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Raičević, N. Computational

Intelligence Application in Electrical

Engineering. Electronics 2022, 11,

1883. https://doi.org/10.3390/

electronics11121883

Received: 10 June 2022

Accepted: 14 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Editorial

Computational Intelligence Application in
Electrical Engineering
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1 Faculty of Electrical Engineering, Computer Science and Information Technology Osijek,
Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia

2 Faculty of Electrical Engineering, University Goce Delchev, 2000 Stip, North Macedonia;
vasilija.sarac@ugd.edu.mk

3 Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia;
Nebojsa.Raicevic@elfak.ni.ac.rs

* Correspondence: marinko.barukcic@ferit.hr; Tel.: +385-31-224-685

Nowadays, scientists and practitioners in the field of electrical engineering observe the
increasing application of information technology, computers, and computing techniques.
Modern concepts such as smart power grids and smart industries require a multidisci-
plinary approach and a close connection and synergistic application of IT and computer
hardware and software in all areas of electrical engineering. In addition, the application
of advanced computational tools is essential for the simulation and modeling of complex
electrical systems and devices. The application of computational tools based on numerical
mathematical methods has enabled practical calculations in the field of electromagnetic
field theory with more realistic models of the devices.

The Special Issue “Computational Intelligence Application in Electrical Engineering”
aims to promote the techniques and procedures of computational intelligence for model-
ing, optimization, simulation, and computation in various fields of electrical engineering.
Thanks to the authors’ interest in this Special Issue, seven research and review articles were
published out of the ten submitted papers.

In the review article [1], the authors provide an overview of the application of com-
putational intelligence methods in power engineering, in particular, the application of
computational intelligence in the field of power grids. The article addresses various goals
of applying computational intelligence in the area of smart power grids, such as optimal
scheduling of distributed generation and optimization of smart power grid management.
The remaining published articles are original research papers.

The authors of [2] have proposed a co-simulation approach to solve the very complex
optimization problem of optimal allocation of distributed generation assets and power
control of controllable distributed generation assets. The optimization problem is of black-
box type, and an artificial neural network is proposed for the distribution of the output
power of the distributed generation units.

Paper [3] presents the application of a metaheuristic optimization method for optimal
coordination of directional overcurrent relays and distance relays in the second zone.
The authors developed a modified school-based optimization method as an improvement
to the basic version of this optimizer.

In [4], the uncertainty in the scheduling of electricity distribution generation is pre-
sented considering the electricity market. The modeling and impact of different uncertain-
ties (in the intensity of primary energy sources as well as in the energy price) at the intraday
market level was developed and proposed here.

The improved method for power flow calculations in power systems was developed
in [5]. The proposed method uses the Newton- S-Iteration Process and shows advantages
over classical power flow methods especially for ill-conditioned systems.

The authors of [6] have developed a procedure for the analysis and optimization of
a synchronous motor with line start and asymmetric permanent magnet arrangement in

Electronics 2022, 11, 1883. https://doi.org/10.3390/electronics11121883 https://www.mdpi.com/journal/electronics1
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the rotor. The method includes a finite element analysis of the motor using a simulation
program. The optimization method is based on a parametric analysis of the steady state
and transients of the motor.

The last published article (in chronological order) [7] in the Special Issue deals with
the optimal control of induction motors. In the article, the application of a fuzzy controller
for the predictive current control of an induction motor was developed. It also presents the
optimization of the parameters of the fuzzy controller using a co-simulation approach and
a metaheuristic optimization method.

We would like to thank all the authors for their interest and contributions to this
Special Issue. We thank the reviewers who contributed to the quality of the presentation
of the articles with their constructive comments and suggestions. We thank the editorial
board of the journal Electronics for the invitation and the opportunity to edit this special
issue. A big thank to the editorial board for taking care of the whole process and making
sure that everything was ready on time. Our special thanks to Ms. Hebbe Tian, the assistant
editor of the Special Issue, for her kindness and timely completion of all the steps in this
Special Issue.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper aims to present carefully selected scientific papers that have pushed the bound-
aries in the application of advanced computational intelligence–based methods in power engineering,
mainly in optimal power system management. Contemporary development of the Smart Grid
and detailed framework for power grid digitalization enabled the real and efficient application of
advanced optimization algorithms presented in this paper. Papers that are not directly related to
Smart Grid management are also considered, since they solve the partial challenges of planning and
development with metaheuristic procedures, and according to the authors, they are highly applicable
and represent a fundamental starting point for wider application. This paper covers papers and
research whose results are reproducible and can be realized in production-grade software. The
emphasis of the paper is on the considerate and impartial way of providing a concise overview of the
methods for solving technical challenges within the accepted Smart Grid architecture. The paper is
the result of many years of research and commitment to this field and represents the foundation for
present research and development.

Keywords: active distribution network; computational intelligence; optimization algorithms; optimal
distribution system management; optimal Smart Grid management; advanced distribution system
optimization; renewable distributed generation; Smart Grid optimization

1. Introduction

Smart Grid research is the new, challenging area with great interest of research teams
in the EU space [1,2]. Future advanced and smarter power network relies heavily on the
possibility of independent permanence and self-sufficiency based on data and informed
management [3,4]. The development of the power network at the distribution level and the
increasing integration of renewable energy sources (RES) makes the network heterogeneous
and more diverse. The laws of network management that were once applicable to the whole
system become less valid in the era of changing power system and novel paradigms. Such
system requires advanced methods of rapid analysis of a multitude of possible scenarios
to achieve optimal power system management. This paper examines the scientific and
engineering foundations of using computational intelligence (CI) methods for achieving
optimal real-time or quasi-real time management of Active Distribution Network (ADN).
ADN is the first stage in the formation of more advanced Smart Grid which involves usual
power distribution equipment along with information and communication technologies
(ICT) and monitoring systems. The goal of Smart Grid is more reliable power supply and
adequate power quality (PQ) in the ever-changing environment. The presented methods
are currently oblivious to information technology and are focusing on electrical engineering
principles since those are the foundations for every other application. Objectives observed

Electronics 2021, 10, 1247. https://doi.org/10.3390/electronics10111247 https://www.mdpi.com/journal/electronics3
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by this paper are energy balancing, losses reduction, reliability increase and policy defini-
tions described in latest scientific achievements. Energy balancing is the most important
part of Smart Grid and it can be a topic for itself, especially when market considerations
become equally important to technical ones.

Although most scientific papers presented here focused on optimal Distributed Gen-
eration (DG) allocation and sizing in distribution network, objectives achieved by papers
presented in this work can be used as an engineering foundation for ADN operational
management based on advanced CI optimization algorithms. The scope covered by Dis-
tribution Network Optimization is much larger than just the allocation of DG units and
includes optimization of the topology and timetable planning of existing power plants to
achieve optimal power flows [5,6]. Accordingly, this paper includes the papers that in a
concise and precise way define the application of CI methods in solving modern challenges
in the power system, especially the problem of utilization of a larger number of DG units.
Real-time power flow optimization, as described Reference [5], comes only after a real-
world software solution is set up at the planning level. This paper defines the principles
that such a software solution should meet and describes the leading CI algorithms that
can result in such a software solution. Subsequently, a new part of such a solution may
be real-time optimization module for optimization of power flows, voltage profile and
oscillation damping control, as given in Reference [5]. For such real-time power flow opti-
mization with limited infrastructure for data acquisition in the distribution grid, a robust
state estimation engine is crucial [6] to address uncertainties in the distribution network.

Scientific works observed by this paper can lead to the development of ADN man-
agement solutions and the current activities of the authors confirm that hypothesis. As-
sumptions of ADN operational management by CI is unequivocally and unanimously
highlighted and validated by papers [7–9]. The challenges ahead in the field of Big Data col-
lection and consumption monitoring using advanced metering infrastructure are certainly
part of the development of such ADN management solutions [6].

The rest of the paper is structured as follows: Section 2 provides the overview of
the used methodology, sources of information, knowledge collection, synthesis and so-
lution assessment criteria. Section 3 analyzes the scope of DG impact in the distribution
network and what are physical constraints that need to be respected when evaluating
applicability of any CI method. Section 3 presents most important papers that use CI for
optimal allocation and optimal scheduling of DG units, while considering the physical
and technical limitations of the considered ADN system. Selected papers are the result
of described methodology and selection criteria. Moreover, by the opinion of the authors
of this paper, selected papers can be utilized in market-oriented planning and scheduling
scenarios in real-world systems nowadays. Section 4 describes papers that bring significant
breakthroughs in the operational management of the ADN with multiple DG units. Finally,
the conclusion outlines observations and knowledge gathered by this paper.

2. Methodology

The papers covered in this paper are partly part of the research during the preparation
of the doctoral dissertation, and partly during the research phase of the project mentioned in
the acknowledgment. Given the constant changes in technology, the criteria for including
and excluding processed papers required fine-tuning throughout the research process.
What is common to all the presented works is that the team of development experts, to
a greater or lesser extent, managed to replicate the outcomes at the level of the model
and the prototype solution. This was also a key criterion for the processing of individual
work—high reliability that the proposed solution can be refined and developed for the
needs of the actual system.

For the purpose of collecting valid information, journals indexed in the leading
databases Web of Science, Scopus and Inspec were consulted. The advanced search con-
sidered more than 7000 papers. This huge amount of information has been reduced to
a little over 1000 basic papers by thorough processing according to the thematic criteria
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and observed challenges. Additionally, by the criteria of the number of mentions and the
context in which they were mentioned, and a preliminary reading of a team of researchers,
the selection was reduced to around 250 relevant papers. The additional thematic division
and organization of a wider team of researchers quickly prototyped the relevant group and
the choice remained on those papers mentioned in this paper. If the reader considers that
some paper has been unfairly neglected, the authors are open to contact and correction in
future papers.

Aware of the fact that the impossibility of repeating the outcome of a single paper
does not immediately imply the unacceptability of the observed solution for processing in
this paper, we consulted external domain experts. The covered domains are the field of
artificial and computational intelligence, distribution network optimization techniques and
development of monitoring and control solutions for distribution power networks. Such
an interdisciplinary team provided a multi-perspective review of the observed solutions
that was in some cases crucial to understanding what was presented.

Although researchers were given the opportunity to independently assess and orga-
nize individual development teams, it turned out that regular synchronization meetings
could achieve more results in less time. By dynamically adapting the research team ac-
cording to Agile principles [10,11], a larger amount of methods than originally conceived
was processed.

The risk of bias and false applicability estimation was solved by following the next procedure:

1. Extraction of the presented mathematical model—In this step, a multi-member team
took responsibility for extracting key information from each paper and, if necessary,
filling in the gaps in the mathematical model.

2. Synthesis of a defined mathematical model—If key parameters are missing in the first
step, the paper is marked as incomplete and is temporarily not considered. However,
it happened that some other work was based on the same laws as the one that was
neglected, so one complements the other. In this step it is crucial to obtain the same
or approximately the same starting point as the original authors.

3. Development of an identical or similar solution—In this step, it has proved crucial to
have a team of specialized experts and profiled researchers who can understand the
principles to be set out in development in order to achieve greatest effect. Usually,
rapid prototyping does not require more than a few days of work for a well-organized
team, and as these are very similar methods based on common principles the testing
time decreased exponentially throughout the research phase.

4. Analysis of the obtained results—In this phase, the involvement of external domain
experts proved to be crucial, who could intuitively, based on many years of experience,
suggest measures for improvement if the results did not correspond to expectations.
Moreover, they were able to explain some unexpected results and thus immediately
conclude where the shortcomings of the basic observed model of some papers are.
Analysis was conducted ad-hoc by the whole research team and most of the time
heterogeneity of results was discussed.

5. Brainstorming session—This is a key part of the whole process; in this step, there was
an exchange of ideas, knowledge and solutions, and often with loud commenting
a certain hypothesis or assumption was fiercely defended. After this session, the
certainty of validity was ensured and the whole process was repeated as many times
as necessary to process all the papers selected for processing.

Conclusions after the comprehensive review of papers are that there are scientific
databases in which papers are generally published with more detail with traceable results,
while at the same time there are scientific databases that nurture papers in a shorter
reporting form which makes repeating the outcomes more challenging. For some papers,
mathematical experts with deep knowledge of statistics had to be consulted, and for the
purposes of mathematical synthesis, several mathematical experts were engaged.

The limitations of this methodology are certainly relying on a group of researchers
without using any of the artificial intelligence (AI) methods. However, the authors are of
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the opinion that, given the specificity of the observed challenge and previous experiences,
there is greater reliability if we are guided by the opinions of domain experts and long-term
scientists, than by the algorithm. In the case of considering many scientific papers for
development purposes, it is more reasonable to rely on natural intelligence.

Of course, it may seem that this is completely contradictory to the topic of this paper,
but it should be considered that this paper observes applications of CI, a subset of AI that
always relies on exact mathematical calculations and it is in fact specifically modeled by
natural intelligence.

Within the space–time possibilities and with the available literature, this paper aims to
shorten the cognitive process and provide an overview in one place for all those who are just
starting or are currently dealing with the field of distribution network optimization using
CI methods. For better understanding, the abbreviation list is provided in the Appendix A
at the end of this paper. Of course, given the context in which this research is conducted, all
papers are viewed from the point of view that they must be feasible as actual optimization
systems or at least as a basis for the development of future management procedures. With
this work, science is viewed as a platform for launching innovative engineering solutions
that should serve all of humanity.

3. DG and the Distribution Network

DG impact on the power grid is a complex mathematical problem, changing over
time and depending on the parameters of each grid. Precisely because of the diversity of
the system in which DG is integrated, there is no universal solution that can be magically
applied to every case while respecting the laws of calculation such as real power balance
equations, Jacobian Matrices and Newton—Raphson Power flow.

Current growing demand for energy in the world accompanied by an increase in
energy prices, accelerated the technology development for RES utilization, which introduce
additional variability. According to installed capacity, Viral et al. [12] classify RES and
non-RES DG, such as micro DG with installed capacity up to 5 kW, small DG with installed
capacity up to 5 MW, medium DG with installed capacity up to 50 MW and large DG
with installed capacity from 50 to 300 MW. The same authors refer to the utilization of
DG for the base and the peak load demand and capability to provide ancillary services
to the system, while considering a power plant a DG only when it is connected to the
distribution network. Similar findings on different types of DG technology and power can
be found in Reference [13] in which the authors also refer to Viral et al. [12]. Sambaiah’s [13]
considerations of the method of optimal allocation are given in later sections. Although
Reference [13] can be considered similar in its content, this paper is about reconstructed
models and tested systems and is not a mere enumeration of what was read, but about
presented scientific papers that the development team successfully reconstructed according
to the guidelines for software development.

Considering integration location, DG is integrated in two ways: local level and end-
point level [12]. Local DG means independent production units in the distribution network,
and the end-point DG is a production unit integrated with the consumer. According to
power system management, DG based on technologies independent of the energy resource
incidence are fundamental generation while solar and wind power plants with volatile
production cannot be considered as fundamental generation in power system [14,15].
However, such systems can be enriched with an energy storage and in that case increase
the efficiency of the distribution network and enable the balancing of part or all of the
system [16].

When modeling and developing a specific CI method for ADN management, there
is a big difference depending on which type of DG integration CI needs to be observed.
Aggregating end-point production at the local level has proven to be a good entry point for
a challenge formulation that CI can solve more successfully.

Technical advantages of DG can relate to a wide range of influences such as the power
supply of the system peak load, voltage profile improvement, system losses reduction,
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power supply continuity, system reliability improvement and elimination of power supply
quality issues [17–19].

Voltage dips are still a challenge in many distribution grids so Ipinnimo et al. [20]
point on mutual coordination of a large number of DG units in order to reduce the voltage
dips. Location and power of DG are two key factors in reducing system losses [12].
Voltage dips reduction and transient voltage reductions between 10% and 90% of the
nominal effective root-mean square value lasting between half cycle and one minute [9]
are recognized as a key issue in distribution network with high DG penetration level, as
can be seen in References [20,21]. However, there are specific circumstances in which an
optimization algorithm needs to be adapted, such as a Long Distribution environment that
includes manufacturing, distribution centers, terminals, geographic units, suppliers and
end users [22]. Review paper of Djafar et al. hits a very specific niche and it is important to
emphasize it because it can be useful to those who are in a similar environment of complex
power distribution systems, without being discouraged that perhaps such a case has not
been processed in the scientific literature.

Common challenges of DG integration to distribution grid mentioned by the authors
of References [21,23–27] are impossibility of reactive power production of some DG tech-
nologies, necessity of power system protection settings change, possible occurrence of DG
island operation, high order harmonic generation of some DG technologies, influence on
power system stability, possible excessive voltage increase, short-circuit currents increase.
While DG strengthens the distribution grid resulting in number of dips decreasing, the
transmission network may weaken as described in Reference [28] and enforcement of
distribution grid is necessary.

DG units have a significant role in European objectives, as presented in Reference [29],
where the possibility of control and connection point is described with centralization
and decentralization trends in European area. Moreover, Reference [29] gives The Smart
Grid Architecture Model (SGAM) Framework that is to be respected in order to address
interoperability in a way described in Reference [30]. Concise description of the SGAM
Framework is given by Panda and Das [31], who address the still open questions of the
SGAM and provide an insight of the Smart Grid environment in the year 2050.

3.1. SGAM Framework

SGAM Framework introduces six functional zones for specific purposes and func-
tionalities, respecting user requirements and possibilities. First zone, Process, implies
equipment that participates in energy conversion and transmission. Field zone, the second
one, implies monitoring and protection equipment responsible for data acquisition. Aggre-
gation level is in third zone, Station, in which substation automation supervises the first
two layers. ADN management processed by this paper can be part of third zone, or, even
better, part of fourth zone, called Operation.

Operation handles multiple Energy management systems (EMS), Distribution Man-
agement Systems (DMS), multiple microgrids, aggregation of various type RES into Virtual
Power Plants (VPP) and electric vehicles (EV). The fifth zone, Enterprise, includes utilities,
service providers, energy traders, customer relationships, asset management and procure-
ment [29]. Market operations are in the sixth zone, Market, where energy trading and mass
market occurs.

SGAM Framework also proposes the methodology which was used for this research to
examine the validity and applicability of multiple CI methods in real-world power systems.
The methodology within this research has seven crucial principles of validation:

1. Universality—The proposed solutions must be vendor-agnostic and without pref-
erences in existing architectures and solutions. Neutral and scientifically objective
perspective is mandatory when evaluating the possible solutions for future power networks.

2. Localization—Given the functional zones, the application of possible solution needs
to be clearly stated for which zone it is intended. Systematic view of the whole
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framework is needed to clearly understand the level in the topology in which any
solution can be applied to.

3. Consistency—The use case must not violate the existing SGAM framework and in no
case must single out one zone as dominant. Interdependence and reliable functioning
with other zones must be respected.

4. Flexibility—Alternative designs and implementation of use cases, functionalities and
services to any SGAM layer or zone need to be covered. Methods and algorithms
observed in this paper can be part of any SGAM layer or zone, with the best starting
point in the third or fourth zone.

5. Scalability—Once the proposed solution is part of one zone or a smaller part of the
network, it must be able to successfully scale to other zones or to the whole network.
Of course, the limiting factor here may be computational power, but this is not the
subject of discussion in this paper and it can be solved by Cloud Computing [32].

6. Extensibility—Solutions need to adapt to evolutionary changes in the Smart
Grid environment.

7. Interoperability—Interaction between multiple actors, applications and systems oc-
curs via information exchange with defined protocols and data models. Chain of
entities and connections define interfaces in which the consistency and interoperability
become secured.

By combining Station and Operation zones with Communication, Information and
Function layers in SGAM, it is possible to reach an enclosure in which there is an exceptional
need to apply methods presented in this paper.

As mentioned above, in bullet 4, the good starting point for integration of CI-based
methods for ADN management is Station or Operation zone in distribution system, DER
and Customer environment. The bounding section for CI applications in ADN is given by
Figure 1, where the application zone observed by this paper is shaded in red.

Figure 1. SGAM reference architecture with emphasis of CI applications observed by this paper.

Process and Field zones are most often oriented to smaller systems that can be explicitly
mathematically described and that depend on a finite set of known parameters. Such sys-
tems are micro-grids of a local character or even small micro-grids at the end-point [33,34].
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Large centralized generation connected to the transmission network is a separate
category by itself, regardless of the zone of application. The laws of system management
at these levels are completely different from the established methodologies of managing
the distribution system, as can be understood from comprehensive overview given in
Reference [35]. Interconnected power grids are multi-layered system where CI can be
useful as a distributed optimization platform that acts as one part of the overall algorithm.
This concept is explained in a little more detail later in this paper when one of the most
applicable optimization methods is described.

Enterprise and Market zones can benefit from the solutions defined in the Station and
Operation zones because such security of the right solutions will enable a different market
presence and even develop new market possibilities, most often consequently with greater
RES integration [36].

Considering that this paper is the result of the project that respects the SGAM archi-
tecture and according to the basic principles of the described methodology, it is possible to
imagine the trend of developing inventive solutions for the Smart Grid environment. Such
inventive solutions must by their nature react quickly enough to be taken into account and
precisely enough for their application to come to life at all.

3.2. DG Impact in ADN

When considering CI methods for the application in system solutions complied with
SGAM Framework, the properties of DG and the background mathematical models of
each observed technology should be considered. The mathematical models of DG and the
mathematical background of the power system represent a system of complex equations
that are not easily solvable by conventional methods. A clear and comprehensive overview
of the essential characteristics of different DG allocation methodologies types is given in
Table 1.

Table 1. Comparison of main content of selected papers.

Reference Optimization Method Merits Limitations

Acharya et al. [25] Analytical approach based
on mathematical expression

Simple analytical solution for
determining size and position of DG

If DG is already installed there
is a need for significant

amount of power
flow calculations

Gözel et al. [26]

Bus-injection to
branch-current and
branch-current to

bus-voltage matrices.

One power-flow calculation, simple
matrix algebra and
faster performance

Does not take into account the
interaction of nodes in the

network when first DG
is placed

Wang et al. [37] Analytical approach
For radial feeders multiple DG can be
taken into account; consideration of

time varying DG

Only overhead lines with
uniformly distributed loads

are considered

Aman et al. [38]
Power Stability Index and

Golden Section
Search algorithm

Reduced computation time when
compared to Golden Section

Search Algorithm

Only radial networks are
simulated and tested

Injeti et al. [27] Simulated annealing

Comparison of meta-heuristic
methods, including genetic algorithm,
Particle Swarm algorithm and Loss

Sensitivity Factor
Simulated algorithm

Only radial networks are
simulated and tested

Singh et al. [39] GA Pricing problem addressed instead of
power losses

DG is considered as negative
load, not

simulated independently
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Table 1. Cont.

Reference Optimization Method Merits Limitations

Abou El-Ela et al. [40] Modified GA

Consideration of voltage profile
improvement, spinning reserve and

line power flow reduction;
exceptional mathematical overview

of main DG impact indicators; tested
on real Egyptian network

Time variability of generation
and consumption

not considered

Biswas et al. [41] GA

Technical and economical
optimization performed; visual

representation of losses variation as
DG location and size changes;
essential problem formulation

Time variability of generation
and consumption

not considered

AlRashidi et al. [42] PSO

Multiple DG planning and
consideration in single run; fitness

function development;
backward/forward sweep approach;
experimental design of custom PSO

Only time-independent loads
and generation considered

Gomes-Gonzales [43] PSO

Total power generation covers total
demand and real power losses what

makes foundation for island
operation

DG units have fixed power
factors; time-independent
loads and DG considered

Moradi et al. [44] GA + PSO Hybrid method development;
different algorithms benchmark

Time-independent loads and
DG considered

Soares et al. [45] Signaled Particle
Swarm Optimization

Identification of active distribution
network management; achieving a
balance between production and

consumption; hourly optimization;
fast execution

Missing emphasis on island
operation possibility and

justification of that possibility

Saif et el. [46] Double-layer Particle
Swarm Optimization

Possibility of island operation and
connected operation in which energy

is sold to superior network;
simulation-based optimization with
considering stochastic behavior of

distribution network; supply
reliability considered

Sensitivity analysis of Particle
Swarm Optimization model

not emphasized

Kansal et al. [47] PSO
Different types of distributed

generation considered with Particle
Swarm and analytical approach

Demonstration of Particle
Swarm performance for

various types of distributed
generation is not clear

It is necessary to consider the fact that the data from the paper [12] published in 2012
have been changed today in the field of the installation cost. Furthermore, distributed
generation allows reactive compensation control voltage level, can contribute to the regula-
tion of frequency and can be used as spinning reserve during faults if the technology of
production units permits [12,25–27,39,42,48,49].

Beside the technical advantages of the distributed generation, the authors of Refer-
ence [12] also provide an additional, indirect economic benefits expressed through the
possibility of delaying investment in power system components and reductions of different
power system management costs, while papers [12,48] refer reducing investment cost
for the network equipment upgrade, reducing the operating costs of transmission and
distribution systems, increasing the security of supply at critical loads, reducing the cost of
mandatory reserves in the system, etc. The benefits of integrating DG units are reduction of
losses, improvement of voltage profile and voltage stability, increased quality of electricity
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and efficiency of energy use, but direct current flows certainly have a negative impact on
the reliability of the system [13].

Distributed generation in a whole with a consumption becomes a micro grid, while
more micro grids make an active distribution network [50,51]. It can be concluded that
DG change the technical properties of distribution network making this network an active
distribution network—a precondition for development of Smart Grid where the distribution
network has the ability to supply the consumers from distribution generation and upper
voltage level network together while maintaining an optimal operational [50].

Distributed generation is the most useful when placed as close to consumers as
possible to ensure the greatest impact on DG benefits. A terminal in the distribution
network where DG has the greatest beneficial impact is called an optimal location. Selection
of the optimal location is crucial for the planning of the distributed generation.

4. Optimal DG Planning and Scheduling

ADN Management is a real-time and operational planning problem when it is fol-
lowing functional criteria. Solutions for allocation problem described in the technical and
scientific literature and papers can be used as scheduling problem if functionality, modeling
constraints and performance rules are obliged. That interest requires the identification
of papers which present solutions that enable development of a potentially new method
for DG operational management planning in Smart Grid. Optimal ADN management
with an increased share of RES-based and non-RES-based DG technologies is a modern
challenge for the distribution system operators since most of the current distribution grids
are not designed for the new, bidirectional operating conditions. ADN operational planning
represents the necessary precondition to ensure the most favorable effects of distributed
generation in Smart Grid environment [12,48,52]. Proper operations in Smart Grid manage
power flows in a most efficient and reliable manner, but require integration of multiple
technologies described in Reference [53].

4.1. Optimization Methods

Optimization methods that can be applicable to Smart Grid must comply with the
requirements of real-time performance, consideration of technical requirements and actual
production situation of various production capacities, while mitigating difficulties of weak
convergence and local pinning [12,48]. The observed works in the literature distinguish
five optimization-method groups [12,54]:

1. Analytical methods;
2. Heuristic and meta-heuristic methods;
3. Artificial Intelligence–based methods;
4. Evolutionary principles and biologically inspired methods;
5. Distinct methods for specific purposes.

Analytical methods require the definition of algebraic expressions basis of which can
the optimization process be analyzed. Such approach will result with a well-developed
mathematical model of the observed system. That model can be used in together with
measurement data, but it is very demanding, almost impossible, to use it for more complex
systems and challenges [12,26]. The advantage of the analytical approach is manifested
through the usage of the model in conjunction with measured values and external input
data. The common opinion in the literature is how optimization procedures can be divided
into methods that result in precise solutions and methods that result in good-enough
optimal Pareto solutions [55–58]. An overview and grouping of optimization methods is
shown in Figure 2.

This paper observes best practices and methods that according to the authors can be
used for real-world use cases. The usability is tried and proved by modeling and simulation
in software engineering environment. This paper deals with the groups from Figure 2 and
gives an overview of what has been tried, what has been repeated and what can be applied
to real-world systems.
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Figure 2. Optimization methods for Smart Grid applications.

A meta-heuristic approach is an iterative optimization process that can be assigned as
a guidance for subordinate heuristics [59]. The heuristic process is beneficial for solving
optimization problems in cases where a precise and accurate solution is not unique, when
the set of acceptable solutions exist and when the precision of all solutions does not
necessarily have to be absolute but good enough to be pragmatic enough [60]. Heuristic
algorithms can be specifically developed to solve a particular problem or universally
applicable with the common search criteria. In any case, heuristic algorithms can be used
in a search for a specific set of possible solutions and finding out the best solution in
the set. Meta-heuristic methods represent advanced procedures in which the heuristic
process is further enhanced in every iteration of the solution search and most often apply
universally applicable heuristic procedures [61]. The way of refining heuristic process with
each iteration can be defined as a separate heuristic process and therefore such complex
methods are called meta-heuristics. If the meta-heuristic optimization is complemented
with the precise calculation results of individual solutions, it becomes possible to state that
general strategies are specifically applicable, and the results are accurate and precise, thus
using best of both worlds. For most meta-heuristic methods, it is necessary to properly
represent the problem, procedures and operators within the legitimacy of performing the
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heuristics and to partially limit the scope of the solution. Metaheuristic methods that are
significantly proven and applicable in solving various problems are local search, tabu
search, simulated annealing, genetic algorithm (GA) and ant-colony algorithm [54,60–62].

Computational intelligence approach includes dedicated tools and intelligent proce-
dures for solving certain types of problems that do not necessarily need to be optimization
problems. Recognized examples of the methods based on the computational intelligence
are fuzzy logic, artificial neural networks, rough sets theory, expert systems and proba-
bilistic agents [63] and application of these methods is often necessary for the purpose
of making decisions about individual values, sorting and numeric marking according to
certain rules. The wider conception of computational intelligence comprises all heuristic
and meta-heuristic optimization procedures and the boundary of the specific category
where particular approach belongs to is often unclear.

Methods based on evolutionary principles are powerful optimization procedures most
often used in optimization problems where is necessary to consider the fulfillment of two
or more objectives. A common feature of optimization methods based on evolutionary
principles is the existence of one or more decision-making procedures, the so-called eval-
uation according to fitness function [56]. Using iterative optimization process based on
these methods it is possible to direct the search for solutions in each subsequent iteration
to the area where the previous iteration achieved the best solution. Considering the above
principle, it is possible to conclude that these methods are like meta-heuristic procedures,
which additionally confirms the ambiguous boundary and complexity of the categorization
of certain methods.

Hybrid methods combine two or more processes to a single optimization process. The
most common hybrid methods are synthesis of the optimization process and computer
intelligence decision-making procedures [60]. All optimization methods may encounter
certain performance problems in finding the best global solution, low convergence, and
long calculation time if they are not properly adapted to the observed problem [9].

4.2. Analytical Methods

Analytical methods are briefly addressed with the emphasis that their capabilities are
limited and that advanced computer intelligence methods are better used in multi-objective
optimization problems. In Reference [37], the authors show the possibility of analytical
calculation of voltage drops and power losses instead of iterative load-flow calculation
used to determine the node in radial or doubly fed feeder where DG will provide the
lowest power losses. The analytical approach described in the mentioned paper observes
two objectives; the location of the distributed generation to obtain the lowest power losses
and to fulfil the target voltage values along the observed feeder. If the second objective is
not satisfied, the location is changed near the original solution until both objectives are met.
Power dispatched from DG authors limit with the injected current value that cannot exceed
the power consumption from the DG location. The proposed method can be performed
with the following load-distribution constraints: uniform load distribution in the feeder,
centralized load distribution in the feeder load where the largest power consumers are
in the middle of the feeder and loads are increasing towards the feeder. When solving
the allocation problem in ring and interconnected distribution networks, authors use the
admittance matrix and minimize the objective function (1) [37].

f j =
j−1

∑
i=1

R1i(j)|SLi|2 +
N

∑
i=j+1

R1i(j)|SLi|2, j = 2, . . . N (1)

For the location of distributed generation in the node j, the aim is to find the lowest
value of losses which is in the function of the equivalent resistance between the first and the
i-th node. Additionally, the authors have investigated the possibility of renewable energy
production volatility representation through a series of different data. Since the authors did
not use iterative procedures there is no problem of convergence of the proposed method.

13



Electronics 2021, 10, 1247

Achary et al. [25] are considering the GA usage in order to optimize the location
of distributed generation but are abandoning the idea due to many iterative load-flow
calculations which significantly affected the calculation time consumption needed for
optimization. In their work, they use the theorem of the complex power that represents the
basis for determination of the most sensitive node where distributed generation achieve
the least loss in the system. The proposed solution according to the expression (2) will
result in the optimal distributed generation dispatch for each node, while the contribution
of each distributed generation to total system losses will be determine using theorem of
the complex power. The node “I” with the least losses represents the optimal location of
the distributed generation considering the consumed power “PDi” at that node.

PDGi = PDi +
1

αii

[
βiiQi −

N

∑
j=1, j �=i

(
αijPj − βikQj

)]
(2)

Gözel et al. [26] developed a similar method to the one developed by the authors of
Reference [14], with significant changes in the representation of the results in relation to the
authors of Reference [25]. A significant contribution to their work stems from the definition
of mutual influence of distributed generation node to other nodes in the distribution
network. The results of their calculations are also based on power losses calculation as
decisive and clear indication of distributed generation influence. In addition, the authors
compare their results with the authors of Reference [25] and concluded that their method
consumes less computing time.

Aman et al. [38] presented the Power Stability Index (PSI) method in order to find
nodes in network which have the most favorable impact on voltage profile and grid losses
when distributed generation is connected to them. The authors tested their method on
a 69-bus test system and a significant contribution is shown defining the new voltage
stability indicator for valuation of the nodes. PSI method is compared to Golden Section
Search Algorithm (GSSA) and results are compared with strong similarities, but GSSA
used more computation time when compared to PSI-based method given by expression (3),
in which PG represents active power of distributed generation, rij stands for real part of
line impedance and Vi is the real voltage of the i-th bus with the voltage angle, δ.

PSI =
4rij(PL − PG)

[|Vi|Cos(θ − δ]2
≤ 1 (3)

4.3. Computational Intelligence–Based Methods

Significant development of CI and numerous papers have pointed the applicability of
selected metaheuristic methods used as higher order procedures to determine sufficiently
good solutions without the necessary knowledge of the entire mathematical model or the
values of all variables. Solutions derived from metaheuristic approaches are result of search
for global best solutions in the predesignated and finite search space [64,65]. If the search
space consists of many possible solutions and solution variants, metaheuristic methods
often repeat some of the properties and re-evaluate already visited space. That feature
often results in more precise and refined solution. Classification of metaheuristic methods
is given by Figure 3 which presents most viable algorithms, grouped by type, governance
rules, modeling rules and the way they determine the best solution.

Computational intelligence implies hybrid approaches created by combining several
optimization methods and is characterized by successful application for continuous val-
ues, the ability to self-evaluate and change the way of execution, stochastic approach,
parallelism in execution and the ability to generate approximate or Pareto solutions [66].
Procedures and methods contained in computer intelligence often base their principles
of operation on biological principles or natural processes [67] and are applied in solv-
ing problems for which there are no effective or specialized procedures [68]. The lack
of specific procedures for specific problems may be caused by complexity that does not
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allow effective modeling or the inability to explain or model certain problems and all
observed factors [69]. In power engineering, computer intelligence can be used to solve
many optimization challenges, calculate optimal power flows [70–72], system modeling
and monitoring of ADNs using fuzzy logic systems with evolutionary algorithms and
artificial neural networks, while some procedures and algorithms can be used in data and
event analysis and diagnostics of ADNs using qualitative reasoning, planning methods
and hybrid procedures [73]. In addition, computer intelligence is successfully used to solve
problems of designing electromechanical oscillation stabilizers, determining the causes
and sorting of faults in the transmission network, reliability assessment, consumption
forecasting, power system protection coordination, electricity quality assessment, economic
supply of electricity, reactive power optimization and determination of optimal power
flows—basically everywhere where iterative processes need faster convergence [74].

 
Figure 3. Metaheuristic methods classification.

An extensive review of optimization procedures used in mathematical modeling
in 360 scientific papers was provided by Theo et al. [7] outlining the advantages and
disadvantages of each approach. For a GA, the authors outline suitability for solving
problems that may have more favorable solutions, it is generally easy to integrate into
an existing simulation framework, it is tolerant to the objective functions with chaotic
attributes, and it is suitable for topological and categorical variable optimizations. However,
as a lack of a GA authors outline the convergence to the local best solution instead of the
global best solution, long-term convergence and complex approach of determining the
criteria for the optimization process termination. When reviewing the Particle Swarm
intelligence algorithm, the authors outline the advantages of fast execution, flexibility and
openness to the other soft computing procedures but warn that the algorithm requires
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definition of coordinate motion system and a proper number of particles otherwise can
result in local best solutions.

A comprehensive overview of optimization methods that can contribute to the more
efficient integration of DG into the power system are given by Colmenar-Santos et al. [75]
in their paper from 2016. The authors of Reference [75] state that the problem of the
multi-objective optimization of various technology DG integration into a fully developed
active network has not yet been completely solved and outline the idea of the development
of a robust distribution management system called AMN (Active Management Network)
whose role is a real-time operational management of DG and other control devices in
distribution networks. Analyzing the optimization methods and grouping seen in the
literature, the authors of this paper represent the division of optimization approaches into
three groups:

1. Conventional approaches.
2. Approaches based on the artificial intelligence.
3. Hybrid approaches based on multiple methods of artificial intelligence.

According to Reference [75], conventional approaches are analytical methods, power
flow calculations, non-linear programming method and rule 2/3; approaches based on
artificial or computer intelligence consider evolutionary algorithms, algorithm of simu-
lated annealing, differential evolution algorithm, Particle Swarm algorithm, fuzzy logic
systems, ant-colony algorithm, tabu search algorithm, artificial bee colony algorithm, firefly
algorithm while hybrid approaches include methods of unification of the GA and fuzzy
logic systems, GA and tabu search algorithm, GA and Particle Swarm Optimization (PSO)
algorithm, GA and power flow calculation, PSO algorithm and power flow calculation,
tabu search algorithm and fuzzy logic systems.

After reviewing all of the methods, the authors [75] state that solutions based on the
swarm intelligence algorithm are complex in development if reliable global solutions are
sought while fuzzy logic systems and hybrid systems are not sufficiently represented in the
literature. The authors outline that premature convergence is extremely emphasized for
the methods based on the evolutionary principles if solution approach is not detail enough,
while other significant methods, such as the simulated annealing algorithm and ant-colony
algorithm, have long execution time which excludes them for possible application in
short-term planning.

The largest number of scientific papers where meta-heuristic optimization methods
are applied for allocation of distributed generation use the GA method or the PSO method,
and there are also papers that use a hybrid method as a compound of these two procedures
as well. Singh and Goswami [39] use GA determined by the objective function (4) for
solving specially designed multi-objective optimization problem, where the impact of the
distributed generation integration on active power market price λ is considered beside
the power losses reduction and voltage conditions improvement. The authors used the
knowledge presented in Reference [76] when assuming distributed generation influence
on the electricity price Ci(DG), depending on consumer active power PDi and distributed
generation active power PDGi.

PDG
eleect =

n

∑
i=1

[{Ca
i (DG)× (PDi − PDGi)× Δt + Cr

i (DG)× (QDi − QDGi)× Δt}+ {C(DG)× PDGi × Δt}+ λ × PL(DG)× Δt] (4)

The presented considerations of the authors of Reference [39] successfully confirm the
simulations on the radial distribution network model, where they prove the usefulness
of the proposed method for the allocation of one or more distributed generation in radial
distribution networks.

4.3.1. GA-Based Methods

GA is a space search heuristic that is inspired by biological process of natural selection
in which the most potent individuals of one generation give birth to individuals of the new,
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improved, generation. Genetic sequences determine the possibilities of the individuals
within the population. The individuals are rated based on fitness function and the most fit
ones reproduce to design a novel individual with better set of genes. If modeled correctly,
GA can bring real adaptive computer programs. Main genetic operators are crossover and
mutation, with all its advantages and disadvantages and difficulties in coding physical
and mathematical models from the power industry domain as genes [77]. Binary encoding
can be used in discrete search areas, while for continuous values a real-value encoding or
tree encoding scheme needs to be used [77,78]. The process by which binary GA operates,
as described in Reference [79] is presented by Figure 4. The process starts with objective
function formulation, as with any method, but after the initial population the GA operators
take place. In this example, each individual is encoded with n number of genes and each
gene consist of m number of bits, as given by Figure 4. The fitness evaluation is usually in
power engineering done my means of co-simulation and calculations. GA operators are
mandatory as they ensure that the algorithm observes the whole search space.

 
Figure 4. Binary GA general process diagram.

A fundamental feature of GA is competition among individuals and the principle of
elitism. Elitism implies the survival of only those individuals who have a high fitness score,
and all other individuals are rejected. When observing multiple objectives simultaneously,
it is necessary to pair individuals that have an elitist grade according to one of the criteria,
in order to obtain an offspring that can have elitist grades according to all criteria. In some
cases, most often when multiple solutions have equal value, not numerically, but value
to the observer, selection methods such as Tournament Selection and Rank Selection are
used in which individuals compete among each other in random manner to prove the
unquestionability of the best individual.

Injeti et al. [27] used simulated annealing method for optimization and compared re-
sults with results obtained with GA and PSO method. In Reference [27], the authors clearly
stated constraints that should be considered when using advanced optimization methods
of computational intelligence such as simulation limitations. Successful implementation
of one method of computer intelligence and review of other methods used for allocation
of distributed generation are clear indicators of the future research, as shown in the more
recent paper of the same authors [80].

PT,Loss =
n−1

∑
i=0

PLoss(i, i + 1) (5)
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PLoss(i, i + 1) = Ri,i+1·
P′2

i + Q′2
i

|Vi|2
(6)

In Equations (5) and (6) PT,Loss stands for total feeder losses and PLoss represents line
losses, the main minimization objectives considered in Reference [27].

Abou El-Ela et al. [40] used a method based on the GA for DG allocation and ex-
amined the proposed method by linear programming. The same authors concluded that
there is no significant deviation in the obtained results, thus confirming the usefulness
of computational intelligence–based methods. The authors of Reference [40] define clear
indicators with or without DG for voltage profile improvement—VPI according to (7);
spinning reserve increasing—SRI according to (8); power flow reduction—PFR according
to (9); and total line loss reduction—LLR according to (10) [40]. The developed-algorithm
authors successfully tested on a model of a real distribution network in Egypt.

Max VPI% =
VPw/DG − VPwo/DG

VPwo/DG
× 100 (7)

Max SRI% =
SRw/DG − SRwo/DG

SRwo/DG
× 100 (8)

Max PFR% =
PFk,wo/DG − PFk,w/DG

PFk,wo/DG
× 100 (9)

Max LLR% =
LLwo/DG − LLw/DG

LLwo/DG
× 100 (10)

The benefits of DG are present with index MBDG—maximal composite benefits of
DG—according to the authors of Reference [40]. For the limitations of the computer intel-
ligence optimization process, the authors state the limitations are the maximum number
of distributed generation units so in their paper authors analyze the distribution of one
distributed generation in the distribution network and conclude that the nominal power
of the power plant significantly affects the indicators determined by expressions (7)–(10)
unlike the location—node—of the power plant. The authors present the energy balance
of the observed system as a limitation of the optimization procedure and determine the
condition according to which the power of total production in the observed network
must be equal to the sum of all time-constant consumers and power losses. Similar au-
thors use GA to allocate the remote measurement and monitoring units in the Smart
Grid environment Reference [81], where they deeply explain the parameters of GA-based
optimization process.

Biswas et al. [41] used genetic algorithm for the optimal DG allocation in order to
reduce voltage sags in a real complex distribution network. Presented problems are per-
ceived by the authors through the real power losses (RPL) reduction objective function (11)
that takes into account quotient of product of voltage angle difference cosine and line
resistance with voltage level Aij, and quotient of product of voltage angle difference sinus
and line resistance with voltage level Bij; objective function for decrease of customers
that can be affected by the voltage sags in observed time period (NF) (12) with the total
load distributed, SDIST, and the load distributed for the i-th fault, LDISTi ; the objective
function of DG integration costs reduction (13), which is determined by financial units
per kilowatt of installed DG power (KC) and observed as the objective of determining the
least power of DG which will meet the previous two objectives [41]. The constraints of
the proposed algorithm that the authors have defined, similarly to previous authors, are
load-flow constraints through the specific branches, voltage constraints and limitations of
the number of DG units.

RPL =
Nb

∑
i=1

Nb

∑
j=1

Aij(PiPj + QiQj) + Bij
(
QiPj − PiQj

)
(11)
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Min SDIST =
NF

∑
i=1

LDISTi (12)

Min CDG = KC

NF

∑
i=1

PDGi (13)

The specifics of the proposed method based on the genetic algorithm is emphasized
in the integrated use of power flow calculations when evaluating the benefit of the best
solutions in each iteration. After evaluating the benefit of individual solutions based on the
power flow calculation, an additional algorithm of voltage failure analysis is performed,
which evaluates the impact of the proposed solutions on the number of time-constant
consumers covered by voltage failures. This approach is innovative because it considers
multiple objectives taking place as several separate optimization procedures. The way
in which the authors graphically present the results of several iterations with a three-
dimensional surface is seen later, in other works.

The limitations of methods based on a genetic algorithm for solving more complex
optimization problems are explained in the paper by Yang et al. [18] in which a hybrid
method of two genetic algorithms is used with the aim of determining the maximum
power of distributed generation, taking into account the voltage and technical limitations
of the elements of the distribution network. The first genetic algorithm, determined by the
objective function (14), determines the minimum power of distributed generation limited
by the short-circuit power on the primary side of the competent transformer, voltage level
and technical characteristics of the equipment in the system. The second genetic algorithm,
according to the function of the goal (15), determines the power of distributed production
that will meet the requirements of consumers of the observed derivative, while respecting
the solutions of the first genetic algorithm.
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Using this hybrid approach and using two genetic algorithms, the authors determined
the possible power intervals of distributed generation depending on the short-circuit power
on the busbars of the parent network. Moreover, same authors showed that in some specific
cases the usual meta-heuristic methods may give false solutions.

Methods based on genetic algorithms that solve optimization problems of reactive
energy generation with the objective of reducing losses in the observed systems are partic-
ularly presented in papers [82,83] and the paper of the author López-Lezama [84] where
the optimal distribution of the DG is determined according to the electricity price criterion.
In Reference [84], the advantage DG is presented through the possibility of achieving a
higher generated power price from the market price due to the fact that DG is near to
consumers and that feature results in fewer power losses. The same authors emphasize
that repeated optimization procedures with the random initial settings resulted in almost
identical solutions, thus confirming the usefulness of the proposed method.

4.3.2. PSO-Based Approaches

PSO is a population-based, biologically inspired method with a limited search space,
that can repeatedly result in usable optimization results. The intrinsic feature of the method
is the re-evaluation of an already past search space. Each possible solution in PSO is called
particle and it is described by position, mass and velocity. Particle has its own memory of
personal best solution and communicates with the group of particles to examine group’s
best solutions. PSO initialization implies random particles at random places and with
random parameters that are updated with each iteration. Particles follow their own fitness

19



Electronics 2021, 10, 1247

criteria, called personal best or pbest, but comply with the group’s fitness goals, called
group best or gbest. Depending on the fitness value, the particle follows the group, or vice
versa, as described by Figure 5.

Figure 5. Particle following in PSO.

There are cases where particles take the entire population in the wrong direction
or where a population converges toward a solution that is not globally best. This most
often occurs when the number of particles and parameterization in the population does
not correspond to the observed problem. When observing a challenge in a Smart Grid
environment, it is possible to easily solve wrong convergence by determining the number
and parameters of particles according to the observed electric power system. This means
that the number of particles in each generation should at least correspond to the number of
observed cases, and their random parameters should be limited to the uniqueness of the
search space.

Figure 6 gives a general overview of the PSO method process. At first it seems
that the PSO has more steps than GA, but given that PSO evolves around single swarm
representation, it shows better performance in most cases. Random swarm generation
should in most cases consist of at least same number of particles as there are discrete
possible solutions—in case of ADN and DG that number represents number of buses.
Each particle has its own velocity, which is encoded as power generation. When a swarm
identifies a spot, or a bus in distribution network, in which the DG is most necessary, that
becomes a new swarm orientation. Similarly, when a particle finds a most appropriate
power is more that becomes the global information. Particles are then updated with the
new information and the search space gets explored by the complete swarm.

In Section 3.1 of this paper, the possibility of distributed optimization platform was
mentioned for large power systems. Each CI-based solution in an interconnected multi-
layer power grid can be represented as a single particle of an overall PSO-based power
system management solution. Of course, at the time of writing this paper, this idea is only
a far theoretical consideration, but such were once the ideas and concepts discussed in this
paper, and today they are the basis for the development of advanced software solutions. It
will certainly be interesting to witness the development of modern power engineering and
the growing representation of CI methods in modern solutions.

A novel approach for solving problem of multiple DG units distribution suggest
the authors Alrashidi et al. [42] with the PSO algorithm as a basis of their method. The
proposed method is confirmed on the model of the distribution network with several
feeders and ten nodes where the optimal distribution of DG units have been determined
through the multiple scenarios with the power losses reduction objective according to (16).

minPLosses =
1
2

NB

∑
i=1

NB

∑
j=1

�{yij
}[|Vi|2 +

∣∣Vj
∣∣2 − 2|Vi|

∣∣Vj
∣∣cosδij

]
(16)
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Figure 6. General PSO process diagram.

The constraints of the algorithm of the authors of Reference [42] define through
the voltage constraints, load-flow limitations, size of the transformers and maximum
permitted number of DG units. The authors especially emphasize that their method requires
consideration of only one DG per node and only time-invariant production and invariant
consumers can be. This paper, together with Reference [85], represents a framework of the
development of a new method based on the Particle Swarm intelligence algorithm that
will solve the problem of multiple DG multiple per node by considering the time-varying
feature of loads and RES-based DG units. El-Zonkoly [85] defines the algebraic indicators
for the objective function used for multi-objective optimization problem solution. Such
indicators in the observed system are the influence of DG on active (ILP) and reactive (ILQ)
power, the influence of DG on the voltage conditions, the possibility of DG dispatch in
dependence of DG location and consumer location (IC), the influence of DG on short-circuit
currents (ISC). For each defined indicator, the author assigns the weight factor σ whose
variation opens the possibility to orientate the set of solutions to system management
solutions or to system development adapted solutions [86–88]. Multi-objective function
(MOF) thus becomes the sum of the indicator’s multiplications and the corresponding
weight factors according to expression (17).

MOF = (σ1·ILP + σ2·ILQ + σ3·IC + σ4·IVD + σ5·ISC) + MVAsys(pu) (17)

Such an approach is common in the scientific literature and represents the combina-
tion of several individual functions into one objective function. In that way, a modeled
optimization problem can be considered both single-objective and multi-objective optimiza-
tion. Actual multi-objective optimization implies a vector of functions and the existence of
opposing solutions.

In the second paper of the same author [88], the problem of the system load peak
following is solved by the optimal DG allocation using the method based on the artificial
bee colony algorithm, a subset of PSO algorithm. The proposed algorithm addresses the
DG distribution by considering the criterion that the most demanding consumers are
designated as primary for the DG integration. In this paper, the author considers three DG
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units in a system with 45 nodes or three DG units in a 33-node system while the installed
DG capacity does not exceed 30% of total system load. A significant advantage of this paper
is the consideration of two types of DG technology, one time-varying and unmanageable
and other manageable DG. Moreover, the author anticipates the use of electricity storage
system to reduce the required commitment of manageable DG.

Authors Gomez-Gonzalez et al. [43] represents an integration of load-flow calcula-
tion with an algorithm based on Particle Swarm intelligence to determine the optimal
distribution of DG units, as presented by Figure 7. The authors of Reference [43] used the
frog-jumping algorithm (18), which belongs to the group of PSO algorithms. Because of its
specificities during particle coding, the algorithm is better adapted for the optimization of
discrete values.

Pt
ω = pω,max − (t − 1)·(pω,max − pω,min)

(tmax − 1)
t = 1, 2, . . . , tmax (18)

 
Figure 7. Simplified illustration of PSO and Power Flow co-simulation by Gomez-Gonzalez et al.

Significant contribution of this paper is a determination of an optimal number of
DG units which must result in the ability of the observed system self-sufficiency. This
emphasizes the value of this paper compared to previous papers in which the location and
the capacity of only one DG unit were considered.

Moradi and Abedini [44] produced a new method based on a synergy of GA and
PSO. The authors propose the genetic algorithm for optimal DG location determination
and Particle Swarm Optimization technique for adequate DG capacity. This paper wisely
used GA’s possibility to perform better for integer-based, binary encoded, problems and
continuous orientation towards the best solutions specific for the PSO algorithm.

Interestingly, the authors examined three separate cases, one with PSO only, one with
GA only, and one with the proposed GA/PSO combination. According to the results
presented in their work, the highest value of the objective function was achieved by
a separate GA, while PSO and GA/PSO gave equal values of the objective function.
However, the variance of the solution in PSO is many times less than in GA, while in the
combination of GA/PSO variances in the objective function are negligible compared to any
other algorithm.

Simplified flowchart of the presented hybrid method is given by Figure 8 by which
the statement how the discrete values of the buses in the power system is a mitigatory
circumstance is confirmed. The authors Moradi and Abedini used GA for DG location
observations; since the DG location can be only on a system bus, it cannot be somewhere
in between, and PSO is used for continuous optimization of DG power once the bus
is identified.

The fulfillment of the technical conditions is defined by the algorithm constraints that
are integrated into a common function according to (19). The function f 1 represents the
objective of real power losses reduction, the function f 2 represents the objective of the
voltage profile improvement while the function f 3 is the radial feeder voltage stability index
taken from the literature. Coefficients k1, k2, β1 and β2 represent the penalizing coefficients
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of the corresponding expressions. The presented objective function considers the values of
the voltage (Vni) and the apparent power (Sni) on the observed radial feeder busbars.

f = Min

(
( f1 + k1 f2 + k2 f3) + β1 ∑

i∈NDG

[
max(Vni − Vmax

ni , 0) + Max
(

Vmin
ni − Vni, 0

)]
+ β2 ∑

i∈N
max(|Sni| − |Smax

ni |, 0)

)
(19)

 
Figure 8. Simplified illustration of PSO and GA hybrid method by Moradi and Abedini.

According to the authors, the proposed method shows a significant increase in the
accuracy and repeatability of the results, but the authors conclude that more time is needed
for the method implementation compared with using one of the methods separately.

An innovative approach to optimization is offered by Saif et al. [46] defining a
simulation-optimization process where the technical validity of the optimization is eval-
uated by a simulation check instead of the optimization process limited by equality or
inequality. The developed method, which authors call dual layer simulation optimization
because of its simultaneous performance in the MATLAB and the GAMS programming
tool, uses the load-flow calculation for all simulation cases and Particle Swarm method
to determine the distribution of different types of unmanageable DG with objective to
increase the reliability of the system supply and to reduce operating and investment costs.
The developed method is successfully implemented on the part of the real power sys-
tem. Surprisingly, among the optimal DG distribution solutions solar power plants and
electricity storage systems are not included, but only a wind power plants which authors
attribute to the availability of primary energy in the observed area. The conclusion of their
work is to meet the energy needs of the observed network with multiple radial feeders
using unmanageable DG thus creating the precondition for the island operation of a future
Smart Grid.

Two papers by Aman et al. [49,89] describe the use of the PSO algorithm with the
objective of scheduling multiple DG units. The authors introduce new criteria for describing
the impact of a DG unit on the observed network—the criteria of possible increase of load
and index of feeder stability. By additional checks and comparisons of the proposed method
with the analytical method and the search algorithm, the authors confirm the correctness
of the use of the PSO algorithm to solve the DG scheduling problem with losses reduction
objective thus achieving the most useful impact of DG on the observed network.

Comparison of optimization methods developed on the basis of the PSO algorithm and
the analytical approach were presented in the paper of Kansal et al. [47] which addresses
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the problem of distribution of different DG technologies with objective of reducing losses
according to (20).

Min PL =
N

∑
i=1

N

∑
j=1

[αij(PiPj + QiQj) + βij
(
QiPj − PiQj

)
] (20)

Authors define four DG types, considering the possibility of generating active and
reactive power and suggest integration of one of them with respect to the results of the
simulation. The results obtained with different optimization approaches are identical in the
analysis of the optimal DG location and vary up to 5% for the optimal DG power dispatch.

In the leading scientific bases exist several scientific papers that use biologically
inspired optimization algorithms. Niknam et al. [90–92] published several papers where
honey-bee mating algorithm is used to solve the multi-objective problem of DG distribution
in the distribution network [90] or to solve the problem of change of distribution network
topology [91,92]. Equations from Reference [90] are given by (21)–(24):

F1(X) = min
Nf c

∑
i=1

Cf c

(
Pf c

)
+
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F2(X) = min
Nbus

∑
i=1

∣∣VRating − Vi
∣∣

VRating
(22)

F3(X) = min
Nd
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t=1
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∑
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(
Ri × |Ii|2 × Δt

)
(23)

F4(X) = minEt f c + Etwind + Etpv (24)

In the papers authored by Niknam, according to the principle of selection of the
queen bee among the bees, the best candidate for the survival of a population in the power
engineering represents the DG or network topology.

The usefulness and efficacy of the PSO algorithm is further clarified in References [70,93–99],
where this algorithm has been used to solve optimization problems or prediction problems
and algorithms of evolution strategy have been compared with this algorithm.

Authors Kumari et al. [70] compared the GA, the improved GA and PSO algorithm
for optimizing static VAR compensators in the network with the objective of reducing
losses and achieving optimum load flows in the network. The improved GA suggested by
authors is highlighted by the implementation of five additional gene crossing operators, in
addition to the three commonly used ones, and according to their results, it provides the
best optimization results.

Authors Yin et al. [93] used the PSO algorithm to optimize the allocation of computer
processes to distributed processors, and this work, although in the field of computer
science, thoroughly clarifies the application of the used algorithm. With the hybrid method
which arose from the combining of the PSO algorithm and fuzzy logic systems authors
Zhang et al. [94] solve the problem optimal reactive power flows to maintain voltage
in transmission networks. The best solutions of each iteration of the Particle Swarm
intelligence algorithm in this paper have been used as a measure of the feature parameters
for the next iteration.

The adjusted PSO algorithm that addresses the problem of optimal DG allocation with
the objective of losses reduction in the observed system is presented by Ashari et al. [95]
while the usual Particle Swarm intelligence algorithm approach to solve the same problem
is used by Bhumkittipich et al. [96] for the similar problem. A complete review of all
derivatives of the PSO algorithm that have been known to authors Zhang et al. [97] and
which can result in a number of best solutions, points to the usefulness of the PSO algorithm
to solve many optimization problems. The apparent similarity of the algorithms in the
papers of various authors [44,98] suggests that it is possible to achieve somewhat different
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approach and custom algorithm with exceptionally small variations in the principles of
performance. That is also warned by authors [59] who advocate for a different development
process of meta-heuristic methods and more significant changes.

A hybrid approach for addressing the DG distribution with the objective of total losses
reduction and maintenance of a complex distribution network voltage profile, based on a
unified GA and artificial neural networks, along with the GA and power flow calculation,
is presented in Reference [100]. In this paper, the genetic algorithm determines the optimal
location of one DG in a distribution network while the DG impact on the total losses is
determined by the artificial neural network integrated into the GA. Described approach
has not resulted in valid solutions when addressing the DG distribution problem in ring
topology of distribution networks and a new hybrid approach has been developed by
combining the genetic algorithm and the power flow calculation. In the same paper is
presented a hybrid algorithm developed on the unification of two artificial neural networks
with operating principles based on the search algorithms, but the authors point to the
disadvantages of such an approach.

The need for active distribution network management is mentioned for the first time
in the scientific paper of authors Soares et al. [45], who recognized the need for answering
to consumer demands and the periodicity of some energy resources. The authors presented
a special form of signaled PSO algorithm that enabled particles to change the speed
parameter during the optimization process to gain the most feasible combination of wind,
photovoltaic, fuel cell and energy storage. Change of speed was defined by given rules
and observed with demand response and optimal storage charge/discharge. The proposed
method was successfully tested on a model of Portugal’s power system. Use of such
precisely designed meta-heuristic optimization methods in market environment and real-
life conditions was proven, and the direction of future scientific research was given in the
form of one-day division in 24 independent simulations, which later became the paradigm
of all future research. Although the proposed method did not provide the most economical
result, but the second of six different methods, the most efficient method mixed-integer
nonlinear programming (MINLP) is not suitable for larger systems and is not fully usable
in production [45]. The authors presented with great quality a mathematical model of
contemporary challenges in the power system, given by expression (25).

NW
∑

W=1
PWind(w,t) +

NPV
∑

PV=1
PPhotovoltaic(PV,t)

+
NFC
∑

FC=1
PFuelCell(FC,t)

+
NS
∑

S=1
PStorageDischarge(S,t) +

NLC
∑

LC=1
PLoadCurtailment(LC,t) =

NL
∑

L=1
PLoad(LC,t) +

NS
∑

S=1
PStorageCharge(S,t) ; ∀t ∈ {1, . . . , T}

(25)

Expression (21) lacks the observability of power losses in power equipment, such as

cables and transformers, that can be described as
NPL
∑

PL=1
PPowerLosses(PL,t) and added to the

right side of the equation for the part of the Smart Grid to be self-sufficient. Observed units
PV, FC, S, LC and L present appropriate technologies used in period t.

Presented scientific papers are clear indicator of the possibility for the development of
robust intelligent solutions that can solve a certain set of complex problems in the power
engineering, but without needed criticism, approaches based on soft computing methods
should not be accepted as general solutions for absolutely all cases [101]. The authors also
gave a mathematical model of technical limitations of the power system as inequalities that
consider the specifics of individual technologies.

Reliability of distributed generation supply was introduced by Saif et el. [46] who
presented double-layer simulation optimization, using load flow for all simulations and
Particle Swarm Optimization in order to increase reliability of observed system. The authors
optimized the given problem by aiming for operating and investment cost reduction.
Developed method was successfully tested on a British power system model and the
results were compared to other optimization methods. The authors of Reference [46]
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identified conditions for isolated distribution network operation. Aman et al. [38,49]
used standard Particle Swarm Optimization algorithm, but introduced new criteria for
describing the impact of distributed generation such as increasing the load capacity of
observed system and the stability of network feeder.

The presented papers clearly point to the logical conclusion that, the once advanced
and sometimes obscure methods known only to the scientific community, with today’s
computing power, can be used effectively in real production and be integrated into tools
to optimize the distribution network in real time. Detailed mathematical models with
metaheuristic methods supported by iterative calculations with thoroughly examined
features and shortcomings of individual methods promise a new advanced Smart Grid in
the future.

4.3.3. GA and PSO Comparison

GA and PSO share many common features, such as random start, fitness values,
population update based on randomness and necessity for fine-tuning in order to find
global optimum [57]. However, PSO does not have crossover and mutation operators and
particles have memory and velocity. Main difference between two methods is that GA
comes with new solutions with struggle among individuals, while PSO nurtures social
interaction between particles.

Social interaction in PSO defines natural leaders that spread information to others,
while in GA chromosomes share information with each other and guide the whole group
towards distinct area, leaving only elite individuals in each iteration. Moreover, population
in GA gets smaller with each iteration since some of the individuals become removed,
while in PSO population is constant and particles always have purpose in fine tuning the
possible solution.

PSO is derivative-free, robust and flexible method, but prone to premature conver-
gence if tuning parameters are not correct. However, particle parameters can be enhanced
with solid mathematical equations that improve analysis and provide realistic convergence
conditions. Self-organization of PSO with bottom-up approach integrated in the method
prove wide applicability in many scientific areas.

Global perspective of each particle in PSO improves clustering efficiency and enables
PSO algorithm to test multiple areas of the search space at the same time. Instead of
competition-based GA, PSO values the cooperation of particles and the exchange of values
according to objective criteria.

For greater overview and comparison Table 1 gives a perspective on solved challenges
in ADN and SG environments. In accordance with the Chapter I—Introduction of this
paper, Table 1 clearly gives a standpoint how the Distribution Network Optimization
includes many topics and issues identified in the modern distribution networks, such
as feeder reconfiguration, island operation, pricing and energy market, voltage profile
improvements, etc.

5. Optimal Smart Grid Management

Intuitive thinking about the purposefulness of presented papers and research is
confirmed by studying features in the field of research in current European and world
research activities. Since 2009, the Working Group for Advanced Power Grids of the
European Commission Smart Grids Task Force has been continuously issuing guidelines
for the development of modern power systems [102].

Advanced power systems imply a change in paradigm by enabling DG, but also
the application of technologies for monitoring, operational management, regulation of
production and consumption using information technologies that are not the subject of this
scientific research. The Joint Research Center for Smart Electricity Systems and Interoper-
ability leads regulatory, technical and economic research at the level of the European Union.
According to the relationship matrix [103] of the Joint Research Center, the countries most
involved in research into advanced power systems are Spain, France, Italy, Germany, the
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United Kingdom, Belgium and the Netherlands. Looking at the overview of the identified
trends of the Joint Research Center [104] and the reviews of European distribution system
operators [105], it is easy to conclude that innovative scientific research should provide
answers to the challenges observed in the literature.

The issue of active distribution network management is observed in recent scientific
papers, mostly continuously for the past two years, and factors that can contribute to sig-
nificant DG integration are identified and structured as multi-objective planning and active
management [50,106–114]. Modern grids imply multiple technologies such as advanced
metering infrastructure, EMS, DMS, Big Data solutions and data management, pricing
mechanisms on a day ahead market and inner day markets, various paradigms such as
demand response, fault classification and DG scheduling, and horizontal and/or vertical
control possibilities [53,115–117]. Colmenar-Santos et al. [75] detailed the challenges raised
from increased DG integration in distribution network identifying advantages and tech-
nology characteristics of active management network with DG operational optimization.
In the fourth section of their paper authors distinguish optimization techniques based
on Reference [54] and give comprehensive overview of advantages and disadvantages of
different DG optimization techniques focusing on hybrid methods, thus becoming basis of
future research by many scientists. Multi-objective planning, controllable loads, dispatched
DG, stochastic DG and demand response become more prominent in Reference [75] as
the report progresses. The authors touch upon regulatory and policy barriers preventing
significant DG integration in the fifth and sixth sections of their paper, identifying the need
for policy change according to the example of Germany, Denmark and Spain [75].

Power System of the future will enable justified use of energy, fairness in energy
sharing, security of data and data governance, user own control and autonomy of the
household while participating in a fair manner in energy community and virtual energy
hubs [118]. The transition of the power industry will not go smoothly and synergy of
all actors, legal and technical, regulatory and market, is needed for the transition to
succeed [119], but when it does, the benefit will be for everyone included. As mentioned in
Section 2, shifting the Smart Grid towards Cloud computing enables smoother transition,
and the emergence of the Edge Computing paradigm enables the power industry to
flourish [120].

Future of distribution networks are discussed by Bayod-Rújula et al. [50] and authors
conclude that active distribution network with total control represents the first stage to-
wards more advanced Smart Grid. According to the authors, second stage of distribution
network development represents the microgrid system, a fully controlled entity that may
provide ancillary services to the main system; third stage are virtual utilities with oper-
ational energy management system yielding optimization opportunities; demand-side
management and demand response techniques become available once the previous prereq-
uisites are met hence paving the way towards information and communication technology
implementation [50].

In the wake of such information is paper by Shi et al. [109] where authors show
operational energy management in microgrid system consisting of dispatchable and non-
dispatchable DG, interruptible and deferrable loads and energy storages. Simplified
overview of the described system is given by Figure 9, and similar models can be used to
validate any other control solution intended for production purposes, as it was the case for
the validation purposes of this paper.

Authors comply their proposed management solution with IEC 61850, a communi-
cation standard for Smart Grids [121] and present output schedules for grid-connected
and islanded modes of operation, respecting bus voltages while minimizing network re-
quirements. Operational energy management in distribution network is identified as the
central problem of future distribution networks, microgrids and Smart Grids. Importance
of this paper is evident in direct application of the scientific method in real-life microgrid
environment. The authors present the results on a daily diagram, divided in 24 intervals,
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and give operating schedules for PV system, Wind power plant, Diesel generator, battery
storage and controllable load.

 
Figure 9. Simplified model of microgrid used for validation in this paper, inspired by Reference [109].

The system is controlled by Micro-Grid Central Controller (MGCC) with Exact, Convex
Programming–based algorithm for Nonlinear Systems and Models based on predictor
corrector proximal multiplier algorithm and optimal power flow formulation [109].

Operational microgrid energy management based on mixed-integer linear program-
ming solution considering wind power and PV system generation volatile characteristics,
aided by storage system and grid connection can be found in the paper by Umeozor and
Trifkovic [122]. The authors collected meteorological data to eliminate forecasting errors
and schedule DG production accordingly. Different pricing scenarios were considered, and
the authors concluded that economic circumstances of observed system greatly affect the
output parameters.

The authors of Reference [123] represent the hybrid method emerged by combination
of sorting GA without dominant solutions and Rough Set Theory tests. The method is
used for solving the problem of optimal energy management in a distribution network that
consists of 123 nodes, 7 micro-grid systems and 9 distributed energy sources. The authors
suggest a game theory interactive matrix described by 10 mathematical expressions for
solving the interaction between different sources observed through the point of common
coupling (PCC). Multiple sources are observed during the operative control of one or
multiple micro-grid systems inside of distribution network with L number of nodes.
Interactive matrix is optimized by the minimization of three objective functions, (26)–(28),
using the adapted hierarchically arranged GA, and the proposed method is tested on the
IEEE 33 node test network in which the authors integrate three microgrid systems. In
expressions (22)–(24), Ul,t implies voltage at node l within a network consisting of nodes
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set L; PPCC
l,t stands for PCC power exchange of microgrid at node l; PLOSS

t represents power
loss of ADN and θ is power exchange level of the observed system.

minG1 =
T

∑
t=1

√
∑
l∈L

(Ul,t − 1)2/L (26)

minG2 =
T

∑
t=1

√
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2/T (27)

minG3 =
T
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By comparing the results from the soft computing optimization methods with the
results from the classical mathematical approach, the authors conclude that proposed
approach yields betters results during the optimization of more complex systems with
multiple DG units. The authors emphasize the specific achievement of the paper in the
efficient methodology for solving complex optimization problems by using the computer
intelligence, while the additional procedures and other hybrid solutions must be explored.

Automatic generation control (AGC) of distribution network with high share of DG
and electric vehicles based on framework established for transmission systems is presented
in the work by Batisetelli et al. [113]. The authors scaled the known AGC hierarchy to
control DG, local distribution and load subsystems and logically divided active distribu-
tion network to virtual power isles managed by centralized control. Electric vehicles may
contain both generation and load characteristics therefore authors deal with both problems
simultaneously through linear programming model optimized by CPLEX optimizer that
can be implemented in energy management system of active distribution network. The
model described in Reference [113] was tested and confirmed on a realistic four-feeder
system from which the “smart user grid (SUG)” paradigm is developed by integrating
multi-agent system procedures and entities of different functionalities. Extremely revealing
contribution of the authors [113] is evident in “criteria for implementation and coordina-
tion of automatic generation control”, comprising the communication necessary between
observed levels, similar to the one presented in Reference [29]. Discrete 24-segment sim-
ulations representing 24-hour schedule is the methodology of most authors, including
the one in Reference [113]. Although not the typical computational intelligence approach,
paper considered important aspects of ADN management with increased ratio of various
types of DG. The absence of advanced optimization techniques is completely justified by
an excellent principle demonstration that was clearly the goal of Reference [113], while
the practicality and robustness of optimization solution developed on this research basis
should consider more complex methods.

Scientific work in the wake of the abovementioned paper can be found in paper by
Jun et al. [114] where authors solved the multi-agent optimization problem by means of
integer programming dividing the day planning in 24 segments. EMS has a significant
role in valid operation, optimization, control and balancing of “hybrid renewable energy
generation system”, as stated by the authors, and specific challenges of management
scheme are described in this paper. Complex unified modeling language diagram, solved
in Java Agent Development Framework, of multi-agent system is presented, showing
system classes, attributes and relationships between them. The authors introduce new
parameters computed by individual agent that indicate the attention of observed agent
as load, or as DG. These parameters suggest the economic and power qualities of each
agent integrating the stochastic nature of some RES. Detailed analysis of EMS conclude the
structural requirements of future communication, behavior and optimizations objectives.

Significant papers indicate the importance of considering meteorological dependen-
cies of some RES-based DGs along with independencies of other types of non-RES DG
units. Gu et al. [124] thoroughly defined factors of the future management service consist-
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ing of demand side management, operation objectives, energy pricing, weather forecast,
energy management, maintenance scheduling, physical limitations of equipment involved,
operation scheduling and interaction with main supply grid via PCC. The authors define
the perspective of energy management by achieving higher level of efficiency and lower
emission levels while maintaining power quality and providing ancillary services.

From their work, one can get a clear idea of what a future energy management system
for the distribution network should look like and what should be taken into account, as
illustrated by Figure 10. The authors thus state how to respect consumers, plan according to
meteorological indicators, consider equipment limitations and the situation on the energy
market, all in order to plan the optimal timetable of DG.

 

Figure 10. Energy management system of the future distribution grids, inspired by Gu et al.

Zhang et al. [125] concluded that operational management can reduce line losses and
improve voltage profiles which will benefit DG developers as well as distribution network
operators. The authors define the traditional distribution network planning and operation
as “fit and forget” methodology and conclude that this principle will need to change
in order to allow higher penetration levels and development of Smart Grid. Mohamed
and Mohammed [126] developed effective mathematical algorithm for distribution grid
management in a Smart Grid form by giving priority to renewable energy resources while
maintaining least possible cost and satisfying load demand. The authors predicted PV
generation by historical data and statistical smoothing techniques, while wind generation
and load data were modeled by non-linear regression modeling. The main objective
achieved by Reference [126] is minimizing the power obtained from parent grid while
retaining additional power for sudden demand changes. A case study of Smart Grid
management in Japan is presented in Reference [127] from a policy perspective, and an
essential requirement for management services in order to achieve maximal benefits is
highlighted in this paper.

Significant achievement towards real-time economic dispatch and operational man-
agement of active distribution network is evident in paper by Kellerer et al. [128] in which
authors propose new method based on statistical inference method—a probabilistic graph-
ical model method. The authors prove algorithm functionality in global optimal search,
irrelevant of network size, and with the assumptions that 70% of consumer nodes have
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randomly integrated RES-based DG units. The main subject of their observations is in
solving the economic dispatch problems without having a full knowledge of all compo-
nent models, for which they assume is difficult in competitive market environment. The
proposed algorithm is successfully tested on a network whose topology is based on real
Smart Grid data in Southern Germany.

With the objective of reducing CO2 emissions Lamadrid et al. [129] proposed a novel
optimization solution that favors RES in power dispatch and scheduling, if the technology
permits planning. From the perspective of system operator and in compliance with network
policies, authors present their optimization formulation respecting technical and economic
limitations and prove the usefulness of their method by testing it on 279-bus transmission
network in Texas, USA. The authors have taken into consideration a stochastic nature of
some RES and gave them priority in dispatch schedule. Although modeling is complex, au-
thors managed to perform it correctly by using mathematical correct workaround solutions.
By proposed solution authors managed to simulate a future 24-hour period which is ade-
quate for system schedule and operation in market conditions. For wind power modeling,
authors used combination of historical and calculated data. This paper is very important
due to the complexity of observed problem, and although the authors themselves say that
improvements are needed, this paper presents state-of-the-art in operational management
and DG scheduling.

A modified self-adaptive PSO algorithm serviceability for multi-objective optimal
operation management of a distribution network containing a fuel-cell power plant was
proven in paper by Niknam et al. [130], and a computational intelligence principle was
described that contained fuzzy-controlled decision-making. The authors developed a
practical 24-segment algorithm, providing Pareto solutions. A similar fuzzy controlled
approach can be found in paper by Elamine et al. [131] where wind speed is deter-
mined by PSO optimized ANN based on small historical set and fuzzy agent for battery
storage management.

Previous scientific works have successfully identified key issues and constraints that
need to be addressed when creating a widely applicable solution for active distribution
network operational management and scheduling. The biggest disadvantage of presented
papers is the need for a complex mathematical model of the observed system which is
usually not sensitive to structural changes in the same system, hence not applicable to
distribution grids. Accordingly, universal applicability of the proposed solutions is not
always achieved, and each observed case is at the same time the only case observed and
researched by a group of scientists. Issues in Smart Grid application can be compartmen-
talized into five categories [132]: concept presentation—advantages and limitations of
renewable energy distributed generation; technology adoption for hybrid energy system;
optimal allocation problems and technical characteristics; forecasting, pricing and policy
issues; Smart Grid–integration challenges.

With the development of active distribution networks, which aspire to become Smart
Grids, the emphasis of scientists in this area will tend to be on the development of widely
applicable and robust solutions for which it will be necessary to consume and respect the
knowledge and achievements displayed in all of the so-far listed scientific works.

6. Conclusions

The initial premise of the presented research was to identify scientific breakthroughs
and papers that can be delivered as a working solution for future power grids.

The research was conceived in five key steps that begin with the selection of papers
and continues with the modeling of the described procedures and testing of the solutions
traceability. Finally, the usefulness and applicability were discussed at the research team
level, and conclusions are given in this paper.

Papers with precise models and comprehensive descriptions of computational
intelligence–based methods proved to be highly usable in the development of real so-
lutions for Smart Grid operational management. Modern systems for monitoring and
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managing an advanced distribution network according to the assumed European Smart
Grid framework will have to integrate scientifically validated and model-tested solutions
that consistently provide accurate data.

Within the space–time possibilities and within the available literature, the authors
of this paper collected, processed, examined and evaluated as many papers as possible,
which with their content promise applicability of computational intelligence in real-world
systems. If any work was missed, it was certainly not intentional, and the knowledge
and information presented in this article were compiled with the idea of serving anyone
involved in optimization and management in the Smart Grid environment. The presented
works systematically and precisely present the advantages of the applicability of meta-
heuristic methods in the optimization of various challenges in the power industry, with
an emphasis on the optimization of operating conditions in the distribution network. Al-
though the emphasis of the paper was placed on metaheuristics—because only with it
does it become possible to solve very complex systems—the paper also presents simpler
analytical methods that can be used to solve the optimization problems of smaller sys-
tems. However, scalability of potential real-world solutions can only be ensured with
computational intelligence and advanced custom-made metaheuristics.

This paper illustrates the problem of planning the optimal operation of an advanced
distribution network with a significant number of distributed generation units and provides
the cognitive process of deciding on the framework for the development of contemporary
management solutions. Metaheuristic proves to be a necessity in large and complex systems,
such as the modern Smart Grid, and modern control solution that integrate metaheuristic
methods will provide good-enough solutions for everyday usage. Operators of the future
grid will need to settle with such “good-enough” solutions as the grid becomes more
complex and variable in nature.

A detailed overview of more than a hundred key papers with important mathematical
indicators provides a unique insight into the application of computer intelligence in power
engineering. According to the authors of this paper, population methods in a limited search
space can yield the best result in terms of repeatability and usability, and with increasing
computing power, such optimization procedures based on computational intelligence can
take place within the market conditions of real systems.

Finally, methods, procedures and paradigms that can provide reliable operational
management in advanced distribution networks were explained, and features of each of
them were discussed with the mark-up of leading algorithms, PSO and GA, which can be,
to a greater or lesser extent, applied in real-world applications.
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Appendix A

For better understanding and reproduction of the findings of this paper, and for easier
catching-up with the mentioned papers, the authors have prepared an abbreviation list.
Since some authors choose similar letters and abbreviations, in the description field of
Table A1, we give the paper to which the abbreviation applies.

Table A1. Nomenclature and abbreviation list.

Abbreviation Description Unit

αij
Sensitivity factor of real power loss with respect to Real power injection from DG
(Acharya et al., 2006) MW

αij The transmission coefficient of the real part of the complex power by Kansal et al. (2013) n

Aij
Quotient of product of voltage angle difference cosine and line resistance with voltage level
(Biswas et al., 2012)

βij
Sensitivity factor of reactive power loss with respect to reactive power injection from DG
(Acharya et al., 2006) MVAr

βij The transmission coefficient of the reactive part of the complex power by Kansal et al. (2013) n

Bij
Quotient of product of voltage angle difference sinus and line resistance with voltage level
(Biswas et al., 2012)

β1 Penalty coefficient (β1 = 0.32) (Moradi and Abedini, 2012) β1 = 0.32

β2 Penalty coefficient (β2 = 0.3) (Moradi and Abedini, 2012) β2 = 0.3

Ca
i Active power prices with DG (Singh and Goswami, 2010) US$/MWh

Cr
i Reactive power prices with DG (Singh and Goswami, 2010) US$/MWh

CDG Total cost associated with the DGs (Biswas et al., 2012) US$ mil.

Cf c Cost of power generation from fuel cell (Niknam et al., 2011) US$

Cwind Cost of power generation from wind power (Niknam et al., 2011) US$

Cpv Cost of power generation from photovoltaic system (Niknam et al., 2011) US$

Costsub Cost of substation (Niknam et al., 2011) US$

δij Voltage angle difference between bus i and bus j (Alrashidi and Alhajri, 2011) rad

Et f c Emission of atmospheric pollutants from fuel-cell power generation (Niknam et al., 2011) kg/h

Etwind Emission of atmospheric pollutants from wind power generation (Niknam et al., 2011) kg/h

Etpv Emission of atmospheric pollutants from photovoltaic power generation (Niknam et al., 2011) kg/h

Ii Actual current of the i-th branch (Niknam et al., 2011) A

ILP Real power losses after DG integration by El-Zonkoly (2014.) %

ILQ Reactive power losses after DG integration by El-Zonkoly (2014.) %

IC MVA capacity index regarding the power flows through conductors in paper by
El-Zonkoly (2014.) %

IVD Voltage profile index, observed as voltage deviation from the nominal value by El-Zonkoly (2014.) %

ISC Short circuit level index, observed as DG impact on short circuit current increase in paper by
El-Zonkoly (2014.) %

k1 Penalty coefficient (Moradi and Abedini, 2012) k1 = 0.6
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Table A1. Cont.

Abbreviation Description Unit

k2 Penalty coefficient (Moradi and Abedini, 2012) k2 = 0.35

KC Is the cost of DG per KW (Biswas et al., 2012) US$

λ Electricity price at power supply point (Singh and Goswami, 2010) US$/MWh

L Set of nodes in ADN by Lv and Ai (2016) n

LLR Total line-loss reduction (Abou El-Ela et al., 2010) %

LLwo/DG Line-loss without the DG (Abou El-Ela et al., 2010) MW

LLw/DG Line-loss with the DG (Abou El-Ela et al., 2010) MW

LDISTi Load distributed for the i-th fault (Biswas et al., 2012) MW

MBDG Maximal composite benefits of DG (Abou El-Ela et al., 2010)

MOF PSO-based multi-objective function by El-Zonkoly (2014.)

N Number of buses in distribution system by Kansal et al. N

NB Number of radial distribution system buses (Alrashidi and Alhajri, 2011) n

Nbr Number of the branches (Niknam et al., 2011) n

Nbus Total number of the buses (Niknam et al., 2011) n

Nd Number of years (Niknam et al., 2011) n

NF Total number of faults within a specified time duration (Biswas et al., 2012)

Nfc Number of fuel-cell units (Niknam et al., 2011) n

Npv Number of photovoltaic units (Niknam et al., 2011) n

Nwind Number of wind units (Niknam et al., 2011) n

θ Power exchange level by Lv and Ai (2016) kW/t

Pt
ω Inertial probability (Gomez-Gonzalez et al., 2012) Q ∈ [0, 1]

pω,max Maximal inertia per population (Gomez-Gonzalez et al., 2012) Q ∈ [0, 1]

pω,min Minimal inertia per population (Gomez-Gonzalez et al., 2012) Q ∈ [0, 1]

PDi Active power demand at any bus i (Singh and Goswami, 2010) MW

PDGi Real power injection at node i (Acharya et al., 2006) MW

PDGi Active power generated by DG (Singh and Goswami, 2010) MW

PDGi Size of the i-th DG (Biswas et al., 2012) MW

PDi Load demand at node i (Acharya et al., 2006) MW

P′2
i Real power flows at the receiving end of the forward-update procedure by Injeti el al. MW

Pi, Pj The active power injections at bus i and bus j by Kansal et al. MW

Pf c Power generated from fuel cell (Niknam et al., 2011) kWh

PG Active power of distributed generation (Aman et al., 2012) MW

PPCC
l,t PCC power exchange of MG n by Lv and Ai (2016) kW

PLoss Line losses (Injeti and Prema Kumar, 2013) MW

PT,Loss Total feeder losses (Injeti and Prema Kumar, 2013) MW

PLOSS
t power loss of ADN in paper by Lv and Ai (2016) kW

PDG
eleect The price of electricity (Singh and Goswami, 2010) US$/MWh

PFR Power flow reduction in critical lines (Abou El-Ela et al., 2010) %

PFk,wo/DG Power flow in line k without DG (Abou El-Ela et al., 2010) MW
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Table A1. Cont.

Abbreviation Description Unit

PFk,w/DG Power flow in line k with DG (Abou El-Ela et al., 2010) MW

Ppv Power generated from photovoltaic system (Niknam et al., 2011) kWh

Pwind Power generated from wind power (Niknam et al., 2011) kWh

Q′2
i Reactive power flows at the receiving end of the forward-update procedure by Injeti el al. MVAr

QDi Reactive power demand at any bus i (Singh and Goswami, 2010) MVAr

QDGi Reactive power generated by DG (Singh and Goswami, 2010) MVAr

Qi, Qj The reactive power injections at bus i and bus j by Kansal et al. MVAr

Ri Resistance of the i-th branch (Niknam et al., 2011) Ω/km

rij Real part of line impedance (Aman et al., 2012) Ω/km

R1i(j) Equivalent resistance between bus 1 and bus i when DG is located at bus j (Wang and Nehrir,
2004) p.u.

RPL Real power loss (Biswas et al., 2012) MW

σ1, σ2, σ3, σ4, σ5 Weights for corresponding importance of each DG impact index by El-Zonkoly (2014.) σp ∈ [0, 1]

SDIST Total load distributed (Biswas et al., 2012)

|Sni| Apparent power at bus ni(Moradi and Abedini, 2012) MVA∣∣Smax
ni
∣∣ Maximum apparent power at bus ni(Moradi and Abedini, 2012) MVA

SRw/DG Spinning reserve with DG [23] (Abou El-Ela et al., 2010) p.u.

SRwo/DG Spinning reserve without DG (Abou El-Ela et al., 2010) p.u.

SRI Spinning reserve increasing (Abou El-Ela et al., 2010) %

T The sum of scheduling period t in paper by Lv and Ai (2016) n

Δt Time step (one year) (Niknam et al., 2011) n

Un
set of types of DGs in Microgrid n; u = 1, 2, 3, 4 and 5 denote fuel cell, microturbine, battery
storage, Photovoltaic System and Wind turbine, respectively, by Lv and Ai (2016) n ∈ [0, 5]

Vi The bus i voltage (Alrashidi and Alhajri, 2011) p.u.

Vi Real voltage of the i-th bus (Niknam et al., 2011) p.u.

|Vi|2 Voltage magnitude at the receiving end of the forward-update procedure Injeti el al. p.u.

Vj The bus j voltage (Alrashidi and Alhajri, 2011) p.u.

Vni Voltage of bus ni(Moradi and Abedini, 2012) p.u.

Vmax
ni Maximum voltage at bus ni(Moradi and Abedini, 2012) p.u.

Vmin
ni Minimum voltage at bus ni [(Moradi and Abedini, 2012) p.u.

VRating, Vrate Nominal voltage of the i-th bus (Niknam et al., 2011) p.u.

VPI Voltage profile improvement (Abou El-Ela et al., 2010) %

VPw/DG Voltage profile index of the system with DG (Abou El-Ela et al., 2010) p.u.

VPwo/DG Voltage profile index without DG (Abou El-Ela et al., 2010) p.u.

w1, w2 Weight factors, w1 + w2 = 1(Yang and Chen, 2011)

w1, w2, w3, w4 Benefit weighting factors (Abou El-Ela et al., 2010)
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Abstract: The paper researches the impact of the input data resolution on the solution of optimal
allocation and power management of controllable and non-controllable renewable energy sources
distributed generation in the distribution power system. Computational intelligence techniques
and co-simulation approach are used, aiming at more realistic system modeling and solving the
complex optimization problem. The optimization problem considers the optimal allocation of all
distributed generations and the optimal power control of controllable distributed generations. The
co-simulation setup employs a tool for power system analysis and a metaheuristic optimizer to solve
the optimization problem. Three different resolutions of input data (generation and load profiles)
are used: hourly, daily, and monthly averages over one year. An artificial neural network is used to
estimate the optimal output of controllable distributed generations and thus significantly decrease
the dimensionality of the optimization problem. The proposed procedure is applied on a 13 node
test feeder proposed by the Institute of Electrical and Electronics Engineers. The obtained results
show a huge impact of the input data resolution on the optimal allocation of distributed generations.
Applying the proposed approach, the energy losses are decreased by over 50–70% by the optimal
allocation and control of distributed generations depending on the tested network.

Keywords: co-simulation; computational intelligence techniques; distributed generation; optimal
allocation and control

1. Introduction

The optimal allocation and power control of distributed generations (DGs) in electrical
power systems has been the focus of researchers in recent years, especially in the context of
the smart grid concept. In the project planning phase of DGs installation in the power net-
work, the optimal allocation should determine the system nodes/buses and sizes/powers
of the DGs. After the DGs are installed, in the operational phase of the projects, the optimal
control of the controllable DGs outputs is of interest. There are different approaches to
solve such optimization problem, considering these two parts simultaneously or separately.
Besides this question, there is a research challenge regarding the input data resolution used
in the optimization process. Generally speaking, the simultaneous approach and higher
input data resolution require more computational effort to solve the problem. As far as
modeling of the system in the optimization problem is concerned, there are two approaches
used in the research. One is based on the usage of an analytical model (a system of equa-
tions) of the power network, and the other uses the simulation tool to calculate the objective
and constraint functions of the optimization problem. The analytical approach usually
means more approximations, and neglecting will be included in the model of the system,
decreasing the realistic representation of the system. On the other hand, nowadays, the
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simulation tool for power system analysis ensures less neglecting, resulting in more realistic
modeling of the system. The results obtained using more realistic model in the optimization
process are more reliable for practical implementation. These two research issues in this
topic are the research subject of this paper. Besides the single or multi-objective approach,
the different objective functions as well as the problem constraints of the optimization
problem are used in research studies of optimal allocation and the control of DGs. A brief
overview of the literature on the topic concerning the above-mentioned issues and research
challenges is presented below in the section.

In [1] the authors used the fuzzy system to aggregate the multi-objective problem
into single-objective optimization, considering the economic and environmental objective
functions and technical constraints. The objective functions were calculated from analytical
expressions, and node sensitivity analysis (gradient-based optimization) was used to find
the optimal DG allocations. The optimization assumed constant (static) load powers in
the power network. The load powers dependent on a bus voltage were considered in [2]
to find the optimal allocation of DGs. However, the nominal loads were taken to be
constant—not changing in time. The single-objective objective function value and technical
constraints were used and solved by the metaheuristic optimization method (Harmony
Search Algorithm—HAS). The calculation of the objective function values was coded in
the programming environment in which the optimization method was implemented. The
multiobjective optimization problem of optimal allocation and control of Battery Energy
Storage Systems (BESS) is presented in [3]. Particle Swarm Optimization (PSO), which
belongs to the metaheuristic techniques, was used to solve the problem with two objectives:
power losses and total power of installed BESS. Optimal allocation was performed with
constant nominal load values. After the optimal BESS allocations were found, the optimal
charging/discharging control of BESSs with the hourly resolution was determined, using
the proposed analytical method. In [4], the single optimization problem considering the
DG penetration level as objective and total harmonic distortion (THD) as the problem
constraint were investigated again with static load values. The problem was solved by
metaheuristic optimization techniques, namely Genetic Algorithm (GA) and Differential
Evolution (DE). In addition, in [3,4], objective function values were coded together with
the optimization method. In [5], the multiobjective optimization of the optimal power
generation of Virtual Power Plant (VPP, including DG and EV (Electrical Vehicle) charging
stations) power generation was solved, using the PSO method. The daily load shape
with the hourly resolution was used in the simulations. Two-objective optimization,
considering the operational cost and which are the pollutants emission, was presented
in [6]. The problem was solved using the Ant Lion Optimizer (ALO) metaheuristic method,
and variable loads on a daily level with hourly resolution were used. The optimization
procedure, as well as the problem, were coded together inside the same programming tool.
The single objective optimization dealing with losses minimization and DG penetration
level maximization was presented in [7] to find optimal allocation of DGs. The daily profile
of load, Photovoltaic (PV), and Wind (W) generations DG units with minute resolutions for
12 typical days were used in the research. The objective function values were calculated
by coding the problem in a programming tool, and it is not clear what optimization
method was used here. The single objective optimization problem of optimal DG allocation
was solved by applying the metaheuristic optimizer, Grey Wolf Optimizer (GWO) in [8].
The optimization was performed for a constant load value, and methods for power flow
calculations and optimization itself were coded with the same computational tool. In [9],
single-objective optimization, considering the optimal allocation of DG for reactive power
control, was solved by using GA. The co-simulation approach was used here, employing
the external power system simulator to calculate the objective function value. As in most
literature considering the topic, the optimization was performed for constant load value.
The constant loads were considered in [10] during single-objective optimization, aiming to
find the optimal DG allocations with power losses minimization. The objective function
values were calculated based on the backward/forward sweep power flow method which
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was coded alongside the optimization method in the same programming environment.
Different metaheuristic techniques, HAS, Artificial Bees Colony (ABC), and PSO, were
used to solve the optimization problem. The research [11] presented a co-simulation
approach to solve the optimal DG allocation problem considering one objective function
and constant loads. The single objective optimization of DG allocation was solved by using
the Sensitivity Analysis (SA) method in [12]. The optimization method and calculation
of the objective function value were implemented in the same programming tool. The
yearly profile (at hourly data resolution) of wind DG production was considered, but it is
not clear if the load profile was used too or if the loads were assumed to be fixed. In [13]
the multiobjective optimal DG allocation problem was solved by using the metaheuristic
optimization method Ant Lion Optimizer (ALO). The optimal allocation of DGs, BESS, and
reactive power control devices was found, considering constant loads. The paper [14] dealt
with optimal DG and BESS allocations, solving the problem by using mixed-integer conic
programming (MICP) as an optimization technique. The optimal allocation problem was
defined in a form of single-objective optimization. The optimization problem was modeled
in the specific modeling tool, and an existing external optimization tool was interfaced to
the model to find the optimal solution. The optimization problem considered load and
DG production profiles with hourly resolution at the yearly level. However, the clustering
technique was used to generate typical 48 profile patterns to decrease the dimensionality
of the problem. The authors in [15] used PSO to solve the single optimization problem of
optimal DG allocation. The optimization process considered constant load and power flow
calculation, as well as the optimization algorithm, and was coded in the same programming
tool. In [16], the hybridization of two metaheuristic methods, PSO-SFL (Shuffled Frog
Leap), was used to solve the single optimization problem of optimal DG allocation. The
constant load values were considered and power flow calculations were implemented in the
programming tool used for the optimization method performing. The research presented
in [17] solved the optimal allocation of DGs, Shunt Capacitors (SC), and Electrical Vehicle
(EV) charging stations by using the Grasshopper Optimization Algorithm (GOA), which
belongs to the class of metaheuristic methods. The proposed procedure solved the single-
objective optimization problem (with four objectives aggregated into one objective function)
in two separated steps considering the optimization of DG and SC allocations separately
for the optimization of the EV charging station allocation. The constant load values were
used during the solving of the optimization problem, and the impact of the load and
DG production changes was investigated once the optimal DG and SC allocations were
determined. The power flow analysis was performed in the same programming tool, which
was used for the optimization method implementation. A hybrid metaheuristic method,
GA-PSO, was applied in [18] to solve a single-objective problem with the aggregated
objective function consisting of three parts. The load values were assumed to be constant,
and the power flow calculation was implemented in the optimization method objective
function value calculation. The authors in [19] applied GA optimization to solve the
single optimization problem of optimal DG and BESS allocations, considering the daily
load shapes with hourly resolution. The objective function calculation was coded inside
the optimization procedure in the PYTHON programming environment. In [20], the
single-objective optimization problem of optimal DG allocation was solved by the DE
optimization algorithm. The optimal DG allocation, as well as the DG power factor, were
decision variables of the optimization problem. The load and DG production profiles
were considered during the optimization. The daily profiles with hourly resolution were
used, and these profiles were obtained by averaging values from the seasonal profiles.
The DIgSILENT simulation tool was employed for the power flow calculation based on
which the objective function value was calculated. Although not clearly stated, if the
optimization method was implemented inside (built-in) the DIgSILENT or in some external
programming tool, it seems that the co-simulation approach was used here.

Based on the above-given brief overview of research studies dealing with optimal DG
allocation, the description of the reviewed literature can be summarized as follows:
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• Most of the literature considers constant/static load and DG production in the distri-
bution network.

• If a variable load/DG production is considered, then the changes are usually observed
on a daily level with hourly averaged values/resolution.

• Much of the literature used an approach in which both the power flow calculations
(which is the base for objective function values calculation) and an optimization
algorithm were coded in a programming environment.

• The optimal allocation of DGs and optimal control (power management/dispatch)
problems were solved separately.

The above literature review yields three main issues considering the optimal allocation
of DGs:

• The influence of choosing constant or variable load and generation values on DG
optimal allocation results.

• The choice of a proper approach for applying the optimization solver and objective
calculations—one simulation tool or co-simulation tools.

• An approach to solve the optimization of the allocation and power management of
DGs—separately or simultaneously, the optimization of the allocation and power
management.

These previously mentioned are detected as open research questions, challenges, and
gaps in the topic of optimal DG allocation. The presented research aims to decrease the
research gaps and make a contribution to the topic through the following:

• Propose the framework for the co-simulation approach, using in the optimization of
DG allocation the power distribution network with the aim of more realistic distribu-
tion system modeling.

• Propose (inside the co-simulation framework) the application of the computational
intelligence techniques to decrease the dimensionality of the optimization problem
and handle uncertainties in the power system.

• Simultaneously perform allocation optimization and DG power management.

The existing literature includes the above-listed aspects (some or all). The optimal DG
allocation problem considered in this paper can be summarized as follows:

• Literature [6,7] dealt with variable load values.
• Literature [9,11,14] dealt with the co-simulation approach.
• Literature [20] dealt with variable load and generation profiles as well as the co-

simulation approach.

The approach of simultaneously considering the location, size, load, and DG produc-
tion profiles during the optimization used in this research study is similar and with similar
aims as that presented in [20], which was one of the inspirations for this research.

The rest of the paper is organized as follow: the optimization problem formulation
is given in Section 2; Section 3 describes the applied research methodology and proposed
framework, including a brief overview of the used specific simulation tools; the results of
different scenarios aiming to validate the proposed framework applied on a test power
distribution network are presented in Section 4; the discussion about the obtained results
concerning the stated research question regarding the input data resolution impact is given
in Section 5; and at the end, some general remarks/conclusions are presented in Section 6.

2. The Optimization Problem of the DGs Allocation

The optimization problem is defined to address the research gaps mentioned above,
in the previous section. In the literature, different objectives are considered; here, two
objective functions that are important from the point of view of the power distribution
system operator and the owners of the DGs are used. As one of the main interests of the
power distribution system operator is decreasing the losses, the first objective function
used in optimization is the active energy losses Wloss. Generating as much energy from
DGs as possible is the main interest of the DG owners to shorten the investment payback
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period and increase the profit. This leads to increasing the penetration level of DGs in the
power distribution system. Such an objective is formulated here in the form of the total
exchange of the total apparent energy WS in the power coupling point of the distribution
network on the upstream network. Because these two objective functions are conflicted, the
multiobjective (two-objective) optimization approach is used in the research. The technical
constraints regarding the nodal voltage range and line current limits as well as the box
constraints of the decision variable ranges are applied in the optimization problem.

The mathematical notation of the multiobjective optimization problem, including the
previously described objective functions and constraints, is as follows:

F = [Wloss(x), WS(x)] → min
subject to box constraints:x ∈ {xlb, xub}
subject to inequality constraints:
Vmin ≤ Vi,e ≤ Vmax, Ik,e ≤ Ik,max ≤ ε
with decision variables vector: x,

(1)

with the following notations: F—two objective problem function consisting of Wloss, yearly
energy losses in the network, and WS, yearly exchange of the apparent energy between
a network with DG and upstream system; xlb—lower bounds of the decision variable
values; xub—upper bounds of the decision variable values; Vmin—lower bounds of the
nodal voltage value; Vmax—upper bounds of the nodal voltage value; Vi,e—calculated
nodal voltage in the i-th network node; Ik,max—maximum allowed currents in the k-th
network line; and Ik,e—calculated current in the k-th network line.

The objective functions represent energies over the timespan and for N time segments
ti are calculated from active power losses (Ploss), active (Pexc) and reactive (Qexc) powers
exchanged with the upstream network as follows:

Wloss = ∑N
i=1 Ploss,i · ti

WS =

√(
∑N

i=1 Pexc, i · ti

)2
+
(

∑N
i=1 Qexc, i · ti

)2 (2)

Optimization Problem (1) has a two-objective function that consists of two objectives:
yearly energy losses in the network (Wloss) and yearly exchange of the apparent energy
between a network with DG and upstream system (WS). The problem constraints in (1)
are related to the decision variable ranges (box constraints) and the network operational
constraints. The box constraints represent ranges of the decision variable values. The
operational constraints are related to the standardized nodal voltage ranges (Vmin − Vmax;
usually nodal voltage limits are given in range ±5% or ±10% depending on the relevant
standard) and rated currents of the network lines (Ik,max).

Optimization Problem (1) is solved by using the Pareto dominance definitions re-
sulting from the solution set known as the Pareto set [21]. Except for the multiobjective
optimization, the two single objective optimizations considering each of the objective
functions individually are performed also to check if the multiobjective approach can
find reliable edges of the Pareto set. The three different problem setups are used in the
research, each of them resulting in a different number of decision variables. This being the
case, the contents of the decision variables vector is detailed later in the text in Section 3,
describing the proposed procedures. The co-simulation setup of the distribution power
system simulation and tools of the computational intelligence methods are used to solve
the black-box optimization problem model.

The simulation tool for electrical power system simulation is used to calculate the
objective function values. Both DGs types with controllable and non-controllable primary
energy sources are considered in the distribution system model. The non-controllable
DGs used in the research are Photovoltaic (PV) and wind (WD) plants; as controllable
DGs, Biogas (BG) plants are used in the distribution power network. For non-controllable
energy sources, the production profiles (the DGs outputs) are involved in the model; for
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the controllable source, the DGs outputs are subject to optimization. In addition, the load
profiles (costumers load shapes) are considered in the optimization. The base case in
the simulations supposes DG production and load profiles on a yearly level with hourly
resolution, i.e., with 8760 data.

2.1. A Brief Overview of the Used Tools in Co-Simulation

The optimization tool applying the metaheuristic optimization technique MIDACO
solver (Mixed Integer Distributed Ant Colony Optimization) [22] is used to solve the
optimization problem. The advantage of this tool is its applicability in a general case of
complex optimization problems, including continuous (linear (LP) and nonlinear (NLP)),
integer (discrete) (IP), and mixed-integer (MINLP) problems. This tool is based on the
Ant Colony Optimization (ACO) [23] which belongs to the metaheuristic methods. The
MIDACO can handle single as well as multiobjective optimization.

The artificial neural network (ANN) is applied in the optimization problem, aiming to
decrease the number of the decision variables, reducing the dimensionality of the problem.
The Multilayer Perceptron (MPL) ANN with one hidden layer is used here. The ANN is
modeled by usage of the TensorFlow tool [24] by applying the Keras API [25].

The OpenDSS simulation tool [26] is used in the study with the purpose of solving the
power flow calculations of the model of the distribution network and obtain the objective
function values needed for the performing optimization procedure. The usage of the power
network simulation tool enables including more details in the network model, decreasing
the approximations and neglecting in the model, compared to an analytically defined
objective function. This ensures more realistic power distribution network modeling,
resulting in more reliable results obtained through the optimization.

As mentioned before, all three of these computational tools are implemented in the
Python programming environment and employed in the co-simulation setup to solve the
black-box optimization problem.

3. Co-simulation Framework for DG Allocation and Power Management Optimization

The research methodology used in the study is based on the implementation of
different scenarios for optimization and the investigation of the input data resolution
impact on the solution of the optimization problem. The optimization scenarios are related
to variable or fixed power factors of each DG and directly determine the number of decision
variables in the optimization problem. The three cases described in Table 1 are used as
optimization scenarios.

Table 1. The different optimization scenarios.

Scenario
Uncontrollable

DG
Output

Uncontrollable
DG

Power Factor

Controllable
DG

Output

Controllable
DG

Power Factor

Opt 1 by energy
source profile fixed by ANN fixed

Opt 2 by energy
source profile fixed by ANN by ANN

Opt 3 by energy
source profile by ANN by ANN by ANN

As can be seen in Table 1, the values of the DG power factor can be directly included
as a decision variable, and in that case, the fixed value of the power factor is optimized
and does not change with DG power output changes. The other scenario investigates
application of the ANN to estimate the optimal DG power factor and in this case, the DG
power factor changes over time. For all scenarios, the output power of controllable DG is
determined by the ANN. These three basic cases will result in different types and numbers

46



Electronics 2021, 10, 1648

of decision variables in the optimization problem. In Table 2, an overview of the decision
variables that occur in the described optimization scenarios is presented.

Table 2. The optimization decision variables for different scenarios.

Scenario
DG

Locations
DG

Output

ANN Weights
and Biases for
Controllable

DG
Power Values

ANN Weights
and Biases for
Controllable

DG
Power Factor

Values

ANN Weights
and Biases for
Uncontrollable

DG
Power Factor

Values

Opt 1 � � � x x
Opt 2 � � � � x
Opt 3 � � � � �

In all scenarios, the consumers’ load shapes and energy source profiles are used to
model the time variability of the primary energy sources and consumption.

In Figures 1–3, the proposed frameworks according to the previously described sce-
narios are shown. Application of the ANN to estimate the optimal DG power output and
DG power factor values is one of the main contributions of this research. The purpose
of the ANN is to decrease the number of decision variables in the optimization problem.
Without the proposed usage of the ANN for each controllable (in some scenarios, also for
uncontrollable (Table 2)) source, the number of decision variables will be equal to the input
data resolution, e.g., for yearly input data with the hourly resolution it will be an additional
8760 decision variables per DG for scenarios Opt 1, i.e., twice for scenario Opt 2 or four
times for scenario Opt 3 (Table 2).

Based on the scenarios overview given in Table 1 and Figures 1–3, the similarity and
differences between the optimization models Opt 1–Opt 3 can be summarized as follows.
For all optimization scenarios, uncontrollable DG outputs are considered variable in time
and defined by energy source profiles. The controllable DG output is managed by the
ANN in all scenarios. The differences among the scenarios are related to the power factor
variability for controllable and uncontrollable DGs. In Opt 1, the fixed DGs power factors
of both controllable and uncontrollable DGs are optimized. The fixed and ANN managed
power factors of the controllable and uncontrollable DGs, respectively, are optimized
in scenario Opt 2. In Opt 3, modeling the power factors of all DGs (controllable and
uncontrollable) is managed by ANN.

The details about the ANN inputs and outputs are given in Figure 4, and the ANN
parameters (weights and biases) are optimized by the MIDACO solver simultaneously
with DGs allocation optimization. The simple Multilayer Perceptron (MLP) ANN consists
of one hidden and output layer. Because the usage of the ANN has the purpose of
significantly decreasing the number of decision variables, this simple ANN configuration
is implemented in the framework. The purpose of ANN is to significantly decrease the
number of problem decision variables. If the ANN is not used, the number of decision
variables would be increased for the number of the input data (depending on the data
resolution, e.g., in case of yearly data with hourly resolution the optimization problem
would have 8760 data only for the DG power management). The ANN takes as inputs
the i-th data from each load shape and each uncontrollable DG output profile. Training
of the ANN was performed in this way (without application of standard built-in ANN
optimizer presents in the used ANN tool) because the training process, in this case, is
slightly different than ordinary. Usually, when ANN is used for regression purposes,
the difference between the target and ANN estimated values is objective in the ANN
optimization process (training). However, this is not the case here; the ANN target outputs
are not known in advance, as they need to be determined during the optimization of the
whole problem defined by (1). Such configuration of the proposed framework and purpose
of the ANN prevents performing common ANN training procedures.
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Figure 1. The framework used for Opt 1 optimization scenarios.

Figure 2. The framework used for Opt 2 optimization scenarios.
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Figure 3. The framework used for Opt 3 optimization scenarios.

Figure 4. (a) Overview of data types used by the ANN; (b) schematic structure of the ANN.

The two different workflows are applied to investigate the possible improvement of
the solution quality for scenarios Opt 2 and Opt 3 (Figure 5). The difference between the
workflows is about the initial solution that the optimization algorithm starts with. In both
workflows (WF1 and WF2), the initial solution is randomly generated in Opt 1 optimization
scenarios. In workflow W1 the initial solution is also randomly chosen for scenarios Opt 2
and Opt 3, while in workflow WF2 the starting optimization point for Opt 2 and Opt 3 is
the solution of solved Opt 1. In the case of WF2 workflow, the locations, and sizes of all
DGs and trained ANN for controlling the power output of controllable DG are the solution
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from Opt 1, and only parameters of the ANN are used to optimize the DG power factors.
The purpose of the WF2 workflow is to check if the optimal solution obtained by solving
Opt 1 can be additionally improved by managing the DGs power factor.

The above-described optimizations and workflows are performed with input data
on yearly level with hourly resolution, i.e., with 8760 input data modeling changes of
primary energy source intensity and loads over a year. After the research done according
to the workflows, the final workflow and optimization model will be proposed based
on a comparison of the obtained solutions for different optimization scenarios. In the
continuation of the proposed procedure, the previously chosen optimization scenario and
workflow will be repeated with the different decreased resolutions of input data to research
the impact of data resolution on the optimization problem solution. The two decreased
input data resolutions with 12 and 365 input data are used here. These input data are
obtained by averaging the basic input data (hourly resolution, 8760 input data) on monthly
(12 input data) and daily (365 input data) levels. The schematic overview of this part of the
research methodology is given in Figure 6.

Figure 5. The workflows used in the research study, (a) workflow uses randomly generated input
data for single and multi-objective optimizations; (b) workflow uses solution of the multi-objective
optimization as input to single-objective optimizations.

Figure 6. Application of input data with different resolutions in the proposed procedure.
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At the end of the research methodology used in this study, the chosen optimization
procedure optimized with hourly input data was applied, using input data with a resolution
of 15 min (four times higher resolution than one used in optimization procedure) steps,
i.e., with 35,040 input data. The load shapes are one of the inputs into the ANN (Figure 4).
Usually, the load shapes are forecasted, based on the historical consumption data, and
consequently include more or less uncertainty. Due to this uncertainty, the later application
of the load shape can give a load value that is different from the real load value. This
procedure part is performed with two scenarios: one supposing an unknown real load
value at the moment and the other with a known specific load value at the specific time
step. If the real load value is not known/measured, the load value is estimated according
to the load shapes used in the optimization process. The previously described is visualized
in Figure 7. The purpose of this is to investigate the robustness of the proposed framework.
In addition, with the development of the smart grid concept, it is expected more and more
the usage of smart energy meters at the costumers’ point of common coupling. These
conditions allow obtaining the load values with more accuracy as input data during the
implementation of the proposed framework.

Figure 7. Scenarios for the procedure application for 15 min resolution of input data.

4. Application of the Framework on Test Distribution Power Systems—Case Study

The very well-known and often used IEEE 13 node IEEE 37 node test feeders [27] are
used as a case study to demonstrate the application of the proposed framework for optimal
DG allocation and power management. These distribution power systems are chosen
because they represent the most general examples of the power networks. Some features of
the used power networks are an unbalanced system (one, two, and three-phase lines and
loads), different load models (constant power, constant impedance, constant current ...),
voltage regulators, load in wye (star), and delta connection configurations and two voltage
levels (4.16 kV and 0.48 kV). All details about the used test systems can be found in [27].
The next modification in the original IEEE 13 node and IEEE 37 node bus test feeders is
made to adapt the systems for performed research: the capacitor banks are turned off, the
taps of the voltage regulators are reset to the middle position before the simulation for each
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possible solution in the optimization is started, and three different load shapes are assigned
to the consumers according to Table 3. The proposed optimization procedure is performed
on a desktop PC with Intel i7-10700 CPU 2.90 GHz, 8 Cores, RAM 16 GB. The versions of
the used software are PYTHON 3.8, MIDACO 5.0, OpenDSS 9.1.3.2, and Tensorflow 2.3.1.
Data about the optimization parameters used in the optimizations are as follows: number
of function evaluation in MIDACO is 30,000, number of ants and kernels in MIDACO are
250 and 15, respectively. The computational times are 1.1 and 6 s per iteration for IEEE 13
and 37 bus test networks, respectively. The total computational times for these two tested
networks are about 9 and 22 h for IEEE 13 and 37 bus networks, respectively.

Table 3. The load profile of costumers used in the test networks.

Load Profile Network Bus IEEE 13 Network Bus IEEE 37

LP 01 671, 611, 652, 670 701, 722.3.1, 724, 725, 733–735, 742.2.3
LP 02 634, 645, 646, 692 712, 713, 714.1.2, 727–729, 736–738, 744
LP 03 675 714.2.3, 718, 720, 722.2.3 730, 732, 740, 741, 742.1.2

4.1. Input Data Preparation

The input data regarding the load shapes and PV and wind plant power profiles
are obtained by usage of the existing tools for prediction/forecasting load consumption
and PV and wind DG production. The computer tool Load Profile Generator (LPG)
(https://www.loadprofilegenerator.de/ (accessed on 8 April 2021)) [28] is used to synthe-
size the three different load profiles used in the simulations. The built-in (LPG) load shape
types, namely “H01 in HT 14”, “H01 in HT 11”, and “H01 in HT 07”, are used to generate
load profiles LP 01, LP 02, and LP 033, respectively. The normalized load shapes are given
in Figure 8a–c by showing example daily profiles in Figure 8e–f.

The online platform (tool) named “Renewables.ninja.” (Available online: https://
www.renewables.ninja/ (accessed on 8 April 2021) based on research presented in [29,30]
is used to produce the output profile of PV and wind DGs. The generated normalized DG
production profiles are shown in Figure 9.

The above-described input data, the yearly load, and DG production profiles with the
hourly resolution are generated as basic input data cases. The input data with monthly and
daily resolutions used as input into part of conducted research study shown in Figure 6
are generated from the base input data by averaging data on monthly and daily levels,
respectively. These input data with the decreased resolution are presented in Figures 10–13.

The input data used at the end of the conducted research shown in Figure 7 are
produced by adding randomly generated noise (X according to uniform distribution U ) to
the base data for each time step (1 h) four times. The repeated random number generation
four times for each hour produces load and DG output profiles with a resolution of 15 min
(1 h = 4 × 15 min). The noise range is set in the range ±z% of the hourly value. The
mathematical formulation of the 15 min resolution data is the following:

LF15min = LFh + X ∼ U (−z · LFh, z · LFh) (3)

In this case, it is important to highlight that hourly data are not averages of 15 min
data. Due to higher data resolution, the 15 min resolution data are not visualized for the
whole year, but only for the first day in a year (in comparison with basic input data (hourly
resolution)) as can be seen in Figures 14 and 15 (for example, for ±20% uncertainty used in
the 15 min data generation).
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Figure 8. Input data—load shapes: (a) LP 01-year; (b) LP 02-year; (c) LP 03-year; (d) LP 01-day; (e) LP 02-day; (f) LP 03-day.

Figure 9. Input data—load shapes: (a) PV plant output; (b) wind plant output.
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Figure 10. Load shapes with daily resolution: (a) LP 01; (b) LP 02; (c) LP 03.

Figure 11. Load shapes with monthly resolution: (a) LP 01; (b) LP 02; (c) LP 03.

Figure 12. Production profile of DGs with daily resolution: (a) PV DG; (b) wind DG.

54



Electronics 2021, 10, 1648

Figure 13. Production profile of DGs with monthly resolution: (a) PV DG; (b) wind DG.

Figure 14. Load profiles with 15 min resolution generated (according to (3)) from hourly resolution (for example, for the
first day in a year): (a) LP 01; (b) LP 02; (c) LP 03.

Figure 15. DG output profiles with 15 min resolution generated (according to (3)) from hourly
resolution (for example, for the first day in a year): (a) PV DG; (b) Wind DG.
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In Sections 4.2–4.6, the results of the framework implementation are presented.

4.2. Results for Different Optimization Models—Workflow WF1

In this subsection, the results obtained according to workflow W1 (Figure 5a) for the
optimization models proposed in Figures 1–3 and Table 1 are presented. Figures 16–18
visualize solutions of optimization models Opt 1 (Figure 1), Opt 2 (Figure 2) and Opt 3
(Figure 3), respectively, showing the Pareto front of the solved optimization Problem (1).

In Tables 4–6, the numerical values for the solutions obtained for all three proposed
optimization models (Opt 1, Opt 2 and Opt 3) applied on multi-objective and single
objective optimizations are given. For multiobjective optimization, the values for the Pareto
edges (for solutions giving the lowest energy losses and energy exchange) are shown in
these Tables.

Figure 16. The Pareto front of the solved multi-objective optimization problem for Opt 1 (Figure 1).

Figure 17. The Pareto front of the solved multi-objective optimization problem for Opt 2 (Figure 2).
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Figure 18. The Pareto front of the solved multi-objective optimization problem for Opt 3 (Figure 3).

Table 4. Results for optimal solutions of Opt 1 optimization model for different objective functions
(W1 workflow).

Optimized
DG Allocations

Wloss
in [kWh]

WS
in [MVA]

Decreasing of
Wloss in [%]

Decreasing of
WS in [%]

Without DGs 39,859 5555.03 - -
Two-objective

(Wloss, WS)
Wloss edge
WS edge

8400
8826

853.45
576.87

78.93
77.86

84.64
89.62

single objective (Wloss) 8400 853.45 78.93 84.64
single objective (WS) 15,979 288.27 59.91 94.81

Table 5. Results for optimal solutions of Opt 2 optimization model for different objective functions
(W1 workflow).

Optimized
DG Allocations

Wloss
in [kWh]

WS
in [MVA]

Decreasing of
Wloss in [%]

Decreasing of
WS in [%]

Without DGs 39,859 5555.03 - -
two-objective

(Wloss, WS)
Wloss edge
WS edge

9816
10,054

875.92
811.86

75.37
74.78

84.23
85.39

single objective (Wloss) 9816 875.92 75.37 84.23
single objective (WS) 16,229 384.02 59.28 93.09

Table 6. Results for optimal solutions of Opt 3 optimization model for different objective functions
(W1 workflow).

Optimized
DG Allocations

Wloss
in [kWh]

WS
in [MVA]

Decreasing of
Wloss in [%]

Decreasing of
WS in [%]

Without DGs 39,859 5555.03 - -
two-objective

(Wloss, WS)
Wloss edge
WS edge

10,754
10,759

1344.06
1343.01

73.02
73.00

75.80
75.82

single objective (Wloss) 10,974 1392.83 72.47 74.39
single objective (WS) 11,503 1089.30 71.14 80.39

4.3. Results for Different Optimization Models—Workflow WF2

The results obtained according to workflow WF2 (Figure 5b) for the optimization
models Opt 2 and Opt 3 are presented in this subsection. In WF2, the workflow of the
optimal allocations of DGs and trained ANN obtained as a solution of Opt 1 model are
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used as the initial (starting) solution for the optimization of the Opt 2 and Opt 3 models. In
this case, the problem solutions are trained ANNs for controlling DGs power factors. In
this workflow, only a single-objective optimization approach is applied based on the results
obtained in the previous subsection. As can be seen from the results obtained in workflow
WF1, the single-objective optimization finds the Pareto front edges of better quality. The
results obtained according to workflow WF2 are shown in Tables 7 and 8 for optimization
models Opt 2 and Opt 3, respectively.

Table 7. Results for optimal solutions of Opt 2 optimization model for different objective functions
(W2 workflow).

Optimized
DG Allocations

Wloss
in [kWh]

WS
in [MVA]

Decreasing of
Wloss in [%]

Decreasing of
WS in [%]

Without DGs 39,859 5555.03 - -
single objective (Wloss) 8391 851.89 92.94 84.64
single objective (WS) 15,973 271.14 59.93 95.12

Table 8. Results for optimal solutions of Opt 3 optimization model for different objective functions
(W2 workflow).

Optimized
DG Allocations

Wloss
in [kWh]

WS
in [MVA]

Decreasing of
Wloss in [%]

Decreasing of
WS in [%]

Without DGs 39,859 5555.03 - -
single objective (Wloss) 12,387 1843.40 69.92 66.82
single objective (WS) 20,833 2369.38 47.73 57.35

4.4. Comparison of Optimal DG Allocations for Different Optimization Models and Workflows

This subsection presents the optimal allocations of DGs obtained according to different
optimization models and workflows used in the research study. The DG locations (bus)
in the network and nominal DG apparent powers (Sn) are presented in Table 9 to give a
comparable overview of the obtained solutions of the optimization problem, according to
the different research scenarios used in the study.

Table 9. Results comparison for optimization models and workflows in case of single-objective
optimizations.

Scenarios–Workflows
Objective

Opt 1—WF1
Opt 2—WF2
Opt 3—WF2

Wloss

Opt 1—WF1
Opt 2—WF2
Opt 3—WF2

WS

Opt 2
WF1
Wloss

Opt 2
WF1
WS

Opt 3
WF1
Wloss

Opt 3
WF1
WS

PV DG bus
Sn (kVA)

684
120

611
17

634
86

-
-

684
122

-
-

Wind DG bus
Sn (kVA)

634
258

611
120

634
228

611
55

632
936

632
745

Bio-gas DG bus
Sn (kVA)

692
1584

670
1810

692
1158

670
1637

692
1205

671
1242

4.5. Impact of Input Data Resolution on the Optimization Problem Solution

The previous procedures used in the presented research are analyzed to propose a
suitable optimization model for the next steps in the study. Based on the results presented
in the three previous subsections, the optimization model Opt 1 is chosen as the one
with the best results (more details about the choice are given in the Discussion section
below) for the application in the rest of the study. In this subsection, the results of the
performing research step presented in Figure 6 are presented. The purpose of this step is
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to investigate the impact of the input data resolution on the solution of the optimization
problem. The solutions for yearly input data with daily and monthly resolutions are
compared against the solutions for the data with hourly resolution (as the base case). The
input data with daily and monthly resolutions are generated as described in Section 4.1.
Table 10 shows objective function values without installed DGs for different resolutions of
input data. In Tables 11 and 12, an overview of solution comparisons presented in Figure 6
are shown for optimization model Opt 1 and single optimization problems (with Wloss and
WS objectives separately).

Table 10. The objective function values without installed DGs for the used input data resolutions.

Input Data Resolution Hourly 8760 Data Daily 365 Data Monthly 12 Data

Wloss (kWh) 39,859 28,967 27,066
WS (MVAh) 5555 5528 5516

Table 11. Impact of the input data resolution (Opt 1 optimization problem with Wloss objective).

Input Data
Resolution

PV DG
Allocation

Bus-Size (kVA)

Wind DG
Allocation

Bus-Size (kVA)

Bio-Gas DG
Allocation

Bus-Size (kVA)

Wloss
(kWh)

Wloss
Decreasing

in (%)

Hourly data 8760 data 684–120 634–258 692–1584 8400 78.93
Daily data 365 data 684–313 634–328 671–826 5136 82.27

Monthly data 12 data 646–419 634–239 692–614 4353 83.24

Table 12. Impact of the input data resolution (Opt 1 optimization problem with WS objective).

Input Data
Resolution

PV DG
Allocation

Bus-Size (kVA)

Wind DG
Allocation

Bus-Size (kVA)

Bio-Gas DG
Allocation

Bus-Size (kVA)

WS
(MVAh)

WS
Decreasing

in (%)

Hourly data 8760 data 611–17 611–120 670–1810 288.27 94.81
Daily data 365 data - 634–310 671–1060 164.11 97.03

Monthly data 12 data - 634–150 671–691 140.10 97.46

4.6. Robustness of the Proposed Optimization Model

Based on the presented results, the optimization model Opt 1 is proposed as a frame-
work for optimal DG allocation and power management. Let us recall that Opt 1 model
results with solutions of the optimal allocation of DG, constant optimal power factors of
DGs, and trained ANN for power management of the controllable DGs (Figure 1). After the
optimal solution with hourly input data is found, the optimal allocation of uncontrollable
DGs (PV and wind plants) and the trained ANN is implemented in the simulation model
to drive the output power of the controllable DG (the bio-gas plant) with input data with
higher resolution than the one used during the optimization process. The 15 min resolution
data are used here, applying two scenarios. The ANN inputs are normalized PV and wind
plant power outputs and load shape values. The 15 min PV and wind plant outputs, as
well as the load shapes, are generated according to the procedure given in Section 4.1. Both
scenarios assume the known real PV and wind plant power outputs. The one scenario (S1)
assumes unknown real load shape values, in this case, the load shape ANN inputs are
defined, according to the given load shapes (used during the optimization) and different
from the real load shape value. In this scenario, for each four real load data in the load
shape, the load inputs to ANN are the same (according to the given hourly load shape).
The other scenario (S2) assumes known load shape values are used as ANN inputs. Both
scenarios S1 and S2 are visualized in Figure 7. The results for these two scenarios for ±20%
uncertainty (according to (3)) of load shapes and the DG profile are given in Table 13.
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Table 13. Results of the proposed model application for 15 min input data for Opt 1 model—
uncertainty of 20%.

Load Shape Values for ANN Input
Wloss no

DG (kWh)
Wloss with

DG (MVAh)
Losses

Decreasing (%)

According to given load shapes 21,110 4748 77.51
Real values 21,110 4670 77.88
Difference - 78 −0.07

4.7. Implementation on Middle Sized Distribution Network—IEEE 37 Node Test Feeder

In this subsection, the proposed procedure is applied on the IEEE 37 Node Test Feeder
as an example of the distribution network of middle size. Based on the results and analysis
of the procedure implementation on the IEEE 13 Node Test Feeder (given in previous
subsections), the optimization model Opt 1, workflow WF 1, yearly profiles with hourly
data and single objective (Wloss) optimization are applied on the IEEE 37 network. The
obtained results are presented in Tables 14 and 15. The two optimization processes are
performed: one for allocation of a total of three DGs (1xPV DG, 1xW DG, 1xBG DG), and
the second for a total of six DGs (2xPV DG, 2xW DG, 2xBG DG).

Table 14. Optimal allocation of DGs in the IEEE 37 Node Test Feeder.

Input Data
Resolution

PV DG
Allocation

bus-Size (kVA)

Wind DG
Allocation

bus-Size (kVA)

Bio-Gas DG
Allocation

bus-Size (kVA)

One of each DG
1xPV DG, 1xW DG, 1xBG DG

744–70 737–156 734–1000

two of each DG
2xPV DG, 2xW DG, 2xBG DG

712–78
704–86

737–141
701–74

728–49
701–203

Table 15. Decreasing the yearly power losses by optimal allocation and power management of DGs
in the IEEE 37 Node Test Feeder.

Number of DGs
Wloss no

DG (kWh)
Wloss with

DG (MVAh)
Losses Decreasing (%)

3-1xPV DG,
1xW DG, 1xBG DG 10,755 4981 53.69

6- 2xPV DG,
2xW DG, 2xBG DG 10,755 4880 54.63

5. Discussion

Due to the extensive material (caused by many steps in the proposed research frame-
work) presented in the previous section, comments about the obtained results are given in
this section instead of in the previous one. The comments below are sorted, concerning the
specific framework step referred to in Sections 4.2–4.6. The results obtained by investigation
of the different optimization models and used workflow (Section 4.2) indicate that the
simplest proposed model (Opt 1) gives the best results. The Opt 1 model finds optimal
allocations of DGs, fixed values of DG power factors, and the trained ANN that generates
the production profile of the controllable DG. Comparing results of single-objective and
multiobjective optimizations (Table 4), it can be stated that the single-objective approach
finds a better solution than two-objective optimization for the WS objective. In the case
of single-objective optimization with the Wloss function, the solution is the same as that
obtained by the two-objective optimization. Comparing the solutions obtained for different
optimization models (Opt 1, Opt 2, and Opt 3) in Tables 4–6, unexpected results occur.
As mentioned before, the best results are obtained for the Opt 1 model, but the authors
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expected models Opt 2 and Opt 3 to be better. In the Opt 2 and Opt 3 models, the DG
power factors are also controlled (variable in time); the hypothesis was that this scenario
would give better solutions. There is a need for further research to determine the reason for
these unexpected results. Comparing the results in Tables 7 and 8 with those in Tables 4–6,
it can be concluded that the initial solution has a low impact on the solution quality. The
results presented in Tables 10–12 emphasize the importance of the input data resolution.
Except for the difference in objective function absolute amounts, the important difference is
in the optimal DG allocations obtained for different data resolution. The results in Table 13
show the possibility of the proposed framework application in the case of using real data
with a resolution higher than that used in the optimization model tuning. The input of
different data into ANN give close obtained objective values.

As mentioned before in the Introduction section, there are a few research studies that
considered all three optimization problem issues (time changes of load and production
profiles, co-simulation approach, together with optimization of the optimal allocation and
power control of DGs) simultaneously. It is difficult to compare the research results with
the existing studies directly because different objective functions and distribution power
networks are used in the literature. Ref. [6,7] considered variable load and production
profiles without a co-simulation approach, and only optimal allocation of DGs was solved.
In Ref. [6], the example of the microgrid (from the literature) is used to present the results
of the DG power outputs optimization (with DG locations given in advance). The objective
functions are the minimization of operational costs and pollutants emission. The presented
results show conflicted objective values in ranges of USD 760–870 and 960–1115 kg for the
operational costs and the emission amount, respectively. In [7], the objective function is
losses minimization, and the proposed method is applied to the example of the IEEE 14
bus test network. The obtained results show a decrease in the network losses to about 38%
of losses for the basic case (without installed DGs). Refs. [9,11] deal with the co-simulation
approach to find the optimal allocation of DGs. Ref. [9] solves the optimal allocation
problem (without considering the DGs power management) using constant loads, and
the proposed method is applied on the IEEE 37 node test network. The objectives are
minimizing the nodal voltage variations and installation costs of DGs. The results show a
reduction in value of the objective function to about 64% of its initial value (without DGs).
In [11], the objective function is minimizing the network power losses, and the constant
load and DG outputs are considered. The proposed procedure is applied to the IEEE 123
bus distribution network. The obtained results give about 79% power loss reduction of
the initial losses (without DGs). As stated above in the Introduction section, the research
study presented in [20] is closest to the research presented here. In [20], the variable load
and DG production profiles, as well as optimal allocation and power management, are
considered. The external simulation tool is used to calculate energy loss as the objective
function. The presented method is applied to a power distribution network consisting of 69
buses. The presented results show power loss reductions in ranges (depending on numbers
of DGs) of 63–69% and 89–98% of the initial power losses (with no DGs) for constant load
and the unity power factor and constant load and the optimized power factor, respectively.
In the scenario, with variable load, the energy loss reduction is in the range (depend on
objectives impacts in the objective function) of 72–95% of the initial energy loss. Ref. [20]
also considers the active energy infeed from the upstream network, and the obtained results
for this objective are in the range of 60–90%, reducing the basic case value (without installed
DGs). Because the study [20] considers similar problem aspects as those in this research
(the initial data and tested network are not the same), the research presented here can be
relatively compared with [20]. The results presented here (Sections 4.2–4.6) show the next
obtained values. The range (depending on the applied optimization model Opt 1–Opt 3) of
energy loss reduction is 60–79% of values with no installed DGs. The reduced exchanged
apparent energy is in the range of 74–94% of the amount without DGs. The proposed
method shows an energy loss reduction for 15 min resolution data of 77% of the initial
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value. This shows the applicability of the method in the case of using input data different
from the data used in the optimization procedure.

Further research will be directed to investigation procedures for the estimation of DG
power factor controls to additionally increase the optimal solution quality.

6. Conclusions

The presented framework for optimal allocation and power management of DGs
emphasizes the importance of the resolution of the input data that needs to be considered
during the optimization process. The proposed estimation of the controllable DG output by
the ANN significantly decreases the number of the decision variables in the optimization
problem, especially in the case of the high input data resolution. The results obtained for
the case study indicate that knowing the hourly input data can be used to successfully
tune the optimal model, which can be used later with increased input data resolution
(15 min data).

This research study, compared to the existing literature, investigates the problem of the
optimal allocation and power management of DG, makes contributions considering all three
aspects of the problem detected in the Introduction section (load and DGs variable profile,
co-simulation approach, and simultaneous consideration of the optimal allocation and
power management of DGs). As stated in the Introduction section, there are a few research
papers that consider these three problem aspects, simultaneously. Only (considering here
the reviewed literature) in [20] did the authors apply variable profiles of load and DG
production, external software for the calculation of the objective values, and variable DG
power factor (optimized for optimal allocation determined in advance) to manage the DG
output. Unlike the existing literature on the topic, the research presented here dealt with
simultaneous optimization of the DG allocation and power management, considering the
yearly (with hourly resolution) load and DG production profiles, using a co-simulation
approach. Besides this, the research proposed the application of ANN to manage DG
outputs, which significantly decreases the number of decision variables that appear when
yearly profiles are used.

The presented solution framework shows that it is possible to optimize the allocation
and variable power outputs of DGs simultaneously in the case of high resolution input
data. The high resolution of input data over a long time span (a year) produces a very high
number of decision variables that need to be optimized. The demonstrated application
of the ANN makes it possible to significantly decrease the number of decision variables
with simultaneous consideration of the optimal allocation and power management of
the DGs. For successful optimization of the DG power factor management, additional
investigations of the procedures are required, which will be included in the optimization
process simultaneously with the here-applied problem aspects.
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Abbreviations

The following abbreviations, quantity and variables are used in this manuscript:

ABC Artificial Bees Colony
ALO Ant Lion Optimizer
BESS Battery Energy Storage System
BG Bio-gas
DE Differential Evolution
DG Distributed Generation
EV Electrical Vehicle
GA Genetic Algorithm
GWO Grey Wolf Optimizer
HAS Harmony Search Algorithm
IEEE Institute of Electrical and Electronics Engineers
IN 1 Input data, hourly resolution
IN 2 Input data, daily resolution
IN 3 Input data, monthly resolution
LP 01 Type 1 of load profile/shape
LP 02 Type 2 of load profile/shape
LP 03 Type 3 of load profile/shape
MICP Mixed-Integer Conic Programming
Opt 1 Optimization model/scenario 1
Opt 2 Optimization model/scenario 2
Opt 3 Optimization model/scenario 3
PSO Particle Swarm Optimization
PV Photovoltaic
SA Sensitivity Analysis
SFL Shuffled Frog Leap
THD Total Harmonic Distortion
VPP Virtual Power Plant
W Wind
WF1 Workflow 1
WF2 Workflow 2
F Multiobjective function
f1 Objective 1 in the multiobjective function F
f2 Objective 2 in the multiobjective function F
H1 The first neuron in the hidden layer
Hn+k+m The last neuron in the hidden layer
k Number of PV plants
Ik,e Calculated current in k-th network line
Ik,max Rated/allowed current of k-th network line
j Number of BG plants
z relative number used in generating the random variable
LF15min Load factor for calculating 15 min load profile/shapes
LFh Hourly load factor value
LS1,i i-th data in the first load shape
LSn,i i-th data in n-th load shape
m Number of wind plants
n Number of load shapes
N Number of data in load shapes (same as number of time steps) and DG production profiles
PBG,1,i i-th output of the first BG plant
PBG,j,i i-th output of the j-th BG plant
Pexc,i Active power exchange at the i-th time step
Ploss,i Total network active power losses at the i-th time step
PPV,1,i i-th data in the first production profile of PV plant
PPV,k,i i-th data in k-th production profile of PV plant
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Pwind,1,i i-th data in the first production profile of wind plant
Pwind,m,i i-th data in m-th production profile of wind plant
Qexc,i Reactive power exchange at the i-th time step
ti Duration of the i-th time step
U Probability density function of the uniform distribution
Vi,e Calculated nodal voltage in i-th network bus
Vmax Maximum of the nodal voltage value
Vmin Minimum of the nodal voltage value
Wloss Energy of yearly losses as one of objectives in F
WS Apparent yearly energy exchanged between the distribution and upstream network
x Decision variable vector
X The random number generated according to U
xlb Lower bounds of the decision variables
xub Upper bounds of the decision variables
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Abstract: This paper presents an adaptive protection scheme (APS) for solving the coordination
problem that deals with coordination directional overcurrent relays (DOCRs) and distance relays
second zone time, in relation to coordination with DOCRs. The coordination problem becomes
more complex with the impact of renewable energy sources (RES) when added to the distribution
grid. This leads to a change in the grid topology, caused by the on/off states of the distribution
generators (DG). The frequency of topological changes in distribution grids poses a challenge to
the power system’s protection components. The change in the state of DGs leads to malfunction in
reliability and miscoordination between protection relays, since that causes a direct effect to the short
circuit currents. This paper used the school-based optimization (SBO) algorithm, which simulates
the educational process, in order to deal with coordination problems. That algorithm is modified
(MSBO) by modified both learning and teaching processes. The IEEE 8-bus test system and IEEE
14-bus distribution network are used to validate the proposed coordination system’s effectiveness
when dealing with the coordination process between distance and DOCRs, at both the near- and
far-end in the typical topological grid and with DGs in working order.

Keywords: power system protection; overcurrent relays; protection relays; metaheuristic; school-
based optimizer

1. Introduction

Nowadays, the protection field is one of the more indexing issues in power systems.
Directional overcurrent relays (DOCRs) and distance relays are both commonly used for
protecting transmission lines. These protection devices monitor the transmission lines from
both ends of the lines for faults that cause trip scenarios to be activated.

Overcurrent relays (OCRs) generally work by the magnitude of the fault current,
which is set inside relay’s parameters, while in DOCRs, adding the direction of the passing
current through transmission lines. This direction is determined by voltage phasor from
the potential transformer. So, DOCRs are more expensive than normal OCRs but more
effective than OCRs. These relays must be operating in the backup case, with a delay time
higher than the primary relay [1].

The second protection is distance relays, which have two main zones. The first one
works immediately after fault detection. This zone covers 80% of the transmission line to
ignore calculation errors. Then, the second zone covers up to 120% of the transmission line
by delay time; this wide area covers a part of another transmission line [2].
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The main problem in this paper regards reducing the protection relay’s operation
times, to provide the ability for protection devices to isolate the fault area. This saves
the lifetime of power system components, and the power system becomes healthier and
more reliable. However, the coordination problem of DOCRs and distance relays is more
complex and highly constrained, owing to constraints between DOCRs pairs and DOCRs
and distance relays pairs. The miscoordination of these protection relays overlap protection
operates and does not utilize the advantages of both distance and DOCRs relays [3,4].

The impact of RES-based DGs adds to the distribution system. RES, such as solar
energy and wind energy sources, are integrated with the power system. DGs and the coor-
dination problem present many challenges, such as the change of fault current magnitude
and flow of direction [5].

This coordination challenge, which is the result of DGs, needs a flexible structure.
This paper discussed adaptive protection systems (APS), in order to solve this protection
coordination problem. APS gives the ability to change relays settings for both DOCRs and
distance relays, according to change in network states, based on the DG’s on/off states,
using predetermined settings. APS was tested with various scenarios, which are probably
tripped in-network, and the optimal settings for protection relays in each scenario were
determined. This gives the protection system the ability to minimize miscoordination and
malfunction. The main advantage of APS is making the protection system more selective
and reliable than conventional or fixed systems [6]. APS’s settings group of protection
relays is determined by computing optimal settings using an optimization algorithm for
each scenario, which is based on the DG’s states [7].

In recent years, many optimization algorithms are used for solving coordination
problems in literature, of DOCRs coordination, such as the particle swarm optimizer (PSO)
and modified PSO in [8], genetic algorithm (GA) and hybrid GA in [9], biogeography-
based optimization algorithms (BBO) in [10], differential evolution algorithm (DE) and
trigonometric DE algorithm (Tri-DE) in [11], firefly algorithm (FA) and improved FA (IFA)
in [12], hybridized whale optimization algorithm (WOA), and hybridized WOA in [13], Jaya
Algorithm and oppositional Jaya algorithm (OJaya) in [14], moth–flame optimization (MFO)
and improved MFO (IMFO) in [15], political optimization algorithm (PO) in [1], artificial
optimizing algorithm(AEO) in [16], and evaporation rate water cycle algorithm in [17].

Then, for the coordination of both the DOCRs and distance, such as the genetic algo-
rithm (GA) in [18,19], water cycle algorithm (WCA) [19], Jaya optimization algorithm [20],
grey wolf optimization (GWO) [19], ant colony optimization (ACO), and hybrid ACO
algorithm in [21].

The adaptive protection scheme is important for coordinating the protection relays,
in order to deal with the change in topology of the distribution network, which results
from the DG’s on/off status. This topological change causes a change in the short-circuit
current. Hence, modern protection systems, which deal with DGs or RES, are needed for
an adaptive scheme.

APS is basically dependent on the communication network between the smart grid’s
components, as a part of information and communication technologies (ICT), or it is depen-
dent on SCADA. These communication networks give APS the ability to set relays remotely.

Because of the real-time performance of the revolution of optimization algorithms
(in terms of millisecond or microseconds), as well as high computerized performance, in
many research papers, APS is shown to be dependent on the optimization algorithms to
coordinate DOCRs, such as using the: particle swarm optimization (PSO) in [22], genetic
algorithm (GA) in [23], differential evolution algorithm (DEA) in [24], ant colony optimiza-
tion (ACO) [25], gravitational search algorithm (GSA) in [26], firefly algorithm (FA) in [27],
manta ray foraging optimization (MRFO) in [7], and hybrid Harris hawks optimization
(HHO) in [28].

Metaheuristic optimization algorithms usually generate random initial values, as
its population within search space limiters then improves the population fitness within
a systematic process. The standard of metaheuristic optimization algorithms is always
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formed by intrapopulation collaboration. The original SBO algorithm utilized subgroups of
the parallel populations, with independent values that collaborate. Increase the capability
of exploration of the algorithm and improve the overall efficiency. SBO is a collaborative,
multi-population framework utilized by TLBO. This algorithm used two stages: the first
stage is about a series of metaheuristics works, independent for exploring the different
areas of the search space. Then, the second stage concentrated the search on the sub-region
within the best solutions. This type of algorithm has many challenges; one of them is
selecting and implementing the first stage termination criterion. The terminal criterion
introduces parameters that need to be tuned for a specific problem [29].

SBO extends the basic model of TLBO, with both learning and teaching phases; how-
ever, MSBO used TLBO with a modified learning phase. Then, teachers can be rearranged
with a roulette wheel role to other classrooms to share their knowledge; while, MSBO
used multiple teachers for each classroom to improve share knowledge processes between
classrooms and increased the exploitation of the population into the teaching phase [30].

SBO is applied to solve many other engineering optimization problems, such as steel
frame design in [29,31] and solar cell parameters estimation in [32]. SBO is effective in
solving these optimization problems.

Other methods are suggested to deal with APS, such as multi-agents in [33,34] and
Q-learning with an environment APS in [35].

Contributions of this paper are as follows:

• An adaptive protection scheme was designed to coordinate both DOCRs and distance
relays. This paper is the first one that deals with this problem in APS, as a solution to
the DG impact. The effect of distance relays complicates this coordination problem in
the DOCR’s coordination process, in addition to the impact of DGs.

• The original SBO algorithm was modified to improve the response and convergence
of the proposed algorithm. In doing so, two main points were modified, learning and
the teacher-selected process. This algorithm could be effective in solving other power
systems’ important topics, such as load frequency control, parameter estimation of the
solar cell, optimal location, and the sizing of DGs.

• The proposed protection system in this paper was tested on both IEEE 8-bus and IEEE
14-bus distribution networks, with the effect of DG’s on/off states.

The rest of the paper is as follows: Section 2 is about the mathematical modelling
of coordination problems. Section 3 presents the proposed protection scheme. Then, in
Section 4, the performance of both SBO and MSBO, for solving the coordination problem
in IEEE 8-bus and IEEE 14-bus distribution networks, is presented. Finally, Section 5 shows
the conclusions.

2. The Mathematical Modelling of Coordination Problem

The main goal of this paper is to get the optimal coordination of DOCRs and distance
relays. The optimal solution to this problem is minimizing the total operation time of
DOCRs at both ends of the near-end (TNR) and far-end (TFR), in addition to the second
zone time of distance relays (TZ2). The minimum total operation time is the objective
function (OF), shown as following [21,36,37]:

OF = min
(
∑n

i=1 TNRi + ∑n
i=1 TFRi + ∑n

i=1 TZ2i + FPen
)

, (1)

The standard time inverse DOCRs characteristics, depending on the international
electrotechnical commission (IEC) standards, are presented by the following equation [16]:

Ti =
∝ ∗TDSi( I f
Ipi

)β − γ

, (2)
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where Ti is the operation time of relay at any end of transmission line for i relay, TDS is its
time dial setting, and Ip is its pick-up current. The other α, β, and γ are constants with 0.14,
0.02, and 1, respectively [1].

2.1. The Problem’s Limiters

The main limiter of any protection relay is the maximum operation time (Tmax) to
prevent bad operation, which saves the power system component’s lifetime. That limiter
must be lower than 2 s [16].

Any relay settings, in coordination with the problem, have minimum and maximum
limiters, as shown in the following equations [21]:

TDSmin ≤ TDS ≤ TDSmax, (3)

Ipmin ≤ Ip ≤ Ipmax, (4)

Tz2min ≤ Tz2 ≤ Tz2max , (5)

2.2. The Problem’s Constraints

The proposed optimization problem becomes a higher constraint problem, via the
constraints between the primary and backup pair of DOCRs, in addition to the relation-
ship between the DOCRs, distance, and pairs relay at both ends (near and far). Those
constraints are used to avoid miscoordination, which may happen during faults between
protection relays.

The relationship between DOCRs pair relays, at any end, as shown in Figure 1, must
deal with the backup relay (tb), operated with a delay on the primary relay (tp). This delay
time is called coordination time interval (CTI). The value of CTI is determined according to
the type of protection relays. For electromagnetic relays, the CTI value must be more than
0.3 s, while, in the case of digital relays, more than 0.2 s; the digital relays are used in this
paper [38]. The following equation shows these constraints [21]:

tb
f 1 − tp

f 1 > CTI, (6)

tb
f 2 − tp

f 2 > CTI, (7)

Figure 1. The relationship between primary and backup DOCRs.

The relationship between DOCRs and distance pair relays is shown in Figure 2. The
backup distance relay aliasing, with the primary DOCRs relay at the near end, and TZ2b
must delay on tp

f 1, with the CTI as described in Equation (8); Equation (9) describes the
relationship between distance and DOCRs at the far end. At the far end, the second zone of
primary distance relay (TZ2p) must delay on primary DOCRs operation time

(
tp

f 1
)

with
CTI [21].

TZ2b − tp
f 1 > CTI, (8)
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TZ2p − tp
f 2 > CTI, (9)

Figure 2. The relationship between DOCRs and Distance pair relays.

This relationship was developed to specify the minimum value of the second zone
of the distance relay, based on the operation time of the primary relay at both ends
near and far. This idea is discussed in [39]. Equations (8) and (9) are rearranged to
Equations (10) and (11). Then, the maximum value of these equations is used as the specific
second zone of distance relay’s time. This point helps to reduce the penalty and constraints.

TZ2b = tp
f 1 + CTI, (10)

TZ2p = tp
f 2 + CTI, (11)

TZ2 = max
(
TZ2b, TZ2p

)
, (12)

The penalty function is recommended for use in the main goal of eliminating miscoor-
dinations, as in the following equation [40]:

Fpen = μ ∗
{

1 i f Tbackup − Tprimary < CTI
0 i f Tbackup − Tprimary ≥ CTI

, (13)

When miscoordination occurs in this penalty function, Fpen increases the total time of
OF. As a result, the optimization algorithm attempts to eliminate miscoordination, in order
to reduce the size of OF; μ is the weighting factor in this penalty function [37].

3. The Proposed Protection Scheme

3.1. Smart Grid and Adaptive Protection Scheme (APS)

In this research work, the proposed scheme is based on optimization solutions by an
optimization technique. In this paper, the school-based optimization algorithm, used to
evaluate the optimization solutions, in addition to this paper, included modifications for
that algorithm, in order to improve its convergence characteristics and ability to find better
optimization solution, as described in the next section.

The flow diagram (Figure 3) presents APS, considering DG’s impact. The centralized
processing server is used to optimize SCADA data. These data will be generated by APS-
proposed algorithms, for resetting the DOCRs and distance relays. The following steps
refer to the main points of the proposed APS flow chart.
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Figure 3. Flow diagram of APS.

The first point determined the actual distribution network topology, especially the
state, location, and size of the DGs. Check for a change of distribution network topology.
In case of no change, the APS stays with the current protection relay’s settings; in the case
of a change in topology, the APS moves to the next point.

In the second point, APS identifies the short current through CBs, ETAP was used
in this paper for this mission. Then, check the ability of the current relay’s settings, in
order to save the protection system without loss-coordination of protection relays or
miscoordination between protection relays. In case of the ability of the current setting to
protect the distribution network, the APS returns to the previous point. However, it will
move to the next point in the case that the relay’s setting misses their job to protect the
distribution network.

In the third point, APS calls the proposed optimized algorithm. Then, the algorithm
searches for optimal solutions that are suitable to cover the changes in the distribution
network, without miscoordination or loss-coordination. Finally, the APS reports the optimal
solution of protection relay’s settings and sends them through ICT and in-distribution
network update IEDs. APS will stick to new changes in the distribution network [41].

3.2. Original School-Based Optimization Algorithm

SBO is a metaheuristic algorithm, as shown in its flowchart in Figure 4. SBO is formed
from many classrooms and has many teachers. Each classroom used the TLBO algorithm,
in order to be built. Each classroom has a teacher, which is the population with the best
fitness. Teachers are joining to a pool of teachers. In this pool, teachers are distributed by a
roulette wheel to a new classroom, in order to transfer the knowledge between them.
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Figure 4. Flow chart of SBO algorithm.

The TLBO algorithm was inspired by the educational process in the classroom. That
algorithm has two main phases. These phases are about the educational process and
exchanging knowledge. The first phase is called the teacher phase. In this phase, the
knowledge is transferred from teacher to students. The other phase is called the learning
phase. That phase simulates the cooperative learning between students [29].

3.2.1. Teaching Phase

In this phase, the optimization algorithm simulates the teaching process to students
who are trying to update themselves by knowledge transfer from their teacher. That
representation is mathematically as follows:

Xk
new(j) = Xk

old(j) ± Δ(j) , (14)
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Δ(j) = TF × r|M(j)− T(j)|, (15)

where Xk(j) refers to the solution as a student with index jth, Δ(j) is the difference between
the teacher and the mean of the class, TF is a teaching factor and equal to 2, r is a random
value between [0, 1], T(j) is the solution as a teacher, and M(j) is the mean of the classroom
and is represented as follows [30]:

M(j) =
1
N ∑N

k=1 Xk(j), (16)

M(j) =
∑N

k=1
Xk(j)

Fk

∑N
k=1

1
Fk

, (17)

where N is the population. Fk is the penalized fitness of student solution with indexing kth.
Equation (17) is about the fitness-based mean. This formula gives more emphasis to

students and improves the performance of the TLBO algorithm [42].
At the end of the iteration, the solution that has the best fitness is chosen as a new

teacher in the next iteration.

3.2.2. Learning Phase

Interactive learning between students in each classroom can develop the student’s
performance then develop the performance of the classroom. The learning phase is given
by following steps:

1. Randomly selected student p and another q while p �= q.
2. If the fitness of student p is better than student q.

Xp
new(j) = Xp

old(j) + r
[

Xp
old(j)− Xq(j)

]
, (18)

Otherwise,
Xp

new(j) = Xp
old(j) + r

[
Xq(j)− Xp

old(j)
]

, (19)

where r is a random number between [0, 1].
This phase moves student p towards student q if student q has a better solution; while,

if student p has a better solution, it will move away from student q [42].

3.3. Modified SBO Algorithm

The original SBO algorithm was modified, as shown in its flowchart in Figure 5. That
is based on two main points, in order to improve its ability to explore and exploit in the
original algorithm. The first point is about the learning phase, which was discussed in the
previous section. This part is modified by changing the techniques of learning between
students by three additional steps, discussed below. The second point is to select more
than one teacher, via a roulette wheel, in order to speed the process up and obtain a better
knowledge transfer process inside the class (and with other classes).

3.3.1. First Point: A Modified Learning Phase

This point has been modified to exploit students in each classroom to reach new points
within a limited search area that has better fitness values, by using the following steps:

1. This step does not choose the student p randomly but as the place in the classroom.
2. The student q is chosen randomly but not repeated with another student and cannot

be equal to student p.
3. Equations (18) and (19) are both applied and choosing the best value to compare with

the student p fitness value (to replace or not).
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Figure 5. Flow chart of MSBO algorithm.

3.3.2. Second Point: Teacher Selected

The original algorithm selected one teacher, but the improved algorithm selected more
than one. This point increased the knowledge transfer process between classrooms. In the
original algorithm selected, one teacher from another classrooms carried knowledge from
it; however, after that, each classroom takes knowledge from many classrooms and then
selected new points after evaluating the fitness values, in order to accept the best fitness
value between new points affected by teachers. This improved the teacher phase’s equation
used previously but repeated with each teacher. Teachers were distributed to classrooms
by roulette wheel and this modified was used, too, but selected many teachers for each
classroom. The number of teachers for each classroom was selected by users and, in this
paper, double teachers were selected.
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4. Results and Discussion

The optimization setting of TDS, IP, and TZ2 were tuned by the MATLAB program,
used for both SBO and MSBO to solve the optimization problem. These algorithms,
discussed in previous sections, used population, classrooms, and maximum iterations,
with values are 300, 25, and 1000, respectively. The algorithms were successfully tested in
coordination tested systems, i.e., the IEEE 8-bus test system and the IEEE 14-bus distribution
network. Each test system has two varying cases: the first is the normal topological grid
and the second is after added external power generation for the original grid.

The optimum settings were used to calculate the operation time of the primary and
backup protection relays at the near-end and the far-end. These points were tested to
succeed in the optimal solution, in order to pass system constraints. The protection devices,
assumed with digital relays and CTI, must be greater than or equal to 0.2 s. Relays
with normal characteristics constants are α, β, and γ, with values of 0.14, 0.02, and 1.0,
respectively, maximum and minimum TDS values of 1.1 s and 0.1 s, respectively, maximum
and minimum PS were 4 and 0.5, respectively, and the maximum time for operating the
primary DOCRs or distance relays was 1.5 s [21].

MATLAB R2016a was used on a computer with a CPU of 1.70 GHz processor and 4 GB
DDR3 RAM, for tuned optimum settings, while ETAP 12.6.0 was used for the calculation
three phase fault currents.

4.1. Test System I: IEEE 8-Bus Test System

The APS was tested on the IEEE 8-bus test system, as shown in Figure 6, for the
original topological system, with an external grid linked in bus number 4. This system
consists of 8 buses, which are connected with 7 lines and used 14 relays on the ends of the
lines to protect these transmission lines. This system has two synchronous generators to
feed 4 loads, in addition to the 400 MW for external grid entry and out-of-work [21,43].

Figure 6. The single line diagram of IEEE 8-Bus.

This was a highly constrained, nonlinear optimization problem. It had 42 variables
of design, which were tuned by optimization algorithms, in each case. The optimal
solution was limited with minimum and maximum TDS, IP, TZ2, and T operate limiters.
Additionally, they were constrained with a CTI value between the operation time of pairs
primary and backup constraints. These constraints were 32 between DOCRs and equal
to 40 between DOCRS and distance relays in the normal grid, while the external grid, on
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the state the constraints, became 34 between DOCRS and was still equal to 40 between the
DOCRs and distance relays.

The ETAP program used to calculate three-phase fault currents is presented as
Appendix A Table A1 for the normal grid. Additionally, for the second case, data was
extracted from [43].

Table 1 lists the optimal settings for protection relays using both SBO and MSBO in
normal topological settings, and the external grid is on. This table proved the MSBO has
optimum solutions that are better than the optimum solution of SBO.

Table 1. IEEE 8-bus’s relays setting.

Relay

Normal Topological Grid With External DG

Original SBO Modified SBO Original SBO Modified SBO

TDS IP TZ2 TDS IP TZ2 TDS IP TZ2 TDS IP TZ2

1 0.194 174.94 1.07 0.164 191.56 0.984 0.193 229.12 1.108 0.119 370.20 1.037
2 0.287 289.93 1 0.198 528.22 0.936 0.274 353.42 1.013 0.168 723.15 0.928
3 0.332 80.55 0.875 0.252 137.37 0.815 0.236 242.43 0.928 0.143 549.25 0.903
4 0.125 318.77 0.793 0.128 249.02 0.719 0.173 393.64 0.86 0.158 438.72 0.84
5 0.1 235.55 1.425 0.1 158.21 0.917 0.114 434.09 0.974 0.1 500.20 0.993
6 0.175 654.44 1.049 0.286 120.14 0.823 0.216 389.94 0.9 0.297 140.18 0.843
7 0.297 147.82 1.068 0.208 247.29 0.982 0.205 443.09 1.174 0.369 80.03 0.991
8 0.257 226.38 0.931 0.128 725.52 0.916 0.303 420.07 1.258 0.269 205.83 0.884
9 0.1 173.26 0.994 0.1 145.66 0.861 0.314 127.59 1.174 0.256 143.03 1.039

10 0.136 389.05 0.913 0.155 171.41 0.698 0.227 455.43 1.121 0.177 552.63 1.012
11 0.274 196.10 0.954 0.123 578.75 0.805 0.147 784.60 1.13 0.154 666.46 1.049
12 0.382 167.49 1.053 0.166 631.70 0.869 0.227 595.26 1.052 0.317 295.35 1.055
13 0.198 191.93 1.146 0.226 120.34 1.011 0.165 271.95 1.088 0.167 284.74 1.127
14 0.233 282.76 1.147 0.128 460.94 0.935 0.264 243.24 1.089 0.321 173.52 1.123

OF 33.705 28.072 35.388 32.601

The normal case of the IEEE 8-bus test system constraints, which occur by optimum
solution, was tabulated in Table 2. This table is for primary and backup operation time of
DOCRs pairs relay in both near- and far-end. Addition to for constraints between DOCRs
and distance relays. Table 3 has the same description as previous Table 2 but deal with
another case in which the network is linked with the external grid. These tables show that
modified algorithm satisfied all constraints.

Table 2. IEEE 8-bus’s operation times of Relay’s pairs in normal grid by MSBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI Tp Tb CTI Tp TZ2P CTI

1 0.423 0.623 0.200 0.423 0.823 0.400 0.784 1.027 0.243 0.784 0.984 0.2
2 0.582 0.784 0.202 0.582 0.984 0.402 0.736 2.390 1.655 0.736 0.936 0.2
3 0.582 0.782 0.200 0.582 0.982 0.400 0.736 1.674 0.939 0.736 0.936 0.2
4 0.535 0.736 0.200 0.535 0.936 0.400 0.615 0.943 0.329 0.615 0.815 0.2
5 0.399 0.615 0.216 0.399 0.815 0.416 0.519 0.752 0.233 0.519 0.719 0.2
6 0.318 0.519 0.201 0.318 0.719 0.401 0.717 1.738 1.021 0.717 0.917 0.2
7 0.517 0.717 0.201 0.517 0.917 0.401 0.623 —— —— 0.623 0.823 0.2
8 0.517 0.735 0.218 0.517 0.935 0.418 0.623 —— —— 0.623 0.823 0.2
9 0.497 0.717 0.220 0.497 0.917 0.420 0.782 —— —— 0.782 0.982 0.2

10 0.497 0.811 0.314 0.497 1.011 0.514 0.782 —— —— 0.782 0.982 0.2
11 0.457 0.782 0.325 0.457 0.982 0.525 0.716 —— —— 0.716 0.916 0.2
12 0.457 0.661 0.203 0.457 0.861 0.403 0.716 —— —— 0.716 0.916 0.2
13 0.298 0.498 0.200 0.298 0.698 0.400 0.661 1.216 0.555 0.661 0.861 0.2
14 0.405 0.605 0.200 0.405 0.805 0.400 0.498 0.924 0.426 0.498 0.698 0.2
15 0.469 0.669 0.200 0.469 0.869 0.400 0.605 0.877 0.272 0.605 0.805 0.2
16 0.532 0.811 0.280 0.532 1.011 0.480 0.669 1.471 0.802 0.669 0.869 0.2
17 0.532 0.735 0.203 0.532 0.935 0.403 0.669 2.480 1.811 0.669 0.869 0.2
18 0.504 0.716 0.212 0.504 0.916 0.412 0.811 7.976 7.165 0.811 1.011 0.2
19 0.394 0.784 0.389 0.394 0.984 0.589 0.735 —— —— 0.735 0.935 0.2
20 0.394 0.661 0.266 0.394 0.861 0.466 0.735 —— —— 0.735 0.935 0.2
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Table 3. IEEE 8-bus’s operation times of relay’s pairs in case with extrnal grid by MSBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI’ Tp Tb CTI Tp TZ2P CTI’

1 0.378 0.643 0.265 0.378 0.843 0.465 0.837 1.041 0.204 0.837 1.037 0.2
2 0.548 0.839 0.291 0.548 1.037 0.489 0.728 13.984 13.256 0.728 0.928 0.2
3 0.548 0.793 0.244 0.548 0.991 0.443 0.728 1.131 0.404 0.728 0.928 0.2
4 0.527 0.728 0.200 0.527 0.928 0.400 0.703 1.029 0.325 0.703 0.903 0.2
5 0.503 0.703 0.201 0.503 0.903 0.401 0.640 1.537 0.897 0.640 0.840 0.2
6 0.440 0.640 0.200 0.440 0.840 0.400 0.793 1.088 0.295 0.793 0.993 0.2
7 0.531 0.793 0.262 0.531 0.993 0.462 0.643 3.115 2.472 0.643 0.843 0.2
8 0.531 0.923 0.392 0.531 1.123 0.592 0.643 —— —— 0.643 0.843 0.2
9 0.593 0.793 0.200 0.593 0.993 0.400 0.791 —— —— 0.791 0.991 0.2
10 0.593 0.928 0.335 0.593 1.127 0.534 0.791 —— —— 0.791 0.991 0.2
11 0.537 0.793 0.256 0.537 0.991 0.454 0.684 —— —— 0.684 0.884 0.2
12 0.537 0.839 0.302 0.537 1.039 0.502 0.684 1.308 0.624 0.684 0.884 0.2
13 0.611 0.812 0.201 0.611 1.012 0.401 0.839 1.656 0.817 0.839 1.039 0.2
14 0.622 0.849 0.227 0.622 1.049 0.427 0.812 2.002 1.190 0.812 1.012 0.2
15 0.619 0.855 0.236 0.619 1.055 0.436 0.849 1.049 0.200 0.849 1.049 0.2
16 0.719 0.928 0.209 0.719 1.127 0.408 0.855 2.770 1.914 0.855 1.055 0.2
17 0.719 0.923 0.204 0.719 1.123 0.404 0.855 1.423 0.568 0.855 1.055 0.2
18 0.485 0.685 0.200 0.485 0.884 0.399 0.927 1.182 0.255 0.927 1.127 0.2
19 0.639 0.839 0.200 0.639 1.037 0.398 0.923 —— —— 0.923 1.123 0.2
20 0.639 0.839 0.200 0.639 1.039 0.400 0.923 —— —— 0.923 1.123 0.2

The convergence characteristics curves of SBO and MSBO for the normal case and
the other case are presented in Figures 7 and 8, respectively. And the penalty occurred by
SBO and MSBO during running the optimum algorithm shown in Figure 9. For the normal
case while the state of the external grid is shown in Figure 10. These figures showed the
convergence of MSBO is better and faster than the original SBO convergence. And the
ability of MSBO to avoid penalty and pass constraints quickly.

 
Figure 7. Convergence characteristics of SBO and MSBO in normal case of IEEE 8-bus.
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Figure 8. Convergence characteristics of SBO and MSBO in external grid on case of IEEE 8-bus.

 

Figure 9. Penalty between SBO and MSBO of IEEE 8-bus test system normal case.
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Figure 10. Penalty between SBO and MSBO of IEEE 8-bus test system with external grid on work.

In the normal case, the original SBO has OF with value 33.705 s while MSBO has OF
with value 28.072 s and MSBO has 33.705 s after 300 iterations and MSBO passed penalty
after 12 iterations while original SBO continuous to iteration 32 to pass system’s constraints.
For another case, the external grid stat on operation OF becomes 32.601 s and 35.388 s
for MSBO and SBO respectively. MSBO reached 35.350 s after 477 iterations. The penalty
passed after 11 iterations in the case of SBO while MSBO passed after three iterations. All
of these prove the ability of MSBO to increase its exploration and exploitation more than
the original algorithm.

4.2. Test System II: IEEE 14-Bus Distribution Network

The IEEE 14-bus distribution network which is shown in Figure 11. Which is a down-
stream section of IEEE 14-bus. This distribution network has two distribution transformers
connected at buses number 1 and 2 to supply it. Each transmission line has a protection
relay at every end of the line to form 16 relays [38,44].

 
Figure 11. The single line diagram for 14 bus distribution network.
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Test system modified with addition 2 DGs connected at buses number 5 and 7 with
power equals 5MVA and power factor nominally is 0.9 lagging and their type are syn-
chronous. This modification is from [45] and 3 phase short circuit currents at both near-end
and far-end from [38].

The current transformer’s ratios of relays are 120, 120, 120, 40, 120, 40, 120, 120, 120,
80, 80, 80, 40, 40, 80, and 80, for relays from 1 to 16, respectively [38].

In this test system, optimization algorithms tuned 48 variables that are limited by
minimum and maximum values. Then constrained between operation time values of relays
by CTI. This test system is more constrained than the previous test system by 41 between
primary and backup DOCRs and 44 between DOCRs and distance relays, in both ends
(near and far).

Optimal settings tuned by SBO and MSBO algorithms. Those were tabulated in
Table 4 for the normal case and another case. These optimization solutions passed CTI
constraints between relays pairs in normal case in Table 5. Then, Table 6 proved the
ability of optimization solutions to pass the CTI constraint between relays pairs in DGs
working case.

Figure 12 shows the convergence characteristics curve of both SBO and MSBO algo-
rithms in the normal case while in another case after DGs work is shown in Figure 13.
During the tuning process for relays setting by optimization algorithms SBO and MSBO,
the penalty of both are shown in Figures 14 and 15 for the normal case and the other DGs
case, respectively.

In the normal case, MSBO has OF with a value of 34.806 s and is better than SBO with
2.05 s. MSBO reached 36.860 s faster than SBO by 328 iterations and passed penalty after
22 iterations the original SBO passed after 71 iterations. In another case, MSBO reaches
SBO’s OF after 482 iterations and at the end of the run reaches 51.068 s as OF and better
than SBO by 6.2 s. MSBO passed constraints penalty after 113 iterations while SBO still
penalty to 183 iterations.

Table 4. IEEE 14-bus distribution network’s relays setting.

Relay

Normal Topological With External DG

Original SBO Modified SBO Original SBO Modified SBO

TDS IP TZ2 TDS IP TZ2 TDS IP TZ2 TDS IP TZ2

1 0.223 235.93 1.246 0.214 157.86 0.984 0.386 392.93 1.549 0.384 337.37 1.442
2 0.11 185.11 0.885 0.159 149.46 1.028 0.37 188.60 1.455 0.209 314.56 1.153
3 0.135 232.94 0.931 0.155 164.17 0.858 0.434 139.04 1.255 0.241 465.02 1.243
4 0.156 51.91 1.103 0.232 20.02 0.937 0.376 52.32 1.455 0.402 39.28 1.376
5 0.243 80.15 0.824 0.211 142.21 0.895 0.492 231.73 1.514 0.289 394.61 1.18
6 0.361 28.91 1.069 0.219 63.82 0.937 0.356 131.99 1.454 0.621 28.58 1.407
7 0.241 140.62 0.865 0.164 425.78 1.025 0.731 71.12 1.446 0.33 361.09 1.172
8 0.258 60.58 0.953 0.15 117.13 0.815 0.447 106.48 1.367 0.283 233.98 1.266
9 0.105 308.66 0.864 0.162 197.06 0.923 0.349 347.18 1.423 0.363 260.94 1.308
10 0.121 187.97 1.162 0.116 167.35 1.014 0.311 239.60 1.566 0.447 72.25 1.299
11 0.158 176.02 0.854 0.282 85.18 1.008 0.529 119.67 1.414 0.324 209.62 1.121
12 0.229 150.99 1.294 0.165 133.91 0.93 0.534 105.85 1.499 0.569 69.66 1.398
13 0.151 101.59 1.077 0.185 58.68 0.929 0.399 85.44 1.345 0.464 60.89 1.362
14 0.205 65.11 0.8 0.313 27.29 0.861 0.46 54.40 1.088 0.444 58.67 1.078
15 0.136 179.69 0.953 0.139 152.58 0.878 0.489 106.17 1.38 0.298 276.49 1.297
16 0.119 201.72 1.092 0.198 89.52 0.984 0.491 102.67 1.494 0.4 141.69 1.408

OF 36.86 34.806 57.268 51.068
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Table 5. IEEE 14-bus distribution network’s operation times of Relay’s pairs in normal case by MSBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI’ Tp Tb CTI Tp TZ2P CTI’

1 0.537 0.737 0.201 0.537 0.937 0.401 0.784 1.096 0.312 0.784 0.984 0.2
2 0.537 0.737 0.201 0.537 0.937 0.401 0.784 1.272 0.488 0.784 0.984 0.2
3 0.575 0.808 0.233 0.575 1.008 0.433 0.828 1.032 0.203 0.828 1.028 0.2
4 0.374 0.828 0.455 0.374 1.028 0.655 0.658 1.997 1.339 0.658 0.858 0.2
5 0.374 0.737 0.364 0.374 0.937 0.564 0.658 —— —— 0.658 0.858 0.2
6 0.427 0.661 0.234 0.427 0.861 0.434 0.737 1.907 1.169 0.737 0.937 0.2
7 0.504 0.828 0.325 0.504 1.028 0.525 0.695 1.352 0.657 0.695 0.895 0.2
8 0.504 0.737 0.234 0.504 0.937 0.434 0.695 —— —— 0.695 0.895 0.2
9 0.524 0.729 0.204 0.524 0.929 0.404 0.737 —— —— 0.737 0.937 0.2
10 0.524 0.784 0.259 0.524 0.984 0.459 0.737 0.938 0.201 0.737 0.937 0.2
11 0.613 0.814 0.2 0.613 1.014 0.4 0.825 1.546 0.721 0.825 1.025 0.2
12 0.529 0.73 0.201 0.529 0.93 0.401 0.615 0.856 0.241 0.615 0.815 0.2
13 0.413 0.615 0.202 0.413 0.815 0.402 0.723 7.393 6.669 0.723 0.923 0.2
14 0.476 0.676 0.2 0.476 0.878 0.403 0.814 1.703 0.89 0.814 1.014 0.2
15 0.621 0.825 0.204 0.621 1.025 0.404 0.808 1.604 0.796 0.808 1.008 0.2
16 0.54 0.784 0.244 0.54 0.984 0.444 0.73 1.066 0.336 0.73 0.93 0.2
17 0.452 0.658 0.205 0.452 0.858 0.405 0.729 2.547 1.819 0.729 0.929 0.2
18 0.495 0.695 0.2 0.495 0.895 0.4 0.661 2.583 1.922 0.661 0.861 0.2
19 0.495 0.784 0.289 0.495 0.984 0.489 0.661 1.187 0.526 0.661 0.861 0.2
20 0.391 0.695 0.304 0.391 0.895 0.504 0.678 1.445 0.766 0.678 0.878 0.2
21 0.391 0.729 0.337 0.391 0.929 0.537 0.678 1.66 0.982 0.678 0.878 0.2
22 0.522 0.723 0.201 0.522 0.923 0.401 0.784 1.886 1.102 0.784 0.984 0.2

Table 6. IEEE 14-bus distribution network’s operation times of relays pairs with DGs by MSBO.

Pair

Near-End Far-End

DOCRs D&DOCR DOCRs D&DOCR

Tp Tb CTI Tp TZ2B CTI Tp Tb CTI Tp TZ2P CTI

1 0.973 1.18 0.207 0.973 1.376 0.403 1.242 1.871 0.629 1.242 1.442 0.2
2 0.973 1.205 0.232 0.973 1.407 0.434 1.242 2.081 0.839 1.242 1.442 0.2
3 0.718 0.921 0.203 0.718 1.121 0.403 0.953 1.159 0.207 0.953 1.153 0.2
4 0.644 0.956 0.312 0.644 1.153 0.509 1.043 1.508 0.464 1.043 1.243 0.2
5 0.644 1.205 0.562 0.644 1.407 0.763 1.043 —— —— 1.043 1.243 0.2
6 0.677 0.881 0.204 0.677 1.078 0.401 1.176 26.389 25.213 1.176 1.376 0.2
7 0.752 0.956 0.204 0.752 1.153 0.401 0.98 1.506 0.525 0.98 1.18 0.2
8 0.752 1.18 0.428 0.752 1.376 0.624 0.98 —— —— 0.98 1.18 0.2
9 0.948 1.162 0.214 0.948 1.362 0.414 1.207 —— —— 1.207 1.407 0.2
10 0.948 1.206 0.258 0.948 1.408 0.46 1.207 1.409 0.202 1.207 1.407 0.2
11 0.873 1.1 0.227 0.873 1.299 0.427 0.972 1.323 0.351 0.972 1.172 0.2
12 0.947 1.181 0.234 0.947 1.398 0.451 1.066 1.271 0.205 1.066 1.266 0.2
13 0.832 1.059 0.227 0.832 1.266 0.433 1.108 3.803 2.695 1.108 1.308 0.2
14 0.892 1.097 0.205 0.892 1.297 0.405 1.099 1.821 0.722 1.099 1.299 0.2
15 0.768 0.972 0.204 0.768 1.172 0.404 0.921 1.22 0.299 0.921 1.121 0.2
16 1.038 1.242 0.204 1.038 1.442 0.404 1.198 1.611 0.413 1.198 1.398 0.2
17 0.826 1.032 0.206 0.826 1.243 0.417 1.162 6.046 4.884 1.162 1.362 0.2
18 0.691 0.98 0.29 0.691 1.18 0.49 0.878 2.43 1.553 0.878 1.078 0.2
19 0.691 1.206 0.515 0.691 1.408 0.717 0.878 1.489 0.612 0.878 1.078 0.2
20 0.766 0.98 0.215 0.766 1.18 0.415 1.097 1.637 0.54 1.097 1.297 0.2
21 0.766 1.162 0.397 0.766 1.362 0.597 1.097 1.603 0.506 1.097 1.297 0.2
22 0.908 1.108 0.2 0.908 1.308 0.4 1.208 1.735 0.527 1.208 1.408 0.2
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Figure 12. Convergence characteristics of SBO and MSBO in normal case of IEEE 14-bus distribution network.

 

Figure 13. Convergence characteristics of SBO and MSBO with DGs case of IEEE 14-bus distribution network.
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Figure 14. Penalty between SBO and MSBO of IEEE 14-bus distribution network normal case.

 
Figure 15. Penalty between SBO and MSBO of IEEE 14-bus distribution network with DGs.

4.3. Varification of MSBO Using Etap 12.6.0

Etap is used to verify the results obtained by the proposed algorithm MSBO on 8 bus
normal grid, three-phase fault at transmission line between third and fourth bus-bars. This
fault applied in both the near end and far end. As simulation by Etap as shown in Figure 16.
Relay 3 is the primary relay that operates at 0.535 s and 0.615 s in the near and far end,
respectively. While relay 2 is its backup relay which operates at 0.736 s and 0.943 in near
and far ends, respectively. And these verify the CTI is more than or equal to 0.2 s and
DOCRs without miscoordination. That simulation is also done at the transmission line
between the fifth and sixth busbars additional to relays 5 as primary relay and 4 as backup
re-lay, the operation time at both ends near and far of this pair relay as 0.318 s, 0.519 s,
0.717 s, and 1.738 s, respectively. The simulation is presented in Figure 17 proved that there
is no miscoordination between DOCRs.
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Figure 16. Operating times for relays 3 and 2.

Figure 17. Operating times for relays 5 and 4.

Finally, simulation is done at the transmission line which is connected between the
first and third busbars. It is noticed from Figure 18. Operating times at the near end for
primary (relay 9), and backup (relay 10) are 0.298 s, and 0.498 s, respectively. At the far end
the operating time of primary and backup relays are 0.661 s, and 1.216 s, respectively. This
case avoids miscoordination too.
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Figure 18. Operating times for relays 9 and 10.

5. Conclusions

In this research work, the APS passed the miscoordination problem between primary
and backup DOCRs, as well as miscoordination between DOCRs and distance relays.
The results demonstrated that APS has the potential to coordinate protection relays with
appropriate settings to face the problem of DGs in the distribution network. Without mis-
coordination between protection relays, the power system can investigate the advantages
of both distance relays and DOCRs. In addition to the role of the modified optimization
algorithm, which improved the optimal values and reduced operation relay’s time, all op-
eration times of both primary DOCRs and distance second zone’s time were set below the
maximum operation time. The modified algorithm has better convergence characteristics
and achieves better optimal values with fewer iterations.
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Appendix A

Table A1. Three-phase short circuit currents for IEEE 8-bus in the normal case by ETAP in both near
end and far end.

Pair
Primary

Relay
Back-Up

Relay

Near-End Far-End

Primary Back-Up Primary Back-Up

1 1 6 2703 2703 812 812
2 2 1 5390 812 3347 309
3 2 7 5390 1540 3347 586
4 3 2 3347 3347 2243 2243
5 4 3 2243 2243 1361 1361
6 5 4 1361 1361 416 416
7 6 5 4995 416 2703 20
8 6 14 4995 1540 2703 72
9 7 5 4267 416 1540 REV
10 7 13 4267 812 1540 REV
11 8 7 4995 1540 2507 REV
12 8 9 4995 416 2507 REV
13 9 10 1453 1453 416 416
14 10 11 2344 2344 1453 1453
15 11 12 3495 3495 2344 2344
16 12 13 5390 812 3495 348
17 12 14 5390 1540 3495 661
18 13 8 2507 2507 812 812
19 14 1 4267 812 1540 REV
20 14 9 4267 416 1540 REV
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Abstract: The uncertainty of solar generation and the bull market are unavoidable in energy dispatch.
The purpose of this research is to validate an uncertainty cost function of residential photovoltaic
energy in a real microgrid by varying the number of auctions in intraday markets. Therefore, the
following procedure is proposed. First, the variability of photovoltaic generation is quantified
through Monte Carlo simulations. Second, a statistical function calculates the variability costs of
photovoltaic generation. Third, the uncertainty costs are estimated by varying intraday auction
markets. Other complementary services are added to the network, such as battery exchange stations
for electric vehicles, demand response loads, market power restrictions, and energy storage systems,
which are estimated as total costs in an index ranking. The total costs are optimized in a benchmark
microgrid and take complimentary services as a black box. Only the uncertainty costs of residential
solar generators are discriminated. The main findings were that (1) the uncertainty costs have an
error of less than 0.0168% compared to the Monte Carlo simulations and that (2) the uncertainty
costs of solar generation are reduced with a decreasing trend to a more significant number of auction
markets in intraday markets.

Keywords: electric markets; photovoltaic generation; Monte Carlo simulations

1. Introduction

The greater diffusion of renewable energies mitigates the environmental deterioration
caused by greenhouse gases due to conventional electricity generation (Gen) [1]. Power
microgrids (MGs)are complex because they face uncertainties such as demand forecasts,
electric vehicles (EVs), battery swapping stations (BSSs), market price (MP) variability, and
renewable energy forecasts [2–7]. Gen is strongly influenced by the variability of electricity
market (EM) prices, which seek to minimize operating costs using energy sources such
as the solar power [8]. Furthermore, pivotal agents and monopolies should be reduced
because they produce market power. Traditionally, the Herfindahl Hirschman index and
the Residual Supply Index have been used to monitor EMs [9].

The prediction of photovoltaic (PV) energy has been extensively studied with Monte
Carlo simulations [8]. However, the lack of reliable information on solar Gen makes
energy delivery less efficient. Weather conditions such as unpredictable winds prevent
forecasts from being accurate. In such a scenario, uncertainty is inherent and cannot be
eliminated in planning [8]. Additionally, energy is available in Ems, where agents can buy
and sell power [10]. Intraday markets (IMs) present an additional complexity that should
be responsible for mismatches in scheduling on the day of operation. These imbalances are
produced by changes in the forecasts of the load or PV Gen [11].

The regularization of the electric generators that are involved in energy dispatch
must be studied in more detail. The user is given reliability, and study on the reserves
that allow absorbing market volatilities is imperative. The literature suggests planning
with multiple agents to reduce greenhouse gas costs, separately evaluating operating
expenses and revenues obtained in markets, and assessing the demand curve [10,12,13].
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Another approach takes price information from a real EM to conduct energy dispatch
planning [14]. However, the adequate number of IM auctions and their relationship with
(PV) Gen remains undefined [11].

The main objective of this research is to evaluate the various residential solar Gen
curves of an electrical MG, which is the basis for energy dispatch [15]. Gen overestimation
and underestimation deviations must be adjusted using a statistical function [8]. The
variations are quantified and compared with Monte Carlo simulations [16]. Once the
uncertainty costs (UCs) are estimated, UCs due to deviations in the energy dispatch of
the MG are evaluated [8]. The solution strategy uses the variable neighbourhood search-
differential evolutionary particle swarm optimization (VNS-DEEPSO) algorithm in two
stages: the first one optimizes the economic benefits of the MG, and the second one
optimizes the IMs [17]. This algorithm was selected due to its high performance in smart
MG optimization problems [18].

The evaluations of the revenues from solar Gen were conducted by taking 500 repre-
sentative scenarios out of 5000 [14]. The costs were collated with the results obtained from
the Monte Carlo simulations, yielding an error between 7 X 10−5% and 0.0168% for one
day of operation. The prices of uncertainty are evaluated by varying the IM auctions. It is
ascertained that with greater number of auctions, the imbalances in the scheduling of solar
Gen decrease.

This article presents the following structure: In Section 2, works related to the present
investigation are compared. Section 3 presents the mathematical formulation of the UCs
and the formulation of the objective cost function of the MG. Section 4 offers the case
study, Section 5 shows the results, and Section 6 outlines the main conclusions of this
investigation.

2. State of the Art

In the literature, studies on smart MGs that optimize resources are reviewed [19].
Most of the works propose the improvement of the services of the steady demand and the
generators [6,19,20] so that users can participate in demand response (DR) programs [21].
They can also collaborate with flexible load management by improving their consumption
habits [15,22,23]. Energy storage systems (ESSs) promise to provide further flexibility to
stakeholders, who can buy off-peak energy hours and sell it during peak hours [4,10,17,23].
EMs benefit from previous integration that also facilitates the penetration of renewable
resources such as solar energy [8,15]. In the case of IMs, the auction numbers play an
essential role in the planning of energy dispatch [11].

This research focuses on the comparison of the storage systems (SSs) with batteries,
IMs, and solar energy UCs (SEUCs), as shown in Table 1. SSs with batteries include
different models of ESSs and residential EVs (REVs). The models in the table are listed
below. Model 1 consists of an aggregator that performs transactions between ESSs and
MPs, while Model 6 appraises the interaction between providers and users [4]. Model
2 evaluates the revenues from buying and selling in the market [6]. Model 3 suggests
evaluating consumption patterns and their interaction with electricity prices [24]. Model
4 shows the incentives of IMs for intermittent generators, which can participate through
meritocracy [25–31]. Model 5 estimates deviations in the energy dispatch due to EV
uncertainty [8]. Model 7 encourages the participation of programs with DR; in addition,
Model 8 includes IMs [19,20].
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Table 1. Review of electrical MGs.

No SS IM SEUC Comments

1 Yes No No MG with RS, REV, MP, DR, ESS, and Gen [4]
2 No No No Include DR and Gen [6]
3 No No No Include ESS and Gen [24]
4 No Yes No Include DR and Gen [25]
5 No No Yes Include REV and Gen [8]
6 Yes No No Smart grid with DR [29]
7 No No No Include DR and Gen [19]
8 No Yes No Include DR and Gen [20]
9 Yes No No Include ESS, demand, and Gen [26]
10 Yes No No Include DR, Gen, ESS, and EV [22]
11 No No No Include DR and Gen [21]
12 No No No Include RS, MP, Gen, demand, and ESS [27]
13 Yes No No Include RS, Gen, ESS, and REV [30]
14 No No No Include DR, Gen, ESS, and REV [31]
15 No No No Include DR, Gen, and ESS [12]
16 No No No Include DR, Gen, and ESS [32]

17 Yes Yes Yes MG with RS, REV, MP, DR, ESS, REV, BSS, and
Gen(This proposal belongs to this paper)

Model 9 uses ESSs and predicts demand and Gen [26]. Model 10 enables load re-
duction [22]. Model 11 encourages competitiveness in EMs between DR and Gen [22].
Model 12 combines renewable sources (RSs), such as a PV panel and ESSs, to reduce CO2
emissions [27]. Model 13 schedules the commissioning of thermal power plants, which
reduces gas emissions and operating costs. Additional vehicles, wind and photovoltaic
generators, and ESSs are connected to the grid. In addition, Model 14 schedules the load
when faced with uncertainty regarding the future price. Model 15 reduces both costs and
environmental emissions by using hybrid systems with batteries and wind and solar gener-
ators. Model 16 formulates distributed energy resources, with the energy reserve capacity
and coordination of the operation with renewable resources and cogeneration. Model 17,
which is the model proposed in this research, turns out to be the most complete. It has an
aggregator managing the MG’s resources, including RS, REV, MP, IM, DR, ESS, REV, BSS,
and Gen [5,7,14,28]. In addition, the MG has restrictions that prevent the appearance of
monopolies, pivotal agents, and a minimum supply of demand. [9,13]. Furthermore, the
mathematical formulation of the uncertainty caused by deviations in solar energy dispatch
is stated [8,15]. The costs of the MG are optimized using the VNS-DEEPSO algorithm,
which presents the best performance in a similar MG [17,18].

3. Mathematical Formulation

The mathematical models are presented in two sections. The first section establishes
the UCs for solar Gen. The second section formulates the objective function for the MG.

3.1. Uncertainty Costs of Photovoltaic Generation

The irradiance distribution (G) is represented using a probability function ( fG) , where
the parameter (λ) is the mean, and the parameter (β) is the standard deviation [33]. The
distribution for intraday solar radiation curves can be adjusted as follows.

fG(G) =
1

Gβ
√

2π
· e

− (ln(G)−λ)2

2β2 ; 0 < G < ∞ (1)
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In solar panels, the power that is generated depends on the reference irradiance RC.
The irradiance can be represented by quadratic or linear behavior, as depicted below [33].

fGWPV(G) =

{
WPVr · G2

Gr RC
, 0 < G < RC

WPVr · G
Gr

, G > RC
(2)

The overestimation CPV,o,i or underestimation CPV,u,i represents the deviations in the
binding dispatch and IMs. The variable WPV,i represents PV generators i and the available
power, while the power programmed by the aggregator is represented by WPV,s,i.

UCF = CPV,u,i(WPV,s,i − WPV,i) + CPV,o,i(WPV,i − WPV,s,i) (3)

3.2. Objective Function of Microgrid

The smart MG is represented in Figure 1, which has a bidirectional flow of informa-
tion. The following tasks are undertaken: buying and selling energy in IMs, charging
and discharging ESSs, charging and discharging batteries from a BSS, and charging and
discharging EVs. Other elements that comprise the MG are the distributed generators (DGs)
and load with DR [5,7,14,28]. In addition, the smart MG considers restrictions such as the
Herfindahl–Hirschman concentration index and the index of the three most prominent
bidders to avoid monopolies and pivotal agents [9]. There is also the demand welfare,
which ensures a minimum consumption of the demand [13].

Figure 1. Structure of the electrical microgrid.

The MG model operates in a black box. Information is taken from a real MG, in which
the input variables are calculated, and the MG model calculates the benefits obtained
as presented below [14]. The profits of the network are represented by P, periods are
represented by t, scenarios are represented by s, the probability of the occurrence of each
scenario is characterized by Pr, Ns is the maximum number of scenarios, and T is the
maximum number of periods.

MGIntraday+1
Total =

Ns
∑

s=1

(
T=Ti

∑
t=1

P(t,s) +
T=2Ti

∑
t=Ti+1

P(t,s) +
T=24

∑
t=iTi+1

P(t,s)

)
· Pr(s)

{Ti, 2Ti, . . . , 24}εZ

(4)
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The deviations in the dispatch of solar energy will appear in each of the intraday
periods. The UCs are calculated for each period, where NPV represents the maximum
number of PV Gen units.

UCIntraday+1
Total =

Ns
∑

s=1

(
T=Ti

∑
t=1

(
NPV
∑

j=1
CPV,u, ju(WPV,s,i − WPV,i)

)
+ . . .

. . .
T=2Ti

∑
t=Ti+1

(
NPV
∑

j=1
CPV,u, ju(WPV,s,i − WPV,i)

)
+ . . .

. . . +
T=24

∑
t=iTi+1

(
NPV
∑

j=1
CPV,u, ju(WPV,s,i − WPV,i)

)
+ . . .

. . . +
T=Ti

∑
t=1

(
NPV
∑

j=1
CPV,o, ju(WPV,i − WPV,s,i)

)
+ . . .

. . .
T=2Ti

∑
t=Ti+1

(
NPV
∑

j=1
CPV,o, ju(WPV,i − WPV,s,i)

)
+ . . .

. . . +
T=24

∑
t=iTi+1

(
NPV
∑

j=1
CPV,o, ju(WPV,i − WPV,s,i)

))
{Ti, 2Ti, . . . , 24}εZ

(5)

The objective function is defined as minimizing the costs of uncertainty for the dispatch
of solar energy minus the benefits obtained in the MG, which is optimized by using the
VNS-DEEPSO algorithm.

minimize ZIntraday+1
Total = UCIntraday+1

Total − MGIntraday+1
Total (6)

4. Case Study Presentation

The case study is presented in two sections. The first section shows the statistical data
used to evaluate the costs of uncertainty, and in the second one, the MG is given.

4.1. Residential Solar Generators

The power that is generated daily is taken from [14], where the energy for residen-
tial solar panels is considered. Figure 2 shows the power supply for 500 representative
scenarios.

Figure 2. Residential PV generators in 24 h, data from [14].
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The UC function must be validated using Monte Carlo simulations with which random
irradiance values are obtained by assuming the proportionality between the irradiance
and the generated power. Solar radiation parameters are considered according to solar
radiation distribution frequency functions, as shown in Table 2 [34]. The penalties for
overestimation and underestimation are considered [8].

Table 2. Solar generation parameter, data from [34].

Symbol Parameter Value

WPVr PV Gen source (MW) 100
Gr Nominal irradiance (W/m2) 775

RC
Irradiance of reference

(W/m2) 116

WPV,∞ Maximum power Gen (MW) 150
N Number of iterations 100,000

WPV,s,i Scheduled PV Gen (MW) 100

CPV,u,i
Penalty for underestimation

(USD/MW) 300

CPV,o,i
Penalty for overestimation

(USD/MW) 700

The solar radiation values in Figure 2 are the basis for calculating the mean and
standard deviation of each hour. The obtained values are summarized in Tables 3 and 4.

Table 3. Mean and standard deviation between 8 and 14 h.

Symbol 8 9 10 11 12 13 14

β 0.0965 0.0710 0.0673 0.0887 0.1030 0.1069 0.1121
λ 2.3059 3.7685 4.4929 4.8512 5.0494 5.1577 5.2085

Table 4. Mean and standard deviation between 15 and 21 h.

Symbol 15 16 17 18 19 20 21

β 0.0965 0.0710 0.0673 0.0887 0.1030 0.1069 0.1121
λ 2.3059 3.7685 4.4929 4.8512 5.0494 5.1577 5.2085

4.2. Objective Function of Microgrid

MG is located in Portugal and comprises 17 solar Gen units, 5 dispatchable units, 34
REVs, 2 ESSs, an external electricity service provider, and 90 users who actively participate
in DR programs [35,36]. The distribution transformer is 160 kVA and connects to a medium
and low voltage line of 30 kV/400 V–230 V [37]. The five dispatchable units comprise
four DGs and an external solar generator. The transformer is connected to 25 buses [37].
Additionally, MG can transfer energy with intraday markets [11]. It also has penalties for
costs of uncertainty in the Gen of solar energy, market power restrictions, and constraints
on the minimum supply of energy for demand [9,13,15]. MG is optimized using the VNS-
DEEPSO algorithm, which improves MG in the first stage and MIs in the second stage, as
shown in Figure 3 [17,18].
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Figure 3. Solar generators in the electrical microgrid [14].

5. Results and Discussion

The results are presented in two sections. In the first section, the UCs for residential
solar energy Gen are validated, while in the second one, the UCs are estimated by varying
the IMs of the MG.

5.1. Uncertainty Costs with Residential Solar Generators

The validation uses Monte Carlo simulations to determine the histograms of irradiance
and solar power generated with the underestimated and overestimated costs of solar
radiation, as shown in Figure 4.

Figure 4. Histograms of (a) irradiance and (b) solar power generated. (# means 104).

Penalties due to UCs are determined, and UCs are calculated while solar Gen varies
(Figure 5).
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Figure 5. Monte Carlo simulations for (a) UC function histogram and (b) evaluation of UCs by varying solar power. (#
means 104).

Finally, the UCs are evaluated for each hour using Monte Carlo simulations and the
UC function. In the Monte Carlo simulations, the value is obtained with the average of
the estimated values MCPV [38]. The costs for underestimation and overestimation are
used [33] as shown below.

ACPV = E[CPV,u,i(WPV,s,i, WPV,i)]+E[CPV,u,i(WPV,o,i, WPV,i)] (7)

The estimated error when evaluating the Monte Carlo functions and the UC function
is summarized in Tables 5 and 6. The error is in the range between 7 × 10−5% and 0.0168%.
This research differs from previous works in which the uncertainty costs of renewable
energies per day had been evaluated; in this research, a set of intraday evaluations per
hour is carried out. For comparative purposes, the highest error reported in each research
is taken, in which the error of 0.0168% is more exact than the errors obtained for 0.0615%
from [39], 0.0343% from [16], and 0.072% from [33]. This means that this investigation
contains the error closest to zero.

Table 5. The estimated error between 8 and 14 h.

Symbol 8 9 10 11 12 13 14

MCPV ($) 64,698 68,525 63,725 58,465 55,843 54,220 53,375
ACPV ($) 64,695 68,524 63,723 58,460 55,842 54,215 53,383

e ($) 0.0049 4 × 10−4 0.0026 0.0099 0.0027 0.0088 0.0151

Table 6. The estimated error between 15 and 21 h.

Symbol 15 16 17 18 19 20 21

MCPV ($) 69,920 68,526 63,726 58,465 55,844 54,216 53,374
ACPV ($) 69,920 68,524 63,723 58,460 55,842 54,215 53,383

e ($) 7 × 10−5 0.002 0.0047 0.0091 0.0041 0.0022 0.0168

5.2. Uncertainty Costs Varing Intraday Markets in the Microgrid

The uncertainty from the solar energy dispatch is due to the underestimation and
overestimation of the power. The MG model considers the UCs for solar Gen with 2, 3, 4,
and 6 IMs. The auctions are taken in symmetrical times; for example, in the case of three
intraday markets, the auctions are conducted every 8 h, as shown in [11]. The uncertainty
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costs due to overrating and underestimating the solar energy dispatch are reduced with a
more significant number of intraday markets, as shown in Figure 6.

Figure 6. UCs of PV generators varying IMs.

6. Conclusions

The uncertainty in energy distribution planning is inevitable and can have minor
impacts on the planning of electrical microgrids. This research quantified the uncertainty of
the solar generation of an electric microgrid and validated the methodology using Monte
Carlo simulations. The relative error of the uncertainty cost estimation function for the
solar energy generation obtained values in the range between 7 × 10−5% and 0.0168%. In
addition, the authors evaluated the effect of intraday markets in an optimization case of
an electrical microgrid. It was found that the costs of uncertainty for the generation of the
solar energy decrease when the number of intraday markets increases, thus considering
symmetrical daily auction periods. For example, in the case of three intraday markets, the
auctions are carried out every 8 h. The aggregator improved the economic management of
the network with a more significant number of intraday markets. Future works should
evaluate other sources of clean energy such as micro-hydroelectric plants and wind turbines.
Such studies must also assess the effect of the implementation of intraday markets with
non-symmetrical daily auction periods on the costs of uncertainty.
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Abstract: In recent studies, the competitiveness of the Newton-S-Iteration-Process (Newton-SIP)
techniques to efficiently solve the Power Flow (PF) problems in both well and ill-conditioned systems
has been highlighted, concluding that these methods may be suitable for industrial applications.
This paper aims to tackle some of the open topics brought for this kind of techniques. Different PF
techniques are proposed based on the most recently developed Newton-SIP methods. In addition,
convergence analysis and a comparative study of four different Newton-SIP methods PF techniques
are presented. To check the features of considered PF techniques, several numerical experiments
are carried out. Results show that the considered Newton-SIP techniques can achieve up to an
eighth order of convergence and typically are more efficient and robust than the Newton–Raphson
(NR) technique. Finally, it is shown that the overall performance of the considered PF techniques is
strongly influenced by the values of parameters involved in the iterative procedure.

Keywords: power flow; S-iteration process; Newton–Raphson; high order newton-like method;
computational efficiency

1. Introduction

Power Flow (PF) is the backbone of power system analysis. From a mathematical
point of view, PF is a nonlinear problem in which the operational steady state of a power
system is obtained. Traditional methods for tackling this problem are the iterative NR [1]
and decoupled techniques [2–4].

Although PF is customarily solved in polar coordinates form, other formulations have
been studied. A PF formulation based on current injections instead of power injections
has been proposed by da Costa et al. [5] and posteriorly embellished by Garcia et al. in [6].
Saleh has developed a formulation of the PF problem in the well-known d-q framework
in [7,8]. More recently, PF formulation in complex variables has been exploited in [9], using
Witinger Calculus.

Ill-conditioned systems bring some issues for traditional PF solution techniques. This
topic has been profusely studied for decades. For example, the reader can be referred to
the works of Iwamoto and Tamura [10], Tripathy et al. [11] or Braz et al. [12]. More recently,
these kinds of problems have been tackled using the Continuous Newton’s paradigm
by Milano in [13] or by some of the authors in several recent papers [14–16]. The works
of Pourbagher and Derakhshandeh have been focused on the solution of ill-conditioned
power systems using the Levenberg–Marquardt technique [17,18]. Alternatively, a novel
paradigm has been proposed by the authors in [19], which studies the application of the
Gauss–Newton method for PF analysis.

High-order Newton-like methods have also been studied for PF analysis. In [20],
Pourbagher and Derakhshandeh studied the application of Newton-like techniques of
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3rd, 4th, and 5th order to PF analysis. On the other hand, a Newton-like technique with
a superquadratic convergence rate has been proposed to solve the PF problem in well-
conditioned systems by some of the authors in [21].

Regarding continuation, Homotopic and Holomorphic techniques have also been
exploited for PF analysis. The well-known Continuation Power Flow [22] may be the
greatest exponent of this kind of methodology. This approach is traditionally used to
determine the stability margin of a power system by calculating its Maximum Loadability
Point. Some recent efforts have been made for adapting Continuation Power Flow to
distribution systems [23,24]. The Homotopic principle has been applied to PF analysis by
Yang and Zhou in [25]. Posteriorly, a family of robust and efficient PF solution techniques
based on a combined Newton–Homotopic approach has been developed by some of the
authors in [26]. The PF solution by the Holomorphic Embedding method was firstly studied
in [27]. Recently, the PF solution by this principle has been further studied in [28,29].

The application of the S-iteration process (SIP) [30] to PF analysis has been recently
tackled by the authors in [31]. In this regard, an iterative algorithm based on a com-
bined Newton-SIP approach developed in [32] was adapted for solving either well or
ill-conditioned systems. The developed solver turned out to be very efficient, since only
an LU decomposition is required in the whole iterative process. This was reflected in very
promising results, frequently outperforming NR or the decoupled methods. In addition, it
turned out to be quite robust, efficiently handling some large and very large ill-conditioned
systems. However, due to the linear convergence characteristic of this method, it suffers
from slow convergence in heavy loading cases. In order to overcome this drawback, a
Jacobian updated mechanism has also been proposed. Definitely, the PF solution technique
proposed in [31] and its variant can be widely used in industry tools due to its capacity for
managing well and ill-conditioned equations and its simplicity and efficiency. However,
the application of SIP for PF analysis is still far from being fully studied. For example,
several topics still need to be further analyzed:

• The reference [31] is limited to studying only one of the algorithms developed in [32].
In the latter reference, along with [33], three other Newton-SIP methods were devel-
oped. The applicability of these techniques to PF analysis has not been studied yet.

• Although the Jacobian updated mechanism proposed in [31] allows overcoming the
slow-convergence issues in heavy loading systems, the whole iterative procedure
remains linear. Consequently, many iterations are normally employed to achieve a
feasible solution.

• The overall performance of the Newton-SIP technique studied in [31] strongly depends
on the value of the parameters involved in the iterative procedure (s-parameters).

In order to respond to the issues above, the authors strongly believe that further
analysis of the SIP applied to PF analysis is still required. This paper aims to fill this
gap by profusely studying the Newton-like methods developed in [32,33]. Two schemes
are considered. Firstly, we take the constant Jacobian matrix, which corresponds with
the standard form of the techniques developed in [32,33]. This mechanism brings linear
algorithms; hence, the Newton-SIP methods are also studied for a fully updated scheme in
which the Jacobian matrix involved is updated each iteration. The developed methods are
compared in terms of efficiency and convergence rate. Finally, we study several numerical
experiments in order to analyze the performance of the different Newton-SIP methods
in well and ill-conditioned systems, comparing their results with those obtained by NR
and analyzing the influence of the s-parameters in the overall performance of the Newton-
SIP approaches.

The remainder of the paper is organized as follows. Firstly, the Newton-SIP methods
developed in [32,33] are presented and adapted to the PF problem in Section 2. A conver-
gence study of the considered PF solution techniques is provided in Section 3. Section 4
compares the studied methodologies in terms of efficiency. Section 5 describes the different
numerical experiments considered, and the results obtained are interpreted and discussed.
Finally, Section 6 concludes the paper.
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2. Newton-SIP Methods Applied to PF Analysis

2.1. Background

The PF problem in polar coordinates can be established as a set of n nonlinear equa-
tions given by [34]:

g(x) =
{

Psch
i − ∑|Vi|

∣∣Vj
∣∣∣∣Yij

∣∣ cos
(
θij − δi + δj

)
= 0

Qsch
i − ∑|Vi|

∣∣Vj
∣∣∣∣Yij

∣∣ sin
(
θij − δi + δj

)
= 0

(1)

where Psch
i and Qsch

i are the scheduled active and reactive power at ith bus, respectively;
Vi∠δi is the complex voltage at the ith bus; Yij∠θij is the ijth element of the admittance
matrix; and x ∈ R

n is the PF vector of unknowns, which is defined in polar coordinates
as follows:

x =
[

δPV|δPQ

∣∣VPQ

]T (2)

where δPV ∈ R
ng is the vector of voltage angles at PV buses, δPQ ∈ R

nl is the vector of
voltage angles at PQ buses, VPQ ∈ R

nl is the vector of voltage magnitudes at PQ buses, and
nl and ng are the total number of PQ and PV buses, respectively.

In the formulation above, only the well-known constant power loads have been
considered, nevertheless, other type of consumers could be considered following the
formulation described in the Appendix A. Explicit solutions of the system of nonlinear
equations (1) cannot be directly obtained. In this regard, iterative methods are undoubtedly
the most popular techniques for solving this kind of problem. Among them, the NR
method has been the most widely used in PF analysis. The generic kth iteration of the NR
for solving (1) is given by:

x(k+1) = x(k) −
[
J
(

x(k)
)]−1

g
(

x(k)
)

(3)

where J ∈ R
n×n is the Jacobian matrix, which is formed by the first partial derivatives of (1)

with respect to (2). It is well known that the NR method has local quadratic convergence.
Alternatively, other robust and high-order Newton-like methods have been pro-

posed to solve the PF and overcome the drawbacks posed by NR (See Section 1). This
paper is focused on the family of Newton-SIP methods, which are described in the
following subsections.

2.2. Newton-SIP Methods (Type 1)

In [32], two Newton-SIP methods have been developed. Firstly, we denote SIP1-J0 to
the methodology whose generic kth iteration for solving the PF is carried out as follows:⎧⎪⎨⎪⎩

y(k) = (1 − α)x(k) + α

(
x(k) −

[
J
(

x(0)
)]−1

g
(

x(k)
))

x(k+1) = y(k) −
[
J
(

x(0)
)]−1

g
(

y(k)
) (4)

where α. On the other hand, another Newton-SIP method, namely SIP2-J0 has been
proposed in [32]. In this case, the generic kth iteration of SIP2-J0 for solving the PF is
given by: ⎧⎪⎨⎪⎩

y(k) = (1 − α)x(k) + α

(
x(k) −

[
J
(

x(0)
)]−1

g
(

x(k)
))

x(k+1) = y(k) −
[
J
(

y(0)
)]−1

g
(

y(k)
) . (5)

Both SIP1-J0 and SIP2-J0 are defined by only one s-parameter (namely α). The main
difference between SIP1-J0 and SIP2-J0 lies in the latter requiring two Jacobian evaluations.
It is noteworthy that the iterative algorithms defined by (4) and (5) only evaluate the
Jacobian at x(0) and y(0); hence, they are a priori more efficient than NR.

2.3. Newton-SIP Methods (Type 2)

In [33], two other Newton-SIP algorithms are proposed. Firstly, let us denote SIP3-J0
to that method whose generic kth iteration for solving the PF is carried out as follows:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z(k) = (1 − θ)x(k) + θ

(
x(k) −

[
J
(

x(0)
)]−1

g
(

x(k)
))

y(k) = (1 − α)

(
x(k) −

[
J
(

x(0)
)]−1

g
(

x(k)
))

+ α

(
z(k) −

[
J
(

x(0)
)]−1

g
(

z(k)
))

x(k+1) = y(k) −
[
J
(

x(0)
)]−1

g
(

y(k)
) (6)

where θ. Finally, the methodology denoted SIP4-J0 proposed in [33] is carried out at its
generic kth iteration for solving the PF problem as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z(k) = (1 − θ)x(k) + θ

(
x(k) −

[
J
(

x(0)
)]−1

g
(

x(k)
))

y(k) = (1 − α)

(
x(k) −

[
J
(

x(0)
)]−1

g
(

x(k)
))

+ α

(
z(k) −

[
J
(

z(0)
)]−1

g
(

z(k)
))

x(k+1) = y(k) −
[
J
(

y(0)
)]−1

g
(

y(k)
) . (7)

As in the previous subsection, the main difference between SIP3-J0 and SIP4-J0 lies in
the total number of Jacobian evaluations. While the latter requires three Jacobian evalua-
tions, SIP3-J0 only requires one Jacobian evaluation. An important difference between the
methodologies proposed in [32] and those developed in [33] is the number of s-parameters
involved. While SIP1-J0 and SIP2-J0 are defined by only one s-parameter (α), SIP3-J0 and
SIP4-J0 are characterized by a pair of s-parameters (α, θ). Finally, all studied Newton-SIP
methods only evaluate the Jacobian matrix at the first iteration (in just one or various
points); in this paper, we have considered alternative procedures in which the Jacobian
matrices are updated each iteration (as in the standard NR). These alternative techniques
have been called SIP1-J, SIP2-J, SIP3-J, and SIP4-J for the SIP1-J0, SIP2-J0, SIP3-J0, and
SIP4-J0, respectively. With the aim to summarize, Table 1 collects the main characteristics
of the studied PF solution techniques.

Table 1. Main features of the studied PF solution methods.

Method Jacobian Evaluations Function Evaluations S-Parameters

NR K K –
SIP1-J0 1 2 × K α
SIP1-J K 2 × K α
SIP2-J0 2 2 × K α
SIP2-J 2 × K 2 × K α
SIP3-J0 1 3 × K α, θ
SIP3-J K 3 × K α, θ
SIP4-J0 3 3 × K α, θ
SIP4-J 3 × K 3 × K α, θ

K → Total number of iterations.

It is also worth commenting that the s-parameters were only defined in the range [0,1]
in [32,33]. However, we have not limited their analysis to this range. Therefore, we have
avoided this definition in order to avoid misleading.

3. Convergence Analysis of Studied Newton-SIP Methods

In this section, the convergence rate of the studied Newton-SIP methods is derived.
In this case, we consider that the Jacobian matrix is updated each iteration, since the
convergence features for iterative procedures (4)–(7) can be derived from this analysis. For
this study, the Taylor Expansion technique has been used (see [35] for details).

Theorem 1. Let g be sufficiently differentiable at each point of an open neighborhood D of
r ∈ R

n, this is a solution of the system g(x) = 0. Let us suppose that g(x) is continuous
and nonsingular in x. Then, the SIP1-J converges to r with the following error function.

e(k+1) =
(

1 − α2
)

C2e(k)
2
+
((

α3 − 3α2 + 2
)

C3 +
(

4α2 − 2
)

C2
2

)
e(k)

3
+ O

(
e(k)

4)
(8)
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where Cj = (1/j!)
[
g
′
(r)
]−1

g(j)(r), j = 2, 3, . . . , and e(k) = x(k) − r.

Proof. Taylor expansion of g(x) and J(x) about r yields:

g
(

x(k)
)
= J(r)

[
e(k) + C2e(k)

2
+ C3e(k)

3]
+ O

(
e(k)

4)
(9)

J
(

x(k)
)
= J(r)

[
I + 2C2e(k) + 3C3e(k)

2]
+ O

(
e(k)

3)
(10)

where I ∈ R
n×n is the identity matrix. Now, let us assume that:[

J
(

x(k)
)]−1

=
[
c1I + c2e(k) + c3e(k)

2]
[J(r)]−1 + O

(
e(k)

3)
(11)

where c′s∈ R. Considering the following inverse definition:[
J
(

x(k)
)]−1

g
′(

x(k)
)
= J
(

x(k)
)[

g
′(

x(k)
)]−1

= I. (12)

By solving the resulting linear system, one can obtain:[
J
(

x(k)
)]−1

=
[
I − 2C2e(k) +

(
4C2

2 − 3C3

)
e(k)

2]
[J(r)]−1 + O

(
e(k)

4)
. (13)

Now, let us define ẽ(k) =
(

x(k) −
[
J
(

x(k)
)]−1

g
(

x(k)
))

− r and e(k)y = y(k) − r; thus,

one can obtain:

e(k)y = (1 − α)e(k) + αẽ(k) = (1 − α)e(k) + αC2e(k)
2
+ O

(
e(k)

3)
. (14)

The Taylor expansion of g(y) about r yields:

g
(

y(k)
)
= J(r)

[
e(k)y + C2e(k)

2

y + C3e(k)
3

y

]
+ O

(
e(k)

4

y

)
. (15)

Now, we can calculate the error vector at k + 1 as follows:

e(k+1) =

(
y(k) −

[
J
(

x(k)
)]−1

g
(

y(k)
))

− r. (16)

After some manipulations, one obtains:

e(k+1) =
(

1 − α2
)

C2e(k)
2
+
((

α3 − 3α2 + 2
)

C3 +
(

4α2 − 2
)

C2
2

)
e(k)

3
+ O

(
e(k)

4)
. (17)

The proof is complete. �

Theorem 2. Let g be sufficiently differentiable at each point of an open neighborhood D of
r ∈ R

n; this is a solution of the system g(x) = 0. Let us suppose that g(x) is continuous
and nonsingular in x. Then, the SIP2-J converges to r with the following error function.

e(k+1) =
(
α2 − 2α + 1

)
C2e(k)

2
+
((

6α2 − 2α3 − 6α + 2
)
C3 +

(
2α3 − 8α2 + 8α − 2

)
C2

2

)
e(k)

3

+
((

34α3 − 7α4 − 54α2 + 34α − 7
)
C2C3 +

(
4α4 − 22α3 + 37α2 − 22α + 4

)
C3

2

)
e(k)

4

+O
(

e(k)
5
) (18)

Proof. Taking e(k)y and the Taylor expansion of g(y) about r from (14) and (15), respectively,
let us calculate the Taylor expansion of [J(y)]−1 as (12). Thus, one can obtain:[

J
(

y(k)
)]−1

=

[
I − 2C2e(k)y +

(
4C2

2 − 3C3

)
e(k)

2

y

]
[J(r)]−1 + O

(
e(k)

3

y

)
. (19)

Now, we can calculate the error vector at k + 1 as follows:

e(k+1) =

(
y(k) −

[
J
(

y(k)
)]−1

g
(

y(k)
))

− r. (20)
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After some manipulations, one obtains:

e(k+1) =
(
α2 − 2α + 1

)
C2e(k)

2
+
((

6α2 − 2α3 − 6α + 2
)
C3 +

(
2α3 − 8α2 + 8α − 2

)
C2

2

)
e(k)

3
+((

34α3 − 7α4 − 54α2 + 34α − 7
)
C2C3 +

(
4α4 − 22α3 + 37α2 − 22α + 4

)
C3

2

)
e(k)

4
+ O

(
e(k)

5
)

.
(21)

The proof is complete. �

Theorem 3. Let g be sufficiently differentiable at each point of an open neighborhood D of
r ∈ R

n; this is a solution of the system g(x) = 0. Let us suppose that g(x) is continuous
and nonsingular in x. Then, the SIP3-J converges to r with the following error function.

e(k+1) =
(

2 − 2αθ2
)

C2
2e(k)

3
+
((

3 + 2αθ3 − 9αθ2 + 4α
)

C2C3 +
(
−α2θ4 + 14αθ2 − 4α − 5

)
C3

2

)
e(k)

4
+ O

(
e(k)

5)
(22)

Proof. Let us define ẽ(k) =
(

x(k) −
[
J
(

x(k)
)]−1

g
(

x(k)
))

− r and e(k)z = z(k) − r; then, one

can obtain:

e(k)z = (1 − θ)e(k) + θẽ(k) = (1 − θ)e(k) + θC2e(k)
2
+ O

(
e(k)

3)
. (23)

The Taylor expansion of g(z) about r yields:

g
(

z(k)
)
= J(r)

[
e(k)z + C2e(k)

2

z + C3e(k)
3

z

]
+ O

(
e(k)

4

z

)
. (24)

Now, let us define ê(k) =
(

z(k) −
[
J
(

x(k)
)]−1

g
(

z(k)
))

− r and e(k)y = y(k) − r; then,

we can calculate:

e(k)y = (1 − α)ẽ(k) + αê(k) =
(
1 − αθ2)C2e(k)

2
+
((

4αθ2 − 2α
)
C2

2 +
(
αθ3 − 3αθ2 + 2α

)
C3

)
e(k)

3
+((

4α − 9αθ2)C3
2 +
(
15αθ2 − 5αθ3 − 7α

)
C2C3

)
e(k)

4
+ O

(
e(k)

5
)

.
(25)

The Taylor expansion of g(y) about r yields:

g
(

y(k)
)
= J(r)

[
e(k)y + C2e(k)

2

y + C3e(k)
3

y

]
+ O

(
e(k)

4

y

)
. (26)

Now, we can calculate the error vector at k + 1 as follows:

e(k+1) =

(
y(k) −

[
J
(

x(k)
)]−1

g
(

y(k)
))

− r. (27)

After some manipulations, one can obtain:

e(k+1) =
(

2 − 2αθ2
)

C2
2e(k)

3
+
((

3 + 2αθ3 − 9αθ2 + 4α
)

C2C3 +
(
−α2θ4 + 14αθ2 − 4α − 5

)
C3

2

)
e(k)

4
+ O

(
e(k)

5)
. (28)

The proof is complete. �

Theorem 4. Let g be sufficiently differentiable at each point of an open neighborhood D of
r ∈ R

n; this is a solution of the system g(x) = 0. Let us suppose that g(x) is continuous
and nonsingular in x. Then, the SIP4-J converges to r with the following error function.

e(k+1) = X4e(k)
4
+ X5e(k)

5
+ X6e(k)

6
+ X7e(k)

7
+ X8e(k)

8
+ O

(
e(k)

9)
(29)

where:
X4 =

(
α2θ4 − 4α2θ3 + 4α2θ2 + 2αθ2 − 4αθ

)
C3

2 (30)

X5 =
(
20α2θ4 −4α2θ5 − 36α2θ3 + 28α2θ2 − 4αθ3 − 8α2θ + 12αθ2 − 12αθ + 4α

)
C2

2C3

+
(
4α2θ5 − 24α2θ4 + 48α2θ3 − 36α2θ2 + 4αθ3 + 8α2θ − 16αθ2 + 16αθ − 4α

)
C4

2

(31)

108



Electronics 2021, 10, 3011

X6 =
(
4α2θ6 −24α2θ5 + 60α2θ4 − 80α2θ3 + 60α2θ2 − 24α2θ + 4α2)C2C2

3

+
(
+2α3θ6 − 12α3θ5 − 8α2θ6 + 24α3θ4 + 56α2θ5 − 16α3θ3 − 146α2θ4 + 184α2θ3

−128α2θ2 + 56α2θ + 6αθ2 − 8α2 − 12αθ + 2
)
C3

2C3

+
(
12α3θ5 − 2α3θ6 + 4α2θ6 − 24α3θ4 − 32α2θ5 + 16α3θ3 + 90α2θ4 − 112α2θ3

+72α2θ2 − 32α2θ − 6αθ2 + 4α2 + 12αθ − 2
)
C5

2

(32)

X7 =
(
96α3θ6 −12α3θ7 − 288α3θ5 + 396α3θ4 − 24α2θ5 − 240α3θ3 + 144α2θ4 + 48α3θ2 − 288α2θ3

+216α2θ2 − 12αθ3 − 48α2θ + 48αθ2 − 48αθ + 12α
)
C6

2

+
(
24α3θ7 − 180α3θ6 + 516α3θ5 − 696α3θ4 + 48α2θ5 + 432α3θ3 − 264α2θ4 − 96α3θ2

+504α2θ3 − 384α2θ2 + 24αθ3 + 96α2θ − 84αθ2 + 84αθ − 24α
)
C4

2C3

+
(−12α3θ7 + 84α3θ6 − 228α3θ5 + 300α3θ4 − 24α2θ5 − 192α3θ3 + 120α2θ4 + 48α3θ2

−216α2θ3 + 168α2θ2 − 12αθ3 − 48α2θ + 36αθ2 − 36αθ + 12α
)
C2

2C2
3

(33)

X8 =
(
4α4θ8 − 32α4θ7 − 24α3θ8 + 96α4θ6 + 240α3θ7 − 16α2θ8 − 128α4θ5 − 944α3θ6 + 176α2θ7+

64α4θ4 + 1872α3θ5 − 804α2θ6 − 2016α3θ4 + 1996α2θ5 + 1216α3θ3 − 2921α2θ4 − 408α3θ2+

2524α2θ3 + 48α3θ − 1260α2θ2 + 368α2θ + 16αθ2 − 40α2 − 32θα + 4
)
C7

2+
(−7α4θ8 + 56α4θ6+

72α3θ8 − 168α4θ6 − 672α3θ7 + 56α2θ8 + 224α4θ5 + 2516α3θ6 − 580α2θ7 − 112α4θ4 − 4872α3θ5+
2518α2θ6 + 5280α3θ4 − 6000α2θ5 − 3280α3θ3 + 8546α2θ4 + 1128α3θ2 − 7368α2θ3 − 144α3θ+

3766α2θ2 − 1108α2θ − 28αθ2 + 128α2 + 56αθ − 7
)
C5

2C3 +
(
624α3θ7 − 49α2θ8 − 2232α3θ6 + 476α2θ7+

4272α3θ5 − 1984α2θ6 − 4728α3θ4 + 4628α2θ5 − 72α3θ8 + 3024α3θ3 − 6598α2θ4 − 1032α3θ2+

5876α2θ3 + 144α3θ − 3184α2θ2 + 956α2θ − 121α2)C3
2C2

3 +
(
24α3θ8 − 192α3θ7 + 648α3θ6−

1200α3θ5 + 24α2θ6 + 1320α3θ4 − 144α2θ5 − 864α3θ3 + 360α2θ4 + 312α3θ − 480α2θ3 − 48α3θ+

360α2θ2 − 144α2θ + 24α2)C2C3
3

(34)

Proof. In this case, one can calculate the Taylor expansion of [J(y)]−1 about r as (12). Thus,
one can obtain:[

J
(

z(k)
)]−1

=

[
I − 2C2e(k)z +

(
4C2

2 − 3C3

)
e(k)

2

z

]
[J(r)]−1 + O

(
e(k)

3

z

)
(35)

where e(k)z is already calculated in (23). Now, taking the Taylor expansion of g(z) about r

from (24), let us define ê(k) =
(

z(k) −
[
J
(

z(k)
)]−1

g
(

z(k)
))

− r and e(k)y = y(k) − r; then,

we can calculate:
e(k)y = (1 − α)ẽ(k) + αê(k) (36)

where ẽ(k) =
(

x(k) −
[
J
(

x(k)
)]−1

g
(

x(k)
))

− r. Now, manipulating (31), one obtains:

e(k)y =
(

αθ2 − 2αθ + 1
)

C2e(k)
2
+
((

2αθ3 − 8αθ2 + 8αθ − 2α
)

C2
2 +
(

6αθ2 − 2αθ3 − 6αθ + 2α
)

C3

)
e(k)

3
+ O

(
e(k)

4)
. (37)

The Taylor expansion of g(y) and of [J(y)]−1 about r yields:

g
(

y(k)
)
= J(r)

[
e(k)y + C2e(k)

2

y + C3e(k)
3

y

]
+ O

(
e(k)

4

y

)
(38)

[
J
(

y(k)
)]−1

=

[
I − 2C2e(k)y +

(
4C2

2 − 3C3

)
e(k)

2

y

]
[J(r)]−1 + O

(
e(k)

3

y

)
. (39)

At this point, we can calculate the error vector at k + 1 as follows:

e(k+1) =

(
y(k) −

[
J
(

x(k)
)]−1

g
(

y(k)
))

− r. (40)

After some manipulations, one can obtain:

e(k+1) = X4e(k)
4
+ X5e(k)

5
+ X6e(k)

6
+ X7e(k)

7
+ X8e(k)

8
+ O

(
e(k)

9)
(41)

where the Xs are defined in (30)–(34); hence, the proof is complete. �
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At this point, one can easily check that the studied techniques achieve their highest
convergence rates when the s-parameters are equal to 1. Thus, SIP1-J, SIP2-J, SIP3-J, and
SIP4-J can show third, fourth, fourth, and eighth convergence rates, respectively. In this
regard, it is important to note that the mentioned techniques present a higher convergence
rate compared with NR, which presents quadratic convergence. On the other hand, it is
worth mentioning that the studied Newton-SIP methods have the characteristic lowest
convergence rate even when α, θ �= 1. By observing the error functions of these techniques,
one can deduce that the order of convergence of SIP1-J and SIP2-J is at least two, while it is
three in the case of SIP3-J and four for SIP4-J.

In the case of the standard forms of studied Newton-SIP methods (Equations (4)–(7)),
since their convergence rates do not remain constant during the iterative procedure, it
is more suitable to study them by successive substitution and Taylor expansion in their
respective algorithms (details of this technique can be found in [36]). Figure 1 shows the
convergence rates of the algorithms SIP1-J0, SIP2-J0, SIP3-J0, and SIP4-J0 as a function of
the iteration number. In this figure, the convergence rate of the conventional NR has been
also included for comparison. From this figure, it can be deduced that SIP4-J0 and SIP1-J0
show the highest and the lowest convergence rate, respectively, while both SIP2-J0 and
SIP3-J0 have the same convergence order. Anyway, for these techniques, the convergence
rate is linear after the first iteration. Therefore, their convergence orders are always less
than two, being so overcome by NR.

Figure 1. Convergence rates of the algorithms (4)–(7).

To compare the algorithms (4)–(7) and their respective counterparts (in which the
Jacobian is updated each iteration), let us refer to the convergence rate of the initial error
vector. It means, let us suppose that the error vector evolves as e(0)

J
. Thus, as j grows,

the solution is assumed to be more closely approached. Therefore, it is assumed that
an algorithm will converge faster as j grows rapidly. Figure 2 plots the value of j of the
studied Newton-SIP methods at different iterations. From this figure, it can be seen that j
exponentially grows in the case of SIP1-J, SIP2-J, SIP3-J, and SIP4-J, while it grows linearly
with SIP1-J0 SIP2-J0, SIP3-J0, and SIP4-J0. To complete the section, Table 2 summarizes the
convergence analysis of the considered techniques and the NR. As commented, the studied
techniques achieve their maximum convergence rate when the s-parameters are equal to 1.
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Figure 2. Convergence degree of the error vector e(0) at different iteration counters.

Table 2. Comparison of the convergence rates of studied PF solution techniques.

Method
Convergence Rate

Minimum Maximum

NR 2 2
SIP1-J0 Linear Linear
SIP1-J 2 3
SIP2-J0 Linear Linear
SIP2-J 3 4
SIP3-J0 Linear Linear
SIP3-J 3 4
SIP4-J0 Linear Linear
SIP4-J 4 8

4. Comparison of the Efficiency of Different Iterative Algorithms

In this section, we compare the efficiency of the studied PF solution methods. To do
that, let us consider the following efficiency index [37].

FEI = p
1

CO (42)

where p ∈ R
+ is the order of convergence, and CO stands for the total computational cost

of an iteration. In this sense, the following theorem is generally used to estimate the cost of
a LU decomposition [35].

Theorem 5. The number of products and quotients required for solving q linear systems of
equations with the same matrix of coefficients, using LU factorization, is:

o(n, q) =
1
3

n3 + qn2 − 1
3

n. (43)

It is also suitable to consider the computational cost of each function evaluation o(g)
and Jacobian evaluation o

(
g
′)

; hence, the total computational cost of an iteration can be
estimated as follows:

CO = o(g) + o
(

g
′)

+ o(n, q). (44)
The value of the index (42) for studied Newton-SIP methods and NR is depicted in

Figure 3 for different sizes of the PF state vector (n). From this figure, it can be appreci-
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ated that Newton-SIP techniques are more efficient than NR. In addition, the following
relations hold:

FEINR < FEISIP2−J = FEISIP4−J < FEISIP1−J < FEISIP3−J. (45)

Figure 3. Efficiency index (42) for different PF solvers.

5. Numerical Experiments

In this section, several numerical experiments are carried out, and their results are
analyzed. The studied Newton-SIP PF techniques are compared with NR in several test
systems. All simulations have been done using Matpower v7.0 [38]. The studied systems
have been taken from MATPOWER’s database [39–41].

In all simulations, g(x)∞ ≤ 10−6 has been taken as a convergence criterion, and a flat
start has been considered for initializing the PF analysis. The reported execution times
have been obtained under Windows 10 on a 3.4 GHz Intel Core i7-8750H CPU 2.2 GHz
personal laptop (16.00 GB RAM) and calculated as the average value of 1000 simulations.

5.1. Well-Conditioned Cases

Firstly, we have analyzed the performance of studied PF techniques in several well-
conditioned systems, which range from 30 to 3120 buses. Figure 4 shows the obtained
results of these systems. These results have been obtained for the maximum convergence
rate of the studied Newton-SIP PF techniques, i.e., when the s-parameters are 1.

As expected, SIP1-J0 and SIP3-J0 are the fastest methods, which is strongly linked with
the number of factorizations required (one should note that the LU decomposition is the
heaviest part of any PF calculation [13]). Among all the studied Newton-SIP techniques,
only SIP2-J and SIP4-J are occasionally slower than NR. These results may look not coherent
with the analysis performed in Section 4; however, Figure 4c provides a clear explanation
about this issue. In this figure, it can be appreciated that these two techniques frequently
required more factorizations than NR, which is reflected in a higher computational burden
and therefore less competitive execution times. Regarding the total iterations required to
attain the solution, the results are expected since the highest convergence rate has the lowest
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number of total iterations required for achieving the solution. Regarding those algorithms
with linear convergence (Equations (4)–(7)), the following relations normally hold:

itSIP4−J0 < itSIP2−J0 < itSIP3−J0 < itSIP1−J0 (46)

where ita indicates the total number of iterations of the method “a”. One should note
that relations (46) are coherent with the theoretical analysis performed in Section 3 (see
Figure 2); nevertheless, there are exceptions such as case2746wop.

Figure 4. Comparison of the results obtained in well-conditioned systems. (a) Execution time (ms),
(b) total iterations, and (c) total factorizations.
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Now, let us consider the influence of the loading level. To do that, the active and
reactive powers injected at PQ buses along the active powers injected at PV buses have been
progressively increased in steps of λ = 0.0001 pu until all studied techniques have diverged.
Figure 5 is analogous to Figure 4 for limit-loading cases. In this case, all techniques diverged
for the same loading level; hence, all of them have been tested for the same conditions.

Figure 5. Comparison of the results obtained in well-conditioned systems in a limit load scenario.
(a) Execution time (ms), (b) total iterations number and (c) total factorizations.

While similar conclusions can be extracted for SIP1-J, SIP2-J, SIP3-J, and SIP4-J, linear
algorithms are not competitive in this scenario due to the huge amount of iterations required
to reach the solution. Hence, although they frequently employed very few factorizations,
their execution times are not competitive at all. In addition, relations (46) are not held
in this situation for SIP2-J0 and SIP3-J0, since it can be observed in Figure 5 that clearly
itSIP3−J0 < itSIP2−J0 .

In order to overcome the important drawbacks shown by linear techniques when the
loading level is high, s-parameters can be occasionally set greater than one. In this case,
these parameters have an accelerating effect on the convergence performance of the studied
Newton-SIP techniques. Figure 6 shows the total number of iterations of different linear
Newton-SIP techniques when their s-parameters are fixed greater than one and therefore
achieve the fastest convergence. Under these settings, the results are compared with those
results depicted in Figure 5. In this case, s-parameters have been obtained empirically. As
can be seen, the total number of iterations can be drastically reduced; however, the criteria
for determining the best values of s-parameters do not follow any specific pattern, as shown
in Figure 6b. In light of the results obtained, this topic looks strongly case-dependent.
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Figure 6. (a) Comparison of the total number of iterations of different linear Newton-SIP solvers,
taking the s-parameters equal to 1. (b) Considered s-parameters.

5.2. Ill-Conditioned Cases

Now, we have considered case3012wp, case3375wp, and case13659pegase, which are
available in MATPOWER’s database. These cases correspond with snapshots of real cases,
which demonstrates that ill-conditioned solvers may appear in real applications and they
are even more frequent nowadays [42]. NR fails to solve these systems when a flat start is
used, so that they can be categorized as ill-conditioned [13]. In previous simulations, we
have taken the s-parameters to be equal to one, since the studied methods achieve their
maximum convergence rate for these values. However, in ill-conditioned systems, this
strategy may lead to divergence. Therefore, it is more suitable to study which values of
the s-parameters in the considered Newton-SIP methods are reliable. Figures 7–9 show the
areas of successful convergence for the studied ill-conditioned cases. Hence, it is considered
to have failed since both divergence and convergence lead to inaccurate solutions.

Firstly, it can be easily appreciated that SIP1-J, SIP2-J, SIP3-J, and SIP4-J are typically
less reliable than SIP1-J0, SIP2-J0, SIP3-J0, and SIP4-J0, since the latter normally showed
wider convergence areas. There are some remarkable cases; for example, SIP1-J did not
converge in the case3012wp and case3375wp; on the other hand, SIP1-J0 and SIP3-J0
frequently converged, regardless of the value of parameters. Finally, SIP4-J and SIP4-J0
look very sensitive to the values of s-parameters. Their convergence rate precisely explains
the superior robustness features of linear methods. In [43], it is said that the methods with
high convergence rates normally show narrow Regions of Attraction; in other words, the
highest convergence rate has the most sensitivity with respect to the initial guess. This fact
can also be appreciated for other PF techniques such as [10,14], which introduce a discrete
step size to reduce the convergence rate and obtain robust techniques properly.
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Figure 7. Convergence (green) and failure areas (red) in the s-parameter space for solving the
case3012wp. Bold green areas indicate where the studied technique successfully converged, employ-
ing the least number of iterations.

Figure 8. Convergence (green) and failure areas (red) in the s-parameter space for solving the
case3375wp. Bold green areas indicate where the studied technique successfully converged, employ-
ing the least number of iterations.
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Figure 9. Convergence (green) and failure areas (red) in the s-parameter space for solving the
case13659pegase. Bold green areas indicate where the studied technique successfully converged,
employing the least number of iterations.

From Figures 7–9, it can also be seen that tuning the s-parameters is a strongly case-
dependent topic. For example, while the considered techniques performed very similar
in case3012wp and case3375wp, the behavior of the techniques became erratic in the
case13659pegase. In addition, the least number of iterations is not always achieved for the
same s-parameters.

In order to properly compare the studied Newton-SIP techniques in these ill-conditioned
cases, let us consider only those cases in which the considered techniques required the least
number of iterations for successfully converging. Figure 10 shows the execution time along
with the total number of iterations and factorizations employed by the Newton-SIP PF
techniques in the studied ill-conditioned systems. As commented, NR failed in these cases.

As in well-conditioned systems, SIP1-J0, SIP2-J0, and SIP3-J0 are the fastest tech-
niques, while SIP1-J, SIP2-J, SIP3-J, and SIP4-J typically reached the solution employing
less iterations. It is worth mentioning that SIP3-J is occasionally faster than SIP4-J0 in
the case13659pegase. This is because these two methods require the same number of
factorizations in this system; however, SIP4-J0 computes more calculations per iteration.
SIP1-J only converged in the case13659pegase.

To conclude this analysis, the influence of the initial guess x0 on the convergence
features of each studied technique has been analyzed. To this end, two cases have been
compared. On the one hand, we assume a flat start as in previous simulations, taking the
best value of the s-parameters for each case. On the other hand, we took the default starter
provided in Matpower, which is normally closer to the solution than the flat initialization.
Figure 11 shows the number of iterations for these two cases in the case3012wp. As
observed, the quality of the initialization directly affects the convergence of the studied
methods, normally employing more iterations when a flat start is used. These results are
coherent, since the closer the solution is to the start point, the faster the convergence. This
same conclusion was attained in other recent papers such as [44].
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Figure 10. Comparison of the results obtained in ill-conditioned systems. (a) Execution time (ms),
(b) total iterations number, and (c) total factorizations. S-parameters have been tuned as all studied
techniques employed the least number of iterations.

Figure 11. Total iterations employed in case3012wp with different solvers considering a flat start and
the default starter provided in Matpower.
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It is also worth noting how the starter point affects the robustness of the solvers.
Particularly, in the case of SIP1-J, the solution is successfully achieves starting from the
default point, while this solver failed from the flat starter. This is coherent with the
definition of ill-conditioned systems provided in [13], which is strongly related with the
quality of the starting point.

5.3. Influence of the R/X Ratio

It is well-known that the R/X ratio may negatively impact on the convergence features
of PF solvers [21]. In this section, we analyze how the studied techniques are affected by
this parameter. To this end, we have considered the small-scale case_ieee30, since high R/X
ratios are more frequently in this kind of network. To properly analyze this aspect, we have
considered that the branch resistances are multiplied by a real factor μ, and the number of
iterations for various values of μ is compared in Figure 12. In this case, the s-parameters
were fixed equal to 1 in order to attain the highest convergence rate. As expected, the
higher the R/X ratio, the higher the number of iterations employed to converge. This
fact is especially remarkable in those solvers with fixed Jacobian, provoking divergence in
some cases.

Figure 12. Total iterations employed in case_ieee30 with different solvers and various R/X ratios.

Lastly, we analyze the performance of the developed solvers on a real radial distri-
bution system. To this end, we have considered case18 (18-bus radial distribution system
from Grady, Samotyj, and Noyola) and case141 (141-bus radial distribution system from
Khodr, Olsina, De Jesus, and Yusta) from Matpower’s database. In this case, the results
obtained by the studied solvers have been compared with the Forward–Backward sweep
algorithm (FBS) [45], which is frequently considered the most conventional solver for radial
distribution systems. Figure 13 shows the total number of iterations in the studied radial
systems. As observed, the Newton-SIP methods normally outperformed FBS, thus proving
their efficacy to handle a wide variety of networks with different features and topologies.

Figure 13. Total iterations employed in the various radial distributions test networks.
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6. Conclusions and Future Works

In this paper, the applicability of different Newton-SIP methods for solving the PF
problems has been comprehensively studied. Four techniques [32,33] have been considered,
and two different iterative schemes have been analyzed. Firstly, we have considered the
standard form of Newton-SIP techniques, i.e., those algorithms in which the Jacobian
matrix is only updated at the first iteration. Secondly, a fully updated iterative scheme has
been considered, in which the Jacobian matrix is updated each iteration as NR.

The convergence characteristics of the considered PF techniques have been studied.
In case a fully updated iterative scheme is considered, the techniques can achieve up to the
eighth order of convergence. It has been also demonstrated that the highest convergence
rate is achieved when the s-parameters are set equal to one. On the other hand, the
convergence rate of the standard form of Newton-SIP methods is always linear.

The efficiency of the studied techniques has been compared using a well-known
efficiency index. The results indicate that the SIP3-J is the most efficient Newton-SIP
technique, since it is able to achieve the 4th order of convergence by only factorizing one
Jacobian matrix for each iteration. Nevertheless, all the studied techniques showed higher
efficiency indices than NR.

Various numerical experiments have been carried out for several well and ill-conditioned
systems with different sizes and topologies. The most remarkable conclusion is the Newton-
SIP techniques’ ability to manage both well and ill-conditioned systems efficiently. They
typically outperformed NR in well-conditioned systems. In addition, they are more robust
than NR in ill-conditioned cases. These features make Newton-SIP techniques very suitable
for widespread industrial applications, as it was pointed out in [31]. Drawbacks showed
by the linear Newton-SIP techniques in heavy loading cases can be overcome using their
fully updated schemes. Comparing the studied Newton-SIP techniques, the best trade-off
between robustness and efficiency is normally obtained with SIP3-J.

However, the performance of Newton-SIP techniques is notably influenced by the
values of the involved s-parameters. For example, in heavy loading systems, it has been
shown that the convergence characteristics can be notably improved by taking advantage
of the accelerating effect of s-parameters. On the other hand, the robustness properties of
the Newton-SIP techniques are strongly affected by the parameters involved. However,
the analysis carried out in this work shows that tuning the s-parameters is a strong case-
dependent topic. It also looks very difficult to be tackled, since any common pattern has
been observed.

In radial distribution systems, the studied techniques outperformed FBS, thus demon-
strating their ability to handle a wide variety of networks. These results along those
obtained in large-scale well and ill-conditioned cases manifest the suitability of the Newton-
SIP methods to be applied in real industry tools and even for voltage stability analysis
and optimization problems. Further results will be obtained in future works to confirm
that point.

Consequently, future works should be focused on further tackling alternative schemes
for optimally tuning the s-parameters in order to get a good trade-off between efficiency
and robustness and avoid the necessity to be initially set by the user. In this sense, optimal
conditions should be derived, thus allowing implementing auxiliary routines to properly
set those parameters.
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Appendix A. Consideration of Composite Loads

In this paper, the loads have been considered as constant power models, which is
the approach frequently taken in similar papers. However, constant current, constant
impedance, or a polynomial combination of the three models can be easily considered
as follows:

Psch
i (Vi) = PGi − PDi (Vi) = PGi − P0i
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where PGi and QGi are the active and reactive power generation at bus i, respectively.
PDi and QDi are the active and reactive power demand at bus i, respectively, P0i and Q0i
are the active and reactive power consumption at rated voltage V0i at bus i, respectively.
Parameters
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)
,
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)
, and

(
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)
are used to model the constant impedance,

constant current, and constant power loads, respectively.
Models (A1) and (A2) can be easily incorporated in the proposed methods by substi-

tuting these expressions in the system of Equation (1).
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Abstract: Line-start synchronous motors have attracted researchers’ interest as suitable replacements
of asynchronous motors due to their high efficiency, which has been provoked by strict regulations
regarding applicable efficiency classes of motors in the EU market. The research becomes even more
challenging as it takes into consideration the diverse rotor topologies with different magnet locations
for this type of motor. The rotor configuration with an interior asymmetric permanent magnet (PM)
array rotor was chosen for analysis and optimization in this paper as this specific configuration
is particularly challenging in terms of placing the magnets with adequate dimensions into the
existing rotor of the asynchronous motor with a squirrel cage winding, in order simultaneously to
obtain good operational characteristics such as high efficiency and power factor, good overloading
capability and low material consumption. Therefore, an optometric analysis is performed in order
to find the best configuration of the air gap length, magnet thickness, magnet width and number of
conductors per slot, along with modifications of the rotor slot. The motor outer dimensions remained
unchanged compared with the starting model of the line-start motor derived from the asynchronous
motor, which is a product of the company Končar. The optimized model obtained higher efficiency,
power factor and overloading capability than the starting model, along with good starting and
synchronization capabilities.

Keywords: line-start synchronous motor; efficiency factor; power factor; optometric analysis;
transient models

1. Introduction

Line-start synchronous motors have gained popularity as an alternative to asyn-
chronous squirrel cage motors, especially in constant speed applications, due to the strict
regulations that have been imposed worldwide regarding the efficiency classes of motors
that can be used. The asynchronous squirrel cage motors can achieve the IE3 or IE4 effi-
ciency class (in general, efficiency above 89%) with numerous modifications which increase
the motor dimensions, material consumption or even imply usage of more expensive
materials such as copper bars in the squirrel cage winding or steel laminations with low
losses. From 1 July 2021, low-voltage motors up to 1000 kW must meet at least efficiency
class IE3 according to a new EU Directive. In a second step, from mid-2023, efficiency class
IE4 will become mandatory for the 75–200 kW performance range. Some manufacturers
of the motors have answered these challenges and have offered to the market three-phase
asynchronous induction motors of the IE4 class [1,2]. Researchers have also analyzed vari-
ous modifications of motor slots such as adding magnet wedges in induction motors with
semi-closed slots in order to reduce copper and core losses and increase motor efficiency [3].
The IE4 efficiency class can be more easily achieved with the line-start synchronous motor
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(LSSM) as there is no induced current in the rotor winding due to the synchronous speed of
rotation, so the rotor copper losses are nullified [4]. The high power factor at LSSM allows
smaller line current and lower copper losses in the stator winding, that in turn increase the
efficiency factor; therefore, this type of motor can easily achieve efficiency class IE4 (in gen-
eral, efficiency above 89%). The combination of the squirrel cage winding and the magnets
in the rotor allows for direct starting of the motor with voltage from the mains without the
need of the voltage inverters, which are typically needed for starting synchronous motors
without squirrel cage winding, as well as synchronization of the motor, provided by the
magnets that pull the motor into synchronism. Yet, the proper design of cage winding
and the magnets is essential, as the magnets produce the breaking torque that lowers the
motor’s starting torque and prolongates the motor starting; however, their improper design
results in failure of motor synchronization [5–9]. Not only are the magnets responsible for
motor operating regimes, starting and steady-state; the stator winding turns also affect the
winding resistance, current and the power factor [10]. Another aspect of motor operation is
the material of the squirrel cage winding, which is usually aluminum or copper that affects
the motor starting and the temperature distribution [11]. The temperature distribution also
affects the partial demagnetization of the magnets and the operation of the motor, and one
such example is analyzed in [12]. Other authors propose innovative solutions regarding
rotor design that include two different types of rotor slots or that focus on the optimization
of the rotor slot that allows the best operating characteristics of the motor [13,14]. Various
optimization techniques have been implemented in the optimization of the magnet thick-
ness, magnet width or the rotor slots at line-start synchronous motors with hybrid magnets
(combination of two types of magnet materials) or the line-start synchronous motor with
a configuration of magnets with radial flux distribution [15–17]. A very small number of
works can be found regarding optimization of LSSM with asymmetric permanent magnet
array topology. Optimization of the flux barriers of LSSM with asymmetric permanent
magnet array topology, which decreases the flux leakage, is found to be a good optimization
approach in efficiency optimization, together with the optimization of the dimensions of
the rotor slot in [18]. This paper presents a two-step design modification of LSSM with
asymmetric permanent magnet array topology. Authors’ previous research has shown
that there are some differences regarding motor operating characteristics and material
consumption in correlation with the specific rotor topology of LSSM [19]. The starting point
of the analysis is a three-phase squirrel cage motor type 5AZ 100LA-4, which is a product
of the company Rade Končar. The design of the asynchronous motor was modified with a
rotor with an asymmetric permanent magnet array topology, thus obtaining the starting
model of LSSM (BM). The main constrain of the motor design is the new derived LSSM
having the same output power as the asynchronous motor of 2.2 kW. The laminations of the
stator and the rotor were obtained from Končar and they remain unchanged in the process
of modification of the asynchronous motor into LSSM. The BM, due to the limited space for
magnet placement, imposed by the dimensions and shape of rotor slots (Končar design),
has a relatively low consumption of permanent magnet material, but poor overloading
capability, although the efficiency and the power factor are high. Therefore, as the first step
in the design modification was to modify the rotor slots in order to provide more space for
magnets and flux barriers. Apart from rotor slot modification and magnet dimensions, no
other modifications were made in the design of this second model (M1). The model M1
has good efficiency and an improved power factor and overloading capability but has the
relatively high consumption of a permanent magnet material. Therefore, the second step
in the design modification was to run the optometric analysis of the M1 model where the
outer rotor diameter, magnet thickness and width, along with number of conductors per
stator slot, are varied simultaneously within predefined limits and the overload capability,
efficiency, power factor and magnet consumption are followed in each combination (itera-
tion of model solving) of those four varied parameters. A total of 25,257 combinations were
solved, resulting in model M2, which was found to have the highest efficiency factor, and a
good power factor and overloading capability, along with low consumption of permanent

124



Electronics 2022, 11, 531

magnet material. Optometric analysis is a software module within Ansys Electronics Desk-
top software; more precisely, it is included in the RMxprt module of the Ansys software
and allows arbitrary machine parameters to be varied within defined boundaries while the
arbitrary machine characteristics such as efficiency, power factor or overloading capability,
depending on the designer’s point of interest, are calculated for each combination of the
varied parameters. In this way, the designer can choose the best combination of the motor
parameters (for example, outer rotor diameter, number of conductors per slot, magnet
thickness and magnet length) that produce the best performance in the machine, for ex-
ample, highest efficiency, power factor or overloading capability. All motor models are
analyzed for the flux density distribution by FEM. The transient characteristics of all motor
models were derived, allowing analysis of motor operation at start-up and synchronization.
The redesign of the rotor of the asynchronous motor for obtaining LSSM needs careful
evaluation and analysis, especially when various rotor topologies are available in order to
obtain optimal results regarding motor operation and material consumption.

2. Computer Models for Steady-State and Transient Characteristics

One part of the redesign of the three-phase asynchronous squirrel cage motor into
LSSM is to place the magnets inside the rotor, which along with squirrel cage winding,
allow starting and synchronization of the motor. The starting point in the analysis was
the three-phase squirrel cage motor, a product of Rade Končar, type 5AZ100LA-4, 2.2 kW,
1410 rpm, 5 A, power factor of 0.83, efficiency of 79%. The topology with asymmetric
permanent magnet array was chosen for the rotor redesign as the authors’ previous research
showed that this topology regarding the analyzed type of the asynchronous motor has
some drawbacks, including low overloading capability and relatively low power factor [19].
Therefore, it was a challenging task to improve the overloading capability, power factor
and efficiency with minimum consumption of permanent magnet material while keeping
the same power output of 2.2 kW, as it is in the asynchronous motor. The LSSM with the
asymmetric permanent magnet array topology is presented in Figure 1a.

Figure 1. Cross section of line-start synchronous motor with interior asymmetric permanent magnet
array rotor topology (a) Model BM (b) Model M1.

Firstly, the computer model of the asynchronous motor for calculating motor parame-
ters and steady-state characteristics was modeled. This model will be referred to as AM.
Since all the further computer models of the line-start synchronous motor will be derived
from this model (AM), it was necessary to verify its accuracy by comparing data obtained
from AM with the catalogue data from the producer of the motor [20]. This comparison
and the obtained results are presented in Table 1. From the results presented in Table 1, it
can be concluded that the AM model is sufficiently accurate and it can be further modified
into line-start synchronous motor with asymmetric permanent magnet array rotor topology.
The BM model of line-start synchronous motor is derived from three-phase asynchronous
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squirrel cage motor 5AZ 100LA-4, a product of Končar, without any alteration of the stator
dimensions or the geometry of the stator and rotor slots [20]. The BM model is derived for
the same output power of 2.2 kW as it is in the asynchronous motor. The model is designed
to obtain the highest possible efficiency and output power with minimum consumption of
permanent magnet material. Therefore, in the asynchronous motor (AM), whose data are
presented in Table 1, the rotor is modified by decreasing its diameter, i.e., the air gap length
is increased from 0.3 mm to 1 mm along with adding the flux barriers and permanent
magnets in asymmetric array topology. The increase in air gap was due to the modification
of asynchronous motor in line-start synchronous motor in order to maintain the good over-
loading capability of the line-start synchronous motor. The AM has an overload capability
(maximum torque versus nominal torque) of 2.6. The dimensions of the magnets, height
and thickness, were calculated for obtaining the highest efficiency and power factor along
with a good overloading capability of the motor. This first model in the analysis of the
line-start synchronous motor derived from the asynchronous motor, without the changes
of the dimensions of the stator, slots of the rotor and the stator, is referred to as the BM
model. This BM model will be the starting point with which the modified and optimized
models will be compared.

Table 1. Data of asynchronous motor.

Parameter AM Producer

Nominal power (kW) 2.2 2.2
Number of poles 2p (/) 4 4

Nominal voltage Δ/Y (V) 220/380 220/380
Nominal current Δ/Y (A) 9/5.2 8.3/4.8

Power factor (/) 0.8 0.83
Nominal speed (rpm) 1353 1410

Conductors per slot CPS [/] 115 /
Stator winding resistance at 20 ◦C (Ω) 2.75 /

Stator copper losses (W) 277 /
Rotor copper losses (W) 240 /

Iron core losses (W) 28 /
Frictional and windage losses (W) 22 /

Stray losses (W) 39.6 /
Efficiency (%) 78.4 79.7

Rated torque (Nm) 15.5 14.9
Locked-Rotor Torque Ratio (/) 2.5 2.2
Locked-Rotor Current ratio (A) 4.2 5.2

Radial air gap length (mm) 0.3 /
Break-Down Torque Ratio (/) 2.65 2.7

The analytical calculations for this model were performed in Ansys software together
with the calculation of steady-state characteristics. Therefore, it was necessary to input
the exact dimensions of the cross-section of the motor along with the characteristics of
all materials applicable in the motor design. The results obtained from the BM regarding
parameters and operating characteristics showed that although BM has low consumption
of permanent magnet material, it has little overloading capability. The consumption of
permanent magnet material is limited due to available space for the placement of magnets
in the rotor and this affects the overloading capability of the motor. This is due to the
geometry of the rotor slot (Figure 1a) which was taken over from the asynchronous motor.
Therefore, the first step in improving the model of the line-start synchronous motor with
asymmetric permanent magnet array rotor topology was to modify the rotor slots, keeping
almost the same cross-section of the slot with a modification in its geometry that allows
more space in the rotor for the magnets to be placed. This second model will be referred
to as M1 model. The modification of the slot in M1 in comparison to BM is presented
in Figure 1b. In addition to rotor slot modification in M1, all other dimensions of the
motor, features of the both windings, and material properties remain unchanged. From the
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results obtained from model M1, it was observed that this model had significantly larger
consumption of permanent magnet material than B1, although the overloading capability
was improved. The second step in model improvement was to run the optometric analysis
of the model M1 where four parameters are chosen to be varied simultaneously within
predefined ranges: the outer rotor diameter (ORD), magnet thickness (MT), magnet width
(MW) and number of conductors per stator slot (CPS). The motor variables and their ranges
of variation are presented in Table 2.

Table 2. Motor parameters and their ranges of variation at M1.

Parameter Variation Range

Number of conductors per slot (/) 65 ÷ 105
Outer rotor diameter (mm) 95 ÷ 96

Magnet thickness (mm) 22.5 ÷ 25.5
Magnet width (mm) 8 ÷ 11.5

The ranges of variation of magnet geometry were defined on the base of the available
space in the rotor. The computer program calculates the slot fill factor for the stator slots.
The program is set to the maximum slot fill factor of 75%. When the limit is reached, the
program adjusts the wire diameter in order not to succeed the limit of the slot fill factor.
The rotor’s outer diameter is varied, taking into consideration the inner stator diameter and
the air gap length of the asynchronous motor. The length of the air gap of the asynchronous
motor is 0.3 mm. The overloading capability was one of the issues that needed to be
improved in the optimized model of line start synchronous motor. The larger air gap
contributes to the increased overloading capability while simultaneously worsening the
efficiency factor and power factor. Another design aspect is the dimension of the magnets.
The increased magnet thickness has a positive effect on the increase in the efficiency, power
factor and the overloading capability of the motor; however, it decreases the starting torque.
The increase in the magnet width decreases the efficiency but increases the overloading
capability and the power of the motor. From the above, it is obvious that various selected
parameters have a contradictory effect on motor operating characteristics and there is no
straightforward solution which combines the four above-mentioned varied parameters
and produces the best operating characteristics of the motor at steady-state operation
as well as at transient regimes. Therefore, by optometric analysis, each combination of
motor variables (25,257 combinations) is implemented in motor analytical model, modeled
in Ansys software and, by following the output results with respect to motor operating
characteristics, the most favorable analytical motor model can be selected for further
analysis by the aid of numerical and dynamic models. A total of 25,257 model combinations
with the varied parameters were solved. Among all 25,257 models, the three most favorable
solutions were chosen in terms of the efficiency, the power factor, the overloading capability
and the consumption of permanent magnet material. These models will be referred to as
models M2, M3 and M4. In terms of the highest efficiency factor and the smallest permanent
magnet material consumption, model M2 has the best results; therefore, this model is further
analyzed with numerical methods and applied into the simulation circuits of the dynamic
models. The basic criteria for choosing the models M2 to M4 (obtained by optometric
analysis) was to have an overloading capability above 2.2, efficiency above 95.9 and power
factor above 0.9. Model M1 is derived from model BM without any optometric analysis, only
by redesigning the rotor slots, in order for more magnet material to be placed, so as to obtain
a larger overloading capability than the BM model. This was achieved, either because the
M1 model has a maximum output power of 4326 W compared to 3572 W of the BM model,
or because the M1 model has an increased overloading capability of 1.9 compared to the BM
model which has 1.6. Another aspect of motor design is the permanent demagnetization
of magnets due to reverse fields exceeding the value of Hd, a point at which the magnetic
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vector polarization vector M collapses. The corresponding value of flux density is Bd. The
demagnetization of magnets has been checked according to [21]:

Idgmrm =
pπ

6μ0(Kw1Nc)
(Brhm − Bd(g + hm)) (1)

where Idgmrm is the maximum permitted value of steady-state stator current for normal
steady-state operation before demagnetization (A). p is the number of stator poles, Kw1
is the winding factor, Nc number of turns per phase of stator winding, hm is the magnet
thickness in radial direction in meters, g is the air gap length in meters and Br is the residual
flux density in Tesla at the operating temperature of the magnet. In all motor models,
the SmCo28 magnets are used with remanent flux density of 1.07 T and coercitivity of
820,000 A/m. The analysis of demagnetization of the magnets is especially important
during transient regimes, i.e., at motor starting and synchronization. At asynchronous
starting, currents with a maximum value up to several times greater than the amplitude of
the rated motor current can flow in the stator winding. Supply voltage, the magnetic flux
generated by magnets, the moment of inertia of rotating masses and load torque affect the
start-up course and the amplitude of the inrush current. The impact of the magnetomotive
force caused by the armature interaction related to the amplitude of the stator currents
may cause partial demagnetization of the permanent magnets located in the motor [12].
Due to irreversible demagnetization of the magnets, the main magnetic flux is irreversibly
reduced and consequently so is the motor torque. The demagnetization of the magnets
at motor starting and in the vicinity of synchronization speed is analyzed by FEM. The
flux density at magnets at various speeds during acceleration of model M2 is presented in
Figure 2 for a load torque of 14 Nm and a moment of inertia of 0.37 kgm2. The magnitude
of the magnetic field for the same operating regimes from Figure 2 is presented in Figure 3.
From the presented results in Figures 2 and 3 and for the type of magnets used, the partial
demagnetization could occur in tiny areas of magnet edges in the vicinity of synchronous
speed. In other analyzed operating points during motor acceleration, the demagnetization
of magnets should not occur.

The numerical model allows magnetic flux density distribution to be calculated in
the motor cross-section by the aid of Finite Elements Method (FEM) thus allowing parts
of the magnetic core with high flux density to be detected [22–24]. Another aspect of
analysis of the models is the transient characteristics where the motor behavior in transient
regimes such as start-up can be analyzed [25,26]. The M2 model is implemented in the
dynamic model in order to obtain transient characteristics of speed, current and torque
at motor acceleration and at steady-state operation (operation with synchronous speed).
The last part of the analysis is necessary due to the specific construction of line-start
synchronous motor. Namely, the squirrel cage winding contributes to the motor starting
directly with the voltage from the three phase supply, while permanent magnets pull the
motor into synchronism. The magnets generate the breaking torque that can worsen the
motor starting conditions. On the other hand, their improper design may result in the
failure of motor synchronization. The dynamic models are designed for BM and M2 when
the motor is accelerated with various loads and load inertia. The motor acceleration and
synchronization is analyzed and adequate conclusions are derived. The motor dynamic
model is presented in Figure 4. The dynamic model of the motor that allows calculation
of transient characteristics is derived in Ansys Simplorer. The software has blocks that
allow for modeling the symmetrical three-phase power supply. Additionally, it allows the
model of the motor derived in RMxprt module of Ansys Electronic Desktop to be imported
via a dynamic link. The motor output is linked to the load torque and inertia. The more
detailed explanation how to derive drive design can be found in [27]. The computational
time of the drive system with various loads and moments of inertia takes no more than
couple of minutes depending of the set time for simulation and the set maximum and
minimum time steps.
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Figure 2. Flux density distribution at magnets of M2 at Mload = 14 Nm, J = 0.37 kgm2 (a) 236 rpm
(b) 510 rpm (c) 1409 rpm (d) 1498 rpm.

Figure 3. Magnetic field distribution at magnets of M2 at Mload = 14 Nm, J = 0.37 kgm2 (a) 236 rpm
(b) 510 rpm (c) 1409 rpm (d) 1498 rpm.
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Figure 4. Dynamic model of line-start synchronous motor.

The basic equation behind the dynamic model of the motor in d-q reference frame
is [28]:

uds = Rsids +
dΨds

dt
− (1 − s)ωsψqs (2)

uqs = Rsiqs +
dΨqs

dt
+ (1 − s)ωsψds (3)

where s is the slip defined as:

s =
ωs − ωr

ωs
(4)

udr = Rdrird +
dΨdr

dt
= 0 (5)

uqr = Rqriqd +
dΨqr

dt
= 0 (6)

Ψds = Ldsids + Lmdidr + Ψm (7)

Ψqs = Lqsiqs + Lmqiqr (8)

Ψdr = Ldridr + Lmdids + Ψm (9)

Ψqr = Lqridr + Lmqiqs (10)

The coupling between the electrical system and the mechanical system is represented
by the torque equation and the mechanical equation. The electromagnetic torque Tel
developed by the motor can be expressed as:

Tel =
p
2

3
2
(
Ψdsiqs − Ψqsids

)
(11)

The motor torque is balanced by the mechanical shaft torque Tload and the dynamic
torque caused by the total inertia J [29].

T = Tload + J
(

2
p

)
dωm

dt
(12)

Motor parameters are calculated in RMxprt module of Ansys Electronics Desktop
software. This model of the motor from RMxprt module with all data and calculated
parameters is linked, i.e., imported in the dynamic model which is modeled in the software
module Ansys Simplorer. The motor parameters for the model M2 are presented in Table 3.
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Table 3. Motor parameters of model M2.

Parameter Value

D-axis reactive reactance Xsad (Ω) 18.9
Q-axis reactive reactance Xsaq (Ω) 90.03

Q-axis reactance X1 + Xaq (Ω) 91.7
D-axis reactance X1 + Xad (Ω) 20.6

Armature leakage reactance X1 (Ω) 1.67
D-axis rotor resistance Rdr (Ω) 2.4

D-axis rotor leakage reactance Xdr (Ω) 0.83
Q-axis rotor resistance Rqr (Ω) 2.41

Q-axis rotor leakage reactance Xqr (Ω) 0.83
Stator winding phase resistance Rs (Ω) 1.15

The description of methodology for obtaining the numerous parameters of line-start
synchronous motor can be found in [30]. Due to extent of the mathematical model, it is not
presented here. Further details can be found in [30,31].

3. Results

3.1. Parameters, Optometric Analysis and Steady-State Characteristics

The computer models for BM, M1, M2, M3 and M4 that allow calculation of motor
parameters and steady state characteristics are the first part of an analysis of all motor mod-
els. The motor parameters and operating characteristics are obtained as output data from
these computer models for analytical calculation of the models. The obtained parameters
and operating characteristics are presented in Table 4 for the rated load operating regime.

Table 4. Motor parameters and characteristics at rated load.

Parameter/Characteristics BM M1 M2 M3 M4

Air gap length (mm) 1 1 0.5 0.5 0.5
Outer rotor diameter (mm) 95 95 96 96 96

Magnet width (mm) 22.5 25.5 24.5 25.5 24.5
Conductors per slot (/) 97 97 73 78 73
Magnet thickness (mm) 8 11.5 8.5 9.5 11.5

Frictional and
windage loss (W) 22 22 22 22 22

Iron core loss (W) 15.55 18.5 17 17.8 18
Copper loss (W) 95 86 51 54 48

Stator winding resistance at
20 ◦C (Ω) 1.7 1.7 0.95 1.1 0.95

Input power (W) 2333 2326 2290 2293 2288
Output power (W) 2200 2200 2200 2200 2200

Power factor (/) 0.9 0.95 0.91 0.94 0.93
Efficiency (%) 94.3 94.6 96.06 95.9 96.1
Current (A) 3.9 3.7 3.85 3.7 3.7

Rated torque (Nm) 14 14 14 14 14
Maximum output power (W) 3572 4326 4929 4873 6158

Starting torque (Nm) 61 64 112 98 111
Magnet weight (kg) 0.6 0.97 0.69 0.8 0.94

Torque angle (◦) 79 71.5 78.5 77.2 74

Models M2, M3 and M4 are derived by taking into consideration the optometric
analysis, i.e., the results obtained from it (the value of CPS, MT, MW and ORD for the
adequate motor model). The M2 model has the biggest efficiency and overloading capability
along with the smallest consumption of the permanent magnet material. This model is
chosen for further comparison with the model BM. The data for the stator winding of model
M2 are presented in Table 5. The data of stator, rotor and magnets geometry for model M2
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are presented in Table 6. The presented data in Table 6 are supported by drawings of stator
and rotor slot of model M2 presented in Figure 5.

Table 5. Data of stator, rotor winding and magnets of model M2.

Parameter Value

Winding layers 2
Coil pitch 7

Number of parallel branches 2
Conductors per slot 73

Number of wires per conductor 3
Wire diameter (mm) 0.57

Table 6. Dimensions of stator and rotor lamination and magnets.

Parameter Value

Stator outer diameter (mm) 152
Stator inner diameter (mm) 97
Rotor outer diameter (mm) 96
Rotor inner diameter (mm) 33

Motor length (mm) 100
Number of stator slots (/) 36
Number of rotor slots (/) 40

D1 (mm) 76
O1 (mm) 18
O2 (mm) 4
B1 (mm) 2
Rib (mm) 0.5

Magnet thickness (mm) 24.5
Magnet height (mm) 8.5

Stator slot

Hs0 (mm) 0.5
Hs2 (mm) 14.7
Bs0 (mm) 2
Bs1 (mm) 5
Bs2 (mm) 7.6

Rotor slot

Hs0 (mm) 0.5
Hs01 (mm) 0
Hs1 (mm) 0.5
Hs2 (mm) 7
Bs0 (mm) 1
Bs1 (mm) 2.5
Bs2 (mm) 3.5
Rs (mm) 1

The steady-state characteristic of the efficiency, power factor and torque for BM and
M2 are presented in Figures 6–8, respectively. The steady-state characteristics should
support the data, presented in Table 4, i.e., for the adequate torque angle, the rated values
of efficiency, power factor and torque should be obtained.

The impact of each varied parameter (CPS, ORD, MT and MW) on efficiency, power
factor, starting torque and maximum output power is analyzed by varying the parameter of
interest within the prescribed limits while the rest three parameters are constant and equal
to the values presented in Table 4 for the model M2. The analysis originates directly from
the optometric analysis and allows for the impact of each parameter on motor operating
characteristics to be evaluated separately. The impact of CPS on efficiency, power factor,
starting torque and maximum output power is presented in Figure 9.

132



Electronics 2022, 11, 531

Figure 5. Dimensions (a) magnets (b) stator slot (c) rotor slot.

Figure 6. Steady-state characteristics of efficiency (a) BM (b) M2.

Figure 7. Steady-state characteristics of power factor (a) BM (b) M2.

Figure 8. Steady-state characteristics of torque (a) BM (b) M2.
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Figure 9. Impact of CPS on (a) efficiency (b) power factor (c) starting torque (d) maximum output power.

A similar analysis is performed for determining the impact of ORD, i.e., air gap length,
on efficiency, power factor, starting torque and maximum output power. The obtained
results are presented in Figure 10. The impact of MW on efficiency, power factor, starting
torque and maximum output power of the motor is presented in Figure 11. The similar
analysis for the impact of MT is presented in Figure 12.

Figure 10. Impact of ORD on motor operating characteristics (a) efficiency (b) power factor (c) starting
torque (d) maximum output power.
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Figure 11. Impact of MW on motor operating characteristics (a) efficiency (b) power factor (c) starting
torque (d) maximum output power.

Figure 12. Impact of MT on motor operating characteristics (a) efficiency (b) power factor (c) starting
torque (d) maximum output power.

3.2. FEM and Transient Models

The FEM models of the motors allows for the calculation of magnetic flux density distri-
bution in the cross-section of motor models by solving the magnetic vector potential in the
small areas of the mesh that are created in the cross-section of motors. The obtained results
of magnetic flux density distribution in the motor cross-section are presented in Figure 13.
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Figure 13. Flux density distribution (a) BM (b) M2.

The transient characteristics of speed, torque and line current, when the motor is
accelerated with the rated load, are presented in Figures 14–16 for models BM and M2,
respectively. The motor is supplied with network voltage and accelerated with rated load
of 14 Nm coupled to the motor shaft and load inertia of 0.0066 kgm2.

Figure 14. Transient characteristics of speed-load torque 14 Nm and inertia 0.0066 kgm2 (a) BM (b) M2.

Figure 15. Transient characteristics of torque-load torque 14 Nm and inertia 0.66 kgm2 (a) BM (b) M2.

Figure 16. Transient characteristics of current-load torque 14 Nm and inertia 0.66 kgm2 (a) BM (b) M2.
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The M2 model is simulated for various loads and load inertia. In Figure 17 is presented
the characteristic of speed of acceleration of M2 with load torque of 14 Nm and load inertia
of 0.37 kgm2, and with 10 Nm and load inertia of 0.24 km2. For the above-mentioned loads
and moments of inertia, the characteristics of torque and current of M2 are presented in
Figures 18 and 19. The maximum load inertia allowed for successful starting is 0.37 kgm2

for M2 and 0.17 kgm2 for BM.

Figure 17. Characteristics of speed of M2 (a) load 14 Nm, inertia 0.37 kgm2 (b) load 10 Nm, inertia 0.24 kgm2.

Figure 18. Characteristics of torque of M2 (a) torque 14 Nm, inertia 0.37 kgm2 (b) torque 10 Nm,
inertia 0.24 kgm2.

Figure 19. Transient characteristics of current of M2 (a) load torque 14 Nm, inertia 0.37 kgm2 (b) load
torque 10 Nm, inertia 0.24 kgm2.

4. Discussion

Obtaining the optimal motor design is not always a straightforward solution, con-
sidering that there are many design parameters that have an impact on motor operating
characteristics. Improving one operating characteristic may result in deterioration of an-
other. Therefore, four motor parameters (CPS, ORD, MW and MT) that have an impact
on motor transient and steady-state characteristics are varied within the prescribed limits,
which are determined by designers’ experience in order to find the best combination of
these four variables to allow obtaining a high efficiency, power factor, and overloading
capability along with a cost effective solution regarding material consumption. The line-
start synchronous motor with interior asymmetric permanent magnet array is derived
from a three-phase squirrel cage motor based on data and the steel laminations from the
producer Rade Končar, i.e., the BM model. The BM model is derived from the model of the
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asynchronous motor (AM) by adding the permanent magnets and flux barriers inside the
rotor. Since the overloading capability of the synchronous motor should have a satisfactory
value, the air gap length is increased when modifying the AM into BM. In the BM model,
the number of conductors per slot was decreased compared to the AM model, which re-
sulted in a lower stator current and considerably lower copper losses in the stator winding.
The decrease in the current at BM is also a result of significantly improved power factor
at synchronous motor (BM) compared to the asynchronous motor AM. The rotor copper
losses at the rated load operation are not present in the BM model of line-start synchronous
motor due to its principle of operation. No current is induced at synchronous speed of the
motor in the rotor winding; therefore, no copper losses are present in the rotor winding
of the synchronous motor. The detailed breakdown of all losses of the both models of the
motor, the asynchronous (AM) and the synchronous (BM) are presented in Tables 1 and 4.
The above-mentioned modifications of the BM model compared to AM model resulted in a
significant increase in the efficiency from 78.4% at AM to 94.3 at BM. The first modification
of the motor design which involved only a redesign of the rotor slots were in model M1.
The reason for redesigning the rotor slots was to provide more space for magnets in the
rotor since the original BM model had a low overloading capability of 1.6 and a maximum
output power of 3572 W. By modifying the rotor slots, the magnet thickness and width
can be increased, which in turn provides the larger overloading capability of the model of
4326 W or 1.9. The increase in the overloading capability is due to the increased weight of
magnet material; consequently, the costs of production are increased as well. No significant
improvement of efficiency factor can be observed in the M1 model, compared to the BM
model, although the power factor is improved, the line current is decreased and so are the
copper losses (Table 4). The magnet thickness and width along with outer rotor diameter,
i.e., the air gap length and the number of conductors per slot, are selected as parameters
to be varied in the optometric analysis, which resulted in the models M2, M3 and M4. In
terms of the overloading capability, efficiency and power factor, the M4 model has the best
operating characteristics of efficiency 96.1%, power factor of 0.93 and overloading capability
of 2.8, i.e., a maximum output power of 6158 W. The consumption of permanent magnet
material is considerable; therefore, the M4 is not the most cost effective solution in terms
of material consumption. The models M2 and M3 have similar operating characteristics
(efficiency 96 and 95.9, power factor 0.9 and 0.94, and maximum output power of 4929 and
4837, respectively). In terms of permanent magnet consumption, M2 has smaller consump-
tion, 0.69 kg versus 0.8 kg at M3. The M2 model is chosen for further analysis as it has the
better efficiency, overloading capability and smaller permanent magnet consumption than
the M3 model. M2 also has the smaller air gap, fewer conductors per slot than M1 and,
consequently, lower copper losses and greater efficiency than M1. Lower copper losses
in the M2 are also a result of the decreased air gap in the M2 model compared to the M1
model, which resulted in the improved power factor; consequently, the current is decreased
and, finally, the copper losses are decreased. The fewer conductors per slot, combined
with the smaller air gap length, contributed to the lower stator winding resistance, greater
power factor, lower current, smaller copper losses and greater efficiency of the M2 model
compared to the M1 model. The M2 model also has the modified rotor slot compared to
the M1 model. This modification provides more space for magnets in the rotor, which
contributes to the greater power factor, lower motor current, smaller copper losses and
better efficiency of the M2 model. The modification of the rotor slot is also important for
the overloading capability of the motor. The increase in the amount of the magnet material
(more available space for magnets in the rotor) increases the overloading capability of this
type of line-start synchronous motor. The motor optimization and modification should be
evaluated in terms of complete spectrum of operating characteristics, not just in terms of
the efficiency or the power factor. Therefore, the rotor slot modification is important for the
overloading capability of the motor and this can be clearly observed from the presented
data of the M4 model in Table 4. All motor models are calculated with the same steel
laminations. The type of steel in the lamination does not have such a drastic impact on the
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efficiency. The authors’ preliminary analysis showed that various types of steel affect the
efficiency by no more than two to three percent (depending of the type of the steel and its
specific losses). Further research can be extended with the detailed analysis of the impact
of the type of the steel laminations and their specific losses on the motor efficiency. The
impact of CPS on motor efficiency is presented in Figure 9. The program adjusts the wire
diameter according to the CPS in order not to exceed the limit of slot fill factor of 75%. The
wire diameter has an impact on the stator winding resistance and, consequently, on the
line current, the copper losses and the efficiency. The impact of CPS on the stator winding
resistance, line current, copper losses and total losses is presented in Figure 20.

Figure 20. Impact of CPS on (a) stator winding resistance (b) line current (c) stator winding copper
losses (d) total losses.

The impact of CPS on the stator winding phase resistance is significant and it con-
tributes greatly to the copper losses and, consequently, to the total losses and the efficiency
factor (Figure 20c). The impact of CPS on line current is not as pronounced as it is on the
winding resistance (Figure 20b). The cooper losses which are significant part of the motor
total losses are determined by the impact of CPS on stator winding resistance. The decrease
of the number of CPS has a positive impact on the decrease of winding resistance and
has a negative impact on the stator current since the current increases and consequently
the copper losses as well. Yet, the decrease in the winding resistance and its contribution
to the copper losses and consequently to the total losses is more pronounced than the
impact of the increase of the line current on the copper losses and consequently to the
total losses. Therefore, the decrease in the number of CPS has a positive impact on the
improvement of total losses and results in an increase in the efficiency factor. This state-
ment is verified by the data presented in Table 4 (model M2). Figure 20 should support
presented result of impact of CPS on the efficiency (Figure 9a). The smaller number of
CPS has a positive impact on the increase of efficiency but simultaneously decreases the
power factor. Additionally, the smaller number of CPS contributes to the larger starting
torque and the overloading capability of the motor. The CPS has a significant impact on
all evaluated motor operating characteristics (efficiency, power factor, stating torque and
maximum output power). The impact of ORD is more pronounced on the efficiency and
the power factor, while it is not the case with the starting torque and the overloading
capability (Figure 10). The larger air gap or the smaller ORD decreases the efficiency and
the power factor. MW has no significant impact on the efficiency, the power factor, the
starting torque and the overloading capability (Figure 11). On the other hand, MT has
the greatest impact on motor overloading capability and power factor. The thicker the
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magnets are, the greater the power factor and the overloading capability are (Figure 12).
From all four varied parameters, CPS has the biggest impact on all four analyzed operating
characteristics, efficiency, power factor, starting torque and overloading capability. ORD,
i.e., air gap length, has a significant impact only on efficiency and the power factor. MW is
not a critical parameter regarding analyzed operating characteristics but MT has crucial
impact on the overloading capability and the power factor. The impact of varied parameter
CPS, ORD, MT and MW on motor efficiency can be observed from Figures 9a, 10a, 11a
and 12a). From the data presented in the above-mentioned figures, it can be concluded
that variation of CPS had the biggest impact on the percentage of motor efficiency, i.e., the
variation of CPS from 65 to 108 impacts the change of efficiency from 93.5 to 96.2%. The
change of air gap length has also a significant impact on efficiency, which varies from 94.9%
to 96.1% with the increase in the ORD, or with the decrease in the air gap length from
1 mm to 0.5 mm. The impact of magnet width on motor efficiency is not so pronounced.
The efficiency percentage varies very little with the variation of magnet width, i.e., from
96.04 % to 96.07 %. The impact of magnet thickness on efficiency is more significant, i.e., it
increases from 96.04% to 96.14% with the increase in the magnet thickness. From the above,
it is evident that various parameters have different impacts on various motor operating
characteristics; therefore, it is necessary to employ computational techniques, such is the
case with optometric analysis, which involve fast and accurate calculation of various motor
models that allow for the determination of optimum values of analyzed motor parameters
which produce the best operating characteristics in terms of complete specter of them,
combined with the most cost effective solutions regarding material consumption.

The M2 model has been chosen as an optimal solution regarding operating charac-
teristics and the permanent magnet material consumption. Both models BM and M2 are
modeled with FEM for the flux density distributions. According to Figure 13, models BM
and M2 have higher flux density in the stator yoke. This can be improved by redesigning
the stator, i.e., increasing the stator outer diameter. In this paper, modifications of the
motor are performed on the basis of a three-phase squirrel cage motor, a product of Končar,
without any changes in the motor outer dimensions.

The line-start synchronous motor should successfully start and accelerate up to the
synchronous speed when it is plugged in the three-phase voltage. The successful starting,
acceleration and synchronization are determined by the rotor cage winding and the perma-
nent magnets. Their proper design is vital for the successful operation of the motor. The
transient characteristics of speed, current and torque, presented in Figures 14–16, allow
analysis of the acceleration and synchronous operation of both models BM and M2. Both
models are accelerated with the rated load of 14 Nm coupled to the motor shaft. The M2
model has higher starting torque and lower acceleration time than the BM model. Both
motors reach the synchronous speed and maintain the synchronous operation. After the
acceleration has finished, the motor torque reaches the value of 14 Nm for both models. This
can be expected as they are loaded with the rated torque of 14 Nm. Similar observations
can be made for the motor current which reaches the rated load current after the motor
has accelerated. The analysis is extended by loading the M2 model with different loads
and load inertia, i.e., 10 Nm and load inertia of 0.24 kgm2 and 14 Nm and load inertia of
0.37 kgm2. In both cases, the motor synchronizes and maintains the synchronism. Table 7
presents the comparison between results obtained in Table 4 from computer models for
calculation of motor parameters and characteristics and the results of speed, torque and
current from the transient characteristics (Figures 14–16). The average values of speed and
torque are calculated by the dynamical model for the last time interval of characteristics
and presented in Figures 14 and 15. The rms value of current for the last time interval of
current characteristic is presented in Figure 16.
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Table 7. Comparison of results from analytical and dynamic models at rated load.

BM Analytical Calculation Dynamic Model

Speed (rpm) 1500 1500
Torque (Nm) 14 13.9
Current (A) 3.9 4.7

M2

Speed (rpm) 1500 1500
Torque (Nm) 14 14
Current (A) 3.9 5

From the results presented in Figure 16, it can be concluded that there is a significant
distortion of current waveform due to the presence of harmonics. Harmonics are often
present in the current of line-start synchronous motor as a result of permanent magnets
inside the rotor. The current higher harmonics cause absorption of distortion power
and increase in stray load losses [32]. The rms value of current of the dynamic model
has higher value than the analytically calculated current (Table 3) due to presence of
harmonics. These harmonics cause the heating effects in the conductors, as the eddy
losses are proportional to the square of the frequency. Moreover, harmonics can cause
interference in the protection systems, communication systems, and signaling circuits due
to electromagnetic induction [33]. The harmonics contribute also to the increased noise and
vibrations during motor operation. To mitigate the problem with harmonics some authors
propose the usage of filters or modification of rotor teeth width [33,34].

From the results presented in Table 7, it can be concluded that computer model
for analytical calculation of parameters and characteristics and the dynamic model have
satisfactory similarity of results of speed, current and torque. In addition to the verification
of the motor dynamic regimes, the presented results in Table 6 should verify the accuracy of
both models, the computer model for calculating parameters, the steady-state characteristics
and the dynamic model.

The M2 model achieves high efficiency and a very good power factor combined with
good overloading capabilities, considerably higher than the efficiency of motor for the
same power rating found in [4]. Yet, the derived model is theoretical, based on computer
simulations. The proposed model should be verified by the prototype and experimental
measurements. It can be expected that the manufactured model will have lower efficiency
and power factor. The model is subject to manufacturing limitations such as achieving a
good slot fill factor, manufacturing tolerances regarding length of the air gap, built-in mate-
rial in the motor construction and accurate measurement of frictional and windage losses.

5. Conclusions

The line-start synchronous motor has drawn the attention of scientists and industry
professionals as a possible replacement of three-phase squirrel cage induction motors,
especially in constant speed applications, due to their high efficiency and good power
factor. The strict regulations of the EU market regarding usage of IE3 efficiency class
of motors (that can be achieved with three-phase squirrel cage motors with numerous
modifications that require more material with high quality and low losses) increases the
interest for these line-start synchronous motors, which can easily achieve IE4 efficiency
class. Among the line-start synchronous motors, there are various topologies which require
different designs of the rotors and produce different motor operating characteristics. The
authors have chosen to analyze the line-start synchronous motor with an interior permanent
magnet asymmetric array topology as this configuration needs more detailed analysis and
modification of rotor design, due to the availability of the space in the rotor to place
magnets with sufficient dimensions, in order to achieve good efficiency, power factor
and overloading capability of the motor. Starting from the three-phase squirrel cage
motor of 2.2 kW, the first model (BM) is obtained by placing the magnets inside the
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rotor without any other modifications in the motor. The obtained BM model has high
efficiency and power factor but relatively low overloading capability. The second model
(M1) with modified rotor slots and magnet dimensions has high efficiency and power
factor, improved overloading capability of the motor but relatively high consumption of
permanent magnet material. Therefore, more modifications of motor design were needed
that included modification of the air gap length, magnet width and thickness and the
number of the conductors per slot. In order to determine the best combination of these
four parameters that produce the high power factor and efficiency, with good overloading
capability and low consumption of permanent magnet material, the optometric analysis
was run and more than 25,257 combinations were solved. This analysis is a useful tool as
the increase in one parameter can improve one operating characteristic and worsen the
other, and vice versa. When four different parameters are varied within certain boundaries
simultaneously, without optometric analysis, it is very difficult to determine which value
each of these parameters should have that will produce a model of the motor which will
satisfy four various operating characteristics regarding optimal or improved operation in
comparison to the starting model. Among these numerous combinations, the M2 model,
with a sufficiently high power factor, efficiency and overloading capability (higher efficiency
and overloading factor than models BM and M1) and considerably lower consumption of
permanent magnet material is chosen as the optimal solution. The impact of each varied
parameter on motor operating characteristics is analyzed, providing detailed insight into
which design guidelines should be followed for obtaining satisfactory design of the motor.
The chosen model (M2) was analyzed with FEM for the magnetic flux density distribution
and with dynamic models for obtaining the transient characteristics. The M2 model has
some areas of stator yoke with high flux density which can be improved by increasing the
stator diameter, subject to further research. The dynamic behavior of M2 is satisfactory
since the motor reaches the synchronous speed and continues with stable operation.

The careful analysis of each parameter and its impact on motor operating character-
istics can significantly improve the motor operation, leading to the cost effective design
of the motor. The proposed model is based on computer analysis and simulations. Its
prototyping is highly affected by various manufacturing details such as obtaining a good
slot fill factor or vibrations and noise as a result of the air gap length, which can have a
significant impact on the final outcomes of this analysis.
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Nomenclature

List of used symbols:
idr Rotor d-current
iqr Rotor q-current
ids Stator d-current
iqs Stator q-current
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L Inductance
Rs Stator resistance
T Motor torque
u Voltage
ωs Synchronous speed
ωm Motor speed
Ψ Flux linkage
Idgmrm Maximum permitted value of steady-state current before demagnetization (A)
p Number of poles
μ0 magnetic permeability of vacuum
Kw1 Winding factor
Nc number of turns per phase of stator winding
Br Residual flux density in T
Bd Corresponding flux density at Hd at which point the magnetic polarization

vector M collapses
List of subscripts:
dr Rotor d-axis
ds Stator d-axis
m Magnet
md Mutual d-axis
mq Mutual q-axis
qr Rotor q-direction
qs Stator q-direction
r Rotor
s Stator
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Abstract: An optimization procedure for type 1 Takagi–Sugeno Fuzzy Logic Controller (FLC) param-
eter tuning is shown in this paper. Ant colony optimization is used to obtain the optimal controller
parameters, and only a small amount of post-optimization parameter adjustment is needed. The
choice of controller parameters is explained, along with the methodology behind the criterion for
objective function value calculation. The optimized controller is implemented as an outer-loop speed
controller for Predictive Current Control (PCC) of an induction machine. The performance of the
proposed control method is compared with that of several other model predictive control methods.
The results show a 55% decrease in speed tracking error and 74% decrease in torque overshoot.

Keywords: induction machine; ant colony optimization; predictive current control; fuzzy logic
control; Takagi–Sugeno

1. Introduction

Induction machines play a crucial role in modern industry, ranging from simple
applications such as driving fans or pumps to more precise usages such as conveyor
belts or plastic injection molding [1]. Conventional induction machine control methods
such as Field-Oriented Control (FOC) [2] and Direct Torque Control (DTC) [3] can suffer
from sensitivity to parameter and torque changes [4], or torque and flux pulsations and
control problems at low speeds [5]. For high-performance drives, which require a fast
dynamic response and disturbance rejection, these shortcomings must be improved, or
new methods must be investigated. One direction of research is incorporating fuzzy logic
into conventional control structures to improve the dynamics.

Research in [6] shows an increasing trend of computational intelligence implementa-
tion in control applications. An overview of the recent literature proves the research interest
in fuzzy logic in drive systems. The authors of [7] investigate the implementation of FLC
with a reduced computation burden. In [8], the authors incorporate FLC into a classic DTC
structure to improve the torque ripple of the high-performance drive. The authors of [9]
investigate FLC for low-speed induction machine operation. In [10], the authors investigate
the computation burden of FLC depending on the size of the fuzzy rules table. In [11,12],
type 2 FLC is investigated to improve the DTC structure on five- and three-level inverters.
In [13,14], the authors use FLC to improve the classic DTC in an induction machine drive
with a two-level converter and dual-stator machine drive, respectively. The authors of [15]
improve the FOC structure for an induction machine by developing a fuzzy speed con-
troller with an algorithm for automatic gain output adjustment. Tir et al. use fuzzy logic to
improve the FOC structure for a single system in [16] and a multi-machine drive system
in [17]. Bessaad et al. use a fuzzy system in [18] for developing a correction regulator
in a multi-machine system with a single inverter supply. The authors of [19] develop a
custom search algorithm for induction machine fuzzy-PI controller tuning. To improve
efficiency, the authors of [20,21] use fuzzy logic for the online search of the minimum power
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losses of an induction machine drive and self-excited induction generator, respectively.
In [22], the authors use fuzzy logic to develop an expert system for induction machine fault
diagnosis. The authors of [23] use FLC to calculate a suitable voltage vector for a five-phase
induction machine to reduce torque ripple. The authors of [24] use fuzzy logic as a decision
mechanism for weighing factor selection in predictive torque control. In [25], the authors
incorporate two FLCs as inputs to a feedback linearization algorithm to improve drive
dynamics. Saghafinia et al. use FLC in [26] as a speed controller in a sliding mode control
structure. In [27], the author presents a fuzzy-PI controller utilized for minimizing energy
consumption while maximizing the performance of an induction machine drive. In [28],
Youb et al. develop a fuzzy-PI controller for a dual-star induction machine with online
adaptation of proportional and integral gains.

There are a number of research papers showing the usage of fuzzy systems in param-
eter estimation. The authors of [29] use fuzzy logic concepts for estimation purposes by
building an observer using the Takagi–Sugeno model of an induction machine. Jabbour
et al. use fuzzy logic in [30] for online parameter estimation. In [31], the authors utilize
a type 1 and type 2 fuzzy controller for a model reference adaptive system and compare
the results. The authors of [32] build a Luenberger observer using a fuzzy logic system
that outputs state variable estimates. In an older paper [33], the authors optimize a fuzzy
system for the purpose of estimating the rotor time constant. In [34], Shukla et al. use fuzzy
logic for the model reference speed adaptation of an induction machine that is controlled
via DTC.

Fuzzy logic is also used in power and frequency control, as can be seen in papers such
as [35], where the authors use fuzzy logic to tune the proportional, integral, and derivative
gains of a doubly fed induction generator (DFIG) PID controller. In [36], the authors also
use fuzzy concepts to improve the DTC of a DFIG, while in [37], FLC is used for active
power control. In [38], Dewangan et al. replace a classic PI controller with FLC to improve
the performance of a wind-driven self-excited induction generator during fault and variable
wind speed conditions. The authors of [39] develop FLC for a six-phase induction generator
that shows superiority over the classic controller in fault conditions.

In this paper, the authors present an optimization procedure for the fuzzy speed
controller that enhances the speed tracking and torque response of the induction machine,
which is controlled using the PCC algorithm. In recent years, a few papers have dealt
with this problem in the induction machine drive field. In [40], George et al. use an
optimization procedure to optimize the speed control of an electric vehicle. Similarly, the
authors of [41] use an optimization approach to optimize frequency control in multi-area
interconnected power systems. Both papers offer several criteria for objective function
value calculation. In [37], the authors use the integral time squared error to calculate the
objective function value for the particle swarm optimization algorithm, which is used
to optimize DFIG power control. The authors of [42] optimize FLC for an induction
machine and use the mean average error as a criterion to optimize seven membership
functions for inputs and output while using the Mamdani-type defuzzification process. In
this paper, the authors use five membership functions for inputs, and a Takagi–Sugeno-
type defuzzification process. Several criteria for objective function value calculation are
investigated and results show improvements upon the classic speed controller. The paper
is organized as follows: In Section 2, the dynamic model of the induction machine is
presented and a control overview is given. In Section 3, the fuzzy logic speed controller that
is being optimized in this paper is presented and each part of the controller is described.
The problem statement and optimization procedure (optimizer, controller parameters, and
the choice of objective function) are presented in Section 4. In Section 5, results for different
optimization approaches are displayed and discussed. Control system performance is
shown in Section 6, while the comparison with several model predictive methods is carried
out in Section 7. In Section 8, the authors discuss caveats and future research possibilities.
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2. Induction Machine Model and Control Overview

The dynamic model of the induction machine is written in the stationary αβ-reference
frame and it is shown by Equations (1)–(4), where J is the inertia constant of the machine,
ωr is the rotor shaft speed, p is the number of pole pairs, Te is electromechanical torque,
and Tl is load torque.

vsαβ = Rsisαβ +
d
dt

ψsαβ (1)

0 = Rrirαβ − Jr pωrψrαβ +
d
dt

ψrαβ (2)

J
d
dt

ωr = Te − Tl (3)

Te =
3
2

p(ψsαisβ − ψsβisα) (4)

Equation (5) displays electrical quantities, where vsαβ represents the stator voltage
vector, isαβ and irαβ represent the stator and rotor current vector, while ψsαβ and ψrαβ

describe stator and rotor flux linkages.

vsαβ =

[
vsα

vsβ

]
isαβ =

[
isα

isβ

]
irαβ =

[
irα

irβ

]
ψsαβ =

[
ψsα

ψsβ

]
ψrαβ =

[
ψrα

ψrβ

]
(5)

Electrical parameters are described by Equation (6), where Rs and Rr are the stator
and rotor resistance matrices, while Jr represents the rotation matrix.

Rs =

[
Rs 0
0 Rs

]
Rr =

[
Rr 0
0 Rr

]
Jr =

[
0 −1
1 0

]
(6)

Additionally, the relationship between fluxes and currents is described by
Equations (7) and (8), but for a deeper understanding of the induction machine model, the
reader is referred to [43].

ψsαβ = Lsisαβ + Lmirαβ (7)

ψrαβ = Lrirαβ + Lmisαβ (8)

Model predictive control has attracted research interest in recent years, as seen in
papers such as [44–46]. This being the case, the control method that is being modified in
this paper is PCC for an induction machine, which falls into the family of model predictive
control structures. In the following text, it is explained how it works.

Firstly, a discrete state space model for computing the current prediction isαβ[k + 1]
is formed by selecting stator currents isαβ[k] and rotor fluxes ψrαβ[k] as state variables.
Equation (9) represents the final expression to calculate the current predictions, where

σ = 1 − L2
m

Ls Lr
represents the leakage inductance factor, τr = Lr

Rr
represents the rotor time

constant, and Ts represents the discretization sampling time.

[
isα[k + 1]
isβ[k + 1]

]
=

⎡⎢⎣1 − (Rs+
L2

m
Lrτr )Ts

σLs
0 LmTs

σLs Lrτr

Lm pωrTs
σLs Lr

0 1 − (Rs+
L2

m
Lrτr )Ts

σLs
− Lm pωrTs

σLs Lr
LmTs

σLs Lrτr

⎤⎥⎦
⎡⎢⎢⎣

isα[k]
isβ[k]
ψrα[k]
ψrβ[k]

⎤⎥⎥⎦
+

[
Ts

σLs
0

0 Ts
σLs

][
vsα[k]
vsβ[k]

] (9)

Equation (10) represents the cost function that is used to derive the control law by
minimizing the squared error between reference currents i∗α[k], i∗β[k] and current predictions.
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By inserting (9) into (10) and solving (11), the optimal voltage vector v∗
αβ can be obtained to

minimize the cost function and drive the machine in the desired state.

G =

[
gα

gβ

]
=

[
(i∗α[k]− iα[k + 1])2

(i∗β[k]− iβ[k + 1])2

]
(10)

∂G
∂vαβ

= 0 (11)

Equation (12) represents the solution of (11), which is used as a control law.

v∗
αβ[k + 1] =

[
Rs +

L2
m

Lrτr
− σLs

Ts
0 − Lm

Lrτr
− Lm pωr

Lr

0 Rs +
L2

m
Lrτr

− σLs
Ts

Lm pωr
Lr

− Lm
Lrτr

]⎡⎢⎢⎣
isα[k]
isβ[k]
ψrα[k]
ψrβ[k]

⎤⎥⎥⎦
+

[
σLs
Ts

0
0 σLs

Ts

][
i∗sα[k]
i∗sβ[k]

] (12)

Reference current value i∗α[k] is calculated from the desired rotor flux of the machine,
while reference current i∗β[k] is generated by the FLC acting as a speed controller. Figure 1
represents the final topology of the control structure, and more details about the PCC
structure can be found in [47].

Observer

FLC

Predictive 
Current 
Control

InverterRectifierGrid

+ 
-

IM

Figure 1. Simulated control method.

3. Fuzzy Logic Controller

The fuzzy inference system block diagram is shown in Figure 2. It represents the
computation steps used to transfer inputs to the fuzzy system into control outputs used for
generating reference values for induction machine predictive current control. First, input
values are turned into fuzzy values by the process of fuzzification. These fuzzy values
are calculated using predefined membership functions. The following text explains the
selection of input and output variables and membership functions that are to be optimized
for induction machine speed control.
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Rules
Table

DefuzzificationInferenceFuzzificationo z

Figure 2. Fuzzy logic controller structure.

3.1. Input and Output of Fuzzy Controller

Input variables to the fuzzy controller are chosen to be the speed tracking error ωerr
and its derivative ω̇err, while the output is defined as fuzzy error ferr. All relevant vectors
and sets that will be used are: real valued input vector o, input linguistic variable vector ō,
and input linguistic value sets Ōi, where i represents the input ordinal number. Regarding
the output, z represents the real valued output vector, z̄ represents the output linguistic
variable vector, and Z̄ represents the output linguistic value set. Established vectors and
sets are defined as follows:

• o =
[
ωerr ω̇err

]
,

• ō = ["Speed Error" "Speed Error Derivative"],
• Ō1 = Ō2 = {"Negative Big", "Negative Small", "Zero", "Positive Small", "Positive Big"},
• z =

[
ferr
]

,
• z̄ = ["Fuzzy Error"],
• Z̄ = {"Negative", "Zero", "Positive"}.

3.2. Input Membership Functions

Membership functions are structured for ith input linguistic variable ōi and kth possi-
ble linguistic value Ōk. Their structure depends on the observed linguistic variable and its
linguistic value. Equations (13)–(15) represent the membership function definitions for all
the possible combinations of index values i and superscript values k. It can be seen that
they are unit piecewise linear and defined using only two parameters, aik and bik. Figure 3
gives a deeper insight into the membership functions and their parameters.

μŌk
i
(oi) = max

[(
1 −
∣∣∣∣ aik − oi

bik

∣∣∣∣), 0
]

, i ∈ {1, 2}, k ∈ {2, 3, 4} (13)

μŌk
i
(oi) =

⎧⎪⎨⎪⎩
1, oi < aik

0, oi > bik
aik−oi
bik−aik

+ 1, aik ≤ oi ≤ bik

i ∈ {1, 2}, k = 1 (14)

μŌk
i
(oi) =

⎧⎪⎨⎪⎩
0, oi < aik

1, oi > bik
oi−aik
bik−aik

, aik ≤ oi ≤ bik

i ∈ {1, 2}, k = 5 (15)
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Figure 3. Topology of the fuzzy controller.

The fact that there are only two parameters required for membership function defini-
tion offers simplicity of implementation and can be exploited in the optimization procedure
of the fuzzy speed controller, as is seen in the following sections. The next step is to obtain
the controller output value through the process of fuzzy inference and defuzzification.

3.3. Fuzzy Inference

In control, it is common practice to follow the convention shown in Table 1 of [10]
or Table 2 of [40] for fuzzy rule table construction, where an equal number of input and
output linguistic values exist in each set Ōi and Z̄. In this paper, however, this convention
is not followed since the input linguistic value set contains five elements, while the output
linguistic value set consists of three elements. This is done to reduce the number of
decision variables in the optimization problem and speed up the overall computation.
Table 1 represents the fuzzy rule table that is used in this paper. Abbreviations are used to
represent the linguistic values: N for Negative, P for Positive, Z for Zero, S for Small, and B
for Big. Rules are interpreted as follows: “if Speed Error is Negative-Big and Speed Error
Derivative is Negative-Big, then Fuzzy Error is Negative”, and so on.

Table 1. Fuzzy Rules.

ōm
2

ōn
1 NB NS Z PS PB

NB N N N N Z ⎫⎪⎪⎪⎬⎪⎪⎪⎭Z̄nm, n, m ∈ [1, 5]
NS N N N Z P
Z N N Z P P
PS N Z P P P
PB Z P P P P

Table 2. Optimization search area.

Parameter Value (θmin) Value (θmax)

aik, bik 0 1
aP, bP,cP 0 100
Be, Bce 0.000001 10,000

KP f 0 10,000
KI f 0 100,000

Using Table 1, it is possible to calculate the rule firing strength matrix W , shown in
Equation (16), whose elements are calculated using Equation (17). This matrix is used to
obtain the output control value in the defuzzification process.
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W =

⎡⎢⎣w11 . . . w1m
...

. . .
...

wn1 . . . wnm

⎤⎥⎦ (16)

wnm = min(μŌn
1
(o1), μŌm

2
(o2)), n, m ∈ [1, 5] (17)

3.4. Defuzzification

Defuzzification is the final step to obtain the real output value, and in this paper, the
Takagi–Sugeno method is used because it is simple to implement and fast for computation.
It is executed by forming rule output level matrix H, shown in Equation (18). Elements of
matrix H are calculated using Equation (19). This equation is structured for each element in
matrix H and its coefficients depend on the output linguistic value Z̄nm defined by Table 1.

H =

⎡⎢⎣h11 . . . h1m
...

. . .
...

hn1 . . . hnm

⎤⎥⎦ (18)

hnm = cnmo1 + dnmo2 + enm

cnm =

⎧⎪⎨⎪⎩
cN , Z̄nm = N
cZ, Z̄nm = Z
cP, Z̄nm = P

dnm =

⎧⎪⎨⎪⎩
dN , Z̄nm = N
dZ, Z̄nm = Z
dP, Z̄nm = P

enm =

⎧⎪⎨⎪⎩
eN , Z̄nm = N
eZ, Z̄nm = Z
eP, Z̄nm = P

n, m ∈ [1, 5]

(19)

Defuzzified output controller value z is calculated from matrices W and H, as shown
in Equation (20).

z =

5
∑

i=n

5
∑

m=1
wnmhnm

5
∑

i=n

5
∑

m=1
wnm

(20)

The final topology of the FLC that is used in the paper is shown in Figure 4. It can be
seen that there are four additional parameters: Be and Bce are base values, which are used
to scale the inputs of the fuzzy controller, since input membership functions are chosen to
be unit piecewise functions. KP f and KI f serve as proportional and integral gains on the
produced fuzzy error.

FLC+ 
-

+ 
+

 

 

Figure 4. Topology of the fuzzy controller.

It can be seen from Figure 1 that the described fuzzy logic controller is used as a
speed controller to generate torque reference, which implicitly generates the reference
β-current component through some scaling and reference frame transformation. Based on
the selected input membership functions, output level functions, and base and gain values
of the controller, there are 33 parameters, represented by vector θ in Equation (21), that
need to be tuned to accurately control the drive. Vector θ is also called a decision variable
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vector that is used in the fuzzy controller optimization procedure, which is explained in
the following section.

θ = {a11 . . . aik, b11 . . . bik, cN , cZ, cP, dN , dZ, dP, eN , eZ, eP, Be, Bce, KP f , KI f }
= {θ1, θ2, . . . , θ33}, k ∈ [1, 5], i ∈ {1, 2} (21)

4. Optimization of Fuzzy Logic Controller

In the following text, the optimization procedure of the FLC is explained. The prob-
lem statement is given, the objective function structure with decision variables and their
boundaries is selected, and the optimization tool is described.

4.1. Problem Statement

In the proposed control method, FLC is employed as a speed controller that produces
a torque reference for PCC of an induction machine. The reference torque must change in a
timely manner to produce minimal speed tracking error and have a minimal amount of
overshoot so that it does not stress the rotor shaft. To meet these demands, optimal FLC
parameters must be calculated. FLC is defined by a large number of parameters, and to find
the optimal combination of them, optimization must be employed. Parameters calculated
in the optimization process highly depend on the criteria used to calculate the objective
function value. The following text provides insight into how different criteria affect the
final results. By finding the correct criterion, optimal parameters that produce the best
induction machine drive performance can be obtained.

4.2. Objective Function

To optimize FLC, a number of objective functions are explored and the one that
produces the best results (which are small speed tracking error and small torque overshoot)
is further analyzed. These are Integral Absolute Error, Integral Squared Error, Integral Time
Absolute Error, and Integral Time Squared Error, represented by Equation (22), where θ
represents the decision variable vector.

f IAE = f1(ωerr(θ)) =
∫ ∞

0
|ωerr(θ)| dt

fISE = f2(ωerr(θ)) =
∫ ∞

0
ω2

err(θ) dt

fITAE = f3(ωerr(θ)) =
∫ ∞

0
|ωerr(θ)| t dt

fITSE = f4(ωerr(θ)) =
∫ ∞

0
ω2

err(θ) t dt

(22)

ωerr(θ) represents the speed tracking error calculated as the difference between speed
reference ω∗

r and induction machine speed response ωr(θ), as shown in Equation (23).
These responses are calculated through Simulink simulation of a drive system, which
is shown in Figure 1. In the optimization procedure, the inverter and observer blocks
are omitted from the simulation to speed up the computation. The parameters of the
induction machine that is controlled are given in Table A1 in Appendix A, along with
relevant simulation parameters.

ωerr(θ) = ω∗
r − ωr(θ) (23)

Simulated dynamics of a drive system are shown in Figure 5. It can be seen in Figure 5a
that the speed reference is a function that is ramping from 0 to 1432.5 rpm during a 2 s
period starting at 0.2 s of the simulation. Nominal load torque of 27 Nm is applied at the
3rd second of the simulation and it is constant till the end of the simulation, as can be seen
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from Figure 5b. Figure 5c represents the required machine torque profile calculated using
Equation (24).

Te = J
d
dt

ω∗
r + Tl (24)

It can be seen from Figure 5c that torque overshoot can appear at the beginning
of ramping (OS1) and loading instance (OS3), while undershoot can appear at the end
of ramping (OS2). Total torque overshoot is calculated by Equation (25), and it is used
to construct another set of objective functions, represented by Equation (26), where w
represents a weighing factor.

fOS = |OS1|+ |OS2|+ |OS3| (25)

f IAE+OS = f5(ωerr(θ)) = f1(ωerr(θ)) + w · fOS

fISE+OS = f6(ωerr(θ)) = f2(ωerr(θ)) + w · fOS

fITAE+OS = f7(ωerr(θ)) = f3(ωerr(θ)) + w · fOS

fITSE+OS = f8(ωerr(θ)) = f4(ωerr(θ)) + w · fOS

(26)

Equation (27) represents the optimal decision variable values θ
opt
i , obtained by the

minimization of the previously formulated objective functions, where S represents a con-
straint on the optimization search area, while index i represents the ordinal number of
objective functions that was used in the optimization procedure. In the following text,
decision variable selection is further explained, along with the imposed constraints.

θ
opt
i = argmin

θ∈S⊂R

[ fi(ωerr(θ))], i ∈ [1, 8]

S ∈ [θmin, θmax]

(27)

(a)

(b)

(c)
Figure 5. Drive dynamics. (a) Reference speed commanded to the machine. (b) Load torque profile
applied to the machine. (c) Required torque profile.
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4.3. Decision Variables

Fuzzy controller parameters (membership function and output level function pa-
rameters, base and gain values) lead to the decision variable vector θ, as was previously
established by Equation (21) in the previous section. Some simplification measures can be
taken to reduce the number of elements in the vector: it can be concluded that the controller
must have the same output in absolute value for negative and positive inputs. This means
that only membership functions corresponding to positive linguistic values can be defined,
and the opposites can be used for the negative counterparts. This reduces the number of
decision variables regarding input membership functions from 20 to 10. The same is true
for the rule output level functions. Coefficients aZ, bZ and cZ from Equation (19) can be
set to zero and only coefficients regarding positive linguistic values can be defined, which
reduces the number of variables from 9 to 3. This means that the final vector of decision
variables θ contains only 17 instead of 33 elements. Table 2 represents the limits of the
optimization search area.

4.4. MIDACO Optimizer

In this paper, the authors use the MIDACO solver, which stands for “Mixed Integer
Distributed Ant Colony Optimization” , which is one of many metaheuristic methods for
global optimum search, inspired by nature. It is chosen because it is easy to use and works
well with a large number of decision variables and can also work in co-simulation with
the Matlab environment. Out of the many settings that the solver offers, it only requires
settings for decision variable limits and the start point of the search. Figure 6 represents the
co-simulation between Matlab/Simulink and MIDACO that is executed to optimize the
fuzzy controller parameters, where θj represents the decision variable values of the current
evaluation.

MIDACO Matlab/Simulink

Figure 6. Co-simulation: MIDACO ←→ Matlab/Simulink.

5. Optimization Results

In this section, the optimization results, obtained by criteria from Equations (22), (25),
and (26), are presented. Figure 7 shows the speed and torque responses that are obtained by
using only criteria from Equation (22). It can be seen that the dynamics of the drive system
have almost no impact on the speed response; in other words, the speed response has only
around 0.2 rpm maximum tracking error and a fast settling time, but when observing the
torque response, an unacceptable overshoot of around 20 Nm is observed. The reason for
the large overshoot is the fact that the speed error is the only criterion for the optimization.
To keep it at its lowest value, large control action is required at every instance when the
speed diverges from the reference value. Since there is no criterion that would limit or
penalize the torque, optimized parameters allow this kind of behavior. An attempt is made
to remedy this problem with a multi-objective optimization approach. The first objective
is selected as f ISE from Equation (22) and the second as overshoot from Equation (25).
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Figure 8 represents the optimization result in the form of a Pareto front, where the x-axis
represents the f ISE value and the y-axis represents the total overshoot value.

(a) (b)

(c) (d)

Figure 7. Speed tracking error and torque responses produced by: (a) Integral absolute error criterion.
(b) Integral squared error criterion. (c) Integral time absolute error criterion. (d) Integral time squared
error criterion.

Depending on the application, a range of solutions are available to choose from, and
they are represented by the circles in the graph. The green hexagon in the figure is the area
of the Pareto front that the optimizer selected a solution from, and Figure 9 represents the
system response produced by its parameters.

It can be seen from Figure 9 that the overshoot in the torque response is greatly
reduced. To obtain the unique solution that offers the best system response, criteria from
Equation (26) are investigated.
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Figure 8. Pareto front of multi-objective optimization.

Figure 9. System response using the solution of the Pareto front.

Figure 10 represents the speed and torque responses of the criteria from Equation (26)
with the weighing factor of value 10. It can be seen that the torque overshoot is greatly
reduced, while preserving a good speed tracking response.
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(a) (b)

(c) (d)

Figure 10. Speed tracking error and torque responses produced by: (a) Integral absolute error
criterion with overshoot penalization. (b) Integral squared error criterion with overshoot penalization.
(c) Integral time absolute error criterion with overshoot penalization. (d) Integral time squared error
criterion with overshoot penalization.

To summarize, nine different optimization procedures are conducted for nine different
types of objective functions. Table 3 shows relevant metrics for each optimization procedure.
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Table 3. Optimization results.

Optimization

Procedure
Objective Function

Max Torque Overshoot

(Nm)

Max Speed Tracking

Error (rpm)

1 f IAE 24.34 0.25
2 f ISE 23.80 0.26
3 f ITAE 21.28 0.28
4 f ITSE 22.23 0.26

5 (multi-objective) f1 = f ISE, f2 = fOS 2.28 0.40
6 f IAE+OS 0.84 0.63
7 f ISE+OS 0.20 0.83
8 f ITAE+OS 1.34 0.66
9 f ITSE+OS 0.24 0.75

It can be seen from the results that single-objective optimizations that utilize objective
functions f ISE+OS and f ITSE+OS produce the best results regarding torque overshoot, while
keeping the speed tracking error below 1 rpm. Even though they do not differ significantly,
the f ISE+OS criterion produces slightly better results, which is why it was chosen to be
further investigated. Figure 11 shows the optimized membership functions and Table 4
shows the optimized gain and output level function coefficient values for the f ISE+OS
criterion.

Table 4. Gain and output level function coefficient values obtained by optimization.

Parameter Value

Be 6049.6
Bce 3212.6
KP f 6076.7
KI f 98,680.5
aP 77.5
bP 51.66
cP 94.78

It should be noted that coefficients aN , bN and cN have opposite values to their positive
counterparts.

Figure 11. Membership functions obtained by optimization.
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6. Control System Performance

In this section, a full simulation with the drive, inverter, and observer is evaluated.
Control parameters used for the fuzzy controller are the ones obtained by the f ISE+OS
criterion in the optimization procedure. A block diagram of the simulated control method
is shown in the Figure 1. From the Figure 12a it can be seen that optimized controller
parameters produce great speed tracking with maximum tracking error of only 2 rpm, but
still produce large torque overshoot at the loading instance. By reducing the proportional
and integral gain of the fuzzy logic controller, it is possible to adjust the response and
remedy this problem. Figure 12b shows the performance of the system with reduced
gains—in this case, KP f = 500 and KI f = 4000. It can be seen that the torque overshoot is
greatly improved, while the speed response is slightly affected, but the system still offers a
small maximum tracking error of around 10 rpm. In the following section, a comparison
with several conventional model predictive control methods will be performed.

(a) (b)

Figure 12. System performance. (a) With original optimized parameters. (b) With reduced KP f and
KI f parameters.

7. Discussion

The optimization procedures conducted in the study show improvements in the
speed tracking response of the induction machine drive. Figure 9 shows the improvement
when using multi-objective optimization over single-objective optimization, whose results
are represented by Figure 7. The reason for the improvement is that torque overshoot
penalization is added via a second objective function, and the result is a Pareto front that
offers a range of solutions to chose from, based on the application. Figure 10 shows further
improvements: single-objective optimization is used and torque overshoot can be arbitrarily
penalized using a weighing factor, which results in the smallest amount of overshoot and
good speed tracking behavior. A comparison between the proposed method and PCC
method that utilizes a classic PI speed controller is shown in Figure 13. In Figure 13a, it
can be seen that the speed response is greatly improved, with a much smaller value of
maximum speed tracking error but similar settling time. Torque responses are filtered
to better represent overshoots, and as can be seen from the same figure, the optimized
fuzzy speed controller produces less torque overshoot than the classic PI controller. The
reason for the better response is the fact that the fuzzy speed controller acts on the speed
tracking error derivative along with the speed tracking error. The speed tracking error
derivative can be understood as a form of torque estimation which increases control action
in the instances when the torque is changing. The classic PI controller does not have this
advantage, since it only acts on the speed tracking error. Figure 13b shows the unfiltered
torque response for both methods. It can be seen that the chattering produced by both
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methods is in the same range. To further confirm the effectiveness of the method, two
more comparisons with different predictive control methods are conducted. Figure 14
shows a comparison of the proposed method with Finite Control Set-Predictive Current
Control (FCS-PCC), while Figure 15 represents a comparison of the proposed method with
Finite Control Set-Predictive Torque Control (FCS-PTC). To gain an understanding of both
methods, the reader is referred to [48,49]. It can be seen from Figures 14a and 15a that the
speed tracking error and filtered torque responses are similar to the original comparison:
the proposed method has less torque overshoot and superior speed tracking. Table 5
represents relevant numerical values for each method. Figures 14b and 15b show unfiltered
torque responses. It can be concluded that finite control set methods produce a larger
amount of chattering compared to the proposed method, which means that the proposed
method produces less stress on the rotor shaft during operation.

Table 5. Comparison of proposed method with other model predictive control methods.

Fuzzy-PCC PI-PCC FCS-PCC FCS-PTC

Max. speed
tracking error

(rpm)
9.48 21.68 21.05 20.88

Max. torque
overshoot (Nm)

0.63 2.16 2.72 2.45

In future research, alternative inputs to the FLC will be investigated, since the speed
derivative has several drawbacks: it can be computationally unstable and it can be a cause
of high control action. Estimated load torque can be explored as an alternative input to the
FLC. This could provide more stable input to the controller, which would produce a more
stable output with less control action and potentially less torque overshoot.

(a) (b)

Figure 13. System response comparison between proposed method and classic PCC method.
(a) Speed tracking error and filtered torque response. (b) Unfiltered torque response.
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(a) (b)

Figure 14. System response comparison between proposed method and FCS-PCC method. (a) Speed
tracking error and filtered torque response. (b) Unfiltered torque response.

(a) (b)

Figure 15. System response comparison between proposed method and FCS-PTC method. (a) Speed
tracking error and filtered torque response. (b) Unfiltered torque response.

8. Conclusions

An optimization procedure for a fuzzy logic speed controller used in the predictive
current control of an induction machine is presented in this paper. The topology of the
controller and the choice of optimization decision variables are explained, along with the
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chosen limits of the optimization search area. Several different criteria for objective function
value calculation are investigated, and the one that produces the best results (small torque
overshoot and good speed reference tracking) was the single-objective integral squared
error criterion with overshoot limitation using the weighing factor. A drive model with an
omitted inverter, modulator, and observer is used for the optimization procedure. This kind
of model produces torque and current responses without any ripple or added harmonics.
To verify the improvement of the method, optimized parameters are plugged into the
full drive model, which produces ripple in the current and torque responses. Torque
ripple affects the speed response, which consequently produces a larger speed derivative,
which is used as the input of the fuzzy controller. Because of the larger speed derivative
during the operation of the drive, high control action can be expected when this derivative
becomes even larger, which is why a large amount of torque overshoot still persists when
the drive is loaded with nominal torque. By reducing the proportional and integral gains
of the controller, this overshoot can be reduced significantly, while still preserving a good
speed response. A comparison between the proposed method and several different model
predictive control methods is conducted, and proposed method shows a 55% average
improvement regarding speed tracking error and 74% average improvement regarding
torque overshoot.
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Abbreviations

The following abbreviations are used in this manuscript:

FLC Fuzzy Logic Controller
PCC Predictive Current Control
FOC Field-Oriented Control
DTC Direct Torque Control
DFIG Doubly Fed Induction Generator
FCS-PCC Finite Control Set-Predictive Current Control
FCS-PTC Finite Control Set-Predictive Torque Control

Appendix A

Table A1. Induction machine and simulation parameters.

Parameter Value

Stator resistance Rs (Ω) 1.1507
Rotor resistance Rr (Ω) 1.0107

Stator inductance Ls (H) 0.1315
Rotor inductance Lr (H) 0.1315

Mutual inductance Lm (H) 0.126
Pole pairs p 2

Inertia J (kgm2) 0.129
Simulation step size Ts (s) 10−4

Solver Fixed-step Runge–Kutta
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