency. In contrast to the variance whose opti-
mization demands a quadratic program, ML is constructed such that it can be optimized
by linear programming, which could be performed very efficiently even on large datasets
already at the end of the last century. Maximal Loss combines the worst outcomes of each
asset and seeks the best combination of them. This may seem to be an over-pessimistic risk
measure, but there are occasions when considering the worst outcomes is justifiable (think
of an insurance portfolio in the time of climate change), and, as will be seen, the present
regulatory market risk measure is not very far from ML.

Omitting the portfolio’s return again and focusing on the risk part, the maximal loss
of a portfolio is given by

ML := min
w

max
1≤t≤T

(
−∑

i
wirt

i

)
(22)

with the constraint
∑

i
wi = N. (23)

We are interested in the probability PML(T, N) that this minimax problem is feasible, that
is, ML does not diverge to −∞. To this end, we first eliminate the constraint (23) by putting
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wN = N −
N−1

∑
i=1

wi. (24)

This results in

ML := min
w̃

max
1≤t≤T

(
−

N−1

∑
i=1

wi(rt
i − rt

N)− Nrt
N

)
=: min

w̃
max

1≤t≤T

(
−

N−1

∑
i=1

wir̃ t
i − Nrt

N

)
(25)

with w̃ := {w1, . . . , wN−1} ∈ RN−1 and r̃ t := {rt
1 − rt

N , . . . , rt
N−1 − rt

N} ∈ RN−1. For ML
to stay finite for all choices of w̃, the T random hyperplanes with normal vectors r̃t have to
form a bounded cone. If the points r̃t form a dichotomy, then according to (6), there is a
vector W ∈ RN−1 with W · r̃t > 0 for all t. Since there is no constraint on the norm of w̃,
the maximal loss (25) can become arbitrarily small for w̃ = λW and λ → ∞. The cone then
is not bounded. We therefore find

PML(T, N) = Pd(T, N − 1) =
1

2T−1

N−2

∑
i=0

(
T − 1

i

)
(26)

for the probability that ML cannot be optimized.
In the limit N, T → ∞ with α = T/N kept finite, (25) displays the same abrupt change

as in the problem of dichotomies, a phase transition at αc = 2. Note that this is larger than
the critical point αd = 1 of the unregularized variance, which is quite natural, since the ML
uses only the extremal values in the data set. The probability for the feasibility of ML was
first written up without proof in [1], where a comparative study of the noise sensitivity
of four risk measures, including ML, was performed. There are two important remarks
we can make at this point. First, the geometric consideration above does not require any
assumption about the data generating process; as long as the the returns are independent,
they can be drawn from any symmetric distribution without changing the value of the
critical point. This is a special case of the universality of critical points discovered by
Donoho and Tanner [33].

The second remark is that the problem of bounded cones is closely related to that
of bounded polytopes [34]. The difference is just the additional dimension of the ML
itself. If the random hyperplanes perpendicular to the vectors r̃t form a bounded cone
for ML according to (25), then they will trace out a bounded polytope on hyperplanes
perpendicular to the ML axis at sufficiently high values of ML. In fact, after the replacement
N − 1 → N Equation (26) coincides with the result in Theorem 4 of [34] for the probability
of T random hyperplanes forming a bounded polytope in N dimensions (there is a typo in
Theorem 4 in [34]; the summation has to start at i = 0). The close relationship between the
ML problem and the bounded polytope problem, on the one hand, and the Cover problem
on the other hand, was apparently not clarified before.

If we spell out the financial meaning of the above result, we are led to interesting
ramifications. To gain an intuition, let us consider just two assets, N = 2. If asset 1 produces
a return sometimes above, sometimes below that of asset 2, then the minimax problem will
have a finite solution. If, however, asset 1 dominates asset 2 (i.e., yields a return which
is at least as large, and, at least at one time point, larger, than the return on asset 2 in a
given sample), then, with unlimited short positions allowed, the investor will be induced
to take an arbitrarily large long position in asset 1 and go correspondingly short in asset 2.
This means that the solution of the minimax problem will run away to infinity, and the risk
of ML will be equal to minus infinity [1]. The generalization to N assets is immediate: if
among the assets there is one that dominates the rest, or there is a combination of assets
that dominates some of the rest, the solution will run away to infinity, and ML will take
the value of −∞. This scenario corresponds to an arbitrage, and the investor gains an
arbitrarily large profit without risk [35]. Of course, if such a dominance is realized in one
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given sample, it may disappear in the next time interval, or the dominance relations can
rearrange to display another mirage of an arbitrage.

Clearly, the ML risk measure is unstable against these fluctuations. In practice, such a
brutal instability can never be observed, because there are always some constraints on the
short positions, or groups of assets corresponding to branches of industries, geographic
regions, and so forth. These constraints will prevent instabilities from taking place, and the
solution cannot run away to infinity, but will go as far as allowed by the constraints and
then stick to the boundary of the allowed region. Note, however, that in such a case, the
solution will be determined more by the constraints (and ultimately by the risk manager
imposing the constraints) rather than by the structure of the market. In addition, in the
next period, a different configuration can be realized, so the solution will jump around on
the boundary defined by the constraints.

We may illustrate the role of short positions for the instability of ML further by
investigating the case of portfolio weights wi that have to be larger than a threshold γ ≤ 0.
For γ → −∞, there are no restrictions on short positions, whereas γ = 0 corresponds to a
complete ban on them. For N, T → ∞ with fixed α = T/N, the problem may be solved
within the framework of statistical mechanics. The minimax problem for ML is equivalent
to the following problem in linear programming: minimize the threshold variable κ under
the constraints (23), wi ≥ γ, and

− ∑
i

wirt
i ≤ κ ∀t = 1, . . . , T. (27)

Similarly to (14), the central quantity of interest is

Ω(κ, γ, α) =

∫ ∞
γ ∏N

i=1 dwi δ(∑i wi − N) ∏αN
t=1 Θ

(
∑i wirt

i + κ
)∫ ∞

γ ∏N
i=1 dwi δ(∑i wi − N)

, (28)

giving the fractional volume of points on the simplex defined by (23) that fulfill all con-
straints (27). For given α and γ, we decrease κ down to the point κc, where the typical
value of this fractional volume vanishes. The ML is then given by κc(α, γ).

Some details of the corresponding calculations are given in the Appendix A. In
Figure 3, we show some results. As discussed above, the divergence of ML for α < 2
is indeed formally eliminated for all γ > −∞, and the functions ML(α; γ) smoothly
interpolate between the cases γ = 0 and γ → −∞. However, the situation is now even
more dangerous, since the unreliability of ML as a risk measure for small α remains without
being deducible from its divergence.

Figure 3. Left: The Maximal Loss ML = κc as a function of α. The analytical results (solid line) are compared to simulation
results (circles) with N = 200 averaged over 100 samples. The symbol size corresponds to the statistical error. Right: Same
as left with largely extended axis of ML.
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The recognition of the instability of ML as a dominance problem has proved very
fruitful and led to a series of generalizations. First, it was realized [1] that the instability of
the expected shortfall, of which ML is an extreme special case, has a very similar geometric
origin. (The current regulatory ES is the expected loss above a 97.5% quantile, whereas ML
corresponds to 100%.) Both ES and ML are so-called coherent risk measures [17], and it was
proved [35] that the root of this instability lies in the coherence axioms themselves, so every
coherent risk measure suffers from a similar instability. Furthermore, it was proved [35]
that the existence of a dominant/dominated pair of assets in the portfolio was a necessary
and sufficient condition for the instability of ML, whereas it was only sufficient for other
coherent risk measures. It follows that in terms of the variable α used in this paper (which
is the reciprocal of the aspect ratio N/T used in some earlier works, such as [35–37]), the
critical point of ML is a lower bound for the critical points of other coherent measures.
Indeed, the critical line of ES was found to lie above the ML critical value of αc = 2 [36].
Value at Risk is not a coherent measure and can violate convexity, so it is not amenable to
a similar study of its critical point. However, parametric VaR (that is, the quantile where
the underlying distribution is given, only its expectation value and variance is determined
from empirical data) is convex, and it was shown to possess a critical line that runs above
that of ES [37]. The investigation of the semi-variance yielded similar results [37]. It seems,
then, that the geometrical analysis of ML provides important information for a variety of
risk measures, including some of the most widely used measures in the industry (VaR and
ES), and also other downside risk measures.

4. Related Problems

In this section, we list a few problems from different fields of mathematics and physics
that are linked to the random coloring of points in high-dimensional space and point out
their connection with the questions discussed above.

4.1. Binary Classifications with a Perceptron

Feed-forward networks of formal neurons perform binary classifications of input
data [38]. The simplest conceivable network of this type—the perceptron—consists of just
an input layer of N units ξi and a single output bit ζ = ±1 [39]. Each input ξi is directly
connected to the output by a real valued coupling wi. The output is computed as the sign
of the weighted inputs

ζ = sign

(
N

∑
i=1

wi ξi

)
. (29)

Consider now a family of random inputs {ξt
i}, t = 1, . . . , T and ask for the probability

Pp(T, N) that the perceptron is able to implement a randomly chosen binary classification
{ζt} of these inputs. Interpreting the vectors ξt := {ξt

i} as position vectors of T points in N
dimensions and the required classifications ζt as a black/white coloring, we hence need to
know the probability that this particular coloring is a dichotomy. Indeed, if a hyperplane
exists that separates black points from white ones, it has a normal vector w that gives a
suitable choice for the perceptron weights to get all classifications right. Therefore, we have

Pp(T, N) = Pd(T, N) =
1

2T−1

N−1

∑
i=0

(
T − 1

i

)
. (30)

In the thermodynamic limit N, T → ∞, this problem, together with a variety of modifica-
tions, can be analyzed using methods from the statistical mechanics of disordered systems
along the lines of Equations (14)–(16), see [11].

4.2. Zero-Sum Games with Random Pay-Off Matrices

In game theory, two or more players choose among different strategies at their disposal
and receive a pay-off (that may be negative) depending on the choices of all participating

626



Entropy 2021, 23, 805

players. A particularly simple situation is given by a zero-sum game between two players,
where one player’s profit is the other player’s loss. If the first player may choose among
N strategies and the second among T, the setup is defined by an N × T pay-off matrix
rt

i , giving the reward for the first player if he plays strategy i and his opponent strategy
t. Barring rare situations in which it is advantageous for one or both players to always
choose one and the same strategy, it is known from the classical work of Morgenstern and
von Neumann [40] that the best the players can do is to choose at random with different
probabilities among their available strategies. The set of these probabilities pi and qt,
respectively, is called a mixed strategy.

For large numbers of available strategies, it is sensible to investigate typical properties
of such mixed strategies for random pay-off matrices. This can be done in a rather similar
way to the calculation of ML presented in the Appendix A of the present paper [3]. One
interesting result is that an extensive part of the probabilities pi and qt forming the optimal
respective mixed strategies have to be identically zero: for both players, there are strategies
they should never touch.

4.3. Non-Negative Solutions to Large Systems of Linear Equations

Consider a random N × T matrix rt
i and a random vector b ∈ RN . When will the

system of linear equations

∑
t

rt
i x

t = bi, i = 1, . . . , N (31)

typically have a solution with all xt being non-negative? This question is related to the
optimization of financial portfolios under a ban of short-selling as discussed above, and
also occurs when investigating the stability of chemical or ecological problems [6,41]. Here,
the xt denotes concentrations of chemical or biological species, and hence has to be non-
negative. Similar to optimal mixed strategies considered in the previous subsection, the
solution typically has a number of entries xt that are strictly zero (species that died out),
the remaining ones being positive (surviving species). Again for T = αN and N → ∞, a
sharp transition at a critical value αc separates situations with typically no non-negative
solution from those in which typically such a solution can be found [4].

To make contact with the cases discussed before, it is useful to map the problem to a
dual one by again using Farkas’ lemma. Let us denote by

r̄ = ∑
t

ctrt, ct ≥ 0, t = 1, . . . , T (32)

the vectors in the non-negative cone of the column vectors rt of matrix rt
i . It is clear that (31)

has a non-negative solution x if b belongs to this cone, and that no such solution exists if b

lies outside the cone. In the latter case, however, there must be a hyperplane separating b

from the cone. Denoting the normal of this hyperplane by w, we hence have the following
duality: either the system (31) has a non-negative solution x, or there exists a vector w with

w · rt ≥ 0 t = 1, . . . , T and w · b < 0. (33)

If the rt
i is drawn independently from a distribution with finite first and second cumulant

R and σ2
r , respectively, and the components bi are independent random numbers with

average B and variance σ2
b /N, the dual problem (33) may be analyzed along the lines

of (14)–(16). The result for the typical entropy of solution vectors w reads [4]

Styp(γ, α) = extr
q,κ

[
1
2

ln(1 − q) +
q

2(1 − q)
− κ2γ

2(1 − q)
+ α

∫
Dt ln H

(
κ −√

qt√
1 − q

)]
, (34)

where the parameter
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γ :=
(

B σr

R σb

)2
(35)

characterizes the distributions of rt
i and bi. The main difference to (16) is the additional

extremum over κ regularized by the penalty term proportional to κ2. Considering the limit
q → 1 in (34), it is possible to determine the critical value αc(γ) bounding the region where
typically no solution w may be found. For nonrandom b, that is, σb → 0 implying γ → ∞,
we find back the Cover result αc = 2.

The problem is closely related to a phase transition found recently in MacArthur’s
resource competition model [4,6,7], in which a community of purely competing species
builds up a collective cooperative phase above a critical threshold of the biodiversity.

5. Discussion

In this paper, we have reviewed various problems from different disciplines, including
high-dimensional random geometry, finance, binary classification with a perceptron, game
theory, and random linear algebra, which all have at their root the problem of dichotomies,
that is, the linear separability of points carrying a binary label and scattered randomly
over a high-dimensional space. No doubt there are several further problems belonging
to this class; those that spring to mind are theoretical ecology alluded to at the end of
the previous Section, or linear programming with random parameters [8]. Some of these
conceptual links are obvious, and have been known for decades (for example, the link
between dichotomies and the perceptron), and others are far less clear at first sight, such
as the relationship with the two finance problems discussed in Section 3. We regard as
one of the merits of this paper the establishment of this network of conceptual connections
between seemingly faraway areas of study. Apart from the occasional use of the heavy
machinery of the replica theory, in most of the paper we offered transparent geometric
arguments, where our only tool was basically the Farkas’ lemma.

The phase transitions we encountered in all of the problems discussed here are similar
in spirit to the geometric transitions discovered by Donoho and Tanner [33] and interpreted
at a very high level of abstraction by [42]. One of the central features of these transitions is
the universality of the critical point. This universality is different from the one observed
in the vicinity of continuous phase transitions in physics, where the value of the critical
point can vary widely, even between transitions belonging to the same universality class.
The universality in physical phase transitions is a property of the critical indices and other
critical parameters. Critical indices also appear in our abstract geometric problems, and
they are universal, but we omitted their discussion which might have led far from the
main theme.

At the bottom of our geometric problems, there is the optimization of a convex objec-
tive function (which is, by the way, the key to the replica symmetric solutions we found).
The recent evolution of neural networks, machine learning, and artificial intelligence is
mainly concerned with a radical lack of convexity, which points to the direction in which
we may try to extend our studies. Another simplifying feature we exploited was the inde-
pendence of the random variables. The moment that correlations appear, these problems
become hugely more complicated. We left this direction for future exploration. However, it
is evident that progress in any of these problems will induce progress in the other fields,
and we feel that revealing their fundamental unity may help the transfer of methods and
ideas between these fields. This may be the most important achievement of this analysis.
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Appendix A. Replica Calculation of Maximal Loss

In this appendix, we provide some details for the determination of the maximal loss
of a random portfolio using the replica trick. The calculation is a generalization of the
one presented in [3] for random zero-sum games. A presentation at full length can be
found in [43]. As we pointed out in the main text, maximal loss is a special limit of the
Expected Shortfall risk measure, corresponding to the so-called confidence level going to
100%. In [44] a detailed study of the behavior of ES was carried out, including the limiting
case of maximal loss. That treatment is completely different from the one in here, so the
present calculation can be regarded as complementary to that in [44].

The central quantity of interest is the fractional volume

Ω(κ, γ, α) =

∫ ∞
γ ∏N

i=1 dwi δ(∑i wi − N) ∏αN
t=1 Θ

(
∑i wirt

i + κ
)∫ ∞

γ ∏N
i=1 dwi δ(∑i wi − N)

(A1)

defined in (28). Although not explicitly indicated, Ω(κ, γ, α) depends on all the random
parameters rt

i and is therefore by itself a random quantity. The calculation of its complete
probability density P(Ω) is hopeless but for large N this distribution gets concentrated
around the typical value Ωtyp(κ, γ, α). Because Ω involves a product of many independent
random factors this typical value is given by

Ωtyp(κ, γ, α) = e〈〈ln Ω(κ,γ,α)〉〉 (A2)

rather than by 〈〈Ω(κ, γ, α)〉〉. Here 〈〈. . . 〉〉 denotes the average over the rt
i . A direct

calculation of 〈〈ln Ω〉〉 is hardly possible. It may be circumvented by exploiting the identity

〈〈ln(Ω(κ, γ, α))〉〉 = lim
n→0

1
n
[〈〈Ωn(κ, γ, α)〉〉 − 1] (A3)

For natural n the determination of 〈〈Ωn〉〉 is feasible. The main problem then is to continue
the result to real n in order to perform the limit n → 0.

The explicit calculation starts with

〈〈Ω(κ, γ, α)n〉〉 =
〈〈∫ ∞

γ ∏N
i=1 ∏n

a=1 dwa
i ∏n

a=1 δ(∑i wa
i − N) ∏αN

t=1 ∏n
a=1 Θ(∑i wa

i rt
i + κ)∫ ∞

γ ∏N
i=1 ∏n

a=1 dwa
i ∏n

a=1 δ(∑i wa
i − N)

〉〉
. (A4)

Using

∫ ∞

γ

N

∏
i=1

dwi δ(∑
i

wi − N) ∼ exp{N[1 + ln(1 − γ)]} (A5)

for large N and representing the δ-functions and Θ-functions by integrals over auxiliary
variables Ea, λa

t , and ya
t we arrive at
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〈〈Ω(κ, γ, α)n〉〉 = exp{−nN[1 + ln(1 − γ)]}

×
∫ ∞

γ
∏
i,a

dwa
i

∫
∏

a

dEa

2π
exp

[
iN ∑

a
Ea

(
1
N ∑

i
wa

i − 1

)]

×
∫ ∞

−κ
∏
t,a

dλa
t

∫
∏
t,a

dya
t

2π
exp

(
i ∑

t,a
ya

t λa
t

)〈〈
exp(−i ∑

i,t,a
ya

t wa
i rt

i )

〉〉
.

(A6)

The average over the rt
i may now be performed for independent Gaussian rt

i with average
zero and variance σ2 = 1/N. The result is valid also for more general distributions. First,
multiplying the variance by a constant just rescales the maximal loss but does not influence
the optimal w. Second, for N → ∞ only the first two cumulants of the distribution
matter due to the central limit theorem. Crucial is, however, the assumption of the rt

i
being independent.

Performing the average we find〈〈
exp

(
−i ∑

i,t,a
ya

t wa
i rt

i

)〉〉
=∏

i,t

[∫ drt
i√

2πσ2
exp

(
− (rt

i )
2

2σ2 − irt
i ∑

a
ya

t wa
i

)]

= exp

(
− 1

2N ∑
i,t

∑
a,b

wa
i wb

i ya
t yb

t

)
.

(A7)

To disentangle in (A6) the w-integrals from those over λ and y we introduce the
order parameters

qab =
1
N ∑

i
wa

i wb
i , a ≥ b (A8)

together with the conjugate ones q̂ab. Using standard techniques [11] we end up with

〈〈Ω(κ, γ, α)n〉〉 =
∫

∏
a≥b

dqabdq̂ab
2π/N

∫
∏

a

dEa

2π

× exp

{
−iN ∑

a≥b
qabq̂ab − iN ∑

a
Ea − nN[1 + ln(1 − γ)] + NGs + αNGE

}
,

(A9)

where

GS = ln

[∫ ∞

γ
∏

a
dwa exp

(
i ∑

a≥b
q̂abwawb + i ∑

a
Eawa

)]
(A10)

and

GE = ln

[∫ ∞

−κ
∏

a
dλa

∫
∏

a

dya

2π
exp

(
−1

2 ∑
a,b

qabyayb + i ∑
a

yaλa

)]
. (A11)

For N → ∞ the integrals over the order parameters in (A9) may be calculated using
the saddle-point method. The essence of the so-called replica-symmetric ansatz is the
assumption that the values of the order parameters at the saddle-point are invariant under
permutation of the replica indices a and b. In [43] arguments are given why the replica-
symmetric saddle-point should yield correct results in the present context. We therefore
assume for the saddle-point values of the order parameters

qaa = q1 iq̂aa = −1
2

q̂1 iEa = E ∀a

qab = q0 iq̂ab = q̂0 ∀a > b.
(A12)
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which implies various simplifications in (A9)–(A11). Employing standard manipula-
tions [11] we arrive at

〈〈Ω(κ, γ, α)n〉〉 ∼ exp
{

N extr
q0,q̂0,q1,q̂1,E

[
−n(n − 1)

2
q0q̂0 +

n
2

q1q̂1 − nE − n(1 + ln(1 − γ)) + GS + αGE

]}
. (A13)

Using the shorthand notations (17) the functions GS and GE are now given by

GS = ln
∫

Dl

[
exp

(
(
√

q̂0l + E)2

2(q̂0 + q̂1)

)√
2π

q̂0 + q̂1
H

(
−

√
q̂0l + E − γ(q̂0 + q̂1)√

q̂0 + q̂1

)]n

(A14)

and

GE = ln
∫

Dm H
(√

q0m − κ√
q1 − q0

)n
. (A15)

We may now treat n as a real number and perform the limit n → 0. In this way we find for
the averaged entropy

S(κ, γ, α) := lim
N→∞

1
N
〈〈ln[Ω(κ, γ, α)]〉〉 = lim

N→∞

1
N

lim
n→0

1
n
[〈〈Ω(κ, γ, α)n〉〉 − 1] (A16)

the expression

S(κ, γ, α) = extr
q0,q̂0,q1,q̂1,E

[
q0q̂0

2
+

q1q̂1

2
− E − 1 − ln(1 − γ) +

1
2

ln(2π)− 1
2

ln(q̂0 + q̂1)

+
q̂0 + E2

2(q̂0 + q̂1)
+

∫
Dl ln H

(
−

√
q̂0l + E − γ(q̂0 + q̂1)√

q̂0 + q̂1

)

+α
∫

Dm ln H
(√

q0m − κ√
q1 − q0

)]
.

(A17)

The remaining extremization has to be done numerically. Before embarking on this task it
is useful to remember that Ω and S are only instrumental in determining the maximal loss
which in turn is given by the value κc of κ for which Ω tends to zero. At the same time the
typical overlap q0 between two different vectors in Ω has to tend to the self-overlap q1. To
investigate this limit we replace the order parameter q1 by

v := q1 − q0 (A18)

and study the saddle-point equations for v → 0. In this limit it turns out that the remaining
order parameters may either also tend to zero or diverge. It is therefore convenient to make
the replacements

q̂0 → q̂0

v2 , q̂1 → ŵ :=
q̂1 + q̂0

v
, E → E

v
. (A19)
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Rescaled in this way the saddle-point values of the order parameters remain O(1) for
v → 0. After some tedious calculations the saddle-point equations acquire the form

0 = ŵ − αH
(

κc√
q0

)
0 = −q̂0 + ŵ(q0 + κ2

c )− α
√

q0κc G
(

κc√
q0

)
0 = E(1 − γ)− ŵ(q0 − γ) + q̂0

0 = ŵ − H

(
−E − γŵ√

q̂0

)

0 = ŵ(E − 1) +
√

q̂0 G

(
E − γŵ√

q̂0

)
+ γŵ(1 − ŵ)

(A20)

where

G(x) :=
1√
2π

e−
x2
2 . (A21)

From the numerical solution of the system (A20) we determine κc(α, γ) as shown in
Figure 3.
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Abstract: Expected Shortfall (ES), the average loss above a high quantile, is the current financial
regulatory market risk measure. Its estimation and optimization are highly unstable against sample
fluctuations and become impossible above a critical ratio r = N/T, where N is the number of different
assets in the portfolio, and T is the length of the available time series. The critical ratio depends on the
confidence level α, which means we have a line of critical points on the α− r plane. The large fluctuations
in the estimation of ES can be attenuated by the application of regularizers. In this paper, we calculate
ES analytically under an �1 regularizer by the method of replicas borrowed from the statistical physics
of random systems. The ban on short selling, i.e., a constraint rendering all the portfolio weights non-
negative, is a special case of an asymmetric �1 regularizer. Results are presented for the out-of-sample
and the in-sample estimator of the regularized ES, the estimation error, the distribution of the optimal
portfolio weights, and the density of the assets eliminated from the portfolio by the regularizer. It is
shown that the no-short constraint acts as a high volatility cutoff, in the sense that it sets the weights
of the high volatility elements to zero with higher probability than those of the low volatility items.
This cutoff renormalizes the aspect ratio r = N/T, thereby extending the range of the feasibility of
optimization. We find that there is a nontrivial mapping between the regularized and unregularized
problems, corresponding to a renormalization of the order parameters.

Keywords: portfolio optimization; regularization; renormalization

1. Introduction

A risk measure is a functional on the probability distribution of the fluctuating returns of
a security or a portfolio. Since it is impossible to condense all the information in a probability
distribution into a single number, there is no unique way to choose the “best” risk measure. In
Markowitz’s ground breaking portfolio selection theory [1], with the assumption of Gaussian
distributed returns, variance offered itself as the natural risk measure. The crises of the
late eighties and early nineties led both the industry and regulators to realize that the most
dangerous risk lurked in the asymptotically far tail of the return distribution. To grasp this risk,
a high quantile of the profit and loss distribution called Value at Risk (VaR) was introduced
by J.P. Morgan [2]. For a certain period, VaR became a kind of industry standard, and it was
embraced by international financial regulation as the official risk measure in 1996 [3]. Value
at Risk is a threshold which losses only exceed with a small probability (such as, e.g., 0.05
or 0.01), corresponding to a confidence level of α = 0.95, resp. 0.99. (In this context, it is
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customary to regard losses as positive and profits as negative). As a quantile, VaR is not
sensitive to the distribution of losses above the confidence level and is not subadditive when
two portfolios are combined. This triggered a search for alternatives and led Artzner et al. [4]
to formulate a set of axioms that any coherent risk measure should satisfy. The simplest and
most intuitive of these coherent measures is the Expected Shortfall (ES) [5,6]. ES is essentially
the expected loss above a high quantile that can be chosen to be the VaR itself. After a long
debate about the relative merits and drawbacks of ES, whose details are not pertinent to our
present study, regulators adopted ES as the current official market risk measure to be used
to assess the financial health of banks and determine the capital charge they are required
to hold against their risks. The regulators and the industry settled on a confidence level of
α = 0.975 [7].

ES is mainly designed to be a diagnostic tool. At the same time, it is also a constraint
that banks have to respect when considering the composition of their portfolios. It is then
in their best interest to optimize ES, in order to keep their capital charge as low as possible.
However, the optimization of ES is fraught with problems of estimation error, which is quite
natural if one considers that the number of different items N in a bank’s portfolio can be
very large, whereas the number of observations (the length of the available time series T) is
always limited. In addition, at the regulatory confidence level, one has to throw away 97.5%
of the data. Moreover, the estimation error increases with the ratio r = N/T and at a critical
value of r, it actually diverges, growing beyond any limit. As shown in [8], the instability of
the optimization of ES (as well as all the coherent risk measures) follows directly from the
coherence axioms [4].

The divergence of ES is the signature of a phase transition. The critical r for ES is smaller
or equal to 1/2, its value depending on the confidence level α. For ES, there is then a line of
critical points, a phase diagram, on the r − α plane. A part of this phase diagram has been
traced out by numerical simulations in [9], while the full phase diagram has been determined
by analytical calculations by Ciliberti et al. [10]. Going beyond merely determining the phase
diagram, a detailed study of the estimation error and other relevant quantities has been
performed inside the whole feasibility region in [11,12], and it was shown that, due to the
nontrivial behavior of the contour lines of constant estimation error, especially in the vicinity
of α = 1, the number of data necessary to have a reasonably low estimation error was way
above any T available in practice.

Because of the large sample fluctuations of ES, its optimization constitutes a problem in
high dimensional statistics [13]. A standard tool to tame these large fluctuations is to introduce
regularizers, which penalize large excursions. Although the introduction of these penalties
may seem an arbitrary statistical trick coming from outside of finance, it was shown in [14]
that these regularizers express liquidity considerations, and take into account, already at
the construction of the portfolio, the expected market impact of a future liquidation. The
regularizers are usually chosen to be some constraints on the norm of the portfolio weights.
In [15], we studied the effect of an �2 regularizer on ES and found that �2 obviously suppresses
the instability and, for sufficiently small r and with a strong enough regularizer, it extends the
range where the estimation error is reasonably small by a factor of about 4.

It is interesting to see how an �1 regularizer works with ES. (The importance of studying
the effect of various regularizers in combination with the different risk measures was empha-
sized by [16]). The regularizer �1 is known to produce sparse solutions, which means that
in order to rein in large fluctuations, it eliminates some of the securities from the portfolio.
This obviously contradicts the principle of diversification, but considerations of transaction
costs or the technical difficulties of managing large portfolios may make it desirable to remove
the most volatile items from the portfolio, and this is precisely what a no-short constraint
tends to do.
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It has been known for 20 years now that the optimization of ES can be translated into a
linear programming problem [17]. Accordingly, as it has been realized in [18], the piece-wise
linear �1 with an infinite slope corresponding to an infinite penalty on short selling can prevent
the instability of ES. The purpose of this paper is to determine the effect of �1-regularization
on the phase diagram and also on the behavior of the various quantities of interest inside
the region where the optimization of ES is feasible and meaningful. (We will see that as a
result of regularization new characteristic lines appear on the r − α plane, beyond which the
optimization of ES is still mathematically feasible, but the results become meaningless, as they
correspond to negative risk.) In [12], a detailed analytical investigation of the behavior of the
estimation error, the in-sample cost, the sensitivity to small changes in the composition of the
portfolio, and the distribution of optimal weights were carried out in the non-regularized case.
Here, we derive the same quantities for an �1-regularized ES, including the special case where
short selling is banned, that is when the portfolio weights are constrained to be non-negative.
The density of the items eliminated from the portfolio, to be referred to as the “condensate”
in the following, is also determined. The most striking result of the present study is that the
regularized solution can be mapped back onto the unregularized one. We are not aware of a
similarly tight relationship between a regularized and an unregularized problem, not only in
a finance context, but neither in the general context of machine learning.

2. Method and Preliminaries

If the true probability distribution of returns were known, it would be easy to calculate
the true value of Expected Shortfall and the optimal portfolio weights. However, the true
distribution of returns is unknown, therefore one has to rely on finite samples of empirical data.
This means one observes N time series of length T and estimates the optimal weights and ES
on the basis of this information. It is clear that the weights and ES so obtained will deviate
from their “true” values. (The latter would be obtained in an infinitely long stationary sample.)
The deviation of the estimated values will be the stronger the shorter the length T and the
larger the dimension N. Performing this measurement on different samples one would obtain
different estimates: there is a distribution of ES and of the optimal weights over the samples.
In a real market, one cannot repeat such an experiment multiple times. Instead, one has to
squeeze out as much information as possible from a single sample of limited size. There are
well-known numerical methods for this, like cross-validation or bootstrap [19]. In contrast, in
the present work we aim to obtain analytic results. In order to mimic empirical sampling, we
choose a simple data generating process, such as a multivariate Gaussian. The true value of ES
is easy to obtain for this case, which provides a standard to measure finite sample deviations
from. Then we determine ES for a large number of random samples of length T drawn from
this underlying distribution, average it over the random samples and finally compare this
average to its true value. This procedure will give us an idea about how large the estimation
error is for a given dimension N, sample size T, and confidence level α, under the idealized
conditions of stationarity and Gaussian fluctuations, and how much it will be reduced when
we apply an �1 regularizer of a given strength. It is reasonable to assume that the estimation
error obtained under these idealized circumstances will be a lower bound to the estimation
error for real-life processes.

Now we wish to implement this program via analytic calculations. The averaging over
the random samples just described is analogous to the averaging over the random realization
of disorder in the statistical physics of random systems, which enables us to borrow methods
from that field, in particular the replica method [20]. It assumes that both N and T are large,
with their ratio r = N/T kept finite (thermodynamic or Kolmogorov limit). A small value of r
corresponds to the classical setup in statistics where one has a large number of observations
relative to the dimension. Estimates in this case are sharp and close to their true values.
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In contrast, when r is of order unity, or larger, we are in the high dimensional limit where
fluctuations are large. It is here that the regularizer becomes important.

In the usual application of �1 in finite dimensional numerical studies, the regularizer
eliminates the dimensions one by one, in a stepwise manner, as the strength of the regularizer
is increasing. In our present work, the large N, T limit and the averaging over infinitely many
samples result in a continuous dependence of the “condensate” density (the relative number
N0/N of the dimensions eliminated by �1) on the aspect ratio r, the confidence level α, and the
strength of �1. In a study of �1-regularized variance [21], we found that the stepwise increase
of the density of eliminated weights in a numerical experiment nicely follows the continuous
curve obtained analytically. It is obvious that the situation is similar in the case of ES, but we
have also confirmed this by numerical simulations.

For the sake of simplicity, we will also assume that the returns are independent, that is
the true covariance matrix is diagonal. This is not an innocent assumption: it will be seen,
for example, that the maximum degree of sparsity that �1 can achieve in this scheme is one
half of the total number of dimensions, whereas for correlated returns the maximum sparsity
can be either larger or smaller than 1/2, according to whether correlations are predominantly
positive or negative. Combining �1 with a non-diagonal covariance matrix poses additional
technical difficulties that we wish to avoid in the present account. However, we do allow the
diagonal elements σi of the covariance matrix to be different from each other.

As a further simplification, we do not impose any other constraint on the optimization of
ES beside the budget constraint and the �1 regularizer. In particular, we do not set a constraint
on the expected return, and seek the global minimum of the regularized ES. This is in line with
a number of studies, [22–24] among others, which focus on the global minimum in the problem
of variance optimization, because of the extremely noisy estimates of the expected return.
Furthermore, the global minimum is precisely what one needs in minimizing tracking-errors,
that is, when trying to follow, say, a market index as closely as possible [23].

The replica method used below have already been applied with minor variations to
various portfolio optimization problems in a number of papers [10–12,14,18,21,25–28], where
the replica derivation of the main formulae were repeatedly explained, so we do not need to
go through that exercise again here. Then the natural starting point for our present work is
the detailed study of the behavior of ES without regularization in [12]. The argument there
leads to a relationship between ES and an effective cost or free energy per asset f as follows:

ES =
f r

1 − α
. (1)

The free energy f itself is given by the minimum of a functional depending on six order parameters

f (λ, ε, q0, Δ, q̂0, Δ̂) = λ +
1
r
(1 − α)ε − Δq̂0 − Δ̂q0 (2)

+ 〈minw[V(w, z, σ)]〉σ,z +
Δ

2r
√

π

∞∫
−∞

ds e−s2
g

(
ε

Δ
+ s

√
2q0

Δ2

)
,

where
V(w, z, σ) = Δ̂σ2w2 − λw − zwσ

√
−2q̂0 + η+θ(w)w − η−θ(−w)w (3)

and the double average 〈. . . 〉σ,z means

∞∫
0

dσ
1
N ∑

i
δ(σ − σi)

∞∫
−∞

dz√
2π

e−z2/2 . . . (4)
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Finally, the function g in the integral in (2) is defined as

g(x) =

⎧⎨⎩
0, x ≥ 0
x2, −1 ≤ x ≤ 0

−2x − 1, x < −1
. (5)

The differences with respect to the setup in [12] are the following: a trivial change of notation
(τ there is 1/r here); the variable σ has been introduced in (3), which together with the
recipe (4) allows us to consider assets with different volatilities σi; and the regularizer has
been built into the effective potential (3). Note that the �1 in (3) is asymmetric in order to allow
us to penalize long and short positions separately. The usual �1 corresponds to η+ = η−, the
ban on short selling to η− → ∞. We will also use the arrangement where there is a finite
penalty η− on short positions and none on long ones η+ = 0.

A note on signs: for consistency, the order parameters λ, Δ, q0, and Δ̂ must be positive,
q̂0 negative, and ε can be of either sign. Furthermore, λ must be larger or equal to the right
slope of the regularizer: λ ≥ η+.

Before setting out to derive the stationarity conditions that determine the optimal value
of the free energy and thence of ES, we spell out the meaning of the order parameters. The
first of these is the Lagrange multiplier λ that enforces the budget constraint:

N

∑
i=1

wi = N. (6)

Note that the sum of portfolio weights is set to N here, instead of the usual 1. This is to keep
the weights of order unity in the large N limit.

Because of the relationship between λ and the budget constraint, λ can be thought of
as a kind of chemical potential. It is an important quantity, because, as we shall see later, its
value at the stationary point is equal to the free energy, hence directly related to the optimal
value of ES. In [12], we argued that this optimal value of ES is, in fact, the in-sample estimate
of Expected Shortfall. According to (1), ES is proportional to the product f r, which means
f , and hence λ too, must be inversely proportional to r when r = N/T → 0, because ES is
certainly finite in this limit: a finite N and T → ∞ corresponds to the case of having complete
information. This spurious divergence of f and λ is an artifact, due to our having absorbed
a factor 1/r in their definition. This is explained purely by convenience: we wish to keep
as close to the convention in [12] as possible. The opposite limit, when λ − η+ vanishes,
is another important point: it signals the instability of the portfolio, and the onset of the
phase transition.

The next order parameter, ε, was suggested by [17] as a proxy for Value at Risk. Indeed,
in the limit r → 0 where we know the true distribution of returns, ε will be seen to be equal to
the known value of VaR for a Gaussian.

The third order parameter, q0, is of central importance: According to [12], the ratio of
the out-of-sample estimate ESout and its true value ES(0) is given by the square root of q0. For
the case of different σis considered here, q0 has to be amended by a factor depending on the
structure of the portfolio [21] as

q̃0 = q0
1
N ∑

i

1
σ2

i
. (7)

Then the ratio of the estimated and true ES will be

ESout

ES(0)
=

√
q̃0 (8)
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that is the relative estimation error is
√

q̃0 − 1.
The fourth order parameter, Δ, measures the sensitivity to a small shift in the returns.
The remaining two order parameters, q̂0 and Δ̂, are auxiliary variables that do not have an

obvious meaning, they enter the picture through the replica formalism, and can be eliminated
once the stationarity conditions have been established. The stationarity or saddle point
conditions are derived by taking the derivative of the free energy with respect to the order
parameters and setting them to zero. They will be written up in the next Section.

3. Results

First, we are going to spell out the saddle point conditions in full detail and reduce them
to special cases later.

Let us bring the integral in (2) to a more convenient form by integrating by parts:

I =
1√
π

∞∫
−∞

ds e−s2
g

(
ε

Δ
+ s

√
2q0

Δ2

)
=

2q0

Δ2

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
− 1 − 2

ε

Δ
. (9)

With this identity, the free energy becomes

f = λ − αε

r
− Δq̂0 − Δ̂q0 −

Δ
2r

+
q0

rΔ

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
+ 〈minV〉σ,z . (10)

The function W in the above formulae, together with two related functions Φ and Ψ, will
frequently appear in the following; they are integrals of the Gaussian 1√

2π
e−x2/2:

Φ(x) =
∫ x

−∞
dt

1√
2π

e−t2/2 (11)

Ψ(x) =
∫ x

−∞
dt Φ(t) (12)

W(x) =
∫ x

−∞
dt Ψ(t) . (13)

Now we evaluate the minimum of V in (3) and denote the “representative weight” where this
minimum is located by w∗. It works out to be

w∗ =
λ + σz

√
−2q̂0 − η+Θ(w∗) + η−Θ(−w∗)

2σ2Δ̂
, (14)

or

w∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ+σz
√

−2q̂0−η+

2σ2Δ̂
, if z ≥ η+−λ

σ
√

−2q̂0

0, if − λ+η−

σ
√

−2q̂0
< z < η+−λ

σ
√

−2q̂0

λ+σz
√

−2q̂0+η−

2σ2Δ̂
, if z ≤ − λ+η−

σ
√

−2q̂0
.

(15)

With this and (4), one can calculate V∗, the value of V at the minimum, and perform the
double averaging to obtain

〈V∗〉σ,z =
q̂0

Δ̂
1
N ∑

i

[
W

(
λ − η+

σi
√
−2q̂0

)
+ W

(
− λ + η−

σi
√
−2q̂0

)]
. (16)
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Then, the fully explicit form of the free energy becomes

f = λ − αε

r
− Δq̂0 − Δ̂q0 −

Δ
2r

+
q0

rΔ

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
(17)

+
q̂0

Δ̂
1
N ∑

i

[
W

(
λ − η+

σi
√
−2q̂0

)
+ W

(
− λ + η−

σi
√
−2q̂0

)]
.

It is now straightforward to take the derivatives of f with respect to the order parameters and
derive the stationary conditions.

From ∂ f /∂λ = 0, it follows that

1 =

√
−2q̂0

2Δ̂
1
N ∑

i

1
σi

[
Ψ

(
λ − η+

σi
√
−2q̂0

)
− Ψ

(
− λ + η−

σi
√
−2q̂0

)]
. (18)

The derivative with respect to q̂0 yields

2ΔΔ̂ =
1
N ∑

i

[
Φ

(
λ − η+

σi
√
−2q̂0

)
+ Φ

(
− λ + η−

σi
√
−2q̂0

)]
. (19)

From the derivative with respect to Δ̂, we get

q0 = − q̂0

Δ̂2

1
N ∑

i

[
W

(
λ − η+

σi
√
−2q̂0

)
+ W

(
− λ + η−

σi
√
−2q̂0

)]
. (20)

As mentioned before, q0 determines the out-of-sample estimate for ES and the estimation error.
The derivative with respect to q0 leads to

2rΔΔ̂ = Φ
(

Δ + ε√
q0

)
− Φ

(
ε√
q0

)
, (21)

where use has been made of the identity

W(x) =
1
2

xΨ(x) +
1
2

Φ(x) . (22)

The condition for the derivative with respect to ε to vanish is

α =

√
q0

Δ

[
Ψ
(

Δ + ε√
q0

)
− Ψ

(
ε√
q0

)]
. (23)

The derivation of the last equation takes a little more effort. Let us go back to the free energy
in (2) and take the derivative with respect to Δ. Noticing that 〈V〉σ,z does not depend on Δ,
and using the integral given in (9), we have

∂ f
∂Δ

= −q̂0 +
1
2r

I +
Δ
2r

∂I
∂Δ

= 0 (24)

valid at the stationary point. From here we find

1
2r

Ist = q̂0 +
2q0

rΔ2

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
− ε

rΔ
−

√
q0

rΔ
Ψ
(

Δ + ε√
q0

)
, (25)
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where (9) was used again and we denoted by Ist the integral I evaluated at the stationary
point. Now we apply the identity (22) and the stationary conditions (23), (21) to arrive at

1
2r

Ist = q̂0 +
2q0Δ̂

Δ
− (1 − α)

ε

rΔ
, (26)

which, combined with (9), finally leads to

q̂0 +
2q0Δ̂

Δ
+ α

ε

rΔ
+

1
2r

− q0

rΔ2

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
= 0 . (27)

The Equations (18)–(23) and (27) constitute the system of equations for the six order param-
eters. These equations are valid both for the regularized and (setting η+ = η− = 0) for the
unregularized cases.

Let us now work out the relationship between the free energy and the chemical potential.
Comparing (16) and (20), we see that 〈V∗〉σ,z = −q0Δ̂, which with (10) and (27), results in the
simple formula

f = λ (28)

at the stationary point, as we anticipated before. In [12], we argued that the stationary value
of f determines the in-sample estimate of ES through (1).

The last object to determine is the distribution of weights:

p(w) = 〈δ(w − w∗)〉σ,z . (29)

With (14), we find

p(w) = n0δ(w) +
1
N ∑

i

1

σ
(i)
w
√

2π
exp

⎛⎝−1
2

(
w − w+

i

σ
(i)
w

)2
⎞⎠θ(w) (30)

+
1
N ∑

i

1

σ
(i)
w
√

2π
exp

⎛⎝−1
2

(
w − w−

i

σ
(i)
w

)2
⎞⎠θ(−w) , (31)

where δ(w) is the Dirac delta,

σi
w =

√
−2q̂0

2Δ̂σi
(32)

is the (estimated) variance of the ith return,

w+
i =

λ − η+

2σ2
i Δ̂

(33)

is the center of the Gaussian distribution of the (estimated) positive weight i,

w−
i =

λ + η−

2σ2
i Δ̂

(34)

is the same for negative weight i, and finally,

n0 =
1
N ∑

i

[
Φ

(
λ + η−

σi
√
−2q̂0

)
− Φ

(
λ − η+

σi
√
−2q̂0

)]
(35)

is the density of the assets whose weights are set to zero by the regularizer.
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We wish to make an important remark here: the right hand side of (19) is just 1 − n0. This
will prove to be the key to the mapping between the regularized and unregularized cases.

Let us record the condensate density n0 also for the special case when short positions are
excluded (η− → ∞), but long positions are not penalized (η+ = 0):

n0 =
1
N ∑

i

[
1 − Φ

(
λ

σi
√
−2q̂0

)]
. (36)

From (36), we can see that, since Φ(x) is monotonic increasing and, for x ≥ 0, concave,
the contribution to n0 from assets with larger σis is larger than that from smaller σis. This
means that in the no-short limit, the regularizer �1 eliminates more volatile assets with larger
probability than the less volatile ones. Thus, we can think of the no-short constraint as a smooth
upper cutoff in volatility. This is not true in the generic case (35), where the contributions
of the small and large volatility items depend on the order parameters and the regularizer’s
slopes η+ and η− in a complicated manner: the probability of an asset with volatility σi to be
removed is given by the difference of the two term in (35) under the sum. We do not wish to
analyze this situation in detail, apart from the remark that a sufficiently large η− generally
favors the elimination of large volatility items.

The integral of p(w) is, of course, 1. Its first moment, 〈w∗〉σ,z, works out to be the same as (18):

〈w∗〉σ,z = 1 . (37)

The second moment of the weight distribution is readily obtained as

〈(w∗)2〉σ,z = − q̂0

Δ̂2

1
N ∑

i

1
σ2

i

[
W

(
λ − η+

σi
√
−2q̂0

)
+ W

(
− λ + η−

σi
√
−2q̂0

)]
. (38)

The variance of the weight distribution is then

〈(w∗)2〉σ,z − (〈w∗〉σ,z)
2 , (39)

which is equal to q0 − 1, when the variances of the assets are all equal to 1. For a portfolio
with different σi’s, however, the relevant quantity that determines the out-of-sample estimate
of ES is not the second moment of the weight distribution, but the true variance of the ith
asset multiplied by the estimated portfolio weights squared and summed over the different
assets, that is

〈σ2(w∗)
2〉σ,z , (40)

which is precisely q0 as given in (20), and this is the quantity (multiplied by the correction
as in (7)) that enters the formula for the out-of-sample estimate of ES in (8). For a not
too inhomogeneous portfolio, the difference between the second moment of the weight
distribution and q0 is not significant, so we can think of q0 as a measure of the variance of
the portfolio.

Now we are ready to consider various special cases.

3.1. The Limit of Complete Information

When we have many observations (very long time series, T → ∞) relative to the dimen-
sion N of the portfolio, we are in the r = N/T → 0 limit. As we have already mentioned, this
also corresponds to the “chemical potential” λ going to infinity. Obviously, in this limit, the
regularizer plays no role.
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We need the asymptotic behavior of the functions appearing in our stationary condi-
tions: for x → ∞, Φ(x) → 1, Ψ(x) ∼ x, and W(x) ∼ x2/2, while for x → −∞, all three
vanish exponentially.

Then from (18) we have

1 =
λ

2Δ̂
1
N ∑

i

1
σ2

i
. (41)

From (19)
2ΔΔ̂ = 1 . (42)

Combining the two:

1 = λΔ
1
N ∑

i

1
σ2

i
. (43)

We know from (1) and (28) that λ must be inversely proportional to r when r → 0. It follows
that Δ ∼ r for small r.

Then, from (20) we find

q0 = Δ2λ2 1
N ∑

i

1
σ2

i
. (44)

Combined with the previous equation, this gives

q0 =
1

1
N ∑i

1
σ2

i

. (45)

The “true” (r → 0) value of the order parameter q0 is thus determined by the structural
constant 1

N ∑i
1

σ2
i

, which is given by the variances of the returns σ2
i . This is in accord with the

corresponding result found in the case of the �1-regularized variance risk measure [21,29].
The above result for q0 also means that the quantity q̃0 introduced in (7) is equal to 1, and
according to (8) the out-of-sample estimate of ES is equal to its true value ES(0), the estimation
error is zero—an obvious result for the case of complete information.

From (23) with Δ → 0 we obtain α = Φ(ε/
√

q0), or

ε = Φ−1(α)
√

q0 . (46)

Now from (21) we get r = Φ′
(

ε√
q0

)
Δ√
q0

, or

Δ = r
√

q0
1

1√
2π

e−ε2/2q0
. (47)

However, then we have found

λ =
q0

Δ
=

1
r

1√
2π

e−ε2/2q0
√

q0 =
1
r

1√
2π

e−(Φ−1(α))
2
/2√q0 . (48)

Since λ = f and ES = f r/(1 − α), we have the r → 0 limit (the true value) of ES:

ES(0) =
1

1 − α

1√
2π

e−(Φ−1(α))
2
/2√q0 . (49)
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We record the r → 0 limits of the two auxiliary variables, Δ̂ and q̂, for completeness:

Δ̂ =
1

2r
√

q0

1√
2π

e−ε2/2q0 (50)

and
q̂0 ∼ −1

r
, (51)

with a coefficient that will not be needed in the following.
Let us turn to the distribution of weights now.
In the r → 0 limit, the widths of the Gaussians in (30) all vanish, so the Gaussians become

delta functions:

p =
1
N ∑

i
δ(w − w+

i )θ(w) +
1
N ∑

i
δ(w − w−

i )θ(−w) . (52)

In the r → 0 limit, the weights are all positive, so the second sum disappears.
For the weights, w+

i we find

w+
i � λ

2σ2
i Δ̂

=
λΔ
σ2

i
=

1
σ2

i

1
1
N ∑k

1
σ2

k

. (53)

They sum to N, as stipulated.
The variance of a linear combination of independent random variables with averages w+

i
and variances σ2

i is

σ2
p = ∑

i

(
w+

i
)2

σ2
i =

N
1
N ∑k

1
σ2

k

. (54)

Now we recognize the meaning of the (true value of the) order parameter q0: it is the normal-
ized (to O(1)) variance of the portfolio. This also explains the correction factor appearing in
(7). We also see that (46) and (49) are the standard expressions for Value at Risk and Expected
Shortfall indeed.

We emphasize again that all the results presented in this subsection are only valid in the
r → 0 limit when we are dealing with a finite dimension N and infinitely long time series T.

For finite r, the sample fluctuations start to broaden the delta spikes in the distribution of
weights, the condensation of zero weights begins, λ decreases, and all the formulae above
become considerably more complicated. We turn to this situation in the next subsections.

By now, we have learned everything that was to be learned from keeping the variances
σi different, in particular the tendency of the elimination of the most volatile assets by the
regularizer in the case of restriction of short selling. In order to simplify the presentation and
avoid the appearance of very large and hardly transparent formulae, henceforth we set all the
σi’s equal to 1. We stress, however, that the main message of this paper, namely the existence
of a mapping between the regularized and unregularized cases, depends only on the structure
of the equations, and works also with different σ’s.
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3.2. Without Regularization

In this subsection, we set η+ = η− = 0, that is we consider our problem without
regularization, and according to what has just been said, put σi = 1. We will make use of
the identities

Φ(x) + Φ(−x) = 1 (55)

Ψ(x) + Ψ(−x) = x (56)

W(x) + W(−x) =
1
2
(x2 + 1) . (57)

The free energy (17) becomes

f = λ − αε

r
− Δq̂0 − Δ̂q0 −

Δ
2r

+
q0

rΔ

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
− λ2

4Δ̂
+

q̂0

2Δ̂
. (58)

For the saddle point equations, we find:

1 =
λ

2Δ̂
, (59)

2ΔΔ̂ = 1 , (60)

q0 =
λ2

4Δ̂2
− q̂0

2Δ̂2
, (61)

2rΔΔ̂ = r = Φ
(

Δ + ε√
q0

)
− Φ

(
ε√
q0

)
, (62)

α =

√
q0

Δ

[
Ψ
(

Δ + ε√
q0

)
− Ψ

(
ε√
q0

)]
, (63)

q̂0 +
2q0Δ̂

Δ
+

αε

rΔ
+

1
2r

− q0

rΔ2

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
= 0 . (64)

These equations are rather similar to their counterparts in the previous subsection, but of
course r → 0 is not assumed here. As for their solutions, they were discussed and illustrated in
several figures in [12], therefore we will not dwell upon them here. (Some results will be given
in Section 3.6.) Instead, we write up the corresponding equations in the case where no short
positions are allowed and make a term-by-term comparison between the two sets of equations.

3.3. No Short Selling

Short positions will be excluded by imposing infinite penalty on them by letting η− go to
infinity. The functions Φ(x), Ψ(x), and W(x) all vanish when x → −∞. Long positions will
not be penalized, so we set η+ = 0.

The free energy becomes

f = λ − αε

r
− Δq̂0 − Δ̂q0 −

Δ
2r

+
q0

rΔ

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
(65)

+
q̂0

Δ̂
W

(
λ√
−2q̂0

)
. (66)
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The stationary conditions now read as:

1 =

√
−2q̂0

2Δ̂
Ψ

(
λ√
−2q̂0

)
, (67)

2ΔΔ̂ = Φ

(
λ√
−2q̂0

)
, (68)

q0 = − q̂0

Δ̂2
W

(
λ√
−2q̂0

)
, (69)

2rΔΔ̂ = Φ
(

Δ + ε√
q0

)
− Φ

(
ε√
q0

)
, (70)

α =

√
q0

Δ

[
Ψ
(

Δ + ε√
q0

)
− Ψ

(
ε√
q0

)]
, (71)

r

(
q̂0 +

2q0Δ̂
Δ

)
+

αε

Δ
+

1
2
− q0

Δ2

[
W

(
Δ + ε√

q0

)
− W

(
ε√
q0

)]
= 0 , (72)

the last equation being the same as (64), just multiplied by r.
In the distribution of weights in (30), the second sum of Gaussians will disappear, because

for η− → ∞, all the weights (34) go to infinity. The weights (33) become

w+
i =

λ

2Δ̂
, (73)

while the density of zero weights is now

n0 = 1 − Φ

(
λ√
−2q̂0

)
, (74)

which with (68) leads to
1 − n0 = 2ΔΔ̂ . (75)

From (74), we see that n0 = 0 for r = 0 and increases as λ decreases, until it reaches its
maximal value 1/2 when λ vanishes. Mathematically, there is nothing to prevent us from
continuing to increase r and driving λ to negative values, which would allow n0 to grow
beyond 1/2, up to n0 = 1, but a negative λ would cause the free energy and thus also ES to
change sign—an extreme case of “in-sample optimism”, entirely due to the lack of sufficient
information. We consider such a situation “unphysical”, and never go beyond the point where
λ (or λ − η+ if η+ > 0) vanishes anywhere in this paper.

3.4. No-Short Mapping

We are now ready to spell out the mapping between the no-short case and the
unregularized one.

The first point to notice is that the only difference between Equation (62) valid in the
unregularized case and its counterpart (70) in the no-short case (combined with (75)) appears
on their left hand side: the terms r and (1 − n0)r, respectively. This suggests to introduce an
effective r:

reff = (1 − n0)r . (76)
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Now r = N/T, and n0 is the density of the assets removed by the regularizer, thus (1− n0)r =
N−N0

T is the number of surviving assets divided by the length of the time series. As reff
increases from zero to 1/2, r will increase between zero and 1.

Inspired by the connection between r and reff, we compare the two sets of equations
and recognize that, in fact, the whole system of saddle point equations can be mapped from
the regularized case to the unregularized one. A variable that appears in all the subsequent
equations is

z =
λ√
−2q̂0

, (77)

where the variables λ and q̂0 are those that appear in the no-short equations.
Then the connection between the order parameters belonging to the two cases is the following:

q0 = qeff
0

z
Ψ(z)

, (78)

Δ = Δeff

√
z

Ψ(z)
, (79)

ε = εeff

√
z

Ψ(z)
, (80)

λ = λeff

√
z

Ψ(z)
Φ(z) , (81)

q̂0 = q̂eff
0 Φ(z) , (82)

Δ̂ = Δ̂eff

√
Ψ(z)

z
Φ(z) . (83)

A direct substitution shows that if the order parameters on the left hand sides of the above
equations satisfy the no-short equations, then the effective variables satisfy the unregularized
ones, provided we also replace r with reff. In particular, the contour maps of the unregularized
order parameters presented in [12] can be taken over and simply blown up by a factor 1

1−n0
to obtain the contour maps of the no-short variables. Given the relation between q0 and the
estimation error, we see that the mapping also means that a given error belongs to a larger r
in the no-short case than in the unregularized one, in other words, the no-short constrained
problem demands (1 − n0) times less data (shorter time series) than the unregularized one.

One may wonder whether this mapping expresses some symmetry of the problem, that
is whether the free energy functional is invariant under this mapping. The answer is no: the
mapping works only in the saddle point equations, it is a property of the stationary point.

It is important to learn the range of this transformation. In the limit r → 0, the transfor-
mation is the identity, but this is trivial: when we have complete information, the regularizer
does not play any role. It is more interesting to consider the vicinity of the phase transition in
the unregularized case, where qeff

0 and Δeff diverge. These divergences are removed by the
mapping, no singularity is found in the no-short case. This is in accord with [18]: the infinite
penalty on short positions precludes the phase transition and no singularity shows up in q0 , Δ,
or ε. Mathematically, we can continue the unregularized solutions into the non-feasible region
beyond the phase boundary, but they make no sense there (for example, q0 changes sign, Δ
and ε become imaginary, etc.), while their mapped counterparts continue to behave reasonably.
According to (76), when reff reaches the critical point rc(α), the corresponding value of r in
the no-short problem will be twice as large, so the whole phase diagram is multiplied by a
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factor 2. Beyond the mapped phase boundary the regularized solutions still survive, but their
meaning becomes questionable, because the free energy, hence also ES change sign. As noted
in the previous Subsection, we refrain from the discussion of this unphysical region.

3.5. Mapping for Generic �1 Constraint

The mapping between the generic �1-constrained ES optimization and the unregularized
one is a straightforward generalization of the results in the previous Subsection. The mapping
is made more complicated because of the sums and differences of the Ψ, Φ, and W functions
appearing on the right hand side of Equations (18)–(20). We introduce the following notation
for these combinations:

AΨ = Ψ

(
λ − η+√
−2q̂0

)
− Ψ

(
− λ + η−√

−2q̂0

)
, (84)

AΦ = Φ

(
λ − η+√
−2q̂0

)
+ Φ

(
− λ + η−√

−2q̂0

)
, (85)

and

AW = W

(
λ − η+√
−2q̂0

)
+ W

(
− λ + η−√

−2q̂0

)
, (86)

where we have set all the σi = 1.
In terms of these quantities the generic map reads as

q0 = qeff
0

2AW − AΦ

(AΨ)2 , (87)

Δ = Δeff

√
2AW − AΦ

AΨ
, (88)

ε = εeff

√
2AW − AΦ

AΨ
, (89)

λ = λeff
zAΦ√

2AW − AΦ
, (90)

q̂0 = q̂eff
0 AΦ , (91)

Δ̂ = Δ̂eff
AΦ AΨ√

2AW − AΦ
. (92)

For the condensate density n0, we have

1 − n0 = AΦ , (93)

and for the effective aspect ratio

reff = 2rΔΔ̂ = rAΦ = (1 − n0)r . (94)

As before, if the order parameters satisfy the regularized stationarity conditions (18)–(27)
(with σi = 1), then the effective parameters will satisfy the unregularized Equations (59)–(64),
and vice versa.
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Note that the above equations remain invariant if we redefine λ as λ − η+ and η− as
η− + η+. So we can set η+ = 0 and η− + η+ = η without loss of generality. We will use
this setup in the following, in order to reduce the number of parameters when solving the
stationarity equations.

3.6. Solutions for the Order Parameters

Except for a few exceptional points, it is impossible to obtain the solutions of the station-
arity equations in closed, analytical form, but it is perfectly possible to get them numerically,
by a computer. (The case of α = 1 is exceptional in several respects and will not be considered
here.) In the following, the solutions will be presented in graphical form.

Figure 1 exhibits three special lines, belonging to three different cases: the unregularized
case, the one with a finite regularizer, and the one with a no-short constraint.

Figure 1. The boundary of the region where the optimization of ES is feasible in the unregularized
case (nr); its image under the map for a finite η− = 0.05, η+ = 0 regularizer; and the same under the
no-short map (ns).

The blue line is the upper boundary of the region where the optimization of unregularized
ES is feasible. This line was first determined in [10]. It is a phase boundary, along which a phase
transition takes place: q0, Δ, and ε diverge here, while λ becomes zero. The unregularized
equations can be solved also above this line, up to the horizontal line at r = 1 (not shown
in the Figure), but the solutions are meaningless: q0 is negative, while λ, Δ, and ε become
imaginary. The unregularized equations do not have any solution above r = 1.

The green line is the image of the unregularized phase boundary under the mapping
described in the previous Subsection, and corresponds to a one-sided regularizer with
η− = 0.05, η+ = 0. There is no phase transition when we cross this line, the order parameters
remain smooth, finite quantities, but λ (along with the free energy and the in-sample estimate
of ES) changes sign, rendering the solution in the region above the green line “unphysical”.
Nevertheless, if we keep following the solutions beyond the green line we can go up to the
image of the r = 1 line (mapped into r → ∞), where q0 and Δ will ultimately diverge. The
region between the green line and the image of the r = 1 line has an intricate structure, but
because it corresponds to negative risk, it is of no interest for us in the present context.
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In the no-short case, there is always a solution with the order parameters remaining
finite all the way up to infinity, which is the image of the r = 1 line under the no-short map.
However, as we cross the orange line, λ changes sign, and the region beyond it is meaningless
again. The orange line is the unregularized phase boundary (blue line) blown up by a factor

1
1−n0

= 2. All this is in accord with the picture described in [18] in that the no-short constraint
eliminates the critical line. The solutions becoming unphysical beyond a certain r-range could
not be foreseen on the basis of the analysis in [18].

Figure 2 shows the η-dependence of q0 and the density of the zero weights n0 at criticality,
and that of the value of the critical r. In the unregularized case (η → 0), q0 → ∞, while in
the no-short case (η → ∞) q0 → π. At α = 0.975, the value of the critical rc increases from
rc ≈ 1/2 in the unregularized case to ≈1 for the no-short case. The proportion of the assets
eliminated from the portfolio (the condensate density) goes from zero for η = 0 to 1/2 for
large η.

Figure 2. Dependence of q0 at rc (left), critical point (middle), and proportion of zero weights at rc

(right) as a function of the regularization strength, η− = η (η+ = 0). Note the logarithmic scale in the
left panel.

In Figure 3, we display the r-dependence of q0, Δ, and λ for the three cases: unregularized,
regularized, and no-short. Without regularization, q0 and Δ increase with r and diverge at an
rc slightly less than 1

2 ; while λ decreases from infinity at r = 0 to zero at rc. (The confidence
limit α is set at its regulatory value 0.975 in these figures.) Under the regularizer η− = 0.05,
η+ = 0, q0, and Δ increases up to the r where λ vanishes. The situation is similar for an
infinitely strong (no-short) regularizer, with the limiting value of q0 = π and λ = 0 at r ≈ 1.

Figure 3. Dependence of q0(left), Δ (middle) and “chemical potential” λ (right) on r = N/T, for the
unregularized (blue), η− = 0.05, η+ = 0 regularized (green), and no-short (yellow) cases.

The left panel in Figure 4 shows the relative out-of-sample estimation error, which is
related to the out-of-sample estimate of ES by (8) (q̃0 = q0 now, as we have set all the σi =1).
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These curves are similar to the curves of q0 in the previous Figure. It can be seen that the
curves of the relative estimation error run very close to each other for small values of r: there
is no substantial reduction of the error in this range. Where they fan out and the effect of
regularization starts to be felt (say around r = 0.1), the relative error is already about 20%.

Figure 4. Dependence of the out-of-sample estimation error (left), proportion of zero weights (center),
and in-sample ES (right) on r = N/T, for the non-regularized (blue), η− = η (η+ = 0) regularized
(green), and no-short (orange) cases.

The middle panel in Figure 4 shows the behavior of the density of zero weights as
function of r for the finite η-regularized and the no-short cases. In the no-short case, n0 reaches
its maximal value 1

2 at r ≈ 1 (for α = 0.975) where λ vanishes. For a regularizer of finite
strength, it always remains below 1

2 .
The right panel in Figure 4 displays the behavior of the in-sample estimate of ES for

the three cases. This quantity is directly related to λ through (1) and (28). The monotonic
and fast decay of these curves demonstrates what is called in-sample optimism, a strong
underestimation of risk.

4. Discussion

In the preceding Section we compared the behavior of the order parameters in the
three instances considered in this paper: the case of the unregularized, the �1-regularized,
and the no-short constrained Expected Shortfall optimization. We have seen that without
regularization, there is a phase transition as we cross the phase boundary rc(α) shown in
Figure 1 with Δ, q0, and ε diverging here, as known since the paper [10]. In contrast, the
infinite penalty on short positions suppresses this phase transition, while an �1 regularizer
with finite slopes only shifts the phase boundary. These facts were also known from earlier
work [14,18]. However, the picture has turned out to be more complicated than envisaged
in [18]. The numerical solution for the order parameters performed in this paper has revealed
that new characteristic lines emerge both in the case of finite regularization and the no-short
constraint, along which the order parameter λ and, consequently, the free energy and the
in-sample estimate of Expected Shortfall change sign. We have determined the position of
these new characteristic lines: in the no-short case the new line is the curve 2rc(α), for a finite
regularizer it is rc(α)

1−n0
, where n0 ≤ 1

2 . We have omitted the detailed analysis of the regions
above these lines, where the estimated risk becomes negative. Instead, we confined ourselves
to merely pointing out that the critical line for the no-short constraint is projected out to
infinity, so the phase transition is removed indeed, while for a finite slope regularizer the
critical line is shifted into the unphysical, negative risk region, where for some values of the
regularizer’s strength η, it even develops two branches.

We have also found the behavior of the various order parameters, most notably that of
q0 that determines the out-of-sample estimation error of ES, the free energy that gives the
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in-sample estimator, and the susceptibility-like quantity Δ, and displayed their behavior for
the three cases studied here. It is satisfactory to see that q0 and Δ remain finite up to the
new characteristic lines, that is, the regularizer acts as expected: it suppresses the divergent
sample fluctuations in the optimization of ES. Unfortunately, this suppression is not strong
enough to bring down the estimation error to acceptable values, except for the range of small
r = N

T ratios where it demands far too long time series for any realistic N, and where r is small
already without any regularization.

What is the meaning of this phase transition? As analyzed in [8,26] it follows from
the coherence axioms that coherent risk measures, including ES, are unstable in the sense
that whenever an asset or a combination of assets in the portfolio stochastically dominates
the others in a given sample, the investor can take an extremely large long position in the
dominant asset and compensate this with an appropriately large short position, without
violating the budget constraint. This means that the weight of the dominant asset runs away
practically to infinity, resulting in an arbitrarily large negative value of the risk measure. This
is a mirage of an arbitrage, which can disappear in the next sample, or change into another
arbitrage with a different weight running away to infinity. In practice, there are always
constraints that prevent such a divergence from taking place. The ban on short selling is
just this sort of constraint. The runaway solutions try to escape, but get arrested at the walls
constituted by the constraint, in the case of a no-short ban, at the coordinate planes. This is
how the condensate of zero weights builds up. This mechanism is the stronger the larger the
ratio r = N/T.

There is nothing surprising about solutions sitting on the constraint-walls or at corners
in a linearly programmable problem, such as the optimization of ES. In the usual applications
of linear programming, the constraints typically express some physical limitation like a
finite amount of resources, material or labor, etc. In the present finance problem, such a finite
resource would be the limited budget, but if short selling is not constrained, the budget in itself
cannot prevent runaway solutions. The ban on short positions corresponds to an infinitely
strong �1 regularizer, which, combined with the budget constraint, is already sufficient to
take care of the runaway solutions. So, with a no-short ban on, we can increase r (that is the
dimension, or decrease the amount of data) without any mathematical contradiction showing
up; neither q0 nor Δ will diverge. It is clear, however, that the solution based on less and less
information becomes increasingly meaningless. In these circumstances, the optimization will
not tell us anything useful about the structure of the market, it will be determined more and
more by the constraint.

What we regard as the most intriguing result of this paper is the existence of a mapping
between the regularized and the unregularized problems.
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Abstract: How can an income tax system be designed to exploit human nature and a free market to
create a poverty free society, while balancing budgets without disproportional tax burdens? Such a
tax system, with universal character, is deduced from the following guiding principles: (1) a single
tax rate applies to all income types and levels; (2) the tax rate adjusts to satisfy budget projections;
(3) government transfer only supplements the income of households with self-generated income
below the poverty line; (4) deductions for basic living expenses, itemized investments and capital
losses are allowed; (5) deductions cannot be applied to government transfer. A general framework
emerges with three parameters that determine a minimum allowed tax deduction, a maximum
allowed itemized deduction, and a maximum deduction defined by income percentage. An income
distribution that mimics the United States, and a series of log-normal distributions are considered to
quantitatively compare detailed characteristics of this tax system to progressive and flat tax systems.
To minimize government dependency while maximizing after-tax income, the effective tax rate (ETR)
as a function of income percentile takes the shape of the letter, V, inspiring the name victory tax,
where the middle class has the lowest ETR.

Keywords: income tax; tax deduction; income redistribution; government transfer; government
dependency; poverty line; basic income guarantee; effective tax rate; balanced budget; elastic tax

1. Introduction

Many forms of taxation evolved organically in different political and economic sys-
tems over human history [1]. A tax system deals with the flow of money from society to
government, as tax revenues are collected and given back to society as government spends
tax revenue, including government transfers in relation to wealth redistribution. Histori-
cally, the extent and purpose of taxation generally was not to benefit society as a whole [1].
Today, opinions on the extent and purpose of taxation are often politically charged, making
it impossible to design a tax system that is acceptable to all positions. Arguments from
different philosophical perspectives on relationships between society, economy, and public
policy identify complex issues that need to be reconciled to achieve a rational tax system.
The impetus of this work comes from many laudable debates in the United States (US)
about the federal tax system regarding how to set tax rates, and on related issues that affect
the nature of taxation that include government spending, short-term deficits, long-term
debt, government dependency, poverty, income inequality, disproportionate tax burdens,
and the diminishing wealth of the middle class. These ongoing debates indicate that the
structure of a tax system has a significant impact on the economy and well-being of society.
The aim of this work is to construct the foundation for a holistic tax system with universal
appeal divorced from ideology, by taking a pragmatic approach to solving a wide range of
problems faced by modern society.

1.1. Motivations for a Holistic Tax System with Desirable Characteristics

Based on the Gini index [2] from 1980 to the present, the middle class of the US is
steadily shrinking, suggesting that the federal individual income tax could be changed to
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strengthen the middle class. Although a strong middle class fuels a consumer economy,
the distribution of income (and wealth) in free markets is empirically found to be highly
skewed toward a tiny percent of its population [3–5]. Remarkably, there is universality
in heavy tailed distributions for income and wealth across a population in free markets,
regardless of government form and tax law. This work accepts the inevitability of highly
skewed income dispersion in free-market economies, and then uses the free market and
human nature to its advantage.

It is prudent to create incentives for economic growth, while discouraging government
dependency, which can lead to complacency and a less productive society. In this context,
regressive and progressive taxation affects the economy and redistribution of wealth in
different ways. When government redistributes wealth, the effective tax rate (ETR) will
vary between households. A (higher, lower) ETR makes it (more, less) difficult for a
household to generate wealth due to a (higher, lower) tax burden. A pragmatic reason for
the government to redistribute income is that this practice creates an environment in which
all segments of society can accumulate wealth.

A widely employed definition of a flat tax involves taxing labor income at a single
marginal tax rate with an allowed deduction [6]. In this work, a flat tax is defined as having
the ETR independent of income type and level. In practice, a flat tax is achieved by not
allowing tax deductions or government transfers, so that no redistribution of income is
made. In the deductive approach taken here, the ETR dependence on income level is not a
priori assumed. Rather, the ETR will be a result of a set of guiding principles concerned
with fairness, maintaining long-term stability for society, and creating an incentive for
personal economic growth at all income levels. There should be a simple way for the
government to collect tax revenues without runaway deficits and not impose excessive tax
burdens on the population. If a tax system achieves these goals using a strange looking
ETR, so be it.

A holistic tax system should create a net benefit to society while promoting individual
interests, and therefore can be implemented by any political system provided the govern-
ment is sincere about respecting human dignity and wants to maintain a stable free-market
economy. Minimally, all persons in society should have equal opportunity to generate
personal wealth from a market economy. The tax system should create incentives for
individuals to generate wealth. The mathematical framework of the tax system should
not be tied to specific policies. The tax system should have a structure independent of a
population’s income distribution. Moreover, it should be easy for a household to determine
its tax burden, pay owed taxes, and receive government assistance when needed. Likewise,
it should be easy for the government to manage administratively, deter runaway deficits,
and adapt to society’s needs. Applied across the income spectrum, the tax system should
capitalize on the free market to create income growth opportunities, encourage self-reliance,
and minimize government dependence.

1.2. Contributions from a Scientific Approach

To my knowledge, the tax system developed herein is novel, although there are
similarities with the concepts of a negative income tax [7] and basic income guarantee [8].
Specifically, the principles for a holistic tax system developed in Section 2.1 based on
pragmatic considerations identify negative income tax and basic income guarantee as
inadmissible. Positive and negative aspects of these other proposed tax systems have
been extensively discussed [9–16]. The tax system developed here escapes the pitfalls of
negative income tax [17]. The main criticism of a negative income tax is that it removes an
incentive for people to work in low-wage jobs when it is more lucrative to obtain greater
income when not working. This problem is generally referred to as a welfare trap [18].
Common criticisms against a basic income guarantee are that marginal tax rates become
very high [19–22], it is too risky [19], and it is cost prohibitive on large scales [20,21].
Following five principles that are conceptually justified below, a simple holistic tax system
emerges, and it is shown in Section 3 to be feasible and cost-effective.
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The concept of a basic income guarantee was discovered independently many times
under different names [16]. In this paper, the similar concept of a need-based income
guarantee is the result of the development of a pragmatic tax system based on a deductive
approach. The critical difference to previously proposed schema [13] is in the way govern-
ment transfer is handled. After constructing five guiding principles, which include a single
tax rate with three types of tax deductions, the derived tax system provides a surprisingly
low population average ETR, where the most tax relief goes to the middle class. The ETR
for the ultra-rich is no higher than for the extreme poor. Moreover, low-income households
are subjected to a regressive ETR that eliminates the welfare trap and encourages the poor
to gain financial independence and move into the middle class. The tax system is unified
with the welfare system, so that poverty and deficits can be virtually eliminated without
imposing disproportionate tax burdens.

For the rest of this paper, Section 2 develops the tax system first conceptually and
then mathematically. Next, several model economies are constructed to quantify the
characteristics of the tax system. In Section 3, the parameters of the tax system are explored,
leading to a set of parameters that maximize after-tax income for the vast majority of
the population with minimal government dependency. In this scenario, it turns out that
the ETR takes the shape of a “V”, where the middle class enjoys near zero effective tax
rates. This V-signature inspires the name victory tax, which has been adopted because
of its general applicability to widely varying economies. The victory tax system is then
compared with a flat and linear progressive tax system. In Section 4, the benefits of a
simple tax structure are discussed, as well as possible public policy decisions and future
work. The conclusions of this paper are given in Section 5. The main conclusion is that the
victory tax as a holistic income tax system is constrained in such a way that, with minimal
government involvement, households at all levels of income can reap benefits by using this
tax system selfishly to gain wealth, which broadly helps society achieve a higher standard
of living.

2. Model and Methods

The proposed tax system is deduced from five guiding principles that form the basis
of a mathematical framework. This section starts with the conceptual framework, in which
the rationale for the guiding principles is discussed. Recognizing that there are different
perspectives, each principle is rationalized by questioning whether it has universal appeal.
The goal is to transcend political biases as much as possible by rejecting what is not
universal. An effort is made to distill an income tax system into essential elements. A
mathematical framework is then developed with parameters that encapsulate a family of
income tax systems that differ by the parameter values set by the state of the economy. This
allows governments to adapt to society’s needs over time.

2.1. Conceptual Framework

In a bottom-up approach, five guiding principles for a holistic tax system are first
listed. The rationale for each principle is then discussed as subsections. These principles
shape the tax system by imposing constraints, which leads to a tax system that is easily
parameterized within a mathematical framework. The principles are listed as:

1. Income of all types is taxed at the same rate, independent of the income level.
2. A single tax rate adjusts to ensure government fiscal stability.
3. Government transfer is only used to establish a minimum standard of living.
4. Three types of tax deductions incentivize wealth accumulation.

(a) A basic deduction to offset living expenses.
(b) Itemized deductions that promote better standard of living.
(c) Capital loss deductions that promote economic growth.

5. Tax deductions cannot be applied on government transfer.
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2.1.1. Income of All Types Is Taxed at the Same Rate, Independent of the Income Level

Taxing one type of income differently from another creates social discrimination. For
example, it could be argued that income from work done by a teacher should be taxed
twice as high as income from work done by a welder. Intrinsic to this argument is that the
value of the work of a welder is more important than a teacher, or perhaps simply to offset
the risks inherent in welding. However, an objective truth of this differentiation is not
self-evident, as many teachers would argue otherwise. Many of these comparisons can be
made, all of which end with arbitrary conclusions. Logic suggests that it is not the place of
government to judge the intrinsic value of income beyond the definition of legal and illegal
activities. In practice, assigning different tax rates to different types of income creates a
complicated system that leads to endless debate, because there is no universal truth for
all cultures, all types of economy, all types of government, and certainly not a constant in
time. The same logic is true when it comes to distinguishing income from labor versus
investments or other forms of income, such as gifts, winnings, insurance or inheritance.

For free-market economies, the amount of income a person generates in terms of
salary or return on investments determines the value society attaches to occupation and
investment. Income is determined by tangible factors, such as supply and demand, invest-
ment decisions, the wealth potential of occupations, and the desire of an individual to be
wealthy. For example, the income of a surgeon can be higher or lower than a professional
athlete, depending on various factors. Therefore, the allocation of different tax rates on
different types or income levels must be rejected. A household with orders of magnitude
more income than another will pay proportionally that much more tax, which does not
discriminate on income levels. Although sale taxes can coexist with this principle, no other
form of taxation of a person’s income is allowed. For example, this means that in the US, the
separate payroll tax must be eliminated, as there can only be one tax rate on income, which
is comprehensively taken care of by the income tax system within a holistic approach.

2.1.2. A Single Tax Rate Adjusts to Ensure Government Fiscal Stability

A pertinent question is: What should the single tax rate be? A constant value (say
9%) could be argued as optimal, but this value is not self-evident. Indeed, any specific
value would not be universally optimal for all cultures, economies, governments, and for
all time, as the state of the economy fluctuates over time. Therefore, a variable tax rate
that adapts to the revenue needed to cover projected government spending is required. A
dynamic tax rate allows a government to control fiscal stability while adapting to short-
and long-term economic conditions. Cycles of high and low tax rates induce an elastic
response to balancing budgets (with limited liability), which ensures reliability in public
services and mitigates the accumulation of long-term debt. Both of these attributes are
necessary for long-term stability of society.

It is worth pointing out that policy makers have responsibility for developing debt
accumulation or reduction plans. Regardless of the directions that policy makers decide,
the adjustable tax rate makes tax revenue collecting responsive to government policies. For
example, if more funding is appropriated toward infrastructure or defense, the single tax
rate will increase, and society can monitor and judge the benefits for increased taxes. In
summary, a single tax rate offers transparency in government spending, and in combination
with other social-economic measures, the value that the government attaches to society’s
well-being becomes transparent.

2.1.3. Government Transfer Is Only Used to Establish a Minimum Standard of Living

For what reason, if any, should government transfer be used to supplement household
income? Arguably, government transfers should not be used for anything other than to
help a household achieve a minimal standard of living. This principle does not exclude
government support in other forms, such as tax deductions and public services. For
example, government spending on entitled health care, education, or other infrastructure
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does not constitute government transfer. However, public services must be independent of
the income level, void of any income qualification.

Providing public services to poor subpopulations is unnecessary, because the poorest
households will live at the poverty line, which sets a minimum standard of living. Rather
than designing social programs to help the poor, public services should be designed to
help society. This paradigm shift of shared interest will ensure that social programs are of
high quality. It is worth noting that public services will reduce poverty by reducing basic
living costs. Conversely, the poverty line rises as free public services decrease. Importantly,
this principle prohibits the use of government transfers for unemployment or retirement
compensation. Consequently, policy decisions will involve common interests in diverse
and large segments of the population.

It is obvious that if government transfers are used to subsidize households for anything
other than supporting a minimum standard of living, an arbitrary number of good reasons
to redistribute income will lead to a complex tax system that is not universal. Why, however,
should government redistribute income to set a minimum standard of living? Elimination
of poverty is a singular case that appeals universally because of the innate human desire to
live healthy and securely with dignity. This institutes the responsibility of the government
to provide the means for all individuals in society to live securely with dignity over
countless generations.

In practice, the poverty line must be set to balance competing factors. The poverty line
should not be set too low, because more productivity in the entire population will result if
society as a whole has a functional standard of living. Conversely, if the poverty line is set
too high, the tax rate will rise too high, stifling economic growth. As such, the minimum
standard of living that society can tolerate sets the poverty line for households. Although
the way policy makers define this poverty line is left open, it must be based on income
(not savings or wealth). Government transfers supplement income to establish a minimum
standard of living as a safety net. If a household starts with considerable assets and then
unexpectedly finds itself without income, this household can survive at the poverty line,
with basic needs fulfilled. Moreover, this household can use its savings, albeit a finite
resource, to live a higher standard of living.

A consequence of having one specific reason for government transfer is that the
government has minimal involvement in a free market. As another example, if a household
with a large accumulation of debt suddenly loses its income, it is likely to lose its possessions
if an agreement with its lenders cannot be reached. Responsibility and risk tolerances
exist between lenders and households taking loans. Government transfer is used only to
maintain a minimum standard of living, and this results in keeping the net amount of
transfer to a minimum, and hence keeps the tax rate to a minimum.

The COVID-19 pandemic is an unfortunate example of a situation in which the victory
tax system maintains a stable economy during a crisis. Households automatically receive
government transfers when their income falls below the poverty line due to job loss.
Because of guaranteed basic income, the debate in the US on the scope of COVID-19 relief
packages would be unnecessary since government transfer creates a safety net of security.
Nevertheless, financial losses from businesses and households would be expected. While
many lenders would be eager to force foreclosure, other lenders would use unfortunate
events as a growth opportunity to attract new (sound) customers by covering businesses
from bankruptcy and households from personal losses. The free market would solve
the vast majority of the problems, with government regulations perhaps requiring debt
collectors to exercise patience. As jobs reemerge, low-income households quickly increase
their after-tax income, avoiding long-term economic stagnation.

2.1.4. Three Types of Tax Deductions Incentivize Wealth Accumulation

Tax deductions are used to reduce the tax burden on households for various reasons.
For a certain amount of revenue to be collected, reducing the tax burden on a subset of
households requires other households to pay disproportionately higher taxes. Of course,
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different tax rates applied to different income levels or types cause disproportionate tax
burdens. However, even if a single tax rate is applied to all income levels and types
(e.g., nominally a flat tax), tax deductions create a non-flat ETR dependent on household
income. Importantly, different types of tax deductions produce different relative benefits
for households at different income levels. For example, the basic tax deduction that offsets
minimum living expenses provides proportionately more benefit to low-income households.
Itemized deductions predominately help households with middle-range income. Capital
loss deductions on investment losses primarily benefit high-income households. In fact,
low-income households cannot capitalize on capital loss tax deductions.

Among the different types of tax deductions, a balance should be sought between
benefits versus the disproportionate tax burdens created across the income spectrum of
households. The structure of tax deductions should benefit society, as taxpayers seek to
obtain the maximum after-tax income possible from their own interests. Tax deductions
therefore offer specific redistribution mechanisms for government support to motivate
households to accumulate wealth, which in turn maintains a stable and growing economy.
The rationale for the basic, itemized, and capital-loss tax deductions is discussed next,
while key variables for the victory tax system are introduced.

Basic tax deduction: A minimum income is needed to live functionally in modern
society. In the past, most people could live on natural resources or farm land. Unless
free public services take the place of natural resources, job loss literally becomes life
threatening. Hence, a basic deduction, BD, is incorporated to cover minimum living costs
for a household. Although BD is a free parameter, it is appropriately related to the poverty
line. Furthermore, BD should only depend on the number of dependents in a household
and the cost for necessities (which is location dependent), as its sole purpose is to offset
minimal living costs in the context of a social norm.

Itemized tax deduction: To incentivize financial independence, optional itemized deduc-
tions are allowed. Itemized deductions offer the government flexibility in the tax code to
encourage certain measures, such as buying a house, accumulating a retirement portfo-
lio, compensating costs for professional training, education or medical needs, or making
donations to charities. As such, itemized tax deductions create self-interest incentives
for households to take measures that also benefit society as a whole. The net itemized
deduction, ID, is incorporated into the general framework of the victory tax. The total
income that can be deducted is capped at a maximum. Setting a maximum deduction
prevents all households from not paying tax. Two methods are used to set the maximum
total deduction. A maximum deduction, MD, and a maximum percentage, MP, of net
income, NI. The total deduction, TD, allowed by a household is given by:

TD = min(BD + ID, MD, MP × NI) (1)

For a household with a net income above the poverty line with no itemized deductions, its
taxable income, TI is given as:

TI = max(0, NI − TD) ∀ NI > BD (2)

The equation for taxable income developed thus far is easy to understand. The
combined total of basic and itemized deductions cannot exceed the maximum allowed
deduction, nor a maximum percentage of income. Once the total deduction, TD, is de-
termined, it will be used to reduce net income in order to achieve the taxable income.
However, if the deduction is greater than the net income, NI, then the taxable income, TI,
is set to zero, as it cannot be negative. The net income will be precisely defined after capital
loss deductions are considered.

Capital loss deduction: To encourage households to increase their wealth through invest-
ments, capital loss deductions are used to mitigate risk. It is self-evident that government
cannot rescue all households from financial loss. Hence, under what circumstance, if
any, should government aid households to recover lost wealth? Imagine an individual
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that invests $100,000 in a company, and subsequently loses this investment due to the
bankruptcy of that company. Another individual buys a $100,000 painting, which is in-
advertently destroyed in a fire. Should both scenarios be treated equally, or should a
distinction between these two losses be made? The answer rests with public policy makers
who create tax law, where the answer can range from no capital loss deduction for anything
to almost everything. The concern addressed next is that if the tax burden for the wealthy
is disproportionately reduced, the middle class has a much greater tax burden, as the poor
contribute little to tax revenue. Therefore, to justify a capital loss deduction, it is prudent to
make an analogy with government-run health care, which shares an equivalent concept of
large-scale group insurance.

Capital loss tax deduction is similar to an insurance program managed by the govern-
ment. Specifically, all household incomes are being taxed, but the government only aids
households suffering capital losses. A greater capital loss begets more government aid. The
practice of spreading investment risk across the entire population to cover only households
that made poor investments is like a health insurance program. That is, sick and healthy
individuals are taxed, but the government only aids those suffering sickness. The greater
the sickness begets more government aid. Again, aid only goes to a subpopulation to keep
people functional and productive, which is beneficial to society as a whole. Although only
a subpopulation will benefit from the insurance, a priori it is unknown who will use it.

The arguments against universal health care (lack of resources, highly skewed redis-
tribution of income and poor government management) amplify against the rationale for
capital loss tax deductions. The most troubling aspect is that only households with the
highest income are predisposed to benefit. Thus, it is not self-evident that capital loss
deductions should be included in a tax system. Nevertheless, creating opportunities that
ensure the well-being of society must be the responsibility of government. When viewed
as insurance, policy makers need only debate the scope of coverage. From this point of
view, there is no universal answer for the scope of capital loss tax deduction or free health
care services, since a weak economy cannot support the same level of coverage as a strong
economy. As such, public policy debates will ultimately affect government budgets, tax
rates and poverty line. The proposed tax system is designed to support the outcome of
these debates within the constraints inherent in the tax system.

Since the capital loss deduction benefits society as a growth mechanism, it is included
in the victory tax system to ensure generality. Nevertheless, since only a subset of house-
holds reaps the benefits, it is prudent to limit this redistribution of wealth to prevent a
higher tax burden on households with much lower income. This limitation is similar to
a maximum coverage limit in an insurance policy. Note that government transfer to the
poor is limited by the poverty line, and a limit to the maximum itemized deduction was
also introduced. In the same spirit, a cap on capital loss deductions is set by not counting
capital losses that exceed capital gains within a given year. From a consistency point of
view, paying tax on income must be over the same time period regardless of the income
type or income level of a household. To roll over capital losses to future years, the same
time period must apply to all income types. A tax system in which taxes are due annually
seems reasonable, compared to alternatives such as every four months or every four years.
For the prototype tax system constructed and demonstrated in this paper, capital losses
are limited to one-year windows, which correspond to taxes collected annually. Although
there is a maximum deduction for capital losses per year, no lifetime limit for capital losses
is set. Likewise, there are annual limits, but no lifetime limit to government transfer or
itemize deductions.

The definition of net income within the victory tax system is given as:

NI = E + max(0, CIG − CIL) (3)

where E defines earnings from employment, CIG defines capital income gained, and
CIL defines capital income lost. Note that CIG includes all types of income that are not
earnings from employment or government transfers. Upon inspection of (3) within a
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given year, the government will maximally allow a household to deduct as much capital
loss as gained. The amount of risk assumed is therefore determined by the skill of the
investor. If an investor incurs more capital loss in a given year than capital gains, the
government will not allow this excess loss to be deducted on the grounds that the investor
creates too much risk for society to absorb. This restriction strengthens a free market:
investors will exercise prudent judgments to ensure that gains are greater than losses when
government assistance is limited. In practice, the tax system encourages investors to focus
on fundamentals and long-term investments, spreading losses over multiple years. Placing
annual limits on capital loss deductions (in fact all types of tax deductions) minimizes
government dependency.

2.1.5. Tax Deductions Cannot Be Applied on Government Transfer

This principle is self-evident, because income from government transfers is at the
expense of all taxpayers who make a productive contribution to society through earnings
and/or capital gains. Note that allowing deductions on government transfer would amplify
government assistance. This guideline minimizes government dependency.

2.1.6. Unique Property of the Victory Tax System

To emphasize the unique properties of the victory tax system compared to other basic
income guarantee tax systems, an important consequence follows when the first, third and
fifth principles are combined. Since government transfer income is taxed, but deductions
cannot be applied to this part of household income, a regressive ETR emerges as a function
of income percentile for the poor. The regressive ETR enables low-income households
receiving government aid to become self-reliant and achieve higher income levels without a
welfare trap (the analog to a nucleation barrier). The formation of a low-income regressive
ETR will become clear in the results section.

2.2. Mathematical Framework

The five principles examined above are now considered axioms to construct the
general mathematical framework of the victory tax system. Relevant variables for a
household to calculate tax liability are described in Table 1 for convenient reference.

Table 1. Alphabetically ordered list of variables for the victory tax system and their description.

Variable Variable Description

ATI After-tax income.
BD Basic deduction for minimum living expenses.

CIG Capital income gain.
CIL Capital income loss.

E Earnings through employment.
ETR Effective tax rate.
GTI Government transfer income to a household.

ID Itemized deduction taken by a household.
MD Maximum deduction allowed for a household.
MP Maximum percent of household income that can be deducted.
NI Net income of a household after capital loss deductions.
PL Poverty line.

TAX Tax liability.
TD Tax deduction.
TI Taxable income.

TTI Total taxable income over the entire population.
TTR Total tax revenue from the entire population.
VTR Victory tax rate applied to all households and income levels.

In addition to (3) defining net income, the victory tax formulas are given as:

GTI = max(0, BD − NI) (4)
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TD = min(BD + ID, max(BD, MD), MP × NI) (5)

TI = GTI + max(0, NI − TD) (6)

TAX = VTR × TI (7)

ATI = GTI + NI − TAX (8)

ETR =
TAX

GTI + NI
(9)

The variables {E,CIG,CIL} quantify income characteristics of a household. Notice
that the net income of a household can never be negative. The maximum income for a
household eligible for government transfer is determined by the basic deduction, BD.
The word “eligible” underscores the restriction that households with incomes above BD
cannot receive government transfer. Otherwise, GTI defined in (4) covers the income
deficiency of a low-income household in order to put it on the poverty line. The parameters
{BD,MD,MP} define the maximum limits on allowed deductions. After the total tax
deduction is determined from (5), the taxable income is calculated by (6). The victory tax
rate, VTR, multiplies the taxable income of a household to obtain tax liability (7). The
after-tax income is calculated from (8), which adds government transfer to net income
minus paid tax. The ETR is defined in (9) as tax paid divided by the total income. Since no
deductions can be applied to government transfer, it works out that ETR → VTR when
NI → 0. Although counterintuitive, the poorest households pay the highest effective tax
rate among the entire population.

Within the victory tax system, VTR, depends on the target tax revenue, TTR, deduced
from projected budget needs for the next year set by policy makers. In addition, BD, should
be proportional to the poverty line, PL which is the income required to maintain a minimum
living cost. Reflecting the state of the economy, BD will change annually to ensure that
the least possible after-tax income, ATI, corresponds to PL. From Equations (3) and (4) a
household with NI = 0 will have a taxable income equal to BD from government transfer,
and after-tax income will be given by ATI = BD − VTR × BD. This shows the insightful
relationship that BD = PL/(1−VTR), which indicates that as VTR increases, the basic tax
deduction increases at a higher rate. When public policy makers propose to increase VTR
for building infrastructure or defense, BD will automatically increase even if the poverty
line remains constant.

The two parameters {MD,MP} determine the shape of the ETR. In practice, MD and
MP will be functions of the number of dependents in a household, denoted as d. For
simplicity, MP is considered independent of d. Although MD can be set with considerable
latitude through tabulation, a sound approach is to set MD proportional to PL. By assum-
ing MD = k × PL(d), the parameterization details for MD as a function of dependents are
inherited from PL(d). For the US, the poverty line for a household with a certain number
of dependents is publicly available in tables [23]. More generally, an objective economic
measure will be used to define PL(d). Although not considered here to keep the analyses
clear, the poverty line will generally depend on location (region within a country), since all
regions do not have the same cost of living.

Parameters for the victory tax system are explored in Section 3. It is found that
when MP = 0 and ID = 0, a V-shape signature emerges for the ETR as a function of
income percentile, with ETR = 0 marking the bottom of the V. Importantly, (5) determines
the allowed tax deduction after taking into account basic and itemized deductions and
maximum percent of NI. Since itemized plus basic deductions increase total deduction,
the term max(BD, MB) that appears in (5) is needed to enforce consistency. In particular,
when MD is set below BD as an independent variable, the basic deduction is still offered,
but itemized deductions are no longer allowed. However, MP can reduce the maximum
allowed deduction below BD without inconsistency, because MP × NI is a competing
restriction on tax deductions. Note that a flat tax corresponds to the limit MP → 0, where
ETR is constant, independent of income percentile.
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As MP gradually changes from 1 to 0, the V-shape morphs into a U-shape as the “U”
becomes shallower, with the minimum ETR increasing as VTR decreases. These shape
changes create an elastic tax system [24]. At MP = 0 a flat tax emerges as a special case of
a victory tax system, where BD sets the threshold income in which government transfer is
no longer received. A prototypical victory tax system considered in this work is defined
by: MD = kPL and MP = min(r, 1), where r is the coefficient of variation in net income
over the population. Specifically, r is the ratio of the standard deviation in NI to the mean
NI, which serves as a convenient objective measure of the economy. The application of
objective measures updates PL and r each year, allowing the victory tax system to respond
dynamically to changes in the free market and public policy.

The basic deduction is determined in the prototypical victory tax once parameter k
is specified together with the poverty line, PL(d). By combining equations of the victory
tax system, the tax liability of a household with d dependents is given as TAX = VTR ×
fd(x|ID, VTR) from Equation (7), and its taxable income is expressed as:

fd(x|ID, VTR) = max
[

0,
PL(d)

1 − VTR
− x

]
(10)

+ max
{

0, x − min
[(

PL(d)
1 − VTR

+ ID
)

, max
(

kPL(d),
PL(d)

1 − VTR

)
, rx

]}
where x is the net income (replacing NI for simpler mathematical notation) and the sub-
script d denotes the fact that the poverty line depends on the number of dependents in a
household. Equation (10) is the result of substituting all the relevant variables described
above in the arguments of Equation (6). Note that fd(x|ID, VTR) depends on VTR, which
is the dependent variable to be determined. In addition, VTR = TTI/TTR where TTI
is the total taxable income over the population, and TTR is the total tax revenue to be
collected over the population. To calculate VTR = TTI/TTR, we must have TTI, which is
given by the net sum of fd(x|ID, VTR) over all households in the population. However,
to calculate TTI, we must have VTR because fd(x|ID, VTR) depends on VTR. Despite
this circular dependence, it is straightforward to numerically solve for VTR iteratively.
Uncertainties in VTR will primarily arise from estimates in TTR that will lead to surpluses
or deficits at the end of a tax year when government spending deviates from budgeted
allocations. These calculations are not technically difficult. The tax agency will have all
income data from previous years, and TTI, based on the latest tax records, can be calculated
with all details from the tax code. However, the aim of this paper is to analyze the general
characteristics of the victory tax system, rather than focus on nuanced details.

For clarity and without loss of generality, the characteristics of the victory tax system
are analyzed using an average household size and with the subscript d suppressed. This
allows TTI to be expressed through the simple function N(x), which gives the income
distribution over households of the average size. Defining No to be the number of such
households, and p(x) the probability density function quantifying how income is dis-
tributed over these households, N(x) = No p(x). Assuming all households will take the
maximum itemized deduction based on (Equation (10)), a lower-bound estimate for TTI
is obtained. With fd(x|IDmax, VTR) → f (x|VTR) from the simplifying assumptions, the
total taxable income of the entire population is given by:

TTI = No

∫ ∞

0
f (x|VTR) p(x) dx . (11)

2.3. Test Economies

The victory tax system will be characterized by a series of test economies. A test
economy is modeled by the income distribution of the population and poverty line. In
this paper, the characteristics of the US economy are used as a starting template and for
comparison in discussing the importance of the results. However, the main interest is on
investigating general trends that show how the victory tax system responds to dramatic
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changes in income distribution. Therefore, several test economies are considered that
systematically deviate from the US economy, where the size of the middle class gradually
shifts from the largest segment of society to the smallest. In particular, the standard
deviation in income distribution is used to expand and shrink the middle class, which
respectively decreases and increases the income gap between the low middle class and
the wealthiest households. Quantitative comparisons are made between a series of test
economies in which the variance in household income is systematically varied as the
average household income is fixed.

2.3.1. Income Distribution

Accurate modeling of income distribution over a population has received much
attention [3–5]. The income distribution of a population is represented as a probability
density function (PDF) denoted as p(x), where x is net income. Income distributions
are modeled by the κ-generalized statistics [3–5] and log-normal statistics. Although the
log-normal PDF is a qualitatively adequate model for free markets, it underestimates
population density with very high or very low incomes. The κ-generalized PDF provides a
more accurate model description. In particular, the empirically observed Pareto power law
tail [25] is recovered for high incomes (ultra-rich) and also more statistical weight is given
to the extreme poor (both effects take away statistical weight from the middle class). The
κ-generalized PDF is defined as:

p(x) =
αβ

(
x
μ

)α−1
expκ

[
−β

(
x
μ

)α]√
1 + κ2β2

(
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μ

)2α
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β =
1

2κ

⎡⎣Γ
(

1
α

)
Γ
(

1
2κ − 1

2α

)
κ + αΓ

(
1

2κ + 1
2α

)
⎤⎦α

(13)

Γ(y) =
∫ ∞

0
ty−1 e−t dt (14)

expκ(y) =
(√

1 + κ2y2 + κy
) 1

κ

(15)

The two parameters {α,κ} are adjusted to fit to empirical data. Although it is not prohibitively
difficult to evaluate the κ-generalized PDF and other properties from κ-generalized statis-
tics [5], the form of this distribution is not convenient to create a systematic series of test
economies. Log-normal statistics are therefore used to quantitatively analyze systematic
trends in a number of economies that range from a strong to a weak middle class.

The simpler log-normal PDF is defined as:

p(x) =
1

xγ
√

2π
exp

[
−(ln x − λ)2

2γ2

]
(16)

γ =

√√√√ln

[
1 +

(
σ

μ

)2
]

(17)

λ = ln(μ)− σ2

2
(18)

Again, only two parameters {λ,γ} characterize the PDF. However, they easily relate to the
mean, μ, and standard deviation, σ, of income of the population. The mean household
income is defined by the total net income from all households, divided by the total num-
ber of households. Both log-normal and κ-generalized distributions use the same mean
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household income, but they require different standard deviations to best fit the empirical
adjusted gross income data for the US, as explained below.

2.3.2. Test Economy Parameterization

The IRS data [26] from 1979 to 2009 was invoked to mimic the income distribution
of the US. The IRS method of statistical weighting normalized the data to produce an
effective number of dependents per household, and the reported income was based on
2009 dollars after adjusting for inflation. Year 2003 is chosen as an illustration. The US
economy had just recovered after a market correction and began to grow over the next
four years. The snapshot of the 2003 economy (in 2009 dollars) reflects a time of stability
and the beginning of economic growth. The reported IRS data deals with adjusted gross
income (AGI), which is analogous to net income (NI). At the level of analysis presented
in this work, IRS data [26] (and NIH data [23]) are invoked to obtain realistic parameters
while providing context for discussions. However, because AGI and NI are not the same,
the test economies constructed in this work are best viewed as hypothetical examples.

The best fit for the IRS 2003 AGI data using the κ-generalized distribution yields
α = 1.50 and κ = 0.56 with a relative fit error of ±5% across all income brackets. This result
gives a market income distribution (synonymous with AGI) compared to total income,
which includes government transfer and other forms of US subsidies, such as food stamps,
etc. Henceforth, this market income distribution will be associated with the economy A,
shown in Figure 1. At the far right end of the tail, 10 households with an average income
of approximately $113,000,000 per year are captured. The mean household income over
the entire population is $75,300 with a standard deviation of $171,712. The median income
is $44,612 indicating that ultra high-income households skew the distribution, causing the
mean to be considerably larger than the median. As Figure 1 shows, the most probable
market income (the mode) is approximately $10,000 per year.

The log-normal distribution, which fits well to the 2003 IRS income data, has the same
mean income and a smaller standard deviation of $114,475. This log-normal distribution is
employed as another test economy, henceforth referred to as economy B. A smaller standard
deviation in market income indicates a larger middle class, since more households picked
at random are likely to be closer to the mean income. Differences in market income between
economy A and B are shown in Figure 2 on a log–log plot. The κ-generalized and log-
normal distributions describe similar market incomes between $4000 and $2,000,000, but
the peak in the log-normal distribution shifts upward near $12,000 to compensate for
depleting probability from extreme income ranges. The Lorenz curves for these two test
economies, shown in Figure S1, appear virtually identical.

A series of six log-normal economies, all with the same mean income of μ = $75,000 is
also considered, with standard deviations spaced by approximately powers of 2, such that
σ = $7000, $14,000, $28,600, $57,240, $114,475 and $229,000 where the second largest standard
deviation is economy B. In Figure S2, the six distributions are compared on a log–log plot,
and their Lorenz curves are compared in Figure S3. All six log-normal economies have equal
total adjustable income generated by the population, enabling a systematic method to study
the dependence of a tax system on the strength of the middle class.
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Figure 1. Market income distribution for economy A: The household AGI probability density ranging
from $0 to $200,000 is shown. Population quintiles are marked with light brown dashed vertical
lines at 20%, 40% 60%, and 80%. Median and mean incomes are respectively marked as blue and
red dashed vertical lines. (inset) The same distribution is shown without cutting out data from
high income households. The horizontal line at the bottom of the graph highlights the heavy tailed
distribution, indicating only a tiny number of households reach this level of income.

Figure 2. Market income distribution comparison: On a log–log scale the κ-distribution defining
economy A and log-normal distribution defining economy B are compared. The κ-distribution puts
more statistical weight for the ultra-rich and extreme-poor subpopulations as reflected in the wings
of the distribution. The empirical median and mean incomes for the US 2003 economy are shown as
blue and red vertical dashed lines.
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2.3.3. Poverty Line, Tax Revenue and Government Transfer

Other information characterizes an economy, beyond income distribution, such as the
number of people in the population and the poverty line. For the US economy in 2003,
the number of tax-paying households was approximately $112,100,000 and the population
among those households was approximately 290 million, yielding an effective household
size of approximately 2.6 people. For illustration, and without altering the conclusions of
the analysis, the poverty line for a mean household size of 2.6 is estimated by interpolating
data from the 2009 Department of Health and Human Services data [23], yielding $16,814.

Unlike the victory tax system, which is the only source of government transfer to a
household, there are many state and federal aid programs for the poor in the US to offset
housing, energy, food, education, health care, and so on. Once other forms of government
assistance are eliminated, a better estimate for the poverty line is $22,306. Examples are
juxtaposed with both estimates to quantify how much tax burden increases when the
poverty line is raised, which takes into account removal of public services for low-income
households. In the victory tax system, there can be public services, but without income
qualifications. As another point of reference, the poverty line in 2021 is listed as $21,960 for
a household of 3 [23].

The target net tax revenue is set at $854,182,445,000 for all test economies, which
corresponds to tax revenue collected by the IRS in 2003 after all government transfers
were distributed. To compare all tax systems and economies, the total government transfer
is calculated and added to the target net tax revenue of this hypothetical budget. When
the income distribution has (more, less) households below the poverty line, the total tax
revenue, TTR, to be collected will (increase, decrease). It is worth noting that approximately
35 percent of US federal tax revenue was derived from payroll tax, and 19 percent came
from other sources [27]. Payroll tax and all other forms of individual taxation at the federal
level outside of individual income tax are eliminated in the victory tax system. Although
corporate tax can coexist with a victory tax system, no corporate tax is considered for
simplicity of analysis in this paper. Here, all tax revenues come from individual income
tax, making the VTR of the test economies an upper bound.

For comparison, it is insightful to examine how US tax revenues were redistributed
in 2003. Total tax revenues collected were $1,952,929,045,000, of which $1,098,746,600,000
was then redistributed to households through government transfers. As such, more than
56% of the tax revenue collected was redistributed to tax payers, as captured in Figure S4.
Despite the enormous amount of tax revenue redistributed to households, unfortunately
approximately 15% of households live in poverty in the US [23]. In the US, tax revenues are
redistributed to households at all income levels, including high-income brackets, creating
both complexity and inefficiency.

3. Results

The adaptive nature of the victory tax requires VTR to be calculated each year. The
procedure to calculate VTR from (10) favors tax revenue surpluses by assuming that all
households take the maximum itemized deduction allowed. This situation yields the
maximum VTR. Note that VTR must increase as itemized deductions increase to generate
the same target revenue. The source of surplus is households that do not utilize all their
itemized deductions. For analysis purposes, comparisons are made for a household that
takes all or no itemized deductions to establish bounds for relevant quantities, such as ETR
and ATI. Quantities are usually expressed as a function of the percentile of households.
Percentile of households is calculated by ranking all households by net income, and then
counting numbers of households at or below a certain income level to obtain a normalized
scale from 0% to 100%.

3.1. Parameter Exploration

The shape of ETR as a function of the percentile of households depends on parameters
{BD,MD,MP}, which are first explored as independent variables to elucidate how they
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affect the tax structure. Note that MP defines a percentage of total income, while BD and
MD are in dollar amounts. However, when convenient, BD and MD will be specified
in terms of the percentile of households. When stated BD = 20% and MD = 50%, this
means BD and MD are respectively set to the income level at the 20 and 50 percentile of
households. For example, for economy A, these percentiles translate to BD = $16,331 and
MD = $44,612, which are the dollar amounts used in Figure 3.

Figure 3. Effective tax rate comparisons: For economy A the minimum ETR (blue) and maximum
ETR (red) are shown for BD = 20% and MD = 50% in each of the panels with different MP given by:
(A) 0% (red line covering blue line); (B) 30%; (C) 60%; (D) 90%.

Illustrated in Figure 3, as MP increases from 0 to 100% more deductions are allowed,
leading to a gradual change in shape from a flat horizontal line to a “U”-shape. In Figure 3A,
a flat tax appears when MP = 0, causing ETR = VTR. In general, VTR is the y-intercept
of the ETR plots, and ETR < VTR for households with NI > 0. For MP values of 0%,
30%, 60%, 90%, the respective VTR are 11.97%, 15.49%, 18.35% and 20.37%. The maximum
deduction implies ETR → VTR from below for high-income households. Note that ETR
is regressive for low-income households until government transfer is discontinued. This
point occurs at an income level equal to the basic deduction, which creates a kink in the ETR.
Thereafter, a flat ETR applies to all households until the maximum income a household
can deduct is equal to the basic deduction. At this point, a bifurcation can occur where
households can use itemized deductions. The red and blue lines correspond to taking only
the basic deduction versus the maximum deduction. The last segment of percentile of
households has a progressive ETR. As MP increases, more deductions are possible, causing
VTR to increase and the range for a flat ETR to decrease. Only at MP = 1 will ETR = 0
at the bottom of the dip. The same analysis for economy B results in the same qualitative
behavior as shown in Figure S5.

As shown in Figure 4, when MP = 0 the flat segment of ETR goes to 0%, starting at BD
and ending at MD for households that take the maximum deduction. The red line tracks
the maximum ETR for households without itemized deductions. As the basic deduction
rises from 10% to 40% in steps of 10%, the VTR is 18.72%, 20.90%, 24.47% and 29.44%,
respectively. The same analysis for economy B results in the same qualitative behavior as
shown in Figure S6.

In Figure 5, VTR and average ETR are plotted for five different BD values, as a function
of MP and MD. Panel A shows that VTR increases as more tax deductions are allowed.
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Panel C, on the other hand, shows that as more deductions become available, the average
ETR decreases, where the average ETR reaches a minimum when MP = 100%. The flat
plateaus observed in panels B and D, which extend longer for greater BD, appear because
the maximum deduction cannot be less than the basic deduction. Generally, a low average
ETR is the result of the greatest tax relief for the middle class. This result suggests that MP
should be set to 100 percent for economies with large net income variations. The same
qualitative behavior is shown in Figure S7 for economy B.

Figure 4. Effective tax rate comparisons: For economy A, the lower- and upper-bound ETRs are
shown for MD = 50% and MP = 100% in each of the panels with different BD given by: (A) 10%;
(B) 20%; (C) 30%; (D) 40%. At large BD, the signature “V” shape appears for the maximum ETR.

Figure 5. Tax rate comparisons: Trends in tax rates for economy A are explored. The legend applies
to all panels, where different color lines represent a BD of 0%; 10%; 20%; 30%; 40%. The victory tax
rate is shown as a function of (A) MP; (B) MD%. The average ETR is shown as a function of: (C) MP;
(D) MD%. In panels A and C, MD = 50%, and in panels B and D MP = 100%.
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In Figure 6, panels A and B, respectively, plot the minimum and maximum ATI as
a function of percentile of households for different values of BD. Figure 6C compares
the minimum and maximum ATI to the ATI from a flat tax. Since more tax revenue is
needed for government transfer when BD increases, VTR increases too. The advantage
of increasing BD is that lower-income households receive considerably more ATI as BD
increases. However, the gains in ATI decrease as household income increases until a point
where ATI decreases for high-income households. As shown in Figure 6D, households that
take the maximum deduction beyond the 80 percentile have less ATI compared to a flat
tax. Clearly, tax deductions are paid for by the progressive nature of the victory tax on
high-income households (especially ultra-high-income households). Figure S8 shows the
same qualitative behavior in economy B.

Figure 6. After-tax income comparisons: Trends in ATI are explored for economy A. With MD = 50%;
MP = 100%, and BD ranging from 10% to 40% the ATI as a function of household percentile is
shown for the case: (A) minimum ATI; (B) maximum ATI. (C) Comparing a flax tax to the victory tax
(V-tax), the minimum ATI (max V-tax), maximum ATI (min V-tax) and flat tax ATI are shown with
BD = 30%, MD = 50%, MP = 100%. (D) For the same parameters used in panel C, the difference in
min/max V-tax ATI relative to the ATI for a flax tax is shown.

Since BD = PL/(1 − VTR), and PL can be quantitatively measured, MD is the only
parameter left to determine. A balanced approach must compromise the desire for a
generous maximum itemized deduction compared to the desire for a low VTR. As living
costs decrease, PL will decrease, suggesting that the maximum deduction should not be
large, as purchasing power is strong. Conversely, the maximum deduction should increase
with an increase in living costs to ensure that itemized deductions have a positive impact
on households. This leads to a prototypical victory tax system in which the maximum
deduction is proportional to the basic deduction, where MD = kBD. The choice of an
effective value of k is examined in Figure 7. The minimum ETR is shown in Figure 7A,C
when the poverty line is at $16,814 and $22,306 while considering three values for k.
Summarizing many of these calculations, Figure 7B,D show the average ETR and VTR as
a function of k. Taken together, k = 2 is a good compromise in tax structure. Moreover,
for k < 2.5 the results are insensitive to PL. The same qualitative behavior is observed in
Figure S9 for economy B.
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Figure 7. Maximum deduction exploration: For economy A, the ETR as a function of percentile of
households is shown in panels (A) and (C) for a poverty line of $16,814 and $22,306, respectively.
The maximum deduction is set to be proportional to the poverty line, where different color lines
show different proportionality constants set at 1.2, 2.6 and 4. As a function of k and for two different
poverty levels, panel (B) shows the average ETR and panel (D) shows the victory tax rate.

The question of how the prototypical victory tax system responds to extreme variation
in the economy is addressed by considering a series of six log-normal test economies,
characterized by a Gini index ranging from 0.05 to 0.72 (see Figures S1–S3). Figure 8A,C
show the minimum ETR for these test economies, with poverty lines of $16,418 and $22,306,
respectively. As the middle class expands, the ETR flattens, resulting in the lowest possible
VTR. This flattening occurs because MP = min(r, 1). For the 6 test economies from highest
to lowest Gini index, the coefficient of variations (i.e., r = σ/μ) are, respectively, 304%,
152%, 76%, 38%, 19% and 9%. As income dispersion increases, VTR increases, making ETR
very low for middle-class households. Next, Figure 8B plots VTR and the average ETR for
the test economies as a function of Gini index. In Figure 8D the ratio defined by the total
government transfer for eradicating poverty to the total tax revenue collected is plotted
against the Gini index. For a Gini index of 0.56 (modeling the 2003 US economy), the
total government transfer amounts to 23.50% or 42.30% of the total tax revenue collected
when the poverty line is $16,418 or $22,306, respectively (recall 56% was used in 2003 from
IRS data).

Based on the above exploration of parameters {BD,MD,MP}, henceforth the prototypi-
cal victory tax system will have: BD = PL/(1−VTR), MD = 2PL and MP = min(σ/μ, 1).
The objective measures of the economy dynamically alter the victory tax structure, where
it becomes flatter as the middle class becomes stronger. When the middle class shrinks
as dispersion of net income increases, the victory tax increases VTR and lowers ETR for
the middle class as it morphs into the V-signature. The steepness of V increases as the
dispersion in net income increases. A steep regressive tax at low incomes provides the poor
with the means to move upwards into the middle class. The progressive segment of the
victory tax on high-income households provides the additional tax revenue necessary to
form the V. These results show that the victory tax system is a type of governor to maintain
a strong middle class.
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Figure 8. Systematic variation in net income dispersion: Trends in ETR with respect to income
dispersion are shown in panels (A) and (C) for six economies described by a log-normal distribution
with standard deviations ranging from $7000 to $229,000 about a mean income of $75,300. The panel
(C) legend also applies to panel (A). The ETR for the $7000 standard deviation is not shown because
if plotted, it is flat and hidden under the magenta line. As a function of Gini index, panel (B) plots
the victory tax rate (vtr1 or vtr2) and average ETR (etr1 or etr2) for cases 1 and 2 corresponding to a
poverty line of $16,814 and $22,306. For the same two cases, panel (D) plots total government transfer
divided by total tax collected (gtr1/rev or gtr2/rev).

3.2. Flat, Linear Progressive and Victory Tax Comparisons

Here, the victory tax is compared with a flat and linear progressive tax under identical
conditions (e.g., the same income distribution, total tax revenue and poverty line). The flat
tax is a victory tax with MP = 0. A linear progressive tax system is defined when ETR is
a linear function of the percentile of households with ETR = 0 for a household with no
self-generated income. The progressive tax rate, PTR, sets a maximum tax rate adjusted to
collect the desired amount of tax revenue. For example, households at 20 and 50 percentiles
will have ETR = 0.2PTR and ETR = 0.5PTR, respectively. Note that the linear progressive
tax system does not satisfy the guiding principles 1 and 4. The ETR for each tax system
is shown in Figures S10 and S11 for poverty lines $16,814 and $22,306, respectively. For a
poverty line of $22,306, the flat tax rate, FTR, is 14.80%, while PTR is 18.60% and VTR is
27.74%, whereas the population average ETR is 14.80%, 9.30% and 11.76%, respectively.

Comparisons of ATI in Figure 9A show that each tax system ensures the lowest
possible ATI is at PL, but this occurs at different percentiles and with different trends. The
linear progressive tax creates a welfare trap. That is, starting with no employment and full
dependency on government transfer, the initial ATI is above PL, and then ATI decreases as
employment increases until ATI = PL, and thereafter ATI starts increasing. Clearly, 30%
of the lowest income households are better off not working than to work for any amount
of time in a low-wage job. Although the flat tax does not penalize part-time employment
and/or working low-wage jobs, it does not offer any advantage for individuals to work
in a low-wage job. Quite clearly, the victory tax provides an incentive for low-income
households to seek employment, where they will gain significant wealth as they move into
the middle class. Consider, for example, two households living on the poverty line, the
first fully dependent on government transfers and the second fully self-supporting. The
second household enjoys $8565 more ATI (a 38% increase) due to the basic tax deduction.
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Figure 9. Tax system comparisons for economy A with a $22,306 poverty line: (A) After-tax income
for flat, linear progressive and victory tax systems are shown in different colors; (B) The Lorenz
curves for tax revenue are shown. The dashed vertical lines of corresponding color to the tax system
indicate the percentile of households from which point onward the collected tax revenue is sufficient
to pay for all government transfer needed to eliminate poverty.

For each tax system, a Lorenz curve is shown in Figure 9B for tax revenues. The Gini
index for these Lorenz curves quantifies how uniform the tax burden is across income
levels. A proportionate tax burden will show a similar Gini index for tax revenue as that for
income received. For economy A, the Gini index for income received is 56% (see Figure S1).
A flat tax without taxing government transfers yields an identical Gini index of 56% for
tax revenues. However, with government transfers taxed, the flat tax gives a Gini index
of 49% on tax revenues, with a higher tax burden on low-income households. The linear
progressive tax system has a Gini index of 68% for tax revenues, which puts the greatest tax
burden on high-income households. The victory tax reduces the tax burden on high-income
households with a Gini index of 62% on tax revenues. Thus, a victory tax maintains a
reasonably balanced tax burden over all income levels, where the flat tax is a special limit
of the victory tax. The Lorenz curve for the victory tax is generally not monotonic, showing
that low and high-income households inherit the greatest tax burden, which is why a low
ETR is possible for the middle class.

For a (flat, progressive, victory) tax system, revenue from (7.7%, 3.3%, 5.2%) of house-
holds with the highest income corresponds to (35.2%, 30.7%, 42.3%) of the total tax revenue
redistributed as government transfer. Clearly the victory tax reinvests the most back into
society, which is responsible for removing the welfare trap [18] through its regressive
ETR for low-income households. In general, as government transfers decrease due to an
expanded middle class, the degree of disproportionate tax burden decreases. Figure S12
shows the same qualitative behaviors with a lower poverty line.

Now the question of how these three tax systems respond to the poverty line is
addressed. Tax rates as a function of PL for the flat, linear progressive and victory tax
systems are shown in Figure 10A–C, respectively. This analysis is applied to the series of six
log-normal economies described in Section 2.3.2 to elucidate the effect of income dispersion
for a fixed mean income. Here, the characteristic tax rate of a tax system is tracked as the
poverty line is varied for different income dispersion scenarios. The lowest dispersion of
$7000 represents the situation in which the vast majority of households fall into the middle
class, with only rare cases of poor or rich households. As income dispersion increases,
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the middle class shrinks, and the percentage of extreme poor significantly increases. In
contrast, only a small increase in ultra-rich households occurs. At high income dispersion,
wealthy households pay much more tax revenue, because most of the taxable income
generated across the population comes from wealthy households. Moreover, as income
dispersion increases, more households fall below the poverty line, which increases tax
revenues that must be collected to cover the increase in government transfer. As a reference
point, the final value of the considered standard deviation ($229,000) is approximately
twice the dispersion found in the 2003 US economy. Although income dispersion in the
US economy has steadily increased since 2003, it is still lower than the largest dispersion
considered here.

In the victory tax system (including the special case of flat tax), it is seen that VTR
increases as PL increases. In particular, as the poverty line is increased, VTR must increase
more rapidly, as population dispersion is larger. Consequently, a large middle class keeps
the VTR low, and the progressive part of the victory tax on high-income households will
be most shallow.

Figure 10. Tax rate dependence on poverty line: A series of six log-normal economies with income
dispersion characterized by standard deviation ranging from $7000 to $229,000 about a mean income
of $75,300. (A) flat; (B) linear progressive; (C) victory tax. (D) The tax rate for a flat, linear progressive
and victory tax are shown together for economy A, which is used to mimic the 2003 US economy.
The average effective tax rate over the population for the victory tax (denoted as vt-etr) is also shown
as a function of poverty line.

Figure 10B shows that a linear progressive tax system requires an increase in PTR as
the middle class expands. Interestingly, PTR is generally insensitive to the poverty line.
Only when there is a wide income gap will the dependence on the poverty line become
substantial. As the middle class shrinks, the tax rate rises quickly, but unfortunately there
is no mechanism for the middle class to reexpand. Contrary to the linear progressive tax,
as shown in Figure 10A,C, the flat and victory tax have the intuitive rank ordering that
VTR decreases as the strength of the middle class increases.

For economy A shown in Figure 10D, VTR rapidly increases as a function of PL,
while the average ETR remains markedly insensitive to PL. A low average ETR can be
obtained even when VTR is high, because most of the population substantially benefits
from itemized tax deductions, except for households for which the maximum itemized
deduction is dwarfed relative to their net income. As the middle class shrinks, the tax
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base also shrinks, and the VTR increases. This creates an elastic response to income
gaps, which means the tax structure makes it easier for the middle class to expand when
market pressures act to shrink it. Conversely, when the middle class expands, the V
flattens, encouraging accumulation of wealth in households above the middle class level.
In summary, the victory tax has desirable elasticity [24] to create stability in the economy,
where the sharpness of the V-shape increases as income dispersion becomes extreme, and
flattens as the middle class expands, fueling a consumer-based economy.

3.3. Distribution of Government Assistance

Government transfers and tax deductions are two forms of government assistance.
However, the deductions on capital losses were not reflected in the above analyses, as
net income distributions account for capital gains and losses. To quantify the degree of
government assistance in terms of optional deductions, estimates of the average amount of
itemized and capital loss deductions must first be modeled. Simple models are presented
to quantify the total itemized and capital deductions in the population as a function
of the percentile of households. These models are not part of the victory tax system.
However, they are useful in characterizing how government assistance is distributed
across households. The qualitative estimates made in this subsection are only intended for
illustration and discussion purposes.

The net itemized deduction, NID, is modeled as: NID = f 2

2 max(0, NI − BD) where
f is the percentile of households. For economy A with a poverty line of $22,306, the basic
deduction is $30,871 and the maximum deduction is $44,612. The net itemized deduction
for a household at the (20, 40, 60, 80) percentile, with corresponding NI of ($16,331, $33,878,
$57,787, $101,844), produce a mean itemized deduction of ($0, $240, $4844, $22,711). The
factor of f 2 models the qualitative trend that the more income a household has, the more
likely it will utilize itemized deductions up to MD.

The total capital loss, TCL, is modeled as: TCL = NI f 4CL/(1 − CL). The factor of
NI f 4 models household capital gains, where it rapidly tends to zero as f → 0, and tends to
NI as f → 1 to reflect the empirical observation that high-income households have larger
portions of their income from investments. The parameter CL is a ratio of capital losses to
capital gains for the tax year. Since CL reflects an average over the population, the range
from 0.1 to 0.7 suffices to quantify the fraction of government assistance applied to capital
loss deductions. Illustrating this qualitative model: For CL = 20% and for households at
the (20, 40, 60, 80) percentiles, TCL is modeled as ($7, $216, $1877, $10,429). For example, a
household with gross income of $112,273 and capital loss of $10,429 has a net income of
$101,844.

Employing the models for NID and TCL, government assistance, GA, is given as:

GA = GTR × (1 − VTR) + VTR × (TD + TCL) (19)

where TD is total allowed deduction from basic and itemized deductions. In addition
to government transfer, reducing the tax burden on households through tax deductions
contributes to government assistance. The average tax deductions made by households at
the (20, 40, 60, 80) percentiles are estimated to be ($16,338, $31,329, $37,592, $55,042). The
average of (TD + TCL) over the population gives the average tax deduction, which can
exceed MD because TCL is included. Due to TCL, a plot of government assistance versus
percentile is not informative, because government assistance to the top 0.1% of households
dwarfs all other forms of assistance on an absolute scale. For example, with CL = 20%, the
average tax deduction at the 99.9 percentile is $436,583. However, relative comparisons in
government assistance can be made. Here, GA is divided by GTR + NI to define a fraction
of assistance that shows how government assistance is distributed over the percentile of
households. Note that the assistance fraction for the extreme poor is not 100% for the
victory tax. For a household with NI = 0, which receives all its income from government
transfers, the assistance fraction is equal to GA/GTR = 1 − VTR. For economy A, and PL
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of $22,306, recall VTR is 27.74%, meaning 0.7226 is the fraction of government assistance
when NI = 0. The relative government assistance decreases if only basic and itemized
deductions are considered.

The percentage of government aid as a function of percentile of households for differ-
ent CL ranging from 10% to 70% is shown in Figure 11A,B. The deviation of CL considered
causes “fanning” in the tail of the assistance fraction. Qualitative characteristics and general
trends are not sensitive to the models used for tax deductions. High-income households
with high profit-to-loss ratios have the smallest assistance fractions, but they receive much
more absolute assistance than poor households. Middle-class households have too much
income to benefit from government transfers, and too little income to get much govern-
ment assistance from tax deductions. However, in the victory tax system, middle-class
households have the lowest ETR. As the poverty line increases, the assistance fraction
increases for households at all income levels, not just low-income households. Together,
these trends allow the victory tax system to be relatively balanced, without creating serious
disproportionate tax burdens. In short, the extreme poor and ultra-wealthy pay the highest
tax rates, but also receive the greatest government assistance through various mechanisms.

Figure 11. Government Assistance Distribution: Analysis of tax deductions for economy A: (A,C)
consider a $16,814 poverty line and (B,D) consider a $22,306 poverty line. Panels (A,B) show the
assistance fraction as a function of percentile of households. Panels (C,D) show the Lorenz curves for
government assistance from (A,B), respectively. The diagonal line colored light grey in panels (C,D)
is drawn to guide the eye.

Figure 11C,D show Lorenz curves for government assistance. The associated Gini
index of these Lorenz curves will be 0 for proportionate government assistance at all
income levels. It is noticed that the Gini index depends on the average ratio of population
loss to profit. For (10%, 30%, 50%, 70%), the Gini index for government assistance is (0.00,
0.17, 0.34, 0.53). The relatively low Gini index values indicate an adequate balance in the
way government assistance is distributed across income levels. Since the Lorenz curve is
mostly below the diagonal line (when CL > 10%), ultra-high-income households receive
the most government assistance on an absolute scale. This results suggest the ultra-rich
will significantly increase government dependency in economic downturns, where massive
losses occur (i.e., CL large). This is another sign of elasticity to maintain social-economic
stability, because government aid to the wealthy is strongest at the time when the risk of
investing is highest.
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4. Discussion

In the US, there is a bad connotation when discussing the poor taking advantage of the
welfare system, or the rich taking advantage of tax breaks. With the five guiding principles
satisfied, all taxpayers are encouraged to take advantage of the victory tax system for
personal benefit, regardless of their station in life. As taxpayers take advantage of the
victory tax system based on rational self-interest, a synergic benefit for society as a whole
arises from the constraints on the tax structure. The mathematical framework enables a
pragmatic approach to taxation, because competing interests within the population are
represented within a small parameter space, which helps funnel opposing public policy
options into transparent objectives. For illustration, several issues that are important to the
US are discussed herein.

4.1. Consolidation of Diverse Interest Groups

A victory tax system necessarily eliminates myriad assistance programs in the US
that require a need-based qualification, such as food stamps, housing/energy assistance,
unemployment, social security and medicare. All types of income based welfare programs
are consolidated into a single mechanism for distributing government transfer based on
need, without judgment qualifications. Social security is an excellent topic of discussion.
Unfortunately, the US social security program often fails to meet the basic needs of the
elderly, and its solvency is questionable because new revenue from the workforce is not
synchronized with recipient needs. Moreover, social security benefits have expanded
beyond a retirement fund tied to age.

In the victory tax system, the unemployed and retirees belong to the same interest
group. A large diverse subpopulation of recipients of government transfer will lobby
for public policy to overestimate the poverty line (requiring a higher tax rate), which
will counteract other large diverse subpopulations that will lobby for a lower tax rate to
stimulate economic growth. In addition, as the middle class lobbies for greater itemized
deductions, this also requires increasing the poverty line. Notice that the vast majority of
advocates for increasing the poverty line will not belong to the marginalized subpopulation
living in poverty. Competing interests from large influential groups will encourage an
objective measure of the poverty line to be set within public policy. It is critical for large
powerful and diverse groups to argue for specific changes within a small parameter space
to produce effective outcomes.

4.2. Legal Requirements

If proof of citizenship or legal residency is required, illegal immigrants seeking public
welfare are discouraged from living in the country because they will be identified. Further-
more, it would be disadvantageous for households with incomes below the poverty line
not to report income for work.

4.3. Tax Form Simplicity

It is envisioned that a simple form determines tax liability. The main page of the tax
form will be less than 1 page long, with optional worksheets for specifying itemized deduc-
tions and capital gain/loss information. A look-up table could be invoked to determine the
basic and maximum deductions depending on the number of dependents in a household.
Although public policy determines the tax code, the presence of maximum deductions
does not warrant complexity in the code. For illustrative purposes, an example of the first
page of a victory tax form is given in Table 2.
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Table 2. Calculation of tax liabilities for twelve exemplar households. The first column gives the line numbers on the tax
form. The second column gives the instructions. The six columns afterward represent example answers for households at
different percentiles, f. The first 11 rows of the table correspond to the first 11 line numbers: #1 government transfer; #2
earnings income; #3 other income; #4 deductible income; #5 basic deduction; #6 itemized deductions; #7 total deductions; #8
reduced income; #9 net income; #10 taxable income; #11 tax owed. The ETR is given in the bottom row. All examples are
based on economy A with a poverty line of $22,306 for a household of 3 with 1 dependent. The models in Section 3.3 for
itemized and capital loss deductions are used to fill table entries in lines #3 and #6.

Line # Instructions f = 0% f = 10% f = 20% f = 30% f = 40% f = 50%

1 direct data entry $30,871 $22,383 $14,540 $6228 $0 $0
2 direct data entry $0 $8488 $16,326 $24,603 $33,705 $44,064
3 data from worksheet $0 $0 $5 $40 $173 $558
4 add line 2 and line 3 $0 $8488 $16,331 $24,643 $33,878 $44,622
5 data from lookup table $30,871 $30,871 $30,871 $30,871 $30,871 $30,871
6 data from worksheet $0 $0 $0 $0 $241 $1719
7 add line 5 and line 6 $30,871 $30,871 $30,871 $30,871 $31,112 $32,590
8 subtract line 7 from line 4 −$30,871 −$22,383 −$14,540 −$6228 $2766 $12,032
9 greater of line 8 or $0 $0 $0 $0 $0 $2766 $12,032

10 add line 1 and line 9 $30,871 $22,383 $14,540 $6228 $2766 $12,032
11 multiply line 10 by 0.277443 $8565 $6210 $4034 $1728 $768 $3338

effective tax rate = 27.7% 20.1% 13.1% 5.6% 2.3% 7.5%

Line # Instructions f = 60% f = 70% f = 80% f = 90% f = 95% f = 99%

1 direct data entry $0 $0 $0 $0 $0 $0
2 direct data entry $56,289 $71,677 $93,501 $135,429 $189,913 $411,893
3 data from worksheet $1498 $3616 $8343 $20,455 $36,958 $97,951
4 add line 2 and line 3 $57,787 $75,293 $101,844 $155,884 $226,871 $509,844
5 data from lookup table $30,871 $30,871 $30,871 $30,871 $30,871 $30,871
6 data from worksheet $4845 $10,883 $13,741 $13,741 $13,741 $13,741
7 add line 5 and line 6 $35,716 $41,754 $44,612 $44,612 $44,612 $44,612
8 subtract line 7 from line 4 $22,071 $33,539 $57,232 $111,272 $182,259 $465,232
9 greater of line 8 or $0 $22,071 $33,539 $57,232 $111,272 $182,259 $465,232

10 add line 1 and line 9 $22,071 $33,539 $57,232 $111,272 $182,259 $465,232
11 multiply line 10 by 0.277443 $6123 $9305 $15,879 $30,872 $50,566 $129,075

effective tax rate = 10.6% 12.4% 15.6% 19.8% 22.3% 25.3%

To cover a diverse range of possibilities, Table 2 compares 12 examples of filled tax
forms for a range of household percentiles from 0 to 90 in steps of 10, as well as 95 and 99.
A maximum deduction of $44,612 (being twice the poverty line) together with a $30,871
basic deduction create a cap of $13,174 on itemized deductions. From line #6 on the tax
form, households at and above the 80 percentile request the maximum deduction possible.
Households within the percentile range from 40 to 70 pay more taxes than they need,
because they are likely not to have enough surplus income. Allowed itemized deductions
help society and the household. For example, an important itemized deduction should
be to invest in a retirement fund. As a household achieves greater net income and/or
reduce expenses, more itemized deductions for a retirement fund are possible, among other
allowed reasons.

4.4. Financial Security from Job Loss

Regardless of a household’s savings or previous income levels, a household auto-
matically gains a minimum guaranteed income at the poverty line if job losses lead to no
income. A household with a living standard far above the poverty line would inevitably
exhaust their savings due to an extended period of job loss. However, it is not the role of
government to maintain differences in wealth in households, even for a short time.
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4.5. Right to Work

The basic guarantee of income in the victory tax system eliminates the need for a
minimum wage. Without a minimum wage, many companies are likely to lower wages
below a living wage. Nevertheless, a low-wage job will increase ATI above the poverty line,
as the regressive ETR leads to significant increases in ATI from modest income increases.
This increase in net income was not the case with the negative income tax, which was tested
in the late 1960s to early 1970s in North America [9]. Within a victory tax system, low-wage
entry-level jobs can benefit society. For example, a young person with no previous work
experience earning low wages increases the collective ATI of a household. This is a win–
win–win situation: A company acquires cheap labor, a new worker gains valuable training,
and the household increases its net income. The steep regressive tax encourages workers to
accept low paying jobs in exchange for building skills. After gaining experience, workers
should expect to move into higher-paying positions, creating rapid turnover in entry-level
jobs. Companies will have to adjust their wages to balance the turnover rate with the costs
of training new workers.

4.6. Right Not to Work

As companies become dependent on the government to pay low-wage workers, if left
unchecked, this practice will inevitably develop into a modern form of slavery [28], when
work is required in exchange for government transfer. Enforcing work for government
transfer at the poverty level is analogous to forcing companies to pay workers a high
minimum wage. To prevent exploitation of workers, work requirements cannot be applied
to the basic income guarantee. In particular, the right not to work is a necessary balance in a
free market in which individuals are free agents who promote their own agenda for wealth
accumulation. Guaranteed basic income subsidizes both workers and owners. When
workers are independent agents, the main reasons for unions become unnecessary. For
example, a person can refuse to work in conditions they consider inappropriate, unworthy
of their talents, too little pay, or because the job is uninteresting. This gives workers free
time to develop new skills and seek better-paying jobs based on their merits. Whether a
person receives government transfer because of retirement from the workforce, does not
find work or decides not to work is irrelevant to the victory tax system.

4.7. Productivity in Society

The victory tax system promotes a productive society, not by providing comfortable
financial security to people, but rather by providing incentives for people across the income
spectrum to take jobs, become more demanding for higher salaries and better benefits, and
to regularly make financial investments. Of course, there will be a subpopulation of people
that will take guaranteed basic income and never work. A victory tax system allows the
free market to determine workforce equilibrium, and it embraces the income distribution
from that free market that includes non-working households. The victory tax system makes
no judgments about why people work or not.

It is important to stress that productivity cannot be quantified in monetary terms,
because not generating taxable income is not the same as unproductive. For example,
a basic income guarantee can help low-income parents meet household needs to raise
children, which is a productive activity for society. People in low-income households often
have health problems that prevent them from working [15]. Some people will choose to
live a life near the poverty level while providing community benefit through good deeds.
Allowing people to retire at the age of their choice also eliminates the arbitrary mandatory
retirement age set by government. In short, the victory tax system offers each individual
the opportunity to achieve success in their own terms, which can evolve over time.

Consider the case in which a person (young or old) wishes to pursue creative interests.
Such passions can be pursued productively, rather than inhibited by the need to work for
mere survival without dignity. Observing peers accumulating personal wealth creates
a powerful incentive for the vast majority of people not to indefinitely pursue personal
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interests strictly at the poverty line. Generally, wealth accumulation occurs over one’s
lifetime. Consider the most likely scenario when young adults leave their parents’ home.
For an inexperienced worker, it is generally difficult to find a good-paying job that meets
basic needs. The victory tax system allows young adults to become independent and pro-
ductive taxpayers sooner due to the regressive nature of the ETR. Starting with government
transfer, as an individual’s economic status increases government assistance changes to
itemized and capital loss tax deductions. Thus, all forms of government assistance help
create a productive society as individuals capitalize on their rational self-interest.

4.8. Security in Personal Wealth

The victory tax system offers short- and long-term opportunities for prosperity
through itemized deductions. For example, the cost of investing in stocks and bonds
can be an itemized deduction. In the short term, this itemized deduction contributes to
wealth accumulation by encouraging households to reduce their ETR and increase their
ATI by investing in the economy. In the long run, the accumulated wealth of a household
can be exploited during retirement as other income, which can substantially increase ATI
above the poverty line for the middle class. For lower-income households, modest but
significant gains in ATI will result from supplementing government transfer. Furthermore,
the wealth generated by a taxpayer stays with the taxpayer at all times. Households can sell
assets for income at any time without imposing penalties for early withdrawal or waiting
until a certain retirement age.

Policy makers should allow a wide range of itemized deductions to offer opportunities
for prosperity. For example, allowing itemized deductions on accumulating assets, such
as a house, or to offset the cost of higher education or for training on workforce skills.
Other forms of security could include itemized deductions on health insurance or health
care costs. In this way, households can pay less taxes by taking measures to strengthen
their financial independence and well-being. In summary, many allowed itemized tax
deductions in the tax code will give households the opportunity to use surplus income for
personal gains that create benefits for society.

4.9. Catalyst for Micro-Businesses

The victory tax system creates a supportive environment for micro-enterprises to
form. As low-wage jobs are subsidized, new businesses can rely on this to reduce startup
costs. For example, new businesses can form a mission to attract low-skilled workers to
help the local community while building skills for their recruited workers. This paradigm
replaces working in low-wage jobs without growth opportunities. With a foundation for
social security, the private sector has the means to solve local community problems without
high barriers. The safety net of guaranteed basic income enables low- to middle-income
households to take risks in entrepreneurial endeavors that would otherwise be prohibitive.
Over time, micro-enterprises can grow into larger businesses.

4.10. Responsible Government

The floating tax rate helps avoid runaway deficits, as it can adapt to government
budgets that take into account debt and repayment plans to control the ratio of debt to
gross domestic product (GDP) through public policy. It is worth noting that public policy
may promote large debt accumulation to keep the victory tax rate lower, but this jeopardizes
long-term stability. For the US, an open budget to the public provides transparency to
determine if taxation has representation. With only a few key tax parameters, debates will
focus on why tax rates, poverty lines, or deductions should be changed. Furthermore, any
proposed changes to the parameters can be modeled and tested with the consequences
predicted. This clarity will make public policy debates more substantive, such as evaluating
the effectiveness of expanding free public services compared to increasing the poverty line.

Government transfers should be distributed continuously, as they are part of a steady
income of a household. An efficient and convenient method of government transfer and
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collection of taxes owed is consistent with Adam Smith’s four principles [29], the third of
which states: “Every tax ought to be levied at the time, or in the manner, in which it is likely
to be convenient for the contributor to pay”. This logic also applies to government transfers
in the victory tax system, which eliminates the need for government to administer complex
assistance programs. However, there will be subpopulations in society that will refuse
government support on the grounds of principle or incompetence. In the latter case, the
government should support institutions that care for people who are dependent on others,
such as nursing homes, institutions for mentally ill or homeless, etc. If a person must be
put in a public or private institution because they cannot live independently, the institution
becomes their household, and will receive government transfer in their behalf. Financial
administrators of these institutions will be obliged to pay income tax on the government
transfer received in aggregate form. In this way, the victory tax system supports the entire
population, including the “forgotten” people in society who must live as dependents.

4.11. Role of Corporate and Other Taxes

In the analysis of the victory tax system, all other sources of tax revenue, such as
sales and corporate tax, were dismissed. As the example economy of Table 2 shows,
VTR approaches 30% when there is a weak middle class and highly skewed net income
distribution, as is currently the case in the US. An argument often made is that low
corporate taxes create GDP growth. For the analyses given here, corporate taxes are 0%
across the board, regardless of the size of the company/business. Remember that in 2003,
approximately 19 percent of tax revenues came from other admissible sources. Therefore,
it is feasible to shift VTR down by approximately 5% when other tax revenues are taken
into account. Ignoring all other admissible tax revenue sources, the 27.7% VTR is not
prohibitively high, demonstrating that the victory tax system is cost effective. Discussion
of an appropriate corporate tax system goes beyond the scope of this paper.

4.12. Future Work

This work can be expanded in several ways. The consequences of a victory tax system
should be quantified by large-scale agent-based modeling to simulate an evolving econ-
omy [30]. Different initial economic conditions under different public policy constraints
should be systematically investigated and compared with other tax systems. A few key
questions should be addressed: Does the victory tax system stabilize the middle class?
What is the impact on market income distribution? How will GDP be affected? Other
features to be explored include how to deal with spatial (regional) inhomogeneity, how to
synergistically combine this system with corporate taxation, and how to transition from
an existing tax system into a victory tax system. The victory tax system, along with other
tax systems, should be tested in economies that will be largely automated. For those
interested in further testing or developing the victory tax system, a C++ program that is
used to generate all the results presented here (including other types of Lorentz curves
that are not shown) is available in supplementary materials. Although many aspects and
consequences for universal basic income have recently been addressed [8], these findings,
albeit insightful, are not directly applicable to the victory tax system.

5. Conclusions

Five guiding principles have been developed for a pragmatic income tax system that
generates revenue for the government while providing basic welfare, and encourages
households across the income spectrum to accumulate wealth. These principles limit the
way in which government redistributes wealth, but the details of implementation are
left to public policy. These principles lead to a mathematical framework describing a
family of tax systems based on a small parameter space where the parameters are informed
by the state of the economy. A prototypical victory tax system was created that shows
the feasibility of a holistic paradigm for a poverty-free and productive society without
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disproportional or excessive tax burdens. To highlight the effect of the constraints imposed
by the mathematical framework, four key features of the victory tax are summarized.

1. Every year, a victory tax rate (VTR) is set to cover projected government spending
based on public policy, which plays a role in incurring or reducing debt. The VTR
increases when government spending increases, and vice versa.

2. As the maximum allowed deduction increases, the VTR increases, but the effective
tax rate (ETR) for the middle class remains markedly low, and possibly zero, due
to its V-shape as a function of household income percentile. Conversely, as the
maximum allowed deduction decreases, the V-shape of the ETR becomes shallower
and gradually flattens until a flat tax appears when no deductions are allowed,
resulting in the lowest possible VTR.

3. The combination of government transfer and a basic deduction creates a regressive
tax for low-income households and guarantees a basic income for all households,
which is set at the poverty line after taxes are paid. By taxing government transfers at
the VTR, no welfare trap is formed, creating a substantial incentive for households to
generate income. The poverty line sets the minimum standard of living that society
can tolerate, which depends on availability of public services. An increase in the
poverty line will increase the VTR, and vice versa. Each year, the poverty line and
income dispersion are objectively measured and updated to keep the victory tax
responsive to changes in the economy.

4. Government assistance in the form of government transfer, basic deductions, itemized
deductions and capital loss deductions create opportunity for wealth accumulation
in households across the income spectrum. The ETR on taxable income for the ultra-
rich is no higher than for the extreme poor. As the middle class shrinks, the VTR
increases, and the ETR for low and high-income households become more regressive
and progressive, which stabilizes the middle class.

The victory tax makes it easy for taxpayers to calculate tax liability, collect government
transfer when needed, and for government to set tax rates that will generate the projected
revenue to cover its expenditures. While the victory tax cannot prevent runaway deficits,
the adjustable tax rate provides the government with a means to control debt, which is
an important factor in setting the single tax rate. The constraints within the tax system
make public policy objectives transparent, suggesting that policy debates will become
meaningful for the typical taxpayer. This is because government assistance, either through
direct transfers or deductions, offer incentives for households to take advantage of the
victory tax system out of rational self-interest. As low-income households accumulate
wealth, society’s standard of living can rise significantly, suggesting that the middle class
will be the dominant segment of the population.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-430
0/23/11/1492/s1, Figure S1: Lorenz curve for economies A and B; Figure S2: Systematic series of
log-normal distributions as middle class size increases; Figure S3: Lorenz curve for the systematic
series of log-normal distributions; Figure S4: Average tax rate from the US congressional budget
office; Figure S5: Effective tax rates for economy B for illustrative set of parameters; Figure S6:
Effective tax rates for economy B for additional parameter combinations; Figure S7: victory tax rate
and average effective tax rate for economy B; Figure S8: After-tax income for economy B; Figure S9:
Effective and victory tax rates for economy B; Figure S10: effective tax rate for low poverty line;
Figure S11: effective tax rate for high poverty line; Figure S12: After-tax income comparisons for
different types of tax systems. A separate zipped file contains a C++ program to generate the results,
and data files from the US government used to obtain tax and poverty information.
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Abstract: Using a unique data set containing about 15.06 million truck transportation records in five
months, we investigate the highway freight transportation diversity of 338 Chinese cities based on
the truck transportation probability pij from one city to another. The transportation probabilities are
calculated from the radiation model based on the geographic distance and its cost-based version
based on the driving distance as the proxy of cost. For each model, we consider both the population
and the gross domestic product (GDP), and find quantitatively very similar results. We find that
the transportation probabilities have nice power-law tails with the tail exponents close to 0.5 for all
the models. The two transportation probabilities in each model fall around the diagonal pij = pji

but are often not the same. In addition, the corresponding transportation probabilities calculated
from the raw radiation model and the cost-based radiation model also fluctuate around the diagonal
pgeo

ij = pcost
ij . We calculate four sets of highway truck transportation diversity according to the four

sets of transportation probabilities that are found to be close to each other for each city pair. It is
found that the population, the gross domestic product, the in-flux, and the out-flux scale as power
laws with respect to the transportation diversity in the raw and cost-based radiation models. It
implies that a more developed city usually has higher diversity in highway truck transportation,
which reflects the fact that a more developed city usually has a more diverse economic structure.

Keywords: econophysics; highway freight transportation; radiation model; transportation network;
network diversity; power law; economic development

1. Introduction

The growing volumes of passenger and freight transport around regionally and globally
witness their important role for economic development of different countries [1–5]. Aviation,
railway, highway and shipping are four main transportation methods in modern societies.
Unlike other three ones, information about highway transportation is less publicly available.
In mainland China, the highway system has experienced a very rapid development since
the Reform and Opening-up of China, forming a rapidly expanding multiplex network
which contains national highways, provincial highways, county highways and countryside
highways [6]. China has the longest expressway network in the world, which includes
about 0.143 million kilometers expressways.

In the past decades, the gravity law is the most adopted in understanding transporta-
tion networks and predicting transportation fluxes [7–11], which reads

Wij ∼
Mα

i Mβ
j

dγ
ij

, (1)
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where Wij is the flow between locations i and j, Mi (or Mj) is usually the population or
gross domestic product (GDP) of location i (or j), dij is the distance between i and j, and α,
β and γ are the model parameters. Very relevantly, the gravity law has been investigated
and confirmed in the Korean highway network between 30 largest cities [7], the express
bus flow in Korea consisting of 74 cities and 170 bus routes with 6692 operating buses
per day [12], and the urban bus networks of Korean cities [13], and the highway freight
transportation networks of 338 Chinese cities [6].

However, the gravity model has several limitations, especially the requirement of
previous traffic data to fit the parameters [14]. To overcome those limitations, the radiation
model has been proposed [14], in which the predicted flux F̃ij from city i to city j is obtained
as follows

F̃ij = Fout
i

Mi Mj

(Mi + Sij)(Mi + Mj + Sij)
, (2)

where Sij is the total “mass” (population or GDP) in the circle of radius dij centered at i but
excluding the source and destination population, and Fout

i is total out-flux departing from
city i

Fout
i = ∑

j 	=i
Fij, (3)

where Fij is the real flux from i to j. Obviously, the data of Fout
i are much easier to collect

than Fij.
In the raw radiation model, dij is the geographic distance between i and j. The cost-

based radiation model has been soon proposed based on the intuition that an individual
will choose the site that has the lowest travel cost on the network, where the travel cost can
be measured by the path length or travel time from i to j [15]. In this work, dij is measure
by the path length or driving distance from i to j. Later, to better estimate the fluxes at
different spatial scales, a scaling parameter is introduced into the radiation model [16].
By combining memory effect and population-induced competition, a general model has
been developed to enable accurate prediction of human mobility based on population
distribution only, which also has a parameter qualifying the memory effect [17].

Although the radiation model has been adopted in the study of trip distributions [9,18–21],
applications to freight transportation are rare. In this work, using a unique data set about
the highway freight transportation by trucks between 338 cities in mainland China, we
investigate the transportation probability pij between two cities i and j and the transporta-
tion diversity of a city calculated from pij. Although most studies dealt with undirected
transportation networks [6,22,23], radiation models enable us to consider directed trans-
portation networks due to the availability of data [24]. The raw radiation model and the
cost-based radiation model are adopted because they are parameter free.

It has been reported that higher social network diversity provides greater access
to social and economic opportunities and has a strong correlation with the economic
development [25]. With the highway freight transportation data between Chinese cities
available, we aim to investigate the relationship between highway freight transportation
network diversity and economic development of cities. Such an analysis has not been
conducted due to the difficulty in obtaining the highway freight transportation data. Our
analysis shows that the population, the gross domestic product, the in-flux, and the out-flux
scale as power laws with respect to the transportation diversity in the raw and cost-based
radiation models, which implies that a more developed city usually has higher diversity
in highway truck transportation. This finding reflects the fact that a more developed city
usually has a more diverse economic structure.

The remainder of this work is organized as follows. Section 2 describes the data sets
we analyze. Section 3 studies the basic properties of transportation probability. Section 4
deals with the transportation diversity of cities and their relationship with population and
GDP. We discuss and summarize in Section 5.
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2. Data Sets

The data set we analyze was provided by a leading truck logistics company in China,
which records the highway truck freight transportation between 338 cities in mainland
China over the period from 1 January 2019 to 31 May 2019 [6]. The data cleaning was done
by the company, who used the data set in their truck scheduling and route planning. There
are about 15.06 million truck freight transportation records in total, each entry containing
the origin and destination cities and the starting date of the transportation. We can construct
the flux matrix F =

[
Fij

]
338×338, where Fij stands for the number of trucks with freights

driven from city i to city j. Unloaded trucks are not counted in. Because radiation models
do not consider intra-city transportation, we set that

Fii = 0. (4)

It is obvious that Fij is not necessary to be equal to Fji for i 	= j.
The GDP and population data for the 338 Chinese cities in 2017 were retrieved online

from the Complete Collection of World Population (http://www.chamiji.com, accessed on
18 May 2021), which are publicly available except for a few cities. We supplemented the
missing data by searching Baidu Encyclopedias (https://baike.baidu.com, accessed on 18
May 2021).

The geographic distance dgeo
ij is the shortest surface distance between two cities located

by the longitude and latitude, which is the length of the great circle arc connecting two
points on the surface of the earth. The longitude and latitude of each city can be easily
obtained online for free. The data set of the driving distances dcost

ij between pairs of cities
was provided by the same truck logistics company, which were collected by their truck
drivers. The driving distance between two cities are usually “optimized” by the truck
drivers because they always have the motivation to find a path connecting the two cities
with the least cost (time and money). Such an optimization is achieved either by their own
experience or by information from buddy truck drivers they trust. It is obvious that

dgeo
ij < dcost

ij (5)

for all pairs of cities. The difference between these two distances increases when the two
cities are farther away to each other. By definition, the geographic distance matrix is
symmetric, that is,

dgeo
ij = dgeo

ji . (6)

In contrast, the driving distance matrix is asymmetric, i.e.,

dcost
ij 	= dcost

ji , (7)

which is mainly due to the fact that, besides highways, there are often local roads that a
truck driver has to take from one city to the other.

3. Transportation Probability

3.1. Formulae

According to the radiation models (2) we adopt, the transportation probability pij
from city i to city j is

pij =
Mi Mj

(Mi + Sij)(Mi + Mj + Sij)
. (8)

When we choose population P for M, the transportation probability becomes

pij =
PiPj

(Pi + Sij)(Pi + Pj + Sij)
, (9)
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where Sij is the total population in the circle of radius dij centered at i but excluding the
source and destination population. Alternatively, when we use GDP as the proxy, we have

pij =
GiGj

(Gi + Sij)(Gi + Gj + Sij)
, (10)

where Sij is the total GDP in the circle of radius dij centered at i but excluding the source
and destination population.

The transportation probabilities pij of the raw radiation model using geographic
distance and the cost-based radiation model using driving distance are calculated with
respect to population P in Equation (9) and gross domestic product G in Equation (10).

3.2. Power-Law Distribution of pij

Figure 1 illustrates the four empirical distributions of the transportation probability pij
between two cities for the two radiation models with M = P and M = G, respectively. We
observe a nice power-law tail in each case and the exponents are the same for the four cases:

f (pij) ∼ p−α−1
ij , (11)

Figure 1. Power-law tailed distribution of the transportation probability between two cities. The solid lines are power
laws with the same exponent of −1.5. (a) Population P is used in the raw radiation model with the geographic distance.
(b) Population P is used in the cost-based radiation model with the driving distance. (c) Gross domestic product (GDP) G
is used in the raw radiation model with the geographic distance. (d) Gross domestic product G is used in the cost-based
radiation model with the driving distance.
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where the tail exponents α ≈ 0.5 and the intercepts are almost the same. The power-law
relationship holds over three orders of magnitude. The smallest transportation probabilities
deviate from the power-law distributions with higher probability density. Theoretically, we
know that two cities with longer distance usually have a smaller transportation probability.
Indeed, it we plot pij with respect to dij, we find that the points fluctuate around a power-
law scaling with an exponent of −4:

pij ∼ d−4
ij , (12)

which corresponds to the case of uniform population (or GDP) density [14]. The standard
deviation of the data points from this reference power law quantifies the strength of
heterogeneity of the spatial distribution of population and GDP in mainland China.

3.3. Asymmetric Relationship between pij and pji

We illustrate in Figure 2 the asymmetric relationship between pij and pji for the two
radiation models using population. The results for GDP is very similar for each model.
It is striking that the predicted values of transportation probability span nine orders of
magnitude. We also find that the scatter points lies close to the diagonal pij = pji. The points
from the cost-based model in Figure 2b concentrate more to the diagonal than the points in
Figure 2a and thus the transportation probability matrix {pij} is less asymmetric. The two
dashed lines impose a restriction on the transportation probability values, requiring that

pij + pji = 1, (13)

which is more visible if we use linear coordinates. This restriction can be derived as follows.
According to Equation (9), the probability of transportation from city j to city i is

pji =
PiPj

(Pj + Sji)(Pi + Pj + Sji)
. (14)

For two given cities i and j, it is easy to notice that pij and pji reach their maxima when the
two cities are adjacent, that is

Sij = Sji = 0. (15)

In this case, we have

pij =
Pj

Pi + Pj
(16)

and
pji =

Pi
Pi + Pj

. (17)

The restriction shown in Equation (13) is thus obtained. This argument holds for both
of the radiation models, because the derivation is independent of the definition of the
distance between two cities. It also applies to the two models based on GDP, as expressed
in Equation (10).

3.4. Comparison between pgeo
ij and pcost

ij

We compare the predicted transportation probabilities from the two models. The
results are shown in Figure 3. We find that the points fluctuate around the diagonal line

pcost
ij = pgeo

ij . (18)

The insets show that there are many points that fall exactly on the diagonal. These points
correspond to the situations when

Sgeo
ij = Scost

ij . (19)
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Usually, this condition (19) is more likely to be fulfilled when the two cities i and j are close.
As a special case, when city j is the closest city of city i, we have Sgeo

ij = Scost
ij = 0. In this

case, the two transportation probabilities pgeo
ij and pcost

ij are identical.

Figure 2. Asymmetric relationship between pij and pji. (a) Population P is used in the raw radiation model with the
geographic distance. (b) Population P is used in the cost-based radiation model with the driving distance. (c) Gross
domestic product G is used in the raw radiation model with the geographic distance. (d) Gross domestic product G is used
in the cost-based radiation model with the driving distance.

Figure 3. Comparison of the transportation probabilities pij from the two models based on geographic distance and driving
distance. The insets are the same data in linear coordinates. (a) The radiation models are based on population. (b) The
radiation models are based on GDP.
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4. Transportation Diversity

We now define the transportation diversity of a city i based on its transportation
probability pij as follows

Di = −∑
i 	=j

pij ln pij, (20)

where pij can be calculated from the two radiation models using either population P or
gross domestic product G. We calculate four sets of diversity DM,d

i , where M = P or
M = G and d = dgeo or d = dcost. Indeed, human mobility or communication diversity has
been proposed and studied [25–27].

4.1. Comparison of Diversity Based on Population and Gross Domestic Product

In Figure 4, we compare six pairs of any two diversity sets obtained. The two plots in
the top row show the influence of distance on diversity for fixed choice of M, while the two
plots in the bottom row illustrate the influence of the choice of M on diversity in a given
model. We find that, in each plot, there is a nice linear relationship:

DM(1) ,d(1)
i = DM(2) ,d(2)

i . (21)

It is found that the influence is weaker for the choice of model than for the choice of M.

Figure 4. Comparison of the two transportation diversity measures DM(1) ,d(1)
i and DM(2) ,d(2)

i calculated using population
P and gross domestic product G for the raw radiation model and the cost-based radiation model. (a) M(1) = M(2) = P,
d(1) = dgeo and d(2) = dcost. (b) M(1) = M(2) = G, d(1) = dgeo and d(2) = dcost. (c) d(1) = d(2) = dgeo, M(1) = G, and
M(2) = P. (d) d(1) = d(2) = dcost, M(1) = G, and M(2) = P. The solid lines are the diagonal lines.
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4.2. Dependence of City Traits on Diversity

We further check the dependence of city traits (P, G, Fout, or Fin) on the truck trans-
portation diversity Di, where Fin

i is total in-flux arriving at city i

Fin
i = ∑

j 	=i
Fji. (22)

The results are depicted in Figure 5. In the four plots of Figure 5e–h for DP,cost
i , we observe

two outliers that seem isolated from other points. These outliers correspond to two same
cities, Shennongjia Forestry District and Ali District. The diversities of these two cities are
respectively 0.1496 and 0.1529.

Figure 5. Dependence of city traits (P, G, Fout, and Fin) on truck transportation diversity (DP,geo). The diversity is calculated
from the raw radiation model based on population and geographic distance. The solid lines are power-law fits.

We observe power-law dependence in each plot. We can write that

Yi ∼ (DM,d
i )β(Y,M,d), (23)

where Y represents P, G, Fout or Fin, M stands for population P or gross domestic product
G in the radiation model, and d determines the geographic or driving distance. The power-
law exponents β(Y, M, d) are estimated with the ordinary least-squares regression, which
are presented in Table 1. For a given city trait and the chosen M, the two power-law
exponents are similar in the raw radiation model and the cost-based radiation model.
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In contrast, the power-law exponent is larger when we use population P as M in the
radiation models.

Table 1. Power-law exponents β(Y, M, d) for the cost-based radiation model.

Model Y = P Y = G Y = Fout Y = Fin

dgeo, P 1.8111 1.8063 2.1558 1.9829
dcost, P 1.8863 1.8890 2.2277 2.1775
dgeo, G 1.2384 1.6523 1.7299 1.5613
dcost, G 1.2838 1.7246 1.8990 1.6471

5. Discussion and Conclusions

In this work, we investigated the highway freight transportation diversity of 338 Chi-
nese cities based on the transportation probability pij from one city to the other. The
transportation probabilities are calculated from the raw radiation model based on geo-
graphic distance and the cost-based radiation model based on driving distance as the proxy
of cost.

We found that, in either the raw radiation model or the cost-based radiation model,
the results obtained with the population and the gross domestic product are quantitatively
similar. It is mainly due to the nice power-law scaling between population and GDP of
Chinese cities, where the power-law scaling exponent is estimated to be 1.15 ± 0.08 [6,28].

We investigated several important properties of the truck transportation probability
pij. It is found that the transportation probabilities are distributed broadly with a nice
power-law tail and the tail exponents are close to 0.5 for the four models. It is also found
that the transportation probability matrix in each model is asymmetric such that pij does
not necessary equal to pji, which is consistent with our intuition.

We also found that the population, the gross domestic product, the in-flux, and the
out-flux scale as power laws with respect to the transportation diversity in the raw radiation
model and the cost-based radiation model. It is intuitive that a city with higher GDP (often
with larger population) usually has higher diversity in its industrial structure. These cities
usually have higher diversity in highway freight transportation.

The strong correlation between transportation diversity and economic development
implies a strong association between industry diversity and economic development. Al-
though a causal direction of this relationship cannot be established through our analysis,
transportation diversity at least provides a structural signal for the economic development
of a city, highlighting the potential benefit of industry-targeted policies for economic devel-
opment. Further research is required to obtain reliable policy implications. In particular,
longitudinal data sets for transportation networks and economic development are required
to establish a possible causal relationship.
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