
Edited by

Non-Newtonian 
Microfluidics

Lanju Mei and Shizhi Qian
Printed Edition of the Special Issue Published in Micromachines

www.mdpi.com/journal/micromachines



Non-Newtonian Microfluidics





Non-Newtonian Microfluidics

Editors

Lanju Mei
Shizhi Qian

MDPI  Basel  Beijing  Wuhan  Barcelona  Belgrade  Manchester  Tokyo  Cluj  Tianjin



Editors

Lanju Mei

Department of Engineering

and Aviation Sciences

University of Maryland

Eastern Shore

Princess Anne

United States

Shizhi Qian

Department of Mechanical

and Aerospace Engineering

Old Dominion University

Norfolk

United States

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Micromachines (ISSN 2072-666X) (available at: www.mdpi.com/journal/micromachines/special

issues/nonNewtonian microfluidics).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-4642-1 (Hbk)

ISBN 978-3-0365-4641-4 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

www.mdpi.com/journal/micromachines/special_issues/nonNewtonian_microfluidics
www.mdpi.com/journal/micromachines/special_issues/nonNewtonian_microfluidics


Contents

Lanju Mei and Shizhi Qian
Editorial for the Special Issue on Micromachines for Non-Newtonian Microfluidics
Reprinted from: Micromachines 2022, 13, 906, doi:10.3390/mi13060906 . . . . . . . . . . . . . . . . 1

Wu Zhang, Zihuang Wang, Meng Zhang, Jiahan Lin, Weiqian Chen and Yuhong Hu et al.
Flow Direction-Dependent Elastic Instability in a Symmetry-Breaking Microchannel
Reprinted from: Micromachines 2021, 12, 1139, doi:10.3390/mi12101139 . . . . . . . . . . . . . . . 5

Jianyu Ji, Shizhi Qian and Zhaohui Liu
Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel
Reprinted from: Micromachines 2021, 12, 417, doi:10.3390/mi12040417 . . . . . . . . . . . . . . . . 15

Ying Jun Ren and Sang Woo Joo
The Effects of Viscoelasticity on Droplet Migration on Surfaces with Wettability Gradients
Reprinted from: Micromachines 2022, 13, 729, doi:10.3390/mi13050729 . . . . . . . . . . . . . . . . 43

Fan Bai, Hongna Zhang, Xiaobin Li, Fengchen Li and Sang Woo Joo
Generation and Dynamics of Janus Droplets in Shear-Thinning Fluid Flow in a Double Y-Type
Microchannel
Reprinted from: Micromachines 2021, 12, 149, doi:10.3390/mi12020149 . . . . . . . . . . . . . . . . 53

Bo Sen Wei and Sang Woo Joo
The Effect of Surface Wettability on Viscoelastic Droplet Dynamics under Electric Fields
Reprinted from: Micromachines 2022, 13, 580, doi:10.3390/mi13040580 . . . . . . . . . . . . . . . . 71

Shuyan Deng and Tan Xiao
Transient Two-Layer Electroosmotic Flow and Heat Transfer of Power-Law Nanofluids in a
Microchannel
Reprinted from: Micromachines 2022, 13, 405, doi:10.3390/mi13030405 . . . . . . . . . . . . . . . . 83

Enran Hou, Fuzhang Wang, Umar Nazir, Muhammad Sohail, Noman Jabbar and Phatiphat
Thounthong
Dynamics of Tri-Hybrid Nanoparticles in the Rheology of Pseudo-Plastic Liquid with Dufour
and Soret Effects
Reprinted from: Micromachines 2022, 13, 201, doi:10.3390/mi13020201 . . . . . . . . . . . . . . . . 109

Enran Hou, Fuzhang Wang, Essam Roshdy El-Zahar, Umar Nazir and Muhammad Sohail
Computational Assessment of Thermal and Solute Mechanisms in Carreau–Yasuda Hybrid
Nanoparticles Involving Soret and Dufour Effects over Porous Surface
Reprinted from: Micromachines 2021, 12, 1302, doi:10.3390/mi12111302 . . . . . . . . . . . . . . . 127

Muhammad Sohail, Umar Nazir, Omar Bazighifan, Rami Ahmad El-Nabulsi, Mahmoud M.
Selim and Hussam Alrabaiah et al.
Significant Involvement of Double Diffusion Theories on Viscoelastic Fluid Comprising
Variable Thermophysical Properties
Reprinted from: Micromachines 2021, 12, 951, doi:10.3390/mi12080951 . . . . . . . . . . . . . . . . 145

Nabeela Parveen, Muhammad Awais, Saeed Ehsan Awan, Wasim Ullah Khan, Yigang He
and Muhammad Yousaf Malik
Entropy Generation Analysis and Radiated Heat Transfer in MHD (Al2O3-Cu/Water) Hybrid
Nanofluid Flow
Reprinted from: Micromachines 2021, 12, 887, doi:10.3390/mi12080887 . . . . . . . . . . . . . . . . 161

v



Shuang-Shuang Zhou, Muhammad Bilal, Muhammad Altaf Khan and Taseer Muhammad
Numerical Analysis of Thermal Radiative Maxwell Nanofluid Flow Over-Stretching Porous
Rotating Disk
Reprinted from: Micromachines 2021, 12, 540, doi:10.3390/mi12050540 . . . . . . . . . . . . . . . . 181
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Microfluidics has seen a remarkable growth over the past few decades, with its ex-
tensive applications in engineering, medicine, biology, chemistry, etc. Many of these real
applications of microfluidics involve the handling of complex fluids such as whole blood,
protein solutions, and polymeric solutions which exhibit non-Newtonian characteristics—
specifically, viscoelasticity. The elasticity of the non-Newtonian fluids induces intriguing
phenomena such as elastic instability and turbulence even at extremely low Reynolds
numbers. This is the consequence of the nonlinear nature of the rheological constitutive
equations. The nonlinear characteristics of non-Newtonian fluids can dramatically change
the flow dynamics, and is useful to enhance mixing at the microscale. Electrokinetics in
the context of non-Newtonian fluids are also of significant importance, with their potential
applications in micromixing enhancement and bio-particles manipulation and separation.
This Special Issue comprises 14 original contributions.

Regarding the instability of non-Newtonian fluids, Zhang et al. [1] demonstrate the
viscoelastic fluid instability in an asymmetric nozzle–square microchannel. It is found that
the critical Weissenberg number is different for the forward-directed flow and the backward-
directed flow in the same microchannel. Ji et al. [2] numerically study the electroosmotic
flow (EOF) of Oldroyd-B viscoelastic fluid through a 10:1 constriction microfluidic channel.
Compared to EOF of Newtonian fluid, EOF of viscoelastic fluid becomes unstable when
the PAA concentration and electric field exceed some critical values.

Joo’s group numerically and experimentally conducts novel studies on viscoelastic
droplet motion. Ren et al. [3] numerically study migration of Oldroyd-B viscoelastic
droplets on rigid surfaces with wettability gradients. The effects of parameters including
droplet size, relaxation time, solvent viscosity, and polymer viscosity of the liquid on the
migration speed and distance are investigated. Bai et al. [4] also investigate Janus droplet
formation in a double Y-type microfluidic device filled with a power law shear-thinning
fluid. Compared with Newtonian fluid, the Janus droplet is more readily generated in
shear-thinning fluid. In the experimental study on the dynamics of liquid droplets under an
electric field, Wei et al. [5] observe that viscoelastic droplets differ from Newtonian droplets,
and further discuss the effects of viscoelasticity, the wettability, and the droplet size.

In terms of heat transfer for non-Newtonian fluids, Deng et al. [6] present transient
hydrodynamical features and corresponding heat transfer characteristics in two-layer elec-
troosmotic flow of power-law nanofluids in a microchannel. The results show that increase
in nanoparticle volume fraction promotes heat transfer performance, and shear thickening
feature of conducting nanofluid tends to suppress the effects of viscous dissipation and
electrokinetic width on heat transfer. Hou et al. [7] numerically study heat and mass
transport in a pseudo-plastic fluid past over a stretched porous surface in the presence
of the Soret and Dufour effects. The effects of the tri-hybrid nanoparticles, the Dufour
number, the heat generation parameter, the Eckert number, the buoyancy force parameters,
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and the porosity parameters on fluid temperature are reported. Hou et al. [8] also inves-
tigate the thermal transport of hydro-magnetized Carreau–Yasuda liquid passing over a
permeable stretched surface, considering several important effects, including Joule heating,
viscous dissipation, and heat generation/absorption. Sohail et al. [9] further report heat
and mass transfer in three-dimensional second grade non-Newtonian fluid in the presence
of a variable magnetic field. The maximum heat energy and improvement in motion of
fluid particles are achieved using higher values of second grade fluid number. Parveen
et al. [10] conduct heat transfer and entropy generation analysis in MHD axisymmetric
flow of hybrid nanofluid. Detailed rheological impacts of involved parameters on flow
variables and entropy generation number are demonstrated. Zhou et al. [11] provide a
mathematical model for non-Newtonian Maxwell nanofluid flow with heat transmission
over a porous spinning disc. The effects of some mathematical parameters on velocity,
energy, concentration, and magnetic power are discussed. Rojas-Altamirano et al. [12]
calculate the effective thermal conductivity of human skin using the Fractal Monte Carlo
Method. In the study, tissue is described as a porous medium, and blood is considered a
Newtonian and non-Newtonian fluid for comparative and analytical purposes.

Particle focusing in non-Newtonian fluids is also of great interest. Feng et al. [13] inves-
tigate particle focusing and separation in viscoelastic flow in a spiral channel. They explain
the particle focusing position by the effects of inertial flow, viscoelastic flow, and Dean flow,
and show that particle separation resolution can be improved in viscoelastic flow.

For the mixing in non-Newtonian fluids, Mei et al. [14] investigate electroosmotic
micromixing of power law non-Newtonian fluid in a microchannel with wall-mounted
obstacles and surface potential heterogeneity. Significant improvement in the mixing
efficiency is achieved by increasing the obstacle surface zeta potential, the flow behavior
index, the obstacle height, and the EDL thickness.

We would like to thank all the authors for submitting their papers to this Special Issue.
We also thank all the reviewers for dedicating their time and helping to improve the quality
of the submitted papers.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper reports flow direction-dependent elastic instability in a symmetry-breaking
microchannel. The microchannel consisted of a square chamber and a nozzle structure. A viscoelastic
polyacrylamide solution was used for the instability demonstration. The instability was realized as
the viscoelastic flow became asymmetric and unsteady in the microchannel when the flow exceeded
a critical Weissenberg number. The critical Weissenberg number was found to be different for the
forward-directed flow and the backward-directed flow in the microchannel.

Keywords: viscoelastic fluid; elastic instability; microfluid; direction-dependent

1. Introduction

In Newtonian fluid, flow complexity originates mostly from the nontrivial inertial
effect, which is mainly induced in the macroscale condition [1]. In microfluidics, the
Reynolds (Re) number of Newtonian fluid is usually a very small value, and the inertial
effect is negligible. Therefore, only creeping flow is induced in the microscale Newtonian
fluid [2]. For viscoelastic fluid, on the other hand, complex flow behavior can be stim-
ulated from the polymer molecules or surfactant dispersed in the fluid [3–5]. In certain
designed microchannel structures, the polymer molecules or surfactant can be compressed
or stretched to induce significant normal stress in the fluid. As a result, various complex
flows such as turbulent flow, Couette flow, or swirling flow can be obtained in viscoelastic
fluid even at the micrometer scale [6–9]. Analytically, complex flow can be understood
from the Navier–Stokes equation, whereby the nonlinearity of Newtonian fluid depends on
the advective term in the equation, while viscoelastic fluid nonlinearity is also contributed
by the rheological effects from the normal stress in the fluid [10], which can be applied for
mixing [11,12] or sorting [13] in microfluidics.

In particular, the elastic instability of viscoelastic fluid in specially designed microflu-
idic channels has been intensively studied [14,15]. One classical geometry of the mi-
crofluidic channel is a cross-slot, which consists of two perpendicular intersecting straight
channels [16–18]. In the cross-slot, a stagnation point can be found at the cross center
when fluid is injected into both ends of one straight channel and flows out from both
ends of the other straight channel. Due to the structure symmetry, the flow velocity is 0 at
the stagnation point while the velocity gradient is finite. This introduces an extensional
flow in the microchannel, which can stretch or compress the polymer molecule in the
fluid. The normal stress is, thus, induced and leads to elastic instability of the flow when
the Weissenberg (Wi) number of the fluid exceeds a critical value. Below the critical Wi
number, the viscoelastic flow is steady and symmetric, behaving as a Newtonian fluid.

5



Micromachines 2021, 12, 1139

The flow pattern becomes asymmetric as the flow rate and Wi number increase beyond a
critical vale. As the Wi number further increases, the flow pattern fluctuates and becomes
time-dependent. Numerically, elastic instability was studied by investigating the flow of
an upper-convicted Maxwell (UCM) fluid in a cross-slot channel, and different rheological
conditions were analyzed for different instability types [19]. The Oldroyd-B model and
a simplified Phan–Thien–Tanner model were also established for the analysis [20–22]. In
addition, elastic instability has been demonstrated experimentally using different types of
viscoelastic fluids such as polymer solution or micellar solution [23,24]. Instability was also
studied by analyzing the flow under different aspect ratios of the cross-slot geometry [19].
The cross-slot was also used as a flow-focusing device to induce purely elastic instabil-
ity [25]. Other geometries, such as a T-structured channel, were proposed, and a direct
transition from symmetric flow to time-dependent flow was observed in the channel [26].
Contraction–expansion microchannels were also proposed, in which the extension and
relaxation of polymer molecules were observed to study the elastic instability [27].

Previous work has mainly focused on the effect of microstructure geometry and
fluid properties on the flow elastic instability. In these studies, the instability was fully
characterized by the Weissenberg number. Here, we experimentally demonstrate a flow
direction-sensitive elastic instability even at the same Weissenberg number. This can be
used to stabilize or induce elastic instability by simply altering the flow direction without
changing the flow rate. Unlike previous designs, the microchannel was a symmetry-
breaking geometry, consisting of a square chamber and a nozzle structure. Therefore,
the flow path in one direction was not the same as that in the opposite direction. This
microchannel with carefully designed asymmetry has been intensively reported to realize a
rectifying property, which induces different flow pressure depending on the flow direction
under the same flow rate [28,29]. The microfluidic diode and memory were then developed
on the basis of this rectifying function [30,31]. Here, we observed flow direction-dependent
elastic instability, with symmetric steady flow evolving into an asymmetric unsteady
flow. In addition, turbulence was also observed in certain Wi number conditions in the
unsteady flow.

2. Methods

The microchannel applied for obtaining non-Newtonian fluid instability was fabri-
cated using a standard soft lithography process. A SU8-3000 photoresist (MicroChem)
layer with a thickness of 50 µm was first spin-coated on a Si wafer, followed by an optical
lithography process to develop the microchannel pattern. Liquid PDMS with a base and
curing agent mixing ratio of 10:1 was then spin-coated on the patterned SU8 layer and
heated for 4 h at 65 ◦C, yielding a solid layer of 50 µm thickness. The solid PDMS layer was
peeled off from the Si wafer and bonded with a flat PDMS layer. The fabricated microfluidic
channel is illustrated in Figure 1. The channel was composed of a square chamber and
a symmetric nozzle structure. The square chamber in the microfluidic channel induces
expansion and contraction of the flow, which introduces normal stress into the viscoelastic
fluid. The nozzle structure is located on one side of the square chamber, which increases
the localized flow resistance and confers the whole microfluidic channel with a symmetric-
breaking structure. As shown in Figure 1, the width and height of the microchannel were
w0 = 100 µm and h = 50 µm, respectively. The width and length of the square chamber were
w1 = 300 µm and w2 = 300 µm, and the nozzle had a width of 50 µm. The channel between
the left-side inlet and the nozzle structure, and the channel between the right-side inlet and
the square chamber were both designed with a length of 4 mm, which was long enough for
the full development of the flow. To clarify the two flow directions in the microchannel, the
forward direction was defined as the direction with flow passing through the nozzle first,
while the backward direction was defined as the direction with flow passing through the
square chamber first, as indicated by the blue arrow and red arrow in Figure 1, respectively.
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Figure 1. Schematic of microchannel consisting of a square chamber and nozzle structure.

The streamline of the flow was recorded under a microscope by adding polystyrene
tracking particles with a diameter of 1 µm in a concentration of 0.6 µL/mL. The flow pattern
was studied at different flow rates and, therefore, different Wi numbers for the viscoelastic
fluid. The Weissenberg number, defined as Wi = λU/L, describes the elasticity of the
flow and qualifies the nonlinearity of the fluid, where L is the characteristic length of the
channel, U is the flow rate in the channel, and λ is the relaxation time of the fluid, referring
to the characteristic stretch–relax time of the polymer, which was measured as ~0.1 s for the
PAM of 500 ppm. The Reynolds number is used to characterize the relationship between
the inertial and viscous forces in the Newtonian fluid, expressed as Re = ρUL/η, where ρ

is the density of the fluid.

3. Results and Discussion

We used polyacrylamide (PAM) with a molecular weight of 18 million for the viscoelas-
tic fluid instability demonstration. PAM of 100, 200, 500, and 1000 ppm was measured
using a rotational rheometer (Malvern, Discovery HR1) with cone-plate geometry. The
cone had a diameter of 60 mm and angle of 2.006◦. The complex shear modulus of the PAM
solutions are shown in Figure 2. The storage modulus G’ was larger than the loss modulus
G” at the lower frequency band, confirming the elastic property of the fluid. The two
curves of G’ and G” crossed at 2, 4, 5, and 10 Hz for PAM of 100, 200, 500, and 1000 ppm.
An increased crossing frequency indicates a larger elasticity of the solution with a higher
ppm value. The viscosity of the fluid at different shear rates is shown in Figure 3a. The
viscosity continuously decreased from ~10 Pa·s to ~0.01 Pa·s in the shear rate range from
0.1 s−1 to 100 s−1. For comparison, the viscosity of two typical Newtonian fluids, glycerol
solution and DI water, was also measured, as shown in Figure 3b. The viscosity remained
almost constant at 0.1595 and 0.0054 Pa·s for the 80% and 50% volume concentrations
of glycerol, respectively, and at 0.0008 Pa·s for the DI water. For the subsequent fluid
instability investigation, we chose PAM of 500 ppm with moderate viscosity.

The flow of the PAM solution in the nozzle–square microchannel was first investigated
in low Wi number conditions. The flow rate was controlled with a syringe pump (NE-300
Just Infusion™). It was first set to Q = 100 µL/h, corresponding to Wi = 5.56. Figure 4a,b
present the streamline patterns of the forward flow and backward flow in the square
chamber, respectively. The streamline patterns were both symmetric and steady in the
low Weissenberg condition for the forward and backward flow, indicating that no elastic
instability was induced. The flow patterns for both directions were almost the same;
therefore, the nozzle structure has little impact on the flow in low Wi number conditions.
For both directions, the streamline expanded to the square chamber first when entering the
contraction–expansion structure, and then gradually concentrated to the center with a small
streamline curvature. On the other hand, at the two corners of the chamber where the fluid
flowed out, the tracking particles remained static and the fluid formed a stationary regime.
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Then, we increased the flow rate of PAM solution to Q = 300 µL/h, and the Wi number
was increased to 16.67. The patterns recorded at three different instants are shown in
Figure 5a–c. Similarly, to Figure 4a, the streamline expanded to the square chamber first
when entering the contraction–expansion structure, and then gradually concentrated to
the center. However, the curvatures of the streamline on the left side and the right side
of the flow were no longer always the same. In addition, the stationary triangle regime
(highlighted by the red dashed line) increased in size compared to Figure 4a. It can be
clearly seen that the forward flow pattern became asymmetric and time-dependent. As
the inertial effect is negligible at this flow rate, the instability should be purely elastic, thus
stemming from the normal stress in the viscoelastic fluid. On the other hand, the backward
flow at the same flow rate and Wi number, as shown in Figure 5d, remained steady and
symmetric, and the flow pattern was almost the same as that in Figure 4b. The significant
difference between the forward and backward flow patterns indicates that the flow elastic
instability was direction-dependent in the asymmetric microchannel structure. For forward
flow, it became extensional at the nozzle structure, and the normal stress increased before
the fluid entered the square chamber. As a result, it was more likely to induce elastic
instability. On the other hand, for backward flow, the nozzle structure increased the flow
resistance of the fluid passing through the square chamber, which stabilized the flow.
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As the flow rate of the PAM solution was increased to 1000 µL/h, the Wi number
increased to 55.56. The instability of the forward flow became more significant, as shown
in Figure 6a–c, which represent the flow pattern at different instants. In Figure 6a, the
streamline was biased to the left side, and a large stationary regime formed on the right
side of the square chamber. In particular, due to the large normal stress, turbulence
occurred in the left-side triangle regime. In Figure 6b, the flow became symmetric and
the turbulence disappeared. When the streamline become right-side-biased, as shown in
Figure 6c, turbulence formed again in the right-side triangle regime. The streamlines in
Figure 6a,c are almost mirror images. On the other hand, for backward flow, as shown in
Figure 6d, the flow was still stabilized by the nozzle structure and remained symmetric
and steady.
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As the flow rate of the PAM solution was increased to 2000 µL/h, the Wi number
increased to 111.11. The forward flow was still asymmetric and unsteady with turbulence
on the streamline biased side, as shown in Figure 7a–c. On the other hand, as shown
in Figure 7d–f, the backward flow started to become asymmetric and unsteady in this
high Wi number condition. The increase in elastic instability in the backward flow was
due to the normal stress now being large enough to exceed the stabilizing effect by the
nozzle structure.
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To quantitatively analyze the instability behavior, we measured the length between the
left upper corner of the square chamber and the left edge of the forward-flowing streamline.
We noted that length d = d1 (as in Figure 5a) when the streamline edge was on the left side
of the chamber, and d = −d2 (as in Figure 6b) when the streamline edge was on the upper
side of the chamber. The real-time change of d from 1 s to 30 s is plotted in Figure 8 for
different Wi numbers. We can see obvious resonances of d for the cases Wi = 16.67 and
55.56, indicating a significant instability of the streamline. The streamline continuously
oscillated with a period of ~10 s and ~20 s for Wi = 16.67 and 55.56, respectively. In addition,
d was mostly above 0 for Wi = 16.67, indicating that the edge of the streamline was on the
left-side edge of the square chamber. On the other hand, d fluctuated between positive and
negative values for Wi = 55.56, indicating that the edge of the streamline was on the left-side
edge and upper-side edge of the square chamber, respectively. When Wi = 111.11, d was a
negative value because the edge of the streamline remained on the upper-side edge of the
square chamber at all measured timepoints. Thus, the oscillation became less obvious.
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To verify whether the above instability was elastic-related, we injected Newtonian
fluid into the nozzle–square microchannel for comparison. Here, a glycerol solution of 80%
volume concentration is used. The flow rate was set to Q = 2000 µL/h, corresponding to an
Re number of 0.07. As shown in Figure 9a,b, the forward flow and backward flow of the
glycerol solution were both symmetric and steady, and both flow patterns were almost the
same. This verifies that the asymmetric flow pattern, the unsteady streamline, and the flow
direction-dependent instability of the PAM solution were due to the fluid elastic property.
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Q = 2000 µL/h.

To further explain the effect of the nozzle structure, we prepared a microchannel with-
out a nozzle structure using only the same square chamber. The microchannel structure
was symmetric; thus, we only investigated the PAM flow along one direction. Figure 10a–c
show the flow pattern of the PAM solution at different instants at Q = 300 µL/h and
Wi = 16.67. The flow remained in a symmetric static state, and there was no flow insta-
bility. Figure 10d–f show the flow pattern of the PAM solution at different instants at
Q = 1000 µL/h and Wi = 55.56. The flow became asymmetric and unsteady due to the
increased normal stress when the flow entered the expansion square chamber and formed
an extensional flow. As the flow rate Q increased to 2000 µL/h and Wi = 111.11, the
asymmetry and instability of the flow pattern became more obvious, as presented by the
three different patterns shown in Figure 10g–i.
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On the basis of the above analysis, the instability of the viscoelastic flow in the
asymmetric nozzle–square microchannel and in the symmetric square microchannel is
summarized in Figure 11. The critical Wi number for the flow instability was not only
different for the square–nozzle microchannel and the square-only microchannel, but also
different for the forward-directed flow and the backward-directed flow in the same nozzle–
square microchannel. The critical Wi number for the forward-directed flow in the nozzle–
square microchannel was the smallest, indicating that it is easiest to induce elastic instability
in such a flow condition. This is because the polymers in the viscoelastic fluid were
stretched by the nozzle structure before entering the square structure, facilitating the
induction of normal stress in the subsequent extensional flow. On the other hand, the
critical Wi number for the backward-directed flow in the nozzle–square microchannel was
the largest, indicating that it is hardest to induce elastic instability in such a flow condition.
This is because the nozzle structure increased the flow resistance before the flow entered
the square structure, which stabilized the flow.
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4. Conclusions

In summary, we studied the viscoelastic fluid instability in an asymmetric nozzle–
square microchannel. The instability was demonstrated to be purely elastic and dependent
on the flow Weissenberg number. Beyond a certain Wi number, the flow pattern was
converted from a symmetric steady state to an asymmetric unsteady state. The critical Wi
number was demonstrated to be different for the two flow directions in the same nozzle–
square microchannel. In other words, the flow instability was flow direction-dependent
even at the same Wi number and in the same microchannel structure. This flow direction-
dependent instability can not only be applied for fluidic rectifier applications, but also be
used to stabilize viscoelastic flow in high-flow-rate conditions for mass transportation.
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Abstract: Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic appli-
cations, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the
EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on
either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann
model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and
the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution
becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for a
fixed PAA concentration (electric field), and vortices form at the upstream of the constriction. EOF
velocity of viscoelastic fluid becomes spatially and temporally dependent, and the velocity at the
exit of the constriction microchannel is much higher than that at its entrance, which is in qualitative
agreement with experimental observation from the literature. Under the same apparent viscosity, the
time-averaged velocity of the viscoelastic fluid is lower than that of the Newtonian fluid.

Keywords: electroosmosis; microfluidics; elastic instability; non-Newtonian fluid; Oldroyd-B model

1. Introduction

Electroosmotic flow (EOF) uses electric field to control fluid motion, and has been
widely used in various microfluidic and nanofluidic applications such as fluid pump [1],
mixing [2], and polymer translocation in biosensing [3]. The existing studies of EOF
have been mainly focusing on Newtonian fluids [4,5]. However, in reality, EOF has been
widely used to control and manipulate biological fluids (e.g., blood, saliva, lymph, protein,
and DNA solutions) [6–8] and polymeric solutions [9], which exhibit non-Newtonian
characteristics. Therefore, investigating EOF of viscoelastic fluids is of practical importance.

Bello et al. [10] conducted the pioneering study on EOF of non-Newtonian fluid, and
measured EOF velocity of methyl cellulose solution in a capillary. Their results show
that EOF velocity of such polymer solutions is much higher than that predicted with
the classic Helmholtz-Smoluchowski velocity. Chang and Tsao [11] conducted similar
experiments and found the effective viscosity decreased because of the sheared poly-
meric molecules inside the electrical double layer (EDL). Theoretically, non-Newtonian
effects can be characterized by proper constitutive models relating the dynamic viscosity
and the rate of shear. Such constitutive models include power-law model [12], Carreau
model [13], WhiteMetzner model [14], Bingham model [15], Oldroyd-B (OB) model [16],
PTT model [17], Moldflow second-order model [18], Giesekus model [19], etc. Das [20]
developed an approximate solution for EOF velocity of power-law fluid between two
parallel plates. Zhao et al. [21,22] derived a generalized Helmholtz–Smoluchowski velocity
for EOF of power-law fluid in a slit microchannel. Later, Zhao and Yang [23,24] extended
the study to a cylindrical microcapillary. Olivares et al. [25] experimentally investigated
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EOF of a non-Newtonian polymeric solution and verified the generalized Helmholtz–
Smoluchowski velocity. Tang et al. [26] numerically investigated EOF of power-law fluid
using Lattice–Boltzmann method. Zimmerman et al. [13] carried out numerical simulation
of EOF of Carreau fluid in a T-junction microchannel, and found that the flow field signifi-
cantly depended on the non-Newtonian characteristics of the fluid. The aforementioned
studies on EOF of non-Newtonian fluid are limited to inelastic constitutive models (i.e.,
power-law and Carreau models). However, some fluids show both viscous and elastic
behaviors, which can be presented by viscoelastic constitutive models. There are existing
literatures investigating the characteristics of EOF of viscoelastic fluids [27–31], showing
that the viscoelasticity of the fluid affects the flow pattern and flow rate. Note that in the
aforementioned studies, the EOF of non-Newtonian fluid was assumed in a steady state.

Recently, EOFs of non-Newtonian fluids have been reported to be time-dependent
and show instabilities even at low Reynolds number (Re). Such EOFs are time-dependent
because of the nonlinear viscosity and elasticity of non-Newtonian fluids. Bryce and Free-
man [32] first reported the electro-elastic instability in EOF of PAA solutions through a
2:1:2 micro-scale contraction/expansion when the applied electric field exceeded a thresh-
old value. Later, Bryce and Freeman [33] reported that such instabilities insignificantly
enhanced the mixing in micro flows. Pimenta and Alves [34,35] later experimentally and
numerically studied the electro-elastic instabilities of PAA solutions in both cross-slot and
flow-focusing micro devices, and found that mixing efficiency was not improved signif-
icantly. Song et al. [36] experimentally and numerically studied the elastic instability in
EOF of viscoelastic polyethylene oxide (PEO) solutions through T-shaped microchannels,
and results demonstrated that the threshold electric field for onset of instability highly
depended on the PEO concentration. Song et al. [37] later extended the work by experi-
mentally investigating the fluid rheological effects on the elastic instability in EOF of six
types of phosphate buffer-based aqueous solutions through T-shaped microchannels. They
found that shear thinning effect of the fluid might account for the electro-elastic instabilities,
however, the fluid with high elasticity alone did not have instability, which is inconsistent
with the results of Pimenta [35]. The authors attribute the inconsistency to the neglect
of microstructural effects (e.g., polymer-wall interaction and electric effect on molecular
structure of polymer, etc.) of shear-thinning polymer solutions. However, this experimen-
tal result shows similarity to the work of Ko et al. [38], in which weakly shear-thinning,
viscoelastic polyvinylpyrrolidone (PVP), and PEO solutions exhibited Newtonian-like EOF
patterns, while shear-thinning and weakly elastic xanthan gum (XG) solution exhibited
disturbance and vortices, suggesting that fluid elasticity alone has an insignificant impact
on the steady-state EOF pattern. More recently, Sadek [39] experimentally investigated EOF
of viscoelastic fluids through different microchannel configurations, including hyperbolic-
shaped contractions followed by an abrupt expansion, and abrupt contractions followed
by a hyperbolic-shaped expansion, and EOF showed instabilities of elastic origin at very
low Weissenberg numbers (Wi) (i.e., Wi < 0.01).

There is only limited literature on numerical studies of electro-elastic instabilities.
Afonso et al. [40] numerically investigated the elastic instability of EOF through a cross-
slot geometry using the upper-converted Maxwell and the simplified Phan-Thien-Tanner
models, and a direct flow transition from steady symmetric state to unsteady flow without
crossing the steady asymmetric state at a critical Wi was observed. Pimenta and Alves [35]
numerically investigated the electro-elastic instabilities in cross-slot and flow-focusing
micro devices using OB model and Poisson-Boltzmann (PB) model. They found that strong
shear-dominated flow within the EDL at the corners had a more significant contribution
to the elastic instabilities than the extensionally dominated bulk flow. Song et al. [36]
numerically investigated EOF of PEO solution through a T-shaped microchannel. Their
model considered only the influence of PEO solution on the fluid viscosity, conductivity, and
zeta potential. Due to the neglect of fluid elasticity effect in the mathematical model, only
the electrokinetic flow phenomena of dilute PEO solution (i.e., ≤750 ppm) were captured.
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Both experimental and numerical investigations in the EOF instabilities of viscoelastic
fluid are limited, and the conditions proposed by various researchers for triggering the in-
stabilities in the EOF of viscoelastic fluids show inconsistency and remain unclear. Inspired
by the existing literature, in this work we numerically study EOF of viscoelastic fluids
through a 10:1:10 contraction microchannel. The geometry, which consists of a constriction
microchannel connecting two relatively big reservoirs on either end, is close to actual
microfluidic device. The time-dependent OB model and PB model are adopted to describe
the constitutive characteristics and the electrokinetic phenomenon, respectively. EOFs of
PAA solutions with various weight concentrations under different applied electric fields
are investigated. The effects of polymer concentration and applied electric field on the
elastic instability are studied, and a map in polymer concentration-electric field space for
predicting the onset of upstream vortices is formed.

2. Mathematical Model

We consider incompressible monovalent binary electrolyte solution such as KCl with
bulk concentration c0 mixed with PAA polymer solution of concentration cp, which fills a
microchannel of height Hc, length Lc, and width W connecting two identical reservoirs of
height Hr and length Lr on either side. The solid walls of the constriction microchannel
and the reservoirs are assumed to carry a constant negative zeta potential, ξ0. When
dealing with non-Newtonian fluids, a constant zeta potential has been widely accepted [41].
Huang et al. [41] compared theoretical and experimental results of PEO solutions, and
a constant zeta potential was proven for various PEO concentrations. Therefore, in the
current study, we neglect the effect of the polymer concentration on the wall zeta potential.
Two electrodes are placed at both ends of the reservoirs, and an external potential bias
U0 is applied between the inlet (Anode) and outlet (Cathode). Through the interaction
between the externally applied electric field and net charges accumulated within the EDL
in the vicinity of the charged walls, EOF flowing from the anode reservoir through the
constriction microchannel towards the cathode reservoir is generated. The apparent electric
field between the inlet and outlet is defined as Eapp = U0/(2Lr + Lc). In some applications,
there are slit microchannels with width much larger than height [42,43]. For example,
two-phase flow patterns were studied in a microchannel with 10-mm width and 50-µm
height [42]. For microchannels with such geometries, the flow can be simplified to a
2D problem [44]. Therefore, in the current study we assume that the channel width is
much larger than the channel height, and the flow can be simplified to a 2D problem as
schematically shown in Figure 1. A Cartesian coordinate system with origin fixed at the
center of the microchannel is adopted with the x-axis along the length direction and the
y-axis in the height direction.
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Figure 1. Schematic diagram of a constriction microchannel connecting two reservoirs at both ends.
The solid walls of reservoirs and the constriction channel are negatively charged, and an electric field
is imposed by applying a potential difference between anode and cathode positioned in two fluid
reservoirs.
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The induced EOF of viscoelastic fluid is governed by the continuity and Navier–Stokes
equations:

∇·u = 0, (1)

ρ

(
∂u
∂t

+ u·∇u
)
= −∇p + ηs∇2u +∇·τ− ρE∇φExt, (2)

where u is the velocity; p is the pressure; ρ is the fluid density; ηs denotes the solvent
dynamic viscosity; τ is the polymeric stress tensor accounting for the memory of the vis-
coelastic fluid; t represents time; ρE and φExt represent, respectively, the volume charge
density within the electrolyte solution and the externally applied electric potential. For dif-
ferent types of viscoelastic fluids, various constitutive models have been developed to relate
the polymeric stress tensor τ and the deformation rate of the fluid, including WhiteMetzner
model [14], which is commonly used for shear-thinning fluid; PTT model [17], which has
good performance for prediction of viscosity at low shear rates; Giesekus model [19], which
is suitable for concentrated polymer solutions; and OB model [16], which is suitable for
dilute polymer solutions. Since OB model can properly fit the rheological behavior of
aqueous PAA solutions [45], OB model is adopted in this study. In the OB model, the
polymeric stress tensor, τ, is described as [16],

τ =
ηp

λ
(c− I), (3)

where ηp is the polymer dynamic viscosity; λ is the relaxation time of the polymer, which
refers to the time it takes for polymer chains to return to equilibrium after being disturbed;
c is the symmetric conformation tensor of the polymer molecules; and I is the identity
matrix.

For the OB model, the conformation tensor c is governed by [16],

∂c
∂t

+ u·∇c = c·∇u + (∇u)T ·c− 1
λ
(c− I). (4)

Typically, numerical simulation of viscoelastic flow is difficult to converge for high
Weissenberg number problem [46,47]. Computations were found to break down at frustrat-
ingly low values of Weissenberg number (usually around Wi = 1; precise critical value also
depends on the flow geometry) [48]. Therefore, the log-conformation tensor approach [47]
is adopted. In the log-conformation tensor method, a new tensor (Θ) is defined as the
natural logarithm of the conformation tensor,

Θ = ln(c) = R ln(Λ)R, (5)

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of c; and R
is an orthogonal matrix with its columns being the eigenvalues of c. Equation (4) for the
conformation tensor written in terms of Θ then becomes [46],

∂Θ

∂t
+ u·∇Θ = ΩΘ−ΘΩ + 2B +

1
λ

(
eΘ − I

)
. (6)

in the above, Ω and B are, respectively, the anti-symmetric matrix and the symmetric
traceless matrix of the decomposition of the velocity gradient tensor ∇u [46].

Then, the conformation tensor c is recovered from Θ,

c = exp(Θ). (7)

The total electric potential, Ψ, is decomposed in two variables, Ψ = φExt + ψ [35], with
φExt representing the potential originated from the externally applied electric potential
while ψ being the potential arising from the charge of channel walls. In this study, the EDL
thickness is on the order of nanometers (the calculation of EDL thickness will be shown
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in the next paragraph), while the microchannel height is on the order of micrometers.
Therefore, the Poisson–Boltzmann equation [49] is used to describe the potential, ψ:

∇·(ε∇ψ) = ρE = Fc0

(
exp

(
eψ

kT

)
− exp

(
− eψ

kT

))
. (8)

In the above, F is the Faraday’s constant (i.e., 96,485.33289 C·mol−1); e is the elementary
charge (i.e., 1.6021766341× 10−19 C); k is Boltzmann’s constant (i.e., 1.380649× 10−23 J·K−1);
T is the absolute temperature of the fluid (i.e., 295 K); and ε represents the permittivity of
the solution (i.e., 6.906266× 10−10 F·m−1). In this study, the bulk concentration c0 is 0.01
mM; z1 = 1 and z2 = −1. In a biocompatible solution with pH of 7.4, the concentration of
H+ is 10−7.4 mol/L, and the concentration of OH− is 10−6.6 mol/L. The concentration of
weak electrolyte is relatively low comparing with the background salt. Therefore, the weak
electrolyte is not considered in the current study. The EDL thickness can be calculated

by λD =
√

εkT
eF(z2

1c0+z2
2c0)

, which is 95 nm. The potential φExt is governed by the following

Laplace equation [50],
∇2φExt = 0. (9)

The boundary conditions are given as follows (Figure A4):
(1) At the Anode (edge AG in Figure A4): n·∇u = 0; p = 0; τ = 0; φExt = U0;

n·∇ψ = 0; Θ = 0; where n denotes the normal unit vector on the surface.
(2) At the Cathode (edge FL in Figure A4): n·∇u = 0; p = 0; n·∇τ = 0; φExt = 0;

n·∇ψ = 0; n·∇Θ = 0.
(3) On the reservoir walls (edges ABC, DEF, GHI, and JKL in Figure A4) and the

microchannel walls (edges CD and IJ in Figure A4): u = 0; n·∇φExt = 0; ψ = ξ0; n·∇Θ = 0;
n·∇p is obtained from the momentum equation; the components of τ are linearly extrapo-
lated.

The following initial conditions are specified within the domain: u = 0; p = 0; τ = 0;
φExt = 0; ψ = 0; Θ = 0.

Note that the electric potentials and the flow are only one-way coupling. The electric
potentials φExt and ψ are in a steady state, and they are independent on the flow. However,
the electric potentials affect the flow through the electrostatic force, which is the last
term in Equation (2). For Newtonian fluid, the third term, ∇·τ, in the right-hand-side of
Equation (2) is dropped, and the model includes Equations (1), (2), (8), and (9).

3. Numerical Method and Code Validation

The governing equations are numerically solved using the finite volume method by
RheoTool (version 4.1, https://github.com/fppimenta/rheoTool, accessed on 1 June 2020),
an open-source viscoelastic EOF solver [35] implemented in the open-source OpenFOAM
platform. The details of the solver can be found from the work of Pimenta and Alves [34,50].
To numerically solve the coupled Equations (1), (2), (6), (8), and (9) along with the boundary
and initial conditions, CUBISTA scheme [51] is used to discretize the convective terms in
Equations (2) and (6). Central differences are used for the discretization of Laplacian and
gradient terms. The time derivatives are discretized with three-time level explicit difference
scheme [52], which is of the second order of accuracy. The exponential source term in
Equation (8) is linearized using Taylor expansion up to the second term [53]. All of the
terms in the momentum equation (i.e., Equation (2)), except the pressure gradient and the
electric contribution, are discretized implicitly. A small time-step, ∆t = λ/105, is used to
ensure the accuracy. The well-known SIMPLEC (Semi-Implicit Method for Pressure-Linked
Equations-Consistent) algorithm [54] is used to resolve the velocity-pressure coupling.
An inner-iteration loop is used to reduce the explicitness of the method and increase its
accuracy and stability. The pressure field is computed by PCG (Preconditioned Conjugate
Gradient) solver, of which the tolerance and maximum iteration are set to be 1× 10−8 and
800, respectively. The velocity field is computed by PBiCG (Preconditioned Biconjugate
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Gradient) solver, of which the tolerance and the maximum iteration are set to be 1× 10−10

and 1000, respectively. The computational steps of the solver are as follows [34]:

Step 1. Initialize the fields {u, p,τ, φExt, ψ, Θ}0 and time (t = 0).

Step 1.1. Compute steady state φExt from Equation (9) and ψ from Equation (8).

Step 2. Enter the time loop (t = ∆t).

Step 2.1. Enter the inner iteration loop (i = 0).

Step 2.1.1. Compute Θi and τi by log-conformation method.
Step 2.1.2. Compute estimated velocity field u∗i by solving the momentum equa-
tion.
Step 2.1.3. ompute pressure field pi by enforcing the continuity equation.
Step 2.1.4. Correct the previously estimated velocity field using the correct
pressure field.
Step 2.1.5. Increase the inner iteration index (i = i + 1) and repeat the computa-
tion from Step 2.1.1, until the inner iteration criteria (i.e., maximum tolerance)
is satisfied.
Step 2.1.6. Set {u, p,τ, φExt, ψ, Θ}t = {ui, pi,τi, φExti, ψi, Θi}.

Step 2.2. Increase time, t = t + ∆t, and return to Step 2.1 until the simulation time is
reached.

Step 3. Stop the simulation and exit.

Structural mesh is adopted to discretize the computational domain. 90◦ corners of
the contraction channel (points I, J, C, and D in Figure 1) are smoothed by a fillet of 1 µm
in radius to avoid sharp turns. The 90◦ corners of the reservoirs (points H, K, B, and E in
Figure 1) are smoothed by a fillet of 2 µm in radius. To capture the EDL in the vicinity
of the charged walls, a finer mesh is distributed near the charged reservoir and channel
walls as shown in Figure 2. To reduce the number of mesh, we use a relatively low bulk
concentration c0 = 0.01 mM, and the EDL thickness is 95 nm in this study. In order to
capture the details in the EDL and to guarantee the accuracy, the mesh size near the charged
wall is set to be 10 nm so that there are 10 meshes within the EDL. There are 77,192 meshes
in the whole geometry. A mesh independence study, described in the Appendix A, is
performed to ensure the accuracy of the simulation.
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Step 2.1.4. Correct the previously estimated velocity field using the correct 
pressure field. 
Step 2.1.5. Increase the inner iteration index (𝑖 = 𝑖 + 1) and repeat the com-
putation from Step 2.1.1, until the inner iteration criteria (i.e., maximum 
tolerance) is satisfied. 
Step 2.1.6. Set 𝒖, 𝑝, 𝝉, 𝜙 , 𝜓, 𝚯 = 𝒖 , 𝑝 , 𝝉 , 𝜙 , 𝜓 , 𝚯 . 

Step 2.2. Increase time, 𝑡 = 𝑡 + ∆𝑡, and return to Step 2.1 until the simulation 
time is reached. 

Step 3. Stop the simulation and exit. 
Structural mesh is adopted to discretize the computational domain. 90° corners of the 

contraction channel (points I, J, C, and D in Figure 1) are smoothed by a fillet of 1 μm in 
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Figure 2. Computational mesh used in the numerical simulations. Mesh of the whole geometry
(a) and detailed view of the mesh at channel corner (b), at reservoir corner (c), and in the constriction
microchannel (d).
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In this work, ηp and λ for 100 ppm, 250 ppm, and 1000 ppm PAA-water solutions [55] are
adopted to accomplish curve fitting as shown in Figure 3. The values of ηp and λ were experi-
mentally measured [56], and the slow retraction method was used to measure the relaxation
time. The polymer dynamic viscosity can be expressed as ηp = 2.22× 10−5·cp, and the re-
laxation time can be expressed as λ = 3.69× 10−3 + 3.94222× 10−5·cp + 9.68889× 10−5·cp

2,
where cp represents the weight concentration of PAA solution with the unit of ppm. The ηp
and λ for other cp studied in this work are estimated by the curve-fitting expressions.

Micromachines 2021, 12, x FOR PEER REVIEW 7 of 29 
 

 

In this work, 𝜂  and 𝜆 for 100 ppm, 250 ppm, and 1000 ppm PAA-water solutions 
[55] are adopted to accomplish curve fitting as shown in Figure 3. The values of 𝜂  and 𝜆 were experimentally measured [56], and the slow retraction method was used to meas-
ure the relaxation time. The polymer dynamic viscosity can be expressed as 𝜂 = 2.22 ×10 ∙ 𝑐 , and the relaxation time can be expressed as 𝜆 = 3.69 × 10 + 3.94222 × 10 ∙𝑐 + 9.68889 × 10 ∙ 𝑐 , where 𝑐  represents the weight concentration of PAA solution 
with the unit of ppm. The 𝜂  and 𝜆 for other 𝑐  studied in this work are estimated by 
the curve-fitting expressions. 

 
Figure 3. (a) Polymer dynamic viscosity 𝜂  and (b) relaxation time 𝜆 as a function of the polyacrylamide (PAA) concen-
tration, 𝑐 . 

In a microfluidic channel with EDL thickness much smaller than the channel height, 
the EOF velocity of a Newtonian fluid can be approximated by the Helmholtz–Smolu-
chowski velocity formula [57], 𝑢 = − , (10) 

where 𝐸  is the actual local electric field in the main stream direction, and 𝜂  is the total 
viscosity of the fluid. To check the accuracy of our code, we simulate EOFs of both New-
tonian and viscoelastic fluids in the same geometry with 𝐻 = 40 μm, 𝐿 = 200 μm, 𝐻 =400 μm, and 𝐿 = 400 μm. Other parameters are set as 𝑈 = 60 V, 𝜉 = −0.11 V [58], and 𝜀 = 6.906266 × 10  F ∙ m . For Newtonian fluid, the total viscosity is set as 𝜂 = 𝜂 =0.00322 kg/(m ∙ s). When the concentration of PAA solution is less than 2 ppm, the relax-
ation time is less than 0.1 ms [56], and the fluid can be approximately treated as Newtonian 
fluid. Therefore, for the OB model, parameters are set as 𝜂 = 0.00317 kg/(m ∙ s), 𝜂 =0.00005 kg/(m ∙ s), 𝜂 = 𝜂 + 𝜂 = 0.00322 kg/(m ∙ s), and 𝜆 = 0.1 ms. Figure 4a depicts 

electric potential 𝜙 (𝑥, 0) along the x-axis when 𝐸 = 600 V/cm. The electric field in 
the x-direction, − , in the constriction microchannel is 1820 V/cm, which is about 10 
times of the electric field in the reservoirs. This is because of the 10:1:10 contraction geom-
etry and current conservation. With the same electric conductivity, the electric field is in-
versely proportional to the cross-sectional area of the geometry. Note that the actual elec-
tric field within the constriction microchannel is about three times of the apparent electric 
field, 𝐸 , which does not consider the cross-sectional variation of the geometry. EOFs of 
both Newtonian fluid and viscoelastic fluid reach a steady state. Figure 4b shows the x-
component velocity profiles, 𝑢(0, 𝑦), of the Newtonian fluid (solid line) and the OB model 
(circles). The velocity first rises rapidly within the thickness of EDL, then reaches a plateau 
in the cross section of the channel. When 𝐸 = 1820 V/cm, the calculated Helmholtz–
Smoluchowski velocity is 4.29 mm/s, and the velocity at the center of the channel is 4.27 
mm/s for both Newtonian and OB models. The relative difference between the approxi-
mated velocity and the simulated velocity is less than 0.5%. In addition, the result for OB 
model matches that of Newtonian fluid. Such consistency between Newtonian model and 

Figure 3. (a) Polymer dynamic viscosity ηp and (b) relaxation time λ as a function of the polyacrylamide (PAA) concentration, cp.

In a microfluidic channel with EDL thickness much smaller than the channel height,
the EOF velocity of a Newtonian fluid can be approximated by the Helmholtz–Smoluchowski
velocity formula [57],

u0 = − εξ0Ex

η0
, (10)

where Ex is the actual local electric field in the main stream direction, and η0 is the to-
tal viscosity of the fluid. To check the accuracy of our code, we simulate EOFs of both
Newtonian and viscoelastic fluids in the same geometry with Hc = 40 µm, Lc = 200 µm,
Hr = 400 µm, and Lr = 400 µm. Other parameters are set as U0 = 60 V, ξ0 = −0.11 V [58],
and ε = 6.906266 × 10−10 F·m−1. For Newtonian fluid, the total viscosity is set as
η0 = ηs = 0.00322 kg/(m·s). When the concentration of PAA solution is less than 2 ppm,
the relaxation time is less than 0.1 ms [56], and the fluid can be approximately treated as
Newtonian fluid. Therefore, for the OB model, parameters are set as ηs = 0.00317 kg/(m·s),
ηp = 0.00005 kg/(m·s), η0 = ηs + ηp = 0.00322 kg/(m·s), and λ = 0.1 ms. Figure 4a
depicts electric potential φExt(x, 0) along the x-axis when Eapp = 600 V/cm. The electric

field in the x-direction, − ∂φExt
∂x , in the constriction microchannel is 1820 V/cm, which is

about 10 times of the electric field in the reservoirs. This is because of the 10:1:10 contraction
geometry and current conservation. With the same electric conductivity, the electric field
is inversely proportional to the cross-sectional area of the geometry. Note that the actual
electric field within the constriction microchannel is about three times of the apparent
electric field, Eapp, which does not consider the cross-sectional variation of the geome-
try. EOFs of both Newtonian fluid and viscoelastic fluid reach a steady state. Figure 4b
shows the x-component velocity profiles, u(0, y), of the Newtonian fluid (solid line) and
the OB model (circles). The velocity first rises rapidly within the thickness of EDL, then
reaches a plateau in the cross section of the channel. When Ex = 1820 V/cm, the calculated
Helmholtz–Smoluchowski velocity is 4.29 mm/s, and the velocity at the center of the chan-
nel is 4.27 mm/s for both Newtonian and OB models. The relative difference between the
approximated velocity and the simulated velocity is less than 0.5%. In addition, the result
for OB model matches that of Newtonian fluid. Such consistency between Newtonian
model and OB model is because the polymer dynamic viscosity ηp is much smaller than the
solvent dynamic viscosity ηs, and the relaxation time of the polymer λ is also tiny. Under
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the considered condition, the elastic effect of the fluid is negligible and the OB fluid is
almost the same as Newtonian fluid with the same total viscosity.
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Figure 4. (a) Electric potential distribution (blue dash line shows the relative position of the geometry) along the x-axis;
(b) the x-component velocity at the center of the constriction microchannel, u(0, y), for Newtonian model (solid line) and
OB model (symbol).

Afonso et al. [28] derived an analytical solution of viscoelastic EOF between two
parallel plates based on the Debey–Hückel approximation, which is valid under the con-
dition of low zeta potential (i.e., ξ0 < 25 mV). To further validate our code for OB
model, EOF of viscoelastic fluid with ηs = 0.001 kg/(m·s), ηp = 0.00222 kg/(m·s),
η0 = ηs + ηp = 0.00322 kg/(m·s), and λ = 8.6 ms in a straight 2D channel (with height
of 40 µm) is studied. These rheology parameters are corresponding to those of 100 ppm
PAA solution. U0 is set as 10 V, while ξ0 is chosen as −10 mV and −110 mV, respectively.
Under the considered conditions, the flows are steady state due to relatively low electric
field strength. Figure 5 depicts the x-component velocity profile at the center of the channel,
and our numerical results (triangles) are in excellent agreement with the analytical result
(line). Although the analytical solution is based on the Debey–Hückel approximation,
we find that the numerical result also agrees well with the analytical solution when the
zeta potential ξ0 is −110 mV. Therefore, the agreement of results attained from the OB
model and Newtonian model, which are also validated by the Helmholtz–Smoluchowski
approximation, as well as the agreement of analytical solution of OB model and numerical
results for EOF of viscoelastic fluid in a straight channel, validate our code.
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Figure 5. The x-component velocity profile of viscoelastic electroosmotic flow (EOF) between two parallel plates: (a) Zeta
potential is −10 mV; (b) zeta potential is −110 mV. Analytical result of Afonso et al. [28] (solid line) and current numerical
result (symbol). The analytical solution is described in Appendix A.
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4. Results and Discussion

Newtonian fluid is investigated to provide the reference flow characteristic for the
contraction geometry. For the PAA solution with different concentration cp, the applied
apparent electric field Eapp is varied from low values to high (i.e., 100–600 V/cm). In this
section, first, we describe the flow pattern of Newtonian fluid and the time-dependent flow
patterns of PAA solutions. Then, the instabilities of PAA solutions with various Eapp and
cp are discussed and a flow map is formed based on the investigated values of Eapp and cp.
Finally, statistical results of cross-sectional average velocity are presented.

4.1. Instability of PAA Solutions

For Newtonian fluids with various total viscosities, the EOF reaches a steady state
under all conditions of the applied electric field strengths. There is no vortex occurring
in the reservoirs and the constriction microchannel. The streamlines of Newtonian fluid
show excellent symmetry about the x-axis. Additionally, the magnitude of the velocity,
U(x, y), is symmetric about the y-axis, U(x, y) = U(−x, y). For EOF of PAA solutions,
when Eapp and cp are relatively low, the flow pattern is similar to that of Newtonian
fluid, and the flow reaches a steady state without vortex. With increasing Eapp and cp,
however, the viscoelastic flow becomes time dependent and significant instabilities are
observed. Figure 6 depicts the streamlines at different times when Eapp = 100 V/cm and
cp = 500 ppm. Figure 7 depicts the streamlines at different times when Eapp = 600 V/cm
and cp = 150 ppm. Figure 8 shows the velocity magnitudes as a function of time at three
different locations, namely, upstream of the constriction microchannel (−3Hc, 0), center
of the constriction microchannel (0, 0), and downstream of the constriction microchannel
(3Hc, 0). For the EOF of both cp = 150 ppm and cp = 500 ppm, we observe strong
instabilities and upstream vortices.
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Figure 6. Instability of EOF with cp = 500 ppm and Eapp = 100 V/cm. Streamlines at different times: (a) 1.71 s, (b) 1.75 s,
(c) 1.79 s, (d) 1.83 s, (e) 1.87 s, and (f) 1.91 s. The color bar represents the elastic normal stress τxx. (Supplementary
Materials Video S1).
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asymmetric about the x-axis. However, the streamlines near the solid walls of both reser-
voirs and in the outlet reservoir show insignificant change with time. Within 0.1 s, vortices 
continuously form and disappear within the inlet reservoir right before the entrance of 
the constriction microchannel. In Figure 6a, we observe significant curvature at the 
streamlines of the EOF upstream of the constriction microchannel. Then, the curvature of 
the streamlines further develops into a pair of vortices as shown in Figure 6b. Such vorti-
ces are also time-dependent. The size and shape of the vortices show notable differences 
at different times. After growing to the maximum size, the vortices start to shrink until 
the vortices break and disappear, as shown in Figure 6,d. Next, the vortices in the EOF 
keep forming and breaking repeatedly as shown in Figure 6e,f. Comparing Figure 6b,c, 
the central locations of the vortices are both spatially and temporally dependent. In Figure 
6b, the direction of the circulation is marked by red curved lines. The pair of vortices are 

Figure 7. Instability of EOF with cp = 150 ppm and Eapp = 600 V/cm. Streamlines at different times: (a) 1.70 s, (b) 1.72 s,
(c) 1.74 s, (d) 1.76 s, (e) 1.78 s, and (f) 1.80 s. The color bar represents the elastic normal stress τxx. (Supplementary
Materials Video S2).

Micromachines 2021, 12, x FOR PEER REVIEW 10 of 29 
 

 

 
Figure 7. Instability of EOF with 𝑐 = 150 ppm and 𝐸 = 600 V/cm. Streamlines at different times: (a) 1.70 s, (b) 1.72 s, 
(c) 1.74 s, (d) 1.76 s, (e) 1.78 s, and (f) 1.80 s. The color bar represents the elastic normal stress 𝜏 . (Supplementary materials 
Video S2). 

 
Figure 8. Velocity magnitudes at three different locations ((−3𝐻 , 0) , (0,0) , (3𝐻 , 0)).  (a) 𝑐 = 150 ppm  and 𝐸 =600 V/cm, (b) 𝑐 = 500 ppm and 𝐸 = 100 V/cm. 

Figures 6 and 7 show that the viscoelastic EOF is time-dependent. The streamlines in 
the left inlet reservoir far away from the solid walls (AB and GH in Figure 1) and near the 
entrance of the constriction microchannel show significant fluctuation and also become 
asymmetric about the x-axis. However, the streamlines near the solid walls of both reser-
voirs and in the outlet reservoir show insignificant change with time. Within 0.1 s, vortices 
continuously form and disappear within the inlet reservoir right before the entrance of 
the constriction microchannel. In Figure 6a, we observe significant curvature at the 
streamlines of the EOF upstream of the constriction microchannel. Then, the curvature of 
the streamlines further develops into a pair of vortices as shown in Figure 6b. Such vorti-
ces are also time-dependent. The size and shape of the vortices show notable differences 
at different times. After growing to the maximum size, the vortices start to shrink until 
the vortices break and disappear, as shown in Figure 6,d. Next, the vortices in the EOF 
keep forming and breaking repeatedly as shown in Figure 6e,f. Comparing Figure 6b,c, 
the central locations of the vortices are both spatially and temporally dependent. In Figure 
6b, the direction of the circulation is marked by red curved lines. The pair of vortices are 

Figure 8. Velocity magnitudes at three different locations ((−3Hc, 0), (0, 0), (3Hc, 0)). (a) cp = 150 ppm and Eapp = 600 V/cm,
(b) cp = 500 ppm and Eapp = 100 V/cm.

Figures 6 and 7 show that the viscoelastic EOF is time-dependent. The streamlines
in the left inlet reservoir far away from the solid walls (AB and GH in Figure 1) and
near the entrance of the constriction microchannel show significant fluctuation and also
become asymmetric about the x-axis. However, the streamlines near the solid walls of both
reservoirs and in the outlet reservoir show insignificant change with time. Within 0.1 s,
vortices continuously form and disappear within the inlet reservoir right before the entrance
of the constriction microchannel. In Figure 6a, we observe significant curvature at the
streamlines of the EOF upstream of the constriction microchannel. Then, the curvature of
the streamlines further develops into a pair of vortices as shown in Figure 6b. Such vortices
are also time-dependent. The size and shape of the vortices show notable differences at
different times. After growing to the maximum size, the vortices start to shrink until the
vortices break and disappear, as shown in Figure 6,d. Next, the vortices in the EOF keep
forming and breaking repeatedly as shown in Figure 6e,f. Comparing Figure 6b,c, the
central locations of the vortices are both spatially and temporally dependent. In Figure 6b,
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the direction of the circulation is marked by red curved lines. The pair of vortices are in
opposite directions and form a stagnant region right before the entrance of the constriction
microchannel. Therefore, we call the induced vortices as entrance-centerline vortices.

For cp = 150 ppm and Eapp = 600 V/cm, the width and length of the vortices are
nearly the same as the height of the constriction microchannel (Hc), while for cp = 500 ppm
and Eapp = 100 V/cm, the width and the length of the vortices are about 2Hc. In the similar
geometry, however, Ko [38] did not observe vortices in their experiments with 200 ppm
PAA solution under Eapp ranging from 75 V/cm to 200 V/cm. The elastic instability
increases with increasing polymer concentration and the applied electric field. Our later
results discussed in the following section show that for cp = 200 ppm, the vortices occur
when the applied electric field exceeds the threshold value of 300 V/cm. Therefore, our
numerical results qualitatively agree with the experimental observation of Ko [38] under
their experimental condition. Table A1 in the Appendix A summarizes the EOF instabilities
from the literature. In Sadek’s [39] experimental study, small vortices at the entrance and
large upstream circulation flows were observed. For highly concentrated polymer solution,
downstream circulation flows were observed at a critical voltage. The upstream vortices
found in this study are distinct from the small vortices and large circulation flows found
in Sadek’s study [39] in terms of location. Note that the geometry in our study differs
significantly from the experimental study of Sadek [39], and we do not observe large
circulating flows near the reservoir corners and channel lips.

For Newtonian fluid, the EOF reaches a steady state, and the velocity magnitudes are
symmetric about the y-axis. Therefore, for Newtonian fluid, we have U(−3Hc, 0) = U(3Hc, 0).
However, as shown in Figure 8, the velocity magnitudes at three points (−3Hc, 0), (0, 0),
and (3Hc, 0) fluctuate around certain values and velocity magnitudes do not show symme-
try about the y-axis. For cp = 500 ppm and Eapp = 100 V/cm, as shown in Figure 8b, the
time-averaged velocity at the channel center is 0.201 mm/s with a standard deviation of
0.013 mm/s. The time-averaged velocity at downstream of the constriction microchannel
is 0.108 mm/s, which is about 2 times of that at upstream of the constriction microchannel
(i.e., 0.047 mm/s). For cp = 150 ppm and Eapp = 600 V/cm, the time-averaged velocities
at the upstream, center, and downstream of the constriction microchannel are, respectively,
0.19 mm/s, 2.82 mm/s, and 2.05 mm/s. The ratio of the downstream velocity to upstream
velocity is about 10 times. In contrast to Newtonian EOF, the flow velocity of viscoelastic
fluid at the downstream is significantly higher than that at the upstream, which has also
been experimentally observed in Ko’s [38] experiments, where a fluid jet after the constric-
tion microchannel was observed and the ratio of the velocity at the downstream centerline
to that at upstream of the constriction microchannel varies between 1 and 2 under Eapp
ranging from 75 V/cm to 200 V/cm and cp = 200 ppm.

Figure 8 also shows that EOF of cp = 500 ppm and Eapp = 100 V/cm presents stronger
instabilities than that of cp = 150 ppm and Eapp = 600 V/cm. Comparing Figures 6 and 7,
the streamlines show stronger fluctuation and larger upstream vortices for solution with
relatively high polymer concentration. Such trend suggests that although the increase
of both Eapp and cp can enhance the instabilities of the viscoelastic EOF, the polymer
concentration, cp, affects the instabilities of the EOF more significantly, which will be
further discussed in next section.

Figures 6 and 7 also show the spatial distribution of elastic normal stress τxx with
the color bar representing its magnitude. To clearly reveal it, Figure 9 depicts the spatial
distribution of τxx in the whole geometry for cp = 150 ppm and Eapp = 600 V/cm at
t = 1.78 s. Within the two reservoirs, the elastic normal stress is nearly zero at location
far away from the constriction microchannel. However, significant elastic normal stress is
induced near the entrance of the constriction microchannel and near the downstream lips.
Due to the contraction geometry, the electric field within the constriction microchannel is
about 10 times of that within the inlet reservoir as shown in Figure 4a, and the flow velocity
in the microchannel is significantly higher than that in the reservoir. For example, Figure 8
shows that the ratio of the time-averaged velocity within the microchannel to that in the
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inlet reservoir, U(0, 0)/U(−3Hc, 0), is 4.28 for cp = 500 ppm and Eapp = 100 V/cm and
10.79 for cp = 150 ppm and Eapp = 600 V/cm. Near the entrance of the microchannel, the
high velocity gradient results in a strong extension of polymer molecules, and consequently
induces significant elastic normal stress. Therefore, τxx experiences a rapid increase near
the entrance of the constriction microchannel. At the exit of the constriction microchannel,
similarly, a significant increase of τxx is induced at the exit lips. Figure 10a,b depict the
streamlines in the constriction microchannel and the color bar represents the velocity
magnitude, U, for cp = 150 ppm and Eapp = 600 V/cm and Newtonian fluid with the
same total viscosity and Eapp at t = 1.78 s, respectively. For the viscoelastic fluid, at both
the entrance and exit of the constriction microchannel, as shown by the dashed circles
in Figure 10a, velocity becomes spatially dependent along the y-axis. Velocity near the
walls of the constriction microchannel is significantly higher than that at the centerline
of the microchannel, and a local maximum occurs near the inlet/outlet corners of the
constriction microchannel. However, in the EOF of Newtonian fluid, as shown in Figure
10b, at both the entrance and exit of the constriction microchannel, the velocity magnitude
is more evenly distributed in the cross section of the constriction microchannel. Figure 10c
depicts the velocity magnitude profile at the entrance (2x/Hc = −5) and exit (2x/Hc = 5)
of the constriction microchannel. For Newtonian fluid, the velocity magnitude profile is
identical at 2x/Hc = ±5 and is symmetric about the x-axis. The ratio of the maximum
velocity magnitude near the channel walls to that at the centerline is 1.6. However, for PAA
solution, due to the elastic instability, the velocity magnitude profile is asymmetric about
the x-axis at 2x/Hc = ±5. In addition, the ratios of the maximum velocity magnitude near
the channel walls to that at the centerline are 9.7 and 4 at 2x/Hc = −5 and 2x/Hc = 5,
respectively, which are much higher than that of the Newtonian fluid. For Newtonian
fluid, the velocity profile is symmetric about the centerline of the microchannel (i.e., y = 0).
However, Figure 10c shows that the local maximum velocity near the top channel wall
differs from that near the bottom channel wall, and the velocity profile is asymmetric
about y = 0.
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Figure 9. Spatial distribution of the elastic normal stress τxx for cp = 150 ppm and Eapp = 600 V/cm
at t = 1.78 s.

As PAA solution flows from the microchannel into the outlet reservoir, fluid ve-
locity first decreases when fluid exits the microchannel and then increases in the outlet
reservoir, as shown by the region marked with a circle in Figure 10a and by the velocity
magnitude as a function of x at y = 0 in Figure 10d. The two dashed lines in Figure 10d
represent the entrance and exit of the constriction microchannel. EOF of Newtonian fluid
within the constriction is a plateau, and its velocity magnitude within the constriction is
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much higher than those at both reservoirs, and this is because the electric field within
the constriction microchannel is significantly higher than that in the reservoirs. However,
the velocity of PAA solution becomes spatially dependent within the constriction, and
a local maximum occurs before the exit and a local minimum occurs at the exit of the
constriction microchannel. In addition, a local maximum occurs at the downstream out-
let reservoir. Figure 10d also clearly shows that the velocity in the downstream outlet
reservoir is significantly higher than that at the upstream inlet reservoir. For example,
U(2x/Hc = 10.0)/U(2x/Hc = −10.0) = 3.37. The unexpected velocity decrease at the
microchannel exit and velocity increase at the downstream outlet reservoir do not occur
in Newtonian fluid as shown in Figure 10b,d. Such a phenomenon is probably because of
the extrudate swell effect of polymers [59]. At the exit of the constriction microchannel,
curved streamlines tilting toward the walls of the constriction microchannel are observed
in viscoelastic fluid, suggesting that fluid tends to flow toward the charged walls of the
microchannel. Such lateral velocity component results in the velocity’s increase near the
microchannel walls and velocity’s decrease near the centerline at the exit of the constric-
tion microchannel. In addition, the significant increase of τxx near the downstream lips
observed in Figure 9 can also be attributed to the extrudate swell effect of polymers when
polymer exits from the constriction microchannel to larger outlet reservoir.
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induced changes of the polymer conformation in the solution. Such changes of the poly-
mer conformation are strain-dependent, anisotropic, and dependent on the flow. The ex-
tra elastic stresses are nonlinear under shear and can alter the flow behavior. At low Reyn-
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Figure 10. Streamlines and velocity magnitude for cp = 150 ppm and Eapp = 600 V/cm and
Newtonian fluid at t = 1.78 s: (a) 150 ppm PAA solution, (b) Newtonian fluid with same total
viscosity as 150 ppm PAA solution, (c) velocity magnitude profiles at 2x/Hc = ±5, (d) velocity
magnitudes profiles at y = 0 (The blue dash lines show the position of the contraction microchannel).
The color bar represents the velocity magnitude U.

The generated elastic normal stress τxx was typically used to explain the formation
of vortices in pressure-driven viscoelastic flows within curved geometries [60–62]. It has
been reported that the development of the polymeric elastic stresses is caused by the
flow-induced changes of the polymer conformation in the solution. Such changes of the
polymer conformation are strain-dependent, anisotropic, and dependent on the flow. The
extra elastic stresses are nonlinear under shear and can alter the flow behavior. At low
Reynolds numbers where inertia is negligible, when the elastic normal stress exceeds by
a certain amount the local shear stress, the flow transits from stable to unstable, and the
vortices form at upstream of the constriction microchannel. Such elastic instabilities are
often observed in flows with sufficient curvature [63–65], and some argue that curvature is
necessary for infinitesimal perturbations to be amplified by the normal stress imbalances
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in the viscoelastic flows [66]. However, other theoretical studies reported that viscoelastic
flows also showed a nonlinear instability in parallel shear flows, such as in viscoelastic
flows within straight pipes at low Reynolds numbers [67]. Although the formation of the
upstream vortices in the viscoelastic EOF shares the same mechanism as the pressure-driven
flow, the locations of the vortices found in this study are distinct from the typical lip and
corner vortices occurring in pressure-driven viscoelastic flows. This is probably because of
the different velocity profiles in the pressure-driven flow and the EOF. In pressure-driven
flow, the velocity is zero at solid walls and increases to a maximum at the centerline of the
geometry. However, the EOF velocity profile is nearly a plug flow as shown in Figure 4b.
The velocity increases from zero to a plateau within the EDL thickness, which is only on
the order of a few nanometers. For the pressure-driven flow, the highest velocity is at the
centerline of the geometry and the velocity near the wall is relatively low, resulting in the
stagnant region near the solid boundaries (lips and corners). However, EOF velocity in the
vicinity of the charged wall is almost the same as that in the channel centerline. For the
extensional flow of viscoelastic fluids, the stretched polymer molecules lead to large elastic
stresses, which significantly depend on the geometry and velocity profile. The induced
elastic stresses render the primary flow unstable and cause an irregular secondary flow.
The flow subsequently acts back on the polymer molecules and stretches them further,
causing a strong disturbance of the EOF and yielding a time-dependent EOF.

4.2. Elastic Instabilities under Various Eapp and cp

In order to study the effects of Eapp and cp on the instabilities of viscoelastic EOF, cp is
varied from 100 ppm to 500 ppm and Eapp is varied from 100 V/cm to 600 V/cm. Flow
patterns under different conditions of Eapp and cp are shown in Figures 11–14. At certain
Eapp (cp), EOF becomes more unstable with the increase of cp (Eapp). Figure 11 shows
the streamlines for different PAA concentrations under Eapp = 600 V/cm, and Figure 12
shows the streamlines within the constriction microchannel with the color bar representing
pressure for Newtonian fluid and τxx for PAA solutions. As shown in Figures 11 and 12,
when cp increases, the polymeric stress τxx at the entrance of the constriction microchan-
nel increases rapidly, resulting in the fluctuation of the streamlines at upstream of the
microchannel. When cp is relatively low (100 ppm), EOF of viscoelastic fluid is similar
to that of Newtonian fluid, and the flow is in a steady state. With an increase in the PAA
concentration up to 150 ppm, significant curvature of the centerline streamlines is observed,
and the streamlines become asymmetric about the x-axis and y-axis. As cp continuously
increases up to 200 ppm, a pair of upstream vortices in opposite flow directions are in-
duced at upstream of the constriction microchannel, forming a stagnant region as shown in
Figure 11d. The width and length of the pair of vortices are about 1.6 time of the constric-
tion microchannel height (i.e., 1.6Hc). Such vortices are found to grow significantly in size
with increasing cp, which is in qualitative agreement with the experimental observations
of Ko [38]. Within the constriction microchannel, as shown in Figure 12d, nearly 1/4 of
the microchannel length (i.e., 1

4 Lc) from the entrance shows a significant increase of τxx.
Near the downstream lips of the microchannel, a local maximum of the polymeric stress
τxx is observed. When cp increases to 250 ppm, the fluctuation of the streamlines and the
size of the vortices grow dramatically as shown in Figure 11e, in which the width and
length of the vortices are about 2.9 times of the microchannel height (i.e., 2.9Hc). The
region with significant value of τxx is near 1/3 of the microchannel length (i.e., 1

3 Lc), as
shown in Figure 12e. When cp further increases to 500 ppm, as shown in Figure 11f, the
vortices grow into 4.4 times of the constriction microchannel height (i.e., 4.4Hc). More than
half of the microchannel length shows a significant increase in τxx. Furthermore, a small
vortex is induced near the downstream lip of the microchannel, which is also reported in
experimental studies of Ko [38].
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Figures 13 and 14 show the streamlines for 𝑐 = 150 ppm when 𝐸  is varied from 100 V/cm to 600 V/cm with the color bar representing the magnitude of 𝜏 . At a rela-
tively low electric field such as 𝐸 = 100 V/cm, EOF of PAA solution is similar to the 
Newtonian fluid, and the flow is in a steady state and symmetric about channel centerline. 
In addition, the induced polymeric stress 𝜏  in the constriction microchannel is rela-
tively small. When 𝐸  increases up to 400 V/cm, centerline streamlines start to show 
notable fluctuation and become asymmetric about the x-axis. At the entrance of the mi-
crochannel, a slight increase of 𝜏  is observed, however, significant increase of 𝜏  is 
observed near the microchannel walls and the downstream lips, as shown in Figure 14d. 
When 𝐸  increases to 500 V/cm, a pair of upstream vortices are induced at upstream of 

Figure 11. Streamlines of Newtonian fluid and PAA solutions with different concentrations under Eapp = 600 V/cm at
1.70 s: (a) Newtonian fluid, (b) cp = 100 ppm, (c) cp = 150 ppm, (d) cp = 200 ppm, (e) cp = 250 ppm, and (f) cp = 500 ppm.
The color bar represents the elastic normal stress τxx.
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Figure 12. Streamlines in microchannel of Newtonian fluid and PAA solutions with different concentrations under
Eapp = 600 V/cm at 1.7 s: (a) Newtonian fluid, (b) cp = 100 ppm, (c) cp = 150 ppm, (d) cp = 200 ppm, (e) cp = 250 ppm,
and (f) cp = 500 ppm. The color bar represents the elastic normal stress τxx.

Figures 13 and 14 show the streamlines for cp = 150 ppm when Eapp is varied
from 100 V/cm to 600 V/cm with the color bar representing the magnitude of τxx. At a
relatively low electric field such as Eapp = 100 V/cm, EOF of PAA solution is similar to the
Newtonian fluid, and the flow is in a steady state and symmetric about channel centerline.
In addition, the induced polymeric stress τxx in the constriction microchannel is relatively
small. When Eapp increases up to 400 V/cm, centerline streamlines start to show notable
fluctuation and become asymmetric about the x-axis. At the entrance of the microchannel,
a slight increase of τxx is observed, however, significant increase of τxx is observed near the
microchannel walls and the downstream lips, as shown in Figure 14d. When Eapp increases
to 500 V/cm, a pair of upstream vortices are induced at upstream of the microchannel, and
the size of vortices is about the height of constriction microchannel. Additionally, as shown
in Figure 14e, significant τxx is induced near the entrance of the constriction microchannel.
However, when Eapp further increases to 600 V/cm, the size of the upstream vortices do
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not show notable increase in comparison with that of Eapp = 500 V/cm. The results clearly
show that increase of cp and/or Eapp can magnify the elastic instabilities of the viscoelastic
EOF. However, the increase of cp has a more significant enhancing effect on the elastic
instabilities of the viscoelastic EOF than the increase of Eapp.
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Figure 15 depicts a flow map for the onset of vortices in unstable EOF as functions of 𝑐  and 𝐸 . At a fixed 𝑐  (𝐸 ), vortices and unstable EOF occur when 𝐸  (𝑐 ) ex-
ceeds a certain threshold value. For example, for 𝑐 = 200 ppm, the flow becomes unsta-
ble with the occurrence of vortices when 𝐸  is above 300 V/cm. At relatively low PAA 
concentration (i.e., 𝑐 = 100 ppm), it requires a very high electric field (up to 850 V/cm) to 
yield unstable EOF with upstream vortices. In contrast, at relatively high 𝑐  (i.e., 𝑐 =

Figure 13. Streamlines for 150 ppm PAA solution under different Eapp at 1.78 s: (a) 100 V/cm, (b) 200 V/cm. (c) 300 V/cm,
(d) 400 V/cm, (e) 500 V/cm, (f) 600 V/cm. The color bar represents the elastic normal stress τxx.

Micromachines 2021, 12, x FOR PEER REVIEW 16 of 29 
 

 

the microchannel, and the size of vortices is about the height of constriction microchannel. 
Additionally, as shown in Figure 14e, significant 𝜏  is induced near the entrance of the 
constriction microchannel. However, when 𝐸  further increases to 600 V/cm, the size of 
the upstream vortices do not show notable increase in comparison with that of 𝐸 =500 V/cm. The results clearly show that increase of 𝑐  and/or 𝐸  can magnify the elas-
tic instabilities of the viscoelastic EOF. However, the increase of 𝑐  has a more significant 
enhancing effect on the elastic instabilities of the viscoelastic EOF than the increase of 𝐸 . 

 
Figure 13. Streamlines for 150 ppm PAA solution under different 𝐸  at 1.78 s: (a) 100 V/cm, (b) 200 V/cm. (c) 300 V/cm, 
(d) 400 V/cm, (e) 500 V/cm, (f) 600 V/cm. The color bar represents the elastic normal stress 𝜏 . 

 
Figure 14. Streamlines in microchannel of 150 ppm PAA solution under different 𝐸  at 1.78 s: (a) 100 V/cm, (b) 200 
V/cm. (c) 300 V/cm, (d) 400 V/cm, (e) 500 V/cm, and (f) 600 V/cm. The color bar represents the elastic normal stress 𝜏 . 

Figure 15 depicts a flow map for the onset of vortices in unstable EOF as functions of 𝑐  and 𝐸 . At a fixed 𝑐  (𝐸 ), vortices and unstable EOF occur when 𝐸  (𝑐 ) ex-
ceeds a certain threshold value. For example, for 𝑐 = 200 ppm, the flow becomes unsta-
ble with the occurrence of vortices when 𝐸  is above 300 V/cm. At relatively low PAA 
concentration (i.e., 𝑐 = 100 ppm), it requires a very high electric field (up to 850 V/cm) to 
yield unstable EOF with upstream vortices. In contrast, at relatively high 𝑐  (i.e., 𝑐 =

Figure 14. Streamlines in microchannel of 150 ppm PAA solution under different Eapp at 1.78 s: (a) 100 V/cm, (b) 200 V/cm.
(c) 300 V/cm, (d) 400 V/cm, (e) 500 V/cm, and (f) 600 V/cm. The color bar represents the elastic normal stress τxx.

Figure 15 depicts a flow map for the onset of vortices in unstable EOF as functions of
cp and Eapp. At a fixed cp (Eapp), vortices and unstable EOF occur when Eapp (cp) exceeds a
certain threshold value. For example, for cp = 200 ppm, the flow becomes unstable with the
occurrence of vortices when Eapp is above 300 V/cm. At relatively low PAA concentration
(i.e., cp = 100 ppm), it requires a very high electric field (up to 850 V/cm) to yield unstable
EOF with upstream vortices. In contrast, at relatively high cp (i.e., cp = 500 ppm), the
onset of vortices occurs at Eapp between 50 V/cm and 100 V/cm. An asymptotic curve
fitting is implemented to illustrate the transition condition from no upstream vortices to the
formation of upstream vortices, which is given as Eapp = 47.49 + 2892.25·0.987cp , where
cp represents the polymer concentration in ppm, and Eapp is the apparent electric field in
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V/cm. Above the curve in Figure 15, the EOF becomes time-dependent with upstream
vortices, and no vortex forms under the conditions below the curve. Note that the flow map
is only valid for the geometry considered in this study with the zeta potential of −110 mV.
The instabilities of the viscoelastic EOF are dependent on the value of zeta potential. A
comparison of the flow patterns of lower zeta potential (−70 mV) and higher zeta potential
(−150 mV) for 150 ppm PAA solution under Eapp = 600 V/cm in the Appendix A clearly
shows that higher zeta potential triggers stronger instabilities under the same condition. In
addition, the dimensionless numbers (Reynolds number and Weissenberg number) of the
studied conditions corresponding to Figure 15 are given in the Appendix A.
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Since the flow velocity is time-dependent, we first calculate the cross-sectional average
velocity over a period of ∆t = t2− t1, and then take the time-average to obtain the averaged
velocity as,

U =

∫ t2
t1

∫ Hc/2
−Hc/2 U(0, y)dydt

∆t·Hc
, (11)

We choose ∆t = 1 s in the current study. Figure 16a shows the average velocity at the
center of the constriction as a function of cp at different values of Eapp. In comparison, it also
shows the result of Newtonian fluid whose viscosity is the same as the total viscosity of PAA
solution under Eapp = 600 V/cm. Under the same Eapp = 600 V/cm, the average velocity
in the constriction microchannel of the Newtonian flow is about 6–12% higher than that of
the PAA solution. The decrease of the average velocity in PAA solution is attributed to the
induced polymeric stress at the entrance of the constriction microchannel. For Newtonian
fluid, the average velocity decreases as cp increases, which is due to the increase of viscosity
to make its viscosity be the same as that of PAA solution with the concentration of cp. For
PAA solutions, under the same Eapp the average velocity exponentially decreases as the
polymer concentration increases. One reason is attributed to the increase of total viscosity
with the increase in cp. In addition, the induced polymer stress within the constriction
increases with the increase of polymer concentration, as shown in Figure 12, and the
induced polymer stress slows down the flow.

Under the considered condition of c0 = 0.01 mM, the EDL thickness is only 95 nm,
which is much smaller than the height of the constriction. In Newtonian fluid, the EOF
velocity can be approximated by the well-known Helmholtz–Smoluchowski velocity for-
mula as described in Equation (10). We wonder if the average velocity of PAA solutions
can be still approximated with the Helmholtz–Smoluchowski velocity formula. Since
the actual local electric field within the constriction is much higher than the apparent
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electric field Eapp, time-averaged electric field in the x-direction at the center of the con-
striction is used in the calculation of the Helmholtz–Smoluchowski velocity. Figure 16b
shows the average velocity as a function of the apparent electric field under various PAA
concentrations. The lines in Figure 16b represent the corresponding EOF velocity pre-
dicted by the Helmholtz–Smoluchowski velocity formula. At a fixed cp, as expected,
the EOF velocity increases with an increase in the applied electric field. In general, the
Helmholtz–Smoluchowski formula over predicts the velocity, and at a fixed cp the relative
error increases with the increasing Eapp. For example, for cp = 100 ppm, the relative errors
under Eapp =100 V/cm and 600 V/cm are, respectively, 1.2% and 8.6%. At a fixed Eapp,
the absolute error, which is the difference between the Helmholtz–Smoluchowski approx-
imated velocity and the average velocity obtained from the full numerical simulation,
increases with the increasing PAA concentration. However, the relative error shows no
notable change with the increasing cp. For example, at Eapp = 600 V/cm, the relative errors
for cp = 100 ppm, 300 ppm, and 500 ppm are, respectively, 8.7%, 9.6%, and 9.0%. To eval-
uate the applicability of the Helmholtz–Smoluchowski formula to approximate the velocity
of viscoelastic fluids for cp ranging from 100 ppm to 500 ppm, the minimum, average,
and maximum relative errors at different Eapp are calculated as shown in Table 1. When
Eapp ≤ 300 V/cm, the relative error is less than 5%. However, when Eapp ≥ 400 V/cm,
the relative error is larger than 5%, and the Helmholtz–Smoluchowski formula failed to
predict the velocity of the viscoelastic fluids accurately. In this study, the largest relative
error is 9.6% when cp = 300 ppm and Eapp = 600 V/cm.
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Figure 16. Time averaged cross-sectional average velocity at the center of the constriction microchannel (x = 0): (a) Average
velocity, (b) comparison of average velocity (with deviation) and Helmholtz–Smoluchowski velocity (lines).

Table 1. Relative error between the Helmholtz–Smoluchowski velocity and the average velocity from
the full mathematical model.

Eapp(V/cm) 100 200 300 400 500 600

Minimum relative error 1.0% 1.3% 1.8% 5.5% 7.0% 8.5%

Average relative error 1.3% 1.6% 2.3% 5.9% 7.7% 8.9%

Maximum relative error 1.5% 1.9% 2.8% 6.5% 8.2% 9.6%

5. Conclusions

Electroosmotic flow (EOF) of viscoelastic fluid through a 10:1:10 constriction mi-
crochannel is numerically investigated as functions of the applied electric field and the
polymer concentration. In the current study, we neglect the effect of the polymer concen-
tration on the zeta potential of the channel walls. Comparing to the EOF of Newtonian
fluid, the following distinct results for viscoelastic EOF through a 10:1:10 constriction
microchannel are obtained:
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(1) When polyacrylamide (PAA) concentration (applied electric field) exceeds a critical
value, the EOF of viscoelastic fluid becomes time-dependent with upstream vortices
occurring in the inlet reservoir near the entrance of the constriction microchannel. In
contrast, EOF of Newtonian fluid is always in a steady state without vortices.

(2) For the viscoelastic EOF, significant polymer stress is induced near the entrance
within the constriction and near the downstream lips of the constriction, causing the
elastic instabilities of the viscoelastic EOF. The induced polymer stress is dramatically
magnified with the increase of polymer concentration and applied electric field.
However, the increase of polymer concentration shows a more significant enhancing
effect on the polymer stress than the increase of applied electric field.

(3) The EOF velocity of viscoelastic fluid within the constriction becomes temporally and
spatially dependent. Near the exit of the constriction, due to the extrudate swell effect
of the polymers, the velocity at the centerline first decreases at the exit followed by an
increase in the outlet reservoir.

(4) The velocity at the exit of the constriction is higher than that at the entrance of the
constriction because of the formation of upstream vortices, which is in qualitative
agreement with experimental observation obtained from the literature.

(5) Under the same total viscosity and applied electric field, the velocity of Newtonian
fluid is higher than that of viscoelastic fluid, which is attributed to the induced
polymeric stress within the constriction. When the applied electric field is less than
300 V/cm, the Helmholtz–Smoluchowski velocity formula can predict the cross-
sectional average velocity of viscoelastic fluid with PAA concentration up to 500
ppm, and the relative error is less than 5%. At a fixed PAA concentration, in general
the relative error of the Helmholtz–Smoluchowski approximation increases with an
increase in the applied electric field.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12040417/s1. Video S1: The development of vortices for 500 ppm PAA solution un-
der 100 V/cm apparent electric field. t0 = 1.7 s and ∆t = 4.8 ms for each frame. Video S2:
The development of vortices for 150 ppm PAA solution under 600 V/cm apparent electric field.
t0 = 1.7 s and ∆t = 2.0 ms for each frame.
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Appendix A

Appendix A.1. Mesh Independence Study

Three different meshes are used to conduct the mesh independent study with
Eapp = 600 V/cm and cp = 100 ppm. As shown in Figure A1, there are 135,192, 95,252,
and 77,192 cells in mesh 1, mesh 2, and mesh 3, respectively. For mesh 1, the meshes near
the charged wall are 7 nm, so there are 14 meshes within the EDL thickness. In mesh 2 and
mesh 3, the meshes near the charged wall are 10 nm, and there are 10 meshes within the
EDL thickness. However, there are less meshes within the two reservoirs in mesh 3 than in
mesh 2. Figure A2 shows spatial distribution of the normal polymer stress and streamlines
of three different meshes at t = 1.78 s. The normal polymer stress and streamlines of three
meshes show no notable difference.
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Figure A3 shows the spatial distribution of velocity magnitudes along x = 0 and y = 0 
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Figure A1. Three different meshes used for the mesh independence study. The meshes are symmetric
with respect to the x-axis and y-axis, and only 1/4 of the total meshes are showed. (a) Mesh 1:
135.192 cells. (b) Mesh 2: 95.252 cells. (c) Mesh 3: 77.192 cells.
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Figure A2. Spatial distribution of normal polymeric stress (left) and streamlines (right) for mesh 1
(the top row), mesh 2 (the middle row), and mesh 3 (the bottom row) at t = 1.78 s.

Figure A3 shows the spatial distribution of velocity magnitudes along x = 0 and
y = 0 at t = 1.78 s. For velocity magnitude distribution along x = 0 (Figure A3a), the
maximum relative error occurs at y = 0. The maximum relative error for mesh 2 is
|Umesh2 − Umesh1|/Umesh1 = 0.9%, and the maximum relative error for mesh 3 is
|Umesh3 − Umesh1|/Umesh1 = 1.1%. The average relative errors for all sampling points are
0.45% for mesh 2 and 0.64% for mesh 3. For velocity magnitude distribution along y = 0
(Figure A3b), comparing to mesh 1, the average relative errors for all sampling points are,
respectively, 0.29% for mesh 2 and 0.72% for mesh 3.

Since the results from the above three meshes are in good agreement, we use mesh 3
to perform our other simulations.
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Appendix A.3. Analytical Solution of Afonso et al

Based on PTT model, Afonso et al. [28] derived the analytical solution of mixed electro-
osmotic/pressure driven flows of viscoelastic fluids between parallel plates based on the
Debey–Hückel approximation. The analytical solution of the velocity profile across the
height of the channel is given as:

uE =

(
εψ0Ex

η
− 2Cκ2ελ2

[
εψ0Ex

η

]3
)
(

A− 1
)
+

2
3

κ2ελ2
[

εψ0Ex

η

]3
× (A3 − 1) (A1)

where ε is the dielectric constant of the solution, A = ((cosh(κy))/(cosh(κH))),
κ2 =

((
2n0e2z2)/(εκBT)

)
, κB is the Boltzmann constant, and n0 is the ionic density.

For OB model, ε = 0. The Equation (A1) becomes uE =
(

εψ0Ex
η

)(
A− 1

)
.

Appendix A.4. Summary of Current Studies
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Appendix A.5. Results for Zeta potentials of −70 mV and −150 mV

Two other different zeta potentials (−70 mV and −150 mV) are studied for 150 ppm
PAA solution under Eapp = 600 V/cm. Figure A5 shows the results of −70 mV zeta
potential. Significant curvatures of the centerline streamlines are observed. However,
at other places, no significant disturbance is observed. Figure A6 shows the results of
−150 mV zeta potential. Similar to the results of−110 mV zeta potential, strong disturbance
is induced in the viscoelastic EOF. Upstream vortices form and disappear. An increase of
elastic normal stress is observed within the constriction microchannel. Figure A7 shows the
velocity magnitude at the center of constriction channel (i.e., (0,0)). When the zeta potential
is low (−70 mV), the velocity magnitude is almost steady state. However, when the zeta
potential is high (−150 mV), the velocity magnitude shows strong fluctuation. The results
for zeta potentials of −70 mV, −110 mV, and −150 mV show that the elastic instabilities
of the EOF of PAA solutions are dependent on the value of zeta potential. Higher zeta
potential induces larger electroosmotic velocity, and therefore stronger stretching of the
polymers at the entrance of the constriction microchannel. Higher velocity and polymer
normal stress lead to stronger instabilities of the viscoelastic flow.
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Appendix A.6. Dimensionless Numbers

Dimensional analysis is a useful tool to fully characterize the flow and identify the
dominant forces in complex flows of polymeric materials. Reynolds number (Re) is com-
monly used in rheological studies to determine whether the inertial force or the viscous
force is dominating the flow, which is given by: Re = ρul/η, where ρ is the fluid density, u
is the average velocity in the microchannel, l is the characteristic length scale (Hc), and η
is the fluid viscosity. In addition, the Weissenberg number (Wi) is used to assess the flow
elasticity of the PAA solutions, which is defined as: Wi = uλ/l, where λ is the relaxation
time. Based on our results, the Re is nearly zero, indicating that the inertial force of the EOF
is negligible. The Wi is on the order of 1, which indicates that the elastic effect in the flow
is significant.
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67. Jovanović, M.R.; Kumar, S. Nonmodal amplification of stochastic disturbances in strongly elastic channel flows. J. Non-Newton.

Fluid Mech. 2011, 166, 755–778. [CrossRef]

42



Citation: Ren, Y.J.; Joo, S.W. The

Effects of Viscoelasticity on Droplet

Migration on Surfaces with

Wettability Gradients. Micromachines

2022, 13, 729. https://doi.org/

10.3390/mi13050729

Academic Editors: Lanju Mei,

Shizhi Qian and Sung Sik Lee

Received: 7 March 2022

Accepted: 29 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

The Effects of Viscoelasticity on Droplet Migration on Surfaces
with Wettability Gradients
Ying Jun Ren and Sang Woo Joo *

School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea; renyingjun2003@gmail.com
* Correspondence: swjoo@yu.ac.kr; Tel.: +82-538102568

Abstract: A finite-volume method based on the OpenFOAM is used to numerically study the factors
affecting the migration of viscoelastic droplets on rigid surfaces with wettability gradients. Parameters
investigated include droplet size, relaxation time, solvent viscosity, and polymer viscosity of the
liquid comprising droplets. The wettability gradient is imposed numerically by assuming a linear
change in the contact angle along the substrate. As reported previously for Newtonian droplets, the
wettability gradient induces spontaneous migration from hydrophobic to hydrophilic region on the
substrate. The migration of viscoelastic droplets reveals the increase in the migration speed and
distance with the increase in the Weissenberg number. The increase in droplet size also shows the
increase in both the migration speed and distance. The increase in polymer viscosity exhibits the
increase in migration speed but the decrease in migration distance.

Keywords: droplet migration; viscoelasticity; wettability gradient

1. Introduction

The motion of liquid droplets on solid surfaces is ubiquitous in nature and is associ-
ated with extremely broad applications in many different fields [1,2]. The manipulation
of droplets by controlling the wettability of substrates in particular has been intensively
investigated due to daily observations and various potential industrial applications. The
methods for wettability control for transporting droplets on surfaces include creating
temperature gradients, electrowetting, magnetic fields, and chemical or physical texture
gradients [3–15]. When droplets are placed on a solid surface with a wettability gradient,
they tend to move from regions of low wettability to high wettability due to the net driving
force in the direction of increasing surface wettability. Greenspan and Brochard [16,17]
studied the wettability gradient of a surface to night drop operation in detail. The net driv-
ing force is due to the difference in curvature between the front and back half of the droplet.
Yang et al. [18] further discussed on the concept of manipulating droplets in the absence of
an external factor environment. Li and Zhiguang [19] verified the spontaneous motion of
droplets on solid surfaces. Moumen et al. [20] performed detailed experiments on droplet
transport on horizontal solid surfaces using wettability gradients. Chowdhury et al. [21]
verified the droplet transport mechanism for wettability gradient trajectories with different
constraints. Liu et al. [22] conducted experiments on the motion of droplets on a surface
with a wettability gradient and found that the velocity of the droplets increased with the
surface wettability gradient. Subramanian et al. [23] verified the forces involved in the
migration of droplets on solid surfaces, and demonstrated the forces and resistance pro-
vided by droplets by approximating the shape of the droplets as wedges, which is known
as the wedge approximation. They also used the lubrication approximation to study the
dynamics and resistance of fluids. Chaudhry et al. [24] verified that the velocity gradually
decreased after increasing to a certain value along the direction of droplet movement.
Xu and Qian [25] analyzed the motion of nanoscale droplets on a heated solid surface
with a wettability gradient, and accurately simulated the phenomenon of rapid changes
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in solid-to-fluid temperature. They investigated the motion of evaporative droplets in a
single-component fluid on a solid substrate with a wettability gradient. There are two main
difficulties with fluid flow and heat flow near droplet contact lines on solid substrates:
hydrodynamic (stress) singularities and thermal singularities. A continuum hydrodynamic
model is proposed for the study of the motion of single-component droplets of fluids on
solid substrates. The model can handle thermal singularities, which inevitably arise as
the substrate temperature differs from the coexistence of liquid and gas. Liu and Xu [26]
performed theoretical analysis and molecular dynamics simulations of droplet transport on
surfaces with wettability gradients. A unified mechanical model is proposed that integrates
the static configuration of the droplet at equilibrium and the dynamic configuration of the
droplet during motion. Molecular dynamics (MD) simulations show that the configuration
of water droplets on a solid surface relaxes during motion, and a dimensionless parameter
is proposed to describe their dynamic contact area. In addition, the analysis showed that
the friction coefficient of water droplets on the solid surface was significantly different from
that of the water film, and a geometric factor related to the wettability of the solid surface
was formulated to calibrate the kinetic friction of water droplets. Full-velocity trajectories
of droplet motion are extracted, and the predictions are in good agreement with extensive
MD simulations across the entire surface wettability gradient, from superhydrophobic to
superhydrophilic. Raman et al. [27] used a phase-field-based Boltzmann method (LMB)
to simulate the dynamics of droplet aggregation on a wettability-gradient surface and
observed that when the droplet impinges on the wettability gradient surface, the droplet
shape is not necessarily spherical, resulting in different droplet morphologies near the
droplet junction area. Huang et al. [28] conducted a 2D numerical simulation of droplet
transport on a surface with a stepwise wettability gradient by considering the contact-angle
hysteresis (CAH) on the droplet surface. They used the Lattice Boltzmann Method (LBM)
and found that the velocity of the droplet has a strong dependency on viscosity ratio,
wetting gradient magnitude, and CAH. Ahmadlouydarab and Feng [29] used wettability
gradient and external flow to numerically study the movement and coalescence of droplets,
and analyzed the transport of droplets on a surface with wettability gradient, making com-
parisons with the results of Moumen et al. [20] In addition to the work of Nasr et al. [30],
Chaudhry et al. [21,31] studied the migration of droplets on surfaces with linear wettability
gradients, and concluded that the droplet shape was found to evolve over time to maintain
a minimum energy state. Even with different wettability gradients, the surface energy of
a droplet can be the same at a specific dimensionless time. Droplets, located at different
locations and times, can be identical in shape. Paul Ch. Zielke et al. [32] reported that
velocity increases with the droplet size.

Although the research on Newtonian fluids has made great progress, the research
on non-Newtonian fluids (viscoelastic fluids) is still very scarce. In the study of non-
Newtonian fluids [33–38] most of the studies are on flows in microchannels. Although the
spontaneous migration of Newtonian droplets due to wettability gradients has been widely
studied, that for viscoelastic droplets is very limited. Bai et al. [39] used the OpenFOAM
to numerically analyze viscoelastic droplet migration on surfaces with linear wettability
gradients. They showed that the migration speed increases monotonically with the increase
in fluid elasticity until it saturates for high enough Weissenberg number. The migration
distance, however, was not obtained because the cases reported did not contain migrations
coming to an end, which is observed in experiments. Li et al. [40] proposed a dynamically
controlled particle separation by employing viscoelastic fluids in deterministic lateral
displacement (DLD) arrays. The process of deceleration and termination of viscoelastic
droplet migration due to the growing viscous force with droplet deformation, however, is
omitted in the report. Zhang et al. [41] studied the transient flow response of viscoelastic
fluids to different external forces. Damped harmonic oscillation and periodic oscillation
are induced and modulated depending on the fluid intrinsic properties such as viscosity
and elasticity. External body forces, such as constant force, step force, and square wave
force, are applied at the inlet of the channel. It is revealed that the oscillation damping
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originates from the fluid viscosity, while the oscillation frequency is dependent on the fluid
elasticity. An innovative way is also developed to characterize the time relaxation of the
viscoelastic fluid by modulating the frequency of the square wave force. Zhang et al. [42]
investigated temporal-pulse flow mixing of Newtonian and viscoelastic fluids at different
pulse frequencies and showed that viscoelastic fluids are more mixed than Newtonian
fluids. Despite these findings on effects of the viscoelasticity, the finite migration distance
of droplets affected by the viscoelasticity is yet to be reported. In this work the effect
of viscoelasticity on the droplet dynamics is studied parametrically, and the changes in
migration speed and distance due to viscoelasticity are revealed for the first time.

2. Numerical Simulation

The volume-of-fluid (VOF) method is a simulation technique used to track and locate
free-form surfaces or fluid interfaces in computational fluid dynamics. It uses static and
migrating mesh to accommodate the evolution of the interface shape. It is based on
the Eulerian formulation. In this paper, the VOF solver tracking interface included in
OpenFOAM is used to calculate the volume fraction in the gas/liquid two-phase flow: α is
the volume fraction of a liquid, and the value of α in the grid varies between 0 and 1. When
a grid is completely filled with liquid, the value of α is 1. When there is no liquid in the
grid, the value of α is 0. The continuity equation is then written as

∂α

∂t
+ (U · ∇)α = 0 (1)

where U is the fluid velocity vector. The transport properties of this fluid are obtained by a
volume average of the equations:

ρ = αρ1 + (1− α)ρ2 (2)

µ = αµ1 + (1− α)µ2 (3)

where ρ and µ represent the density and dynamic viscosity of the two liquids, respectively.
The interactive reaction between the two phases of the fluid can be calculated on the surface
tension by the following equation:

∆p = σk
_
n (4)

where ∆p is the pressure difference across the interface, σ represents the surface tension
coefficient, k is the curvature of the surface, and

_
n is the unit outward normal on the surface.

The surface tension is included in the Navier–Stokes equation as a source term. Based on
the case of incompressible fluids, the governing equations of viscoelastic fluids and the
conservation of mass and momentum can be expressed as

∆ ·U = 0 (5)

∂ρU
∂t

+ U · (ρU) = −∇p +∇
(
τs + τp

)
+ σκ∇α + ρg (6)

where p is the pressure, ρ is the fluid density, and g is gravitational acceleration, the stress
tensor can be expressed as

τ = τs + τp (7)

where stress τ is divided into that contributed by the Newtonian solvent τs, and the
viscoelastic polymer τp. To focus on the effect of viscoelasticity without the complications
of shear-thinning the Oldroyd-B viscoelastic constitutive model is adopted, which can be
expressed as

τp + λτ∇p = 2ηp

[
∇U + (∇U)T

]
(8)
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where λ is the relaxation time, ηp is the polymer viscosity, τ∇p is the derivative on the elastic
stress tensor:

τ∇p =
∂τp

∂t
+∇ ·

(
Uτp

)
− (∇U)T · τp − τp · (∇U) (9)

The relation of the Oldroyd-B constitutive model can be expressed as

τp = ηp/(λ(C− I)) (10)

where C is the conformational tensor of the polymer molecule, and a symmetry tensor I is
a unit tensor. Equation (6) can then be simplified as

∂U
∂t

+ U · ∇U = − 1
ρc
∇p +

βηc

ρc
∇2U +

ηc

ρcλc
(1− β)∇ · C +

σk∇α

ρc
+ g (11)

where β = ηs/ηp = ηs/
(
ηs + ηp

)
and ηc = ηs + ηp, The viscosity and density fields depend

on the order parameter:

ηc = αηL + (1− α)ηG, ρc = αρL + (1− α)ρG (12)

where ηL and ρL denote the viscosity and density of the liquid. The viscosity and density
of the gas is denoted by ηG and ρG. The transport equation of the deformation rate tensor
is expressed as

∂C
∂t

+∇ · (UC)− (∇U)T · C− C · (∇U) =
1
λ
(1− C) (13)

If we set the droplet radius as a and the total substrate length as L, and the dimension-
less droplet radius in units of L is

R =
a
L

(14)

The spatial and temporal variables then are nondimensionalized as

x∗ =
x
L

, y∗ =
y
L

, T =
tν
a2 (15)

where the kinematic viscosity ν = ηc/ρL.
For viscoelastic droplets, the Weissenberg number Wi is an important parameter, the

measure of fluid elasticity:

Wi =
νλ

a2 (16)

If we take the center point xm of the droplet as a reference for droplet location, dimen-
sionless droplet location M and the dimensionless migration distance are expressed as

M =
xm

L
and M f =

x f

L
(17)

where x f is the final value of xm when the droplet ceases to move.
In this paper, the OpenFOAM software is used for computations. Initially a viscoelastic

droplet is placed in a rectangular area with a length L of 10 mm and a height H of 1.5 mm.
The contact angle along the substrate decreases from the superhydrophobic region in the
left side to the hydrophilic region in the right side, and the droplet migration is observed
as in Figure 1. The boundary conditions are set to no-slip on the substrate and atmospheric
conditions on other boundaries, as available in the OpenFOAM. The spatial resolution
of the calculation is determined by grid-independent studies to ensure an absolute error
bound of 10−6 on the calculation of the droplet migration distance. The change in the
contact angle decreases from 160◦ at the initial droplet location to 0◦ at the right end of
the substrate. As shown in Figure 2, the deformation that occurs with droplet migration is
consistent with [24].
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The contact angle model we use is the dynamic contact angle model, and the equation
of the dynamic contact angle model is:

θd =

{
θa, Uw ≥ 0
θr, Uw ≥ 0

(18)

where Uw is the velocity near the wall. The dynamic contact angle model based on Open-
FOAM is

θ = θe + (θa − θr)tanh
(

Uw

Uθ

)
(19)

where Uθ is the characteristic velocity scale. θa, θr, θe, respectively, are the advancing, the
receding, and the balance angle.

Density of the Oldroyd-B and the Newtonian liquid is set identically to ρ = 1000 kg/m3,
while polymer and solvent viscosities are set to ηp = 0.36 Pa·s and ηs = 0.04 Pa·s, respectively.
The initial relaxation time is set as λ = 0.01 s [43]. For the gas phase, we set ρ = 1 kg/m3

and ηs = 1 × 10−5 Pa·s, with the surface tension σ = 0.073 N/m, as listed in Table 1. The
migration of droplets on the substrate with a contact angle distribution ranging from 160◦ to
0◦ is investigated.

Table 1. Liquid properties used.

Fluid ρ (kg/m3) ηp (Pa·s) ηs (Pa·s) λ (s) σ (N/m)

Oldroyd-B 1000 0.36 0.04 0.01 0.073
Newtonian liquid 1000 0.04 0.073

Newtonian gas 1 1× 10−5 0.073

Figure 2 shows representative cases of Newtonian and viscoelastic droplet migration
obtained by the OpenFOAM simulations described above. The red and blue regions,
respectively, represent liquid and air phase, with the arrows indicating the local velocity
vector. As in Figure 1, the initial droplet shape is set to a semicircle, with which the droplet
radius and volume can be clearly specified.

3. Results and Discussion

Figure 3a shows the time-dependent location of droplet center M for droplets with
identical viscosity, as a droplet migrates from the superhydrophobic region to the hy-
drophilic region of the substrate. The slope of each line indicates instantaneous migration
speed, which eventually becomes zero for all droplets shown. It is thus seen that droplets
start to move due to the wettability gradient, decelerate, and cease to move due to the
viscous dissipation. The migration speed in the early stages of the motion and the migration
distance in the final stage both increase with the Wi. The time spent to reach the final sta-
tionary state is seen to decrease with Wi. It can thus be deduced that more elastic droplets
migrate faster and farther and stop sooner. Figure 3b shows the location of droplets with
different volumes, with an enlarged scale provided in the inset. With the fixed wettability
gradient along the substrate, bigger droplets would experience bigger differences in the
contact angle between the advancing and receding side of the droplet. It is thus seen that
droplets with bigger initial radius migrate faster and farther. Since the difference in the
migration distance is more pronounced than the migration speed, the time required to
reach the stationary state increases as well with the initial droplet radius.
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Figure 3. (a) Migration of Newtonian droplet and viscoelastic droplets with different Wi numbers
against dimensionless time. (b) Migration of a viscoelastic droplet (Wi = 16) of different initial radii.

Figure 4a shows the location of viscoelastic droplets with time, depending on the
solvent viscosity ηs for an identical polymer viscosity ηp. For high solvent viscosity,
ηs = 25 Pa·s, the viscoelastic droplet migrates slowly and for a relatively short distance.
Low solvent viscosity, ηs = 0.04 Pa·s, gives faster and longer migration, as can be easily
understood. In Figure 4b three different polymer viscosities, ηp = 0.36, 1.9, 4.2 Pa·s, are
tested with the solvent viscosity kept identically at ηs = 0.04 Pa·s. In early stages, the
difference in migration speed is not conspicuous, but eventually the differences in migration
distance and migration time are obvious. Droplets with higher polymer viscosity show
shorter migration distance and smaller migration time.
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Figure 5a shows the dimensionless migration distance M f depending on different
viscoelasticity. The final migration distance of the droplets increases with the Wi number.
The Newtonian droplet, Wi = 0, shows shortest migration distance. The increase in the
migration distance with the increase in Wi is monotonic. Near Wi = 80, the increase seems
minimized, but the terminal equilibrated value for high Wi, if any, cannot be verified due
to difficulties in computations for high enough Wi. As seen in Figure 3, a longer migration
distance is accompanied by a shorter migration time. With the increase in Wi the total
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migration time decreases monotonically. The viscoelasticity seems to promote the droplet
migration due to the wettability gradient both in terms of migration velocity and migration
distance. The exact mechanism for this promotion needs to be analyzed. The increase in the
migration distance with respect to the droplet radius is shown in Figure 5b. For all values of
Wi, the migration distance increases monotonically with the droplet radius. In contrast to
the migration-distance increase due to the elasticity, however, the total migration time also
increases with the increase in the migration distance. It is to be noted that with in present
length scale increase in the droplet radius is analogous to that in the wettability gradient.
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4. Concluding Remarks

Based on the VOF method, the effect of viscoelasticity on the migration distance,
speed, and time for spontaneous droplet motion due to wettability gradients is analyzed
for the first time. It is found that as the fluid elasticity increases, the farther and the faster
the viscoelastic droplet migrates, but the sooner it stops. Increase in the droplet size also
makes it migrate farther and faster, but total migration time becomes longer. Increase in the
viscosity of the solvent causes the droplet to move more slowly and over a shorter distance,
as does the change in the viscosity of the polymer due to elastic effects. The viscoelasticity
seems to promote the droplet migration due to the wettability gradient both in terms of
migration velocity and migration distance. The exact mechanism for this promotion needs
to be analyzed. It is to be noted that in the present length scale used, increase in droplet
radius is analogous to that in the wettability gradient. This work focuses on the effect of
elasticity on the droplet migration without other complications of viscoelastic fluids, and
so the Oldroyd-B model is chosen. With the features embedded in the OpenFOAM, it is
straightforward to extend the work to other constitutive models with other desired effects.
Here, the migration-promoting effect of elasticity is reported quantitatively. Its difference
with the effect of wettability-gradient increase is revealed.

Author Contributions: Conceptualization, Y.J.R.; methodology, Y.J.R.; investigation, Y.J.R.; writing—
original draft preparation, Y.J.R.; writing—review and editing, S.W.J.; supervision, S.W.J.; project
administration, S.W.J.; funding acquisition, S.W.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is funded by the Grant NRF-2022R1A2C2002799 of the National Research
Foundation of Korea.

Conflicts of Interest: The authors have declared no conflict of interest.

50



Micromachines 2022, 13, 729

References
1. Yao, X.; Song, Y.; Jiang, L. Applications of bio-inspired special wettablesurfaces. Adv. Mater. 2011, 23, 719–734. [CrossRef]

[PubMed]
2. Darhuber, A.A.; Valentino, J.P.; Troian, S.M.; Wagner, S. Thermocapillary actuation of droplets on chemically patterned surfaces

by programmablemicroheater arrays. J. Microelectromech. Syst. 2003, 12, 873–879. [CrossRef]
3. Mettu, S.; Chaudhury, M.K. Motion of drops on a surface induced bythermal gradient and vibration. Langmuir 2008, 24,

10833–10837. [CrossRef] [PubMed]
4. Foroutan, M.; Fatemi, S.M.; Esmaeilian, F.; Fadaei Naeini, V.; Baniassadi, M. Contact angle hysteresis and motion behaviors of a

water nanodroplet on suspended graphene under temperature gradient. Phys. Fluids 2018, 30, 052101. [CrossRef]
5. Jaiswal, V.; Harikrishnan, A.; Khurana, G.; Dhar, P. Ionic solubility and solutal advection governed augmented evaporation

kinetics of salt solution pendant droplets. Phys. Fluids 2018, 30, 012113. [CrossRef]
6. Cho, S.K.; Moon, H.; Kim, C.-J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for

digital microfluidic circuits. J. Microelectromech. Syst. 2003, 12, 70–80. [CrossRef]
7. Latorre, L.; Kim, J.; Lee, J.; De Guzman, P.-P.; Lee, H.; Nouet, P.; Kim, C.-J. Electrostatic actuation of microscale liquid-metal

droplets. J. Microelectromech. Syst. 2002, 11, 302–308. [CrossRef]
8. Kunti, G.; Mondal, P.K.; Bhattacharya, A.; Chakraborty, S. Electrothermally modulated contact line dynamics of a binary fluid in a

patterned fluidicenvironment. Phys. Fluids 2018, 30, 092005. [CrossRef]
9. Kunti, G.; Bhattacharya, A.; Chakraborty, S. Electrothermally actuatedmoving contact line dynamics over chemically patterned

surfaces with resistive heaters. Phys. Fluids 2018, 30, 062004. [CrossRef]
10. Long, Z.; Shetty, A.M.; Solomon, M.J.; Larson, R.G. Fundamentals ofmagnet-actuated droplet manipulation on an open hydropho-

bic surface. Lab Chip 2009, 9, 1567–1575. [CrossRef]
11. Ichimura, K.; Oh, S.-K.; Nakagawa, M. Light-driven motion of liquids on aphotoresponsive surface. Science 2000, 288, 1624–1626.

[CrossRef] [PubMed]
12. Zheng, Y.; Cheng, J.; Zhou, C.; Xing, H.; Wen, X.; Pi, P.; Xu, S. Droplet Motion on a Shape Gradient Surface. Langmuir 2017, 33,

4172–4177. [CrossRef] [PubMed]
13. Morrissette, J.M.; Mahapatra, P.S.; Ghosh, A.; Ganguly, R.; Megaridis, C.M. Rapid, Self-driven Liquid Mixing on Open-Surface

Microfluidic Platforms. Sci. Rep. 2017, 7, 1800. [CrossRef] [PubMed]
14. Dhiman, S.; Jayaprakash, K.S.; Iqbal, R.; Sen, A.K. Self-Transport and Manipulation of Aqueous Droplets on Oil-Submerged

Diverging Groove. Langmuir 2018, 34, 12359–12368. [CrossRef] [PubMed]
15. Petrie, R.J.; Bailey, T.; Gorman, C.B.; Genzer, J. Fast directed motion of fakir droplets. Langmuir 2004, 20, 9893–9896. [CrossRef]
16. Greenspan, H.P. On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 1978, 84, 125–143. [CrossRef]
17. Brochard, F. Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 1989, 5, 432–438. [CrossRef]
18. Yang, J.-T.; Chen, J.C.; Huang, K.-J.; Yeh, J.A. Droplet manipulation on a hydrophobic textured surface with roughened patterns.

J. Microelectromech. Syst. 2006, 15, 697–707. [CrossRef]
19. Li, J.; Guo, Z. Spontaneous Directional Transportations of Water Droplets on Surfaces Driven by Gradient Structures. Nanoscale

2018, 10, 13814–13831. [CrossRef]
20. Moumen, N.; Subramanian, R.S.; McLaughlin, J.B. Experiments on the Motion of Drops on a Horizontal Solid Surface Due to a

Wettability Gradient. Langmuir 2006, 22, 2682–2690. [CrossRef]
21. Chowdhury, I.U.; Mahapatra, P.S.; Sen, A.K. Self-driven droplet transport: Effect of wettability gradient and confinement. Phys.

Fluids 2019, 31, 042111. [CrossRef]
22. Liu, C.; Sun, J.; Li, J.; Xiang, C.; Chenghao, X.; Wang, Z.; Zhou, X. Long-range spontaneous droplet self-propulsion on wettability

gradient surfaces. Sci. Rep. 2017, 7, 7552. [CrossRef] [PubMed]
23. Subramanian, R.S.; Moumen, A.N.; McLaughlin, J.B. Motion of a Drop on a Solid Surface Due to a Wettability Gradient. Langmuir

2005, 21, 11844–11849. [CrossRef] [PubMed]
24. Chaudhury, M.K.; Chakrabarti, A.; Daniel, S. Generation of Motion of Drops with Interfacial Contact. Langmuir 2015, 31,

9266–9281. [CrossRef]
25. Xu, X.; Qian, T. Droplet motion in one-component fluids on solid substrates with wettability gradients. Phys. Rev. E 2012, 85,

051601. [CrossRef]
26. Liu, Q.; Xu, B. A unified mechanics model of wettability gradient-driven motion of water droplet on solid surfaces. Extreme Mech.

Lett. 2016, 9, 304–309. [CrossRef]
27. Raman, K.A. Dynamics of simultaneously impinging drops on a dry surface: Role of inhomogeneous wettability and impact

shape. J. Colloid Interface Sci. 2018, 516, 232–247. [CrossRef]
28. Huang, J.; Shu, C.; Chew, Y. Numerical investigation of transporting droplets by spatiotemporally controlling substrate wettability.

J. Colloid Interface Sci. 2008, 328, 124–133. [CrossRef]
29. Ahmadlouydarab, M.; Feng, J.J. Motion and coalescence of sessile drops driven by substrate wetting gradient and external flow.

J. Fluid Mech. 2014, 746, 214–235. [CrossRef]

51



Micromachines 2022, 13, 729

30. Nasr, H.; Ahmadi, G.; McLaughlin, J.; Jia, X. Drop motion simulation on a surface due to a wettability gradient. In Proceedings of
the ASME 2006 2nd Joint US-European Fluids Engineering Summer Meeting Collocated with the 14th International Conference
on Nuclear Engineering, Miami, FL, USA, 17–20 July 2006; American Society of Mechanical Engineers: New York, NY, USA;
pp. 547–550.

31. Chowdhury, I.U.; Mahapatra, P.S.; Sen, A.K. Shape evolution of drops on surfaces of different wettability gradients. Chem. Eng.
Sci. 2021, 229, 116136. [CrossRef]

32. Zielke, P.C.; Subramanian, R.S.; Szymczyk, J.A.; McLaughlin, J.B. Movement of drops on a solid surface due to a contact angle
gradient. Proc. Appl. Math. Mech. 2003, 2, 390–391. [CrossRef]

33. Ji, J.; Qian, S.; Liu, Z. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Micromachines 2021, 12, 417.
[CrossRef] [PubMed]

34. Casas, L.; Ortega, J.A.; Gómez, A.; Escandón, J.; Vargas, R.O. Analytical Solution of Mixed Electroosmotic/Pressure Driven Flow
of Viscoelastic Fluids between a Parallel Flat Plates Micro-Channel: The Maxwell Model Using the Oldroyd and Jaumann Time
Derivatives. Micromachines 2020, 11, 986. [CrossRef] [PubMed]

35. Escandón, J.; Torres, D.; Hernández, C.; Vargas, R. Start-Up Electroosmotic Flow of Multi-Layer Immiscible Maxwell Fluids in a
Slit Microchannel. Micromachines 2020, 11, 757. [CrossRef]

36. Mei, L.; Zhang, H.; Meng, H.; Qian, S. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit. Micromachines 2018, 9, 155.
[CrossRef]

37. Mei, L.; Qian, S. Electroosmotic Flow of Viscoelastic Fluid in a Nanochannel Connecting Two Reservoirs. Micromachines 2019,
10, 747. [CrossRef]

38. Omori, T.; Ishikawa, T. Swimming of Spermatozoa in a Maxwell Fluid. Micromachines 2019, 10, 78. [CrossRef]
39. Bai, F.; Li, Y.; Zhang, H.; Joo, S.W. A numerical study on viscoelastic droplet migration on a solid substrate due to wettability

gradient. Electrophoresis 2019, 40, 851–858. [CrossRef]
40. Li, Y.; Zhang, H.; Li, Y.; Li, X.; Wu, J.; Qian, S.; Li, F. Dynamic control of particle separation in deterministic lateral displacement

separator with viscoelastic fluids. Sci. Rep. 2018, 8, 3618. [CrossRef]
41. Zhang, M.; Zhang, W.; Wu, Z.; Shen, Y.; Wu, H.; Cheng, J.; Zhang, H.; Li, F.; Cai, W. Modulation of viscoelastic fluid response to

external body force. Sci. Rep. 2019, 9, 9402. [CrossRef]
42. Zhang, M.; Wu, Z.; Shen, Y.; Chen, Y.; Lan, C.; Li, F.; Cai, W. Comparison of Micro-Mixing in Time Pulsed Newtonian Fluid and

Viscoelastic Fluid. Micromachines 2019, 10, 262. [CrossRef] [PubMed]
43. Figueiredo, R.A.; Oishi, C.M.; Cuminato, J.A.; Azevedo, J.C.; Afonso, A.M.; Alves, M.A. Numerical investigation of three

dimensional viscoelastic free surface flows: Impacting drop problem. In Proceedings of the 6th European Conference on
Computational Fluid Dynamics (ECFD VI), Barcelona, Spain, 20–25 July 2014; Volume 5.

52



micromachines

Article

Generation and Dynamics of Janus Droplets in Shear-Thinning
Fluid Flow in a Double Y-Type Microchannel

Fan Bai 1,2 , Hongna Zhang 1,*, Xiaobin Li 1, Fengchen Li 1 and Sang Woo Joo 2,*

Citation: Bai, F.; Zhang, H.; Li, X.; Li,

F.; Joo, S.W. Generation and

Dynamics of Janus Droplets in

Shear-Thinning Fluid Flow in a

Double Y-Type Microchannel.

Micromachines 2021, 12, 149.

https://doi.org/10.3390/mi12020149

Received: 7 January 2021

Accepted: 30 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical Engineering, Tianjin University, Tianjin 300072, China; baifan@ynu.ac.kr (F.B.);
lixiaobin@tju.edu.cn (X.L.); lifc@tju.edu.cn (F.L.)

2 School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
* Correspondence: hongna@tju.edu.cn (H.Z.); swjoo@yu.ac.kr (S.W.J.)

Abstract: Droplets composed of two different materials, or Janus droplets, have diverse applications,
including microfluidic digital laboratory systems, DNA chips, and self-assembly systems. A three-
dimensional computational study of Janus droplet formation in a double Y-type microfluidic device
filled with a shear-thinning fluid is performed by using the multiphaseInterDyMFoam solver of the
OpenFOAM, based on a finite-volume method. The bi-phase volume-of-fluid method is adopted to
track the interface with an adaptive dynamic mesh refinement for moving interfaces. The formation
of Janus droplets in the shear-thinning fluid is characterized in five different states of tubbing, jetting,
intermediate, dripping and unstable dripping in a multiphase microsystem under various flow
conditions. The formation mechanism of Janus droplets is understood by analyzing the influencing
factors, including the flow rates of the continuous phase and of the dispersed phase, surface tension,
and non-Newtonian rheological parameters. Studies have found that the formation of the Janus
droplets and their sizes are related to the flow rate at the inlet under low capillary numbers. The
rheological parameters of shear-thinning fluid have a significant impact on the size of Janus droplets
and their formation mechanism. As the apparent viscosity increases, the frequency of Janus droplet
formation increases, while the droplet volume decreases. Compared with Newtonian fluid, the Janus
droplet is more readily generated in shear-thinning fluid due to the interlay of diminishing viscous
force, surface tension, and pressure drop.

Keywords: microfluidics; Janus droplet; OpenFOAM; volume of fluid method; adaptive dynamic
mesh refinement; shear-thinning fluid

1. Introduction

Droplet-based microfluidic technology has many advantages in biomedicine, chemical
analysis, material science and microreactions due to its capability to produce high surface-
volume ratios in large quantities with low reagent use, rapid reaction, and independent
control of each droplet [1–7]. Many studies have been carried out to develop efficient
and stable methods for conventional single-phase and multiphase droplet formation and
movements [8]. Janus droplet, composed of two adhering immiscible drops of different
fluids in a third phase, can offer a wide range of applications that cannot be realized
with single-attribute structures, due to their centrally asymmetrical structure. The flow
mechanism of Janus droplets in a microfluidic environment is diverse, including wettability
gradient, magnetic force, and electrical force, among others [9,10]. The formation of bi-
phase structures of droplets is motivated by the minimization of free energy at the interface.
Controlling the interface energy between the three liquid phases is crucial for achieving
flexible droplet shape changes. It is foreseen that a wider range of imaginable applications
of liquid combinations based on two distinct chemical properties can be developed.

Due to its significant advantages in manipulating the hydrodynamics of micro-
droplets, droplet-based microfluidics technology has become a promising method for
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the preparation of Janus droplets at the (sub)-micron level. The microfluidic device can
realize single-step production of high-yield monodisperse Janus droplets, and has great flex-
ibility to control the droplet size and anisotropic shape [11]. In the microfluidic device, each
droplet provides a microreactor in which species migration or reaction can occur [12–15].
Various microfluidic devices, such as cross-flow microchannels, focused fluidics, embedded
channels, and co-flow devices, can produce droplets in the microchannel by shearing the
dispersed phase in a continuous liquid stream [16–20]. Two mutually adhering immiscible
dispersed phase streams enter the microfluidic focusing device, and are sheared into Janus
droplets by another stream at the orifice [21,22]. Nisisako et al. used a direct method
to provide two-sided star particles for various systems, and explained the advantage of
producing highly dispersed two-sided star hemispherical droplets [22,23]. The idea of
preparing Janus droplets in a flow-focusing device has been extended to various systems
by many researchers [21,24,25]. The size and shape of droplets are controlled by changing
the flow rate of the continuous or the dispersed phase. Gupta et al. studied the formation
mechanism of droplets in a T-junction channel, and proposed a power-law correlation
to predict their size [26]. Wu Ping et al. analyzed the formation of microfluidic bubbles
in a cross-junction and the transition mechanism from extrusion to dripping [27]. Wang
et al. used a 3-dimensional lattice-Boltzmann method to simulate the formation of Janus
droplets in Newtonian fluid in the Y-junction channel and its transition from extrusion to
dripping [7]. Fu et al. also proposed the flow ratio and the capillary number (Ca) scaling
law to estimate the bubble size of different systems [28]. Chen et al. studied the influence
of liquid viscosity and surface tension on the formation of droplets, and showed that the
slug formation period increases with the increase in surface tension [29]. Li et al. used a
fluid-volume method to study the formation of single-phase droplets in a cross-junction
microchannel, which was used to guide the design of microchips for droplet formation [30].
Raj et al. used the volume of fluid method (VOF) to study the formation of droplets in
T-junction and Y-junction microchannel, and analyzed the influence of flow ratio, liquid
viscosity, surface tension, channel size and wall adhesion characteristics on the length of
Newtonian fluid slugs [31]. Fu et al. studied the formation of oil droplets in flow-focusing
microchannels, and proposed a scaling law for predicting the length of oil droplets [32].

There are many existing reports on Janus droplet/particle preparation methods, but
more fundamental studies on underlying mechanism and new phenomena associated can
be of great consequence and use, especially those involving non-Newtonian fluids [33,34].
It is well known that the nonlinear rheology in non-Newtonian fluids has a profound
influence on the flow dynamics [35]. In biological applications, many fluids exhibit non-
Newtonian behaviours, which are amplified in combination with the small length scale
in microfluidics. Abate et al. studied the formation of monodisperse particles in a flow-
focusing device in a non-Newtonian polymer solution [33]. Arratia et al. reported the
thinning of polymer filaments and the rupture of Newtonian and viscoelastic liquids in
flow-focusing microchannels [36]. The results show that the decomposition mechanism
of Newtonian liquid and polymer liquid with the same viscosity is drastically different.
This phenomenon is due to the rheological difference between the two liquids. Qiu et al.
numerically studied the droplet formation of non-Newtonian liquids in cross-flow mi-
crochannels [37]. From their findings, it is obvious that the rheological parameters of
non-Newtonian fluids significantly affect the formation mechanism and size of droplets.
Aytouna et al. examined the pinch-off dynamics, yield stress, and shear-thinning fluid
of droplets in Newton through experiments [38]. Sontti et al. studied the flow pattern
of Newtonian fluid and non-Newtonian fluid using T-junction microchannels [39]. Al-
though the dynamics of droplet breaking in Newtonian fluids has been systematically
studied [40,41], there is still lack of in-depth understanding of droplet formation and flow
in non-Newtonian fluids at the microscale. In this work, we focus on the shear-thinning of
non-Newtonian fluids among other features, and investigate for the first time the microflu-
idic formation of shear-thinning Janus droplets and their subsequent evolution.
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The process of Janus droplet generation in a microfluidic device involves a complex
mechanism, which stems from the force competition between surface tension, viscous
shear, pressure drop and possible disturbances outside the system. These forces depend on
fluid properties, flow geometry and flow conditions. When Ca is fixed, the droplet length
increases with the increase in Q, or the velocity of the dispersed phase liquid increases
or the aspect ratio increases [7,42,43]. Garstecki et al. proposed that the droplet size
decreases with the increase in Ca, and is almost independent of the fluid properties [42]. In
addition to the influence of Ca, the viscosity contrast after conversion is more important
than before. Tice et al. and Sang et al. introduced the viscosity effect to the Ca, and
announced that more viscous fluid produced greater resistance in the main channel and
made the force system unbalanced [44,45]. Sontti et al. obtained a similar power-law of
droplet volume from extrusion to dripping [39]. Independent experiments by Xu et al.
have also verified these power-law that vary with Ca or the flow ratio [46]. Numerical
simulations have been successfully used to study the performance of droplet formation in
multiphase microfluidics [47,48]. Shardt et al. showed the phenomenon of Janus particle
transport in shear flow [49]. Daghighi et al. used a 3D multiphysics model to study
the transient motion of Janus droplets in a microchannel [50]. However, the formation
of Janus droplets in microfluidic devices has not attracted much attention. The volume-
of-fluid (VOF) method is very useful in simulating two-phase flow requiring interface
tracking. An adaptive dynamic mesh based on the VOF method further enhances accuracy
in capturing the evolution of moving interfaces, and has been used to simulate multiphase
flow in microchannels.

Here numerical simulations for the Janus droplet formation and ensuing dynamics in
a double Y-junction microfluidic device filled with a shear-thinning fluid are performed by
a multiphase model of the OpenFOAM, based on a finite-volume method. The bi-phase
VOF is adopted to track the interface with the aforementioned adaptive dynamic mesh.
The power-Law model is adopted as a simple constitutive model of the shear-thinning
fluid. We describe the effects of rheological properties, surface tension, and velocity ratio on
droplet characteristics, including formation mechanism, droplet size, and velocity. These
understandings can greatly contribute to controlling the preparation of Janus droplets with
non-Newtonian liquids.

2. Numerical Simulation and Validation
2.1. Governing Equations and Computational Scheme

The open-source CFD software OpenFOAM is used with the multiphase flow solver
implemented using the VOF method [51]. Conservation equations are solved for a fluid
mixture with distributed concentrations rather than a single fluid for each phase. By solving
the transport equation of volume fraction, the interface between the phases is realized. The
volume fraction, αi specifies the volume of a phase in each calculation unit. In a two-phase
system, a cell that completely fills one phase is expressed as αi = 1, and that for the other
phase as αi = 0. Obviously, the interface between the two phases is expressed as 0 < αi < 1.
For a two-phase system, only the volume fraction of one phase needs to be determined
because the other is obtained by α2 = 1 − α1.

The fluid viscosity and density for each unit are defined as a function of volume
fraction as:

η = αCPηCP + (1− αCP)ηDP (1)

ρ = αCPρCP + (1− αCP)ρDP (2)

where ηCP and ρCP denote the viscosity and the density of the continuous phase, while ηDP
and ρDP denote those of the disperse phase, respectively.

The volume fraction of the entire region is determined by solving the transport
equation, which is expressed for α1 of multiphase flow in OpenFOAM as [52]:

∂α1

∂t
+∇ · (Uα1) +∇ · (Uα1(1− α1)) = 0 (3)
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where U represents the fluid velocity [53]. For laminar incompressible flow, the conserva-
tion of mass and momentum are written as:

∂ρ

∂t
+∇ · (ρU) = 0 (4)

∂ρU
∂t

+∇ · (ρUU) = −∇p +∇
(

η
(
∇U +∇UT

))
+

ρσk∇α
1
2 (ρDP + ρCP)

+ ρg (5)

where ρ, σ, k, p, and g represent the fluid density, fluid surface tension, interface curvature,
pressure, and gravitational acceleration, respectively.

2.2. Flow Geometry

A double Y-shaped microfluidic channel is designed to prepare Janus droplets, as
shown in Figure 1. The three-dimensional model has a total of four inlets and one outlet.
The inlets of the dispersed phase forms a 45◦ Y-shaped channel. After they merge into one
channel, it forms a 45◦ Y-shaped channel with the other two continuous phase inlets, beyond
which Janus droplets are generated and flow through a sufficiently long downstream
channel. As shown in Figure 1b, the inlet width of the first Y-shaped channel is 50 µm, and
that after the intersection is 100 µm. The inlet width of the second Y-shaped channel is
100 µm, and the width after the intersection is 200 µm, while the depth of this channel is
uniformly 100 µm. As shown in Table 1, the two dispersed phase A and B phase are chosen
with matching densities, 1,6-hexanediol diacrylate (HDDA) and silicon oil. The two organic
phases are incompatible and have an obvious interface. In order to compare differences
between Newtonian and shear-thinning fluids, water and 0.25% carboxymethylcellulose
(CMC) are selected, respectively. γab represents the interfacial tension of two dispersed
phases, γac represents the interfacial tension of dispersed phase A and continuous phase C,
and γbc represents the interfacial tension of dispersed phase B and continuous phase C.
Uniform velocity and pressure are set at each of the four inlets, and the no-slip condition
and the contact angle of 165◦are imposed on channel walls. The channel upstream to the
second Y-shaped channel orifice is filled with A and B phase initially.

2.3. Validation
2.3.1. Mesh Independence

The interface width of a real physical system is much smaller and sharper than the
typical diffusive interface thickness adopted in most VOF simulations. Considering the
dependence of the VOF method on the mesh size, solution convergence must be ensured
with extreme care. The computational reconstruction of the droplet interface is directly
related to the reliability of the simulation. The interface capturing method of VOF has a
great relationship with the construction of mesh. A suitable mesh can form a clear and
thin interface, making the simulation results more reliable. Generally speaking, the denser
the mesh, the clearer the interface will be, but excessively dense mesh can also cause
divergence. Here an adaptive dynamic mesh is used to refine the two-phase interface of the
droplet by changing the maximum number of subdivision layers (maxRefinementInterface)
that a cell in OpenFOAM can experience, as shown in Figure 2. Max Refinement (MR) is the
maximum number of subdivision levels that a cell can go through. When the refinement
level specifies a power of 2, for example, the maximum refinement is 2−3 = 0.125 times the
original cell size. The subdivision is relative to the size of the current cell, and the typical
value is in the range of 2–4. The flow rates of the dispersed and continuous phases are
18 µL/h and 1800 µL/h, respectively, with CaCP = 0.0103 and We = 0.051. When the index is
equal to 1, although Janus droplets are generated, the interface is very blurred. For MR = 2,
the satellite droplets are not obvious; for MR = 3, a clear interface and satellite droplets
are formed. In the case of MR = 4 and MR = 5, problematic divergence is encountered as
shown in Table 2. Thus, in most computations performed for the parameter values chosen
in this study, MR = 3 is employed.
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Table 1. Physical properties of various liquid-liquid systems used.

Phase Density (kg/m3)
ρ

Dynamic Viscosity (Pa·s)
ν

Surface Tension (mN/m)
γ

Aqueous (CP) 1000 0.00101 γab = 2.2
0.25% CMC (CP) 999.5 0.0489 γab = 2.8
Silicon oil (DP) 960 0.00934 γbc = 5.3
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Table 2. Results with different max refinement.

Name Max Refinement Results

Mesh 1 1 Obscure boundary
Mesh 2 2 The satellite droplet is not obvious
Mesh 3 3 Janus droplet and satellite droplet are both obvious
Mesh 4 4 Interface divergence
Mesh 5 5 Interface divergence
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2.3.2. Model Validation

To validate the numerical model, the numerical results of droplet migration are
compared with the experiment result by Nisisako et al. [22]. The standard deviation error
bar for three different fixed QDP is studied. At different flow rates, by comparing the
characteristic length of the droplets, it is found that the simulation results are consistent
with the experimental results. Table 3 shows that the error rate relative to the experiment
increases with the increase of the capillary number, Ca = ρU/γ, where U and γ are inlet
velocity of continuous phase and surface tension, respectively. In order to show the
comparison results of experiment and simulation more comprehensively, error bar is also
compared as shown in Figure 3. It can be seen that when Ca < 0.04, the droplet diameter is
slightly smaller than the reference, but there is no significant difference, and it conforms
to the law of change. However, as the number of Ca increases, the variance of the Janus
droplets generated gradually increases, and it can be seen that the formation of droplets is
not stable. Especially, when the Ca > 0.1, the change is more obvious. It can be seen that the
simulation in this paper is reliable when the Ca is less than 0.1.

Table 3. Comparisons of droplet diameter obtained by the current simulation and previous experiment result.

Parameter Droplet Diameter (m)
QDP = 1.4 mL h−1, Ca = 0.02

Droplet Diameter (m)
QDP = 1 mL h−1, Ca = 0.04

Droplet Diameter (m)
QDP = 0.4 mL h−1, Ca = 0.1

Empirical value by Nisisako et al. 1.82 × 10−4 1.5 × 10−4 1 × 10−4

Present simulation 1.7 × 10−4 1.3 × 10-4 8 × 10−5

Rate of deviation 1.07 1.15 1.25

Figure 3. Schematic illustration of error bar of the comparison results of experiment and simulation
more comprehensively. The solid icons represent the experimental results, and the open ones are the
simulation results.

3. Results and Discussion
3.1. Phase Diagram

The phase diagram of flow states under different Ca of the continuous phase and the
dispersed phase was obtained, as shown in Figure 4. Diverse working conditions can be
obtained by changing the inlet flow ratio. The formation of Janus droplets in the shear-
thinning fluid is characterized in five different states: Jetting and tubbing, the fluid neck is
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not completely contracted and flows downstream in the form of a thread without forming
droplets. Jetting has UCP much larger than UDP, and thread width is smaller than the
aperture. While tubbing means that UCP is much smaller than UDP, and the thread width
is larger than the aperture. Dripping, through continuous phase cutting forms obvious and
continuous Janus droplets, which can subdivide into three situations, the Janus droplets
are large enough to touch the squeezing of the inner wall of the channel, single dripping
droplets and dripping droplets accompanied by satellite droplets. Unstable dripping, the
strong force of the continuous phase causes an unstable drip state, which cannot maintain
a stable spherical droplet flowing downstream. Intermediate, Janus droplets pinch off an
extended thread which maintains the connection with the fluid in the port through the
fluid neck at the same time. When the flow rate of the continuous phase further increases,
the intermediate state will be a transition to dripping state. Under the situation of a high
shear rate, the viscosity of the shear-thinning continuous phase decreases as the number
of shear stress increases. Therefore, the viscous stress of continuous phase imposed on
the dispersed phase is lower, and the liquid thread will not be pulled downstream further.
When CaDP is greater than 0.04, jetting will occur because the large inertial force. When
CaDP is less than 0.01, there will be a transition from jetting to dripping with satellite
droplets. Inertial force is necessary to induce satellite droplets, because when the viscous
force is greater than the inertial force, the formation of droplets will be inhibited; while
jetting will appear by the very large inertial force, and the filament will break into Janus
droplets further downstream. For the formation of Janus droplets and satellite droplets,
the elongated center droplet fluctuates and squeezes at numerous locations then producing
a series of minor satellite droplets at a small viscosity ratio. In contrast, when the viscosity
is quite prohibitive, the internal flow that causes the rupture is weakened, resulting in a
decrease in the formation of satellite droplets.

Viscosity is one of the important factors affecting the formation of Janus droplets.
The study of the formation of Janus droplets in non-Newtonian fluids, compared with
the Newtonian multiphase system, has important academic and industrial significance.
Under the interaction of viscous stress and the surface tension between the two fluids,
the formation of Janus droplets can be controlled. The viscous stress of shear-thinning
fluid related to the shear rate and the shear rate varies greatly with the change of position.
The shear rate has an effect on the viscosity in all directions in the three-dimensional flow.
Due to the influence of the shear rate, the viscosity of the solvent becomes smaller, the
dispersed phase is more likely to accumulate at the orifice, and the shear force acting on the
interface becomes smaller. Under the same conditions, compared with Newtonian fluid,
the shear-thinning solution resulting in Janus droplets are larger and have longer intervals.

The control variable method was used to compare the migration of Janus droplets in
shear-thinning fluid and Newtonian fluid, where the parameters of each fluid were the
same, except for the dynamic viscosity. As shown in Table 4, when CaDP = 0.0007 and
0.0014, the Janus droplet will generate successfully in shear-thinning fluid. However, a
series of small Janus droplets were generated in a Newtonian fluid in an intermediate
state. When CaDP is greater than 0.07, the frequency of Janus droplets generated in the
shear-thinning fluid will be faster due to the effect of smaller viscous force, but the flow
state will change from intermediate to jetting in the Newtonian fluid. With the increase
of the shear force of the shear-thinning fluid, the viscous force becomes smaller, so that
more dispersed phase liquid will inject in the main channel and eventually form larger
Janus droplets.
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Using an effective model, the formation mechanism and behavior of droplets in non-
Newtonian fluids are systematically studied. The following chapters will elaborate on the
influence of various rheological parameters, namely the power-law index (n), consistency
index (K), surface tension, and the flow rate of continuous phase (QCP) and the flow rate of
dispersed phase (QDP).
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Table 4. The difference between Newtonian fluid and shear-thinning fluid under the same conditions.

CaDP 0.0007 0.0014 0.007 0.014

Shear-thinning fluid

Janus droplet with satellite Janus droplet Janus droplet Intermediate
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3.2. Effect of Power-Law Index and Consistency Index

In this section, the power-law model, η = Kxn−1, was chosen to describe shear-thinning
fluid. The influence of the consistency index and the power-law index on the formation
mechanism, size, and velocity of the droplet is discussed systematically [39].

In general, the forces acting on the dispersed phases at the cross junction are viscous
force, pressure drop, and surface tension. The viscous force is caused by the viscous stress
acting on the liquid-liquid interface, which is proportional to the area of the dispersed
phase with the velocity gradient. When the K value is 0.0489 Pa·sn, n > 1 represents
shear-thickening fluid that shows the intermediate state that the dispersed phase is pulled
downstream of the main channel before the droplet ruptures due to the main surface
tension as shown in Figure 5a. For n < 1, which is shear-thinning fluid, the dripping state
that resulting in larger and more stable Janus droplets will be achieved due to the low
viscous force. As n increases, the effective viscosity of the continuous phase increases,
resulting in higher viscous resistance, which helps the rapid separation of droplets. In the
case of shear-thinning fluid, surface tension plays a dominant role and delay the separation
of dispersed phases at the cross junction. For high-n shear-thinning fluid, the droplet length
hardly changes. With the increase of n, in Newtonian fluids and shear-thickened liquids,
due to the increase in viscosity and shear force, droplets are formed quickly before they rise
to the top wall of the channel. It can be seen that as the flow state changes from dripping to
jetting, the shape of the droplet changes from plug shape to spherical shape.

The generation of Janus droplets in power-law fluids can also be realized by changing
the consistency index value. When n = 0.83, the various droplets generation state can
be obtained in the different continuous phase by changing K from 0.01 Pa·sn to 0.1 Pa·sn

as shown in Figure 5b. The flow state changes from dripping to intermediate due to the
increase in effective viscosity. In addition, the size of Janus droplet decreases with the
increase of the consistency index because the interaction between the viscous force and
interface force.

In order to realize the influence of the power-law index on the body viscosity and
overall viscosity, the effective viscosity of various liquids was estimated from the simulation
and compared with the result of Equation (6) [54]:

ηeff = K
(

3n + 1
4n

)n(8UL
Wc

)n−1
(6)

As shown in Figure 6a that the effective viscosity increases with the increase of n,
and the CFD calculation results agree well with the theoretical values. In the middle of
the microchannel, the effective viscosity of the shear-thinning fluid increases, which is the
hallmark of the typical non-Newtonian fluid flow characteristics.
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The dimensionless droplet size, D/W where D is diameter of Janus droplet and W
is the width of channel, is scaled using the Ca’ as a power-law relationship, as shown in
Figure 6b, where Ca’ = KUL

nWc
1−n/σ. When K = 0.0489 Pa·sn, n change from 0.8 to 1.2, the

size of Janus droplet decrease with the increase of modified Ca’. While n = 0.83, K change
from 0.014 to 0.1, it is obvious that the size of the Janus droplet decreases with the increase
of modified Ca’.

3.3. Effect of Surface Tension

In order to understand the effect of surface tension on the formation of Janus droplets,
a series of simulations were carried out with additional properties unchanged, where
γac + γbc = 10 mN/m (S = γbc − (γac + γab) < 0). It can be seen from Figure 7 that when γac
(blue) is changed, as the surface tension of the shear-thinning fluid increases, the formation
of Janus droplets changes from unstable state to dripping, and finally due to the difference
between being increasing and the Janus droplet cannot be formed. As the surface tension
of the one side dispersed phase increases to 9 mN/m, the dispersed phase (blue) blocks
the front Y-type channel, and its velocity decreases. It can be observed that the size of
the Janus droplet increases with the increase of the surface tension. When the surface
tension between 3 mN/m and 7 mN/m, the flow state is dripping, and Janus droplets are
the most stable when surface tension is 5 mN/m. When the surface tension is 1 mN/m,
the phenomena that are more complex can be observed. As the surface tension increases,
the satellite droplets will decrease or even disappear. Because the Weber number that
determines the inertial force of the droplet is small enough, it can be ignored in this work.
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Owing to the change of the curvature of the dispersed phase caused by a continuous
phase, the pressure on the droplet increases with the increase of the surface tension.
However, the pressure drop over the entire channel length is constant. With the increase of
pressure drop on the dispersed phase, the dispersed phase will be cut off faster to form
Janus droplets.

3.4. Effect of Flow Rate of Continuous Phase and Dispersed Phase

Under the fixed conditions of K = 0.048 Pa·sn, n = 0.83, the influence of QCP on
the droplet generation mechanism and size was studied. As the flow rate of dispersed
phase QDP = 45 µL/h, the flow rate of continuous phase QCP changed from 720 µL/h
to 36,000 µL/h, as shown in Figure 8a. It was observed that the viscosity decreased as
the QCP increased, and the flow state changes from dripping to intermediate, and finally
reaches unstable dripping. When QCP is small, the resistance of the continuous phase is
weak, such that the dispersed phase easily pushes into the main channel and completely
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blocks at the cross-section. With the shear stress increases, the fluid neck of the dispersed
phase gradually decreases, and finally separates when the neck reaches critical thickness.
Moreover, as the flow rate of the continuous phase increases, the increase in viscosity and
inertial force will cause the droplets to separate quickly in the neck, showing an unstable
flow state.
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where Q = ∆p/Rhydro. In shear-thinning fluid, additional Laplace pressure is generated be-
cause the arc interface discharges the continuous fluid around itself. It is always affected 
by the continuous phase on the interface and express as the total pressure along the chan-
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At the condition of QCP = 3600 µL/h, the QDP varies between 7.2–180 µL/h to under-
stand its influence on the droplet generation characteristics. The result can be explained by
the Reynolds number of the dispersed phase. It can be observed in Figure 8a that in the case
of shear-thinning fluid, with the increase of QDP, there is a squeezing state (DDP/W > 1.5).
Compared with the Newtonian fluids, due to the increase of the dispersed phases entering
the main channel continuously, the flow state changes from a dripping to squeezing with
the increase of QDP. In the shear-thinning fluid, as the Re of the dispersed phase increases,
the droplet size increases significantly, as shown in Figure 8b because the inertial force is
sufficient to resist the opposing continuous phase shear stress. However, the shear stress
and viscous stress of the continuous phase suppress this inertial effect in Newtonian fluids,
making the droplet length change very small.

3.5. Mechanism for Janus Droplet Generation

For shear-thinning fluid, after the dispersed phase invades the main channel, it grows
slowly under the balance of surface tension, shear force, and pressure drop, and is finally
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pinched to Janus droplets. Before detachment, the schematic diagram of the force on the
emerging droplet is shown in Figure 9, which is surface tension, shear stress on the interface,
and hydrostatic pressure difference on both sides of the droplet [48]. With the continuous
injection of the dispersed phase at the orifice, the pressure gradient on both sides of the
droplet in the continuous phase increases under the resistance of surface tension. The
pressure caused by the pressure drop is:

Fp = (pr − pt) · Ac = Qc
kµcLg

h
(
w− Lg

)3 Lgh =
kµcQcLg

2

(
w− Lg

)3 (7)

where Q = ∆p/Rhydro. In shear-thinning fluid, additional Laplace pressure is generated
because the arc interface discharges the continuous fluid around itself. It is always affected
by the continuous phase on the interface and express as the total pressure along the channel
axis. Under the dripping state, the flow velocity between the interface and the wall is
large, and the viscous force acting on the interface becomes diluted, the dispersed phase
separates quickly by the dual action of surface tension and pressure drop. Viscous shear
force can be represented by [55]:

Fτ = 2τ · A = 2 cos 45µc
Qc

h
(
w− Lg

)(
w− Lg

) Lgh =

√
2µcQcLg(

w− Lg
)2 (8)

where τ = µdu/dy = µdQ/Ady. The surface tension between the two phases is expressed
as:

Fσ = ∆p · Ac

=
[
σ1

(
1

h/2 + 1
Lg

)
− σ1

(
1

h/2 + 1
Lg/2

)]
Lg
2 h +

[
σ2

(
1

h/2 + 1
Lg

)
− σ2

(
1

h/2 + 1
Lg/2

)]
Lg
2 h

= − 1
2 h(σ1 + σ2)

(9)
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toward the centerline under the force of the continuous phase.

In summary, the total force is expressed as:

Ftotal =

√
2µcQcLg(

w− Lg
)2 − σh +

kµcQcLg
2

(
w− Lg

)3 (10)

Therefore, under the pressure accumulation and shear of the continuous phase fluid,
the formation of droplets is a dynamic process, and the continuous generation is periodic,
as are the changes in local pressure and velocity.
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3.6. Mechanism for Janus Droplet Migration

Janus droplets are formed only within a limited range of QDP = QA + QB at a particular
value of QCP under low Ca. The three surface tensions can be balanced at equilibrium,
as shown in Figure 10a, only if S = γac − (γab + γbc) < 0, where S is the spreading
parameter. If S > 0, the A phase will spread entirely across the B phase to form a core–shell
geometry. According to Young’s equation, the surface tension at the interface must satisfy
the following relationship to form Janus droplets [56]:

γab cosα +γbc cosβ ≥ γac (11)
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a Janus droplet.

In a simple shear flow, the direction of Janus droplets can only be characterized by the
polar angle ϕ. The analysis here completely ignores the rotational dynamics of the Janus
droplet before it reaches its stable direction, because in the case of spherical particles in
the expanding flow, regardless of the initial position, they can be aligned with one of the
principal axes [55]. The problem can be simply analyzed by looking for the torque-free
direction D, as shown in Figure 10b. The process of determining the torque and force on
the Janus droplet follows the classic direct method, that is integrating the fluid stress on
the outer surface of the droplet. The integration of the surface gravitational force on the
surface of the outer droplet (r = 1) produces the hydrodynamic force on the Janus droplet:

F =
∫

Sd

n · σdSd (12)

where Sd is the surface area of the outer droplet. The torque is given by the first moment of
surface traction:

T =
∫

Sd

x× (n · σ)dSd (13)

4. Conclusions

The VOF method is used to study the formation and migration of Janus droplets in a
double Y-type microchannel using Newtonian fluid/shear-thinning fluid two-phase mi-
crosystem. A multiphase fluid flow solver based on the open-source software OpenFOAM,
MultiphaseInterDyMFoam, is used to solve the problem. The traditional interface-tracking
method VOF depends on the mesh of simulation domain, while more accurate results can
be obtained by selecting a dynamic adaptive mesh. A new understanding of the formation
process of Janus droplets in non-Newtonian liquids is obtained. Under the shear-thinning
fluid, the dynamic characteristics are used to explain the formation and flow state of Janus
droplets under different flow conditions. The viscosity on the droplet interface is signif-
icantly reduced by the shear-thinning fluids in continuous phase. Compared with the
continuous phase of Newtonian fluid under the same environment, the viscosity effect is
weaker, resulting in faster separation and a larger droplet size.

In the observed extrusion, jetting, tubing, dripping, unstable dripping and parallel
flow under various flow conditions, the power-law index, consistency index, flow ratio,
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surface tension, and rheology have significant effects on the formation and size of Janus
droplets. As the power-law index and consistency index increase, the size of droplet
decreases, as the effective viscosity increases. Emulsions produced with non-Newtonian
fluids are commonly used for drug delivery and other biochemical applications. Accurate
dosage must be ensured for a reliable operation, which requires fine control of Janus droplet
size. We have also determined the correlation between the droplet size and the number
of flow rate, which may provide a higher degree of control over the Janus droplet size
produced by shear-thinning fluids. As the flow rate of the continuous phase increases,
the Janus droplet also decreases. On the contrary, the size of the Janus droplet increases
with the flow rate of the dispersed phase increases. As with Newtonian media, droplet
size increases with the surface tension increases in all cases in non-Newtonian liquids.
However, the size of Janus droplets changes from a small bead connected by a liquid thread
to a Janus droplet in the case of shear-thinning fluid.

The development of microfluidic methods for generating and manipulating mono-
dispersed droplets has brought more potentially interesting applications. Although com-
putational research cannot completely eliminate the necessity of being exhaustive and
expensive, a fully verified CFD model can certainly supplement all aspects of physical phe-
nomena that can be obtained by experiments. The present results presented are called upon
to provide a better understanding and experimental guidance for the control parameters of
forming ideal Janus droplets of different shapes and sizes in non-Newtonian fluid.
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Abstract: The effects of surface wettability and viscoelasticity on the dynamics of liquid droplets
under an electric field are studied experimentally. A needle-plate electrode system is used as the
power source to polarize a dielectric plate by the corona discharge emitted at the needle electrode,
creating a new type of steerable electric field realized. The dynamics of droplets between the dielectric
plate and a conductive substrate include three different phenomena: equilibrium to a stationary
shape on substrates with higher wettability, deformation to form a bridge between the top acrylic
plate and take-off on the substrates with lower wettability. Viscoelastic droplets differ from water in
the liquid bridge and takeoff phenomena in that thin liquid filaments appear in viscoelastic droplets,
not observed for Newtonian droplets. The equilibrated droplet exhibits more pronounced heights for
Newtonian droplets compared to viscoelastic droplets, with a decrease in height with the increase in
the concentration of the elastic constituent in the aqueous solution. In the take-off phenomenon, the
time required for the droplet to contact the upper plate decreases with the concentration of the elastic
constituent increases. It is also found that the critical voltage required for the take-off phenomenon to
occur decreases as the elasticity increases.

Keywords: droplet deformation; viscoelasticity; wettable surface; dielectric field

1. Introduction

In recent years, applications of new microfluidic technologies have grown tremen-
dously, especially in biological, chemical, optoelectronic tweezers technology [1,2],
biomedical, and other thermofluidic operations. Controlling microfluidic operations
with better efficiency and accuracy has become a key part in recent years [3,4]. An im-
portant driving mechanism of fluids in microfluidics is by use of the electricity, as is
common in many processes, such as electrohydrodynamic (EHD) atomization [5], elec-
trospinning [6], inkjet printing [7], dielectrophoresis [8–11], electrowetting [12], polymer
patterning preparation [13], and electrostatic spraying [14], among others. As a represen-
tative example, the deformation of thin films or droplets caused by an applied electric
field is of scientific interest and a practical importance that has been studied experimen-
tally and theoretically for many decades. The deformation of droplets before reaching the
Rayleigh limit [15–18] and the droplet ejection after rupture [19,20] both have been enticing
subjects of investigations. Depending on the physical properties of droplets, phenomena
such as jetting and electrospraying can occur [21,22]. When a droplet is subject to an
applied electric field, it undergoes deformation due to the electrostatic stresses exerted on
the interface.

Swan [23] discovered the charge-induced stress in resins and viscous compounds
of resins and oils. Cheng and Miksis [24] investigated the shape and the stability of
droplets on conducting planes in electric fields. Basaran and Scriven [25] studied the
relative importance of the electricity and the gravity compared to the surface tension.
Wohlhuter and Basaran [26] found that, regardless of the ratio of the permittivity of the
droplet to that of the surrounding fluid κ, the droplet shape exhibits a conical tip as its
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deformation develops. Three types of behaviors are found, depending on the value of κ.
For κ < 20.25, the droplet deformation grows without bound as the field strength rises.
On the other hand, for 21.75 ≥ κ > 20.25, families of equilibrium droplet shapes become
unstable at turning points with respect to the field strength. For κ > 21.75, results predict
that droplet deformations exhibit hysteresis. Reznik et al. [27] evolution of small droplets
attached to a conducting surface and subjected to a relatively strong electric field has
been investigated experimentally and numerically. Three different droplet-shape evolution
scenarios are distinguished based on a numerical solution of the Stokes equation for
perfectly conducting droplets. In a sufficiently weak (subcritical) electric field, the droplet is
stretched by Maxwell electrical stress, and acquires a steady-state shape, where equilibrium
is achieved with the action of the surface tension. In a stronger (supercritical) electric field,
the Maxwell stress overcomes the surface tension, and for static (initial) contact angle of
the droplet with the conducting electrode αs < 0.8π an ejection starts from the tip of the
droplet. In this case, the base of the jet acquires a quasi-stable, nearly conical shape with a
vertical half angle β ≤ 30◦, which is significantly smaller than the Taylor cone (βT = 49.3

◦
).

Finally, in a supercritical electric field acting on a droplet with a contact angle in the range of
0.8π < αs < π, there is no ejection but the entire droplet jumps off, as reported by Mugele
and Baret [28]. Corson et al. [29] investigated the electric field-induced deformation of a
nearly hemispherical conducting droplet theoretically and temporally. Tsakonas et al. [30]
studied the electric field-induced deformation of hemispherical sessile droplets of ionic
liquid. Sessile droplets of an ionic liquid with contact angles close to 90◦ were subjected to
an electric field E = V/h inside a capacitor with plate separation h and potential difference
V. For small field induced deformations of the droplet shapes the change in maximum
droplet height ∆H = H(E) − H(0) was found to be virtually independent of the plate
separation provided that h > 3H(0).

In the study of droplet behavior on electric field-controlled superhydrophobic surfaces,
A. Glière [31] studied the complex lift-off process caused by the competition between
gravity, electricity and capillary forces. The results of B. Traipattanakul [32] show that with
the increase in the plate electrode gap width, both the voltage threshold and the electric
field threshold increase, while the droplet charge decreases. Christos Stamatopoulos [33]
manipulated the droplet discharge by changing the wettability, and illustrated the difference
between the strength of the applied electric field and the deformed shape of the droplet.
Arshia Merdasi [34] analyzed electrowetting-induced droplet hopping from substrates with
conical geometric heterogeneity, and compared the results with those of planar substrates
with different wettability and hydrophobicity. The results show that droplet dynamics can
be enhanced by applying topographical heterogeneity. However, increasing the height of
the cone does not always provide better conditions for jumping, and there is an optimal
value for the height of the cone. This enhancement is due to the fact that more liquid flow
affects the pressure gradient within the droplet, resulting in higher jump velocities. For flat
surfaces, most of the kinetic energy can be converted into oscillations of the droplet during
retraction and does not promote droplet jumping.

Although the research on Newtonian fluids has made great progress, the research on
non-Newtonian fluids (viscoelastic fluids) is still very little. In the study of non-Newtonian
fluids [35–41] most of the studies are on motion in microchannels. There is no study
on the dynamics of viscoelastic droplets between a dielectric plate and on substrates
of different wettability under the corona discharge emitted by a needle-plate electrode
system. It has a diverse applicability due to its flexibility and maneuverability, and we
examine through experiments with droplets of PEO aqueous solutions the entire process of
droplet deformations by varying the PEO concentration, electric field strength, and surface
wettability of the conducting substrate. Notably, we make use of a novel steerable system
that uses a pin-plate electrode to polarize the dielectric to create a steerable electric field.
We can adjust the position of the needle to make the electric field appear diagonally above
the droplet, so that the lateral migration of the droplet can be achieved by the force of the
electric field.
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2. Materials and Methods

The experimental apparatus is composed of an iron needle of diameter 1 mm, a copper
plate (10 cm × 10 cm × 1 mm), an acrylic plate (5 cm × 5 cm × 2 mm), an ITO conductive
glass (3 cm × 3 cm × 2 mm), and a high voltage DC power supply, as shown in Figure 1.
The distance between the needle and the acrylic plate is 1 mm (The horizontal position of
the acrylic plate does not affect the movement of the water droplets. As the acrylic plate is a
homogeneous dielectric, moving the acrylic plate horizontally will not affect the magnitude
of the electric field, so it will not affect the movement of the droplet. The vertical position
of the acrylic plate affects the movement of the water droplets, because the spacing of
the needle from the acrylic plate affects the polarization of the acrylic plate and thus the
magnitude of the electric field). The distance between the acrylic plate and the ITO plate
was 5 mm. The droplets used in this experiment were all extracted by a pipette (Nichipet
EX-Plus II pipette, volume 2–20 µL ), and the volume was 5 µL. The experimental results
are taken by a high-speed digital camera (MotionXtra N4), the lens is a macro lens (DG
Macro Lens 105 mm), and the light source used is a high-power LED (Cyclops 1). During
shooting, the total number of frames is 1912 frames, with the frame rate of 300 FPS and the
shooting time of 6.37 s. The acrylic plate is irradiated by the needle-tip corona discharge,
generating a local electric field. The electric field can be controlled by adjusting the position
of the needle to control the movement of the droplet [42]. The ITO conductive glass plate
supporting liquid droplets is placed above the copper plate. The surface treatment of the
glass plate is performed to obtain different contact angles. The contact angle for the original
untreated plate is 70◦. With a thin PDMS layer of thickness less than 1 mm placed on
the glass plate, the contact angle is measured as 105◦. A superhydrophobic surface can
be prepared by spraying a thin layer of hydrophobic nanoparticles (Glaco Mirror Coat
Zero, Soft 99, Osaka, Japan) on silicon wafers to form loose and porous structures, so it has
an ultra-low surface energy. Here, superhydrophobic surface was prepared by spraying
with Glaco nanoparticles 1 and 3 times to obtain contact angles of 135 and 150 degrees,
respectively. We prepared adhesives by dispersing 1 M poly(ethylene oxide) (PEO with
average molecular weight Mw = 1 × 106 g mol−1, Sigma Aldrich, Burlington, MA, USA)
in pure water (18.4 MΩ cm, Millipore Synergy, Darmstadt, Germany) elastic solution. To
determine the effect of liquid viscoelasticity on droplet dynamics, we prepared a low and a
high-concentration PEO aqueous solutions of 0.2% and 1%, respectively (at a molecular
weight of 1 × 104 g mol−1, the solution at 2% concentration was non-viscous elastic gel,
so 1% concentration of Mw = 1 × 106 g mol−1 molecular weight can be regarded as high
concentration of PEO), and compared with the 0% pure aqueous solution.
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Figure 1. Deformation of viscoelastic droplets between a needle-plate electrode system. The electrodes
are composed by an iron needle and a copper plate, and the acrylic plate is used as a platform to
receive the corona discharge, and is polarized to generate an electric field, making the ITO glass
conduct electricity and droplets on it deform. Behaviors of droplets for different contact angles of
70, 105, 130, and 150 degrees. The droplet deformation reaches an equilibrium for contact angles of
70 and 105 degrees, whereas for 130 degrees the droplet is stretched to the top acrylic plate, forming a
liquid bridge a thin filament in the middle. For 150 degrees, the droplet can take off toward the top
acrylic plate.

3. Results and Discussions

Figure 2a shows droplet shapes on the ITO glass substrate before and after applying
the electrical field in the pin-plate electrode system. The initial droplet shape, shown on the
left, varies depending on the wettability of the substrate. For a droplet of volume 5 µL, the
initial height h0 is measured as h0 = 1.3 mm, 1.8 mm, 2.08 mm and 2.12 mm, respectively,
for contact angles 70◦, 105◦, 130◦ and 150◦. After applying the voltage (11 kV), the droplet
starts to deform soon after a time lag for the polarization of the top acrylic plate. For all
three scenarios shown in Figure 2, evolutions to an equilibrium, to a bridge, and to a take-off
are not monotonic, but with transient oscillations due to competing effects of gravitational,
capillary, and electrostatic forces. Additional effects of viscoelasticity seem to amplify
(for bridge and take-off) or weaken (for equilibrium) these oscillations depending on the
scenario, but always shorten the evolution time. On hydrophilic substates droplets have
relatively bigger footprints with lower height, and equilibration occurs after the oscillatory
transiency with the balance of forces involved. On hydrophobic substrates droplets can
touch the top acrylic plate, eliminating the possibility of equilibration. It is observed that
regardless of the wettability of the substrate the time lag is longer for Newtonian droplets
than those with nonzero PEO concentrations. The droplet deformation is accompanied
by the change in its height from the initial value h0 to ht with time. Figure 2b–d show the
change in the droplet height against time in measures of its initial value:

H =
ht

h0
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Figure 2. Deformation process of water, low-concentration PEO aqueous solution, and high-concen-
tration PEO aqueous solution at different contact angles. (a) Initial and deformed droplet configu-
ration. (b–d) Dimensionless droplet height evolution for contact angle of 70°, 130° and 150°. (e) 
Dimensionless time required for droplet tip to reach the top acrylic plate against PEO concentration. 
Voltage applied through the pin-plate electrode system is 11 kV. 

It is observed that on a hydrophilic substrate droplets tend to equilibrate to a final 
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Figure 2. Deformation process of water, low-concentration PEO aqueous solution, and high-
concentration PEO aqueous solution at different contact angles. (a) Initial and deformed droplet
configuration. (b–d) Dimensionless droplet height evolution for contact angle of 70◦, 130◦ and
150◦. (e) Dimensionless time required for droplet tip to reach the top acrylic plate against PEO
concentration. Voltage applied through the pin-plate electrode system is 11 kV.
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On the hydrophilic surface (contact angle of 70◦) droplets are stretched to higher
heights due to the electric field. For all three PEO concentrations transient small-amplitude
oscillations are obvious before stationary equilibrium droplet shapes are reached. It is seen
that both the equilibrium height and the time required for the equilibration decrease with
the PEO concentration, whereas the time required for the equilibration. It can be speculated
that on more hydrophobic substrate an equilibrated droplet can reach the top acrylic plate.
On the superhydrophobic surface (contact angle of 150◦) even more pronounced transient
oscillations observed, followed by droplet take-offs from the substrate. The take-off time
decreases with the PEO concentration. Viscoelastic droplets thus take shorter time for take-
off, but with more complicated transiency of droplet bouncing. Upon take-off viscoelastic
droplets also create a thin filament tail attached to the substrate. Neither the bouncing
before take-off nor the tail after take-off is observed with water droplets. Figure 2e shows
the total time after the application of the electric field required for a launching droplet from
the superhydrophobic substrate to touch the top acrylic plate against the PEO concentration.
The higher the elasticity due to increase in the PEO concentration, the shorter becomes the
droplet to reach the top acrylic plate.

It is observed that on a hydrophilic substrate droplets tend to equilibrate to a final
stationary state. For low voltage applied the equilibration is monotonic, whereas for high
enough voltage rather severe transient vibrations exist before eventual equilibration, as
shown in Figure 2b. Figure 3 shows the final equilibrium droplet height beyond the tran-
sient vibrations depending on the PEO concentration for an applied voltage of 10 kV. It is
found that the final equilibrium height H f decreases with the increase in PEO concentration,
or the increase in the elasticity of the droplet.

Figure 3. Equilibrium droplet height with respect to PEO concentration at a voltage of 10 kV and a
contact angle of 70◦.

Figure 4 shows droplet evolution on a hydrophobic substrate with a contact angle of
105◦, which is not high enough to exhibit the bridge with the top acrylic plate or the take
off. As with the hydrophilic substrate, for the high enough voltage (11 kV) applied the
droplet goes through severe transient oscillations before reaching the final equilibrium state.
Both the maximum transient peak Hmax for the droplet height and the final equilibrium
height are seen to decrease with the PEO concentration. The contact angle observed is
insensitive to the PEO concentration tested in this study. The initial droplet height thus
is independent of the PEO concentration. Regardless of PEO concentration droplets on a
hydrophobic substrate would stand higher than those on a hydrophilic substrate. Figure 4b
shows the transient maximum and final equilibrium droplet height with respect to the
PEO concentration. Decrease in these heights with the PEO concentration is obvious, as
seen also on a hydrophilic substrate. While the transient maximum is consistently higher
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on the hydrophobic surface, however, the equilibrium height observed is higher on the
hydrophilic substrate. This reverse in the height is caused by the electrowetting present
only with the dielectric PDMS substrate used for the contact angle 105

◦
[43].

Figure 4. Droplet deformation on a dielectric PDMS substrate with contact angle 105◦. (a) Droplet
height against time; and (b) equilibrium height against PEO concentration.

The phenomena shown above, including the severe transient oscillations before equili-
bration, bridging with top acrylic plate, and the take-off from the substrate, require high
enough electric field to be applied. It is thus of great importance to identify the critical
voltage for each phenomenon, which should vary with the wettability and the elasticity
of the droplet. In Figure 5, the critical voltage is shown for three different contact angles
and PEO concentrations for a droplet volume of 5 µL on the ITO glass. The severe tran-
siency with final equilibrium shown on a hydrophilic substrate (contact angle 70◦) is to
be observed for voltages exceeding 10.9 kV, 10.6 kV, and 10.4 kV, respectively, for PEO
concentration of 0%, 0.2%, and 1%. The critical voltage is seen to be maximum for the
Newtonian droplet, and to decrease with the increase in the elasticity. Below these critical
voltages, droplets evolve monotonically to an equilibrium without complicated transiency.
The bridging phenomenon of droplet reaching the top acrylic plate is observed for voltages
higher than 7.9 kV, 7.68 kV, and 7.6 kV, respectively, for PEO concentration of 0%, 0.2%, and
1%. Again, more elastic droplets require lower voltage for the bridging. Below the critical
voltage, droplets saturate to an equilibrium, as shown in Figure 5. The critical voltage
for droplets to take off from the superhydrophobic substrate also decreases with the PEO
concentration, as shown for the case of 150◦ contact angle. For all cases shown, droplets
reach an equilibrium shape for a low applied voltage. The critical voltage to escape this
monotonic equilibrium decreases with the contact angle and the PEO concentration.

Figure 6 shows that at a contact angle of 130◦ the droplet is stretched to the top
acrylic plate to form a liquid bridge. Here, Newtonian and elastic droplets exhibit different
phenomena. After the water droplet touches the top acrylic plate, the resulting liquid
bridge quickly disappears, and so the liquid filament is not sustained. The PEO aqueous
solution on the other hand shows sustained liquid filament, more stable with higher PEO
concentration. The liquid filament gradually becomes thinner, and reacts to the electric
field. When the vertical electric field is weakened by the PEO aqueous solution attached to
the top acrylic plate, the PEO liquid filament will be attracted by the nearby strong electric
field because the top acrylic plate is uniformly polarized under the electric field. The liquid
filament thus moves with a circular trajectory.
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Figure 5. Critical voltage to overcome monotonic equilibration to a static droplet on hydrophilic,
hydrophobic, and superhydrophobic substrate for three different PEO concentrations.

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 14 
 

 

 

 
Figure 6. The liquid bridge phenomenon at a contact angle of 130°. (a) After the water contacts the 
top acrylic plate, a liquid bridge is formed for a short time, and then disappears; (b) PEO aqueous 
solution produced obvious liquid filaments after contacting the top acrylic plate; and (c) a phenom-
enon similar to electrospinning appears after the liquid filaments becomes thinner. 

 
Figure 7. The sequence of water, 0.2% PEO aqueous solution and 1% PEO aqueous solution droplet 
taking off from superhydrophobic substrate. The water droplet shows no filament formation, while 
PEO droplets do. 

For the process of droplet takeoff in Figure 8, comparisons are made for Newtonian 
and 0.2% PEO droplets. We compared the changes of position and velocity during the 
take-off of the droplet, respectively, using the previous time interval in which the severe 
deformation occurred as a reference target. We determined the position of the droplet by 
observing the value of 𝐻 of the droplet, we found that the 𝐻 value of the droplet before 
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Figure 6. The liquid bridge phenomenon at a contact angle of 130◦. (a) After the water contacts the top
acrylic plate, a liquid bridge is formed for a short time, and then disappears; (b) PEO aqueous solution
produced obvious liquid filaments after contacting the top acrylic plate; and (c) a phenomenon similar
to electrospinning appears after the liquid filaments becomes thinner.

In the take-off phenomenon of droplets detaching from the superhydrophobic sub-
strate, water and PEO aqueous solution also produced different behaviors. As shown
in Figure 7, after the electric field (11 kV) is applied, the water droplet is stretched for a
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whole, and then the bottom is detached from the substrate, forming an oblate sphere, flying
towards the top acrylic plate. The PEO aqueous solution takes a long time in the stretching
process, and flies to the top acrylic plate in a spherical shape when separated from the
wall, with a liquid filament appearing at the bottom during the flight. During the take-off
process of the high-concentration PEO aqueous solution, the top is slightly stretched into a
cone, and there is no obvious deformation in the process of flying to the top acrylic plate,
but with a very thin liquid filament formed at the bottom.

Figure 7. The sequence of water, 0.2% PEO aqueous solution and 1% PEO aqueous solution droplet
taking off from superhydrophobic substrate. The water droplet shows no filament formation, while
PEO droplets do.

For the process of droplet takeoff in Figure 8, comparisons are made for Newtonian
and 0.2% PEO droplets. We compared the changes of position and velocity during the
take-off of the droplet, respectively, using the previous time interval in which the severe
deformation occurred as a reference target. We determined the position of the droplet by
observing the value of H of the droplet, we found that the H value of the droplet before
the violent deformation (initial position) was larger than that of the PEO droplet, and the
bottom of the droplet collided with the top because the bottom of the droplet was detached
from the bottom plate, this results in a faster drop rate for water droplets and a slower,
more gradual drop for PEO droplets. In terms of speed, the water droplets fly much faster
than PEO droplets, and touch the top acrylic plate in a shorter time. Negative velocities for
a time interval are generated as the droplets collide and fuse in the air. Here, the recorded
time interval is 33 ms.

Figure 8. Droplet position and velocity vs. time for Newtonian and viscoelastic droplets. (a) Position
of the droplet tip. (b) Velocity at the droplet tip for water and 0.2% PEO aqueous solution taking off
on a superhydrophobic surface (150◦).
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The critical voltage for the take-off phenomenon of the droplet on the superhydropho-
bic (contact angle 150◦) substrate is further investigated, as show in Figure 9. Three different
droplet volumes of 5 µL, 10 µL, and 20 µL are chose to analyze the effect of droplet size
along with PEO concentrations ranging from 0 to 1%. The take-off voltage required for
water droplet (0%) is significantly higher than that of PEO aqueous solution, and the take-
off voltage required by PEO aqueous solution has a smooth linear decay with the increase
in concentration. As the concentration of PEO aqueous solution increases, the dielectric
constant decreases gradually, and so the required voltage also decreases gradually. The
critical take-off voltage increases with the droplet volume, regardless of the PEO concentra-
tion. Previous studies reveal that the practical contact area between a hydrophobic surface
and water governs the net charge amount of the droplet on the surface [44,45]. A larger
droplet thus increases the Coulomb force because it increases the electric charge on the
droplet. A larger droplet size also increases the moving resistance because of the increase in
the three-phase (solid–liquid–air) contact lines that are known to govern the movement of
water droplets on solid surfaces [46]. Droplet size has more of an effect on Coulomb force
than on the moving resistance, as the former depends on the contact area while the latter
depends on the contact line. Therefore, the electric field required for droplet movement
decreases with the increase in droplet size. Under a vertical electric field, Coulomb force
on the droplet should overcome the sum of the adhesion force and gravity. Both adhesion
force and gravity increase as the droplet size increases. The adhesion force is originally the
same as the moving resistance mentioned above, and depends on the three-phase contact
lines. However, gravity to a water droplet depends on the droplet mass, namely the droplet
volume. The droplet size has more of an effect on gravity than on Coulomb force because
the former depends on the droplet volume while the latter depends on the contact area,
which relates to the square of the droplet radius [47]. The electric field required for droplet
launching thus increases as the droplet size increases.

Figure 9. Critical voltage for the take-off phenomenon against PEO concentration for three different
droplet volumes.

4. Concluding Remarks

The dynamics of viscoelastic droplets on surfaces with different wettability activated
by a pin-plate electrode system with a dielectric plate is investigated for the first time.
The viscoelasticity of droplets is controlled by changing the concentration of PEO in the
aqueous solution. It is found that on hydrophilic and weakly hydrophobic surfaces (up
to contact angle 105◦), droplets under high electric field equilibrated to a stationary shape
after severe transient oscillation. Regardless of wettability, droplets tend to equilibrate to a
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stationary shape under sufficiently low electric field. On highly hydrophobic substrates,
droplets are stretched by the electric field to reach the top acrylic plate, and a bridge is
formed. The liquid bridge formed by viscoelastic droplets show sustained filament in
the middle, which thins and spins with the action of the electric field, which is analogous
to an EHD electrospinning. Both water and PEO droplets take off from a substrate with
even higher hydrophobicity. As in the bridging phenomenon, liquid filaments appear
at the bottom of PEO droplets during the take-off process, in contrast to water droplets.
The critical voltages for the phenomena reported in this work are also investigated with
the viscoelasticity, the wettability, and the droplet size as parameters. We found that the
voltage required for water take-off is higher than that of PEO aqueous solution, and the
voltage required for take-off decreases linearly with the increase of PEO concentration. The
voltage required for the droplet to take off increases with the droplet volume. The pin-plate
electrode system is used to control the dielectric polarization to obtain the electric field.
The motion of droplets can be controlled precisely by changing the position of the needle
along with other parameters reported here. This work can be further extended to develop a
new droplet manipulation method of practical importance.

Author Contributions: Conceptualization, B.S.W.; methodology, B.S.W.; investigation, B.S.W.;
writing—original draft preparation, B.S.W.; writing—review and editing, S.W.J.; supervision, S.W.J.;
project administration, S.W.J.; funding acquisition, S.W.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is funded by the grant NRF-2022R1A2C2002799 of the National Research
Foundation of Korea.

Conflicts of Interest: The authors have declared no conflict of interest.

References
1. Wu, M.C. Optoelectronic tweezers. Nat. Photonics 2011, 5, 322–324. [CrossRef]
2. Lim, M.B.; Felsted, R.G.; Zhou, X.; Smith, B.E.; Pauzauskie, P.J. Patterning of graphene oxide with optoelectronic tweezers. Appl.

Phys. Lett. 2018, 113, 031106. [CrossRef]
3. Tian, W.C.; Erin, F. Introduction to microfluidics. In Microfluidics for Biological Applications; Springer: Boston, MA, USA, 2008;

pp. 1–34.
4. Khobaib, K.; Rozynek, Z.; Hornowski, T. Mechanical properties of particle-covered droplets probed by nonuniform electric field.

J. Mol. Liq. 2022, 354, 118834. [CrossRef]
5. Smith, D.P.H. The electrohydrodynamic atomization of liquids. IEEE Trans. Ind. Appl. 1986, 3, 527–535. [CrossRef]
6. Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [CrossRef]
7. Wang, J.-C.; Zheng, H.; Chang, M.-W.; Ahmad, Z.; Li, J.-S. Preparation of active 3D film patches via aligned fiber electrohydrody-

namic (EHD) printing. Sci. Rep. 2017, 7, srep43924. [CrossRef]
8. Pethig, R. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 2010, 4, 022811. [CrossRef]
9. Mhatre, S.; Thaokar, R.M. Drop motion, deformation, and cyclic motion in a non-uniform electric field in the viscous limit. Phys.

Fluids 2013, 25, 072105. [CrossRef]
10. Hagedorn, R.; Fuhr, G.; Müller, T.; Gimsa, J. Traveling-wave dielectrophoresis of microparticles. Electrophoresis 1992, 13, 49–54.

[CrossRef]
11. Zaman, M.A.; Padhy, P.; Ren, W.; Wu, M.; Hesselink, L. Microparticle transport along a planar electrode array using moving

dielectrophoresis. J. Appl. Phys. 2021, 130, 034902. [CrossRef]
12. Pollack, M.G.; Fair, R.B.; Shenderov, A.D. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl.

Phys. Lett. 2000, 77, 1725. [CrossRef]
13. Wang, J.-C.; Chang, M.-W.; Ahmad, Z.; Li, J.-S. Fabrication of patterned polymer-antibiotic composite fibers via electrohydrody-

namic (EHD) printing. J. Drug Deliv. Sci. Technol. 2016, 35, 114–123. [CrossRef]
14. Cloupeau, M.; Prunet-Foch, B. Electrostatic spraying of liquids in cone-jet mode. J. Electrost. 1989, 22, 135–159. [CrossRef]
15. Duft, D.; Achtzehn, T.; Müller, R.; Huber, B.A.; Leisner, T. Rayleigh jets from levitated microdroplets. Nature 2003, 421, 128. [CrossRef]
16. Zeleny, J. Instability of Electrified Liquid Surfaces. Phys. Rev. 1917, 10, 1–6. [CrossRef]
17. Taylor, G.I. Disintegration of water drops in an electric field. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1964, 280, 383–397. [CrossRef]
18. Corson, L.T.; Mottram, N.; Duffy, B.; Wilson, S.K.; Tsakonas, C.; Brown, C. Dynamic response of a thin sessile drop of conductive

liquid to an abruptly applied or removed electric field. Phys. Rev. E 2016, 94, 043112. [CrossRef]
19. Collins, R.T.; Jones, J.J.; Harris, M.T.; Basaran, O.A. Electrohydrodynamic tip streaming and emission of charged drops from

liquid cones. Nat. Phys. 2007, 4, 149–154. [CrossRef]

81



Micromachines 2022, 13, 580

20. Collins, R.T.; Sambath, K.; Harris, M.T.; Basaran, O.A. Universal scaling laws for the disintegration of electrified drops. Proc. Natl.
Acad. Sci. USA 2013, 110, 4905–4910. [CrossRef]

21. Gañán-Calvo, A.M.; José, M.M. Revision of capillary cone-jet physics: Electrospray and flow focusing. Phys. Rev. E 2009, 79, 066305.
[CrossRef]

22. Yu, M.; Ahn, K.H.; Lee, S.J. Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the
formation of Taylor cone jet. Mater. Des. 2016, 89, 109–115. [CrossRef]

23. Swan, J.W. Stress and other effects produced in resin and in a viscid compound of resin and oil by electrification. Proc. R. Soc.
Lond. 1898, 62, 38–46. [CrossRef]

24. Miksis, M.J.; Cheng, K.J. Shape and stability of a drop on a conducting plane in an electric field. Phys.-Chem. Hydrodyn. 1989, 11, 9–20.
25. Basaran, O.A.; Scriven, L. Axisymmetric shapes and stability of pendant and sessile drops in an electric field. J. Colloid Interface

Sci. 1990, 140, 10–30. [CrossRef]
26. Quilliet, C.; Bruno, B. Electrowetting: A recent outbreak. Curr. Opin. Colloid Interface Sci. 2001, 6, 34–39. [CrossRef]
27. Reznik, S.N.; Yarin, A.L.; Theron, A.; Zussman, E. Transient and steady shapes of droplets attached to a surface in a strong electric

field. J. Fluid Mech. 2004, 516, 349–377. [CrossRef]
28. Mugele, F.; Baret, J.-C. Electrowetting: From basics to applications. J. Phys. Condens. Matter 2005, 17, R705–R774. [CrossRef]
29. Corson, L.T.; Tsakonas, C.; Duffy, B.R.; Mottram, N.J.; Sage, I.C.; Brown, C.V.; Wilson, S.K. Deformation of a nearly hemispherical

conducting drop due to an electric field: Theory and experiment. Phys. Fluids 2014, 26, 122106. [CrossRef]
30. Tsakonas, C.; Corson, L.T.; Sage, I.C.; Brown, C.V. Electric field induced deformation of hemispherical sessile droplets of ionic

liquid. J. Electrost. 2014, 72, 437–440. [CrossRef]
31. Glière, A.; Roux, J.-M.; Achard, J.-L. Lift-off of a conducting sessile drop in an electric field. Microfluid. Nanofluidics 2013,

15, 207–218. [CrossRef]
32. Traipattanakul, B.; Tso, C.Y.; Chao, Y.H.C. Study of jumping water droplets on superhydrophobic surfaces with electric fields. Int.

J. Heat Mass Transf. 2017, 115, 672–681. [CrossRef]
33. Stamatopoulos, C.; Bleuler, P.; Pfeiffer, M.; Hedtke, S.; von Rohr, P.R.; Franck, C.M. Influence of Surface Wettability on Discharges

from Water Drops in Electric Fields. Langmuir 2019, 35, 4876–4885. [CrossRef] [PubMed]
34. Merdasi, A.; Moosavi, A.; Shafii, M.B. Electrowetting-induced droplet jumping over topographically structured surfaces. Mater.

Res. Express 2019, 6, 086333. [CrossRef]
35. Ji, J.; Qian, S.; Liu, Z. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Micromachines 2021, 12, 417.

[CrossRef] [PubMed]
36. Casas, L.; Ortega, J.A.; Gómez, A.; Escandón, J.; Vargas, R.O. Analytical Solution of Mixed Electroosmotic/Pressure Driven Flow

of Viscoelastic Fluids between a Parallel Flat Plates Micro-Channel: The Maxwell Model Using the Oldroyd and Jaumann Time
Derivatives. Micromachines 2020, 11, 986. [CrossRef] [PubMed]

37. Escandón, J.; Torres, D.; Hernández, C.; Vargas, R. Start-Up Electroosmotic Flow of Multi-Layer Immiscible Maxwell Fluids in a
Slit Microchannel. Micromachines 2020, 11, 757. [CrossRef] [PubMed]

38. Mei, L.; Zhang, H.; Meng, H.; Qian, S. Electroosmotic Flow of Viscoelastic Fluid in a Nanoslit. Micromachines 2018, 9, 155.
[CrossRef]

39. Li, Y.; Zhang, H.; Li, Y.; Li, X.; Wu, J.; Qian, S.; Li, F. Dynamic control of particle separation in deterministic lateral displacement
separator with viscoelastic fluids. Sci. Rep. 2018, 8, 1–9. [CrossRef]

40. Mei, L.; Qian, S.; Mei. Qian Electroosmotic Flow of Viscoelastic Fluid in a Nanochannel Connecting Two Reservoirs. Micromachines
2019, 10, 747. [CrossRef]

41. Omori, T.; Ishikawa, T. Swimming of Spermatozoa in a Maxwell Fluid. Micromachines 2019, 10, 78. [CrossRef]
42. Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. Dispensing nano–pico droplets and liquid patterning by pyroelectrody-

namic shooting. Nat. Nanotechnol. 2010, 5, 429–435. [CrossRef] [PubMed]
43. Caputo, D.; de Cesare, G.; Vecchio, N.L.; Nascetti, A.; Parisi, E.; Scipinotti, R. Polydimethylsiloxane material as hydrophobic and

insulating layer in electrowetting-on-dielectric systems. Microelectron. J. 2014, 45, 1684–1690. [CrossRef]
44. Takeda, K.; Nakajima, A.; Murata, Y.; Hashimoto, K.; Watanabe, T. Control of Water Droplets on Super-Hydrophobic Surfaces by

Static Electric Field. Jpn. J. Appl. Phys. 2002, 41, 287–291. [CrossRef]
45. Yatsuzaka, K.; Mizuno, Y.; Asano, K. Electrification phenomena of distilled water dripping and sliding on polymer surface. J.

Instrum. Electrostat. Jpn. 1992, 16, 401–410.
46. Chen, W.; Fadeev, A.Y.; Hsieh, M.C.; Öner, D.; Youngblood, J.; McCarthy, T.J. Ultrahydrophobic and Ultralyophobic Surfaces:

Some Comments and Examples. Langmuir 1999, 15, 3395–3399. [CrossRef]
47. Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Effects of the Surface Roughness on Sliding Angles of Water

Droplets on Superhydrophobic Surfaces. Langmuir 2000, 16, 5754–5760. [CrossRef]

82



Citation: Deng, S.; Xiao, T. Transient

Two-Layer Electroosmotic Flow and

Heat Transfer of Power-Law

Nanofluids in a Microchannel.

Micromachines 2022, 13, 405.

https://doi.org/10.3390/

mi13030405

Academic Editors: Jin-yuan Qian and

Kwang-Yong Kim

Received: 19 January 2022

Accepted: 26 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Transient Two-Layer Electroosmotic Flow and Heat Transfer of
Power-Law Nanofluids in a Microchannel
Shuyan Deng * and Tan Xiao

Institute of Architecture and Civil Engineering, Guangdong University of Petrochemical Technology,
Maoming 525011, China; xiaotan@gdupt.edu.cn
* Correspondence: sydeng4-c@my.cityu.edu.hk; Tel.: +86-173-7689-1017

Abstract: To achieve the optimum use and efficient thermal management of two-layer electroosmosis
pumping systems in microdevices, this paper studies the transient hydrodynamical features in two-
layer electroosmotic flow of power-law nanofluids in a slit microchannel and the corresponding heat
transfer characteristics in the presence of viscous dissipation. The governing equations are established
based on the Cauchy momentum equation, continuity equation, energy equation, and power-law
nanofluid model, which are analytically solved in the limiting case of two-layer Newtonian fluid
flow by means of Laplace transform and numerically solved for two-layer power-law nanofluid
fluid flow. The transient mechanism of adopting conducting power-law nanofluid as a pumping
force and that of pumping nonconducting power-law nanofluid are both discussed by presenting
the two-layer velocity, flow rates, temperature, and Nusselt number at different power-law rheology,
nanoparticle volume fraction, electrokinetic width and Brinkman number. The results demonstrate
that shear thinning conducting nanofluid represents a promising tool to drive nonconducting samples,
especially samples with shear thickening features. The increase in nanoparticle volume fraction
promotes heat transfer performance, and the shear thickening feature of conducting nanofluid tends
to suppress the effects of viscous dissipation and electrokinetic width on heat transfer.

Keywords: transient two-layer flow; electroosmotic flow; power-law nanofluid; heat transfer; Laplace
transform; nanoparticle volume fraction

1. Introduction

It is well known that in microchannels the contact between the electrolyte solution
and the solid surface of the channel wall leads to the rearrangement of charged ions,
inducing an electric double layer (EDL) near the channel wall. In the presence of EDL,
a layer of conducting fluid under a tangentially-applied electric field moves forward,
forming electroosmotic flow (EOF); this phenomenon is called electroosmosis. Due to such
favorable attributes as its ease of integration, plug-like profile, and the independence of
its non-mechanical parts, the electroosmosis pumping mechanism has become a common
transport phenomena in microfluidic devices [1]. In order to meet the growing demand
for electroosmosis-based applications, a large number of works have theoretically studied
EOF from different point of view. The transport characteristics of EOF in containers
with different geometries, including slit microchannels [2], microtubes [3,4], rectangular
microchannels [5], elliptic microchannels [6], and T-shaped microchannels [7] have been
investigated. Several working liquids in microdevices, such as biomedical lab-on-a-chip,
show nonlinear rheological behaviors, which is where the use of non-Newtonian fluid
modeling becomes relevant. The nonlinear relationship between the shear stress and
shear rate has been carefully treated using the power-law model [8,9], Casson model [10],
Maxwell model [11], Carreau model [12], etc. The power-law model was first proposed by
Das and Chakraborty [8] to describe the rheological behavior of blood, which has received
great attention due to its wide coverage and the simple rheological relation [2,13]. The
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various aspects of power-law fluid for EOF have been discussed; the power-law model
incorporates the shear thinning rheological behavior encountered in DNA solutions, and
shear thickening rheological behavior encountered in cornstarch solution [14]. Recently,
external environmental effects on EOF, such as a rotating frame or peristalsis, have been
considered. In microchannel flow, a rotating environment induces Coriolis force, which
causes a secondary flow; this is applied in biofluid transportation, drug delivery, and DNA
analysis [15]. The theoretical analysis of rotating EOF was first studied by Chang and
Wang [16], and has subsequently been extended in literature [17,18]. In order to obtain a
comprehensive understanding of the intricate mechanism of rotational flow for biofluid
flow, Kaushik et al., engaged in a transient analysis of the rotational electrohydrodynamics
of power-law fluids under the effect of EDL [19]. Moreover, in the application of EOF
to biomedical and biochemical analysis, peristalsis is introduced to assist in the EOF
of biofluids, and thus electroosmosis-modulated peristaltic flow has recently become a
frequently-studied research topic [20].

Owing to the application of external electric fields in electroosmosis-driven flow sys-
tems, the applied electric voltage leads to an inherent byproduct of the Ohmic resistance of
electrolytes, namely, the Joule heating effect. Joule heating-induced heat transfer exerts an
influence on transport performance by altering the electric properties of working liquids,
especially for certain thermally-liable samples, which has been widely discussed in numer-
ous works [21–25]. To optimize the hydrodynamic transport process and minimize the
Joule heating effect, combined electric and magnetic fields are applied to working liquids
in order to improve the actuation mechanism in microfluidics, which has the advantage
of lower voltage operation, convenient manufacture, and the independence of moving
parts [26,27]. On the other, to promote heat transfer and reduce entropy generation in
the heat exchange equipment of microfluidics, nanofluid is created by adding nanosized
metal particles, which possesses boosted thermal conductivity compared to conventional
pure fluids, to the sample [28–30]. Nanofluid flow has been extensively applied in dif-
ferent fields, as it has none of the usual drawbacks such as sedimentation, blockage, and
pressure drop [31–33]. AI2O3–water Nanofluid is used for cooling microprocessors or
other microelectronic components due to its enhanced thermal conductivity [34], which
exhibits shear thinning rheological behavior in certain ranges of nanoparticle volume frac-
tion [35]. Moreover, in order to provide a better understanding of blood flow and other
non-Newtonian biological flows in biomicrofluidic chips (such as pseudoplastic aqueous
nanoliquid flow driven by electroosmosis and peristalsis and Cu/CuO–blood microvascu-
lar nanoliquid flow under thermal, microrotation, and electromagnetic field effects) were
studied in [36,37], respectively. Carboxymethyl cellulose (CMC) water with γ-AI2O3, TiO2
and CuO particles has been experimentally investigated for the achievement of efficient
thermal management in microelectronics [38]. A comprehensive literature survey of topics
in nanofluid flow indicates that the viscosity of several nanofluids mentioned above shows
a nonlinear dependence on the shear rate and volume fraction of nanoparticles; thus, the
power-law nanofluid model is proposed to precisely describe the rheological behavior of
such nanofluids [39–42]. Regarding the power-law nanofluid, the heat transfer characteris-
tics in magneto-hydrodynamic flow [43], convection flow [44], and EOF [45–47] have been
extensively investigated.

The great advent of technologies in microelectrical mechanical systems (MEMS) en-
ables the delivery, mixing, or separation of multi-liquids at microscales. However, certain
liquids, for instance oil, blood, and ethanol, have low electrical conductivity (<10−6 S m−1)
and are defined as nonconducting fluids [48], which fail to be driven by electroosmosis.
Furthermore, for certain liquids the applied electric voltage leads to undesirable problems
such as the generation of gases, fluctuation of PH value, or electrochemical decomposition.
In this context, Brask et al. developed a two-layer flow system where the conducting fluid
driven by electroosmotic force is adopted as driving mechanism to drag the nonconducting
fluid; this has gained great attention in recent decades [49]. The steady hydrodynamic
behaviors of two-Newtonian fluid EOF in a rectangular microchannel [50], two-power-
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law fluid combined electroosmotics with pressure driven flow in a microtube [51], and
Newtonian–Casson fluid EOF in a microtube [48] have all been theoretically studied in
this context. In terms of transient hydrodynamical behaviors, Gao et al. characterized the
transient two-layer EOF of Newtonian fluids in a rectangular microchannel by presenting
analytical velocities and flow rates at different viscosities and different electroosmotic
properties [52]. Su et al., presented semi-analytical velocities for two-layer combined elec-
troosmotic and pressure driven flow of Newtonian fluids in a slit microchannel at different
electric and hydrodynamic parameters [53]. Time periodic transport characteristics of
two-Newtonian liquid combining electroosmotic and pressure driven flows in a microtube
have been studied numerically [54]. In order to improve transport efficiency and reduce
the Joule heating effect in a two-layer pumping system, a magnetic field can be applied in
addition to the pressure gradient to form a magneto-hydrodynamic EOF; the corresponding
entropy generation analysis has been conducted as well [55,56]. Two-layer EOF assisted
by peristalsis force was proposed by Ranjit et al., who analyzed entropy generation and
heat transfer in such cases [57]. External factors such as a rotating environment [58] or
varying wall shapes together with zeta potential [59] have been considered in two-layer
electroosmotic systems, and the resulting influence on hydrodynamic behavior has been
discussed. Furthermore, because of its desirable thermal conductivity properties, nanoflu-
ids can be applied in two-layer mixed convection flows, which are characterized by the
power-law nanofluid model; the outcomes can help with the promotion of heat transfer per-
formance [60]. Entropy generation and heat transfer in immiscible EOF of two conducting
power-law nanofluid flows through a microtube have been analyzed by computing their
temperature, Nusselt number, and entropy generation at different nanoparticle volume
fractions and different rheological and electroosmotic properties [61]; the rheological effect
of the peripheral fluid plays a dominant role in thermal performance as compared to that
of inner fluid.

The application of chemical mixing/separation in thermofluidic micropumps has
become increasingly frequent; therefore, the corresponding microscale cooling and heat
exchangers need to be carefully designed as working liquids combined with nanoparticles
show nonlinear rheological behavior in nature. To the authors’ best knowledge, the underly-
ing mechanism of the transient transport process as it develops from an unsteady to a steady
state in two-power-law nanofluid EOF in a slit microchannel remains to be discovered.
Therefore, this paper studies transient two-layer flow with one layer of conducting power-
law nanofluid and one layer of nonconducting power-law nanofluid in a slit microchannel,
with consideration of Joule heating and viscous dissipation. The governing equations
are established based on the Cauchy momentum equation, continuity equation, energy
equation, and power-law nanofluid rheological relation, which are analytically solved for
two-Newtonian fluid flow and numerically solved for two-power-law nanofluid flow. For
the hydrodynamic aspect, the mechanisms involved in using power-law nanofluid as a
pumping force as well as those of pumping power-law nanofluid as the system develops
from unsteady to a steady state are carefully discussed by presenting the time evolution of
velocity and flow rate at different parameters. For the thermal aspect, in order to guarantee
efficient thermal performance, the heat transfer characteristics arising from the interplay
of the nanoparticles, power-law rheological behavior, viscous dissipation, and electroki-
netic effects in a two-layer system are analyzed theoretically. The results are relevant for
assisting in determining the operating parameters for optimal performance of microdevices
characterized by multi-fluid delivery, mixing, or cooling.

2. Problem Formulation
2.1. Electric Potential Distribution

A two-layer immiscible EOF of power-law nanofluids in a slit microchannel is consid-
ered where the power-law nanofluid in layer I is conducting and the power-law nanofluid
in layer II is nonconducting (Figure 1). The AI2O3 nanoparticles are suspended and
uniformly distributed in a two-layer power-law base fluid system where carboxymethyl
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cellulose–water (CMC-water) can be represented by shear thinning fluid [38] and, without
loss of generality, the base fluids fall into the categories of a shear thinning fluid and a
shear thickening one. According to previously published work [50], the zeta potential
difference near the two-liquid interface (y* = 0) is negligible. The heights of layer I and
layer II are represented by H. In the two-layer system, the EDL forms near the channel wall
within the region of layer I, which creates the electric potential distribution ψ*. When a
uniform electric field E∗z is tangentially exerted across layer I, the conducting power-law
nanofluid moves forward under the electroosmotic force due to the existence of EDL near
the lower channel wall, which drags the nonconducting power-law nanofluid in layer II
via the interfacial viscous stress, eventually forming a two-layer EOF.
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It is assumed that the zeta potential ζ* is small and the EDL thickness is far less
than the height of microchannel; thus, the EDLs near the channel walls will not overlap.
Eventually, based on electrostatic theory, the electric potential distribution ψ* is governed
by the well-known Poisson–Boltzmann (P-B) equations [50]

d2ψ∗

dy∗2
= −ρe

ε
(1)

ρe = −2n0z0esinh
(

z0eψ∗

kBT0

)
(2)

According to the established model in the scientific literature [32,62], when nanopar-
ticles with an order of nm and with a volume fraction of φ ≤ 10% are distributed in the
channel with µm-sized height, it is physically reasonable to assume that the EDLs around
the nanoparticles are rather small compared to the EDLs near the channel walls, and can
thus be neglected, as well as that there is no electrophoretic force on the nanoparticles.
Correspondingly, the nanoparticles have no influence on the local electric charge density
ρe, which can be governed by the P-B equations, and their influence on liquid property
can be incorporated into the effective viscosity and effective thermal conductivity of the
nanofluid [28–30] such that their importance can be attached to the effect of power-law
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feature and the effect of nanoparticles on the hydrodynamic and thermal characteristics of
transient two-layer flow.

The P-B equations are subject to the following boundary conditions:

dψ∗

dy∗

∣∣∣∣
y∗=0

= 0, ψ∗|y∗=H = ζ∗ (3)

where ε denotes the dielectric constant, n0 denotes the ion density, z0 denotes the valence, e
is the electron charge, and kB and T0 represent the Boltzmann constant and the absolute
temperature, respectively.

Introducing the nondimensional variables ψ = ez0ψ*/(kBT0), ζ = ez0ζ*/(kBT0), and
y = y*/H, K = κH with κ2 = 2e2z0

2n0/(εkBT0), and applying Debye–Hückel approximation
(sinhψ ≈ ψ [50]) to Equations (1)–(3) when |ζ*| ≤ 0.025 V, the nondimensional versions of
the P-B equations can be rewritten as

d2ψ

dy2 = K2ψ (4)

dψ

dy

∣∣∣∣
y=0

= 0, ψ|y=1 = ζ (5)

Solving Equations (4) and (5) yields the electric potential distribution, as below:

ψ =
ζ cosh(Ky)

cosh(K)
(6)

With Equation (6), the electroosmotic force driving the conducting nanofluid can be obtained.

2.2. Two-Layer Velocity Distribution and Flow Rates

Focusing on the hydrodynamical aspects of transient two-layer EOF of power-law
nanofluids in a slit microchannel, the governing equations for velocity distribution are
represented by the Cauchy momentum equation and the continuity equation, as below:

∇ ·→v ∗ = 0 (7)

ρ

[
∂
→
v
∗

∂t∗
+
(→

v
∗ · ∇

)→
v
∗
]
= ∇ ·→τ +

→
f −∇p (8)

where
→
v is the velocity vector, ρ is the liquid density, t* is the time, τ is the shear stress,

→
f

denotes the body force vector, and ∇p denotes the pressure gradient. The channel is open-
ended and no pressure gradient is induced. The following assumptions are made for the
purpose of analysis: (1) the properties of the nanofluids are independent of the external elec-
tric field, ion concentration, and temperature [48,50]; (2) the two-layer flow is immiscible,
laminar, and incompressible, and the two-liquid interface remains distinguishable [48,50];
and (3) the gravity force and buoyancy force of the nanofluids are neglected [32]. As a
result, there is only velocity component along z* direction v*

i (y*,t*), with i = 1,2 and the
body force equal to the electroosmotic force, fz = Ezρe. In a system with two power-law
nanofluids flowing through a slit microchannel, the shear stress of a power-law nanofluid
is τi = ηeffi·∂v*

i/∂y*, where ηeffi implies the effective dynamic viscosity of the power-law
nanofluid, which nonlinearly depends on the shear rate ∂v*

i/∂y* and the nanoparticle

volume fraction φ, namely, ηe f f i = m∗0/(1 + φ)5/2·
∣∣∣∂v∗i /∂y∗

∣∣∣
ni−1

[13,28,43,51], where m0
*

is the consistency viscosity coefficient, ni is the flow behavior index, the subscript i = 1
represents the conducting nanofluid in layer I, and i = 2 represents the nonconducting
nanofluid in layer II. Note that ni < 1 corresponds to shear thinning base fluid, ni = 1
corresponds to Newtonian base fluid and ni > 1 corresponds to shear thickening base fluid.
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Accordingly, the modified Cauchy momentum equation for the conducting power-law
nanofluid in layer I under the electroosmotic force is expressed as

∂v∗1
∂t∗

=
m∗0

(1 + φ)5/2ρ1

∂

∂y∗

(∣∣∣∣
∂v∗1
∂y∗

∣∣∣∣
n1−1 ∂v∗1

∂y∗

)
+

1
ρ1

ρeE∗z for 0 ≤ y∗ ≤ H (9)

The modified Cauchy momentum equation of nonconducting power-law nanofluid in
layer II is expressed as

∂v∗2
∂t∗

=
m∗0

(1 + φ)5/2ρ2

∂

∂y∗

(∣∣∣∣
∂v∗2
∂y∗

∣∣∣∣
n2−1 ∂v∗2

∂y∗

)
for− H ≤ y∗ ≤ 0 (10)

The velocities and shear stresses of the two-layer liquid satisfy the matching conditions,
the velocities at the channel walls satisfy the no-slip condition, and the two-layer flow is
initially set as motionless [55], thusly:

v∗1
∣∣y∗=0 = v∗2

∣∣
y∗=0, ηe f f 1 ·

∂v∗1
∂y∗

∣∣∣∣
y∗=0

= ηe f f 2 ·
∂v∗2
∂y∗

∣∣∣∣
y∗=0

, v∗1
∣∣y∗=H = 0 , v∗1

∣∣y∗=−H = 0 , v∗i |t∗=0 = 0 (11)

With the introduction of the nondimensional variables t = t*m0/(ρ1H2), vi = v*
i/U, and

y = y*/H, by replacing Equations (2) and (6) with Equations (9)–(11), the nondimensional
versions of the governing equations can be obtained as follow

∂v1

∂t
=

m1

m0

∂

∂y

(∣∣∣∣
∂v1

∂y

∣∣∣∣
n1−1 ∂v1

∂y

)
− GEzζ

cosh(K)
cosh(Ky) for 0 ≤ y ≤ 1 (12)

∂v2

∂t
= ρr

m2

m0

∂

∂y

(∣∣∣∣
∂v2

∂y

∣∣∣∣
n2−1 ∂v2

∂y

)
for− 1 ≤ y ≤ 0 (13)

v1
∣∣y=1 = v2

∣∣y=−1 = 0 , v1
∣∣y=0 = v2

∣∣
y=0, m1

∣∣∣∣
∂v1
∂y

∣∣∣∣
n1−1
· ∂v1

∂y

∣∣∣∣
y=0

= m2

∣∣∣∣
∂v2
∂y

∣∣∣∣
n2−1
· ∂v2

∂y

∣∣∣∣
y=0

, vi|t=0 = 0 (14)

where mi = (U/H)ni−1m0/(1− φ)5/2, ρr = ρ2/ρ1, G = 2zen0ζ*/(ρ1U2), and Ez = E*
zHRe/ζ*,

with Re = ζ*UH/m0, U the reference velocity.
With the nondimensional transient velocities v1 and v2 solved as in Equations (12)–(14),

the transient flow rates are defined as follows:

Q1 =
∫ 1

0
v1dy, Q2 =

∫ 0

−1
v2dy (15)

As time elapses, the transient velocities for layer I and layer II, namely, v1 and v2, reach
steady status, and are then expressed as vs1(y) = lim

t→∞
v1(y, t) and vs2(y) = lim

t→∞
v2(y, t).

To compare the flow rate of the conducting nanofluid in layer I (flow rate I) and the
nonconducting nanofluid in layer II (flow rate II) with different parameters, the steady flow
rate ratio is defined as

Qr =

∫ 1
0 vs1dy
∫ 0
−1 vs2dy

(16)
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2.3. Two-Layer Temperature Distribution and Heat Transfer Rate

With the steady velocity distribution obtained from Equations (12)–(14), the tempera-
ture distribution for the thermally fully developed two-layer flow can be determined from
the following energy equation:

(ρcp)e f f

(
∂T
∂t∗

+
→
v
∗
s · ∇T

)
= ke f f∇2T + λE∗z

2 + ηe f f Φ∗ (17)

where T denotes the temperature distribution,
→
v s means the steady velocity vector, cp

means the specific heat at constant pressure, k is the thermal conductivity, λ is the electric
conductivity of base fluid, Φ* measures the viscous dissipation effect, and the subscript eff
means the nanofluid.

The assumption that the two-layer flow is fully thermally developed leads to the
vanishing of the unsteady part of Equation (17), ∂T/∂t*, hence producing the following
energy equations for the conducting nanofluid and nonconducting nanofluid, respectively,
along with their corresponding boundary conditions [26,55]:

(ρcp)e f f 1v∗s1
∂T1

dz∗
= ke f f 1

d2T1

dy∗2 + λE2
z + ηe f f 1

(
dv∗s1
dy∗

)2
for 0 ≤ y∗ ≤ H (18)

(ρcp)e f f 2v∗s2
∂T2

∂z∗
= ke f f 2

d2T2

dy∗2 + ηe f f 2

(
dv∗s2
dy∗

)2
for− H ≤ y∗ ≤ 0 (19)

T1
∣∣y∗=0 = T2

∣∣
y∗=0, ke f f 1

dT1

dy∗

∣∣∣∣
y∗=0

= ke f f 2
dT2

dy∗

∣∣∣∣
y∗=0

, T1
∣∣y∗=H = Tw , T2

∣∣y∗=−H = Tw (20)

where Tw means the temperature at the channel wall, subscript i = 1 implies the conduct-
ing nanofluid, and i = 2 implies the nonconducting nanofluid. Regarding the thermal
properties of power-law nanofluids, the model of Choi and Yu has been applied [30,63]
as it is capable of predicting the thermal conductivity of nanoliquids suspended with
various kind of nonspherical nanoparticles, namely, (ρcp)effi= φ(ρcp)p + (1 − φ)(ρcp)b and

ke f f i =
kp+2kbi+2(kp−kbi)(1+ω)3φ

kp+2kbi−2(kp−kbi)(1+ω)3φ
kbi, where ω represents the ratio of nanolayer thickness to

the original particle radius and the subscripts p and b mean nanoparticles and base fluid,
respectively. The left-hand side of Equation (18) measures the heat generation due to
axial conduction, while the right-hand sides of Equation (18) measure the heat generation
caused by heat diffusion, heat generation from Joule heating, and heat generation caused
by viscous dissipation. Imposing the constant heat flux boundary condition qw≡const
for the fully thermally developed flow above, namely, ∂[(Tw − Ti)/(Tw − Tm)]/∂y* = 0,
leads to ∂T1/∂y* = ∂T2/∂y* = dTw/dy* = dTm/dy*≡const, in which Tm implies the mean
temperature [26,55]. Furthermore, the overall energy balance condition over an elemental
control volume results in

dTm

dz∗
=

2qw + λHEz
2 + m0

(1−φ)5/2

(∫ H
0

∣∣∣ ∂v∗s1
∂y∗

∣∣∣
n1−1 ∂v∗s1

∂y∗ dy∗ +
∫ 0
−H

∣∣∣ ∂v∗s2
∂y∗

∣∣∣
n2−1 ∂v∗s2

∂y∗ dy∗
)

H(ρcp)e f f 1v∗ms1 + H(ρcp)e f f 2v∗ms2
(21)

where v∗ms1 =
∫ H

0 v∗s1dy∗/H and v∗ms2 =
∫ 0
−H v∗s2dy∗/H are the dimensional average ve-

locities in layer I and layer II, respectively. Introducing the nondimensional temperature
variable θi = kf1(Ti − Tw)/(qwH) and placing Equation (21) into Equations (18)–(20) yields

d2θ1

dy2 +
k f 1

ke f f 1
(S + BrΦ1) =

k f 1

ke f f 1

(2 + S + BrΓ1 + mrBrΓ2)

vms1 + (ρcp)rvms2
vs1 for 0 ≤ y ≤ 1 (22)
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d2θ2

dy2 +
k f 1

ke f f 2
mrBrΦ2 =

k f 1

ke f f 2

(2 + S + BrΓ1 + mrBrΓ2)

vms1/(ρcp)r + vms2
vs2 for− 1 ≤ y ≤ 0 (23)

θ1
∣∣y=1 = θ2

∣∣y=−1 = 0 , θ1
∣∣y=0 = θ2

∣∣
y=0, ke f f 1

dθ1

dy

∣∣∣∣
y=0

= ke f f 2
dθ2

dy

∣∣∣∣
y=0

(24)

where vms1 =
∫ 1

0 vs1dy, vms2 =
∫ 0
−1 vs2dy, Φi =

∣∣∣dvsi/dy
∣∣∣ni−1(dvsi/dy)2 , Γ1 =

∫ 1
0 Φ1dy,

Γ2 =
∫ 0
−1 Φ2dy, (ρcp)r= (ρcp)eff2/(ρcp)eff1, mr = m2/m1, Br = m1U2/(qwH) is the Brinkman

number, and S = λHEz
2/qw is the Joule heating parameter.

With the two-layer temperature distributions solved from Equations (22)–(24), the
heat transfer performance can be examined by evaluating heat transfer rate as represented
by the Nusselt number, Nu = hDh/keff. With the convective heat transfer coefficient at the
channel surface h = qw/(Tw − Tm) and the characteristic height Dh = 2H [55,57], the further
rearrangement produces

Nu = −
2k f 1

ke f f f 1θm
(25)

where θm = (
∫ 1

0 vs1θ1dy +
∫ 0
−1 vs2θ2dy)/(

∫ 1
0 vs1dy +

∫ 0
−1 vs2dy) is the mean temperature.

2.4. Entropy Generation Analysis

Based on the second law of thermodynamics, a certain amount of energy is inevitably
destroyed during the heat transfer process, that is, thermal irreversibility inherently ac-
companies the thermal behaviors and reduces system efficiency. This irreversibility is
represented by the entropy generation rate, and the thermal performance of system is
thereby assessed. The local entropy generation over a given cross-section of the microchan-
nel can be given for two-layer flow as

S∗l 1(y∗) =
ke f f 1

T1
2

(
dT1

dy∗

)2
+

σE2
z

|T1|
+

me f f 1

|T1|

∣∣∣∣
dv∗s1
dy∗

∣∣∣∣
ni−1(dv∗s1

dy∗

)2
for 0 ≤ y ≤ 1 (26)

S∗l 2(y∗) =
ke f f 2

T22

(
dT2

dy∗

)2
+

me f f 2

|T2|

∣∣∣∣
dv∗s2
dy∗

∣∣∣∣
n2−1(dv∗s2

dy∗

)2
for− 1 ≤ y ≤ 0 (27)

in which the right-hand side of Equation (26) implies entropy generation caused by heat
transfer, Joule heating and viscous dissipation, respectively. With the introduction of the
nondimensional groups Sli = H2S*

li/kf1 and Θ = kf1Tw/(qwH), the respective nondimen-
sional local entropy generation is obtained as follows

Sl1(y) =
ke f f 1

k f 1(θ1 + Θ)2

(
dθ1

dy

)2
+

S
|θ1 + Θ| +

Br
|θ1 + Θ|

∣∣∣∣
dvs1

dy

∣∣∣∣
n1−1(dvs1

dy

)2
for 0 ≤ y ≤ 1 (28)

Sl2(y) =
ke f f 2

k f 1(θ2 + Θ)2

(
dθ2

dy

)2
+

Br
|θ2 + Θ|

∣∣∣∣
dvs2

dy

∣∣∣∣
n2−1(dvs2

dy

)2
for− 1 ≤ y ≤ 0 (29)

The total entropy generation can be computed by integrating Equations (28) and (29)
over the relevant cross-section area of microchannel:

St =
∫ 1

0
Sl1dy +

∫ 0

−1
Sl2dy (30)

2.5. Solutions of Modelling and Validation
2.5.1. In the Case of Newtonian Fluids

The analytical velocities and analytical temperatures of a two-layer transient EOF of
Newtonian fluids are first solved, and can then be employed to validate the numerical
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algorithm proposed for power-law nanofluid flow. Specifically, when ni = 1 and φ = 0,
Equations (12)–(14) reduce to

∂vN
1

∂t
=

∂2vN
1

∂y2 −
GEzζ

cosh(K)
cosh(Ky) for 0 ≤ y ≤ 1 (31)

∂vN
2

∂t
=

∂2vN
2

∂y2 for− 1 ≤ y ≤ 0 (32)

vN
1

∣∣∣y=0 = vN
2

∣∣∣
y=0

,
∂vN

1
∂y

∣∣∣∣∣
y=0

=
∂vN

2
∂y

∣∣∣∣∣
y=0

, vN
1

∣∣∣y=1 = 0 , vN
1

∣∣∣y=−1 = 0 , vN
1

∣∣∣t=0 = 0 (33)

where the superscript N denotes the special case of Newtonian fluid. Using the method of
Laplace transformation, the analytical expressions of the transient velocities are obtained
as follows:

vN
1 = GEzζ

K2

[
1−cosh(K)
2 cosh(K) (y− 1) + cosh(Ky)

cosh(K) − 1
]

+8GEzζ
∞
∑

P=1

(−1)P+1e−(2P−1)2π2t/4

(2P−1)π[4K2+(2P−1)2π2]
cos
[
(2P−1)πy

2

]

+GEzζ
∞
∑

P=1

[1/ cosh(K)−(−1)P+1]e−(Pπ)2t

Pπ[K2+(Pπ2)]
sin(Pπy) for 0 ≤ y ≤ 1

(34)

vN
2 = GEzζ

K2

[
1−cosh(K)
2 cosh(K) (y− 1) + 1

cosh(K) − 1
]

+8GEzζ
∞
∑

P=1

(−1)P+1e−(2P−1)2π2t/4

(2P−1)π[4K2+(2P−1)2π2]
cos
[
(2P−1)πy

2

]

+GEzζ
∞
∑

P=1

[1/ cosh(K)−(−1)P+1]e−(Pπ)2t

Pπ[K2+(Pπ2)]
sin(Pπy) for− 1 ≤ y ≤ 0

(35)

for which the solving procedure is presented in the Appendix A in the interest of conciseness
and readability.

As time tends to infinity, the two-fluid velocities reach a steady status as follows:

vN
s1(y) = lim

t→∞
vN

1 (y, t) =
GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

cosh(Ky)
cosh(K)

− 1
]

for 0 ≤ y ≤ 1 (36)

vN
s2(y) = lim

t→∞
vN

2 (y, t) =
GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

1
cosh(K)

− 1
]

for− 1 ≤ y ≤ 0 (37)

which are exactly the solutions to Equations (31)-(33) when the temporal term ∂vi/∂t
vanishes.

Replacing Equations (36) and (37) with Equations (22)–(24), the analytical temperature
distributions are solved by integrating Equations (22) and (23) twice and combining them
with Equation (24):

θN
1 = A1y3 + A2 cosh(Ky) + A3y2 + A4sinh(Ky) + A5

[
cosh (Ky)2

K2 − y2

]
+ D1y + D2 (38)

θN
2 = B1y3 + B2y2 + D3y + D4 (39)

with the coefficients A, B, and D presented in the Appendix A for conciseness.

2.5.2. In the Case of Power-Law Nanofluids

Due to the nonlinearity of a two-layer EOF of power-law nanofluids, Equations (12)–
(14) and (22)–(24) are numerically solved based on the explicit finite difference method. At
first, the following discretization is introduced: tl = l∆t, yj = j∆y, vl

i,j = vi(j∆y, l∆t), and

θl
i,j = θi(j∆y, l∆t), l = 1, 2, . . . , L and j = 1, 2, . . . , J.
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At first, the numerical velocities at the channel walls are easily determined by dis-
cretizing the no slip conditions in Equation (14):

vl
1,J = vl

2,1 = 0 (40)

The numerical velocities at the two-liquid interface are computed using the bisection
method from the discretized version of the two-liquid interface matching conditions in
Equation (14)

vl
1,1 = vl

2,J , m1

(
−3vl

1,1 + 4vl
1,2 − vl

1,3

2∆y

)n1

= m2

(
vl

2,J−2 − 4vl
2,J−1 + 3vl

2,J

2∆y

)n2

(41)

Note that for the proposed numerical algorithm, when ni ≥ 1, let the initial two-layer
velocities be v0

1 = v0
2 = 0, and when ni < 1, to avoid the singularity caused by the zero

denominator, let the initial two-layer velocities be v0
1 = v0

2 = nonzero.
Then, the velocities of the bulk liquid can be computed by means of the following

numerical algorithm:

vl+1
1,j = vl

1,j + [Λl
1,j + GEzζ cosh(Kyj)/ cosh(K)]·∆t (42)

vl+1
2,j = vl

2,j + Λl
2,j·∆t (43)

where Λl
i,j = mi

m0

[
(gl

i,j)
ni−1 vl

i,j+1−2vl
i,j+vl

i,j−1
∆y2 + (ni − 1)(gl

i,j)
ni−2 gl

i,j+1−gl
i,j−1

2∆y
vl

i,j+1−vl
i,j−1

2∆y

]
,

gl
i,j =

∣∣∣∣
vl

i,j+1−vl
i,j−1

2∆y

∣∣∣∣, i = 1, 2, and j = 2, 3, . . . , J − 1. When t is great enough, the tran-

sient velocities reach steady status, i.e., they are examined by ‖vl − vl+1‖ < Er, with Er
being a specified criterion, and the steady velocities vs1 and vs2 are solved numerically.
Consequently, the flow rates can be computed from Equations (15) and (16) by means of
the Simpson composite integration method [61].

The temporal term ∂θi/∂t is introduced to Equations (22) and (23) to allow the same
numerical algorithm to be used to solve both velocity distribution and temperature distribu-
tion. As time approaches to infinity, the fully thermally developed temperature distribution
can be obtained. More specifically, at first the numerical temperatures at the boundaries
and initial condition can be easily determined from

θl
1,J = θl

2,1 = 0, θ0
1 = θ0

2 = 0 (44)

θl
1,1 = θl

2,J , ke f f 1
−3θl

1,1 + 4θl
1,2 − θl

1,3

2∆y
= ke f f 2

θl
2,J−2 − 4θl

2,J−1 + 3θl
2,J

2∆y
(45)

Then, the temperature distributions of the bulk liquid are computed based on the
following numerical algorithm:

θl+1
1,j = θl+1

1,j + (Πl
1,j + k f 1S/ke f f 1) · ∆t (46)

θl+1
2,j = θl

2,j + (Πl
2,j) · ∆t (47)

where Πl
i,j =

[
θl

i,j+1−2θl
i,j+θl

i,j−1
∆y2 + ai

k f 1
ke f f i

Φl
i,j −

k f 1
ke f f i

2+S+BrΓl
1+mr BrΓl

2
bivl

ms1+civl
ms2

vl
si

]
,

Φl
i,j = (gl

i,j)
ni−1

(
vl

si,j+1−vl
si,j−1

2∆y

)2

, a1 = b1 = c2 = 1, a2 = mr, b2 = 1/(ρcp)r, c1 = (ρcp)r, i

= 1, 2, j = 2, 3, . . . , J – 1, and the integrals Γl
1 =

∫ 1
0 Φl

1dy, Γl
2 =

∫ 0
−1 Φl

2dy, vl
ms1 =

∫ 1
0 vl

s1dy,

vl
ms2 =

∫ 0
−1 vl

s2dy are computed using the Simpson composite integration method. As
time grows, if ‖θl − θl+1‖ < Er, the thermally fully developed numerical temperature
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distribution is obtained, based on which the Nusselt number in Equation (25) and total
entropy generation in Equation (30) can be computed and the heat transfer analysis is
conducted.

The physical parameters regarding the hydrodynamic properties of two power-law
nanofluids are: m0

* = 9× 10−4 Nm−2sn, H = 1× 10−4 m, and U = 1× 10−4 m·s−1, which is of
the same order as the Helmholtz–Smoluchowski velocity [52,53,61]. The physical parameters
regarding the electric properties of two power-law nanofluids are : ε2 = 7.08 × 10−10 F/m,
e = 1.6× 10−19 C, z0 = 1, Ez

* = 1× 104 V·m−1, kB = 1.38× 10−23 J·K−1, and ζ* =−0.025 V [61].
To facilitate discussion, let the thermophysical properties of the fluids remain constant; the
thermal conductivity of two base fluids are kb1 = kb2 = 0.618 Wm−1K−1, the thermal conduc-
tivity of AI2O3 is kp = 40 Wm−1K−1, T0 = 293 K, andthe Joule heating parameter S = 1 [61].
Furthermore, it is essential to provide the ranges of important nondimensional governing
parameters based on practical physical uses. From the well-established electroosmotic theory
of power-law modeling, ni = 0.6~1.4 [23] and the width of EDL is far less than the channel
height; thus, K = 10~100 [23,52]. Based on the given order of reference (velocity, viscosity, and
channel height), the Brinkman number ranges from Br = 0~0.1 [31,55], and the nanoparticle
volume fraction φ = 0~0.09 is suitable for the chosen model of effective viscosity and effective
thermal conductivity [44].

Concerning the numerical schemes, let Er = 1× 10−8 in order to assure that the velocity
and temperature reach steady status; then, a test grid dependence is conducted, with a
grid system of 1 × 103 chosen. The good agreement between the analytical solutions and
numerical solutions depicted in Figure 2 shows that the numerical algorithm proposed here
is feasible for computing the two-layer velocity distribution and two-layer temperature
distribution and for carrying out the heat transfer analysis.
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3. Results and Discussion

The transient hydrodynamic behavior of two-layer power-law nanofluid EOF is dis-
cussed by evaluating the transient two-layer velocities at different times and the flow
rates for different governing nondimensional parameters. Then, with the steady velocities
computed, the heat transfer analysis and entropy generation analysis are conducted by
presenting the two-layer temperature profiles, Nusselt number and entropy generation rate
at different governing nondimensional parameters. Specifically, (ρCp)r = 1 and ρr = 1, such
that their importance can be attached to the effects of power-law rheology (represented by
ni), the electroosmotic property (represented by electrokinetic width K), the nanoparticle
volume fraction, φ, and the viscous dissipation effect (represented by the Brinkman number,
Br) on hydrodynamic and thermal behaviors.

3.1. Flow Characteristics in Two-Layer

The time evolutions of two-layer velocities with different types of conducting nanofluid,
i.e., flow behavior index n1 at different electrokinetic width K, are presented in Figure 3.
It can be seen that at first the conducting nanofluid near the channel wall is set in motion
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due to the electroosmotic force, and as time elapses the bulk conducting nanofluid attains
velocity. As opposed to the single-layer EOF, the flow of bulk conducting fluid fails to
form a plug-like profile, as the delivery of momentum via the bulk conducting nanofluid is
dissipated through interfacial viscous stress, causing a deviated parabolic profile in layer
I. Accordingly, the nonconducting nanofluid is driven by interfacial shear stress; thus, in
layer II, the closer to the two-liquid interface the flow, the higher the velocity. No matter
what value K or n1 takes, the conducting nanofluid near the wall at first moves forward and
drags the nonconducting fluid through the interfacial hydrodynamical shear stress, and as
t increases to 5, the transient two-layer velocity reaches its steady state. The comparison
among Figure 3a–c describes the way in which, when the conducting nanofluid is shear
thinning, the transient two-layer velocity is augmented with the increase of K, while as
shown in Figure 3d–f, when the conducting nanofluid is shear thickening, the transient
two-layer velocity shows abatement with the increase of K. The profiles of the steady
velocities in Figure 3b,c show that the remarkable increase in the velocity of the conducting
nanofluid with K results in a subtle turning of the velocity near the two-liquid interface.
Moreover, when pumped by shear thinning nanofluid, the two-layer fluid is more sensitive
to changes in the electrokinetic width K than when pumped by shear-thickening nanofluid.

Micromachines 2022, 13, x FOR PEER REVIEW 13 of 27 
 

 

deviated parabolic profile in layer I. Accordingly, the nonconducting nanofluid is driven 
by interfacial shear stress; thus, in layer II, the closer to the two-liquid interface the  
flow, the higher the velocity. No matter what value K or n1 takes, the conducting 
nanofluid near the wall at first moves forward and drags the nonconducting fluid 
through the interfacial hydrodynamical shear stress, and as t increases to 5, the transient 
two-layer velocity reaches its steady state. The comparison among Figure 3a–c describes 
the way in which, when the conducting nanofluid is shear thinning, the transient 
two-layer velocity is augmented with the increase of K, while as shown in Figure 3d–f, 
when the conducting nanofluid is shear thickening, the transient two-layer velocity 
shows abatement with the increase of K. The profiles of the steady velocities in Figure 
3b,c show that the remarkable increase in the velocity of the conducting nanofluid with 
K results in a subtle turning of the velocity near the two-liquid interface. Moreover, 
when pumped by shear thinning nanofluid, the two-layer fluid is more sensitive to 
changes in the electrokinetic width K than when pumped by shear-thickening nanofluid. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. Transient two-layer velocities at different electrokinetic widths K and different flow 
behavior indexes of conducting fluid n1 when Br = 0.02, S = 1, ζ = −1, n2 = 1.2, and ϕ = 0.03. (a) K = 
10, n1 = 0.8; (b) K = 50, n1 = 0.8; (c) K = 100, n1 = 0.8; (d) K = 10, n1 = 1.2; (e) K = 50, n1 = 1.2; (f) K = 100, 
n1 = 1.2. 

When the conducting nanofluid and nonconducting nanofluid change from shear 
thinning to shear thickening, the time evolutions of the two-layer velocities are as 
delineated in Figure 4. No matter what type of pumped nonconducting nanofluid is 

Figure 3. Transient two-layer velocities at different electrokinetic widths K and different flow behavior
indexes of conducting fluid n1 when Br = 0.02, S = 1, ζ = −1, n2 = 1.2, and φ = 0.03. (a) K = 10, n1 = 0.8;
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When the conducting nanofluid and nonconducting nanofluid change from shear
thinning to shear thickening, the time evolutions of the two-layer velocities are as delineated
in Figure 4. No matter what type of pumped nonconducting nanofluid is considered, the
decrease in the flow behavior index n1, namely, the shear thinning feature of conducting
fluid, accelerates the flow and consequently enhances the two-layer velocity. From the
comparison between Figures 4a–e, the change in nonconducting nanofluid type from shear
thinning to shear thickening exerts a slight influence on the two-layer flow near the two-
liquid interface, and shows little influence on that far away from the two-liquid interface.
The influence of n1 on two-layer flow far outweighs that of n2 on two-layer flow.
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Figure 4. Transient two-layer velocities at different flow behavior indexes n1 and different flow
behavior indexes n2 when Br = 0.02, S = 1, ζ = −1, K = 30 and φ = 0.03. (a) n1 = 0.8, n2 = 0.6; (b) n1 = 1,
n2 = 0.6; (c) n1 = 1.2, n2 = 0.6; (d) n1 = 0.8, n2 = 1.4; (e) n1 = 1, n2 = 1.4; (f) n1 = 1.2, n2 = 1.4.

Because the flow behavior index, n1, plays a crucial role in two-layer velocity, the
time evolutions of flow rates at different flow behavior indexes of conducting nanofluid n1
are presented in Figure 5 when (a) φ = 0 and (b) φ = 0.03. It is obvious that the unsteady
flow rate of conducting nanofluid takes a longer time to reach steady status than that of
nonconducting nanofluid; as the conducting nanofluid near the wall is set in motion first,
the bulk conducting nanofluid moves forward, and eventually the nonconducting nanofluid
is dragged by the bulk conducting fluid. Irrespective of the value of the nanoparticle volume
fraction φ, the shear thinning feature of the conducting fluid enhances the flow rates of
both the conducting and nonconducting nanofluids. A comparison between Figure 5a,b
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shows that the addition of the nanoparticle to the bulk nanofluid reduces the two-layer
flow rate by improving the viscosity of the two fluids, as per Equations (9) and (10).
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behavior index of conducting nanofluid n1 at different nanoparticle volume fractions ϕ. 
When the pumping conducting nanofluid is shear thinning, that is, n1 < 1, flow rate I is 
more than three times higher than flow rate II and two-layer flow is evidently affected 
by the change in the nanoparticle volume fraction, ϕ. In contrast, when the pumping 
conducting nanofluid is shear thickening (i.e., n1 > 1), the two-layer flow is insensitive to 

Figure 5. Time evolutions of flow rates of two power-law nanofluids at different flow behavior
indexes n1 and different volume fractions of nanoparticle φ when Br = 0.02, S = 1, ζ = −1, K = 10 and
n2 = 1.2. (a) φ = 0; (b) φ = 0.03.

In Figure 6, the time evolutions of flow rates at different electrokinetic widths K
are presented when (a) n1 = 0.8 and (b) n2 = 1.2. From Figure 6a, when the pumping
conducting nanofluid is shear thinning, the flow rates of the two power-law nanofluids
show augmentation with the electrokinetic width K, being consistent with Figure 3; in
contrast, when it is shear thickening, the flow rates of both fluids show abatement with
K, meaning that the change in fluid type of the pumping nanofluid from shear thinning
to shear thickening can reverse the effect of the electrokinetic width. In addition, the flow
rates show a noticeable reduction when n1 increases, irrespective of what value K takes.
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Figure 6. Time evolutions in flow rates of two power-law nanofluids at different flow behavior
indexes n1 and different electrokinetic widths K when Br = 0.02, S = 1, ζ = −1, n2 = 1.2 and φ = 0.03.
(a) n1 = 0.8; (b) n1 = 1.2.

In Figure 7, the variation in the ratio of flow rate I to flow rate II is plotted for a flow
behavior index of conducting nanofluid n1 at different nanoparticle volume fractions φ.
When the pumping conducting nanofluid is shear thinning, that is, n1 < 1, flow rate I is
more than three times higher than flow rate II and two-layer flow is evidently affected
by the change in the nanoparticle volume fraction, φ. In contrast, when the pumping

96



Micromachines 2022, 13, 405

conducting nanofluid is shear thickening (i.e., n1 > 1), the two-layer flow is insensitive to
the change in flow behavior index n1 and nanoparticle volume fraction φ. Compared to the
effect of the nanoparticle volume fraction, the effect of n1 dominates in the two-layer flow.
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Figure 7. Variation of the ratio of flow rates with flow behavior index n1 at different nanoparticle
volume fractions φ when Br = 0.02, S = 1, ζ = −1, n2 = 1.2, and K = 30.

In Figure 8, the variation in the ratio of flow rate I to flow rate II is presented for the
flow behavior index of nonconducting nanofluid n2 at different electrokinetic widths K. A
higher flow behavior index of nonconducting nanofluid triggers stronger viscosity, and
thus smaller flow rate of nonconducting nanofluid flow, finally leading to an increase in
the flow rate ratio. When the type of conducting nanofluid is fixed, although a thinner EDL
length improves velocities of both fluids (as shown in Figure 3a–c), the increase in flow
rate I is much greater than that of flow rate II, and thus the increasing trend of flow rate
ratio with K is observed, which is especially obvious for a shear thickening nonconducting
nanofluid. Therefore, when dragging a shear thickening fluid, increasing electrokinetic
width exerts more influence on flow rate I than on flow rate II. Furthermore, in comparison
with Figure 7, the effect of the flow behavior index, n2, on the flow rate ratio is almost linear,
and the increasing rate is enhanced for greater values of the electrokinetic width, K.
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3.2. Heat Transfer Characteristics in Two-Layer Flow

In Figure 9, the temperature profiles at different flow behavior indexes n1 are described
when (a) φ = 0, (b) φ = 0.03, and (c) φ = 0.06. It is noted that the temperature profiles of the
two-layer flow are asymmetric around the two-liquid interface, in which the minimum
value occurs within layer I. The temperature difference between the channel wall and bulk
fluid is reduced, with the conducting nanofluid changing from a shear thinning fluid to
a shear thickening one; therefore, it can be seen that the smaller the velocity gradient of
two-layer flow is, the better the heat transfer performance becomes. On the other hand,
the increase in the nanoparticle volume fraction, φ, leads to an overall increase in the
temperature profiles for all types of conducting nanofluid, meaning that the introduction
of nanoparticles truly improves the heat transfer in two-layer flow.
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the minimum value of the temperature to the right. This can be explained by the fact that 
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Figure 9. Variation of temperature at different flow behavior indexes n1 and different nanoparticle
volume fractions φ when K = 30, n2 = 1.2, ζ = −1, S = 1, and Br = 0.02. (a) φ = 0; (b) φ = 0.03; (c) φ = 0.06.

As shown in Figure 10, the temperature profiles at different electrokinetic widths K are
plotted when (a) n1 = 0.8, (b) n1 = 1, and (c) n1 = 1.2 in order to demonstrate the influence
of n1 on the effect of K. The increase in K, namely a thinner EDL thickness, enlarges the
temperature difference between the channel wall and bulk liquid and shifts the minimum
value of the temperature to the right. This can be explained by the fact that the increase in
K enhances the two-layer velocity and causes a drastic change in velocity near the channel
wall, as described in Figure 3. The comparison among Figure 10a–c indicates that the
shear thickening feature of the conducting nanofluid tends to suppress the effect of the
electrokinetic width, K, on temperature profile.
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Figure 10. Variation of temperature at different flow behavior indexes n1 and different electrokinetic
widths K when φ = 0.03, n2 = 1.2, ζ = −1, S = 1, and Br = 0.02. (a) n1 = 0.8; (b) n1 = 1; (c) n1 = 1.2.

As shown in Figure 11, the temperature profiles with different Brinkman numbers Br
are plotted when (a) n1 = 0.8, (b) n1 = 1, and (c) n1 = 1.2 in order to show the combined
effect of flow behavior index n1 and Brinkman number Br. As the Brinkman number Br
increases, viscous dissipation in the two-layer flow is improved, which further enlarges
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the temperature difference between the channel wall and bulk liquid, meaning that the
consideration of viscous dissipation evidently hinders the heat transfer in two-layer flow.
Moreover, as obvious changes in temperature are observed in Figure 11a–c, the Brinkman
number Br has an important effect on the temperature distribution for all types of conduct-
ing nanofluid; in other word, no matter what type of fluid the two-layer flow is driven by,
the effect of Br on temperature cannot be neglected.
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The temperature profiles at different flow behavior indices of nonconducting nanofluid
n2 are described in Figure 12. When the pumped nonconducting nanofluid changes from
a shear thinning fluid to a shear thickening one, the temperature in the vicinity of the
two-liquid interface slightly increases, while far away from the two-liquid interface it
shows little change. This is because the increase in the flow behavior index, n2, causes a
slight change in the two-layer velocity near the two-liquid interface. Therefore, compared
to the influence of the fluid type of the pumping conducting nanofluid, that of the fluid
type of the pumped nonconducting nanofluid (n2) on temperature profile is weak.
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The variation in the Nusselt number Nu with flow behavior index n2 at different
electrokinetic widths K is presented in Figure 13. The Nusselt number, Nu, shows a slightly
ascending trend with flow behavior index n2 no matter the value of the electrokinetic
width. On the other hand, the increase in electrokinetic width, K, leads to the decrease in
Nusselt number, Nu. This is because the rapid change in velocity profile caused by a lower
EDL thickness triggers a widened temperature difference by suppressing the heat transfer
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performance of the two-layer flow. It should be noted that the effect of electroosmotic
property of the fluid and the effect of the type of pumped nonconducting nanofluid do not
interact with each other.
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In Figure 14, the variation of the Nusselt number Nu with (a) electrokinetic width K
and (b) Brinkman number Br is presented when choosing different types of conducting
nanofluid. As shown in Figure 14a, a greater value of the electrokinetic width K reduces
the heat transfer in two-layer flow, causing the dramatic change in velocity and widening
temperature difference shown in Figures 3 and 10. Figure 14b shows that the Nusselt
number Nu decreases with the Brinkman number Br, as the stronger viscous dissipation
effect represented by greater values of Br enlarges the temperature difference between the
channel wall and the bulk liquid, impeding heat transfer in two-layer flow. As opposed to
the interaction between the effects of K and n2 predicted in Figure 13, the descending trend
of the Nusselt number Nu with K or Br becomes smaller when the conducting nanofluid
changes from a shear thinning fluid to a shear thickening one, meaning that when two-
layer flow is driven by a shear thinning fluid the heat transfer performance is much more
susceptible to changes in electrokinetic width, K, or the Brinkman number, Br.
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Variation of the Nusselt number Nu with flow behavior index n1 at different nanopar-
ticle volume fractions φ is shown in Figure 15, revealing the interaction between the effect
of the conducting nanofluid and that of the nanoparticles. As the conducting nanofluid
changes from a shear thinning fluid to a shear thickening one, the Nusselt number Nu is aug-
mented, hence the heat transfer performance of two-layer flow is enhanced. Furthermore,
the ascending trend of Nu with n1 becomes more slight. The increment in the nanoparticle
volume fraction φ tends to improve the variation of Nu with n1 as a whole, thus promoting
the heat transfer of two-layer flow for all types of conducting nanofluid. This means that
the addition of nanoparticles has little influence on the effect of the conducting nanofluid
type on heat transfer (represented by Nu). According to Equation (25), growth in mean
temperature with φ leads to the increase in Nu, implying that the temperature difference
between the bulk fluid and channel walls is narrowed. Therefore, in practical engineering
terms, when a wide temperature difference between the channel wall and the centerline
occurs and might cause undesirable results (such as electrochemical decomposition or
fluctuation of PH value in working liquids), the introduction of nanoparticles can intensify
heat transfer performance and help to avoid the problems mentioned above.
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The variation of total entropy generation St with (a) electrokinetic width K and (b)
Brinkman number Br is presented in Figure 16 for different types of conducting nanofluids.
An almost linear increase of total entropy generation St with electrokinetic width K and
Brinkman number Br can be observed in Figure 16. From Figure 16a, it can be inferred that
a thinner EDL length (represented by a greater value of K) results in a wider velocity gap
between the channel wall and the bulk fluid; therefore, the heat transfer is retarded, and
entropy generation improves accordingly. Figure 16b implies that the viscous dissipation
effect grows stronger with the Brinkman number, leading to an increase in entropy genera-
tion. In addition, the increasing trend with K and Br becomes smaller when nanofluid I
changes from shear thinning to shear thickening.
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The variation of total entropy generation with flow behavior index n1 at different
nanoparticle volume fractions φ is presented in Figure 17. The entropy generation decreases
when the conducting nanofluid changes from a shear thinning type to a shear thickening
one. The shear thinning feature of conducting fluid accelerates the two-layer flow and
enhances velocity distribution, while the increased velocity gradient and temperature
gradient result in greater entropy generation as per Equations (28) and (29). Furthermore,
entropy generation in two-layer flow driven by shear thinning nanofluid is more sensitive
to changes in nanoparticle volume fraction compared to that driven by shear thickening
nanofluid. In practical terms, when the two-layer flow is pumped by shear thinning fluid,
it is more likely to utilize nanoparticles to adjust the thermal performance of the system.
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4. Conclusions

(1) The hydrodynamic behavior of transient two-layer EOFs of power-law nanofluids in
a slit microchannel were investigated by evaluating the transient two-layer velocity
distribution at different times and with different two-layer flow rates.

• When driven by shear thinning nanofluid, the two-layer flow accelerates for thin-
ner EDL thicknesses and decelerates when driven by shear thickening nanofluid.
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The change in fluid type of pumped nonconducting nanofluid exerts only a
slight influence on velocity near the two-liquid interface. It is concluded that
compared to the fluid type of pumped nonconducting nanofluid, the fluid type
of the pumping conducting nanofluid plays a dominant role in two-layer flow
and alters the effect of the electrokinetic width, K.

• In practical terms, the selection of a conducting nanofluid is crucial, as is the use
of electrokinetic width to adjust two-layer flow for different types of conducting
nanofluid.

• As opposed to the variation of the flow rate ratio with n2, the variation with n1 is
nonlinear, and the flow rate of two-layer flow driven by shear thinning nanofluid
is more sensitive to changes in the nanoparticle volume fraction.

(2) With steady two-layer velocity obtained, the thermally developed heat transfer charac-
teristics were discussed by presenting the temperature distribution, Nusselt number,
and total entropy generation at different parameters.

• The fluid type of the pumping conducting nanofluid, Brinkman number, nanopar-
ticle volume fraction, and electrokinetic width all play important roles in the
temperature profile, Nusselt number, and total entropy generation; in contrast,
the influence of the type of pumped nonconducting nanofluid is weak.

• In terms of the interactive influence of the governing parameters, shear thickening
feature of the conducting nanofluid tends to suppress the effects of the Brinkman
number and electrokinetic width on heat transfer and entropy generation.

• No matter what type of conducting nanofluid is considered, increasing the
nanoparticle volume fraction within a specified range truly enhances the heat
transfer performance of two-layer flow.

• Entropy generation in two-layer flow driven by shear thinning nanofluid is more
sensitive to changes in electrokinetic width, Brinkman number, and nanoparticle
volume fraction.
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Appendix A

To obtain the analytical solutions for two-layer EOF in the case of Newtonian fluid,
Laplace transform to two-layer velocity distributions vi is introduced:

Vi(s) = L[vi(t)] =
∫ ∞

0
vN

i (y, t)e−stdt (A1)

Transforming Equations (31)–(33), and letting ρr = 1, the ordinary differential equations
(ODEs) with respect to s can be obtained as follows:

d2V1

dy2 − sV1 =
1
s

GEzζ
cosh(Ky)
cosh(K)

for 0 ≤ y ≤ 1 (A2)
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d2V2

dy2 − sV2 = 0 for− 1 ≤ y ≤ 0 (A3)

V1|y=0 = V2|y=0,
dV1

dy

∣∣∣∣
y=0

=
dV2

dy

∣∣∣∣
y=0

, V2|y=−1 = 0, V1|y=1 = 0 (A4)

The solution to the above ODEs (A2)–(A3) takes the following forms:

V1 = C cosh(Ky) + E cosh(
√

sy) + Fsinh(
√

sy) for 0 ≤ y ≤ 1 (A5)

V2 = M cosh(
√

sy) + Fsinh(
√

sy) for− 1 ≤ y ≤ 0 (A6)

Combining the boundary Equation (A4),

C = GEzζ
s(K2−s) cosh(K) , E = −GEzζ

2s(K2−s) cosh
√

s

(
1 + cosh

√
s

cosh(K)

)

F = GEzζ
2s(K2−s)sinh

√
s

(
cosh

√
s

cosh(K) − 1
)

, M = GEzζ
s(K2−s) cosh(K) + E

(A7)

Applying the Laplace inverse transform to Equations (A5) and (A6) yields

vN
i = L−1[Vi] =

1
2π I

∫ σ+I∞

σ−I∞
Viestds (A8)

in which I is the imaginary unit, σ is a real number satisfying σ > 0, and the integral path is
presented in Figure A1. Based on the residue theorem, Equation (A8) equals

vN
1 = ∑

k
Res[V1(s)est, sk], for 0 ≤ y ≤ 1 (A9)

vN
2 = ∑

k
Res[V2(s)est, sk], for− 1 ≤ y ≤ 0 (A10)

where Res[Vi(s)est, sk] implies the residue of Vi(s)est at the isolated singularities, sk. The
isolated singularities sk are enclosed in the simple closed curve CR + L, as shown in
Figure A1. According to Equations (A5)–(A7), sk = 0, K2, –(2P–1)2π2/4, and –(Pπ)2, with k
= 1, 2, 3, 4 and P = 1, 2, . . . . Consequently, the residues of Vi(s)est are evaluated as follows:

Res[V1(s)est, 0] = lim
s1→0

d[s2 ·V1(s) · est]

ds
=

GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

cosh(Ky)
cosh(K)

− 1
]

(A11)

Res[V2(s)est, 0] = lim
s1→0

d[s2 ·V2(s) · est]

ds
=

GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

1
cosh(K)

− 1
]

(A12)

Res[Vi(s)est, K2] = lim
s2→K2

(s− K2) ·Vi(s) · est = 0 (A13)

Res
[

Vi(s)est,− [(2P−1)π]2

4

]
= lim

s3P→− [(2P−1)π]2
4

[
s + [(2P−1)π]2

4

]
·Vi(s) · est

= 8GEzζ(−1)P+1e−(2P−1)2π2t/4

(2P−1)π[4K2+(2P−1)2π2]
cos
[
(2P−1)πy

2

]
(A14)

Res
[
Vi(s)est,−(Pπ)2

]
= lim

s4P→−(Pπ)2

[
s + (Pπ)2

]
·Vi(s) · est

= GEzζ[1/ cosh(K)−(−1)P+1]e−(Pπ)2t

Pπ[K2+(Pπ2)]
sin(Pπy)

(A15)
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with i = 1, 2. According to Equations (A9) and (A10), summarizing Equations (A11)–(A15)
produces the analytical velocities for two-layer Newtonian fluid EOF, which are exactly
expressed by Equations (34) and (35).
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In addition, the coefficients in Equations (38) and (39) are presented as follows:

A1 =
k f 1GEzζ[1−cosh(K)]

12K2 cosh(K)ke f f 1
· (2+S+BrΓ1+mr BrΓ2)

vms1+(ρcp)rvms2
,

A2 =
k f 1GEzζ

K4 cosh(K)ke f f 1
· (2+S+BrΓ1+mr BrΓ2)

vms1+(ρcp)rvms2
,

A3 = − k f 1
2ke f f 1

[
GEzζ[1+cosh(K)]

2K2 cosh(K) · (2+S+BrΓ1+mr BrΓ2)
vms1+(ρcp)rvms2

+ S + Br(GEzζ)2[1−cosh(K)]2

4K4 cosh (K)2

]

A4 = − k f 1Br(GEzζ)2[1−cosh(K)]

K5 cosh (K)2ke f f 1
, A5 = − k f 1Br(GEzζ)2

4K2 cosh (K)2ke f f 1
,

B1 =
k f 1GEzζ[1−cosh(K)]

12K2 cosh(K)ke f f 1
· (2+S+BrΓ1+mr BrΓ2)

vms1/(ρcp)r+vms2
,

B2 =
k f 1

2ke f f 1

[
GEzζ[1−cosh(K)]

2K2 cosh(K) · (2+S+BrΓ1+mr BrΓ2)
vms1+vms2(ρcp)r

−mrBrΦ2

]
,

D1 = − ke f f 2(d1−d2)

ke f f 1+ke f f 2
,

D2 = − ke f f 2
ke f f 1+ke f f 2

( ke f f 1
ke f f 2

d1 + d2

)
,

D3 =
ke f f 1
ke f f 2

(KA4 + D1),

D4 = (A2 + A5/K2 + D2),

d1 = A1 + A2 cosh(K) + A3 + A4sinh(K) + A5

[
cosh (K)2

K2 − 1
]

d2 =
(
−B1 + B2 −

ke f f 1
ke f f 2

KA4 + A2 +
A5
K2

)
.
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Abstract: The rheology of different materials at the micro and macro levels is an area of great interest
to many researchers, due to its important physical significance. Past experimental studies have
proved the efficiency of the utilization of nanoparticles in different mechanisms for the purpose
of boosting the heat transportation rate. The purpose of this study is to investigate heat and mass
transport in a pseudo-plastic model past over a stretched porous surface in the presence of the
Soret and Dufour effects. The involvement of tri-hybrid nanoparticles was incorporated into the
pseudo-plastic model to enhance the heat transfer rate, and the transport problem of thermal energy
and solute mechanisms was modelled considering the heat generation/absorption and the chemical
reaction. Furthermore, traditional Fourier and Fick’s laws were engaged in the thermal and solute
transportation. The physical model was developed upon Cartesian coordinates, and boundary layer
theory was utilized in the simplification of the modelled problem, which appears in the form of
coupled partial differential equations systems (PDEs). The modelled PDEs were transformed into
corresponding ordinary differential equations systems (ODEs) by engaging the appropriate similarity
transformation, and the converted ODEs were solved numerically via a Finite Element Procedure
(FEP). The obtained solution was plotted against numerous emerging parameters. In addition, a grid
independent survey is presented. We recorded that the temperature of the tri-hybrid nanoparticles
was significantly higher than the fluid temperature. Augmenting the values of the Dufour number
had a similar comportment on the fluid temperature and concentration. The fluid temperature
increased against a higher estimation of the heat generation parameter and the Eckert numbers.
The impacts of the buoyancy force parameter and the porosity parameter were quite opposite on the
fluid velocity.

Keywords: tri-hybrid nanoparticles; Soret and Dufour effect; boundary layer analysis; finite element
scheme; heat generation; constructive and destructive chemical reaction

1. Introduction

In the last few decades, many researchers have become interested in the study of
shear thinning fluids, due to the many fascinating industrial and everyday applications [1].
A small number of these include wall paint, printing ink, nail polish, whipped cream,
ketchup, and engine oil. Shear thinning fluid can also be called pseudo-plastic fluid and is
considered to display the behaviors of both Newtonian fluid and of plastic fluid. In shear
thinning fluid, the more stress is applied, the more freely the fluid flows. This property is a
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useful characteristic for its use in materials such as paint, oils, and cream. Eberhard et al. [2]
computed the effective viscosity for Newtonian and non-Newtonian materials past through
a porous surface. They first considered the rheology of the power law model to estimate an
effective shear rate. In their investigation, they assumed the constant permeability. Rosti
and Takagi [3] studied the shear thinning and shear thickening behaviors of materials by
studying different important aspects. Moreover, they recorded several important features
through changing the phase and volume fractions. Gul et al. [4] computed the exact solution
in the case of lifting and drainage with slip conditions for the power law model of thin film.
They approximated the flow rate and the skin friction coefficient and plotted numerous
sketches against different involved parameters for fluid velocity. They recorded the decline
in the velocity field for the escalating values of the slip parameter. Pseudo-plastic nanofluid
obeying Brownian motion and thermophoresis past over a vertical cylinder was examined
by Hussein et al. [5]. They solved the converted modelled equations numerically and
monitored the decline in velocity against the curvature parameter and fluid parameter.
Abdelsalam and Sohail [6] studied the involvement of the bio-convection phenomenon in
viscous nanofluid comprising variable properties past over a bidirectional stretched surface
engaging an optimal homotopy scheme. They established an error analysis and performed
a comparative study, noting the depreciation in the motile density profile against the Peclet
and Lewis numbers. Sohail and Naz [7] investigated the stretched Sutterby fluid flow in a
cylinder and presented the dynamical survey while considering thermophoresis, Brownian
motion; thermal and concentration relaxation times. They used the polar coordinates to
derive the physical model in the form of coupled partial differential equations systems
(PDEs) and then transformed these into ordinary differential equations systems (ODEs)
by engaging the appropriate similarity transformation while utilizing the approach of
boundary layer theory. Afterwards, converted ODEs were tackled analytically. They moni-
tored the decline in fluid temperature against the Prandtl number and the concentration
was controlled for the higher values of the Schmidt number. Chu et al. [8] examined the
involvement of chemical reaction and activation energy in the nanofluid flow problem.
They solved the resulting equations numerically via a finite element procedure, recording
the decline in the fluid velocity against the magnetic parameter. Hina et al. [9] used a
long wavelength approach to model the pseudo-plastic fluid problem with wall and slip
properties in a curved channel under the peristaltic transport phenomenon. They solved the
boundary value problem numerically and the solution was plotted for different parametric
values in Mathematica 15.0 software; they also examined the symmetric pattern for fluid
velocity against a larger curvature parameter. Salahuddin et al. [10] numerically stimulated
the magnetohydrodynamic (MHD) flow for a pseudo-plastic fluid over a stretching cylinder
with a MHD effect and temperature dependent thermal conductivity. They derived the
physical model into a mathematical form by engaging boundary layer theory. The derived
problem was highly nonlinear in nature and was presented in the form of PDEs. Similarity
transformation was used to simplify the problem and to convert PDEs into ODEs. A nu-
merical solution was obtained via the Keller box scheme, and they recorded the decline in
fluid velocity for higher values of the Weissenberg number. Alam et al. [11] presented a
study on the drainage and lifting MHD pseudo-plastic problem and addressed the exact
solution, finding the decline in velocity against the Stokes number. The phenomenon
of tapering is observed in the peristaltic flow of the pseudo-plastic model with variable
viscosity studied by Hayat et al. [12]. They engaged a perturbation approach to solving the
boundary value problem in the symmetric channel and observed an increase in velocity
against the higher values of the magnetic parameter. Moreover, they plotted streamlines
for different parameters. Further important contributions are reported in [13–15].

The principle behind synthesizing nanofluid composites is to enhance the properties
of a single nanoparticle that possesses either improved thermal conductivity or improved
rheological properties. By framing, nanofluids are made using single nanoparticles which
are useful in developing a greater ability to absorb heat energy and the rheological prop-
erties are improved in various fluids. In a similar way, a composite of nanofluids is most
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significant in view of an improved transfer of thermal energy and rheological properties
in liquids. Composites of nanoparticles are known as nanofluids, while composites of
two or more nanofluids are called hybrid nanoparticles. Composites of three kinds of
nanofluids are known as tri-hybrid nanoparticles. Tri-hybrid nanoparticles are recognized
as the most significant to the betterment of thermal conductivity. Applications of such
composite particles are relevant in the making of electronic heaters, the production of solar
energy, nuclear safety, the pharmaceutical industry, etc.

Tri-hybrid nanoparticles have been studied by various scholars. For example, Man-
junatha et al. [16] discussed the effect of tri-hybrid nanoparticles in energy transfer phe-
nomena considering convective conditions. Nazir et al. [17] studied significant thermal
growth for ternary hybrid nanoparticles as compared to the thermal growth for hybrid
nanofluid and nanoparticles in complex fluid over a heated two-dimensional frame. They
implemented a finite element approach to achieve numerical results. Chen et al. [18] scruti-
nized the thermal properties along with the Ternary hybrid nanostructures in graphene
oxide/graphene and MoS2/zirconia while they found an improvement in the tribiological
and mechanical properties. Zayan, Mohammed et al. [19] investigated novel ternary hy-
brid nanostructures in view of the thermal additives. Shafiq et al. [20] studied Walters’ B
liquid in nanoparticles in view of dual stratification including the stagnation point using
a Riga plate. Swain et al. [21] discussed features related to hybrid nanoparticles in the
presence of a chemical reaction towards a stretching surface including slip conditions.
Mebarek-Oudina et al. [22] performed a useful model study regarding hybrid nanoparti-
cles under magnetic parameter in view of convection heat energy in a trapezoidal cavity.
Warke et al. [23] numerically investigated the stagnation point behavior in the presence of
thermal radiation impact over a heated surface. Dadheech et al. [24] captured the impacts
related to heat energy transfer in the presence of hybrid nanoparticles using the role of
hybrid nanoparticles under a magnetic parameter. Marzougui et al. [25] studied entropy
generation and heat transfer including nanoparticles in a lid-driven cavity under a magnetic
field. Oudina [26] simulated convective heat transfer using a category of nanoparticles
based on titanium nanofluids using heat source terms. Dhif et al. [27] analyzed the role of
hybrid nanofluid in solar collectors. Zamzari et al. [28] discussed the influences of mixed
convection in a vertical heated channel whereby they determined aspects of entropy genera-
tion. Li et al. [29] determined the flow and the thermal characterizations in non-Newtonian
liquid, adding nanoparticles using a non-Fourier approach alongside a Prandtl approach in
the presence of a Darcy–Forchheimer motion. Mehrez et al. [30] investigated the impact
of a magnetic field in ferro-fluid in a heated channel. Khashi’ie et al. [31] discussed the
influences of hybrid nanofluid along with the shape factor while considering thermal
radiation effect. Esfe et al. [32] analyzed the role of non-Newtonian liquid, adding hybrid
nanoparticles to non-Newtonian material using variable viscosity. Mehrez and Cafsi [33]
captured the role of hybrid nanofluid in a heated cavity via a pulsating inlet condition.

A surveying of the available literature shows that no adequate study has been per-
formed involving ternary hybrid nanoparticles. This contribution aims to fill this gap in the
research. A literature survey is covered in Section 1; the modeling is included in Section 2
with attention given to several important physical effects; the computational strategy is
explained in Section 3; the results are analyzed in Sections 4 and 5.

The preparation approach associated with ternary hybrid nanoparticles is captured in
Figure 1.
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Figure 1. A description of the tri-hybrid approach in nanofluids.

2. Description of Constructing Model

The rheology of a two-dimensional heat and mass diffusion transfer model in a pseudo-
plastic liquid past a vertical surface was considered in the presence of a Darcy–Forchheimer
model. A phenomenon associated with Dufour and Soret impacts was analyzed. The base
fluid is assumed as ethylene glycol in a pseudo-plastic liquid inserting three kinds of
nanoparticles (Al2O3, SiO2, and TiO2). The thermal properties of silicon dioxide, ethylene
glycol, aluminum oxide, and tritium dioxide are considered in Table 1. The following
assumptions are detailed below.

• Two-dimensional flow of the pseudo-plastic material is considered;
• Fourier’s law and Fick’s law are assumed;
• Chemical reaction and heat generation are addressed;
• Transfer of heat is characterized in the presence of the Dufour and Soret effects;
• Viscous dissipation is removed;
• Darcy–Forchheimer porous theory is analyzed, and the vertical surface is plotted in

Figure 2.

Table 1. Thermal properties [34] of density, electrical conductivity, and thermal conductivity.

K (Thermal
Conductivity)

σ (Electrical
Conductivity) ρ (Density)

C2H6O2 0.253 4.3× 10−5 1113.5

Al2O3 32.9 5.96× 107 6310

TiO2 8.953 2.4× 106 4250

SiO2 1.4013 3.5× 106 2270

The power law model associated with shear stress is defined as:

τxy = −n

(∣∣∣∣
∂u
∂y

∣∣∣∣
m−1

)
∂u
∂y

. (1)
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Figure 2. Illustration of the geometry of the current analysis.

Equation (1) is known as the power law model regarding the shear stress of pseudo-
plastic liquid. The fluids category is based on the numerical values of m. The present model
becomes a Newtonian fluid model when m = 1 while the present model can be converted
into a dilatant fluid mode when m > 1, and the present model becomes a pseudo-plastic
liquid model when 0 < m < 1.

Boundary layer approximations are used to derive a system of PDEs on conservations
laws regarding momentum, thermal energy, and mass diffusion. The present model is
considered in terms of two-dimensional flow as well as steady and incompressible flow.
The modeled PDEs (partial differential equations) are deduced Refs. [35–37] as:

∂u
∂x

+
∂v
∂y

= 0, (2)

u
∂u
∂x

+ v
∂v
∂y

= νtehn f
∂

∂x

(∣∣∣∣
∂u
∂y

∣∣∣∣
m−1 ∂u

∂y

)
−

νtehn f

ks FDu− FD

(ks)
1
2

u2 + gα(T − T∞) + gβ(C− C∞), (3)

u
∂T
∂x

+ v
∂T
∂y

=
Ktehn f

(ρCP)tehn f

∂2T
∂y2 +

Q(T − T∞)

(ρCP)tehn f
+

ktDtehn f

(CP) f Cs

∂2C
∂2y

+
µtehn f

(ρCP)tehn f

∣∣∣∣
∂u
∂y

∣∣∣∣
m+1

, (4)

u
∂C
∂x

+ v
∂C
∂y

= Dtehn f
∂2C
∂y2 +

ktDtehn f

TM

∂2T
∂y2 − K(C− C∞). (5)

Equation (2) is a continuity equation for two-dimensional flows as well as steady and
incompressible flows. Equation (3) is termed as a momentum equation in the presence of
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pseudo-plastic liquid inserting correlations of tri-hybrid nanoparticles using bouncy forces,
while Equations (4) and (5) are concentration and thermal energy equations including the
effects of the chemical reaction; viscous dissipation; heat source; the Dufour and Soret
influences. In Equation (3), the terms on the left-hand side are known as the inertial force,
the first term on the right-hand side is the viscous force in the presence of pseudo-plastic
liquid, whereas the last two terms on the right-hand side of Equation (3) are due bouncy
forces and the two middle terms on the right-hand side of Equation (3) are modeled on
Darcy–Forchheimer law. Terms on the left-hand side of Equation (4) are convection terms
in heat transfer phenomena, the first term on the right-hand side is a conduction term in
heat transfer phenomena, the second term on the right-hand side of Equation (4) occurs
due to the heat source, while the third and last terms on the right-hand side of Equation (4)
are formulated based on the effects of Soret and viscous dissipation. The second term
on the right-hand side of Equation (5) is the Dufour effect, the last term on right-hand
side signifies a chemical reaction, the first term on the right-hand side and the terms on
the left-hand side occur due to the diffusion of mass species in view of convection and of
conduction, respectively.

The desired (boundary conditions) BCs are:

u = uw, v = −vw, C = Cw, T = Tw at y = 0, u→ u∞, C → C∞, T → T∞ when y→ ∞. (6)

Transformations are defined as:

θ =
T − T∞

Tw − T∞
, θ =

C− C∞

Cw − C∞
, ξ = y

(
U2−m

xν f

) 1
m+1

, Ψ = F
(

xν f U2m−1
) 1

m+1 . (7)

Dimensionless ODEs are formulated via defined transformations:
(
|F′′ |m−1F′′

)′
+

1
m + 1

F′′ F− εF′ −
ν f

νtehn f
FR

(
F′2
)
+

ν f

νtehn f
[λnθ + λMφ] = 0, (8)

θ′′ +
Pr

m + 1
Fθ′ +

k f
(
ρCp

)
tehn f

ktehn f
(
ρCp

)
f

PrEc|F′′ |m+1 +
k f
(
ρCp

)
tehn f

ktehn f
(
ρCp

)
f

PrD f φ′′ +
k f

ktehn f
HhPrθ = 0, (9)

φ′′ +
(1− ϕb)

−2.5Sc

(1− ϕc)
2.5m + 1(1− ϕa)

2.5 Fφ′ − (1− ϕb)
−2.5Sc

(1− ϕa)
2.5(1− ϕc)

2.5 Kcφ + ScSrθ′′ = 0. (10)

Defined correlations in the motion of tri-hybrid nanoparticles are [34]:

ρtehn f = (1− ϕa)
{
(1− ϕb)

[
(1− ϕc)ρ f + ϕcρ3

]
+ ϕbρ2

}
+ ϕcρ1, (11)

µ f

(1− ϕa)
2.5(1− ϕb)

2.5(1− ϕc)
2.5 ,

Kten f

Kn f
=

K2 + 2Kn f − 2ϕa

(
Kn f − K2

)

K2 + 2Kn f + ϕb

(
Kn f − K2

) , (12)

Ktehn f

Khn f
=

K1 + 2Khn f − 2ϕa

(
Khn f − K1

)

K1 + 2Khn f + ϕa

(
Khn f − K1

) ,
Kn f

K f
=

K3 + 2K f − 2ϕc

(
K f − K3

)

K3 + 2K f + ϕc

(
K f − K3

) , (13)

σten f

σhn f
=

σ1(1 + 2ϕa)− ϕhn f (1− 2ϕa)

σ1(1− ϕa) + σhn f (1 + ϕa)
,

σhn f

σn f
=

σ2(1 + 2ϕb) + ϕn f (1− 2ϕb)

σ2(1− ϕb) + σn f (1 + ϕb)
, (14)

σn f

σf
=

σ3(1 + 2ϕc) + ϕ f (1− 2ϕc)

σ3(1− ϕc) + σf (1 + ϕc)
. (15)

ρtehn f = (1− ϕa)
{
(1− ϕb)

[
(1− ϕc)ρ f + ϕcρ3

]
+ ϕbρ2

}
+ ϕcρ1, (16)
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µ f

(1− ϕa)
2.5(1− ϕb)

2.5(1− ϕc)
2.5 ,

Kten f

Kn f
=

K2 + 2Kn f − 2ϕa

(
Kn f − K2

)

K2 + 2Kn f + ϕb

(
Kn f − K2

) , (17)

Ktehn f

Khn f
=

K1 + 2Khn f − 2ϕa

(
Khn f − K1

)

K1 + 2Khn f + ϕa

(
Khn f − K1

) ,
Kn f

K f
=

K3 + 2K f − 2ϕc

(
K f − K3

)

K3 + 2K f + ϕc

(
K f − K3

) , (18)

σten f

σhn f
=

σ1(1 + 2ϕa)− ϕhn f (1− 2ϕa)

σ1(1− ϕa) + σhn f (1 + ϕa)
,

σhn f

σn f
=

σ2(1 + 2ϕb) + ϕn f (1− 2ϕb)

σ2(1− ϕb) + σn f (1 + ϕb)
, (19)

σn f

σf
=

σ3(1 + 2ϕc) + ϕ f (1− 2ϕc)

σ3(1− ϕc) + σf (1 + ϕc)
. (20)

The surface force at the surface of the wall is:

C f = −
τw

U2ρ f
, τw =

(
∂u
∂y

∣∣∣∣
∂u
∂y

∣∣∣∣
m−1

)
, (21)

Using the value of τw in Equation (21) and:

C f = −

(
∂u
∂y

∣∣∣ ∂u
∂y

∣∣∣
m−1

)

y=0

U2ρ f
, (22)

Implementing the value of ∂u
∂y in Equations (1) and (22) becomes:

(Re)
1

m+1 C f = −
(1− ϕb)

−2.5

(1− ϕa)
2.5(1− ϕc)

2.5

[
F′′ (0)|F′′ (0)|m−1

]
. (23)

Nusselt number (Nu) is modeled as:

Nu =
xQw

(Tw − T∞)k f
, Qw = −KThn f

(
∂T
∂y

)
, (24)

Using the value of Qw, we get

Nu =
−xKThn f

(
∂T
∂y

)
y=0

(Tw − T∞)k f
, (Re)

−1
m+1 Nu = −

KThn f

k f
θ′(0). (25)

The rate of mass diffusion is:

Sc =
xMw

(Cw − C∞)D f
, Mw = −DThn f

(
∂C
∂y

)
, (26)

Now, Equation (26) is reduced as

Sc =
−xDThn f

(
∂C
∂y

)
y=0

(Cw − C∞)D f
, (27)

(Re)
−1

m+1 Sc = − (1− φb)
−2.5

(1− φa)
2.5(1− φb)

2.5 φ′(0). (28)
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3. Numerical Scheme

The current model’s associated boundary conditions were numerically simulated
with the help of a finite element algorithm. The concept upon which the finite element
method rests is the division of the required domain into elements (finite). FES (finite element
scheme) [8,17] is discussed here. The flow chart of the finite element algorithm is mentioned
in Figure 3. This approach has been used in several computational fluid dynamics (CFD)
problems; the advantages of using this kind of approach are mentioned below.

â Complex type geometries are easily tackled using the finite element method;
â Physical problems in applied science are numerically solved by finite element formu-

lation (FEM);
â FEM needs a low level of investment in view of time and resources;
â An important role of FEM is to simulate various types of boundary conditions;
â It has the ability to perform discretization regarding derivatives.
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3.1. Domain Discretization

Firstly, the domain was discretized into small numbers of elements, whereas the
approximation solution was made using the concept of the division of elements. This
obtained approximation solution is assumed as a linear polynomial.

3.2. Choice of Shape Function

The shape function plays a vital role in developing the approximation solution along
with the nodal value. The nodal value and the shape function for the solution of the current
model are defined as:

F = ∑ll
j=1 ΨnFn, Ψn = (−1)n−1 ξn+1 − ξ

ξn+1 − ξp
, here n = 1, 2. (29)
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3.3. Residuals

Observe that the present model is known as a strong form model, whereas weak form
models are made via the approach related to GFE (Galerkin finite element). The residual is:

∫

Ω
(ΨaR)dΩ. (30)

3.4. Assembly Approach

The concept of an assembly approach is implemented in the development of a global
stiffness matrix and stiffness matrices. The linearization of algebraic equations is accom-
plished via the Picard linearization approach.

3.5. Testing of Error Analysis and Mesh Free Analysis

The error analysis of the current investigation is addressed as:

Max
∣∣∣Ωr

i −Ωr−1
i

∣∣∣ < 10−8. (31)

The convergence of problem is ensured within 300 elements. Table 2 captures the
convergence of problem.

Table 2. Grid-independent analyses of concentration, temperature, and velocity at mid of 270 elements.

Number of Elements F
′
( ξmax

2 ) θ( ξmax
2 ) φ( ξmax

2 )

30 0.01780117292 0.2638819583 0.1043559742

60 0.02008198265 0.2370957263 0.09636478785

90 0.02028786930 0.2277953868 0.09382548703

120 0.02030867335 0.2231793011 0.09257835690

150 0.02029805160 0.2204312762 0.09183716567

180 0.02028205279 0.2186104527 0.09134595367

210 0.02026649287 0.2173159996 0.09099653209

240 0.02025264615 0.2163487639 0.09073525408

270 0.02024062141 0.2155986751 0.09053255564

3.6. Validation of Numerical Results

Table 3 depicts the validation of simulations against already published numerical
values [35–37]. Observe that the present flow model is reduced into flow models [35–37]
by implementing the values of ϕa = ϕb = ϕc = 0, Fr = ε = λn = λm = 0 into the current
model. So, we have found that there is good agreement between the simulations and
previously published works.

Table 3. Validation of the numerical results for skin friction coefficient by considering:
ϕa = ϕb = ϕc = 0, Fr = ε = λn = λm = 0.

Skin Friction Coefficient Present Work
Skin Friction Coefficient

Sakiadis [35] −0.44375 −0.442735

Fox et al. [36] −0.4437 −0.443639

Chen [37] −0.4438 −0.442837

4. Results and Discussion

The development of the desired model was carried out under the effects of the Soret
and Dufour models in a pseudo-plastic material over a vertical frame in the presence of
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heat energy and mass species transport. A chemical reaction occurred and dual behavior
was addressed relating to heat generation and heat absorption. A mixture of silicon dioxide,
aluminum oxide, and titanium oxide in ethylene glycol was considered for analysis of the
heat energy and mass species characteristics versus the physical parameters. A detailed
discussion of the various parameters is illustrated below.

4.1. Analysis Related to Motion into Particles

The effect of bouncy force on the flow analysis, an effect of (Fr) Forchheimer (m)
power law, is addressed in Figures 4–7. Figure 4 addresses the motion into particles by
applying the influence of Fr. We observed that the motion of particles became reduced
versus the impact of Fr. A mixture of silicon dioxide, aluminum oxide, and titanium oxide in
ethylene glycol was inserted during the flow of particles. The frictional force became higher
when Fr was increased. In view of layers, layers regarding momentum at the boundary
were decreased versus the impact of Fr. Therefore, the fluid became thinner in the case
of increasing values for Fr. A Forchheimer number was also used for the declination into
motion of the fluid particles. It was the most significant in reducing the momentum layers.
Physically, it was the ratio of the pressure reduction into fluid particles which was based
on inertia and resistance. So, a higher Forchheimer number created a resistance force
among the boundary layers of the fluid particles. The role of power law number is visually
represented in the motion of particles considered in Figure 6. The behavior of the fluid
was based on the values of power law number. It can be observed that the motion was
slowed by applying a variation of power law number. Shear thinning, shear thickening,
and fluids category were based on values of power law number. For m = 0, fluid became
Newtonian. So, fluid motion in the case of Newtonian fluid was dominated when compared
to non-Newtonian fluid. MBLs associated within momentum were decreased versus the
investigation of power law number. The layers became thick versus the impact of power
law number. A power law parameter was used significantly to produce a frictional force
among the fluid layers. So, frictional force caused a declination in the flow regarding
nanoparticles. Further, layers associated with momentum decreased in function against the
values of power law number. The effect of buoyancy forces was created due to a vertical
heated sheet. The effects related to buoyancy forces on the flow analysis are observed
in Figures 5 and 7. Figure 4 details the relation between motion particles and λN . This
occurred due to the effect of temperature gradient on the flow analysis. Argumentation
related to the motion of particles was boosted when λN was increased. In the case of λN ,
MBLs were also inclined versus an effect of λN . An impact of λM was produced due to the
effect of a concentration gradient on the flow. However, in this case, the motion regarding
particles slowed. A bouncy parameter was generated due to the use of a vertical surface,
which was the reason for producing a bouncy parameter. In this case, a gravitational force
was placed on the surfaces via perpendicular direction. The direction of the gravitational
force and the flow direction were observed as being opposite. Therefore, flow is slowed
versus the impact of a bouncy number.

4.2. Analysis Related to Thermal Energy into Particles

The effects of Eckert number, the heat generation/heat absorption numbers, and of
Dufour number on thermal energy are observed in Figures 8–10. A mixture of silicon
dioxide, aluminum oxide, and titanium oxide was inserted into ethylene glycol. Figure 8
illustrates the impact of the Eckert number on thermal energy curves inserting ternary
hybrid nanoparticles. In this case, heat energy is inclined versus the Eckert number. This
inclined impact on temperature curves occurred due to the existence of viscous dissipation.
Note that the term regarding viscous dissipation has also been recognized in previously
completed work on particles. So, the increase in the viscous dissipation was based on
previously completed work. Hence, the work done was increased for the enhancement of
particles. Therefore, particles absorb more heat energy when the Eckert number is increased.
Thermal layers were based on the viscous dissipation. Higher viscous dissipation created
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more thermal layers. Hence the increasing function was investigated among the thermal
layers and the Eckert number. Figure 9 predicts a dual role regarding heat phenomena.
The roles of heat phenomena are known as heat generation and heat absorption, while
these behaviors are based on the numerical values of hs. Negative numerical values are
due to heat absorption, whereas positive numerical values are due to heat generation.
Heat energy is boosted when hs is increased because the external source is adjusted at
the boundary of the surface. So, due to an external source, heat energy is augmented.
The description of the effects of the Dufour number on the thermal layers is illustrated in
Figure 10. Heat energy is observed as increasing the function against the variation of the
Dufour number. Fluid particles absorb more heat energy in the case of the Dufour number.
The comparative investigation between the effects of hybrid nanoparticles, nanostructures,
and tri-hybrid nanoparticles on heat energy is considered in Figure 10. A mixture of
silicon dioxide, aluminum oxide, and titanium oxide is known as tri-hybrid nanoparticles
and a mixture of silicon dioxide and aluminum oxide is known as hybrid nanoparticles,
whereas ethylene glycol is the base liquid. In Figure 10, a solid line indicates a tri-hybrid,
a dotted line is used for plotting hybrid nanostructures whereas a dashed line is used for
nanofluid and a dash-dot line is generated to indicate fluid. We observed that tri-hybrid
nanoparticles absorbed maximum heat energy rather than hybrid nanoparticles, fluid,
or nanofluid. Hence, tri-hybrid nanoparticles were observed to have more significance for
the development and the maximization of heat energy.
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4.3. Analysis Related to Mass Species

The variations related to the Soret number, Schmidt number, chemical reaction and
bouncy force in mass species are captured in Figures 11–14. The effect of a Soret number on
curves related to the concentration is visualized in Figure 11. Mass species are increased
against the distribution in the Soret number. Figure 12 depicts the impact of Bouncy force
on mass species. A reduction in mass species versus the distribution in bouncy force
was noticed. Figure 13 captures the behavior of the Schmidt number in mass species.
The concentration of particles was decreased when Sc was inclined. Physically, Sc is
the ratio for mass diffusivity and kinematic viscosity. In view of the physical properties,
kinematic viscosity of fluid particles is inclined versus the impact of Sc. However, mass
diffusivity is declined against the variation in Sc. Concentration layers have a decreasing
function versus the role of Sc. The role of Kc on the concentration is estimated in Figure 14,
including ternary hybrid nanostructures. The dual character of the chemical reaction on
the concentration is observed. Two types of reactions based on destructive and generative
reactions were addressed for this case. These reactions were based on the values of Kc
while the negative values were due to a destructive reaction and the positive values were
due to a generative chemical reaction. For both types of reactions, the concentration into
particles was declined. Further, the concentration for a destructive reaction was higher
than the concentration for a generative reaction.
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5. Conclusions

A finite element scheme was engaged for handling the modelled physical problem
which was past over a stretching sheet containing a mixture of nanoparticles in a pseudo-
plastic material under the Soret and Dufour effects. Several important plots were displayed
to capture the features of different parameters involved in the fluid velocity, temperature,
and concentration fields. Important findings are listed below:

• Confirmation of convergence analysis occurred at 270 elements.
• Forchheimer number, power law number, and λM caused a decline in the thickness of

the momentum boundary layer. However, an increment was investigated in the flow
versus argument values of the bouncy parameter (λn).

• Temperature distribution was maximized versus higher impacts of the Eckert number,
heat generation, and the Dufour number while the thickness associated with thermal
layers was increased.

• The concentration field was decreased against the argument values of the Schmidt
number, chemical reaction number, and bouncy number, whereas the concentration
field was enhanced against higher values of the Dufour number.

• The approach of utilizing ternary hybrid nanoparticles was found to be a significant
factor in obtaining maximum thermal energy.
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Nomenclature

Symbols Used for Symbols Used for
(v, u) Velocity components

(
ms−1) ν Kinematic viscously

(
m2s−1)

y, x Space coordinates (m) T Temperature (K)
m Power law number ρ Fluid density

(
Kgm−3)

g Gravitational acceleration
(
ms−2) K Thermal conductivity

(
Wm−1)

C Mass concentration
(
Kgm−3) C∞ Ambient concentration

(
Kgm−3)

T∞ Ambient temperature (K) µ Fluid viscosity
(
Kgm−1s−1)

Q Heat source
(
JKs−1m−3) Cp Specific heat capacitance

(
JKg−1m−3)

D Mass diffusion
(
m2s−1) BCs Boundary conditions

Tw Wall temperature (K) Cw Wall concentration
(
Kgm−3)

ξ Independent variable ODEs Ordinary differential equations
F Dimensionless velocity θ Dimensionless temperature
φ Dimensionless concentration ϕ Volume fraction
ε Porosity number λn Bouncy number
λm Bouncy number Pr Prandtl number
Ec Eckert number D f Dufour number
Hh Heat generation number Sc Schmidt number
Kc Chemical reaction number Sr Soret number
C f Skin friction coefficient Nu Nusselt number
tehn f Tri-hybrid nanoparticles Re Reynolds number
CFD Computational fluid dynamics FES Finite element approach
∞ Infinity σ Electrical conductivity

(
sm−1)

ϕa, ϕb,
Volume fractions R Residual function

ϕc
Ψa Shape function Qw Heat flux
m Consistency coefficient τxxy Shear stress
F Dimensionless velocity field hn f Hybrid nanofluid
n f Nanofluid tehn f Tri-hybrid nanoparticles
f Fluid a, b, c,

Subscripts regarding nanoparticles
1, 2, 3
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Abstract: Engineers, scientists and mathematicians are greatly concerned about the thermal sta-
bility/instability of any physical system. Current contemplation discusses the role of the Soret
and Dufour effects in hydro-magnetized Carreau–Yasuda liquid passed over a permeable stretched
surface. Several important effects were considered while modelling the thermal transport, including
Joule heating, viscous dissipation, and heat generation/absorption. Mass transportation is presented
in the presence of a chemical reaction. Different nanoparticle types were mixed in the Carreau–Yasuda
liquid in order to study thermal performance. Initially, governing laws were modelled in the form
of PDEs. Suitable transformation was engaged for conversion into ODEs and then the resulting
ODEs were handled via FEM (Finite Element Method). Grid independent analysis was performed
to determine the effectiveness of the chosen methodology. Several important physical effects were
explored by augmenting the values of the influential parameters. Heat and mass transfer rates were
computed against different parameters and discussed in detail.

Keywords: viscous dissipation; chemical reaction; finite element procedure; hybrid nanoparticles;
heat and mass transfer rates; joule heating

1. Introduction

The mechanism of transport phenomenon in different materials has received reason-
able attention recently due to its wider applications in industry and different medical
processes. Several important materials exist for the support of these mechanisms. Due
to their different characteristics, these materials cannot be explained through one consti-
tutive relation. Carreau–Yasuda is one such important material which has the following
constitute relation.

For Y = 0 or n = 1, the Newtonian model is recovered. This model predicts the
relation of shear stress with frequency. Several important contributions have been made by

ηCY
( .
γ
)
= µ∞ + (µ0 − µ∞)

[
1 +

(
Y

.
γ
)d
] n−1

d . (1)

considering this material. For example, Zare et al. [1] discussed this model by experimen-
tally considering the complex viscosity relationship. In their investigation, they found
an excellent settlement of frequency data. They considered the involvement of carbon
nanotubes in the mixture of Carreau–Yasuda material. Kayani et el. [2] reported on the
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behavior of wall properties on the peristaltic flow of the Carreau–Yasuda model in a sinu-
soidal channel by considering the Hall effect. Governing laws for the transport of species,
heat and momentum were modeled under the low-Reynolds-number assumption along
with the long wavelength approach. After implementing the scaling group transformation,
the transformed problem was approximated numerically via the ND-Solve tool in the
MATHEMATICA 15.0 symbolic package. The authors conducted a parametric analysis
and their findings were shown in several graphs. They noticed a decline in the thermal
field for the Biot number and recorded an enhancement in the mounting values of the
Brinkman number. The unsteady rheology of the Carreau–Yasuda material in a circular
tube was examined by Rana and Murthy [3]. In their investigation, they reported the wall
absorption effect. They retrieved different flow behavior cases by considering different
values of material parameters. Sochi [4] presented the modelling of Cross and Carreau
liquid through a circular pipe. Analytical and numerical schemes were jointly implemented
for the solution of flow equations and an excellent settlement was monitored. The rheology
of the Carreau–Yasuda model in a cavity at high-Reynolds-number was examined by
Shamekhi and Aliabadi [5] via the mesh-free algorithm. The phenomenon of blood flow
via the Carreau–Yasuda model was reported by Jahangiri [6] through the FEM package.

The involvement of nanoparticles enhanced the thermal performance and heat trans-
portation rate. Several models of the nanomaterials are available and frequently used
to study the thermal performance of different materials. Several researchers have paid
attention to these materials due to their wider applications and usage. For instance, Gorla
and Gireesha [7] developed the modeling of steady viscoelastic material with convec-
tive heat transport. The Buongiorno model is utilized to capture the characteristics of
Brownian diffusion and thermophoresis. Modelling of heat transport is carried out by
considering thermal radiation and heat generation. They solved boundary layer equa-
tions via a shooting procedure in the MATLAB symbolic package. The impact of several
pertinent parameters were displayed through graphs, and tabular results were prepared
to demonstrate the effectiveness and applicability of the shooting scheme for a large set
of nonlinear data arising in the mechanical engineering problem. Muhammad et al. [8]
modelled the squeezed flow of a viscous nanofluid with an updated mass and heat fluxes
between parallel plates and handled the resulting expressions analytically via the OHAM
in MATHEMATICA 15.0 computational tool. They noticed the enhancement in fluid ve-
locity for the larger squeezing parameter. Rashid et al. [9] presented the exact solution of
a water-based mixture of aligned nanoparticle materials under the radiation effect. They
recorded the depreciation in heat transfer rate against the radiation and slip parameter. The
double stratification phenomenon in the buoyancy-driven flow of a micro-polar viscous
nanofluid was examined by Ramzan et al. [10]. They analyzed the depreciation in velocity
for the buoyancy parameter and an enhancement was recorded against the micro-polar
parameter. Hezma et al. [11] studied the behavior of SWCNTs in order to investigate
the mechanical properties of polyvinyl chloride. Upadhay and Raju [12] examined the
inclusion of dust particles in Eyring–Powell material over a stretched sheet. They studied
the thermal and mass transport in dusty Eyring–Powell nanofluid by engaging the revised
definitions of mass and heat fluxes. They found the numerical solutions for nonlinear
modeled equations via the shooting scheme. Several important pieces of research on the
transport phenomenon are reported in [13–17] and the references therein. Nazir et al. [18]
studied comparison analysis among hybrid nanoparticles and nanoparticles in hyperbolic
tangent liquid past a stretching surface. They adopted a finite element approach to conduct
numerical results. Chu et al. [19] modeled correlations between nanoparticles and hybrid
nanoparticles, considering activation energy and chemical reaction. They noticed thermal
aspects past a parabolic surface using a finite element scheme. Cui et al. [20] simulated
effects related to radius and roughness of inserting nanoparticles. Awais et al. [21] applied
the KKL model in the transfer of energy using nanoparticles. Nazir et al. [22] discussed
the numerical results of the Carreau–Yasuda liquid in heat/energy considering the hybrid
nanoparticles and nanomaterials, numerically solved by the finite element approach.
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In the above cited literature, no study deals with the combined behavior of the
following: mass, heat transport in hydro-magnetized Carreau–Yasuda material using Joule
heating, viscous dissipation, heat generation, chemical reaction and the Soret and Dufour
influences in the Darcy–Forchheimer porous stretching sheet. This report fills the gap in
this discussion and should be used as a foundation for researchers to work further on
this model. The inclusion of nanoparticles in the Carreau–Yasuda material is attractive to
researchers. Organization of this research is divided in the following way: the literature
survey is reported in Section 1, modelling with important physical assumptions are covered
in Section 2, Section 3 covers a detailed description of the finite element procedure with
a grid independent survey, a detailed description of the solution and the influence of
several emerging parameters are explained in Section 4 and important findings of the
reported study are listed in Section 5. Figure 1 reveals the division of the base fluids,
hybrid nanoparticles and nanoparticles. In this Figure, Ag, Cu, Al2O3, Ni and MoS2 are
known as nanoparticles whereas H2O, ethylene glycol and oils are called base fluids. In
this current analysis, ethylene glycol is considered as a base fluid. Mixtures of MoS2 and
SiO2 are hybrid nanoparticles.
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2. Development of the Flow Model

An enhancement in the thermal and solute performance of Carreau–Yasuda rheology,
inserting the impact of nanoparticles and hybrid nanoparticles, is considered as shown
in Figure 1. The flow runs towards the stretching surface under the action of a constant
magnetic field. Heat takes place due to Joule heating and viscous dissipation. The Soret
and Dufour influences are captured with heat generation and chemical reaction. Forch-
heimer’s porous theory is imposed in the transport phenomenon. The geometrical flow
diagram is considered in Figure 2 and the thermal properties of the nanoparticles are
shown in Figure 3.

The non-linear PDEs are developed according to the physical happenings and the
boundary layer approximations.

∂ũ
∂x

+
∂ṽ
∂y

= 0, (2)
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ũ
∂ũ
∂x

+ ṽ
∂ũ
∂y

+
νhn f

ka Fsũ +
Fs

(ka)1/2 (ũ)
2 = νhn f

[
∂2ũ
∂y2 + (Λ)d

(
m− 1

d

)
(d + 1)

∂2ũ
∂y2

(
∂ũ
∂y

)d
]

(3)

−
B2

0σhn f

ρhn f
ũ sin2 α, (4)

ũ
∂T̃
∂x

+ ṽ
∂T̃
∂y
− Q(

ρCp
)

hn f

(
T̃ − T∞

)
−

Dhn f kT(
Cp
)

f Cs

∂2C̃
∂y2 =

khn f(
ρCp

)
hn f

∂2T̃
∂y2 +

B2
0σhn f(

ρCp
)

hn f
sin2 α(ũ)2 (5)

+
µhn f(

ρCp
)

hn f

[
(Λ)d

(
m− 1

d

)(
∂ũ
∂y

)d
](

∂ũ
∂y

)2
, (6)

ũ
∂C̃
∂x

+ ṽ
∂C̃
∂y

= Dhn f
∂2C̃
∂y2 − k0

(
C̃− C∞

)
+

Dhn f kT

Tm

∂2T̃
∂y2 , (7)

where (ũ, ṽ) is velocity componets, space coordinates are (x, y), kinamtic viscosity is ν,
Fs is inertia cofficient (porous medium), permeability (porou medium) is ka, power law
index number is m, time constant is Λ, magnetic induction is B0, electrical conductivity
is σ, temprature is T̃, C̃ is the concentration, heat source is Q, T∞ is ambient temprature,
fluid density is ρ, C̃ is concentarion, mass diffusion is D, Tm is fluid mean temprature, kT is
thermal diffusion, Cs is concentration susceptibility and k0 is chemical reaction number.

The no-slip theory provides the required boundary conditions of the current model:

ũ = ax, ṽ = 0, C̃ = Cw, T̃ = Tw : y = 0,

ũ→ 0, C̃ → C∞, T̃ → T∞ : y→ ∞. (8)

Change in variables is constructed as:

ũ = axF′, ṽ = −
(

aν f

) 1
2 F, ξ =

(
a

ν f

) 1
2

y, (9)

θ(Tw − T∞) = T̃ − T∞, (Cw − C∞)φ = C̃− C∞. (10)

Transformations are used in Equations (1)–(5) and the system of non-linear PDEs are
converted to following ODEs

Fξξξ + (We)d (m−1)(d+1)
d Fξξξ

(
Fξξ

)d
+ A1

(
FFξξ − F2

ξ

)
− εFξ − A1Fr

(
Fξ

)2

−A2M2 sin2 αFξ = 0,
F(0) = 0, Fξ(0) = 1, Fξ(∞) = 1,





, (11)

θξξ + A3PrFθξ + A4Hsθ + A4M2Ec sin2 α
(

Fξ

)2
+ A5PrEC

[
1 + (We)d (m−1)

d
(

Fξξ

)d
](

Fξξ

)2

+A4 A6PrD f φξξ = 0,
θ(0) = 1, θ(∞) = 0,





, (12)

ϕξξ + Sc
(1−φ2)

2.5(1−φ1)
2.5 Fϕξ − KcSc

(1−φ2)
2.5(1−φ1)

2.5 ϕ + ScSrθξξ = 0,

ϕ(0) = 1, ϕ(∞) = 0,

}
. (13)

Here, A1, A2, A3, A4, A5 and H1 are involved parameters (representing the cor-
relation of nanoparticles and hybrid nanostructures) in the above equations which are
defined as

A1 = (1− φ1)
2.5(1− φ2)

2.5

[
(1− φ2)

{
(1− φ1) + φ1

ρs1

ρ f

}]
+ φ2

ρs2

ρ f
, (14)
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A2 = (1− φ1)
2.5(1− φ2)

2.5, A4 =
k f

khn f
, A5 =

k f

(1− φ1)
2.5(1− φ2)

2.5khn f
, (15)

A3 = A4

[
(1− φ2)

{
(1− φ1) + φ1

(
ρCp

)
s1(

ρCp
)

f

}]
+ φ1

(
ρCp

)
s2(

ρCp
)

f
, (16)

A6 = (1− φ1)
2.5(1− φ2)

2.5

[
(1− φ2)

{
(1− φ1) + φ1

(
ρCp

)
s1(

ρCp
)

f

}]
+ φ1

(
ρCp

)
s2(

ρCp
)

f
, (17)

khn f

kb f
=





ks2 + (n− 1)kb f − (n− 1)φ2

(
kb f − ks2

)

ks2 + (n− 1)kb f − φ2

(
kb f − ks2

)



. (18)

Figure 3 demonstrates the thermal properties of density, electrical conductivity, ther-
mal conductivity and specific heat capacitance for ethylene glycol, MoS2/SiO2 and MoS2.
Density of C2H6O2 is 1113.5, density of MoS2 is 2650, density of MoS2/SiO2 is 5060,
thermal conductivity of C2H6O2 is 0.253, thermal conductivity of MoS2 is 1.5, thermal
conductivity of MoS2/SiO2 is 34.5, electrical conductivity of MoS2 is 0.0005, electrical
conductivity of C2H6O2 is 4.3× 10−5, electrical conductivity of MoS2/SiO2 is 1× 10−18,
Cp of C2H6O2 is 2430, Cp of MoS2 is 730 and Cp of MoS2/SiO2 is 397.746, respectively.

Here, the Weissenberg number is We =
(

Λxa3/2

(ν f )
1/2

)
, the magnetic number is M2

(
=

B2
0σf

aρ f

)
,

the porosity number is ε
(
=

Fsν f
a

)
, the Forchheimer number is Fr =

(
xFs√

k∗

)
, the Prandtl

number is Pr
(
=

µ f (cp) f
k f

)
, the Eckert number is Ec

(
= (Uw)

2

(Tw−T∞)(cp) f

)
, the heat genera-

tion number is Hs

(
= Q

aρ f (cp) f

)
, the Schmidt number is Sc

(
=

ν f
D f

)
, the chemical reaction

number is Kc

(
kc
a

)
, the Dufour number is D f

(
=

(Cw−C∞)D f kt

Caν f (cp) f

)
and the Soret number is

Sr
(
=

D f (Tw−T∞)kt
ν f (Cw−C∞)Tm

)
. The surface force in attendance of the Carreau–Yasuda liquid at the

wall of the melting surface is

(Re)
1
2 C f =

−1

(1− φ1)
2.5(1− φ2)

2.5

[
1 +

m− 1
d

(
WeFξξ(0)

)2
]

Fξξ(0), (19)

The temperature gradient because of the nano and hybrid nanoparticles is

Nu =
xQw

k f (T − T∞)
, Qw = −khn f

∂T
∂y

, (20)

(Re)−1/2Nu =
−khn f

k f
θξ(0). (21)

Concentration gradient at the surface of the melting sheet is

Sh =
xlm(

C̃w − C̃∞

)
Dhn f

, lm = −Dhn f
∂C̃
∂y
|y=0, (Re)−

1
2 Sh = − ϕ′(0)

(1− φ1)
2.5(1− φ2)

2.5 , (22)

The local Reynolds number is Re = ax2

ν f
.
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3. Numerical Approach and Convergence Analysis

The finite element method is an effective method in the view of accuracy and the
convergence of a problem compared with other numerical approaches. There are many
advantages to FEM but some are discussed here:

â FEM has the ability to handle various complex geometries;
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â This numerical method is thought to be most significant in solving physical problems
with wide ranges;

â FEM requires less investment in the view of time and resources;
â A main advantage of FEM is its handling of various types of boundary conditions and
â It has a good ability with regards to the discretization (of derivative) problems into

small elements;
â The Working scheme of finite element method has been shown with the help of

Figure 4.

The numerical approach called finite element scheme is used to simulate the numer-
ical results of highly non-linear PDEs and numerous applications of FEM are found in
CFD (computational fluid dynamics) problems. The FEM approach is explained in the
following steps:

Step I: The division of a problem domain into a finite number of elements and residu-
als. The weak form is captured from the strong form due to residuals. The approximation
result is simulated using shape functions and the approximation simulations of the vari-
ables are:

H =
2

∑
l=1

(
Hlωj

)
, F =

2

∑
l=1

(
Flωj

)
, θ =

2

∑
l=1

(
θlωj

)
, φ =

2

∑
l=1

(
φlωj

)
. (23)

Here Fξ is H and the shape function is defined as:

ωj = (−1)l−1
1− ξ

ξl−1

1− ξl
ξl−1

, l = 1, 2. (24)

Step II: In this step, the matrices are stiffness, vector and boundary (integral vector).
The global stiffness (matrix) is obtained whereas the Picard (linearization approach) is
utilized to obtain a linear system of equations that are defined as:

H =
2

∑
l=1

ωHl , F =
2

∑
l=1

ωFl . (25)

Here Fl and Hl are variables (nodal values).
Step III: The algebraic equations (non-linear) resulting from the assembly process are:

Mat(F, H, θ, φ)




F
θ
φ


 = (F), (26)

where (Mat) is the global stiffness matrix, (F) is the force vector and the nodal values

(variables) are




F
θ
φ


. The Equation (18) related to the residual form is

(R) =
[

M
(

F(r−1), H(r−1), θ(r−1), ϕ(r−1)
)]



Fr

θr

ϕr


 = [F], (27)

(
∑N

l=1
(
Tr − Tr−1))1/2

(
∑N

l=1|Tr|2
)1/2 <

1
108 . (28)

Step IV: The computational domain is considered as [0, 8] while mesh-free analysis
is computed along with 270 elements. The problem is converged at mid of each of the
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270 elements. Hence, simulations of the problem are performed along with the 270 elements.
Table 1 reveals the study of convergence analysis. The solution to the problem is converged
after simulations of 210 to 270 elements. It is observed that 270 elements are ensured for
the convergence of the problem. Outcomes are provided for velocity, concentration and
temperature at mid of each of the 270 elements. All numerical simulations related to tables
and graphs are captured for the 270 elements.

Comparative analysis: The numerical result of the current problem is verified with
published results [23] by the disappearing effects of We = ε = Fr = Hs = Ec = M =
D f = ϕ1 and ϕ2 = 0. Numerical values of the Nusselt number are computed against the
distribution in Prandtl number. Good agreements among the results of the present problem
and published work [23] are presented in Table 2.
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Table 1. Mesh-free analysis of velocity, mass diffusion and thermal energy considering 270 elements.

Number of Elements Fξ( ξ∞
2 ) θ( ξ∞

2 ) ϕ( ξ∞
2 )

30 0.001723308133 0.3009272684 0.5332200981
60 0.001476057680 0.2862125651 0.5165526300
90 0.001389387659 0.2814243572 0.5109967127

120 0.001345741043 0.2790514389 0.5082194520
150 0.001319507594 0.2776354377 0.5065521700
180 0.001302011520 0.2766938280 0.5054410754
210 0.001289514516 0.2760222981 0.5046476756
240 0.001280142826 0.2755193140 0.5040526977
270 0.001272856820 0.2751285026 0.5035909496

Table 2. Comparative simulations of Nusselt number considering by We = ε = Fr = Hs = Ec =

M = D f = ϕ1 = ϕ2 = 0..

Bilal et al. [23] Present Results

Pr (Re)−1/2Nu (Re)−1/2Nu
0.07 0.0663 0.0662110383
0.20 0.1619 0.1619120330
0.70 0.4539 0.4529370132
2.00 0.9113 0.9112098201

4. Results and Discussion

Mechanisms of velocity, thermal energy and diffusion of mass influenced by chemical
reaction are addressed over a stretched melting surface. Correlations between silicon
dioxide and Molybdenum dioxide in EG (ethylene glycol) are used in the presence of the
Carreau–Yasuda liquid. Various kinds of influences (Soret, Dufour, viscous dissipation,
Joule heating and magnetic field) are also addressed. As such, the complex transport
phenomenon is simulated with the help of a numerical approach (FEM). The graphical
computational investigations are captured in graphs and tables. The detailed outcomes are
discussed below:

Graphical investigations of velocity against distribution in various parameters:
The change in Weissenberg, power law index, Forchheimer numbers and Carreau–Yasuda
variables are addressed in the motion of fluid particles considered in Figures 5–8. Figure 5 is
plotted to measure the role of We in the motion of hybrid nanoparticles. It is estimated that
the motion of hybrid and fluid - nanoparticles is slowed down by applying higher We Val-
ues. The Weissenberg number is constructed in the current model due to the consideration
of the rheology of the Carreau–Yasuda fluid while We is defined as a ration of elastic and
viscous forces. An increase in We brings the declination in motion of fluid particles in the
presence of nanoparticles and hybrid nanoparticles. Hence, a reduction is noticed versus
the change in We. Moreover, the thickness of the momentum boundary layers decline
when We is increased. The flow for Newtonian fluid is the dominated flow for a case of
non-Newtonian fluid. The relationship between the velocity and power law index number
is shown in Figure 6. The decreasing phenomenon of motion in fluid particles is captured
and m is created due to tensor of the Carreau–Yasuda liquid. The numerical values of m are
decided by the category of fluids (shear thinning or shear thickening). The fluid becomes
thick in the case of large m values. Hence, the power law index number is not a significant
parameter in the case of an enhancement in flow involvement of nanoparticles and hybrid
nanoparticles. Parameter related to the power law number has a significant impact on
adjusting the momentum boundary layer thickness. The role of Fr is noticeable in the flow
of nanoparticles and hybrid nanoparticles (see Figure 7). It is demonstrated that the param-
eter related to Fr occurs in the momentum equation because of the Forchheimer porous.
This kind of parameter behaves like a non-linear-type function in the flow of nanoparticles.
In this case, the retardation force is created in fluid motion and brings resistance of the fluid
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particles into motion. Moreover, the thickness related to the boundary layer is reduced
when large values of Fr are applied. Further, the motion created by the Forchheimer porous
is less than the motion created in the particles, excepting the involvement of Forchheimer
porous media. The parameter associated with d is called the fluid variable and the change
in d versus the velocity is captured in Figure 8. The large values of d create the resistance
force during the flow of hybrid nanoparticles and nanoparticles. Meanwhile, the motion of
fluid particles declines against the higher values of d. Momentum boundary layers have a
decreasing function versus the impact of d.
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Graphical investigations of heat energy against distribution in various parameters:
Figures 9–12 reveal the characterization of thermal energy phenomenon versus the variation
of Hs, Fr, Ec and D f . The thermal energy performance is measured with respect to the
variation in heat generation number while this phenomena is shown in Figure 9. The
production of heat energy is at its maximum when using higher values of Hs. The external
heat source at the sheet surface results in the maximum production into heat energy.
to Thickness related to thermal layers is also enhanced due to the large values of heat
generation number. Thus, the heat generation number is a significant parameter for the
maximum production of heat energy. Moreover, an inclination in thermal energy is created
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due to the direct relation to thermal energy. It is demonstrated that the positive values
for Hs are present due to the phenomena of heat generation. As such, the impact of heat
generation is visualized in our analysis. Figure 10 plots the enhancement in heat energy
against the change in Eckert number. Physically, an enhancement in heat energy due to
viscous dissipation is simulated. A direct relationship between viscous dissipation and the
kinetic energy phenomenon was found. The temperature of the fluid particles is enhanced
due to the Eckert number. The work-done rate is enhanced by the particle heat energy
when viscous dissipation occurs. The relationship between Fr and temperature profile
is visualized in Figure 11. This figure captures the better performance in heat energy,
including the appearance of Fr. In fact, Fr is generated due to the Forchheimer porous while
Fr generates more heat energy in the presence of nanoparticles and hybrid nanoparticles.
Moreover, the concept of Dufour’s number is characterized in the dimensionless heat
equation due to the first law of thermodynamics while terms related to thermodynamics
refer to the concept of Dufour (heat energy) because of the concentration gradient. The
concentration gradient is enhanced using large values of D f . The fluid particles absorb
more heat energy when D f is increased. Hence, the temperature profile is increased when
there are higher values of D f (see Figure 12). Further, thickness of the thermal boundary
layers are controlled by the impacts of Fr and D f .

Graphical investigations of mass diffusion against distribution in various param-
eters: Figures 13–15 have been plotted to visualize the transport of diffusion against the
change in Sc, Kc and Sr. The measurement of mass diffusion is captured in Figure 13,
considering the influence of Sc. The diffusion of mass decreases when Sc is enhanced.
We can observe that this reduction into mass diffusion happens due to the definition of
Sc. Physically, Sc is rationed among mass and momentum diffusivities. According to the
concept of Sc, the concentration curves are reduced when Sc is inclined. A similar situation
occurs in terms of the boundary layer thickness in relation to concentration. Figure 14
visualizes the effect of the chemical reaction number on the transport of mass diffusion We
found that the parameter related to Kc revealed the coefficient of thermal energy along with
the chemical reaction. The positive values of Kc correspond to the destructive chemical
reaction. In this case, a reduction is captured in the diffusion of the mass species. In the
current flow model, the case related to a destructive chemical reaction is used. Thickness
associated with the concentration layers is reduced when Kc is increased. The decreasing
graph is plotted between the Soret number and diffusion of mass as shown in Figure 15.
The concept of Sr (fractioned between the difference in temperature and concentration)
appears due to the temperature gradient in the concentration equation. Using Soret’s
theory, the solute diffusion is enhanced due to thermal energy.

Mechanisms of gradient temperature, surface force and mass diffusion rate versus
the distribution of various parameters: The computational analysis of surface force (skin
friction coefficient), gradient temperature (Nusselt number) and rate of mass diffusion
versus the variation of D f , Sc, Hs, Fr and We is simulated in Table 3. Table 3 reveals that the
drag force (skin friction coefficient) declines when We and Fr are increased. However, we
see a reduction in the skin friction coefficient when the heat generation number is increased.
When D f is enhanced, the constant variation is simulated in surface force at the wall. The
temperature gradient decreases using the large values of D f , Hs, Fr and We. The parameter
related to Sc plays a vital impact in maximizing the rate of thermal energy. As for the
concentration gradient, it shows the same behavior as the temperature gradient.
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Table 3. Computational analysis of surface force, gradient temperature and rate of mass diffusion
versus the variation of D f , Sc, Hs, Fr and We in view of hybrid nanoparticles and nanoparticles.

Parameters (Re)
1
2 Cf (Re)−1/2Nu (Re)−

1
2 Sh

0.0 0.2565506571 0.9069968916 0.4191080595
We 0.4 0.3021743934 0.5709115739 0.3046713057

0.8 0.6496811069 0.4087628063 0.1059290192
0.3 0.3500005761 2.800587924 0.3350535080

Fr 0.5 0.5935103805 2.331989057 0.2339179505
1.2 0.7690074135 1.272381650 0.11317865862
0.0 0.5541216982 0.4657146871 0.99748124590

Hs 0.7 0.3541216982 0.3493805142 0.89748124590
1.3 0.1541216982 0.1173513733 0.69748124590
0.2 0.5541216982 0.1186981159 0.04850074987

Sc 0.4 0.5541216982 0.1186575085 0.36213534820
0.8 0.5541216982 0.1181890841 0.57775563972
0.3 0.5541216982 0.7182669750 0.37626972734

D f 0.6 0.5541216982 0.5183838165 0.27404085874
1.3 0.5541216982 0.3177686869 0.18920433118

5. Prime Consequences of the Problem

The transport features in the rheology of Carreau–Yasuda liquid and involvement
of nanostructures and hybrid nanoparticles over a heated surface have been visualized.
The Dufour and Soret effects under the action of a magnetic field have been addressed.
Forchheimer porous media was also considered. The simulations of the current model
were computed by finite element approach. The prime findings are captured below:

• Convergence of the problem is ensured at 270 elements;
• The motion of nanoparticles and hybrid nanoparticles in ethylene glycol is boosted

versus the enhancement in fluid variable, power law index number, Weissenberg
number and Forchheimer porous number;

• Significant production of heat energy versus higher values of heat generation, Eckert,
Dufour and Forchheimer porous numbers;
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• The transportation of solute particles declines versus the large values of Schmidt and
chemical reaction numbers, but solute particles accelerate against higher values of
Soret number;

• Surface force is increased via large values of Weissenberg and Forchheimer porous
numbers but surface force is decreased versus the large values of heat generation
number and

The role of the Schmidt number is significant in the development of temperature and
concentration gradient.
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Abstract: This report examines the heat and mass transfer in three-dimensional second grade non-
Newtonian fluid in the presence of a variable magnetic field. Heat transfer is presented with the
involvement of thermal relaxation time and variable thermal conductivity. The generalized theory
for mass flux with variable mass diffusion coefficient is considered in the transport of species. The
conservation laws are modeled in simplified form via boundary layer theory which results as a
system of coupled non-linear partial differential equations. Group similarity analysis is engaged for
the conversion of derived conservation laws in the form of highly non-linear ordinary differential
equations. The solution is obtained vial optimal homotopy procedure (OHP). The convergence of
the scheme is shown through error analysis. The obtained solution is displayed through graphs and
tables for different influential parameters.

Keywords: viscoelastic material; group similarity analysis; thermal relaxation time; parametric
investigation; variable magnetic field; error analysis

1. Introduction

Fluid flows over stretched surfaces have applications in several fields and has signif-
icant involvement in the practical usage of several items. Scientists and engineers have
made efforts to explore their features and usage in different processes. The mathematical
relations of non-Newtonian materials are different as compared with Newtonian mate-
rial. These materials are divided into different categories according to their properties.
An important non-Newtonian fluid is a second grade fluid [1–7]. It has the following
constitutive relation:

τ∗ = −PI + µF1 + β1F2 + β2F1 ∗ F1, β1 ≥ 0, µ ≥ 0, β1 + β2 = 0.
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Hayat et al. [1] studied the mixed convection in the second grade model over a
stretching cylinder. They modeled the problem in two dimensions with thermal transport
by taking the variable thermal conductivity. They used a homotopy method for the solution.
They studied the contribution of several emerging parameters on the solution through
graphs. They noticed the decrease in velocity field for a mixed convection parameter.
Massoudi et al. [2] reported the study on the second grade model with temperature
dependent viscosity between parallel plates. They presented a comparative study for the
validity of obtained solution through tabular data. An exact solution through an oscillating
sphere for a second grade model was computed by Fetecau et al. [3]. They found that the
solution is periodic and it is independent of initial data. Hankel and Laplace transforms
were engaged by Kamran et al. [4] to handle the modeled equations for fractional second
grade model in cylindrical coordinates. They presented that the fractional model present
the fluid flow phenomenon more accurately as compared with the ordinary derivatives.
Chauhan and Kumar [5] studied the unsteady mechanics for second grade model in
partially filled porous channel. They used a Laplace transform technique to analyze the
solution. They observed the increase in velocity field against time parameter. A rotating
viscoelastic model with ramped wall temperature condition for exact solution was reported
by Mohamad et al. [6]. They plotted the solution against numerous emerging parameters.
They noticed the dual behavior of velocity against the rotation parameter. Hayat et al. [7]
examined the comportment of chemical reaction with solutal and thermal transport in a
second grade model passed over a bi-directional stretched surface. They found the increase
in dimensionless stress against ratio parameter and viscoelastic parameter. Moon et al. [8]
discussed the phenomenon of heat transfer and Weber number including droplets of
xanthan gum solution (non-Newtonian) and DI-water (Newtonian) over a heated surface.
They noted that the DI-water droplet has higher spreading diameter as compared with the
non-Newtonian (droplet) because of variation in fluid difference. German and Bertola [9]
studied free-fall related to the liquid drops due gravity of force. They imagined high speed
of drops based on viscoelastic fluids. They found that shape of the drop is changed under
the action of yield stress. An and Lee [10] experimentally discussed the oscillations (free
falling) of drops (shear-thinning) due to the force of gravity based on viscoelastic fluids
passed over a solid surface. Moon et al. [11] suggested a mixed regime (coalescence occurs)
using sequential images and mixed regime is exaggerated due to volumes of static droplet
volumes, static droplets and Weber numbers. They estimated the film thickness (between
two drops) via lubrication theory. Zhao and Khayat [12] discussed the flow behavior in
view of shear-thickening and shear-thinning of a jet (non-Newtonian) over a flat plate via a
hydraulic jump. Moon et al. [13] considered the features of droplets (non-Newtonian) on
solid surfaces considering various Weber numbers. They considered xanthan gum solution
to produce the droplets (non-Newtonian) measured via spreading diameters and camera
(high speed).

Transportation of heat has applications in different engineering aspects and it is
now a hot topic for researchers working in the field of engineering and applied mathe-
matics. Several researchers are working on transport phenomena actively. For instance,
Naseem et al. [14] worked on third grade nanofluid passed over a Riga plate. They con-
sidered several physical effects while modelling the transport equations and the resulting
equations were simplified via boundary layer theory with the solution approximated an-
alytically. They noticed the rise in velocity profile for modified magnetic parameter and
Reynolds number. Sahoo and Poncet [15] studied the Blasius flow of a fourth grade model
with heat transfer in a porous permeable stretching surface. Heat transfer in MHD viscous
stagnation point dusty fluid with a non-uniform heat source in a porous stretching sheet
was studied by Ramesh et al. [16]. They presented a comparative analysis and solved the
resulting equations with the help of a shooting method. They discussed the contribution
of several parameters on velocity and temperature fields. They noticed the decline in
thermal field against higher Prandtl number. Qiu et al. [17] studied the thermal transport
in channel via finite volume technique. They also reported the analysis of entropy in their
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findings. They discussed the impact of nanoparticles volume fraction on flow and entropy.
Khan et al. [18] studied the heat transfer in a stagnation point Powell–Eyring model in a
stretching cylinder with variable properties analytically. They observed the enhancement
in temperature and velocity fields against the growing values or curvature parameter. Also
they listed the numerical values for heat transfer coefficient against different parameters.
Few recent studies covering non-linear transport problems with different effects have been
reported in [19–25].

The objective of current inspection is to analyze the comportment of variable properties
in heat and mass transportation in a second grade steady incompressible model past over a
bi-directional elongating surface. This article is organized as follows: Section 1 contains the
literature survey; modeling of considered problem is included in Section 2 with important
physical quantities; Section 3 comprises methodology and results with key findings covered
in Sections 4 and 5 respectively.

2. Mathematical Drafting of Viscoelastic Fluid with Thermal and Mass Transport

An analysis of the transport phenomenon on a second grade fluid [7,14] over a bi-
directional elastic surface is presented in Figure 1. It is assumed that the sheet is stretched
along x- and y- directions, respectively, and flow occupies the region normal to x- and y-axis.
The sheet is kept at temperature “Tw” and concentration “Cw”. Along x-axis, the velocity
is “UW = ax” and “VW = by” is along the y-axis. The following important considerations
have been adopted to derive the conservation laws

Figure 1. Geometry of second grade fluid model.

v Three-dimensional flow;
v Bi-directional elastic surface;
v Incompressible fluid;
v Steady flow;
v Viscoelastic second grade fluid;
v Heat flux via generalized theory of Cattaneo–Christov;
v Temperature-dependent thermal conductivity model;
v Space-dependent magnetic field;
v Updated mass flux model with temperature dependent diffusion coefficient;

The flowing resulting equations [7] appears by using the above stated assumptions

ux + vy + wz = 0, (1)

uux + v ∂u
∂y + w ∂u

∂z − ϑ ∂2u
∂z2

+α0

[
u ∂3u

∂x∂z2 + w ∂3u
∂z3 − ∂u

∂x
∂2u
∂z2 − ∂u

∂z
∂2w
∂z2 − 2 ∂u

∂z
∂2u
∂x∂z

−2 ∂w
∂z

∂2u
∂z2

]
+ σ

ρ B2
a(x, y)u = 0,

(2)
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uvx + v ∂v
∂y + w ∂v

∂z − ϑ ∂2v
∂z2

+α0

[
v ∂3v

∂x∂z2 + w ∂3v
∂z3 − ∂v

∂x
∂2v
∂z2 − ∂v

∂z
∂2w
∂z2 − 2 ∂v

∂z
∂2v

∂x∂z

−2 ∂w
∂z

∂2v
∂z2

]
+ σ

ρ B2
a(x, y)v = 0,

(3)

uTx + vTy + wTz + αa




(
uux + vuy + wuz

)
Tx +

(
uvx + v ∂v

∂y + w ∂v
∂z

)
Ty

+
(

uwx + v ∂w
∂y + w ∂w

∂z

)
Tz + 2uvTxy + 2vwTyz

+2uwTxz + u2Txx + v2Tyy + w2Tzz




−∇[KA(T)∇T] = 0

(4)

uCx + vCy + wCz + αb




(
uux + v ∂u

∂y + w ∂u
∂z

)
Cx +

(
uvx + v ∂v

∂y + w ∂v
∂z

)
Cy

+
(

uwx + v ∂w
∂y + w ∂w

∂z

)
Cz + 2uvCxy + 2vwCyz

+2uwCxz + u2Cxx + v2Cyy + w2Czz




−∇[DA(T)∇C] = 0.

(5)

Boundary conditions for the dimensional problem are
{

u = UW = ax, v = VW = by, w = 0, T = Tw, C = Cw at z = 0.
u→ 0, v→ 0, T → T∞, C → C∞ f or z→ ∞.

(6)

With the use of the following similarity variables, the governing law reduce to

{
u = ax f ′[η], v = ayg′[η], w = −(aϑ)

1
2 [ f [η] + g[η]],

θ[η] = T−T∞
Tw−T∞

, φ[η] = C−C∞
Cw−C∞

, [η] =
( a

ϑ

) 1
2 z,

(7)

−M f ′[η]− f ′[η]2 + ( f [η] + g[η]) f ′′ [η] + f (3)[η] + R( f ′′ [η]( f ′′ [η]− g′′ [η])

−2( f ′[η] + g′[η]) f (3)[η] + ( f [η] + g[η]) f (4)[η]) = 0,
(8)

−Mg′[η]− g′[η]2 + ( f [η] + g[η])g′′ [η] + g(3)[η] + R(( f ′′ [η]− g′′ [η])g′′ [η]

−2( f ′[η] + g′[η])g(3)[η] + ( f [η] + g[η])g(4)[η] = 0,
(9)

( f [η] + g[η])θ′[η] + 1
Pr (1 + γ1θ[η])θ′′ [η]− α1( f [η] + g[η])( f ′[η]

+g′[η]θ′[η] + ( f [η] + g[η])θ′′ [η]) = 0,
(10)

( f [η] + g[η])φ′[η] + 1
Sc (1 + γ2θ[η])φ′′ [η]− α2( f [η] + g[η])( f ′[η]

+g′[η]φ′[η] + ( f [η] + g[η])φ′′ [η]) = 0,
(11)

{
f (0) = 0, g(0) = 0, f ′(0) = 1, g′(0) = δ, θ(0) = 1, φ(0) = 1,
f ′(∞) = 0, g′(∞) = 0, θ(∞) = 0, φ(∞) = 0.

(12)

Physical Quantities

The study of heat, mass transfer rates and dimensionless stress at the boundary has
significant applications and usage in industry. Therefore, scientists and engineers are
keenly observing their features against different physical parameters which influence them
directly. These quantities are defined as:

CXF =
τxz|z = 0

ρ(uw)
2 ,CYF =

τyz
∣∣
z = 0

ρ(vw)
2 , (13)

τxz =

[
µ

∂u
∂z

+ α0

[
u

∂2u
∂x∂z

+ v
∂2u
∂y∂z

+ w
∂2u
∂z2 +

∂u
∂x

∂u
∂z

+
∂v
∂z

∂v
∂x
− ∂w

∂z
∂u
∂y

]]

z=0
(14)

148



Micromachines 2021, 12, 951

τyz =

[
µ

∂v
∂z

+ α0

[
u

∂2v
∂x∂z

+ v
∂2v

∂y∂z
+ w

∂2v
∂z2 +

∂u
∂y

∂u
∂z

+
∂v
∂z

∂v
∂y
− ∂w

∂z
∂v
∂y

]]

z=0
, (15)

Nuxy =
(x + y)Q∗w

K(T)[Tw − T∞]
, Q∗w = −K(T)

∂T
∂z
|z=0, (16)

Suxy =
(x + y)M∗w

DB(T)[Cw − C∞]
, M∗w = −DB(T)

∂C
∂z
|z=0 (17)

After boundary layer theory, the dimensionless form is:

C∗Fx = f ′′ (0)− R[ f (0) + g(0)] f ′′′ (0) + R
[

f ′(0) + g′(0)
]

f ′(0) + 2R f ′(0) f ′′ (0), (18)

C∗Fy = g′′ (0)− R[ f (0) + g(0)]g′′′ (0) + R
[

f ′(0) + g′(0)
]

g′′ (0) + 2R f ′(0)g′(0) (19)

H∗xy = −
(

Rexy

) 1
2
θ′(0), M∗xy = −

(
Rexy

) 1
2
φ′(0). (20)

3. Numerical Method for Solution

Modelling of the fluid flow problems results in the form of a set of coupled non-linear
differential equations. The derived problem is highly non-linear and coupled. Due to high
non-linearity, an exact solution is not possible. Researchers proposed several schemes to
handle the non-linear complex differential equations. Here, optimal homotopy analysis
procedure (OHAP) [7,14,19–23] is engaged due to its several advantages.

This section covers the necessary steps for the adopted procedure. It has the following steps:

v Linear operator selection;
v Using the boundary data;
v Determination of unknown constants;
v Adopting of initial guesses;

The linear operators with initial guesses are:




L∗f =
D3

Dη3 − D
Dη , L∗g = D3

Dη3 − D
Dη ,

L∗t = D2

Dη2 − 1, L∗c = D2

Dη2 − 1,
(21)

{
fq(η) = 1− e−η , gq = γ[1− e−η ],
θq(η) = e−η , φq(η) = e−η ,

(22)

The operators in Equation (21) obeys:

L∗f [Q1 + Q2e−η + Q3eη ] = 0,

L∗g[Q4 + Q5e−η + Q6eη ] = 0,

L∗t [Q7e−η + Q8eη ] = 0,

L∗c [Q9eη + Q10e−η ] = 0.

(23)

where Qb(b = 1, 2, . . . , 10) are unknowns.
Using the concepts of minimization of average squared residual error [7–14,19–23]:

δ
f
m =

1
B + 1

B

∑
r=0

[
S f

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η)

)]2

, (24)

δ
g
m =

1
B + 1

B

∑
r=0

[
Sg

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η)

)]2

, (25)
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δθ
m =

1
B + 1

B

∑
r=0

[
Sθ

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η),
a

∑
L=0

θ̂(η)

)]2

, (26)

δ
φ
m =

1
B + 1

B

∑
r=0

[
Sφ

(
a

∑
L=0

f̂ (η),
a

∑
L=0

ĝ(η),
a

∑
L=0

θ̂(η),
a

∑
L=0

φ̂(η)

)]2

, (27)

where
δt

i = δ
f
i + δ

g
i + δθ

i + δ
φ
i . (28)

The minimum error at second order is 0.00031589832079710834 and optimal values at
third order are B f = −1.2160, Bg = −1.1638, Bθ = −0.9509, Bφ = −0.5871, by fixing the
involved parameters as R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

f = 1.0− 1.0e−z − 0.6080M2 + 0.6080e−z M2 − 0.6080R + 0.6080e−zR
+ 0.6080e−z M2z + 0.6080e−zRz− 0.4053δ
+ 0.2026e−2zδ + 0.2026e−zδ− 1.0133Rδ
− 0.4053e−2zRδ + 1.4187e−zRδ + 0.6080e−zzδ
+ 0.6080e−zRzδ,

(29)

g = 1.1939δ + 0.1939e−2zδ− 1.3879e−zδ− 0.5819M2δ + 0.5819e−z M2δ
− 0.5819Rδ + 0.5819e−zRδ + 0.5819e−z M2zδ
+ 0.5819e−zRzδ− 0.5819δ2 + 0.5819e−zδ2 − 0.9698Rδ2

− 0.3879e−2zRδ2 + 1.3578e−zRδ2 + 0.5819e−zzδ2

+ 0.5819e−zRzδ2,

(30)

θ = −0.3169e−2z + 1.3169e−z − 0.4754e−zz + 0.47543e−zz
Pr − 0.3169e−2zδ

+ 0.3169e−zδ− 0.4754e−zzδ + 0.11887e−3zα1
− 0.95097e−2zα1 + 0.8321e−zα1 − 0.9509e−zzα1
+ 0.3566e−3zδα1 − 1.9019e−2zδα1 + 1.5453e−zδα1
− 1.4264e−zzδα1 + 0.2377e−3zδ2α1 − 0.9509e−2zδ2α1

+ 0.7132e−zδ2α1 − 0.475497e−zzδ2α1 − 0.3169e−2zγ1
Pr

+ 0.3169e−zγ1,
Pr

(31)

= −0.1957e−2z + 1.1957e−z − 0.2935e−zz + 0.2935e−zz
Sc − 0.1957e−2zδ

+ 0.1957e−zδ− 0.2935e−zzδ + 0.0733e−3zα2
− 0.5871e−2zα2 + 0.5137e−zα2 − 0.5871e−zzα2
+ 0.2201e−3zδα2 − 1.1742e−2zδα2 + 0.9540e−zδα2
− 0.8806e−zzδα2 + 0.1467e−3zδ2α2 − 0.5871e−2zδ2α2

+ 0.4403e−zδ2α2 − 0.2935e−zzδ2α2 − 0.1957e−2zγ2
Sc

+ 0.1957e−zγ2
Sc .

(32)

4. Analysis and Discussion

The assessments of vital applications of thermal energy and mass transport (using
second grade liquid) in industrial and engineering areas are addressed, including various
features. In this current problem, non-Fourier’s theory is investigated in energy and mass
transport equations along with the concept of variable properties (mass diffusion and
thermal conductivity). The motion in nanoparticles is induced because of movement of a
melting 3D-surface. The simulations of temperature, diffusion of mass and flow behavior
are captured in the form of graphs and tables via an analytical approach. The error analysis
is presented with the help of Table 1. The graphical discussions are addressed below:
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Table 1. Computation of averaged squared residuals errors of velocity, temperature, and concentra-
tion solution.

(B) δ
f
B δ

g
B δθ

B δ
φ
B

1 0.0003 0.0001 0.0008 0.0130

4 6.612× 10−6 3.231× 10−6 5.461× 10−6 0.00017

8 3.653× 10−7 1.934× 10−7 1.787× 10−7 8.412× 10−6

12 3.068× 10−8 1.661× 10−8 8.074× 10−9 7.117× 10−7

16 4.169× 10−9 2.265× 10−9 1.063× 10−9 1.076× 10−7

20 5.760× 10−10 3.108× 10−10 1.522× 10−10 1.850× 10−8

Assessments of flow phenomena via physical parameters: the distribution of flow
phenomena is analyzed with respect to magnetic number (M), second grade fluid number
(R) and velocity stretching ratio number (δ). In this current problem, M is considered as
variable magnetic number for measurement of flow behavior in both directions (vertical
and horizontal). The variation strength of a magnetic field is considered during the flow
of particles at the surface of the melting sheet. This effect is analyzed by Figures 2 and 3.
The decreasing character in the motion of particles is noticed via enhancement strength
regarding magnetic field. The declination in flow is due to a negative force called Lorentz
force appeared in momentum equations. The retardation forces play a reducing role in
motion of fluid particles. Therefore, a magnetic number is used to adjust (MBL) mo-
mentum boundary layer thickness. It is noticed that the last terms of dimensionless
momentum equations represent negative Lorentz forces. These negative Lorentz forces
generate hindrance during the flow of fluid particles. The reduction is investigated in veloc-
ity profiles for M = 0.0, 0.2, 0.4, 0.6, 0.8. Therefore, a local minimum trend is noticed for
M = 0.0, 0.2, 0.4, 0.6, 0.8. The parameter related to R is known as a second grade number
whereas the character of R is simulated on the flow behavior. In this case, the reduction in
flow mechanism is conducted through the numerical values of R and this graphical impact
is considered in Figures 4 and 5. It is noticed that the appearance of R is modeled due to the
appearance of second grade fluid in the current model. Meanwhile, flow in the horizontal
and vertical directions is reduced, taking higher values of R. Moreover, flow in the absence
of R is higher as compared with flow situation in the presence of R. Simply, it is included
that flow for the case Newtonian liquid becomes higher than as compared flow for the case
of non-Newtonian liquid. Figure 6 provides the role of δ on distribution of velocities. The
enhancement in velocity profiles is conducted using higher values of δ while the parameter
related to δ is addressed as velocity ration parameter. From these figures, fluid speed is
enhanced via more stretching of melting surface. The large stretching of the surface is the
reason for the more enhancements in fluid motion. Hence, δ is favorable to achieve the
enhancement in motion of the fluid particles.

Assessments of heat energy via physical parameters: the characterization of the
thermal energy mechanism against the variation in Pr, α1, Y1 and R is conducted in
Figures 7–10. In Figure 7, the role of second grade fluid number is considered. The
mechanism of thermal energy is reduced using higher values of R. The thickness of thermal
boundary is also decreased. The characterization of heat energy against the distribution
of very small number (Y1) based on thermal conductivity is measured by Figure 8. The
production of heat energy becomes higher via higher values of Y1. Hence, Y1 plays an
essential role in the enhancement of maximum production of energy. The performance of
Prandtl number versus thermal energy is visualized by Figure 9. The temperature profile is
noticed as reducing the role versus the variation of Pr. This reducing role happens because
of the definition of the Prandtl number. According to the definition of Pr, MBL is enhanced
while the thickness of TBL is increased. Meanwhile, the production of heat energy is
reduced with respect to large values of Pr. Figure 10 illustrates the trend of α1 versus the
temperature profile and α1 is denoted as a relation time parameter. It is investigated how α1
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has appeared due to Cattaneo heat flux theory in the energy equation. The thermal energy
is reduced due to attendance of non-Fourier’s concept whereas thermal energy for the case of
Fourier’s law is higher than thermal energy for the case of the non-Fourier’s concept.

Figure 2. Behavior of f ′(η) for M when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2,
δ = 0.8.

Figure 3. Behavior of g′(η) for M when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2,
δ = 0.8.
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Figure 4. Behavior of f ′(η) for R when Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

Figure 5. Behavior of g′(η) for R when Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

Figure 6. Behavior of g′(η) for δ when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2,
M = 0.1.
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Figure 7. Behavior of θ(η) for R when Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ1 = 0.3 = γ2, M = 0.1,
δ = 0.8.

Figure 8. Behavior of θ(η) for γ1 when R = 0.1, Sc = 0.6, Pr = 1.1, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1,
δ = 0.8.

Figure 9. Behavior of θ(η) for Pr when R = 0.1, Sc = 0.6, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1, δ = 0.8.
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Figure 10. Behavior of θ(η) for α1 when R = 0.1, Sc = 0.6, α2 = 0.2, γ2 = 0.3, M = 0.1, δ = 0.8.

Assessments of mass diffusion via physical parameters: the distribution in transport
of mass diffusion is measured against the variation in Sc, α2 and γ2 via Figures 11–14. The
mechanism related to mass diffusion versus Sc called the Schmidt number is conducted
by Figure 11. From this figure, declination is measured in view of the transport of mass
using large values of the Schmidt number. The transport of mass becomes slow due to the
concept of Sc. According to this definition, the diffusion of mass (ratio between momentum
and mass diffusivities) has an inverse relation with respect to Sc. Hence, the solute slows
down considering enlargement in Sc. Due to this depreciation occurs in the concentration
field. Moreover, the combined enlargement in the Schmidt number and solutal relaxation
time lessen the concentration profile. The decreasing graph of the concentration profile
is observed versus the values of Sc. This decreasing trend and local minimum in solute
particles is occurred due to reduction of mass diffusivity. Physical, large values of Sc reduce
mass diffusivity and this reduction in mass diffusivity is a reason for the local minimum in
solute particles. The better performance of solute is the investigated against variation in
R considering by Figure 12. The range of R is 0.1 ≤ R ≥ 0.8 is used to obtain maximum
production of solute. Figure 13 simulates the variation in mass transport with respect
to values of α2. The decrement in solute is verified considering large values of α2. This
physical parameter has the ability to restore a state of equilibrium resulting in the solute
becoming slow. Figure 14 captures the role of γ2 versus the diffusion of mass. In this figure,
diffusion of mass becomes fast using large values of γ2.

Assessments of Nusselt number, divergent velocity and Sherwood number via
physical parameters: the characterization of surface force, temperature gradient and rate
of solute is analyzed considering large values of second grade fluid, stretching ration and
time relaxation numbers. These simulations are captured by Tables 2 and 3. From Table 2,
it can be noted that an enhancement is addressed in the case of positive values of second
grade fluid and time relaxation numbers. Table 2 presents the comparative analysis of
current model. The remarkable simulations are verified with published work [7]. Table 4
illustrates the impact of time relaxation numbers against the diffusion of mass. The repara-
ble increasing role of the Sherwood number is measured against positive values of the time
relaxation number.
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Figure 11. Behavior of φ(η) for Sc when R = 0.1, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1, δ = 0.8.

Figure 12. Behavior of φ(η) for R when Sc = 0.6, α1 = 0.2 = α2, γ2 = 0.3, M = 0.1, δ = 0.8.

Figure 13. Behavior of φ(η) for α2 when R = 0.1, Sc = 0.6, α1 = 0.2, γ2 = 0.3, M = 0.1, δ = 0.8.
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Figure 14. Behavior of φ(η) for γ2 when R = 0.1, Sc = 0.6, α1 = 0.2 = α2, M = 0.1, δ = 0.8.

Table 2. Comparative analysis for dimensionless stress against R and γ by fixing the other parameters.

R γ −
(

Rexy

) 1
2 C*

Fx

[7]
Present −

(
Rexy

) 1
2 C*

Fx

[7]
Present

0.0 0.1 1.0203 1.0209 0.0669 0.0668

0.15 - 1.6510 1.6519 0.0785 0.0784

0.2 - 1.8970 1.8975 0.0806 0.0803

0.1 0.0 1.3703 1.3707 0.0000 0.0000

- 0.2 1.4798 1.4798 0.1762 0.1769

- 0.5 1.6510 1.6516 0.6317 0.6312

Table 3. Comparative investigation for heat transfer rate against α1.

α1
−
(

Rexy

) 1
2
θ
′
(0)

[7]
Present Results

0.0 0.6051 0.6059

0.2 0.6258 0.6256

0.4 0.6483 0.6489

0.6 0.6727 0.6729

Table 4. Comparative investigation for mass transfer rate against α2.

α2
−
(

Rexy

) 1
2
φ
′
(0)

[7]
Present Results

0.0 0.3668 0.3669

0.2 0.3764 0.3760

0.4 0.3864 0.3862

0.6 0.3973 0.3978

5. Conclusions and Key Findings of the Investigation Performed

The physical occurrence of solute, heat energy and flow phenomena in a second
grade liquid were visualized passing a 3D melting moving surface. The theory of non-

157



Micromachines 2021, 12, 951

Fourier’s law was imposed in the current flow model inserting variable properties. The
current complex model was simulated with the help of an analytical scheme. The main
consequences of the current problem are addressed below:

• The improvement in motion of fluid particles was captured via large values of second
grade fluid and stretching ratio numbers while a decrement in flow behavior was
conducted via enlargement in magnetic number;

• The mechanism of heat energy became maximum using higher values of second grade
fluid number but an opposite trend was captured via large values of time relaxation,
Prandtl and very small numbers;

• The solute became fast considering large values of second grade fluid, time relaxation
and very small numbers. The reduction in solute became slow against variation in
Schmidt number;

• An incline in rate of solute and gradient temperature was addressed against higher
values of time relaxation numbers;

• The surface force was enhanced near the wall of the hot surface via large values of
second grade liquid and flow stretching parameters.
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Nomenclature
Symbols Used for Symbols Used for
“UW = ax” and “VW = by” Velocity at wall x, y, z Space coordinates
u, v, w Dimensional velocity ϑ Kinematic viscosity

B2
a(x, y)

Non-uniform magnetic
field

σ
Electrical
conductivity

ρ Fluid density δ
stretching ratio
number

−
(

Rexy

) 1
2
θ′(0) Heat transfer rate −

(
Rexy

) 1
2
φ′(0)

Mass transportation
rate

TBL Thermal boundary layer MBL
Momentum
boundary layer

L∗f =
D3

Dη3 − D
Dη , L∗g = D3

Dη3 − D
Dη ,

L∗t = D2

Dη2 − 1, L∗c = D2

Dη2 − 1,
Linear operators

fq(η) = 1− e−η , gq = γ[1− e−η ],
θq(η) = e−η , φq(η) = e−η ,

Initial guesses

φ(η)
Dimensionless
concentration

θ(η)
Dimensionless
temperature

η
Dimensionless
independent variable

Pr Prandtl number

αb
Concentration relaxation
time

αa
Temperature
relaxation time

Sc Schmidt number f ′[η], g′[η], f [η], g[η]
Dimensionless
velocity

R Fluid parameter M Magnetic parameter
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Abstract: This research concerns the heat transfer and entropy generation analysis in the MHD
axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered
for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and
convective temperature conditions over flow are studied. The problem is modeled using boundary
layer theory, Maxwell’s equations and Fourier’s conduction law along with defined physical factors.
Similarity transformations are utilized for model simplification which is analytically solved with the
homotopy analysis method. The h-curves up to 20th order for solutions establishes the stability and
convergence of the adopted computational method. Rheological impacts of involved parameters on
flow variables and entropy generation number are demonstrated via graphs and tables. The study
reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for β

while it enhances for Bi, R and λ. Moreover, heat transfer rate elevates for large Bi with convective
conditions at surface.

Keywords: hybrid nanofluid; entropy generation; induced magnetic field; convective boundary
conditions; thermal radiations; stretching disk

1. Introduction

MHD boundary layer flows of electrically conducting fluids and heat transfer caused
by a stretching sheet have gained immense importance due to their ample applications
and significant bearings on several engineering and technological processes. Major appli-
cations include heat exchangers, metals’ spinning, and power generators, spinning of fiber,
aerodynamic extrusion of plastic sheets, polymer industries, and condensation process of
metallic sheets inside cooling glass. The quality of the resulting product greatly depends
on the stretching process as well as its rate of cooling. Boundary-layer flow combined with
heat transfer and followed by a stretching sheet was primarily proposed by Sakiadis [1].
Crane [2] also investigated flow caused by stretching sheets of plastic material. Boundary
layer equations describing air motion due to a plate were solved analytically. Rates of flow
and heat transfer were analyzed in terms of coefficients of friction and thermal conductivity,
respectively. Since then, many attempts have been made in regard to their application in
different areas. The analysis of viscous dissipation, thermal radiations and convective wall
conditions in fluid flow has its importance in view of its broad coverage including chemical,
mechanical, and aerospace engineering, paper production, continuous casting, stretching
of plastic films, cooling of electronic chips and crystal growing etc. Khan et al. [3] explored
analysis of heat and mass transfer in three-dimensional nanofluids flowing on a linear
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stretching sheet under convective wall conditions and thermal radiations. It was deduced
that heat and mass transfer rates enhance with the stretching parameter. Gireesha et al. [4]
investigated the influence of non-linear radiation on MHD boundary layer dynamics of a
Jeffrey nanofluid past a non-linear porous stretching plate. Three-dimensional flow of fluid
was considered. It was found that magnetic field diminishes the fluid velocity while it
enhances temperature. Hayat et al. [5] analyzed the influence of magnetic induction on dy-
namics of second-grade nanofluid due to stretching sheet with convective wall conditions.
The viscoelastic parameter was observed to upsurge the fluid parameter. Rafiq et al. [6]
exposed the effects of non-linear thermal radiation towards boundary layer dusty fluid
dynamics close to a rotating isothermally heated blunt-nosed object similar to a hemi-
sphere. It was determined that skin friction coefficient shows an asymptotic trend while
heat transfer coefficient increases significantly corresponding to large radiation parameter.
Khan et al. [7] analytically studied a mixed convection hybrid nanofluid consisting of
Al2O3 and Ag nanoparticles affected by induced magnetic field in order to analyze entropy
generation under viscous dissipation and heat generation effects. They observed that
viscous dissipation dominantly increases flow and heat transfer rate due to the no-slip
surface condition. Few other attempts in this regime are cited here [8–14].

Technological developments and increasing demand of optical and electronic equip-
ment required an improved cooling performance of the products which is acquired by
utilizing heat transfer fluids with the improvements in their thermo physical characteristics.
In order to obtain modified results, there have been plenty of endeavors by researchers
to synthesize these fluids for an efficient heat transfer rate using the composition of sev-
eral fluids as well as the dispersion of metallic particles of different sizes and shapes etc.
Recently, an upsurge of embedding thermal resistive and conductive nano-particles, ini-
tially introduced by Choi [15], has been implemented to enhance thermal characteristics of
working fluids. Liquids containing suspended nanoparticles, named as nanofluids, were
experimentally guaranteed to possess their higher thermal conductivities than that of base
fluids and may enable the operation of cooling systems for practical use in many fields such
as in micro-electromechanical systems, pharmaceutical procedures, heat transfer, hybrid-
powered engines and in field of nanotechnology. Dynamics of a magneto convective Casson
nanofluid caused by Stefen blowing with bio active mixers was theoretically inspected by
Puneeth et al. [16]. Awais et al. [17] theoretically exposed the rheological behavior of copper-
water nanofluid peristaltic flowthrough generalized compliant walls in order to inspect
influence of Hall and slip with temperature dependent viscosity. It was deduced that first
and second order velocity slip parameters significantly increase flow velocity whereas rate
of heat transfer is maximum in the vicinity of channel boundaries. An experimental study
on the rheological characteristics of nanofluids manufactured by dispersing multi-walled
carbon nanotubes in liquid paraffin was carried out by Liu et al. [18]. It was revealed that
velocity components enlarge for velocity slip parameters while temperature-dependent
viscosity has shown an impact of increasing temperature. In order to characterize the
solar energy storage, improvement in thermal capacity of binary nitrate eutectic salt-silica
nanofluid was studied by Hu et al. [19]. Relevant literature in the regime of nanofluids
under several aspects can be found in [20–22]. Regardless of the noteworthy consequences
of researchers’ endeavors, authentic applications require transaction in dissimilar charac-
teristics of nanofluids and therefore hybrid nanofluids were synthesized by embedding
special nanoparticles in base fluid. Such fluids possess improved physical and chemical
properties in a homogeneous phase. Waini et al. [23] inspected MHD flow dynamics and
heat transport of a hybrid nanofluid over a porous stretching/shrinking wedge. A drop of
the heat transport rate was determined with the rise in radiation parameter. The temporal
stability analysis was presented to evaluate the dual solutions’ stability, and it was revealed
that one of the dual stables is reliable physically. Parveen et al. [24] utilized computational
intelligence techniques in order to analyze heat transfer rate and pressure rise behavior in
hybrid nanofluid dynamics influenced by magnetic induction effects past an endoscope. It
was shown that coefficient of heat transfer accelerates toward Br and χ. Accuracy and stabil-

162



Micromachines 2021, 12, 887

ity of experimental data were established by employing neural network algorithm and very
reliable results were obtained. Radhika et al. [25] explained the effects of magnetic field and
melting heat transfer in the dynamics of dusty fluid suspended with hybrid nanoparticles.
It was revealed that thermal gradient enhances for high values of magnetic parameter and
Prandtl number. Reddy et al. [26] carried out theoretical analysis for heat transfer in dusty
fluid dynamics suspended with hybrid nanoparticles by taking the Cattaneo-Christov
heat flux model. Khan et al. [27] studied sustainability based performance evaluation of
hybrid nanofluid assisted machining. Their theoretical study showed that a very small
portion of nanoparticles affect the cost of each industrial product and the study was in
complete accordance with the industrial applications of nanofluids. Literature in this area
is shown in the references [28–31]. Moreover, the shape factor can approximately portray
the difference of shape among non-spherical and spherical nanoparticles. In general, the
nanoparticles possess polyhedral shapes, and their surface is made up of various planes.
Thermophysical properties of nanoparticles directly depend on shape of nanoparticles.
Therefore, flow and heat transport rates are examined in terms of coefficient of skin friction
and Nusselt number for the nanoparticles of platelets shape with s = 5.7 in this analysis.

Entropy generation analysis is one of the vital factors in fluid mechanics. Performance
of thermal devices directly depends upon the available amount of work which degrades
by flow irreversibility and causes more disorder. Therefore, the study of dynamics be-
hind entropy production becomes necessary in order to optimize thermal efficiencies of
devices. Dogonchi et al. [32] inspected entropy generation behavior in natural convective
hybrid nanofluid rheology by considering the effects of applied magnetic field past a
porous cavity with wavy walls embedded in three circular cylinders. Sahoo et al. [33]
carried out the analysis of entropy optimization, with dissipative heat transfer, in mixed
convective MHD Casson nanofluid dynamics under the influences of Hall current and
thermal radiation. Results showed that entropy generation amplifies significantly for
diffusive variable, Brinkman number, and concentration ratio parameter whereas Bejan
number decreases for all these parameters. In this regard, some investigations on entropy
generation analysis for different flows and geometries under various physical aspects are
reviewed (see articles [34–36]). Moreover, use of an analytical technique for the solution
of the mathematical model is aimed by using homotopy analysis method (HAM). HAM,
intended by Shi Jun Liao in 1992, depends on the fundamental concept of topology and
differential geometry, homotopy. Being an analytical technique, HAMs are able to solve
algebraic, ordinary/partial differential and differential-integral, and linear/non-linear
equations in terms of series sum. It provides a broader way for selection of its arguments
like initial guess, linear operator and convergence control parameter, which can be highly
effective to control convergence rate of the solutions. This characteristic of HAM makes it
preferable toother analytical techniques.

The objectives of this study are to theoretically analyze entropy generation and rate of
heat transfer in steady flow of (Al2O3-Cu/H2O) hybrid nanofluid induced due to radially
stretching disk by imposing convective-type thermal conditions. Flow is axisymmetric
in which all the flow variables are independent of angular dimension. The influence of
induced magnetic field is taken into account. Flow is considered in the presence of viscous
dissipation and thermal radiation effects. The complete mechanism of the present study is
explored in terms of a workflow diagram in Figure 1.
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Figure 1. Workflow chart.

2. Modeling and Problem

Steady, boundary layer flow of viscous (Al2O3-Cu/H2O) hybrid nanofluid induced
due to stretching disk in radial directions is assumed. The volume concentration of Al2O3
and Cu nanomaterials is taken to be 0.05%. The stretching velocity of the disk surface is
Uw(r) = ar where a represents positive constant. The surface of disk is convectively heated
by fluid having temperature T and held in plane z = 0 while hybrid nanofluid is flowing in
the region z > 0 as shown in Figure 2. Moreover, a scheme for manufacturing of nanofluid
and hybrid nanofluid for the nanoparticles in the present study is presented in Figure 3.
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Figure 2. Schematic representation.

Figure 3. Preparation scheme of nanofluid and hybrid nanofluids.

The constitutive governing model along with induced magnetic field, thermal radia-
tions and viscous dissipation effects under boundary layer approximation is:
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∂r

+
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+
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∂r
+

H1

r
+

∂H3

∂z
= 0, (2)

u
∂u
∂r

+ w
∂u
∂z
− µ̂

4πρf

(
H1

∂H1

∂r
+ H3

∂H1

∂z

)
= − µ̂

4πρ f
He

dHe

dr
+

(
µhn f

ρhn f

)
∂2 u
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Radial, axial and azimuthal components of the induced magnetic field vector are, H1,
H2 and H3, respectively. Corresponding boundary conditions are:

u = Uw(r) = ar, −κhn f
∂T
∂z = h(Tw − T), w = 0, ∂H1

∂z = 0,
H2 = H3 = 0, at z = 0,

u = w = 0, T → T∞, H1 = He(r) = H0r, as z→ ∞.
(6)

In Equation (5), expression for qr by using Roseland approximation and Taylor series
expansion of T4 about T∞ can be expressed as:

qr = −
4σ

3k
∂T4

∂z
= −16σT∞

3

3k
∂T
∂z

, (7)

Now, using similarity transformation:

u(r, z) = ar f ′(η), w(r, z) = −2√aυ f f (η), η =
√

a
υ f

z,

H1 = H0rg′(η), H3 = −2√aυ f g(η), θ(η) = T−T∞
Tw−T∞

.
(8)

For the above transformations, Equations (1) and (2) are identically satisfied while
Equations (3)–(5) within boundary conditions (6) and Equation (7) gives:

f ′′′ −Φ1Φ2

{
f ′2 − 2 f f ′′ − β(g′2 − 2gg′′ − 1)

}
= 0, (9)

λg′′′ + 2 f g′′ − 2 f ′′ g = 0, (10)

(Φ4 +
4
3

R)θ′′ + 2Φ3Pr. f θ′ +
Pr · Ec

Φ1
f ′′ 2 = 0 (11)

The transformed boundary conditions are:

f (η) = g(η) = 0, f ′(η) = 1, g′′ (η) = 0, θ′(η) = − Bi
Φ4

(1− θ(0)), at η = 0,
f ′(η)→ 0, g′(η)→ 1, θ(η)→ 0, as η → ∞.

(12)

where prime represents differentiation with η; respect to
Moreover, expressions for thermophysical properties are:

Φ1 = (1− ϕ1)
2.5(1− ϕ2)

2.5, Φ2 = (1− ϕ2)
[
(1− ϕ1) + ϕ1

(
ρs1
ρ f

)]
+ ϕ2

(
ρs2
ρ f

)
,

Φ3 = (1− ϕ2)

[
(1− ϕ1) + ϕ1

(
(ρcp)s1
(ρcp) f

)]
+ ϕ2

(ρcp)s2
(ρcp) f

,

Φ4 =
κs2+(s−1)κb f−(s−1)ϕ2(κb f−κs2)

κs2+(s−1)κb f +ϕ2(κb f−κs2)
κs1+(s−1)κ f−(s−1)ϕ1(κ f−κs1)

κs1+(s−1)κ f +ϕ1(κ f−κs1)
,

(13)

Moreover, all the thermophysical characteristics of nanoparticles and base fluid are
mentioned in Table 1 while expressions for dimensionless parameters are:

Pr =
(µcp) f

κ f
, λ = µe

υ f
, β = µ̂

4πρ f

(
H0
a

)2
,

Ec = Uw
2

(cp) f (Tw−T∞)
, R = 4σT∞

3

kκ f
, Bi = h

κ f

√
υ f
a ,

(14)
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Table 1. Experimental values of various thermophysical properties for base fluid and nanoparti-
cles [27].

Properties\Constituents H2O Al2O3 Cu

Density, ρ (Kg/m3) 997 3970 8933
Specific heat, Cp (J/kg K) 4179 765 385

Thermal conductivity, κ (W/m K) 0.613 40 401

Expressions for coefficient of skin friction Cf and local Nusselt number Nu are:

C f =
τw

ρ f (Uw)
2 , Nu = − rqw

κ f (Tw − T∞)
. (15)

In the above expressions, τw and qw symbolize shear stress and heat flux for wall,
respectively. The dimensionless form by substituting Equation (8) is:

Rer
1
2 C f =

−1
Φ1

f ′′ (0), Rer
−1
2 Nu = −

(
Φ4 +

4
3

R
)

θ′(0), (16)

where, Rer =
Uwr
υ f

indicates local Reynolds number.
By adopting the second law of thermodynamics, volumetric entropy generation rate

in existence of radiative and dissipative factors can be expressed as:

.
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)

κ f
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(
∂u
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4πρ f

)(
∂H1
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)2
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The expression for characteristic entropy generation rate is:

.
S
′′′

0 =
κ f

T2
∞L2 (Tw − T∞)2. (18)

Utilizing similarity transformation with Equation (18) in Equation (17), we have:

NS =

.
S
′′′

Gen
.
S
′′′

0
=

(
Φ4 +

4
3

R
)

ReL.θ′2 +
ε.Pr.Ec.ReL

Φ1
f ′′ 2 +

ε.Pr.Ec.ReL.β
Φ1

g′′ 2. (19)

where, Ns is non-dimensional form of entropy generation number, ReL = aL2

υ f
and ε = T∞

Tw−T∞

demonstrate local Reynolds number and temperature ratio parameter, respectively.

3. Homotopy Analysis Method and Convergence of Solutions

The dimensionless governing model mentioned in Equations (9)–(11) and subjected
boundary conditions of Equation (12) for boundary layer flow of hybrid nanofluid over the
stretching disk is analytically solved by employing the homotopy analysis method [7,37–39].
For flow variables, initial guesses are:

f0(η) = 1− exp(−η), g0(η) = η, θ0(η) =
Bi

1 + Bi
exp(−η). (20)

Expressions for linear operators are:

T1(η) = f ′′′ (η)− f ′(η), T2(η) = g′′′ (η) + g′′ (η), T3(η) = θ′′ (η). (21)

and

T1
(

A1 + A2e−η − A3e−η
)
= T2

(
A4 + A5η + A6e−η

)
= T3(A7 + A8η) = 0. (22)
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where, A1–A8 represents constants in general solutions.

3.1. Convergence-Control Parameters

Suppose an h is auxiliary parameter in the frame of HAM which directly affects the
convergence of solutions. Let ξ ∈ [0, 1] be an embedding parameter, then the problem for
zeroth order deformation is constructed as:

(1− ξ)T1[ f (η, ξ)− f0(η)] = ξhR1[ f (η, ξ), g(η, ξ), θ(η, ξ)], (23)

(1− ξ)T2[g(η, ξ)− g0(η)] = ξhR2[ f (η, ξ), g(η, ξ), θ(η, ξ)], (24)

(1− ξ)T3[θ(η, ξ)− θ0(η)] = ξhR3[ f (η, ξ), g(η, ξ), θ(η, ξ)]. (25)

Furthermore,
at η = η1 = 0, f (η1, ξ) = g(η1, ξ) = 0, f ′(η1, ξ) = 1, g′′ (η1, ξ) = 0, θ′(η1, ξ) = − Bi

A4
(1− θ(η1, ξ)).

At η = η2 → ∞, f ′(η2, ξ)→ 0, g′(η2, ξ)→ 1, θ(η2, ξ)→ 0.
(26)

Using the aforementioned quantities, the mth order solution series is constructed as:

T1[ fm(η, ξ)− ςm fm−1(η, ξ)] = hS1
m[(η, ξ)], (27)

T2[gm(η, ξ)− ςmgm−1(η, ξ)] = hS2
m[(η, ξ)], (28)

T3[θm(η, ξ)− ςmθm−1(η, ξ)] = hS3
m[(η, ξ)]. (29)

In the above equations,

ςm =
0m ≤ 1
1m > 1

]

Subjected boundary conditions are:

At η = η1 = 0, fm(η1, ξ) = gm(η1, ξ) = 0, f ′m(η1, ξ) = 0, g′′m(η1, ξ) = 0,
θm(η1, ξ) = 0,

At η = η2 → ∞, f ′m(η2)→ 0, g′m(η2)→ 0, θm(η2)→ 0.
(30)

Then, we can write:

fm(η, ξ) = Fm(η, ξ) + A1 + A2e−η − A3e−η ,
gm(η, ξ) = Gm(η, ξ) + A4 + A5η + A6e−η ,
θm(η, ξ) = Θm(η, ξ) + A7 + A8η.

(31)

3.2. Convergence of Solutions

For stability and convergence of analytical solutions, h-curves for, f ′(0) g′(0) and
θ(0) are prepared upto 20th order solutions by plotting the interval of convergence and
are shown in Figures 4–6. Convergence control parameter h is able to control and adjust
convergence region of HAM solutions. It is observed from convergence analysis that
valid convergence region is Rh = [−0.4, 0.2]. For f ′(0), Rh = [−0.35, 0.2] for g′(0), and
Rh = [−0.35, 0.15] for θ(0). Moreover, testing various values of h from corresponding
regions, the error is minimum at h = −0.1 which guarantees that calculated solutions are
very accurate with a negligible error and become more accurate for higher-order solutions.
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Figure 4. h-curves for solution of f ′(0).

Figure 5. h-curves for solution of g′(0).

Figure 6. h-curves for the solution of θ(0).

4. Discussion of Results

Analytical solutions for the Al2O3-Cu/water hybrid nanofluid flow obtained by HAM
are discussed in this section. Figures 7 and 8 plot the variation in magnetic parameter
β and the reciprocal of magnetic Prandtl number λ for the velocity profile. The graph
indicates that rise in values of β enhances f ′(η) due to more dominant induction effects
than magnetic diffusion and the flow rate increases. A drop in f ′(η) is noticed for λ because
magnetic diffusivity rises with rise in λ. This effect causes enhancement of frictional force
and the velocity boundary layer thickness reduces.
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Figure 7. β verses velocity profile.

Figure 8. λ verses velocity profile.

The behavior of induced magnetic field profile against parameters β and λ is explored
in Figures 9 and 10, respectively. Graphs demonstrate that with augmentation in β, mag-
netic effects become strong as due to fast advection process, therefore increasing flow
rate amplifies magnetic induction profile. Consecutively, g′(η) is a decreasing function
of λ which is mainly due to enhancing magnetic diffusivity with high values of λ. It is
noteworthy that the influences of parameters on f ′(η) and g′(η) are more prominent at
the interface and very little variation is shown near stretching disk due to the no slip
boundary condition.

Figure 9. β verses induced magnetic field profile.
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Figure 10. λ verses induced magnetic field profile.

Figures 11–14 are plotted in order to express the variation in temperature against
magnetic parameter, reciprocal of magnetic Prandtl number, radiation parameter and
Biot number. Results reveal that θ(η) decreases with increment in β which is caused by
increasing heat transfer rate near the disk in existence of induced magnetic field due to
adding the flow mechanism as explored in Figure 11. The impact of radiation parameter
in Figure 12 depicts the dual behavior of the θ(η) profile which is depressed close to the
disk and elevated away from it showing dominant effects at free stream. Since the disk
is convectively heated and these effects trim down away from its surface, temperature
enhances at the disk surface due to rising intensity of convective heating in Figure 13.

Figure 11. β verses temperature profile.

Figure 12. λ verses temperature profile.
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Figure 13. Bi verses temperature profile.

Figure 14. R verses temperature profile.

An opposite trend is observed in the free stream region due to the fact that additional
heat released to the coolant at the surface. The impact of λ on temperature of hybrid
nanofluid is exposed in Figure 14 which signifies that temperature rises against λ. The
reason is high diffusivity and a small flow rate due to low magnetic induction for large
magnitude of λ. Moreover, variation in θ(η) directly associated with values of parameters
Bi, R and Ec which are taken to be small with Pr = 6.8 in this study.

The most persuasive part of this section is entropy generation analysis. The variation
in entropy generation number Ns against emerging parameters is pointed out graphically
in Figures 15–18. Impact of magnetic parameter in Figure 15 demonstrates that rise in β
decreases entropy production as strong effects of magnetic field close to the disk reduce the
frictional effects and rise in heat transfer rate. It is of true significance physically since the
rate of fluid flow enhances instantly and heat transfer rate increases. The number slightly
increases in the free stream region due to decreasing fluid flow. Figure 16 expresses an
enhancement in Ns as values of reciprocal of magnetic Prandtl number rises. This is because
of the fact that as λ enhances, reduction in viscosity occurs while magnetic diffusivity
accelerates, which produce disorder in the system. In Figure 17, entropy generation number
is plotted against Bi which illustrates that for somewhat large values of parameter Bi, Ns
have high magnitude due to strong influences of thermal convection and maximum radial
gradient. Additionally, thermal radiation effects on Ns in Figure 18 displays it as an
increasing function of R due to increasing emitting radiations which boosts frictional
irreversibility that encourage entropy generation. Furthermore, variations in entropy
generation number are drawn for small values of radiation parameter R, Eckert number
Ec and Biot number Bi which are directly related to entropy production. Also, extensive
behavior for Ns against parameters is observed at the interface due to large velocity and
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temperature gradients caused by no slip at the surface and convective wall conditions but
it is rarely affected by these parameters away from it.

Figure 15. β verses entropy generation number.

Figure 16. λ verses entropy generation number.

Figure 17. Bi verses entropy generation number.
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Figure 18. R verses entropy generation number.

Moreover, empirical formulas for the thermophysical properties of nanofluid and
hybrid nanofluid are displayed in Table 2.

Table 2. Formulas for thermophysical properties of nanofluid and hybrid nanofluid [40].

Properties Nanofluid Hybrid Nanofluid

Density ρn f = ρ f

[
(1− ϕ) + ϕ

(
ρs
ρ f

)]
ρhn f = ρ f (1− ϕ2)

[
(1− ϕ1) + ϕ1

(
ρs1
ρ f

)]
+ ϕ2ρs2

Heat Capacity (
ρcp
)

n f =
(
ρcp
)

f

[
(1− ϕ) + ϕ

(
(ρcp)s

(ρcp) f

)]
(
ρcp
)

hn f =

(
ρcp
)

f (1− ϕ2)

[
(1− ϕ1) + ϕ1

(
(ρcp)s1

(ρcp) f

)]
+ ϕ2

(
ρcp
)

s2

Viscosity µn f =
µ f

(1−ϕ)2.5 µhn f =
µ f

(1−ϕ1)
2.5(1−ϕ2)

2.5

Thermal Conductivity κn f
κ f

=
κs+(s−1)κ f−(s−1)ϕ(κ f−κs)

κs+(s−1)κ f +ϕ(κ f−κs)

κhn f
κb f

=
κs2+(s−1)κb f−(s−1)ϕ2(κb f−κs2 )

κs2+(s−1)κb f +ϕ2(κb f−κs2 )
,

where κb f
κ f

=
κs1+(s−1)κ f−(s−1)ϕ1(κ f−κs1 )

κs1+(s−1)κ f +ϕ1(κ f−κs1 )

The impacts of involving parameters on skin friction coefficient and heat transfer rate
through Tables 3 and 4 as well as bar graphs in Figures 19–25 are explained in this section.
Observations conclude that the surface velocity gradient is depressed as values of magnetic
parameter β rises but enhances with elevation in λ. Moreover, an expansion in Nusselt
number is noticed for rising values of the reciprocal of magnetic Prandtl number, Biot
number, radiation parameter, and Eckert number whereas it is a decreasing function of
magnetic parameter.

Table 3. Behavior of skin friction coefficient for Al2O3-Cu/H2Oagainst several parameters.

β λ −Cf

0.0 5.0 0.003467
0.5 0.002900
1.0 0.002331
1.5 0.001759
0.5 5.0 0.002900

10 0.003185
15 0.003280
20 0.003327
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Table 4. Behavior of Nusselt number for Al2O3-Cu/H2O against several parameters.

β λ Bi R Ec −Nu

0.0 5.0 1.5 2.5 0.2 0.026143
0.5 0.026134
1.0 0.026125
1.5 0.026117
0.5 5.0 0.026134

10 0.026138
15 0.026140
20 0.026140
5.0 0.1 0.001173

0.5 0.011475
1.0 0.021485
1.5 0.026134
1.5 0.5 0.004934

1.0 0.00952
2.0 0.022197
2.5 0.026134
2.5 0.2 0.031758

0.4 0.033282
0.6 0.034806
0.8 0.034915

Figure 19. β verses Cf.

Figure 20. λ verses Cf.
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Figure 21. β verses Nu.

Figure 22. λ verses Nu.

Figure 23. Ec verses Nu.
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Figure 24. R verses Nu.

Figure 25. Bi verses Nu.

5. Concluding Remarks

A theoretical discussion of MHD viscous flow of Al2O3-Cu/H2O hybrid nanofluid
due to stretching of the disk is carried out. Some noteworthy influences of important
emerging parameters on flow profiles and entropy generation are as follows:

1. f ′(η) and g′(η) profiles are increasing functions of magnetic parameter while an
opposite behavior is seen for enhancing values of λ.

2. Increment in β results in an enhancement in temperature, whereas it reduces against λ.
3. An increasing behavior for the temperature of the fluid is observed against rising

values of parameters Bi and R at the surface. An opposite trend is depicted in the
ambient region with a point of inflection in the field.

4. Entropy generation number enhances for enhancement in values of parameters Bi, R
and λ but diminishes against β.

5. Flow profiles and entropy generation number are large near the surface of the disk
and then decrease asymptotically far away from it. Also, these are more sensitive to
fluctuate at the interface for several involved parameters.

6. At the interface, fluid temperature is significantly different from ambient tempera-
ture. Thus, convection at the wall corresponding to high values of convective heat
coefficient leads to increased rate of heat transfer at the interface.

7. Values of skin friction and heat transfer coefficient can be optimized by choosing
suitable values of involved parameters regarding different physical problems.
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Nomenclature

Nomenclature Greek Symbols
a Constant β Magnetic parameter
Bi Biot number η Dimensionless similarity variable
cf Skin friction coefficient ϕ Nanoparticles volume fraction
Ec Eckert number κ Thermal conductivity
H0 Uniform magnetic field ρ Density
h Convective heat transfer coefficient ρcp Heat capacity
k Mean absorption coefficient µ̂ Magnetic permeability
Nu Nusselt number µe Magnetic diffusivity
Pr Prandtl number µ Dynamic viscosity
qr Radiative heat flux υ Kinematic viscosity
qw Heat transfer at wall σ Stefan-Boltzmann constant
R Radiation parameter θ Dimensionless temperature
Re Reynolds number τw Wall shear stress
s Nanoparticles shape factor ε Temperature ratio parameter
T Fluid temperature Subscripts
Tw Surface temperature hnf Hybrid nanofluid
T∞ Ambient temperature f Base fluid
u, w Velocity components in r-, z- directions. w Surface condition
Uw Stretching velocity ∞ Ambient condition
U∞ Ambient velocity s1,s2 Shape factors of Copper andAlumina
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Abstract: The fluid flow over a rotating disk is critically important due to its application in a broad
spectrum of industries and engineering and scientific fields. In this article, the traditional swirling
flow of Von Karman is optimized for Maxwell fluid over a porous spinning disc with a consistent
suction/injection effect. Buongiorno’s model, which incorporates the effect of both thermophoresis
and Brownian motion, describes the Maxwell nanofluid nature. The dimensionless system of ordinary
differential equations (ODEs) has been diminished from the system of modeled equations through
a proper transformation framework. Which is numerically computed with the bvp4c method and
for validity purposes, the results are compared with the RK4 technique. The effect of mathematical
abstractions on velocity, energy, concentration, and magnetic power is sketched and debated. It is
perceived that the mass transmission significantly rises with the thermophoresis parameter, while
the velocities in angular and radial directions are reducing with enlarging of the viscosity parameter.
Further, the influences of thermal radiation Rd and Brownian motion parameters are particularly
more valuable to enhance fluid temperature. The fluid velocity is reduced by the action of suction
effects. The suction effect grips the fluid particles towards the pores of the disk, which causes the
momentum boundary layer reduction.

Keywords: bvp4c; RK4 technique; brownian motion; porous rotating disk; maxwell nanofluid;
thermally radiative fluid; von karman transformation

1. Introduction

The researchers have been interested in Maxwell nanofluid flow over a porous spin-
ning disc because of its many uses in engineering and innovation. Non-Newtonian fluids
are important in a variety of manufactured liquids, including plastics, polymers, pulps,
toothpaste and fossil fluids. To simulate the analysis of these liquids, a variety of models
have been suggested. Shear stress and shear rate are linked in non-Newtonian liquids
because of their nonlinear existence. The momentum equation in these fluids involves
dynamic nonlinear terms, making it difficult to solve. A variety of mathematical models
exist in the literature to simulate the performance of these fluids.

In the present era, the role of nanotechnology to fulfill the increasing demand for
energy and face energy challenges is remarkable. The usage of nanoparticles in ordinary
base fluid (water, kerosene oil, etc.) effectively enhances the heat transfer and improves
their thermal properties. The applications of nanoparticles in certain fields of engineering
and industry are in the cooling systems of electronic devices and in cancer therapy, heat
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exchangers, transformer cooling, nuclear reactors, and space cooling systems. Due to the
ability of oil wetting and dispersing, they are also used for cleaning purposes, in power
generation, microfabrication, hyperthermia, and metallurgical purposes.

2. Literature Review

The rotating disk phenomena are widely used in centrifugal filtration, turbomachines,
the braking system of vehicles, jet motors, sewing machines, turbine systems, heat ex-
changers and computer disk drives, etc. Von Karman [1] for the first time introduced
similarity transformation. To solve Navier-Stokes equations, he studied fluid flow over
an infinite rotating disk. Cochran [2] employed Von Karman’s similarity transformation
to incompressible fluid over a rotating disk and examined the asymptotic solution. Wag-
ner [3] investigated the mechanism of heat transfer over the rotating disk, by considering
Von Karman’s velocity distribution, and analyzed convection in the non-turbulent flow.
Turkyimazogl [4] looked at fluid movement over a spinning disc that was stretching under
the influence of a static electric field. Liang et al. [5] reported a comparative study between
semi-analytical model and experimental data to yield the best settlement. Millsaps and
Pohlhausen [6] used Von Karman’s similarity approach and analyzed heat distribution with
the consequences of entropy generation over revolving disk. The three-dimensional (3D)
magnetohydrodynamics (MHD) stagnation flow of ferrofluid, the numerical solution was
revealed by Mustafa et al. [7]. Mustafa et al. [8], by taking MHD nanofluid over rotating
surface with the effects of partial slips, observed that the boundary layer thickness and
momentum transport are reduced due to slip effects. Rashidi et al. [9] have used a spinning
disc to perform a viscous dissipation review for MHD nanofluid.

The people of the modern world are facing many challenges due to the increasing
demand for energy by the latest technologies. Firstly Choi [10] presented the nanofluids ter-
minology. The Brownian motion and thermophoresis mechanisms bring about a significant
role in improving the thermal properties of base fluid presented by Buongiorno [11]. Turky-
ilmazolglu [12] analytically studied the energy and momentum equations of nanofluid flow,
to deduce heat and flow transport. Pourmehran [13] considered Cu and Al2O3 nanoparti-
cles to study heat and flow transfer in the microchannel. Hatami et al. [14] reported the heat
transfer in nanofluid with the phenomena of natural convection. The Oldroyd-B fluid with
nanoparticles over stretching sheet surface was reported by Nadeem et al. [15]. Aziz and
Afify [16] have used the technique of the Lie group, to study non-Newtonian nanofluids.
Yang et al. [17] studied the convective heat with Buongiorno Model’s for nanofluid in the
concentric annulus.

The study of a Newtonian fluid, due to its wide applicability in different fields of
science and engineering, attracted the attention of scientists and researchers during the
last few decades. Its major role is in geophysics, polymer solution, paper production,
cosmetic processes, exotic lubricants, paints, suspensions, colloidal solutions, nuclear and
chemical industries, pharmaceuticals, oil reservoirs, bioengineering, etc. [18]. Xiao et al. [19]
attempted a fractal model for the capillary flow through a torturous capillary with the
non-smooth surface in porous media. Attia [20] evaluated the Reiner-Rivlin numerical
simulations for thermal convection over a porous spinning disc qualitatively. Griffiths [21]
tested the Newtonian fluid Carreau viscosity model and high shear stresses on spinning
discs. The numerical analysis of Reiner-Rivlin fluid flow for heat transfer and slip flow
over a spinning disc is treated by Mustafa and Tabassum [22]. The micropolar fluid for
thermophoretic diffusion generated by the rotation of the disk was examined by Doh and
Muthtamilselvan [23].

Darcy’s law is a mathematical equation that explains how fluid flows through a
porous medium. Henry Darcy developed the law based on the effects of studies on the
flow of water across sand beds, laying the groundwork for hydrogeology, a branch of earth
sciences [24]. Fourier’s law in heat conduction, Ohm’s law in electrical networks, and
Fick’s law in diffusion theory are all examples of this law. Morris Muskat [25] improved
Darcy’s equation for a single-phase flow by incorporating viscosity into Darcy’s single
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(fluid) phase equation. It is easy to see that viscous fluids have a harder time passing
through a porous medium than less viscous fluids. Rasool et al. [26–28] numerically
simulated the Darcy-Forchheimer effect on MHD nanoliquid flow between stretching
non-linear sheets. Rasool et al. [29] scrutinized the consequences of thermal radiation,
chemical reaction and Dufour-Soret on incompressible steady Darcy-Forchheimer flow
of nanoliquid. Shafiq et al. [30] studied nanofluid flow under the influence of convective
boundary conditions and thermal slip over a spinning frame. They found that the axial and
transverse velocity fields all drop significantly due to the Forchheimer number’s strong
retardation. Skin friction is intensified by the Forchheimer number and porosity ratios,
while skin friction is diminished by all slip parameters.

Viscoelastic fluids are a subclass of Newtonian fluid having memory effects. The
intensity of energy discharged by these fluids is mainly accountable for recovery after the
stress is removed. The Maxwell flow regime is the most basic viscoelastic fluid model,
expressing memory effects by fluid relaxation time [31]. The attitude of the current model is
very close to that of other geomaterials and polymers models. The aim of the present work
is to provide a mathematical model for unsteady boundary layer flow of non-Newtonian
Maxwell nanofluid with the heat transmission over a porous spinning disc. The present
work has many industrial and engineering applications, which increases its worth. Using a
resemblance method, the system of ODEs is limited to a structure of PDEs. A boundary
value solver (bvp4c) technique is used to draw a numerical solution to the problem while
RK4 method has been applied for validity.

3. Formulation of the Problem

Consider an unsteady hybrid nanoliquid flow over a stretching porous spinning disc.
The magnetic force B0 is introduced to the disc vertically. The disc rotates and stretches
at different speeds (u, v) = (cr, cΩ), where c and w are the spinning and extending rates,
respectively. The disk temperature is represented by τw. The formulation of the problems is
conducted in (r, ϕ, z) cylindrical coordinates, where u, v, w is velocity component increasing
in (r, ϕ, z) direction. At z− the axis, the motion of the disk is assumed to be axisymmetric.
The thermal radiation is significant in modeling the energy equation. The viscosity of a
fluid is taken to be temperature-dependent µ(τ) = µ0e−ζ(τ−τ0). The concentration and
temperature are represented by (Cw, τw) and (C∞, τ∞) represent the concentration and
temperature above the disk surface.

3.1. Governing Equations

Under the presuppositions stated above, the flow equations are as observes [31]:

∇.V = 0, (1)

ρ f (V.∇)V = ∇p +∇.S + j× B, (2)

(V.∇)τ = α∇2τ + τ∗
(

DB∇C.∇τ +
Dτ

τ∞
∇τ.∇τ

)
+∇.qrad, (3)

(V.∇)C = DB∇2C +
Dτ

τ∞
∇2τ, (4)

∇.B = 0, (5)

ρ
∂B
∂t

= ρ∇+ (V × B) +
ρ

σµ2
∇2V. (6)

where DB, DT , ρ f , V and α are the coefficients of Brownian motion, thermophoretic diffu-
sion, fluid density, velocity, and thermal and diffusivity respectively. Equations (1)–(6) are
simplified because of the boundary layer approximation concept:

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (7)
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∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z
− v2

r
=




1
ρ

(
µ(τ) ∂u

∂z

)
− λ1(u2 ∂2u

∂r2 + w ∂2u
∂z2 + 2uw ∂2u

∂r∂z − 2uv
r

∂v
∂r − 2vw

r
∂v
∂z +

uv2

r2 + v2

r2
∂u
∂r )−

σB2
0

ρ

(
u + wλ1

∂u
∂z

)

, (8)

∂v
∂t

+ u
∂v
∂r

+ w
∂v
∂z
− uv

r
=




1
ρ

(
µ(τ) ∂v

∂z

)
− λ1(u2 ∂2v

∂r2 + w2 ∂2v
∂z2 + 2uw ∂2v

∂r∂z +
2uv

r
∂u
∂r + 2vw

r
∂u
∂z + 2u2v

r2 − v2

r2
∂v
∂r )−

σB2
0

ρ

(
v + wλ1

∂v
∂z

)

, (9)

∂τ

∂t
+ u

∂τ

∂r
+ w

∂τ

∂z
=

k
ρcp

(
∂2τ

∂z2

)
+ τ∗(DB

∂τ

∂z
∂C
∂z

+
Dτ

τ∞

(
∂τ

∂z
)2
)
− 1

ρcp

∂qr

∂z
, (10)

∂C
∂t

+ u
∂C
∂r

+ w
∂C
∂z

= DB

(
∂2C
∂z2

)
+

Dτ

τ∞

(
∂2τ

∂z2

)
, (11)

∂Br

∂t
=

[
−w

∂Br

∂z
− Br

∂w
∂z

+ u
∂Bz

∂z
+ Bz

∂u
∂z

+
1

σµ2

(
∂2Br

∂r2 +
∂2Br

∂z2 +
1
r

∂Br

∂r
− Br

r2

)]
, (12)

∂Bz

∂t
=

[
w

∂Br

∂r
+ Br

∂w
∂r

+
1
r

wBr − u
∂Bz

∂r
− Bz

∂u
∂r
− 1

r
uBz +

1
σµ2

(
∂2Bz

∂r2 +
∂2Bz

∂z2 +
1
r

∂Bz

∂r

)]
. (13)

The temperature difference within a flow is assumed to be small, therefore higher-
order in Taylor series and ignored at τ∞, by using Rosseland approximation, the simple
form of radiation heat flux is as follow [31]:

qr =
−4σ∗∂τ4

3k∗∂z
= −16σ∗τ3

3k∗
∂τ

∂z
, (14)

using Equation (14) in (10), we get

∂τ

∂t
+ u

∂τ

∂r
+ w

∂τ

∂z
=

k
ρcp

(
∂2τ

∂z2

)
+ τ∗

(
DB

∂τ

∂z
∂C
∂z

+
Dτ

τ∞
(

∂τ

∂z
)2
)
− 16σ∗τ3

3k∗
∂τ

∂z
. (15)

The boundary conditions are:

u = cr, v = Ωr, w = W, C = Cw, T = Tw, Br = 1, Bz = 1 atz = 0
u→ 0, v→ 0, w→ 0, C → C∞, T → T∞, Br → 0, Bz → 0 as Z → ∞.

(16)

3.2. Similarity Transformation

Considering the following transformation, to reduce the system of PDEs to the system
of ODEs:

u = cr
1−αt F(η), ν = Ωr

1−αt G(η), w =
√

cv
1−αt H(η), η =

√
c
v z, Br =

crM0
1−αt M′(η),

Bz =
−M0(2ν f c)

1
2

1−αt N(η), T = (T∞) + Θ(η)(TW − T∞)C = (C∞) + φ(η)(CW − C∞).



 (17)

The following system of ODEs is obtained by using Equation (17) in Equations (7)–(13)
and (15) and (16):

F′′ = F′Θ′ +
eδΘ

δ

{
S
(

F′η
2

+ F
)
+ F2 + HF′ − G2

}
+ β1

eδΘ

δ

{
HF′ + 2FF′H − 2HGG′

}
−M

eδΘ

δ

(
F + β1HF′

)
, (18)

G′′ =
δG′Θ′ + eδΘ

{
S
(

G′−η
2 + G

)
+ 2FG + HG′

}
+ β1eδΘ{2FHG′ + 2FHG}+ MeδΘ(G + β1HG′)

1 + β1H2eδΘ , (19)

Θ′′ =
−4RdΘ2Θ′2(Θ− 1)3 − 6Θ′2Θ(Qw − 1)2 − 3Θ′2(Qw − 1)− Pr

(
− S

2 (Θ
′η)− HΘ′ + NbΘφ′ + NtΘ′3

)

(
1 + 4

3

)
Rd + 4

3 RdΘ3(Qw − 1)3 + 3Θ2(Qw − 1)2 + 3Θ(Θ− 1)
, (20)

φ′′ = Sc
(

Aφ′η + Hφ′
)
− Nt

Nb
Θ′′ , (21)
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M′′′ = Bt
[
−HM′′ + M′H′ + FN′ + NF′ + S

(
M′′ η

2
+ M′

)]
, (22)

M′′ = −Bt
[

2HM′ + 2NF− S
2
(Nη + N)

]
. (23)

the transforms conditions are:

F(0) = 1, G(0) = ω, H = Ws, Θ(0) = 1, f (0) = 1, M′(0) = 0, N(0) = 1,
F(∞) = 0, G(∞) = 0, H(0) = 0, Θ(∞) = 0, f (∞) = 0, M′(∞) = 0, N(∞) = 0.

(24)

where Pr = ν/α is the Prandtl number, Sc = v/DB is the Schmidt number, β1 = λ1c the
Deborah number, while suction/injection parameter, Brownian motion, variable viscosity,
thermophoresis parameter, magnetic parameter, temperature ratio, and thermal radiation
are defined as [31]:

Ws =
w√
cν

, Nb =
τ∗DB(Cw − C∞)

v
, δ = ζ(τw − τ∞), Nt =

τ∗Dτ(τw − τ∞)

τ∞v
, M =

σB2
0

cp
, Rd =

4σ∗T3
∞

kk∗
. (25)

The skin friction C fx, local Sherwood Shr and Nusselt number Nur are mathematically
can be written as [32,33]:

C f =

√
τ2

zr+τ2
zϕ

ρ(Ωr)2 , (26)

Shr = −
r

(Cw − C∞)

(
∂τ

∂C

)∣∣∣∣z=0, (27)

Nur =
r

(τw − τ∞)

[
1 +

16σ∗τ3

3kk∗

](
∂τ

∂z

)∣∣∣∣z=0. (28)

The skin friction, Sherwood and Nusselt numbers have a non-dimensional structure as:

C f Rer
1/2 =

√
f ′′ 2(0) + g′2(0), (29)

Re−
1
2

Shr = −φ(0), (30)

Re−
1
2

Nur = −(1 +
4
3

Rd{1 + (Θw − 1)Θ(0)}3)Θ′(0). (31)

Here Re = ru
ν is the local Reynold number.

4. Solution Procedures

The higher-order model equation is brought down to first order by choosing variables:

χ1 = H, χ2 = F, χ3 = F′, χ4 = G, χ5 = G′, χ6 = θ, χ7 = θ′,
χ8 = φ, χ9 = φ′, χ10 = M, χ11 = M′, χ13 = N, χ14 = N′.

}
(32)

χ′1 = −2χ2, χ′1 = χ3,
χ′3 = χ7χ3 +

eδθ

δ

{
S( ηχ3

2 + χ2) + χ2
2 + χ1χ2

2 − χ2
4
}
+ β1

eδθ

δ {χ1χ3 + 2χ1χ2χ3 − 2χ1χ4χ5}
M0

eδθ

δ (χ2 + β1χ1χ3), χ′4 = χ5,

χ′5 =
δχ5χ7+eδθ

{
S( χ5−η

2 )+2χ2χ4+χ1χ5

}
+β1{2χ1χ2χ5−2χ1χ4χ2}+M0eδθ(χ4+β1χ1χ5)

1+β1eδθχ2
1

,

χ′6 = χ7, χ′7 =
4
3 Rdχ2

7(θw−1)
{

3χ2
6(θw−1)2+6χ6(θw−1)−3

}
−Pr{Nbχ7χ9+Ntχ2

7−Aχ7χ10−χ1χ7}
1− 4

3 Rd− 4
3 Rdχ6(θw−1){(θw−1)χ2

6−3χ6(θw−1)+3} ,

χ′8 = χ9,
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χ′9 = Nt
Nb

(
4
3 Rdχ2

7(θw−1)
{

3χ2
6(θw−1)2+6χ6(θw−1)−3

}
−Pr{Nbχ7χ9+Ntχ2

7−Aχ7χ10−χ1χ7}
1− 4

3 Rd− 4
3 Rdχ6(θw−1){(θw−1)χ2

6−3χ6(θw−1)+3}

)

Sc(Aχ9χ10 + χ91χ9),

χ′10 = χ11, χ′11 = Bt[−2χ11χ2 − χ1χ11 + χ2χ14 + χ13χ2 + S( ηχ12
2 + χ11)],

χ′12 = χ13, χ′13 = Bt[2χ11χ1 + 2χ13χ2 +
S
2 (ηχ14 + χ13)]

(33)

The boundary conditions are:

χ1(0) = 1, χ2(0) = 0, χ4(0) = 1, χ6(0) = 1, χ8(0) = 1, χ11(0) = 0, χ13(0) = 1,
χ2(∞) = 0, χ4(∞) = 0, χ6(∞) = 0, χ8(∞) = 0, χ11(∞) = 1, χ13(∞) = 0.

(34)

5. Results and Discussion

The discussion section is devoted to understanding better the graphical and physical
description. The system of non-linear Equations (18)–(23) along with their boundary
conditions, Equation (24), are solved through numerical method bvp4c. The configuration
of the problem is described in Figure 1. The velocities, energy profile, concentration
distribution φ(η), magnetic strength in the radial direction M(η), and azimuthal magnetic
strength N(η) are explored graphically through different physical constraints Figures 2–10.
While keeping Pr = 6.7, ω = 1.0, δ = 0.5, β = 0.1, M = 1.1, Nb = 0.5, Nt = 0.7, Qw = 1.2,
Sc = 2.0, and Rd = 0.5.

Figure 2a–c depicts the behavior velocities profiles against the variation of Deborah
number β. All three velocity shows decreasing behavior for incremented of β. Deborah
number is the measure of the content evaluation period to content recreational time, so
having optimum stress relaxation or eliminating observation time increases the value of β.
It reflects the fluid’s solid-like reaction. The hydrodynamic boundary layer thins out, and
the velocity experiences more resistance.
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The implications of the suction factor (Ws < 0) on the velocities profile and heat
spectrum on the disc surface are depicted in Figure 3a–c. It seems to be that as the suction
velocity rises, the velocity decreases. Because the suction velocity draws the fluid particles
towards the pores in the disk, which causes the momentum boundary layer reduction. The
enhancement of suction velocity also decreases the fluid temperature.

Figure 4a–d are drawn to depict the effects of injection velocity parameter (Ws > 0)
on the radial, azimuthal, tangential velocity profile and temperature distribution. It can be
seen that the enhancing of injection velocity increases the velocity and fluid temperature.

The radial, azimuthal, tangential velocity profile and temperature distribution vari-
ation are illustrated in Figure 5a–d. Figure 5a depicts the dominant behavior of radial
velocity with ω. Physically, fluid particles are moved in a radial direction owing to cen-
trifugal force with the enhancement of parameters ω. The increasing value of ω shows that
the rotation parameter becomes greater than extending. The radial velocity exceeds the
disc stretching velocity too close to the disc stretching surface. It does, however, gradually
fade away from the disc. It is concluded that the impact of centrifugal force is limited and
dominant in the vicinity of the disk’s surface. Besides, angular velocity G(η) near the disk
flourished shown in Figure 5b. The axial velocity increasing against the strengthening of ω
is illustrated in Figure 5c. Figure 5d demonstrates the decreases of temperature θ(η) with
ω. Physically, a faster spinning disc reduces the width of the thermal boundary, which play
a significant role in the cooling of the system.

Figure 6a–d are rough sketches that show the effects of the viscosity factor on the
velocity and temperature spectrum on the disk’s surface. The viscosity parameter causes
radial velocity, tangential velocity, and temperature profile to increase, while azimuthal
velocity reduces.

Figure 7a,b indicates how the heat transfer changes when the Prandtl number Pr and
the thermal radiation factor change. The thermal dispersion of a strong Prandtl fluid is
low, while the thermal diffusivity of a low Prandtl fluid is high. Figure 7b is drawn to
explore the influence of radiation parameters Rd on the thermal mechanism of fluid. With
a higher value of the radiation parameter, an increasing trend in heat is analyzed. Because,
with enhancing of thermal radiation the fluid absorbs more heat, and as a result increment
occurs in boundary layer thickness and fluid temperature. Figure 7c is sketched to illustrate
temperature θ(η) variation versus temperature ratio Qw. While Figure 7d indicates the
consequence of molecular diffusion on the thermal performance of a Maxwell nanofluid.
The Brownian motion produces random movement between fluid particles, which generate
more heat, and as a result, the fluid temperature increases.

Figure 8a,b accordingly represents the action of the concentration field as a function
of the thermophoresis term and Brownian. It can be shown that with Nt, the nanofluid
concentration field raises while with Nb, the concentration profile drops. The suction
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parameter (Ws) < 0 and Schmidt number Sc effect are illustrated in Figures 8c and 8d
respectively. The concentration field reduces with an increase of both suction velocity and
Schmidt number. The consequences of different parameters (Bt, Ws) on the axial and radial
magnetic strength profiles are illustrated through Figure 9a–d respectively. It can observe
that both parameters Batchlor number Bt and injection parameter Ws positively effect the
magnetic strength profile along axial and radial direction.

Figure 10a,b express the nature of heat −θ′(0) and mass transfer −φ′(0) against
radiation parameter Rd and Brownian motion parameter Nb, respectively. Because of the
improving effect of radiation, the fluid temperature also rises, which enhances the heat
transmission rate. Table 1 displays the numerical outcomes for skin friction and compared
it with the published literature. Table 2 illustrates the comparison of bvp4c and RK4
techniques for the numerical outcomes. The numerical outputs for Sherwood number Shr
and Nusselt number Nur are plotted in Table 3.

Table 1. The numerical outcomes for skin friction F′(0).

ω Mustafa et al. [7] Ahmed et al. [31] Present Paper

0 −1.1737 −1.1379 −1.1380
1 −0.9483 −0.9485 −0.9487
2 −0.3262 −0.3264 −0.3266
5 3.1937 3.11937 3.11939
10 12.7209 12.7209 12.7811
20 40.9057 40.9057 40.9058

Table 2. Comparison between Runge Kutta order four and bvp4c method.

η RK4 bvp4c Absolute Error

1.0 1.000000 1.000000 8.146310×10−13

1.2 1.199831 1.199831 3.387821 ×10−9

1.4 0.988459 0.988459 2.845561 ×10−9

1.6 0.879189 0.879189 2.813281 ×10−9

1.8 0.539393 0.539393 3.287961 ×10−9

Table 3. The comparison of RK4 and Bvp4c for Sherwood Shr and Nusselt number Nur, while
keeping ω = 1.0, δ = 0.5, β = 0.1, M = 1.1, Nb = 0.5, Nt = 0.7, Qw = 1.2 and Rd = 0.5.

Shr Nur

Pr Bvp4c RK4 Sc Bvp4c RK4

3.0 0.7718284 0.7718285 1.0 1.457986 1.457995
4.0 0.6999885 0.6999885 1.5 1.531211 1.531220
5.0 0.6290089 0.6290088 2.0 1.596949 1.596949
6.0 0.5632372 0.5632370 2.5 1.685639 1.685639

6. Conclusions

In the present mathematical model, the Maxwell nanoliquid flow over a porous
spinning disk with suction/injection effects has been examined. The flow is studied in the
context of magnetization and radiation. The numerical results are found through bvp4c,
while for comparison purposes, the computation is carried out via the RK4 technique. From
the above studies the following conclusions have been drawn:

• The centrifugal force is more effective and dominant near the disk surface, so causes
the maximum velocity in the neighborhood of the surface of the disk.

• The fluid velocity reduces by the action of suction effects. Because the suction effect
gripping the fluid particles towards the pores of the disk, which causes the momentum
boundary layer reduction.
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• The axial, radial and tangential velocities are boosts with the increases of injection parameter.
• The enhancement in rotation parameter also boosts the azimuthal and radial flows.
• The thermal energy profile enhances by the consequence of Brownian motion parame-

ter Nb. The Brownian motion produces random movement between fluid particles,
which generate more heat, as a result, the fluid temperature increases.

• The fluid temperature decline with Prandtl number Pr, while incline with thermal
radiation parameter, Rd.

• The nanofluid concentration field enhances with Nt, while Nb causes the reduction of
concentration profile.
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Abstract: In this work, an effective thermal conductivity (ETC) for living tissues, which directly affects
the energy transport process, is determined. The fractal scaling and Monte Carlo methods are used to
describe the tissue as a porous medium, and blood is considered a Newtonian and non-Newtonian
fluid for comparative and analytical purposes. The effect of the principal variables—such as fractal
dimensions DT and D f , porosity, and the power-law index, n—on the temperature profiles as a
function of time and tissue depth, for one- and three-layer tissues, besides temperature distribution,
are presented. ETC was improved by considering high tissue porosity, low tortuosity, and shear-
thinning fluids. In three-layer tissues with different porosities, perfusion with a non-Newtonian fluid
contributes to the understanding of the heat transfer process in some parts of the human body.

Keywords: effective thermal conductivity; fractal scaling; Monte Carlo; porous media; non-Newtonian
fluid; power-law model; bioheat equation; human body

1. Introduction

The skin is the largest single organ of the body, enabling protection from the surround-
ing environment. It consists of several layers and plays an important role in thermoreg-
ulation, sensory, and host defense functions [1–3]. The skin is generally described by a
three-layer tissue: epidermis, dermis, and hypodermis (also called subcutaneous) [4–6].
The thickness of these layers varies depending on the location of the skin. The epidermis is
the outer layer (75–150 µm), this layer plays a barrier role between environment and organ-
ism [7,8]. The dermis is much thicker than the epidermis, in this, there are blood vessels,
nerves, lymph vessels, and skin appendages. Dermis performances important functions
in thermoregulation and supports the vascular network to supply the non-vascularized
epidermis with nutrients. This layer is formed by an irregular network with wavy and
unaligned collagen fiber bundles, allowing considerable deformations in all directions. The
hypodermis is composed of loose fatty connective tissue. It is not part of the skin, but
appears as a deep extension of the dermis, and depends on the age, sex, race, endocrine, and
nutritional status of the individual [7–10]. The thermoregulation function of skin is realized
mainly by modifying the blood flow, which is located in a microcirculatory bed, composed
of arterioles, arterial and vein capillaries, and venules (blood perfusion). Blood perfusion
has great effect on the heat transfer process in living tissues [8,11,12]. Heat transfer in
human tissues takes place through different mechanisms, such as heat conduction, blood
perfusion, metabolic heat generation, and external interactions [13,14]. One of the earliest
models of heat transfer in biological tissues was developed by Pennes in 1948 [15], who
proposed a model to describe the effects of metabolism and blood perfusion on the energy
balance within tissue, this model is based on the classical Fourier’s law [15]. Wulff [16]
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questioned the assumptions of the Pennes model and provided an alternative analysis.
He assumed that heat transfer between blood flow and tissue should be modeled propor-
tionally to the temperature difference between these two media and not between the two
temperatures of the blood flow. Klinger [17] consider the convective heat transfer caused
by the blood flow inside the tissue, since this term was neglected by Pennes. Chen and
Holmes [18] assumed that the total tissue control volume is composed of the solid-tissue
subvolume and blood subvolume. They determined an effective thermal conductivity
using the tissue porosity and the local mean tissue temperature, together with a simpli-
fied volume-averaging technique for the solid and tissue spaces. Weinbaum et al. [19,20]
determined an effective thermal conductivity (ETC) based on the hypothesis that small
arteries and veins are parallel and the flow direction is countercurrent, which is a function
of the blood flow rate and vascular geometry. The model included a perfusion bleed-off
term that apparently resembles the Pennes perfusion term. Weinbaum and Jiji [11] derived
a simplified equation to study the influence of the blood flow on the tissue temperature
distribution defining an ETC.

In biological tissues, many body parts reveal anisotropy in heat transport that can not
be explained by the Fourier’s law [6,8]. This leads to formulation of thermal wave bioheat
model based on two main approaches: the Maxwell–Cattaneo approach with heat flux
time lag (also known as the single-phase approach), and the double-phase-lag (DPL) ap-
proach with relaxations in both the heat flux and temperature gradient propagation [21–23].
Various researchers have contributed in this area with analytical and experimental work.
Hobiny and Abbas [24] presented an analytical solution of the hyperbolic bioheat equation
under intense moving heat source. Alzahrani and Abbas [25] also presented an analytical
approach, experimental temperature data, and a time sequential concept to obtain the
thermal damage and temperature in a living tissue due to laser irradiation. Hobiny and
Abbas [26] provided a method to determine numerical solutions for thermal damage of
cylindrical living tissues using hyperbolic bioheat model. Hobiny et al. [27] proposed a
new interpretation to study thermal damage in a skin tissue caused by laser irradiation,
using the fractional order bioheat model. Hobiny et al. [28] presented an analytical method
and experimental verification, to estimate thermal damage and temperature due to laser
irradiation, using skin surface measurement data. Kumari and Singh [29] generated a space-
fractional mathematical model of bioheat transfer to graphically analyze thermal behavior
within living tissue, using a three-phase-lag constitutive relation. Li et al. [30] developed
a generalized model of bioheat transfer to explore heat transport properties involving
different thermal phase lagging effect. Important reviews and articles that the reader
can consult additionally in this context are the following: classical mathematical models
of bioheat [13]; developments in modeling heat transfer in blood perfused tissues [9,31];
bioheat models based on the porous media theory [32]; general heat transfer review [33,34];
concepts, derivation, and experimental versus porous media modeling [35]; and modeling
and scaling of the bioheat equation [3].

Alternatively to continuum models, concepts that consider the tissue matrix, arteries,
veins, and capillary vessels in a porous medium with specific porosity variations, ETC,
and heat dispersion by blood flow have been developed [3,12,13,32,36]. Porous medium
is defined as a material volume consisting of solid matrix with an interconnected pores.
It is characterized by porosity, ratio of the pore space to the total volume of the medium,
permeability, and tortuosity [32]. Khanafer and Vafai [36] remarked that the most appro-
priate treatment for heat transfer in biological tissues is the porous media theory because
of fewer assumptions as compared with other models. Roetzel and Xuan [37] introduced
a two-equation bioheat model in which the biological system is a porous media. It is
divided into two different regions, the vascular and extravascular, without considering
local thermal equilibrium between the two phases, introducing an equivalent ETC in the
energy equations of blood and tissue [37]. Nakayama and Kuwahara [38] developed a
model that consists of two energy equations based on the volume average theory (VAT),
these equations are correct for all cases of thermal non-equilibrium.
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The ETC is one of the most important thermo-physical properties for quantifying
conductive heat transfer of porous media with gas, liquid, and solid phases [39]. The
prediction of the ETC of porous media is essential to many engineering applications,
such as thermally enhanced oil recovery, geothermal energy, and chemical and biological
engineering [40]. With the development of computer technology, many numerical methods,
such as Monte Carlo [41] and lattice Boltzmann [42], have been proposed to study the
conductive heat transfer and evaluate the ETC of porous media. In addition to conventional
methods based on Euclidean geometry, fractal geometry has been shown with evident
advantages for addressing the complexity and multiple scales of porous media [43]. Hence,
the fractal geometry has been successfully applied to characterize structures of transport
processes in porous media [44,45]. Kou et al. proposed a fractal model for ETC of porous
media based on fractal scaling law for water and gas phases in the pores [46]. Extensive
studies have shown that most natural porous media and some synthetic porous media
possess self-similar fractal scaling laws over multiple scales [45]. Therefore, two kinds of
fractal models based on pore and solid phases have been proposed [47]. Fractal scaling
laws can be applied to characterize the geometrical and morphological structures for pore
and solid phases in porous media, respectively.

The fractal Monte Carlo method has been applied in different areas to model a porous
media. Yu et al. [48] performed Monte Carlo simulations to predict the permeability of
fractal porous media, their results were verified by comparison with the analytical solution
for the permeability of bi-dispersed porous media. Zou et al. [49] used the Monte Carlo
simulation technique to model the surface topography in a scale-invariant manner with
the fractal nature of rough surfaces. Yu [44] presented a review article summarizing the
theories, methods, mathematical models, achievements, and open questions in the area
of flow in fractal porous media by applying the theory and technique of fractal geometry.
Feng et al. [50] combined the Monte Carlo technique with fractal geometry theory to predict
the thermal conductivity of nanofluids. Xu et al. [51] performed Monte Carlo simulations
of radial seepage flow in the fractured porous medium, where the fractal probability model
was applied to characterize the fracture size distribution. Vadapalli et al. [52] proposed
a permeability estimation method for a sandstone reservoir, which considers the fractal
behavior of pore size distribution and tortuosity of capillary pathways using Monte Carlo
simulations. Xu et al. [53] used fractal Monte Carlo simulations to predict the effective
thermal conductivity of porous media. Xiao et al. [54] employed the fractal Monte Carlo to
simulate the Kozeny–Carman constant of fibrous porous media with the micropore size
characterized by the fractal scaling law. Yang et al. [55] performed Monte Carlo simulations
based on the fractal probability law to understand gas flow mechanisms and predict the
apparent gas permeability of shale reservoirs.

In this work, the calculation of ETC for human skin using the fractal scaling and Monte
Carlo methods is presented. This ETC involves a bundle of tortuous capillaries whose size
distribution follow fractal scaling laws. The power-law model was chosen because of its
simplicity in describing different non-Newtonian fluids by modifying a single parameter,
in the case of blood as a shear-thinning fluid. The heat transfer process in the perfused
tissue is analyzed, and a heat source is applied on the tissue surface for a period of time
without reaching the degradation temperature. The tissue is considered as a uniform
porous medium of one and three layers, which can be assigned different porosity and
conductivity. The temperature profiles, as well as their distribution when modifying the
main variables of the model, are presented. To the authors’ knowledge, there are no studies
that determine an ETC for heat transfer in biological tissues, considering the techniques
mentioned above and especially for non-Newtonian fluids.

2. Heat Transfer in Human Skin

Figure 1 presents the human skin structure, considering three layers; epidermis, dermis
and hypodermis. These layers differ in having their own physical properties such as density,
specific heat, thermal conductivity and porosity.
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Figure 1. Human skin structure.

The first equation that described heat transfer in human tissue and included the effects
of blood flow on tissue temperature on a continuum basis was presented by Pennes [15].
He presented the heat transfer analysis in the human forearm, considering the metabolic
heat rate in the tissue and the perfusion heat source term. This last term has been the focus
of attention since its inception and many researches have found alternative representations
of the effect of blood perfusion on tissue heat transfer. The Pennes equation is given by:

ρtct
∂Tt

∂t
= ∇ · (kt∇Tt) + ρbcbωb(Ta − Tt) + qm, (1)

where ρ, c, T, t, k, qm, and ωb are density, specific heat, temperature, time, thermal con-
ductivity, metabolic heat production, and blood perfusion rate per unit volume of tissue,
respectively. The subscripts t, b, and a refer to tissue, blood, and artery, respectively [15] .

However, some inconsistencies in the Pennes model include the following: the thermal
equilibrium take place in arteries and veins (not in the capillaries, as it assumes); it does
not take into account any vascular architecture; and the most critical assumption is on
the blood perfusion term, which is not a global term—it is local along the capillary and
depends on direction.

3. Mathematical Modeling

Hyperthermia treatment consists of applying heat in a specific area of the human body.
In this work, an external heat source is applied to an area of the forearm, as shown in
Figure 2a. In addition, in Figure 2b, it is described that H is the total thickness of the tissue
and the thicknesses of each layer are HE = 0.04H, HD = 0.48H, and HH = 0.48H. Initially,
the tissue is at a constant temperature, Tc ∼ 37 ◦C, subsequently, a heat source is applied to
an area of the tissue. The area around the heat application area is open to the surroundings,
and generally is a temperature lower than the human body. For this work, the surrounding
temperature is considered to be T∞ ∼ 25 ◦C. Furthermore, Figure 2b shows a mathematical
representation of the hyperthermia treatment, note that the deepest internal temperature is
maintained at the body temperature. According to Weinbaum and Jiji [11], the simplified
two-dimensional governing equation of heat transport in biological tissue is given by:

(
ρCp

)
t
∂T
∂t

=
∂

∂x

(
ke f f

∂T
∂x

)
+

∂

∂y

(
ke f f

∂T
∂y

)
+ qm, (2)

where ke f f is the effective thermal conductivity (ETC) and qm is the metabolic heat.
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According to physical model showed in Figure 2, Equation (2) is subject to the follow-
ing initial and boundary conditions:

T(x, y, 0) = Tc, (3)
∂

∂x
T(0, y, t) = 0, (4)

∂

∂x
T(W, y, t) = 0, (5)

T(x, 0, t) = Tc, (6)

−kt
∂

∂y
T(x, H, t) = h[T∞ − T(x, H, t)],

2
5

W ≥ x ≥ 3
5

W, (7)

−kt
∂

∂y
T(x, H, t) = f ,

2
5

W < x >
3
5

W, (8)

f =

{
qapp = 200

[
W
m2

]
, t ≤ tapp,

h[T∞ − T(x, H, t)], t > tapp,

where W and H are the width and the height of the domain, respectively. The h, qapp, and
tapp are the heat transfer coefficient, applied external heat, and application time, respec-
tively.

Figure 2. (a) Hyperthermia treatment; (b) human skin three-layer model, and the corresponding
boundary conditions.

ETC is an important parameter in Equation (2). Weinbaum and Jiji [11] proposed a
vascular function V(y) that can be constructed knowing the vascular data, which is the
distribution of the arteries, veins, and capillaries. According to Weinbaum and Jiji [11], the
vascular function increases with tissue depth [14]. In this work, the representative elementary
volume (REV), is defined and the fractal scaling method is used to depict the vascular
tissue structure.

3.1. Fractal Scaling Method

We consider a cubic REV as shown in Figure 3, with defined length side L0. All
REV capillaries extend throughout the volume from one side to the other as is showed in
Figure 3.
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Figure 3. Representative elementary volume of human skin.

The fractal scaling method establishes the relationship between the number and pore
size in the porous medium. The fundamental fractal scaling law is applied to REV cross-
section, as follows [56]:

N(> λ) =

(
λmax

λ

)D f

, (9)

where N, D f , λ, and λmax are the number of capillaries, the fractal dimension, the equivalent
diameter, and the maximum equivalent diameter of the capillaries in the REV cross-section,
respectively. The number of capillaries with equivalent diameter between λ + dλ in the
REV cross-section is:

− dN(λ) = D f λ
D f
maxλ−D f−1dλ. (10)

The total number of pores in the range from λmin to λmax is obtained using Equation (9),
as follows:

NT(≤ λmin) =

(
λmax

λmax

)D f

, (11)

where NT is the total pores. Dividing Equation (10) by Equation (11), we obtain:

− dN
NT

= D f λ
D f
minλ−(D f +1)dλ = f (λ)dλ, (12)

where f (λ) is the probability density function, which satisfies that f (λ) ≥ 0. Accord-
ing to probability theory, f (λ) must satisfy the following normalization relation or total
cumulative probability:

−
∫ λmax

λmin

dN
NT

=
∫ λmax

λmin

f (λ)dλ = 1−
(

λmin

λmax

)D f

≡ 1. (13)

The integration result of Equation (13) shows that it holds if—and only if—the follow-
ing holds: (

λmin

λmax

)D f ∼= 0. (14)

The above equation implies that λmin � λmax, it must be satisfied for fractal analysis
of a porous media. According to Yu et al. [48], Equation (14) can be considered as a
criterion whether a porous medium can be characterized by fractal theory and technique.
If Equation (13) is expressed as:

R(λ) =
∫ λ

λmin

f (λ)dλ = 1−
(

λmin

λ

)D f

, (15)
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then the pore diameter λ can be found as:

λ =
λmin

(1− R)1/D f
=

(
λmin

λmax

)
λmax

(1− R)1/D f
. (16)

On the other hand, the fractal path of the tortuous capillary can be described as
follows [57]:

L(λ) = LDT
0 λ1−DT , (17)

where L(λ), L0, and DT are capillary tortuous length, characteristic length of a straight
capillary (REV side length), and fractal dimension describing the capillary tortuous length,
respectively. An important parameter involved in the ETC is the total pore area, Ac,
determined by Wu and Yu [58]:

Ac = −
∫ λmax

λmin

πλ2

4
dN(λ) =

πD f λ
D f
max

(
λ

2−D f
max − λ

2−D f
min

)

4
(

2− D f

) , (18)

the total cross area, AT , is:

AT = L2
0 =

Ac

φ
, (19)

where φ is the porosity.

3.2. The Fractal ETC of the REV

In order to obtain the ETC and according to Fourier’s law, the total heat flux in the
REV is given by:

QT = ke f f AT
∆T
L0

, (20)

where ke f f is the ETC including the tissue conductivity and convective blood flow in the
capillaries, and ∆T is the difference temperature between two faces in the REV. The heat
flux in a single tortuous capillary of the REV is:

Qc = kb
πλ2

4
∆T

L(λ)
= kb

πλ2

4
∆T

LDT
0 λ1−DT

, (21)

where kb is the blood thermal conductivity. The heat flux corresponding only to the tissue
is expressed by:

Qt = kt At
∆T
L0

= kt(1− φ)AT
∆T
L0

, (22)

where the subscript t refers to the tissue. According to superposition theorem, the total
heat flux QT is the addition of the fluxes as follows:

QT = Qt + Qc. (23)

Substituting Equations (21) and (22) into Equation (23) the following equation is
obtained:

ke f f = kt(1− φ) + kb

φ
(

2− D f

)
λDT+1

LDT−1
0 D f λ

D f
max

(
λ

2−D f
max − λ

2−D f
min

) , (24)

where L0 is determined from Equation (19). According to the work presented by Weinbaum
and Jiji [11], from an energy conservation balance in a countercurrent artery and mean
value theory, derived the effective enhancement of the tissue conductivity. Therefore, by
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comparing the Weinbaum and Jiji ETC to Equation (24), it can be seen that the two equations
have a similar form, proposing the following the expression:

ke f f = kt(1 + Γ(r)ψ(r)), (25)

where Γ is a parameter that depends on conduction or convective heat transport [59], ψ is
related to skin structure (also called dimensionless vascular geometry function) [14], and r
is the position vector. This work focuses on the convective transport of blood. Hence, the
dimensionless ETC for this work is given by:

k∗e f f =
ke f f

kt
=


(1− φ) + Pe2

(
kb
kt

)2 φ
(

2− D f

)
λDT+1

LDT−1
0 D f λ

D f
max

(
λ

2−D f
max − λ

2−D f
min

)


, (26)

where k∗e f f is the dimensionless ETC and Pe is the Peclet number defined as Pe = PrRe =
ρbCbλu/kb; where ρb, Cb, and u are the density, specific heat, and average blood velocity in
the capillary, respectively.

3.3. Fractal Dimensions, D f and DT

Equation (26) is a function of porosity, fractal dimensions, maximum and minimum
diameters, conductivity ratio, and Peclet number, the latter being a function of physical
properties, velocity, and diameter.

There is a relationship between porosity and fractal dimension, D f , according to Yu
and Li [56], is given by:

φ =

(
λmin

λmax

)DE−D f

, (27)

where DE is the Euclidean dimension (DE = 2 and 3, for two- and three-dimensional space,
respectively). Another important aspect of Equation (27), from experimentation, it has been
found that the ratio of minimum and maximum diameter, λmin/λmax, in several natural
porous media, is the order of 10−2 ∼ 10−4, [60]. Feng et al. derived a generalized model
covering a wide range of porosities, for the effective thermal conductivity, based on the fact
that statistical self-similarity exists in porous media [61].

In this work, DT is established manually, taking into account whether DT > 1 the
tortuosity is present and DT = 1 are straight capillaries.

3.4. Non-Newtonian Fractal Velocity

The Peclet number in Equation (26) is defined by:

Pe = PrRe =
ρbCb

kb
λu, (28)

where the velocity u is a function of the microcapillary diameter, is obtained from the non-
Newtonian fluid flow in a single microcapillary, as presented by Zhang [62], as follows:

qc =

[
dp
dL0

L1−DT
0 2DT−1

µb(DT + 1)DT

] 1
n nπ

DT + 3n

(
λ

2

) DT
n +3

, (29)

where qc, p, and µb are the flow rate in a single microcapillary, pressure, and dynamic blood
viscosity, respectively. By considering qc = uAsc, where Asc is the area of a single capillary
and the velocity can be determined as:

u =

[
dp
dL0

L1−DT
0 2DT−1

µ(DT + 1)DT

] 1
n n

DT + 3n

(
λ

2

) DT
n +1

, (30)
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where n is the power-law index of the constitutive equation, when n = 1 the Newtonian
velocity is recovered. For n < 1 and n > 1 describes shear-thinning and shear-thickening
fluid behavior, respectively. Figure 4 presents the average velocity and Peclet number as a
function of the capillary diameter for different values of the power-law index, n, considering
two values of porosity, φ = 0.1 and φ = 0.5. By increasing the pore diameters, the flow
through the tissue is greater for all cases. This effect is magnified when the power-law index,
n, decreases, which indicates a lower resistance to flow, because the viscosity decreases,
which is characteristic of shear-thinning fluids. The opposite case can be seen in this figure
for shear-thickening fluids (n > 1). The number of Peclet is proportional to the velocity,
therefore they have the same tendency. On the other hand, by increasing the porosity,
both u and Pe have a slight increase because the pores are very small. Figure 5 shows the
average velocity and Peclet number as a function of the fractal tortuosity, DT , for different
values of porosity, φ, considering two values of power-law index, n = 1 and n = 0.6. For
this case, the maximum pore diameter was taken into account. Keeping constant porosity
and increasing tortuosity, DT , the velocity and Peclet number both decrease. This is correct
for complex vascular architectures where the flow experiences higher resistance as well as
being very small. For straight or slightly tortuous capillaries—where the highest velocities
and Peclet numbers are found—there is a large increase as the power-law index decrease,
as shown in Figure 5.

Figure 4. (a) Average velocity and (b) Peclet number as a function of capillary diameter for different
values of the power-law index n. In a single microcapillary—continuous lines (φ = 0.1), and dashed
lines (φ = 0.5).

Figure 5. (a) Average velocity and (b) Peclet number as a function of fractal tortuosity DT for different
porosity values. For both in a single microcapillary, continuous lines (Newtonian fluid), and dashed
lines (non-Newtonian fluid).
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3.5. Monte Carlo Method

The Monte Carlo method is used to establish the pore size and the porous medium
distribution, as is shown in Figure 6. Figure 6a,b present one- and three-layer tissue with
different porosities, with φ = 0.1 (one layer) and φ = 0, φ = 0.5, and φ = 0.05 for epidermis,
dermis, and hypodermis, respectively. Yu et al. [48] was the first to propose the fractal
Monte Carlo methodology to simulate the transports in fractal porous media. In Figure 6c
for one-layer tissue and Figure 6d for three-layer tissue show the Monte Carlo simulations,
which are performed in the range of λmin–λmax. Figure 6d shows the pore sizes variation for
dermis and hypodermis layers, since the porosity of the epidermal layer is not considered.
The pore size variation is determined using the Monte Carlo method in Equation (16), as
follows:

λi =
λmin

(1− Ri)
1/D f

=

(
λmin

λmax

)
λmax

(1− Ri)
1/D f

, (31)

where λi is the variation of the pore diameter and Ri are the random numbers between
0− 1. On the other hand, the random numbers also help us to construct the porous medium
presented in Figure 6. Equation (31) is derived from Equation (9), which implies that there
is only one largest pore in the REV cross-section [44]. This is consistent to the pore size
distribution shown in Figure 6.

Figure 6. Two-dimensional pore size distribution for (a) one-layer tissue with φ = 0.1, (b) three-layer
tissue with φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively. (c,d) The simu-
lated pore sizes by the Monte-Carlo technique in the range of λmin = 5× 10−6 to λmax = 5× 10−4.

3.6. Dimensionless Governing Equation

The dimensionless variables are:

x̄ =
x
H

; ȳ =
y
H

; τ = t
αt

H2 ; θ =
T − T∞

Tc − T∞
, (32)

where αt is the tissue thermal diffusivity. Substituting dimensionless variables of
Equation (32) into Equation (2), the dimensionless governing equation is:

∂θ

∂τ
=

∂

∂x̄

(
k∗e f f

∂θ

∂x̄

)
+

∂

∂ȳ

(
k∗e f f

∂θ

∂ȳ

)
+ Φm, (33)
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where k∗e f f = ke f f /kt is defined in Equation (26) and Φm = qm H2/kt(Tc − T∞) is the
dimensionless metabolic heat generation. Respectively, the dimensionless initial and
boundary conditions are given by:

θ(x̄, ȳ, 0) = 1, (34)
∂

∂x̄
θ(0, ȳ, τ) = 0, (35)

∂

∂x̄
θ(2, ȳ, τ) = 0, (36)

θ(x̄, 0, τ) = 1, (37)
∂

∂ȳ
θ(x̄, 1, τ) = Bi[θ∞ − θ(x̄, 1, τ)],

2
5
≥ x̄ ≥ 3

5
, (38)

∂

∂ȳ
θ(x̄, 1, τ) = f ∗,

2
5
< x̄ >

3
5

, (39)

f ∗ =

{
H

kt∆T qapp, τ ≤ τapp,
Bi[θ∞ − θ(x̄, 1, τ)], τ > τapp,

where Bi is the Biot number defined as Bi = hH/kt, θ∞ is the dimensionless temperature of
the environment, and f ∗ takes the boundary condition according to the dimensionless time
of application τapp.

4. Results

The numerical results presented in this section were generated from a numerical
code developed in the Fortran programming language. Equation (33) subject to boundary
conditions Equations (34)–(39) was solved using an explicit finite difference method.

The values used for the tissue physical properties are: ρt = 1200 kg/m3, Cp,t = 3600 J/kg·◦C,
kt = 0.293 W/m·◦C. When considering three-layer tissue, their corresponding thermal
conductivities are: ke = 0.25 W/m·◦C, kd = 0.45 W/m·◦C, and kh = 0.2 W/m·◦C, for
epidermis, dermis, and hypodermis, respectively. The blood physical properties are:
ρb = 1052 kg/m3, Cp,b = 3800 J/kg·◦C, and kb = 0.582 W/m·◦C [2,63]. The metabolic
heat is qm = 368.1 W/m3 [63]. The heat transfer coefficient due to convection and radia-
tion in surroundings is: h = 5 W/m2·◦C. The environmental temperature was chosen as
T∞ = 25 ◦C. For the three-layer model, the main changes in porosity are considered to be in
the dermis, due to the greater interaction between the tissue and the vascular network [8].
This work does not take into account thermal degradation (thermal damage) in tissue,
which occurs at 44 ◦C and higher [64].

4.1. ETC Analysis

According to Equation (26), ETC depends on the conductivity ratio, porosity, φ, fractal
coefficients, D f , DT , and Peclet number. In this work, both conductivities of tissue and
blood are constant; therefore, the conductivity ratio is also constant. Once the porosity
value is assigned manually, D f can be determined using Equation (27). The Peclet number
depends on the physical properties of the blood, capillary diameter, and velocity, see
Equation (28). An important contribution of this work is that it allows the analysis of blood
as a Newtonian and non-Newtonian fluid. This is possible through the power-law model,
which is immersed in the velocity calculation Equation (30). This equation also depends on
the fractal coefficients, in addition to the viscosity and the power-law index, n. The latter
makes it possible to consider a Newtonian fluid (n = 1) and non-Newtonian fluids such
as shear-thinning fluid (n < 1) and shear-thickening n < 1. The blood is a shear-thinning
fluid described by a power-law index value of n = 0.6, according to Johnston et al. [65].

Figure 7a presents the ETC as a function of the fractal coefficient DT for different
porosity values, in addition for two values of the power-law index n = 1 and n = 0.6.
DT describes the capillary tortuous length, the influence of DT on the ETC is in the range
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of 1–1.3, which is in accordance with that reported by Yu and Cheng [57]. By increasing
the porosity, the ETC also increases, due to higher blood flow through the tissue having a
higher thermal conductivity. An important increase is found in the ETC when considering
blood as a non-Newtonian fluid, since it increases with porosity as mentioned above, but
especially for a shear-thinning fluid such as blood (n = 0.6).

Figure 7b shows the fractal dimension as a function of porosity. When porosity
tends to unity, the fractal dimension tends to two. That for a surface indicates that it is
totally occupied by pores, which corresponds to a fractal dimension of two, it is consistent
according to Yu et al. [66].

Figure 7. (a) Effective thermal conductivity as a function of fractal dimension DT . Continuous lines
(Newtonian fluid) and dashed lines (non-Newtonian fluid). (b) Fractal dimension D f as a function of
porosity, for different ratios λmin/λmax.

Figure 8 exhibits the ETC as a function of fractal dimension D f , and the porosity φ; for
two pore diameter values, λ = 4× 10−4 and λmax = 5× 10−4, and by considering straight
capillaries DT = 1 for different values of the power-law index. k∗e f f has an increase by
augmenting the pore diameter, but the main improvement is for shear-thinning fluids, due
to the lower resistance that the fluid experiences in large pores, increasing the velocity and
generating a higher energy dissipation.

Figure 8. Effective thermal conductivity as a function of (a) fractal dimension D f , and (b) porosity φ.
Continuous lines (Newtonian fluid) and dashed lines (non-Newtonian fluid).

4.2. Code Validation

To validate the ETC, the solution of the Weinbaum and Jiji [11] (WJ) is compared
with the present work using a one-layer tissue with porosity φ = 0.05, straight capillaries
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DT = 1, kb/kt = 1.9863, D f is determined by Equation (27) and Newtonian fluid n = 1.
The Peclet number depends on the pore diameter λ and the velocity u, WJ determined
Pe = 20, which is in accordance with this work of Pe = 16.3 for maximum pore size.
Figure 9 shows the comparison of the temperature profile as a function on time and a
function of deep-tissue layer (at τ = 0.09) between WJ model and the present work. The
ETC obtained by Weinbaum and Jiji [11] is as follows:

ke f f ,W J

kt
=
[
1 + Pe2

0V(ȳ)
]
, (40)

where Pe0 = 2ρbcba0u0/kb = 20, V(ȳ) = A + Bȳ + Cȳ2 with A = 6.32 × 10−5, B =
−15.9× 10−5 and C = 10× 10−5. The metabolic heat Φm = qmL2/kt(Tc − T∞) = 0.094.

Figure 9. Comparison of temperature profile between WJ and the present work as a function of
(a) time, and (b) tissue layer depth.

The comparison between WJ and the present work exhibited in Figure 9, for the
temperature as a function of (a) time and (b) deep of the tissue layer, both fit in a good
agreement. The comparison between the temperature distribution of the WJ model (40)
and the present work (26) is shown in Figure 10. The heat source is applied on the central
part of the tissue surface, as shown in Figure 2. The temperature distribution corresponds
to a heat source application dimensionless time of τ = 0.09. The temperature distribution
of the WJ model shows a higher evolution, indicating a higher heat transfer in the tissue.
The difference between models according to temperature contours is less than 2%.

Figure 10. Comparison of temperature distribution between (a) WJ model, and (b) present work at
dimensionless time. Just before the heat source was removed.
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4.3. Dynamical Test Simulations
4.3.1. One-Layer Tissue Analysis

To evaluate the different parameters involved in the ETC, a dynamic test is performed,
which consists of applying a heat source on the tissue surface for a period of time, removing
the source when the thermal relaxation process begins, the scheme and conditions are shown
in Figure 2. This test does not reach the tissue degradation temperature, T < 44 ◦C [8,64].

Figure 11 presents the temperature profile as a function of time and tissue layer depth
for one-layer (at τ = 0.09), by modifying the fractal coefficient DT in the range of 1–1.1,
with porosity φ = 0.1 and Newtonian fluid n = 1. There are no significant changes when
the heat source is applied, at the end of the relaxation process is when there is a difference
between the WJ model and this work. This difference is due to the fact that there is a better
energy transfer process in the present model, but there is no appreciable effect of DT due to
the low tissue porosity.

Figure 11. Temperature profiles as a function of (a) time and (b) tissue layer depth, for different DT

values at τ = 0.09.

Figure 12 shows the temperature profile as a function of time and tissue layer depth
(at τ = 0.09) for one-layer tissue by modifying the porosity φ in the range of 0.01 to 0.5,
with DT = 1.05 and Newtonian fluid n = 1. As the porosity increases, higher temperatures
are reached when the heat source is applied, and lower temperatures are reached at the
end of the relaxation process. This is due to increased perfusion in the tissue, on the
other hand, blood has a higher thermal conductivity which improves heat transfer in the
porous medium.

Figures 13 and 14 exhibit the temperature profile as a function of time and tissue layer
depth (at τ = 0.09) one layer for two porosity values φ = 0.1 and φ = 0.5, respectively.
Modifying the power-law index n in the range of 0.6 to 1 and DT = 1.05. In the case
of porosity φ = 0.1, there are no significant changes when modifying the power-law
index, due to low perfusion through the tissue. For porosity φ = 0.5, blood perfusion is
increased and the effect of the power-law index is reflected both in the application of the
heat source and in the thermal relaxation process. For a shear-thinning fluid n = 0.6, there
is a greater dissipation of energy and therefore it reaches lower temperatures compared
with a Newtonian fluid, in addition to experiencing a higher thermal relaxation due to a
greater influence of the convective condition of the surface, as shown in Figure 14a. The
effect of higher porosity is also reflected in the temperature profile as a function of tissue
depth, as it presents distortions, mainly for the non-Newtonian fluid with n = 0.6, see
Figure 14b.
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Figure 12. Temperature profiles as a function of (a) time and (b) tissue layer depth, for different
porosity φ values at τ = 0.09.

Figure 13. Temperature profiles as a function of (a) time and (b) tissue layer depth for different
power-law index n at τ = 0.09 and porosity φ = 0.1.

Figure 14. Temperature profiles as a function of (a) time and (b) tissue layer depth, for different
power-law index n at τ = 0.09 and porosity φ = 0.5.

4.3.2. Three-Layer Tissue Analysis

The structure of the skin is very complex and is generally considered in three layers—
epidermis, dermis, and hypodermis—as is shown in Figure 1. The thickness of these layers
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varies depending on the location of the skin and many factors, such as age, sex, race,
endocrine, and nutritional status of the individual [7–10].

Figure 15 shows the temperature profile as a function of time and tissue three-layer depth
(at τ = 0.09), each layer with its own conductivity, ke = 0.25 W/m·◦C, kd = 0.45 W/m·◦C and
kh = 0.2 W/m·◦C, for epidermis, dermis, and hypodermis, respectively, [8]. The porosity
φ varies uniformly throughout the tissue in the range of 0.01–0.5, with DT = 1.05 and
non-Newtonian fluid n = 0.6. The shear-thinning effect increases the heat transfer in tissue,
which is reflected in the temperatures reached when applying the heat source and in the
thermal relaxation process. The effect of having three different conductivities can be seen
clearly in the temperature profile as a function of tissue depth, where changes in the slope
of the curve at the layer interfaces are presented, as is shown in Figure 15b. This behavior
has been reported by Xu et al. [2].

Figure 15. Temperature profiles as a function of (a) time and (b) tissue three-layer depth with different
porosities, φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively.

Figure 16 shows the temperature profile comparison between one- and three-layer
tissue at different depths as a function of time and tissue depth, the properties of the
three-layer tissue are those used in Figure 15. In the case of a one-layer tissue, the uniform
porosity is φ = 0.5, for the case of three-layer tissue the following porosities are assigned
φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively. These values
were assigned according to the fact that the epidermis has very low porosity, the dermis
contains the highest density of capillaries, and the hypodermis is composed of loose fatty
connective tissue. The other variable values are DT = 1.05 and n = 0.6 [8]. Considering
blood as a non-Newtonian shear-thinning fluid, in addition to different tissue properties,
generates important modifications in the temperature profiles both in time and depth. In
contrast, uniform properties throughout the biological tissue, as shown in Figure 16a,b.

Figure 16a shows red dots on temperature profiles used to indicate the time corre-
sponding to the instantaneous temperature distribution presented in Figure 17. This figure
shows the comparison of temperature distribution between the one- and three-layer tis-
sues at different times. In the case of three-layer tissues, the effect of the different tissue
properties on the temperature contours, which show small variations due to porosity de-
pending on the area. In the case of one-layer tissues, the heat transfer is more similar to
homogeneous solids, which have higher thermal conductivity at the top and bottom of
the tissue compared with the three-layer model. Finally, the right half is overlapped on
the left half of the temperature distribution for one- and three-layer tissue to demonstrate
the asymmetry generated by the global effect of all the variables involved in the model, as
shown in Figure 18.
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Figure 16. Temperature profile comparison between one- and three-layer tissue as a function of
(a) time at three different depths of the tissue and (b) depth of the three-layer tissue with different
porosities φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively.

Figure 17. Comparison of the temperature distribution for one-layer tissue with φ = 0.5 and three-
layer tissue with φ = 0, 0.5, and 0.05 for epidermis, dermis, and hypodermis, respectively. For
different times from top to bottom (a) τ = 0.01, (b) τ = 0.09, (c) τ = 0.2, and (d) τ = 0.45. For a
non-Newtonian fluid, n = 0.6.
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Figure 18. The right half is overlapped on the left half of the temperature distribution for the one-
and three-layer tissue. Temperature distribution was taken from Figure 17 at time τ = 0.09.

5. Conclusions

In this work, the ETC for human skin using the fractal scaling and Monte Carlo
methods was obtained. These methods were used to describe the tissue as a porous
medium, the blood was considered as Newtonian and non-Newtonian shear-thinning
fluid. The numerical code developed was validated by comparing the ETC obtained by
Weinbaum and Jiji [11] and the present work using one-layer tissue with the same porosity,
straight capillaries, and Newtonian fluid. The difference between models according to
temperature contours is less than 2%.

The ETC involves various parameters, such as fractal dimensions DT and D f , porosity,
and the power-law index n; in order to evaluate these parameters, dynamical tests were
performed, which consisted of applying a heat source on the tissue surface for a period of
time—when the heat source was removed, the thermal relaxation process began. The effect
of the main parameters on the temperature profiles as a function of time and tissue depth,
for one- and three-layer tissue, besides temperature distribution, were presented. The main
findings of this work are the following:

• The effect of fractal dimension DT on the ETC was mainly in the range of 1–1.3.
• Higher porosity improves ETC, due to increased blood flow through the tissue, having

a higher thermal conductivity.
• In one-layer tissues of low porosity, no significant changes in ETC were found. In-

creasing porosity, the effect of the power-law index is reflected in both heating and
relaxation processes.

• The Peclet number increases substantially due to the combination of large pore diame-
ters and shear thinning fluids.

• In three-layer tissues with different porosities, perfusion with a shear-thinning fluid
contributes to the understanding of the heat transfer process in some parts of the
human body.

• The ETC involves the main variables of the heat transfer process in human skin;
moreover, it is easy to implement for other case studies.
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Abstract: As one type of non-Newtonian fluid, viscoelastic fluids exhibit unique properties that
contribute to particle lateral migration in confined microfluidic channels, leading to opportunities for
particle manipulation and separation. In this paper, particle focusing in viscoelastic flow is studied
in a wide range of polyethylene glycol (PEO) concentrations in aqueous solutions. Polystyrene
beads with diameters from 3 to 20 µm are tested, and the variation of particle focusing position is
explained by the coeffects of inertial flow, viscoelastic flow, and Dean flow. We showed that particle
focusing position can be predicted by analyzing the force balance in the microchannel, and that
particle separation resolution can be improved in viscoelastic flows.

Keywords: particle separation; viscoelastic flow; inertial focusing; spiral channel

1. Introduction

Many biological and sensing assays require the ability to isolate particular types of
particles from a mixture of particle types [1]. Existing label-free protocols select unique
particle populations by relying on differences in particle size, shape, density, or surface
properties [2]. While the optimal separation technique varies by target particle and applica-
tion, generally the best separation method is one that is fast, robust, has a high throughput,
and does not apply excessive force to the particles [3].

The field of microfluidics has been particularly well suited for applications involving
particle separation and isolation [4,5]. Microfluidic devices manipulate fluids through
channels with dimensions between 1–100 µm [6]. At this scale, channel features are com-
mensurate with cells and physical phenomena arise which are unique to the microscale. In
a microfluidic channel, particles can experience different types of forces that contribute to
particle movement, retention, and separation. Force fields, such as electrical fields [7–9],
surface acoustic waves [10], and optical forces [11], have been applied for particle ma-
nipulation and trapping in microfluidic channels. Furthermore, particles can experience
forces with controllable magnitude and direction in a dielectrophoretic force field based on
their size and polarizability, leading to particle separation with high resolution [12–14]. In
optical trapping devices, particles experience the force due to incident photon scattering,
and single particle manipulation is realized using optical forces [11]. One particularly
useful hydrodynamic force for particle selection and separation on the microscale is inertial
focusing [15–17]. Inertial focusing refers to the tendency of identical particles to align
themselves to certain locations within a channel cross-section as they travel along a channel.
Since the forces which drive this behavior are dependent on the particle geometry, it is
possible to separate particles of different shapes or sizes in microfluidic channels [18,19]. In
many applications, the efficiency of this separation can be increased through the additional
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incorporation of a Dean flow. In curved channels, a Dean flow arises due to the radial
component of the fluid velocity and is generally expressed as counter-rotating vortices in
the direction tangent to the fluid flow [20,21]. The Dean flow in the channel cross-section
provides extra drag force leading to lateral particle movement. The inertial focusing force
drives particles towards the channel top and bottom wall, while the Dean flow transports
particle focusing positions to the channel inner sidewall. In inertial-Dean coupled flow,
size-based separation can be realized since large particles have a focusing position closer to
the inner sidewall when compared with small particles [22]. In addition, Dean flow can be
induced in microfluidic channels with expansion/contraction structure [23] or pillar struc-
tures [24]. The Dean flow vortices are combined with inertial flow, and leads to a change of
particle focusing position and particle trapping in the channel. A detailed description of
inertial flow and Dean flow can be found in recent published review articles [25–27].

Viscoelastic fluid presents one type of non-Newtonian solution that exhibits both
viscous and elastic properties under shear stress. In viscoelastic dominated flows, particle
lateral movement and focusing stream phenomena have been observed and used for
particle manipulation and separation in microchannels [28]. Polymer solutions, such as
high molecular weight poly(ethylene) oxide (PEO) solutions, exhibit non-linear elastic
stress distribution in the channel cross-section, leading to particles focusing towards the
channel center [29,30]. In a confined channel, the particle focusing position is affected
by the force balance between the viscoelastic forces and inertial forces [31]. In a straight
channel, the interaction of the inertial focusing force and the viscoelastic focusing force
leads to a change of particle focusing stream location. It is found that large particles bear
split focusing streams near the channel sidewalls, while small particles focus to the channel
center [32]. In a curved channel, the Dean flow leads to a change of particle focusing
positions towards the channel outer sidewall, which effect has been applied for size-based
particle separation [33].

In this paper, we demonstrate a particle separation regime showing the co-effects of
inertial flow, viscoelastic flow, and Dean flow. With an increase of PEO concentration in the
fluid, the force balance between the inertial flow and viscoelastic flow changes, leading to a
change of particle focusing positions for different sized particles. The Dean flow, which
provide a transverse drag force, improves the separation efficiency by changing particle
focusing position in the horizontal direction. As we explore this separation regime, we
principally focus on three main areas: (1) Contributions of the PEO solution viscoelastic
properties under ultra-high shear rates in a microfluidic channel; (2) Identification of
particle focusing positions and focusing regimes over a wide range of PEO concentrations;
and (3) Evaluation and improvement of particle separation resolution in the viscoelastic
flow. We expect that these results will find application in both sensing and biological assays.

2. Theory

Inertial microfluidics depends on the flow lift forces that drive suspended particles to
focused locations within a confined microfluidic channel. These focused positions arise
as basins of attraction [34] where the inertial forces on particles are balanced. In a straight
channel with a Newtonian flow, the shear gradient lift force drives particles up the shear
gradient towards channel walls. When particles approach the channel wall, the wall
repulsive force pushes particles away from the wall. The balance of shear gradient lift force
and wall repulsive force form particle focusing positions with zero net forces [35,36]. In
a channel with a rectangular cross-section as is shown in Figure 1a, a higher shear stress
gradient appears in the channel height direction since the channel height is smaller than
the channel width. As a result, particles have two focusing positions in the vertical center
of channel top and bottom walls. In the inertial flow, the inertial lift force is determined by
the flow velocity gradient and particle dimension. It can be calculated by Equation (1) [35].

FL = fLρUmax
2a4/h2 (1)
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where fL is the lift coefficient, ρ is the fluid density, Umax is the maximum flow velocity, a is
particle diameter, and h is channel height.
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Figure 1. Representation of particle focusing in curved microfluidic channels. (a) In Newtonian
fluids, particles are driven towards the inner wall. (b) In the viscoelastic regime, particles are driven
towards the outer wall. (c) In the intermediate regime, size-based separations can be achieved.

In viscoelastic flow, the non-linear shear stress distribution induces particle viscoelas-
tic focusing. This elastic force acts inwards from all of the walls driving the particles
towards the channel centerline as shown in Figure 1b. The viscoelastic focusing force is
determined by the first normal stress difference and particle dimension. It can be calculated
by Equation (2) [37].

FE = 8a3λ(Umax/h)3 (2)

where λ is the flow relaxation time.
The ratio of FE and FL is used to evaluate the dominant force on the particle. With an

increase of particle diameter, FL dominates particle movement. With the increase of λ and
U, FE dominates particle movement. Based on Equation (3), it is possible to guide large
particles to inertial focusing positions and small particles to viscoelastic focusing positions,
and the change of particle focusing mechanism leads to a significant change of particle
focusing position.

FE/FL = 8λUmax/fLρah (3)

In a curved channel, a Dean flow is generated due to the imbalance of pressure and
velocity gradient [38]. Dean flow vortices appear in the channel cross-section and flow
towards the channel outer sidewall in the channel center and circulate back to the channel
inner sidewall near the channel top/bottom sidewall. The influence of Dean flow on
particle movement is characterized by the Dean drag force FD [37]:

FD = 5.4 × 10−4πµDe1.63a (4)

where De is the dimensionless Dean number. FD has lower magnitude when compared
with FE and FL, while it determines particle focusing position in the horizontal direction
when FE is balanced with FL. Particle lateral migration in the horizontal direction due to
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Dean flow is used to increase the distance between particle focusing streams [39]. As a
result, an enhanced separation resolution is realized in a curved microchannel.

3. Methods
3.1. Microfluidic Device Design and Fabrication

In this work, we fabricate a device composed of a spiral channel with two inlets and
two outlets (Figure 2). Our chip contains a channel with a cross-section of 200 µm × 50 µm
(width × height). The channel forms a spiral with a radius that varies between 7–9 mm. There
are 3 loops and the total channel length is 172 mm. The channel geometry is fabricated in
polydimethylsiloxane (PDMS), according to traditional soft lithography protocols that we
have explained previously [39]. Briefly, negative photoresist SU-8 (SU-8 2050, MicroChem,
Westborough, MA, USA) is used for the mold fabrication. SU-8 is spin coated on a clean
100 mm (4 inch) wafer, and baked at 95 ◦C for 15 min. The pattern of the spiral channel
is transferred on the photoresist layer using a UV mask aligner, and a post-baking process
is performed to stabilize the cross-linked SU-8. Then, the mold is developed using SU-8
developer and the mold quality is checked under a microscope. Uncured PDMS (Sylgard 184,
Dow, Midland, MI, USA) is mixed with a curing agent at a ratio of 10:1. Air bubbles generated
from the mixing process are removed using a vacuum chamber. About 40 mL degassed
PDMS mixture is poured on the SU-8 mold, which leads to a PDMS device with a thickness
of 8 mm. PDMS is cured in an oven at 80 ◦C for 6 h. The cured PDMS is sealed with a glass
slide. The PDMS and glass slide surfaces are treated by oxygen plasma to generate permanent
bonding. The oxygen plasma treatment is carried out using a Technics PEII-A plasma system,
with 200 W power, and 50 sccm O2 flow for 2 min. After the bonding process, a post-baking
process is performed by putting the spiral channel device on a hotplate at 120 ◦C for 15 min.
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Figure 2. Picture of experimental device set up. (a) Schematic view of spiral channel device.
(b) Microfluidic chip channel connection for particle loading and flow rate control. (c) Device struc-
ture of m-VROC rheometer.

3.2. Experimental Set-Up

Two sets of data are collected: one to establish an understanding of fluid elasticity and
flow rate and one to explore the application of these findings in detection and separation
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protocols. The details of the experimental variables are introduced in Table 1. For both
sets of experiments, images are acquired of fluorescent beads suspended in the liquid
flowing through the channel at a controlled flow rate. Fluorescent beads with diameters
of 3 µm(18861-1), 10 µm(19103-2), and 20 µm(19096-2) were purchased from Polysciences,
Inc., (Warrington, PA, USA), and beads with diameter of 8µm(FSFR007) were purchased
from Bangs Laboratories, Inc., (Fishers, IN, USA). Fluorescent beads are initially suspended
in water, and PEO concentrations of 0.001%, 0.003%, 0.005%, 0.025%, 0.05%, 0.1%, 0.2%,
and 0.4% by weight are created with serial dilutions of water. The flow rate is controlled
with a syringe pump connected to the inlet of the device as is shown in Figure 2. The chip
is imaged through the glass near the channel outlet.

Table 1. Summary of experiment parameters in the spiral channel particle separation test.

Variables Value

Channel geometry 150 µm width; 50 µm height; 172 mm length

PEO concentration 0.001%, 0.003%, 0.005%, 0.025%, 0.05%,
0.1%, 0.2%, and 0.4%

Particle diameters 3 µm, 8 µm, 10 µm, and 20 µm

Flow rate
0.05 mL/min, 0.1 mL/min, 0.15 mL/min,

0.2 mL/min, 0.25 mL/min, 0.3 mL/min, and
0.35 mL/min

3.3. Characterization Experiments

Fluorescent beads of 3 and 8 µm are suspended in three different PEO-water dilutions
and infused into the spiral channel at seven different flow rates. The bead concentration
is kept low (0.1 M/mL) to limit particle–particle interactions. Images are acquired with a
high-speed fluorescent camera and about 100 images collected over 1 s are compiled to form
the images presented. The spiral channel device is rinsed with water between successive
experiments, and experiments with a single chip are acquired starting from the lowest con-
centrations of PEO to mitigate the possibility of cross-contamination between experiments.

3.4. PEO Solution Viscosity Characterization

For viscoelastic aqueous solutions with various PEO concentrations, viscosity is di-
rectly associated with peak-to-peak separation distance and resolution. A pressure sensing
microfluidics rheometer m-VROC (RheoSense, LLC, San Ramon, CA, USA) is employed
in this work that combines a microfluidic channel and a pressure sensor array embedded
along the microchannel to measure dynamic viscosity [40]. The principles of VROC are
based on measuring the pressure drop by using the Hagen–Poiseuille law, where fluid
flows through a given enclosed rectangular slit microfluidic channel. The apparent viscosity
depends on the applied shear rate for dilute PEO solutions. The flow rate is proportional to
the shear rate; a syringe pump is applied to control the flow rate of an optimal dilute PEO
solution. The microfluidics channel etched into a silicon chip contains a depth of 20 um, a
width of the 3 mm, and a length of 10 mm. The shallow depth of the microfluidics channel
allows one to investigate high shear rates without occurrence of turbulence.

All PEO concentrations from 0.001% to 1% have a measured viscosity at an apparent
shear rate between 1.7 × 104 and 1 × 105/s, a constant flow rate from 142.6 µL/min
to 823 µL/min through the measuring channel where the pressure sensors monitor the
pressure drop at room temperature. The PEO solution is pre-filtered with 0.2 µm PTFE
filters and degassed to avoid fibers and bubbles at high shear rate measurements. (The
relaxation time is measured by using the Zimm module at 810 µs. Hydrodynamic radius
RH is 68.8 nm, calculated from the Einstein module.)

λZimm =
ηs[η]Mw

RT
(5)
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RH =

(
3[η]Mw

10 πNA

)1/3
(6)

where ηs is the solvent viscosity, [η] is PEO intrinsic viscosity, Mw is PEO molecular weight,
R is the molar gas constant R = 8.314 J/(K mol), and T is the temperature (K).

3.5. Detection and Separation Experiments

Fluorescent beads of 3, 10, and 20 µm are suspended in four different PEO-water
dilutions and infused into the spiral channel at three different flow rates using a syringe
pump KDS200 (KD Scientific, Holliston, MA, USA). Separation device outlets are connected
with another syringe pump (Chemyx F200X, Stafford, TX, USA) for flow withdrawal during
sample loading. The bead concentration is much higher (10–100 × 106/mL) to replicate
concentrations common to biological samples. Images are acquired with a fluorescent
microscope and camera (Nikon A1R). The 4X objective lens provides a field of view of
4 mm × 4 mm to observe the spiral channel outlet region. Fluorescent imaging lasers,
including a 405 nm diode laser, a 488 nm Argon gas laser, and a 638 nm diode laser, are
used for the observation of fluorescent beads with different colors. Filter cube sets are
selected for the optimization with DAPI, FITC, and TRITC signal detection. The spiral
channel device is rinsed with water between successive experiments, and experiments with
a single chip are acquired starting from the lowest concentrations of PEO to mitigate the
possibility of cross-contamination between experiments.

3.6. Data Processing

Quantitative data is compiled from images by a Matlab program that reads and
interprets the pixel intensity across the channel width. The program averages values
across the columns of a selected area, which is manually selected. For comparison and
presentation, the data is then reformed to a length of 100 entries, and normalized by the
total value of all intensity measurements.

The peak-to-peak separation distance is calculated as a distance between the maximum
values of the two distributions. The separation resolution is calculated as:

R =
Separation Distance

2(W1 + W2)
(7)

where W1 and W2 represent the width at half maximum calculated from the distribu-
tions [41].

4. Results & Discussion
4.1. PEO Solution Characterization

Capillary viscometers or cone plate rheometers are commonly used for the precise
description of fluid viscosity and viscoelastic behavior. In our application, the shear rate in
the microfluidic channel is in the range of 10,000 to 60,000/s, which is much higher than
the measurement limit of these measurement methods. The rheometer m-VROC is used to
evaluate PEO solution viscoelastic property at a wide range of shear rates. Figure 3 shows
the viscosity of the PEO solution with the shear rate of 10,000 to 100,000/s. The ultra-low
concentration of the dilute PEO solutions, PEO concentrations of 0.001%, 0.003%, 0.005%,
0.025%, and 0.05% exhibit Newtonian behavior as their viscosities do not significantly
change in a lower shear rate range. The viscosity values can be considered as constant.
However, higher PEO concentrations greater than 0.05% show non-Newtonian shear-
thinning behavior as their viscosities reduce while the shear rate increases. The true wall
shear rate is corrected by applying the rigorous Weissenberg–Rabinowitsch correction [42].

.
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.
γapparent

3

(
2 +

d ln
.
γapparent

d ln τ

)
(8)
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where,
.
γtrue is the corrected true shear rate,

.
γapparent is the apparent shear rate measured

by using m-VROC, and τ is the wall shear stress in the rectangle slit microchannel.
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Figure 3. PEO solution viscosity under high shear rates. High concentration PEO solutions are
shear-thinning with an increase of flow rate. Low concentration PEO solutions (details are shown on
the right figure) exhibit constant shear rate.

4.2. Particle Movement in Low Concentration PEO Solutions

Figure 4 shows the distribution of 3 and 8 µm particles near the outlet of the spiral
channel device in low concentrations PEO solutions. As seen from the fluorescent images
of particle focusing, the focused positions of particles within the channel width are highly
dependent on the concentration of PEO in the fluid. With an increase of PEO concentration,
particle streams shift from the inertial focusing regime to the viscoelastic focusing regime.
Particles with different sizes have different transitional PEO concentrations, leading to the
change of particle separation behavior.
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When the concentration of PEO measures 0.001%, the viscoelastic focusing force is
low, and the inertial focusing force dominates particle movement as shown in Figure 1a.
Both the 3 and 8 µm particles are focused towards the inner side of the channel under all
tested flow rates. The diagram of stream distribution indicates that 8 µm particles have
a focusing position closer to the channel inner sidewall due to Dean flow. However, the
focused peaks of the two particles are very close to each other with significant overlap.
This proximity could inhibit the detection of two different types of particles and renders
separation impossible.

In comparison, when the concentration of PEO is 0.005%, the viscoelastic force domi-
nates particle movement (Figure 1b). Both the 3 and 8 µm particles are focused towards
the outer side of the channel, and the 3 µm particles have focusing positions closer to the
sidewall. The focused bands are tightest at 0.30 mL/min, representing approximately 10%
of the channel width for both particle types. As shown in the right column of Figure 4,
the focused peaks of the two particles are still very close to each other with significantly
overlapping peaks. Again, this proximity inhibits the detection of two different types of
particles and would make complete separation impossible. The focusing stream width in
the viscoelastic focusing regime is smaller than that in the inertial focusing regime. It could
be explained by the fact that particles have two focusing streams in the vertical direction in
inertial focusing, while there is only one focusing stream in the viscoelastic focusing.

Between the two concentrations, when the concentration of PEO is 0.003%, particles
with different sizes are dominated by different focusing regimes as shown in Figure 1c.
The movement of 3 µm particles is dominated by the viscoelastic focusing. Particles get
focused to the channel centerline and pushed to the outer sidewall by Dean flow. The
movement of 8 µm particles is dominated by inertial focusing. Particles become focused to
the channel top and bottom wall and are pushed to the inner sidewall by Dean flow. With
the beads focused towards different edges of the spiral channel, we observe the complete
separation of the two focused peaks which are also spread by about half of the channel’s
width. This greatly enhanced separation is beneficial for both detection and separation as
will be explored in the following section.

Compared with the particle dimension or PEO concentration, the flow rate does not
have a significant influence on the particle focusing regime. The increase of flow rate
promotes inertial focusing and viscoelastic focusing and leads to the increase of the Dean
flow velocity. Particle focusing stream width decreases with the increase of flow rate and
the tightest focusing stream occurs at a flow rate between 0.20 and 0.30 mL/min for all
cases. In addition, it is observed that particle focusing position is close to the channel
sidewall since the Dean flow velocity increases. At a flow rate of 0.35 mL/min, particles
dominated by the inertial focusing regime (3 and 8 µm particles in 0.001% PEO, 8 µm
particles in 0.003% PEO) have focusing streams shift towards the channel center. In this
case, the increase of flow rate leads to the increase of viscoelastic force, and particle focusing
positions change.

4.3. Particle Movement in Medium Concentration PEO Solution

With the increase of PEO concentration, the viscoelastic force increases, and the bal-
ance between FE, FL and FD need to be configured. Small-sized particles have viscoelastic
dominated movement in low concentration PEO solution, while large-sized particles expe-
rience a high inertial effect even in medium concentration PEO solution. In the experiment,
focusing behaviors of 3, 10, and 20 µm particles at flow rates of 0.1, 0.2, and 0.4 mL/min are
observed in three different PEO concentrations. Plots of the data set are shown in Figure 5.
In Figure 5 we can observe many of the same trends that were present in our initial data set.
At the lowest PEO concentration, particles of all sizes are focused to the inner side of the
channel, with the tightest focusing achieved by larger particles and focusing improving at
the higher flow rates. Particle focusing position is highly affected by particle dimension
and PEO concentration. 3 µm beads have a focusing position close to the outer sidewall in
all PEO solutions. 10 µm beads focus to the channel center in 0.005% PEO solution, and the
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focusing position migrates to the channel outer sidewall in 0.025% PEO solution. 20 µm
beads changed focusing position in 0.1% PEO solution.

Micromachines 2022, 13, x FOR PEER REVIEW  9  of  16 
 

 

to the channel top and bottom wall and are pushed to the inner sidewall by Dean flow. 
With the beads focused towards different edges of the spiral channel, we observe the com‐
plete separation of the two focused peaks which are also spread by about half of the chan‐
nel’s width. This greatly enhanced separation is beneficial for both detection and separa‐
tion as will be explored in the following section. 

Compared with the particle dimension or PEO concentration, the flow rate does not 
have a significant influence on the particle focusing regime. The increase of flow rate pro‐
motes inertial focusing and viscoelastic focusing and leads to the increase of the Dean flow 
velocity. Particle focusing stream width decreases with the increase of flow rate and the 
tightest focusing stream occurs at a flow rate between 0.20 and 0.30 mL/min for all cases. 
In addition, it is observed that particle focusing position is close to the channel sidewall 
since the Dean flow velocity increases. At a flow rate of 0.35 mL/min, particles dominated 
by  the  inertial focusing regime (3 and 8 μm particles  in 0.001% PEO, 8 μm particles  in 
0.003% PEO) have focusing streams shift towards the channel center. In this case, the in‐
crease of flow rate leads to the increase of viscoelastic force, and particle focusing positions 
change. 

4.3. Particle Movement in Medium Concentration PEO Solution 

With the increase of PEO concentration, the viscoelastic force increases, and the bal‐
ance between FE, FL and FD need to be configured. Small‐sized particles have viscoelastic 
dominated movement in low concentration PEO solution, while large‐sized particles ex‐
perience a high inertial effect even in medium concentration PEO solution. In the experi‐
ment,  focusing behaviors of 3, 10, and 20 μm particles at  flow rates of 0.1, 0.2, and 0.4 
mL/min are observed in three different PEO concentrations. Plots of the data set are shown 
in Figure 5. In Figure 5 we can observe many of the same trends that were present in our 
initial data set. At the lowest PEO concentration, particles of all sizes are focused to the 
inner side of the channel, with the tightest focusing achieved by larger particles and fo‐
cusing improving at the higher flow rates. Particle focusing position is highly affected by 
particle dimension and PEO concentration. 3 μm beads have a focusing position close to 
the outer sidewall in all PEO solutions. 10 μm beads focus to the channel center in 0.005% 
PEO solution, and the focusing position migrates to the channel outer sidewall in 0.025% 
PEO solution. 20 μm beads changed focusing position in 0.1% PEO solution. 

 
Figure 5. Plots showing focusing of 3, 10, and 20 μm beads under varied flow conditions. Across the 
rows of the figure, the flow rate increases from left to right while the PEO concentration is increased 

Figure 5. Plots showing focusing of 3, 10, and 20 µm beads under varied flow conditions. Across the
rows of the figure, the flow rate increases from left to right while the PEO concentration is increased
down each of the rows. The x-axis shown in each figure is the normalized channel width from channel
inner side wall to outer side wall.

The increase of PEO concentration leads to the increase of FE, and viscoelastic force
bears a high influence on particle movement. With the increase of particle size, FL grows
faster than FE, and the inertial effect dominates particle movement. The balance between
FE and FL determines particle focusing position. Figure 6 shows the magnitude of FL, FE,
and FD in the current data set. All forces increase with flow rate, while FE has a higher
increase rate compared with FL. It should be noticed that FD has a much low magnitude
compared with FE and FL for large-sized particles, and the effect of FD decreases with the
increase of PEO concentration.

For large-sized particles, a focusing position in the channel center is observed when
FL > FE. Large-sized particles occupy a large volume in the confined channel. 3, 10, and
20 µm particles have particle to channel height ratios a/h of 0.06, 0.2, and 0.4, respectively.
When FL dominates large particle movement, particles tend to migrate towards the channel
top/bottom wall, while this movement is balanced by the wall repulsive force. As a result,
particles have focusing positions in the middle between the channel top/bottom wall
and channel center. At such a focused position, the Dean flow is counter-balanced on the
particle, and will not drive particle towards the channel sidewalls in the horizontal direction.
Particles have focused positions in the channel center. Figure 7 illustrates the ratio of FE
and FL in different PEO concentrations, which can be used to explain particle movement
behavior. For 3 µm beads, FE/FL is above one in all three PEO concentrations. FE dominates
particle movement and 3 µm beads have a focus position near the channel outer sidewall.
For 10 µm beads, FE/FL is above one in 0.025% PEO solution, and the transition of focusing
positions occurs. In this case, FE/FL = 1.58 in 0.025% PEO solution. The magnitudes of
FE and FL are very close to each other, leading to the double peak focusing phenomenon
since particles may have stable focusing positions under two focusing regimes. For 20 µm
beads, the particle changed focusing position in 0.1% PEO solution. It should be noticed
that FE/FL = 0.28 in 0.005% PEO, and the inertial force dominates 20 µm bead movement.
However, the 20 µm beads are notably large compared with the channel height (50 µm),
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the inertial focusing position is close to the channel center, and Dean flow is still counter-
balanced in this case.
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4.4. Particle Movement in High Concentration PEO Solution

When the PEO concentration increases above 0.1%, the PEO solution is a semi-dilute
solution, in which the polymer molecules start to interact with each other, leading to
a change of polymer solution properties. In a semi-dilute PEO solution, a viscoelastic
secondary flow appears in the channel cross-section, leading to a multiple stream focusing
(MSF) phenomenon. The mechanism and application of MSF in high viscoelastic flow
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is described in detail in our previous publication [43]. MSF is induced by a viscoelastic
secondary flow drag force and exhibits a larger influence on small-sized particles. Large-
sized particles are less affected by MSF and maintain a single focusing stream, while the
focusing stream position changes in high concentration PEO solution. Figure 8a shows
the 10 µm particle focusing stream position in different PEO solutions. It is found that
the focusing stream moves from the channel outer sidewall towards the channel center
in high concentration PEO solutions. With the continuous increase of PEO concentration,
the solution viscosity and relaxation time increase dramatically, and the flow is purely
viscoelastic-dominated. Particles are focused to the channel center due to the viscoelastic
force and are driven by Dean flow to the channel outer sidewall. With the increase of
PEO concentration, the Dean flow has less effect on particle focusing positions. Figure 8b
shows the ratio of FE to FD in high concentration PEO solution. The increase of solution
viscosity reduces the Dean flow drag force, and FE/FD increases from 500 to 4500 in high
concentration PEO solution. With the combination of these factors, particle movement
is less affected by the Dean force, and the focusing position shift towards the channel
centerline.
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Figure 8. (a) Effect of PEO concentration on the focusing of 10 µm beads at a constant flow rate of
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outer side wall. (b) Force ratio of FE/FL and FE/FD for 10 µm beads.

4.5. Detection Resolution

As discussed previously, size-based separations of particles were achieved utilizing
a spiral channel to separate beads suspended in a Newtonian fluid. However, since both
of the focused peaks will occur within the inner half of the channel, there is a limit to
the distance that peaks can be focused, and in our results, even in the case of the largest
separation (3 µm from 20 µm beads at 0.2 mL/min), this separation is limited to less than
one third of the channel width. However, by utilizing viscoelastic fluids we can selectively
shift the peak of the smaller particle to drive it to the far outside of the channel. This allows
us to create an even greater distance between the peaks of the two different particles. In
Figure 9 we report the separation that we observe in the 9 tested configurations. The most
dramatic improvement is in the case of 3 µm and 10 µm beads which have focused peaks
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within one tenth of the channel width in Newtonian fluid at all flow rates, but which can
be separated by >40% of the channel width at 0.005% PEO at 0.2 mL/min.
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For all combinations of bead sizes and flow rates, the best separation is identified in
one of the two intermediate PEO concentrations. There is no separation that cannot be
improved by adding a small concentration of PEO into the fluid. In preparing to apply
these results, it is important to remember that the distances are reported without regard for
the location, i.e., in the Newtonian regime 3 µm beads will be focused further inside while
they will later be focused further to the outside of the channel.

The ability to increase the separation distance between focused peaks could prove
helpful in separation and detection applications where the signal of similarly sized particles
may otherwise overlap. More generally, especially in the transition region, since the
focusing behavior represents such a strong function of flow rate, PEO concentration, and
bead size, we imagine that the proposed spiral channel device could be employed as a
sensor for any of the other variables if two of the values were known.

Increased separation between focused peaks is also an indicator that increased par-
ticle separation should be achievable; we demonstrate that with the aid of an additional
performance metric, separation resolution, which attempts to quantify our ability to create
separation between two focused peaks. Again, the performance metrics of all 9 operating
conditions is presented in Figure 10 with many trends consistent with the plots of the
distance between focused peaks. All separations can be improved with the introduction of
low quantities of PEO, either at 0.005% or 0.025% PEO.
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5. Conclusions

In this study, particle focusing position in PEO solutions with a wide range of con-
centrations was studied experimentally. The achieved results are used for the analysis
of the particle focusing regime and improvement of separation resolution. PEO solution
viscoelastic properties in high shear rate flow are characterized, and the variation of solu-
tion viscosity under different shear rates affects particle movement in the viscoelastic flow.
Particles with different sizes bear different focusing positions with the increase of PEO
concentration and flow rate, and the particle focusing process is determined by the balance
of inertial flow, viscoelastic flow, and Dean flow. Therefore, by precisely manipulating the
PEO concentration of the fluid, we can create a situation in which smaller particles are
driven to the outer side of the channel while larger beads are driven to the inside of the
channel. This condition allows for an increased separation distance between their focused
peaks, which could assist with the detection of beads of different sizes, and an increased
separation resolution which could help in separation protocols.
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Abstract: This paper investigates the electroosmotic micromixing of non-Newtonian fluid in a
microchannel with wall-mounted obstacles and surface potential heterogeneity on the obstacle
surface. In the numerical simulation, the full model consisting of the Navier–Stokes equations and
the Poisson–Nernst–Plank equations are solved for the electroosmotic fluid field, ion transport,
and electric field, and the power law model is used to characterize the rheological behavior of the
aqueous solution. The mixing performance is investigated under different parameters, such as electric
double layer thickness, flow behavior index, obstacle surface zeta potential, obstacle dimension.
Due to the zeta potential heterogeneity at the obstacle surface, vortical flow is formed near the obstacle
surface, which can significantly improve the mixing efficiency. The results show that, the mixing
efficiency can be improved by increasing the obstacle surface zeta potential, the flow behavior index,
the obstacle height, the EDL thickness.

Keywords: electroosmotic flow; micromixing performance; heterogeneous surface potential; wall ob-
stacle; power-law fluid

1. Introduction

In recent decades, microfluidics has attracted significant attention with its increasing
applications in chemical synthesis, biomedical analysis, drug delivery [1–3]. Mixing of
species in a microfluidics plays an important role in many of these applications. However,
the small scale of microfluidic system leads to a low Reynolds number and laminar flow
behavior. The mixing under this situation becomes difficult and, thus, efficient mixing
mechanism is a great demand in microfluidic devices [4–7].

Micromixers can be categorized into passive and active micromixers, depending on
the actuation mechanism. Active micromixers require use of external energy source, such as
pressure [8], acoustics [9], electric field [10], and magnetic field [11]. Passive micromixers,
on the other hand, utilize surface structure modification, obstacles or grooves to enhance
the mixing of the fluids. Compared to active micromixers, passive micromixers do not need
active moving parts and are easier on fabrication and operation [4,12]. Among various pas-
sive mixing strategies, electroosmotic flow (EOF), with its flexibility of adjusting the flow
patterns by manipulation of surface properties and geometry, is widely used to enhance the
mixing performance in microfluidics [6,13,14]. A number of theoretical and experimental
studies have been done to improve the mixing efficiency in microchannels by proper design
of surface zeta potential [15], surface topology [16], and geometrical configuration [17],
etc. Basati et al. [18] investigated the effect of zeta potential distribution and geometrical
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specifications on the mixing performance of EOF in converging-diverging microchannels.
Bhattacharyya et al. [19] studied the vortex formation of combined pressure-driven EOF
in a microchannel with a rectangular obstacle on the wall. Wang et al. [20] numerically
investigated the vortex formation near a two-part cylinder under an external DC electric
field. Chen et al. [21] presented a novel electroosmotic micromixer that consists of arrays
of asymmetric electrodes and lateral which can enhance mixing efficiency with applied
potential. Seo et al. [22] studied the mixing characteristics in straight microchannel with
various obstacle configuration and concluded that the rectangular obstacle shows the most
effective mixing enhancement. Many of these theoretical studies on the electrokinetic
micromixing in the literature assume Newtonian fluid behavior. However, the biomedi-
cal and chemical applications often involve the use of complex solutions (e.g., polymer
solution, blood) which exhibit non-Newtonian characteristics. Understanding the mixing
performance of the EOF for non-Newtonian fluids is important for the experimental design
of efficient micromixers. Various non-Newtonian models have been used to characterize
the rheological behavior of the electrokinetically driven complex solution, such as the
Carreau–Yasuda model [23], power-law model [24], Oldroyd-B model [25], and generalized
Maxwell model [26].

In recent past, several numerical and analytical studies have been performed to in-
vestigate the electroosmotic mixing of non-Newtonian fluid in rectangular, cylindrical,
and wavy microchannels. To describe the electric potential within the electric double layer
(EDL) near the charged surface, the Boltzmann distribution [25,27,28] or the Smoluchowski
slip velocity boundary condition [29,30] is commonly used in these studies. Compared to
the general Nernst–Planck model, the use of Boltzmann distribution or Smoluchowski slip
velocity boundary can reduce the computational effort, but has some limitations [31–33].
On the frame of Nernst–Planck theory, Banerjee et al. numerically investigated the elec-
trokinetic micromixing of power-law fluid both in cylindrical microchannels with surface
contraction/expansion [34] and in a wavy patterned microchannel with sinusoidal zeta po-
tential distribution [35]. Mei et al. [36] investigated the EOF of Linear Phan–Thien–Tanner
(LPTT) fluid in a nanoslit. To the best knowledge of the authors, on the electroosmotic
mixing of a power-law fluid in straight microchannels with rectangular obstacle and surface
potential heterogeneity, no study has been done using the Nernst–Planck theory. The mix-
ing in rectangular microchannels is of importance as it can provide very useful information
on the design of efficient T/Y-micromixers.

In this study, the full model consisting of Navier–Stokes and Poisson–Nernst–Plank
equations is considered to analyze the mixing performance in the microchannel with rect-
angular obstacle and surface potential heterogeneity. The power-law model is used for
non-Newtonian fluid due to its simplicity and the ability to characterize the rheological
behavior of non-Newtonian fluids [37]. The paper is organized as follows. In Section 2,
the mathematical model describing the electroosmotic mixing of power-law fluid in the mi-
crochannel is presented. Section 3 presents the numerical calculation details and validation
of our numerical results. In Section 4, effects of the heterogeneous zeta potential, the flow
behavior index, the obstacle dimension, and the EDL thickness on the mixing performance
of the microchannel are examined in detail. Section 5 concludes the paper.

2. Mathematical Model

Figure 1 illustrates the schematic diagram of the 2D microchannel filled with incom-
pressible KCl electrolyte solution that is driven by an external potential bias V0 acting
along the streamwise direction across the channel. The channel is of height 2H and length
L, with two obstacles of height Ho and length Lo mounted on the lower and upper wall of
the channel. The obstacles are located at a distance of L1 and L2 from the inlet, respectively.
The channel wall is assumed to be distributed with constant negative zeta potential ζc,
except on the obstacle surface, where oppositive zeta potential ζw is distributed to create
surface potential heterogeneity. Two fluid streams containing uncharged sample species
of different concentration are injected at the inlet of channel, represented by red and blue
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arrow/line, respectively. As the fluid flows downstream, the uncharged sample species
within these two fluid streams are gradually mixed. Cartesian coordinate system O-xy is
adopted with x-axis in the length direction, y-axis in the height direction, and the origin
fixed on the bottom corner at the channel inlet.

Figure 1. Schematic diagram of the EOF in the microchannel with wall-mounted rectangular obstacles and heterogeneous
zeta potential. The EOF is induced by an external potential bias V0 acting across the channel.

2.1. Governing Equations

The steady-state transport of the non-Newtonian electrolyte solution induced by the
external electric field is governed by the mass and momentum conservation equation as:

∇·u = 0, (1)

ρu·∇u = −∇p +∇·(2µΓ)− ρe∇Φ. (2)

where u is the velocity field; p denotes the pressure; Φ is the electric potential, and ρe is
the volume charge density within the electrolyte solution; ρ represents the fluid density;
Γ =

[
∇u + (∇u)T

]
/2 is the strain rate tensor. The viscosity of the fluid is given by

µ = m(Γ)n−1 for a power-law fluid, where m is the flow consistency index, n is the flow
behavior index, and Γ =

√
Γ : Γ is the magnitude of the shear rate tensor. It is noted that

the shear thinning fluid, Newtonian fluid, and shear thickening fluid correspond to n < 1,
n = 1, and n > 1, respectively.

The charged channel surface in contact with the electrolyte solution will develop an
electric double layer (EDL) enriched with counterions in the vicinity of the charged surface.
The electric potential distribution is determined by the superposition of the external electric
potential ψ and induced electric potential φ (due to EDL). The electric potential and ion
transport within the electrolyte solution are governed by the Laplace equation, Poisson
equation, and the Nernst–Planck equation as:

− ε f∇2ψ = 0 (3)

− ε f∇2∅F(c1 − c2) (4)

∇·
(

uci − Di∇ci − zi
Di
RT

Fci∇∅
)

= 0, i = 1, 2, (5)

In the above, ε f is the permittivity of the electrolyte solution; zi, Di, and ci are the
valence, diffusivity, and ionic concentration of ionic species K+ (i = 1) and Cl− (i = 2),
respectively; F, R, and T are the Faraday constant, gas constant, and absolute tempera-
ture, respectively.
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The governing equation for the concentration of the uncharged sample species can be
obtained from Equation (5), with the corresponding valance set to 0, which results in the
convection-diffusion equation as:

(u·∇)C− D∇2C = 0 (6)

where C represents the concentration of the uncharged species, and D denotes its diffusivity.

2.2. Dimensionless Equations

The dimensionless form of the governing equations is derived in the following. Select
the half of the channel height H as length scale, the EOF velocity under constant viscosity
u0 = ε f R2T2/

(
µ0HF2) as velocity scale, the constant viscosity µ0 is the viscosity at

Γ = 1 s−1 and has the same magnitude as m, ρu0
2 as the pressure scale, the thermal

potential RT/F as electric potential scale, the bulk concentration of the KCl electrolyte C0 as
the ionic concentration scale, the set of governing Equations (1)–(6) can be normalized as:

∇′·u′ = 0, (7)

u′·∇′u′ = −∇′p′ + 1
Re
∇′·
(
2µ′Γ′

)
− µ′0(kH)2

2Re
(
c′1 − c′2

)
∇′
(
∅′ + ψ′

)
, (8)

∇2ψ′ = 0, (9)

∇′2∅′ = 1
2
(kH)2(c′1 − c′2

)
(10)

∇′·
(

u′c′i −
Di

Hu0
∇′c′i −

ziDi
Hu0

c′i∇′∅′
)

= 0, i = 1, 2. (11)

(
u′·∇′

)
C′ − D

Hu0
∇′2C′ = 0 (12)

In the above, all variables with prime indicate their dimensionless form; the Reynolds
number is = ρu2−n

0 Hn/m; the dimensionless viscosity constant µ′0 = µ0
mun−1

0 H1−n ; the Debye

length is λD = 1
k =

√
ε f RT/ ∑2

i = 1 F2z2
i C0; the dimensionless viscosity is µ′ =

(
Γ′
)n−1.

2.3. Boundary Conditions

To solve for the coupled differential Equations (7)–(12), the boundary conditions are
set as following.

On the channel wall, non-slip and no-ion penetration boundary condition is applied as:

u′ = 0, n·∇′ψ′ = 0, ∅′ = ζ, n·
(
−∇′c′i − zic′i∇′∅′

)
= 0, n·∇′C′ = 0 (13)

where ζ = ζc on the channel wall, and ζ = ζw on the obstacle surface, n represents the
normal unit vector on the surface.

At the inlet, stress free boundary condition is applied, concentration of the KCl is
set as the bulk concentration, and the concentration of the uncharged species follows a
step-like concentration distribution, as:

n·∇′u′ = 0, p′ = 0, ψ′ = V0·
F

RT
, ∅′ = 0, c′1 = c′2 = 1, C′ =

{
1, y′ > 1
0, y′ ≤ 1

(14)

At the outlet, stress free boundary condition is applied, and the electric potential is set
as 0:

n·∇′u′ = 0, p′ = 0, ψ′ = 0, ∅′ = 0, c′1 = c′2 = 1,
∂C′

∂x′ = 0 (15)
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3. Numerical Method and Validation

The coupled Equations (7)–(12) along with the boundary conditions (13)–(15) are
numerical solved using the commercial finite element software COMSOL Multiphysics
(version 5.1) with its AC/DC module, CFD module, chemical reaction engineering mod-
ule, and MUMPS solver. As the flow field and electric field have larger variation within
the EDL, finer mesh is distributed near the channel surface and the obstacle surface,
and mesh independence study is carried out to ensure the accuracy of the simulation.
To further validate the accuracy of the current simulation, we compare our simulation
result with Choi et al. [38] who derived the analytical solution of EOF velocity of power-
law fluids in a slit microchannel with asymmetric zeta potentials at top and bottom
walls. The parameters are set as V0 = 1.5 V, kH = 15 D1(D2) = 1.96 (2.03) ×
10−9 m2s−1, ε f = 7.08 × 10−10 CV−1m−1, 2H = 10 µm, L = 30H, m = 10−3 Pa·sn,
F = 96, 485 C·mol−1, R = 8.314 J·mol−1K−1, T = 298 K, zeta potential ζ = −10 mV at
the bottom surface and ζ = −15 mV at the top surface. The profile of the dimensionless
mainstream velocity component along the middle line x′ = 15 for different fluid behavior

index n is plotted in Figure 2. Here the velocity is scaled by us = nk
1
n−1
(

ε f V0ζm
mL

) 1
n

with ζm being the average zeta potential of the top and bottom surface zeta potential.
The results show that the velocity increases rapidly near the wall within the EDL, and the
gradient of velocity is larger near the top surface due to the larger zeta potential. The di-
mensionless velocity decreases with increasing fluid behavior index n, due to the overall
increased viscosity. It can be seen that the EOF velocity for power-law fluid under asym-
metric zeta potential from the current simulation matches well with the analytical solution
of Choi et al. [38]. In the following simulations, the parameters are set as V0 = 1 V,
kH = 10, L = 20H, L1 = 6H, L2 = 10H, Lo = 2H, Ho = 0.2H, ζc = −20 mV,
ζw = 20 mV, other parameters are set as mentioned above unless otherwise specified.

Figure 2. Dimensionless velocity distributions u/us within the microchannel of asymmetric zeta
potentials on the walls for fluid behavior index n = 0.7 and n = 1.3: lines (current simulation result)
and symbols (analytical result of Choi et al. [38].

To characterize the mixing performance within the microchannel, the mixing efficiency
of the uncharged species is defined as:

η
(
x′
)
=


1−

∫ y′_top
y′_bottom|C′ − C∞|dy′
∫ y′_top

y′_bottom|C0 − C∞|dy′


× 100%, (16)
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where C∞ = 0.5 and C0 = 0 (or 1) are the fully mixed concentration and totally unmixed
concentration, respectively.

4. Results and Discussion
4.1. Effect of Obstacle Surface Zeta Potential

First of all, the effect of the obstacle surface zeta potential on the mixing performance
for the fixed geometry is examined. Figure 3 presents the contour plot of the elute species
concentration C′ in the microchannel and the concentration profile at the channel outlet for
obstacle surface zeta potential ζw = 20 mV, 40 mV, and 60 mV, respectively. For higher
heterogeneous zeta potential ζw, significant improvement of mixing is achieved after the
fluid flows past the obstacle. The distribution of concentration C′ at the outlet shows
that the species approaches uniform distribution as ζw increases, revealing better mixing
performance. The corresponding velocity contour and flow streamlines are plotted in
Figure 4 to analyze the effect of the obstacle and zeta potential on the flow field. It can be
observed that in the straight part away from the obstacles, streamlines are parallel to the
channel surface. In the region where the obstacle is present, the streamlines are distorted
and vortex is formed in the vicinity of the obstacle surface. The positive zeta potential at
the obstacle surface induces the negative mainstream velocity near the surface, which in
turn results in the vortex formation. The velocity profile along the cross-sectional line
located at the center of the first obstacle (i.e., x′ = 7) is shown in Figure 4b. It shows
that as the magnitude of the zeta potential at the obstacle surface increases, the backward
velocity near the surface becomes much larger, the vortex becomes stronger and the vortex
center moves towards the centerline of the microchannel, which contributes to the better
mixing performance of the elute species. Figure 5 further plots the variation of the mixing
efficiency along the channel length direction and the dependency of the mixing efficiency
at the outlet on the obstacle surface zeta potential ζw. It clearly shows that at the fixed
zeta potential ζw, significant improvement of the mixing efficiency occurs right after the
fluid flows past each obstacle. The mixing efficiency at the channel outlet monotonously
increases with the heterogeneous zeta potential. The mixing efficiency at the outlet for
ζw = 70 mV is 2.7 times that of ζw = 0mV.

Figure 3. (a) Contour plot of elute species concentration C′ in the microchannel, (b) distribution of species concentration at
the outlet of the microchannel, for different obstacle surface zeta potential ζw = 20 mV, 40 mV, and 60 mV.
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Figure 4. (a) Velocity contour and streamlines for different obstacle surface zeta potential, (b) mainstream velocity
component u′ along the cross section located at the center of the first obstacle x′ = 7, for ζw = 20 mV, 40 mV,
and 60 mV.

Figure 5. (a) Evolution of the mixing efficiency along the channel length direction for different obstacle surface zeta potential;
(b) the variation of mixing efficiency at the outlet with obstacle surface zeta potential ζw.

4.2. Effect of Flow Behavior Index

Figure 6 presents the mixing efficiency along the channel length direction and main-
stream velocity component u′ along the cross-section located at the center of the first
obstacle (x′ = 7) for various flow behavior index n. It is obvious that the mixing effi-
ciency becomes much higher for larger value of n. Under the same condition, the shear
thickening fluid has better mixing performance than the Newtonian fluid (n = 1), and the
shear thinning fluid has lower mixing efficiency. The mainstream velocity component is
negative near the surface of the obstacle due to the positive zeta potential, and is positive
within a large portion of the channel. The velocity varies more steeply near the wall and
the overall velocity magnitude is much larger for a smaller value of n. The dimensionless
flow rate Q′ =

∫ 2
0.2 u′dy′ is 14.4, 3.0, 1.8, and 0.8 for n = 0.7, 0.9, 1.0, and 1.2, respectively.

The result is consistent with that from Banerjee et al. [34]. This is because, under the fixed
shear rate, the viscosity for the power-law fluid is larger for higher n, which results in the
lower velocity under the same electric condition. When the velocity is smaller, the solute
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species can get more diffusion flux to improve downstream mixing and, thus, better mixing
performance is achieved for higher n.

Figure 6. (a) Evolution of the mixing efficiency along the channel length direction for different flow behavior index n;
(b) mainstream velocity component u′ along the cross section located at the center of the first obstacle x′ = 7.

4.3. Effect of Obstacle Height

The effect of the obstacle height on the mixing efficiency is presented in Figure 7,
where the evolution of the mixing efficiency along the channel length direction and the
variation of mixing efficiency at the outlet as a function of the obstacle height Ho are plotted.
It can be seen that as the obstacle height becomes larger, the mixing performance is better.
Compared to the microchannel without obstacle, the presence of the obstacle can improve
the mixing performance very effectively. The mixing efficiency at the outlet for Ho = 0.7H
is 2.2 times of that without obstacle (i.e., Ho = 0).

Figure 7. (a) Evolution of the mixing efficiency along the channel length direction for obstacle height
Ho = 0, 0.2H, 0.4H, and 0.6H, (b) the dependence of the mixing efficiency at the outlet as a function of ratio Ho/H.

4.4. Effect of EDL Thickness

Finally, the effect of EDL thickness on the mixing performance is presented in Figure 8,
where the variation of mixing efficiency along the channel length direction for EDL thickness
kH = 5, 20, and 50 is plotted. It can be seen that the mixing efficiency is slightly higher for
larger EDL thickness (i.e., kH = 5) than that of thin EDL thickness (i.e., kH = 20 and 50).
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As shown in the cross-sectional mainstream velocity profile in Figure 8b, when the EDL
thickness is comparable to the channel height, which is true when the electrolyte concentration
is low, the change of the velocity near the wall is small, and the overall velocity is relatively
small. This means that the vortex near the obstacle surface is weaker. When the EDL is very
thin (e.g., kH = 50), the gradient of the velocity is very large in the vicinity of the wall, and the
velocity is much larger than that of the large EDL thickness. The effect of EDL thickness on
the EOF velocity is consistent with that in the literature, and has been well explained [36,39].
When the velocity is smaller, the diffusion effect becomes stronger, which results in a slight
increase in the mixing efficiency.

Figure 8. (a) Evolution of the mixing efficiency along the channel length direction, (b) mainstream velocity component u′

along the cross-section located at the center of the first obstacle x′ = 7 for EDL thickness: kH = 5, 20, and 50.

5. Conclusions

In this study, the steady-state mixing performance of electroosmotic flow of the power-
law fluid is numerically investigated in a 2D microchannel with wall mounted obstacles
and heterogeneous zeta potential. The numerical simulation is based on the full model
consisting of the Poisson–Nernst–Planck and Navier–Stokes equations. Compared to
the channel without obstacle, the presence of the obstacle can significantly increase the
mixing efficiency. By increasing the obstacle height, the mixing efficiency can be further
improved. The heterogeneous zeta potential on the obstacle surface induces vortical flow
in the vicinity of the obstacle surface, and the vortex strength becomes stronger as the
zeta potential increases, which results in the improvement of the mixing performance.
Additionally, for larger behavior index of the power-law fluid, velocity becomes smaller,
the transport of the uncharged species becomes diffusion dominant, resulting in better
mixing performance. For relatively large EDL thickness, the variation of velocity near
the surface is smaller, and the mixing efficiency is slightly higher than that of thin EDL
thickness due to the overall lower velocity.
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