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1. Introduction

Floods are among the most threatening and impacting environmental hazards. Their
costs in terms of human lives, infrastructure damage or loss, and agricultural impact can
be enormous and continue to increase due to climate change.

Investigating effects and extents of flood events in short times after occurrence is of
utmost importance in order to quantify damage, organize rescue measures, determine
insurance refunds, and calibrate prediction models for risk assessment and management.
In the last years, remote sensing is proving to be a strong aid in this direction by providing
large amounts of data of the Earth’s surface at low to null costs. The increasing number of
spacecraft and sensors available calls for the use of sophisticated procedures and algorithms
to extract useful information from such large datasets. In [1], several examples of precise
tools for investigating the effects of inundations were presented. Since then, improvements
in technology, data availability, and processing power have occurred.

This Special Issue is a collection of six articles and one technical note, which provide a
wide overview of recent advances in these fields. The papers deal with various aspects of
flood monitoring by using diverse sensors such as backpack-mounted 3-D optical cameras,
airborne LiDAR, GNSS reflectometry, and spaceborne synthetic aperture radar (SAR) data
analysis from multiple sensors and wavelengths. Test sites are located in various parts of
the world, including China, Japan, Philippines, Mozambique, Iran, UK, Greece, and Turkey.
The volume represents, therefore, a useful survey of methods to improve the performance
of techniques concerning remote sensing of floods in the mapping phase, including the
assessment of post-disaster flood damage, integration of observed and predicted flood
impacts, and evaluation of flood prevention measures such as levees.

2. Summary

The authors of [2] describe an experiment in retrieving field information about the
effects of a flash flood that occurred in Japan in 2017 by using backpack-mounted equip-
ment consisting of a series of optical cameras, a laser scanner, a GNSS receiver, and an
IMU unit. They also realized a DEM of a strip of terrain around the water course after the
event and compared it to one that was previously available. The resulting updated DEM
was integrated with that coming from a flood propagation model run with parameters
pertaining to the event, showing consistent improvements with respect to previous runs in
terms of adherence to ground truth measurements. The authors also offer some interesting
insight about issues and advantages encountered during the survey on the ground, show-
ing how, even with ground-based equipment, remote and automated sensing by using
sophisticated sensors brings a significant step forward in data collection campaigns. The
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results demonstrate, among other things, how sediment deposition plays an important part
in flood propagation. This is in line with other studies in this direction [3].

In [4], high-resolution LiDAR data (16 points/m2 on average) acquired from an
airborne sensor are analyzed in depth to derive information about the condition and
weathering state of levees along a section of river coastlines in Southeastern China. Levee
geometric parameters, such as crown height, waterside, and landside slopes, and elevation
transects are evaluated with respect to model flood heights for several return periods,
resulting in scores assigned to each levee parcel to quantify its robustness against water
overtopping. Such detailed scores improve upon previous classifications, mainly based
on ground campaigns, which involved single parameters and sparse sampling. The great
detail placed in the evaluation testifies the potential of remotely sensed data to extract
fine-resolution information over relatively large areas with a fraction of the time-personnel
effort necessary to perform field surveys.

Technical note [5] illustrates an example of application of three of the most diffused
and well-known techniques for separating water and non-water areas in SAR images,
namely the manual histogram “valley emphasis” thresholding method, Otsu’s threshold
determination, and K-means clustering. The latter algorithm is run here with two clusters.
The three methods are tested on a series of Sentinel-1 images taken during a series of strong
rain episodes that occurred between the end of 2018 and the beginning of 2019 over a
region in the Philippines. Results are compared visually, as well as in terms of total detected
flooded area. Although no ground truth was available to assess the methods’ performances
more quantitatively, the scatter of the results (relative differences in detected flooded areas
reaching as much as 60% between manual and K-means) provides a fair idea of the care
that should be placed in choosing algorithms and procedures to detect floodwaters in SAR
imagery and the important role of reference data to assess algorithms quantitatively.

In [6], a detailed analysis is proposed for an approach to flood vulnerability map-
ping that makes use of high-resolution, SAR-derived, and model-derived flood hazard
maps. Results are assessed by using aerial photos available for three test sites during
two flood events in UK. Various combinations of remotely sensed and model information
are compared. It was concluded that SAR flood maps improve detection performance
especially when surface flooded areas are not necessarily due to river water inundation,
while modeled flood maps obtained from gauge data are most useful for areas where the
SAR sensor cannot “see” due to its side-looking geometry, such as streets in high-density
urban centers. Synergetic use of both data types results in detection accuracies of up to 94%,
with false positive rates as low as 9%, improving by several percent points performances
obtained with the use of SAR data only. As discussed in the paper, although high-resolution
SAR data are still mostly not free and open access (with the significant exception of the
European Sentinel-1 constellation, and with several other SAR sensors collections foreseen
to become available as open access in the next future), their use is crucial for complex sites
such as urban areas, especially those characterized by relatively high building densities
as in many European countries, where high-resolution digital surface models (DSM) are
necessary in order to properly model hydrological dynamics. In such cases, current sen-
sors such as Sentinel-1, despite their unparalleled temporal acquisition frequency that is
showing promising results in several applications [7,8], may still have insufficient spatial
resolution, while higher-resolution sensors such as the Italian COSMO-SkyMed and the
German TerraSAR-X lack temporal frequency.

A potentially innovative data source for flood monitoring is investigated in [9]. GNSS
reflectometry is a technique that uses microwave signals emitted by global positioning
system constellations and collected by suitable receivers to gain information about (bistatic)
reflectivity of the Earth’s surface. NASA’s CYGNSS mission is a constellation of micro-
satellites carrying receivers to exploit GNSS signals, which has proven to be useful in
many land and ocean studies [10]. In this case, CYGNSS-collected reflectivity signals were
used to map inundated areas during an exceptional precipitation event that occurred in
January 2020 over a large basin in Southeastern Iran. Despite its relatively low resolution
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(25 × 25 km2), the high temporal acquisition frequency (average of about 7 h, reaching
about 2 h as a maximum) makes it a very promising tool to improve the timeliness of flood
survey maps over large areas.

In [11], an in-depth discussion is presented about the application of a methodology [12]
to detect flood water both on open areas and under vegetation (indicated, respectively,
as “temporary open water” and “temporary flooded vegetation” in the article) from time
series of SAR images. Sentinel-1 data are analyzed over three test sites in Greece and
Turkey that were affected by floods in March and April 2015 and June 2017, respectively.
Identifying flooded vegetation, typically through the detection of the “double bounce”
scattering behavior that causes significant backscatter increase with respect to non-flooded
conditions, is considered one of the most difficult tasks in flood monitoring by SAR data.
In the article, various combinations of the two available Sentinel-1 polarization channels,
namely VV and VH, are considered as possible features to detect different terrain classes.
The relative importance of single polarization channels and the difference, sum, and ratio
of the two were evaluated by using statistical means, using information extracted from
optical images as reference data, to identify the most relevant one(s) for the detection of
each class. Results point to single VV polarization as the most efficient for open water
flood identification, while the sum of VV + VH polarizations is recommended for detecting
flooded vegetation, although small variations in performance for the different features
appear from one test site to another, which seems to suggest that choosing one feature over
the others may actually be a site-dependent task.

The task of discriminating terrain cover during floods is also considered in [13],
where both C-band (Sentinel-1) and L-band (ALOS 2) data are exploited in order to extract
information about a prolonged, large inundation, which affected a part of the Zambesi river
basin in Mozambique, Africa, from December 2014 to April 2015. No useful optical data are
available for this event, as is normally the case over equatorial sites that are mostly clouded
for long periods of time. Nevertheless, the analysis of multi-temporal series, aided by the
use of the CORINE land cover database, available at a resolution of 100 m over Africa and
the synergy between the different wave penetration and backscattering characteristics of
the two sensors allowed the derivation of an informative set of multitemporal maps of
flood evolution, as well as an integrated, multi-sensor map discriminating various types of
ground features and situations, such as flooded crops, grassland, and forest in addition to
open water areas.

3. Conclusions

The papers in this Special Issue cover a broad spectrum of techniques and data
analyses aimed at improving the performance of flood monitoring activities from remotely
sensed data. Improvements come essentially from (i) availability of innovative data sources,
such as backpack-mounted 3-D cameras or spaceborne GNSS reflectometry; (ii) precise
assessment and validation of algorithm performance through comparison with independent
data; (iii) integration of multiple data sources such as multi-frequency, multi-sensor, and
multi-temporal satellite SAR data. Results of tests over sites located throughout the world
demonstrate the great potential of such methods to bring significant innovation and increase
algorithm precision in the field of inundation monitoring.

Author Contributions: Conceptualization, A.R., D.C., M.C. and A.D.; writing—original draft prepa-
ration, A.R.; writing—review and editing, A.R., D.C., M.C. and A.D. All authors have read and agreed
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Abstract: Satellite remote sensing has been used effectively to estimate flood inundation extents in
large river basins. In the case of flash floods in mountainous catchments, however, it is difficult
to use remote sensing information. To compensate for this situation, detailed rainfall–runoff and
flood inundation models have been utilized. Regardless of the recent technological advances in
simulations, there has been a significant lack of data for validating such models, particularly with
respect to local flood inundation depths. To estimate flood inundation depths, this study proposes
using a backpack-mounted mobile mapping system (MMS) for post-flood surveys. Our case study in
Northern Kyushu Island, which was affected by devastating flash floods in July 2017, suggests that
the MMS can be used to estimate the inundation depth with an accuracy of 0.14 m. Furthermore,
the landform change due to deposition of sediments could be estimated by the MMS survey. By
taking into consideration the change of topography, the rainfall–runoff–inundation (RRI) model could
reasonably reproduce the flood inundation compared with the MMS measurements. Overall, this
study demonstrates the effective application of the MMS and RRI model for flash flood analysis in
mountainous river catchments.

Keywords: mobile mapping system; RRI model; high-water marks; inundation; Northern Kyushu
floods; point clouds

1. Introduction

The spatial distribution of inundation depth represents the basic information required to
understand the damage of flood disasters. For long-term and large-scale flooding, the use of
satellite remote sensing is the most effective way to identify the extent of flood inundations [1–3].
Together with topographic data, some methods have been proposed to estimate the dynamics of flood
inundation depths [4]. In the case of abrupt, small-scale flooding, such as flash floods in mountainous
catchments, it has proven difficult to use satellite remote sensing techniques [5]. To compensate for
this situation, detailed rainfall–runoff and flood inundation modeling has been performed to estimate
the dynamics of flooding [5–7]. Such modeling is essential also for real-time flood forecasting and
hazard mapping. Despite considerable advances in modeling, mainly due to the accurate and fine
resolution of rainfall and topographic information in recent years, not much technological innovation
has occurred in the investigation of high-water marks during post-flood field surveys. In fact, to carry
out field measurements of high-water marks with a tape measure is laborious and time-consuming

Water 2019, 11, 963; doi:10.3390/w11050963 www.mdpi.com/journal/water
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work [8]. Recently, a survey of high-water marks for research purposes was conducted using real-time
kinematic GPS (RTK-GPS) [9]. The authors measured the levels of the high-water marks at multiple
points for the Kinugawa flooding in the Kanto Region in September 2015 and estimated the spatial
distribution of flood inundation depths by spatially interpolating the measurements and subtracting
the ground elevation [10]. Since RTK-GPS measures the position of a point and its ground elevation
using a single receiver, the measurements can be performed much more easily than in conventional
detailed surveying methods. Nevertheless, it is similar to the conventional method in that it repeats
the cycle of tasks of moving to the position where the high-water mark is visible, measuring the
ground elevation with RTK-GPS, separately measuring the relative height from the ground level to the
high-water mark and moving on to the next point. This takes a great deal of time and labor when
targeting multiple points over a wide area.

To resolve this problem, the present study examines the application of a mobile mapping system
(MMS) in high-water mark surveys. MMS is a surveying instrument consisting of a global navigation
satellite system (GNSS), a rapid sequence camera, a laser scanner, and an inertial measurement
unit (IMU), as a single package typically mounted on automobiles [11]. More recently, the system
is carried in a backpack, which allows us to measure inaccessible sites or the interior of buildings.
The MMS provides continuously photographed images and 3D point cloud data (if a laser scanner is
embedded), from which we estimate the absolute position of an object, its height, relative length, etc.
For application in post-disaster surveys, the Geographical Survey Institute (GSI) of Japan investigated
the inundation height of the tsunami caused by the Great East Japan Earthquake using MMS [12].
For river management, the temporal change of riverine topography has been monitored with MMS
mounted on a boat or a cart [13–18]. For post-flood surveying, however, there have been limited
studies applying MMS in high-water mark measurement [9], and its feasibility and effectiveness are
not clearly known. If it becomes possible to use MMS for surveys of high-water marks, it will not only
enable efficient measurement of high-water marks at multiple points but also serve as a useful disaster
record for hazard map creation, as well as verification of flood analysis in future, since this information
can be stored as measurable continuous images.

This study applied a backpack-mounted MMS to the post-flood survey of the 2017 northern
Kyushu floods. The measured results were compared with the records of direct measurement of
high-water marks. In addition, we applied the RRI model [19–21] to the same region to simulate the
dynamics of flood inundation with and without the effects of topographic change estimated by the
MMS. The main objective of the present study is to examine the utility and feasibility of the MMS
and RRI model to analyze information on flash flood disasters with the following specific objectives:
(1) Investigate the applicability of a backpack-mounted MMS for post-flood surveys; (2) simulate the
rainfall–runoff and flood inundation process at the catchment scale by the RRI model; (3) validate the
simulation results with local information on the maximum flood inundation depths estimated by the
MMS; and (4) discuss the impact of topographic change, also estimated by the MMS, on the flood
inundation simulation.

2. Study Sites

In July 2017, a severe rain band formed over Northern Kyushu Island in Japan induced by a Baiu
front and Typhoon No. 3. The rain band brought 829 mm of rainfall within 24 h between July 5, 8:00
and July 6 8:00, while the maximum hourly rainfall was 124 mm (on July 5 14:00–15:00) in Asakura
City of Fukuoka Prefecture. The heavy rainfall caused many shallow landslides, which produced
massive amounts of sediment and drift wood. The sediment deposits on the floodplains and storm
water caused flooding along the tributaries of the Chikugo River (Figure 1). The disasters arising
from the flood and sediment killed a total 37 people with 4 people declared missing in Fukuoka and
Oita prefectures. Due to the floods, 288 houses were completely collapsed, 1095 and 44 houses were
half- or partly-collapsed, respectively, and 172 and 1420 houses were flooded above or below floor
levels, respectively.

6
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Figure 2 shows the 24 h accumulated rainfall from midnight on July 5 to midnight on July 6.
The rainfall is estimated from the synthetic rainfall products of C-band and X-band radars with 250 m
resolution. The distribution of cumulative rainfall extends in an east–west direction, whose range
corresponds with the shallow landslides indicated with orange color in Figure 1.

Among the tributaries of the Chikugo River Basin, we selected the Shirakitani River catchment
(3.5 km2) for intensive field measurement and simulation, as it was one of the most severely affected
river catchments during the storm. The lower part of the Shirakitani River catchment is made up of
plutonic granite, while its upper catchment and Western region belong to a metamorphic rock zone
derived from mudstone. In the granite area, surface landslides of relatively shallow soil layers had
occurred in several places, and as a result, large amounts of sediment and driftwood had buried rivers
and riparian terraces (Figure 3).

Figure 1. Disaster affected area of Northern Kyushu Island, including the Shirakitani River Basin.

Figure 2. Cumulative rainfall distribution based on C- and X-band synthetic radar rainfall product
(July 5 0:00 to July 6 0:00 in 2017). � denotes the positions of our field survey for estimating the
river geometry.
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Figure 3. Situations of the flood disaster in the Shirakitani River Basin (as of March 25, 2018).

3. Methods

3.1. Mobile Mapping System (MMS)

In order to efficiently investigate the state of inundation and topographical changes, a field survey
by MMS was carried out. The equipment used is the Leica Pegasus: Backpack (hereafter referred to as
PB in this study) [22]. The PB is an MMS system that was conventionally installed in automobiles, now
packed in a backpack, and comprises a GNSS, five rapid sequence cameras, two laser scanners, and an
IMU (Figure 4). The greatest feature of the PB is its portability, and it is expected to be especially useful
for information gathering and field surveys in disaster sites that cannot be accessed by automobiles.
Since the weight of the system is about 12 kg, it can be carried as check-in baggage in aircraft and is
thus convenient to use in disaster investigations.

The camera mounted on the PB has a charge coupled device (CCD) size of 2046 × 2046, a pixel
size of 5.5 μm × 5.5 μm, and a maximum frame rate of 2 frames per second. With five cameras
mounted on the sides and in the rear, continuous photographs can be taken at a rear angle of 200◦.
The laser scanner has a horizontal viewing angle of 270◦, a vertical viewing angle of 30◦, and a scanning
speed of 300,000 points per second. Covering 360◦ horizontally with two laser scanners, continuous
3-dimensional (3D) data are created by synchronizing the image and 3D point cloud data of the same
camera. Further, the installed GNSS supports GPS/Glonass/BeiDu/QZSS. The absolute positioning
accuracy has a nominal value of 5 cm outdoors.
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Figure 4. Leica Pegasus: External appearance of backpack (PB) (http://www.leica-geosystems.co.jp/jp/
Leica-PegasusBackpack_106730.htm).

3.2. Field Survey with MMS

The field survey was conducted on September 12, 2017, and measurements were made by the
author along with an engineer from Leica Geosystems (Figure 5). The survey route is indicated by the
yellow line in Figure 6, and we made a round trip along the river, covering a distance of about 1.7 km.
The time of the actual operation was approximately 3 h. Another survey using RTK-GPS was also
conducted in parallel with the PB survey, which required more time than walking normally. In the
survey using the PB, however, the investigation could proceed at the same speed as normal walking.

 
Figure 5. Field survey using PB (September 12, 2017: Photograph by Mr. Yoshiaki Ishida).
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Figure 6. Survey route (yellow line) in the Shirakitani River Basin (blue line).

3.3. MMS Data Processing

The measured data were synchronized by image processing. The time taken for the image
processing also depends on the amount of measurements and took several hours in this case. Once
the processing was completed, the captured images can be continuously displayed, and by moving
the cursor to a specific location on the screen, the absolute horizontal position and elevation of the
object can be measured. In the present case, as we were able to identify high-water marks staining the
side walls of buildings, we measured the absolute height of the high-water marks and the inundation
depths at 12 points.

In the case of the northern Kyushu disaster, in addition to extracting the level of high-water
marks, estimating the topographical change is also important for an understanding of the damage
and to carry out the flood analysis, which will be described later. Since the PB creates 3D data for the
region around the area covered by walking, analyzing this data will help to estimate the information
in relation to the height and surface materials. Furthermore, a digital elevation model (DEM) with a
spatial resolution of 10 m and without the influence of buildings and trees was created from the digital
surface model (DSM). With the help of this model, it is possible to estimate the terrain after the disaster,
and by comparing it with topographical information before the disaster, obtained by an aircraft laser
profiler (LP), the depth of sediment deposition could be estimated (Table 1).

Table 1. Data processing for digital elevation models (DEMs).

DEMs Procedures

Original DEM
Aircraft laser profiler (LP) produced a digital surface model (DSM). The digital

elevation model (DEM) was then estimated by removing the effects of buildings and
trees etc.

Post disaster DEM
Pegasus: Backpack (PB) produced DSM along the floodplain. DEM was then estimated
by removing the effects of buildings and trees. The unmeasured area by the PB survey

was filled by the above original DEM.
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3.4. Rainfall–Runoff–Inundation (RRI) Model

This study applied the RRI Model to the Shirakitani River catchment to simulate flooding. The RRI
Model is a 2-dimensional (2D) diffusive wave model that takes into account rainfall–runoff and river
routing in the rivers and their exchange, representing overtopping flooding (see References [19–21] on
details of the RRI model). The model treats slopes and river channels separately. For river grid cells,
the model supposes that both slope and river are positioned. It applies the 2D diffusive wave model
for slope water, while the 1D diffusive wave model is used for channel flow. For better representations
of rainfall–runoff–inundation processes, the RRI model simulates also lateral subsurface flow, vertical
infiltration flow, and surface flow. In the mountainous regions, the lateral subsurface flow is important.
The model uses the discharge–hydraulic gradient relationship, which takes into account both saturated
subsurface and surface flows. For flat terrain areas, we assume the vertical infiltration flow is essential
and estimated by the Green–Ampt model. The flow interaction between the river channel and slope
is estimated based on different overflowing formulae, depending on water-level and levee-height
conditions. The model is applied not limited to floodplains but applicable to entire river basins.

The input to the model was the C- and X-band (CX) synthetic radar rainfall and the simulation
period was from July 5 0:00 to July 7 0:00. The spatial resolution of the model was set at 10 m, and the
model parameters were calibrated during the same period against the observed inflow to the Terauchi
Dam (see Figure 1). In this model, the lateral flow and surface flow of the soil layer is reproduced
on the mountainous forest slopes. We used two topographic datasets for the simulation, with one
based on LP data by GSI, Japan, acquired prior to the disaster, and the other one based on the MMS
survey created after the disaster. Although this model can reflect any cross-sectional shape, a simple
rectangular cross section has been assumed here on account of the limited information. The width and
depth were estimated by the empirical expressions W = CwASw and D = CdASd, respectively. Here,
A denotes the area of the catchment (km2) at each location, and Cw, Sw, Cd, and Sd are parameters
estimated from the river width and depth at the 8 sites measured in the downstream part of each
branch, and set to 4.73, 0.58, 1.57, and 0.33, respectively.

4. Results and Discussions

4.1. Measurement of High-Water Marks by PB

This section presents the results of the field survey with the PB. Figure 7 shows a snapshot
of the animation taken by the PB. High-water marks staining houses and fences are visible with
adequate clarity in the image. Further, superimposing the color captured by the camera on the 3D
point cloud data from the laser yields the images shown in Figures 8 and 9. Being 3D information, it is
possible to verify the 3D features, even from angles that are not covered in the actual walking route
(Figure 10). The method of displaying the camera image at the center and measuring the high-water
mark and ground elevation of the point on the screen was found to be an efficient way to investigate
high-water marks.
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Figure 7. Measurement data by PB (Left: Laser point cloud data colored with reflected intensity, Right:
Stereo image).

 
Figure 8. Flood traces on sidewall of building.
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Figure 9. Results of superimposing (left) the color of the image captured by the camera (right) on the
laser point cloud.

 
Figure 10. Bird’s-eye view of the 3-dimensional image created from PB laser point cloud.

Table 2 shows the location and inundation depth of high-water marks estimated from the images
generated with the PB. The inundation depth estimated from the PB lies in the range of 0.34 m to 1.15 m.
It must be noted that this inundation depth was measured from the ground height (G. Level) after the
flooding and the raising of the ground level by sediment deposition is not included in this value.

In order to confirm the accuracy of the inundation depth measured using the image, a field survey
was conducted once again on March 25, 2018. As shown in Table 2 (Obs: W. Depth), the difference
between the PB and field survey was less than 0.11 m, except in the case of two locations, which will be
discussed later. As the high-water marks also consisted of water mixed with sediments, there was
some uncertainty about which points should be regarded as high-water marks. However, the relative
height measurement by the PB was found to have sufficient accuracy with a mean error (ME) of −0.08
and root mean square error (RMSE) of 0.14 m.
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The PB values of measurement numbers 9 and 10 are, respectively, 0.25 m and 0.37 m less than the
field survey values. In measurement 9, the selection of the measurement site posed a problem, and the
splashing of large amounts of deposits mentioned earlier could be responsible for the overestimation
of the field measurement. On the other hand, in the case of measurement 10, some of the sediment that
accumulated in front of the house had been removed by the time of the survey conducted on March 25,
2018. Since the field measurement measured the depth at a location from where sediment had been
removed up to the level of the high-water marks, it is likely to be greater than the inundation depth
estimated from the PB image.

Since reference points, such as benchmarks, had not been used in conducting the present survey, it
is difficult to discuss, in strict terms, the accuracy of the absolute height estimated by the PB. However,
the comparison with the results of the 10 points measured separately using RTK-GPS showed the
RMSE in the horizontal direction to be 0.12 m and the RMSE in the vertical direction to be 0.11 m.
The accuracy of the RTK-GPS equipment was approximately 0.015 m in the horizontal direction and
0.02 m in the vertical direction. Hence, the PB estimation may be regarded as being sufficiently accurate,
considering that it is obtained by simply specifying the target on the screen.

4.2. Estimation of Topographic Changes by PB

A DEM with 10 m spatial resolution was prepared based on the 3D point cloud data measured
with the PB. The DEM is limited to a range of about 150 m laterally on either side of the centerline.
To create a wide area DEM, it is necessary to carry out longitudinal and lateral surveys. Nevertheless,
in creating a DEM of the floodplain along small and medium rivers as in the present case, the range
that is generally necessary for exploring along the river was covered.

Figure 11 shows the difference between the topography after the disaster estimated by the PB and
by the LP data before the disaster. In much of the measurement range of the PB, the height is observed
to rise due to sediment deposition, reaching up to 4 to 5 m in some places in the range of approximately
100 m from the river, where the amount of deposition is particularly high. This is consistent with the
scene shown in the photograph in Figure 3 (lower left), where a portion of the house up to the first
floor is completely buried under sediments.

 
Figure 11. Topographical change estimated by PB and DEM before the disaster (positive values denote
deposition and negative values denote erosion).

15



Water 2019, 11, 963

4.3. Verification of Rainfall–Runoff–Inundation Simulation with the PB Measurement

We conducted an integrated analysis of rainfall, runoff, and inundation in the Shirakitani River
catchment. The inundation depth measurement at multiple points by the PB is useful information
for the verification of such flood analysis. Further, the current disaster has resulted in topographical
changes due to the massive flow of sediments, and we also discuss here the importance of considering
its impact when carrying out flood analysis.

CX synthetic radar rainfall was input to the RRI model to estimate the runoff of the small rivers.
The parameters of the model were calibrated with the observed values of the inflow at the Terauchi Dam
(Figure 12a). For the present case, the observed dam inflow was well reproduced by setting a relatively
thin layer of soil depth (0.6 m) without percolation from the soil layer to the underlying bedrock.
Figure 12b shows the estimated hydrograph at the downstream point of Shirakitani River catchment.

Figures 13b and 14b show the simulated maximum inundation depths in the downstream part
and whole catchment, respectively, as estimated by the RRI model. For comparison, we also present the
flood inundation extent estimated by GSI, Japan, which determined the maximum flood extent based
on aerial photos and field investigation. The comparison suggests that the RRI model underestimates
the extent estimated by GSI. This is mainly due to ignorance of the topographic change caused by the
sedimentation during the storm event. The maximum water depth is estimated to be about 1.5 m,
which only explains the filling of the downstream river channel and does not explain flooding that
could fill the floor of the valley, which had actually occurred. This suggests that impediments to the
downward flow of the river due to the accumulation of sediments or topographical changes in the
flood plains had an impact on the flooding.

As mentioned earlier, the PB survey provides information about the 3D topography of the
surroundings, and hence, the DEM after the disaster can be estimated from the result. Figure 13a
shows the amount of topographical change estimated by subtracting the predisaster DEM by the GSI
from the DEM estimated by the PB after the disaster. This result is the same as in Figure 11 above but
has been obtained by resampling the data with the resolution of 10 m corresponding to the calculation
grid of the RRI model. As already mentioned, the analysis result using the DEM before the disaster
does not include the inundation of the surroundings (Figures 13b and 14b). The result of the analysis
using the topography after the disaster corresponds well with the inundation range given by the GSI,
as can be seen in Figures 13c and 14c (blue lines in the figures).

Figure 12. (a) RRI model calibration with observed dam inflow at Terauchi Dam, (b) simulated water
depths at the downstream of Shirakitani River.

In the graph in Figure 15, the direct measurement of the maximum inundation depth at the
12 points mentioned above have been plotted on the horizontal axis, and the estimation from the PB
and RRI models is plotted on the vertical axis. Comparing the field survey and PB values, the mean
error (ME) was found to be −0.08 m, and the RMSE was 0.14 m. On the other hand, the comparison
between the field survey and the RRI model shows that the ME is −0.23 m and the RMSE is 0.31 m,
indicating that the model tends to underestimate the maximum inundation depth. In the analysis, only
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the rainfall, runoff, and inundation have been calculated based on the topographical changes after the
flooding, whereas the outflow and sedimentation contain a mixture of water and sand deposits, which
could be the cause of the underestimation.

 
Figure 13. In the downstream part of the Shirakitani River basin: (a) Topographical change (Difference
between the DEM by mobile mapping system (MMS) after the disaster and DEM by the Geographical
Survey Institute before the disaster), maximum inundation depth distribution estimated by the RRI
model (b) with the original DEM and (c) with the new DEM created by the PB analysis.

Figure 14. Same as the Figure 13, but with (a) original DEM and (b), (c) covering for the entire
river basin.
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Figure 15. Comparison of maximum inundation depths estimated by PB (black solid squares) and the
rainfall–runoff–inundation (RRI) model (red circles) against the direct measurements.

4.4. On the Potential Use and Limitations of MMS and the Modeling for Post Flood Surveys

Based on the above results, we describe the future prospects for the use of MMS in field surveys
immediately after a disaster. In the survey by MMS, since it is possible to concentrate only on collection
of images and 3D point cloud data while working at the site, large areas can be investigated quickly
compared to the conventional high-water mark surveys that are conducted by stopping at specific
places. Moreover, the work is divided into data collection in the field and measurement work at the
office, which is a great advantage, especially in surveying disaster areas. Furthermore, since data from
MMS can be archived, in addition to becoming a record of the damage, it is particularly useful in
verification of the flood analysis as the position and height of any desired place can be measured at
any time.

At the start of this research, we had assumed the use of vehicle mounted MMS, but we failed to
do so because the disaster-affected area was inaccessible by vehicles. Such vehicle-mounted MMS may
be used in wide plain areas. For the disaster affected site here, the backpack type equipment was the
most useful alternative. Not all MMSs are equipped with a laser scanning system, and instead, they
estimate a relative distance by image processing, which can limit the data size. In the case of having to
determine in detail the absolute height of high-water marks, the MMS with a laser scan, such as the PB,
is more effective.

Further case studies of the presented approach are definitely required. As described above, the
flash flooding in Northern Kyushu Island in July 2017 is characterized with the massive landslides and
sedimentation along the floodplain. With high sediment concentration of the inundated water, the
visibilities of flood marks may be higher than other cases without sediment concentration. In addition,
such a destructive event prevented local residents from immediate recovering activities including
clearing flood marks from their houses. These conditions are not necessarily satisfied in other flood
events, which may require even rapid post flood surveys.

On the other hand, the sedimentation with the significant topographic changes made it difficult
for the flash flood simulation. Due to the current model capability as well as our study scope, we
demonstrated the RRI model application with topographic information before and after the disaster
event. We suppose this is the first case study using MMS for estimating topographic changes after
flash floods in a mountainous region. The MMS survey was inevitable for estimating the topographic
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change, which was necessary also for the flash flood simulations. Nevertheless, for the better prediction
of such disasters, it is important to simulate rainfall–runoff, flood inundation, and sedimentation
transportation in a more integrated manner.

5. Conclusions

In this study, we examined the utility and feasibility of using the backpack type MMS (Pegasus:
Backpack, PB of Leica Geosystems). We made a 1.7 km long round-trip survey along the Shirakitani
River while carrying the equipment and collected continuous images and a 3D point cloud data. Our
conclusions are summarized below.

(1) High-water marks due to the flood disaster staining building walls could be clearly identified
from the continuous images and 3D point cloud data of the PB. If the level of a high-water mark is
specified on the screen, its position and water depth can be measured.

(2) As no special operations are required, except for working with a tablet terminal to make color
adjustments to captured images, the survey could proceed at the same speed as walking.

(3) The RMSE of maximum inundation depths measured by the PB was 0.14 m according to the
comparison with direct measurements at twelve points. Considering the fact that high-water marks
staining the buildings are affected by splashing, the error is thought to be within the permissible range.
We believe that the PB has sufficient accuracy to carry out high-water mark measurements.

(4) A new DEM was also created using the PB measurements. It identified a maximum 4 to 5 m
of sediment deposits in some places along the river. The information on topographic change was
essential for our RRI simulation. The simulation, using the post-disaster topographic data, was found
to be closer to the actual flooded area.

(5) The results of the flood analysis by the RRI model were compared with the field survey of
inundation depths. The comparison with the field survey showed an ME of −0.23 m and RMSE of
0.31 m, indicating that the model tended to slightly underestimate the maximum inundation depth. In
the analysis, only the rainfall runoff and inundation have been calculated based on the topographical
changes after the flooding, whereas in reality, the outflow and sedimentation contain a mixture of
water and sand deposits, which may have affected the results of the analysis.

Overall, this study demonstrated the high potential of the wearable MMS and the RRI model
in post-flood analysis. Survey-related technologies, such as MMS and drones, have been making
impressive advances, and it is important to gather and archive information about disaster-affected
areas utilizing such state-of-the-art technology.
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Abstract: Levees are normally the last barrier for defending flood water and storm surges in low-lying
coastal cities. Levees in a large delta plain were usually constructed in different time and criteria
and have been changing with age as well. Fast and quantitative assessment of levee stability is
critical but faces many challenges. This study designs a scoring approach to quickly assess levee
stability and overtopping threats with geometric parameters from airborne Light Detection and
Ranging (LiDAR). An automated procedure is developed to extract levees geometric parameters
from 0.5 m grid LiDAR elevation, such as crown height, width and landside slope. The surveyed
levee is seated in the Hengmen waterway in the Pearl River Delta, Southern China. Results show that
the stability index using the assessment scores is higher than and superior to the common qualified
rates adopted in previous studies. The qualified rate is defined as the count percentage that each
parameter meets the designed criteria, while the assessment score proposed in this study assigns
different credits to those below/above the designed criteria. The continuous crown heights provide
detailed information on levee overtopping threats. The crown heights of levee A and B are above the
designed elevation and the flood stage (4.5 m) in a 200-year return period. The crown heights of levee
C, D and E are generally lower than 4.5 m and vary in a large range on different sections. The middle
section of levee E for the harbor and dock area has front elevation slightly below the flood stage
(3.54 m) in a 20-year return period. Moreover, the high precision LiDAR altimetry data reveal various
morphological modifications in all levees, such as natural subsidence and artificial modifications,
which greatly reduce levees safety and are severe threats to the community. The procedures and
assessment approach developed in this study can be easily applied for levees fast assessment in the
entire Pearl River Delta and somewhere else, thus offer a suitable mitigation suggestion ahead of
levee failure or overtopping.

Keywords: LiDAR; geometric parameters; levee stability; overtopping; Pearl River Delta

1. Introduction

Levees play a crucial role in defending flood water in the low-lying coast. Coastal cities often
face flood threats caused by river fresh flood and ocean storm surges. The rising sea level under the
context of global warming aggravates the flooding risk of coastal cities, such as the low-lying Pearl
River Delta of Southern China [1]. Hydraulic engineering measures such as sea walls and levees can
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effectively resist flood shocks, while they are usually the last barrier to protect the lives and properties
of local residents [2–4]. Levees cannot completely exclude flood disasters. Living behind a levee faces
unique flood risks since levees are designed to reduce the impact of a flood event at certain scale [5].
However, the floodplain communities often underestimate the flood risk by the false concept that
flood risk has been eliminated by the levee [6]. Moreover, frequent small floods can cause erosion,
submergence, sedimentation of levees, finally resulting in levee failure or overtopping as a large flood
event occurs, such as the catastrophic event of New Orleans hit by the Hurricane Katrina in 2005 [7].
About one-third of floods were related to levee breaks in the United States [8].

There are complex levee systems with several thousand kilometers in the low-lying Pearl River
Delta in the southern China. Levees had been constructed in different time and criteria based on the
flood-control level planned in their protecting area. The oldest levees were first constructed from
natural dikes over 1000 years ago and have been stacked up in different periods. The design standards
have been improved to protect the fast-developing towns, commercial and industry areas especially
during the past four decades. Meanwhile, the working conditions of levees always turn worse with age
due to natural subsidence, river scoring and human activities, resulting in morphological modification
and degradation of the flood defense capability or higher flood risk [7]. Assessment of levee stability is
a pressing and laborious task for the local levee management. Most levee assessments were visual and
qualitative check by ground cruise prior to and during the flood season in the Pearl River Delta.

Regular assessment of levee stability and flood defense capacity is critical to guarantee the
community safety behind levees. Levee assessment of stability and overtopping requires geometric
characteristics, such as crown elevation, width, and slopes on the waterside and landside [7,9].
These parameters are traditionally obtained by ground physical surveying across a levee transect,
which is time-consuming and laborious but still widely adopted in many places. The high resolution
satellite images such as QuickBird and IKONOS demonstrate their potential in detecting levee slides
by visual inspection and slide detection algorithms including image classification and spatial modeling
along the Mississippi River in Bolivar County, Mississippi, US [10]. Neuner [11] identified two levee
slide areas by visual inspection of the spectrally enhanced imagery. The high resolution spaceborne and
airborne multispectral images are often applied to monitor the levee vegetation cover and soil water
content, and the high moisture contents on the levee inclined surface and toes shows a close association
with levee slides [12]. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI),
Red edge Vegetation Stress Index (RVSI) and Red Edge Position Index (REP), are developed from
the airborne hyperspectral imagery to predict shallow surficial failures in the Mississippi River since
levee slide-affected areas are often characterized by anomalous vegetation [13]. The high-resolution
elevation data retrieved from airborne Light Detection and Ranging (LiDAR) enable fast and large-scale
examination of the levee physical conditions [14]. Several approaches have been developed to extract
the geometric parameters of levees from airborne LiDAR elevation data, such as the least-cost path
(LCP), Flip 7 software [14], slope classification, morphological filtering, cluster algorithm and break
line detection [15]. Although several algorithms had been developed, it is still not trivial to develop a
completely automated approach to extract these parameters from LiDAR data [16].

The common method for levee assessment is to compare the geometric parameters against the
design criteria. Casas et al. [7] developed a levee stability index by comparing the current geometric
parameters at each levee transect with the design standards in the Sacramento–San Joaquin River
Delta, California, US. Those meeting the minimum levee geometric criteria are labeled as in good
conditions, and others are in poor condition, in terms of levee height, crown width, waterside slope,
and landside slope according to the Geotechnical Levee Practice standards [17]. Adding together,
levee transects are classified as very good (all 4 hits), good (3 hits), fair (2 hits), poor (1 hit) and very
poor (all fail). Choung [9] assess the risk of levee overtopping by comparing the levee height against
the designed flood level plus a 2 m freeboard in Nakdong River Basins, South Korea. Those segments
lower than the designed flood level (1:100 year) are flagged as an area with a risk of overtopping.
Palaseanu-Lovejoy et al. [16] evaluate the levee crest elevation with the federal levee standards, the 2010
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refined flow line elevation above the 1:100-year flood stage plus a freeboard of 0.91 m. The error (0.24 m)
of DEM data at the 95% confidence level is also considered in the comparison.

All the aforementioned cases compare the levee geometric parameters with only one standard
value partially because of their small study area. However, levees in a large delta plain were usually
constructed in different criteria based on their protecting targets, which undergo fast changes, such as
in the Pearl River Delta. Levee degradation is usually accompanied by the morphometric modification
from its initial design standards, such as levee crest subsidence, crown narrowing and slope steepen.
Those morphometric modifications will eventually affect the levee integrity and even result in levee
failure [7]. The one criterion approach could not meet the need of levee assessment in a large and
complex levee system. More information is needed in assessing the actual performance of each levee
segments beyond the binary assessment result, “good/hit” or “poor/fail”, especially for those segments
below the designed standard.

In the context of global warming and new national development strategy in the great bay area
of Guangdong-Hong Kong- Macao, levees will bear on more and more important roles in defending
the flood water and storm surges. Fast and quantitative assessment of levee stability and flood risk
is in great demand as the levee ages. The primary objective of this study is to develop a procedure
to automatically extract levees geometric parameters from airborne LiDAR data, and then to design
a scoring approach to assess their flood defense capacity, i.e., levee stability and overtopping risk,
according to levees geometric parameters, the construction code, the sea level rise rate, and the designed
water levels at several flood frequencies. Both can be used together to quickly assess the long and
complex levee systems in the Pearl River Delta, Southern China and other regions in the world.

2. Study Levees and Data Processing

2.1. Study Levees

The levees surveyed in this study are along the Hengmen waterway in the Pearl River Delta,
Southern China at 22◦34′–22◦35′ N and 113◦24′–113◦38′ E (Figure 1). The Hengmen is one of the eight
outlets for the Pearl River estuary. It discharges flood water to the eastern bay of Lingdingyang mostly
from the Xijiang via the Jiya and Xiaolan waterways in the west. The surveyed levees have total length
of 44.5 km and are divided into five segments from A to E based on their natural features, protecting
targets and designed criteria. All the five segments are particularly selected to represent different types
of the levee system. The segments A and B are standard large levees with concrete levee crown and
waterside surface. The segment A is the southern part of the Minzhong-Sanjiao (Minsan) joint levee
(Grade III), which was initially built in 1958 and had been finished rebuilding in 2008. It protects the
towns of Minzhong and Sanjiao with total population of over 250,000 and an area about 190 km2 in
the city of Zhongshan, Guangdong Province, China. The segment B is a small eastern section of the
Zhongshan-Shunde (Zhongshun) joint levee (Grade II), which was first enclosed in 1970s and rebuilt
in 1990–1992 to defend a 1:50-year flood event. It protects over 640,000 people and areas of 700 km2.
The design standards of levees in segments C and D are being updated from defending the 1:20-year to
1:50-year flood event to protect the lately planned business districts of Huoju and Cuiheng in the city
of Zhongshan. The segment E is a 7-km long dock and commercialized area without standard levee.
Only surface height and the waterside slopes can be obtained in assessment. The further south of the
segments C and E are the uplift hills of Wuguishan, which controls the sediment plain of this area in
Zhongshan. The low-lying area protected by the segments C and E is much smaller than those of A
and B, but is a fast-developing business district during past two decades. The entire Cuiheng district
was reclaimed from the tidal beach and protected by the levee D, whose previous designed criteria
was quite low and are being improved to resist a 1:50-year storm surge and tidal level. Only one third
of the Cuiheng levee was surveyed in this study.
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Figure 1. The airborne LiDAR surveyed areas (gray dashed line) in the Hengmen waterway of the
Pearl River Delta, Zhongshan, Guangdong Province, China. The triangles, circles and red lines are the
locations of in situ elevation measurement using GPS-RTK. The black square is the site of the Hengmen
tidal station. The surveyed levees are divided into five segments from A to E.

2.2. Data Collection and Processing

The LiDAR data were collected around 13:00 during the low tide period on 9 December 2016.
It was selected for a particular low water level for better surveying the levee toe and the tidal beach.
The data were acquired from the airborne Harrier 68i LiDAR system from the Trimble Company, USA
and a digital camera, the Rollei Metric AIC Pro (60 million pixels) from TopoSys Company in Germany.
The aircraft is the Bell-206 helicopter. The flight height is 400 m above ground. The image pixel size is
0.05 m, and the laser point cloud density is 16 points/m2 on average. The total flight length is 186 km.
The raw laser data have been processed into point elevation and 0.5 m grid of the digital elevation
model (DEM) by the Jiantong Co., who is a co-investigator of this project. All products are produced
according to the criteria of 1:500 scale [18].

The claimed vertical and horizontal uncertainties of the laser point coordinates are less than
0.15 m and 0.25 m, respectively [18]. The quality of the laser point elevation was controlled by using
10 ground control stations that were set up and surveyed before the airplane survey. The inverse
distance weighting (IDW) method is applied to interpolate the point elevation into a 0.5 m grid DEM.
In July 2018, a set of independent ground elevation data were collected to validate the LiDAR DEM
by a precision differential Global Position System (GPS), the Real-Time Kinematic (RTK) instrument
(Unistrong G970II). Another suit of levee crown height and cross-section data were surveyed on
26 October 2019 to validate the extracted levee geometric parameters (Figure 1).

All the following analysis is based the 0.5 m grid data. The first step is to compute the surface
slope from the grid elevation data. The slope is defined as an angle made by the horizontal plane and
the inclination surface, which is calculated using the neighborhood operation from the 0.5 m grid of
LiDAR elevation in a 3 × 3 moving window by Equation (1) in ArcMap 10.4 [19,20].

Slope (degree) = tan−1((

(
∂z

∂x

)2
+

(
∂z

∂y

)2
)

1
2

) × 180
3.14

(1)

where ∂x and ∂y are the projected runs of the height change along the x and y direction on the x-y
plane, and ∂z is the height change between the central grid versus the 8 neighboring grids. The slope
can be expressed as an angle (◦) or a ratio of height to run.

2.3. Extraction of Levees Geometric Parameters

Levee is an important water-control engineering measure and plays an important role in flood
defense and disaster relief. Figure 2 illustrates the typical shape and elements of a levee section. It has
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a flat surface (levee crown) and two inclined areas, the waterside and landside. In the coast area, a
wave wall is often added on the waterside top of the levee crown to resist wave overtopping. There is
a break in the slope between the flat crown/ground surfaces and the inclined areas. This slope break
is mainly utilized to extract the levee crown/toe by a slope threshold of 5◦ according to the levee
construction code and the designed criteria [21,22]. A larger range of slopes (0◦–8.43◦) is also used
to classify the levee crown [15]. Obtaining the levee crown/toe is the first critical step to extract the
geometric parameters, whose accuracies are determined by the levee crown/toe boundary to some
degree. Manual editions are needed to improve the slope-classified levee crown/toe boundary with the
help of high resolution images and elevation (Figure 3).

Figure 2. The sketch of the levee elements.

The flowchart and main methods utilized for extracting the levee geometrical parameters are
demonstrated in Figure 3. The extracted outlines of the levee crown are used to generate the levee
central line, which is further applied to produce a series of transect lines perpendicular to the central
line at a 100 m interval using the Thiessen polygons (Figure 4a) [23,24]. Those polygon sides that are
perpendicular to the levee central line and constrained by the outlines of levee crown and toes are the
levee transect lines (Figure 4b). There are total 317 transect lines in the levee segments from A to D.

Four levee geometric parameters are extracted using those transect lines, including crown crest
elevation, crown width and the two slopes of waterside and landside incline faces. The crown elevation
is defined as the surface height at the crossing point of the crown central line and the transect line
(Figure 2). The length of the transect line constrained by the levee crown outlines is the crown width.
The side slope is the mean values of the slope grids over the transect line between the outlines of levee
crown and toes each side. The entire processes are automated by Python scripts on the platform of
ArcMap 10.4 after the accurate outlines of levee crown and toes are derived.
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Figure 3. The flowchart and main methods used in extraction of levee geometric parameters.

Figure 4. (a) Thiessen polygons generated from the levee crown central line at a 100 m interval, and (b)
the levee transect lines generated by the Thiessen polygons and the outlines of levee crown and toes.
The blank area in levee is a sluice for a local channel.

2.4. Elevation Extraction in the Dock Area

The dock in section E (Figure 1) is a transportation hub for passengers onboard and off board,
cargo handling, and safe entry and exit of ships. It is also an important protective measure for the
safety behind the dock area. There is no standalone levee on the dock area E, behind which a new
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Huoju business district has been established during the past two decades. This new business district
may face severe flood threat. However, it is difficult to determine the flood-control height since the
dock operation area has no regular levee structure. Two surface heights are extracted from the 0.5 m
grid elevation data at a 20 m interval. One height is the surface elevation on the dock operation area
along the river, and the other is the maximum surface height along a 1-km transect of the dock area.
Both surface heights are used to compare with the water levels at different flood frequencies for the
assessment of flood defense capacity in the dock area.

3. Methods of Levee Assessment

3.1. Levee Design Criteria

Levees have usually been constructed according to a set of design code of the geometric parameters,
such as the crown elevation, crown width, the surface slopes of waterside and landside [7,8,17].
With the age of use, the levee stability and flood-control capability will decline due to sea level rise,
flood stage variability, river bed erosion, land subsidence, human disturbance and the functional zone
changes behind the levees [16]. It is imperative to frequently assess their functional performance.
China issued its latest design code (GB 50286-2013) for the levee construction in 2013 [22]. The design
criteria of geometric parameters for the surveyed levees are summarized in Table 1 according to the
designed criteria of levee construction/rebuilding and the flood-control level planned in levees A to D.
This study uses the airborne LiDAR altimetry-derived geometric parameters to assess whether they
can meet the functional requirement according to the latest flood-control planning and the design code
(GB 50286-2013). The designed crown elevation (4.5 m) is equivalent to the base height of extreme
water level (3.91 m) in a 50-year return period at present and a redundancy height of 0.6 m. There is
an additional wave wall on the waterside top of the levee crown for resisting wave overtopping.
The height of wave wall varies and is estimated according to the wave conditions. Among the surveyed
levees, the wave wall is made of concrete rock/brick and has 20–30 cm width and 30–120 cm height
in different segments. There was no wave wall in levee D at present. In addition, the slope criteria
are used for earthen dike surface with grass cover and not suitable for concrete inclined surface with
berm. The design criteria are relatively low compared to those adopted in the International Levee
Handbook [25].

Table 1. The design criteria of geometric parameters for soil levees A to D.

Levee Section
Engineering

Grade
Crown Elevation

(m)
Crown Width

(m)
Waterside Slope

(◦)
Landside Slope

(◦)
A III ≥4.5 ≥6 ≤1:2 ≤1:2 (26.6◦)
B II ≥4.5 ≥6 ≤1:2 ≤1:2
C III ≥4.5 ≥4 ≤1:2 ≤1:2
D III ≥4.5 ≥4 ≤1:2 ≤1:2

3.2. Calculation of Extreme Water Levels

The hydrodynamic environment has undergone fast changes in the Hengmen waterway during
the past decades. The frequency of the tidal levels or water levels has been changing as well [26,27].
In order to assess the actual capacity of levees flood defense, the extreme water levels are calculated by
the Gumbel method using all the latest water level records. The probability density and cumulative
distribution function are expressed by Equations (2) and (3). Equation (4) is used to calculate the
extreme water level at a return period (T year) [28].

f(x) =
1
α

exp
{−[(x− β)/α]}− exp {−[(x−β)/α]} (2)

F(x) = e−e−[−
x−β
α ]

(3)
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XT = β− α ln
{− ln[1− (1/T)]

}
(4)

where x is the calculated variable (water level), α and β are the estimated parameters, XT is the water
level at a return period (T year).

According to the annual maximum water levels recorded from 1958 to 2018 (missing data at some
years) at the Hengmen tidal station (Figure 1), the computed water levels for the four return periods
(T) of 20, 50, 100, 200 years are 3.54, 3.91, 4.19 and 4.47 m (1985 Yellow Sea Geodatum), respectively.

The China Sea Level Bulletin in 2017 reported that the mean sea level rise rate was 3.3 mm/year
from 1980 to 2017 along the coast of China [29]. It is expected a range of 65–170 mm sea level rise in the
coming 30 year in the coast of Guangdong Province, where the Pearl River estuary of this study is
expected to have the largest rate. Therefore, an upper-end sea level rise scenario (0.5 m) is considered
in assessing levee’s flood defense capacity at the end of this century [30,31].

3.3. Assessment of Levee Stability and Overtopping Threats

One design standard is usually applied to assess levee stability and overtopping risk in previous
studies [7,9,16], which did not provide the specific information for those below the design standard,
especially for the crown height. This information is important for flood risk assessment and the
levee improvement planning. This study proposes a scoring approach to assess levee stability and
overtopping threats based on the criteria of levee geometric parameters and the extreme water levels
at four flood stages or frequencies of 1:20, 1:50, 1:100, and 1:200 years. The full score is 10 points with
maximum 4 points for the crown height and 2 points for crown width, waterside slope, and landside
slope, respectively (Table 2). The scores of the crown height are assigned by comparing the crown
height to the extreme water levels at four flood frequencies. For instance, if the crown height is less
than 3.5 m corresponding to a return period of 20 year, its score is zero, and those higher than the
designed elevation of 4.5 m (T = 200 years) get 4 points. The criteria for the crown width are 6 m
for levees A and B and 4 m for others. If the crown width is larger than or equal to 6 m for levees A
and B(4 m for C and D), it gets the full 2 points, 1 point for 3–6 m (3–4 m for C and D), and zero for
those less than 3 m. The maximum standard for the slope are 26.6◦ for all levees A, B, C, and D. If the
slope is smaller than or equal to 26.6◦, it gets the full 2 points, 1 point for 26.6◦–33.7◦, and zero for
larger than 33.7◦. The assessment scores are normalized into percentage in order to compare with the
common qualified rates, which compute the percentage of parameters equal to or above the designed
standards [7]. In addition, on the waterside, the levee toe is paved with rock revetment to withstand
wave erosion. A concrete berm is often built above the levee toe. The waterside concrete surface is
quite steep, and its side slope is not assessed since the slope criteria are used for earth dike and not
suitable for concrete inclined surface with berm on the waterside.

Table 2. The scoring sheet of levee stability and overtopping risk. The crown height intervals are set
according to the flood stages (water levels) at four return periods.

Assessment
Score

Crown Height
(m)

Return Period
(Year)

Water Level
(m)

Crown Width (m) Landside Slope
(◦) A,B,C,DA,B C,D

0 <3.5 20 3.54 <3 <3 >33.7 (1:1.5)
1 3.5–3.9 50 3.91 3–6 3–4 26.6–33.7
2 3.9–4.2 100 4.19 ≥6 ≥4 ≤26.6 (1:2.0)
3 4.2–4.5 200 4.47
4 ≥4.5

4. Results

4.1. Validation of Geometric Parameters

Figure 5 illustrates the original LiDAR points cloud elevation, high resolution optical image,
the produced 3D real scene model, and the interpolated 0.5 m DEM. Besides the trees and vegetation,
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the detailed 3D variation of levee can be revealed by the high precision LiDAR points compared
to the optical image, for instance, the bulges of grass on the landside and wave wall on the
waterside (Figure 5a,b). Combination of both LiDAR point elevation and optical image reproduces
the levee real situations by the levee 3D real scene model, which is useful in levee management and
instability examination.

The accuracies of LiDAR elevation and the extracted levee geometric parameters are validated
using two sets of ground survey data using the RTK instrument (Figures 6 and 7). The locations of
the surveyed sites are illustrated in Figure 1. Both the LiDAR elevation and RTK measured ground
elevation have a good linear relationship (R2 = 0.97) and a Root Mean Squared Difference (RMSD) of
0.10 m (Figure 6a), which falls within the vertical uncertainty range (<0.15 m) of the laser system [18].
In contrast, the extracted levee crest heights along the levee crown central line even have a smaller
discrepancy (RMSD = 0.05 m) with the RTK measured elevation (Figure 6b).

 

Figure 5. Demonstrations of (a) the original LiDAR point cloud elevation (16 points/m2), (b) 0.05 m
optical image, (c) levee 3D real scene model, and (d) 0.5 m DEM.
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Figure 6. Comparison of ground measured elevation using GNSS RTK and the airborne LiDAR for (a)
the original 0.5 m grid DEM on land surface and (b) the levee crown height extracted from the 0.5 m
DEM by the script.

Figure 7. Scatter plots of the script-extracted levee crown width and landside slope against the field
measured values using meter cord and RTK in levee A.

The extracted crown widths also have a good agreement (RMSD = 0.07 m) with the field
measurements (Figure 7a). The mean slope extracted from the LiDAR data is about 2◦ smaller than the
field measurements (Figure 7b). The slope discrepancy is mainly attributed to the dense vegetation
(grass) on the landside inclined face (Figure 5), where the LiDAR only can measure the surface elevation,
but the RTK surveys the land surface under the grass. Their mean elevation difference is −0.28 m
(LiDAR-RTK) on the five levee cross-sections of the inclined landside faces. The mean slope of levee
waterside is hard to validate and not included in the analysis since it contains a berm and rock-paved
levee toe (Figure 5c).

4.2. Levee Stability Assessment

Levee morphometric modifications are often caused by crest subsidence, crown narrowing and
slope steepen, and affect the levee integrity and working performance [7]. Table 3 summarizes the
mean, standard deviation, qualified rates and the assessment scores of the levee geometric parameters.
The assessment scores are higher than the qualified rates since those lower than their standards still
win some credits (Table 3). Overall, the crown elevation has the lowest assessment scores especially
for levee C and E. The landside slopes have the highest assessment scores and near all are qualified.
The waterside slopes are not assessed since they are concrete surface with berms and the levee toe is
paved with rock revetment for resisting wave erosion. There was no suitable national design standard
for them. Levees A and B have higher assessment scores than levees C, D and E.
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Levee A is the southern part of the Minsan joint levee, which protects a population of over 250,
000 and an area near 190 km2. The levee geometric parameters should meet the designed standards
(4.50 m) for a flood level (3.91 m) at the frequency of 1:50 year and a 0.6 m redundancy height (Table 1).
The total assessment score is 85% for the three geometric parameters among the 125 transect lines
(Table 3). The mean crown crest height is 4.70 ± 0.46 m (standard deviation), and 90% (qualified rate)
of them are equal to or higher than the 4.5m standard. The assessment score declines from 96% to
65% when a 0.5 m sea level rise is considered. The qualified rate is only 7%, and the assessment score
is 53% for the crown width. The qualified rate and assessment scores of landside slope are 90% and
94%, respectively. As shown in Figure 8, the low-score section is mainly contributed by low crown
elevation in the west of levee A and marked as 1�, where all crown heights are lower than 4.5 m within
the 1.7-km levee (17 transects).

Table 3. Statistic of levee geometric parameters and assessment results. The qualified rate is defined as
the count percentage that each parameter meets the designed standards. The assessment score (AS)
is normalized into percentage by comparing the actual scores to the full scores for each and all four
parameters within each levee segment. A 0.5 m Sea Level Rise (SLR) is also considered.

Levee Sections A B C D E

Count levee transect lines 125 35 47 110 266

Crown elevation

Mean (m) 4.70 4.75 3.98 4.34 4.00
Standard deviation 0.46 0.81 0.71 0.51 0.55

Qualified rate 90% 89% 9% 27% 26%
Assessment score 96% 97% 48% 72% 48%
AS after 0.5m SLR 65% 70% 18% 35% 24%

Crown width

Mean (m) 5.38 6.90 4.52 4.49 -
Standard deviation 0.78 1.19 0.98 0.65 -

Qualified rate 7% 100% 77% 89% -
Assessment score 53% 100% 88% 94% -

Slope landside

Mean (◦) 18.9 15.2 7.8 7.1 -
Standard deviation 7.4 6 6.7 7 -

Qualified rate 90% 100% 98% 97% -
Assessment score 94% 100% 98% 98% -

All Assessment score 85% 99% 71% 84% 48%

Levee B is a small eastern section (~3.5 km) of the Zhongshun joint levee, which protects over
640,000 people and areas of 700 km2. It is classified as national grade II levee and primarily escorts the
flood water of Xijiang to the bay of Lingdingyang through the Xiaolan-Hengmen waterway. It has the
highest assessment score (99%) among the four segments from A to D (Tables 1–3, Figure 8). Both the
crown width and landside slope have the 100% qualified rates and assessment scores. 89% of the
crown heights are higher than 4.5 m, and only 4 heights are slightly less than 4.5 m but higher than
3.91 m (minimum height of 4.34 m). In addition, there is a concrete wave wall of about 1 m high and
0.2 m wide on the levee crown. It is not accounted in the levee crest height. The assessment score of
the crown height declines from 97% to 70% when the sea level rises by 0.5 m, while it rises to 100%
when the wave wall height is added to the levee crown height.

Levee C is located in the southern bank of the Hengmen waterway and protects the eastern part
of the new Huoju business district. Its design standard recently has been modified to the same criteria
as levee A except for the crown width. Both the crown width and slopes have high assessment scores.
The crown heights have an assessment score of 48%, and only 4 heights (9%) are higher than 4.5 m
among the total 47 transects (Table 3). The eastern section of levee C has been improved to meet the
design standard, but the most western part failed to meet the standard (Figure 8).

Levee D is the northern part of the lately planned Cuiheng high-tech district, which was reclaimed
from the intertidal beach and is being improved to resist a 1:50-year storm surge and tidal level.
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At present, the mean crown height is 4.34 ± 0.51 m, and only 27% of them could meet or higher than the
4.5 m standard, plus 39% within 4.2–4.5 m and 27% within 3.9–4.2 m (Table 3, Figure 8). The eastern part
that faces the Lingdingyang has higher elevation up to 5.35 m to resist the storm surges. Some crown
surfaces were planted with bananas. Ground surveys also identified levee washing out and several
collapses. Now the levees are constructing with updated design criteria, and the old levee that was
surveyed in December 2016 had been partially reinforced in 2019.

 

Figure 8. Spatial distribution of assessment results. The normalized assessment score is used for levees
A, B, C and D. The water levels at the four return periods are illustrated to compare with the dock front
elevation along the river of levee E. The number of 1� to 4� represents the locations of levee crown
modifications and notches.

4.3. Levee Overtopping Assessment

The above stability assessment and the assessment scores can reveal whether the levee meets
the corresponding designed standards and the overall stability or working conditions. However,
these parameters are extracted by transect lines at an interval of 100 m, and the discrete crown heights
often miss some overtopping threat from local disturbances [7]. Therefore, the continuous crown
elevations are extracted to assess the levee overtopping threat from the 0.5 m grid LiDAR DEM by
comparing to the designed elevation and the extreme water levels in four return periods of 20, 50,
100 and 200 years (Figure 9).

The designed elevation coincidentally matches the extreme water level in a 200-year return period
for the surveyed levees (Figure 9). As demonstrated by the assessment scores in Table 3, levees A and
B have much higher crown elevation than levees C and D. Levee A has some overtopping threats due
to levee crown modifications although its main crown elevation is above the extreme water level in the
200-year return period (Figure 9a). There is about 300 m levee with abnormally lower crown elevation
marked as 1� in the west of levee A (Figure 9a). It is up to 30 cm lower than the neighboring levee
crown height (Figure 10a). Ground surveys identify that the levee top (crown height + wave wall) has
relatively consistent heights of ~4.8 m along this section in spite of its lower crown surface. In other
words, the lower crown surface is compensated by adding the wave wall to the levee crown for flood
defense, and was intentionally constructed to reduce the levee weight over the soft sediment layer
beneath the levee.

The levee A has several other notches, which bring additional overtopping threats (Figure 9a).
Ground surveys on 12 July 2018 and 26 October 2019 identified that those notches were mainly caused
by local human activities. For instance, the notches 2� and 3�were up to 1.4 m and 1.9 m lower than the
levee top (levee crown elevation plus 30-cm wave wall height), respectively (Figure 10b,c). The notch
2� actually has two notches, which were modified for traffic crossover for a local steel pipe factory

dock and a ferry crossing the Hengmen waterway between the town of Minzhong and the city of
Zhongshan (Figure 10b). Ground survey also found that the water level rose to 3.5 m nearby the ferry
by wave setup on 22 August 2017 after the 1713 typhoon Hato made landfall about 60 km away in
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the southwest estuary. It would overtop the western notch 2� with a surface height of only 3.40 m.
Behind the levee, the street elevation of the village is just 1.6 m and would be inundated for near 2 m
deep if the notch had not been blocked by local villagers with sand bags. The notch 3�was modified
for a shipyard built within the levee benchland (Figure 10c). In front of the shipyard, the surface
elevation of the levee notch is only 3.26 m, which is even less than the water level (3.54 m) in a 20-year
return period. There are 24-hour gate guards in the shipyard, and the notch can be quickly filled by
the woodblock and sand bags ahead of flood (Figure 10c). However, other notches like 2� without
human guard should be paid more attention. Ground survey also found many other small notches on
the levee wave wall for the access convenience of local activities. Therefore, it is imperative to timely
assess the levee and repair those cutoffs to reduce the flood overtopping threats.

The crown elevation of levee B is in the best condition among the surveyed levees, plus a 1m
height wave wall on the waterside levee crown (Figures 8 and 9b). The overtopping threat of levee B is
relatively low. Even after the sea level rises by 0.5 m, the crown elevations of levees A and B are still
higher than the extreme water level (4.41 m) in a 50-year return period (Figure 11a,b). When the wave
wall height is added to the levee crown height, the levee top height is still higher than the extreme
water level (5.0 m) even if the sea level rises by 0.5 m (Figure 11). However, there is a 300 m section
from 2900th to 3200th m where the crown height is lower than the designed elevation of 4.5 m and has
a minimum height of 4.34 m. This lower section is likely related to levee subsidence that is up to 0.2 m
compared to the neighboring levee crown elevation (Figure 9b, inset plot). This subsidence occurs in
the western Hengmen waterway where the Jiya and Xiaolan waterways are confluent (just in the west
of the bridge) (Figure 8).

Figure 9. Comparison of the continuous crown elevation from the 0.5 m grid DEM against the designed
elevation and the extreme water levels in the four return periods of 20, 50, 100 and 200 years for levees
A (a), B (b), C (c) and D (d). The distance starts from the west within each levee.
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The 5-km levee C is divided into five segments by four sluice gates and local short open channels.
Each block separated by the channels represents a typical functional zone, such as waste water treatment
plant, sand dock, fishing ponds (filled up), gas dock and village from west to east in sequence (Figure 8).
The crown elevation of the eastern half levee is above the extreme water levels (3.91 or 4.19 m) in a
50 or 100-year return period and is much higher than the western part, whose elevation is just around
the extreme water level (3.54 m) in a 20-year return period except for the section 4� (Figure 9c). Like the
section 1� in levee A, this section 4� locates in the sand dock area, where levee crown surface elevation
was up to 0.6 m lower than its nearby levee surface elevation (Figure 10d). In spite of the lower levee
surface elevation, there is a 1.2 m height wave wall, which increases the levee top to 4.0 m and makes it
higher than the extreme water level (3.91 m) in a 50-year return period. Meanwhile, the levee C has
been planned to meet the same design standards of levee A to protect the new Huoju business district.
Particularly, the waste water treatment plant in the west needs higher levee to protect from the flood
water although it is separated from other sections. Once it is flooded, severe environmental pollution
may occur besides damages to the plant.

The crown surface was quite rough in levee D in the new Cuiheng high-tech district since most of
them had not been concreted (Figures 8 and 9d). The crown heights in the eastern outer part facing the
bay were higher than the 4.5 m standards, while most crown heights in the west inner part were in
a range of 4.0–4.5 m and a small part was lower than 4.0 m. Most part of levee D was irregular and
even weak, and part of the eastern crown surface were planted with bananas. New constructions
are carrying out to improve the levee to protect the perspective dense population and high-value
infrastructures in this high-tech district.

 

Figure 10. Examples of levee modifications and traffic notches of (a) construction design, (b) dock and
ferry, (c) shipyard in levee A, and (d) sand dock in levee C. The inset plots are the surface elevation
over the levee modification marked as 1� to 4� in Figures 8 and 9. The plot range is adjusted to match
the horizontal size of levee modification in plots (a), (b) and (d).
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Figure 11. Comparison of the continuous crown elevation from the 0.5 m grid DEM against the
designed elevation and the extreme water levels in the four return periods of 20, 50, 100, and 200 years
when the sea level rises by 0.5 m for levees A (a), B (b), C (c) and D (d). The wave wall elevation
(wave wall height plus levee crown elevation) is illustrated as the levee top height in levee A and B.

Levees E and C together protect the new Huoju business district (~20 km2) of Zhongshan. The levee
E starts from the Donghe sluice gate in the west and connects levee C at the Xiaoyin sluice gate in the
east. It protects an area about 12 km2. The river front area has been commercialized for sand dock,
cruises harbor, container dock, petrochemical plant, pharmaceutical and condiment factories from the
west to east in sequence (Figure 8). There is no regular levee in this area, such as the levee crown or
levee width. The levee E is like a sea wall with near-vertical and concrete waterside surface. The river
front elevations are primarily used to compare with the extreme water levels in the four return periods.
The front elevation can be divided into three sections (Figure 12a). The western 2-km section is the
sand dock with most front elevation around the extreme water level (4.19 m) in a 100-year return
period. The eastern 1.6-km section is seated with several large companies and its front elevation is
above the designed elevation of 4.5 m. Even after the sea level rises by 0.5 m, most front elevations are
still around the extreme water level (4.69) in a 100-year return period (Figure 12b). The middle 3-km
section is the cruises harbor and container dock with front elevation slightly below the extreme water
level (3.54 m) in a 20-year return period. The primary purpose of the low elevation is designed for
dock operations, instead of flood defense. An alternative is to search the maximum elevation along a
1-km transect line perpendicular to the river front as a backup for flood defense. The max elevation is
generally above the extreme water level (3.54 m) in a 20-year return period, and part of them is above
the level in a 50-year return period. Part of the transect lines are just 150 m wide and do not cover
the max elevation because of the narrow LiDAR coverage in this area. Anyway, it is urgent to add a
backup levee behind the dock operation area to protect the fast-developing Huoju business district.
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Figure 12. Comparison of the crown elevation of levee E (dock area) from the 0.5 m grid DEM against
the extreme water levels in the four return periods of 20, 50, 100, and 200 years (a) at current sea level
and (b) after a sea level rise of 0.5 m. The distance starts from the west.

5. Discussions

It is not a trivial task to accurately extract levee geometric parameter from the LiDAR elevation data
although it is just a two-hour flight data. One of the critical steps is to derive the crown outline, which is
the most crucial geometric parameter for automatically extracting other geometric parameters. For the
standard levees such as those in levees A and B, where the crown surface is concrete and has little trees
or vegetation, both the slope contour or image classification methods work well in extracting the crown
outlines. However, the field conditions of levees are complex, such as in the commercialized river
bank in levee E and the irregular crown surface partially planted with bananas in levee D. No single
method can deal with all conditions. All DEM, slope and high resolution images (0.05 m) are used
together to extract the crown outlines, and much manual edition are still needed [15,16]. Subsequently,
other geometric parameters can be automatically extracted using the procedure developed in this
study, which greatly improves the speed of data processing. Meanwhile, manual check is also needed
for those abnormal low or high values with the help of the original LiDAR points cloud elevation
and the levee 3D real scene model built in this project (Figure 5). A good case in point is the levee
crest heights that are extracted over the central line. Some sections of the central line are not on the
crown crest since local traffic connection often cuts part of the crown surface, leading to abnormal
lower elevation (Figures 9 and 10).

The geometric parameters extracted by the automated script have good agreement with ground
measurement, especially on the levee crown surface (Figures 6 and 7). However, the number of
in-situ slope profiles and crown width is limited, and more ground surveys are needed to confirm the
reliability of the script in future application. Moreover, since there is some time lag between LiDAR
surveying time (December 2016) and GPS-RTK in situ measurements (July 2018 and October 2019),
the RTK survey sites were selected over relative stable levee section, thus mitigating the effect of levee
modification with time. The results also shown that the levee crown surface heights surveyed with
RTK in October 2019 have good agreement with the LiDAR ones surveyed in December 2016 (Figure 6).

The normalized assessment scores for levee stability designed in this study are higher than the
qualified rates used in previous studies [7,9,16]. The primary difference is attributed to the multiple
credits for those that do not meet the standard, which were given a zero credit in previous studies
(Tables 1–3). Thus the assessment scores offer more information for levee actual conditions and are
superior to the simple qualified rates, which only consider the credit of parameters meeting the
designed standards and ignore those even they are just slightly lower than the designed standards.

The assessment score provides an overall view of levee stability, i.e., the morphological
modifications (Table 3, Figure 8), which mainly embody in slopes and crown elevation. The continuous
parameters such as the crown elevation give more information than those extracted over the transect
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line at a certain interval. For instance, levee crown modifications are observed in all levees by checking
the continuous levee crest height (Figure 9). Field survey, high resolution images and levees 3D real
scene model are also needed together to identify what causes and how large are the levee morphological
changes, such as levee surface subsidence due to natural subsidence in levee B, the combined effect of
natural sink and industry operation in levee A and C, artificial cutoffs for traffic crossover in levee
A (Figures 9 and 10). The information is crucial to offer suitable remediation options, especially in
the flood season and for emergency response. However, this study is a generic assessment of levee
stability and overtopping threats by only using the levee geometric parameters. It examines whether
the levee has any distortion, breach or slides occurred, rather than to investigate why and what cause
the instability. More investigations are needed to reveal the mechanisms of levee instability caused
by different factors, such as the natural subsidence in levee B due to compaction, river scoring and
groundwater seepage etc., and those impacted by human activities in other levees [25].

For the overtopping threats, we compare the levee crown heights with the extreme water levels
estimated from the water level records at one tidal station (Figure 1). This is a gross assessment because
of the changing hydrodynamic environment and the water level gradient due to coastal storm surge.
The time series of the water level data may be non-stationary due to the changing hydrodynamic
environment. To reduce this type of uncertainty, we do not use the old design water levels applied in
levee construction, but using those estimated from all data including the latest water level records in
spite of its non-stationarity. It is common and the only choice at most conditions to use historic data to
predict current and future flood peak magnitudes assumes that the historic data is representative of
the present and future conditions at the project site [25].

On the other hand, representation of extreme water levels using one station at a larger area
brings another type of uncertainty in this study. The surveyed levees span near 20 km from west to
east, and the tidal station is located in the middle section (Figure 1). However, there is only one tidal
station that has long-term (>20 years) water level records suitable for extreme water level analysis in
different frequency/return periods. Our investigation from recent in situ observation and hydraulic
modeling find that the gradient of peak water levels is 0.5 m per 10 km in the surveyed levees when
a 1:50-year flood discharge from the upstream watershed encounters with a 1:50-year coastal storm
surge. The gradient is mostly affected by the scale of storm surges. The coastal sections face higher
water levels due to storm surge and wave setup. This indicates that levees in the coast part would face
higher overtopping threats and should have higher design standards than the west. Our results show
that the ocean side of levee D does have higher crown heights than the inner river side, but levee A has
a near-unanimous crown top height along the 12.5-km length from east to west. A higher levee crown
height and wave wall should be considered in the future coastal levee reinforcement.

6. Summary

The coastal cities in the low-lying Pearl River Delta face severe flood threat although they are
under the protection of a huge levee system. Once a flood event happens, it often causes catastrophic
impacts on property and life loss behind the areas protected by levee as more and more population
and properties move in. Routine and fast assessment of levee is critical to guarantee the community
safety surrounded by levees. This study designs a scoring approach to quickly assess levee stability
and overtopping threats with geometric parameters derived from the high-precision airborne LiDAR
data. The procedures and assessing approach developed in this study can be easily applied for the
levees assessment in the entire Pearl River Delta and somewhere else in the world.

The airborne LiDAR and high resolution images enable fast and large scale examination of
the levee physical conditions. However, it is not a trivial task to accurately extract levee geometric
parameters from the LiDAR elevation data. This study developed a procedure to automatically extract
the levee geometric parameters for levee assessment, such as the crown elevation, crown width,
waterside slope and landside slope. Meanwhile, manual edition and quality check are still needed
especially for the most critical crown outlines and the crown crest heights.
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This study designs a scoring approach to assess the levee stability and overtopping threats with
levee geometric parameters. The normalized assessment scores are higher than and superior to the
qualified rates used in previous studies. This is because the scoring approach compares the geometric
parameters to several standards and assigns multiple credits for those that do not meet the designed
standards. In contrast, they are given a zero credit in previous studies. Levee A and B have much
higher crown elevation and assessment scores than others. Their crown crest heights are above the
flood level (4.5 m) in a 200-year return period and can still be above the flood level in a 50-year
return period even if the sea level rises by 0.5 m. However, the continuous crown heights reveal
several levee morphological modifications in all levees surveyed, including the best levees A and B.
Those modifications are primarily caused by natural subsidence in levee B, the combined effect of
natural sink, industry operation and even special construction design in levee A and C, and artificial
cutoff for traffic crossover in levee A.

The geometry of levee D is not as regular as levee A or B. Their standards had been planned to the
same as levee A to protect the new Cuiheng high-tech district. The crown heights in the eastern outer
part were higher than the 4.5 m (designed standards), while most crown heights in the west inner part
were in a range of 4.0–4.5 m and a small part was lower than 4.0.

Levees E and C together protect the new Huoju business district (~20 km2). Their standards had
also been planned to the same as levee A. The crown elevation of the eastern half levee C is above
the extreme water levels (3.91 or 4.19 m) in a 50 or 100-year return period, while it is just around the
flood level (3.54 m) in a 20-year return period in the western part. The river front area in levee E has
been commercialized and there is no regular shape. The river front elevations in the western 2-km
section are around the flood level (4.19 m) in a 100-year return period, and they are above the designed
elevation of 4.5 m in the eastern 1.6-km section. The middle 3-km section is the cruises harbor and
container dock with front elevation slightly below the extreme water level (3.54 m) in a 20-year return
period. The maximum elevation along a 1-km transect line is generally above the flood level (3.54 m)
in a 20-year return period. It is urgent to add a backup levee behind the dock operation area to protect
the fast-developing Huoju business district.
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Abstract: Floods cause great losses in terms of human life and damages to settlements. Since the
exposure is a proxy of the risk, it is essential to track flood evolution. The increasing availability of
Synthetic Aperture Radar (SAR) imagery extends flood tracking capabilities because of its all-water
and day/night acquisition. In this paper, in order to contribute to a better evaluation of the potential
of Sentinel-1 SAR imagery to track floods, we analyzed a multi-pulse flood caused by a typhoon
in the Camarines Sur Province of Philippines between the end of 2018 and the beginning of 2019.
Multiple simple classification methods were used to track the spatial and temporal evolution of the
flooded area. Our analysis indicates that Valley Emphasis based manual threshold identification,
Otsu methodology, and K-Means Clustering have the potential to be used for tracking large and
long-lasting floods, providing similar results. Because of its simplicity, the K-Means Clustering
algorithm has the potential to be used in fully automated operational flood monitoring, also because
of its good performance in terms of computation time.

Keywords: sentinel-1; SAR; flood; image classification; clustering; monsoon; Philippines

1. Introduction

Floods are among the most frequent and widespread natural hazards in the world. Being related
to intense and/or extreme weather events, they cause great losses in terms of human life and damage
to commercial and productive sites, infrastructures, and agriculture [1,2]. Particularly, it has been
estimated that floods are responsible for approximately 40% of the total damage caused by natural
hazards [3,4]. Exposure to flooding is considered a proxy of the risk [5], so that an evaluation of the
extent of potentially inundated areas is crucial for hazard and risk assessment and represents the basis
for land planning and policy decisions oriented towards flood mitigation (i.e., occupation restrictions,
recommended uses, and flood insurance plan development). Flood hazard and risk evaluations can be
completed using the results of deterministic hydrodynamic models that simulate water movement
across the floodplain. In the presence of monitoring (fluvial stage or discharge) and topographic data,
statistical models associated with GIS processing can provide a basis for such kinds of analyses [6–8].
Both deterministic and statistical models need to be calibrated and validated using available flood data
in terms of spatial extent, persistence, and frequency.

Data derived from a number of satellite platforms can be used to image floods, providing a basis
for a rapid and effective response to natural disasters. Satellite observations have the advantage of
covering large areas with an increasingly short revisiting time, which makes them able to support
continuous observation and operation monitoring of floods [9,10]. Among different satellite data,
Synthetic Aperture Radar (SAR) products provide an opportunity to image floods because of their
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all-weather and day/night capability [11,12] and their sufficient resolution for urban and suburban
mapping [13,14]. SAR observation capabilities through clouds allow tracking flood events connected to
prolonged rainfall [15]. SAR data have been widely used to study this kind of event in different contexts
and have the potential to support surface water operational monitoring [16]. Giustarini et al. [17] and
Mason et al. [18] used SAR data for flood detection in an urban area. They provided a way to image
floods also in contexts where it is difficult to separate water by land. For instance, Martinis et al. [19]
used Sentinel-1 data to improve flood monitoring in arid areas, where the similarity between radar
backscattering of open water and sand surfaces led to an overestimation of the water extent. SAR
data allow floods to be imaged over very large areas. In this context, Xing et al. [20] monitored
monthly changes in surface water of Dongting Lake. Space-born L-Band SAR data were used by
Chapman et al. [21] to map regional inundation events on the continental scale. Water flood information
produced by SAR imagery can be also associated with additional remote sensing data (e.g., multispectral
and optical imagery) for detecting the flooding extent and evolution in what we could define as a
multi-data/methods approach. For instance, Refice et al. [22] used multi-sensor and multi-temporal
remote sensing approaches to characterize flooding that affected part of the Strymonas river basin, a
transboundary river with its source in Bulgaria, which flows then through Greece up to the Aegean Sea.
Hakdaoui et al. [23] used radar and optical data to extract geomorphological information after a flash
flood event in a Saharan arid region, and Shuman et al. [24] used SAR data and aerial photography to
track urban flood dynamics.

Many methodologies have been proposed in the literature for the identification of flooding from
SAR images. Texture recognition algorithms [25], histogram thresholds [26], and various multi-temporal
change detection methods [17] are examples of these methodologies. Bioresita et al. [27] constructed
an automatic chain process for surface water extraction. An unsupervised method, based on stochastic
subspace ensemble-learning, was proposed by the authors of [28]. Schlaffer et al. [29] used a harmonic
analysis and change detection to extract flooded areas, and an unsupervised approach, based on a
generalized Gaussian model, to automatically detect surface change was used by the authors of [30].
Many authors (e.g., [31–33]) proposed and used an automated method for the extraction of surface
water from SAR data based on supervised and unsupervised approaches. Additional authors like
Bayik et al. [34] used multiple classification methods to improve flood mapping from SAR images.
Since such methods have a variable degree of complexity (i.e., required parameters in relation to
algorithm complexity) and attitudes from an automatic operational monitoring perspective, a number
of comparisons have been proposed in order to underline the advantages and disadvantages of each
method (e.g., [35]).

On this basis, and in order to further contribute to a better evaluation of the potential of SAR
imagery in tracking large and long-lasting multi-pulse floods, we comparatively analyzed simple
classification methods that might be suitable for automatic flood monitoring. Notably, the aim of this
paper was to demonstrate the suitability of SAR products to image floods and quantify the magnitude
of variation in the flooding extent derived by the use of multiple classification methods for the same
event. In this perspective, we used Sentinel-1 imagery to track the evolution of a flood event that
occurred in the monsoon area of the Philippines. The event, caused by torrential rains, occurred
at the end of December 2018, persisted until the end of February 2019, and affected approximately
680,000 people. The area of Camarines Sur Province, in the eastern Philippines, suffered the most
substantial effects. This event represents a very important case in history because of its effects, the
extent of the involved area, and its duration, which makes it suitable for a SAR-based analysis and
comparison between multiple classification methods.

2. Study Area

This study area included the Camarines Sur Province and a small portion of the Albay Province
(Figure 1) located in the Bicol Region in Luzon of the Philippines. The Camarines Sur Province occupies
the central section of the Bicol Peninsula and is the largest province in the Bicol Region. The Bicol River
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is the main watercourse of the province and is surrounded by Mount Isarog (1966 m asl) and Mount
Iriga (1196 m asl). The eastern portion of the province lies on the mountainous peninsula of Caramoan,
which faces the island of Catanduanes to the east. The Bicol River drains the central and southern
parts of the province toward the San Miguel Bay. Mount Iriga is surrounded by three lakes named
Buhi, Bato, and Baao. The Albay Province is generally mountainous with scattered valleys. On the
eastern part of the province is a line of volcanic mountains starting with the northernmost Malinao in
Tiwi and followed by Mount Masaraga (1328 m asl) and the Mayon Volcano (2463 m asl).

 

Figure 1. Map showing the study area (dashed line divides Camarines Sur and Albay provinces). The
blue line indicates the major river, lakes are represented by blue polygons, towns are reported using
black dots, and major reliefs are depicted by black triangles. The inset map shows the climatic regions
of the study area.

The Philippines archipelago has a tropical and strongly monsoonal climate characterized by
relatively high temperature, oppressive humidity, and plenty of rainfall. Two main seasons alternate
for the majority of islands, a wet season dominated by monsoon rainfall and a dry season. Some
areas experience rainfall throughout the year, and clear season alternations are absent. Four climate
regions are recognizable across the Philippines archipelago characterized by different distributions of
rainfall [36,37]. The study area spans across three of these four climatic regions (Figure 1): region II is
characterized by the absence of a dry season with a very pronounced maximum rainfall during the
months of November and December, region III is characterized by a slightly drier seasons between
November and April and a wet season between May and October, and region IV is characterized by
rainfall distributed throughout the entire year. From June to December, tropical cyclones (typhoons)
often strike the Philippines. Most of these storms come from the southeast and are heaviest in Samar,
Leyte, south-central Luzon, and the Batan Islands, and, when accompanied by floods or high winds,
they may cause great loss of life and properties.

In December 2018, as reported by the Department of Science and Technology (PAGASA) of
the Republic of Philippines (http://bagong.pagasa.dost.gov.ph/tropical-cyclone), the study area was
flooded as a consequence of a typhoon induced by a tropical depression (named “Usman”). This
was the 21st and the last cyclone that intersected the Philippines in 2018. The “Usman” depression,
developed from tropical disturbances, resulted in widespread heavy rainfall over large portions of
Southern Luzon and Eastern Visayas. From 28 to 29 December 2018, prolonged and excessive rainfall
over these areas resulted in multiple landslides and floods. Of the 139 stations with reliable data,
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the highest 2-day rainfall was estimated at 573.2 mm and was recorded in Daet (Camarines Norte),
50 km away from the study area. In the week preceding the event, rainfall accumulations in excess of
100 mm were already observed by multiple rain gauges over the eastern section of Luzon and Visayas,
especially over Bicol Region mainland, Samar island, Aurora, Quezon, and Rizal. The event caused
hundreds of casualties and millions of dollars in damages to personal and public property. According
to the report of the Department of Social Welfare and Development (DSWD), more than 680,000 people
were affected by the storm. Nearly 55% were located primarily in the province of Camarines Sur in the
Bicol Region. Over 1900 homes were destroyed, and more than 15,000 were damaged. Agricultural
losses were estimated at PHP 2 billion (US $37 million), with over 56,000 farmers and fishers affected,
according to the United Nations Food and Agriculture Organization.

3. Data and Methods

3.1. Data

To quantify the extent of the flooded area, i.e., the area covered by open water, and track its
spatial and temporal evolution, we used multiple Sentinel-1 A/B SAR images. The satellite data were
downloaded from the Copernicus Open Data Access Hub (https://scihub.copernicus.eu/dhus/#/home).
Sentinel-1 data products consist of imagery with a medium resolution (10–20 m) that represents the
radar echo from the surface of the Earth of the signal emitted by the onboard antenna of the satellite.
The Sentinel-1 satellite constellation is formed by two satellites (S-1 A and S-1 B) characterized by an
acquisition frequency of six days. Each satellite is equipped with a 5.405 GHz C-band (λ ≈ 5.6 cm)
imager payload (CSAR). The CSAR instrument supports operation in dual-polarization (HH + HV
and VV + VH). The Sentinel-1 satellites can operate in three imaging modes for various observation
approaches, spatial resolutions, and swath widths [38]. In this study, we used a total of 24 images with
VV polarization. We chose this polarization because it characterized all of the selected data; only a
limited number of images were acquired in double polarization VV +HH. VV polarization, in some
cases, provides better results in detecting open water features [39,40]. The selected images had the
same angle of incidence (38.8◦) and footprint and were acquired in descending mode. The selected
images covered the time period between 13 November 2018, prior to the typhoon, and 18 March 2019,
after the typhoon. The first selected image was acquired 78 days before the main flooding event,
occurring between 28 and 29 December 2018. This long pre-event time span allowed us to observe the
normal fluctuations of the open water area before the flood.

3.2. Data Pre-Processing

Waterbody identification and extraction were completed considering the difference in the
backscattering coefficient (Gamma γ◦) between open water and the land surface. This difference is
related to the roughness of the target surface, which is regulated by the Rayleigh criterion. Since the
open water theoretically has no roughness, the incident radiation is reflected away from the sensor;
thus, the backscattering coefficient related to its flat surface is lower than the land surface [41–43].
In contrast, the land surface that has a variable roughness has a variable backscattering coefficient
typically higher than that characterizing open water. SAR imagery, downloaded by Sentinel Data
Hub, were pre-processed using the Sentinel Application Platform (SNAP) toolkit distributed by ESA
(https://step.esa.int/main/toolboxes/snap/). The products were first cropped across the area of interest to
allow for shorter processing times. Subsequently, radiometric calibration was applied, and terrain was
corrected to the Gamma band (i.e., backscatter coefficient γ◦) [44]. To complete this last step, the STRM
1 arc-second digital elevation model (DEM) was used. Finally, in order to obtain high-quality SAR
images and reduce the noise, we applied the Lee-Sigma filter [45,46] characterized by a combination of
5 × 5 and 7 × 7 windows.

As the last step of image pre-processing, calibrated and filtered SAR images were cropped
over the land of the study area. This was done in order to remove (from images and relative
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histograms) the changing backscattering effects induced at the ocean surface by the difference in wind
conditions that generating waves mimicked the surface roughness, which produced a double-bounce
effect [47]. After pre-processing, the rearranged backscatter intensities were converted into dB (decibels).
Figures 2 and 3 show a selection of 12 SAR images, out of 24 used, in which it is possible to visually
identify the different flood traces of the events.

 

Figure 2. Examples of pre-processed Synthetic Aperture Radar (SAR) images of the study area in the
period between 13 October 2018, and 11 January 2019. The dark areas represent open water features
and shadow zones.
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Figure 3. Examples of pre-processed SAR images of the study area in the period between 17 January
2019, and 22 February 2019. The dark areas represent open water features and shadow zones.

3.3. Extraction of the Water Body Area

Figure 4 summarizes the workflow used to process images and quantify the total water area in
the reference time period. In order to identify the open water features to determine the total area
covered by water and its spatial and temporal evolution due to monsoon flood events, three different
classification methods were applied that might have the potential to be used in operational monitoring.
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Our multi-method approach allowed us to compare specific results and quantify relative differences
(e.g., [48,49]) in order to identify the best method to be used from an operational monitoring perspective.
Particularly, we used two methods based on threshold identification and a third based on unsupervised
K-Means Cluster analysis. Threshold-based methods are widely used because of their efficiency in
identifying flooded areas in SAR images [50–53]. These methods consisted of defining a fixed value
for the backscattering coefficient (i.e., intensity) that split the histogram in two subsets (clusters), one
subset representing the land surface and the other representing the open water. Pixels with a low
grayscale intensity typically corresponded to water bodies, while pixels with high values corresponded
to the land (in our case, background). There are several techniques (supervised and unsupervised)
to find the optimal threshold value [54–57]. Among these, for our comparative analysis, we selected
visual identification of the threshold guided by the Valley Emphasis criterion, the Otsu method, and
the unsupervised classification method based on K-Means Clustering.

 

Figure 4. Processing workflow of SAR imagery for estimating the total surface covered by water across
the study area in the reference period.

The first method consisted of visually inspecting a grayscale histogram of each SAR image and
applying the Valley Emphasis criterion [58–60]. For the application of this criterion, we first analyzed
the grayscale histogram in SNAP and, subsequently, chose the minimum backscatter intensity value
that corresponded to the valley between the two peaks, in the case of bimodal distribution, or to the
bottom rim of a single peak for a unimodal distribution. Once identified, we converted this intensity
value from dB to a “grayscale” value between 0 to 255 (8-bit images). The identified threshold value was
then used as a basis for manual image classification. Image classification was consistently completed
in the GIS environment (QGIS 3.7), assigning 0 to pixels with values higher than the threshold (i.e.,
land) and 1 to pixels with values lower than the threshold (i.e., water). After classifying the images,
and considering that low backscattering intensity values can be also related to the presence of shadow
zones (i.e., not only to the presence of water), especially in presence of complex topography, we used a
further classification method based on topographic attributes to identify and exclude these areas from
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our analysis. Notably, we generated a slope map using the available STRM 1 arc-second DEM and used
a slope threshold of 3◦ to exclude the low backscattering areas with slopes higher than the threshold.

The second method used to find the correct threshold value was the Otsu method. This method is
widely used in applications where it is necessary to split grayscale images into two different classes.
This method automatically chooses the threshold value from the grayscale histogram on the basis of
the minimum within-class variance or the maximum between-class variance [61]. The Otsu method is
commonly used because of its simplicity, and the best results are obtained if the image histogram is
characterized by a bimodal or multimodal distribution. In the presence of a unimodal distribution,
this method fails. The Otsu method for finding an optimal threshold value for image classification was
applied in the Matlab™ environment. The Otsu threshold was then used to classify the images with
the same procedure used as the previous method.

The last method was the K-Means Cluster analysis. This clustering method is a statistical technique
widely used for dimensional reduction and has the potential to be used for unsupervised analysis
of SAR images [62,63]. In our case, K-Means Clustering was used for dividing the image in two
classes (i.e., water and land clusters). This method groups pixels on the basis of their grayscale level
distribution and standard deviation. The purpose of this algorithm is to reduce variability within
clusters, and the objective function is the sum of square distances between cluster centers and its
assigned pixel value [64]. This clustering method, implemented in the SNAP toolbox, was applied
considering two clusters, 30 interactions, and 32,000 random seeds. After cluster identification, the
topographic filter and subsequent manual classification of the images were completed. Finally, we
estimated the total water area in each image.

Once the spatial extent of open water features across the study area was evaluated, to further
analyze the spatial and temporal distribution of flood intensity and persistence, and its change between
the different methods, we estimated the submergence ratio across the whole of the study area and
the reference period, and we compared this ratio in terms of arithmetic differences between products
derived by our data (i.e., water area extent) obtained by different methods. A submergence ratio
equal to 1 indicated the constant presence of water in the reference area, while a value of 0 indicated
the constant absence of water in the reference area and across the reference period. A pixel value
between 1 and 0 indicated that the reference area was only temporally submerged. This condition
is consistent with the occurrence of the flood event, and the difference in the submergence ratio is
representative of flood persistence and might be related to the water level. The submergence ratio
map was constructed on the basis of the extent of open water features derived using the K-Means
Clustering classification method. To determine the variation in the submergence ratio derived by the
use of open water coverage derived by the three classification methods, we calculated the submerged
ratio difference by iterative subtraction.

4. Results and Discussion

Figures 5 and 6 show several examples of results in terms of open water identification from the
different methods used to select the optimal threshold value of backscattering intensity. The first
example reported in Figure 5a,c,e represents the water coverage at the beginning of the monitoring
period before the occurrence of the rainfall events responsible for the flooding. The second example
reported in Figure 5b,d,f represents the water coverage immediately after the first flood pulse induced
by rainfall. Figure 6a,c,e represent the water coverage immediately after the second flood pulse
induced by rainfall. The second example reported in Figure 6b,d,f represents the water coverage
immediately after the third flood pulse induced by rainfall. For comparison purposes, in each map of
Figures 5 and 6, polygons representing water bodies as depicted in the SWBD dataset (red polygon,
e.g., [65]) were overlaid with areas classified as water bodies (blue area). The SWBD is the worldwide
open water bodies boundary in vector format, which were generated by the National Geospatial
Intelligence Agency [66] and represent the maximum extent of open water features. A comparison of
the results in terms of water coverage indicated the consistency of all of the methods across most of the
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study area, with local relative underestimation of the Valley Emphasis method. An example is in the
northeastern sector of the study area. No differences between the Otsu and K-Means Clustering were
appreciable at the scale of Figures 5 and 6.

 

Figure 5. Examples of results in terms of open water extent obtained by multiple methods. Blue areas
represent the extracted open water features, and red polygons represent SWBD water body boundaries.
(a,c,e) represent the extent of open water features before the rainfall events responsible for the flooding.
(b,d,f) represent the extent of open water features after the first flood pulse (main).
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Figure 6. Examples of results in terms of open water extent obtained by multiple methods. Blue areas
represent the extracted open water features, and red polygons represent SWBD water body boundaries.
(a,c,e) represent the extent of open water features after the second rainfall event responsible for the
flooding. (b,d,f) represent the extent of open water features after the third flood pulse.

Figure 7 shows the evolution of the open water features during the period of interest, including
the rainfall events responsible for multiple flood pulses, in terms of total extent for each considered
method. Particularly, the red, blue, and green lines represent the total flooded area extracted by Valley
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Emphasis, Otsu, and K-Means Clustering methods, respectively. All three methods showed the same
pattern of water coverage over time with some variable differences in terms of total estimation. Before
the first flood pulse, from 13 October to 24 December the graph indicated a slow increase of water
coverage, from a minimum coverage area of about 52 km2 (grey dashed line in the graph). After this
first period, three individual flood pulses with decreasing intensities were identified in terms of total
water area increase by our multi-method analysis. According to the PAGASA report, the first main
flood pulse occurred between 30 December 2018 and 1 January 2019. A second and a third minor flood
pulse followed the first occurring between 17 January 2019, and 16 February 2019. After these water
surface increases, the progressive recession of open water features induced a consistent decrease of the
estimated total extent of the water surface that, between 22 February 2019, and 6 March 2019, matched
the extent of water features before the flood.

 
Figure 7. Graph showing the evolution of open water feature surface coverage estimated with the
Valley Emphasis, Otsu, and K-Means Clustering methods (i.e., red, blue and green lines, respectively)
in the study area over the monitoring period. The purple line shows the percentage difference of water
area between the Valley Emphasis and Otsu methods, which show the lowest and the highest estimation
value. The gray line represents the minimum value of the water area estimated by our analysis before
the occurrence of the flood, and the black line represents the water area derived by the SWBD dataset.

Even if the three methods showed consistent trends in time, a number of differences in the total
estimated water area with the different methods are depicted in the graph of Figure 7. The purple line
of the graph provides an overview of this change in terms of the maximum percentage change. Indeed,
the average difference of approximately 20% was observable. Because of the different estimations of
the open water area at the beginning of the period of interest and the absence of an official estimation,
our analysis was able to provide only the relative change of the open water area coverage estimated
for each different flood pulse occurring in the reference period. Notably, our analysis indicated that
the first (main) flood pulse produced an increase in total water area between 245 and 326 km2, the
second pulse was responsible for an increase between 135 and 186 km2, and the third event induced an
increase between 45 and 88 km2. As described above and observable from the graph of Figure 7, the
minimum value of open water area coverage was consistently derived by the Valley Emphasis method,
while the maximum value was consistently derived by the Otsu method. The K-Means Clustering
method showed water coverage values between the minimum (i.e., Valley Emphasis method) and
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the maximum (i.e., Otsu method). The flood-induced increases in the open water area estimated with
K-Means Clustering were equal to 300, 156, and 68 km2 for the first, second, and third flood pulses,
respectively. The shift from the other two methods ranged, in relative terms and considering the entire
reference period, between 4% and 31%.

The Otsu method consistently showed higher open water surface values across the reference
period. The tendency to overestimate water coverage by the Otsu classification method in comparison
with the Valley Emphasis method was observed also by Ba Duy [59], who confirmed that this method
outperformed the Otsu method in terms of absolute identification capabilities. In addition, the author
of the study underlines the limitation of the Valley Emphasis method for extracting water by SAR
images, including inefficient identification of mixed water pixels, confusion of water bodies with
background noise, and difficulty in choosing an optimal threshold value for very large areas. Bin
Cui et al. [28] indicated that conversely from threshold-based methods like the Otsu and Valley
Emphasis, the unsupervised methods, like the K-Means Clustering, have great potential in the context
of image classification.

The good performance of the unsupervised method in comparison with threshold-based methods
can be related to its ability in capturing the spatial variability of the backscattering coefficient that
represents a basis for a self-adaptation to different environmental conditions captured by SAR
images. Our application confirmed that despite the lack of supervision and parameter estimation (e.g.,
threshold), the K-Means Clustering performed at least as good as the other methods, and possibly
better than the Otsu. In this way, our interpretation is that the unsupervised methods, like the K-Means
Clustering, have the potential to support SAR imagery-based flood mapping, also in long-term
operational frameworks. This is also related to better results in terms of computational time [28]. It is
interesting to mention that additional methods for water body classification, like Bimodal Histogram
and Local Adaptive Thresholding [67], have been introduced and have the potential to support this
kind of analysis. However, their applicability and reliability need to be further analyzed.

Figure 8a shows the persistence of the water in the reference period across the whole study area.
In the submergence map of Figure 8a, permanent water bodies like the major lakes and the river are
easily recognizable, as they are marked by a color corresponding to a value of the submergence ratio
equal to 1. The Baao and Bato lakes expanded due to the flood events until they reached the boundary
indicated in the SWBD dataset for a limited period of time (i.e., 20% of the reference time period). Most
of the area hit by the flood stayed submerged between 5% and 25% of the time, with a number of spots
in which the water persisted for approximately 40% of the reference time period. These spots were
in the areas surrounding major lakes and next to the northern coastline of the study area. We expect
that the temporal persistence of the flood was directly related to the water level and the presence of a
draining channel.

Figure 8b–d, report the difference in the submergence ratios calculated with products derived by
image classification and the selected methods. Notably, the most important differences were between
submergence ratios calculated with the products derived by K-Means Clustering and Valley Emphasis
based threshold definitions and between Otsu and Valley Emphasis based threshold definitions. This
is consistent with the results of our analysis summarized in Figure 7.
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Figure 8. The map of (a) shows the submergence ratio (i.e., the flood persistence) in the reference
period. A pixel value equal to 1 corresponds to an always flooded area. A value of 0 corresponds to a
never flooded area. The maps of (b–d) are the differences in submergence ratios calculated using open
water features extracted by different methods.

5. Conclusions

Our analysis indicates that Sentinel-1 data have the potential to be used in flood tracking and for
monsoon events characterized by long-term rainfall associated with persistent cloud coverage, which
excludes the possibility of using the other types of satellite products, like optical imagery. In this study,
the multi-pulse flood caused by the Usman tropical depression in the Camarines Sur Province of the
Philippines was analyzed with the aim to provide quantitative flooding data and test multiple methods
from a relative perspective connected to the absence of accessible official data. All of the pulses
characterizing the flood event occurred between 24 December 2018, and 23 January 2019, remembered
for its dramatic effects over the Camarines Sur Province, and they were detected and characterized in
terms of the open total flooded area. Since the discrimination between water features and the land
surface might be a very challenging task in terms of both accuracy and computation time, in our study,
the open water features extraction was completed with three different methods: the Valley Emphasis
based manual threshold identification, the Otsu method, and the K-Means Clustering method. All of
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the methods identified a shape consistent with the flooded area, with slight differences in dimensions
(i.e., total area) observed over the monitoring period. These differences seem to be not correlated to
the size of the total area covered by open water. Although an official estimation of the flooded area
is not available, these methods provide a total flooded area that approximately averaged the results
obtained with the Valley Emphasis based manual threshold identification and the Otsu method. The
K-Means Clustering method is advantageous because (i) it is unsupervised, (ii) it is fully automatic,
and (iii) it returned better results in terms of the computation time. A fast-computational time is a
great advantage when it is necessary to have a quick overview of a flood situation. On this basis, this
method might have the potential to be used in an operational flood monitoring perspective. In this
framework, SAR images are an important means to study flood phenomena because of their day and
night operational capabilities and their increasing frequency of acquisition related to the number of
satellite constellations. In addition, these capabilities are enhanced by the free availability of data, like
those derived by Sentinel-1 satellites.
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Abstract: Remotely sensed flood extents obtained in near real-time can be used for emergency flood
incident management and as observations for assimilation into flood forecasting models. High-
resolution synthetic aperture radar (SAR) sensors have the potential to detect flood extents in urban
areas through clouds during both day- and night-time. This paper considers a method for detecting
flooding in urban areas by merging near real-time SAR flood extents with model-derived flood
hazard maps. This allows a two-way symbiosis, whereby currently available SAR urban flood extent
improves future model flood predictions, while flood hazard maps obtained after the SAR overpasses
improve the SAR estimate of urban flood extents. The method estimates urban flooding using SAR
backscatter only in rural areas adjacent to urban ones. It was compared to an existing method using
SAR returns in both rural and urban areas. The method using SAR solely in rural areas gave an
average flood detection accuracy of 94% and a false positive rate of 9% in the urban areas and was
more accurate than the existing method.

Keywords: image processing; hydrology; synthetic aperture radar

1. Introduction

Flooding causes significant death, injury, displacement, homelessness and economic
loss all over the world every year. The risks to people and the economic impacts of flooding
are greatest for urban flooding [1–4]. For example, regarding riverine floods in the UK, over
2 million properties (the majority of them in urban areas) are located in floodplains. An
estimated 200,000 of these properties are at risk because they do not have protection against
a 1-in-75-year flood event [5]. The number of floods and the number of properties affected
by them are likely to increase in the future, due to the growing population exposure in
floodplains and the impact of climate change [6]. In economically strong and populated
areas, global economic losses due to floods are projected to reach $597 billion over the
period 2016–2035 [7].

High-resolution SAR sensors are now commonly used for flood detection because
of their ability (unlike visible-band sensors) to penetrate the clouds that are often present
during flooding and to image at night as well as during the day. A number of very-
high-resolution (VHR) SARs with spatial resolutions as high as 3 m or better are capable
of detecting urban flooding, including TerraSAR-X, ALOS-2/PALSAR-2, the 3-satellite
RADARSAT-2 constellation, the four satellites of the COSMO-SkyMed constellation, and
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the three satellites of the IceEye constellation [8,9]. In the absence of significant surface
water turbulence caused by wind, rain or currents, floodwater generally appears dark in
a SAR image due to specular reflection from the water surface away from the antenna.
In addition, an attractive option for flood studies is the high-resolution (HR) Sentinel-1
constellation, which provides open-access satellite data at 10 m spatial resolution in near
real-time, acquired according to a preplanned schedule. In common with RADARSAT-2,
Sentinel-1 provides the user with processed multilook georegistered SAR images about
one hour after image reception at the ground station.

An important use of the flood extent from a near real-time SAR image is as a tool for
operational flood incident management [10]. Rapid response to flooding is essential to
minimise loss of life and reduce suffering. Knowledge of the flooding situation is crucial
for personnel deployment, resource allocation and rescue operations. The English Envi-
ronment Agency (EA) now uses SAR images to detect the extent and depth of flooding as
floods evolve [11]. The data may also be used for assimilation into urban flood inundation
models, improving the model state and providing estimates of the model parameters and
external forcing [12–19].

The problem of automated flood detection in rural areas has received a substantial
amount of attention in the literature [20–36]. The Copernicus Emergency Management
Service (EMS) and the EA are among several organisations that have developed semi-
automatic systems to extract flood extents from a SAR image. Fully automated systems
have also recently been developed using deep learning methods [35,36]. All these systems
tend to work well in rural areas but have difficulty detecting urban flooding, primarily
because SAR is a side-looking instrument. As a result, substantial areas of urban ground
may not be visible to the SAR due to radar layover and shadow caused by buildings [37].
As shadows will appear dark, they may be misclassified as water if the ground in shadow
is dry, whereas layover will generally appear bright and may possibly be misclassified as
unflooded when, in reality, the ground is flooded. In addition, double scattering between
ground surfaces and adjacent buildings often causes strong returns that confuse the im-
age [37]. A further difficulty is that unflooded roads and tarmac areas also exhibit low
backscatter, though often not as low as undisturbed water [25]. The dielectric constant
of tarmac is considerably lower than that of water, and undisturbed water is smoother
than tarmac, implying an increase of surface reflectivity and a consequent reduction in
backscatter [38].

As a result of these difficulties, less attention has been given to research into urban
flood detection using SAR. Despite this, several studies have now been performed that
have employed a number of different techniques. These include analysing the backscatter
returns in a post-flood SAR image [39–43], considering changes in backscatter intensities
between pre- and post-flood SAR images [29], exploiting interferometric coherence, as well
as backscatter intensities, using pre- and post-flood SAR images [8,38,44,45], and analysing
SAR image time series [46].

An approach to urban flood detection that requires only pre- and post-flood Sentinel-1
imagery, allowing any flooding to be rapidly detected, is described in [44]. Strong double
scattering in the pre-flood image from buildings roughly aligned with the satellite direction
of travel is first used to detect urban areas [34,41,47]. Coherence changes between pre- and
post-flood images are then used to refine the urban flooding determined using SAR intensity.
Coherence should be high in urban areas that are not flooded, but low if there is flooding.
The method achieved good results using imagery of flooding in Houston, Texas due to
Hurricane Harvey in 2017. Li et al. (2019a) also employed pre- and post-flood Sentinel-1
data from the same flood to demonstrate that coherence provides valuable additional
information to intensity in urban flood mapping, using an unsupervised Bayesian network
fusion of intensity and coherence data [8]. In a similar manner, Li et al. (2019b) performed
urban flood mapping with an active self-learning neural network based on TerraSAR-X
intensity and coherence, again using the Houston flooding as a case study [45]. Good
detection accuracy was obtained in areas containing fairly low-density detached suburban
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housing. These papers demonstrate significant progress towards urban flood detection
using SAR data alone. Nevertheless, the flood detection accuracies obtainable in dense
urban areas using HR SAR data were not fully explored. Many existing towns have
much higher housing densities than the Houston suburbs (new estates in England are
~×8 denser). Mason et al. (2021) [48] describe a change detection method of detecting
flooding in dense urban areas using Sentinel-1 and the WorldDEM Digital Surface Model
(DSM) [49]. Flood levels in urban areas are estimated at double scatterers using increased
SAR backscatter in the post-flood image due to double scattering between water and
adjacent buildings compared to the unflooded case, wherein the double scattering is
between ground and buildings. Areas of urban flooding are detected by comparing an
interpolated flood level surface to the DSM.

Considering flood detection in urban areas of both high and low housing density
using VHR SAR, Mason et al. (2018) used LiDAR data of the urban areas in conjunction
with a SAR simulator to predict areas of layover and shadow in the image caused by
buildings and taller vegetation [42]. Flooding was detected in urban areas not in shadow
or layover by analysing the backscattered intensities from a single-polarisation VHR SAR
image acquired during the flooding. Flooding detected in these areas was propagated
into adjacent areas of shadow and layover, provided they were of similar elevation to the
flooded areas, irrespective of their backscatter. Considering the percentage of the urban
flood extent visible in the validation data that was detected by the SAR, the flood detection
accuracy averaged over the three test examples studied was 79%, with a false alarm rate of
10%. The results indicated that flooding could be detected in urban areas with reasonable
accuracy but also that this accuracy was limited by the VHR SAR’s poor visibility of the
urban ground due to shadow and layover and the backscatter similarity between urban
floodwater and unflooded urban surfaces.

This paper considers the merits of an alternative method of improving the accuracy
of rapid post-event flood mapping in urban areas by merging precomputed flood return
period (FRP) maps with VHR SAR-derived flood inundation maps [43] and compares the
method with that of [42]. Tanguy et al. (2017) mapped river flooding in urban areas using
RADARSAT-2 backscatter intensities together with FRP data produced by a hydrodynamic
model [43]. The flood level was estimated in rural areas using a post-flood SAR image,
and this rural flood level was used with the FRP data to calculate where the flooding
should be in the adjacent urban areas. A high accuracy of urban flood detection (87%) was
achieved on the test cases studied, with a false alarm rate of 14%. Because the SAR data are
used only in rural areas, the method has the advantages that there is no need to calculate
shadow/layover maps in the urban areas, and that false alarms from unflooded urban
surfaces with responses similar to water are eliminated. The advantage of the FRP maps is
that, if there are urban areas that are either higher than the flooding or lower than it but
defended (e.g., by embankments), this information should be contained in the maps, which
would associate high return periods with such areas. A disadvantage is that it is necessary
that the FRP data be accurate. The model predicts only flooding that is fluvial in origin, and
it must be assumed that the rainfall pattern across the catchment that caused a particular
flood is the same as that used to calculate the FRP maps. However, if a flood event was
due to pluvial as well as fluvial flooding, the rural SAR water level observations should be
able to correct errors in model water elevations in their immediate neighborhoods at least.

The paper extends that of [43] by estimating urban flooding in image sequences.
The inputs are dynamic flood inundation extent and depth maps (updated every 3 h)
produced by the Flood Foresight system [50], together with a contemporaneous SAR image
sequence. Real-time flood modelling may often be carried out during a flood event, and
the combination of the SAR and model flood extents may allow the model to be kept on
track to make future predictions more accurately. The linking of the SAR and model data
in this way allows a two-way symbiosis, whereby currently available SAR urban flood
extent improves future model flood predictions, while flood hazard maps obtained after
the SAR overpass improve the SAR estimate of the urban flood extent.
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The present study and those of [42,43] require both VHR SAR and accurate high-
resolution DSM data to be available. The method employs a LiDAR DSM, which limits
its use to urban regions that have been mapped using airborne LiDAR. However, most
major urban areas in flood plains in the UK and other developed countries have now been
mapped. The hydrodynamic model used to estimate the FRP data also requires an accurate
DSM, though this need not be as high-resolution as LiDAR.

The object of the paper is to investigate whether, given contemporaneous SAR, model
FRP and flood inundation data, urban flooding can best be predicted using

(a) SAR in rural areas,
(b) SAR in rural areas and precomputed FRP maps in urban areas,
(c) SAR in rural areas and FRP maps and dynamic model flood inundation in urban areas,
(d) SAR in both rural and urban areas (with associated urban shadow/layover maps).

2. Materials and Methods

2.1. Flood Foresight System

The SAR flood footprints are compared to dynamic, event-specific flood inundation
maps generated by JBA’s Flood Foresight system [50]. Flood Foresight is an operational
system developed to rapidly provide broad-scale estimates of flood hazard and impacts
before, during, and after major riverine flood events (Figure 1).

Figure 1. Simulation Library approach.

2.1.1. Flood Return-Period Maps

In the U.K., the JFlow flood inundation model [51] is used to produce a basic set of 5 m
resolution flood hazard maps. These cover 1 in 20-, 75-, 100-, 200-, and 1000-year return peri-
ods (annual exceedance probabilities (AEPs) = 5%, 1.3%, 1%, 0.5%, and 0.1%, respectively).

62



Water 2021, 13, 1577

2.1.2. Flood Foresight Model

The Flood Foresight system provides spatial data representing flood inundation spatial
extents and depths with which users can measure their current or predicted impact from
an event, an omission and major limitation of many current flood forecasting models [52].
Flood Foresight includes modules that provide both forecast (flood forecasting module) and
real-time (flood monitoring module) flood inundation extents and depth data, driven by a
range of forecast or telemetered streamflow data. The flood forecasting module provides
daily forecasts of flooding up to 10 days in advance by linking forecast river flow data
from European-scale and global hydrological models to an enhanced ‘simulation library’
of precomputed FRP maps (Section 2.1.1). The flood monitoring module (the component
that generated the data used in this study) provides similar output of flood inundation
data but in near real-time — every 3 h as an event unfolds — by combining the enhanced
FRP map library with observed river gauge telemetry for England, Scotland and Wales
from the Environment Agency (EA), Scottish Environment Protection Agency (SEPA) and
Natural Resources Wales (NRW), respectively.

A simulation library containing precomputed FRP maps is employed for flood map-
ping activity (Figure 1). The simulation library approach used within Flood Foresight
provides a solution to the problem of generating national-scale flood footprints from hy-
draulic models in near real-time or within a reasonable timescale in order for the data to be
of use to flood forecasters and decision-makers. The simulation library method was one
of two methods identified by the EA to provide national-scale flood inundation mapping
capability [52]. Using these methods, Flood Foresight is able to generate a national-scale
estimate of flood inundation across Great Britain (GB) in less than 10 min, thus giving the
performance required for a national-scale strategic flood warning system.

The Flood Foresight system uses a set of downscaled (30 m) FRP maps, based on
those data described in Section 2.1, as the basis for its simulation library. For each pair
of contiguous maps, an interpolation technique is applied to derive 5 intermediate maps
equally spaced in the return period. The interpolation approach used computes five inter-
mediate depth grids using a depth-slicing algorithm to achieve approximate interpolation:
the volume of water on the floodplain is first computed for each modelled RP, building a
volume versus RP (VRP) curve for every 1 km2 cell of floodplain. The algorithm then slices
the vertical depth differences between consecutive modelled RP depth grids into depth
intervals, generating intermediate depth grids.

To generate contiguous flood maps for each timestep, Flood Foresight calculates the
current RP from a flow prediction (flood forecasting module) or gauge (flood monitoring
module) and uses the VRP curve to estimate what volume would be expected. The
interpolated depth grid with the closest volume to this is then selected for associated
floodplain cells. Of course, the optimal method for developing intermediate FRP maps
would be to run additional scenarios in the JFlow hydrological model. However, running
this would be expensive at a national or global scale.

Thus, the simulation library used within Flood Foresight contains 30 return periods.
A similar interpolation procedure was used in [43], where it was adopted because only 3–5
FRP maps are usually made publicly available, though it was admitted that using only a
limited set of maps could lead to less reliable RP estimates. In Figure 1, the river gauge
telemetry from the flood monitoring module of Flood Foresight is linked to the simulation
library lookup tables, from which the flood return map with the closest match for the
observed streamflow is selected.

2.2. Study Events and Data Sets

Four different SAR images of two different flood events were studied. The locations of
the three study sites in southern Britain (Wraysbury, Staines, and Tewkesbury) are shown in
Figure 2 [42]. The sites were chosen because they were subject to recent urban flood events
for which VHR SAR, LiDAR, and independent validation data were available. Wraysbury
is a village on the Thames, west of London; Staines is a town on the Thames nearer London
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with a higher housing density, and Tewkesbury is a market town on the Severn and Avon
in the west of England.

Figure 2. Locations of the 3 study sites in southern England, at Wraysbury (51.5◦ N, 0.6◦ W), Staines
(51.4◦ N, 0.5◦ W) and Tewkesbury (52◦ N, 2.2◦ W) (main rivers in blue).

As stated in Mason et al. (2018) [42], “The first two examples are based on the Thames
flood of February 2014 in West London, which caused substantial urban flooding [53]. In
January and February 2014, heavy and persistent rainfall left large parts of southern Eng-
land under water. The flooding resulted from a long series of Atlantic depressions caused
by the jet stream being further south than usual. The peak of the flooding in West London
occurred around 11 February 2014, with peak flow being 404 m3/s. A substantial amount
of urban flooding occurred in a number of towns, in particular Wraysbury and Staines.
Three COSMO-SkyMed (CSK) (X-band) 2.5 m resolution Stripmap images of the flooding
were acquired covering the flooded areas. Their processing level was GTC (Level 1D). A
limited number of aerial photos acquired by the press were available to validate the SAR
flood extents. These tended to cover small areas with substantial flooding. An example
aerial photo showing flooding in Wraysbury is shown in Figure 3a, together with the SAR
subimage for 12 February 2014 covering the area (Figure 3b). No high resolution visible
band satellite (e.g., WorldView-2) data with low cloud cover were available for validation.
The data acquired for the Thames flood were –

(a) a sequence of 3 CSK images showing flooding in the Wraysbury area on 12, 13 and 14
February 2014 just after the flood peak.

(b) a sequence of 2 CSK images on 13 and 14 February 2014 also showing flooding
in Staines, where on 13 February the flow was still only 5% less than the peak. A
contemporaneous aerial photo for validation was acquired showing flooding in
Blackett Close, Staines.
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Figure 3. (a) Aerial photo of flooding in Wraysbury, West London (51.5◦ N, 0.6◦ W; about 300 × 300 m) (© Getty Images
2014) (after [38]), (b) CSK subimage (3 × 3 km) of Thames flood in Wraysbury, West London on 12 February 2014 (pixel
intensities are digital number (DN) backscatter values; dark areas are water; red outline shows the area covered by aerial
photo), and (c) flood return-period map (black areas masked out).

The third example was based upon the >1-in-100-year flood (AEP < 1.0%) that took
place on the lower Severn around Tewkesbury in July 2007 [54]. This resulted in substantial
flooding of urban and rural areas, about 1500 homes in Tewkesbury being flooded. Tewkes-
bury lies at the confluence of the Severn, flowing in from the northwest, and the Avon,
flowing in from the northeast. The peak of the flood occurred on 22 July, and the river did
not return to bankfull until 31 July. On 25 July, TerraSAR-X (TSX) (X-band) acquired a 3 m
resolution StripMap image of the region in which urban flooding was visible. The image
was multi-look ground range spatially enhanced [39]. Aerial photos of the flooding were
acquired on 24 and 27 July, and these were used to validate the flood extent extracted from
the TerraSAR-X image [39].” The Tewkesbury event is included as a test of how well the
FRP method performs at river confluences. Traditional flood risk management methods
have typically sidestepped the issue of tributary dependence by focusing on modelling
the T-year flow using a single water course. However, at river confluences, it is difficult to
define a single event that will be exceeded once every T years, due to the multiple possible
combinations of flow magnitude and timing on the tributaries [55].

Table 1 gives the parameters of the SAR images considered in the study. All images
were HH (horizontal transmit, horizontal receive) polarization, which, for flood detection,
is preferable to vertical or cross polarization because it gives the highest contrast between
open water and unflooded regions [56]. For each area, the EA LiDAR DSM and ‘bare-earth’
digital terrain model (DTM) of the area were obtained at 2 m resolution.
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Table 1. Parameters of SAR images.

Date and Time River Location SAR
Resolution

(m)
Pass

Angle of
Inclination

(◦)

Angle of
Incidence (◦)

12 February 2014
19:05 Thames Wraysbury COSMO-

SkyMed 2.5 Descending 97.9 43.4

13 February 2014
18:11 Thames Wraysbury

Staines
COSMO-
SkyMed 2.5 Descending 97.9 31.6

14 February 2014
18:05 Thames Wraysbury

Staines
COSMO-
SkyMed 2.5 Descending 97.9 35.9

25 July 2007
06:34

Severn/
Avon Tewkesbury TerraSAR-X 3.0 Descending 97.4 24

2.3. Method

Steps in the processing chain for urban flood delineation are shown in Figure 4. These
include preprocessing operations carried out prior to SAR image acquisition and Flood
Foresight model output, and near real-time operations carried out after the georegistered
SAR image and model output have been obtained. As stated in Mason et al. (2018) [42],
“for the SAR data, the approach involves first detecting the flood extent in rural areas, and
then detecting it in adjacent urban areas using a secondary algorithm guided by the rural
flood extent. A rural area is considered to be one not significantly affected by shadow and
layover. Note that this means that the method will not work in a situation where a flood is
totally contained within an urban area. But even in a city, rural areas (e.g., parks) can often
be found not far away from urban ones.”

 
Figure 4. Steps in the processing chain for urban flood delineation (numbers in brackets refer to relevant section numbers;
case numbers in italics; brackets refer to cases considered in the Results Section).
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2.3.1. Preprocessing Operations
SAR

(a) Delineation of Urban Areas

Currently, the main urban areas are delineated manually, as this is a preprocessing
operation that is not time-critical. Alternatively, the World Settlement Footprint 2015 10 m
resolution dataset could be used to identify urban areas [57]. This is an open access dataset
available on the European Space Agency Urban Thematic Exploitation Platform.

(b) Identification of Training Areas for Water and High Land

Training areas for the water and high-land classes are used to determine a SAR
backscatter threshold to discriminate between flooded and unflooded areas. Unassigned
heights in the LiDAR data, where the water has acted as a specular reflector reflecting
too large a signal directly back to the LiDAR sensor, are used as the water training area.
Unassigned heights may be present in unflooded river channels or permanent water bodies.
The high land, which is not likely to be flooded, is taken as the highest 10% of pixels in the
area. These pixels must not contain unassigned heights so that they are not water. Figure 9
of [42] shows an example of the training areas for the Wraysbury test site.

Flood Return-Period Maps

(a) Estimation of return period at Each Point in the Floodplain

A map rp(x,y) giving the flood return period at each point (x,y) in the floodplain is
generated using the flood inundation extents contained in the set of 30 binary FRP maps.
The computation loops over the 30 maps in order of increasing return period. For a given
FRP map, if a pixel (x,y) is non-zero and rp(x,y) has yet not been set, rp(x.y) is set to the
return period of the current map. An example return-period map is shown in Figure 3c for
the Wraysbury area.

(b) Estimation of Effective Heights in Urban Area

An effective height map eff_h(x,y) is determined in the urban area, given rp(x,y) and
the set of 30 binary FRP maps. In cases wherein the urban area is undefended, the effective
height map is simply the DSM. In cases wherein some portion of the urban area is defended,
this will be encapsulated in the FRP maps as high return periods at the defended pixels,
which will result in these pixels having effective heights higher than the DSM heights at
these pixels.

To take into account the fall-off of water level down the reach, and that different
parts of a domain may be flooded to different depths, the domain is subdivided into
nonoverlapping rectangular m × n-pixel subdomains of ~1 km side. For each FRP map
in each subdomain, edges are detected in the binary image using the Sobel edge detector.
The edges are overlain on the DSM to obtain water level observations (WLOs) at the edges.
The mean WLO is calculated for those edges that are not close to high slopes in the DSM,
as the WLO of an edge is likely to be determined more accurately on a low slope [42]. For
each subdomain, this results in a look-up table associating a mean WLO with each return
period. For each return period, the mean WLOs in the subdomains are interpolated over
the whole domain using bilinear interpolation.

The interpolated maps of mean WLOs for each return period are then converted to
effective heights in the urban areas. Given the return period of a pixel rp(x,y), if its mean
WLO is less than the DSM and the DSM is more than 1 m higher than the DTM, eff_h(x,y) is
set to the DSM height at the pixel, as the pixel is likely to coincide with a building or taller
vegetation. If the mean WLO is ≤1 m higher than the DSM height at the pixel, eff_h(x,y) is
set to the DSM height. Otherwise, eff_h(x,y) is set to the mean WLO for the pixel’s return
period, ensuring that defended urban areas have higher return periods.

Note that, if only SAR data exists and there are no model results, the flow diagram of
Figure 4 is still valid if the effective height map simply becomes the DSM.
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2.3.2. Near Real-Time Operations
SAR

Near real-time SAR processing can begin as soon as the processed georegistered SAR
image becomes available. Each SAR image is subjected to the following steps.

(a) Calculation of SAR Backscatter Threshold

The SAR backscatter threshold that best separates the backscatter values of the water
and high land pixels in the training classes is calculated using the Bayes minimum misclas-
sification rule. Equal prior probabilities are assumed for each class. The threshold selected
is the backscatter value Tu, giving the minimum misclassification of water and high-land
(nonwater) pixels [40].

(b) Flood Detection in Rural Areas

As stated in Mason et al. (2012b) [40], “flood detection in rural areas is object-based
and adopts the approach of segmenting the SAR image into regions of homogeneity and
then classifying them, rather than classifying each pixel independently using a per-pixel
classifier. The use of segmentation techniques provides a number of advantages com-
pared to using per-pixel classification.” The approach employed for rural flood detection
in [20,21] is adopted, which involves segmentation and classification using the eCognition
Developer software (Trimblr Geospatial, Munich; Germany) [58]. Regions of homogeneous
SAR backscatter are detected using the multi-resolution segmentation algorithm, and all
resulting rural regions with mean backscatter less than the threshold are classed as ‘flood’.
Details are given in [42].

eCognition Developer is also used to refine the initial rural flood segmentation by
using different rules. For example, the backscatter threshold may be raised to include in
the flood category regions of rural flooding adjacent to a flooded region that have slightly
higher mean backscatter than the threshold Tu (e.g., due to wind ruffling the water surface
in more exposed parts of the floodplain). Again, details are given in [42], Figure 11 of
which gives a refined rural flood classification for the Wraysbury area for 12 February 2014.

(c) Calculation of Local Waterline Height Threshold Map

A local waterline height threshold map is calculated using the rural flood map. The
method is based on the assumption that water in the urban areas should not be at a
substantially higher level than in the surrounding rural areas. Waterline heights are
calculated at positions of low slope in the DSM. The method also requires knowledge of
the positions of permanent water bodies. In this case, high-resolution LiDAR data must be
available, and, as any region imaged by LiDAR will generally also have land cover data
available, permanent water bodies are extracted from a land cover map. However, they
could also be extracted from a preflood SAR image.

As in the determination of effective heights (Section 2.3.1), the domain is subdivided
into nonoverlapping rectangular m × n-pixel subdomains, to take into account the fall-off
of water level down the reach and the fact that different parts of a domain may be flooded
to different depths. In each subdomain, as stated in Mason et al. (2018) [42], “waterlines are
detected by applying the Sobel edge detector to the binary flood extent map. Because the
flood map has errors at this stage, edges will be present at the true waterlines, but also in
the interior of the water objects due to regions of emergent vegetation and shadow/layover
(giving water heights that are too low), as well as above the waterline due to higher water
false alarms. To increase the signal-to-noise ratio of true edges, a dilation and erosion
operation is performed on the water objects to eliminate some of the artefacts [42]. Water
objects are first dilated by 12 m, then eroded by the same amount. It is required that an
edge pixel is present at the same location within a 2-m-wide buffer before and after dilation
and erosion. The buffer is required because an edge that has been dilated and eroded may
be smoother than the original edge, and may be slightly displaced from it as a result. This
tends to select for true waterline segments on straighter sections of exterior boundaries
of water objects. To suppress false alarms further, waterline heights in regions that are
sufficiently far (11 m) from high (>0.5) DSM gradients are selected, provided that they are
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also within ±1.5 m of the mean water height. This avoids false alarms near high DSM
slopes, which may give rise to shadow/layover areas [42]. At this stage also, waterlines
from permanent water bodies are excluded using the land use map.

In order to find the mean waterline height in the rural area in each sub-domain,
a histogram is constructed of the waterline heights, and the positions of the histogram
maxima are found. Generally, the mean waterline height in the sub-domain is set to
correspond to the height of the largest maximum. However, if any substantial maxima
greater than half that of the largest maximum are present at a higher waterline height,
the highest of these is chosen instead. This latter rule copes with the situation where a
substantial number of erroneous low waterline heights in the interior of water objects have
not been eliminated, leading to a largest maximum at an incorrect low height. An example
histogram is shown in Figure 6 of [40].” A standard deviation for the mean waterline
height is estimated using the histogram frequencies lying above it. A further check is
carried out in the case where the domain is divided into two subdomains, one in the upper
and one in the lower part of the reach. Occasionally it may happen that, in one of the
subdomains, the maximum value h1 chosen from the histogram is less than the overall
mean calculated not from the histogram but directly from all the waterline heights in the
subdomain w1. In this case, h1 is corrected using the value in the other subdomain (h0)
and the difference between the mean waterline values in the upper and lower domains
(w0 − w1), i.e., h1 = h0 − (w0 − w1). The waterline heights in the subdomains are then
interpolated over the whole domain using bilinear interpolation.

A small positive guard height may be added to cope with bias introduced by the
waterline heights not including the height of any flooded vegetation at the flood edge. The
rural SAR segmentation algorithm does not take into account the fact that there may be
emergent vegetation at the flood edge that will not be classed as flooded due to the high
backscatter it produces [40]. Because of the difficulty of estimating this (usually short)
vegetation height, the guard height is treated as a free parameter that must be optimized
by calibration.

Flood Foresight Model Output

Near real-time operations also take place on the Flood Foresight model flood ex-
tent valid at the current time, in order to produce an analogous model waterline height
threshold map. A similar procedure to that used in the determination of effective heights
(Section 2.3.1) is followed. The domain is subdivided into nonoverlapping rectangular
m x n-pixel subdomains, to take into account the fall-off of water level down the reach
and the fact that different parts of a domain may be flooded to different depths. In each
subdomain, edges are detected in the binary model flood extent image using the Sobel
edge detector. The edges are overlain on the DSM to obtain WLOs at the edges. The mean
WLO and its standard deviation for the subdomain is calculated for those edges that are
not close to high slopes in the DSM, as the WLO of an edge is likely to be determined more
accurately on a low slope. It seems reasonable with model data to measure the mean WLO
in each subdomain rather than searching for the highest maximum in the histogram of
waterline heights as with the SAR WLOs, which may contain water levels that are too low
(see previous Section). The mean WLOs in the subdomains are then interpolated over the
whole domain using bilinear interpolation.

Near Real-Time Combined Processing

(a) Combination of Waterline Height Threshold Maps

At this stage the interpolated waterline height maps from the SAR and the model are
combined to form a single waterline height map. A possible approach to this would be to
assimilate a sequence of SAR WLO maps into the model WLO map as it evolves over time
in order to improve the latter, perhaps using a sequential ensemble Kalman filter [13,14].
While this may be the optimum solution, in this case there is a difficulty in updating the
model WLO map with height innovations because the simulation library approach used in
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the modelling means that, at this stage, there is no hydrodynamic model being run into
which to assimilate the innovations.

The simpler approach adopted here is to use the best linear unbiased estimate [59].
Consider the simple weighting scheme

O(x,y,t) = (w1OSAR(x,y,t) + w2OMOD(x,y,t))/(w1 + w2) (1)

where OSAR(x,y,t) and OMOD(x,y,t) are SAR and model water-level observations at position
(x,y) and time t, w1 and w2 are weights, and O(x,y,t) is the combined estimate. Suppose
OSAR(x,y,t) and OMOD(x,y,t) are independent unbiased estimators with variances σ1

2 and
σ2

2, respectively. Then, if w1 = 1/ σ1
2 and w2 = 1/ σ2

2, O(x,y,t) is the linear combined
unbiased estimate with the minimum variance. The variance of O(x,y,t) is

σ1
2σ2

2/(σ1
2 + σ2

2) (2)

The combined variance is lower than either σ1
2 or σ2

2, resulting in an improvement
in accuracy, though this result holds only if the variances are known.

Rural SAR WLOs may well be more accurate than model WLOs at SAR acquisition
time. But as time passes, the SAR flood extent will become more out-of-date until the
next SAR image is acquired, whereas the model will be updated every 3 h, so the relative
accuracies of SAR and model data will change with time. A simple way of taking this into
account is by using an exponential “forgetting factor” and setting

w1 = exp(−(t − t0)/τ)/σ1
2 (3)

where t0 is the time of the last SAR acquisition, and τ is the nominal lifetime of this SAR
image’s usefulness. As an example, assuming σ1 = 0.3 m, σ2 = 0.4 m and τ = 2 days, then at
SAR image acquisition time (t = t0) around flood peak, w1/(w1 + w2) = 0.64 and w2/(w1 +
w2) = 0.36, whereas at t = 4 days, w1/(w1 + w2) = 0.2 and w2/(w1 + w2) = 0.8.

(b) Flood Detection in Urban Areas

The final stage is to extract urban water regions from the effective height image
eff_h(x,y) produced from the model return-period maps, using the combined SAR and
model WLO threshold map O(x,y,t). For pixels in urban areas, if

eff_h(x,y) < O(x,y,t) (4)

then the pixel is flooded, else not flooded.

2.3.3. Performance Measures

The performance measures used to assess the flood detection accuracy were the flood
detection rate (i.e., recall (or hit rate) = tp/(tp + fn)), the precision (= tp/(tp + fp)), and the
critical success index (CSI = tp/(tp + fp + fn)), where tp = true positives, fn = false negatives,
and fp = false positives.

3. Results

The approach taken in the validation of the urban flood extents was to first test the
method using just the rural SAR data and then to include the model data also to examine
the manner and extent to which these could improve the results.

Flood extents for use as validation data were extracted from the aerial photos obtained
contemporaneously with the SAR data in the three study areas as described in [40]. A
difficulty with the Thames 2014 flood data was that the aerial photos were acquired after
the SAR imagery, on 16 February 2014. However, the flooding was long-lasting, and
data from the Staines flood gauge indicated that the river level had fallen only 20 cm
in the intervening period since 12 February 2014 and 13 February 2014 and 10 cm since
14 February 2014. The mean waterline height was raised to compensate for this.
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The guard height to be added to the SAR waterline height was calibrated at 0.4 m by
minimizing the percentage of pixels misclassified (i.e., the sum of the false negative and
false positive percentages) averaged over the three test sites studied.

3.1. Case 1: Results Using Rural SAR Data Only

Case 1 only used rural SAR WLOs in the method. This meant that the waterline height
threshold map used in Figure 4 was derived solely from the SAR waterline map, and
the effective height map was simply the DSM. The precomputed FRP maps and dynamic
Flood Foresight model flood extents were not used. Table 2 gives the flood detection and
false-alarm rates for the six SAR scenes.

Table 2. Urban flood detection accuracy using rural SAR WLOs only.

Image
Flood Detection Rate

(Recall) (%)
Precision (%)

Critical Success
Index (CSI) (%)

Wraysbury 12 February 2014 91 98 89

Wraysbury 13 February 2014 95 96 91

Wraysbury 14 February 2014 90 99 89

Blackett 13 February 2014 100 85 85

Blackett 14 February 2014 99 99 99

Tewkesbury 25 July 2007 88 77 70

For Wraysbury, the 3 × 3 km domain was divided into upper and lower windows (each
3 × 1.5 km) along the reach, to take account of the fall-off down the reach. Figure 5 shows
the correspondence between the SAR and aerial photo flood extents in the Wraysbury
validation area for the three SAR scenes of 12–14 February 2014, together with an extract
from each SAR image for comparison. An average flood detection rate of 92% was achieved
for the Wraysbury images, together with an average precision of 98%.

Figure 5. (a) Correspondence between the SAR image of 12 February 2014 and aerial photograph flood extents in urban area
of Wraysbury, superimposed on the LiDAR image (lighter grey = higher), and (b) extract from SAR image of 12 February
2014; (c,d) as (a,b) for SAR image of 13 February 2014; and (e,f) as (a,b) for SAR image of 14 February 2014.
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For Blackett Close, the 3 × 3 km domain was divided into upper and lower windows
as for Wraysbury. Figure 6 shows the aerial photo used for validation, the SAR subimage
for 13 February 2014 covering this, and a return-period map for the Staines area. Figure 7
shows the correspondence between the SAR and aerial photo flood extents in the Blackett
Close validation area for the SAR scenes of 13–14 February 2014 together with an extract
from each SAR image for comparison. Very high flood-detection accuracies were obtained
in this validation area, with an average flood detection rate of 99.5%, though with a slightly
higher average false positive rate leading to a lower average precision of 92%. However, it
should be noted that the validation areas for Blackett Close and Wraysbury were limited
and contained housing that was not particularly dense.

Figure 6. (a) Aerial photo of flooding in Blackett Close, Staines (51.4◦ N, 0.5◦ W; about 150 × 150 m) (© Getty Images 2014)
(after [42]), (b) CSK subimage (3 × 3 km) of Thames flood in Staines, West London on 13 February 2014 (pixel intensities
are DN backscatter values, and dark areas are water;red outline shows the arecovered by aerial photo), and (c) flood
return-period map (black areas masked out).

For Tewkesbury, the 2.6 × 2 km domain was divided into four windows, each of
1.3 × 1 km, to reflect the fact that Tewkesbury lies on the confluence of the Severn and
the Avon. Figure 8 shows the SAR subimage of 25 July 2007 covering the urban areas
together with the associated return-period map. The extensive aerial photography used for
validation on that date is shown in Figure 3 of [39], which also describes the steps used
to process the validation data. Figure 9 shows the correspondence between the SAR and
aerial photo flood extents in the Tewkesbury urban area. A flood detection rate of 88% was
achieved, though the false positive rate was rather high, leading to a precision of 77%.
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Figure 7. (a) Correspondence between the SAR image of 13 February 2014 and aerial photograph flood extents in the urban
area of Blackett Close, superimposed on the LiDAR image (lighter grey – higher) and (b) extract from the SAR image of
13 February 2014; (c,d) as (a,b) for the SAR image of 14 February 2014.

Figure 8. (a) TerraSAR-X image showing flooding in the Tewkesbury area on 25 July 2007 (52◦ N, 2.2◦ W, pixel intensities
are DN backscatter values, and dark areas are water, 2.6 × 2 km, © DLR, after [39]), and (b) flood return-period map (black
areas masked out).
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Figure 9. Correspondence between the SAR and aerial photograph flood extents in the urban area of Tewkesbury, superim-
posed on the LiDAR image (lighter grey – higher).

Averaged over all six SAR subimages, the flood detection rate was 94% and the
precision was 92%.

As Case 1 used only SAR and not model data, it allowed a comparison of the present
method with that described in [42]. The latter used the SAR data to detect flooding in the
urban, as well as the rural, area and employed a SAR simulator in conjunction with LiDAR
data of the urban area to predict areas of radar shadow and layover in the image caused by
buildings and taller vegetation. Three of the SAR subimages used in the present study were
also employed in the previous one, namely Wraysbury 12 February 2014, Blackett Close
13 February 2007 and Tewkesbury 25 July 2007. Considering the percentage of the urban
flood extent visible in the aerial photo that was detected by the SAR, in the previous study,
the average flood detection rate was 79%, with a precision of 89%. Mason et al. (2018) [42]
concluded that “flooding could be detected in the urban area by this method to good, but
perhaps not very good, accuracy, partly because of the SAR’s poor visibility of the ground
surface due to shadow and layover.” For the same three subimages using the present Case
1 method, the average flood detection rate was 93%, and the precision was 86%, giving a
lower overall error. As a result, the present method seems both more accurate than the
previous method and simpler to implement, as no SAR simulation of shadow and layover
in the urban area is required.

3.2. Case 2: Results Using Rural SAR Data and Pre-Computed FRP Maps

In this case, the waterline height threshold map of Figure 4 was again derived solely
from the rural SAR waterline map (so that the dynamic Flood Foresight model flood extents
were again not used), but the effective height map was derived from the model’s FRP maps
together with the DSM. Case 2 is the one most similar to that of [43]. The domains were
divided as for Case 1. The results for all SAR scenes are shown in Table 3 and are very
similar to those of Table 2, wherein only SAR data were employed to detect urban flooding.
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Table 3. Urban flood detection accuracy using rural SAR WLOs and model FRP maps.

Image
Flood Detection Rate

(Recall) (%)
Precision (%)

Critical Success
Index (CSI) (%)

Wraysbury 12 February 2014 91 98 89

Wraysbury 13 February 2014 95 96 91

Wraysbury 14 February 2014 89 99 88

Blackett 13 February 2014 100 85 85

Blackett 14 February 2014 99 99 99

Tewkesbury 25 July 2007 88 77 70

An advantage of the flood return-period maps should be that they contain information
on defended regions in the urban areas. On a practical note, the Flood Foresight system
provides data on flood defences in a separate layer to the FRP maps, though the layers can
be combined when forming the effective height map. However, there were no examples of
defended regions in any of the test areas, and as a result, the effective height map for each
area was very similar to its DSM, which explains the similarity of the results for Case 1
and Case 2. To illustrate the potential advantage of using FRP maps, it was necessary to
simulate a defended region. Figure 10a shows the flood return map for the Staines area
when the aerial photo validation area (including Blackett Close) was set to a return period
of 1000 years, to simulate a wall being built around it. Figure 10b shows that the validation
area was then classified as unflooded.

Figure 10. (a) Return-period map for Staines with protective ‘wall’ around the validation area including Blackett Close (c/f
Figure 6c, black areas masked out), and (b) urban flood classification using the SAR image of 13 February 2014, showing the
unflooded validation area (white — flooded).

3.3. Case 3: Results Using Rural SAR Data, Precomputed FRP Maps, and Dynamic Flood
Foresight Model Flood Extents

In this case the SAR waterline height map and the model waterline height map derived
from the Flood Foresight modelled flood extent were combined, and the resulting threshold
map was compared to the effective height map derived from the FRP maps (see Figure 4).
The domains were again divided as for Case 1.

The Flood Foresight model was driven in its monitoring mode using telemetered
streamflows from EA river gauges. Flood extents were estimated over the Staines and
Tewkesbury domains every 3 h during the period 21 February 2014–29 February 2014. The
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flooding at Wraysbury was not modelled because insufficient gauge data were available
there during the event.

For Staines, Figure 11 shows an example of the Flood Foresight flood extents both
early (12 February 2014 18:00) and late (21 February 2014 18:00) in the flood centred on
Blackett Close in Staines. The waterline height threshold maps were combined using the
measured values for the SAR WLO standard deviation of 0.3 m and model WLO standard
deviation of 0.4 m. For the model, the flood return period for both 13 February 2014 and
14 February 2014 corresponded to 1-in-20 years. The results for Blackett Close are shown
in Table 4. The flood detection accuracies were similar to those for Cases 1 and 2, though
for 13 February 2014, the false positive rate was slightly lower, leading to higher precision.

Figure 11. Flood Foresight monitoring output centred on Blackett Close Staines (a) at 12 February 2014 18:00 near flood
peak and (b) at 21 February 2014 18:00 when waters have receded. The blue shades indicate flooding to various depths,
with darker blue being deeper flooding.

Table 4. Urban flood detection accuracy using rural SAR WLOs, FRP maps, and dynamic Flood
Foresight model output (figures in brackets are for model output only).

Image +
Model Output

Flood Detection Rate
(Recall) (%)

Precision
(%)

Critical Success
Index (CSI) (%)

Blackett 13 February 2014
image + 13 February 2014 18:00

timestep model extent
100 (93) 91 (100) 91 (93)

Blackett 14 February 2014
image + 14 February 14 18:00

timestep model extent
98 (93) 100 (100) 98 (93)

Tewkesbury 25 July 2007 image
+ model maximum extent 74 (38) 90 (97) 69 (38)

It is also worth assessing how much the SAR data helped to improve the Blackett
Close classification accuracies compared to using model data alone. This test was carried
out by omitting the SAR data when the waterline height threshold maps were combined,
so that the threshold was determined solely by the Flood Foresight model output. The
resulting accuracies are shown in brackets in Table 4. Averaging results from both dates,
there was a slight fall in urban flood detection rate but also a rise in precision. It seems
that, in this case where the model was being driven by sufficient gauge data, the effect of
including the rural SAR data was fairly marginal.

For Tewkesbury, Figure 12a shows the correspondence between the Flood Foresight
maximum flood extent (modified by SAR data in the urban areas) and aerial photo flood
extent, in urban and adjacent rural areas of Tewkesbury. The maximum extent represents
the total extent of flooding throughout the flooding incident. The waterline height threshold
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maps were combined using the same weightings used in the Staines case. Urban flood
detection results are shown in Table 4. The flood detection accuracy (74%) was slightly
lower than the 88% achieved for Cases 1 and 2. An assessment was again made of how
much the SAR data helped to improve the classification accuracy compared to using model
data alone, by omitting the SAR data when the waterline height threshold maps were
combined. The resulting flood detection accuracy using only model data (shown in brackets
in Table 4) was 38%. This means that, in this case, the SAR WLOs provided a significant
improvement compared to using model data alone.

Figure 12. (a) Correspondence between the Flood Foresight model flood extent (combined with that of the SAR in urban
areas) and aerial photo flood extent, in urban and rural areas of Tewkesbury, superimposed on the LiDAR image of the
urban area (lighter grey – higher), and (b) correspondence between the Flood Foresight model flood extent and aerial photo
flood extent in the long 6 km rural reach of the Severn immediately north-west of Tewkesbury (Mythe Bridge in the south of
(b) is visible in the north-west of (a)).

The underestimation of urban flooding using only model data is likely to be because
substantial surface water flooding was present in Tewkesbury during the event. This would
have been present in the rural SAR data but not in the model output, as this predicts fluvial
flooding only. In this event a good deal of rain fell in the vicinity of Tewkesbury itself, as
well in the upper reaches of the Severn and Avon catchments, and there were extremely
high flows in small local responsive catchments, such as the Isbourne just 20 km north-east
of Tewkesbury [54]. In addition, Flood Foresight is a national-scale model being tested
in the localized case of Tewkesbury that experienced a very small area of urban flooding.
As a river model, it will mostly show water on the floodplain and is less likely to include
urban flooding in its output. That Flood Foresight has modelled the rural flooding well in
this case is shown in Figure 12b. This shows the correspondence between the modelled
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flood extent and the aerial photo flood extent in the long 6 km rural reach of the Severn
immediately north-west of Tewkesbury. Over this reach, the hit rate was 96%, the precision
88%, and the CSI 85%. Figure 12a also shows that Flood Foresight predicted flooding well
in the smaller rural areas immediately surrounding the urban area.

In dynamic situations such as the above, it is likely to be advantageous to use assimi-
lation to combine the SAR and model WLO maps and assimilate a sequence of SAR WLO
maps into the model WLO maps as they evolve over time, in order to improve the latter. As
discussed previously, this would require overcoming the difficulty of updating the model
WLO maps with height innovations, because of the simulation library approach used in
the modelling.

4. Discussion

There is clear potential to integrate SAR data into Flood Foresight to improve the
accuracy of the near real-time flood estimates produced by the model. The three examples
described in this paper were each very small domains and used VHR SAR images, thus
resulting in high levels of accuracy. However, VHR SAR data are rarely open access, and
the reliance on LiDAR limits use of the method to urban regions of the globe that have been
mapped by airborne LiDAR. It would obviously be more attractive to use global data sets
that are easily accessible in an emergency. A suitable SAR candidate is Sentinel-1 because
of its open access, the increased coverage of floods it provides globally using its wider
swath, its high-resolution and preplanned acquisition capability, and the availability of
georeferenced images in near real-time. Although perhaps not as accurate as using VHR
SAR and LiDAR, the change detection method of Mason et al. (2021) [48] using Sentinel-
1 and the WorldDEM DSM is capable of detecting urban flooding. Future work will
investigate the merging of Sentinel-1 flood extents with model-derived flood hazard maps.
If the approach can be applied to Sentinel-1 imagery, an automated process for a merged
model-observational approach with coverage across much larger swathes of the country
would be achievable and a cost-effective option for use by flood-response organisations.

Intuitively, merging modelled and remote observations of flooding has numerous
benefits, some evidenced in the cases presented here. Although this study has shown an
increase in accuracy and decreases in false negatives and false positives by combining SAR
and model data, it is clear that there are high degrees of accuracy in the model that can
provide valuable information to responders. The model has several advantages over the
SAR due to its ability to provide near-real-time data 24/7/365 across the whole country. In
addition, the locations in this study, although classed as ‘urban’, cannot be said to have a
high degree of urban density. Towns and cities with higher density will increasingly suffer
from shadow and layover issues affecting the ability to discriminate flood water in built-up
areas. This will be exacerbated in instances where the coarser resolution Sentinel-1 data are
used. In these cases, modelled inundation maps (such as those from Flood Foresight) are
able to estimate flooded regions in the blind spots of the SAR. Expansion of the test areas
to denser urban areas and across larger domains should therefore be explored further.

This study has explored merging model data generated from telemetered streamflow
data from in-situ river gauges. Integrating SAR data (when available) was shown to
improve the accuracy of flood detection in all three cases shown (Table 4). However,
there is also the potential to improve the forecasting performance of the model using data
assimilation, as alluded to in Section 2.3.2 although this will pose challenges given the
precomputed simulation library approach used in Flood Foresight.

5. Conclusions

A number of conclusions can be drawn from the above results.

(1) Simply by using the rural SAR WLOs alone as in Case 1, a high urban flood detection
accuracy (94%) and low false positive rate (9%) were achieved. However, this simple
method cannot prevent urban areas that are low but defended from flooding from
being detected as flooded.
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(2) The Case 1 method using SAR backscatter only in rural areas was compared to the
method of [42], which used SAR returns in both the rural and urban areas to detect
urban flooding. It was found that the present method using SAR solely in rural areas
was more accurate than that of [[42].

(3) The Case 2 method using rural SAR data and precomputed FRP maps should in
theory have an advantage over the simple Case 1, as the flood return-period maps
may contain information on defended regions in the urban area. There were no
examples of this in the test areas, and consequently, the results for Case 1 and Case
2 were very similar. However, the potential advantage of using FRP maps was
illustrated by simulating a defended region. In addition, the high accuracy obtained
using the Case 2 method confirmed the findings of Tanguy et al. (2017) [43], who
merged FRP maps with flood inundation maps derived from RADARSAT-2.

(4) Where the dynamic Flood Foresight model flood extents were combined with the
rural SAR and FRP data (Case 3), then, for the Tewkesbury example, the rural SAR
WLOs were able to provide a significant improvement compared to using model data
alone, because there was significant surface-water flooding that was not reflected in
the fluvially modelled flood extents. For the Blackett Close example, the classification
improvement achieved by combining the rural SAR WLOs with the Flood Foresight
model output was fairly marginal. However, it is interesting that, for these two
examples, the results were almost no worse (indeed, for Tewkesbury, rather better),
than if no dynamic model flood extents were used and the urban flood extent was
predicted simply using rural SAR data and precomputed FRP maps (Case 2).

In summary, given the availability of VHR SAR and DSM data, the urban flood
detection method merging model-derived FRP maps of the urban area with SAR returns
in adjacent rural areas gave a high detection accuracy and was more accurate than that
using SAR returns in both rural and urban areas. It would allow urban flood extents
to be obtained in near real-time, and these could be used for emergency flood incident
management and as observations for assimilation into flood forecasting models. The
method could probably be extended to work with high resolution Sentinel-1 data, though
further work is needed to confirm this. For the dynamical Flood Foresight model outputs, it
is likely to be advantageous to use assimilation to combine the SAR and model WLO maps.

Author Contributions: Conceptualization, D.C.M. and J.B.; Methodology, D.C.M. and J.B.; Soft-
ware, D.C.M., B.R.-R. and R.S.; Validation, D.C.M., B.R.-R. and R.S.; Formal Analysis, D.C.M. and
J.B.; Investigation, D.C.M., B.R.-R. and R.S.; Writing—Original Draft Preparation, D.C.M. and J.B.;
Writing—Review and Editing, D.C.M., J.B., S.L.D., S.V.-C. and H.L.C.; Supervision, S.L.D.; Project Ad-
ministration, S.L.D.; Funding Acquisition, S.L.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded under the UK EPSRC grant EP/P002331/1 “Data Assimilation for
the Resilient City (DARE)”.

Acknowledgments: The authors are grateful to the UK Satellite Applications Catapult Centre for
providing the CSK images under the CORSAIR Project. They are also grateful to the EA for provision
of the LiDAR data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aerts, J.C.J.H.; Botzen, W.J.; Clarke, K.; Cutter, S.L.; Hall, J.W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther,
H. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Chang. 2018, 8, 193–199. [CrossRef]

2. Sharifi, A. Resilient urban forms: A macro-scale analysis. Cities 2019, 85, 1–14. [CrossRef]
3. García-Soriano, D.; Quesada-Román, A.; Zamorano-Orozco, J.J. Geomorphological hazards susceptibility in high-density urban

areas: A case study of Mexico City. J. South Am. Earth Sci. 2020, 102, 102667. [CrossRef]
4. Quesada-Román, A.; Villalobos-Chacón, A. Flash flood impacts of Hurricane Otto and hydrometeorological risk mapping in

Costa Rica. Geogr. Tidsskr. J. Geogr. 2020, 120, 142–155. [CrossRef]

79



Water 2021, 13, 1577

5. Evans, E.P.; Ashley, R.; Hall, J.W.; Penning-Rowsell, E.C.; Saul, A.; Sayers, P.B.; Thorne, C.R.; Watkinson, A. Foresight Flood and
Coastal Defence Project: Scientific Summary; Office of Science and Technology: London, UK, 2004.

6. Winsemius, H.C.; Aerts, J.C.J.H.; Van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.;
Lucas, P.L.; Van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [CrossRef]

7. Willner, S.N.; Otto, C.; Levermann, A. Global economic response to river floods. Nat. Clim. Chang. 2018, 8, 594–598. [CrossRef]
8. Li, Y.; Martinis, S.; Wieland, M.; Schlaffer, S.; Natsuaki, R. Urban Flood Mapping Using SAR Intensity and Interferometric

Coherence via Bayesian Network Fusion. Remote Sens. 2019, 11, 2231. [CrossRef]
9. ICEYE. SAR Satelite Data Provider. Available online: https://www.iceye.com/sar-data/constellation-capabilities (accessed on

1 June 2021).
10. Pitt, M. Learning Lessons from the 2007 Floods. UK Cabinet Office Report. June 2008. Available online: http://archive.

cabinetoffice.gov.uk/pittreview/thepittreview.html (accessed on 1 June 2021).
11. Brown, K.M.; Hambridge, C.H.; Brownett, J.M. Progress in operational flood mapping using satellite SAR and airborne LiDAR

data. Prog. Phys. Geog. Earth Environ. 2016, 40, 186–214. [CrossRef]
12. Grimaldi, S.; Li, Y.; Pauwels, V.; Walker, J.P. Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood

Forecasting Models: Opportunities and Challenges. Surv. Geophys. 2016, 37, 977–1034. [CrossRef]
13. García-Pintado, J.; Neal, J.C.; Mason, D.C.; Dance, S.L.; Bates, P.D. Scheduling satellite-based SAR acquisition for sequential

assimilation of water level observations into flood modelling. J. Hydrol. 2013, 495, 252–266. [CrossRef]
14. García-Pintado, J.; Mason, D.C.; Dance, S.L.; Cloke, H.L.; Neal, J.C.; Freer, J.; Bates, P.D. Satellite-supported flood forecasting in

river networks: A real case study. J. Hydrol. 2015, 523, 706–724. [CrossRef]
15. Mason, D.; Schumann, G.-P.; Neal, J.; Garcia-Pintado, J.; Bates, P. Automatic near real-time selection of flood water levels from

high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: A case study. Remote Sens. Environ.
2012, 124, 705–716. [CrossRef]

16. Giustarini, L.; Hostache, R.; Kavetski, D.; Chini, M.; Corato, G.; Schlaffer, S.; Matgen, P. Probabilistic Flood Mapping Using
Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6958–6969. [CrossRef]

17. Hostache, R.; Chini, M.; Giustarini, L.; Neal, J.; Kavetski, D.; Wood, M.; Corato, G.; Pelich, R.-M.; Matgen, P. Near-Real-Time
Assimilation of SAR-Derived Flood Maps for Improving Flood Forecasts. Water Resour. Res. 2018, 54, 5516–5535. [CrossRef]

18. Cooper, E.S.; Dance, S.L.; García-Pintado, J.; Nichols, N.K.; Smith, P.J. Observation operators for assimilation of satellite
observations in fluvial inundation forecasting. Hydrol. Earth Syst. Sci. 2019, 23, 2541–2559. [CrossRef]

19. Cooper, E.; Dance, S.; García-Pintado, J.; Nichols, N.; Smith, P. Observation impact, domain length and parameter estimation in
data assimilation for flood forecasting. Environ. Model. Softw. 2018, 104, 199–214. [CrossRef]

20. Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based automatic thresholding
procedure on high resolution TerraSAR-X data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [CrossRef]

21. Martinis, S.; Twele, A.; Voigt, S. Unsupervised Extraction of Flood-Induced Backscatter Changes in SAR Data Using Markov
Image Modeling on Irregular Graphs. IEEE Trans. Geosci. Remote Sens. 2011, 49, 251–263. [CrossRef]

22. Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015,
104, 203–212. [CrossRef]

23. Pulvirenti, L.; Chini, M.; Pierdicci, N.; Guerriero, L.; Ferrazzoli, P. Flood monitoring using multi-temporal COSMO-SkyMed data:
Image segmentation and signature interpretation. Remote Sens. Environ. 2011, 115, 990–1002. [CrossRef]

24. Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An algorithm for operational flood mapping from Synthetic Aperture Radar
(SAR) data using fuzzy logic. Nat. Hazards Earth Syst. Sci. 2011, 11, 529–540. [CrossRef]

25. Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens.
2016, 37, 2990–3004. [CrossRef]

26. D’Addabbo, A.; Refice, A.; Pasquariello, G.; Lovergine, F.P.; Capolongo, D.; Manfreda, S. A Bayesian Network for Flood Detection
Combining SAR Imagery and Ancillary Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3612–3625. [CrossRef]

27. D’Addabbo, A.; Refice, A.; Lovergine, F.P.; Pasquariello, G. DAFNE: A Matlab toolbox for Bayesian multi-source remote sensing
and ancillary data fusion, with application to flood mapping. Comput. Geosci. 2018, 112, 64–75. [CrossRef]

28. Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H. Towards an automated SAR-based flood monitoring
system: Lessons learned from two case studies. Phys. Chem. Earth Parts A/B/C 2011, 36, 241–252. [CrossRef]

29. Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.; Bates, P.D.; Mason, D.C. A change detection approach to flood mapping in
urban areas using TerraSAR-X. IEEE. Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [CrossRef]

30. Pierdicca, N.; Pulvirenti, L.; Chini, M.; Guerriero, L.; Candela, L. Observing floods from space: Experience gained from
COSMO-SkyMed observations. Acta Astronaut 2013, 84, 122–133. [CrossRef]

31. Schumann, G.; di Baldassarre, G.D.; Bates, P.D. The utility of spaceborne radar to render flood inundation maps based on
multialgorithm ensembles. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2801–2807. [CrossRef]

32. Schlaffer, S.; Chini, M.; Giustarini, L.; Matgen, P. Probabilistic mapping of flood-induced backscatter changes in SAR time series.
Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 77–87. [CrossRef]

33. Westerhoff, R.S.; Kleuskens, M.P.H.; Winsemius, H.C.; Huizinga, H.J.; Brakenridge, G.R.; Bishop, C. Automated global water
mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013, 17, 651–663. [CrossRef]

80



Water 2021, 13, 1577

34. Benoudjit, A.; Guida, R. A Novel Fully Automated Mapping of the Flood Extent on SAR Images Using a Supervised Classifier.
Remote Sens. 2019, 11, 779. [CrossRef]

35. Nemni, E.; Bullock, J.; Belabbes, S.; Bromley, L. Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic
Aperture Radar Imagery. Remote Sens. 2020, 12, 2532. [CrossRef]

36. Ohki, M.; Yamamoto, K.; Tadono, T.; Yoshimura, K. Automated Processing for Flood Area Detection Using ALOS-2 and
Hydrodynamic Simulation Data. Remote Sens. 2020, 12, 2709. [CrossRef]

37. Soergel, U.; Thoennessen, U.; Stilla, U. Visibility analysis of man-made objects in SAR images. In Proceedings of
the 2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Berlin, Germany,
22–23 May 2003. [CrossRef]

38. Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The
Role of the Interferometric Coherence. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1532–1544. [CrossRef]

39. Mason, D.C.; Speck, R.; Devereux, B.; Schumann, G.J.-P.; Neal, J.C.; Bates, P.D. Flood detection in urban areas using TerraSAR-X.
IEEE. Trans. Geosci. Remote Sens. 2010, 48, 882–894. [CrossRef]

40. Mason, D.C.; Davenport, I.; Neal, J.C.; Schumann, G.; Bates, P.D. Near Real-Time Flood Detection in Urban and Rural Areas
Using High-Resolution Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3041–3052. [CrossRef]

41. Mason, D.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H. Detection of flooded urban areas in high resolution Synthetic Aperture
Radar images using double scattering. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 150–159. [CrossRef]

42. Mason, D.C.; Dance, S.L.; Vetra-Carvalho, S.; Cloke, H.L. Robust algorithm for detecting floodwater in urban areas using synthetic
aperture radar images. J. Appl. Remote Sens. 2018, 12, 045011. [CrossRef]

43. Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.; Raymond, S. River flood mapping in urban areas combining Radarsat-2 data
and flood return period data. Remote Sens. Environ. 2017, 198, 442–459. [CrossRef]

44. Chini, M.; Pelich, R.-M.; Pulvirenti, L.; Pierdicca, N.; Hostache, R.; Matgen, P. Sentinel-1 InSAR Coherence to Detect Floodwater
in Urban Areas: Houston and Hurricane Harvey as A Test Case. Remote Sens. 2019, 11, 107. [CrossRef]

45. Li, Y.; Martinis, S.; Wieland, M. Urban flood mapping with an active self-learning convolutional neural network based on
TerraSAR-X intensity and interferometric coherence. ISPRS J. Photogramm. Remote Sens. 2019, 152, 178–191. [CrossRef]

46. Lin, Y.N.; Yun, S.-H.; Bhardwaj, A.; Hill, E.M. Urban Flood Detection with Sentinel-1 Multi-Temporal Synthetic Aperture Radar
(SAR) Observations in a Bayesian Framework: A Case Study for Hurricane Matthew. Remote Sens. 2019, 11, 1778. [CrossRef]

47. Iervolini, P.; Guida, R.; Iodice, A.; Riccio, D. Flooding water depth estimation with high-resolution SAR. IEEE Trans. GeoSci.
Remote Sens. 2015, 53, 2295–2307. [CrossRef]

48. Mason, D.C.; Dance, S.L.; Cloke, H.L. Floodwater detection in urban areas using Sentinel-1 and WorldDEM data. J. Appl. Remote
Sens. 2021, 15, 032003. [CrossRef]

49. Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kossmann, K.; Roth, A. Accuracy assessment of the global TanDEM-X Digital
Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [CrossRef]

50. Revilla-Romero, B.; Shelton, K.; Wood, E.; Berry, R.; Bevington, J.; Hankin, B.; Lewis, G.; Gubbin, A.; Griffiths, S.; Barnard, P.; et al.
Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment. Geophys.
Res. Abstr. 2017, 19, 1230.

51. Bradbrook, K. JFLOW: A multiscale two-dimensional dynamic flood model. Water Environ. J. 2006, 20, 79–86. [CrossRef]
52. Environment Agency. Real-time Flood Impacts Mapping. 2019. Available online: https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/file/844094/Real-time_flood_impacts_mapping_-_report.pdf (ac-
cessed on 1 June 2021).

53. Thorne, C. Geographies of UK flooding in 2013/4. Geogr. J. 2014, 180, 297–309. [CrossRef]
54. Stuart-Menteth, A. UK Summer 2007 Floods, 2007; Risk Management Solutions: Newark, CA, USA, 2007.
55. Neal, J.C.; Keef, C.; Bates, P.D.; Beven, K.; Leedal, D. Probabilistic flood risk mapping including spatial dependence. Hydrol.

Process. 2012, 27, 1349–1363. [CrossRef]
56. Brisco, B.; Touzi, R.; Van der Sanden, J.J.; Charbonneau, F.; Pultz, T.J.; D’Iorio, M. Water resource applications with RA-DARSAT-

2—A preview. Int. J. Digit. Earth 2008, 1, 130–147. [CrossRef]
57. Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.;

Kakarla, A.; et al. Outlining where humans live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 1–14. [CrossRef] [PubMed]
58. Definiens, A.G. Definiens Developer 8 User Guide, Document Version 1.2.0; Definiens Documentation: Munich, Germany, 2012.
59. Aitken, A.C. IV.—On Least Squares and Linear Combination of Observations. Proc. R. Soc. Edinb. 1936, 55, 42–48. [CrossRef]

81





water

Article

Evaluation of CYGNSS Observations for Flood
Detection and Mapping during Sistan and
Baluchestan Torrential Rain in 2020

Mahmoud Rajabi *, Hossein Nahavandchi and Mostafa Hoseini

Department of Civil and Environmental Engineering, Norwegian University of Science and Technology NTNU,
7491 Trondheim, Norway; hossein.nahavandchi@ntnu.no (H.N.); mostafa.hoseini@ntnu.no (M.H.)
* Correspondence: mahmoud.rajabi@ntnu.no; Tel.: +47-92332254

Received: 9 June 2020; Accepted: 16 July 2020; Published: 18 July 2020

Abstract: Flood detection and produced maps play essential roles in policymaking, planning,
and implementing flood management options. Remote sensing is commonly accepted as a maximum
cost-effective technology to obtain detailed information over large areas of lands and oceans. We used
remote sensing observations from Global Navigation Satellite System-Reflectometry (GNSS-R) to
study the potential of this technique for the retrieval of flood maps over the regions affected by the
recent flood in the southeastern part of Iran. The evaluation was made using spaceborne GNSS-R
measurements over the Sistan and Baluchestan provinces during torrential rain in January 2020.
This area has been at a high risk of flood in recent years and needs to be continuously monitored by
means of timely observations. The main dataset was acquired from the level-1 data product of the
Cyclone Global Navigation Satellite System (CYGNSS) spaceborne mission. The mission consisted of
a constellation of eight microsatellites with GNSS-R sensors onboard to receive forward-scattered
GNSS signals from the ocean and land. We first focused on data preparation and eliminating the
outliers. Afterward, the reflectivity of the surface was calculated using the bistatic radar equations
formula. The flooded areas were then detected based on the analysis of the derived reflectivity.
Images from Moderate-Resolution Imaging Spectroradiometer (MODIS) were used for evaluation
of the results. The analysis estimated the inundated area of approximately 19,644 km2 (including
Jaz-Murian depression) to be affected by the flood in the south and middle parts of the Sistan and
Baluchestan province. Although the main mission of CYGNSS was to measure the ocean wind speed
in hurricanes and tropical cyclones, we showed the capability of detecting floods in the study area.
The sensitivity of the spaceborne GNSS-R observations, together with the relatively short revisit
time, highlight the potential of this technique to be used in flood detection. Future GNSS-R missions
capable of collecting the reflected signals from all available multi-GNSS constellations would offer
even more detailed information from the flood-affected areas.

Keywords: CYGNSS; flood detection; Sistan and Baluchestan; flood mapping; GNSS-R

1. Introduction

Natural disasters are the reason for many serious disturbances to communities and the environment.
There have been many human, environmental, social, and economic losses, which are beyond the
power of the community to tolerate [1]. Floods have been considered as one of the most catastrophic
events, causing extensive damage to the artificial and natural environment and devastation to human
settlements [2]. Economic losses due to the effects of damaging floods have increased significantly
around the world [3]. Flooding happens when water bodies overflow riversides, lakes, dams, or dikes
in low-lying lands during heavy rainfall [4]. The higher temperature at the Earth’s surface leads to
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increased evaporation and greater overall precipitation [5]. Increased precipitation, although associated
with inland flooding, can also increase the risk of coastal flooding [6].

Flood detection, and subsequently, produced maps, are beneficial in two important phases: During
the flood, when we need emergency management planning, and after the flood, for land use planning,
defining construction standards, and damage assessment [7]. Heavy precipitation has led floods to
occur more frequently in different countries, which have drawn considerable attention over the past
years. There are many regions of Iran affected by floods, for instance, heavy rainfall from mid-March
to April 2019 led to flooding in 28 of 31 provinces, with the most severe flooding occurring in Golestan,
Fars, Khuzestan, and Lorestan [8]. The recent torrential rain in mid-January 2020 in the southeastern
region of Iran caused a devastating flood in the Sistan and Baluchestan province. We investigated the
latter case in this study.

Land surveying and airborne observations are the traditional methods for flood detection,
but when when flood detection is conducted on a large scale, these methods are costly and slow.
Space-based Remote Sensing (RS) can be considered as a practical alternative that provides up-to-date
information from various sensors that have been onboard different satellites. However, there are
some limitations in using RS data products for the study of flooding. For instance, optical RS can
have its limitations during severe weather conditions and during night. Therefore, in some cases
before and after a flood event, the optical RS imagery does not provide the required information [7].
Radar RS in the microwave spectrum can surpass these restrictions because the wave can penetrate
clouds and vegetation and can effectively work at night. Among the several radars RS sensors
currently in operation, Synthetic Aperture Radar (SAR) imagery provides high spatial resolution
data which is typically based on a monostatic configuration. However, the revisit time of satellites
with the configuration of the monostatic radar (single satellites), like SAR, is long (more than one
week) and cannot offer the desirable continuous high temporal resolution for flood detection purposes.
Accordingly, owing to the highly dynamic nature of the flood, SAR images are not used operationally
during floods [9–11].

The primary services of the Global Navigation Satellite System (GNSS) are positioning, navigation,
and timing. Besides, many other applications, including GNSS RS, have been introduced in recent
decades. Measurements made by GNSS RS techniques provide valuable information about different
components of the Earth system. Observations of the GNSS signals passing through the atmosphere
have been employed to study the atmospheric layers and their variabilities [12,13]. GNSS signals
after reflection from the Earth’s surface can also provide information about the reflecting surface.
These reflections have been used to study various parameters of the Earth’s surface and water cycles,
such as snow depth [14], ice height and sea level [15], soil moisture [16], vegetation [17], flood [11,18],
ocean eddies [19], wind speed [20], salinity [21], etc.

Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative technique aimed
at deriving geophysical parameters by analyzing GNSS signals reflected off the Earth’s surface in
a bistatic geometry. This technique is an efficient microwave remote sensing approach that utilizes
transmitted navigation signals as sources of opportunity. Numerous GNSS satellites, including GPS,
Galileo, GLONASS, and Bei-Dou/Compass, are currently transmitting navigation signals based on
spread-spectrum technology. Thus, a constellation of GNSS-R small satellites, at a lower cost compared
to ordinary RS satellites, can provide a much shorter revisit time using low-cost, low-power passive
sensors. Many earlier studies have introduced the applications of GNSS-R on the oceans, land,
and ice [22–24].

The soil moisture, surface roughness, vegetation, and topography are parameters which affect
microwave signals. GNSS-R signals as a bistatic radar are also affected by those parameters [25].
However, GNSS signals are at the L-band, which is ideal for soil moisture and surface water remote
sensing due to the higher capacity to penetrate vegetation compared to shorter wavelengths [16].
In addition, this technique uses the bistatic configuration, which has a lower sensitivity to surface
roughness relative to monostatic [26]. The signals reflected off the surface have a direct relation with
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surface water and moisture content [11]. For example, the rise of soil moisture leads to increase the
signal strength. Using this mechanism could contribute to detecting soil saturation, flooded area,
and inland water.

The Cyclone Global Navigation Satellite System (CYGNSS) mission is a constellation of eight
microsatellites, each with a GNSS-R receiver onboard. The receiver can track and process four GPS
signals simultaneously. The tracked GPS L1 C/A signals after reflection from the Earth’s surface are
used to produce Delay Doppler Maps (DDMs). The overall median revisit time is 2.8 h, and the
mean revisit time is 7.2 h [27]. Theoretically, the footprint of reflection received by CYGNSS is
nearly 0.5 km × 0.5 km. For the ocean, which has a very rough surface, the spatial resolution is
approximately 25 km × 25 km [28,29]. Table 1 shows CYGNSS microsatellite parameters retrieved
from [16,23]. The main mission of CYGNSS is to measure the ocean surface wind speed in hurricanes
and tropical cyclones, so a relatively low orbital inclination was designed for the satellites. CYGNSS
continuously makes measurements over the oceans and provides useful information over the land [29].
CYGNSS offers distinct features compared to other remote sensing techniques such as optical and active
monostatic radar. It uses a passive sensor at the L-band frequency wave, which works in all weather
conditions regardless of the time of the day, i.e., it can penetrate clouds, fog, rain, storms, and vegetation,
and works at night, unlike optical sensors. The CYGNSS constellation of eight microsatellites provides
a relatively short revisit time with global coverage over equatorial regions. The products of CYGNSS
are publicly available over the oceans and land.

Table 1. The Cyclone Global Navigation Satellite System (CYGNSS) satellite parameters.

Parameters Description

Orbit LEO, ~520 km, Nonsynchronous
Period 95.1 min

Spatial Resolution ∼25 km × 25 km (incoherent), ∼0.5 km × 5 km (coherent, theoretical)
Revisit Times 2.8 h median, 7.2 h mean

Polarization of the reflectometry antennas LHCP
Coverage −38 < Latitude < 38 & −180 < Longitude < 180

Type of Data which is relevant Observe GPS L1 C/A signals and Delay Doppler Maps

Radar remote sensing for soil moisture retrieval and surface water detection is common using
both monostatic [7,30] and bistatic geometry. The sensitivity of spaceborne GNSS-R (as a bistatic radar)
to surface water and soil moisture has been widely studied [11,16,18,23,31–33]. Most of the studies
have used observations from ground-based or space-based receivers, e.g., CYGNSS or Technology
Demonstration Satellite-1 (TDS-1). Observational evidence demonstrates that GNSS-R is highly
sensitive to inland surface waters, e.g., lakes and rivers [34].

Sistan and Baluchestan is one of the driest regions of Iran, with a slight increase in rainfall from east
to west, and is a province at a high risk of flooding. The aim of this study was to indicate the capability
of spaceborne GNSS-R for detecting and mapping of flood in the south part of Iran. The methodology
for preparing and processing data is the same as those used described by the authors of [16,18].

2. Study Area

The Sistan and Baluchestan province is located in the east and southeast of Iran (58◦55′–63◦20′ E
longitude and 25◦04′–31◦25′N latitude), bordering Pakistan and Afghanistan, and its capital is Zahedan.
This province is the second largest province in Iran with an area of 180,726 km2 and a population of
about 2.5 million. Figure 1A shows the location of this province on the Maphill Earth map. There is
a depression in the study area known as the Hamun-Jaz-Murian basin, which is part of the central
plateau basin. This basin is located in the southeast of Iran between 56◦17′ and 61◦25′ E longitude and
26◦32′ and 29◦35′ N latitude (Figure 1B). Its total area is about 69,390 km2, of which 44% is mountains.
The depression belongs to Kerman and Sistan-Baluchistan provinces [35]. Figure 1C shows a flooded
region in IranShahr, which is one of the cities in this province.
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Figure 1. (A) The red region shows the location of the Sistan and Baluchestan province in the southeast
of Iran, which is our study area. (B) The Hamun Jaz-Murian depression, which is located between the
Kerman and Sistan and Baluchestan provinces. (C) IranShahr, one of the flooded cities in the study area.

Sistan and Baluchestan is one of the warmest regions in Iran, with a desert climate and an
average daily temperature of 29 degrees centigrade. For several months of the year, it is warm at
temperatures continuously above 25 degrees centigrade, and temperatures sometimes exceed above
40 degrees centigrade. Figure 2 illustrates the average precipitation per day over 20 years. As can be
seen, 0.40 mm/day rainfall is normal during January in the province, but between 10 January and 12
January 2020, this amount is over 100 mm. Figure 3 shows the precipitation rate from 8 January to 13
January 2020.

Figure 2. Average daily precipitation data collected from three meteorological stations in the Sistan
and Baluchestan province based on the average values of the last 20 years [36].
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Figure 3. Rate of torrential precipitation in the Sistan and Baluchestan province over the period of six
days from 8 January to 13 January, 2020. The maps were generated using the data provided by the
authors of [37].

3. Data Set Description

3.1. CYGNSS data

There are three levels of CYGNSS data products in version 2.1, which represent the second
post-provisional based on calibrated and validated level 1 algorithms. The level 1 (L1) dataset contains
the measurement of surface Normalized Bistatic Radar Cross Section (NBRCS). The level 2 (L2) dataset
includes derived ocean surface wind speed and Mean Square Slope (MSS). The level 3 (L3) dataset
delivers hourly averaged wind speed and MSS on a 0.2 degree × 0.2 degree grid.

We used CYGNSS L1 data as the lowest level of the available data products. The format
of the data is NetCDF (Network Common Data Form). Daily observations of each of the eight
CYGNSS satellites are included in a NetCDF file. Accordingly, there are up to eight files for every
Day Of a Year (DOY). The daily base data is available free of charge on the website of Physical
Oceanography Distributed Active Archive Center (PO. DAAC) of NASA’s Jet Propulsion Laboratory
(JPL) at https://podaac.jpl.nasa.gov. Table 2 shows the main variables of the L1 data [24] which were
used in this study.

Table 2. The Cyclone Global Navigation Satellite System (CYGNSS) data source parameters.

Parameters Description

ddm_snr Delay Doppler Map (DDM) signal-to-noise ratio, in dB
gps_tx_power_db_w GPS transmit power, in dB.

rx_to_sp_range Distance between the CYGNSS spacecraft and the specular point, in meters.
tx_to_sp_range Distance between the GPS spacecraft and the specular point, in meters.

gps_ant_gain_db_i GPS transmit antenna gain. Antenna gain in the direction of the specular point, in dBi

sp_rx_gain Specular point Rx antenna gain. The receive antenna gains in the direction of the specular
point, in decibel isotropic (dBi).

quality_flags Per-DDM quality flags
sp_lat Specular point latitude, in degrees North
sp_lon Specular point longitude, in degrees East

sp_inc_angle The specular point incidence angle, in degrees
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3.2. Satellite Image

Moderate-Resolution Imaging Spectroradiometer (MODIS) is an advanced sensor on the Terra
and Aqua Spacecraft for gathering data through a broad spectrum of electromagnetic waves. Terra was
the first satellite of the Earth Observing System (EOS) program and was launched on 18 December,
1999. It passes north to south over the equator in the morning. Aqua is the second EOS satellite which
carries a MODIS sensor and passes south to north across the equator in the afternoon. Terra and
Aqua MODIS cover the Earth’s surface every one to two days. The sensors onboard these satellites
measure 36 spectral bands from 0.405 μm to 14.385 μm. The data is released by different resolutions,
i.e., 250 m (bands 1–2), 500 m (bands 3–7), and 1000 m (bands 8–36). The MODIS data is accessible
at https://modis.gsfc.nasa.gov and can be used for a significant number of applications in the land,
atmosphere, and, ocean [38]. Figure 4 shows the false-color images of the Sistan and Baluchestan
province (also regions of the Kerman and Hormozgan provinces) before the flood (A) and during
the flood (B). The images were acquired by MODIS (bands 7–2–1) on 8 January and 13 January 2020.
These images were used here for validation purposes.

(A) (B)

Figure 4. Moderate-Resolution Imaging Spectroradiometer (MODIS) images of the study area (A) before
the flooding on 8 January 2020, and (B) during the flood on 13 January 2020. The dark blue regions are
the inundated areas. The clouds in the image are shown with light blue which can be distinguished
from the inundated areas [39].

4. Method and Discussion

The methodology in the current paper includes five main steps, as illustrated in Figure 5. The steps
are: (1) Data collection, (2) data preparation, (3) calculating the surface reflectivity, (4) data calibration,
and (5) flood detection and validation. Each step is described as follows.

4.1. The Bistatic Radar Equations

Radar is a system for detecting targets and deriving information such as position, velocity, and
reflectivity signature from the detected objects [40]. It transmits a signal and receives the echo after it
is reflected by a target. The types of radar systems based on the location of the transmitter (TX) and
the receiver (RX) can be divided into colocated or monostatic radars, which measure backscattered
signals, and separated or bistatic radars, which measure forward-scattered signals. The main difference
between monostatic and bistatic radars is the separation of the transmitter and receiver [41]. Figure 6
shows monostatic and bistatic constellation for satellites.
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Figure 5. Methodology flowchart based on the bistatic radar concept and using CYGNSS data.

Figure 6. Simple schematic view of mono (A) and bistatic (B) radars constellation for satellite
remote sensing.
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The CYGNSS and GPS constellations form a bistatic radar system. The GPS satellites transmit
circularly polarized microwave signals which are collected by the CYGNSS reflectometry receivers
after forward-scattering from the Earth’s surface. The scattered signals contain valuable information
about the physical properties of the reflecting surface. Inland waters can be detected by CYGNSS,
assuming a coherent forward-scattering mechanism [33,34,42]. The peak value of coherent scattered
power is defined as [22,23,43]:

Pcoh
RL =

Pt
R Gt Gr

(dts + dsr)
2

(
λ

4π

)2
ΓRL (1)

where Pcoh
RL is the peak value of coherently received power, R denotes the right-handed circular

polarization (RHCP) GPS transmit antenna, and L is related to the left-handed circular polarization
(LHCP) of forward-scattered signals collected by the downward-looking antenna. Pt

R is the transmitted
power, Gt is the gain of the transmitter antenna, Gr is the gain of the receiver antenna, λ is the GPS
L1 wavelength (∼0.19 m), and dts is the distance between the specular reflection point and the GPS
transmitter, while dsr is the distance between the specular reflection point and the GNSS-R receiver and
ΓRL is the surface reflectivity along with the incidence angle. In addition to the mentioned parameters
Pcoh

RL is affected by system noise. Therefore, signal-to-noise ratio (SNR) could be defined as:

SNR =
Pcoh

RL
N

=
Pt

R Gt Gr
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λ
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)2 ΓRL

N
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where N is the noise value. Since the magnitude of the SNR is not equal to the reflected power,
the surface reflectivity or corrected SNR along with the incidence angle could be computed using:

SNRc =
ΓRL

N
= SNR

(dts + dsr)
2

Pt
RGt Gr

(4π
λ

)2
(3)

Finally, the SNRc in decibel (dB) is:

SNRc dB = SNRdB + 10 log(
(dts + dsr)

2

Pt
RGt Gr

(4π
λ

)2
(4)

This parameter (SNRc dB) is strongly related to the hydrological conditions of the land
surface [18,34]. In this study, the following CYGNSS L1 variables were used for the calculation
of the surface reflectivity:

- ddm_snr (SNRdB = 10 log(Smax/Navg) with Smax being the maximum value in a single DDM bin
and Navg is the average raw noise counts per-bin

- gps_tx_power_db_w (Pt
R)

- gps_ant_gain_db_i (Gt)
- sp_rx_gain (Gr)
- rx_to_sp_range (dsr)
- tx_to_sp_range (dts)

The parameter λ is the wavelength of the GPS L1 carrier (∼0.19 m). We converted all the values to
the dB scale (some of them were already in dB within the CYGNSS files).

4.2. Data Preparation and Calibration

Before and after using Equation (4), we employed several corrections and data editions and outlier
identification as follows:
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• GPS transmitter bias: GPS transmit powers are approximate estimates with some biases which
should be considered. The main sources of these biases could be unknown transmitting powers of
GPS satellites and the biases in Pt

R associated with GPS pseudorandom noise (PRN) codes [16,44].
We used empirical calibration developed by Chew et al. (2018) for CYGNSS products. Table 3
shows the magnitude of the biases which should be corrected during the estimation of SNRc dB [15].

• Incidence angle: This parameter also affects a coherent reflection when the incidence angles are
above 40 degrees or 50 degrees and was negligible for our purpose [34], but we deleted data with
an incidence angle of more than 65 degrees.

• Quality Control Flags: The Level 1A data product used in this study was refined by applying a set
of quality control flags designed and included in the data to indicate potential problems [27,45].
The specific flags we used were 2, 4, 5, 8, 16, and 17, which were related to S-band transmitter
powered up, spacecraft attitude error, black body DDM, DDM is a test pattern, the direct signal in
DDM, and low confidence in the GPS EIR estimate, respectively. Based on the work by Chew et al.
(2018) on soil moisture, we removed data with those quality flags in this study.

• Additional correction and removal: We removed data with SNRdB less than 2dB and CYGNSS
antenna gain of less than 0 dB or more than 13 dB. These corrections were empirical and are not
standardized, but have been shown to be beneficial [16].

Table 3. Empirical biases in SNRc dB according to pseudorandom noise (PRN).

PRN Bias (dB) PRN Bias (dB) PRN Bias (dB) PRN Bias (dB)

1 1.017 9 1.498 17 0.256 25 0.880
2 0.004 10 −0.783 18 −0.206 26 0.163
3 1.636 11 −0.230 19 −0.206 27 0.409
4 - 12 −1.021 20 0.345 28 −0.712
5 −0.610 13 0.007 21 −0.909 29 −1.032
6 0.24 14 −0.730 22 −0.838 30 0.877
7 −0.709 15 −0.376 23 −0.858 31 −0.562
8 0.605 16 −0.481 24 1.140 32 −0.819

Figure 7 shows the statistical information for corrected SNR using three days of CYGNSS data
during the flood time. Figure 7A shows the calculated surface reflectivity SNR of CYGNSS tracks
before (left side) and after (right side) the data preparation. As can be seen in the middle part of
the figure, some of the measurements that may be misleading were removed. Figure 7B,C show the
distribution of the measurements with respect to the incidence angle and antenna gain. Despite the fact
that the data rectification procedure discarded about 48% of the observations, CYGNSS still provided
enough data to detect the flood. The flooding period continued until 17 January 2020. We analyzed a
dataset consisting of three days of CYGNSS observations to reduce the effect of losing a significant
portion of the data.

4.3. Interpolation

An interpolation process was used here to retrieve a representative grid from the CYGNSS
observation points. As shown in Figure 7A, the data derived from CYGNSS have irregular structures
based on the satellite along-tracks. We used the natural neighbor interpolation method for gridding.
The method was developed by Sibson [46] and is a multivariate interpolation according to Voronoi
tessellation [47]. The principal formula is [48]:

G(x, y) =
∑N

i=1
wi f (xi, yi) (5)

where G is the estimated value at (x, y), wi = Qk/Rk is the weights, and f (xi, yi) is the known data at
(xi, yi), Rk is the area of the initial Voronoi diagram element for point Pk = (xi, yi). Qk is the intersection
area of Rk and newly constructed element for the point (x, y). Therefore, the method algorithm is the
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algorithm to insert an additional point into the existing Voronoi diagram. Figure 8 illustrates the visual
view of the natural neighbor interpolation method.

Figure 7. Statistical information of the data preparation step for the CYGNSS observations over a
period of three days (13 January to 15 January 2020). (A) Corrected signal-to-noise ratio (SNR) before
and after the preprocessing step. (B,C) The distribution of data according to incidence angle and
antenna gain before and after data preparation.

Figure 8. The natural neighbor interpolation method. The area of the colored circles are the interpolating
weights. The shaded area is a new Voronoi element for the point to be interpolated [48].

For CYGNSS data interpolation over our region of interest, we generated a grid with the resolution
of 0.1◦ along the geodetic longitude and latitude and applied the mentioned interpolation method.
Figure 9 shows the data before and after gridding. As can be seen from the figure, the gridded data is
more sensible compared to the satellite tracks representation. Since SNR was not equal in magnitude to
the SNRc dB, the observations and corrections made in Equation (4) resulted in magnitudes greater than
140 dB (Figure 7A). To see the anomalies of the corrected SNRc dB in a visually reasonable range [11],
140 dB was subtracted from the original SNRc dB values.
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Figure 9. The outcome of the interpolation process for the corrected SNR (SNRc dB) over the period
of three days from 13 January to 15 January 2020. (A) Representation of the CYGNSS measurements
along the satellite tracks, (B) the interpolated data at 0.1◦ × 0.1◦ grid points using the natural neighbor
interpolation method.

4.4. Evaluation and Mapping

As can be seen in Figure 4B, the flood happened in the south and middle part of the Sistan and
Baluchestan province in Iran. Figure 10 shows the flooded regions which were detected by CYGNSS
observations overlaid on the MODIS image (Figure 4B) for verification. The figure contains three
regions with significant SNR anomalies. The regions are labeled A, B, and C.

Region A in Figure 10 belongs to the Hamun-Jaz Murian depression in the southeast of Iran, placed
between the Kerman province and Sistan and Baluchestan province. The shape of the depression or
basin is oblong and enclosed by the mountains. There is a seasonal lake, Hamun, in the middle of the
basin, which has been dry through the recent dry years. Although the Halil and Bampur rivers are the
main sources of feeding for the basin, neither of both bring significant water to the basin to fill this
lake, because the water is used for agricultural purposes on the way [49,50]. Moreover, the recent flood
in January 2020 was unique in terms of flood volume over the last decade. The previous flood in this
region happened in June 2007. Figure 11 demonstrates the capability of CYGNSS measurements in the
detection and mapping of the flood over this depression.

To calculate the flooded areas using corrected SNR, a threshold was used to distinguish inundated
from noninundated areas. A simple threshold method has been used in previous studies with
monostatic and bistatic radars [11,18]. As is seen in Figures 10–13, observations with the values
greater than 11 dB corresponded to the flooded areas. This threshold was used for the detection of
inundation in this study. This value could be different in other regions. The roughness and vegetation
could weaken the signals and change the threshold. The threshold used by [11] was 12dB for the
medium-vegetation density and typical roughness.

As can be distinguished from flooded areas in Figures 11 and 12, the values of corrected SNR more
than 11 dB have a high correlation with the satellite image in the inundated region. However, minor
discrepancies could be related to georeferencing or interpolation errors. The overall evaluation of the
results using the three days of CYGNSS data reports an acceptable performance for flood detection.
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Figure 10. The georeferenced optical satellite imagery of the flood from MODIS (13 January 2020)
overlaid by the corrected signal to noise ratio derived from CYGNSS observations (13 January to 15
January 2020). The regions labeled A, B, and C show significant SNR anomalies.

Figure 11. The georeferenced optical satellite imagery of the flood over the Hamun-Jaz Murian basin
(region A in Figure 10) from MODIS (13 January 2020) overlaid by the corrected SNR derived from
CYGNSS observations (13 January to 15 January 2020).

Figure 12. The georeferenced optical satellite imagery of the flood over coastlines and inundation of
the nearby rivers (region B in Figure 10) from MODIS (13 January 2020) overlaid by the corrected SNR
derived from CYGNSS observations (13 January to 15 January 2020).

Governments could use flood maps to establish the risk regions, safe evacuation options,
and update the reaction plan. In the absence of promising and accurate flood maps, the development
processes in or nearby the risk area are affected. The community lacks a tool to guide development to
be more secure and to reduce future risks.
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Figure 13. The georeferenced optical satellite imagery of the flood over the cities of Zaboli and Suran
(region C in Figure 10) from MODIS (13 January 2020) overlaid by the corrected SNR derived from
CYGNSS observations (13 January to 15 January 2020). The region includes a river and an inland
water body.

We proceeded to map the detected inundation area. Google Maps was used here as an infrastructure
which provides information about roads, cities, villages, etc. The derived data which shows flooded
regions (data over 11 dB) was mapped on Google Maps. Figure 14 illustrates the three major regions of
flood in Sistan and Baluchestan. Due to the flood in region A, corresponding to the Hamun-Jaz-Murian
basin, the cities close to the basin, i.e., IranShahr, Eslam Abad, and Golmorti, and the roads between
them, were affected. The area of this region is about 8706 square kilometers. Region B, which is close
to the coastline and encompasses a few rivers, many cities, villages, farmlands, and roads, was also hit
by the flood. The area of this region is about 9742 square kilometers. Region C, in close proximity to
the region A, includes a river, an inland lake, and the cities Zaboli and Suran, which were affected.
The area of this flooded region is about 1196 square kilometers. Therefore, based on the estimates from
the CYGNSS observations, about 19644 square kilometers were affected by the flood in the south and
middle parts of the Sistan and Baluchestan province. More severe impacts were seen in the regions
close to the coastlines and nearby rivers.

Figure 14. Map of the flooded regions laid over Google Maps. The blue-colored polygons show the
boundary of the flooded areas, yellow lines are roads, and names of the cities are written on the map.
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5. Summary and Conclusions

We applied the GNSS-R remote sensing technique based on a dataset of spaceborne observations
of reflected GPS signals over the land to detect and map the recent flood in the southeastern part of
Iran. The flood occurred in the Sistan and Baluchestan province after the heavy rain in mid-January
2020. The dataset used was acquired from the data products of the NASA CYGNSS mission. The main
parameter of interest used in the analysis was the delay doppler map SNR, which was retrieved from
the level-1 data product. First, a data preparation procedure was applied to remove outliers and discard
low-quality data. In the next step, inverse bistatic radar formula was used to calculate the corrected
SNR, which was closely related to surface reflectivity and hydrological conditions. The corrected SNR
values were calibrated and interpolated to a regular grid over the study area. After calibration and
gridding, the corrected SNR was verified with the MODIS optical image. A threshold of about 11 dB or
more could be distinguished between the inundated and noninundated areas in the regions of interest.
Finally, the flood-affected areas were mapped on Google Maps. The area of the flooded regions was
estimated to be about 19,644 km2 or 10.8% of the province. Many cities, roads, and other infrastructures
were affected by the flood in these regions. The results indicate the regions close to depression, lakes,
and coastal areas are at a high risk of flooding in this province. This study confirms that CYGNSS data
is of value for hydrological investigations, particularly flood detection in the Sistan and Baluchestan
province. Despite a relatively short revisit time of CYGNSS observations, the spatial resolution of the
data products needs to be improved for mapping purposes. This issue could be addressed in future
missions by, e.g., increasing the number of onboard processing channels, as well as by processing the
reflected signals from other GNSS constellations such as GLONASS, Galileo, and BeiDou.
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Abstract: Synthetic Aperture Radar (SAR) is particularly suitable for large-scale mapping of
inundations, as this tool allows data acquisition regardless of illumination and weather conditions.
Precise information about the flood extent is an essential foundation for local relief workers,
decision-makers from crisis management authorities or insurance companies. In order to capture the
full extent of the flood, open water and especially temporary flooded vegetation (TFV) areas have to
be considered. The Sentinel-1 (S-1) satellite constellation enables the continuous monitoring of the
earths surface with a short revisit time. In particular, the ability of S-1 data to penetrate the vegetation
provides information about water areas underneath the vegetation. Different TFV types, such as high
grassland/reed and forested areas, from independent study areas were analyzed to show both the
potential and limitations of a developed SAR time series classification approach using S-1 data. In
particular, the time series feature that would be most suitable for the extraction of the TFV for all
study areas was investigated in order to demonstrate the potential of the time series approaches for
transferability and thus for operational use. It is shown that the result is strongly influenced by the TFV
type and by other environmental conditions. A quantitative evaluation of the generated inundation
maps for the individual study areas is carried out by optical imagery. It shows that analyzed study
areas have obtained Producer’s/User’s accuracy values for TFV between 28% and 90%/77% and 97%
for pixel-based classification and between 6% and 91%/74% and 92% for object-based classification
depending on the time series feature used. The analysis of the transferability for the time series
approach showed that the time series feature based on VV (vertical/vertical) polarization is particularly
suitable for deriving TFV types for different study areas and based on pixel elements is recommended
for operational use.

Keywords: flood mapping; temporary flooded vegetation (TFV); Sentinel-1; time series data; Synthetic
Aperture Radar (SAR)

1. Introduction

Flood events are the most frequent and widespread natural hazards worldwide and can have
devastating economic, social, and environmental impacts [1,2]. Precise and timely information
on the extent of flooding is therefore essential for various institutions such as relief organizations,
decision-makers of crisis management authorities or insurance companies [3].

Satellite Synthetic Aperture Radar (SAR) is particularly suitable for flood mapping, as this tool
supports the large-scale, cross-border detection of the affected area independent of illumination and
weather conditions [4–6]. The decisive advantage, however, is that in addition to open water surfaces,
temporary flooded vegetation (TFV) can also be detected in dependency of system and environmental
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parameters [7]. TFV are areas where water bodies temporarily occur underneath the vegetation [8]. To
avoid underestimations of the flooding, the derivation of both classes is essential to cover the entire
flood extent.

Smooth open water is characterized by low SAR backscatter values due to its specular surface. In
comparison, TFV shows a significant increase in backscatter, especially in the VV (vertical/vertical)
polarization, which is caused by the complex double- or multi-bounce interaction between smooth
open water surfaces and the structure of vegetation (e.g., tree trunks, stems) [8–10].

Most approaches are based on the backscatter intensity allowing the detection of TFV by the
identification of increased backscatter values compared to other objects (e.g., [4,11–15]). Others
utilize polarimetric decomposition and/or interferometric SAR (InSAR) coherence [7,16–19] to reduce
confusion with urban areas or to minimize the misclassification of shadowed regions as non-flooded
vegetation. Polarimetric decompositions, such as Freeman–Durden, Yamaguchi four-component,
Cloude–Pottier, or m-chi decompositions, have all been demonstrated to be suitable for the extraction
of TFV [7,20–28]. However, the availability of full polarimetric data is often limited regarding the
extent and temporal coverage.

In the literature, various methods for deriving the flood extent based on SAR data can be
found depending on the task, polarization modes, phase information, as well as spatial or temporal
resolution of the satellite sensor [29]. Some of them include, for example, visual interpretation [30],
histogram thresholding approaches [31,32], image texture-based methods [33], Markov Random Field
modeling [34], or Wishart classifications [17,35,36], which are mostly applied on single images. Change
detection techniques in combination with algorithms, such as manual or automatic thresholding [21,37]
and fuzzy logic [38,39], allow the extraction of potential changes between two images acquired under
dry and flood conditions. Change detection methods are often carried out by using absolute backscatter
values [40], which do not consider the chance intensity of backscatter values within vegetation. This
can lead to classification errors in regions with high vegetation growth variability or with different
vegetation types.

A few advanced techniques, among other machine learning techniques [11], decision tree [41], or
rule-based classification [13,42] use satellite time series [4,40,43–47] or multi-dates [11,38,48–52], which
allow the inclusion of multi-temporal, -polarized or/and ancillary information for the extraction of
temporary open water (TOW) and TFV classes. Thereby, seasonal or annual fluctuations of backscatter
and multiple observations of the same area can be used to improve the reliability of mapping the
flood extent or even the flood dynamics [43]. Moreover, the use of multitemporal approaches has been
in the past limited due to the low availability of corresponding SAR data. However, since October
2014, the Sentinel-1 (S-1) satellite constellation has continuously and systematically captured the earths
surface with C-band SAR data at short repetition time, enabling the use of SAR multi-temporal data for
systematic and operational flood monitoring. Using this data source, Tsyganskaya et al., [8] recently
showed a time series approach for the detection of TFV.

This study aims to show the potential of the SAR time series approach proposed in Tsyganskaya
et al., [8] regarding the extraction of the entire flood extent with the focus on TFV for two independent
study areas in Greece/Turkey and China. The main focus of the study is to demonstrate the impact of
the time series features on the classification results and to show their potential for operational use. The
objectives in detail are as follows:

• to investigate the relevance of polarization and time series features for the derivation of TFV with
respect to vegetation types in both study areas;

• to examine if the relevant time series features for the analyzed study areas correspond to the
relevant time series features of the previous study area (Namibia) in [8], despite the occurrence of
different vegetation types and

• to identify a single time series feature that is relevant for the extraction of different TFV types and
for all study areas in order to demonstrate the potential for the transferability and operational use
of this time series approach.
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2. Materials and Methods

2.1. Study Areas and Available Data Sets: Greece/Turkey and China

Besides the study area in Namibia described in [8], two further study areas with different vegetation
types were used for the impact analysis of time series features for the extraction of TFV. Compared
to [8] and to each other, both study areas have different vegetation types, which are described in this
section. One of the study areas is part of the Evros catchment, located at the border between Greece
and Turkey (Figure 1a) is one of the study areas.

Figure 1. Overview map with the location of the study area (red rectangle) in Greece/Turkey (a). Study
area in Greece/Turkey (Satellite data: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AeroGRID, IGN, and the GIS Use Community) (b). The red rectangles represent
the reference mask extents for northern (c), and southern (d) areas. The reference masks based on
World-View 2 data (March 11, 2015) (c) and RapidEye (April 4, 2015) data (d).

With a length of 515 km and a basin of about 52,900 km2, the Evros river represents the second
largest river in Eastern Europe. The period of highest discharge usually occurs between December and
April. Several severe, large-scale floods frequently hit the catchment area, particularly in the southern
part. The focus of the study lies on a flood event in spring 2015. The flood-affected areas consisted of
farmland and forested areas where the water remained for over several weeks. For the analysis and
classification, a time series of 60 dual-polarized S-1 scenes was used, which were acquired under the
same orbital conditions between October 2014 and December 2016 (Table 1). Five S-1 images covered
the flood event. Figure 1b shows the extent of the northern and southern areas of interest, where two
scenes, acquired on March 12, 2015 and April 5, 2015 were considered for classification as flood event
images due to their temporal proximity to reference data for the two different areas. The northern area
is dominated by TFV consisting of deciduous forest, whereby the majority of agricultural fields are

101



Water 2019, 11, 1938

entirely inundated during the flood event. In the southern part of the study area, TFV occurs mostly in
high grassland areas.

Table 1. Acquisition dates of the Sentinel (S-1) satellite data used for Greece/Turkey. The scenes
acquired on March 12, 2015 and April 5, 2015 (highlighted with blue background) were used as flood
event images for two different parts (northern and southern) of the Greece/Turkey study area.

No Date No Date No Date No Date

1 October 19,
2014

16 June 16,
2015

31 January 6,
2016

46 July 16,
2016

2 October 31,
2014

17 June 28,
2015

32 January 18,
2016

47 July
28,2016

3 November
24, 2014

18 July 10,
2015

33 January 30,
2016

48 August 9,
2016

4 December
6, 2014

19 July 22,
2015

34 February
11, 2016

49 August 21,
2016

5 December
18, 2014

20 August 15,
2015

35 February
23, 2016

50 September
2, 2016

6 December
30, 2014

21 August 27,
2015

36 March 6,
2016

51 September
14, 2016

7 January 11,
2015

22 September
8, 2015

37 March 18,
2016

52 September
26, 2016

8 February 4,
2015

23 September
20, 2015

38 March 30,
2016

53 October 2,
2016

9 February
16, 2015

24 October 2,
2015

39 April 11,
2016

54 October 14,
2016

10 March 12,
2015

25 October 14,
2015

40 April 23,
2016

55 October 26,
2016

11 March 24,
2015

26 October 26,
2015

41 May 5,
2016

56 November
7, 2016

12 April 5,
2015

27 November
19, 2015

42 May 17,
2016

57 November
19, 2016

13 April 17,
2015

28 December
1, 2015

43 May 29,
2016

58 December
1, 2016

14 May 11,
2015

29 December
13, 2015

44 June
10,2016

59 December
13, 2016

15 June 4,
2015

30 December
25, 2015

45 July 4,
2016

60 December
25, 2016

Validation of the classification was performed based on two reference masks (Figure 1c,d). The
generation of the reference data was carried out by visual interpretation and manual digitalization of
high-resolution optical WorldView-2 (Figure 2) and RapidEye (Figure 3) images, acquired on March 11,
2015 and April 4, 2015, respectively. Although the radar data and the optical image have a temporal
shift of one and two days respectively, no changes in the flood extent could be observed.
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Figure 2. High-resolution false-color (NIR (near infrared), green, blue) WorldView2 image (March 11,
2015) (© European Space Imaging/DigitalGlobe) for northern Greece/Turkey containing temporary
flooded vegetation (TFV) (a), temporary open water (TOW) (b), and dry land (DL) (c).

Figure 3. High-resolution false-color (NIR, green, blue) RapidEye image (April 04, 2015). (© Planet
Labs Inc.) for southern Greece/Turkey containing TOW (a), DL (b), and TFV (c).

The second test case is the Dong Ting Lake, which is the second largest lake in China, located in
the Hunan Province (Figure 4a). It is a flood-basin of the Yangtze River and thus varies seasonally in
size. During the annual floods, it can expand to 2691 km2 three times its size compared to the dry
season. A flood event in summer 2017 (Figure 4b) was chosen. For this study, 38 dual-polarized S-1
scenes were used, which were acquired between October 2016 and February 2018 (Table 2). The scene
acquired on June 28, 2017 is characterized by the largest flood extent. In addition, the selection of the
analyzed flood image is carried out due to the temporal proximity to the reference data. Comparable
to the study area in Greece/Turkey, the generation of the reference flood mask was carried out using a
high-resolution optical Sentinel-2 (S-2) image (Figure 5), which was acquired on June 27, 2017 (Table 2).
For the derivation of the reference mask, all bands with a resolution of 10 m and their combinations of
the S-2 scene were used. The reference extent and the digitalized reference mask is shown in Figure 4c.
No changes in flood extent were observed between the analyzed flood image and the optical scene.
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Figure 4. Overview map with the location of the study area (red rectangle) in China (a), study area in
China (b). The red rectangle represents the reference mask extent (c), which was derived from S-2 data
(June 27, 2017).

Table 2. Acquisitions dates of the S-1 satellite data used for China. The scene acquired on June 28, 2017
(highlighted with blue background) was used within this study as a flood event image.

No Date No Date No Date No Date

1 October 19,
2016

11 February
16, 2017

21 July 10,
2017

31 November
19, 2017

2 October 31,
2016

12 February
28, 2017

22 July 22,
2017

32 December
1, 2017

3 November
12, 2016

13 March 12,
2017

23 August 3,
2017

33 December
13, 2017

4 November
24, 2016

14 March 24,
2017

24 August 15,
2017

34 December
25, 2017

5 December
6, 2016

15 April 5,
2017

25 August 27,
2017

35 January 6,
2018

6 December
18, 2016

16 April 17,
2017

26 September
8, 2017

36 January 30,
2018

7 December
30, 2016

17 April 29,
2017

27 October 2,
2017

37 February
11, 2018

8 January 11,
2017

18 June 11,
2017

28 October 14,
2017

38 February
23, 2018

9 January 23,
2017

19 June 4,
2017

29 October 26,
2017

10 February 4,
2017

20 June 28,
2017

30 November
7, 2017
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Figure 5. High-resolution false-color (NIR, green, blue) Sentinel-2 image (June 27, 2017) for southern
Greece/Turkey containing DL (a), TFV (b) and TOW (c).

According to the ESA (European Space Agency) acquisition plan for S-1 constellation,
dual-polarized images of the S-1A with an interval of 12 days were available for the study areas and
the analyzed acquisition period. These data sets are processed and provided by ESA as Ground Range
Detected High Resolution (GRDH) products. According to [8], an automated preprocessing of the time
series data for both areas and both polarizations VV and VH (vertical/horizontal) was carried out in
several steps. The characteristics of all used S-1 data are listed in Table 3.

Table 3. Characteristics of the S-1 data used.

Sensor Properties Values

Wavelength Mode Interferometric Wide Swath (IW)
Polarization VV − VH
Frequency C-band (GHz)
Resolution 20 × 22 m (az. × gr. range)

Pixel spacing 10 × 10 m (az. × gr. range)
Inc. angle 30.5◦–46.3◦

Orbit Ascending
Product-level Level-1 (Ground Range Detected High Resolution

(GRDH))

In addition to the satellite data, ancillary information was used to avoid misclassification of the
desired flood-related classes [8] in both study areas. Initially, permanent open water (POW) surfaces
were identified by the 30 m SRTM Water Body Data (SWBD) [53]. Besides POW, information regarding
urban areas and topography was integrated by using the Global Urban Footprint (GUF) and Height
Above Nearest Drainage (HAND) index. Urban areas, as well as TFV, are characterized by strong
double- and multiple-bounce backscattering effects. Therefore, the GUF [54] mask is used to identify
and exclude urban areas. In order to prevent misclassifications in elevated areas, the HAND index [55]
was used to identify and exclude areas with an elevation of greater than 20 m above the nearest water
network [56].
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2.2. Methodology

The foundation for the analysis of the impact of time series features on the flood extent derivation
is the SAR time series approach [8]. This method provides the opportunity to generate flood maps
including the classes TOW, TFV and Dry Land (DL) based on different time series features. The main
steps of the classification process for the generation of the flood maps are summarized below.

The S-1 time series data presented in Section 2.1 provide a foundation for the generation of
two independent multi-temporal layer stacks for each polarization and for each study area via an
image preprocessing step. In addition, three further multitemporal stacks are generated, including
the combinations of polarization (VV + VH, VV − VH, VV/VH). The ratio between VV and VH was
calculated by using linear units, whereby for the elimination of outliers (e.g., due to speckle) only the
values within the 5th and 95th percentiles were considered.

Based on findings about characteristics and patterns for TOW and TFV [8], the time series features
were determined using the z-transform of the backscatter values for each pixel over the time series
and for the available multi-temporal layer stack. The z-transform allows the normalization of the
backscatter values over the time series and ensures that the image elements of the analyzed flood scene
are comparable with each other when considering the individual seasonal fluctuation of vegetation.
The normalized time series features are termed as Z-Score. In relation to the polarizations, the time
series features are Z-Score VV, Z-Score VH, the combination of polarization, Z-Score VV + VH, Z-Score
VV − VH and the ratio Z-Score VV/VH, which represent the foundation for the derivation of TOW
and TFV [8]. Based on training data, two time series features with the highest contribution for the
derivation of the desired classes (TOW and TFV) were identified for each study area by using Random
Forest Algorithm. These features were used in the last step of the classification approach.

The classification of the flood-related classes was carried out based on pixels and objects. The
K-means clustering algorithm [57] was applied for the generation of clusters using SAR time series data
and the analyzed flood image. The resulting multitemporal and spatial cluster images were intersected
with each other to combine multi-temporal and spatial information. The time series features, which
are based on pixels, were merged with the segmented image by averaging the corresponding values
within each object.

The hierarchical thresholding approach is the last step in the classification process chain, which
allows a successive derivation of the desired classes based on the image elements (pixels or segments).
First of all, the permanent water surfaces are identified by the SWBD mask (see Section 2.1). On the
remaining image elements, the TOW, TFV and Dry Land (DL) are then derived consecutively using the
relevant time series features. The corresponding thresholds were determined automatically using the
decision tree classifier and the above-mentioned training data. For further details and an in-depth
explanation see [8]. The implementation of the entire approach was done in Python. The quantification
of the classification accuracy of TOW, TFV, and DL was carried out using overall accuracy (OA),
producer accuracy (PA), user accuracy (UA), and kappa index (K).

In order to investigate the impact of time series features for the derivation of TFV and to show
the potential of time series features for the transferability to different study areas and thus for the
operational use, a statistical comparison of the classification accuracies based on different study areas
and TFV types was performed. Thereby, a single time series feature was searched for, which allows the
extraction of different types of TFV with high accuracy for all study areas. Besides the study areas
described in Section 2.1, the study area in Namibia, which was analyzed in Tsyganskaya et al., [8], was
also used for the investigation.

In order to identify a single time series feature, which can then be used for all study areas, the
mean value and the coefficient of variation (CV) were determined based on user accuracy (UA) and
producer accuracy (PA) for each time series feature. The mean value represents the total accuracy
for the TFV classification of all study areas and for each time series feature. The higher the mean
value, the more relevant is the time series feature for all study areas. In addition, the CV was used
to quantify the variance of the data relative to the mean. The variance of the values is particularly
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relevant with regard to the outliers in UA and PA. The lower the CV, the lower the distance/scatter
between the classification accuracies of the study areas for a time series feature and the more relevant
is a time series feature for all study areas and thus for their transferability. Thus, the two statistical
quantities allow the comparison between the classification results and the time series features for all
study areas simultaneously.

3. Results and Discussion

3.1. Level of Contribution of the Time Series Features

Based on the knowledge about the characteristics and patterns of the time series data for the
two polarizations and their combinations, time series features were derived [8]. Using training data
for each of the study areas, those features were examined for their relevance to the extraction of the
desired classes, TOW and TFV. For this purpose, similarly large training data sets were derived from
optical images for the three classes TOW, TFV, and DL and for each of the study areas. Using Random
Forest Algorithm, it was identified which time series features provide the highest contribution to
the classification results and are, therefore, most relevant for the derivation of flood-related classes.
Furthermore, it was examined whether a single time series feature or a combination of time series
features enables the highest classification accuracy for the two desired classes. As a result, redundant
information can be sorted out and the information required for classification identified.

Tables 4 and 5 show the level of contribution of the analyzed time series features for the derivation
of the above-mentioned classes and the three study areas. Z-Score VV + VH represents the time series
feature with the highest contribution for TOW for all study areas (Table 5). This can be explained by
the fact that for both VV and VH polarizations the backscatter values decrease at the analyzed date of
the flood [8]. An example of the backscatter value decrease in VV and VH is shown in Figure 6, which
was created for a TOW segment from the validation data. Z-Score VV + VH combines both sources of
information, whereby the decrease of the backscatter values is intensified. Figure 2b shows the enlarged
view of the high-resolution WorldView2 image, demonstrating the presence of the corresponding
TOW at the analyzed flood date. Further examples of TOW and the analyzed extent of study areas
in southern Greece/Turkey and China are demonstrated in Figures 3a and 5c. In addition to both
polarizations, the multi-temporal behavior of the Normalized Difference Vegetation Index (NDVI)
values for the same time-period is displayed in Figure 6 serving as a comparison to the SAR time
series data. NDVI values were derived from the LANSAT 8 data sets. Despite the cloud-related data
gap for 2014, the beginning of 2015 and the beginning of 2016, a strong decrease in the NDVI values
for the analyzed date of the flood event can be observed. In combination with the decrease of the
backscatter values, this confirms the occurrence of water at the analyzed date. For the classification of
TFV, different time series features with the highest contribution or relevance can be identified for the
individual study areas. The differences can be attributed to the different types of vegetation and the
different environmental conditions in the study areas.

Table 4. Random forest importance analysis of the time series features for TOW and individual study areas.
The rows highlighted in blue represent the time series features with the highest contribution (importance).

Southern
Greece/Turkey (%)

Northern
Greece/Turkey (%)

China (%)

Z-Score VV 35.64 29.26 31.35
Z-Score VH 15.51 23.07 24.61

Z-Score VV + VH 39.44 35.3 33.37
Z-Score VV – VH 5.91 7.33 3.87
Z-Score VV/VH 3.51 5.08 6.81
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Table 5. Random forest importance analysis of the time series features for TFV and individual study
areas. The rows highlighted in green represent the time series features with the highest contribution
(importance).

Southern
Greece/Turkey (%)

Northern
Greece/Turkey (%)

China (%)

Z-Score VV 32.61 28.39 33.21
Z-Score VH 2.79 11.30 17.32

Z-Score VV + VH 18.66 21.53 33.84
Z-Score VV – VH 41.57 16.37 8.56
Z-Score VV/VH 4.38 22.41 7.10

Figure 6. Multitemporal behavior of the backscatter intensity for TOW areas for VV (decibel (dB)), VH
(dB), VV/VH (linear scale), and Normalized Difference Vegetation Index (NDVI) values in northern
Greece/Turkey. The blue bars mark the analyzed date at the flood event.

For the study area in southern Greece/Turkey, the Z-Score VV − VH is the most relevant time series
feature for the derivation of TFV (Table 5). This can be explained by the strong difference between the
polarizations VV and VH (Figure 7). Thereby, VV polarization shows a strong increase at the flood
date compared to the rest of the time series and VH polarization shows low or almost no increase at
the flood date.

108



Water 2019, 11, 1938

Figure 7. Multitemporal behavior of the backscatter intensity for TFV areas for VV (dB), VH (dB),
VV/VH (linear scale), and NDVI values in southern Greece/Turkey. The blue bars mark the analyzed
date at the flood event.

The different behavior of both polarizations can be explained by the different sensitivity of VV
and VH to specific backscattering mechanisms, which caused an increased difference in the backscatter
values between the two polarizations at the analyzed date of the flood. In comparison, the difference
between the polarizations for the dry dates shows a smaller variability. The different sensitivity is on
the one hand due to the fact that the double-bounce effect occurs more strongly in the VV polarization
and leads to the backscatter. On the other hand, backscatter is in general lower for cross-polarization
(HV or VH), as no ideal corner reflectors can be produced due to their depolarizing properties [5,58,59].
As a result, it is reported that the increase of the backscatter values by TFV can be more reliably
detectable by co-polarized data than by cross-polarized data [60]. However, the combination of co- and
cross-polarized data can improve the identification of TFV [26]. The NDVI values in Figure 7 confirm
that the increase in VV polarization was not caused by seasonal or other changes in vegetation, but is
flood-related, as no sudden increase in NDVI values could be identified at the flood date.

For the study area in northern Greece/Turkey, Z-Score VV is the most relevant feature (Table 5).
As previously mentioned in Section 2.1, this study area is dominated by deciduous forest (Figure 2a),
which was under leaf-on conditions at the date of the flood. It should be noted that the penetration
of the forest canopy may be restricted by C-band and environmental parameters (e.g., aboveground
biomass) [61,62]. Yu and Satschi [63] reported that the SAR backscatter values increase depending on
the biomass and that the soil signal can no longer be detected if a certain degree of saturation has been
reached. Thereby, the volume scattering from the canopy completely superimposes the contribution
of the double bounce effects from the interaction between the water surface and vertical vegetation
structure and TFV can no longer be identified. Therefore, there is hardly any signal difference between
VV and VH at the flood date (Figure 8), which is confirmed by the low importance of Z-Score VV −
VH. Compared to that the small increase in importance of the VV/VH can be explained by a small
proportion of TFV in the forested areas due to limited penetration into the forest crown, as described
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above. In the case of northern Greece/Turkey the importance increases, because the outliers were
eliminated by using the Z-Score VV/VH feature. For southern Greece/Turkey on the contrary, using the
Z-Score VV/VH the outlier reduction caused also an elimination of extreme values caused by TFV. This
led to a drop of the importance in VV/VH in comparison to the Z-Score VV − VH. Regarding the most
relevant time series feature Z-Score VV for the northern Greece/Turkey study area, it is assumed that
the backscatter in VV polarization is dominated by the contribution of the forest canopy and moreover
the volume scattering represents the main scattering mechanism. Due to the sensitivity of the VV
polarization for the double bounce effect, however, a slight increase in the backscattering values at the
flood date was detected, which can indicate TFV (Figure 8). The NDVI values were derived from the
LANDSAT 8 data and show that the slight increase of the backscatter values in both polarizations at
the date of flood can be attributed to the flood event and not to any change in vegetation.

Figure 8. Multitemporal behavior of the backscatter intensity for TFV areas for VV (dB), VH (dB),
VV/VH (linear scale), and NDVI values in northern Greece/Turkey. The blue bars mark the analyzed
date at the flood event.

For the study area in China, Z-Score VV + VH represents the most relevant time series feature
for the derivation of the TFV (Table 5). The time series feature indicates that in both polarizations an
increase of the backscatter values has occurred at the analyzed date of the flood. This can be confirmed
in Figure 9. Both polarizations increase at the analyzed flood date, whereas the stronger increase
can be observed in VV polarization. The sum of the two polarizations intensifies the increase of the
backscatter values at the same date. Although only a few cloud-free optical Sentinel-2 images are
available that cover the study area in China for the analyzed time period, it can be observed that there
is no increase in the NDVI values at the analyzed flood date (Figure 9). This leads to the deduction
that the increase in SAR time series data is not related to phenological changes. Figure 5b shows a
high-resolution Sentinel-2 image demonstrating the presence of the corresponding TFV area at the
analyzed flood date.
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Figure 9. Multitemporal behavior of the backscatter intensity for TFV areas for VV (dB), VH (dB),
VV/VH (linear scale), and NDVI values in China. The blue bars mark the analyzed date at the
flood event.

Since the TFV type is high grassland and reed (Figure 5b) [64], which is similar to the structure of
some crops (rice, wheat), it is assumed that the vegetation can be penetrated by the C-band data [10,65].
Therefore, it is expected that the increase in backscatter values will occur at the time of the flood
in the VV polarization due to their sensitivity to the double impact effect. However, the increase
in VH polarization cannot be confirmed by the depolarizing property mentioned above. Instead,
the latter increase is a result of the combination of environmental parameters. The contribution of
the soil under the vegetation plays a decisive role in this process. Due to of possible unevenness
of the soil (microtopography) and the low water level, it is possible that a part of the soil surface
beneath the vegetation was only partially flooded. In the flood-free areas underneath the vegetation,
the soil moisture may have increased at the date of the flood compared to non-flooded conditions.
Simultaneously, water could have accumulated in the sinks, which could also lead to standing water
beneath vegetation in the same region. Due to different sensitivities of VV and VH to the respective
conditions, the latter can dominate the respective polarization. The analyses from the literature confirm
that an increase in soil moisture in both VV and VH causes an increase in the backscatter values and
can be detected by the sensor depending on the biomass amount [66,67]. The TFV, which is represented
by the double-bounce effect, can only be detected by VV polarization, as the depolarizing property of
VH polarization does not allow sensitivity to double-bounce [68]. The mixture of these two cases by
micro topographical differences explains the increase not only of backscatter values for VV, but also for
VH and, thus, the relevance of Z-Score VV + VH for the derivation of TFV in the study area of China.

A comparison of the relevant time series features with the results of the study of Tsyganskaya
et al., [8] shows that for the class TOW, Z-Score VV + VH is also one of the time series features with
the highest contribution. For TFV, the most relevant time series characteristic (Z-Score VV − VH)
is confirmed only for the study area in the southern area of interest of Greece/Turkey. In the other
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two example areas, the algorithm determined different relevant time series features due to different
environmental conditions (e.g., vegetation type, topography, soil moisture) and their interaction.

Based on a previous analysis in Tsyganskaya et al., [8], the time series feature with the highest
contribution can achieve a higher classification accuracy compared to the combination of all time
series features. Therefore, a single time series feature with the highest contribution was used for the
classification for deriving the desired classes. This identification step is performed automatically by
the algorithm using training data. Moreover, these examples show that the use of both polarizations is
relevant for the derivation of flooded areas.

3.2. Classification Results

The classification of the study area in southern Greece/Turkey was carried out based on the S-1
time series stack (October 19, 2014–December 25, 2016) containing the flood image (April 4, 2015). This
classification was validated using the S-2-based reference mask (April 5, 2015). Figure 10a shows the
pixel-based classification result of the time series approach, which comprises the classes POW, TOW,
TFV, and DL, while Figure 10b shows the object-based classification result. For visual comparison, the
validation mask is shown in Figure 1d. It is noticeable that the areas of the classes TOW, TFV, and
DL contain more small structures of the other classes in the pixel-based classification compared to
the object-based classification. The usage of objects reduces this noise; however, it also can lead to
the loss of details and thus information. In general, the use of pixel- or object-based classification
depends strongly on the kind of the landscape under investigation. In the case of flooding in vegetated
areas, a single, isolated pixel could contain water ponds and so differ from its neighboring pixels. Due
to limited visibility in optical data, these areas could not be identified during the generation of the
validation mask.

Figure 10. Pixel-based classification result (a), object-based classification result (b) for the study area in
southern Greece/Turkey.

For the study area in northern Greece/Turkey, the classification is based on the S-1 time series
stack (October 19, 2014–December 25, 2016), with the flood image being acquired on March 12, 2015.
Validation of this classification was performed using the S-2-based reference mask (March 15, 2015).
Figure 11a shows the pixel-based classification result for the study area of northern Greece/Turkey,
which comprises the classes POW, TOW, TFV, and DL, while Figure 11b shows the object-based
classification result. Compared to the validation mask (Figure 1c), both pixel- and object-based
classification show only a low representativity of the class TFV. This can be explained by the low
penetration of the vegetation (deciduous forest (Figure 2a)) by the C-band data, which is reduced
in this case [8]. In addition, occasional TFV areas in the classification can be identified in DL of the
validation mask, especially in the pixel-based classification. These could be small areas of water (ponds
or temporary water accumulations). In combination with vertical structures of the agricultural areas or
grassland, the double bounce effect can also be produced resulting in an increase in the backscatter
values at the date of the flood. These areas were also classified as TFV, though they could not, however,
be identified during the generation of the validation mask due to limited visibility in optical data.
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Figure 11. Pixel-based classification result (a) and object-based classification result (b) for the study
area in northern Greece/Turkey.

The classification for the study area in China was performed using the S-1 time series stack
(October 19, 2016–February 23, 2018). The analyzed date of the flood is June 28, 2017. The validation
for this classification was performed using the S-2-based reference mask (June 27, 2017). Figure 12a,
b show the pixel- and object-based classification results with POW, TOW, TFV, and DL classes. The
validation mask used is shown in Figure 4c.

Figure 12. Pixel-based classification result (a), object-based classification result (b) and validation mask
(c) for the study area in China.

The comparison between the classification results and the validation mask reveals the occurrence
of TOW in DL. DL also occurs between the permanent water surfaces and the TOW areas. On the one
hand, the confusion between these two classes can arise due to small areas of water occurring in the
agricultural areas. On the other hand, the duration of a flood event can lead to an accumulation of
S-1 images, containing the inundation and a decrease of images without flooding. This can cause a
higher fluctuation range and a lower mean value when generating the time series features, which in
particular can lead to confusion with DL, as the areas between permanent water and TOW demonstrate.
The combination of these two conditions makes the above-mentioned confusions between the classes
possible. Therefore, the use of a time series with at least one vegetation cycle is recommended, as
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the statistical range of the backscatter values of the vegetation stages is detected and thus sufficiently
represented [8].

The accuracy values for the pixel-based and object-based classifications for the respective study
areas are shown in Table 6. The OA for all study areas ranges between 80% and 87%. In comparison,
in [8] the authors achieved a similar or even slightly lower OA for the pixel-based (75%) and object-based
(82%) classification. The accuracy assessment for the study area in northern Greece/Turkey shows high
values for the TOW class but strong misclassifications for TFV (PA: 28% for pixel-based and 6% for
object-based) and DL (UA: 57% for pixel-based and 53% for object-based). This indicates a significant
confusion between these two classes and can be explained by different environmental conditions (see
Section 3.1). The accuracy values show no significant difference between pixel-based and object-based
classification, except for the PA values of TFV. When applying object-based classification, it should be
noted that the small-scale flood areas could be generalized by merging the pixels to objects. However,
object-based classification can help to exclude pixels which can be confused with a flood-related
increase in values due to dominant environmental conditions, such as soil moisture, topography, or
surface roughness, which can cause a small-scale increase or decrease in the backscatter. In addition,
objects are less susceptible to speckle noise than pixels [29].

Table 6. Accuracy assessment for the pixel- and object-based classification for the individual study
areas. Overall accuracy (OA) in %, Producer accuracy (PA) in %, User accuracy (UA) in %, and Kappa
index (K).

Southern Greece/Turkey
(%)

Northern Greece/Turkey
(%)

China (%)

Pixel-based Object-based Pixel-based Object-based Pixel-based Object-based

DL—UA 76.64 77.62 56.65 53.25 85.26 87.66
TOW—UA 86.53 86.87 97.58 98.23 79.73 85.65
TFV—UA 90.37 92.17 76.83 73.86 78.28 83.01
DL—PA 77.86 79.61 91.67 96.60 69.89 78.95
TOW—PA 85.94 86.38 91.02 91.67 90.47 91.14
TFV—PA 89.52 90.09 28.18 6.32 90.09 91.23

OA 84.26 85.17 81.47 79.59 81.37 85.84
Kappa 0.76 0.78 0.66 0.63 0.71 0.78

3.3. Time Series Features—Transferability Analysis

For the transferability analysis of the classification approach, several pixel-based and object-based
classification runs were carried out for each study area and its subareas using the individual time
series features. For each run, the most relevant time series feature (Z-Score VV + VH) was used for
the derivation of TOW (Section 3.1). Simultaneously, each time series feature was used in each study
area to derive the TFV, so that 20 pixel-based and 20 object-based classification products could be
generated. For each result, an accuracy assessment was performed. Since the analysis of the different
time series features refers to the TFV, the PA and UA of TFV were selected as indicators to represent
the classification accuracy of the TFV. The accuracy values PA and UA for the individual study areas
and the five analyzed time series features for pixel-based classification are shown in Table 7 and for
object-based classification in Table 8. The relevant time series features that were identified by the
Random Forest Algorithm (Section 3.1) are highlighted in dark green for the respective study areas
for the PA and UA values. These tables show that different time series features are relevant for the
individual study areas. The low PA values seen for northern Greece in both tables can be explained by
the specific TFV type that dominates this study area, namely flooded forest areas. In this case, the
penetration of the forest crown is limited by C-band data, whereby the water under the vegetation can
only be partially detected.
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Table 7. The accuracy values PA and UA of the pixel-based classification for the individual study
areas as a function of the five analyzed time series features. The relevant time series features for
the individual study areas, which were identified by the Random Forest Algorithm (Section 3.1) and
corresponding PA and UA values are highlighted in dark green. Optimum of statistical variables (mean
value of UA / PA and coefficient of variables) for time series features is highlighted in light green.

Z-Score VV Z-Score VH Z-Score VV +
VH

Z-Score VV −
VH

Z-Score VV/VH

UA PA UA PA UA PA UA PA UA PA

Namibia 88.72 78.43 47.11 90.52 85.64 82.38 92.62 69.96 67.90 86.32
China 82.26 92.65 51.26 99.30 78.28 90.09 52.37 99.24 44.46 99.50

North Greece 76.83 28.18 50.34 0.81 65.85 3.26 37.10 4.71 68.58 56.72
South Greece 96.10 77.17 35.25 42.22 94.89 53.17 90.37 89.52 60.85 93.48

Mean values of
UA and PA

77.54 52.10 69.18 65.74 72.23

Coefficient of
variance

0.22 0.41 0.36 0.47 0.18

Table 8. The accuracy values PA and UA of the object-based classification for the individual study
areas as a function of the five analyzed time series features. The relevant time series features for
the individual study areas, which were identified by the Random Forest Algorithm (Section 3.1) and
corresponding PA and UA values are highlighted in dark green. Optimum of statistical variables (mean
value of UA / PA and coefficient of variables) for time series features is highlighted in light green.

Z-Score VV Z-Score VH Z-Score VV +
VH

Z-Score VV −
VH

Z-Score VV/VH

UA PA UA PA UA PA UA PA UA PA

Namibia 84.05 80.71 49.26 17.47 84.37 5.99 54.93 89.29 76.1 91.2
China 82.38 92.65 62.51 92.46 83.01 91.23 66.68 97.06 42.86 97.86

North Greece 73.86 6.32 50.35 0.82 65.99 3.29 48.61 2.92 68.75 57.22
South Greece 97.05 87.81 26.90 31.64 98.52 75.19 92.17 90.09 65.20 92.74

Mean values of
UA and PA

75.57 41.43 63.44 67.72 73.99

Coefficient of
variance

0.31 0.62 0.52 0.40 0.19

As described in the methodology, two quantities, mean value and CV, were derived based on the
UA and PA values to provide a foundation for the identification of a single robust time series feature
for the derivation of TFV types and for all study areas. If a time series feature reaches a high mean
value compared to other time series features and shows at the same time the smallest CV, it is relevant
for all study areas. Considering Tables 7 and 8, it is not apparent which time series feature would
be suitable since the two statistical variables achieve the optimum at different time series features
(highlighted in light green). The Z-Score VV shows the highest mean value (77.54%) for pixel-based
classification and (75.57%) for object-based classification compared to other time series features, but
Z-Score VV/VH shows the lowest CV value (0.18) for pixel-based and (0.19) for object-based.

For a distinct identification of the most relevant time series feature, the two statistical variables
have to be considered simultaneously. In Figure 13, the two quantities are plotted on two different
axes. The larger the mean value and the smaller the CV, the more suitable is a time series feature for
the extraction of TFV for all study areas. The lower right corner of the diagram is thus the point that
represents the optimum between both statistical quantities. The closer a time series feature lies to this
optimum, the more relevant is the time series feature for all study areas.
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Figure 13. Comparison of pixel-based time series features as a function of mean value and coefficient
of variation. The statistical values (mean value and coefficient of variance) were calculated on the basis
of the PA and UA accuracy values.

Compared to other time series features, Z-Score VV is the shortest regarding the distance between
the optimum and the time series feature for pixel-based classification (Figure 13). Thus, this time series
feature seems to be the most relevant for the operational derivation of the class TFV, when using pixels
as a foundation. The relevance of Z-Score VV is due to the fact that VV polarization is more influenced
by the double-bounce effect indicating the presence of TFV. In comparison, VH is more influenced by
different environment conditions and may change for different TFV types and study areas (Section 3.1).
The distances of the Z-Score VV/VH to the optimal point differ from the distance between the Z-Score
VV and optimal point only slightly. This shows that VH polarization also has an influence on the
classification results and can be important in combination with VV polarization provided that the
environmental conditions in the analyzed study area are known and characterized.

This relevance is also shown in Figure 14, where the relevant feature based on objects is the
Z-Score VV/VH, which contains both polarizations. Based on the findings in Section 3.1, which show
that the increase in the VV time series at the date of the flood for TFV is more significant compared to
the VH time series because the VH signal is influenced more by environmental conditions than by TFV,
the Z-Score VV feature based on pixel elements is recommended for operational use. In addition, the
mean value of UA and PA for the pixel-based classification for the Z-Score VV time series feature is
highest (77.54%) compared to all other mean values of UA and PA. The combination of Z-Score VV +
VH and Z-Score VV/VH based on pixel elements is recommended for operative use for extraction of the
TOW and TFV, respectively. When no feature importance has to be calculated during the classification
and the pre-processing of the S-1 data [8] has already taken place, the classification process takes
between 1 and 5 minutes, depending on the available computing performance and the extent of the
study area. The maximum extent that was analyzed is one-third of S-1 GRD images. By specifying the
time series features the user, interaction is omitted and apart from the initialization of the algorithm
the classification can be performed automatically. For the optimization and extension of the approach
regarding different TFV types, further research in other study areas will be beneficial.
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Figure 14. Comparison of object-based time series features as a function of mean value and coefficient
of variation. The statistical values (mean value and coefficient of variance) were calculated on the basis
of the PA and UA accuracy values.

4. Conclusions

The results of the study areas in northern and southern Greece/Turkey and in China show the
potential of the method presented in Tsyganskaya et al., [8] using S-1 time series data to extract the
total flood extent considering both temporary open water (TOW) and temporary flooded vegetation
(TFV). In particular, different types of TFV were analyzed. The individual flood extent was determined
by time series features, which represent the characteristics of both classes.

This study confirms the results of the study of Tsyganskaya et al., [8], showing that the Z-Score
VV+VH, which was derived based on the characteristics mentioned above, is the most relevant time
series feature for the extraction of the TOW areas in all study areas. For the derivation of TFV, three
different time series features were determined by the algorithm for individual study areas. This can be
explained by the complex structure of the vegetation, the various analyzed vegetation types, and the
dependency of the TFV on environmental conditions (e.g., vegetation type, soil moisture, topography),
which differ in all study areas. Nevertheless, in the results for all study areas OA values reached
between 80% and 87%, which were slightly higher even compared to the results in [8]. For the study
area in northern Greece, the TFV areas could only partially be derived based on the C-band data due to
the presence of forested vegetation, which reduces the penetration of the SAR signal. In both other
study areas, TFV in high grassland/reed was successfully classified.

The potential of the time series approach for transferability as a prerequisite for operational use
was analyzed by comparing time series features with respect to their suitability for the derivation
of TFV for all study areas simultaneously. For the comparison, statistical quantities were derived
from the classification accuracies PA and UA of the TFV. For TFV, Z-Score VV, or Z-Score VV/VH
appear to be the most relevant time series feature for pixel-based and object-based classification,
respectively. Nevertheless, Z-Score VV is recommended for operational use based on pixel elements
for the extraction of TFV as this allows improved differentiation to non-flood dates due to the more
significant increase in the VV time series for TFV at the date of the flood compared to the VH time
series. The Z-Score VV + VH is recommended for the extraction of TOW surfaces, because of the
unanimity regarding the feature importance calculation for all study areas (Section 3.1). Since the time
series features have been defined and no feature importance needs to be calculated, the user interaction
is reduced to the initialization of the classification process and the computation time decreases.
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Overall, the approach can be used for irregularly occurring flood events, as well as for irregularly
acquired S-1 images. It is flexible for individual applications depending on the vegetation and takes
account of the seasonal changes by the use of multitemporal data. The presented SAR time series
approach lays the cornerstone for automatic flood detection on a global scale, allowing the detection of
the entire flood extent by supplementing the TOW with TFV areas.

Author Contributions: The concept of this study was developed by V.T., P.M. and S.M., while V.T. was responsible
for the implementation, which included the preparation of data, generation and validation of flood classification
maps, and methodological comparison of relevant features and their discussion.

Funding: This work is funded by the Federal Ministry for Economic Affairs and Energy (BMWi), grant number
50 EE1338.

Acknowledgments: The WorldView-2 imagery was kindly provided by European Space Imaging Ltd. (EUSI).
The RapidEye imagery was kindly provided by Planet Labs Inc.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. The International Disaster-Emergency Events Database (EMDAT). OFDA/CRED International Disaster Database;
Université catholique de Louvain: Brussels, Belgium, 2019; Available online: https://www.emdat.be (accessed
on 1 August 2019).

2. Centre for Research on the Epidemiology of Disasters (CRED); The United Nations Office for Disaster Risk
Reduction (UNISDR). 2018 Review of Disaster Events. 2019. Available online: https://www.emdat.be/
publications (accessed on 31 August 2019).

3. Klemas, V. Remote Sensing of Floods and Flood-Prone Areas: An Overview. J. Coast. Res. 2014, 31, 1005–1013.
[CrossRef]

4. Cazals, C.; Rapinel, S.; Frison, P.-L.; Bonis, A.; Mercier, G.; Mallet, C.; Corgne, S.; Rudant, J.-P. Mapping and
Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A
Images. Remote Sens. 2016, 8, 570. [CrossRef]

5. Martinis, S.; Rieke, C. Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the
Context of Flood Mapping at River Saale, Germany. Remote Sens. 2015, 7, 7732–7752. [CrossRef]

6. Pulvirenti, L.; Pierdicca, N.; Chini, M. Analysis of Cosmo-SkyMed observations of the 2008 flood in Myanmar.
Ital. J. Remote Sens. 2010, 42, 79–90. [CrossRef]

7. Brisco, B.; Shelat, Y.; Murnaghan, K.; Montgomery, J.; Fuss, C.; Olthof, I.; Hopkinson, C.; Deschamps, A.;
Poncos, V. Evaluation of C-Band SAR for Identification of Flooded Vegetation in Emergency Response
Products. Can. J. Remote Sens. 2019. [CrossRef]

8. Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. Detection of Temporary Flooded Vegetation Using
Sentinel-1 Time Series Data. Remote Sens. 2018, 10, 1286. [CrossRef]

9. Moser, L.; Schmitt, A.; Wendleder, A. Automated Wetland Delineation from Multi-Frequency and
Multi-Polarized SAR Images in High Temporal and Spatial Resolution. ISPRS Ann. Photogramm. Remote
Sens. Spat. Inf. Sci. 2016, 3, 57–64. [CrossRef]

10. Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. Monitoring Flood Evolution in Vegetated Areas Using
COSMO-SkyMed Data: The Tuscany 2009 Case Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6,
1807–1816. [CrossRef]

11. Betbeder, J.; Rapinel, S.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multitemporal Classification of
TerraSAR-X Data for Wetland Vegetation Mapping. J. Appl. Remote Sens. 2014, 8, 83648. [CrossRef]

12. Chapman, B.; McDonald, K.; Shimada, M.; Rosenqvist, A.; Schroeder, R.; Hess, L. Mapping Regional
Inundation with Spaceborne L-Band SAR. Remote Sens. 2015, 7, 5440–5470. [CrossRef]

13. Evans, T.L.; Costa, M.; Tomas, W.M.; Camilo, A.R. Large-Scale Habitat Mapping of the Brazilian Pantanal
Wetland. A synthetic aperture radar approach. Remote Sens. Environ. 2014, 155, 89–108. [CrossRef]

14. Hess, L. Dual-Season Mapping of Wetland Inundation and Vegetation for the Central Amazon Basin. Remote
Sens. Environ. 2003, 87, 404–428. [CrossRef]

118



Water 2019, 11, 1938

15. Lang, M.W.; Kasischke, E.S.; Prince, S.D.; Pittman, K.W. Assessment of C-band synthetic aperture radar data
for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic Region, USA. Remote Sens.
Environ. 2008, 112, 4120–4130. [CrossRef]

16. Chini, M.; Papastergios, A.; Pulvirenti, L.; Pierdicca, N.; Matgen, P.; Parcharidis, I. SAR coherence and
polarimetric information for improving flood mapping. In Proceedings of the 2016 IEEE International
Geoscience & Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 7577–7580.

17. Morandeira, N.; Grings, F.; Facchinetti, C.; Kandus, P. Mapping Plant Functional Types in Floodplain
Wetlands. An Analysis of C-Band Polarimetric SAR Data from RADARSAT-2. Remote Sens. 2016, 8, 174.
[CrossRef]

18. Touzi, R.; Deschamps, A.; Rother, G. Wetland Characterization using Polarimetric RADARSAT-2 Capability.
Can. J. Remote Sens. 2007, 33, S56–S67. [CrossRef]

19. Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR Data for Detecting Floodwater in Urban and
Agricultural Areas: The Role of the Interferometric Coherence. IEEE Trans. Geosci. Remote Sens. 2016, 54,
1532–1544. [CrossRef]

20. Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-band SAR Data for Wetlands Mapping.
Int. J. Remote Sens. 2001, 22, 71–88. [CrossRef]

21. Gallant, A.; Kaya, S.; White, L.; Brisco, B.; Roth, M.; Sadinski, W.; Rover, J. Detecting Emergence, Growth,
and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR) Data. Water 2014,
6, 694–722. [CrossRef]

22. White, L.; Brisco, B.; Pregitzer, M.; Tedford, B.; Boychuk, L. RADARSAT-2 Beam Mode Selection for Surface
Water and Flooded Vegetation Mapping. Can. J. Remote Sens. 2014, 40, 135–151.

23. Brisco, B.; Schmitt, A.; Murnaghan, K.; Kaya, S.; Roth, A. SAR Polarimetric Change Detection for Flooded
Vegetation. Int. J. Digit. Earth 2011, 6, 103–114. [CrossRef]

24. De Grandi, G.F.; Mayaux, P.; Malingreau, J.P.; Rosenqvist, A.; Saatchi, S.; Simard, M. New Perspectives on
Global Ecosystems from Wide-Area Radar Mosaics. Flooded forest mapping in the tropics. Int. J. Remote
Sens. 2010, 21, 1235–1249. [CrossRef]

25. Dabboor, M.; White, L.; Brisco, B.; Charbonneau, F. Change Detection with Compact Polarimetric SAR for
Monitoring Wetlands. Can. J. Remote Sens. 2015, 41, 408–417. [CrossRef]

26. Zhao, L.; Yang, J.; Li, P.; Zhang, L. Seasonal Inundation Monitoring and Vegetation Pattern Mapping of the
Erguna Floodplain by Means of a RADARSAT-2 Fully Polarimetric Time Series. Remote Sens. Environ. 2014,
152, 426–440. [CrossRef]

27. Koch, M.; Schmid, T.; Reyes, M.; Gumuzzio, J. Evaluating Full Polarimetric C- and L-Band Data for Mapping
Wetland Conditions in a Semi-Arid Environment in Central Spain. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2012, 5, 1033–1044. [CrossRef]

28. Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applicationsvol; CRC Press: Boca Raton, FL,
USA, 2009; p. 142.

29. Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-based Detection of Flooded Vegetation–A Review
of Characteristics and Approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [CrossRef]

30. Chini, M.; Pulvirenti, L.; Pierdicca, N. Analysis and Interpretation of the COSMO-SkyMed Observations of
the 2011 Japan Tsunami. IEEE Geosci. Remote Sens. Lett. 2012, 9, 467–471. [CrossRef]

31. Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood Extent Mapping for Namibia using Change Detection and
Thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [CrossRef]

32. Voormansik, K.; Praks, J.; Antropov, O.; Jagomagi, J.; Zalite, K. Flood Mapping with TerraSAR-X in Forested
Regions in Estonia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 562–577. [CrossRef]

33. Horritt, M.S.; Mason, D.C.; Luckman, A.J. Flood Boundary Delineation from Synthetic Aperture Radar
Imagery Using a Statistical Active Contour Model. Int. J. Remote Sens. 2001, 22, 2489–2507. [CrossRef]

34. Martinis, S.; Twele, A. A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using
Multi-Temporal X-Band SAR Data. Remote Sens. 2010, 2, 2240–2258. [CrossRef]

35. Chen, Y.; He, X.; Wang, J.; Xiao, R. The Influence of Polarimetric Parameters and an Object-Based Approach
on Land Cover Classification in Coastal Wetlands. Remote Sens. 2014, 6, 12575–12592. [CrossRef]

36. Plank, S.; Jüssi, M.; Martinis, S.; Twele, A. Mapping of Flooded Vegetation by Means of Polarimetric Sentinel-1
and ALOS-2/PALSAR-2 imagery. Int. J. Remote Sens. 2017, 38, 3831–3850. [CrossRef]

119



Water 2019, 11, 1938

37. Karszenbaum, H.; Kandus, P.; Martinez, J.M.; Le Toan, T.; Tiffenberg, J.; Parmuchi, G. Radarsat SAR
Backscattering Characteristics of the Parana River Delta Wetland, Argentina; ESA Publication: Auckland,
New Zealand, 2000.

38. Pierdicca, N.; Chini, M.; Pulvirenti, L.; Macina, F. Integrating Physical and Topographic Information into a
Fuzzy Scheme to Map Flooded Area by SAR. Sensors 2008, 8, 4151–4164. [CrossRef] [PubMed]

39. Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An Algorithm for Operational Flood Mapping from
Synthetic Aperture Radar (SAR) Data using Fuzzy Logic. Nat. Hazards Earth Syst. Sci. 2011, 2, 529–540.
[CrossRef]

40. Bouvet, A.; Le Toan, T. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong
River Delta. Remote Sens. Environ. 2011, 115, 1090–1101. [CrossRef]

41. Martinez, J.; Le Toan, T. Mapping of Flood Dynamics and Spatial Distribution of Vegetation in the Amazon
Floodplain using Multitemporal SAR Data. Remote Sens. Environ. 2007, 108, 209–223. [CrossRef]

42. Hess, L.L.; Melack, J.M.; Affonso, A.G.; Barbosa, C.; Gastil-Buhl, M.; Novo, E.M.L.M. Wetlands of the
Lowland Amazon Basin. Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1
Synthetic Aperture Radar. Wetlands 2015, 35, 745–756. [CrossRef]

43. Schlaffer, S.; Chini, M.; Dettmering, D.; Wagner, W. Mapping Wetlands in Zambia Using Seasonal Backscatter
Signatures Derived from ENVISAT ASAR Time Series. Remote Sens. 2016, 8, 402. [CrossRef]

44. Ferreira-Ferreira, J.; Silva, T.S.F.; Streher, A.S.; Affonso, A.G.; de Almeida Furtado, L.F.; Forsberg, B.R.; de
Moraes Novo, E.M.L. Combining ALOS/PALSAR derived vegetation structure and inundation patterns to
characterize major vegetation types in the Mamirau? Sustainable Development Reserve, Central Amazon
floodplain, Brazil. Wetlands Ecol. Manag. 2015, 23, 41–59. [CrossRef]

45. Lee, H.; Yuan, T.; Jung, H.C.; Beighley, E. Mapping wetland water depths over the central Congo Basin
using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sens. Environ. 2015, 159, 70–79.
[CrossRef]

46. Li, J.; Chen, W. A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data.
Int. J. Remote Sens. 2005, 22, 5051–5069. [CrossRef]

47. Marti-Cardona, B.; Dolz-Ripolles, J.; Lopez-Martinez, C. Wetland inundation monitoring by the synergistic
use of ENVISAT/ASAR imagery and ancilliary spatial data. Remote Sens. Environ. 2013, 139, 171–184.
[CrossRef]

48. Bourgeau-Chavez, L.; Lee, Y.; Battaglia, M.; Endres, S.; Laubach, Z.; Scarbrough, K. Identification of Woodland
Vernal Pools with Seasonal Change PALSAR Data for Habitat Conservation. Remote Sens. 2016, 8, 490.
[CrossRef]

49. Zhang, M.; Li, Z.; Tian, B.; Zhou, J.; Zeng, J. A Method for Monitoring Hydrological Conditions Beneath
Herbaceous Wetlands Using Multi-temporal ALOS PALSAR Coherence Data. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2015, 6, 221–226. [CrossRef]

50. Evans, T.L.; Costa, M. Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal
Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery. Remote Sens. Environ. 2013,
128, 118–137. [CrossRef]

51. Grings, F.M.; Ferrazzoli, P.; Karszenbaum, H.; Salvia, M.; Kandus, P.; Jacobo-Berlles, J.C.; Perna, P. Model
investigation about the potential of C band SAR in herbaceous wetlands flood monitoring. Int. J. Remote
Sens. 2008, 29, 5361–5372. [CrossRef]

52. Lang, M.W.; Kasischke, E.S. Using C-Band Synthetic Aperture Radar Data to Monitor Forested Wetland
Hydrology in Maryland’s Coastal Plain, USA. IEEE Trans. Geosci. Remote Sens. 2008, 46, 535–546. [CrossRef]

53. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1485. [CrossRef]

54. Esch, T.; Taubenböck, H.; Roth, A.; Heldens, W.; Felbier, A.; Thiel, M.; Schmidt, M.; Müller, A.; Dech, S.
TanDEM-X Mission—New Perspectives for the Inventory and Monitoring of Global Settlement Patterns.
J. Appl. Remote Sens. 2012, 6, 061702. [CrossRef]

55. Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND,
a New Terrain Descriptor Using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia.
Remote Sens. Environ. 2008, 112, 3469–3481. [CrossRef]

56. Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based Flood Mapping: A fully Automated Processing
Chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [CrossRef]

120



Water 2019, 11, 1938

57. Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin, Germany, 2013.
58. Lewis, F.M.; Henderson, A.J. Principles and Applications of Imaging Radar: Manual of Remote Sensingvol; Wiley:

New York, NY, USA, 1998; Volume 2.
59. Marti-Cardona, B.; Lopez-Martinez, C.; Dolz-Ripolles, J.; Bladè-Castellet, E. ASAR Polarimetric, Multi-Incidence

Angle and Multitemporal Characterization of Doñana Wetlands for Flood Extent Monitoring. Remote Sens.
Environ. 2010, 114, 2802–2815. [CrossRef]

60. Hess, L.L.; Melack, J.M.; Simonett, D.S. Radar Detection of Flooding Beneath the Forest Canopy: A review.
Int. J. Remote Sens. 1990, 11, 1313–1325. [CrossRef]

61. Sang, H.; Zhang, J.; Lin, H.; Zhai, L. Multi-Polarization ASAR Backscattering from Herbaceous Wetlands in
Poyang Lake Region, China. Remote Sens. 2014, 6, 4621–4646. [CrossRef]

62. Woodhouse, I.H. Introduction to Microwave Remote Sensing; CRC Press Taylor & Francis: Boca Raton, FL,
USA, 2006.

63. Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote
Sens. 2016, 8, 522. [CrossRef]

64. Hu, J.-Y.; Xie, Y.-H.; Tang, Y.; Li, F.; Zou, Y.-A. Changes of Vegetation Distribution in the East Dongting Lake
After the Operation of the Three Gorges Dam, China. Front. Plant Sci. 2018, 9, 582. [CrossRef] [PubMed]

65. Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; Artech House: Norwood,
Switzerland, 2015.

66. Bousbih, S.; Zribi, M.; Lili-Chabaane, Z.; Baghdadi, N.; El Hajj, M.; Gao, Q.; Mougenot, B. Potential of
Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors 2017, 17, 2617.
[CrossRef]

67. Kasischke, E.S.; Smith, K.B.; Bourgeau-Chavez, L.L.; Romanowicz, E.A.; Brunzell, S.; Richardson, C.J. Effects
of Seasonal Hydrologic Patterns in South Florida Wetlands on Radar Backscatter Measured from ERS-2 SAR
Imagery. Remote Sens. Environ. 2003, 88, 423–441. [CrossRef]

68. Kwoun, O.; Lu, Z. Multi-temporal RADARSAT-1 and ERS Backscattering Signatures of Coastal Wetlands in
Southeastern Louisiana. Photogramm. Eng. Remote Sens. 2009, 75, 607–617. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

121





water

Article

Integrating C- and L-Band SAR Imagery for Detailed
Flood Monitoring of Remote Vegetated Areas

Alberto Refice 1,*, Marina Zingaro 2, Annarita D’Addabbo 1 and Marco Chini 3

1 National Research Council—Institute for Electromagnetic Sensing of the Environment (CNR-IREA),
70126 Bari, Italy; annarita.daddabbo@cnr.it

2 Earth and Geoenvironmental Science Department, University of Bari, 70125 Bari, Italy;
marina.zingaro@uniba.it

3 Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science
and Technology (LIST), L-4422 Belvaux, Luxembourg; marco.chini@list.lu

* Correspondence: alberto.refice@cnr.it

Received: 4 September 2020; Accepted: 28 September 2020; Published: 30 September 2020

Abstract: Flood detection and monitoring is increasingly important, especially on remote areas
such as African tropical river basins, where ground investigations are difficult. We present an
experiment aimed at integrating multi-temporal and multi-source data from the Sentinel-1 and
ALOS 2 synthetic aperture radar (SAR) sensors, operating in C band, VV polarization, and L band,
HH and HV polarizations, respectively. Information from the globally available CORINE land cover
dataset, derived over Africa from the Proba V satellite, and available publicly at the resolution of
100 m, is also exploited. Integrated multi-frequency, multi-temporal, and multi-polarizations analysis
allows highlighting different drying dynamics for floodwater over various land cover classes, such as
herbaceous vegetation, wetlands, and forests. They also enable detection of different scattering
mechanisms, such as double bounce interaction of vegetation stems and trunks with underlying
floodwater, giving precious information about the distribution of flooded areas among the different
ground cover types present on the site. The approach is validated through visual analysis from
Google EarthTM imagery. This kind of integrated analysis, exploiting multi-source remote sensing to
partially make up for the unavailability of reliable ground truth, is expected to assume increasing
importance as constellations of satellites, observing the Earth in different electromagnetic radiation
bands, will be available.

Keywords: flood monitoring; ALOS 2; Sentinel-1; multi-sensor integration; multi-temporal inundation
analysis; Zambesi-Shire river basin

1. Introduction

Satellite remote sensing plays an important role in the observation of flood events [1–3].
Synthetic aperture radar (SAR) imagery is particularly useful for water extent detection [4–6],
thanks to its all-weather, day/night imaging capabilities. The availability of frequent SAR acquisitions
is enabling unprecedented timeliness and accuracy in modeling and monitoring of inundation
phenomena [7–10]. A further advantage of SAR sensors is the possibility of better recognizing
floodwater in different ground conditions, thanks to their insensitivity to confusing factors such as
water color, and the high sensitivity of the microwave radiation to water surfaces. The latter determines
the appearance of open, calm water as dark in a SAR image; moreover, SAR often permits detecting
water beneath vegetation, thanks to the capacity of microwaves to penetrate below the vegetation
canopy. This allows detecting the double-bounce mechanism that increases with the presence of water
under vegetation [11]. Various parameters affect this scattering mechanism depending on radiation
features (wavelength and polarization) and surface conditions (vegetation height, incidence angle,

Water 2020, 12, 2745; doi:10.3390/w12102745 www.mdpi.com/journal/water

123



Water 2020, 12, 2745

water level, and soil moisture) [12]. For instance, penetration under foliage of vegetated canopies
increases with wavelength, so that L-band sensors (wavelength of about 24 cm) are more sensitive
than C-band sensors (wavelength of the order of 5 cm) [13]. The latter characteristic renders L-band
data more and more attractive for the monitoring of wetlands [14,15].

The investigation of inundation phenomena through SAR data on vegetated areas is often
performed through an integrated analysis [16,17]: different spectral bands can be exploited to identify
distinct backscattering mechanisms. The combination of analytical techniques and data overlap can
help determine the response of flooded areas with distinct vegetation cover to the microwave signal.
This is useful especially in cases, which actually constitute the majority, in which ground data are scarce
or not available. In fact, availability of ground truth during inundation events is a rare occurrence,
mainly due to the typical short warning times, and the difficult situation on the ground caused by
the meteorological conditions and the flood events themselves, especially in less developed countries,
where access to particular areas can be even more difficult. In such cases, integration of several data
sources, heuristic inference, and data processing techniques can often make up for missing ground
truth, allowing to retrieve significant information about the types of land cover and how they are
affected by the flood [18].

The present study investigates the application of multi-temporal, multi-frequency,
and multi-polarization SAR data, in synergy with globally-available land cover data, for improving
flood mapping in vegetated areas. The Zambezi-Shire area features a variegated surface cover:
wetlands, open and closed forest, cropland, grassland (herbaceous and shrubs), and a few urban areas.
The presence of low and high vegetation (typical of the tropical landscape), and the alternated proximity
of bare soil or scarcely vegetated areas requires interpreting the behavior of different land cover classes
in different conditions (flooded/not flooded). We show how the combination of various analytical
techniques and the simultaneous availability of data with different frequencies and polarizations can
help to recognize the response of flooded areas with distinct vegetation cover to the microwave signal.
This integrated approach is finalized to explore and refine information increase and data synergy for
flood mapping.

We focus on a particular event occurred in late January–early February 2015 in an area located
between the Zambezia and Tete provinces, Mozambique. We select SAR images acquired in L and
C band (ALOS 2 and Sentinel-1, respectively), before and during the event, in order to analyze the
spatial and temporal evolution of the inundation by taking advantage of their different wavelength
and polarization. We show how C-band images can be integrated with dual-polarized, L-band
ALOS 2 images, co- and pre-event; this helps highlighting different responses of flooded areas to
the radar signal, caused by diversified land cover and synergy between different wavelengths and
polarizations when acquired simultaneously. L-band images have a higher penetration within the
forest canopy than C-band images, and, in most cases, cross-polarized (HV or VH) signals have a lower
double-bounce effect than co-polarized ones (HH and VV) on vegetated areas, where e.g. HV stands
for horizontally-polarized transmit, vertically-polarized receive backscattering, etc. [19]. This diversity
(in wavelength and polarization) gives more information about the scattering mechanism of the surface,
and therefore contributes to isolate different scattering classes thus better recognizing land cover
types [3,12].

In our study, we analyze phenomena of backscattering decrease and increase, determining flooded
and non-flooded areas through heuristic interpretation of different backscattering behaviors, isolated
through K-means clustering and compared to classes from the CORINE land cover database. Results are
analyzed in correspondence with optical Google EarthTM imagery and red-green-blue (RGB) channel
combinations of SAR data. In this way, the recognition of flooded regions is combined with the
information of the type of vegetation, supporting the interpretation of interaction effects between the
water surface and the radar signal.

By considering this starting point (i.e., the potential of diverse SAR data) and the characteristics of
the region (i.e., the confluence of Zambezi-Shire rivers, recurrently flooded, characterized by short and
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tall vegetation), this study represents a test case to experiment the value of multi-source SAR data
integrated with medium resolution land cover data for distinguishing flooded areas on various land
cover types, without availability of full-fledged ground truth data acquired on the field.

2. Study Area

The Zambezi river basin, one of the largest in Africa, has a complex morphology and
a heterogeneous surface cover. These characteristics and the repeated occurrence of flood events in the
catchment make it particularly suitable for the monitoring of flooded areas through multi-temporal
analysis. Several studies investigated the interrelation between the hydro-morphologic features of the
Zambezi River, their evolution over time and the periodic inundations, by exploiting Earth observation
data [20–23].

The basin, large about 1.4 million km2, is located in south-eastern Africa (Figure 1a) and
spreads over eight countries (Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania, Zambia,
and Zimbabwe). The fluvial system is composed by the Zambezi River with its major tributaries (Congo,
Cuando, Kafue, Luangwa, and Shire) and by the two dams of Kariba and Cahora Bassa. The course
of the river can be divided into three main segments that represent different geomorphological
units—Upper, Middle and Lower Zambezi—in which the river morphology changes in relation to
the physiographic regions. Between the towns of Mutarara and Chimuara, the Lower Zambezi is
characterized by the confluence with the main tributary, the Shire River, whose headwaters are in Lake
Malawi. From the lake, the Shire River flows southwards, traversing gauges, rapids, and waterfalls
until it forms a broad floodplain extending from Chikwawa to the confluence with the Zambezi,
crossing the Elephant and Ndindi marshes and the Ilha de Inhangoma region. The latter, created by
splitting the Zui Zui channel into the Shire River after a harmful flood in 1840, represents a region
of interest, because recurrently subject to floods (Figure 1b). In fact, when the Zambezi is in flood,
the (channeled) overflow pours into the Shire increasing its streamflow, until it exceeds and floods the
valley [24]. This condition occurs with the reaching of peak flow (January–March) in the Zambezi and
Shire rivers, during the wet season (November–April). The hydrology of the fluvial system, in fact,
is determined by the seasonality of rainfall and water levels patterns, which, however, are conditioned
by climate change and anthropic impact (flow regulation, i.e., dams) [23,25,26]. The variability of the
natural processes (morphologic, hydrologic, and climate dynamics) has been modified strongly during
the last decades, influencing the predictability of flood cycles and the consequent natural environment
and anthropic landscape (villages, croplands, human activities, etc.) [27,28]. Moreover, as mentioned
in the introduction, a variegated surface cover characterizes the area.

Figure 1. (a) Location of the Zambezi River basin, (b) enlarged view with footprints of the Satellite
imagery—green: Sentinel-1 (ascending and descending), cyan: ALOS 2, (2 frames); (c) detail map with
locations and toponyms described in the text; (d) CORINE land cover map for the region of interest,
with legend.
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3. Materials

ALOS-2 PALSAR 2 (A2) and Sentinel-1 (S1) data were collected over adjacent, partially superposed
orbits, in the dates and with the acquisition parameters listed in Table 1. Acquisition footprint locations
are shown in Figure 1b. The two A2 scenes (two frames per date) are acquired in L band, in the FBD
(Fine-Beam Double polarization) mode, in the HH and HV polarization channels, with ~10 × 10 m2

ground resolution, in ascending geometry. S1 images are acquired in C band, in the IW (Interferometric
Wide-Swath) mode, in VV polarization, with 20 × 5 m2 (azimuth × range) resolution, in both ascending
and descending geometries. Incidence angles are roughly comparable for all the used imagery, with 32◦
for A2 and 36◦ to 42◦ for S1 (S1 IW images have more than 15 degrees variation in incidence angle
from ~30◦ at near to ~46◦ at far range: here we approximate the values for the selected area within the
wide swath frame).

As can be seen from Table 1, one A2 acquisition is available on 9 February 2015, during the event,
while one pre-flood image was acquired on 1 December 2014. S1 data are acquired with a 12-days
repeat cycle in the period of interest. In our case, both ascending and descending acquisitions are
considered, with intervals of 12 and 6 days. The higher frequency of acquisition of S1 images allows
to better follow the event, with one acquisition in late January and 4 acquisitions in February 2015.
One additional acquisition on 22 April 2015, is used as reference. All intensity images were calibrated,
speckle filtered [29], geocoded and converted to dB scale.

We also use the CORINE land cover database [30], available at a resolution of 100 × 100 m2 over
the African continent to interpret the backscattering evolution in time at different frequencies and
polarizations. Although obtained by temporally averaged data from the Proba V satellite, such map
contains sufficient information to characterize terrain typologies. The portion of the CORINE land
cover map for the study area is shown in Figure 1c, with its standard color map legend.

All data were resampled to a ground resolution of 20× 20 m2 through a nearest neighbor algorithm.

Table 1. Details on the used imagery. A = ascending, D = descending geometry. Images indicated in
red bold text color are those selected for the subsequent multi-frequency analysis.

Sensor Date Polarization Geometry

ALOS 2 1 December 2014 HH, HV A
Sentinel-1 29 December 2014 VV D
Sentinel-1 22 January 2015 VV D
Sentinel-1 3 February 2015 VV D

ALOS 2 9 February 2015 HH, HV A
Sentinel-1 15 February 2015 VV D
Sentinel-1 21 February 2015 VV A
Sentinel-1 27 February 2015 VV D
Sentinel-1 22 April 2015 VV A

4. Methods

4.1. Preliminary Analysis—Detection of Open Floodwater as Decrease of Backscattering Value

One important aspect of flood monitoring is the possibility to follow an event in time. This is
achievable at basin or larger scales through use of remotely sensed data acquired with high temporal
frequency. SAR data are particularly sensitive to drops in microwave backscattering due to the presence
of open water on the terrain surface. SAR data time series can be thus exploited, even in synergy with
e.g., optical data [31], to compute multi-temporal maps illustrating the evolution of an event, such as
the progressive draining of flooded areas, according to the topography and other hydraulic terrain
characteristics [8,18].

Determining the extent of open water in a multi-temporal stack can be difficult when dealing
with vegetated areas, as absolute backscatter drops may depend, e.g., on local conditions of wind or
vegetation height. Several solutions have been proposed to retrieve reliably open water in time series
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of SAR images, relying, e.g., on harmonic analysis to model periodic flooding [7], or interpretation of
backscatter time signatures [9]. We use clustering, a well-known methodology for data exploration and
analysis. We adopt one of the best-known algorithms for data clustering, i.e., K-means. The K-means
algorithm [32] iteratively assigns each element of a multi-dimensional feature space (the pixels’
backscatter values in our case), assumed Gaussian-distributed, to one among a pre-defined number
of clusters, choosing the one with the shorter (Euclidean) distance, then recalculating cluster centers
until convergence.

Here, we perform clustering of pixel backscatter values on the multi-temporal stack of images.
We use a relatively large number of clusters (K = 32), to avoid neglecting small clusters of pixels with
distinct behavior. We then inspect the retrieved clusters spatially and spectrally (i.e., the backscatter
values of the cluster centers), to identify areas undergoing flood in each image. The clustering
helps focusing on pixel sets which better follow expected backscatter change with respect to an
unflooded image, neglecting other uninteresting typologies. This approach partly follows the core
methodology delineated in the DAFNE algorithm [33], with a few differences. First of all, the automatic
computation of prior probability values for the various clusters when L band signals are considered
is not yet implemented in the DAFNE toolbox, so a heuristic procedure is used for this step. In fact,
the experimental results here obtained can be considered as a useful study to opportunely integrate
the software. Then, we do not have reliable ancillary data to precisely constrain spatially the flood
phenomenon around the river course, as wetlands and other flooded terrain types are spread over
a rather large surface in the river basin.

We here select the clusters with centroid values which best represent expected backscatter levels
for each typology of flooded/non-flooded terrain, thus obtaining a multi-temporal representation of
the flood evolution by considering areas inundated at different dates. Such multi-temporal flood maps
are finally “classified” by assigning them to their corresponding CORINE class, in order to understand
how the open floodwater is distributed over the different land cover classes.

The left panel in Figure 2 shows the multi-temporal flood map obtained from S1 data. The map
shows several areas around the main Shire river course, which are flooded only on the first imaged date
of the event, i.e., 22 January 2015 (in light blue), and then gradually dry, so that smaller areas appear
flooded from the first to each of the subsequent dates, from 3 February 2015 until 27 February 2015
(in darker blue tones). The darkest blue areas are those identified as water in the flood-free image
acquired after the event, on 22 April 2015, taken as reference. Note that the Shire river course, clearly
visible in the bottom part of the map, appears correctly in dark blue.

The right panels show the six successive flood maps derived from the S1 acquisitions, colored
according to the underlying CORINE land cover classes, reported in the legend in Figure 1. It can
be seen that the largest flooded area, in the first date, covers several class types, spanning cropland
(pink pixels, spread throughout the whole region), herbaceous wetlands (blue-green areas at the
center/bottom), all four types of broadleaf forest (evergreen/deciduous, open/closed, corresponding
to different shades of green, present especially close to the center-right of the area), and herbaceous
vegetation (yellow areas mostly in the bottom-left). As the flooded area shrinks, in the following dates,
it affects less and less herbaceous vegetation and cropland, leaving mostly wetlands and a few forested
areas as flooded in the last date.

This is confirmed by analyzing quantitatively the number of pixels detected as (open-water) flood
in each CORINE class, for each of the S1 acquisitions, as reported in Figure 3 It can be seen how, on the
first event date, the CORINE class most affected by flood is the Deciduous Broadleaf Open Forest,
followed by Wetlands, Cropland, and Herbaceous Vegetation. The quantity of flooded pixels in the
Deciduous Broadleaf Open Forest class decreases, during the evolution of the event, to approximately
1/5 at the end of the period. Herbaceous Wetland pixels are the second most populated class in the first
date, but they become the first one from the second date onward. Cropland, Herbaceous Vegetation
and Deciduous Broadleaf Open Forest all show similar decreasing trends, while Deciduous Broadleaf
Close Forest shows smaller areas throughout the whole imaged period. Other classes appear more

127



Water 2020, 12, 2745

marginally affected. Notably, the areal extent of both the Permanent and Temporary Water Bodies
classes remain practically constant throughout the event, thus qualitatively confirming the consistency
of the analysis.

Figure 2. Left: multi-temporal flood map for an area of the Shire basin, obtained by Sentinel-1 images.
Areas with darker colors are flooded for longer periods, thus depicting the shrinking of the flooded
surface from the first (22 January 2015), up to the last flood date (27 February 2015) reported in the
legend. Darkest areas are covered by permanent water (at the post-event date of 22 April 2015).
Right: maps of flooded areas on each of the 6 S1 acquisition dates, with colors corresponding to the
CORINE land cover classes (shown in Figure 1).

Figure 3. Estimation of the areas flooded for each CORINE land cover class, in the sequence of Sentinel-1
images. Colors in the legend follow the standard CORINE class labels shown in Figure 1.
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It can be noticed that many areas at the center-right of the maps in Figure 2 appear not flooded in
any of the acquisition dates, thus looking like “holes” in the maps. By looking at the overall CORINE
map in Figure 1b, these appear to correspond mostly to forested areas. This observation is thus
compatible with the interpretation that C-band radiation is not able to penetrate thick (“closed”, in the
CORINE terminology) forest cover. However, many of the closed forest undetected areas appear to
be spatially close, or even surrounded, by areas detected as flooded. As no significant topography is
present in the area, it is presumable that at least part of these forested areas are indeed flooded beneath
the canopy, although C-band microwaves cannot “see” through the thick forest stands.

One last observation about the C-band multi-temporal analysis is that, as appears in both the maps
in Figure 2 and the plots in Figure 3, the flooded area between 3 and 15 February 2015 appears identical.
In our K-means clustering analysis, this comes from the fact that it was not possible to determine
statistically significant pixel clusters showing different flood behavior on these two dates. In fact,
an RGB combination of the two Sentinel-1 intensity images acquired on 3 February 2015 (red channel)
and 15 February2015 (green and blue channel), reported in Figure 6a below, shows that very little
appears to change from one date to the other, as very few red or cyan colored pixels are visible within
the area interested by the flood. This allows to confirm empirically that, between these two dates,
the situation on the ground is substantially stationary, as suggested by the previous multi-temporal
analysis. As a consequence, the available A2 image, acquired on 9 February 2015, can be investigated
in synergy with one of the two S1 acquisitions, treating the S1-A2 imagery as a multi-frequency dataset
referred essentially to the same snapshot in time. This is investigated in Section 4.2 below.

The same analysis as the one just presented on C-band data has been performed for the L-band
stack, composed by only two images, one acquired before and one during the flood event. In this case,
analysis is limited to the “permanent water” areas detected in the pre-event image, and the open water
areas in the single co-event image. Figure 4 shows on the left the multi-temporal map in the same color
code as the one on the left of Figure 2, and on the right the two maps corresponding to the two dates,
with each pixel classified and colored according to the corresponding CORINE map. By comparing
the multi-temporal maps in Figures 2 and 4, some differences can be noticed. First of all, as expected,
the multi-temporal map obtained from A2 data appears slightly more “dense” (i.e., with less empty
areas) in the central part of the basin with respect to that obtained from S1.

Another observation concerns the distribution of land cover classes affected by the flood in the
two cases. As noted above, S1 data allow to conclude that the situation on the ground between
the dates of 3 and 15 February is substantially the same; nevertheless, the flood map realized from
A2 data, dated 9 February (the rightmost map in Figure 4), appears to have different quantities
of yellow (corresponding to herbaceous vegetation), pink (corresponding to crops) and light green
(deciduous open forest) pixels than the corresponding ones from S1. This is confirmed by looking
at the estimated areas covered by open flood water for each CORINE class in the two A2 dates,
reported in Figure 5. A higher area covered by open forest can be noticed, and at the same time smaller
areas corresponding to herbaceous vegetation and cropland. This comparison, taking for valid the
assumption of stationary ground situation between the two dates of 3 and 15 February, shows that the
interaction and backscattering of L-band microwaves with flooded terrain is slightly but significantly
different than that pertaining to C-band radiation.
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Figure 4. Left: multi-temporal open-water flood map for the Shire basin, obtained by ALOS-2 images.
Areas with darker colors are flooded for longer periods, thus depicting the evolution of the flooded
surface from the first, pre-event to the second, co-event image, as reported in the legend. Right: maps of
flooded areas on each of the 2 A2 acquisition dates, with colors corresponding to the CORINE land
cover classes (shown in Figure 1).

Figure 5. Estimation of the areas flooded for each CORINE land cover class, in the sequence of Sentinel-1
images. Colors in the legend follow the standard CORINE class labels.

To further delve in this matter, in Figure 6b we show a RGB combination of the SAR backscatter of
the A2 (HH) images acquired on 1 December 2014 (red channel), and on 9 February 2015 (green and
blue channels): as can be seen, some groups of red pixels, which are the areas exhibiting lowering of
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backscatter in L band, correspond to the ones which are dark in Figure 6a, i.e., open flood water in
both the co-event C-band images. However, some cyan areas are also visible in correspondence of
C-band dark areas. Moreover, some areas in the lower-left part of the basin appear bright in C band
(panel a) and dark in L band (panel b). These large differences between the two images confirm the
presence of areas with different penetration and thus different microwave interaction in images from
the two sensors.

Figure 6. (a) RGB combination of the two S1 images acquired on 3 (red) and 15 (green and blue
channels) February 2015. (b) RGB combination of the A2 images acquired on 1 December 2014 (red)
and 9 February 2015 (green and blue channels).

4.2. Statistical Multi-Sensor Backscatter Analysis of Land Cover Classes

We now adopt the dataset shown in red color in Table 1, which includes one pre-event and
one co-event image for each type, one S1 pair in VV polarization, and two A2 pairs in HH and HV
polarizations, respectively, as a multi-sensor stack referring to the same situation on the ground.
To gain some further insight into the different types of land cover present on the ground, we analyze
statistically the backscatter signatures of the various CORINE land cover classes. In Figure 7 we report
the histograms of the SAR intensities for pixels belonging to the land cover classes present over the
area, selected by using masks obtained by the CORINE map.

As can be seen, Shrubs and Cropland exhibit a slight increase of backscatter (the peaks move to
higher values) from pre- to co-event imagery in C band (up to 1 dB), but a more consistent one in L
band (3–5 dB). This could be due to the presence of double bounce effects in flood conditions, which is
known to increase backscatter up to several dB. A moderate increase of backscatter (peaks shift of about
1 dB in both bands) is also detected on the Urban class, although sample population is much reduced in
this case. Deciduous Broadleaf Open and Closed Forest classes exhibit a less uniform behavior, with an
appreciable increase registered only in L band and HH polarization (A2-HH), while in both L-band
HV and C-band VV images, the intensity distributions do not change consistently. Open forest seems
to exhibit smaller secondary peaks at very low backscatter levels (approximately between −20 and
−25 dB), possibly corresponding to flooded forest patches. Similar lower secondary peaks are just
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barely visible in pixels corresponding to closed forest, as could be expected from a lower penetration
of the thicker canopy.

Figure 7. Histograms of synthetic aperture radar (SAR) intensities over the CORINE land cover classes
found on the image, for (a) C band, (b) L band.

Some types of land cover exhibit clearly bimodal intensity distributions in at least some of the SAR
image bands. This is evident for classes such as Herbaceous Vegetation (in L band), and Herbaceous
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Wetland (in both bands). The former exhibits just a small (~1 dB) increase in the peak backscatter value
in C band; in L band, pre-flood backscatter exhibits a peak at very low values in both polarizations,
as well as a second one at higher values, while in co-event images the first peak appears much lower,
and the secondary peak shifts up by 2–3 dB. The latter (Herbaceous Wetland) exhibits a clear increase
in the low-intensity peak in C band from pre- to co-event data; in L band, both polarizations show
a consistent increase and a small shift of the low-intensity peak from pre- to co-event. Both Open and
Closed Evergreen Broadleaf Forest show bimodal histograms in co-event images, while pre-event data
show very small to null low-intensity peaks.

Bi- or sometimes tri-modality can also be observed for Permanent and Temporary Water Bodies,
with small shifts from pre- to co-event conditions. The presence of several peaks is likely due to the
lower resolution of the CORINE data with respect to the SAR ones, so that many pixels falling in the
Permanent/Temporary Water Bodies CORINE class (mostly located on and around the river course)
actually correspond to other land cover classes on the ground; the lower peak in C-band VV backscatter
seems to correspond to two separate peaks in L-band HH data, while L-band HV is still bimodal,
although with distributions shifted by −6/−10 dB.

These results already confirm a consistent increase in information brought about by the use of
multi-frequency data. As is often the case, especially for remote regions such as those in African
countries, where validation or updating campaigns are difficult, the land cover map may contain
some difference with respect to the actual situation on the ground. To further refine our inference,
we analyze in higher detail the S1-A2 integrated multi-frequency dataset.

4.3. Multi-Frequency and Multi-Polarization Floodwater Mapping

As mentioned above, the backscattering properties of terrain surfaces, as well as their changes due
to inundation events, depend on the wavelength of the radar sensor. In thickly vegetated areas, floods
may affect different types of ground environments, exhibiting different vegetation densities and other
terrain properties, so that detecting exhaustively floodwater in such cases can be difficult. For instance,
it is important to be able to detect flooded vegetation, besides open water areas. This is possible thanks
to the so-called double bounce phenomenon, in which microwaves can be scattered back towards
the sensors after bouncing on the surface and the vertical vegetation structures (tree trunks or plant
stems). In other cases, more sparse and thin vegetation, such as grass or shrubs, may appear darker
when flooded in SAR images acquired at longer wavelengths, as the diffusion effect of the canopy is
weaker. Vice versa, shorter wavelengths may give rise to enhanced backscatter from such vegetation in
flood conditions.

After the preliminary analyses described in the previous sections, we are now ready to use the
complementarity of the A2 L-band image acquired during the flood, with both its polarization channels
(HH-HV), and the S1 C-band one, to gain some further insight into the different types of land cover
present on the ground and their backscattering response in presence of floodwaters, thanks to the
multi-frequency (and multi-polarization) stack of C- (VV) and L-band (HH and HV) pre- and co-flood
image built in the previous sections. This stack presents a variety of behaviors, including backscatter
decrease and increase for various vegetation types and flood conditions, caused by phenomena such
as specular reflection, double bounce, or wind. To better interpret such huge wealth of information,
this stack is again processed through K-means with a number of clusters sufficient to isolate backscatter
change signatures. The number of clusters is then reduced through a merging procedure which
iteratively joins the two clusters with minimum Battachaarya distance. Finally, the most interesting
clusters are interpreted by comparing their signatures and change with the CORINE land cover
information. The algorithm is thus composed by the following steps:

1. Full data stack (multi-temporal, -frequency, and -polarization) clustering, where the first guess
for clusters number is the double of land cover classes available. In our case, the number of
available classes is provided by CORINE land cover map and each class is assumed to be flooded
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or non-flooded. The only exception is the permanent water class that cannot change its state
during the flood event.

2. Clusters number reduction.
3. Classification of each cluster based on the mean values of input features and the dominant land

cover class.

5. Results

As described above, our data are arranged in a 6-dimensional array, containing the six SAR
intensities corresponding to the entries in red in Table 1. We begin our analysis by heuristically
choosing a number of clusters equal to 21, which corresponds to the number of CORINE classes present
on the area (11), considered in both flooded and unflooded conditions, with the obvious exception of
permanent water areas.

Figure 8 shows a map of the clustered image, spanning the whole area covered by the image
frames, where pixels clusters are represented in different colors. To ease interpretation, 3 scatter
plots are also shown in the figure, showing the 21 cluster center positions in each of the 3 planes
spanned by the pre-flood and the flood backscatter values in each channel (indicated as times t0 and t1,
respectively). As can be seen, the map shows some cluster centers which appear relatively compact
spatially, while others are more scattered throughout the area. In the scatter plots, cluster centers
which fall farther from the main diagonal (shown as a dashed line in each plot) exhibit the most
interesting behaviors.

Some cluster centers appear above the scatter plots’ diagonals, at least in some cases. These are
likely to correspond to double bounce phenomena due to flooded vegetation, leading to increased
backscatter in one or more channels. It appears, however, that many cluster centers of this kind are very
close to each other, suggesting their possible belonging to the same class on the ground. In practice,
it appears that the postulated initial number of clusters (21) is too high with respect to what can
be actually distinguished in the data, and thus a lower number may be more acceptable. However,
which one is the best? The choice of the most suitable cluster number is a long-standing problem
in data analysis, and several methods have been developed to deal with it. A common practice is
to start from a relatively large number of clusters, then merge “close” clusters iteratively, according
to some distance measure, until satisfying some quality criterion. Such a hierarchical approach has
been adopted, e.g., in [34], by using available ground truth as a reference. Here, we adopt a similar
approach, stopping the clustering procedure when a heuristic criterion of homogeneity is reached.

We proceed as follows: starting from the maximum number of clusters (21 in this case), we merge
together the two clusters which have the smallest Bhattacharyya distance [35] from each other, iterating
the process until being left with only two clusters encompassing the whole dataset. At each iteration,
we re-compute the coordinates of the cluster centers (as average of the coordinates of the points
belonging to that cluster).

In Figure 9 we show the minimum Bhattacharyya distance computed between the various clusters,
as a function of the number of clusters. The measure stays relatively constant as clusters are decreased
from 21 to about 12 (moving from right to left in the plot), then has a general increasing trend as clusters
are reduced further, with some fluctuations, reaching the maximum value for just 2 clusters. We take
the position of the approximate discontinuity in the trend described above as the “optimal” value,
through the following reasoning: while pairing clusters above the “optimal” number, the minimum
distance is only slightly affected—i.e., we are likely merging bulks of very close clusters. As the last
cluster of these bulks is merged with its closest member, then larger distances begin to be left in the
data, and thus the minimum Bhattacharyya distance increases. So, our “optimal” cluster number is the
one after which the minimum distance begins to increase appreciably. This corresponds, in our case,
to the number of 12 clusters.
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Figure 8. Left: K-means cluster map obtained with K = 21 clusters. Right: the three scatterplots show
the cluster centers in the 3 planes whose axes are the 3 channels backscatter values in the pre- and flood
acquisition dates. Cluster numbers are reported next to each colored dot to facilitate recognition in the
legend and thus in the map.

Figure 9. Minimum Bhattacharyya distance as a function of the number of clusters in the
multi-frequency dataset.

Figure 10 then shows the corresponding clustered map, together with the same scatter plots as
in Figure 8, for this “optimal” number of 12 clusters. Here, more uniformly spaced cluster centers
are visible. In addition to those corresponding to permanent water (n.9 in this case), and open water
flooded areas (n.8), we notice cluster n. 11, which corresponds to an increase of about 8 dB in L band,
while exhibiting no significant change in C band, so likely corresponding to forested areas with thick
canopy layer, which can be penetrated by lower frequency electromagnetic waves, thus causing double
bounce with the bottom water layer, but not by C-band radiation.

This cluster is represented in bright red and appears in the top part of the map on the left of
Figure 10, corresponding loosely to forest classes in the CORINE database. A similar behavior, although
with lower intensity increases (up to a maximum of 3–4 dB) can be discerned for clusters n. 2, 4,
and 10. A rather peculiar behavior is shown by cluster n. 6, in cyan-greenish color, which exhibits an
increase of about 4–5 dB in C band, while staying very close to the diagonal, with rather low backscatter
values at both times, in L band. This class, located in a rather compact area at the center of the map,
likely corresponds to shrubs or low, thin vegetation, causing likely an increase in C-band backscatter,
while resulting “transparent” to longer wavelength radiation.
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Figure 10. As in Figure 8, with K = 12 clusters. White rectangles on the left map, labeled from a to h,
highlight detail areas shown enlarged in the subsequent figures.

Figure 11 illustrates the correspondence of the 12 clusters with the classes in the CORINE land
cover map. Each entry in the matrix represents the percentage of pixels belonging to a given cluster
(columns) and a given CORINE class (rows). This matrix offers some additional indication about the
clustering results. In the following, we present an integrated interpretation of the types of response of
each cluster with respect to the corresponding land cover CORINE classes.

Figure 11. Class pixel relative populations for the multi-temporal K-means classified image.

To improve the visual representation of local spatial support of the backscatter signatures, we also
consider a RGB combination of the three ratios between co- and pre-event SAR, red for the S1-VV,
green for the A2-HH, and blue for the A2-HV (Figure 12). The different speckle patterns in the three
channels give this image a somewhat smoother appearance than single SAR images, so we use the color
in this image as an aid to detect and interpret the multifrequency type of backscatter with respect to the
land cover. Generally, in the change RGB image in Figure 12, black areas underwent strong backscatter
decrease (colors are saturated at ±10 dB for better contrast visualization, as shown in the figure inset
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color cube) in all three channels, likely corresponding to open water; dark red corresponds to decreasing
backscatter in L-HH/HV imagery, while maintaining roughly constant levels in C-VV. This would
likely correspond to vegetation with a structure which allows penetration of longer wavelengths
(L band), which therefore undergoes specular reflection, while C-band waves are backscattered by the
canopy, and therefore do not exhibit significant changes when flooded. Dark green pixels underwent
backscatter decrease in L-HV and C-VV, while keeping roughly constant values in L-HH. This could be
due to different wind conditions on the two acquisition dates (3 and 9 February 2015 for A2 and S1,
respectively), which cause the water surface to backscatter more power in the second date (in L-band)
than in the first one (in C-band). The higher change in HH than in HV polarization also suggests
this kind of explanation, since cross-polarized channels are reported to be less sensitive, in terms of
backscatter, to rough surfaces such as water interested by capillary waves. Notably, the opposite
behavior (decreasing HH, constant HV channels), which would correspond to dark blue pixels, is not
seen on the image.

Figure 12. Multifrequency RGB (red-green-blue) intensity ratio combination: red—S1-VV change,
green—A2-HH change, blue—A2-HV change. Input values are saturated at ±10 dB, as illustrated by
the inset color cube.

In contrast, bright colors denote increase (positive change) in backscatter levels, hinting to the
possible presence of flooded vegetation or other structures with double bounce behavior. For instance,
on bright red areas, C-VV backscatter increases, while both L-HH and L-HV decrease. These may
correspond to short vegetation, such as shrubs, herbaceous vegetation, or cropland, where shorter
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wavelengths experience double bounce by the interaction of stems/leaves and the underlying water
surface, more than longer wavelengths. Vice versa, bright green and cyan areas denote increase in
both L-HH and L-HV channels, respectively, with decrease or no change in C-VV. These may indicate
the presence of flooded forest or wetlands, where tree trunks or other thick structures contribute to
backscattering of longer wavelengths.

These considerations seem confirmed by comparing the RGB-backscatter ratio map with the
indicative CORINE land cover map. In the following, we discuss each of the detail areas highlighted
by white rectangles in Figure 10 integrating information from multiple sources. The discussion is
presented for each of the clusters corresponding to flooded areas.

6. Discussion

Cluster 3 is composed of pixels falling mostly (about 40%) in the class Deciduous Broadleaf
Open Forest (Figure 11), with lower percentages of Deciduous Broadleaf Closed Forest and Cropland
(both about 17%). Its center backscatter exhibits consistent decrease in L-band data (about 7 dB),
but a negligible decrease (about 1 dB) in C-band. The example in Figure 13 shows a spatial localization
of this cluster at the border of a thickly vegetated area. The strong decrease in L-band backscatter
indicates the presence of open water, while the C-band response seems to be that of a vegetated
canopy. The detail inset on the bottom-left of the figure shows a forest glade, which corresponds to
pixels in this cluster. Most of these areas seem in fact to correspond to clearings in the forest canopy,
exposing the underlying surface, likely covered by low vegetation. During the flood, such clearings can
be penetrated by L-band radiation, thus causing the darkening, but not by C-band shorter wavelengths.

Figure 13. Detail area (a) in Figure 10. Left: pixels corresponding to cluster 3, colored according to the
underlying CORINE class; inset shows a particular area corresponding to a forest glade; background
from Google EarthTM imagery. Right: same area, extracted from the RGB change image in Figure 12.

Figure 14 shows, at the top, pixels corresponding to clusters 4 and 5, colored according to the
CORINE class legend. These clusters exhibit similar compositions in terms of CORINE land cover
classes on the ground, with 36 to 40% of Deciduous Broadleaf Open Forest, 24 to 32% of Cropland,
and 18–20% of Herbaceous Vegetation (Figure 11). The cluster center coordinates in the 6-dimensional
backscatter space correspond to roughly constant levels in C band, around −7 to −8 dB, and a slight
increase of about 3 dB in L band. The spatial support of this cluster is rather large, corresponding to
a relatively large variance of its components. Nevertheless, it includes locally some spatially compact
areas, such as those shown in Figure 14. The corresponding RGB image at the bottom of the figure
shows the correspondence of the cluster pixels with bright blue/white areas, corresponding to rather
strong backscatter increase in both HH and HV L-band, or even in all three channels. The detail
inset highlights the different texture in the forest canopy cover corresponding to the cluster pixels,
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indicating the likely occurrence of more open forest stands, allowing double-bounce phenomena when
floodwater is present below the canopy.

Figure 14. Detail area (b) in Figure 10. Top: pixels corresponding to clusters 4 and 5, colored according
to the underlying CORINE class; inset shows a detail area (see text for explanation); background from
Google EarthTM imagery. Bottom: same area, extracted from the RGB change image in Figure 12.

Cluster 6 pixels mostly fall within the Herbaceous Vegetation CORINE category (~54%), besides a
lower percentage of the ubiquitous Deciduous Broadleaf Open Forest class (~32%) and negligible other
classes (Figure 11). Its centroid corresponds to high backscatter values in C band, with an increase of
almost 5 dB from ca. −8 dB to about −3 dB, while in L band backscatter stays quite constant at very low
values, −19 dB in HH to −28 dB in HV polarization (Figure 10). An example of a quite compact area
corresponding to this cluster is shown in Figure 15 (area c). The predominant color is in fact yellow,
corresponding to Herbaceous Vegetation with smaller areas of Deciduous Broadleaf Open Forest in
green. In the corresponding RGB composite change image, at the bottom of the figure, the area is
mostly colored in light red, indicating in fact increase of C-band levels and no change in the other two
channels. This behavior can be explained, in C band, with the double bounce interaction of thin plant
stems and branches, typical of herbaceous vegetation, with underlying water, while this effect is not
present in L band, due to the longer wavelength. This area appears completely dark in the S1 image
acquired in January and it is classified there as “open” water. It is worth noticing that January was the
peak of the flood and that the herbaceous vegetation was then likely completely submerged.

Cluster 7 falls on comparable percentages of Deciduous Broadleaf Open Forest (~22%), Herbaceous
Wetland (~24%), Cropland (~20%), and Herbaceous Vegetation (~22%) (Figure 11). Its centroid exhibits
a strong, −10 dB decrease in C band, while rather constant, low values in L band (Figure 10). Figure 16
shows a representative area with pixels in this cluster, as usual colored as in the CORINE color
legend, showing a rather random mix of classes belonging to the above mentioned four, including a
wide, compact strip of cropland (in pink), as well as large patches of wetlands (in blue/grey color).
Most of the area has green color in the RGB backscatter change composite, at the bottom of the figure,
with brighter shades likely corresponding to strips of vegetation along water channels, while darker
tones characterize areas farther from the water courses. This in fact corresponds to strong decrease in
C-band backscatter, with lower to no decrease in L-band, slightly more pronounced in HV (blue channel)
than in HH (green channel) polarization. The likely interpretation of this cluster is of areas normally
covered by water (such as wetlands), but which, in correspondence with the investigated event, witness
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an increase in water levels, overcoming the height of some short and sparse vegetation, which render
the surface more specular in C band, while the effect is negligible in L band, giving almost no change
in this band.

Figure 15. Detail area (c) in Figure 10. Top: pixels corresponding to cluster 6, colored according to the
underlying CORINE class; background from Google EarthTM imagery. Bottom: same area, extracted
from the RGB change image in Figure 12.

Figure 16. Detail area (d) in Figure 10. Top: pixels corresponding to cluster 7, colored according to the
underlying CORINE class; background from Google Earth™ imagery. Bottom: same area, extracted
from the RGB change image in Figure 12.

Cluster 8 has an even more variegated CORINE class composition, including Deciduous Broadleaf
Open Forest (~27%), and then Herbaceous Wetland, Herbaceous Vegetation, and Cropland, each not
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exceeding 23% (Figure 11). This cluster seems to correspond quite precisely to areas with open water
due to the flood, causing a generalized, strong backscatter decrease in both C and L band. Its position
in the three plots in Figure 10 is indeed in the bottom-right quadrant, with decrease of about 10 dB
in all three cases. Sample cluster areas, represented with the usual CORINE class color map in the
left panel of Figure 17, correspond quite precisely with dark areas in the RGB composite on the right,
indicating in fact strong generalized backscatter decrease.

Figure 17. Detail area (e) in Figure 10. Left: pixels corresponding to cluster 8, colored according to the
underlying CORINE class; background from Google Earth™ imagery. Right: same area, extracted from
the RGB change image in Figure 12.

Cluster 9 covers mostly permanent water areas, which indeed form about 48% of its content
as CORINE class (Figure 11). The cluster centroid is placed almost exactly on the main diagonal
in all three plots in Figure 10, indicating constantly low backscatter values in all channels. Lower,
but non-negligible percentages of forested classes are also covered. This can be understood by looking
at Figure 18: in the left panel, we show a sample area with the cluster pixels colored in the usual
CORINE color code. It can be noticed that most of the pixel correspond to the river course path,
in blue color, but this is flanked by a thin strip of pixels flagged as forest (green) or cropland (pink).
This non-perfect overlap of SAR derived and CORINE classes can be due to CORINE classification
errors, to actual changed conditions on the ground (e.g., seasonal enlargements of the river bed), or both.
An even more interesting area is the one shown in the right panel of the same figure. Here, pixels
belonging to the SAR-identified permanent water cluster correspond in the CORINE map to vegetated
areas, including a narrow water channel (probably too narrow to be “seen” by the coarse-resolution
PROBA-V optical sensors used to produce the CORINE map), and several large ponds, equally not
identified as permanent waters in the CORINE map, probably because of changed environmental
conditions, among the period of PROBA-V imagery (spanning several acquisitions in the interval
2015–2018) and those of the SAR data takes (concentrated in early 2015).

Finally, we focus on cluster 12, which has a CORINE pixel composition not dissimilar from other
cluster such as 5, with a high percentage of Deciduous Broadleaf Open Forest (>44%), and lower
percentages of cropland and Herbaceous Vegetation (22 and 16%, respectively, Figure 11). Its centroid
is roughly on the main diagonal of the C-band plot in Figure 10, while exhibiting decrease of 5–6 dB
in L-band levels. Its ground cover is however heterogeneous, as its variances in all the six channels
are relatively high. In fact, areas with pixels falling within this cluster may have different behaviors.
We choose to show the area in Figure 19 (corresponding to window h in Figure 10), which involves a
rather large patch of forest and herbaceous vegetation areas as per the CORINE map, corresponding to
bright red color in the RGB composite in the bottom map. This corresponds to very strong positive
change in C-band, thus standing for double-bounce increase due to water flooding of (low) vegetation,
with equally strong decrease of L-band backscatter levels, thus appearing as open water at longer
wavelengths. The most likely interpretation here is of a vegetation with small stems which enhance
backscatter in C band, while being specular in L band. Another perhaps more likely phenomenon is
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the change in water levels in the two dates corresponding to C- and L-band acquisitions, with low
levels in the C-band image, thus leaving vegetation sticking out from the water, while higher levels in
the L-band acquisition, covering completely the short vegetation cover and causing specular reflection.
This situation appears as the predominant one on the forest clearing shown on the Google imagery in
the inset detail map.

Figure 18. Left: Detail area (f) in Figure 10. Right: Detail area (g) in Figure 10. Pixels corresponding
to cluster 9 are colored according to the underlying CORINE class; background from Google
EarthTM imagery.

Figure 19. Detail area (h) in Figure 10. Top: pixels corresponding to cluster 12, colored according to the
underlying CORINE class; background from Google EarthTM imagery. Bottom: same area, extracted
from the RGB change image in Figure 12. Inset shows a forest clearing corresponding to the reddish
area in the SAR change color composite.
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The above-described clusters can be finally cast into a map of flooded areas for the February
2015 event, highlighting the different types of microwave interaction, also according to the CORINE
land cover interpretation. The map is shown in Figure 20. A heuristic mask, based on the apparent
limits of the flooded areas derived from the preliminary maps of open water derived from either
sensor, has been used to spatially constrain the occurrence of areas corresponding to clusters 4 and
5, which basically isolate the flooded forest stands, exhibiting strong double bounce phenomena
in L-band. The map shows a rather complex texture of open water, partially and fully submerged
vegetated areas, permanently flooded forests and wetlands, and forest openings at the borders of
thicker stands where neither C nor L band can penetrate.

The multi-sensor map in Figure 20, together with the multi-temporal maps in Figures 2 and 4, can be
regarded as the main contributions of this study to the body of knowledge about remote-sensing-based
flood monitoring. We remark the following final points.

Figure 20. Flood map resulting from the integration of the multi-frequency information. Legend reports
the interpretation of the cluster typologies, colored according to the scheme as in Figure 10.
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Dense time series of homogeneous acquisitions from the same SAR sensor are very helpful
in following the drying dynamics of a given flood event, providing information which can be
exploited by hydrologists or environmental scientists to study, e.g., climate change impacts on extreme
events dynamics. Currently, the only sensor able to provide such dense time series is Sentinel-1,
although other missions such as the X-band Italian constellation COSMO-SkyMed are planned to
increase their temporal acquisition schedule. L-band sensors such as ALOS/PALSAR 2, as shown
in this work, currently do not allow more than a single co-event image for typical flood durations
Multi-frequency integration is extremely useful to recognize different flooded surfaces, especially on
vegetated areas, provided that simultaneous acquisitions are available. These at present are quite rare
and fortuitous combinations.

Another important part of this study is land cover information, provided by the CORINE database.
Although not perfectly “tuned” for these specific applications, both in terms of acquisition times and
resolution, it provided invaluable insight into the nature of classes of backscattering conditions on the
ground. We remark that, as for instance in the case of permanent waters, SAR-derived information
could be exploited in return to update such databases.

Finally, we still remark the absence of any known independent ground truth information for
this event. As underlined earlier, this is not an unusual condition for flood events, especially in
less developed countries. Nevertheless, application of automated data analysis tools, together with
a good deal of heuristic inference, based on indirect evidence from high-resolution optical imagery
taken at various times (Google EarthTM), helped in devising convincing map products. We believe
further studies should be directed to the automation of such heuristic inference, e.g., through machine
learning techniques.

7. Conclusions

Flood monitoring on thickly vegetated, remote areas is important for damage assessment, as well
as for studying the response and evolution of inundation phenomena in tropical countries. However,
identification of water on the ground, as well as monitoring the event evolution can be challenging,
due to different ground cover causing heterogenous response of the terrain surface to the presence of
floodwater depending on the type of terrain and the thickness of the vegetation canopy.

In this work, we show an experiment on the integration of multi-temporal, multi-sensor,
and multi-polarization SAR data with CORINE land cover information to infer consistent information
about a flood phenomenon occurred in early 2015 on the African Shire River basin, in Mozambique.

We first extract information about the temporal evolution of open water flooded areas, through
a K-means cluster analysis of the pixels of six Sentinel-1 images acquired at short time intervals
during the event. The analysis evidenced the presence of floodwater extending over areas covered by
herbaceous vegetation and cropland in the first phases of the flood, followed by a progressive shrinking
of the inundated area, with final coverage of wetlands and a few forested areas. Quantification of
areas affecting each of the CORINE land cover classes confirms the initial preponderance of flooded
herbaceous land cover, which appears to dry faster than wetlands and forests. A similar temporal
analysis performed on the two L-band images, one pre- and one co-event, highlighted significant
differences in the extent and location of open water with respect to those detected in C band.

Exploiting a time interval in which no significant change is observed in the preceding temporal
analysis, a multi-frequency, multi-temporal dataset including pre- and co-event imagery from Sentinel-1
(C band) and ALOS 2 (L band) sensors is then built and analyzed, again through K-means pixel
clustering and comparison with CORINE land cover classes and Google imagery. The results highlight
the likely presence of floodwater on different types of terrain cover, giving rise to different decrease
and increase of backscatter levels in the different bands and polarizations. In particular, this allowed to
determine the presence of several areas in which water is present underneath various types of vegetation
causing double bounce phenomena of various intensity. A multi-sensor flood map highlighting the
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different interactions of floodwaters with vegetation according to the used radiation wavelengths has
been finally obtained.

This kind of studies are expected to assume increasing importance as the availability of
multi-frequency data from SAR satellite constellations will increase in the future. Indeed, to augment
its acquisition frequency and to fill critical information gaps in the monitoring of geo-hazards at global
scale by extending ground motion information to vegetated areas and by improving flood mapping,
especially below vegetation, the Copernicus program is planning to include an L-band Sentinel-1-like
satellite, namely ROSE-L, which is part of the six high-priority candidate missions being studied [36].
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