
Edited by

Evolutionary
Process for
Engineering
Optimization

Amir H. Gandomi and Laith Abualigah

Printed Edition of the Special Issue Published in Processes

www.mdpi.com/journal/processes

Evolutionary Process for Engineering
Optimization

Evolutionary Process for Engineering
Optimization

Editors

Amir H. Gandomi

Laith Abualigah

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editors

Amir H. Gandomi

University of Technology

Sydney

Australia

Laith Abualigah

Al-Ahliyya Amman University

Jordan

Middle East University

Jordan

Amman Arab University

Jordan

Universiti Sains Malaysia

Malaysia

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Processes (ISSN 2227-9717) (available at: https://www.mdpi.com/journal/processes/special issues/

Evolutionary Process).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-4771-8 (Hbk)

ISBN 978-3-0365-4772-5 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Preface to ”Evolutionary Process for Engineering Optimization” ix

Siamak Talatahari, Mahdi Azizi and Amir H. Gandomi

Material Generation Algorithm: A Novel Metaheuristic Algorithm for Optimization of
Engineering Problems
Reprinted from: Processes 2021, 9, 859, doi:10.3390/pr9050859 . 1

Haijuan Zhang, Gai-Ge Wang, Junyu Dong and Amir H. Gandomi

Improved NSGA-III with Second-Order Difference Random Strategy for Dynamic
Multi-Objective Optimization
Reprinted from: Processes 2021, 9, 911, doi:10.3390/pr9060911 . 37

Laith Abualigah, Ali Diabat, Putra Sumari and Amir H. Gandomi

A Novel Evolutionary Arithmetic Optimization Algorithm for Multilevel Thresholding
Segmentation of COVID-19 CT Images
Reprinted from: Processes 2021, 9, 1155, doi:10.3390/pr9071155 . 61

Shuang Wang, Heming Jia, Laith Abualigah, Qingxin Liu and Rong Zheng

An Improved Hybrid Aquila Optimizer and Harris Hawks Algorithm for Solving Industrial
Engineering Optimization Problems
Reprinted from: Processes 2021, 9, 1551, doi:10.3390/pr9091551 . 99

Rong Zheng, Heming Jia, Laith Abualigah, Qingxin Liu and Shuang Wang

Deep Ensemble of Slime Mold Algorithm and Arithmetic Optimization Algorithm for Global
Optimization
Reprinted from: Processes 2021, 9, 1774, doi:10.3390/pr9101774 . 127

Mohammad H. Nadimi-Shahraki, Ali Fatahi, Hoda Zamani, Seyedali Mirjalili,

Laith Abualigah and Mohamed Abd Elaziz

Migration-Based Moth-Flame Optimization Algorithm
Reprinted from: Processes 2021, 9, 2276, doi:10.3390/pr9122276 . 153

Iman Rahimi, Amir H. Gandomi, Kalyanmoy Deb, Fang Chen and Mohammad Reza Nikoo

Scheduling by NSGA-II: Review and Bibliometric Analysis
Reprinted from: Processes 2022, 10, 98, doi:10.3390/pr10010098 . 181

Di Wu, Heming Jia, Laith Abualigah, Zhikai Xing, Rong Zheng, Hongyu Wang and

Maryam Altalhi

Enhance Teaching-Learning-Based Optimization for Tsallis-Entropy-Based Feature Selection
Classification Approach
Reprinted from: Processes 2022, 10, 360, doi:10.3390/pr10020360 213

Abolfazl Mehbodniya, Behnaz karimi Douraki, Julian L. Webber, Hamzah Ali Alkhazaleh,

Ersin Elbasi, Mohammad Dameshghi, Raed Abu Zitar and Laith Abualigah

Multilayer Reversible Data Hiding Based on the Difference Expansion Method Using Multilevel
Thresholding of Host Images Based on the Slime Mould Algorithm
Reprinted from: Processes 2022, 10, 858, doi:10.3390/pr10050858 227

Syeda Kounpal Fatima, Manzar Abbas, Imran Mir, Faiza Gul, Suleman Mir, Nasir Saeed,

Abdullah Alhumaidi Alhumaidi Alotaibi, Turke Althobaiti, Laith Abualigah

Data Driven Model Estimation for Aerial Vehicles: A Perspective Analysis
Reprinted from: Processes 2022, 10, 1236, doi:10.3390/pr10071236 251

v

About the Editors

Amir H. Gandomi

Amir H. Gandomi is among the world’s most-cited researchers for his work in the fields of

global optimization and big data analytics, in particular, using machine learning and evolutionary

computations. He is an ARC DECRA Fellow at the Faculty of Engineering and Information

Technology at UTS, where he is a Professor of Data Science. He has received multiple prestigious

awards for his research excellence and impact, such as the 2022 Walter L. Huber Prize, which is

known as the highest-level mid-career research award in all areas of civil engineering. Amir has

published more than 300 journal papers and nine books, which, collectively, have more than 30,000

citations (with an H-index of 79), and he has been named one of the world’s most influential scientific

minds and highly-cited researchers by the influential Clarivate Analytics for five consecutive years,

to 2021. He is also ranked 17th among more than 12,000 researchers in the online computer science

bibliography, Genetic Programming bibliography, and ranks first in Australia. Based on Analysis

Mendeley data by John Ioannidis et al. (Stanford), looking at researchers’ impact, Amir is ranked

16,091 among all researchers for career-long impact. He ranked 237 in AI and Image Processing

for career-long impact. He ranked 1,279 among all researchers in 2020; and he ranked 59 in AI

and Image Processing in 2020. He has served as associate editor, editor, and guest editor in several

prestigious journals such as AE of IEEE TBD and IEEE IoTJ. He regularly delivers keynote addresses

at major conferences. Prior to joining UTS, Amir was an Assistant Professor at the School of Business

at Stevens Institute of Technology in the US. He was also a distinguished research fellow in the

BEACON Center, Michigan State University, where biologists, computer scientists, and engineers

together study evolution and apply their knowledge to real-world problems.

Laith Abualigah

Laith Abualigah is an Assistant Professor at the Computer Science Department, Amman Arab

University, Jordan. He is also a distinguished researcher at the School of Computer Science, Universiti

Sains Malaysia, Malaysia. He received his first degree from Al-Albayt University, Computer

Information System, Jordan, in 2011. He earned a Master’s degree from Al-Albayt University,

Computer Science, Jordan, in 2014. He received a Ph.D. degree from the School of Computer Science

in Universiti Sains Malaysia (USM), Malaysia, in 2018. According to the report published by Stanford

University in 2020, Abualigah is one of the 2% influential scholars, which depicts the 100,000 top

scientists in the world. Abualigah has published more than 220 journal papers and books, which

collectively have been cited more than 7000 times (H-index = 38). His main research interests focus on

Arithmetic Optimization Algorithm (AOA), Bio-inspired Computing, Nature-inspired Computing,

Swarm Intelligence, Artificial Intelligence, Meta-heuristic Modeling, and Optimization Algorithms,

Evolutionary Computations, Information Retrieval, Text clustering, Feature Selection, Combinatorial

Problems, Optimization, Advanced Machine Learning, Big data, and Natural Language Processing.

Abualigah currently serves as an associate editor of the Journal of Cluster Computing (Springer),

the Journal of Soft Computing (Springer), and Journal of King Saud University - Computer and

Information Sciences (Elsevier).

vii

Preface to ”Evolutionary Process for Engineering

Optimization”

Various real-world engineering applications, such as engineering design, industrial

manufacturing systems, and water distribution networks, are complex problems. Evolutionary

computation is a hot topic of interest amongst researchers in various disciplines of engineering and

science. Evolutionary computation is a group of optimization algorithms used for solving global

optimization problems, which is inspired by biological evolution. It includes various signal and

population-based methods with a meta-heuristic or stochastic optimization part.

In recent years, evolutionary computation methods have been successfully utilized to address

complex real-world problems. The literature is abundant with several other approaches that share the

same goal: to find a new optimal solution with satisfactory quality by alternating research strategies.

Many theoretical and experimental studies have proved significant evolutionary computation

properties. The most famous evolutionary computation methods are the genetic algorithm (GA),

evolution strategy (ES), differential evolution (DE), particle swarm optimization (PSO), bacterial

foraging optimization (BFO), ant colony optimization (ACO), and the memetic algorithm (MA).

However, with the fast growth of complex systems, optimization problems become much larger

and complicated. The common issues facing evolutionary algorithms are the dimension of objective

functions, decision variables, or constraints.

In light of the expanding interest for new innovative methods of solving real-world and

engineering optimization problems, this Special Issue intends to promote high-quality research

outputs in the latest progress and improvement of evolutionary algorithms and engineering

applications and offers recent advanced studies in the field to serve researchers and practitioners.

The main interest is on interdisciplinary research on the evolutionary algorithm, using modern

computational intelligence theories, methods, and practices. We invite researchers to submit their

original contributions addressing particular challenging aspects in evolutionary computation from

both theoretical and applied viewpoints.

Amir H. Gandomi and Laith Abualigah

Editors

ix

processes

Article

Material Generation Algorithm: A Novel Metaheuristic
Algorithm for Optimization of Engineering Problems

Siamak Talatahari 1,2, Mahdi Azizi 1 and Amir H. Gandomi 3,*

Citation: Talatahari, S.; Azizi, M.;

Gandomi, A.H. Material Generation

Algorithm: A Novel Metaheuristic

Algorithm for Optimization of

Engineering Problems. Processes 2021,

9, 859. https://doi.org/10.3390/

pr9050859

Academic Editors: Luis Puigjaner and

Ján Pitel’

Received: 30 March 2021

Accepted: 10 May 2021

Published: 13 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, University of Tabriz, Tabriz 5166616471, Iran; siamak.talat@gmail.com (S.T.);
mehdi.azizi875@gmail.com (M.A.)

2 Engineering Faculty, Near East University, North Cyprus, Mersin 10, Turkey
3 Faculty of Engineering & Information Technology, University of Technology Sydney, Ultimo,

Sydney, NSW 2007, Australia
* Correspondence: gandomi@uts.edu.au

Abstract: A new algorithm, Material Generation Algorithm (MGA), was developed and applied
for the optimum design of engineering problems. Some advanced and basic aspects of material
chemistry, specifically the configuration of chemical compounds and chemical reactions in producing
new materials, are determined as inspirational concepts of the MGA. For numerical investigations
purposes, 10 constrained optimization problems in different dimensions of 10, 30, 50, and 100, which
have been benchmarked by the Competitions on Evolutionary Computation (CEC), are selected
as test examples while 15 of the well-known engineering design problems are also determined to
evaluate the overall performance of the proposed method. The best results of different classical
and new metaheuristic optimization algorithms in dealing with the selected problems were taken
from the recent literature for comparison with MGA. Additionally, the statistical values of the MGA
algorithm, consisting of the mean, worst, and standard deviation, were calculated and compared
to the results of other metaheuristic algorithms. Overall, this work demonstrates that the proposed
MGA is able provide very competitive, and even outstanding, results and mostly outperforms other
metaheuristics.

Keywords: material generation algorithm; constrained problems; metaheuristic algorithm; optimiza-
tion; engineering design problem

1. Introduction

Optimization techniques have been proposed for the optimum design of different
problems of everyday life in order to increase the efficiency of systems and human resources.
Most of the design problems in nature are complex, with multiple design variables and
constraints that classical optimization algorithms, such as gradient-based algorithms,
cannot handle. As a solution, numerous artificial intelligence experts have introduced new
algorithms with better performance in different fields. Regarding the recent developments
in technology, new optimization methods offering higher efficiency, greater accuracy, and
increased speed rate are required to deal with difficult optimization problems.

Based on the mentioned concerns about the capabilities of optimization algorithms,
a “metaheuristic” approach has been proposed by optimization experts [1] for solving
different optimization problems. ‘Metaheuristic’ refers to specific solution techniques,
where higher-level strategies are implemented into the main searching process of the
optimization algorithms to provide a powerful searching method with specific capabilities,
including the avoidance of entrapment in local optimal solutions. The history of developing
different metaheuristic approaches as solutions in different optimization fields can be
classified into five different time periods. A brief summary of these historical time periods
is presented in Table 1.

Processes 2021, 9, 859. https://doi.org/10.3390/pr9050859 https://www.mdpi.com/journal/processes1

Processes 2021, 9, 859

Table 1. Summary of historical time periods for the evolution of metaheuristics [2].

Duration Period Achievement

Pre-1940 Pre-Theoretical Limited applications without formal presentation.
1940–1980 Early Introduction of heuristics approaches.

1980–2000 Method-Centric Proposal and improvement of metaheuristics algorithms for different
applications.

2000–Present Framework-Centric Utilization of metaheuristic frameworks in different fields.

Future Scientific or Future Future development and design of metaheuristics as a matter of science
rather than a matter of art.

With the evolution of numerous metaheuristic algorithms, four different types could
be distinguished in terms of their main concepts and inspirations. The first category
includes “evolutionary algorithms,” such as the Memetic Algorithm (MA) [3], Genetic
Algorithm (GA) [4], Genetic Programming (GP) [5], Differential Evolution (DE) [6], Evo-
lution Strategies (ES) [7], and the Biogeography-Based Optimizer (BBO) [8], that have
been proposed based on the biological reproduction and evolution. The second category
contains swarm intelligence-based optimization algorithms, which are based on the coop-
erative behavior of self-organized and decentralized artificial or natural systems. Some
well-known methods of this category are Particle Swarm Optimization (PSO) [9], Ant
Colony Optimization (ACO) [10], Artificial Bee Colony (ABC) [11], Cat Swarm Optimiza-
tion (CSA) [12], Firefly Algorithm (FA) [13], and Krill Herd (KH) algorithm [14]. The
third category consists of algorithms that are motivated by physical laws, such as Simu-
lated Annealing (SA) [15], Harmony Search (HS) [16], Big-Bang Big-Crunch (BBBC) [17],
Gravitational Search Algorithm (GSA) [18], Charged System Search (CSS) algorithm [19],
Artificial Chemical Reaction Optimization Algorithm (ACROA) [20], Colliding Bodies
Optimization (CBO) [21], Chaos Game Optimization (CGO) [22,23], and Atomic Orbital
Search (AOS) [24] algorithm. Finally, metaheuristic approaches inspired by the lifestyle
of animals or humans are classified in the fourth category, which includes Imperialistic
Competitive Algorithm (ICA) [25], Cuckoo Search Algorithm (CSA) [26]. In addition to
these metaheuristic algorithms, other difficult challenges have been solved by upgrading,
developing, and hybridizing standard algorithms [27–36].

In this paper, a novel metaheuristic algorithm called the Material Generation Algo-
rithm (MGA) is proposed as an alternative approach for solving optimization problems.
The main concept of this novel algorithm is based on the principles of chemistry, regarding
the production of new materials according to the configurations of chemical compounds
and reactions. To evaluate the performance of MGA, we tested it on 15 well-known
engineering design problems and 10 constrained mathematical problems in different di-
mensions (10, 30, 50, and 100), which have been benchmarked by the Competitions on
Evolutionary Computation (CEC) and presented in detail by Wu et al. [37] at CEC 2017. The
utilized references include the results of CEC 2017, Tvrdík and Poláková [38], Polakova [39],
and Zamuda [40]. The Friedman Test [41] is also conducted as a well-known statistical test
in order to have a fair judgment about the performance of the MGA.

In recent decades there has be a great challenge for the algorithm developers to
develop new solution methods which could have better performance than the previous
methods in dealing with complex real-world problems. Due to the massive emergence of
novel metaheuristic algorithms in the past few decades, this aspect has been addressed
by Sorensen [42] as a tsunami of methods which will have advantages and also disad-
vantages in the soft computing fields in the future. However, this issue can be justified
by discovering other aspects of proposing novel algorithms which is based on the source
of inspirational concept of a novel algorithm which should be reasonable enough to be
justified alongside a well-developed mathematical model as two of the most important
principles of metaheuristic algorithms. Regarding the fact that when a novel algorithm is
proposed, it is evaluated by some of the benchmark test problems which has been solved

2

Processes 2021, 9, 859

by multiple methods in order to demonstrate its capability as an independent algorithm
among the other methods while this kind of proposing a testing the algorithms is not
the only aim of this area. The proposed novel algorithm can be of a great help in the
situations that the other alternatives cannot reach to a reasonable response in dealing with
a considered problem so there should be other alternatives in order to have a good chance
to provide a well-designed plan for the industry and even human-related actions in the
everyday life. A brief outline of this work is as follows:

Section 2 discusses the inspirational concept and mathematical model of the MGA
optimization algorithm. In Section 3, the problem statements, including the selected
mathematical and engineering optimization problems utilized to test the proposed MGA
as a novel metaheuristic algorithm, are presented. In Sections 4 and 5, the numerical
results of the MGA algorithm and other alternative metaheuristic methods in dealing
with the considered mathematical and engineering optimization problems are presented.
In Section 6, the key findings of this research work are concluded, future research directions
are suggested.

2. Material Generation Algorithm

In this section, the inspiration of MGA as a novel metaheuristic algorithm and the
mathematical model of this algorithm are presented.

2.1. Inspiration

A material is a mixture of multiple substances comprised of the stuffs of the universe
with volume and mass. The material generation process concerns the capability of different
substances to merge with each other in order to generate new materials with higher
functionality and improved energy levels. Elements are the basic building blocks of the
materials, which cannot be broken into parts or even changed into other elements. Materials
are engineered on an atomic, nano-, micro-, or macro-scale in order to control the specific
properties and improve the performance of a material. Uniquely-generated materials are
classified based on their general properties and specific characteristics and according to
physical and chemical changes that influence a material’s behavior.

Material chemistry is one of the most important disciplines in the material research
field. Material engineers study the configuration of materials in order to improve the
specific characteristics of materials, developing new ones that are more sustainable and
also superior to the previous ones. Chemical changes in materials are achieved by reacting
and combining various chemicals. In general, the chemical properties are altered by
the transferring or sharing of electrons between atoms of different materials, specifically,
chemical bonds formed between materials result in such modifications. In this work, three
main concepts of material chemistry (compounds, reactions, and stability) were considered
to formulate a metaheuristic optimization algorithm.

2.1.1. Chemical Compound

Most chemical elements in the universe are created through combinations with other
elements. With that being, a few chemical elements exist freely in nature. Compounds are
formed by combining multiple chemicals via chemical bonds, or the transferring or sharing
of electrons, which result in one of the following:

- Ionic compounds are created when electrons are transferred from the atoms of one
element to those of another.

- Covalent compounds form when electrons are shared between atoms of different elements.

In addition, ionic compounds contain multiple ions that are held together by the
electrostatic force called ionic bonding. Although these compounds are neutral in nature,
they consist of some negatively- and positively-charged ions, called anions and cations,
respectively. The evaporation, precipitation, or freezing of the constituent ions are the main
factors in the process of producing ionic compounds. When an atom or a small group
of atoms starts to lose or gain electrons, an ionic compound forms according to the ionic

3

Processes 2021, 9, 859

bonding and charged particles. As an example, the formation of sodium chloride, also
known as table salt, is depicted in Figure 1. In the process of electron transformation,
a sodium (neutral) becomes a sodium cation (Na+) when it loses one electron. In addition,
Cl becomes a chloride anion (Cl−) when it gains an electron. Thus, table salt is a solid
aggregation of Na+ and Cl− ions, which attract each other due to opposite charges.

Figure 1. The formation of an ionic compound, NaCl.

Covalent compounds form when an atom of a chemical element shares an electron
with another element’s atom, which usually occurs between nonmetal elements and results
in an electrically neutral atom. Figure 2 displays the formation of a covalent compound
that leads to the hydrogen atom. As an example, assuming that two hydrogen atoms begin
approaching each other, the nucleus of one atom strongly attracts the electron of the other
one. A covalent bond is achieved when a specific distance between the nuclei is reached,
and the electrons are equally shared. The net repulsion between nuclei is ignored due to
the greater net attraction.

Figure 2. The formation of a covalent compound by means of two hydrogen atoms.

2.1.2. Chemical Reaction

Chemical reactions are the process of transforming one material into another while
the chemical equations are used to represent chemical reactions, where the resulting
products will have different properties than the starting materials (reactants/reagents),
and intermediate materials (in some particular cases).

4

Processes 2021, 9, 859

An example of a chemical reaction is depicted in Figure 3, in which the magnesium
wire (Mg) and oxygen gas (O2) yield powdery magnesium oxide (MgO). As presented
in the left bulb, a fine magnesium filament is surrounded by oxygen before the reaction
occurs. As the reaction proceeds, the white colored powdery magnesium oxide coats the
bulb’s inner surface, which is demonstrated in the right bulb. In this reaction, heat and
light are also produced as intermediate materials but are not concerned in this description.
The chemical equation of the presented chemical reaction is as follows:

2Mg (s) + O2 (g)
Electricity→ 2MgO (s)

where s and g stand for solid and gas, respectively.

Figure 3. The formation of a chemical reaction.

2.1.3. Chemical Stability

Stability is one of the more important properties of materials in real-world applications.
When generating new materials with different characteristics, it is important to consider
the stability of the chemical compounds and reactions in different situations. In terms of
chemical stability, chemicals have the tendency to resist changes, such as decomposition,
due to internal factors and external influences such as heat, air, light, and pressure. Chem-
ical stability is the resistance of a material to change in the presence of other chemicals.
A stable chemical product refers to one that has not been specifically reactive in the envi-
ronment and retains its properties over a specific period of time. Comparatively, unstable
chemical materials easily decompose, corrode, polymerize, explode, or burn under certain
conditions.

When producing new chemical materials, the processes of transferring or sharing
electrons within the initial materials will occur in such a way that the end product will be
stable and applicable during a specific period of time.

2.2. Mathematical Model

In order to conduct an optimum design procedure, an optimization algorithm is
developed in this section based on the mentioned principles of material chemistry. The
basic concepts of the chemical compounds, reactions, and stability are utilized in order
to develop and formulate a well-defined mathematical model for the new algorithm.
Considering that many natural evolution algorithms establish a predefined population
of solution candidates that are evolved through random alterations and selection, MGA
determines a number of materials (Mat) comprised of multiple periodic table elements
(PTEs). In this algorithm, a number of materials is considered as the solution candidates
(Matn), which are comprised of some elements represented as decision variables (PTEj

i).
The mathematical presentation of these two aspects is as follows:

5

Processes 2021, 9, 859

Mat =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mat1
Mat2

...
Mati

...
Matn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PTE1
1 PTE2

1 · · · PTEj
1 · · · PTEd

1
PTE1

2 PTE2
2 · · · PTEj

2 · · · PTEd
2

...
...

...
. . .

...
PTE1

i PTE2
i · · · PTEj

i · · · PTEd
i

...
...

...
. . .

...
PTE1

n PTE2
n · · · PTEj

n · · · PTEd
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
{

i = 1, 2, . . . , n.
j = 1, 2, . . . , d.

(1)

where d is the number of elements (decision variables) in each material (solution candi-
dates); and n is the number of materials considered to be the solution candidates.

In the first stage of the optimization process, PTEj
i is determined randomly while

the decision variables bounds are defined based on the considered problem. The initial
positions of PTEs are determined randomly in the search space as follows:

PTEj
i (0) = PTEj

i,min + Uni f (0, 1).
(

PTEj
i,max − PTEj

i,min

)
,
{

i = 1, 2, . . . , n.
j = 1, 2, . . . , d.

(2)

where PTEj
i (0) determines the initial value of the jth element in the ith material; PTEj

i,min

and PTEj
i,max are the minimum allowable and maximum allowable values for the jth

decision variable of the ith solution candidate, respectively; and Uni f (0, 1) is a random
number in the interval of [0, 1].

2.2.1. Modeling Chemical Compound

To mathematically model the chemical compounds, all PTEs are assumed to be in the
ground state, which can be externally excited by the magnetic fields, absorption of energy
from photons or light and interactions with different colliding bodies or particles regarding
ions or other individual electrons. Due to the different stabilities of elements, they have
a tendency to lose, gain, or even share electrons with other PTEs, resulting in ionic or
covalent compounds. To model the ionic and covalent compounds, d random PTEs are
selected using the initial Mat (Equation (1)). For the selected PTEs, the processes of losing,
gaining, or sharing electrons are modeled through the probability theory. To fulfill this
aim, a continuous probability distribution is utilized for each PTE to configure a chemical
compound, which is considered as a new PTE, as follows:

PTEk
new = PTEr2

r1 ± e−, k = 1, 2, . . . , d. (3)

where r1 and r2 are uniformly distributed random integers in the intervals of [1, n] and [1,
d], respectively; PTEr2

r1 is a randomly selected PTE from the Mat; e− is the probabilistic
component for modeling the process of losing, gaining or sharing electrons represented
with normal Gaussian distribution in the mathematical model; and PTEk

new is the new
material.

The newly-created PTEs are utilized for producing a new material (Matnew1), which
is then added to the initial material list (Mat) as a new solution candidate:

Matnew1 =
[

PTE1
new PTE2

new · · · PTEk
new · · · PTEd

new
]
, k = 1, 2, . . . , d. (4)

Then, the overall solution candidates are combined and presented as follows:

6

Processes 2021, 9, 859

Mat =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mat1
Mat2

...
Mati

...
Matn

Matnew1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PTE1
1 PTE2

1 · · · PTEj
1 · · · PTEd

1
PTE1

2 PTE2
2 · · · PTEj

2 · · · PTEd
2

...
...

...
. . .

...
PTE1

i PTE2
i · · · PTEj

i · · · PTEd
i

...
...

...
. . .

...
PTE1

n PTE2
n · · · PTEj

n · · · PTEd
n

PTE1
new PTE2

new · · · PTEk
new · · · PTEd

new

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎧⎨
⎩

i = 1, 2, . . . , n.
j = 1, 2, . . . , d.
k = 1, 2, . . . , d.

(5)

A schematic presentation of the described process for the configuration of new ma-
terials based on the concept of chemical compounds (ionic and covalent) is depicted in
Figure 4.

Figure 4. The schematic presentation of the random periodic table elements (PTE) selection and
creating new materials.

The probabilistic approach for determining e− is modeled through normal Gaussian
distribution, which is important in statistics and often used in the natural and social sciences
to represent real-valued random variables with unknown distributions. The probability of
selecting a new element (PTEk

new) regarding the randomly selected initial element (PTEr2
r1)

is presented as follows:

f
(

PTEk
new

∣∣∣μ, σ2
)
=

1√
2πσ2

.e
−(x−μ)2

2σ2 , k = 1, 2, . . . , d. (6)

where μ is the mean, median or expectation of the distribution correspond to the selected
random PTE (PTEr2

r1); σ is the standard deviation, which is set to unity in this paper; σ2 is
the variance; and e is the natural base or Naperian base of the natural logarithm.

2.2.2. Modeling Chemical Reaction

Chemical reactions are sort of production process in which different chemical changes
are determined in order to produce different products with modified properties even
different from the initial reactants. In order to mathematically model the process of
producing new materials by the chemical reaction concept, an integer random number
(l) is determined regarding the number of materials of the initial Mat are considered for
participating in a chemical reaction. Then, l integer random numbers (mj) are generated to
determine the positions of the selected materials in the initial Mat so, the new solutions are
linear combinations of the other solutions. For each material, a participation factor (p) is
also calculated since different materials would participate in the reactions with different

7

Processes 2021, 9, 859

amounts. A schematic presentation of the described process is depicted in Figure 5, and
the mathematical presentation is as follows:

Matnew2 =
∑l

m=1(pm.Matmj)

∑l
m=1(pmj)

, j = 1, 2, . . . , l. (7)

where Matm is the mth randomly selected material from the initial Mat; pm is the normal
Gaussian distribution for the mth material participation factor; and Matnew2 is the new
material produced by the chemical reaction concept.

Figure 5. The schematic view of the random material selection for creating new materials.

2.2.3. Modeling Chemical Stability

As previously described, the principle of material stability concerns the tendency
of natural systems to seek local and general equilibria at all structural levels. Material
stability is mathematically represented by determining the quality of the solutions as
Mat. Materials with the highest stability levels alongside the ones with lowest stability
levels are equivalent to the best and worst fitness values of all solution candidates in the
optimization runs.

Considering the chemical compound and chemical reaction configuration approaches,
the overall solution candidates are combined as follows:

Mat =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mat1
Mat2

...
Mati

...
Matn

Matnew1
Matnew2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, . . . , n. (8)

Moreover, the stability levels of the initial material and newly0produced materials
should be considered in order to decide whether or not the new materials should be
included in the overall material list (Mat) corresponding to the solution candidates. The
quality of new solution candidates is then compared to the initial ones, whereby the new
materials should be substituted by initial materials with worst fitness values corresponding
to worst stability levels.

For boundary violation control, a flag is determined in order to control the violating
solution candidates while a maximum number of iteration or objective function evaluation

8

Processes 2021, 9, 859

can be considered as stopping criteria. The flowchart of the MGA algorithm is presented in
Figure 6.

Figure 6. Flowchart of the Material Generation Algorithm (MGA).

9

Processes 2021, 9, 859

3. Problem Statement

In this section, a brief description of the considered design examples is presented. Re-
garding the fact that these examples are categorized as constrained optimization problems,
the general formulations of these kinds of optimization problems are presented as follows:

f (x), x = x1, x2, . . . , xn (9)

gi(x) ≤ 0, i = 1, 2, . . . , n (10)

hj(x) = 0, j = 1, 2, . . . , m (11)

where f (x) is considered as the objective function of the optimization problem that can be
considered to be maximized or minimized; gi(x) and hj(x) are the ith and jth inequality and
equality constraint, respectively; x is the position vector related to the optimization vari-
ables; and n and m are the total number of inequality and equality constraints, respectively.

In most cases, the equality constraints can be transformed into inequality constraints
by considering the following:∣∣hj(x)

∣∣− ε ≤ 0, j = 1, 2, . . . , m (12)

where ε is a predefined small positive number, which is typically near to zero. In this work,
ε was set to 0.0001.

3.1. Mathematically-Constrained Problems

The mathematical problems of the CEC 2017 benchmark suite are presented in Table 2,
while the specific details and mathematical formulations were presented in detail by
Wu et al. [39]. In order to evaluate the results of the proposed MGA, the statistical results
of different state-of-the-art metaheuristic algorithms regarding the considered constrained
problems were derived of the recent literature [38–40].

Table 2. Brief description of the Competitions on Evolutionary Computation (CEC) 2017 mathemati-
cal constrained problems [37].

No. Type D H G Bounds

C1 Non Separable 10, 30, 50 and 100 0 1 −100 ≤ xi ≤ 100
C2 Non Separable 10, 30, 50 and 100 0 1 −100 ≤ xi ≤ 100
C3 Non Separable 10, 30, 50 and 100 1 1 −100 ≤ xi ≤ 100
C4 Separable 10, 30, 50 and 100 0 2 −10 ≤ xi ≤ 10
C5 Non Separable 10, 30, 50 and 100 0 2 −10 ≤ xi ≤ 10
C6 Separable 10, 30, 50 and 100 6 0 −20 ≤ xi ≤ 20
C7 Separable 10, 30, 50 and 100 2 0 −50 ≤ xi ≤ 50
C8 Separable 10, 30, 50 and 100 2 0 −100 ≤ xi ≤ 100
C9 Separable 10, 30, 50 and 100 2 0 −10 ≤ xi ≤ 10
C10 Separable 10, 30, 50 and 100 2 0 −100 ≤ xi ≤ 100

D: Dimensions; G: Number of inequality constraints; H: Number of equality constraints.

3.2. Engineering Design Problems

The second type of constrained problems included 15 well-known engineering prob-
lems, which have been solved by different optimization algorithms. A brief description of
these design examples is presented in Table 3, and the specific details of each example are
provided in the following subsections. These examples have also been benchmarked by
Kumar et al. [43] regarding the CEC 2020 engineering design scheme.

10

Processes 2021, 9, 859

Table 3. Description of the constrained engineering design problems.

No. Name D G H Formulation

F1 Speed Reducer 7 11 0 [44]
F2 Tension/Compression Spring 3 4 0 [45]
F3 Pressure Vessel 4 4 0 [45]
F4 Welded Beam 4 7 0 [45]
F5 Three-Bar Truss 2 3 0 [46]
F6 Multiple Disk Clutch Brake 5 8 0 [47]
F7 Planetary Gear Train 9 10 1 [48]
F8 Step-Cone Pulley 5 8 3 [49]
F9 Hydrostatic Thrust Bearing 4 7 0 [50]
F10 Ten-Bar Truss 10 3 0 [51]
F11 Rolling Element Bearing 10 9 0 [52]
F12 Gear Train 4 1 1 [53]
F13 Steel I-Shaped Beam 4 2 0 [46]
F14 Piston Lever 4 4 0 [46]
F15 Cantilever Beam 5 1 0 [46]

D: Dimensions; G: Number of inequality constraints; H: Number of equality constraints; Min: Feasible Solutions.

4. Numerical Results of Mathematical Problems

The numerical results based on the CEC 2017 benchmark problems by means of the
MGA and other alternatives in dealing with the described constrained problems with
different dimensions of 10, 30, 50, and 100 are presented in this section. For comparison,
a total of 25 optimization runs was performed, including a maximum number of function
evaluations (20,000 × D), where D is the problem dimension. These results are presented
in Tables 4–7 for different dimensions, in which (c) is the number of violated constraints
consisting of the number of violations by more than 1, 0.01, and 0.0001; (v) is the mean
violation at the median solution; (SR) is the feasibility rate defined as the ratio of feasible
runs to total runs; and (vio) is the mean constraint violation values of all optimization runs.

Based on the obtained results of MGA in dealing with the mathematical constrained
problems of CEC 2017 with a dimension of 10, MGA was superior to the other metaheuris-
tics in most of the cases. Considering the functions with dimensions of 30, MGA outranks
two of the alternative metaheuristics while in comparing to the third one, the results of
MGA are so competitive. In dealing with functions of 50 and 100 dimensions, the results of
MGA are comparable to the others.

Regarding the fact that the considered problems of the CEC 2017 benchmark suite
are all the latest problems in the evolutionary computation field with higher levels of
complexity and difficulties while there are few approaches that can provide acceptable
results in dealing with these problems. In this regard, the reported results by MGA
are marginal because there are not any better results for the considered problems in
the literature so the MGA calculated the latest reported results which demonstrate the
capability of this algorithm in competing with other methods.

In order to have a better perspective on the performance of different metaheuristic
algorithms in dealing with the CEC 2017 benchmark problems, the box plots which are
derived of the analysis of the variance (ANOVA), which were conducted for the normalized
values of the reported bests, means, standard deviations (Std), and worsts for different
dimensions of 10, 30, 50, and 100 in Figures 7–10. It can be concluded that the MGA has
competitive performance in dealing with these problems.

11

Processes 2021, 9, 859

T
a

b
le

4
.

St
at

is
ti

ca
lr

es
ul

ts
of

di
ff

er
en

ta
pp

ro
ac

he
s

fo
r

m
at

he
m

at
ic

al
pr

ob
le

m
s

of
C

EC
20

17
w

it
h

10
di

m
en

si
on

s.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

Z
am

ud
a

[3
8]

Be
st

0
0

62
70

0
13

.5
73

0
33

2.
30

−1
78

.0
2

−0
.0

01
35

−0
.0

04
98

−0
.0

00
51

M
ed

ia
n

0
0

2.
26

0
×

10
5

13
.5

73
0

17
50

.6
−2

6.
77

8
−0

.0
01

35
−0

.0
04

98
−0

.0
00

51
c

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

4,
2

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

v
0

0
0

0
0

3.
83

×
10

−2
0

0
0

0
M

ea
n

0
0

3.
25

9
×

10
5

14
.4

18
0

80
8.

36
−3

4
0

0
0

W
or

st
0

0
1.

08
9
×

10
6

15
.9

19
0

18
19

.7
−7

0
0

0
St

d
0

0
2.

57
5
×

10
5

1.
14

95
0

54
5.

03
57

0
0

0
SR

10
0

10
0

10
0

10
0

10
0

0
80

10
0

10
0

10
0

vi
o

0
0

0
0

0
3.

76
6
×

10
−2

3.
18

9
×

10
−5

0
0

0

Po
la

ko
va

[3
9]

Be
st

0
0

35
33

.7
7

13
.5

72
8

0
34

8.
97

7
−1

01
.2

11
−0

.0
01

35
−0

.0
04

98
−0

.0
00

51
M

ed
ia

n
0

0
21

,1
44

.4
13

.5
85

3
0

13
68

.8
5

12
.7

81
5

−0
.0

01
35

−0
.0

04
98

−0
.0

00
51

c
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
4,

2
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
v

0
0

0
0

0
0.

02
97

02
0

0
0

0
M

ea
n

0
0

31
,5

48
.2

13
.6

14
7

0
64

8.
89

9
3.

74
36

2
−0

.0
01

35
−0

.0
04

97
−0

.0
00

51
W

or
st

0
0

11
8,

00
5

13
.8

01
8

0
12

60
.3

10
5.

62
−0

.0
01

35
−0

.0
04

85
−0

.0
00

51
St

d
0

0
37

,0
19

.6
0.

06
15

49
0

28
3.

70
6

69
.5

71
6

2.
21

×
10

−1
9

2.
44

×
10

−5
1.

11
×

10
−1

9

SR
10

0
10

0
92

10
0

10
0

0
88

10
0

10
0

10
0

vi
o

0
0

6.
67

×
10

−6
0

0
0.

03
23

09
2.

11
×

10
−5

0
0

0

Tv
rd

ík
an

d
Po

lá
ko

vá
[4

0]

Be
st

0
0

63
41

.8
10

29
2

15
.9

19
24

4
0

10
3.

28
84

65
−1

48
.2

19
87

8
−0

.0
01

34
8

−0
.0

04
97

5
−0

.0
00

51
0

M
ed

ia
n

0
0

40
,1

03
.1

99
3

35
.8

18
32

4
0

30
7.

64
34

90
−6

5.
20

92
83

−0
.0

01
34

8
−0

.0
04

97
5

−0
.0

00
51

0
c

0,
0,

0
0,

0,
0

0,
0,

1
0,

0,
0

0,
0,

0
0,

0,
5

0,
0,

2
0,

0,
2

0,
0,

1
0,

0,
1

v
0

0
0.

00
01

03
0

0
0

0
0

0
0

M
ea

n
0

0
11

0,
00

8
38

.7
38

0.
95

67
79

54
9.

61
7

−4
8.

73
52

−0
.0

01
34

8
0.

12
54

71
−0

.0
00

51
W

or
st

0
0

54
8,

03
4.

19
98

88
55

.7
17

39
9

3.
98

65
79

20
58

.8
12

01
8

10
2.

36
61

12
−0

.0
01

34
8

3.
25

61
78

−0
.0

00
51

0

St
d

0
0

1.
55

87
×

10
5

8.
94

8
×

10
5

1.
73

7
×

10
4.

86
6
×

10
2

6.
82

6
×

10
1

6.
63

9
×

10
−1

9
6.

52
2
×

10
−1

0.
00

00

SR
10

0
10

0
44

10
0

10
0

96
68

10
0

10
0

10
0

vi
o

0
0

0.
00

06
33

52
0

0
0.

00
53

65
6

0.
00

30
91

44
1.

45
6
×

10
−5

4
×

10
−6

3.
96

×
10

−6

Pr
es

en
t

St
ud

y
(M

G
A

)

Be
st

0
0

57
31

.7
29

15
.9

19
32

0.
04

84
94

17
7.

19
36

−2
04

.7
99

−0
.0

01
03

−0
.0

04
97

−0
.0

00
48

M
ed

ia
n

0
0

96
55

.1
16

18
.9

04
43

15
1.

55
46

45
18

9.
73

18
−9

9.
59

36
0.

00
06

67
−0

.0
04

97
−0

.0
00

34
c

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

4,
2

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

v
0

0
0

0
0

0.
07

03
46

0
0

0
0

12

Processes 2021, 9, 859

T
a

b
le

4
.

C
on

t.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

M
ea

n
0

0
22

,5
32

.6
4

18
.5

79
82

1.
86

72
75

24
5.

67
45

−8
6.

64
22

0.
00

11
15

0.
04

60
4

−0
.0

00
3

W
or

st
0

0
11

6,
69

3.
6

27
.8

59
71

11
4.

01
62

01
12

31
.2

01
25

8.
61

26
41

0.
00

87
56

0.
57

47
44

05
8.

06
×

10
−5

St
d

0
0

35
,6

36
.8

4
4.

23
57

29
1.

39
36

92
30

8.
60

91
68

.4
36

18
0.

00
29

94
0.

15
28

43
0.

00
01

67
SR

10
0

10
0

10
0

10
0

10
0

11
10

0
89

10
0

10
0

vi
o

0
0

0
0

0
0.

05
97

61
0

1.
11

×
10

−5
0

0

T
a

b
le

5
.

St
at

is
ti

ca
lr

es
ul

ts
of

di
ff

er
en

ta
pp

ro
ac

he
s

fo
r

m
at

he
m

at
ic

al
pr

ob
le

m
s

of
C

EC
20

17
w

it
h

30
di

m
en

si
on

s.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

Z
am

ud
a

[3
8]

Be
st

0
0

2.
76

×
10

6
13

.5
73

0
40

95
.8

−2
34

.0
5

−2
.8

2
×

10
−4

−0
.0

02
67

−0
.0

00
10

3

M
ed

ia
n

0
0

6.
58

×
10

6
13

.5
73

0
43

74
.9

−8
0.

77
2

−2
.7

0
×

10
−4

−0
.0

02
67

−9
.9

1
×

10
−5

c
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
4,

2
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
v

0
0

0
0

0
2.

55
×

10
−2

0
0

0
0

M
ea

n
0

0
6.

70
×

10
6

13
.8

54
0

55
26

.4
−8

1.
08

8
−2

.6
3
×

10
−4

−2
.6

7
×

10
−3

−9
.7

8
×

10
−5

W
or

st
0

0
1.

17
×

10
7

15
.9

19
0

50
18

.0
−3

6.
51

0
−2

.1
2
×

10
−4

−2
.6

7
×

10
−3

−8
.9

6
×

10
−5

St
d

0
0

2.
25

×
10

6
0.

77
82

0
75

9.
06

90
.9

29
2.

04
×

10
−5

0.
00

×
10

0
3.

69
×

10
−6

SR
10

0
10

0
10

0
10

0
10

0
0

96
10

0
10

0
10

0
vi

o
0

0
0

0
0

2.
57

×
10

−2
4.

06
×

10
−6

0
0

0

Po
la

ko
va

[3
9]

Be
st

0
0

39
,0

59
.8

13
.5

72
8

0
31

21
.7

8
−2

45
.7

15
−0

.0
00

28
−0

.0
02

67
−0

.0
00

1
M

ed
ia

n
0

0
20

,5
87

4
13

.5
72

8
0

58
02

.7
6

−1
34

.3
73

−0
.0

00
28

−0
.0

02
67

−0
.0

00
1

c
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
4,

2
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
v

0
0

0
0

0
0.

01
26

59
0

0
0

0

M
ea

n
3.

87
×

10
−3

0
5.

26
×

10
−3

0
35

5,
11

8
13

.5
72

8
0

40
71

.0
8

−1
09

.4
28

−0
.0

00
28

−0
.0

02
67

−0
.0

00
1

W
or

st
2.

08
×

10
−2

9
3.

34
×

10
−2

9
2.

18
×

10
6

13
.5

72
8

0
24

05
.8

2
81

.6
28

4
−0

.0
00

28
−0

.0
02

67
−0

.0
00

1

St
d

6.
10
×

10
−3

0
8.

39
×

10
−3

0
44

6,
75

1
5.

44
×

10
−1

5
0

98
1.

51
9

88
.7

37
4

0
1.

33
×

10
−1

8
0

SR
10

0
10

0
10

0
10

0
10

0
0

96
10

0
10

0
10

0
vi

o
0

0
0

0
0

0.
01

50
16

8.
20

×
10

−6
0

0
0

13

Processes 2021, 9, 859

T
a

b
le

5
.

C
on

t.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

Tv
rd

ík
an

d
Po

lá
ko

vá
[4

0]

Be
st

0
0

21
7,

85
4.

40
50

28
64

.6
71

88
3

0
19

76
.3

58
21

−3
30

.7
86

33
7

−0
.0

00
28

4
−0

.0
02

66
6

−0
.0

00
10

3
M

ed
ia

n
0

0
73

6,
40

4.
82

11
3.

42
46

34
0

38
27

.5
88

28
−3

2.
58

93
65

−0
.0

00
28

4
−0

.0
02

66
6

−0
.0

00
10

3
c

0,
0,

0
0,

0,
0

0,
0,

1
0,

0,
0

0,
0,

0
0,

0,
4

0,
0,

2
0,

0,
2

0,
0,

1
0,

0,
1

v
0

0
0.

00
14

41
0

0
0

0.
00

00
67

0
0

0
M

ea
n

0
0

1.
29

9
×

10
6

11
5.

73
4

0.
79

73
25

37
45

.3
2

−2
4.

11
62

−0
.0

00
28

4
0.

02
33

62
8

−0
.0

00
10

3
W

or
st

0
0

5,
08

2,
42

0.
83

79
59

15
9.

19
25

94
3.

98
66

24
50

65
.2

98
24

8
18

5.
58

28
13

−0
.0

00
28

4
0.

64
80

53
−0

.0
00

10
3

St
d

0
0

1.
19

5
×

10
6

2.
20

1
×

10
1

1.
62

7
×

10
8.

43
1
×

10
2

1.
15

4
×

10
2

1.
65

9
×

10
−1

9
1.

30
1
×

10
−1

4.
14

9
×

10
−2

0

SR
10

0
10

0
32

10
0

10
0

10
0

52
10

0
96

10
0

vi
o

0
0

0.
02

42
75

6
0

0
1.

16
4
×

10
−5

0.
00

35
61

4
0

1.
07

09
×

10
6

6.
6
×

10
−6

Pr
es

en
t

St
ud

y
(M

G
A

)

Be
st

0
0

10
1,

12
5.

9
72

.9
09

83
0

13
69

.4
66

−2
14

.3
61

1.
31

10
75

0.
00

02
66

0.
34

27
05

M
ed

ia
n

0
0

3,
76

9,
62

6.
34

10
6.

71
65

0
15

82
.6

55
−2

12
.3

31
2.

17
39

07
0.

57
47

44
0.

62
74

12
c

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

1,
4

0,
0,

0
2,

0,
0

0,
0,

0
2,

0,
0

v
0

0
0

0
0

0.
00

22
59

0
6.

59
08

62
0

2.
12

40
71

M
ea

n
0

0
49

7,
34

1.
7

10
3.

01
24

0
16

39
.7

29
−2

29
.9

97
2.

01
34

86
0.

90
33

13
0.

58
76

99
W

or
st

0
0

1,
08

3,
24

6
19

6.
97

17
81

0
23

75
.4

43
−5

2.
36

06
3.

90
11

32
4.

70
64

74
0.

88
71

97
St

d
0

0
41

7,
28

4.
9

22
.0

93
12

0
45

9.
98

57
10

6.
78

47
0.

97
92

32
1.

47
66

08
0.

20
69

12
SR

10
0

10
0

10
0

10
0

10
0

77
10

0
0

10
0

0
vi

o
0

0
0

0
0

0.
01

04
03

0
3.

81
49

03
0

2.
54

75
08

T
a

b
le

6
.

St
at

is
ti

ca
lr

es
ul

ts
of

di
ff

er
en

ta
pp

ro
ac

he
s

fo
r

m
at

he
m

at
ic

al
pr

ob
le

m
s

of
C

EC
20

17
w

it
h

50
di

m
en

si
on

s.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

Z
am

ud
a

[3
8]

Be
st

0
0

7.
80

×
10

6
13

.5
73

0
87

75
−3

47
.6

1.
40

×
10

−4
3.

25
×

10
−5

−3
47

.6
M

ed
ia

n
0

0
2.

65
×

10
7

13
.5

73
0

10
,2

24
−1

34
.7

2.
87

×
10

−4
8.

66
×

10
−5

−1
34

.7
c

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

1,
5

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

v
0

0
0

0
0

1.
38

×
10

−2
0

0
0

0

M
ea

n
1.

49
×

10
−8

0
2.

65
×

10
7

13
.9

88
0

86
01

−1
54

.0
2.

86
×

10
−4

9.
12

×
10

−5
−1

54
.0

W
or

st
1.

00
×

10
−7

5.
94

×
10

−8
4.

25
×

10
7

16
.9

14
0

92
02

39
.3

4.
85

×
10

−4
2.

28
×

10
−4

39
.3

St
d

1.
95

×
10

−8
1.

17
×

10
−8

8.
66

×
10

6
0.

98
68

0
12

17
10

6.
3

8.
44

×
10

−5
3.

91
×

10
−5

10
6.

3

14

Processes 2021, 9, 859

T
a

b
le

6
.

C
on

t.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

SR
10

0
10

0
10

0
10

0
10

0
0

10
0

10
0

10
0

10
0

vi
o

0
0

0
0

0
1.

52
×

10
−2

0
0

0
0

Po
la

ko
va

[3
9]

Be
st

8.
68

×
10

−3
0

2.
50

×
10

−2
9

28
6,

73
0

13
.5

72
8

0
67

08
.8

3
−0

.0
00

13
−0

.0
02

04
−4

.8
3
×

10
−5

−0
.0

00
13

M
ed

ia
n

7.
73

×
10

−2
9

1.
02

×
10

−2
8

63
3,

68
3

13
.5

72
8

1.
30

×
10

−2
8

86
36

.6
8

−0
.0

00
13

−0
.0

02
04

−4
.8

3
×

10
−5

−0
.0

00
13

c
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
2,

4
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
v

0
0

0
0

0
0.

01
13

81
0

0
0

0

M
ea

n
7.

79
×

10
−2

9
9.

79
×

10
−2

9
89

45
21

13
.5

72
8

1.
68

×
10

−2
8

75
14

.8
−0

.0
00

13
−0

.0
02

04
−4

.8
3
×

10
−5

−0
.0

00
13

W
or

st
1.

42
×

10
−2

8
1.

78
×

10
−2

8
3.

87
×

10
6

13
.5

72
8

6.
40

×
10

−2
8

66
37

.2
2

−0
.0

00
13

−0
.0

02
04

−4
.8

3
×

10
−5

−0
.0

00
13

St
d

3.
08

×
10

−2
9

4.
60

×
10

−2
9

74
04

90
5.

44
×

10
−1

5
1.

59
×

10
−2

8
14

17
.7

6
2.

77
×

10
−2

0
1.

33
×

10
−1

8
0

2.
77

×
10

−2
0

SR
10

0
10

0
10

0
10

0
10

0
0

10
0

10
0

10
0

10
0

vi
o

0
0

0
0

0
0.

01
16

93
0

0
0

0

Tv
rd

ík
an

d
Po

lá
ko

vá
[4

0]

Be
st

0
0

46
0,

40
7.

83
6

14
5.

26
30

65
0

34
86

.6
44

29
8

−3
40

.2
24

87
0.

00
06

01
−0

.0
02

03
7

−0
.0

00
04

M
ed

ia
n

0
0

4,
38

1,
25

9.
21

56
75

18
1.

08
16

74
0

60
41

.0
18

99
6

−8
5.

98
92

14
0.

00
09

65
−0

.0
02

03
7

−0
.0

00
04

c
0,

0,
0

0,
0,

0
0,

0,
1

0,
0,

0
0,

0,
0

0,
0,

4
0,

0,
2

0,
0,

0
0,

0,
1

0,
0,

0
v

0
0

0.
00

00
50

0
0

0
0.

00
00

75
0

0
0

M
ea

n
0

0
6.

64
13

×
10

6
18

7.
37

0.
31

89
3

63
64

.7
2

−6
8.

10
59

0.
00

09
92

8
0.

08
10

00
8

−4
.2

84
×

10
−5

W
or

st
0

0
27

,2
34

,2
58

.4
92

77
02

44
.7

58
53

2
3.

98
66

24
90

05
.4

15
96

5
16

3.
95

85
53

0.
00

15
58

1.
13

85
93

−0
.0

00
01

St
d

0
0

5.
97

90
×

10
6

2.
59

05
×

10
1

1.
10

38
×

10
0

1.
63

22
×

10
3

1.
34

58
×

10
2

2.
43

28
×

10
−4

2.
36

26
×

10
−1

6.
10

1
×

10
−6

SR
10

0
10

0
48

10
0

10
0

10
0

56
10

0
84

10
0

vi
o

0
0

0.
06

94
31

7
0

0
1.

02
×

10
−5

0.
00

18
00

08
3.

48
×

10
−6

1.
47

08
×

10
7

0

Pr
es

en
t

St
ud

y
(M

G
A

)

Be
st

7.
73

×
10

−6
3.

40
×

10
−7

67
,5

04
0.

5
21

4.
01

31
18

3.
36

93
21

04
.0

94
−2

87
.2

4
6.

11
11

75
16

.7
62

29
11

.9
83

84

M
ed

ia
n

6.
16

×
10

−6
2.

87
×

10
−5

16
86

14
0

23
1.

36
67

26
4.

30
97

24
53

.6
39

−1
21

.3
42

10
.1

11
17

43
19

.3
90

83
19

.3
37

52

c
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

2,
0,

0
1,

0,
0

2,
0,

0
v

0
0

0
0

0
0

0
77

.7
53

25
1.

39
85

07
27

16
.2

56

M
ea

n
2.

29
×

10
−5

9.
39

×
10

−5
3,

73
3,

88
4

23
6.

55
29

29
5.

98
03

26
01

.0
21

−1
00

.0
93

7.
70

55
96

18
.7

83
59

23
.8

66
41

W
or

st
8.

70
×

10
−5

0.
00

05
71

65
,2

65
,4

48
.5

30
9.

40
55

42
9.

77
37

26
46

01
.1

61
37

15
2.

38
20

91
10

.6
57

74
19

.7
68

21
54

.4
83

35
54

St
d

3.
41

×
10

−5
0.

00
01

67
4,

61
4,

03
0

32
.9

97
58

12
5.

19
62

59
1.

82
59

10
5.

21
48

1.
26

19
24

0.
96

36
96

11
.5

83
93

SR
10

0
10

0
10

0
10

0
10

0
76

10
0

0
0

0
vi

o
0

0
0

0
0

0.
05

74
35

0
75

.1
97

97
1.

25
52

03
30

25
.0

91

15

Processes 2021, 9, 859

T
a

b
le

7
.

St
at

is
ti

ca
lr

es
ul

ts
of

di
ff

er
en

ta
pp

ro
ac

he
s

fo
r

m
at

he
m

at
ic

al
pr

ob
le

m
s

of
C

EC
20

17
w

it
h

10
0

di
m

en
si

on
s.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

Z
am

ud
a

[3
8]

Be
st

2.
43

4
1.

07
2

9.
39

×
10

7
13

.5
73

0
15

,4
40

−5
30

.1
2

1.
22

×
10

−3
3.

51
×

10
−4

−5
30

.1
2

M
ed

ia
n

6.
21

1
2.

31
8

2.
27

×
10

8
13

.5
73

0
15

,5
95

−3
24

.9
9

1.
44

×
10

−3
4.

13
×

10
−4

−3
24

.9
9

c
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
4,

2
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
v

0
0

0
0

0
1.

18
×

10
−2

0
0

0
0

M
ea

n
7

3
2.

25
×

10
8

14
.0

28
0

15
,5

33
−3

35
.4

9
1.

48
×

10
−3

4.
25

×
10

−4
−3

35
.4

9
W

or
st

16
.5

27
6.

76
5

4.
21

×
10

8
16

.9
14

0
14

,8
30

−1
10

.1
8

1.
78

×
10

−3
5.

53
×

10
−4

−1
10

.1
8

St
d

3.
19

0
1.

39
7

9.
21

×
10

7
1.

08
3

0
16

04
12

2.
40

1.
77

×
10

−4
4.

92
×

10
−5

12
2.

40
SR

10
0

10
0

10
0

10
0

10
0

0
10

0
10

0
10

0
10

0
vi

o
0

0
0

0
0

1.
19

×
10

−2
0

0
0

0

Po
la

ko
va

[3
9]

Be
st

1.
30

×
10

−2
6

1.
31

×
10

−2
6

1.
34

×
10

6
13

.5
72

8
4.

34
×

10
−7

17
,1

64
.3

−4
.8

3
×

10
−5

−0
.0

01
43

−1
.7

2
×

10
−5

−4
.8

3
×

10
−5

M
ed

ia
n

4.
50

×
10

−2
6

4.
59

×
10

−2
6

2.
47

×
10

6
13

.5
72

8
4.

90
×

10
−6

15
,8

03
.2

−4
.8

2
×

10
−5

−0
.0

01
43

−1
.7

2
×

10
−5

−4
.8

2
×

10
−5

c
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
1,

5
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
v

0
0

0
0

0
0.

00
96

77
0

0
0

0

M
ea

n
1.

03
×

10
−2

5
8.

47
×

10
−2

6
2.

73
×

10
6

13
.7

13
2

3.
28

×
10

−5
15

,5
62

.2
−4

.8
1
×

10
−5

−0
.0

01
43

−1
.7

2
×

10
−5

−4
.8

1
×

10
−5

W
or

st
6.

51
×

10
−2

5
6.

38
×

10
−2

5
4.

79
×

10
6

15
.5

74
8

0.
00

04
16

16
,7

18
.9

−4
.7

7
×

10
−5

−0
.0

01
43

−1
.7

1
×

10
−5

−4
.7

7
×

10
−5

St
d

1.
68

×
10

−2
5

1.
25

×
10

−2
5

96
5,

59
3

0.
46

27
03

9.
25

×
10

−5
15

95
.4

1
1.

33
×

10
−7

2.
21

×
10

−1
9

1.
29

×
10

−8
1.

33
×

10
−7

SR
10

0
10

0
10

0
10

0
10

0
0

10
0

10
0

10
0

10
0

vi
o

0
0

0
0

0
0.

00
98

05
0

0
0

0

Tv
rd

ík
an

d
Po

lá
ko

vá
[4

0]

Be
st

0.
08

02
55

0.
07

29
38

1,
68

4,
50

3.
31

32
9.

32
94

39
0

10
,9

50
.2

09
6

−4
81

.3
28

98
0.

01
32

88
0

0.
00

03
65

M
ed

ia
n

0.
43

25
64

0.
18

45
68

9,
93

8,
94

8.
89

40
8.

92
57

07
0.

01
15

86
15

,5
06

.5
58

1
−2

78
.6

50
43

0.
02

72
09

0.
00

02
17

0.
00

05
01

c
0,

0,
0

0,
0,

0
0,

0,
1

0,
0,

0
0,

0,
0

0,
0,

2
0,

0,
2

0,
0,

2
0,

0,
0

0,
0,

0
v

0
0

0.
00

25
47

0
0

0
0.

00
01

98
0.

00
08

32
0

0

M
ea

n
0.

97
77

46
0.

36
61

04
1.

51
41

3
×

10
7

41
3.

58
2

0.
81

88
36

15
,2

22
.9

−1
93

.4
58

0.
04

15
97

5
0.

52
24

99
0.

00
05

13
08

W
or

st
11

.3
15

16
8

3.
62

09
79

60
,5

98
,4

81
.7

46
9.

61
79

73
4.

06
65

55
18

,5
35

.3
30

2
37

6.
52

60
02

0.
08

74
60

5.
34

85
16

0.
00

06
84

St
d

2.
17

81
×

10
6.

99
71

×
10

−1
1.

34
49

×
10

7
3.

67
21

×
10

1
1.

51
2
×

10
1.

78
24

×
10

3
2.

01
27

×
10

2
2.

46
68

×
10

−2
1.

12
23

×
10

7.
34

82
×

10
−5

SR
10

0
10

0
16

10
0

10
0

10
0

40
0

96
10

0
vi

o
0

0
0.

02
42

06
5

0
0

5.
6
×

10
−6

0.
00

43
66

64
0.

00
12

40
6

1.
56

4
×

10
−5

1.
26

8
×

10
−5

16

Processes 2021, 9, 859

T
a

b
le

7
.

C
on

t.

R
e

fe
re

n
ce

R
e

su
lt

F
u

n
ct

io
n

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

0

Pr
es

en
t

St
ud

y
(M

G
A

)

Be
st

79
.1

77
25

82
.4

63
77

1,
93

9,
22

6
10

35
.5

46
14

9,
05

7.
2

45
24

.7
06

−2
4.

78
94

11
.0

28
66

16
.5

91
3

47
.7

10
97

M
ed

ia
n

22
6.

97
38

21
6.

24
55

5,
22

9,
00

8
11

15
.1

46
16

2,
88

4.
7

49
82

.6
77

68
.5

59
85

11
.5

94
49

18
.9

10
25

39
53

.4
32

86
c

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
0

0,
0,

0
0,

0,
4

2,
0,

0
2,

0,
0

1,
0,

0
2,

0,
0

v
0

0
0

0
0

0.
00

21
05

11
62

.7
13

15
30

.1
76

69
8.

79
51

10
2,

64
3

M
ea

n
24

2.
98

25
25

6.
11

13
7,

76
6,

43
0

11
07

.6
61

16
7,

17
8.

1
56

46
.4

81
88

.4
01

24
11

.6
20

23
18

.2
33

59
53

.9
73

61
W

or
st

40
0.

53
91

92
44

5.
34

56
09

21
,9

48
,5

80
11

86
.6

49
15

22
1,

45
6

74
18

.3
42

40
2.

68
98

13
.2

02
24

19
.2

15
20

74
60

.5
83

93
St

d
12

5.
71

68
16

7.
44

98
6,

39
5,

08
9

61
.2

07
22

26
,4

83
.4

7
12

33
.6

78
17

7.
86

38
1.

15
55

93
0.

93
43

06
4.

84
69

15
SR

10
0

10
0

10
0

10
0

10
0

0
0

0
0

0
vi

o
0

0
0

0
0

0.
30

55
35

14
85

.2
07

12
21

.6
19

77
3.

76
98

10
5,

49
8

17

Processes 2021, 9, 859

Figure 7. Box plots of the Analysis of Variance (ANOVA) for the 10-dimensional problems.

Figure 8. Box plots of the ANOVA for the 30-dimensional problems.

18

Processes 2021, 9, 859

Figure 9. Box plots of the ANOVA for the 50-dimensional problems.

Figure 10. Box plots of the ANOVA for the 100-dimensional problems.

Based on the provided results for the MGA and other state-of-the-art approaches in
the evolutionary computation field, the AGA is capable of competing with these excellent
algorithms while in some cases even MGA outperforms the others. this performance in

19

Processes 2021, 9, 859

dealing with CEC 2017 lead to the fact that MGA’s mathematical model is well-established
model in which the global and local search are conducted with no need to any parameters
to be tuned. In other words, this algorithm does not need any internal parameters to be de-
fined prior to the optimization process which makes this algorithm a best choice in dealing
with complex problems in which there are not any information about the complexity level
of the problem. Additionally, the MGA generates only two new solution candidates in each
iteration which makes the algorithm to require less computational efforts for optimization
purposes. Hence, these aspects can be of great importance when the MGA is compared to
the other metaheuristic algorithms in the evolutionary computation field. In other words,
MGA is a parameter free optimization approach with less computational cost, which makes
this algorithm different form the other approaches, while the inspirational concept of this
algorithm is also unique.

5. Numerical Results of Engineering Problems

The numerical results of MGA considering the previously-described engineering
design problems are presented in this section. In this regard, the results of other meta-
heuristics in dealing with these design examples were taken from the literature in order to
make fair judgments.

The comparative results of the speed reducer design engineering problem, includ-
ing the obtained design (decision) variables related to the best optimum configuration
determined by different methods, are presented in Table A1. In addition, the statistical
results, such as the best, mean, and worst fitness values alongside the standard deviation,
are presented in Table 8. The results of different metaheuristics show that the best results
of MGA are better than the best results of the other approaches in dealing with this design
example. The MGA is also capable of providing better statistical results, including mean
and standard deviation. The Friedman statistical test results are also presented in Table A2
for comparative purposes.

Table 8. Statistical results of different approaches for the speed reducer design problem.

Approaches Best Mean Worst Std-Dev

Montes et al. [54] 3025.005 3088.7778 3078.5918 NA
Akhtar et al. [55] 3008.08 3012.1200 3028.2800 NA

Gandomi et al. [46] 3000.9810 3007.1997 3.0090 4.9634
Zhang et al. [56] 2994.471066 2994.471066 2994.471066 3.58 × 10−12

Present Study (MGA) 2994.438869 2994.47065 2996.558237 4.72 × 10−16

Considering the spring design problem, the best and statistical results of different
metaheuristics, including the obtained design variables related to the best optimum design,
are presented in Tables 9 and A3, respectively. It should be mentioned that MGA is capable
of obtaining very competitive results for this constrained engineering design problem.
It also should be mentioned that MGA yields better statistical results in terms of the
mean, worst fitness values alongside the standard deviation than the results of other
metaheuristics. The Friedman statistical test results are also presented in Table A4 for
comparative purposes.

Tables 10 and A5 present the final and statistical results obtained by the different
methods for the pressure vessel engineering design problem, respectively. From these
tables, the best result of the MGA method is better than the results of the other approaches.
By comparing the statistical results, it is obvious that MGA has better performance in
statistical analysis, especially the mean, and worst fitness values alongside the standard
deviation. The Friedman statistical test results are also presented in Table A6 for compara-
tive purposes.

20

Processes 2021, 9, 859

Table 9. Statistical results of different approaches for the tension or compression spring
design problem.

Approaches Best Mean Worst Std-Dev

Coello [57] 0.01270478 0.01276920 0.01282208 3.9390 × 10−5

Ray and Liew [58] 0.0126692 0.0129227 0.0167172 5.1985 × 10−5

Han et al. [59] 0.01266534 0.01268592 0.01272968 2.1672 × 10−5

Gandomi et al. [45] 0.01266522 0.01350052 0.0168954 0.001420272
Present Study (MGA) 0.01266523 0.01266558 0.01266723 5.65 × 10−7

Table 10. Statistical results of different approaches for the pressure vessel design problem.

Approaches Best Mean Worst Std-Dev

He and Wang [60] 6061.0777 6147.1332 6363.8041 86.4500
Coelho [61] 6059.7208 6440.3786 7544.4925 448.4711

Mezura-Montes and
Coello [62] 6059.7456 6850.004948 7332.879883 426

Coello and Montes [63] 6059.9463 6177.2532668 6469.32201 130.9
Present Study (MGA) 6059.714350 6059.694923 6273.765974 0.028912058

The results of the welded beam design problem in Tables 11 and A7 show that MGA is
capable of converging to better results than the other approaches. Although the maximum
difference between the best results of MGA and the other approaches is only about 4%,
MGA is capable of providing better statistical results, including the mean, worst fitness
values alongside standard deviation. The Friedman statistical test results are also presented
in Table A8 for comparative purposes.

Table 11. Statistical results of different approaches for the welded beam design problem.

Approaches Best Mean Worst Std-Dev

Huang et al. [64] 1.733461 1.768158 1.824105 0.022194
Eskandar et al. [65] 1.724856 1.726427 1.744697 4.29 × 10−3

Guedria [66] 1.724852 1.724853 1.724862 2.02 × 10−6

Han et al. [59] 1.6956397 1.7160908 1.7530472 1.83 × 10−2

Present Study (MGA) 1.672966512 1.678791422 1.687172363 4.4147 × 10−3

In Table A9, the final design of different methods and MGA for the three-bar truss
design problem, including the obtained design variables, are presented. Table 12 displays
the statistical results. Considering the results reported by previous researchers, it is clear
that MGA yields very competitive results for this engineering design problem. MGA
determined the best optimum value that has been reported thus far, according to the
literature, for the considered design example. It also should be noted that the statistical
results, including the mean and standard deviation, for the MGA are much better than
the results of other approaches. The Friedman statistical test results are also presented in
Table A10 for comparative purposes.

The results of the multiple disk clutch brake design problem solved by MGA and
other approaches are summarized in Table A11 [47,50,65,68]. The statistical results are
presented in Table 13. Accordingly, MGA is capable of calculating very impressive results
compared to the other metaheuristics. The maximum and minimum differences between
the results of MGA and other metaheuristics are about 49% and 24%, which demonstrates
the capability of this algorithm in dealing with multiple disk clutch brake design problem.
In addition, the statistical results, including the mean and worst fitness values, demonstrate
that MGA can yield extremely better results than the other approaches. The Friedman
statistical test results are also presented in Table A12 for comparative purposes.

21

Processes 2021, 9, 859

Table 12. Statistical results of different approaches for the three-bar truss design problem.

Approaches Best Mean Worst Std-Dev

Gandomi et al. [46] 263.97156 264.0669 NA 0.00009
Ray and Liew [58] 263.8958466 263.9033 263.9033 1.26 × 10−2

Zhang et al. [56] 263.8958434 263.8958436 263.8958498 9.72 × 10−7

Grag [67] 263.8958433 263.8958437 263.8958459 5.34 × 10−7

Present Study (MGA) 263.8958433 263.8958436 263.8959632 2.05 × 10−14

Table 13. Statistical results of different approaches for the multiple disk clutch brake design problem.

Approaches Best Mean Worst Std-Dev

Eskandar et al. [65] 0.313656 0.313656 0.313656 1.69 × 10−16

Rao et al. [50] 0.313657 0.3271662 0.392071 0.67
Ferreira et al. [47] 0.313656 0.313656 0.313656 1.13 × 10−16

Present Study (MGA) 0.235242467 0.235244323 0.235252239 2.42 × 10−6

The final results of different metaheuristics in dealing with the planetary gear train
design problem, one of the most important and well-established constrained optimization
problems, are presented in Tables 14 and A13. By comparing the best results of MGA with
other approaches, it can be concluded that MGA can yield outstanding results. Although
MGA is also capable of providing better statistical results for the mean and worst fitness
values alongside standard deviation results cannot be compared since they have yet to
be reported in the literature. The Friedman statistical test results are also presented in
Table A14 for comparative purposes.

Table 14. Statistical results of different approaches for the planetary gear train design problem.

Approaches Best Mean Worst Std-Dev

Rao and Savsani [69] (PSO) 0.53 0.5361934 NA NA
Rao and Savsani [69] (ABC) 0.525769 0.5272922 NA NA

Zhang et al. [70] 0.525589 0.525589 NA NA
Savsani and Savsani [48] 0.525588 0.53063 NA NA

Present Study (MGA) 0.52325 0.5300526 0.5370588 0.0082564

For the step-cone pulley engineering design problem, the final results of different
metaheuristics are presented in Table A15, and the statistical results are provided in Table 15.
By comparing the best results, it can be concluded that MGA can yield very impressive
results for this constrained engineering problem. The maximum difference between the
mean results of MGA and other approaches is about 31%. The Friedman statistical test
results are also presented in Table A16 for comparative purposes.

Table 15. Statistical results of different approaches for the step-cone pulley design problem.

Approaches Best Mean Worst Std-Dev

TLBO [50] 16.63451 24.0113577 74.022951 0.34
WOA [44] 16.6345213 20.93829477 24.8488259 3.3498
WCA [44] 16.63450849 17.53037682 18.83302997 0.9229
MBA [44] 16.6345078 16.702535 18.3237145 0.2627

Present Study (MGA) 16.18595608 16.35528922 16.98647762 0.14824361
TLBO: Teaching-Learning-Based Optimization.

In Table 16, the comparative results of different metaheuristics in dealing with the
hydrostatic thrust bearing design problem, including the obtained design and its related

22

Processes 2021, 9, 859

best optimum configuration, are presented. Table 17 displays the statistical results. It can
be concluded that MGA is capable of converging to better results than the other approaches.
The maximum difference between the best results of MGA is about 29%, where MGA
yielded better statistical results for the mean, worst fitness values alongside the standard
deviation than the other approaches. The Friedman statistical test results are also presented
in Table 18 for comparative purposes.

Table 16. Comparison of the best solutions for the hydrostatic thrust bearing design problem.

Siddall [71] Deb and Goyal [72] Coello [73] Rao et al. [50] Present Study (MGA)

Best 2288.2268 2161.4215 1950.2860 1625.44276 1623.980938
R 7.155 6.778 6.271 5.9557805026 5.963241516
R0 6.689 6.234 12.901 5.3890130519 5.395907989
μ 8.321 × 10−6 6.096 × 10−6 5.605 × 10−6 0.0000053586 5.38 × 10−6

Q 9.168 3.809 2.938 2.2696559728 2.282242505
g1(x) −11,086.7430 −8329.7681 −2126.86734 −0.0001374735 −144.9586796
g2(x) −402.4493 −177.3527 −68.0396 −0.0000010103 −1.194802021
g3(x) −35.057196 −10.684543 −3.705191 −0.0000000210 −0.372450027
g4(x) −0.001542 −0.000652 −0.000559 −0.0003243625 −0.00032915
g5(x) −0.466000 −0.544000 −0.666000 −0.5667674507 −0.567333527
g6(x) −0.000144 −0.000717 −0.000805 −0.0009963614 −0.000996355
g7(x) −563.644401 −83.618221 −849.718683 −0.0000090762 −4.144258876

Table 17. Statistical results of different approaches for the hydrostatic thrust bearing design problem.

Approaches Best Mean Worst Std-Dev

Şahin et al. [74] 1625.46467 1627.744198 1650.698747 3.815546973
Rao and Waghmare [75] 1625.44271 1796.89367 2104.3776 0.21

Rao et al. [50] 1625.44276 1797.70798 2096.8012 0.19
Present Study (MGA) 1621.246175 1739.156729 1992.961305 0.11

Table 18. Friedman statistical test results for the hydrostatic thrust bearing design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.5
2 Şahin et al. [74] 2.5
3 Rao and Waghmare [75] 3
4 Rao et al. [50] 3

Chi-sq. 3.6000
Prob > Chi-sq. 0.3080

The optimum results of different metaheuristics in dealing with the ten-bar truss
design problem are presented in Tables 19 and 20. By comparing the best results, it can be
concluded that MGA is capable of outperforming other metaheuristics approaches. Until
now, the best value obtained for this example was 529.25, which has been overcome by
MGA with 529.12. This indicates the capability of MGA to provide remarkable results for
some complex constrained design problems.

23

Processes 2021, 9, 859

Table 19. Comparison of the best solutions for the ten-bar truss design problem.

Yu et al. [51]
Lamberti and

Pappalettere [76]
Baghlani and

Makiabadi [77]
Kaveh and

Zolghadr [78]
Present Study

(MGA)

Best 544.7 534.57 530.76 529.25 529.1204229
A1 36.380 35.148 35.494 39.569 36.76416
A2 12.941 13.169 14.777 16.740 16.29897
A3 35.764 37.69 36.203 34.361 37.94378
A4 18.314 19.556 15.387 12.994 16.51087
A5 3.002 1.087 0.6451 0.645 0.659
A6 5.433 4.844 4.5896 4.802 4.57489
A7 20.989 18.314 23.211 26.182 22.94023
A8 24.14 27.415 24.561 21.260 22.63185
A9 9.753 12.562 12.482 11.766 10.87892
A10 18.102 12.106 12.324 11.392 11.53643

Table 20. Statistical results of the different method for the ten-bar truss bearing design problem.

Approaches Best Mean Worst Std-Dev

Present Study (MGA) 529.1204229 534.6843574 548.0179132 26.33651675

The results of different methods for the rolling element bearing design problem are
presented in Tables 21 and 22. It is clear that the best result of the MGA in this case is
better than those of other approaches in the literature. Regarding the fact that this problem
is a maximization optimization problem, MGA is also capable of providing remarkable
statistical results.

Table 21. Comparison of the best solutions for the rolling element bearing design problem.

TLBO [50] Present Study (MGA) *

Best 81,859.74 83,912.87983
Dm 21.42559 125.0002787
Db 125.7191 21.87451192
Z 11 10.77706583
fi 0.515 0.515000822
f0 0.515 0.515002993

KDmin 0.424266 0.405908353
KDmax 0.633948 0.65558802

ε 0.3 0.300004155
e 0.068858 0.077544926
ζ 0.799498 0.6

* This problem is a maximization problem.

Table 22. Statistical results of different approaches for the rolling element bearing design problem.

Approaches Best Mean Worst Std-Dev

TLBO [50] 81,859.74 81,438.987 80,807.8551 0.66
Present Study (MGA) 83,912.87983 83,892.25647 83,711.21317 23.65841

Table A17 [46,79–81] and Table 23 display the comparative and statistical optimization
results of multiple optimization algorithms and MGA in dealing with the gear train design
problem. It is obvious that MGA outranks the other optimization algorithms, Specifically,
MGA obtained a perfect best of zero, which has not been obtained by other metaheuristics,
confirming the capability of MGA to yield the lowest possible value in this case. The
Friedman statistical test results are also presented in Table A18 for comparative purposes.

24

Processes 2021, 9, 859

Table 23. Statistical results of different approaches for the gear train design problem.

Approaches Best Mean Worst Std-Dev

Gandomi et al. [46] 2.7009 × 10−12 1.9841 × 10−9 2.3576 × 10−9 3.5546 × 10−9

Loh and Papalambros [79] 2.7 × 10−12 2.7 × 10−12 2.7 × 10−12 2.2122 × 10−28

Wang et al. [82] (CPKH) 2.22 × 10−16 2.22× 10−16 8.5 × 10−9 7.96 × 10−22

Wang et al. [82] (ABC) 2.92 × 10−15 3.18 × 10−15 8.5 × 10−9 9.81 × 10−10

Present Study (MGA) 1.06 × 10−19 7.69 × 10−14 7.62 × 10−13 1.78 × 10−13

CPKH: Chaotic Particle Swarm Krill Herd.

Considering the steel I-shaped beam as one of the most well-formulated design
problems, the final and statistical optimization results of multiple metaheuristics are
presented in Tables 24 and 25, respectively. By comparing these optimum results, MGA
outranked all other well-known algorithms that have been reported recently.

Table 24. Comparison of the best solutions for the steel I-shaped beam design problem.

ARSM [83] I-ARSM [83] MATLAB [83] CS [46]
Present Study

(MGA)

Best 0.0157 0.131 0.0131 0.0130747 0.013074119
h 80 79.99 80 80 79.9999992
b 37.05 48.42 50 50 49.9999985
tw 1.71 0.9 0.9 0.9 0.9
tf 2.31 2.4 2.32 2.3216715 2.321792333

ARSM: Adaptive Response Surface Method; I-ARMS: Improved Adaptive Response Surface Method; MATLAB:
Matrix Laboratory Optimization Approach.

Table 25. Statistical results of different approaches for the steel I-shaped beam design problem.

Approaches Best Mean Worst Std-Dev

CS [46] 0.0130747 0.0132165 0.01353646 0.0001345
Present Study (MGA) 0.013074119 0.013074141 0.013074291 3.86 × 10−8

The final results of different metaheuristics for the piston lever design problem, a fre-
quently occurring optimization problem, are presented in Table A19. The statistical results,
including the best, mean, and worst fitness values alongside standard deviation, are pre-
sented in Table 26 for comparative purposes. Based on the results, MGA is capable of
providing better statistical (mean, worst, and standard deviation of the results) and greatly
outranked the other algorithms in terms of the best results. The Friedman statistical test
results are also presented in Table A20 for comparative purposes.

Table 26. Statistical results of different approaches for the piston lever design problem.

Approaches Best Mean Worst Std-Dev

HPSO [46] 162 187 197 13.4
GA [46] 161 185 216 18.2
DE [46] 159 187 199 14.2

CSA [46] 8.4271 40.2319 168.5920 59.0552
Present Study (MGA) 8.413406652 32.4688925 167.4732134 29.96370439

HPSO: Hybrid Particle Swarm Optimization.

Considering the cantilever beam engineering design problem, the optimization results
of the different optimization algorithms are all presented in Tables 27 and 28. By comparing
the best results of these methods, it can be concluded that MGA is capable of achieving

25

Processes 2021, 9, 859

better results. According to the literature, recently-developed algorithms can yield 1.34,
at best, for this example. Herein, we found that MGA is capable of providing even better
result (1.33997) by conducting a better searching procedure. The statistical results of other
optimization algorithms are not reported in the literature; thus, the remarkable results of
MGA are beneficial for future works.

Table 27. Comparison of the best solutions for the cantilever beam design problem.

MMA [46] GCA-I [46] GCA-II [46] CSA [46]
Present Study

(MGA)

Best 1.34 1.34 1.34 1.33999 1.339975661
x1 6.01 6.01 6.01 6.0089 6.011660964
x2 5.3 5.3 5.3 5.3049 5.315676194
x3 4.49 4.49 4.49 4.5023 4.510681877
x4 3.49 3.49 3.49 3.5077 3.485698713
x5 2.15 2.15 2.15 2.1504 2.150251174

MMA: Method of Moving Asymptotes; GCA: Generalized Convex Approximation.

Table 28. Statistical results of the MGA method for the cantilever beam design problem.

Approaches Best Mean Worst Std-Dev

Present Study (MGA) 1.339975661 1.340052681 1.340201166 6.99 × 10−5

By comparing the p-values of the Friedman statistical test which are presented in the
table of results by Chi-sq., it is concluded that for the piston lever design example, the
lowest p-values is determined which demonstrates the fact that for this example, there are
noticeable difference between the results of different approaches. However, the p-values of
other examples are also near a mean of 9 which represents the stability of the conducted
optimization runs and the statistical tests (Figure 11).

Figure 11. Comparison of Friedman’s p-vales for different design examples.

26

Processes 2021, 9, 859

6. Conclusions

In this paper, the Material Generation Algorithm (MGA) is presented as a new
metaheuristic for different applications and various optimization problems. In this re-
gard, 25 constrained design problems were considered to evaluate MGA, including 10
mathematically-constrained problems presented by the Competitions on Evolutionary
Computation (CEC 2017) and 15 well-known engineering design problems. For compara-
tive purposes, the best results of different metaheuristic algorithms, such as state-of-the-art
metaheuristics from CEC 2017, were selected for comparative purposes. Considering
the results of MGA in dealing with the mathematical problems, it should be noted that
this algorithm is capable of providing very competitive results in different dimensions.
In addition, MGA yielded very impressive results in all of constrained engineering design
problems compared to the previously reported algorithms. Specifically, the highest differ-
ence of about 24% between the best results of MGA and the best results reported thus far
in the literature was found for the multiple disk clutch brake engineering design problem.
For the three-bar truss design problem, MGA can provide very competitive results and,
importantly, nearly the best results reported thus far. For the tension or compression spring,
pressure vessel and rolling element bearing problems, the best results were higher for MGA
than the best reported results.

While the proposed MGA has been proven to be a powerful method, different ap-
plications of this method are suggested for future research. It should be mentioned that
the capability of this optimization approach can be controlled in dealing with some com-
plex real-world and even computationally-expensive optimization problems. In addition,
some other challenges, such as improving the general formulation of this method and
hybridizing with other approaches, should be investigated properly.

Author Contributions: Conceptualization, S.T.; methodology, S.T. and M.A.; software, S.T. and M.A.;
Validation, M.A. and S.T.; formal analysis, M.A.; investigation, S.T., M.A. and A.H.G.; resources, S.T.,
M.A. and A.H.G.; data curation, A.H.G.; writing—original draft preparation, M.A.; writing—review
and editing, S.T. and A.H.G.; visualization, M.A.; supervision, S.T.; project administration, S.T.;
funding acquisition, S.T., M.A. and A.H.G. All authors have read and agreed to the published version
of the manuscript.

Funding: The APC was funded by University of Technology Sydney Internal Fund for A.H. Gandomi.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Matlab implementation of MGA is accessible at: www.mathworks.
com/matlabcentral/fileexchange/92065-material-generation-algorithm-mga (accessed on 3 May 2021).

Acknowledgments: This research was partially supported by the University of Tabriz, grant number
1615 and the APC was funded by University of Technology Sydney Internal Fund for A.H. Gandomi.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Comparison of the best solutions for the speed reducer design problem.

Montes et al.
[54]

Akhtar et al.
[55]

Gandomi et al.
[46]

Zhang et al.
[56]

Present Study
(MGA)

Best 3025.005 3008.08 3000.9810 2994.471066 2994.438869
b 3.506163 3.506122 3.5015 3.5 3.500007956
m 0.700831 0.700006 0.7000 0.7 0.700000656
z 17 17 17.0000 17 17.00000081
l1 7.460181 7.549126 7.6050 7.3 7.300541927

27

Processes 2021, 9, 859

Table A1. Cont.

Montes et al.
[54]

Akhtar et al.
[55]

Gandomi et al.
[46]

Zhang et al.
[56]

Present Study
(MGA)

l2 7.962143 7.85933 7.8181 7.7153199115 7.715357693
d1 3.3629 3.365576 3.3520 3.3502146661 3.350542391
d2 5.3090 5.289773 5.2875 5.2866544650 5.28665793
g1(x) −0.0777 −0.0755 −0.0743 −0.0739152 −2.155122277
g2(x) −0.2013 −0.1994 −0.1983 −0.1979985 −98.13710222
g3(x) −0.4741 −0.4562 −0.4349 −0.9999967 −1.924273761
g4(x) −0.8971 −0.8994 −0.9008 −0.9999995 −18.30969834
g5(x) −0.0110 −0.0132 −0.0011 −0.6668526 −0.000437152
g6(x) −0.0125 −0.0017 −0.0004 −0.0000000 −0.001666474
g7(x) −0.7022 −0.7025 −0.7025 −0.7025000 −28.09998829
g8(x) −0.0006 −0.0017 −0.0004 −0.0000000 −6.68 × 10−6

g9(x) −0.5831 −0.5826 −0.5832 −0.5833333 −6.999993318
g10(x) −0.0691 −0.0796 −0.0890 −0.0513257 −0.374728341
g11(x) −0.0279 −0.0179 −0.0130 −0.0000000 −3.40 × 10−05

Table A2. Friedman statistical test results for the speed reducer design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.50
2 Zhang et al. [56] 2.00
3 Gandomi et al. [46] 3.00
4 Akhtar et al. [55] 3.87
5 Montes et al. [54] 4.62

Chi-sq. 10.7848
Prob > Chi-sq. 0.0291

Table A3. Comparison of the best solutions for the tension or compression spring design problem.

Coello
[57]

Ray and
Liew [58]

Han et al. [59]
Gandomi et al.

[45]
Present Study

(MGA)

Best 0.01270478 0.0126692 0.01266534 0.01266522 0.01266523
d 0.051480 0.052160 0.0516800 0.05169 0.051689061
D 0.351661 0.368159 0.3565001 0.35673 0.35671774
N 11.632201 10.648442 11.3018335 11.2885 11.28896576

g1(x) −0.003337 −7.45 × 10−9 −6.218 × 10−6 0 0
g2(x) −0.000110 −3.68 × 10−9 −1.691 × 10−6 0 0
g3(x) −4.026318 −4.075805 −4.0533150 −4.0538 −4.05378563
g4(x) −0.731239 −0.719787 −0.7278799 −0.7277 −0.7277288

Table A4. Friedman statistical test results for the tension or compression spring design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.25
2 Han et al. [59] 2.25
3 Coello [57] 3.50
4 Ray and Liew [58] 4.00
5 Gandomi et al. [45] 4.00

Chi-sq. 9.4000
Prob > Chi-sq. 0.0518

28

Processes 2021, 9, 859

Table A5. Comparison of the best solutions for the pressure vessel design problem.

He and
Wang [60]

Coelho [61]
Mezura-

Montes and
Coello [62]

Coello and
Montes [63]

Present
Study

(MGA)

Best 6061.0777 6059.7208 6059.7456 6059.9463 6059.714350
Ts 0.8125 0.8125 0.8125 0.8125 0.8125
Th 0.4375 0.4375 0.4375 0.4375 0.4375
R 42.0913 42.0984 42.098087 42.097398 42.0984
L 176.7465 176.6372 176.640518 176.654050 176.6366

g1(x) −1.37 × 10−6 −8.79 × 10−7 −6.92 × 10−6 −2.02 × 10−5 0
g2(x) −3.59 × 10−4 −3.58 × 10−2 −0.03588 −0.03589 −0.0359
g3(x) −118.7687 −0.2179 2.903372 −24.8998 0
g4(x) −63.2535 −63.3628 −63.3595 −63.346 −63.3634

Table A6. Friedman statistical test results for the pressure vessel design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1
2 He and Wang [60] 2.75
3 Coello and Montes [63] 3.25
4 Coelho [61] 4.00

5 Mezura-Montes and Coello
[62] 4.00

Chi-sq. 9.8000
Prob > Chi-sq. 0.0439

Table A7. Comparison of the best solutions for the welded beam design problem.

Huang et al.
[64]

Eskandar et al.
[65]

Guedria [66]
Han et al.

[59]

Present
Study

(MGA)

Best 1.733461 1.724856 1.724852 1.6956397 1.672966512
h 0.203137 0.205728 0.205730 0.20532536 0.198957505
l 3.542998 3.470522 3.470489 3.26035648 3.341955765
t 9.033498 9.036620 9.036624 9.03664424 9.187291977
b 0.206179 0.205729 0.205730 0.20572991 0.199190532

g1(x) −44.57856 −0.034128 −1.05 × 10−10 −0.10520197 −20.76244473
g2(x) −44.66353 −3.49 × 10−5 −6.91 × 10−10 −0.17417862 −23.09392302
g3(x) −0.003042 −1.19 × 10−6 −7.66 × 10−15 −4.04330102 −0.000233027
g4(x) −3.423726 −3.432980 −3.432984 −3.45179021 −3.469028817
g5(x) −0.078137 −0.080728 −0.080730 −0.08032536 −0.073957505
g6(x) −0.235557 −0.235540 −0.235540 −0.22831066 −0.05415088
g7(x) −38.02826 −0.013503 −5.80 × 10−10 −0.03397937 −30.47032014

Table A8. Friedman statistical test results for the welded beam design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.50
2 Guedria [66] 2.25
3 Han et al. [59] 3.25
4 Eskandar et al. [65] 3

29

Processes 2021, 9, 859

Table A8. Cont.

Rankings Algorithms Mean of Ranks

5 Huang et al. [64] 5

Chi-sq. 11.0000
Prob > Chi-sq. 0.0266

Table A9. Comparison of the best solutions for the three-bar truss design problem.

Gandomi et al.
[46]

Ray and Liew
[58]

Zhang et al. [56] Grag [67]
Present
Study

(MGA)

Best 263.97156 263.8958466 263.8958434 263.8958433 263.8958433
A1 0.78867 0.7886210370 0.7886751359 0.788676171219 0.788675136
A2 0.40902 0.4084013340 0.4082482868 0.408245358456 0.408248288
g1(x) −0.00029 −8.275 × 10−9 −2.104 × 10−11 −1.587 × 10−13 0
g2(x) −0.00029 −1.46392765 −1.46410161 −1.4641049 −1.464101618
g3(x) −0.73176 −0.536072358 −0.5358983 −0.535895 −0.535898382

Table A10. Friedman statistical test results for the three-bar truss design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.75
2 Grag [67] 1.87
3 Zhang et al. [56] 2.37
4 Ray and Liew [58] 4.25
5 Gandomi et al. [46] 4.75

Chi-sq. 12.8700
Prob > Chi-sq. 0.0119

Table A11. Comparison of the best solutions for the multiple disk clutch brake design problem.

Deb and
Srinivasan

[68]

Eskandar et al.
[65]

Rao et al.
[50]

Ferreira et al.
[47]

Present
Study

(MGA)

Best 0.4704 0.313656 0.313656611 0.313656 0.235242467
r1 70 70 70 70 70.00000008
r0 90 90 90 90 90.0000003
t 1.5 1 1 1 1.000000013
F 1000 910 810 830 865.6907633
Z 3 3 3 3 2.00000004

g1(x) 0 0 0 0 −2.18 × 10−7

g2(x) −22 −24 −24 −24 −25.4999999
g3(x) −0.9005 −0.909480 −0.91942781 −0.917438 −0.913888149
g4(x) −9.7906 −9.809429 −9830.371094 −9.826183 −9.985383395
g5(x) −7.8947 −7.894696 −7894.69659 −7.894697 −9.830260243
g6(x) −3.3527 −2.231421 −0.702013203 −0.173855 −14.98276443
g7(x) −60.6250 −49.768749 −37706.25 −40.118750 −83479.16052
g8(x) −11.6473 −12.768578 −14.2979868 −14.826145 −0.017235569

30

Processes 2021, 9, 859

Table A12. Friedman statistical test results for the multiple disk clutch brake design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.5
2 Ferreira et al. [47] 2.12
3 Eskandar et al. [65] 2.37
4 Rao et al. [50] 4.00

Chi-sq. 8.8378
Prob > Chi-sq. 0.0315

Table A13. Comparison of the best solutions for the planetary gear train design problem.

Savsani and Savsani [48] Present Study (MGA)

Best 0.525588 0.52325
N1 34 40
N2 25 21
N3 33 14
N4 32 19
N5 23 17
N6 116 69
P 4 3

m1 2.5 2
m2 1.75 3

Table A14. Friedman statistical test results for the planetary gear train design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 2.50
2 Zhang et al. [70] 2.50
3 Savsani and Savsani [48] 3.00
4 Rao and Savsani [69] (ABC) 3.00
5 Rao and Savsani [69] (PSO) 4.00

Chi-sq. 12.8700
Prob > Chi-sq. 0.0119

Table A15. Comparison of the best solutions for the step-cone pulley design problem.

TLBO [50] WOA [44] WCA [44] MBA [44]
Present Study

(MGA)

Best 16.63451 16.6345213 16.63450849 16.6345078 16.18595608
d1 40 40 40 40 38.53034981
d2 54.7643 54.764326 54.764300 54.764300 53.04151483
d3 73.01318 54.764326 54.764300 54.764300 70.67294075
d4 73.01318 54.764326 54.764300 88.428419 84.71470998
w 73.01318 85.986297 54.764300 85.986242 90

WOA: Whale Optimization Algorithm; WCA: Water Cycle Algorithm; MBA: Mine Blast Algorithm.

31

Processes 2021, 9, 859

Table A16. Friedman statistical test results for the step-cone pulley design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.00
2 MBA [44] 2.00
3 WCA [44] 3.25
4 TLBO [50] 4.25
5 WOA [44] 4.50

Chi-sq. 14.2000
Prob > Chi-sq. 0.0067

Table A17. Comparison of the best solutions for the gear train design problem.

Gandomi et al.
[46]

Loh and Pa-
palambros

[79]

Kannan and
Kramer [80]

Sandgren
[81]

Present
Study

(MGA)

Best 2.701 × 10−12 2.7× 10−12 2.146 × 10−8 5.712 × 10−6 1.06 × 10−19

zd 19 19 13 18 27.32076302
zb 16 16 15 22 13.75530503
za 43 43 33 45 48.25305913
zf 49 49 41 60 53.98015133

Table A18. Friedman statistical test results for the gear train design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 2.00
2 Wang et al. [82] (CPKH) 2.37
3 Loh and Papalambros [79] 2.75
4 Wang et al. [82] (ABC) 3.37
5 Gandomi et al. [46] 4.50

Chi-sq. 6.2278
Prob > Chi-sq. 0.1828

Table A19. Comparison of the best solutions for the piston lever design problem.

CSA [46] Present Study (MGA)

Best 8.4271 8.413406652
H 0.05 0.05
B 2.043 2.041637535
X 120 120
D 4.0851 4.083080224

Table A20. Friedman statistical test results for the piston lever design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.75
2 CSA [46] 2.75
3 HPSO [46] 3.75
4 GA [46] 3.75
5 DE [46] 3.75

Chi-sq. 4.0000
Prob > Chi-sq. 0.4060

32

Processes 2021, 9, 859

References

1. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549.
[CrossRef]

2. Sörensen, K.; Sevaux, M.; Glover, F. A History of Metaheuristics; Handbook of heuristics. arXiv 2017, arXiv:1704.00853.
3. Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech

Concurr. Comput. Program C3P Rep. 1989, 826, 1989.
4. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1992.
5. Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge,

MA, USA, 1992.
6. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
7. Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
8. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
9. Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium

on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.
10. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B Cybern. 1996, 26, 29–41. [CrossRef] [PubMed]
11. Basturk, B. An artificial bee colony (ABC) algorithm for numeric function optimization. In Proceedings of the IEEE Swarm

Intelligence Symposium, Indianapolis, IN, USA, 12 May 2006.
12. Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat Swarm Optimization. In Pacific Rim International Conference on Artificial Intelligence; Springer:

Berlin/Heidelberg, Germany, 2006; pp. 854–858.
13. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2010.
14. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,

17, 4831–4845. [CrossRef]
15. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
16. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
17. Erol, O.K.; Eksin, I. A new optimization method: Big bang–big crunch. Adv. Eng. Softw. 2006, 37, 106–111. [CrossRef]
18. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
19. Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289. [CrossRef]
20. Alatas, B. ACROA: Artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 2011, 38,

13170–13180. [CrossRef]
21. Kaveh, A.; Mahdavi, V.R. Colliding bodies optimization: A novel meta-heuristic method. Comput. Struct. 2014, 139, 18–27.

[CrossRef]
22. Talatahari, S.; Azizi, M. Chaos Game Optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2020, 22, 1–88. [CrossRef]
23. Talatahari, S.; Azizi, M. Optimization of Constrained Mathematical and Engineering Design Problems Using Chaos Game

Optimization. Comput. Ind. Eng. 2020, 145, 106560. [CrossRef]
24. Azizi, M. Atomic orbital search: A novel metaheuristic algorithm. Appl. Math. Model. 2021, 93, 657–683. [CrossRef]
25. Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic

competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp.
4661–4667.

26. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

27. Talatahari, S.; Azizi, M. Tribe-charged system search for global optimization. Appl. Math. Model. 2021, 93, 115–133. [CrossRef]
28. Carbas, S. Design optimization of steel frames using an enhanced firefly algorithm. Eng. Optim. 2016, 48, 2007–2025. [CrossRef]
29. Hasançebi, O.; Çarbaş, S.; Saka, M.P. Improving the performance of simulated annealing in structural optimization. Struct.

Multidiscip. Optim. 2010, 41, 189–203. [CrossRef]
30. Azad, S.K. Design optimization of real-size steel frames using monitored convergence curve. Struct. Multidiscip. Optim. 2021, 63,

267–288. [CrossRef]
31. Akış, T.; Azad, S.K. Structural Design Optimization of Multi-layer Spherical Pressure Vessels: A Metaheuristic Approach. Iran. J.

Sci. Technol. Trans. Mech. Eng. 2019, 43, 75–90. [CrossRef]
32. Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.; Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based

learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113–122. [CrossRef]
33. Mokeddem, D.; Mirjalili, S. Improved Whale Optimization Algorithm applied to design PID plus second-order derivative

controller for automatic voltage regulator system. J. Chin. Inst. Eng. 2020, 43, 541–552. [CrossRef]
34. Kaveh, A.; Hosseini, S.M.; Zaerreza, A. Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with

discrete variables. In Structures; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–128.

33

Processes 2021, 9, 859

35. Ebrahimi, B.; Tavana, M.; Toloo, M.; Charles, V. A novel mixed binary linear DEA model for ranking decision-making units with
preference information. Comput. Ind. Eng. 2020, 149, 106720. [CrossRef]

36. Azizi, M.; Ghasemi, S.A.; Ejlali, R.E.; Talatahari, S. Optimization of Fuzzy Controller for Nonlinear Buildings with Improved
Charged System Search. Struct. Eng. Mech. 2020, 76, 781.

37. Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained
Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National
University: Daegu, Korea; Nanyang Technological University: Singapore, 2017.

38. Tvrdík, J.; Poláková, R. Simple framework for constrained problems with application of L-SHADE44 and IDE. In Proceedings of
the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp. 1436–1443.

39. Polakova, R. L-SHADE with competing strategies applied to constrained optimization. In Proceedings of the 2017 IEEE Congress
on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp. 1683–1689.

40. Zamuda, A. Adaptive constraint handling and success history differential evolution for CEC 2017 constrained real-parameter
optimization. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp.
2443–2450.

41. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

42. Sörensen, K. Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]
43. Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A test-suite of non-convex constrained optimization

problems from the real-world and some baseline results. Swarm Evol. Comput. 2020, 56, 100693. [CrossRef]
44. Yildiz, A.R.; Abderazek, H.; Mirjalili, S. A Comparative Study of Recent Non-traditional Methods for Mechanical Design

Optimization. Arch. Comput. Methods Eng. 2020, 27, 1031–1048. [CrossRef]
45. Gandomi, A.H.; Yang, X.S.; Alavi, A.H.; Talatahari, S. Bat algorithm for constrained optimization tasks. Neural Comput. Appl.

2013, 22, 1239–1255. [CrossRef]
46. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
47. Ferreira, M.P.; Rocha, M.L.; Neto, A.J.; Sacco, W.F. A constrained ITGO heuristic applied to engineering optimization. Expert Syst.

Appl. 2018, 110, 106–124. [CrossRef]
48. Savsani, P.; Savsani, V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl. Math. Model. 2016, 40, 3951–3978.

[CrossRef]
49. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019.
50. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
51. Yu, Z.; Xu, T.; Cheng, P.; Zuo, W.; Liu, X.; Yoshino, T. Optimal Design of Truss Structures with Frequency Constraints Using

Interior Point Trust Region Method. Proc. Rom. Acad. Ser. 2014, 15, 165–173.
52. Gupta, S.; Tiwari, R.; Nair, S.B. Multi-objective design optimisation of rolling bearings using genetic algorithms. Mech. Mach.

Theory 2007, 42, 1418–1443. [CrossRef]
53. Zelinka, I.; Lampinen, J. Mechanical Engineering Problem Optimization by SOMA. In New Optimization Techniques in Engineering;

Springer: Berlin/Heidelberg, Germany, 2004; pp. 633–653.
54. Mezura-Montes, E.; Coello, C.C.; Landa-Becerra, R. Engineering Optimization Using Simple Evolutionary Algorithm. In

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA, 5 November
2003; pp. 149–156.

55. Akhtar, S.; Tai, K.; Ray, T. A socio-behavioural simulation model for engineering design optimization. Eng. Optim. 2002, 34,
341–354. [CrossRef]

56. Zhang, M.; Luo, W.; Wang, X. Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 2008,
178, 3043–3074. [CrossRef]

57. Coello, C.A. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127.
[CrossRef]

58. Ray, T.; Liew, K.M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans.
Evol. Comput. 2003, 7, 386–396. [CrossRef]

59. Han, J.; Yang, C.; Zhou, X.; Gui, W. A two-stage state transition algorithm for constrained engineering optimization problems. Int.
J. Control Autom. Syst. 2018, 16, 522–534. [CrossRef]

60. He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng.
Appl. Artif. Intell. 2007, 20, 89–99. [CrossRef]

61. Dos Santos Coelho, L. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design
problems. Expert Syst. Appl. 2010, 37, 1676–1683. [CrossRef]

62. Zahara, E.; Kao, Y.T. Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design
problems. Expert Syst. Appl. 2009, 36, 3880–3886. [CrossRef]

63. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving
constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [CrossRef]

34

Processes 2021, 9, 859

64. Huang, F.Z.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math.
Comput. 2007, 186, 340–356. [CrossRef]

65. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for
solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [CrossRef]

66. Guedria, N.B. Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 2016,
40, 455–467. [CrossRef]

67. Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 2019, 478, 499–523. [CrossRef]
68. Deb, K.; Srinivasan, A. Innovization: Innovating Design Principles through Optimization. In Proceedings of the 8th Annual

Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8 July 2006; pp. 1629–1636.
69. Rao, R.V.; Savsani, V.J. Mechanical Design Optimization Using Advanced Optimization Techniques; Springer Science & Business Media:

London, UK, 2012.
70. Zhang, J.; Xiao, M.; Gao, L.; Pan, Q. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering

optimization problems. Appl. Math. Model. 2018, 63, 464–490. [CrossRef]
71. Siddall, J.N. Optimal Engineering Design: Principles and Applications; CRC Press: London, UK, 1982.
72. Deb, K.; Goyal, M. Optimizing Engineering Designs Using a Combined Genetic Search. InICGA 1997, 521–528.
73. Coello, C.A. The Use of a Multiobjective Optimization Technique to Handle Constraints. In Proceedings of the Second International

Symposium on Artificial Intelligence (Adaptive Systems); Institute of Cybernetics, Mathematics and Physics, Ministry of Science
Technology and Environment: La Habana, Cuba, 1999; pp. 251–256.

74. Şahin, İ.; Dörterler, M.; Gokce, H. Optimization of Hydrostatic Thrust Bearing Using Enhanced Grey Wolf Optimizer. Mechanics
2019, 25, 480–486. [CrossRef]

75. Rao, R.V.; Waghmare, G.G. A new optimization algorithm for solving complex constrained design optimization problems. Eng.
Optim. 2017, 49, 60–83. [CrossRef]

76. Lamberti, L.; Pappalettere, C. Move limits definition in structural optimization with sequential linear programming. Part I:
Optimization algorithm. Comput. Struct. 2003, 81, 197–213. [CrossRef]

77. Baghlani, A.; Makiabadi, M.H. Teaching-learning-based optimization algorithm for shape and size optimization of truss structures
with dynamic frequency constraints. Iran. J. Sci. Technol. Trans. Civ. Eng. 2013, 37, 409.

78. Kaveh, A.; Zolghadr, A. Shape and size optimization of truss structures with frequency constraints using enhanced charged
system search algorithm. Asian J. Civ. Eng. Build. Hous. 2011, 12, 487–509.

79. Loh, H.T.; Papalambros, P.Y. Computational implementation and tests of a sequential linearization algorithm for mixed-discrete
nonlinear design optimization. J. Mech. Des. 1990, 5213, 11–12. [CrossRef]

80. Kannan, B.K.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization
and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [CrossRef]

81. Sandgren, E. Nonlinear integer and discrete programming in mechanical design. J. Mech. Des. 1988, 112, 223–229. [CrossRef]
82. Wang, G.G.; Hossein Gandomi, A.; Hossein Alavi, A. A chaotic particle-swarm krill herd algorithm for global numerical

optimization. Kybernetes 2013, 42, 962–978. [CrossRef]
83. Wang, G.G. Adaptive response surface method using inherited latin hypercube design points. J. Mech. Des. 2003, 125, 210–220.

[CrossRef]

35

processes

Article

Improved NSGA-III with Second-Order Difference Random
Strategy for Dynamic Multi-Objective Optimization

Haijuan Zhang 1, Gai-Ge Wang 1,2,3,4,*, Junyu Dong 1 and Amir H. Gandomi 5

Citation: Zhang, H.; Wang, G.-G.;

Dong, J.; Gandomi, A.H. Improved

NSGA-III with Second-Order

Difference Random Strategy for

Dynamic Multi-Objective

Optimization. Processes 2021, 9, 911.

https://doi.org/10.3390/pr9060911

Academic Editor: Gade

Pandu Rangaiah

Received: 8 May 2021

Accepted: 19 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China;
zhanghaijuan@stu.ouc.edu.cn (H.Z.); dongjunyu@ouc.edu.cn (J.D.)

2 College of Information Technology, Jilin Agricultural University, Changchun 130118, China
3 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
4 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,

Guangxi University for Nationalities, Nanning 530006, China
5 Faculty of Engineering & Information Technology, University of Technology, Sydney, NSW 2007, Australia;

gandomi@uts.edu.au
* Correspondence: wgg@ouc.edu.cn

Abstract: Most real-world problems that have two or three objectives are dynamic, and the environ-
ment of the problems may change as time goes on. For the purpose of solving dynamic multi-objective
problems better, two proposed strategies (second-order difference strategy and random strategy)
were incorporated with NSGA-III, namely SDNSGA-III. When the environment changes in SDNSGA-
III, the second-order difference strategy and random strategy are first used to improve the individuals
in the next generation population, then NSGA-III is employed to optimize the individuals to obtain
optimal solutions. Our experiments were conducted with two primary objectives. The first was to test
the values of the metrics mean inverted generational distance (MIGD), mean generational distance
(MGD), and mean hyper volume (MHV) on the test functions (Fun1 to Fun6) via the proposed
algorithm and the four state-of-the-art algorithms. The second aim was to compare the metrics’ value
of NSGA-III with single strategy and SDNSGA-III, proving the efficiency of the two strategies in
SDNSGA-III. The comparative data obtained from the experiments demonstrate that SDNSGA-III
has good convergence and diversity compared with four other evolutionary algorithms. What is
more, the efficiency of second-order difference strategy and random strategy was also analyzed in
this paper.

Keywords: dynamic; multi-objective; NSGA-III; evolutionary algorithm; prediction strategy

1. Introduction

Most optimization problems in the real world are multi-objective, which include
different constraints. For multi-objective optimization, many classical evolutionary al-
gorithms (EAs) have proven to be powerful tools to obtain optimal solutions, like the
multi-objective evolutionary algorithm based on decomposition (MOEA/D) [1], fast, elitist
multi-objective nondominated sorting genetic algorithm (NSGA-II) [2] and other meta-
heuristic algorithms [3–8]. Because most practical problems faced in the real world are not
limited to static multiple objectives, environmental changes may lead to different optimal
solutions under different time windows. Such issues that have changing objectives and
constraints are called dynamic multi-objective optimization problems (DMOPs).

Compared with static multi-objective problems (SMOPs), DMOPs are much closer to
practical problems and more complex, which brings some challenges to the optimization
process for the following reasons. First, changes in the number of goals or constraints
increase the uncertainty of the problem. For SMOPs, convergence and diversity are both
important for obtaining optimal solutions, which is also the same for DMOPs. Differently,

Processes 2021, 9, 911. https://doi.org/10.3390/pr9060911 https://www.mdpi.com/journal/processes37

Processes 2021, 9, 911

algorithms for DMOPs have rapid convergence while performing worse for maintaining
the diversity of a population, which leads to local, not global optimal solutions. Besides,
the Pareto front and optimal solutions tracked by the algorithm also change over time.
Second, two parameters, i.e., frequency and severity, are introduced because of the dynamic
changes. The change in their values has a great influence on the algorithm’s ability to
track the optimal solution, which adds much complexity to the problem in a larger part.
Therefore, the purpose of the algorithm for DMOPs is to track the changing Pareto front
and maintain rapid convergence and diversity when the environment changes.

Over the past few years, dynamic optimization has received increasing attention, and many
such techniques have been proposed for solving DMOPs. These techniques can be classified
into two categories [9]: (1) memory-based approaches and (2) prediction-based approaches.

In the memory-based method, the initial population is generated by memorizing
the historical optimal solution of the previous generation, coping with the changes in
the problem. Properly storing the optimal solutions obtained in the past, and restarting
these solutions for optimization can greatly improve the efficiency and searchability of
the solution as the environmental changes during the optimization process. For instance,
Luo et al. [10] combined the species strategy and memory method into species-based parti-
cle swarm optimization (SPSO) and enhanced the performance of SPSO. Nakano et al. [11]
improved the artificial bee colony algorithm (IABC) by introducing memory and detection
schemes for higher dimensional DMOPs. However, several drawbacks in the memory-
based approach include large memory consumption and incorrect predictions to solve
time-varying nonlinear problems, or more frequent environment.

On the other hand, prediction-based methods aim to predict the changing Pareto front
through a certain prediction model, thereby forming a prediction solution to respond to the
next change of the environment. In other words, memory-based methods are more suitable
for periodic or repeated environmental changes, while various types of changes can be
handled through prediction-based techniques. Therefore, many improved algorithms
incorporated with different prediction models have been developed. Gong et al. proposed
a multidirectional approach [12] based on multi-time optimal solution prediction and a
multi-model method [13] based on prediction for DMOPs. The representative individuals
generated by the clustering of optimized solutions predict the change of the Pareto front
and, finally, generate the predicted solutions. According to the relationship between the
type of change and the response strategy, the prediction model corresponding to the type
of problem change is selected to generate a predicted solution. Both methods have proved
to be superior to other algorithms in performance. Wu et al. [14] added the idea of the knee
point into the multi-objective artificial flora algorithm (MOAF), improving the diversity
and distribution. In addition, maintaining diversity in the population is also critical for
DMOPs. Zhou et al. [15] improved the population diversity through different information
obtained from various populations before and after a change occurs, whereby the infor-
mation is used for guiding the next environmental change. Considering the difficulties in
identifying the proportion of diversity introduction methods, [16] proposed an adaptive
diversity introduction (ADI) method, wherein the ratio of the diversity introduction can be
adjusted adaptively.

For DMOPs, the dynamic version of NSGA-II [2] had been proposed. Similar to
NSGA-II, NSGA-III [17] is also a classical evolutionary algorithm for many objectives.
Although NSGA-III can be used for solving DMOPs directly, the performance of NSGA-III
on DMOPs cannot be guaranteed. Therefore, the motivation of this work was to design
dynamic strategies combined with NSGA-III and improve its performance when dealing
with DMOPs.

This study mainly focused on the DMOPs that have a fixed number of objectives and
decision variables and introduces second-order difference strategy and random strategy to
be applied in NSGA-III, combined with the good convergence and diversity of NSGA-III.
The general process of the strategy is that when the environment changes are detected, a
second-order difference strategy is first used to predict the next centroid based on every two

38

Processes 2021, 9, 911

solutions, then new individuals are produced by randomly searching around the predicted
solution. Second, in the experimental part, the comparisons on six benchmarks show the
performance of the proposed algorithm, and the two parameters (change in frequency and
severity) are changed. Subsequently, three different dynamic metrics are evaluated on the
proposed algorithm. In addition, the experiment also verifies the efficiency between the
second-order difference strategy and the random disturbance strategy in the algorithm.

The rest of this paper is organized as follows. Section 2 presents the background and
related work of DMOPs, which we focused on. The proposed strategies are introduced
in Section 3, and the experimental settings and results are described in Section 4. At last,
Section 5 concludes the results obtained from experiments and discusses future work.

2. Background and Related Work

2.1. Problem Formulation

There are many formulations for dynamic multi-objective optimization problems.
Without loss of generality, we considered a minimum DMOP in this study [18]:

⎧⎨
⎩

minF(x, t) = (f1(x, t), f2(x, t), · · ·, fM(x, t))T

s.t.x ∈ Ω =
n
∏
i=1

[ai, bi]
(1)

where x = (x1, x2, x3, . . . , xn)T is an n-dimensional decision vector, and Ω is the decision
space. F(x, t): Rn × T → RM denotes an M-dimensional objective space, which contains M
objectives that have some environmental changes during the evolutionary process. What’s
more, we suppose that all the objective functions are continuous. There are three definitions
of dynamic Pareto as follows.

Definition 1. (Dynamic Pareto Dominance [19]): In a dynamic environment, a decision vector
x1 Pareto dominates another decision vector x2 at the time window t, expressed as x1 � x2, if and
only if { ∀i = 1, . . . , M, fi(x1, t) ≤ fi(x2, t)

∃i = 1, . . . , M, fi(x1, t) < fi(x2, t)
(2)

Definition 2. (Dynamic Pareto-optimal Set (DPS) [12]): For a fixed time window t and a
decision vector x* ∈ Ω, when there is no other decision vector x ∈ Ω such that x dominates x*, the
decision vector x* is said to be nondominated. The dynamic Pareto-optimal set (DPS) is the set of all
non-dominated solutions in decision space, which can be represented by:

DPS(t) = {x∗ ∈ Ω|∃x ∈ Ω, x � x∗} (3)

Definition 3. (Dynamic Pareto-optimal Front (DPF) [12]): Similar to the static Pareto-front,
the dynamic Pareto-optimal front (DPF) is the set of the corresponding objective values of the DPS:

DPF(t) = {F(x∗, t)|x∗ ∈ DPS} (4)

Based on the above definitions, the following statement can be made. Since an
environmental change can lead to changes of DPS or DPF, an effective dynamic multi-
objective optimization evolutionary algorithm (DMOEA) is expected to track the moving
DPF in time and still maintain diversity and convergence.

2.2. Evolutionary Algorithms for DMOPs

Due to their wide application in real-world problems, they have acquired rapidly
increasing attention in recent years. Because of the changes of DPS and DPF, DMOEAs pose
a higher requirement of efficiency compared with static MOEAs. A well-designed DMOEA

39

Processes 2021, 9, 911

should perform well in maintaining both convergence and diversity of the population.
Many improved classic evolutionary algorithms can be used in the process of solving
DMOPs, such as multi-objective evolutionary algorithm based on decomposition and a first-
order difference model (MOEA/D-FD) [20], the dynamic non-dominated sorting genetic
algorithm (DNSGA-II) [21], a novel dynamic multi-objective evolutionary algorithm with a
cell-based rank and density calculation strategy (DMOEA) [22], and dynamic constrained
optimization differential evolution (DyCODE) [23].

As mentioned in Section 1, memory and prediction techniques are general methods
for DMOPs and various studies have proposed prediction-based approaches. From the
perspective of evolutionary process, prediction-based methods, can generally be divided
into two classes: (1) population-based prediction and (2) individual-based prediction. In
population-based prediction, the whole population is optimized with a single prediction
model while the moving location of each individual is predicted in individual-based pre-
diction methods. Teodoro et al. [24] proposed a method of plane separation for a whole
population to solve DMOPs with incorporated references. In terms of computational cost,
many algorithms focus on distribution but ignore the excessive computational burden.
Moreover, a knee-guided prediction evolutionary algorithm (KPEA) [25] has been proposed
to achieve a lower computational cost. Specifically, KPEA generates the non-dominated
solutions around the knee points and boundary regions, and then relocates the location
of the knee point and boundary regions. Zhou et al. [26] introduced two strategies for
application in the process of population re-initialization. The two strategies are based
on individuals in the population, and some individuals are predicted according to the
information obtained from past environments. A feed-forward prediction approach, which
combines a forecasting technique to place an anticipatory group of individuals, was intro-
duced by Hatzakis et al. [27]. Taking the relevance between previous environments and
new environment into account, Liu et al. [28] stored the solutions in the past environments
into two different archives, so that the stored solutions will provide the information to
find the optimal solutions when the next change occurs. Many DMOPs in real-world
applications have various characteristics, such as the interval characteristic, which is one of
the common applications in DMOPs. To solve interval DMOPs (DI-MOPs), Gong et al. [29]
proposed a novel co-evolutionary model in terms of interval similarity. The interval param-
eters are set, and two different response strategies for change are applied to track the DPF.
Wang et al. [30] presented a predictive method based on a grey prediction model, which
divided the population into some clusters, then the centroid of each cluster was used to
build the model. In addition, individuals from different clusters were selected to detect the
environmental change.

Herein, we used various standards to measure the performance of a DMOEA in the
evolutionary process, which is largely influenced by the speed of convergence and diversity.
DMOEAs with rapid convergence track the moving DPF rapidly, while DMOEAs with
good diversity pursue the effective distribution of the optimal solutions. Keeping a good
balance between population diversity and convergence is critical to the performance of
DMOEAs. For DMOPs, Chang et al. [31] combined query-based learning with particle
swarm optimization (QBLDPSO) to improve the diversity of a population. Instead of main-
taining the diversity of particles passively like typical PSO, QBLDPSO actively employs
quantum parameter adaptation to achieve population diversity. In order to accelerate
the convergence, Liang et al. [32] classified the decision variables into different groups
according to different optimization stages, like change detection stage, optimization stage
in each time window. The different crossover operators are employed to keep a balance of
convergence and diversity.

There are many application scenarios for dynamic optimization algorithms. For
example, Wang et al. [33] improved PSO with a mixed-integer programming model and
four match-up strategies to manage dynamic scheduling problems with random job arrivals.
Luna et al. [34] presented a novel restart method that can react to the changes in the traffic
demands, improving the energy efficiency in the fifth generation (5G) of cellular networks.

40

Processes 2021, 9, 911

A novel chance-constrained dynamic optimization method, proposed by Zhou et al. [35],
was applied to solve real industrial process issues. In the study of humanoid robots, losing
balance and falling down are common problems. Chang et al. [36] applied a DMOEA to the
falling down process of robots and was able to reduce damage to the robots. A dynamic
multi-objective approach can also be applied to heterogeneous systems. For instance, [37]
introduced a multi-objective dynamic load balancing (DLB) approach combined with a
genetic heuristic engine, to enhance performance and code portability for such systems.

From the review above, we can identify three essential parts that should be included
in an ideal DMOEA, which are change detection, change reaction, and multi-objective
optimization. Herein, Algorithm 1 was prepared as the major frame of DMOEA. In the
algorithm, after initializing the current generation, some strategies are used for change
response when an environmental change occurs. The initialized population will be updated
with these useful strategies, and the time window T is going to increase by one, which
means the next environmental change. In the next step, the i-th multi-objective problems
are optimized using a multi-objective evolutionary algorithm (MOEA) for one generation.
The static MOEA employs the updated population as the initial population. At last, if the
stop condition is not met, the process is repeated, otherwise the optimization of the next
generation will be conducted.

Algorithm 1 The main frame of DMOEA

Input: the number of generations, g;
the time window, T;
Output: optimal solution x* at every time step;
1: Initialize population POP0;
2: while stop criterion is not met do

3: if change is detected then

4: Update the population using some strategies: reuse memory, tune parame-ters, or
predict solutions;
5: T = T + 1;
6: end if

7: Optimize T-th population with an MOEA for one generation and get optimal solution x*;
8: end while

9: g = g+1;
10: return x*.

3. NSGA-III and Proposed Strategies

3.1. NSGA-III

There are many classical algorithms for multi-objective or many-objective problems.
NSGA-III [17] is one of the classical multi-objective evolutionary algorithms (MOEAs) for
static many-objective problems. NSGA-III adds the idea of reference points as an enhance-
ment of NSGA-II [2], which is mainly used for dealing with multi-objective problems. The
major framework of NSGA-III is similar to the original NSGA-II algorithm, except for
the differences between their environmental selection in the critical layer. The NSGA-II
method applies congestion and comparison operation to select and maintain diversity.
Comparatively, NSGA-III employs well-distributed reference points to maintain the di-
versity of a population. Most MOEAs are more effective in solving problems with fewer
objectives. When the number of objectives is greater than or equal to four, many methods
have reduced selection pressure due to increased dimensions, and the effect is not ideal.
Different non-dominated fronts are classified using the method of fast non-dominated
sorting. In the selection stage, the congestion distance method is changed to the reference
points method, because the former does not perform well for balancing the diversity and
convergence in NSGA-II. It is also limited to solving various unconstrained problems,
such as normalization, scaling, convexity, concavity, and convergence to the PF plane. In
addition, the dynamic version of NSGA-II has been proposed for DMOPs, which was used

41

Processes 2021, 9, 911

for comparison in our experiments and NSGA-III was chosen as the evolutionary algorithm
combined with the two proposed strategies.

The whole detailed process of NSGA-III is given in Algorithm 2. Firstly, reference
points are defined and the initial population is obtained through generating a set of
uniformly distributed points randomly. Secondly, genetic operators are used to generate
the offspring, and then non-dominated sorting is conducted. The parent population Pt
and the generated offspring Qt are combined as a new population Rt. The new population
is placed in a non-dominant order, which means that the solutions in Rt are divided into
different non-dominant levels. The N individuals that make up the next population will be
selected from the mixed population. If the individuals in the first l − 1 non-dominated layer
are exactly equal to N, then these individuals directly form the next generation population
Pt+1. Otherwise, the remaining solutions of Pt+1 are selected from Fl according to the
selection mechanism. Then, normalizing the objectives and each solution will be associated
with one reference point. The closest K individuals associated with the reference points are
selected. Finally, the best N solutions in the combined population are selected, and the next
population Pt+1 is obtained.

Algorithm 2 The procedure of NSGA-III

Input: parent population, Pt;
the archive population, St;
i-th non-dominated front, Fi;
Output: the next population, Pt+1;
1: Define a set of reference points z*;
2: Generate offspring Qt through cross and mutation using GA operator;
3: Non-dominated sorting (Rt = Pt ∪ Qt);
4: while |St| < N do

5: St = St ∪ Fi;
6: i = i + 1;
7: end while

8: Fl = Fi;
9: if |St| = N then

10: Pt+1 = St;
11: else

12: Pt+1 = F1 ∪ F2 ∪ . . . ∪ Fl−1;
13: end if

14: Normalize objectives and associate each solution with one reference point;
15: Calculate the number of the associated solutions;
16: Choose K = N − |Pt+1| solutions one by one from Fl;
17: return Pt+1.

3.2. Change Detection

As mentioned above, one of the critical steps for DMOPs is change detection. Before
using the change response strategy, change detection is necessary for dynamic multi-
objective evolutionary algorithms (DMOEAs). The main process of environmental change
detection is described in Algorithm 3, wherein we define a label flag indicating whether
a change occurs. The initial value of flag is set to zero when the change detection starts.
Then, individuals randomly selected from the initial population are evaluated for change
detection. Herein, 20% of randomly selected individuals are used in our proposed algo-
rithm, and their objectives are stored into Ps, which are then re-evaluated. By investigating
whether there is a difference in the objective values between two generations, the results
about whether a change occurs can be shown obviously. If there is a difference between the
two generations, the value of a flag is set to one, and it can be said that an environmental
change occurs and the change detection process ends.

42

Processes 2021, 9, 911

Algorithm 3 Change detection

Input: the initial population, PT;
the current number of iterations, g;
the number of objective functions, F;
the individual in population, p;
stored individuals from past environment, Ps;
the current time window, t;
Output: the sign indicating whether a change occurs, flag;
1: flag = 0;
2: Select randomly individuals from population PT, and store individuals into Ps;
3: for every p∈Ps, i∈F do

4: Caculate fi(p, t);
5: fi(Ps) = fi(p, t);
6: end for

7: g = g + 1;
8: for every p∈Ps do

9: Caculate fi(p, t);
10: if fi(p, t) �= fi(Ps) then

11: flag = 1;
12: t = t + 1;
13: break;
14: end if

15: end for

16: return flag.

3.3. Second-Order Difference and Random Strategies

We propose a new strategy named the second-order difference strategy for DMOPs
in this paper. This strategy is based on the first-order difference strategy, which used the
centroid of the decision space to describe the trajectory of moving solutions over time. Let
CT be the centroid of the DPS and PT be the obtained DPS at the time window T, then CT
can be calculated by the following formula:

CT =
1

|PT | ∑
x∈PT

x (5)

where CT+1 represents the center of the decision space at the next time window, T + 1,
which can be obtained by Formula (6):

CT+1 = CT +
→

CT − CT−1 (6)

where |PT| is the cardinality of PT; and x is a solution of decision space in PT. The initial
individuals of the population are provided through the prediction model at each generation.
As we can see, the first-order difference model employs the centroid of the decision space,
and predicts the next centroid for the next time window. Under the dynamic environment,
objective functions change over time, but there is a certain relationship between the two
objectives before and after the change.

Therefore, we can predict the next solution distribution using the information about
the optimal solution before the change. In our proposed second-order difference strategy,
the centroid of the objective space is also taken into account. The difference from the
first-order difference model is that we consider both objective values and solutions in the
decision space. The solutions in DPS and the corresponding objectives in DPF are mapped
to a new two-dimensional mapping space (MS). The x-coordinate of this new plane is the
set of DPS, and the y-coordinate is the average of objective values. Our proposed strategy is
built-in two-dimensional space, and the centroid is the center of the two-dimensional plane

43

Processes 2021, 9, 911

related to the objectives. The mapping relation of the strategy is as Figure 1. Therefore, we
can define a new CT’, which can be computed by:

CT
′ = 1

max(|PST |, |PFT |)
i=|PST |

∑
i=0

Euclidean[(xi, yi), (xi+1, yi+1)] (7)

where nt and |PFT| are the cardinality of DPS and DPF, respectively; (xi, yi) represents the
vector in two-dimensional space, consisting of the optimal solution and the corresponding
objective function value; and Euclidean() means to obtain the Euclidean distance between
two points in the plane. Similar to the first-order difference model, the location of the
centroid at the next time window T + 1 is predicted using the formulation as follows:

CT+1
′ = CT

′ +
→

CT
′ − CT−1

′ (8)

Figure 1. The mapping relation of the proposed strategy.

After determining the centroid location of the next time window, random strategy
is then applied to the Algorithm 1 presented in this paper. The random strategy is the
random perturbation around the obtained centroid position, so as to obtain a series of
solutions similar to the last change. The radius of random strategy is set to 0.1, which
means that we will take uniformly random points on the plane centered at the centroid
and with the radius. The performance of this strategy can be shown through our next
comparative experiments. The whole process of our proposed strategy combined with
NSGA-III is described in Algorithm 4.

Some similarities and differences exist between our proposed strategy and the first-
order difference model, where the former strategy is based on the latter. Both strategies use
Formula (8) to obtain the next centroid, this is why they are called “difference strategies”,
and the difference between them is the way the centroid is generated. Obviously, the
first-order difference strategy employs the simplest method to generate the centroid by
only considering the center of DPS. However, when facing environmental changes, the
objectives will change in a big or small way and, therefore, should be considered when
looking for the centroid. In this way, the objective space can have a certain relationship
with the last change, so as to predict more accurate solutions. Our algorithm is proposed
based on this background, and the details of the algorithm are given in Algorithm 4.

At the beginning of the evolutionary process, the individuals of the population are
initialized randomly, and the initial population is reevaluated. Then the change detection
process described in Algorithm 3 is conducted. When an environmental change occurs,
the population must be updated to respond to the change. As mentioned in Algorithm
4, the new population is composed of three kinds of individuals: the old solutions, the
prediction solutions obtained by our proposed strategy and the random solutions around
the prediction solutions. In most cases of real-world DMOPs, there are some similarities
between the DPS of the consecutive DMOPs. Therefore, a certain percentage of old solutions

44

Processes 2021, 9, 911

can be reserved for the next population at the new time window. The old solutions
from the last environment may perform better than reinitialized solutions. Besides, our
prediction solutions and the old solutions are put into the new population uniformly,
and the predicted centroid in the new environment can be described according to (7).
Some random solutions around the predicted centroid are introduced as well, which adds
diversity to the new population.

Algorithm 4 Second-order random strategy combined with NSGA-III

Input: the current population, PT;
the time window, T;
the number of individuals in population, N;
the historic centroid points, CT−1;
the centroid of time window T, CT;
Output: the next population PT+1;
1: Initialize population PT and evaluate the inital population PT;
2: Change detection (PT);
3: if change is detected then

4: while the maximum number of iterations is not reached do

5: for i = 1:N do

6: if mod(i, 3) == 0 then

7: xT+1
i = xT

i +
→

CT
′ − CT−1

′;
8: Random perturbation around xT+1

i ;
9: else

10: xT+1
i = xT

i ;
11: end if

12: Use NSGA-III to optimize xT+1
i and get the next generation population PT+1;

13: end for

14: end while

15: end if

16: T = T + 1;
17: return PT+1.

4. Experiments

All the experiments were conducted on MATLAB R2018a. Intel(R) Core (TM) i3-8100
CPU @ 3.60GHz was used as the hardware environment.

4.1. Benchmark Problems and Performance Metrics

In order to study the performance of our proposed strategies, two parts of the experi-
ments were conducted for DMOPs. In this paper, six benchmarks with different change
types were used for confirmation. The instances and definitions are listed in Table 1, and the
functions have two objectives. The common formula of a bi-objective dynamic benchmark,
which adds the time window parameter in forming the static ZDT [38] problems, can be
described as follows:

min f (x, t) = (f1(xI , t), g(xII , t) · h(xII I , f1(xI , t), g(xII , t), t)) (9)

where xI, xII, and xIII are three different subsets of design variables set x in decision
space. For Fun1, as the environment changes, the DPS of Fun1 changes, whereas the
moving DPF of Fun1 remains unchanged. In addition, the DPF of Fun1 is convex. Some
parameters that do not require introduction include τ, which is the generation counter,
and nt, which represents the number of distinct steps in a fixed t. τT and nt are two
parameters that reflect the frequency and severity of an environmental change, respectively.
In the benchmarks definitions, the time instance t can be computed by t = (1/nt) ∗ (τ/τT).
Different from Fun1, both DPS and DPF of Fun2 change over time, and DPF change
from convex to nonconvex. The convergence speed and reactivity when the environment

45

Processes 2021, 9, 911

changes can be evaluated by Fun3 and Fun5 benchmarks. Specifically, the time-varying
nonmonotonic dependencies between any two decision variables are introduced in Fun3,
which is similar to the greenhouse system in the real world. As the time window increases,
the dependency between two variables becomes more complicated, and the density of
solutions also changes over time. Therefore, the relation between the decision variables
and the diversity performance can also be assessed by Fun3 for DMOPs. Fun5 is a dynamic
function with dynamic DPFs and DPSs, and the overall objective vectors change between
several modes as the DPS changes. Fun5 is similar to the electric power supply system [39]
in real-world applications. The DPF of Fun4 has a general change trend, which changes
from convex to concave, and the values in both the DPF and DPS differ under different time
windows. For Fun6, the characteristics of the DPS and DPF are totally different. The DPS
is simpler than the DPF of Fun6, which specifically contains some locally linear, concave,
or convex segments. What’s more, the number of local segments is unfixed. The main
characteristics of the six benchmarks mentioned above are summarized in Table 2.

Table 1. The instances and definitions of six benchmarks.

Instance Definition

Fun1 [18]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1(xI) = x1
g(xII) = 1 + ∑

xi∈xII

(xi − G(t))2

h(f1, g) = 1 −
√

f1
g

G(t) = sin(0.5πt), t = 1
nt

⌊
τ
τT

⌋
xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1

Fun2 [18]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(xI) = x1
g(xII) = 1 + ∑

xi∈xII

xi
2

h(xII I , f1, g) = 1 −
(

f1
g

)(H(t)+ ∑
xi∈xI I I

(xi−H(t))2)

H(t) = 0.75 + 0.7 sin(0.5πt), t = 1
nt

⌊
τ
τT

⌋
xI = (x1) ∈ [0, 1], xII , xII I ∈ [−1, 1]n−1

Fun3 [40]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minF(x, t) = (f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII , t))(y1 + At sin(Wtπy1))
f2(x, t) = (1 + g(xII , t))(1 − y1 + At sin(Wtπy1))

g(xII , t) = ∑xi∈xII
(yi

2 − yi−1)
2, A(t) = 0.05

W(t) = 6 sin(0.5π(t − 1))�, α =
⌊
100 sin2(0.5πt)

⌋
y1 = |x1 sin((2α + 0.5)πx1)|, yi = xi, i = 2, . . . , n
xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1

Fun4 [41]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(xI) = x1
f2(xII) = g · h

g = 1 + ∑m
i=2 (xi − G(t))2

h = 1 − (
f1
g)

H(t)

H(t) = 0.75 · sin(0.5π · t) + 1.25
G(t) = sin(0.5π · t)

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [0, 1]

Fun5 [18]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minF(x, t) = (f1(x, t), f2(x, t))T

f1(x, t) = (1 + g(xII , t))(x1 + At sin(Wtπx1))
f2(x, t) = (1 + g(xII , t))(1 − x1 + At sin(Wtπx1))

g(xII , t) = ∑xi∈xII
(xi − G(t))2, G(t) = sin(0.05πt)

A(t) = 0.05, W(t) = 6 sin(0.5π(t − 1))�
xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1

46

Processes 2021, 9, 911

Table 1. Cont.

Instance Definition

Fun6 [42]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

minF(x, t) = (f1(x, t), f2(x, t))T

f1(x, t) = g(xII , t)(x1 + At sin(Wtπx1))
f2(x, t) = g(xII , t)(1 − x1 + At sin(Wtπx1))

g(xII , t) = 1 + ∑xi∈xII
(xi

2 − G(t))2, G(t) = sin(0.05πt)
A(t) = 0.02, Wt = 10G(t)�

xI = (x1) ∈ [0, 1], xII = (x2, . . . , xn) ∈ [−1, 1]n−1

Table 2. The dynamic characteristics of six benchmarks.

Problem DPS Changes DPF Changes

Fun1 Yes No, the DPF is convex

Fun2 Yes Yes, the DPF changes from convex to
nonconvex

Fun3
Yes, the time-varying

nonmonotonic dependencies
are introduced

Yes

Fun4 Yes Yes, the DPF changes from convex to
concave

Fun5 Yes Yes, the DPF changes its shape over
time

Fun6 Yes, the DPS is rather simple Yes, the DPF is sometimes linear, and
sometimes concave or convex

Based on the benchmarks above, we tested our proposed algorithm under two differ-
ent dynamic parameters. We set the change severity, nt, to 5 and 10, and set the change
frequency τT to 5, 10, and 20 respectively, which represents severe, moderate, and slight
environmental changes. Therefore, we obtained six different sets of parameter values,
namely (5, 5), (5, 10), (5, 20), (10, 5), (10, 10), and (10, 20). Each benchmark has six different
cases with different parameters, and therefore, there are total of 36 cases in the six bench-
marks. Then, six benchmark problems with different parameters were conducted, and three
different dynamic metrics were employed to evaluate the performance of SDNSGA-III.

As we know, there are various performance metrics to assess the algorithm, such as
inverted generational distance (IGD), generational distance (GD), and hypervolume (HV).
For dynamic environment, a modified version of the IGD, HV, and GD is employed to
evaluate the performance of DMOEAs. The MIGD metric proposed by Zhou et al. [43] is
the dynamic version of IGD, which introduces the time window parameter, whereby the
basic definition of MIGD metric is the average of IGD over a period of time. The definition
of IGD can be described as follows. Let S be the solution set obtained by the algorithm,
and P* be a set of reference points that is uniformly sampled from DPF. Therefore, we can
calculate IGD as:

IGD(S, P∗) =
∑x∈P∗ miny∈Sdis(x, y)

|P∗| (10)

where dis(x, y) means the Euclidean distance from x in reference set P* to y in solution set
S. Both the convergence and diversity of an algorithm can be assessed by computing IGD
at the same time. In addition, the smaller the IGD value is, the better the comprehensive
performance of an algorithm. This is similar to a MIGD metric. The MIGD metric we used
to evaluate DMOEAs can be formulated as:

MIGD =
1
|T| ∑t∈T

IGD(S, P∗) (11)

47

Processes 2021, 9, 911

The HV is also one of the frequently used evaluation metrics, which represents the
volume of the region that is rounded by the non-dominated solution set obtained by the
algorithm and the reference points. HV can be described as:

HV(S∗, vi) = δ(∪|S∗|
i=1 vi) (12)

where δ is a Lebesgue measure to caculate volume; |S*| is the number of non-dominated
solutions sets; and vi represents the super volume composed of the reference points and
the i-th solution in the solution set. The MHV [44] metric is a modified dynamic version of
the static HV metric, which is formulated as:

MHV =
1
|T| ∑t∈T

HV(S∗, vi) (13)

The metric GD measures the diversity of an algorithm and describes the average of the
minimum Euclidean distance from each point in the solution set S to the reference set P*.
Under dynamic environments, the MGD metric is proposed to measure the performance of
an algorithm instead of GD. Similar to MIGD and MHV, MGD is the modified version of
GD, which can be defined as:

GD(S, P∗) =

√
∑y∈S minx∈P∗dis(x, y)2

|P| (14)

MGD =
1
|T| ∑t∈T

GD(S, P∗) (15)

In our experiments, we used MIGD, MHV, and MGD metrics to measure the perfor-
mance of our proposed SDNSGA-III algorithm. T refers to a set of discrete time instances
in a single run. Further, |T| is the cardinality of T in the definitions of MIGD, MHV, and
MGD. Our experiments were mainly conducted to measure the performance of NSGA-III
combined with our proposed strategies. The experiments were divided into two parts: (1)
the to compare the results of SDNSGA-III and the other four popular algorithms, and (2) to
compare NSGA-III with different strategies to prove the effectiveness of the second-order
difference strategy and random strategy. The general parameters in all algorithms are
presented in Table 3.

Table 3. The general parameters of all algorithms.

Symbol Meaning Value

N population size 100
M the number of objectives 2
D dimensions of decision vectors 10

FEs fitness evaluation times 10,000
T the time window 20
R number of runs 30

4.2. Comparative Study for the Proposed Algorithm

Our proposed algorithm (SDNSGA-III) was compared with four state-of-the-art al-
gorithms, including NSGA-III [17], DNSGA-II-A [21], MOEA/D-FD [20], and a multi-
objective optimization framework (LSMOF) [45]. The comparison between SDNSGA-III
and NSGA-III was made to prove the performance of our proposed strategies. Based
on the differences in the performance metrics, we can determine the results of whether
our second-order strategy and random strategy can obtain better convergence and di-
versity. DNSGA-II-A [21] and MOEA/D-FD [20] are DMOEAs that are primarily deal
with dynamic problems. Particularly, DNSGA-II-A [21] introduces some new random
individuals when a new population is generated. When merging the parent and child

48

Processes 2021, 9, 911

population into the next bigger population, all individuals are re-evaluated through the
benchmarks. MOEA/D-FD [20] is a modified version of the original MOEA/D, which
uses the first-order difference model. LSMOF reformulates the problems, tracks the Pareto
optimal set directly, and also accelerates the computational efficiency of the multi-objective
evolutionary algorithm.

The data in Table A1 (the first table in Appendix A) show the obtained MGD values
and standard deviations over 30 runs. The last column in Table A1 means the percentage
difference between SDNSGA-III and other four comparative algorithms. The positive
(negative) value shows the performance of SDNSGA-III is better (worse) than the compar-
ing algorithm. The performance evaluation was conducted at the 5% significance level.
In Table A1, the results are recorded as “+”, “−”, and “=” for when SDNSGA-III per-
forms significantly better than, worse than, and equivalent to the corresponding algorithm
respectively. The bold font indicates that the algorithm has the best diversity on this
benchmark. From Table A1, it is obvious that SDNSGA-III performed better than the other
four algorithms in most cases, which means it has a better tracking ability of DPS and
DPF. Moreover, the SDNSGA-III values in Table A1 are significantly better than those of
NSGA-III, sufficiently proving that the second-order and random strategies improve the
performance of NSGA-III for dealing with dynamic problems. Besides, from the perspec-
tive of different problems, SDNSGA-III performed best in Fun1, Fun4 and Fun6, while
the performance of SDNSGA-III was roughly the same on Fun2 and Fun3. This means
that our proposed strategy is more suitable for dynamic problems whose DPS changes.
Although the performance on other problems was worse than on Fun1, Fun4 and Fun6,
about 90% of the results are best among the five comparative algorithms. In general, our
proposed strategy worked well for different DMOPs. What’s more, when change severity
was relatively smooth (nt = 10), the five sixth values of SDNSGA-III were better than the
other four algorithms. In addition, when the change frequency was fast (τT = 5), all results
of the other comparative algorithms were worse than those of SDNSGA-III. Therefore, it
can be suggested that our proposed strategy can obtain the best diversity performance of
the population when the change is smooth and fast. The reason for this result is that when
the change frequency is fast, our proposed strategies enhance the search efficiency and
accuracy of tracking the moving DPF.

In order to investigate the convergence process of the algorithms, the MIGD, MHV, and
MGD trends of Fun1–6 with a fixed nt and τT were investigated, as shown in Figures 2–4.
In Figure 2a–f, the overall trend was obviously downward. A total of 10 points were
sampled randomly within a single run, and the evaluation numbers was set to 10,000. As
the evaluations increased, the metrics of all five algorithms tend to become relatively stable.
Among the compared algorithms, generally speaking, SDNSGA-III reached a better MIGD
value in less time, as observed in Figure 2a–d,f. For Fun1 and Fun2, DNSGAII-A and
MOEAD-FD obtained a lower MIGD at the beginning of the evaluations, and our proposed
SDNSGA-III reached almost the same value in the later stage of evaluations. In Figure 3,
contrary to MIGD, the general tendency of MHV exhibited an increase, while the MHV
value of SDNSGA-III was higher than the other comparative algorithms observably on
Fun1, Fun3, and Fun5. SDNSGA-III reached almost the same MHV as MOEAD-FD at the
end of evaluations in Figure 3b,d,f, which means SDNSGA-III has a similar tracking ability
with MOEAD-FD on Fun2, Fun4, and Fun6. The overall trend of MGD in Figure 4 is similar
to MIGD, and SDNSGA-III performed more stable than the other comparative algorithms.
Figures 2–4 further reveal that our proposed SDNSGA-III has a great improvement in
tracking DPF and DPS compared with NSGA-III, and SDNSGA-III performed more stable
than other algorithms with a steady tracking ability regardless of the environmental change.

49

Processes 2021, 9, 911

Figure 2. The MIGD trend of five algorithms with nt = 10, τT = 20. (a–f) are MIGD trend graphs of six functions, respectively.

50

Processes 2021, 9, 911

Figure 3. The MHV trend of five algorithms with nt = 10, τT = 20. (a–f) are MHV trend graphs of six functions, respectively.

51

Processes 2021, 9, 911

Figure 4. The MGD trend of five algorithms with nt = 10, τT = 20. (a–f) are MGD trend graphs of six functions respectively.

The statistical results of six benchmarks and six parameters on MIGD, MHV, and
MGD are recorded in Tables 4 and 5 respectively. Among the six different benchmarks,
SDNSGA-III reached 18 best results on Fun1, which has dynamic DPS and static DPF. In
terms of the six different parameters, our proposed SDNSGA-III achieved the best metric
values on the severe change severity (nt = 5) and the slow change frequency (τT = 20).
The performance of SDNSGA-III was nearly the same on the rest of the five parameters.
Generally, SDNSGA-III is more suitable for DMOPs, since it has a relatively smooth change

52

Processes 2021, 9, 911

or fixed DPF. This can be attributed to the prediction strategy that can achieve a centroid
location more accurately with a slight change, while the prediction error increases with a
severe and fast change. Even so, SDNSGA-III performed better than the other comparative
algorithms on most test instances. To further evaluate the performances of the second-
order strategy and random strategy, the comparisons between the two are discussed in the
next section.

Table 4. The statistical results of six benchmarks on different metrics.

Metrics Fun1 Fun2 Fun3 Fun4 Fun5 Fun6

MIGD 6 3 5 4 4 6
MHV 6 6 5 4 4 4
MGD 6 5 5 6 4 6
Total 18 14 15 14 12 16

Table 5. The statistical results of six parameters on different metrics.

Metrics (5,5) (5,10) (5,20) (10,5) (10,10) (10,20)

MIGD 3 5 6 5 5 4
MHV 5 5 6 5 4 5
MGD 5 5 5 5 6 6
Total 13 15 17 15 15 15

4.3. Comparative Study for Two Proposed Strategies

In the comparative study, the performances of the second-order difference strategy
and random strategy were analyzed. NSGA-IIIs is the algorithm with the second-order
difference strategy without random strategy, while NSGA-IIIr incorporates the random
strategy without the second-order difference strategy. The main process of NSGA-IIIr is to
first initialize the population, then use NSGA-III to optimize individuals at each generation.
When a change is detected, random perturbation is conducted around the optimal solution
of the previous generation. The comparative results show the efficiency of the second-order
difference strategy and random strategy in SDNSGA-III.

Table A2 (the second table in Appendix A) depicts the MIGD values and standard
deviations obtained by the four algorithms over 30 runs. In the table, about 67% of
the results clearly reveal that the performance of SDNSGA-III is better than the other
three comparative algorithms. In general, both NSGA-IIIs and NSGA-IIIr algorithms
demonstrated little difference in performance. However, it is obvious that SDNSGA-
III, which combines both strategies, performed best among all four algorithms. Besides,
NSGA-IIIr performed mostly better than NSGA-IIIs in Fun3 and Fun6. In other words,
the random strategy improves the diversity of SDNSGA-III in a dynamic environment.
Furthermore, NSGA-IIIs exhibited better values than NSGA-IIIr with a smooth change
severity and fast change frequency. This proves that our proposed second-order difference
strategy could track the moving DPS and DPF directly, and the random strategy can
improve the diversity ability of NSGA-III on DMOPs. Since random strategy can better
adapt to dynamic characteristics for DMOPs, the SDNSGA-III algorithm exhibited the best
comprehensive performance among all comparative algorithms.

Tables 6 and 7 include the statistical results from different perspectives, including the
different benchmarks and parameters. In the tables, “a/b/c” represents the number of
best MIGD, MHV, and MGD metric values, respectively. In Table 6, the data obviously
show that SDNSGA-III combined with the two strategies performed best, and a single
NSGA-III performed worst among the four comparative algorithms. NSGA-IIIs showed
an obviously better performance than NSGAIIIr on Fun2 and Fun4. For the benchmarks
of Fun3 and Fun6, NSGA-IIIr performed better than NSGA-IIIs, and both of algorithms
performed the same on Fun1 and Fun5. These results demonstrate that SDNSGA-III
effectively incorporates second-order difference strategy and random strategy to achieve

53

Processes 2021, 9, 911

the best metric values. It is pertinent to note that the former strategy is more applicable to
DMOPs whose DPS and DPF changes from convex like Fun2 and Fun4. When dealing with
more complex DMOPs, like Fun3 and Fun6, whose DPS and DPF change irregularly, the
latter strategy behaves better. Table 7 represents the statistical results of the different change
frequencies and change severities. When the change severity nt was fixed to 10 and the
change frequency τT was set to 20, SDNSGA-III reached the best metric values. In addition,
the performance of SDNSGA-III with higher change severity and higher change frequency
was better than the other comparative algorithms. When nt and τT change, the random
strategy can ensure the diversity in a population, while a single second-order strategy
cannot track the moving DPF accurately. The statistical data in Tables 6 and 7 illustrate that
combining the second-order difference strategy and random strategy is indeed effective to
solve DMOPs better.

Table 6. The statistical results of six benchmarks on different metrics.

Algorithms Fun1 Fun2 Fun3 Fun4 Fun5 Fun6

SDNSGA-III 5/5/4 3/3/4 4/5/3 3/4/3 3/2/3 4/3/3
NSGA-III 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
NSGA-IIIs 1/0/1 2/3/1 0/0/0 2/2/3 2/2/1 0/0/0
NSGA-IIIr 0/1/1 1/0/1 2/1/3 1/0/0 1/2/2 2/3/3

Table 7. The statistical results of six parameters on different metrics.

Algorithms (5,5) (5,10) (5,20) (10,5) (10,10) (10,20)

SDNSGA-III 2/2/2 2/5/4 4/3/2 4/5/4 5/3/2 5/4/6
NSGA-III 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
NSGA-IIIs 3/3/2 1/0/1 0/0/1 1/0/1 1/2/1 1/2/0
NSGA-IIIr 1/1/2 3/1/1 2/3/3 1/1/1 0/1/3 0/0/0

5. Conclusions

In this study, we propose a novel algorithm based on NSGA-III, which incorporates
a second-order difference strategy and random strategy to solve DMOPs. These two
strategies are specifically employed to predict the next centroid location based on its his-
torical locations and random disturbances around the predicted centroid location when
change is detected. Moreover, the performance of SDNSGA-III was validated using dif-
ferent benchmarks and different metrics via testing on different change frequencies and
change severities. Compared with four other state-of-the-art evolutionary algorithms, our
SDNSGA-III can obtain a better convergence speed and maintain diversity of a population
when tracking the moving DPS and DPF. In addition, a comparison between the two
proposed strategies was conducted to verify their effectiveness. It was found that the
second-order difference strategy and random strategy have the ability to find the moving
DPF, and SDNSGA-III can maintain the diversity of a population to respond to environmen-
tal change. In addition, the further innovations about prediction can be inspired through
the proposed second difference strategy.

Despite our promising findings, some issues need to be further addressed. For exam-
ple, more benchmarks should be employed to evaluate the performance of SDNSGA-III.
Moreover, further studies are suggested for other state-of-the-art algorithms incorporated
with second-order difference and random strategies to show their ability to enhance search-
ing efficiency. The second-order difference strategy can be incorporated with other effective
frameworks to increase the accuracy of prediction at the stage of change response. What’s
more, we tested our strategies only on two-objective benchmarks in this work. There-
fore, we plan to focus on more than two-objective dynamic optimization problems in
future studies.

54

Processes 2021, 9, 911

Author Contributions: H.Z.: Conceptualization, methodology, software, visualization, investigation,
writing—original draft preparation; G.-G.W.: supervision, validation, data curation, reviewing and
editing; J.D.: visualization, reviewing and editing; A.H.G.: project administration, reviewing and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, Grant Num-
bers U1706218, 41576011, 41706010, and 61503165.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The MGD values and standard deviations obtained by five algorithms.

Problem (nt, τT)
SDNSGA-

III
NSGA-III

DNSGA-II-
A

MOEA/D-
FD

LSMOF Percentage Difference

Fun1

(5,5) 9.7641e-5
(2.05e-5)

8.3088e−1
(2.10e−1) −

1.8830e−4
(2.55e−5) −

5.9543e−4
(1.26e−4) −

3.4402e−4
(8.51e−5) −

99.99%, 48.15%,
83.60%, 71.62%

(5,10) 1.0885e−4
(2.53e−5)

2.5769e−1
(1.35e−1) −

1.9373e−4
(3.34e−5) −

6.2599e−4
(1.63e−4) −

3.3416e−4
(5.25e−5) −

99.96%, 43.81%,
82.61%, 67.43%

(5,20) 7.2249e−5
(1.40e−5)

8.3223e−1
(2.49e−1) −

1.5780e−4
(2.44e−5) −

4.6507e−4
(9.94e−5) −

1.6833e−4
(3.98e−5) −

99.99%, 54.21%,
84.46%, 57.08%

(10,5) 9.2895e−5
(2.21e−5)

1.6212e−1
(3.82e−2) −

1.8772e−4
(3.37e−5) −

6.2374e−4
(1.69e−4) −

2.9641e−4
(7.04e−5) −

99.94%, 50.51%,
85.11%, 68.66%

(10,10) 9.4192e−5
(1.79e−5)

1.8184e−1
(5.75e−2) −

1.9987e−4
(3.70e−5) −

6.0922e−4
(1.70e−4) −

3.5548e−4
(9.81e−5) −

99.95%, 52.87%,
84.54%, 73.50%

(10,20) 9.6531e−5
(1.98e−5)

2.7691e−1
(9.54e−2) −

1.9788e−4
(3.50e−5) −

6.2510e−4
(1.48e−4) −

3.2505e−4
(7.25e−5) −

99.97%, 51.22%,
84.56%, 70.30%

Fun2

(5,5) 1.5312e−2
(3.99e−5)

1.3209e+0
(3.64e−1) −

5.6395e−2
(7.95e−4) −

5.6148e−2
(2.25e−3) −

1.5518e−2
(2.13e−4) −

98.84%, 72.85%,
72.73%, 1.33%

(5,10) 2.9755e−2
(4.91e−4)

1.1544e+0
(2.13e−1) −

4.9951e−2
(3.24e−4) +

5.4658e−2
(4.02e−3) −

3.0794e−2
(4.69e−4) −

97.42%, 40.43%,
45.56%, 3.37%

(5,20) 1.2032e−4
(1.26e−4)

2.7577e−1
(7.57e−2) −

1.6799e−4
(7.21e−5) −

8.6767e−4
(7.26e−4) −

5.0816e−2
(1.39e−4) −

99.96%, 28.38%,
86.13%, 99.76%

(10,5) 5.1443e−2
(4.63e−6)

1.2241e+0
(3.38e−1) −

5.6449e−2
(5.87e−4) −

5.4444e−2
(2.26e−3) −

7.9690e−3
(1.07e−4) +

95.80%, 8.87%,
5.51%, −545.54%

(10,10) 1.5329e−2
(8.66e−5)

2.2435e−1
(4.74e−2) −

1.5834e−2
(1.26e−4) −

1.6239e−2
(3.13e−4) −

1.6044e−2
(2.18e−4) −

93.17%, 3.19%,
5.60%, 4.46%

(10,20) 2.9301e−2
(2.01e−5)

5.0671e−1
(1.11e−1) −

3.1420e−2
(3.74e−4) −

3.2043e−2
(5.79e−4) −

3.1609e−2
(3.73e−4) −

94.22%, 6.74%,
8.56%, 7.30%

Fun3

(5,5) 1.4966e−2
(7.01e−3)

2.2557e−1
(3.44e−2) −

1.5307e−2
(7.32e−3) −

3.8589e−2
(6.69e−4) −

2.1146e−2
(4.48e−3) −

93.37%, 2.23%,
61.22%, 29.23%

(5,10) 1.8975e−2
(3.09e−3)

2.2439e−1
(3.65e−2) −

1.8150e−2
(5.22e−4) =

4.0220e−2
(5.76e−4) −

2.2850e−2
(3.70e−3) −

91.54%, −4.55%
52.82%, 16.96%

(5,20) 1.4379e−2
(3.98e−3)

2.2734e−1
(5.27e−2) −

4.0261e−2
(1.07e−3) −

3.4202e−2
(7.02e−3) −

2.0892e−2
(3.83e−3) −

93.68%, 64.29%,
57.96%, 31.17%

(10,5) 1.4928e−2
(5.67e−3)

2.0592e−1
(4.43e−2) −

3.7969e−2
(5.04e−4) −

3.2770e−2
(5.84e−3) −

2.0691e−2
(3.76e−3) −

92.75%, 60.68%,
54.45%, 27.85%

(10,10) 1.3473e−2
(6.74e−4)

2.1656e−1
(5.06e−2) −

1.6858e−2
(8.05e−3) −

3.2085e−2
(8.06e−3) −

2.8596e−2
(4.29e−3) −

93.78%, 20.08%,
58.01%, 52.89%

(10,20) 1.4165e−2
(5.29e−4)

2.2959e−1
(6.38e−2) −

1.6997e−2
(8.25e−3) =

3.5214e−2
(5.84e−3) −

2.1800e−2
(1.92e−3) −

93.83%, 16.66%,
59.77%, 35.02%

55

Processes 2021, 9, 911

Table A1. Cont.

Problem (nt, τT)
SDNSGA-

III
NSGA-III

DNSGA-II-
A

MOEA/D-
FD

LSMOF Percentage Difference

Fun4

(5,5) 5.7478e−5
(3.03e−5)

3.0586e+0
(5.11e−1) −

1.2177e−4
(2.95e−5) −

5.9951e−4
(2.18e−4) −

1.2788e−4
(1.11e−4) −

100.00%, 52.80%,
90.41%, 55.05%

(5,10) 9.8560e−6
(6.66e−6)

3.0143e+0
(5.17e−1) −

8.7865e−5
(3.11e−5) −

7.3340e−4
(2.66e−4) −

1.1863e−4
(3.68e−5) −

100.00%, 88.78%,
98.66%, 91.69%

(5,20) 1.7514e−4
(3.61e−5)

1.1872e+0
(4.54e−1) −

2.0144e−4
(3.60e−5) −

1.3375e−3
(3.92e−4) −

3.3894e−4
(1.37e−4) −

99.99%, 13.06%,
86.91%, 48.33%

(10,5) 8.6286e−6
(4.66e−6)

3.2288e+0
(7.88e−1) −

1.0346e−4
(3.86e−5) −

8.5105e−4
(4.65e−4) −

1.0690e−4
(3.37e−5) −

100.00%, 91.66%,
98.99%, 91.93%

(10,10) 1.7192e−4
(3.61e−5)

8.0273e−1
(2.86e−1) −

1.9120e−4
(2.72e−5) −

1.2319e−3
(5.49e−4) −

3.0479e−4
(1.20e−4) −

99.98%, 10.08%,
86.04%, 43.59%

(10,20) 1.5884e−4
(4.62e−5)

6.9277e−1
(2.27e−1) −

2.0395e−4
(2.67e−5) −

1.3210e−3
(3.97e−4) −

2.8649e−4
(8.88e−5) −

99.98%, 22.12%,
87.98%, 44.56%

Fun5

(5,5) 2.2038e−1
(2.09e−1)

6.9385e−1
(1.30e−1) −

8.8662e−1
(2.03e−1) −

1.3465e−2
(5.94e−5) +

9.6630e−1
(1.22e−1) −

68.24%, 75.14%
−1536.69%, 77.19%

(5,10) 1.3050e−2
(5.39e−5)

2.2280e−1
(5.30e−2) −

1.3435e−2
(2.36e−4) −

1.3153e−2
(2.04e−4) −

1.3589e−2
(1.58e−4) −

94.14%, 2.87%,
0.78%, 3.97%

(5,20) 1.2587e−2
(2.49e−5)

9.3152e−1
(1.74e−1) −

1.2475e−2
(2.03e−4) +

1.2611e−2
(2.55e−5) −

1.2590e−2
(2.18e−4) =

98.65%, −0.90%,
0.19%, 0.02%

(10,5) 1.3049e−2
(4.49e−5)

2.0971e−1
(3.26e−2) −

1.3518e−2
(1.89e−4) −

1.3240e−2
(2.93e−4) −

1.3537e−2
(2.81e−4) −

93.78%, 3.47%,
1.44%, 3.60%

(10,10) 8.0280e−3
(2.85e−6)

1.4576e+0
(2.94e−1) −

1.0723e+0
(1.56e−1) −

8.0422e−3
(1.63e−5) −

4.3435e−1
(2.46e−1) −

99.45%, 99.25%,
0.18%, 98.15%

(10,20) 1.3176e−2
(1.01e−3)

8.7853e−1
(1.33e−1) −

7.4932e−1
(8.50e−2) −

1.3472e−2
(9.12e−5) =

4.1628e−1
(2.99e−1) −

98.50%, 98.24%,
2.20%, 96.83%

Fun6

(5,5) 1.4959e−2
(5.61e−3)

2.2469e−1
(5.33e−2) −

1.7703e−2
(8.50e−3) −

3.7265e−2
(6.28e−4) −

2.1705e−2
(2.33e−3) −

93.34%, 15.50%,
59.86%, 31.08%

(5,10) 1.3725e−2
(5.89e−4)

2.1227e−1
(3.26e−2) −

1.8282e−2
(9.14e−3) −

3.7403e−2
(6.66e−4) −

2.1408e−2
(1.84e−3) −

93.53%, 24.93%,
63.31%, 35.89%

(5,20) 1.3892e−2
(7.75e−4)

2.2927e−1
(7.10e−2) −

1.8479e−2
(8.87e−3) −

3.6830e−2
(3.22e−3) −

2.1563e−2
(2.41e−3) −

93.94%, 24.82%,
62.28%, 35.57%

(10,5) 1.4122e−2
(1.49e−3)

2.1570e−1
(3.32e−2) −

1.5653e−2
(5.02e−3) −

3.5765e−2
(5.70e−3) −

2.2094e−2
(2.74e−3) −

93.45%, 9.78%,
60.51%, 36.08%

(10,10) 1.4963e−2
(6.00e−3)

2.1200e−1
(3.18e−2) −

1.6425e−2
(6.86e−3) −

3.6488e−2
(4.24e−3) −

2.1332e−2
(2.62e−3) −

92.94%, 8.90%,
58.99%, 29.86%

(10,20) 1.3778e−2
(6.56e−4)

2.1564e−1
(3.12e−2) −

1.6983e−2
(7.13e−3) −

3.6915e−2
(2.32e−3) −

2.1979e−2
(2.30e−3) −

93.61%, 18.87%,
62.68%, 7.31%

Table A2. The MIGD values and standard deviations obtained by four algorithms.

Problem (nt, τT) SDNSGA-III NSGA-III NSGA-IIIs NSGA-IIIr Percentage Difference

Fun1

(5,5) 4.1173e−3
(7.59e−5)

1.0619× 10+0
(3.04e−1) −

5.4190e−3
(7.05e−3) −

4.4643e−3
(2.05e−3) − 99.61%, 24.02%, 7.77%

(5,10) 4.1621e−3
(1.09e−4)

3.1543e−1
(6.21e−2) −

4.1246e−3
(6.60e−5) +

4.7086e−3
(9.61e−4) − 98.68%, −0.91%, 11.61%

(5,20) 4.0346e−3
(6.50e−5)

9.0279e−1
(2.77e−1) −

4.0621e−3
(1.80e−4) −

4.0917e−3
(2.52e−4) − 99.55%, 0.68%, 1.40%

(10,5) 4.1143e−3
(1.10e−4)

3.1175e−1
(4.65e−2) −

4.1199e−3
(5.87e−5) −

4.1204e−3
(7.92e−5) − 98.68%, 0.14%, 0.15%

(10,10) 4.1051e−3
(7.77e−5)

2.9676e−1
(4.29e−2) −

4.1788e−3
(2.68e−4) −

4.1059e−3
(6.46e−5) − 98.62%, 1.76%, 0.02%

(10,20) 4.1219e−3
(8.22e−5)

3.2164e−1
(6.44e−2) −

4.1977e−3
(7.97e−5) −

4.1297e−3
(8.09e−5) − 98.72%, 1.81%, 0.19%

Fun2
(5,5) 5.2642e−1

(3.66e−6)
1.8119e+0

(4.16e−1) −
5.2047e−1

(4.95e−3) +
5.2795e−1

(5.98e−3) − 70.95%, −1.14%, 0.29%

(5,10) 5.2642e−1
(7.13e−6)

1.5026e+0
(2.98e−1) −

3.0454e−1
(1.22e−3) +

3.0438e−1
(1.73e−3) +

64.97%, −72.86%,72.95%

56

Processes 2021, 9, 911

Table A2. Cont.

Problem (nt, τT) SDNSGA-III NSGA-III NSGA-IIIs NSGA-IIIr Percentage Difference

(5,20) 4.1727e−3
(1.60e−4)

6.5787e−1
(1.70e−1) −

5.2028e−1
(4.53e−3) −

5.2708e−1
(6.02e−3) − 99.37%, 99.20%, 99.21%

(10,5) 5.2642e−1
(3.09e−6)

1.8949e+0
(2.94e−1) −

7.8633e−2
(1.47e−4) +

7.8664e−2
(1.37e−4) + 72.22%, −569.46%, −569.20%

(10,10) 1.5659e−1
(1.74e−4)

5.1829e−1
(6.53e−2) −

1.5659e−1
(1.79e−4) =

1.5660e−1
(1.74e−4) − 69.79%, 0.00%, 0.01%

(10,20) 3.0300e−1
(1.75e−4)

9.4884e−1
(1.59e−1) −

3.0392e−1
(1.08e−4) −

3.0397e−1
(1.69e−4) − 68.07%, 0.30%, 0.32%

Fun3

(5,5) 1.3632e−1
(7.43e−3)

5.6611e−1
(4.71e−2) −

3.2547e−1
(5.79e−4) −

1.3567e−1
(6.25e−3) +

75.92%, 58.12%, −0.48%

(5,10) 1.7548e−1
(4.89e−3)

6.6592e−1
(5.97e−2) −

2.8207e−1
(8.26e−4) −

1.2592e−1
(6.82e−3) +

73.65%, 37.79%, −39.36%

(5,20) 1.1587e−1
(3.98e−3)

5.2969e−1
(6.02e−2) −

2.7057e−1
(5.31e−4) −

2.1101e−1
(4.50e−3) − 78.12%, 57.18%, 45.09%

(10,5) 1.2918e−1
(4.39e−3)

5.6899e−1
(4.38e−2) −

3.2018e−1
(2.57e−4) −

1.6741e−1
(4.48e−2) − 77.30%, 59.65%, 22.84%

(10,10) 1.1544e−1
(3.43e−3)

5.3525e−1
(4.65e−2) −

3.8872e−1
(3.76e−4) −

1.8442e−1
(2.78e−3) − 78.43%, 70.30%, 37.40%

(10,20) 1.3219e−1
(2.41e−3)

5.2812e−1
(4.92e−2) −

3.0209e−1
(4.61e−4) −

1.3372e−1
(3.65e−3) − 74.97%, 56.24%, 1.14%

Fun4

(5,5) 5.5170e−3
(6.27e−3)

3.8735e+0
(1.09e+0) −

5.0968e−3
(6.25e−3) +

8.4618e−3
(1.82e−2)− 99.86%, −8.24%, 34.80%

(5,10) 3.8147e−3
(5.02e−6)

3.9172e+0
(8.90e−1) −

7.7584e−3
(1.18e−2) −

3.8147e−3
(5.56e−6) = 99.90%, 50.83%, 0.00%

(5,20) 4.4876e−3
(2.97e−4)

1.2906e+0
(4.14e−1) −

7.0802e−3
(1.09e−2) −

4.4741e−3
(2.72e−4) +

99.65%, 36.62%, −0.30%

(10,5) 3.8136e−3
(3.49e−6)

3.8130e+0
(1.09e+0) −

7.0585e−3
(6.68e−3) −

3.8357e−3
(1.05e−4) − 99.90%, 45.97%, 0.58%

(10,10) 6.7897e−3
(1.31e−2)

1.0657e+0
(2.65e−1) −

4.7422e−3
(2.40e−3) +

4.9961e−3
(2.52e−3) + 99.36%, −43.18%, −35.90%

(10,20) 4.2404e−3
(2.54e−4)

9.7821e−1
(2.73e−1) −

4.3661e−3
(4.04e−4) −

4.7208e−3
(2.26e−3) − 99.57%, 2.88%, 10.18%

Fun5

(5,5) 1.3278e−1
(3.93e−2)

5.1958e−1
(9.60e−2) −

1.0330e−1
(7.55e−4) +

1.1789e−1
(1.56e−2) + 74.44%, −28.54%, −12.63%

(5,10) 1.0815e−1
(9.75e−5)

4.6938e−1
(7.18e−2) −

1.0816e−1
(1.38e−4) −

1.0816e−1
(1.08e−4)− 76.96%, 0.01%, 0.01%

(5,20) 1.1799e−1
(8.65e−6)

1.5532e+0
(2.29e−1) −

1.1814e−1
(7.71e−5) −

1.1899e−1
(3.72e−6) − 92.40%, 0.13%, 0.84%

(10,5) 1.0815e−1
(1.04e−4)

4.6754e−1
(6.52e−2) −

1.0816e−1
(1.27e−4) −

1.0813e−1
(1.07e−4) +

76.87%, 0.01%, −0.02%

(10,10) 7.0561e−2
(3.46e−5)

1.2441e+0
(3.16e−1) −

8.1913e−2
(3.05e−2) −

7.0571e−2
(4.43e−5) − 94.33%, 13.86%, 0.01%

(10,20) 1.0723e−1
(1.59e−2)

6.1270e−1
(1.42e−1) −

1.0480e−1
(7.60e−3) +

1.0624e−1
(8.21e−3) + 82.50%, −2.32%, −0.93%

Fun6

(5,5) 1.3247e−1
(2.20e−3)

5.4546e−1
(5.54e−2) −

3.0250e−1
(1.09e−3) −

1.3344e−1
(4.59e−3) − 75.71%, 56.21%, 0.73%

(5,10) 1.3335e−1
(2.65e−3)

5.5036e−1
(5.77e−2) −

3.0202e−1
(6.73e−4) −

1.3311e−1
(3.58e−3) +

75.77%, 55.85%, −0.18%

(5,20) 1.3316e−1
(3.31e−3)

5.2619e−1
(3.90e−2) −

3.0203e−1
(1.57e−3) −

1.3299e−1
(2.78e−3) +

74.69%, 55.91%, −0.13%

(10,5) 1.3188e−1
(2.01e−3)

5.4484e−1
(4.25e−2) −

3.0142e−1
(3.73e−3) −

1.3242e−1
(1.94e−3) − 75.79%, 56.25%, 0.41%

(10,10) 1.3393e−1
(3.40e−3)

5.4706e−1
(4.81e−2) −

3.0204e−1
(5.06e−4) −

1.3588e−1
(1.54e−2) − 75.52%, 55.66%, 1.44%

(10,20) 1.3261e−1
(2.65e−3)

5.3520e−1
(5.56e−2) −

3.0204e−1
(7.68e−4) −

1.3396e−1
(4.10e−3) − 75.22%, 56.10%, 1.01%

57

Processes 2021, 9, 911

References

1. Zhang, Q.; Li, H. MOEA/D: A Multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

2. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

3. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern. 2019, 49,
542–555. [CrossRef] [PubMed]

4. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274, 17–34. [CrossRef]
5. Gao, D.; Wang, G.-G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection

mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [CrossRef]
6. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [CrossRef]
7. Jing, S.; Zhuang, M.; Gong, D.; Zeng, X.; Li, J.; Wang, G.-G. Interval multi-objective optimization with memetic algorithms. IEEE

Trans. Cybern. 2020, 50, 3444–3457.
8. Chen, S.; Chen, R.; Wang, G.-G.; Gao, J.; Sangaiah, A.K. An adaptive large neighborhood search heuristic for dynamic vehicle

routing problems. Comput. Electr. Eng. 2018, 67, 596–607. [CrossRef]
9. Hu, Y.; Ou, J.; Zheng, J.; Zou, J.; Yang, S.; Ruan, G. Solving dynamic multi-objective problems with an evolutionary multi-

directional search approach. Knowl.-Based Syst. 2020, 194, 105175. [CrossRef]
10. Luo, W.; Sun, J.; Bu, C.; Liang, H. Species-based Particle Swarm optimizer enhanced by memory for dynamic optimization. Appl.

Soft Comput. 2016, 47, 130–140. [CrossRef]
11. Nakano, H.; Kojima, M.; Miyauchi, A. An artificial bee colony algorithm with a memory scheme for dynamic optimization

problems. In Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC), Sendai, Japan, 25–28 May 2015;
pp. 2657–2663.

12. Rong, M.; Gong, D.; Zhang, Y.; Jin, Y.; Pedrycz, W. Multidirectional prediction approach for dynamic multiobjective optimization
problems. IEEE Trans. Cybern. 2019, 49, 3362–3374. [CrossRef]

13. Rong, M.; Gong, D.; Pedrycz, W.; Wang, L. A multimodel prediction method for dynamic multiobjective evolutionary optimization.
IEEE Trans. Evol. Comput. 2019, 24, 290–304. [CrossRef]

14. Wu, X.; Wang, S.; Pan, Y.; Shao, H. A knee point-driven multi-objective artificial flora optimization algorithm. Wirel. Netw. 2020,
1–11. [CrossRef]

15. Peng, Z.; Zheng, J.; Zou, J. A population diversity maintaining strategy based on dynamic environment evolutionary model for
dynamic multiobjective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC), Beijing,
China, 6–11 July 2014; pp. 274–281.

16. Liu, M.; Zheng, J.; Wang, J.; Liu, Y.; Lei, J. An adaptive diversity introduction method for dynamic evolutionary multiobjective
optimization. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (IEEE CEC), Beijing, China, 6–11 July 2014;
pp. 3160–3167.

17. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]

18. Farina, M.; Deb, K.; Amato, P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE
Trans. Evol. Comput. 2004, 8, 425–442. [CrossRef]

19. Emmerich, M.T.M.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat.
Comput. 2018, 17, 585–609. [CrossRef] [PubMed]

20. Cao, L.; Xu, L.; Goodman, E.D.; Li, H. A first-order difference model-based evolutionary dynamic multiobjective optimization.
In Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, Shenzhen, China, 10–13 November 2017;
pp. 644–655.

21. Deb, K.; Karthik, S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on
hydro-thermal power scheduling. In Proceedings of the International Conference Evolutionary Multi-Criterion Optimization,
Matsushima, Japan, 5–8 March 2007; pp. 803–817.

22. Yen, G.; Lu, H. Dynamic multiobjective evolutionary algorithm: Adaptive cell-based rank and density estimation. IEEE Trans.
Evol. Comput. 2003, 7, 253–274. [CrossRef]

23. Wang, Y.; Yu, J.; Yang, S.; Jiang, S.; Zhao, S. Evolutionary dynamic constrained optimization: Test suite construction and algorithm
comparisons. Swarm Evol. Comput. 2019, 50, 100559. [CrossRef]

24. Macias-Escobar, T.; Cruz-Reyes, L.; Fraire, H.; Dorronsoro, B. Plane separation: A method to solve dynamic multi-objective
optimization problems with incorporated preferences. Future Gener. Comp. Syst. 2019, 110, 864–875. [CrossRef]

25. Zou, F.; Yen, G.G.; Tang, L. A knee-guided prediction approach for dynamic multi-objective optimization. Inf. Sci. 2020, 509,
193–209. [CrossRef]

26. Zhou, A.; Jin, Y.; Zhang, Q.; Sendhoff, B.; Tsang, E. Prediction-based population re-initialization for evolutionary dynamic multi-
objective optimization. In Proceedings of the International Conference Evolutionary Multi-Criterion Optimization, Matsushima,
Japan, 5–8 March 2007; pp. 832–846.

27. Hatzakis, I.; Wallace, D. Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach. In
Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 8–12 July 2006; pp. 1201–1208.

58

Processes 2021, 9, 911

28. Liu, X.-F.; Zhou, Y.-R.; Yu, X.; Lin, Y. Dual-archive-based particle swarm optimization for dynamic optimization. Appl. Soft
Comput. 2019, 85, 105876. [CrossRef]

29. Gong, D.; Xu, B.; Zhang, Y.; Guo, Y.; Yang, S. A similarity-based cooperative co-evolutionary algorithm for dynamic interval
multiobjective optimization problems. IEEE Trans. Evol. Comput. 2020, 24, 142–156. [CrossRef]

30. Wang, C.; Yen, G.G.; Jiang, M. A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization. Swarm
Evol. Comput. 2020, 56, 100695. [CrossRef]

31. Chang, R.-I.; Hsu, H.-M.; Lin, S.-Y.; Chang, C.-C.; Ho, J.-M. Query-based learning for dynamic Particle Swarm optimization. IEEE
Access 2017, 5, 7648–7658. [CrossRef]

32. Liang, Z.; Wu, T.; Ma, X.; Zhu, Z.; Yang, S. A dynamic multiobjective evolutionary algorithm based on decision variable
classification. IEEE Trans. Cybern. 2020, 1–14. [CrossRef]

33. Wang, Z.; Zhang, J.; Yang, S. An improved particle Swarm optimization algorithm for dynamic job shop scheduling problems
with random job arrivals. Swarm Evol. Comput. 2019, 51, 100594. [CrossRef]

34. Luna, F.; Zapata-Cano, P.H.; González-Macías, J.C.; Valenzuela-Valdés, J.F. Approaching the cell switch-off problem in 5G
ultra-dense networks with dynamic multi-objective optimization. Future Gener. Comput. Syst. 2020, 110, 876–891. [CrossRef]

35. Zhou, X.; Wang, X.; Huang, T.; Yang, C. Hybrid intelligence assisted sample average approximation method for chance constrained
dynamic optimization. IEEE Trans. Ind. Inform. 2020, 1. [CrossRef]

36. Chang, L.; Piao, S.; Leng, X.; Hu, Y.; Ke, W. Study on falling backward of humanoid robot based on dynamic multi objective
optimization. Peer Peer Netw. Appl. 2020, 13, 1236–1247. [CrossRef]

37. Cabrera, A.; Acosta, A.; Almeida, F.; Blanco, V.; Perez, A.C. A dynamic multi-objective approach for dynamic load balancing in
heterogeneous systems. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2421–2434. [CrossRef]

38. Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8,
173–195. [CrossRef] [PubMed]

39. Kong, W.; Chai, T.; Yang, S.; Ding, J. A hybrid evolutionary multiobjective optimization strategy for the dynamic power supply
problem in magnesia grain manufacturing. Appl. Soft Comput. 2013, 13, 2960–2969. [CrossRef]

40. Jiang, S.; Yang, S. Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons. IEEE Trans.
Cybern. 2016, 47, 198–211. [CrossRef]

41. Goh, C.-K.; Tan, K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans.
Evol. Comput. 2008, 13, 103–127. [CrossRef]

42. Jiang, S.; Yang, S.; Yao, X.; Tan, K.C.; Kaiser, M.; Krasnogor, N. Benchmark problems for CEC2018 competition on dynamic
multiobjective optimisation. In Proceedings of the IEEE Congress on Evolutionary Computation (IEEE CEC), Rio de Janeiro,
Brazil, 8–13 July 2018; pp. 1–8.

43. Zhou, A.; Jin, Y.; Zhang, Q. A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans.
Cybern. 2014, 44, 40–53. [CrossRef]

44. Jiang, S.; Yang, S. A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans.
Evol. Comput. 2016, 21, 65–82. [CrossRef]

45. He, C.; Li, L.; Tian, Y.; Zhang, X.; Cheng, R.; Jin, Y.; Yao, X. Accelerating large-scale multiobjective optimization via problem
reformulation. IEEE Trans. Evol. Comput. 2019, 23, 949–961. [CrossRef]

59

processes

Article

A Novel Evolutionary Arithmetic Optimization Algorithm for
Multilevel Thresholding Segmentation of COVID-19
CT Images

Laith Abualigah 1,2, Ali Diabat 3,4, Putra Sumari 2 and Amir H. Gandomi 5,*

Citation: Abualigah, L.; Diabat, A.;

Sumari, P.; Gandomi, A.H. A Novel

Evolutionary Arithmetic

Optimization Algorithm for

Multilevel Thresholding

Segmentation of COVID-19 CT

Images. Processes 2021, 9, 1155.

https://doi.org/10.3390/pr9071155

Academic Editor: Harvey

Arellano-Garcia

Received: 5 May 2021

Accepted: 18 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;
Aligah.2020@gmail.com

2 School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia; putras@usm.my
3 Division of Engineering, New York University Abu Dhabi, Saadiyat Island,

Abu Dhabi 129188, United Arab Emirates; Diabat@nyu.edu
4 Department of Civil and Urban Engineering, Tandon School of Engineering, New York University,

Brooklyn, NY 11201, USA
5 Faculty of Engineering and Information Technology, University of Technology Sydney,

Ultimo, NSW 2007, Australia
* Correspondence: Gandomi@uts.edu.au

Abstract: One of the most crucial aspects of image segmentation is multilevel thresholding. However,
multilevel thresholding becomes increasingly more computationally complex as the number of
thresholds grows. In order to address this defect, this paper proposes a new multilevel thresholding
approach based on the Evolutionary Arithmetic Optimization Algorithm (AOA). The arithmetic
operators in science were the inspiration for AOA. DAOA is the proposed approach, which employs
the Differential Evolution technique to enhance the AOA local research. The proposed algorithm
is applied to the multilevel thresholding problem, using Kapur’s measure between class variance
functions. The suggested DAOA is used to evaluate images, using eight standard test images from
two different groups: nature and CT COVID-19 images. Peak signal-to-noise ratio (PSNR) and
structural similarity index test (SSIM) are standard evaluation measures used to determine the
accuracy of segmented images. The proposed DAOA method’s efficiency is evaluated and compared
to other multilevel thresholding methods. The findings are presented with a number of different
threshold values (i.e., 2, 3, 4, 5, and 6). According to the experimental results, the proposed DAOA
process is better and produces higher-quality solutions than other comparative approaches. Moreover,
it achieved better-segmented images, PSNR, and SSIM values. In addition, the proposed DAOA is
ranked the first method in all test cases.

Keywords: Arithmetic Optimization Algorithm (AOA); meta-heuristics; Differential Evolution;
Optimization Algorithms; engineering problems; optimization problems; real-world problems;
multilevel thresholding; image segmentation

1. Introduction

One of the most often used image segmentation techniques is multilevel thresholding.
It is divided into two types: bi-level and multilevel [1,2]. Multilevel thresholding is used
to separate complex images, which can generate several thresholds, such as tri-level or
quad-level thresholds, which break pixels into several identical parts depending on size.
Bi-level thresholding divides the image into two levels, while multilevel thresholding
divides the image into two classes [3,4]. When there are only two primary gray levels in
an image, bi-level thresholding yields acceptable results; however, when it is expanded to
multilevel thresholding, the main drawback is the time-consuming computation [5]. Bi-
level thresholding cannot precisely find the optimum threshold, due to the slight variation
between the target and the context of a complex image [6,7].

Processes 2021, 9, 1155. https://doi.org/10.3390/pr9071155 https://www.mdpi.com/journal/processes61

Processes 2021, 9, 1155

Medical imaging, machine vision, and satellite photography all use image segmenta-
tion [8–10]. The primary aim of image segmentation is to divide an image into relevant
regions for a specific mission. The process of finding and isolating points of interest from
the rest of the scene is known as the segmentation of pattern recognition systems [11,12].
Following image segmentation, certain features from objects are removed, and then ob-
jects are grouped into specific categories or classes, depending on the extracted features.
Segmentation is used in medical applications to detect organs, such as the brain, heart,
lungs, and liver, in CT or MR images [13,14]. It is also used to tell the difference between
abnormal tissue, such as a tumor, and healthy tissue. Image segmentation techniques,
such as image thresholding, edge detection, area expanding, stochastic models, Artificial
Neural Network (ANN), and clustering techniques, have all been used, depending on the
application [15,16].

Tsallis, Kapur, and Otsu procedures are the most widely used thresholding
strategies [17,18]. The Otsu method maximizes the between-class variance function to
find optimum thresholds, while the Kapur method maximizes the posterior entropy of the
segmented groups. Due to exhaustive search, Tsallis and Otsu’s computational complexity
grows exponentially as the number of thresholds increases [19]. Many researchers have
worked on image segmentation over the years. Image segmentation has been tackled
using a variety of approaches and algorithms [20]. Examples of the used optimization
algorithms are the Bat Algorithm (BA) [21], Firefly Algorithm (FA) [22], Genetic Algo-
rithm (GA) [23], Gray Wolf Optimizer (GWO) [24,25], Dragonfly Algorithm (DA) [26],
Moth–Flame Optimization Algorithm (MFO) [27], Marine Predators Algorithm (MPA)
[28], Arithmetic Optimization Algorithm (AOA) [29], Aquila Optimizer (AO) [30], Krill
Herd Optimizer (KHO) [31], Harris Hawks Optimizer (HHO) [32], Red Fox Optimiza-
tion Algorithm (RFOA) [33], Artificial Bee Colony Algorithm (ABC) [34], and Artificial
Ecosystem-based Optimization [35]. Many other optimizers can be found in [36,37].

The paper [38] used Kapur and Otsu’s approaches to adjust the latest Elephant Herd-
ing Optimization Algorithm for multilevel thresholding. Its performance was compared
to four other swarm intelligence algorithms, using regular benchmark images. The Ele-
phant Herding Optimization Algorithm outperformed and proved more stable than other
methods in the literature. Sahlol et al. in [39] introduced an improved hybrid method for
COVID-19 images by merging the strengths of convolution neural networks (CNNs) to
remove features and the MPA feature selection algorithm to choose the most important
features. The proposed method exceeds several CNNs and other well-known methods on
COVID-19 images.

The multi-verse optimizer (MVO), based on the multi-verse theorem, is a new algo-
rithm for solving real-world multi-parameter optimization problems. A novel parallel
multi-verse optimizer (PMVO) with a coordination approach is proposed in [40]. For each
defined iteration, the parallel process is used to randomly split the original solutions into
multiple groups and exchange the various groups’ details. This significantly improves
individual MVO algorithm cooperation and reduces the shortcomings of the original MVO
algorithm, such as premature convergence, search stagnation, and easy trapping into the
local optimal search. The PMVO algorithm was compared to methods under the CEC2013
test suite to validate the proposed scheme’s efficiency. The experimental findings show
that the PMVO outperforms the other algorithms under consideration. In addition, using
minimum cross entropy thresholding, PMVO is used to solve complex multilevel image
segmentation problems. In comparison with different related algorithms, the proposed
PMVO algorithm seems to achieve better quality image segmentation.

For image segmentation, a modified artificial bee colony optimizer (MABC) is pro-
posed [41], which balances the tradeoff between the search process by using a pool of
optimal foraging strategies. MABC’s main goal is to improve artificial bee foraging be-
haviors by integrating local search with detailed learning, using a multi-dimensional
PSO-based equation. With detailed learning, the bees combine global best solution knowl-
edge into the solution quest equation to increase exploration. Simultaneously, local search

62

Processes 2021, 9, 1155

allows the bees to thoroughly exploit across the promising field, providing a good combi-
nation of exploration and exploitation. The proposed algorithm’s feasibility was shown by
the experimental findings comparing the MABC to several popular EA and SI algorithms
on a series of benchmarks. The experimental findings verify the suggested algorithm’s
efficacy.

For solving the image segmentation problem, a novel multilevel thresholding algo-
rithm based on a meta-heuristic Krill Herd Optimization (KHO) algorithm is proposed
in [42]. The optimal threshold values are calculated, using the Krill Herd Optimization
technique to maximize Kapur’s or Otsu’s objective function. The suggested method re-
duces the amount of time it takes to calculate the best multilevel thresholds. Various
benchmark images are used to illustrate the applicability and numerical performance of the
Krill Herd Optimization-based multilevel thresholding. To demonstrate the superior per-
formance of the proposed method, a detailed comparison with other current bio-inspired
techniques based on multilevel thresholding techniques, such as Bacterial Foraging (BF),
Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Moth-Flame Optimiza-
tion (MFO), was performed. The results confirmed that the proposed method achieved
better results than other methods.

This paper presents a modified version of the Manta Ray Foraging Optimizer (MRFO)
algorithm to deal with global optimization and multilevel image segmentation problems [43].
MRFO is a meta-heuristic technique that simulates the behaviors of manta rays to find food.
The performance of the MRFO is improved by using fractional-order (FO) calculus during
the exploitation phase. In this experiment, a variant of natural images is used to assess
FO-MRFO. According to different performance measures, the FO-MRFO outperformed the
compared algorithms in global optimization and image segmentation.

The concept “optimization” refers to the process of identifying the best solutions
to a problem while keeping those constraints in mind [44,45]. The used optimization
in solving the image segmentation problem is the method of finding the best threshold
values for a given image. Swarm intelligence (SI) algorithms are used widely for multilevel
thresholding problems to determine the optimal threshold values, using various objective
functions to solve the problems of the computational inefficiency of traditional thresholding
techniques. The primary motivation behind this paper is to find the optimal threshold
values for image segmentation problems. At the same time, to address the weakness of
the original AOA, it suffers from the local optimal problem and premature coverage in
some cases. In this paper, an improved version of the Arithmetic Optimization Algorithm
(AOA) by using Differential Evolution, called DAOA, is proposed. The proposed method
uses Differential Evolution to tackle the conventional Arithmetic Optimization Algorithm’s
weaknesses, such as being trapped in local optima and fast convergence. Thus, Differential
Evolution is used to enhance the performance of the Arithmetic Optimization Algorithm.
The proposed DAOA assists by using eight standard test images from different groups:
two-color images, two gray images, two normal CT COVID-19 images, and two confirmed
COVID-19 CT images. Peak signal-to-noise ratio (PSNR), structural similarity index test
(SSIM), and fitness function (Kapur’s) are used to determine the accuracy of segmented
images. The proposed DAOA method’s efficiency is evaluated and compared to other
multilevel thresholding methods. The findings are presented with a number of different
threshold values (i.e., 2, 3, 4, 5, and 6). According to the experimental results, the proposed
DAOA process is better and produces higher-quality solutions than other approaches.
The encouraging findings suggest that using the DAOA-based thresholding strategy has
potential and is helpful.

The rest of this paper is organized as follows. Section 2 presents the procedure of the
proposed DAOA method. Section 3 presents the definitions and procedures of the image
segmentation problem. The experiments and results are given in Section 4. Finally, in
Section 5, the conclusions and potential future work directions are given.

63

Processes 2021, 9, 1155

2. The Proposed Method

In this section, we present the conventional Arithmetic Optimization Algorithm
(AOA), Differential Evolution (DE), and the proposed Evolutionary Arithmetic Optimiza-
tion Algorithm (DAOA).

2.1. Arithmetic Optimization Algorithm (AOA)

In this section, we describe the exploration and exploitation phases of the original
AOA [29], which is motivated by the main operators in math science (i.e., multiplication
(M), division (D), subtraction (S), and addition (A)). The main search methods of the AOA
are presented in Figure 1, which are illustrated in the following subsections.

Figure 1. The search phases of the Arithmetic Optimization Algorithm.

The AOA should choose the search process before beginning its work (i.e., exploration
or exploitation). So, in the following search steps, the Math Optimizer Accelerated (MOA)
function is a coefficient determined by Equation (1).

MOA(C_Iter) = Min + C_Iter ×
(

Max − Min
M_Iter

)
(1)

where MOA(C_Iter) means the value at the tth iteration of MOA function, determined
by Equation (1). C_Iter is the current iteration: [1 M_Iter]. Min and Max are the
accelerated function values (minimum and maximum), respectively.

2.1.1. Exploration Phase

The exploration operators of AOA are modeled in Equation (2). The exploration
phase uses the D or M operators conditioned by r1 >MOA. The D operator is prepared by
r2 < 0.5, or, otherwise, by the M operator. r2 is a random number. The position updating
process is determined as follows.

xi,j(C_Iter + 1) =
{

best(xj)÷ MOP × ((UBj − LBj)× μ + LBj), r2 < 0.5
best(xj)× MOP × ((UBj − LBj)× μ + LBj), otherwise

(2)

64

Processes 2021, 9, 1155

where xi(C_Iter+1) is the ith next solution, xi,j(C_Iter) is the jth location of the ith solution,
and best(xj) is the jth location in the best solution. μ is a control value (0.5) to tune the
exploration search.

MOP(C_Iter) = 1 − C_Iter1/α

M_Iter1/α
(3)

where MOP(C_Iter) denotes the coefficient value at the tth iteration. α is a control value
(5) to tune the exploration search.

2.1.2. Exploitation Phase

The exploitation searching phase uses the S and A operators conditioned by the
MOA function value. Subtraction (S) and addition (A) search strategies are represented in
Equation (4).

xi,j(C_Iter + 1) =
{

best(xj)− MOP × ((UBj − LBj)× μ + LBj), r3 < 0.5
best(xj) + MOP × ((UBj − LBj)× μ + LBj), otherwise

(4)

The intuitive and detailed process of AOA is shown in Figure 2.

Figure 2. Flowchart of the conventional AOA.

2.2. Differential Evolution (DE)

In [46], Storn and Price introduced the DE as the first version to solve multiple
optimization problems in 1997. DE stands out for its versatility, quick execution time, rapid
acceleration pattern, and fast and accurate local operators [47,48]. In DE, the optimization
process begins with a random selection of solutions for finding the majority of the points in
the search space (initialization phase). The solutions can then be improved, using a series
of operators called mutation and crossover. The new solution can be accepted if it has a
higher objective value. For the current solution Xi, the mathematical model of the mutation
operator Zt

i can be applied as follows:

Zi,j = XDrand1 + F × (XDr2 − XDr3), (5)

where r1, r2, and r3 are random numbers, F is the mutation balancing factor, and F is greater
than 0.

65

Processes 2021, 9, 1155

For the crossover operator, Equation (6) represents the new solution Vi, which is
produced using the mutated operator through the crossover Zi. The crossover is considered
a mixture process among vectors Zi and XDi.

Vi,j =

{
Zi,j i f rand ≤ Cr

XDi,j otherwise
(6)

Cr is the crossover probability.
The DE algorithm improves its selected solutions according to the objective function

values, where the generated Vi, C_Iter is replaced with the current one if it obtained a better
fitness value, which is as follows.

XDi,j =

{
Vi,j i f f (Vi,j) < f (XDi,j)

XDi,j otherwise
(7)

2.3. The Proposed DAOA

In this section, the procedure of the proposed Evolutionary Arithmetic Optimization
Algorithm (DAOA) is presented as follows.

2.3.1. Initialization Phase

When using the AOA, the optimization procedure begins with a number of random
solutions (X) as designated in matrix (8). The best solution is taken in each iteration as the
best-obtained solution.

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · · · · x1,j x1,n−1 x1,n
x2,1 · · · · · · x2,j · · · x2,n
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1,1 · · · · · · xN−1,j · · · xN−1,n
xN,1 · · · · · · xN,j xN,n−1 xN,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

2.3.2. Phases of the Proposed DAOA

In this section, the main details and procedures of the proposed Evolutionary Arith-
metic Optimization Algorithm (DAOA) are given.

The DAOA is introduced mainly to develop the original AOA’s convergence ability,
the quality of solutions, and the ability to avoid the local optima problem. Thus, the DE
technique is introduced into the conventional AOA to form DAOA. This proposed DAOA
method is introduced to perform the exploration search by the AOA and exploitation
search by the DE. This also makes an excellent balance between the search strategies and
guarantees that the proposed method averts the local optima.

Figure 3 depicts the proposed DAOA approach in this section. The DAOA procedure
begins with (1) determining the values of the used algorithms’ parameters, (2) generating
candidate solutions, (3) calculating fitness functions, (4) selecting the best solution, (5)
if a given condition is true, the AOA is executed to update the solutions; otherwise, the
DE is executed to update the solutions, and (6) then another condition is given to stop or
continue the optimization process. Figure 3 shows the flowchart for the proposed DAOA.
The pseudo-code of the DAOA algorithm is given in Algorithm 1.

66

Processes 2021, 9, 1155

Figure 3. The flowchart of the proposed DAOA.

Algorithm 1 Pseudo-code of the DAOA algorithm

1: Initialize the Arithmetic Optimization Algorithm parameters α, μ.
2: Initialize the solutions’ positions randomly. (Solutions: i = 1, . . . , N.).
3: Calculate the Fitness values.
4: while (C_Iter < M_Iter) do
5: Find the best solution (determined best so far).
6: Update the MOA value using Equation (1).
7: Update the MOP value using Equation (3).
8: Calculate the Fitness Function (FF) for the given solutions.
9: for (i = 1 to Solutions) do

10: if rand < 0.5 then
11: Generate a random values between [0, 1] (r1, r2, and r3)
12: if r1 > MOA then
13: if r2 > 0.5 then
14: Update the ith solutions’ positions using the first rule in Equation (2).
15: else
16: Update the ith solutions’ positions using the second rule in Equation (2).
17: end if
18: else
19: if r3 > 0.5 then
20: Update the ith solutions’ positions using the first rule in Equation (4).
21: else
22: Update the ith solutions’ positions using the second rule in Equation (4).
23: end if
24: end if
25: else
26: if rand < 0.5 then
27: Update the ith solutions’ positions using Mutation operator as given in

Equation (5).
28: else
29: Update the ith solutions’ positions using Crossover operator as given in

Equation (6).
30: end if
31: end if
32: end for
33: C_Iter = C_Iter + 1
34: end while
35: Return the best solution (x).

67

Processes 2021, 9, 1155

3. Definitions of the Multilevel Thresholding Image Segmentation Problems

In this section, we describe the main problem of multilevel thresholding. Let us
suppose that I is a gray or color image that needs to be processed, where K + 1 presents
the classes that need to be produced. For segmenting the given image (I) into K + 1 classes,
the k thresholds’ values are required to progress in the image segmentation procedure;
{tk, k = 1..........K}, and this can be expressed as follows [1,7,49].

C0 = {Ii,j | 0 ≤ Ii,j ≤ t1 − 1},

C1 = {Ii,j | t1 ≤ Ii,j ≤ t2 − 1},

. . .

CK = {Ii,j | tK ≤ Ii,j ≤ L − 1}

(9)

where L indicates the highest gray levels and CK indicates the kth class of the image I.
The tk is the k-th threshold, with Ii,j being the gray level at the (i, j)th pixel. Furthermore,
in Equation (10), multilevel thresholding is identified as a maximization optimization
problem that needs to find the optimal threshold values.

K multilevel threshold values can be presented as follows.

t1, ∗, t2, ∗, . . . , tK, ∗ = arg max
t1,...,tK

Fit(t1, . . . , tK) (10)

3.1. Fitness Function (Kapur’s Entropy)

For the purpose of thresholding, consider a digital image I with N pixels and L gray
levels. Via thresholds, these L number of gray levels are divided into classes: Class1, Class2,
. . . , Classk [1].

In this proposed DAOA, Kapur’s entropy is utilized for achieving optimum threshold
values. Measurement of the bi-level thresholds needs the optimization process’s objective
function, as shown in Equation (11).

Fit(t1, . . . , tK) = ∑
k=1

, KHi (11)

Hk = −
L−1

∑
i=0

pi × μk(i)
Pk

× ln(
pi × μk(i)

Pk
), (12)

Pk =
L−1

∑
i=0

pi × μk(i) (13)

μ1(l) =

⎧⎪⎨
⎪⎩

1 l ≤ a1
l−c1

a1−c1
a1 ≤ l ≤ c1

0 l > c1

μK(l) =

⎧⎪⎨
⎪⎩

1 l ≤ aK−1
l−aK

cK−aK
aK−1 < l ≤ cK−1

0 l > cK−1

(14)

where pi is the probability distribution, h(i) is the numbers of pixels for the used gray level
L, and Np is the total numbers of pixels of the image I. pi presents the probability value for
the distribution, determined as pi = h(i)/Np (0 < i < L − 1). h(i) and Nk are the numbers
of pixels for the used gray level L and total pixel of the image I. a1, c1,, ak−1, ck−1 are
the used fuzzy parameters, and 0 ≤ a1 ≤ c1 ≤ . . . ≤ aK−1 ≤ cK−1.

Then, t1 = a1+c1
2 , t2 = a2+c2

2 , ..., tK−1 = aK−1+cK−1
2 . The best fitness function obtained is

the highest value.

68

Processes 2021, 9, 1155

3.2. Performance Measures

We assess the proposed DAOA method performance, using three performance mea-
sures: the fitness function value, the Structural Similarity Index (SSIM), and the Peak
Signal-to-Noise Ratio (PSNR) [50,51]. The following equations compute SSIM and PSNR:

SSIM(I, IS) =
(2μIμIS + c1)(2σI,IS + c2)

(μ2
I + μ2

IS
+ c1)(σ

2
I + σ2

IS
+ c2)

(15)

where μIS (σIS) and μI(σI) are the images’ mean intensity of IS and I, respectively, where
σI,IS is the governance of I and IS, and c1 and c2 coefficient values are equal to 6.5025 and
58.52252, respectively [1].

PSNR = 20log10(
255

RMSE
), RMSE =

√
∑Nr

i=1 ∑Nc
j=1(Ii,j − ISi, j)2

Nr × Nc
(16)

where the RMSE is the root-mean-squared error of each pixel, and M × N depicts the
image’s size. Ii,j is the gray pixel value of the initial image, and Isij is the gray value of the
pixel in the obtained segmented image.

4. Experiments and Results

4.1. Benchmark Images

In this section, the benchmark image data sets are presented in Figures 4 and 5. Two
image types were used in this paper’s experiments, taken from nature (as seen in Figure 4)
and medical CT images (as seen in Figure 5). We chose eight images: two-color images
from nature (i.e., Test 1 and Test 2), two gray images from nature (i.e., Test 3 and Test 4),
two COVID-19 CT images (i.e., Test 5 and Test 6), and two normal COVID-19 CT images
(i.e., Test 7 and Test 8). These benchmarks were taken from the Berkeley Segmentation Data
Set: Images and BIMCV-COVID19 [52].

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 4. The nature benchmark images that have been used.

69

Processes 2021, 9, 1155

(a) Test 5 (b) Test 6

(c) Test 7 (d) Test 8

Figure 5. The CT benchmark images that were used.

4.2. Comparative Algorithms and Parameter Setting

The proposed DAOA is analyzed and compared with six recently well-known algo-
rithms, including Aquila Optimizer (AO) [30], Whale Optimization Algorithm (WOA) [53],
Salp Swarm Algorithm (SSA) [54], Arithmetic Optimization Algorithm (AOA) [29], Particle
Swarm Optimization (PSO) [55], Marine Predators Algorithm (MPA) [56], and Differential
Evolution (DE) [57].

These algorithms’ parameters are set in the same way as they were in their original
papers. The values of different parameter settings used in the tested algorithms are shown
in Table 1. These sensitive parameters can be tuned for further investigation to show the
effect of each parameter on the performance of the tested methods. The algorithms are
executed by using the MATLAB 2015a software. These algorithms are run on an Intel
Core i7 1.80 GHz 2.30 GHz processor with 16 GB RAM. The number of solutions used is
twenty-five. For a systematic comparison, the maximum number of iterations is set to one
hundred. Each competitor algorithm generates thirty independent runs.

70

Processes 2021, 9, 1155

Table 1. Parameter settings.

No. Algorithm Reference Parameter Value

1 AO [30] α 0.1
/δ 0.1

2 WOA [53] α Decreased from 2 to 0
b 2

3 SSA [54] v0 0
4 AOA [29] α 5

μ 0.5
5 PSO [55] Topology Fully connected

Cognitive and social
constant (C1, C2) 2, 2

Inertia weight Linear reduction values
[0.9 0.1]

Velocity limit 10% of dimension range
6 MPA [56] γ γ > 1

P 0.0
7 DE [57] Co 0.5

Mu 0.5

4.3. Performance Evaluation

A comparison of the proposed DAOA for multilevel thresholding segmentation, using
eight different images, is presented in this section. The following tables show the max,
mean, min, and standard deviation of each test case’s PSNR and SSIM. Moreover, the
summation, mean rank, and final ranking are given, using the Friedman ranking test to
prove the proposed method’s significant improvement [58,59].

The PSNR and SSIM results of Test 1 are given in Tables 2 and 3. It is clear that the
proposed DAOA obtained excellent results in almost all the test cases in terms of PSNR.
For threshold 2, the proposed DAOA obtained the best results, and it ranked first when
compared to all other comparative methods, followed by AOA, SSA, PSO, WOA, MPA,
AO, and finally, DE. In addition, for threshold 6, the proposed method obtained promising
results compared to other methods. DAOA obtained the first rank, followed by WOA,
PSO, SSA, AOA, AO, SSA, MPA, and DE. Overall, we can see that the proposed method
obtained the first ranking, followed by AOA, PSO, SSA, WOA, AO, MPA, and DE. The
obtained results in this table prove the ability of the proposed DAOA to solve the given
problems effectively.

For threshold 2 in Table 3, the proposed DAOA obtained the best results, and it
ranked as the first method, compared to all other comparative methods, followed by PSO,
SSA, DE, AOA, WOA, MPA, and finally, AO. In addition, for threshold 3, the proposed
method obtained promising results, compared to other methods. DAOA obtained the first
ranking, followed by PSO, SSA, DE, AOA, MPA, WOA, and AO. Overall, we can see that
the proposed DAOA method obtained the first ranking, followed by PSO, AOA, SSA, DE,
WOA, AO, and MPA. The obtained results in this table prove the ability of the proposed
DAOA to solve the given problems effectively.

71

Processes 2021, 9, 1155

Table 2. The PSNR results of the test case 1.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 12.74479 13.20368 13.72521 13.27539 13.70085 12.02615 13.51551 14.55374
Mean 11.43681 11.97746 12.58728 12.61579 12.51339 11.79407 11.25852 12.76203
Min 10.60697 10.16222 10.98468 12.02184 11.85952 11.60000 10.33365 11.86358
STD 1.14631 1.60401 1.42813 0.62935 1.03013 0.21560 0.65885 1.55167

Ranking 7 5 3 2 4 6 8 1
3 Max 16.44011 14.27535 16.08140 16.89013 14.18813 15.13210 14.41440 15.73708

Mean 15.19863 13.28605 14.43510 14.68456 13.49286 14.37895 12.22514 14.61015
Min 14.28507 11.36665 12.18756 11.73528 12.53317 12.91041 11.02215 13.64585
STD 1.11431 1.66251 2.01534 2.65668 0.85858 1.27194 0.56698 1.05506

Ranking 1 7 4 2 6 5 8 3
4 Max 15.17656 17.95691 17.47235 17.16435 17.32833 16.30057 15.65854 17.94836

Mean 14.00183 15.22041 16.87263 15.59121 16.52225 15.72838 14.25484 16.04748
Min 13.30037 12.55354 15.90180 14.37544 16.09469 15.11861 13.95558 15.09213
STD 1.02372 2.70236 0.84849 1.42839 0.69852 0.59188 0.47447 1.64622

Ranking 8 6 1 5 2 4 7 3
5 Max 16.72622 16.42710 16.24110 17.90312 16.37420 16.30256 16.32254 18.67014

Mean 15.54953 16.02096 15.54791 16.92259 15.84138 15.24571 15.22541 15.86760
Min 14.49543 15.61807 14.88442 15.62385 15.34763 14.57955 14.02554 14.01993
STD 1.12043 0.40452 0.67883 1.17248 0.51440 0.92557 0.65558 2.46778

Ranking 5 2 6 1 4 7 8 3
6 Max 19.43582 20.61942 19.52344 20.43187 19.96838 18.86744 17.95101 20.03906

Mean 18.38781 18.75391 17.85512 18.23439 18.71728 16.92716 16.25870 19.23425
Min 16.37613 17.07040 14.78261 14.88956 17.44713 14.57855 15.33652 17.83410
STD 1.74267 1.78149 2.66414 2.94391 1.26073 2.17340 1.25412 1.21708

Ranking 4 2 6 5 3 7 8 1

Summation 25 22 20 15 19 29 39 11
Mean Rank 5 4.4 4 3 3.8 5.8 7.8 2.2

Final Ranking 6 5 4 2 3 7 8 1

Table 3. The SSIM results of the test case 1.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.269717 0.362146 0.380757 0.264672 0.454587 0.220516 0.374454 0.385465
Mean 0.173575 0.223227 0.256072 0.231906 0.257714 0.1974 0.23555 0.277138
Min 0.116657 0.019721 0.184588 0.204993 0.133367 0.1606 0.018985 0.122664
STD 0.083731 0.180118 0.108367 0.030267 0.172455 0.032217 0.15415 0.137343

Ranking 8 6 3 5 2 7 4 1
3 Max 0.417374 0.675072 0.673859 0.580374 0.631389 0.560641 0.64544 0.631938

Mean 0.353685 0.44114 0.555818 0.511786 0.580212 0.504252 0.51445 0.588044
Min 0.305838 0.217671 0.478485 0.417965 0.554552 0.438945 0.48554 0.53806
STD 0.05743 0.22888 0.103854 0.084094 0.04432 0.061337 0.22252 0.047235

Ranking 8 7 3 5 2 6 4 1
4 Max 0.417374 0.675072 0.631938 0.580374 0.631389 0.560641 0.58887 0.673859

Mean 0.353685 0.44114 0.588044 0.511786 0.580212 0.504252 0.54414 0.555818
Min 0.305838 0.217671 0.53806 0.417965 0.554552 0.438945 0.501141 0.478485
STD 0.05743 0.22888 0.047235 0.084094 0.04432 0.061337 0.08885 0.103854

Ranking 8 7 1 5 2 6 4 3
5 Max 0.577496 0.500592 0.535451 0.686032 0.685014 0.455519 0.55241 0.606479

Mean 0.477899 0.461272 0.472833 0.604613 0.470727 0.406442 0.43525 0.483806
Min 0.401935 0.390055 0.354047 0.545124 0.290476 0.317459 0.40125 0.387526
STD 0.090135 0.061787 0.102922 0.072969 0.199459 0.077198 0.45452 0.111837

Ranking 3 6 4 1 5 8 7 2
6 Max 0.716201 0.826943 0.751183 0.802334 0.768344 0.76727 0.59858 0.790498

Mean 0.634075 0.674239 0.574338 0.641546 0.679048 0.575139 0.56555 0.736605
Min 0.541354 0.522776 0.279256 0.394027 0.608891 0.388121 0.52555 0.669011
STD 0.087904 0.152087 0.257223 0.217532 0.081431 0.189626 0.04414 0.061891

Ranking 5 3 7 4 2 6 8 1

Summation 32 29 18 20 13 33 27 8
Mean Rank 6.4 5.8 3.6 4 2.6 6.6 5.4 1.6

Final Ranking 7 6 3 4 2 8 5 1

72

Processes 2021, 9, 1155

The PSNR and SSIM results of Test 2 are given in Tables 4 and 5. The proposed DAOA
achieved excellent results in almost all the test cases in terms of PSNR. For threshold 4, the
proposed DAOA obtained the best results, and it ranked as the first method, compared to
all other comparative methods, followed by AO, MPA, AOA, SSA, DE, PSO, and finally,
WOA. For threshold 5, the proposed method obtained promising results, compared to
other methods. DAOA obtained the first rank, followed by AO, DE, PSO, WOA, AOA,
SSA, and MPA. Overall, we can see that the proposed method obtained the first ranking,
followed by AO, DE, SSA, PSO, MPA, WOA, and AOA. The achieved results in this table
demonstrate the ability of the proposed DAOA to solve the given problems efficiently.

For threshold 4 in Table 5, the proposed DAOA obtained the best results, and it ranked
as the first method, compared to all other comparative methods, followed by AO, AOA,
MPA, SSA, DE, PSO, and finally, WOA. For threshold 3, the proposed method obtained
promising results, compared to other methods. DAOA obtained the first ranking, followed
by WOA, DE, AO, PSO, SSA, MPA, and AOA. Overall, we can see that the proposed DAOA
method obtained the first ranking, followed by AO, MPA, SSA, DE, PSO, WOA, and AOA.
The obtained results in this table confirm the performance of the proposed DAOA and its
ability to solve the given problems efficiently.

Table 4. The PSNR results of the test case 2.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 13.77491 12.63881 14.5297 10.51233 12.64124 13.99214 13.25145 13.27729
Mean 11.98281 11.5817 12.11305 10.25692 11.54775 13.59189 12.2221 12.59842
Min 10.73612 10.40495 10.15998 9.823369 10.95149 13.24731 12.01211 12.09539
STD 1.591121 1.121728 2.221443 0.377446 0.948281 0.375522 0.25212 0.610259

Ranking 5 6 4 8 7 1 3 2
3 Max 15.86388 16.44113 15.82975 14.47644 14.87275 14.35493 15.32521 16.8866

Mean 14.94664 15.4703 15.49832 12.8352 13.88411 13.22512 14.14191 14.508
Min 13.15776 14.64112 14.9623 11.6457 13.24925 11.88844 13.95478 12.02299
STD 1.549381 0.908328 0.468519 1.468445 0.867645 1.24619 2.25141 2.433551

Ranking 3 2 1 8 6 7 5 4
4 Max 16.53801 13.20085 17.12718 16.28012 17.27728 16.84103 16.5474 16.96062

Mean 15.69685 12.29933 15.28839 15.53055 14.89734 15.66251 15.25145 16.84254
Min 14.14842 11.1013 13.34897 14.77009 12.92993 14.78322 14.25114 16.71792
STD 1.342654 1.080725 1.891116 0.755074 2.202842 1.06104 0.25496 0.121484

Ranking 2 8 5 4 7 3 6 1
5 Max 17.94799 16.77612 16.58759 17.72468 17.66078 15.7246 18.25641 20.50293

Mean 17.3332 16.14486 15.69308 15.81531 16.97316 15.13329 17.14954 17.45356
Min 16.85601 15.47308 14.74147 12.33775 16.23477 14.29046 16.25415 15.26742
STD 0.55884 0.652461 0.924385 3.016486 0.714359 0.749426 2.33365 2.722404

Ranking 2 5 7 6 4 8 3 1
6 Max 18.41641 16.73333 17.63323 17.86417 16.98896 17.69201 17.54845 20.23421

Mean 18.35135 16.26801 15.56212 16.33655 16.40105 15.7609 16.36652 19.55858
Min 18.23814 15.46543 13.57085 14.13927 15.2753 12.90929 14.95854 18.29391
STD 0.098406 0.697999 2.032367 1.950656 0.975254 2.52073 1.36945 1.096094

Ranking 2 6 8 5 3 7 4 1

Summation 14 27 25 31 27 26 21 9
Mean Rank 2.80 5.40 5.00 6.20 5.40 5.20 4.20 1.80

Final Ranking 2 6 4 8 6 5 3 1

73

Processes 2021, 9, 1155

Table 5. The SSIM results of the test case 2.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.406268 0.372786 0.488313 0.098776 0.381066 0.416608 0.35652 0.388003
Mean 0.247171 0.228951 0.26402 0.062589 0.260623 0.406156 0.32541 0.299891
Min 0.055504 0.119071 0.090368 0.028341 0.156191 0.397245 0.32336 0.153948
STD 0.177636 0.130221 0.203748 0.035257 0.113289 0.009773 0.45485 0.127294

Ranking 6 7 4 8 5 1 2 3
3 Max 0.542502 0.591926 0.62208 0.469152 0.556273 0.429674 0.55241 0.577128

Mean 0.48568 0.515704 0.385801 0.280354 0.407758 0.322274 0.51254 0.543097
Min 0.382238 0.463366 0.116914 0.133011 0.319945 0.116597 0.46524 0.479899
STD 0.089729 0.067526 0.254157 0.171862 0.12933 0.17818 0.51425 0.054785

Ranking 4 2 6 8 5 7 3 1
4 Max 0.643506 0.372327 0.649426 0.569008 0.616709 0.630261 0.53652 0.609209

Mean 0.540682 0.251443 0.515642 0.536243 0.469759 0.533684 0.51414 0.591323
Min 0.343984 0.050187 0.373123 0.484871 0.345458 0.483908 0.46585 0.565499
STD 0.170405 0.175466 0.138359 0.045049 0.137036 0.083651 0.25854 0.022911

Ranking 2 8 5 3 7 4 6 1
5 Max 0.568273 0.535196 0.563217 0.613346 0.611966 0.810183 0.58475 0.647781

Mean 0.53032 0.527867 0.529725 0.488084 0.578773 0.65271 0.54541 0.618783
Min 0.455118 0.523047 0.467038 0.239554 0.556387 0.507866 0.51245 0.604212
STD 0.065128 0.006451 0.054331 0.215235 0.029323 0.151553 0.25414 0.025113

Ranking 5 7 6 8 3 1 4 2
6 Max 0.728985 0.589624 0.791703 0.692676 0.55024 0.64645 0.42541 0.666054

Mean 0.688055 0.543363 0.751029 0.58507 0.505091 0.45092 0.42545 0.490001
Min 0.658136 0.498046 0.689368 0.4474 0.427197 0.183286 0.40121 0.306101
STD 0.036686 0.045797 0.054299 0.125371 0.067742 0.239853 0.15424 0.180105

Ranking 2 4 1 3 5 7 8 6

Summation 19 28 22 30 25 20 23 13
Mean Rank 3.8 5.6 4.4 6 5 4 4.6 2.6

Final Ranking 2 7 4 8 6 3 5 1

The PSNR and SSIM results of Test 3 are given in Tables 6 and 7. The proposed
DAOA obtained new, promising results in almost all the test cases in terms of PSNR. For
threshold 5, the proposed DAOA obtained the best results, and it ranked as the first method,
compared to all other comparative methods, followed by SSA, AO, PSO, AOA, MPA, and
finally, DE. For threshold 6, the proposed method obtained promising results compared
to other methods. DAOA obtained the first rank, followed by AO, PSO, DE, WOA, AOA,
SSA, and MPA. Overall we can see that the proposed method obtained the first ranking,
followed by WOA, DE, AO, AOA, MPA, PSO, and SSA. The achieved results in this table
demonstrate the ability of the proposed DAOA to solve the given problems efficiently. As
well, it is clear the proposed DAOA has this ability at different threshold levels.

For threshold 2 in Table 7, the proposed DAOA obtained the best results, and it ranked
as the first method, compared to all other comparative methods, followed by MPA, WOA,
DE, AO, SSA, AOA, and finally, PSO. For threshold 5, the proposed method obtained
promising results compared to other methods. DAOA obtained the first ranking, followed
by PSO, AOA, MPA, WOA, AO, PSO, and DE. Overall, we can see that the proposed DAOA
method obtained the first ranking, followed by MPA, AO, SSA, AOA, WOA, PSO, and DE.
The obtained results in this table confirm the performance of the proposed DAOA and its
ability to solve the given problems efficiently. The following results prove and support that
the proposed algorithm’s ability to solve such problems is strong and that it is capable of
finding robust solutions in this field.

74

Processes 2021, 9, 1155

Table 6. The PSNR results of the test case 3.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 16.43851 15.52329 16.17178 13.34026 10.70417 13.80156 11.25454 17.02237
Mean 11.77337 13.62698 11.4258 10.90943 8.940243 11.97697 12.54562 13.0293
Min 6.919499 10.52621 8.829951 8.362172 7.32234 10.25363 11.65856 10.1937
STD 4.762311 2.707536 4.116175 2.491085 1.695636 1.776132 2.66525 3.558437

Ranking 5 1 6 7 8 4 3 2
3 Max 16.32218 14.37629 19.8809 17.08167 18.01695 16.32078 17.54548 18.7061

Mean 15.52933 13.1609 18.08332 15.15354 14.40812 12.59758 15.36525 14.62128
Min 14.29581 11.73748 17.06783 12.61578 11.10578 8.576877 13.52541 11.41963
STD 1.082679 1.331649 1.561118 2.294509 3.465768 3.880514 3.25414 3.722657

Ranking 2 7 1 4 6 8 3 5
4 Max 17.09702 17.55333 17.6847 19.73127 19.45281 19.19681 18.56958 20.754

Mean 16.23917 14.16665 16.1249 18.28651 15.02841 15.17751 16.52565 18.02446
Min 14.73755 10.43243 13.88539 16.01418 9.874085 12.62804 15.96841 13.89724
STD 1.30484 3.573146 1.988767 1.991944 4.830901 3.522425 2.59716 3.635777

Ranking 4 8 5 1 7 6 3 2
5 Max 20.47295 20.08702 20.21561 19.42765 17.8608 20.6646 18.49371 20.41022

Mean 17.9702 17.76647 18.04407 16.94888 17.74178 16.39606 16.46743 18.58232
Min 15.06634 14.62097 15.09986 14.78632 17.57167 13.9744 15.45547 16.23457
STD 2.725534 2.824863 2.643952 2.336768 0.151186 3.707817 2.65478 2.135811

Ranking 3 4 2 6 5 8 7 1
6 Max 21.16341 21.39185 21.70955 20.93593 23.09058 19.19694 20.12154 21.98094

Mean 19.12374 19.85058 16.84504 17.56936 16.8876 16.95177 18.15414 20.41186
Min 16.5207 18.82027 12.89516 13.91389 12.51858 15.33711 16.36987 19.1292
STD 2.372071 1.359806 4.477811 3.519921 5.519455 2.005675 1.64856 1.447282

Ranking 3 2 8 5 7 6 4 1

Summation 17 22 22 23 33 32 20 11
Mean Rank 3.40 4.40 4.40 4.60 6.60 6.40 4.00 2.20

Final Ranking 2 4 4 6 8 7 3 1

Table 7. The SSIM results of the test case 3.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.810797 0.784223 0.737701 0.807984 0.729805 0.784964 0.74548 0.810173
Mean 0.701346 0.726586 0.679275 0.652562 0.652503 0.748363 0.71254 0.777743
Min 0.51097 0.614391 0.642633 0.512459 0.544859 0.707409 0.69584 0.738525
STD 0.165486 0.097176 0.051142 0.148357 0.096133 0.03896 0.02514 0.036303

Ranking 5 3 6 7 8 2 4 1
3 Max 0.858715 0.84955 0.879072 0.869936 0.846474 0.810939 0.801454 0.862403

Mean 0.829113 0.82117 0.846587 0.810768 0.803586 0.714867 0.74125 0.826664
Min 0.794989 0.799088 0.811991 0.7567 0.72253 0.656383 0.70215 0.798218
STD 0.032103 0.025814 0.033591 0.05679 0.070237 0.083855 0.02193 0.032708

Ranking 2 4 1 5 6 8 7 3
4 Max 0.835799 0.786265 0.889158 0.89639 0.831634 0.877477 0.81256 0.842558

Mean 0.816523 0.765247 0.835175 0.863757 0.802387 0.856942 0.76585 0.820005
Min 0.780192 0.748503 0.782824 0.807497 0.751995 0.824078 0.71369 0.776304
STD 0.031483 0.019241 0.053186 0.04893 0.043828 0.028755 0.21454 0.037853

Ranking 5 8 3 1 6 2 7 4
5 Max 0.869899 0.862851 0.864441 0.895398 0.889066 0.86625 0.85645 0.901137

Mean 0.846835 0.858303 0.821075 0.863123 0.872182 0.862527 0.81021 0.874055
Min 0.830022 0.850494 0.788281 0.836486 0.854754 0.856039 0.75645 0.837004
STD 0.02066 0.006793 0.039165 0.029858 0.017162 0.005639 0.021114 0.033208

Ranking 6 5 7 3 2 4 8 1
6 Max 0.897095 0.882473 0.910729 0.920257 0.898452 0.884757 0.84145 0.890175

Mean 0.893914 0.868849 0.869001 0.850437 0.825776 0.87171 0.79568 0.874336
Min 0.892161 0.848929 0.845306 0.787637 0.758887 0.848342 0.76582 0.855048
STD 0.002759 0.017636 0.036248 0.066588 0.069962 0.020283 0.029447 0.017816

Ranking 1 5 4 6 7 3 8 2

Summation 19 25 21 22 29 19 34 11
Mean Rank 3.8 5 4.2 4.4 5.8 3.8 6.8 2.2

Final Ranking 2 6 4 5 7 2 8 1

75

Processes 2021, 9, 1155

The PSNR and SSIM results of Test 4 are given in Tables 8 and 9. The proposed DAOA
obtained new promising results in almost all the test cases in terms of PSNR, as shown
in Table 8. The proposed DAOA obtained the best results for two threshold values (i.e., 3
and 4 levels). For threshold 3, the proposed DAOA obtained the best results, and it ranked
as the first method, compared to all other comparative methods, followed by PSO, SSA,
WOA, AOA, MPA, DE, and finally, AO. For threshold 4, the proposed method obtained
promising results, compared to other methods. DAOA obtained the first rank, followed
by WOA, SSA, AOA, MPA, AO, DE, and AOA. Overall, we can see that the proposed
method obtained the first ranking, followed by WOA, PSO, SSA, MPA, AO, AOA, and DE.
The achieved results in this table demonstrate the ability of the proposed DAOA to solve
the given problems efficiently. As well, it is clear the proposed DAOA has this ability at
different threshold levels.

Table 9 shows that the proposed DAOA method obtained better results in almost all
the test cases in terms of SSIM for Test 4. The proposed DAOA obtained the best results for
two threshold values (i.e., 2 and 3 levels). For threshold 2, the proposed DAOA obtained
the best results, and it ranked as the first method, compared to all other comparative
methods, followed by DE, AOA, WOA, MPA, PSO, SSA, and finally, AOA. For threshold
3, the proposed method obtained promising results, compared to other methods. DAOA
obtained the first ranking, followed by AOA, AO, PSO, WOA, MPA, SSA, and DE. Overall,
we can see that the proposed DAOA method obtained the first ranking, followed by
PSO, AO, WOA, AOA, MPA, SSA, and DE. The obtained results in this table confirm the
performance of the proposed DAOA to solve the given problems efficiently. The following
results prove and support that the proposed algorithm’s ability to solve such problems is
strong and that it is capable of finding robust solutions in this field.

Table 8. The PSNR results of the test case 4.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.810797 0.784223 0.737701 0.807984 0.729805 0.784964 0.74548 0.810173
Mean 0.701346 0.726586 0.679275 0.652562 0.652503 0.748363 0.71254 0.777743
Min 0.51097 0.614391 0.642633 0.512459 0.544859 0.707409 0.69584 0.738525
STD 0.165486 0.097176 0.051142 0.148357 0.096133 0.03896 0.02514 0.036303

Ranking 5 3 6 7 8 2 4 1
3 Max 0.858715 0.84955 0.879072 0.869936 0.846474 0.810939 0.801454 0.862403

Mean 0.829113 0.82117 0.846587 0.810768 0.803586 0.714867 0.74125 0.826664
Min 0.794989 0.799088 0.811991 0.7567 0.72253 0.656383 0.70215 0.798218
STD 0.032103 0.025814 0.033591 0.05679 0.070237 0.083855 0.02193 0.032708

Ranking 2 4 1 5 6 8 7 3
4 Max 0.835799 0.786265 0.889158 0.89639 0.831634 0.877477 0.81256 0.842558

Mean 0.816523 0.765247 0.835175 0.863757 0.802387 0.856942 0.76585 0.820005
Min 0.780192 0.748503 0.782824 0.807497 0.751995 0.824078 0.71369 0.776304
STD 0.031483 0.019241 0.053186 0.04893 0.043828 0.028755 0.21454 0.037853

Ranking 5 8 3 1 6 2 7 4
5 Max 0.869899 0.862851 0.864441 0.895398 0.889066 0.86625 0.85645 0.901137

Mean 0.846835 0.858303 0.821075 0.863123 0.872182 0.862527 0.81021 0.874055
Min 0.830022 0.850494 0.788281 0.836486 0.854754 0.856039 0.75645 0.837004
STD 0.02066 0.006793 0.039165 0.029858 0.017162 0.005639 0.021114 0.033208

Ranking 6 5 7 3 2 4 8 1
6 Max 0.897095 0.882473 0.910729 0.920257 0.898452 0.884757 0.84145 0.890175

Mean 0.893914 0.868849 0.869001 0.850437 0.825776 0.87171 0.79568 0.874336
Min 0.892161 0.848929 0.845306 0.787637 0.758887 0.848342 0.76582 0.855048
STD 0.002759 0.017636 0.036248 0.066588 0.069962 0.020283 0.029447 0.017816

Ranking 1 5 4 6 7 3 8 2

Summation 19 25 21 22 29 19 34 11
Mean Rank 3.8 5 4.2 4.4 5.8 3.8 6.8 2.2

Final Ranking 2 6 4 5 7 2 8 1

76

Processes 2021, 9, 1155

Table 9. The SSIM results of the test case 4.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.513176 0.446739 0.469347 0.303735 0.468033 0.472675 0.465855 0.493285
Mean 0.420537 0.411645 0.379839 0.268241 0.395591 0.407972 0.432165 0.450537
Min 0.297393 0.34853 0.312674 0.238732 0.353913 0.285825 0.415441 0.390067
STD 0.111078 0.054773 0.080691 0.032912 0.062974 0.105845 0.065135 0.053842

Ranking 3 4 7 8 6 5 2 1
3 Max 0.639969 0.518822 0.570567 0.642874 0.550295 0.516935 0.541685 0.638931

Mean 0.539264 0.496794 0.476032 0.559045 0.522348 0.480253 0.451684 0.565094
Min 0.483693 0.453509 0.406394 0.442666 0.507116 0.421783 0.401513 0.427189
STD 0.087369 0.037488 0.084871 0.103997 0.024235 0.051181 0.165152 0.119529

Ranking 3 5 7 2 4 6 8 1
4 Max 0.635584 0.520955 0.647437 0.629088 0.583309 0.567589 0.545438 0.59171

Mean 0.558847 0.495081 0.624364 0.52697 0.542197 0.540923 0.484153 0.566602
Min 0.496035 0.475477 0.612318 0.455541 0.49695 0.494102 0.351535 0.530519
STD 0.070809 0.023378 0.019989 0.090753 0.043328 0.040678 0.91351 0.032038

Ranking 3 7 1 6 4 5 8 2
5 Max 0.625459 0.722689 0.626088 0.678775 0.695846 0.682412 0.646849 0.752727

Mean 0.574159 0.65505 0.608905 0.623735 0.681637 0.593452 0.568435 0.654905
Min 0.544652 0.576303 0.589048 0.563386 0.661464 0.468945 0.515464 0.571449
STD 0.044594 0.073823 0.018664 0.057878 0.01795 0.111084 0.51354 0.091489

Ranking 7 2 5 4 1 6 8 3
6 Max 0.678699 0.761036 0.655062 0.693875 0.74922 0.721603 0.711543 0.765842

Mean 0.655502 0.652531 0.558392 0.577277 0.735573 0.627711 0.658435 0.721667
Min 0.613377 0.518519 0.460651 0.501179 0.727322 0.503922 0.615534 0.656329
STD 0.036543 0.123255 0.09721 0.102534 0.011905 0.111878 0.153112 0.057742

Ranking 4 5 8 7 1 6 3 2

Summation 20 23 28 27 16 28 29 9
Mean Rank 4 4.6 5.6 5.4 3.2 5.6 5.8 1.8

Final Ranking 3 4 6 5 2 6 8 1

In Tables 10 and 11, the PSNR and SSIM results of Test 5 are shown. As shown in
Table 10, the proposed DAOA yielded new promising PSNR results in almost all test cases.
For two threshold values, the proposed DAOA gave the best results (i.e., 2 and 5 levels). For
threshold 2, the proposed DAOA produced the best results, placing it first among all other
comparative methods, ahead of SSA, AOA, MPA, DE, AO, WOA, and PSO. In addition,
when compared to other methods, the proposed method produced positive results for
threshold 5. DAOA came first, followed by AOA, MPA, AO, WOA, PSO, and DE. Overall,
we can see that DAOA came first, followed by SSA, DE, AO, AOA, PSO, MPA, and WOA.
The obtained results in this table demonstrate the proposed DAOA’s ability to solve the
given problems efficiently. Furthermore, it is evident that the proposed DAOA has the
potential to operate at various threshold levels.

In terms of SSIM for Test 5, Table 11 shows that the proposed DAOA system obtained
better results in almost all test cases. For two threshold values, the proposed DAOA
produced the best results (i.e., 2 and 5 levels). For threshold 2, the proposed DAOA
received the best results, placing it first among SSA, AO, MPA, AOA, DE, PSO, and WOA.
In addition, when compared to other methods, the proposed method produced positive
results for threshold 5. The first-place winner was DAOA, followed by AO, WOA, SSA,
AOA, DE, MPA, and PSO. Overall, we can see that the proposed DAOA method obtained
the first ranking, followed by AO, SSA, WOA, PSO, MPA, DE, and AOA. The obtained
results in this table confirm the performance of the proposed DAOA and its ability to solve
the given problems efficiently. The following results prove and support that the proposed
algorithm’s ability to solve such problems is strong and that it is capable of finding robust
solutions in this field.

77

Processes 2021, 9, 1155

Table 10. The PSNR results of the test case 5.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 15.93985 14.4854 15.99861 17.14705 15.0977 16.05831 16.55749 17.53916
Mean 14.10613 13.00072 15.294 14.79149 12.72877 14.46087 14.35989 15.82038
Min 12.39387 11.27298 14.72307 11.8401 11.51447 13.62663 11.9752 13.42614
STD 1.776107 1.619943 0.648191 2.703178 2.051771 1.383874 2.296871 2.138085

Ranking 6 7 2 3 8 4 5 1
3 Max 19.40981 18.86115 17.48266 16.55749 17.95279 17.69139 19.44663 19.93627

Mean 18.72279 17.28213 16.52113 14.35989 16.27857 17.1941 19.26877 18.13099
Min 18.29158 15.95137 15.92209 11.9752 14.07194 16.51551 19.01602 15.35808
STD 0.60141 1.470694 0.841066 2.296871 1.994456 0.608547 0.224857 2.437657

Ranking 2 4 6 8 7 5 1 3
4 Max 18.13386 19.1223 18.90861 17.45745 19.1043 18.23407 18.83735 18.38066

Mean 16.94739 16.40329 17.94929 15.50893 18.1176 16.67171 17.28304 17.01377
Min 15.98498 14.81291 16.68311 13.37735 16.4206 14.93103 15.51976 15.35199
STD 1.091819 2.366025 1.14404 2.046204 1.476127 1.658724 1.494198 1.535719

Ranking 5 7 2 8 1 6 3 4
5 Max 20.21398 20.02404 21.27214 20.18245 18.91496 20.6886 20.25546 21.56663

Mean 18.99103 18.67004 20.53727 20.04683 18.26845 19.69356 18.05347 20.9167
Min 17.36811 17.86499 19.6089 19.85296 17.79804 18.97903 17.51354 20.14592
STD 1.464489 1.179571 0.848332 0.172297 0.578907 0.888634 0.15434 0.718025

Ranking 5 6 2 3 7 4 8 1
6 Max 21.09476 21.57137 21.3434 22.18733 23.89824 19.44663 21.54999 22.99988

Mean 20.41811 20.42529 20.47827 21.60813 22.10233 19.26877 20.25987 21.55413
Min 19.49805 19.07294 19.90813 21.16347 21.02315 19.01602 19.64856 19.98576
STD 0.825716 1.261926 0.761747 0.525019 1.565831 0.224857 0.16655 1.510799

Ranking 6 5 4 2 1 8 7 3

Summation 24 29 16 24 24 27 24 12
Mean Rank 4.80 5.80 3.20 4.80 4.80 5.40 4.80 2.40

Final Ranking 3 8 2 3 3 7 3 1

Table 11. The SSIM results of the test case 5.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.670559 0.663185 0.670191 0.656707 0.638999 0.641328 0.625454 0.652777
Mean 0.615808 0.577209 0.627177 0.602737 0.588212 0.607857 0.58944 0.638984
Min 0.554493 0.497657 0.570064 0.537508 0.547586 0.575353 0.523565 0.622532
STD 0.058311 0.082951 0.051531 0.060392 0.046546 0.032998 0.051351 0.015297

Ranking 3 8 2 5 7 4 6 1
3 Max 0.728918 0.677149 0.714839 0.663648 0.667938 0.717054 0.646841 0.704409

Mean 0.719125 0.660935 0.666536 0.59634 0.629253 0.664745 0.551844 0.671047
Min 0.712656 0.629315 0.6219 0.510537 0.576046 0.622826 0.493545 0.639151
STD 0.008626 0.027387 0.046578 0.078213 0.047636 0.047965 0.050315 0.032654

Ranking 1 5 3 7 6 4 8 2
4 Max 0.748435 0.70822 0.687422 0.729796 0.706817 0.729298 0.715434 0.720751

Mean 0.676713 0.668007 0.675521 0.661629 0.681985 0.674847 0.698434 0.678177
Min 0.633531 0.627958 0.660419 0.590072 0.636336 0.601496 0.651354 0.614625
STD 0.062543 0.040131 0.013783 0.069924 0.039584 0.065964 0.05134 0.056087

Ranking 4 7 5 8 2 6 1 3
5 Max 0.760316 0.744595 0.760228 0.722269 0.701088 0.713294 0.715469 0.754593

Mean 0.735256 0.721088 0.707533 0.706524 0.686357 0.694403 0.694685 0.740905
Min 0.719429 0.693768 0.680723 0.680577 0.665994 0.665244 0.645135 0.720782
STD 0.021952 0.025627 0.045637 0.022641 0.018212 0.025618 0.100351 0.0178

Ranking 2 3 4 5 8 7 6 1
6 Max 0.778606 0.802338 0.787056 0.759268 0.775117 0.754872 0.714354 0.759996

Mean 0.745632 0.767851 0.728188 0.743422 0.760561 0.715035 0.69456 0.757846
Min 0.717157 0.728973 0.685219 0.730438 0.737718 0.682379 0.646758 0.755781
STD 0.030971 0.036879 0.052747 0.014627 0.02003 0.036776 0.14353 0.002109

Ranking 4 1 6 5 2 7 8 3

Summation 14 24 20 30 25 28 29 10
Mean Rank 2.8 4.8 4 6 5 5.6 5.8 2

Final Ranking 2 4 3 8 5 6 7 1

78

Processes 2021, 9, 1155

In Tables 12 and 13, the PSNR and SSIM results of Test 6 are shown. As shown in
Table 12, the proposed DAOA yielded new promising PSNR results in nearly all test cases.
For two threshold values, the proposed DAOA gave the best results (i.e., 5 and 6 levels). For
threshold 5, the DE produced the best results, placing it first among all other comparative
approaches, ahead of DAOA, SSA, PSO, AOA, WOA, MPA, and AO. In addition, when
compared to other methods, the proposed method produced positive results for threshold
6. DAOAO came first, followed by SSA, WOA, AOA, MPA, DE, AO, and PSO. Overall, we
can see that DAOA came first, followed by AOA, DE, PSO, SSA, WOA, AO, and MPA. The
obtained results in this table demonstrate the proposed DAOA’s ability to solve the given
problems efficiently. Furthermore, it is evident that the proposed DAOA has the potential
to operate at various threshold levels.

In terms of SSIM for Test 6, Table 13 shows that the proposed DAOA method obtained
better results in almost all test cases. For one threshold value, the proposed DAOA
produced the best results (i.e., three levels). For threshold 3, the proposed DAOA received
the best results, placing it first, followed by AOA, AO, PSO, MPA, SSA, WOA, and DE.
Overall, we can see that the proposed DAOA method obtained the first ranking, followed
by AOA, SSA, MPA, AO, WOA, PSO, and DE. The obtained results in this table confirm the
performance of the proposed DAOA to solve the given problems efficiently. The following
results prove and support that the proposed algorithm’s ability to solve such problems is
strong and that it is capable of finding robust solutions in this field.

Table 12. The PSNR results of the test case 6.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 14.29003 14.99666 13.23076 14.2586 13.67276 13.88699 13.25669 13.62076
Mean 12.13124 13.5679 12.00795 13.53452 12.69334 12.56354 12.76658 12.88169
Min 11.02309 10.86625 10.71159 13.00777 11.90018 10.75974 11.81577 11.91395
STD 1.86979 2.340995 1.261197 0.648342 0.900847 1.618015 0.727573 0.876084

Ranking 7 1 8 2 5 6 4 3
3 Max 17.13609 13.26265 15.86297 16.70329 16.39937 16.77276 15.56435 16.70329

Mean 14.80299 12.70421 14.27818 14.73781 15.54628 15.68245 14.56435 14.73781
Min 11.88525 11.81721 13.19349 13.30319 14.95156 13.81152 13.54531 13.30319
STD 2.673792 0.776716 1.40325 1.761111 0.757696 1.627652 0.35531 1.761111

Ranking 3 8 7 4 2 1 6 4
4 Max 19.72094 16.65405 18.53668 18.36352 18.18219 16.8171 16.16153 17.29736

Mean 17.42215 15.6372 16.4182 17.40203 16.17031 14.66404 15.61533 16.81609
Min 14.47883 14.30732 14.08529 16.52227 14.97604 13.31745 14.65844 15.89593
STD 2.679828 1.204274 2.233427 0.923342 1.752483 1.884058 0.513153 0.797164

Ranking 1 6 4 2 5 8 7 3
5 Max 19.95971 18.41277 19.46272 20.77475 19.71927 18.09801 20.15615 21.7643

Mean 16.21653 17.16753 18.12133 17.29533 17.30211 16.23449 19.56652 18.92589
Min 12.15348 16.07533 17.44474 14.33996 15.60841 15.08771 18.91434 16.95589
STD 3.912932 1.176211 1.161691 3.249246 2.148801 1.628114 0.44345 2.519088

Ranking 8 6 3 5 4 7 1 2
6 Max 19.70338 18.99666 19.15752 19.97796 17.4372 20.54731 20.48618 21.16495

Mean 17.55594 18.51687 18.95646 18.38941 16.73036 17.68373 17.67164 19.65434
Min 14.92323 17.6852 18.62038 17.45989 16.33641 15.14494 14.56169 17.72153
STD 2.426738 0.723084 0.292923 1.382353 0.613485 2.715789 3.51355 1.760107

Ranking 7 3 2 4 8 5 6 1

Summation 26 24 24 17 24 27 24 13
Mean Rank 5.20 4.80 4.80 3.40 4.80 5.40 4.80 2.60

Final Ranking 7 3 3 2 3 8 3 1

79

Processes 2021, 9, 1155

Table 13. The SSIM results of the test case 6.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.585171 0.575848 0.507334 0.584204 0.554758 0.583274 0.545458 0.566448
Mean 0.529789 0.511152 0.47466 0.558141 0.510173 0.517028 0.53251 0.551596
Min 0.451429 0.421518 0.440468 0.528648 0.468501 0.418339 0.510512 0.540869
STD 0.069769 0.08013 0.033459 0.027936 0.043202 0.087123 0.051651 0.013279

Ranking 4 6 8 1 7 5 3 2
3 Max 0.633602 0.566445 0.593976 0.643107 0.624665 0.587316 0.584547 0.620738

Mean 0.573218 0.53021 0.539426 0.586845 0.561226 0.554322 0.52548 0.6091
Min 0.531603 0.476157 0.445784 0.557298 0.51424 0.500738 0.49522 0.590855
STD 0.053527 0.047709 0.081464 0.048745 0.057022 0.046817 0.15479 0.015999

Ranking 3 7 6 2 4 5 8 1
4 Max 0.625898 0.599759 0.688634 0.647084 0.588007 0.619283 0.60147 0.651858

Mean 0.620455 0.584845 0.631581 0.584162 0.561247 0.577285 0.564549 0.631427
Min 0.616739 0.561825 0.576099 0.541342 0.520971 0.552471 0.514625 0.594978
STD 0.004818 0.020224 0.056284 0.055664 0.035503 0.036571 0.51556 0.031643

Ranking 3 4 1 5 8 6 7 2
5 Max 0.639309 0.611599 0.670374 0.706368 0.662426 0.621919 0.61444 0.688438

Mean 0.580397 0.593407 0.626018 0.659053 0.615559 0.601187 0.53255 0.657403
Min 0.481486 0.57193 0.58953 0.596054 0.552583 0.585043 0.50144 0.634943
STD 0.086179 0.020038 0.040992 0.056805 0.056666 0.018861 0.254516 0.027759

Ranking 7 6 3 1 4 5 8 2
6 Max 0.732761 0.721116 0.702031 0.639447 0.669456 0.741237 0.62156 0.670238

Mean 0.617062 0.675843 0.66037 0.614623 0.623098 0.698053 0.60156 0.621129
Min 0.500442 0.628145 0.615404 0.582216 0.593419 0.632455 0.581685 0.555772
STD 0.116162 0.046533 0.043408 0.029359 0.04067 0.057751 0.051617 0.058938

Ranking 6 2 3 7 4 1 8 5

Summation 23 25 21 16 27 22 34 12
Mean Rank 4.6 5 4.2 3.2 5.4 4.4 6.8 2.4

Final Ranking 5 6 3 2 7 4 8 1

The PSNR and SSIM results of Test 7 are given in Tables 14 and 15. The proposed
DAOA obtained new promising results in almost all the test cases in terms of PSNR, as
shown in Table 14. The proposed DAOA obtained the best results for three threshold values
(i.e., 3, 4, and 6 levels). For threshold 3, the proposed DAOA obtained the best results,
and it ranked as the first method, compared to all other comparative methods, followed
by PSO, WOA, MPA, PSO, SSA, AOA, and finally, DE. For threshold 6, the proposed
method obtained promising results, compared to other methods. DAOA obtained the first
rank, followed by MPA, AO, AOA, SSA, PSO, DE, and WOA. Overall, we can see that
the proposed method obtained the first ranking, followed by MPA, AO, AOA, SSA, PSO,
WOA, and DE. The achieved results in this table demonstrate the ability of the proposed
DAOA to solve the given problems efficiently. Furthermore, it is obvious that the proposed
DAOA has the potential to operate at various threshold levels.

Table 15 shows that the proposed DAOA method obtained better results in almost all
the test cases in terms of SSIM for Test 7. The proposed DAOA obtained the best results for
two threshold values (i.e., 2 and 4 levels). For threshold 2, the proposed DAOA obtained
the best results, and it ranked as the first method, compared to all other comparative
methods, followed by MPA, PSO, AOA, AO, WOA, SSA, and finally, DE. For threshold
4, the proposed method obtained promising results compared to other methods. DAOA
obtained the first ranking, followed by PSO, SSA, AO, AOA, WOA, DE, and MPA. Overall,
we can see that the proposed DAOA method obtained the first ranking, followed by
PSO, AOA, AO, MPA, WOA, SSA, and DE. The obtained results in this table confirm the
performance of the proposed DAOA to solve the given problems efficiently. The presented
results demonstrate and declare the proposed algorithm’s ability to solve such problems
and find reliable solutions in this area.

80

Processes 2021, 9, 1155

Table 14. The PSNR results of the test case 7.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 13.20515 14.81541 13.46643 15.49531 15.62603 15.20099 10.56165 11.17017
Mean 12.41868 11.78621 13.27459 12.55658 13.52688 13.84887 8.68468 9.014158
Min 11.32961 9.315363 13.00626 9.442963 9.675792 12.68271 7.51654 6.574355
STD 0.973697 2.792211 0.239434 3.029961 3.339657 1.269397 2.26558 2.311011

Ranking 5 6 3 4 2 1 8 7
3 Max 16.56695 17.57886 16.2908 16.58067 16.53626 15.88719 16.98971 18.01761

Mean 15.69994 15.46688 14.50615 14.19241 14.84154 15.17141 14.15556 16.2308
Min 15.1533 14.25297 13.45161 10.44799 12.24822 14.03169 10.44162 13.04052
STD 0.759328 1.835835 1.554045 3.283571 2.280885 0.997755 3.255033 2.769505

Ranking 2 3 6 7 5 4 8 1
4 Max 16.90963 17.97752 17.78105 17.43689 16.94918 19.34317 17.45543 19.60255

Mean 15.08816 14.69292 16.45214 14.2211 12.8884 16.99385 14.22669 17.64468
Min 11.44578 11.37666 14.68077 11.04897 8.255611 13.29746 11.4265 16.42001
STD 3.154397 3.300544 1.596797 3.194184 4.374921 3.240157 3.143737 1.71328

Ranking 4 5 3 7 8 2 6 1
5 Max 19.95651 19.11383 17.60007 20.11243 19.91776 20.2333 19.11482 20.05669

Mean 17.89666 15.96258 16.58689 18.8553 17.88667 18.66736 15.96018 18.17262
Min 16.75255 10.41909 15.4047 16.91343 15.05058 17.34947 10.42944 16.15425
STD 1.78753 4.815784 1.1074 1.705889 2.531472 1.457831 4.39728 1.954685

Ranking 4 7 6 1 5 2 8 3
6 Max 21.4354 20.29606 21.05977 22.61835 20.03635 21.47684 20.24338 21.70695

Mean 19.4399 17.25886 19.58102 19.89625 19.37838 18.84269 17.35445 20.29721
Min 17.7851 14.28299 17.61442 17.48669 18.99359 15.24118 14.23249 19.17387
STD 1.848842 3.007007 1.773725 2.580068 0.572543 3.22842 3.234234 1.290597

Ranking 4 8 3 2 5 6 7 1

Summation 19 29 21 21 25 15 37 13
Mean Rank 3.80 5.80 4.20 4.20 5.00 3.00 7.40 2.60

Final Ranking 3 7 4 4 6 2 8 1

Table 15. The SSIM results of the test case 7.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.73278 0.712288 0.560122 0.72505 0.733305 0.723576 0.564865 0.730313
Mean 0.643606 0.617796 0.485729 0.645712 0.676013 0.683473 0.448642 0.710998
Min 0.567798 0.478926 0.34029 0.519034 0.567055 0.639678 0.348649 0.691961
STD 0.0833 0.122848 0.125965 0.110867 0.094402 0.042071 0.184476 0.019178

Ranking 5 6 7 4 3 2 8 1
3 Max 0.773342 0.738051 0.693211 0.729915 0.747102 0.706363 0.694864 0.760805

Mean 0.770604 0.721144 0.67817 0.65064 0.677895 0.700246 0.676463 0.725786
Min 0.768211 0.698601 0.665159 0.495505 0.593947 0.693075 0.666456 0.672091
STD 0.002582 0.02032 0.014136 0.134362 0.077634 0.006707 0.017743 0.047213

Ranking 1 3 5 8 6 4 7 2
4 Max 0.742182 0.74847 0.727827 0.732508 0.782284 0.746116 0.728807 0.790683

Mean 0.687277 0.664643 0.701216 0.669205 0.739291 0.579421 0.652713 0.763686
Min 0.610196 0.549827 0.659058 0.632616 0.701494 0.394956 0.62996 0.719773
STD 0.068731 0.102883 0.036927 0.055044 0.040645 0.176253 0.050762 0.038362

Ranking 4 6 3 5 2 8 7 1
5 Max 0.79007 0.805645 0.822652 0.819285 0.748588 0.740407 0.791501 0.798539

Mean 0.76336 0.699754 0.772285 0.780482 0.714524 0.728473 0.774441 0.775382
Min 0.733348 0.508825 0.736218 0.751391 0.65435 0.707817 0.732424 0.760992
STD 0.028505 0.165678 0.044956 0.034973 0.052264 0.01796 0.036023 0.020251

Ranking 5 8 4 1 7 6 3 2
6 Max 0.767482 0.807074 0.769107 0.784627 0.803515 0.797439 0.762609 0.800054

Mean 0.748283 0.77661 0.748259 0.768866 0.791177 0.766987 0.745271 0.762369
Min 0.713817 0.723776 0.710988 0.751543 0.768949 0.742903 0.718795 0.741915
STD 0.029913 0.045934 0.032353 0.016597 0.019288 0.02782 0.030372 0.032675

Ranking 6 2 7 3 1 4 8 5

Summation 21 25 26 21 19 24 33 11
Mean Rank 4.2 5 5.2 4.2 3.8 4.8 6.6 2.2

Final Ranking 3 6 7 3 2 5 8 1

81

Processes 2021, 9, 1155

The PSNR and SSIM results of Test 8 are given in Tables 16 and 17. The proposed
DAOA obtained got new promising results in almost all the test cases in terms of PSNR, as
shown in Table 16. The proposed DAOA obtained the best results for four threshold values
(i.e., 2, 3, 4, and 5 levels). For threshold 2, the proposed DAOA obtained the best results,
and it ranked as the first method, compared to all other comparative methods, followed by
DE, AOA, PSO, SSA, AO, MPA, and finally, WOA. For threshold 5, the proposed method
obtained promising results, compared to other methods. DAOA obtained the first rank,
followed by AO, DE, PSO, WOA, AOA, MPA, and SSA. Overall, we can see that the
proposed method obtained the first ranking, followed by AO, AOA, PSO, DE, WOA, MPA,
and SSA. The achieved results in this table demonstrate the ability of the proposed DAOA
to solve the given problems efficiently. Furthermore, it is obvious that the proposed DAOA
has the potential to operate at various threshold levels.

Table 17 shows that the proposed DAOA method obtained better results in almost all
the test cases in terms of SSIM for Test 8. The proposed DAOA obtained the best results for
two threshold values (i.e., 3 and 5 levels). For threshold 3, the proposed DAOA obtained
the best results, and it ranked as the first method, compared to all other comparative
methods, followed by AOA, SSA, DE, WOA, AO, PSO, and finally, MPA. For threshold
5, the proposed method obtained promising results compared to other methods. DAOA
obtained the first ranking, followed by AO, DE, SSA, PSO, AOA, WOA, and MPA. Overall,
we can see that the proposed DAOA method obtained the first ranking, followed by
AOA, AO, WOA, SSA, PSO, DE, and MPA. The obtained results in this table confirm the
performance of the proposed DAOA and its ability to solve the given problems efficiently.
The presented results demonstrate and declare the proposed algorithm’s ability to solve
such problems and find reliable solutions in this area. We added a Wilcoxon sign test to
show the significant improvement for test case number 8 as shown in Tables 16 and 17. It is
clear that the proposed method is more effective and better than the other methods.

Table 16. The PSNR results of the test case 8.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 13.33503 12.70418 13.72589 13.87541 15.0179 13.22514 13.93463 14.2634
Mean 11.87001 11.35382 11.90455 12.30024 12.0788 11.78679 11.15836 13.26591
Min 9.627695 9.504035 10.85728 11.2966 9.738495 9.930564 10.85364 11.58005
STD 1.972111 1.657497 1.583232 1.381142 2.690154 1.686571 1.547691 1.468158

Ranking 5 7 4 2 3 6 8 1
3 Max 17.28625 16.57081 13.49278 14.92705 17.54352 15.13415 16.09049 16.35347

Mean 14.74539 15.01544 12.50533 14.48463 14.21932 14.43299 15.04035 15.21107
Min 9.822409 12.05905 11.30417 14.18863 12.3542 13.62575 12.05713 13.80324
STD 4.264167 2.561471 1.109849 0.390375 2.885987 0.759773 2.554852 1.295669

Ranking 4 3 8 5 7 6 2 1
4 Max 17.00622 17.0363 16.18631 17.26998 15.66957 17.89161 15.60819 18.921

Mean 14.98358 12.94104 14.49141 15.41649 13.31057 14.87131 13.39887 15.69837
Min 13.05113 8.268197 13.05194 13.97806 8.738069 11.04877 8.879347 13.14273
STD 1.979087 4.412494 1.582717 1.684754 3.96057 3.491248 3.703273 2.946311

Ranking 3 8 5 2 7 4 6 1
5 Max 19.33652 17.74905 19.68408 19.66732 20.9309 17.50957 17.83407 19.59432

Mean 17.51972 16.46752 14.99745 15.68612 17.03271 15.38835 17.15497 17.61533
Min 16.56115 14.43826 9.169088 8.179696 14.13458 12.63953 15.98558 15.74747
STD 1.574189 1.777538 5.349667 6.504749 3.506793 2.494939 1.29808 1.925829

Ranking 2 5 8 6 4 7 3 1
6 Max 22.35209 17.96208 20.45875 19.73508 19.56292 19.22911 19.91049 21.32792

Mean 19.18047 17.28236 15.36816 17.47522 17.49288 16.85966 15.75105 18.93027
Min 14.9198 15.96895 12.60476 14.82897 13.72243 12.6153 8.963192 16.39383
STD 3.833964 1.137678 4.413974 2.475771 3.270534 3.684026 6.585767 2.46997

Ranking 1 5 8 4 3 6 7 2

Summation 15 28 33 19 24 29 26 6
Mean Rank 3.00 5.60 6.60 3.80 4.80 5.80 5.20 1.20

Final Ranking 2 6 8 3 4 7 5 1

p-value
2.254 ×

10−3
3.455 ×

10−2
4.254 ×

10−2
2.368 ×

10−2
6.589 ×

10−2
4.554 ×

10−2
3.887 ×

10−2 NaN

Wilcoxon sign 1 1 1 1 1 1 1 NaN

82

Processes 2021, 9, 1155

Table 17. The SSIM results of the test case 8.

Threshold Metric
Comparative Methods

AO WOA SSA AOA PSO MPA DE DAOA

2 Max 0.576023 0.454896 0.60648 0.629978 0.625702 0.567363 0.699381 0.633192
Mean 0.448062 0.416027 0.47257 0.542842 0.482223 0.501881 0.444351 0.525409
Min 0.313677 0.343605 0.371043 0.424905 0.33731 0.400359 0.354733 0.383819
STD 0.131291 0.062776 0.121013 0.10595 0.144201 0.089145 0.142674 0.128078

Ranking 6 8 5 1 4 3 7 2
3 Max 0.62594 0.649127 0.606039 0.621 0.673756 0.482675 0.653015 0.670905

Mean 0.521445 0.5597 0.577973 0.59104 0.509775 0.443829 0.570487 0.644174
Min 0.328192 0.41791 0.533724 0.562574 0.411628 0.394558 0.52212 0.615842
STD 0.167546 0.124184 0.038779 0.029241 0.142927 0.044974 0.020342 0.027566

Ranking 6 5 3 2 7 8 4 1
4 Max 0.659553 0.689073 0.651031 0.688422 0.619171 0.654426 0.609938 0.702364

Mean 0.585789 0.577215 0.572652 0.650246 0.538835 0.569699 0.444351 0.581725
Min 0.457314 0.421803 0.524473 0.602193 0.438635 0.46478 0.373331 0.415275
STD 0.111669 0.138856 0.068471 0.043955 0.091893 0.096422 0.144427 0.148926

Ranking 2 4 5 1 7 6 8 3
5 Max 0.71179 0.653103 0.679673 0.728578 0.739026 0.654866 0.710614 0.723238

Mean 0.667834 0.608033 0.628176 0.612995 0.625972 0.569295 0.65234 0.680701
Min 0.645318 0.518308 0.529437 0.405271 0.535025 0.49256 0.543264 0.618906
STD 0.038071 0.077705 0.085537 0.180276 0.103782 0.081513 0.020135 0.054767

Ranking 2 7 4 6 5 8 3 1
6 Max 0.749897 0.758664 0.700491 0.739996 0.733031 0.674032 0.621232 0.726155

Mean 0.700148 0.702408 0.625182 0.675597 0.681783 0.590369 0.60327 0.683228
Min 0.614634 0.666246 0.567525 0.585931 0.60607 0.43936 0.513341 0.620501
STD 0.074387 0.049377 0.068218 0.08008 0.066923 0.131032 0.780799 0.05554

Ranking 2 1 6 5 4 8 7 3

Summation 18 25 23 15 27 33 29 10
Mean Rank 3.6 5 4.6 3 5.4 6.6 5.8 2

Final Ranking 3 5 4 2 6 8 7 1

p-value
3.856 ×

10−2
2.669 ×

10−2
2.665 ×

10−2
2.814 ×

10−2
6.665 ×

10−2
3.854 ×

10−2
3.225 ×

10−2 NaN

Wilcoxon sign 1 1 1 1 1 1 1 NaN

The segmentation results (segmented images) of the proposed DAOA and the other
comparative methods for Test 8 are shown in Figures 6–10. Figures 6–10 show the seg-
mented images for all the tested methods, when the threshold values are 2, 3, 4, 5, and
6, respectively. According to these figures, we can recognize that the proposed DAOA
showed good segmented images for various images (CT COVID-19 medical images) under
different thresholds. Additionally, these figures prove that the segmented images are better
in terms of quality when the threshold value is higher.

83

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 6. The segmented image (Test 8) by the comparative methods when the threshold value is 2.

84

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 7. The segmented image (Test 8) by the comparative methods when the threshold value is 3.

85

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 8. The segmented image (Test 8) by the comparative methods when the threshold value is 4.

86

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 9. The segmented image (Test 8) by the comparative methods when the threshold value is 5.

87

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 10. The segmented image (Test 8) by the comparative methods when the threshold value is 6.

The thresholds are shown in Figures 11–15, applied over the selected images. In
Figures 11–15, the histogram images are given with the best threshold values obtained
by the comparative methods for Test 8, where the threshold values are taken (i.e., 2, 3,
4, 5, and 6). The X and Y axes present the threshold values and Kapur measure values,
respectively. It is feasible to recognize that the histogram classes are uniformly created,
even in complex situations from such images. This means that the proposed method has an
excellent ability to find always the same threshold values. The complexity is different from

88

Processes 2021, 9, 1155

case to case because of the various peaks displayed in the pixels’ distribution, which could
create multiple classes or even carefully obtain the selection of the optimal thresholds.

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 11. The histogram image (Test 8) by the comparative methods when the threshold value is 2.

89

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 12. The histogram image (Test 8) by the comparative methods when the threshold value is 3.

90

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 13. The histogram image (Test 8) by the comparative methods when the threshold value is 4.

91

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 14. The histogram image (Test 8) by the comparative methods when the threshold value is 5.

92

Processes 2021, 9, 1155

(a) AO (b) WOA

(c) SSA (d) AOA

(e) PSO (f) MPA

(g) DE (h) DAOA

Figure 15. The histogram image (Test 8) by the comparative methods when the threshold value is 6.

Figure 16 shows the convergence curves of the proposed DAOA and its comparative
optimization algorithms on eight tested images (i.e., Test 1 to Test 8); it can be seen that
the proposed DAOA performs better than all involved other optimization methods in Test
8 when the threshold value is 6. For almost all the test images, the excellent optimized
performance with accelerated convergence and more reliable accuracy achieved by the
proposed DAOA can be seen as being remarkably smoothing behavior in the convergence
curve. Moreover, we recognize that the curves of the proposed method always converge
smoothly, reflecting the proposed DAOA’s ability to avoid the common problem (local

93

Processes 2021, 9, 1155

optima). In the end, the proposed DAOA reached the best solutions almost in all the tested
cases, compared to the other comparative methods, as clearly shown in Figure 16.

Figure 16. The convergence behavior of the comparative methods in solving Test 8 when the threshold
value is 6

94

Processes 2021, 9, 1155

5. Conclusions and Future Works

The most crucial aspect of image segmentation is multilevel thresholding. However,
multilevel thresholding displays require increasingly more computational complexity as
the number of thresholds grows. In order to address this weakness, this paper proposes a
new multilevel thresholding approach based on using an improved optimization-based
evolutionary method.

The Arithmetic Optimization Algorithm (AOA) is a recently proposed optimization
technique to solve different complex optimization problems. An enhanced version of
the Arithmetic Optimization Algorithm is proposed in this paper to solve multilevel
thresholding image segmentation problems. The proposed method combines the con-
ventional Arithmetic Optimization Algorithm with the Differential Evolution technique,
called DAOA. The main aim of the proposed DAOA is to improve the local search of the
Arithmetic Optimization Algorithm and to establish an equilibrium among the search
methods (exploration and exploitation).

The proposed DAOA method was applied to the multilevel thresholding problem,
using Kapur’s measure between class variance functions as a fitness function. The proposed
DAOA evaluated eight standard test images from two different groups: nature images
and CT medical images (i.e., COVID-19). The Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Test (SSIM) were used to determine the segmented images’
accuracy. The proposed DAOA method’s efficiency was evaluated and compared to
other multilevel thresholding methods, including the Aquila Optimizer (AO), Whale
Optimization Algorithm (WOA), Salp Swarm Algorithm (SSA), Arithmetic Optimization
Algorithm (AOA), Particle Swarm Optimization (PSO), and Marine Predators Algorithm
(MPA). The findings were presented, using a number of different threshold values (i.e.,
2, 3, 4, 5, and 6). According to the experimental results, the proposed DAOA produced
higher quality solutions than the other approaches. It achieved better results in almost all
the tested cases, compared to other methods.

For future work, other fitness functions, evaluation measures, and benchmark images
can be used. The conventional Arithmetic Optimization Algorithm can be improved, using
other different optimization operations to enhance its performance further. As well, the
proposed DAOA method can be used to solve other problems, such as text clustering,
feature selection, photovoltaic parameter estimations, task scheduling in fog and cloud
computing, appliances management in smart homes, advanced benchmark functions, text
classification, text summarization, data clustering, engineering design problems, industrial
problems, image construction, short-term wind speed forecasting, fuel cell modeling,
damage identification, the prediction of the software vulnerability, knapsack problems,
and others.

Author Contributions: L.A.: data curation, formal analysis, investigation, methodology, resources,
software, supervision, validation, visualization, writing—original draft, and writing—review and
editing. A.D.: formal analysis, investigation, supervision, writing—original draft, and writing—
review and editing. P.S.: investigation, supervision, and writing—review and editing. A.H.G.:
investigation, supervision, and writing—review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

95

Processes 2021, 9, 1155

References

1. Abd El Aziz, M.; Ewees, A.A.; Hassanien, A.E. Whale optimization algorithm and moth-flame optimization for multilevel
thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [CrossRef]

2. Shubham, S.; Bhandari, A.K. A generalized Masi entropy based efficient multilevel thresholding method for color image
segmentation. Multimed. Tools Appl. 2019, 78, 17197–17238. [CrossRef]

3. Abd Elaziz, M.; Lu, S. Many-objectives multilevel thresholding image segmentation using knee evolutionary algorithm. Expert
Syst. Appl. 2019, 125, 305–316. [CrossRef]

4. Pare, S.; Bhandari, A.K.; Kumar, A.; Singh, G.K. An optimal color image multilevel thresholding technique using grey-level
co-occurrence matrix. Expert Syst. Appl. 2017, 87, 335–362. [CrossRef]

5. Bao, X.; Jia, H.; Lang, C. A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation. IEEE
Access 2019, 7, 76529–76546. [CrossRef]

6. Abd Elaziz, M.; Ewees, A.A.; Oliva, D. Hyper-heuristic method for multilevel thresholding image segmentation. Expert Syst.
Appl. 2020, 146, 113201. [CrossRef]

7. Houssein, E.H.; Helmy, B.E.d.; Oliva, D.; Elngar, A.A.; Shaban, H. A novel Black Widow Optimization algorithm for multilevel
thresholding image segmentation. Expert Syst. Appl. 2021, 167, 114159. [CrossRef]

8. Gill, H.S.; Khehra, B.S.; Singh, A.; Kaur, L. Teaching-learning-based optimization algorithm to minimize cross entropy for
Selecting multilevel threshold values. Egypt. Inform. J. 2019, 20, 11–25. [CrossRef]

9. Tan, Z.; Zhang, D. A fuzzy adaptive gravitational search algorithm for two-dimensional multilevel thresholding image
segmentation. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4983–4994. [CrossRef]

10. Yousri, D.; Abd Elaziz, M.; Abualigah, L.; Oliva, D.; Al-Qaness, M.A.; Ewees, A.A. COVID-19 X-ray images classification based
on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions. Appl. Soft Comput. 2021, 101, 107052.
[CrossRef] [PubMed]

11. Srikanth, R.; Bikshalu, K. Multilevel thresholding image segmentation based on energy curve with harmony Search Algorithm.
Ain Shams Eng. J. 2021, 12, 1–20. [CrossRef]

12. Duan, L.; Yang, S.; Zhang, D. Multilevel thresholding using an improved cuckoo search algorithm for image segmentation. J.
Supercomput. 2021, 77, 6734–6753. [CrossRef]

13. Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Hybrid grasshopper optimization algorithm and differential evolution for multilevel
satellite image segmentation. Remote Sens. 2019, 11, 1134. [CrossRef]

14. Khairuzzaman, A.K.M.; Chaudhury, S. Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst.
Appl. 2017, 86, 64–76. [CrossRef]

15. He, L.; Huang, S. Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing 2017,
240, 152–174. [CrossRef]

16. Li, Y.; Bai, X.; Jiao, L.; Xue, Y. Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel
thresholding applied to medical image segmentation. Appl. Soft Comput. 2017, 56, 345–356. [CrossRef]

17. Manic, K.S.; Priya, R.K.; Rajinikanth, V. Image multithresholding based on Kapur/Tsallis entropy and firefly algorithm. Indian J.
Sci. Technol. 2016, 9, 89949. [CrossRef]

18. Bhandari, A.K.; Kumar, A.; Singh, G.K. Modified artificial bee colony based computationally efficient multilevel thresholding for
satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst. Appl. 2015, 42, 1573–1601. [CrossRef]

19. Liang, H.; Jia, H.; Xing, Z.; Ma, J.; Peng, X. Modified grasshopper algorithm-based multilevel thresholding for color image
segmentation. IEEE Access 2019, 7, 11258–11295. [CrossRef]

20. Abualigah, L. Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and
applications. Neural Comput. Appl. 2020, 33, 2949–2972. [CrossRef]

21. Alsalibi, B.; Abualigah, L.; Khader, A.T. A novel bat algorithm with dynamic membrane structure for optimization problems.
Appl. Intell. 2021, 51, 1992–2017. [CrossRef]

22. Ewees, A.A.; Abualigah, L.; Yousri, D.; Algamal, Z.Y.; Al-qaness, M.A.; Ibrahim, R.A.; Abd Elaziz, M. Improved Slime Mould
Algorithm based on Firefly Algorithm for feature selection: A case study on QSAR model. Eng. Comput. 2021, 1–15. [CrossRef]

23. Şahin, C.B.; Dinler, Ö.B.; Abualigah, L. Prediction of software vulnerability based deep symbiotic genetic algorithms: Phenotyping
of dominant-features. Appl. Intell. 2021, 1–17. [CrossRef]

24. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
25. Safaldin, M.; Otair, M.; Abualigah, L. Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless

sensor networks. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1559–1576. [CrossRef]
26. Alshinwan, M.; Abualigah, L.; Shehab, M.; Abd Elaziz, M.; Khasawneh, A.M.; Alabool, H.; Al Hamad, H. Dragonfly algorithm: A

comprehensive survey of its results, variants, and applications. Multimed. Tools Appl. 2021, 80, 14979–15016. [CrossRef]
27. Shehab, M.; Abualigah, L.; Al Hamad, H.; Alabool, H.; Alshinwan, M.; Khasawneh, A.M. Moth–flame optimization algorithm:

Variants and applications. Neural Comput. Appl. 2020, 32, 9859–9884. [CrossRef]
28. Al-Qaness, M.A.; Ewees, A.A.; Fan, H.; Abualigah, L.; Abd Elaziz, M. Marine predators algorithm for forecasting confirmed cases

of COVID-19 in Italy, USA, Iran and Korea. Int. J. Environ. Res. Public Health 2020, 17, 3520. [CrossRef]
29. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

96

Processes 2021, 9, 1155

30. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic
optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

31. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,
17, 4831–4845. [CrossRef]

32. Jouhari, H.; Lei, D.; Al-qaness, M.A.; Elaziz, M.A.; Damaševičius, R.; Korytkowski, M.; Ewees, A.A. Modified Harris Hawks
Optimizer for Solving Machine Scheduling Problems. Symmetry 2020, 12, 1460. [CrossRef]

33. Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [CrossRef]
34. Mernik, M.; Liu, S.H.; Karaboga, D.; Črepinšek, M. On clarifying misconceptions when comparing variants of the artificial bee

colony algorithm by offering a new implementation. Inf. Sci. 2015, 291, 115–127. [CrossRef]
35. Sahlol, A.T.; Abd Elaziz, M.; Tariq Jamal, A.; Damaševičius, R.; Farouk Hassan, O. A novel method for detection of tuberculosis

in chest radiographs using artificial ecosystem-based optimisation of deep neural network features. Symmetry 2020, 12, 1146.
[CrossRef]

36. Abualigah, L.; Diabat, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608.
[CrossRef]

37. Abualigah, L.; Diabat, A. A comprehensive survey of the Grasshopper optimization algorithm: Results, variants, and applications.
Neural Comput. Appl. 2020, 32, 15533–15556. [CrossRef]

38. Tuba, E.; Alihodzic, A.; Tuba, M. Multilevel image thresholding using elephant herding optimization algorithm. In Proceedings
of the 2017 14th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June 2017;
pp. 240–243.

39. Sahlol, A.T.; Yousri, D.; Ewees, A.A.; Al-Qaness, M.A.; Damasevicius, R.; Abd Elaziz, M. COVID-19 image classification using
deep features and fractional-order marine predators algorithm. Sci. Rep. 2020, 10, 1–15. [CrossRef] [PubMed]

40. Wang, X.; Pan, J.S.; Chu, S.C. A parallel multi-verse optimizer for application in multilevel image segmentation. IEEE Access
2020, 8, 32018–32030. [CrossRef]

41. Gao, Y.; Li, X.; Dong, M.; Li, H.P. An enhanced artificial bee colony optimizer and its application to multi-level threshold image
segmentation. J. Cent. South Univ. 2018, 25, 107–120. [CrossRef]

42. Resma, K.B.; Nair, M.S. Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm. J. King Saud.
Univ.-Comput. Inf. Sci. 2018, 33, 528–541.

43. Abd Elaziz, M.; Yousri, D.; Al-qaness, M.A.; AbdelAty, A.M.; Radwan, A.G.; Ewees, A.A. A Grunwald–Letnikov based Manta ray
foraging optimizer for global optimization and image segmentation. Eng. Appl. Artif. Intell. 2021, 98, 104105. [CrossRef]

44. Sörensen, K. Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]
45. García-Martínez, C.; Gutiérrez, P.D.; Molina, D.; Lozano, M.; Herrera, F. Since CEC 2005 competition on real-parameter

optimisation: A decade of research, progress and comparative analysis’s weakness. Soft Comput. 2017, 21, 5573–5583. [CrossRef]
46. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
47. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE

Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 71–78.
48. Črepinšek, M.; Liu, S.H.; Mernik, M. Replication and comparison of computational experiments in applied evolutionary

computing: Common pitfalls and guidelines to avoid them. Appl. Soft Comput. 2014, 19, 161–170. [CrossRef]
49. Maitra, M.; Chatterjee, A. A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using

multilevel thresholding. Expert Syst. Appl. 2008, 34, 1341–1350. [CrossRef]
50. Yin, P.Y. Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 2007,

184, 503–513. [CrossRef]
51. Zhou, W. Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–613.
52. Sumari, P.; Syed, S.J.; Abualigah, L. A Novel Deep Learning Pipeline Architecture based on CNN to Detect Covid-19 in Chest

X-ray Images. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 2001–2011.
53. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
54. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
55. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.
56. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
57. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2006.
58. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
59. Abualigah, L.M.Q. Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering; Springer: Berlin/Heidelberg,

Germany, 2019.

97

processes

Article

An Improved Hybrid Aquila Optimizer and Harris Hawks
Algorithm for Solving Industrial Engineering Optimization
Problems

Shuang Wang 1, Heming Jia 1,*, Laith Abualigah 2,3,4, Qingxin Liu 5 and Rong Zheng 1

Citation: Wang, S.; Jia, H.;

Abualigah, L.; Liu, Q.; Zheng, R. An

Improved Hybrid Aquila Optimizer

and Harris Hawks Algorithm for

Solving Industrial Engineering

Optimization Problems. Processes

2021, 9, 1551. https://doi.org/

10.3390/pr9091551

Academic Editor: Jean-Pierre Corriou

Received: 20 July 2021

Accepted: 27 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Engineering, Sanming University, Sanming 365004, China;
shuang.wang@fjsmu.edu.cn (S.W.); zhengr@fjsmu.edu.cn (R.Z.)

2 Research and Innovation Department, Skyline University College, Sharjah 1797, United Arab Emirates;
Aligah.2020@gmail.com

3 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
4 School of Computer Science, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
5 School of Computer Science and Technology, Hainan University, Haikou 570228, China; lqxass@fjsmu.edu.cn
* Correspondence: jiaheming@fjsmu.edu.cn

Abstract: Aquila Optimizer (AO) and Harris Hawks Optimizer (HHO) are recently proposed meta-
heuristic optimization algorithms. AO possesses strong global exploration capability but insufficient
local exploitation ability. However, the exploitation phase of HHO is pretty good, while the explo-
ration capability is far from satisfactory. Considering the characteristics of these two algorithms,
an improved hybrid AO and HHO combined with a nonlinear escaping energy parameter and ran-
dom opposition-based learning strategy is proposed, namely IHAOHHO, to improve the searching
performance in this paper. Firstly, combining the salient features of AO and HHO retains valuable
exploration and exploitation capabilities. In the second place, random opposition-based learning
(ROBL) is added in the exploitation phase to improve local optima avoidance. Finally, the nonlinear
escaping energy parameter is utilized better to balance the exploration and exploitation phases of
IHAOHHO. These two strategies effectively enhance the exploration and exploitation of the proposed
algorithm. To verify the optimization performance, IHAOHHO is comprehensively analyzed on
23 standard benchmark functions. Moreover, the practicability of IHAOHHO is also highlighted by
four industrial engineering design problems. Compared with the original AO and HHO and five
state-of-the-art algorithms, the results show that IHAOHHO has strong superior performance and
promising prospects.

Keywords: Aquila Optimizer; Harris Hawks Optimizer; hybrid algorithm; nonlinear escaping energy
parameter; random opposition-based learning

1. Introduction

Meta-heuristic optimization algorithms inspired by nature are becoming more and
more popular in real-world applications [1]. Meta-heuristics usually mimic biological or
physical phenomena and only consider inputs and outputs, making them flexible and
straightforward. Furthermore, meta-heuristics is a kind of stochastic optimization tech-
nique. This property assists them to effectively avoid local optima, which usually occurs
in real problems. Because of the advantages of simplicity, flexibility, and ability to avoid
local optima, meta-heuristic optimization algorithms outperform heuristic optimization
algorithms to solve various complex and tricky optimization problems in the real world [2].

Three dominant categories are divided from meta-heuristic optimization algorithms:
evolutionary, physics-based, and swarm intelligence techniques. Evolutionary algorithms
are inspired by the laws of evolution in nature. The randomly generated population
evolves over subsequent generations as the number of iterations increases. Each gener-
ation of individuals is always formed by the combination of best individuals so that the

Processes 2021, 9, 1551. https://doi.org/10.3390/pr9091551 https://www.mdpi.com/journal/processes99

Processes 2021, 9, 1551

population can be optimized over several generations of evolution. The most popular
evolutionary technique is Genetic Algorithms (GA) [3], which simulates Darwin’s theory
of evolution. There are several other popular evolutionary algorithms, such as Differential
Evolution Algorithm (DE) [4], Genetic Programming (GP) [5], Evolution Strategy (ES) [6],
Biogeography-Based Optimizer (BBO) [7], Evolutionary Deduction Algorithm (ED) [8], and
Probability-Based Incremental Learning (PBIL) [9]. Physics-based methods are inspired by
the physical rules of the universe. The most popular algorithms in this category are Simu-
lated Annealing (SA) [10], Big-Bang Big-Crunch (BBBC) [11], Gravity Search Algorithm
(GSA) [12], Gravitational Local Search (GLSA) [13], Heat Transfer Relation-based Opti-
mization Algorithm (HTOA) [14], Charged System Search (CSS) [15], Artificial Chemical
Reaction Optimization Algorithm (ACROA) [16], Central Force Optimization (CFO) [17],
Ray Optimization (RO) [18] algorithm, Black Hole (BH) [19] algorithm, Small-World Opti-
mization Algorithm (SWOA) [20], Galaxy-based Search Algorithm (GbSA) [21], Curved
Space Optimization (CSO) [22], Multi-Verse Optimizer (MVO) [23], Sine Cosine Algorithm
(SCA) [24], and Arithmetic Optimization Algorithm (AOA) [25].

The third category is swarm intelligence algorithms, which simulate the behaviour
of swarms of creatures in nature. The most well-known swarm intelligence technique is
Particle Swarm Optimization (PSO), first proposed by Kennedy and Eberhart [26]. PSO
mimics the behaviour of bird flocks in navigating and foraging, and the birds achieve
the optimal position through collective cooperation. Particles update positions not only
considering their own best positions but also according to the best position of the swarm ob-
tained so far. Other representative algorithms include Ant Colony Optimization Algorithm
(ACO) [27], Monkey Search [28], Firefly Algorithm [29], Bat Algorithm (BA) [30], Krill Herd
(KH) [31], Grey Wolf Optimizer (GWO) [32], Cuckoo Search (CS) Algorithm [33], Fruit Fly
Optimization (FFO) [34], Dolphin Partner Optimization (DPO) [35], Ant Lion Optimizer
(ALO) [36], Remora Optimization Algorithm (ROA) [37], Whale Optimization Algorithm
(WOA) [38], Salp Swarm Algorithm (SSA) [39], Bald Eagle Search (BES) algorithm [40], and
Slime Mould Algorithm (SMA) [41].

As one of the swarm intelligence algorithms, the Harris Hawks Optimizer (HHO) [42]
was proposed in 2019. HHO simulates several hunting strategies of Harris’s hawk and
attracted several researchers to apply it to solve practical problems [43–47]. The exploitation
phase of HHO includes four strategies, but the exploration phase is insufficient, and the
balance between the exploration and exploitation phases is not good enough. Therefore,
many improved and hybrid researches have been proposed to enhance the performance of
HHO. Yousri et al. [48] proposed an enhanced algorithm based on the fractional calculus
(FOC) memory concept to improve the performance of exploration phase, which is known
as FMHHO. The hawk moves with a fractional-order velocity, and the escaping energy of
the prey is adaptively adjusted based on FOC parameters to avoid local optima stagnation.
Gupta et al. [49] introduced a nonlinear energy parameter, different settings for rapid
dives, opposition-based learning strategy, and a greedy selection mechanism into HHO to
enhance the search efficiency and avoid premature convergence. Hussien and Amin [50]
proposed an improved HHO called IHHO to enhance the performance of HHO. The
proposed IHHO applied opposition-based learning (OBL) in the initialization phase to
diverse the initial population as well as Chaotic Local Search (CLS) strategy and a self-
adaptive technique to improve its performance and speed up the convergence of the
algorithm. Sihwail et al. [51] proposed a new search mechanism and then applied it and elite
opposite-based learning (EOBL) technique to HHO. The improved HHO raised the search
capabilities by mutation, mutation neighborhood search (MNS), and rollback strategy.
It can avoid local optimum entrapment and improve population diversity, convergence
accuracy, and rate. Bao et al. [52] proposed HHO-DE by hybridizing HHO and Differential
Evolution (DE) algorithms. HHO and DE were used to update the positions of two equal
subpopulations respectively. The proposed HHO-DE has high accuracy, ability to avoid
local optima, and remarkable stability. Houssein et al. [53] combined HHO with cuckoo
search (CS) and chaotic maps to propose a hybrid algorithm called CHHO-CS. CS was

100

Processes 2021, 9, 1551

used to control the main position vectors of HHO to achieve a better balance between
exploration and exploitation phases, and chaotic maps were adopted to update the control
energy parameters to avoid premature convergence. Kaveh et al. [54] proposed an effective
algorithm called ICHHO by hybridizing HHO with Imperialist Competitive Algorithm
(ICA). Combination of the exploration strategy of ICA and exploitation technique of HHO
helps to achieve a better search strategy. These improved and hybrid algorithms have
proven that HHO is a valuable algorithm. Aquila Optimizer (AO) [55] is the latest swarm
intelligence algorithm, proposed in 2021. This algorithm simulates different hunting
methods of Aquila for different kinds of prey. The hunting methods for fast-moving prey
reflect the global exploration ability of the algorithm, and the hunting methods for slow-
moving prey reflect the local exploitation ability of the algorithm. AO algorithm possesses
strong global exploration ability, high search efficiency, and fast convergence speed, but
its local exploitation ability is insufficient, so it is easy to fall into local optima. Due to the
short time that has elapsed since the algorithm has been proposed, there is no research on
the improvement of AO yet.

Therefore, we tried a kind of hybridization to improve the performance of HHO
and AO. As far as we know, this kind of hybridization of HHO with AO has not been
used before. We propose a new, improved hybrid Aquila Optimizer and Harris Hawks
Optimization (IHAOHHO) by combining the salient features of AO and HHO. In this
paper, we integrate the exploitation strategy of HHO into the AO algorithm, which is
added random opposition-based learning (ROBL) in the exploitation phase to avoid local
optima stagnation. At the same time, the nonlinear escaping energy parameter balances
the exploration and exploitation phases of the algorithm. The 23 standard benchmark
functions and four engineering design problems were applied to test the exploration and
exploitation capabilities of IHAOHHO. The proposed algorithm is compared with original
AO, HHO, and several well-known algorithms, including SMA, SSA, WOA, GWO, and
PSO. The experimental results show that the proposed IHAOHHO algorithm performs
better than the state-of-the-art meta-heuristic algorithms.

The rest of this paper is organized as follows (Figure 1): Section 2 provides a brief
overview of the related work: original Harris Hawks Optimization algorithm and Aquila
Optimizer, as well as two improvement strategies. Section 3 describes in detail the proposed
hybrid algorithm. Section 4 conducts simulation experiments and results analysis. Finally,
Section 5 concludes the paper.

101

Processes 2021, 9, 1551

Figure 1. The overview sketch of this paper.

2. Preliminaries

2.1. Aquila Optimizer (AO)

AO is a latest novel swarm intelligence algorithm proposed by Abualigah et al. in
2021. There are four hunting behaviors of Aquila for different kinds of prey. Aquila can
switch hunting strategies flexibly for different prey and then uses its fast speed united with
sturdy feet and claws to attack prey. The brief description of mathematical model can be
described as follows.

Step 1: Expanded exploration (X1): high soar with a vertical stoop

In this method, the Aquila flies high over the ground and explores the search space
widely, and then a vertical dive is taken once the Aquila determines the area of the prey.
The mathematical representation of this behaviour is written as:

X1(t + 1) = Xbest(t)× (1 − t
T
) + (XM(t)− Xbest(t)× r1) (1)

XM(t) =
1
N

N

∑
i=1

Xi(t) (2)

where Xbest(t) represents the best position obtained so far, and XM(t) denotes the average
position of all Aquilas in current iteration. t and T is the current iteration and the maximum

102

Processes 2021, 9, 1551

number of iterations, respectively. N is the population size, and r1 is a random number
between 0 and 1.

Step 2: Narrowed exploration (X2): contour flight with short glide attack

This is the most commonly used hunting method for Aquila. It uses short gliding to
attack the prey after descending within the selected area and flying around the prey. The
position update formula is represented as:

X2(t + 1) = Xbest(t)× LF(D) + XR(t) + (y − x)× r2 (3)

where XR(t) represents a random position of the Aquila, D is the dimension size, and r2 is
a random number within (0, 1). LF(D) represents Levy flight function, which is presented
as follows:

LF(D) = s × u × σ

|v| 1
β

(4)

σ =

⎛
⎝ Γ(1 + β)× sin(πβ

2)

Γ(1+β
2)× β × 2(

β−1
2)

⎞
⎠ (5)

where s and β are constant values equal to 0.01 and 1.5, respectively, and u and v are
random numbers between 0 and 1. y and x are used to present the spiral shape in the
search, which are calculated as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = r × sin(θ)

y = r × cos(θ)

r = r3 + 0.00565 × D1

θ = −ω × D1 +
3×π

2

(6)

where r3 means the number of search cycles between 1 and 20, D1 is composed of integer
numbers from 1 to the dimension size (D), and ω is equal to 0.005.

Step 3: Expanded exploitation (X3): low flight with a slow descent attack

In the third method, when the area of prey is roughly determined, the Aquila descends
vertically to do a preliminary attack. AO exploits the selected area to get close and attack
the prey. This behaviour is presented as follows:

X3(t + 1) = (Xbest(t)− XM(t))× α − r4 + ((UB − LB)× r5 + LB)× δ (7)

where Xbest(t) denotes to the best position obtained so far, and XM(t) means the average
value of the current positions. α and δ are the exploitation adjustment parameters fixed to
0.1, UB and LB are the upper and lower bound of the problem, and r4 and r5 are random
numbers within (0, 1).

Step 4: Narrowed exploitation (X4): walking and grabbing prey

In this method, the Aquila chases the prey in the light of its escape trajectory and
then attacks the prey on the ground. The mathematical representation of this behaviour is
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X4(t + 1) = QF × Xbest(t)− (G1 × X(t)× r6)

−G2 × LF(D) + r7 × G1

QF(t) = t
2×rand()−1

(1−T)2

G1 = 2 × r8 − 1

G2 = 2 × (1 − t
T)

(8)

where X(t) is the current position, and QF(t) represents the quality function value, which
used to balance the search strategy. G1 denotes the movement parameter of Aquila during

103

Processes 2021, 9, 1551

tracking prey, which is a random number between [–1,1]. G2 denotes the flight slope when
chasing prey, which decreases linearly from 2 to 0. r6, r7, and r8 are random numbers
between 0 and 1.

2.2. Harris’s Hawks Optimizer (HHO)

HHO is a new meta-heuristic optimization algorithm proposed by Heidari et al.
in 2019. It is inspired by the unique cooperative foraging activities of Harris’s hawk.
Harris’s hawk can show a variety of chasing patterns according to the dynamic nature
of the environment and the escaping patterns of the prey. These switching activities are
conducive to confuse the running prey, and these cooperative strategies can help Harris’s
hawk chase the detected prey to exhaustion, which increases its vulnerability. The brief
description of mathematical model is as follows.

2.2.1. Exploration Phase

The Harris’s hawks usually perch on some random locations, wait, and monitor the
desert to detect the prey. There are two perching strategies based on the positions of other
family members and the prey or random tall trees, which is selected in accordance with the
random q value.

X(t + 1) =

{
Xr(t)− r1|Xr(t)− 2r2X(t)| q ≥ 0.5

(Xprey(t)− Xm(t))− r3(LB + r4(UB − LB)) q < 0.5
(9)

Xm(t) =
1
N

N

∑
i=1

Xi(t) (10)

where Xr(t) is the position of a random hawk, Xprey(t) represents the position of the prey,
that is the best position obtained so far, and Xm(t) denotes the average position of the
current population. N is total number of hawks, UB and LB are the upper and lower bound
of the problem, and q, r1, r2, r3, and r4 are random numbers between 0 and 1.

2.2.2. Transition from Exploration to Exploitation Phase

The HHO algorithm has a transition mechanism from exploration to exploitation
phase based on the escaping energy of the prey and then changes the different exploitative
behaviors. The energy of the prey is modelled as follows, which decreases during the
escaping behaviour.

E = 2E0(1 − t
T
) (11)

where E represents the escaping energy of the prey, E0 is the initial state of the energy, and
t and T are the current and maximum number of iterations, respectively. When |E|≥ 1 , the
algorithm performs the exploration stage, and when |E|< 1 , the algorithm performs the
exploitation phase.

2.2.3. Exploitation Phase

In this phase, four different chasing and attacking strategies are proposed on the basis
of the escaping energy of the prey and chasing styles of the Harris’s hawks. Except for the
escaping energy, parameter r is also utilized to choose the chasing strategy, which indicates
the chance of the prey in successfully escaping (r < 0.5) or not (r ≥ 0.5) before attack.

Soft besiege

When r ≥ 0.5 and |E|≥ 0.5 , the prey still has enough energy and tries to escape, so
the Harris’s hawks encircle it softly to make the prey more exhausted and then attack it.
This behaviour is modeled as follows:

X(t + 1) = ΔX(t)− E
∣∣JXprey(t)− X(t)

∣∣ (12)

104

Processes 2021, 9, 1551

ΔX(t) = Xprey(t)− X(t) (13)

J = 2(1 − r5) (14)

where ΔX(t) indicates the difference between the position of the prey and the current
position, J represents the random jump strength of the prey, Xprey(t) represents the position
of the prey, X(t) is the current position, and r5 is a random number within (0, 1).

Hard besiege

When r ≥ 0.5 and |E|< 0.5 , the prey has a low escaping energy, and the Harris’s
hawks encircle the prey readily and finally attack it. In this situation, the positions are
updated as follows:

X(t + 1) = Xprey(t)− E
∣∣ΔX(t)

∣∣ (15)

Soft besiege with progressive rapid dives

When |E|≥ 0.5 and r < 0.5, the prey has enough energy to successfully escape, so the
Harris’s hawks perform soft besiege with several rapid dives around the prey and try to
progressively correct its position and direction. This behaviour is modeled as follows:

Y = Xprey(t)− E
∣∣JXprey(t)− X(t)

∣∣ (16)

Z = Y + S × LF(D) (17)

LF(x) = 0.01 × u × σ

|υ| 1
β

(18)

σ =

⎛
⎝ Γ(1 + β)× sin(πβ

2)

Γ(1+β
2)× β × 2(

β−1
2)

⎞
⎠

1
β

(19)

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(20)

where D is the dimension size of the problem, and S is a random vector. LF is Levy flight
function, which is utilized to mimic the deceptive motions of the prey. u and v are random
values between 0 and 1, and β is a constant number equal to 1.5. Note that only the better
position between Y and Z is selected as the next position.

Hard besiege with progressive rapid dives

When |E|< 0.5 and r < 0.5, the prey does not have enough energy to escape, so the
hawks perform a hard besiege to decrease the distance between their average position
and the prey and finally attack and kill the prey. The mathematical representation of this
behaviour is as follows:

Y = Xprey(t)− E
∣∣JXprey(t)− Xm(t)

∣∣ (21)

Z = Y + S × LF(D) (22)

X(t + 1) =

{
Y i f F(Y) < F(X(t))

Z i f F(Z) < F(X(t))
(23)

Note that only the better position between Y and Z will be the next position for the
new iteration.

2.3. Nonlinear Escaping Energy Parameter

In the original HHO algorithm, the escaping energy E is used to control the transition
from exploration to exploitation phase. The parameter E is linearly reduced from 2 to 0,
that is, only local search is performed in the second half of the iterations, which is easy to

105

Processes 2021, 9, 1551

fall into local optima. In order to overcome this shortcoming of the algorithm, another way
to update the escaping energy E is utilized [56]:

E = E1(2 × rand−1) (24)

E1 = 2 × (1 −
(

t
T

)1/3
)

1/3

(25)

where t and T are the current and maximum number of iterations, respectively. It can be
seen from Figure 2a that E1 decreases rapidly in the early stage of the iterations, which
controls the global search ability of the algorithm and changes slowly in the middle of the
iterations. E1 also balances the global and local search capabilities and decreases rapidly in
the later stage of the iterations to speed up the local search. E can perform global search
and local search in the whole iterative process. It mainly performs global search in the early
stage and retains the possibility of global search while mainly performing local search in
the later stage, as shown in Figure 2b.

Figure 2. (a) E1 curve and (b) E curve.

2.4. Random Opposition-Based Learning (ROBL)

Opposition-based learning (OBL) is a powerful optimization tool proposed by Tizhoosh [57].
The main idea of OBL is simultaneously considering the fitness of an estimate and its correspond-
ing opposite estimate to obtain a better candidate solution. The OBL concept has successfully
been used in varieties of meta-heuristics algorithms [58–62] to improve the convergence speed.
Different from the original OBL, this paper utilizes an improved OBL strategy, called random
opposition-based learning (ROBL) [63], which is defined by:

x̂j = lj + uj − rand × xj, j = 1, 2, . . . , n (26)

where x̂j represents the opposite solution, lj and uj are the lower and upper bound of the
problem in jth dimension, and rand is a random number within (0, 1). The opposite solution
described by Equation (26) is more random than the original OBL and can effectively help
the population jump out of the local optima.

3. The Proposed IHAOHHO Algorithm

3.1. The Detail Design of IHAOHHO

The exploration phase of AO mimics the hunting behaviour for fast-moving prey with
a wide flying area, making AO have a strong global search ability and fast convergence
speed. However, the selected search space is not exhaustively searched during the exploita-
tion phase. The effect of Levy flight is relatively weak, leading to premature convergence.
In a word, the AO algorithm possesses strong randomness and fast convergence speed
in the global exploration phase. However, it is easy to fall into local optima in the local
exploitation stage. For the HHO algorithm, the transition from global to local search is

106

Processes 2021, 9, 1551

realized based on the energy attenuation of the prey. In the early iterations, which reflect
the exploration phase, the diversity of the population is insufficient, and the convergence
speed is slow. As the number of iterations increases, the energy of prey decreases, and
the algorithm enters the stage of local exploitation. Four different hunting strategies are
adopted in the light of the energy and escape probability of the prey. The Levy flight term is
added in the exploitation phase. Whether to use Levy flight to update positions is decided
by fitness values so that the algorithm can jump out of the local optima to a certain extent.

Therefore, we combine the global exploration phase of AO and the local exploitation
phase of HHO to give full play to the advantages of these two algorithms. The global search
capability, faster convergence speed, and the ability to jump out of the local optima of the
algorithm are all retained. Meanwhile, a nonlinear escaping energy mechanism is utilized
to control the transition from exploration to exploitation phase, which retains the possibility
of global search in the later iterations. ROBL strategy is added to the exploitation phase to
enhance further the ability to jump out of the local optima. All these strategies improve
the convergence speed and accuracy of the hybrid algorithm and effectively enhance
the overall optimization performance of the algorithm. This improved hybrid Aquila
Optimizer and Harris Hawks Optimization algorithm is named IHAOHHO. Different
phases of IHAOHHO are shown in Figure 3. The pseudo-code of IHAOHHO is given in
Algorithm 1, and the summarized flowchart is illustrated in Figure 4.

Figure 3. Different phases of IHAOHHO.

3.2. Computational Complexity of IHAOHHO

Computation complexity is a key metric for an algorithm to evaluate its time con-
sumption during operation. The computational complexity of the IHAOHHO algorithm
depends on three processes: initialization, evaluation of fitness, and updating of hawks. In
the initialization stage, the computational complexity of positions generated of N hawks is
O(N × D), where D is dimension size of the problem. Then, the computational complexity
of fitness evaluation for the best solution is O(N) during the iteration process. Considering
the worst condition, the computational complexities of position updating of hawks and
fitness comparison are O(3 × N × D) and O(3 × N), respectively. In a word, the total
computational complexity of the proposed IHAOHHO algorithm is O(N × D + (3 × D + 4)
× N × T).

107

Processes 2021, 9, 1551

Algorithm 1 Pseudo-code of IHAOHHO.

1: Set initial values of the population size N and the maximum number of iterations T
2: Initialize positions of the population X
3: While t < T
4: For i = 1 to N
5: Check if the position goes out of the search space boundary, and bring it back.
6: Calculate the fitness of Xi
7: Update Xbest
8: End for
9: Update x, y, QF, G1, G2, E1
10: For i = 1 to N
11: Update E using Equation (24) % Nonlinear escaping energy parameter
12: If |E| ≥ 1 % Exploration part of AO
13: If rand < 0.5
14: Update the position of Xnewi using Equation (1)
15: If f(Xnewi) < f(Xi)
16: Xi = Xnewi
17: End if
18: Else
19: Update the position of Xnewi using Equation (3)
20: If f(Xnewi) < f(Xi)
21: Xi = Xnewi
22: End if
23: End if
24: Else % Exploitation part of HHO
25: If r ≥ 0.5 and |E| ≥ 0.5
26: Update the position of Xi using Equation (12)
27: End if
28: If r ≥ 0.5 and |E| < 0.5
29: Update the position of Xi using Equation (15)
30: End if
31: If r < 0.5 and |E| ≥ 0.5
32: Update the position of Xnewi using Equation (16)
33: If f(Xnewi) < f(Xi)
34: Xi = Xnewi
35: Else
36: Update the position of Xnewi using Equation (17)
37: If f(Xnewi) < f(Xi)
38: Xi = Xnewi
39: End if
40: End if
41: End if
42: If r < 0.5 and |E| < 0.5
43: Update the position of Xnewi using Equation (21)
44: If f(Xnewi) < f(Xi)
45: Xi = Xnewi
46: Else
47: Update the position of Xnewi using Equation (22)
48: If f(Xnewi) < f(Xi)
49: Xi = Xnewi
50: End if
51: End if
52: End if
53: Update the position of Xnewi using Equation (26) % ROBL
54: If f(Xnewi) < f(Xi)
55: Xi = Xnewi
56: End if
57: End if
58: t = t + 1
59: End for
60: End while
61: Return Xbest

108

Processes 2021, 9, 1551

Figure 4. IHAOHHO algorithm flowchart.

4. Results and Discussion

In this section, two main experiments were carried out to evaluate the performance
of the IHAOHHO algorithm. The first kind of experiments is benchmark function experi-
ments, which aimed to evaluate the performance of IHAOHHO in solving 23 numerical
optimization problems. The second experiment is industrial engineering design problems,
which aimed to evaluate the performance of IHAOHHO in solving real-world problems.
All experiments are implemented in MATLAB R2016a on a PC with Intel (R) core (TM)
i5-9500 CPU @ 3.00 GHz and RAM 2 GB memory on OS windows 10.

4.1. Benchmark Function Experiments

To investigate the performance of the IHAOHHO algorithm, 23 standard benchmark
functions of three different types were utilized for testing [64]. The main characteristic of the
first type, namely unimodal benchmark functions, is that there is only one global optimum
with no local optima. These test functions can be used to evaluate the exploitation capability
and convergence rate of an algorithm. The second type, namely multimodal benchmark
functions, has a global optimum and multiple local optima, which includes general and

109

Processes 2021, 9, 1551

fixed-dimension multimodal test functions. This type of functions was utilized to evaluate the
exploitation and local optima avoidance capability of the algorithm. The benchmark function
details, including dimensions, ranges, and optima, are listed in Tables 1–3.

Table 1. Unimodal benchmark functions.

Function Dim Range Fmin

F1(x) = ∑n
i=1 x2

i 30 (−100, 100) 0

F2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 (−10, 10) 0

F3(x) = ∑n
i=1 (∑

i
j−1 xj)

2 30 (−100, 100) 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 (−100, 100) 0

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i)
2
+ (xi − 1)2] 30 (−30,30) 0

F6(x) = ∑n
i=1 (xi + 5)2 30 (−100, 100) 0

F7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 (−1.28, 1.28) 0

Table 2. Multimodal benchmark functions.

Function Dim Range Fmin

F8(x) = ∑n
i=1 −xi sin(

√|xi|) 30 (−500, 500) −418.9829 × 30

F9(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] 30 (−5.12, 5.12) 0

F10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i)− exp(1

n ∑n
i=1 cos(2πxi)) + 20 + e 30 (−32, 32) 0

F11(x) = 1
4000 ∑n

i=1 x2
i − ∏n

i=1 cos(xi√
i
) + 1 30 (−600, 600) 0

F12(x) = π
n {10 sin(πy1) + ∑n−1

i=1 (yi − 1)
2
[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+∑n
i=1 u(xi, 10, 100, 4), where yi = 1 + xi+1

4 ,

u(xi, a, k, m) =

⎧⎨
⎩

k(xi − a)m xi > a
0 −a < xi < a

k(−xi − a)m xi < −a

30 (−50, 50) 0

F13(x) = 0.1(sin2(3πx1) + ∑n
i=1 (xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]) + ∑n
i=1 u(xi, 5, 100, 4)

30 (−50, 50) 0

Table 3. Fixed-dimension multimodal benchmark functions.

Function Dim Range Fmin

F14(x) = (1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6)
−1 2 (−65, 65) 1

F15(x) = ∑11
i=1 [ai − x1(b2

i +bi x2)

b2
i +bi x3+x4

]
2

4 (−5, 5) 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + x4

2 2 (−5, 5) −1.0316

F17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1 − 1

8π) cos x1 + 10 2 (−5, 5) 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2 × (18 − 32x2 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 (−2, 2) 3

F19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) 3 (−1, 2) −3.86

F20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) 6 (0, 1) −3.32

F21(x) = −∑5
i=1 [(X − ai)(X − ai)

T + ci]
−1 4 (0, 10) −10.1532

F22(x) = −∑7
i=1 [(X − ai)(X − ai)

T + ci]
−1 4 (0, 10) −10.4028

F23(x) = −∑10
i=1 [(X − ai)(X − ai)

T + ci]
−1 4 (0, 10) −10.5363

110

Processes 2021, 9, 1551

For verification of the results, the IHAOHHO algorithm was compared with the origi-
nal AO and HHO; SMA as one of the recent algorithms; SSA, WOA, and GWO as several
classical meta-heuristic algorithms; and PSO as the most well-known swarm intelligence
algorithm. For all these algorithms, we set the population size N = 30, dimension size
D = 30, maximum number of iterations T = 500, and ran them 30 times independently.
The parameter settings of each algorithm are shown in Table 4. After all, the average and
standard deviation results of these test functions are exhibited in Tables 4–6. Figure 5
shows the convergence curves of 23 test functions. The partial search history, trajectory
and average fitness maps are represented in Figure 6. Wilcoxon signed-rank test results are
also listed in Table 6. The detailed data analysis is given in the following subsections.

Table 4. Parameter settings for the comparative algorithms.

Algorithm Parameters

AO U = 0.00565; r1 = 10; ω = 0.005; α = 0.1; δ = 0.1; G1 ∈ [−1, 1]; G2 = [2, 0]
HHO q ∈ [0, 1]; r ∈ [0, 1]; E0 ∈ [−1, 1]; E1 = [2, 0]; E ∈ [−2, 2];
SMA z = 0.03
SSA c1 = [1, 0]; c2 ∈ [0, 1]; c3 ∈ [0, 1]
WOA a1 = [2, 0]; a2 = [−1, −2]; b = 1
GWO a = [2, 0]
PSO c1 = 2; c2 = 2; vmax = 6

4.1.1. Evaluation of Exploitation Capability (Functions F1–F7)

Functions F1–F7 are used to investigate the exploitation capability of the algorithm
since they have only one global optimum and no local optima. It can be seen from
Table 5 that IHAOHHO can achieve much better results than other meta-heuristic algo-
rithms excluding F6. For F1 and F3, IHAOHHO can find the theoretical optimum. For
all unimodal functions excluding F6, IHAOHHO gets the smallest average values and
standard deviations compared to other algorithms, which indicate the best accuracy and
stability. Hence, the exploitation capability of the proposed IHAOHHO algorithm is
excellent.

4.1.2. Evaluation of Exploration Capability (Functions F8–F23)

Multimodal functions F8–F23 contain plentiful local optima whose number increases
exponentially with the dimension size of the problem. This kind of functions is very useful
to evaluate the exploration ability of the algorithm. From the results shown in Table 5,
IHAOHHO outperforms other algorithms in most of the multimodal and fixed-dimension
multimodal functions. For multimodal functions F8–F13, IHAOHHO almost obtains all
the best average values and standard deviations. Among ten fixed-dimensions multimodal
functions F14–F23, IHAOHHO achieves the best accuracy of eight functions and best
stability of four functions. These results indicate that IHAOHHO also provides robust
exploitation capability.

111

Processes 2021, 9, 1551

T
a

b
le

5
.

R
es

ul
ts

of
al

go
ri

th
m

s
on

23
be

nc
hm

ar
k

fu
nc

ti
on

s.

F
IH

A
O

H
H

O
A

O
H

H
O

S
M

A
S

S
A

W
O

A
G

W
O

P
S

O

F1
A

vg
0.

00
00

×
10

0
2.

51
20

×
10

−1
28

1.
73

59
×

10
−9

8
6.

75
59

×
10

−2
87

2.
09

18
×

10
−7

7.
01

72
×

10
−7

5
2.

75
53

×
10

−2
7

1.
79

20
×

10
−4

St
d

0.
00

00
×

10
0

1.
37

59
×

10
−1

27
3.

87
48

×
10

−9
8

0.
00

00
×

10
0

2.
55

21
×

10
−7

2.
09

85
×

10
−7

4
7.

47
45

×
10

−2
7

2.
14

73
×

10
−4

F2
A

vg
3.

17
73

×
10

−2
83

3.
07

14
×

10
−5

1
3.

61
62

×
10

−4
9

1.
77

22
×

10
−1

36
2.

14
00

×
10

0
2.

11
03

×
10

−4
9

7.
22

24
×

10
−1

7
2.

26
76

×
10

−1
St

d
0.

00
00

×
10

0
1.

68
23

×
10

−5
0

1.
97

47
×

10
−4

8
9.

70
69

×
10

−1
36

1.
57

37
×

10
0

1.
12

21
×

10
−4

8
4.

31
58

×
10

−1
7

2.
02

15
×

10
−2

F3
A

vg
0.

00
00

×
10

0
2.

38
84

×
10

−1
01

7.
93

68
×

10
−7

0
2.

79
58

×
10

−3
05

1.
57

07
×

10
3

4.
83

46
×

10
4

1.
96

88
×

10
−5

8.
79

92
×

10
1

St
d

0.
00

00
×

10
0

9.
26

2
×

10
−1

01
4.

34
17

×
10

−6
9

0.
00

00
×

10
0

1.
00

57
×

10
3

1.
52

95
×

10
4

8.
50

80
×

10
−5

3.
71

92
×

10
1

F4
A

vg
1.

11
05

×
10

−2
81

1.
06

56
×

10
−5

3
1.

27
68

×
10

−4
9

1.
02

17
×

10
−1

60
1.

16
23

×
10

1
5.

42
22

×
10

1
9.

25
33

×
10

−7
1.

07
83

×
10

0

St
d

0.
00

00
×

10
0

5.
83

09
×

10
−5

3
4.

42
93

×
10

−4
9

5.
59

61
×

10
−1

60
3.

33
73

×
10

0
2.

98
52

×
10

1
9.

16
88

×
10

−7
2.

18
54

×
10

−1
F5

A
vg

2.
82

03
×

10
−3

6.
43

03
×

10
−3

1.
13

90
×

10
−2

9.
40

19
×

10
0

3.
17

09
×

10
2

2.
79

69
×

10
1

2.
74

12
×

10
1

1.
04

24
×

10
2

St
d

4.
47

16
×

10
−3

9.
12

89
×

10
−3

1.
20

58
×

10
−2

1.
24

66
×

10
1

8.
06

01
×

10
2

4.
55

51
×

10
−1

8.
80

86
×

10
−1

9.
91

30
×

10
1

F6
A

vg
4.

24
11

×
10

−6
1.

18
61

×
10

−4
1.

14
30

×
10

−4
5.

25
84

×
10

−3
3.

51
88

×
10

−7
3.

60
78

×
10

−1
8.

08
26

×
10

−1
1.

18
28

×
10

−4
St

d
6.

20
92

×
10

−6
2.

16
25

×
10

−4
1.

40
84

×
10

−4
3.

11
60

×
10

−3
7.

35
63

×
10

−7
1.

88
48

×
10

−1
3.

30
42

×
10

−1
1.

30
13

×
10

−4
F7

A
vg

7.
13

81
×

10
−5

9.
29

69
×

10
−5

1.
44

08
×

10
−4

2.
23

17
×

10
−4

1.
73

10
×

10
−1

2.
67

56
×

10
−3

2.
25

47
×

10
−3

1.
80

40
×

10
−1

St
d

7.
68

52
×

10
−5

1.
14

66
×

10
−4

1.
54

82
×

10
−4

1.
67

50
×

10
−4

7.
89

97
×

10
−2

2.
39

49
×

10
−3

1.
13

17
×

10
−3

7.
56

27
×

10
−2

F8
A

vg
−1

2,
44

7.
86

54
−7

07
3.

98
82

−1
2,

56
8.

78
11

−1
2,

56
8.

94
26

−7
59

1.
32

46
−1

0,
43

0.
39

86
−6

04
9.

32
46

−5
31

7.
31

15
St

d
4.

53
59

×
10

2
3.

55
11

×
10

3
1.

39
99

×
10

0
4.

02
61

×
10

−1
6.

91
06

×
10

2
1.

90
97

×
10

3
8.

02
14

×
10

2
1.

50
05

×
10

3

F9
A

vg
0.

00
00

×
10

0
0.

00
00

×
10

0
0.

00
00

×
10

0
0.

00
00

×
10

0
5.

52
53

×
10

1
1.

89
48

×
10

−1
5

4.
84

19
×

10
0

5.
66

59
×

10
1

St
d

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

1.
90

37
×

10
1

1.
03

78
×

10
−1

4
6.

20
42

×
10

0
1.

51
11

×
10

1

F1
0

A
vg

8.
88

18
×

10
−1

6
8.

88
18

×
10

−1
6

8.
88

18
×

10
−1

6
8.

88
18

×
10

−1
6

2.
75

61
×

10
0

3.
96

72
×

10
−1

5
1.

03
56

×
10

−1
3

2.
09

03
×

10
−1

St
d

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

1.
97

73
×

10
0

2.
42

10
×

10
−1

5
2.

13
23

×
10

−1
4

4.
48

71
×

10
−1

F1
1

A
vg

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

1.
70

30
×

10
−2

5.
93

85
×

10
−3

2.
53

84
×

10
−3

4.
94

59
×

10
−3

St
d

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

0.
00

00
×

10
0

1.
94

30
×

10
−2

3.
25

27
×

10
−2

8.
73

48
×

10
−3

9.
46

82
×

10
−3

F1
2

A
vg

5.
31

64
×

10
−7

4.
65

13
×

10
−6

9.
26

36
×

10
−6

5.
03

31
×

10
−3

7.
05

64
×

10
0

2.
57

78
×

10
−2

3.
77

30
×

10
−2

6.
91

26
×

10
−3

St
d

9.
66

98
×

10
−7

8.
93

71
×

10
−6

1.
29

11
×

10
−5

6.
34

63
×

10
−3

3.
05

95
×

10
0

2.
09

42
×

10
−2

1.
83

69
×

10
−2

2.
63

01
×

10
−2

F1
3

A
vg

1.
16

94
×

10
−5

3.
39

38
×

10
−5

1.
26

04
×

10
−4

7.
38

00
×

10
−3

1.
78

87
×

10
1

5.
85

49
×

10
−1

6.
11

35
×

10
−1

4.
41

20
×

10
−3

St
d

1.
79

61
×

10
−5

3.
23

63
×

10
−5

1.
53

75
×

10
−4

8.
93

29
×

10
−3

1.
53

07
×

10
1

2.
97

19
×

10
−1

1.
71

36
×

10
−1

6.
62

75
×

10
−3

F1
4

A
vg

1.
79

19
×

10
0

1.
59

40
×

10
0

1.
16

35
×

10
0

9.
98

00
×

10
−1

1.
16

37
×

10
0

5.
07

48
×

10
0

5.
26

81
×

10
0

3.
59

06
×

10
0

St
d

9.
17

46
×

10
−1

2.
17

63
×

10
0

4.
57

84
×

10
−1

1.
11

56
×

10
−1

2
3.

76
78

×
10

−1
4.

46
03

×
10

0
4.

60
22

×
10

0
2.

90
4
×

10
0

F1
5

A
vg

3.
52

91
×

10
−4

5.
55

90
×

10
−4

4.
03

50
×

10
−4

5.
15

76
×

10
−4

2.
82

18
×

10
−3

6.
61

18
×

10
−4

6.
37

19
×

10
−3

9.
38

64
×

10
−4

St
d

4.
87

66
×

10
−5

1.
16

40
×

10
−4

2.
33

53
×

10
−4

3.
00

66
×

10
−4

5.
95

80
×

10
−3

7.
12

26
×

10
−4

1.
24

24
×

10
−2

2.
60

81
×

10
−4

F1
6

A
vg

−1
.0

31
6
×

10
0

−1
.0

31
1
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

St
d

1.
03

79
×

10
−1

0
3.

76
14

×
10

−4
2.

57
45

×
10

−9
4.

39
34

×
10

−1
0

2.
04

89
×

10
−1

4
6.

11
64

×
10

−1
0

1.
47

72
×

10
−8

6.
45

39
×

10
−1

6

F1
7

A
vg

3.
97

89
×

10
−1

3.
98

12
×

10
−1

3.
97

90
×

10
−1

3.
97

89
×

10
−1

3.
97

89
×

10
−1

3.
97

89
×

10
−1

3.
97

89
×

10
−1

3.
97

89
×

10
−1

St
d

5.
40

22
×

10
−7

2.
23

78
×

10
−4

2.
42

37
×

10
−5

2.
48

14
×

10
−8

1.
46

63
×

10
−1

4
8.

54
93

×
10

−6
8.

99
87

×
10

−7
0.

00
00

×
10

0

F1
8

A
vg

3.
00

00
×

10
0

3.
04

39
×

10
0

3.
00

00
×

10
0

3.
00

00
×

10
0

3.
00

00
×

10
0

3.
00

00
×

10
0

3.
00

00
×

10
0

3.
00

00
×

10
0

St
d

2.
71

4
×

10
−7

6.
46

93
×

10
−2

1.
61

98
×

10
−7

4.
77

05
×

10
−1

0
9.

50
42

×
10

−1
4

2.
62

69
×

10
−4

4.
76

07
×

10
−5

1.
63

9
×

10
−1

5

112

Processes 2021, 9, 1551

T
a

b
le

5
.

C
on

t.

F
IH

A
O

H
H

O
A

O
H

H
O

S
M

A
S

S
A

W
O

A
G

W
O

P
S

O

F1
9

A
vg

−3
.8

62
8
×

10
0

−3
.8

53
9
×

10
0

−3
.8

61
6
×

10
0

−3
.8

62
8
×

10
0

−3
.8

62
8
×

10
0

−3
.8

59
7
×

10
0

−3
.8

59
3
×

10
0

−3
.8

62
8
×

10
0

St
d

1.
83

51
×

10
−4

6.
06

69
×

10
−3

1.
70

13
×

10
−3

3.
02

54
×

10
−7

8.
19

72
×

10
−1

3
3.

16
52

×
10

−3
4.

24
27

×
10

−3
2.

68
23

×
10

−1
5

F2
0

A
vg

−3
.1

29
8
×

10
0

−3
.1

57
2
×

10
0

−3
.0

53
3
×

10
0

−3
.2

42
5
×

10
0

−3
.2

21
5
×

10
0

−3
.2

39
1
×

10
0

−3
.2

44
2
×

10
0

−3
.2

66
5
×

10
0

St
d

1.
12

64
×

10
−1

1.
04

48
×

10
−1

1.
16

71
×

10
−1

5.
71

77
×

10
−2

5.
17

20
×

10
−2

1.
35

96
×

10
−1

9.
04

27
×

10
−2

6.
03

28
×

10
−2

F2
1

A
vg

−1
.0

15
2
×

10
1

−1
.0

14
2
×

10
1

−5
.5

37
0
×

10
0

−1
.0

15
2
×

10
1

−7
.3

77
4
×

10
0

−9
.0

89
1
×

10
0

−9
.1

41
9
×

10
0

−6
.7

86
8
×

10
0

St
d

5.
63

52
×

10
−4

1.
82

88
×

10
−2

1.
48

4
×

10
0

2.
25

92
×

10
−3

2.
90

79
×

10
0

2.
05

45
×

10
0

2.
34

91
×

10
0

3.
26

22
×

10
0

F2
2

A
vg

−1
.0

40
2
×

10
1

−1
.0

38
8
×

10
1

−5
.2

52
8
×

10
0

−1
.0

40
2
×

10
1

−8
.1

23
2
×

10
0

−7
.5

39
5
×

10
0

−1
.0

40
1
×

10
1

−8
.1

54
2
×

10
0

St
d

6.
32

72
×

10
−4

2.
47

82
×

10
−2

9.
36

28
×

10
−1

7.
59

81
×

10
−4

3.
33

71
×

10
0

3.
15

70
×

10
0

8.
91

28
×

10
−4

3.
28

98
×

10
0

F2
3

A
vg

−1
.0

53
5
×

10
1

−1
.0

52
5
×

10
1

−5
.2

85
8
×

10
0

−1
.0

53
5
×

10
1

−7
.6

86
1
×

10
0

−6
.6

21
3
×

10
0

−1
.0

53
5
×

10
1

−1
.0

08
7
×

10
1

St
d

9.
86

17
×

10
−4

6.
95

16
×

10
−3

8.
80

12
×

10
−1

1.
30

06
×

10
−3

3.
60

04
×

10
0

3.
01

27
×

10
0

9.
01

43
×

10
−4

1.
74

72
×

10
0

T
a

b
le

6
.

p-
V

al
ue

s
fr

om
th

e
W

ilc
ox

on
si

gn
ed

-r
an

k
te

st
fo

r
th

e
re

su
lt

s
in

Ta
bl

e
5.

F
IH

A
O

H
H

O
v

s.
A

O
IH

A
O

H
H

O
v

s.
H

H
O

IH
A

O
H

H
O

v
s.

S
M

A
IH

A
O

H
H

O
v

s.
S

S
A

IH
A

O
H

H
O

v
s.

W
O

A
IH

A
O

H
H

O
v

s.
G

W
O

IH
A

O
H

H
O

v
s.

P
S

O

F1
6.

10
35

×
10

−5
6.

10
35

×
10

−5
N

/A
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
F2

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

F3
6.

10
35

×
10

−5
6.

10
35

×
10

−5
N

/A
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
F4

6.
10

35
×

10
−5

6.
10

35
×

10
−5

1.
22

07
×

10
−4

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

F5
6.

78
77

×
10

−1
6.

38
67

×
10

−1
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
F6

1.
50

76
×

10
−2

8.
54

49
×

10
−4

6.
10

35
×

10
−5

8.
54

49
×

10
−4

6.
10

35
×

10
−5

6.
10

35
×

10
−5

6.
10

35
×

10
−5

F7
8.

03
96

×
10

−1
4.

27
25

×
10

−3
3.

05
18

×
10

−4
6.

10
35

×
10

−5
1.

22
07

×
10

−4
6.

10
35

×
10

−5
6.

10
35

×
10

−5
F8

1.
06

99
×

10
−3

5.
53

59
×

10
−3

6.
71

39
×

10
−3

8.
54

49
×

10
−4

7.
29

98
×

10
−2

6.
10

35
×

10
−5

6.
10

35
×

10
−5

F9
N

/A
N

/A
N

/A
6.

10
35

×
10

−5
N

/A
6.

10
35

×
10

−5
6.

10
35

×
10

−5
F1

0
N

/A
N

/A
N

/A
6.

10
35

×
10

−5
4.

88
28

×
10

−4
6.

10
35

×
10

−5
6.

10
35

×
10

−5
F1

1
N

/A
N

/A
N

/A
6.

10
35

×
10

−5
N

/A
6.

25
00

×
10

−2
6.

10
35

×
10

−5
F1

2
9.

77
97

×
10

−1
2.

76
86

×
10

−1
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
5.

24
48

×
10

−1
F1

3
8.

90
38

×
10

−1
3.

53
39

×
10

−2
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
6.

10
35

×
10

−5
2.

15
45

×
10

−2
F1

4
3.

53
39

×
10

−2
3.

89
40

×
10

−2
1.

22
07

×
10

−4
4.

79
13

×
10

−2
6.

10
35

×
10

−4
1.

06
99

×
10

−1
2.

15
45

×
10

−2
F1

5
3.

35
69

×
10

−3
7.

19
73

×
10

−1
4.

79
13

×
10

−2
6.

10
35

×
10

−5
1.

15
97

×
10

−3
2.

15
45

×
10

−2
6.

10
35

×
10

−5
F1

6
6.

10
35

×
10

−5
3.

01
51

×
10

−2
8.

54
49

×
10

−4
4.

02
83

×
10

−3
4.

27
25

×
10

−3
6.

10
35

×
10

−5
1.

22
07

×
10

−4
F1

7
6.

10
35

×
10

−5
3.

02
80

×
10

−1
1.

02
54

×
10

−2
6.

10
35

×
10

−5
6.

71
39

×
10

−3
2.

55
74

×
10

−2
6.

10
35

×
10

−5
F1

8
6.

10
35

×
10

−5
8.

36
18

×
10

−3
8.

36
18

×
10

−3
3.

05
18

×
10

−4
1.

22
07

×
10

−4
6.

10
35

×
10

−5
6.

10
35

×
10

−5
F1

9
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
6.

10
35

×
10

−5
F2

0
7.

29
98

×
10

−2
1.

87
62

×
10

−1
7.

29
98

×
10

−2
1.

06
99

×
10

−2
2.

76
86

×
10

−1
1.

02
54

×
10

−2
3.

35
69

×
10

−3
F2

1
1.

87
62

×
10

−1
6.

10
35

×
10

−5
4.

88
71

×
10

−1
4.

21
20

×
10

−1
8.

54
49

×
10

−4
5.

99
49

×
10

−3
2.

55
74

×
10

−2
F2

2
4.

79
13

×
10

−2
6.

10
35

×
10

−5
1.

80
66

×
10

−2
8.

03
96

×
10

−1
1.

22
07

×
10

−4
2.

07
76

×
10

−1
8.

36
18

×
10

−3
F2

3
6.

10
35

×
10

−5
6.

10
35

×
10

−5
5.

53
59

×
10

−2
8.

32
52

×
10

−2
6.

10
35

×
10

−5
8.

32
52

×
10

−2
8.

32
52

×
10

−2

113

Processes 2021, 9, 1551

Figure 5. Cont.

114

Processes 2021, 9, 1551

Figure 5. Convergence curves of 23 benchmark functions.

115

Processes 2021, 9, 1551

Figure 6. Parameter space, search history, trajectory, average fitness, and convergence curve of IHAOHHO.

4.1.3. Analysis of Convergence Behavior

In the light of the mathematical formula of the IHAOHHO algorithm, search agents
tend to investigate promising regions of the search space widely and then exploit it in
detail. Search agents change drastically in early iterations and then converge gradually as

116

Processes 2021, 9, 1551

the number of iterations increases. Convergence curves of the proposed IHAOHHO and
AO, HHO, SMA, SSA, WOA, GWO, and PSO for 23 benchmark functions are provided in
Figure 5, which shows the convergence rate of algorithms. It can be seen that IHAOHHO
shows great superiority compared to other state-of-the-art algorithms. The IHAOHHO
algorithm presents three different convergence behaviors during optimization processes.
Firstly, for F1-F4, IHAOHHO gradually converges to the optimal values at a faster speed
than other algorithms, and the optimal value is better than the others in three of the
functions. The second behaviour is extremely fast convergence speed, as observed in F6,
F8–F11, F14–F19, and F21–F23. For these functions, IHAOHHO can find the optimum at
an extremely fast speed within 20 iterations, and the accurate approximation of the global
optimum is almost the best. The last behaviour is observed in F5, F7, F12, F13, and F20 and
shows the local optimum avoidance capability of IHAOHHO. The proposed algorithm
jumps out of the local optimum after several times of stagnation. This is probably due
to the effect of nonlinear escaping energy parameter. Overall, IHAOHHO can efficiently
achieve great solutions for all these 23 standard benchmark functions.

In addition, the search history, trajectory, and average fitness figures of several func-
tions are given in Figure 6. Search history figures show us how the algorithm explores and
exploits the search space while solving optimization problems. Trajectory figures reveal the
order in which an algorithm explores and exploits the search space. Meanwhile, average
fitness presents if exploration and exploitation are conducive to improve the first random
population, and an accurate approximation of the global optimum can be found in the end.
Inspecting Figure 6, the IHAOHHO algorithm samples the most promising areas observed
from search histories. Because of the fast convergence, the vast majority of search agents
are concentrated near the global optimum. From trajectory and average fitness maps, it can
be noticed that exploration almost spread throughout the iterative process until the last
50 iterations focused on exploitation, and average fitness decreased abruptly and leveled
off accordingly. The average fitness figures also show the great improvement of the first
random population and the acquisition of the final global optimal accurate approximation.

4.1.4. The Wilcoxon Test

Furthermore, the Wilcoxon signed-rank test results are listed in Table 6, which is
used to evaluate the statistical performance differences between the proposed IHAOHHO
algorithm with other algorithms. It is worth noting that a p-value less than 0.05 means that
there is a significant difference between the two compared algorithms. In the light of this
criterion, IHAOHHO outperforms all other algorithms in varying degrees. This superiority
is statistically significant on unimodal functions F1–F7, which indicates that IHAOHHO
benefits from high exploitation. IHAOHHO also shows better results on multimodal
function F8–F23, from which we may conclude that IHAOHHO has a high capability of
exploration to investigate the most promising regions in the search space. To sum up, the
IHAOHHO algorithm can provide better results on almost all benchmark functions than
other comparative algorithms.

4.1.5. Computation Time

The computation time is useful to assess the efficiency for an algorithm in solving
optimization problems. From the computation time results of all algorithms shown in
Table 7, it is obvious that IHAOHHO spent more time in solving these benchmark functions
than other comparative algorithms, especially the earlier classic methods of SSA, WOA,
GWO, and PSO. The computation time of IHAOHHO is also slightly longer than the
basic AO and HHO, which may be ascribed to the ROBL strategy. ROBL produces one
more candidate solution in each iteration, increasing the computation time. However, the
IHAOHHO took less time than SMA on most test functions. In view of the best search
performance of IHAOHHO and the rapid development of the computational machines, it
is acceptable for the proposed algorithm to improve the optimization performance.

117

Processes 2021, 9, 1551

T
a

b
le

7
.

C
om

pu
ta

ti
on

ti
m

e
re

su
lt

s
of

al
go

ri
th

m
s

on
23

be
nc

hm
ar

k
fu

nc
ti

on
s.

F
IH

A
O

H
H

O
A

O
H

H
O

S
M

A
S

S
A

W
O

A
G

W
O

P
S

O

F1
2.

85
39

×
10

−1
2.

32
53

×
10

−1
1.

37
13

×
10

−1
8.

89
97

×
10

−1
8.

54
20

×
10

−2
7.

58
75

×
10

−2
1.

14
91

×
10

−1
6.

51
32

×
10

−2
F2

2.
89

46
×

10
−1

2.
52

14
×

10
−1

1.
46

72
×

10
−1

9.
12

03
×

10
−1

1.
03

46
×

10
−1

1.
19

82
×

10
−1

1.
27

61
×

10
−1

7.
38

14
×

10
−2

F3
1.

60
30

×
10

0
9.

28
90

×
10

−1
9.

33
24

×
10

−1
1.

26
73

×
10

0
4.

63
82

×
10

−1
3.

94
00

×
10

−1
4.

27
00

×
10

−1
3.

92
04

×
10

−1
F4

2.
80

70
×

10
−1

1.
97

87
×

10
−1

1.
57

12
×

10
−1

9.
53

99
×

10
−1

8.
23

41
×

10
−2

7.
37

67
×

10
−2

1.
14

42
×

10
−1

6.
49

15
×

10
−2

F5
3.

37
25

×
10

−1
2.

22
14

×
10

−1
2.

21
23

×
10

−1
1.

02
04

×
10

0
9.

84
70

×
10

−2
8.

77
78

×
10

−2
1.

26
67

×
10

−1
7.

85
03

×
10

−2
F6

2.
77

07
×

10
−1

2.
03

99
×

10
−1

1.
78

00
×

10
−1

9.
09

77
×

10
−1

8.
27

25
×

10
−2

7.
42

51
×

10
−2

1.
12

48
×

10
−1

6.
57

08
×

10
−2

F7
5.

01
09

×
10

−1
3.

00
78

×
10

−1
2.

86
62

×
10

−1
9.

54
43

×
10

−1
1.

38
80

×
10

−1
1.

28
62

×
10

−1
1.

67
01

×
10

−1
1.

19
76

×
10

−1
F8

3.
93

95
×

10
−1

2.
35

81
×

10
−1

2.
32

76
×

10
−1

9.
76

95
×

10
−1

1.
05

31
×

10
−1

9.
74

43
×

10
−2

1.
36

74
×

10
−1

9.
17

20
×

10
−2

F9
3.

23
79

×
10

−1
1.

99
07

×
10

−1
1.

95
94

×
10

−1
9.

51
32

×
10

−1
9.

52
04

×
10

−2
7.

92
54

×
10

−2
1.

18
01

×
10

−1
7.

44
41

×
10

−2
F1

0
3.

56
02

×
10

−1
2.

30
37

×
10

−1
2.

31
25

×
10

−1
9.

48
70

×
10

−1
1.

03
99

×
10

−1
9.

00
64

×
10

−2
1.

27
25

×
10

−1
8.

39
86

×
10

−2
F1

1
4.

06
59

×
10

−1
2.

43
03

×
10

−1
2.

41
98

×
10

−1
9.

30
26

×
10

−1
1.

13
82

×
10

−1
1.

00
89

×
10

−1
1.

35
66

×
10

−1
9.

24
99

×
10

−2
F1

2
1.

01
31

×
10

0
6.

00
06

×
10

−1
6.

94
00

×
10

−1
1.

19
39

×
10

0
2.

64
01

×
10

−1
2.

52
29

×
10

−1
3.

42
37

×
10

−1
2.

45
17

×
10

−1
F1

3
1.

03
00

×
10

0
5.

61
12

×
10

−1
6.

12
05

×
10

−1
1.

15
49

×
10

0
2.

73
93

×
10

−1
2.

72
08

×
10

−1
3.

39
15

×
10

−1
2.

47
46

×
10

−1
F1

4
2.

31
59

×
10

0
1.

21
73

×
10

0
1.

51
68

×
10

0
8.

96
76

×
10

−1
5.

98
18

×
10

−1
6.

07
22

×
10

−1
5.

93
28

×
10

−1
5.

54
50

×
10

−1
F1

5
2.

61
35

×
10

−1
1.

70
86

×
10

−1
1.

70
31

×
10

−1
3.

41
36

×
10

−1
9.

90
34

×
10

−2
7.

54
82

×
10

−2
6.

41
04

×
10

−2
4.

25
46

×
10

−2
F1

6
2.

07
19

×
10

−1
1.

41
46

×
10

−1
1.

38
59

×
10

−1
2.

71
70

×
10

−1
5.

90
81

×
10

−2
4.

96
66

×
10

−2
6.

00
33

×
10

−2
4.

11
93

×
10

−2
F1

7
1.

81
38

×
10

−1
1.

35
29

×
10

−1
1.

58
33

×
10

−1
2.

73
11

×
10

−1
5.

29
79

×
10

−2
4.

13
21

×
10

−2
4.

15
56

×
10

−2
2.

30
66

×
10

−2
F1

8
1.

81
08

×
10

−1
1.

31
83

×
10

−1
1.

26
93

×
10

−1
2.

70
41

×
10

−1
5.

44
71

×
10

−2
4.

04
87

×
10

−2
4.

17
52

×
10

−2
2.

28
30

×
10

−2
F1

9
3.

51
19

×
10

−1
2.

46
35

×
10

−1
2.

40
16

×
10

−1
3.

41
25

×
10

−1
9.

85
44

×
10

−2
8.

59
03

×
10

−2
9.

20
49

×
10

−2
7.

02
53

×
10

−2
F2

0
3.

71
06

×
10

−1
2.

25
49

×
10

−1
2.

46
56

×
10

−1
4.

05
19

×
10

−1
1.

02
70

×
10

−1
9.

02
94

×
10

−2
9.

80
20

×
10

−2
7.

20
95

×
10

−2
F2

1
5.

84
51

×
10

−1
3.

21
69

×
10

−1
3.

63
85

×
10

−1
4.

17
13

×
10

−1
1.

49
20

×
10

−1
1.

36
64

×
10

−1
1.

38
85

×
10

−1
1.

21
70

×
10

−1
F2

2
7.

28
61

×
10

−1
3.

94
14

×
10

−1
4.

39
43

×
10

−1
4.

90
71

×
10

−1
1.

87
89

×
10

−1
1.

71
54

×
10

−1
1.

76
38

×
10

−1
1.

52
15

×
10

−1
F2

3
9.

45
49

×
10

−1
4.

94
12

×
10

−1
5.

74
64

×
10

−1
4.

95
27

×
10

−1
2.

35
51

×
10

−1
2.

77
17

×
10

−1
2.

25
49

×
10

−1
2.

05
13

×
10

−1

118

Processes 2021, 9, 1551

4.2. Experiments on Industrial Engineering Design Problems

Most optimization problems have constraints in the real world, so considering equality
and inequality constraints during optimization is a necessary process. In this subsection,
four well-known constrained industrial engineering design problems, which include pres-
sure vessel design problem, speed reducer design problem, tension/compression spring
design problem, and three-bar truss design problem, were solved to further verify the
performance of the proposed IHAOHHO algorithm. The results of IHAOHHO were com-
pared to various classical optimizers proposed in previous studies. The parameter settings
were as same as the previous experiments.

4.2.1. Pressure Vessel Design Problem

The objective of this problem was to minimize the fabrication cost of the cylindrical
pressure vessel to meet the pressure requirements. As shown in Figure 7, four structural
parameters in this problem needed to be minimized, including the thickness of the shell
(Ts), the thickness of the head (Th), inner radius (R), and the length of the cylindrical section
without the head (L). The formulation of four optimization constraints can be described
as follows:

Figure 7. Pressure vessel design problem.

Consider →
x = [x1 x2 x3 x4] = [Ts Th R L], (27)

Minimize

f (
→
x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3, (28)

Subject to
g1(

→
x) = −x1 + 0.0193x3 ≤ 0,

g2(
→
x) = −x3 + 0.00954x3 ≤ 0,

g3(
→
x) = −πx2

3x4 − 4
3 πx3

3 + 1296000 ≤ 0,

g4(
→
x) = x4 − 240 ≤ 0,

(29)

Variable range
0 ≤ x1 ≤ 99,
0 ≤ x2 ≤ 99,
10 ≤ x3 ≤ 200,
10 ≤ x4 ≤ 200,

(30)

119

Processes 2021, 9, 1551

From the results in Table 8, it is obvious that IHAOHHO can obtain superior optimal
values compared to AO, HHO, SMA, WOA, GWO, MVO, GA, ES, and CPSO [65].

Table 8. Comparison of IHAOHHO results with other competitors for the pressure vessel
design problem.

Algorithm
Optimum Variables Optimum

CostTs Th R L

IHAOHHO 0.8363559 0.4127868 45.08462 142.9202 5932.3392
AO [55] 1.0540 0.182806 59.6219 38.8050 5949.2258

HHO [42] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
SMA [41] 0.7931 0.3932 40.6711 196.2178 5994.1857
WOA [38] 0.8125 0.4375 42.0982699 176.638998 6059.7410
GWO [32] 0.8125 0.4345 42.0892 176.7587 6051.5639
MVO [23] 0.8125 0.4375 42.090738 176.73869 6060.8066

GA [3] 0.8125 0.4375 42.097398 176.65405 6059.94634
ES [6] 0.8125 0.4375 42.098087 176.640518 6059.74560

CPSO [65] 0.8125 0.4375 42.091266 176.7465 6061.0777

4.2.2. Speed Reducer Design Problem

This problem aims to optimize seven variables to minimize the speed reducer’s total
weights, which include the face width (x1), module of teeth (x2), a discrete design variable
on behalf of the teeth in the pinion (x3), length of the first shaft between bearings (x4),
length of the second shaft between bearings (x5), diameters of the first shaft (x6), and
diameters of the second shaft (x7). Four constraints—covering stress, bending stress of
the gear teeth, stresses in the shafts, and transverse deflections of the shafts, as shown in
Figure 8—should be satisfied. The mathematical formulation is represented as follows:

Figure 8. Speed reducer design problem.

Minimize

f (
→
x) = 0.7854x1x2

2(3.3333x2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7),
(31)

120

Processes 2021, 9, 1551

Subject to
g1(

→
x) = 27

x1x2
2x3

− 1 ≤ 0,

g2(
→
x) = 397.5

x1x2
2x2

3
− 1 ≤ 0,

g3(
→
x) = 1.93x3

4
x2x3x4

6
− 1 ≤ 0,

g4(
→
x) = 1.93x3

5
x2x3x4

7
− 1 ≤ 0,

g5(
→
x) =

√
(

745x4
x2x3

)
2
+16.9×106

110.0x3
6

− 1 ≤ 0,

g6(
→
x) =

√
(

745x4
x2x3

)
2
+157.5×106

85.0x3
6

− 1 ≤ 0,

g7(
→
x) = x2x3

40 − 1 ≤ 0,

g8(
→
x) = 5x2

x1
− 1 ≤ 0,

g9(
→
x) = x1

12x2
− 1 ≤ 0,

g10(
→
x) = 1.5x6+1.9

x4
− 1 ≤ 0,

g11(
→
x) = 1.1x7+1.9

x5
− 1 ≤ 0,

(32)

Variable range
2.6 ≤ x1 ≤ 3.6,
0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5,

(33)

Compared to AO, PSO, AOA, MFO [66], GA, SCA, HS [67], FA [68], and MDA [69],
IHAOHHO can obviously achieve better results in the speed reducer design problem, as
shown in Table 9.

Table 9. Comparison of IHAOHHO results with other competitors for the speed reducer design problem.

Algorithm
Optimum Variables Optimum

Weightx1 x2 x3 x4 x5 x6 x7

IHAOHHO 3.49924 0.7 17 7.3 7.8191 3.35006 5.28531 2996.0935
AO [55] 3.5021 0.7 17 7.3099 7.7476 3.3641 5.2994 3007.7328
PSO [26] 3.5001 0.7 17.0002 7.5177 7.7832 3.3508 5.2867 3145.922
AOA [25] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157
MFO [66] 3.49745 0.7 17 7.82775 7.71245 3.35178 5.28635 2998.9408

GA [3] 3.51025 0.7 17 8.35 7.8 3.36220 5.28772 3067.561
SCA [24] 3.50875 0.7 17 7.3 7.8 3.46102 5.28921 3030.563
HS [67] 3.52012 0.7 17 8.37 7.8 3.36697 5.28871 3029.002
FA [68] 3.50749 0.7001 17 7.71967 8.08085 3.35151 5.28705 3010.13749

MDA [69] 3.5 0.7 17 7.3 7.67039 3.54242 5.24581 3019.58336

4.2.3. Tension/Compression Spring Design Problem

In this case, the intention is to minimize the weight of the tension/compression spring
shown in Figure 9. Constraints on surge frequency, shear stress, and deflection must be
satisfied during optimum design. There are three parameters that needed to be minimized,

121

Processes 2021, 9, 1551

including the wire diameter (d), mean coil diameter (D), and the number of active coils (N).
The mathematical form of this problem can be written as follows:

Figure 9. Tension/compression spring design problem.

Consider →
x = [x1 x2 x3 x4] = [d D N], (34)

Minimize
f (

→
x) = (x3 + 2)x2x2

1, (35)

Subject to

g1(
→
x) = 1 − x3

2x3

71,785x4
1
≤ 0,

g2(
→
x) = 4x2

2−x1x2
12,566(x2x3

1−x4
1)
+ 1

5108x2
1
≤ 0,

g3(
→
x) = 1 − 140.45x1

x2
2x3

≤ 0,

g4(
→
x) = x1+x2

1.5 − 1 ≤ 0,

(36)

Variable range
0.05 ≤ x1 ≤ 2.00,
0.25 ≤ x2 ≤ 1.30,
2.00 ≤ x3 ≤ 15.00,

(37)

The proposed IHAOHHO is compared with AO, HHO, SSA, WOA, GWO, PSO, MVO,
GA, and HS algorithms. Results are listed in Table 10 and show that the IHAOHHO can
attain the best weight values compared to all other algorithms. Additionally, it is clear that
the proposed method found a more accurate design with new parameter values.

Table 10. Comparison of IHAOHHO results with other competitors for the tension/compression
spring design problem.

Algorithm
Optimum Variables Optimum

Weightd D N

IHAOHHO 0.055883 0.52784 4.7603 0.011144
AO [55] 0.0502439 0.35262 10.5425 0.011165

HHO [42] 0.051796393 0.359305355 11.138859 0.012665443
SSA [39] 0.051207 0.345215 12.004032 0.0126763

WOA [38] 0.051207 0.345215 12.004032 0.0126763
GWO [32] 0.05169 0.356737 11.28885 0.012666
PSO [26] 0.051728 0.357644 11.244543 0.0126747

MVO [23] 0.05251 0.37602 10.33513 0.012790
GA [3] 0.051480 0.351661 11.632201 0.01270478
HS [67] 0.051154 0.349871 12.076432 0.0126706

122

Processes 2021, 9, 1551

4.2.4. Three-Bar Truss Design Problem

The three-bar truss design problem is a classical optimization application in civil
engineering field. The main intention of this case is to minimize the weight of a truss with
three bars by considering two structural parameters as illustrated in Figure 10. Deflection,
stress, and buckling are the three main constrains. The mathematical formulation of this
problem is given:

Figure 10. Three-bar truss design problem.

Consider →
x = [x1 x2] = [A1 A2], (38)

Minimize
f (

→
x) = (2

√
2x1 + x2) ∗ l, (39)

Subject to

g1(
→
x) =

√
2x1+x2√

2x2
1+2x1x2

P − σ ≤ 0,

g2(
→
x) = x2√

2x2
1+2x1x2

P − σ ≤ 0,

g3(
→
x) = 1√

2x2+x1
P − σ ≤ 0,

(40)

Variable range
0 ≤ x1, x2 ≤ 1, (41)

where l = 100cm, P = 2KN/cm2, σ = 2KN/cm2. Results of IHAOHHO for solving three-
bar truss design problem are listed in Table 11, which are compared with AO, HHO, SSA,
AOA, MVO, MFO, and GOA [70]. It can be observed that IHAOHHO outperforms other
optimization algorithms published in the literature.

Table 11. Comparison of IHAOHHO results with other competitors for the three-bar truss
design problem.

Algorithm
Optimum Variables

Optimum Weight
x1 x2

IHAOHHO 0.79002 0.40324 263.8622
AO [55] 0.7926 0.3966 263.8684

HHO [42] 0.788662816 0.408283133832900 263.8958434
SSA [39] 0.78866541 0.408275784 263.89584

AOA [25] 0.79369 0.39426 263.9154
MVO [23] 0.78860276 0.408453070000000 263.8958499
MFO [66] 0.788244771 0.409466905784741 263.8959797
GOA [70] 0.788897555578973 0.407619570115153 263.895881496069

As a summary, this section demonstrates the superiority of the proposed IHAOHHO
algorithms in different characteristics and real case studies. IHAOHHO is able to outper-
form the original AO and HHO and other well-known algorithms with very competitive

123

Processes 2021, 9, 1551

results, which were derived from the robust exploration and exploitation capabilities of
IHAOHHO. Excellent performance in solving industrial engineering design problems
indicates that IHAOHHO can be widely used in real-world optimization problems.

5. Conclusions

This study proposed an improved hybrid Aquila Optimizer and Harris Hawks Op-
timization by combining the exploration part of AO with the exploitation part of HHO
and a nonlinear escaping energy parameter and random opposition-based learning (ROBL)
strategy. The proposed method integrated the mentioned search methods to tackle the
weakness of the traditional search methods. The proposed IHAOHHO algorithm was
tested using 23 mathematical benchmark functions to analyze its exploration, exploitation,
local optima avoidance capabilities, and convergence behaviors. Results show competitive
results compared to other state-of-the-art meta-heuristic algorithms. To further verify the
superiority of IHAOHHO, four industrial engineering design problems were solved. The
results are also competitive with other meta-heuristic algorithms.

As future perspectives, binary and multi-objective versions of IHAOHHO will be
considered. More applications of this algorithm in different fields are valuable works,
including text clustering, scheduling problems, appliances management, parameters esti-
mation, multi-objective engineering problems, feature selection, test classification, image
segmentation problems, network applications, sentiment analysis, etc.

Author Contributions: Conceptualization, H.J. and L.A.; methodology, S.W.; software, R.Z.; valida-
tion, S.W., Q.L. and R.Z.; formal analysis, S.W.; writing—original draft preparation, S.W.; writing—
review and editing, S.W.; visualization, Q.L.; supervision, L.A.; project administration, H.J.; funding
acquisition, S.W. and H.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Sanming University Introduces High-level Talents to Start
Scientific Research Funding Support Project, grant number 20YG01, 20YG14; the Guiding Science and
Technology Projects in Sanming City, grant number 2020-S-39, 2020-G-61, 2021-S-8; the Educational
Research Projects of Young and Middle-aged Teachers in Fujian Province, grant number JAT200638,
JAT200618; the Scientific Research and Development Fund of Sanming University, grant number
B202029, B202009; Collaborative education project of industry university cooperation of the Ministry
of Education, grant number 202002064014; School level education and teaching reform project of
Sanming University, grant number J2010306, J2010305; and Higher education research project of
Sanming University, grant number SHE2102, SHE2013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abualigah, L.; Diabat, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608.
[CrossRef]

2. Abualigah, L.; Diabat, A. A comprehensive survey of the Grasshopper optimization algorithm: Results, variants, and applications.
Neural Comput. Appl. 2020, 32, 15533–15556. [CrossRef]

3. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–72. [CrossRef]
4. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
5. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA,

USA, 1992.
6. Rechenberg, I. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie; Springer: Berlin/Heidelberg, Germany,

1978; Volume 8, pp. 83–114.
7. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
8. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [CrossRef]
9. Dasgupta, D.; Michalewicz, Z. Evolutionary Algorithms in Engineering Applications; DBLP: Trier, Germany, 1997.

124

Processes 2021, 9, 1551

10. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simmulated annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
11. Erol, O.K.; Eksin, I. A new optimization method: Big bang-big crunch. Adv. Eng. Softw. 2006, 37, 106–111. [CrossRef]
12. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
13. Webster, B.; Bernhard, P.J. A local search optimization algorithm based on natural principles of gravitation. In Information &

Knowledge Engineering, Proceedings of the 2003 International Conference on Information and Knowledge Engineering (IKE’03), Las Vegas,
NV, USA, 23–26 June 2003; DBLP: Trier, Germany, 2003.

14. Asef, F.; Majidnezhad, V.; Feizi-Derakhshi, M.R.; Parsa, S. Heat transfer relation-based optimization algorithm (HTOA). Soft
Comput. 2021, 1–30. [CrossRef]

15. Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010, 213, 267–289. [CrossRef]
16. Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. Expert Syst. Appl. 2011, 38,

13170–13180. [CrossRef]
17. Formato, R.A. Central force optimization: A new metaheuristic with applications in applied electromagnetics. Prog. Electromag.

Res. 2007, 77, 425–491. [CrossRef]
18. Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012, 112, 283–294. [CrossRef]
19. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
20. Du, H.; Wu, X.; Zhuang, J. Small-world optimization algorithm for function optimization. In Advances in Natural Computation,

Advances in Natural Computation, Second International Conference; ICNC: Xi’an, China, 2006.
21. Shah-Hosseini, H. Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous

optimisation. Int. J. Comput. Sci. Eng. 2011, 6, 132–140. [CrossRef]
22. Moghaddam, F.F.; Moghaddam, R.F.; Cheriet, M. Curved space optimization: A random search based on general relativity theory.

arXiv 2012, arXiv:1208.2214.
23. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2015, 27, 495–513. [CrossRef]
24. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96. [CrossRef]
25. Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
26. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural

Networks (ICNN ’93), Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995.
27. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. 2006, 1, 28–39. [CrossRef]
28. Mucherino, A.; Seref, O.; Seref, O.; Kundakcioglu, O.E.; Pardalos, P. Monkey search: A novel metaheuristic search for global

optimization. Am. Inst. Phys. 2007, 953, 162–173. [CrossRef]
29. Yang, X.S. Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspired Comput. 2010, 2, 78–84.

[CrossRef]
30. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO); Springer:

Berlin/Heidelberg, Germany, 2010.
31. Gandomi, A.H.; Alavi, A.H. Krill Herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,

17, 4831–4845. [CrossRef]
32. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
33. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
34. Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26,

69–74. [CrossRef]
35. Yang, S.; Jiang, J.; Yan, G. A dolphin partner optimization. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems

(GCIS 2009), Xiamen, China, 19–21 May 2009; IEEE: Piscataway, NJ, USA, 2009.
36. Mirjalili, S. The Ant Lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
37. Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [CrossRef]
38. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
39. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
40. Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020,

53, 2237–2264. [CrossRef]
41. Li, S.M.; Chen, H.L.; Wang, M.J.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization.

Future Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
42. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.L. Harris Hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
43. Yousri, D.; Fathy, A.; Thanikanti, S.B. Recent methodology based Harris Hawks optimizer for designing load frequency control

incorporated in multi-interconnected renewable energy plants. Sustain. Energy Grids Netw. 2020, 22, 100352. [CrossRef]
44. Bui, D.T.; Moayedi, H.; Kalantar, B.; Osouli, A.; Rashid, A. A Novel Swarm Intelligence Technique Harris Hawks Optimization

for Spatial Assessment of Landslide Susceptibility. Sensors 2019, 19, 3590. [CrossRef]

125

Processes 2021, 9, 1551

45. Golilarz, N.A.; Gao, H.; Demirel, H. Satellite image de-noising with Harris Hawks meta heuristic optimization algorithm and
improved adaptive generalized gaussian distribution threshold function. IEEE Access 2019, 7, 57459–57468. [CrossRef]

46. Jia, H.; Peng, X.; Kang, L.; Li, Y.; Sun, K. Pulse coupled neural network based on Harris Hawks optimization algorithm for image
segmentation. Multimed Tools Appl. 2020, 79, 28369–28392. [CrossRef]

47. Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic Harris Hawks Optimization with Mutation Mechanism for Satellite Image
Segmentation. Remote Sens. 2019, 11, 1421. [CrossRef]

48. Yousri, D.; Mirjalili, S.; Machado, J.A.T.; Thanikantie, S.B.; Elbaksawi, O.; Fathy, A. Efficient fractional-order modified Harris
Hawks optimizer for proton exchange membrane fuel cell modeling. Eng. Appl. Artif. Intell. 2021, 100, 104193. [CrossRef]

49. Gupta, S.; Deep, K.; Heidari, A.A.; Moayedi, H.; Wang, M. Opposition-based Learning Harris Hawks Optimization with
Advanced Transition Rules: Principles and Analysis. Expert Syst. Appl. 2020, 158, 113510. [CrossRef]

50. Hussien, A.G.; Amin, M. A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local
search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cyber. 2021, 1–28. [CrossRef]

51. Sihwail, R.; Omar, K.; Ariffin, K.; Tubishat, M. Improved Harris Hawks Optimization Using Elite Opposition-Based Learning and
Novel Search Mechanism for Feature Selection. IEEE Access 2020, 8, 121127–121145. [CrossRef]

52. Bao, X.; Jia, H.; Lang, C. A Novel Hybrid Harris Hawks Optimization for Color Image Multilevel Thresholding Segmentation.
IEEE Access 2019, 7, 76529–76546. [CrossRef]

53. Houssein, E.H.; Hosney, M.E.; Elhoseny, M.; Oliva, D.; Hassaballah, M. Hybrid Harris Hawks Optimization with Cuckoo Search
for Drug Design and Discovery in Chemoinformatics. Sci. Rep. 2020, 10, 14439. [CrossRef] [PubMed]

54. Kaveh, A.; Rahmani, P.; Eslamlou, A.D. An efficient hybrid approach based on Harris Hawks optimization and imperialist
competitive algorithm for structural optimization. Eng. Comput. 2021, 4598. [CrossRef]

55. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic
optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

56. Tang, A.D.; Han, T.; Xu, D.W.; Xie, L. Chaotic Elite Harris Hawk Optimization Algorithm. J. Comput. Appl. 2021, 1–10. Available
online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJY2021011300H&v=
5lc3RO%25mmd2BEUUC%25mmd2FhVq8jnE%25mmd2BxfkAnjCOOEL7xcSF5jPQfItuqOALm2aHD2u1aGLhSpw1 (accessed on
15 January 2021).

57. Tizhoosh, H. Opposition-based learning: A new scheme for machine intelligence. In Control and Automation, Proceedings of the
International Conference on Computational Intelligence for Modeling, Vienna, Austria, 28–30 November 2005; IEEE: Piscataway, NJ,
USA, 2005.

58. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-based differential evolution. IEEE Trans. Evol. Comput. 2014, 12,
64–79. [CrossRef]

59. Jia, Z.; Li, L.; Hui, S. Artificial Bee Colony Using Opposition-Based Learning. Adv. Intell. Syst. Comput. 2015, 329, 3–10.
60. Elaziz, M.A.; Oliva, D.; Xiong, S. An improved Opposition-Based Sine Cosine Algorithm for global optimization. Expert Syst.

Appl. 2017, 90, 484–500. [CrossRef]
61. Ewees, A.A.; Elaziz, M.A.; Houssein, E.H. Improved Grasshopper Optimization Algorithm using Opposition-based Learning.

Expert Syst. Appl. 2018, 112, 156–172. [CrossRef]
62. Fan, C.; Zheng, N.; Zheng, J.; Xiao, L.; Liu, Y. Kinetic-molecular theory optimization algorithm using opposition-based learning

and varying accelerated motion. Soft Comput. 2020, 24, 12709–12730. [CrossRef]
63. Long, W.; Jiao, J.; Liang, X.; Cai, S.; Xu, M. A Random Opposition-Based Learning Grey Wolf Optimizer. IEEE Access 2019, 7,

113810–113825. [CrossRef]
64. Molga, M.; Smutnicki, C. Test Functions for Optimization Needs. 2005. Available online: http://www.robertmarks.org/Classes/

ENGR5358/Papers/functions.pdf (accessed on 1 January 2005).
65. He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng.

Appl. Artif. Intell. 2007, 20, 89–99. [CrossRef]
66. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
67. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
68. Baykasoğlu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft

Comput. 2015, 36, 152–164. [CrossRef]
69. Lu, S.; Kim, H.M. A regularized inexact penalty decomposition algorithm for multidisciplinary design optimization problems

with complementarity constraints. J. Mech. Des. 2010, 132, 041005. [CrossRef]
70. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]

126

processes

Article

Deep Ensemble of Slime Mold Algorithm and Arithmetic
Optimization Algorithm for Global Optimization

Rong Zheng 1,*, Heming Jia 1,*, Laith Abualigah 2,3,4, Qingxin Liu 5 and Shuang Wang 1

Citation: Zheng, R.; Jia, H.;

Abualigah, L.; Liu, Q.; Wang, S. Deep

Ensemble of Slime Mold Algorithm

and Arithmetic Optimization

Algorithm for Global Optimization.

Processes 2021, 9, 1774. https://

doi.org/10.3390/pr9101774

Academic Editor: Jae-Yoon Jung

Received: 18 August 2021

Accepted: 2 October 2021

Published: 4 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Engineering, Sanming University, Sanming 365004, China; wang_shuang@fjsmu.edu.cn
2 Research and Innovation Department, Skyline University College, Sharjah 1797, United Arab Emirates;

Aligah.2020@gmail.com
3 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
4 School of Computer Science, Universiti Sains Malaysia, Gelugor 11800, Malaysia
5 School of Computer Science and Technology, Hainan University, Haikou 570228, China;

qxliu@hainanu.edu.cn
* Correspondence: zhengr@fjsmu.edu.cn (R.Z.); jiaheming@fjsmu.edu.cn (H.J.)

Abstract: In this paper, a new hybrid algorithm based on two meta-heuristic algorithms is presented
to improve the optimization capability of original algorithms. This hybrid algorithm is realized by the
deep ensemble of two new proposed meta-heuristic methods, i.e., slime mold algorithm (SMA) and
arithmetic optimization algorithm (AOA), called DESMAOA. To be specific, a preliminary hybrid
method was applied to obtain the improved SMA, called SMAOA. Then, two strategies that were
extracted from the SMA and AOA, respectively, were embedded into SMAOA to boost the optimizing
speed and accuracy of the solution. The optimization performance of the proposed DESMAOA was
analyzed by using 23 classical benchmark functions. Firstly, the impacts of different components
are discussed. Then, the exploitation and exploration capabilities, convergence behaviors, and
performances are evaluated in detail. Cases at different dimensions also were investigated. Compared
with the SMA, AOA, and another five well-known optimization algorithms, the results showed that
the proposed method can outperform other optimization algorithms with high superiority. Finally,
three classical engineering design problems were employed to illustrate the capability of the proposed
algorithm for solving the practical problems. The results also indicate that the DESMAOA has very
promising performance when solving these problems.

Keywords: slime mold algorithm; arithmetic optimization algorithm; meta-heuristics algorithm;
global optimization; engineering design problem

1. Introduction

Nowadays, optimization problems exist in various scenarios, for instance, the en-
gineering design problems. The objective of these optimization problems is to find the
extreme values with determined constraint conditions. Then, commonly, the cost is re-
duced as much as possible. To tackle these problems, researchers have proposed many
optimization algorithms [1–4]. Generally speaking, traditional optimization algorithms,
such as gradient-based methods, are susceptible to the initial positions and have difficulties
to deal with the non-convex problems that may contain a mass of local optimums. In
practice, when we are faced with complex constraint conditions in the real world, it is
more essential to obtain the optimal solutions within limited time and cost. At this point,
the important thing is not to find the theoretical optimal result but to obtain as good an
approximate solution as possible under restricted conditions. For this purpose, many
stochastic optimizers have been developed and employed to solve complex optimization
problems. As its name implies, the random operator is the main feature for a stochastic
optimizer, which allows the algorithms to avoid the stagnation and search the whole search
region for global optimization result.

Processes 2021, 9, 1774. https://doi.org/10.3390/pr9101774 https://www.mdpi.com/journal/processes127

Processes 2021, 9, 1774

The meta-heuristic algorithms (MAs) have shown very powerful capability in the
fields of computational sciences. In general, MAs have four types according to the sources
of inspiration, namely, physics-inspired (PI), evolution-inspired (EI), swarm-inspired (SI),
and human-inspired (HI). Some representative algorithms are shown below:

• Physics-inspired: multi-verse optimizer (MVO) [5], gravitational search algorithm
(GSA) [6], thermal exchange optimization (TEO) [7], heat transfer relation-based
optimization algorithm (HTOA) [8].

• Evolution-inspired: genetic algorithm (GA) [9], differential evolution (DE) [10], evolu-
tionary programming (EP) [11].

• Swarm-inspired: particle swarm optimization (PSO) [12], emperor penguin optimizer
(EPO) [13], Aquila optimizer (AO) [14], remora optimization algorithm (ROA) [4],
marine predators algorithm (MPA) [15].

• Human-inspired: teaching–learning-based optimization (TLBO) [16], social group op-
timization (SGO) [17], β-hill climbing (βHC) [18], coronavirus optimization algorithm
(COA) [19].

For a meta-heuristic algorithm, one important thing is to balance of the global search
and local search [20]. It is known that the search agents are first randomly generated
within the search spaces. Then, positions of these search agents are updated according to
the formulas in the algorithm. In the early stage, drastic exploration in the search space
should be performed as much as possible in the early stage. Then, in the later phase,
more local exploitation should be conducted to improve the accuracy of obtained optimal
solution. Although hundreds of MAs have been proposed for the optimization problems,
there is still need for new algorithms to solve these optimization problems. According
to the No-Free-Lunch (NFL) theory [21], on one optimization algorithm can solve all the
optimization problems. Generally speaking, it is common that MAs suffer from local
optimum stagnation and poor convergence speed as a result of poor optimization ability.
Thus, it is very important to develop new optimization algorithms or improve existing
MAs by taking some effective measures. Up until now, there have been three primary
methods for the improvements of the existing algorithms, which are listed in Table 1.

The slime mold algorithm (SMA) [33] and arithmetic optimization algorithm (AOA) [34]
are two newly proposed MAs, and both have the merits of simplicity, efficiency, and flexibility.
The SMA has good population diversity and stable performance when solving optimization
problems. However, it gets stuck in local optima sometimes for the limited global search
capability. On the contrary, the AOA has powerful exploration capability by using the
arithmetic operators. However, the performance of AOA is not stable because of the poor
population diversity. Therefore, the SMA and AOA are considered to be hybridized together
in this paper for solving the global optimization problems. To evaluate the performance
of proposed algorithm, we employed 23 classical benchmark functions and 4 constrained
engineering design problems. The main contributions of this works are as follows:

1. Hybridizing the slime mold algorithm (SMA) [33] and arithmetic optimization al-
gorithm (AOA) [34] named SMAOA to improve the exploration capability of origi-
nal SMA.

2. Applying the random contraction strategy (RCS), which is inspired from SMA to help
the SMAOA jump out from local optimum.

3. Applying the subtraction and addition strategy (SAS), which is extracted from AOA
to enhance the exploitation ability of SMAOA.

4. When the RCS and SAS were applied on SMAOA, the DESMAOA was finally ob-
tained. By comparing seven well-known optimization algorithms, we identified the
proposed DESMAOA to be powerful according to the experimental results.

128

Processes 2021, 9, 1774

Table 1. A summary of methods for improving the optimization algorithms developed in the literature.

Name of Method Representative Algorithm Description

Hybridize two or
more algorithms

Hybrid sperm swarm optimization and
gravitational search algorithm (HSSOGSA) [22]

The capability of exploitation in SSO and the capability of
exploration in GSA are combined for better performance.

Imperialist competitive Harris hawks optimization
(ICHHO) [23]

The exploration of ICA is utilized to improve the HHO for
global optimization.

Hybrid particle swarm and spotted hyena
optimizer (HPSSHO) [24]

Particle swarm algorithm is used to improve the hunting strategy of
spotted hyena optimizer.

Sine-cosine and spotted hyena-based chimp
optimization algorithm (SSC) [25]

Sine-cosine functions and attacking strategy of SHO are embedded
in ChoA for better exploration and exploitation.

Add one or more
strategies onto
an algorithm

Representative-based grey wolf optimizer
(R-GWO) [26]

A search strategy named representative-based hunting (RH) is
utilized to improve the exploration and diversity of the population

Reinforced salp swarm algorithm
(CMSRSSSA) [27]

An ensemble/composite mutation strategy (CMS) is applied to
boost the exploitation and exploration speed of SSA, while restart

strategy (RS) is used to get away from local optimum.

Boosting quantum rotation gate embedded slime
mold algorithm (WQSMA) [28]

The quantum rotation gate mechanism and the operation from
water cycle are applied to balance the exploration and

exploitation inclinations.

Enhanced salp swarm algorithm (ESSA) [29]
Orthogonal learning, quadratic interpolation, and generalized

oppositional learning are embedded into SSA to boost the global
exploration and local exploitation.

Hybridize two or
more algorithms that
are further improved

by one or
more strategies

Whale optimization with seagull algorithm
(WSOA) [30]

WOA’s contraction surrounding mechanism and SOA’s spiral
attack behavior work together, and then levy flight strategy is

employed on the search process of SOA.

Chaotic sine-cosine firefly (CSCF) algorithm [31] Chaotic form of SCA and FA are integrated together to improve the
convergence speed and efficiency.

Hybrid grasshopper optimization algorithm with
bat algorithm (BGOA) [32]

In BGOA, Levy fight, local search part of BA, and random strategy
are introduced into basic GOA.

The rest of this paper is organized as follows: The basics of SMA and AOA are
described in Section 2. Then, the hybrid method is presented in Section 3, including two
strategies that are obtained from these two algorithms. In Section 4, a series of experimental
tests are conducted to evaluate the performance of proposed DESMAOA. In Section 5,
three engineering design problems are employed to assess the applicability of proposed
algorithm in practice. Finally, Section 6 concludes this paper and provides some directions
for meaningful future research.

2. Preliminaries

2.1. Slime Mold Algorithm (SMA)

The slime mold algorithm (SMA) is a recent meta-heuristic algorithm proposed by
Li et al. in 2020 [33]. The basic idea of SMA is based on the foraging behavior of slime mold,
which have different feedback characteristics according to the food quality. Three special
behaviors of the slime mold are mathematical formulated in the SMA, i.e., approaching
food, wrapping food, and finally grabbling food. First, the process of approaching food
can be expressed as

Xi(t + 1) =

{
Xb(t) + vb · (W · XA(t)− XB(t)), r1 < p

vc · Xi(t), r1 ≥ p
(1)

where t is the number of current iteration, Xi(t + 1) is the newly generated position, Xb(t)
denotes the best position found by slime mold in iteration t, XA(t) and XB(t) are two random
positions selected from the population of slime mold, and r1 is a random value in [0, 1].

vb and vc are the coefficients that simulate the oscillation and contraction mode of
slime mold, respectively, and vc is designed to linearly decrease from one to zero during
the iterations. The range of vb is from −a to a, and the computational formula of a is

a = arctanh(1 − t
T
) (2)

where T is the maximum number of iterations.

129

Processes 2021, 9, 1774

According to Equations (1) and (2), it can be seen that as the number of iterations
increases, the slime mold will wrap the food.

W is a very important factor that indicates the weight of slime mold, and it is calculated
as follows:

W(Smell Index(i)) =

⎧⎨
⎩ 1 + rand · log(bF−S(i)

bF−wF + 1), i ≤ N/2

1 − rand · log(bF−S(i)
bF−wF + 1), i > N/2

(3)

Smell Index(i) = sort(S(i)) (4)

where rand means a random value between 0 and 1; bF and wF are the best and worst
fitness values, respectively, obtained by far; S(i) is the fitness value of ith slime mold; N is
the popsize of the population; and SmellIndex is a ranking of fitness values for individuals
in the population.

In Equation (1), it is also worth noting that p is the probability of determining the
update location for slime mold, which is related to the fitness values of slime mold and
food and can be calculated as follows:

p = tanh|S(i)− DF| (5)

where DF denotes the best fitness obtained by population.
Finally, when the slime mold has found the food (i.e., grabble food), it still has a certain

chance (z) to search other new food, which is formulated as

X(t + 1) = rand · (UB − LB) + LB, r2 < z (6)

where UB and LB are the upper boundary and lower boundary, respectively, and r2 implies
a random value in the region [0, 1].

In general, z should be very small; thus, it is set to 0.03 in SMA. Finally, the pseudo-
code of SMA is given in Algorithm 1.

Algorithm 1. Pseudo-code of SMA

Initialize the parameters popsize (N) and maximum iterations (T)
Initialize the positions of all slime mold Xi (i = 1, 2, . . . , N)
While (t ≤ T)
Calculate the fitness of all slime mold
Update bestFitness, Xb
Calculate the weight W by Equation (3) and (4)
For each search agent
If r2 < z
Update position by Equation (6)
Else

Update p, vb, and vc
Update position by Equation (1)
End if

End for

t = t + 1
End While

Return bestFitness, Xb

2.2. Arithmetic Optimization Algorithm (AOA)

Arithmetic optimization algorithm (AOA) is a very new meta-heuristic method pro-
posed by Abualigah and others in 2021 [34]. The main inspiration of this algorithm is to
combine the four traditional arithmetic operators in mathematics, i.e., multiplication (M),
division (D), subtraction (S), and addition (A). Similar to sine-cosine algorithm (SCA) [35],
AOA also has a very simple structure and low computation complexity. Considering the

130

Processes 2021, 9, 1774

M and D operators can produce large steps in the iterations, M and D are hence mainly
conducted in the exploration phase. The expression is as follows:

Xi(t + 1) =

{
Xb(t)/(MOP + eps) · ((UB − LB)μ + LB), rand < 0.5

Xb(t) · MOP · ((UB − LB)μ + LB), rand ≥ 0.5
(7)

where eps is a very small positive number, and μ is a constant coefficient (0.499) that is
carefully designed for this algorithm.

MOP is non-linearly decreased from 1 to 0 during the iterations, and the expression is
as follows:

MOP = 1 − (
t
T
)

1/α

(8)

where α is a constant value, which is set to 5 according to the AOA.
From Equation (7), it can be seen that both M and D operators can generate very

stochastic positions for the search agent on the basis of the best position. By contrast, S and
A operators are applied to emphasize the local exploitation that will generate smaller steps
in the search space. The mathematical expression is defined as

Xi(t + 1) =

{
Xb(t)− MOP · ((UB − LB)μ + LB), rand < 0.5

Xb(t) + MOP · ((UB − LB)μ + LB), rand ≥ 0.5
(9)

There is no doubt that the importance of balance between exploration and exploitation
for an optimization algorithm. In AOA, the parameter MOA is utilized to switch the
exploration and exploitation over the course of iterations, which is expressed as

MOA(t) = Min + t(
Max − Min

T
) (10)

where Min and Max are constant values.
According to Equation (10), MOA increases from Min to Max. Thus, in the early phase,

search agent has more chance to perform exploration in the search space, while in the
later stage, search agent will be more likely to conduct search near the best position. The
pseudo-code of AOA is shown in Algorithm 2.

Algorithm 2. Pseudo-code of AOA

Initialize the parameters popsize (N) and maximum iterations (T)
Initialize the positions of all search agents Xi (i = 1, 2, . . . , N)
Set the parameters α, μ, Min, and Max
While (t ≤ T)
Calculate the fitness of all search agents
Update bestFitness, Xb
Calculate the MOP by Equation (8)
Calculate the MOA by Equation (10)
For each search agent
If rand > MOA
Update position by Equation (7)
Else

Update position by Equation (9)
End if

End for

t = t + 1
End While

Return bestFitness, Xb

131

Processes 2021, 9, 1774

3. The Proposed Hybridized Algorithm (DESMAOA)

It is well known that MAs have the merits of concision, flexibility, and especially utility.
Hence, many scholars are working on developing new meta-heuristic-based approaches
for optimization problems. However, several optimization algorithms such as slime mold
algorithm and arithmetic optimization algorithm still have some drawbacks. For instance,
when dealing with complex optimization problems, SMA tends to drop into local best,
and also converges slowly. Similarly, AOA only utilizes the information of best position
in the population, which may suffer the problem of low precision. Therefore, this paper
aimed to develop a new hybridization algorithm composed of SMA and AOA for better
optimization performance.

In this paper, the SMA and AOA are firstly integrated to form a hybridized style
named SMAOA. Then, the preliminary hybrid algorithm is further enhanced by adding
two strategies. One is the random contraction strategy (RCS), which is an improved version
of contraction formula in SMA. The other is the subtraction and addition strategy (SAS),
which is extracted from the local search in AOA. Finally, the deep ensemble of SMA and
AOA is accomplished, and the hybridized algorithm (i.e., DESMAOA) is obtained. The
detailed implement of proposed algorithm is delineated in the following.

3.1. The Hybridization of SMA and AOA

In SMA, the contraction formula (see Equations (1) and (2)) is utilized to help slime
mold jump out of local minima, which will tend to zero in the later iterations. Thus, it
will not play the role of global exploration. On the other hand, the multiplication and
division methods in AOA display a powerful capability in global exploration. Thus, the
formulas of multiplication and division (see in Equation (7)) are considered to replace the
contraction equation. Therefore, the hybrid algorithm SMAOA will perform good global
search in the whole stage. To be specific, for the search agent that is close to best position,
the multiplication and division operators will make it more likely to search other spaces.

3.2. Random Contraction Strategy (RCS)

In this work, we present the RCS on the basis of the mathematical formula of contrac-
tion mode in SMA, which is applied to expand exploration space and avoid local optimum.
The coefficient vc is replaced by a random value lying between −1 and 1. The position
update formula is calculated as follows:

Vi2(t + 1) = (2 rand − 1)Xi(t) (11)

From Equation (11), we should note that the generated position of RCS is within the
range [−|Xi(t)|, |Xi(t)|] with uniform distribution, which adds more flexibility for the
search agents in the proposed algorithm. Note that the generated position of RCS is taken
as a candidate solution.

3.3. Subtraction and Addition Strategy (SAS)

The other strategy proposed here is the SAS, which is also the exploitation method of
AOA. According to the AOA, SAS can be performed locally and increase the accuracy of
solutions effectively. It is worth mentioning here that the SAS is conducted behind the RCS.

In the same way, the position generated by SAS is treated as a candidate solution, and
if a better position is found, then it will be adopted.

3.4. The Deep Ensemble of SMA and AOA

As mentioned above, the SMA and AOA are hybridized together firstly to achieve the
SMAOA. Then, two strategies are introduced in the SMAOA, namely, random contraction
strategy and subtraction and addition strategy. In order to perform a better balance
effect between exploration and exploitation, we utilize a parameter, b, that is related with

132

Processes 2021, 9, 1774

iterations to represent the probability of conducting the strategies. Its computational
formula is given below:

b = 1 − t
T

(12)

The pseudo-code of DESMAOA is shown in Algorithm 3. Moreover, the flowchart of
proposed method is shown in Figure 1.

Figure 1. Flowchart of the proposed DESMAOA.

3.5. The Computational Complexity of DESMAOA

The computational complexity of DESMAOA depends on the population size (N),
dimension size (D), and maximum iterations (T). First, the computational complexity
of initialization is O(N × D). Then, in the iterations, the computational complexity of
calculating the fitness values of all search agents is O(N). The computational complexity of
sorting is O(N × logN). Moreover, the computational complexity of updating the positions
of search agents in SMAOA is O(N × D). Considering the worst cases, the computational
complexity of RCS and SAS is O(2N × D). In summary, the final computational complexity
of the DESMAOA is O(N × D + T × N(1 + logN + 3D)).

133

Processes 2021, 9, 1774

Algorithm 3. Pseudo-code of DESMAOA

Initialize the parameters popsize (N) and maximum iterations (T)
Initialize the positions of all search agents Xi (i = 1, 2, . . . , N)
Set the parameters α, μ, Min, and Max
While (t ≤ T)
Calculate the fitness of all search agents
Update bestFitness, Xb
Calculate a, b, p, and W by Equation (2)–(5)
Calculate the MOP by Equation (8)
Update vb
For each search agent
If r2 < z
Update position by Equation (6)
Else

If r1 < p
Update position Vi1 by Equation (1) (1)’
Else

Update position Vi1 by Equation (7)
End if

If f (Vi1) < f (Xi)
Xi = Vi1
End if

If rand < b
Apply RCS and generate candidate position Vi2 by Equation (11)
If f (Vi2) < f (Xi)
Xi = Vi2
End if

End if

If rand > b
Apply SAS and generate candidate position Vi3 by Equation (9)
If f (Vi3) < f (Xi)
Xi = Vi3
End if

End if

End if

End for

t = t + 1
End While

Return bestFitness, Xb

4. Experimental Results and Discussions

In this section, we provide the results of a series of comparative experiments that were
conducted by using 23 classical benchmark functions and 10 IEEE CEC2021 single objective
optimization functions to evaluate the performance of proposed DESMAOA [36,37]. Table 2
lists the detailed parameter values of these test functions. It can be seen that these clas-
sical test functions included unimodal functions (F1–F7), multimodal functions (F8–F13),
and also fixed-dimension multimodal functions (F14–F23). Moreover, the CEC2021 test
functions contained four types of functions: unimodal function, basic functions, hybrid
functions, and composition functions. The unimodal functions are suitable for testing
the exploitation capability of algorithms, while the other types of test functions that con-
tain a large number of local minimas can reveal the exploration capability and stability
of algorithms.

In the experiments of test functions, the impacts of two applied strategies were
firstly analyzed by using the classical test functions. Then, the test results of DESMAOA
in classical test functions were compared with seven well-known algorithms. Multiple
aspects of the analysis including exploitation capability, exploration capability, qualitative
analysis, and convergence behavior are described. Moreover, the results of CEC2021 test
functions were also analyzed to investigate the performance of proposed algorithm.

134

Processes 2021, 9, 1774

Table 2. Benchmark function properties (D indicates dimension).

Function Type Function Dimension Range
Theoretical

Optimization Value

Unimodal test functions

F1 30, 50, 200, 1000 [−100, 100] 0
F2 30, 50, 200, 1000 [−10, 10] 0
F3 30, 50, 200, 1000 [−100, 100] 0
F4 30, 50, 200, 1000 [−100, 100] 0
F5 30, 50, 200, 1000 [−30, 30] 0
F6 30, 50, 200, 1000 [−100, 100] 0
F7 30, 50, 200, 1000 [−1.28, 1.28] 0

Multimodal test functions

F8 30, 50, 200, 1000 [−500, 500] −418.9829 × D
F9 30, 50, 200, 1000 [−5.12, 5.12] 0

F10 30, 50, 200, 1000 [−32, 32] 0
F11 30, 50, 200, 1000 [−600, 600] 0
F12 30, 50, 200, 1000 [−50, 50] 0
F13 30, 50, 200, 1000 [−50, 50] 0

Fixed-dimension multimodal test
functions

F14 2 [−65, 65] 0.998004
F15 4 [−5, 5] 0.0003075
F16 2 [−5, 5] −1.03163
F17 2 [−5, 5] 0.398
F18 2 [−2, 2] 3
F19 3 [−1, 2] −3.8628
F20 6 [0, 1] −3.3220
F21 4 [0, 10] −10.1532
F22 4 [0, 10] −10.4028
F23 4 [0, 10] −10.5363

CEC2021 unimodal test functions CEC_01 10 [−100, 100] 100

CEC2021 basic test functions
CEC_02 10 [−100, 100] 1100
CEC_03 10 [−100, 100] 700
CEC_04 10 [−100, 100] 1900

CEC2021 hybrid test functions
CEC_05 10 [−100, 100] 1700
CEC_06 10 [−100, 100] 1600
CEC_07 10 [−100, 100] 2100

CEC2021 composition test functions
CEC_08 10 [−100, 100] 2200
CEC_09 10 [−100, 100] 2400
CEC_10 10 [−100, 100] 2500

4.1. Impacts of Components

The impacts of different versions are investigated in this section. SMA showed very
outstanding performance in optimization problems. However, it still had the problems
of premature convergence and local optima. According to the works of Abualigah [34],
AOA shows powerful global exploration and local exploitation capability. Hence, we first
hybridized the SMA and AOA to obtain the SMAOA. Then, in order to help the search
agent jump out of local optima, we integrated the RCS into SMAOA. Moreover, SAS was
introduced into SMAOA to improve the local search capability. Different combinations
between SMAOA and two strategies are listed below:

• SMAOA;
• SMAOA combined with RCS (SMAOA1);
• SMAOA combined with SAS (SMAOA2);
• SMAOA combined with RCS and SAS (DESMAOA).

For impartial comparison, the number of iterations and population size for all tests
were set as 500 and 30, respectively. Moreover, we conducted independent tests 30 times
for each algorithm. The averages and standard deviations were utilized for analysis and
comparison between these algorithms. The results are listed in Table 3. Note that the
dimension of F1–F13 was set to 30.

135

Processes 2021, 9, 1774

T
a

b
le

3
.

C
om

pa
ri

so
n

of
th

e
SM

A
O

A
,S

M
A

O
A

1,
SM

A
O

A
2,

an
d

D
ES

M
A

O
A

.

F
u

n
ct

io
n

S
M

A
O

A
S

M
A

O
A

1
S

M
A

O
A

2
D

E
S

M
A

O
A

M
e

a
n

S
td

M
e

a
n

S
td

M
e

a
n

S
td

M
e

a
n

S
td

F1
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0

F2
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0

F3
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0

F4
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0

F5
2.

82
×

10
0

7.
00

×
10

0
5.

85
×

10
−1

1.
07

×
10

0
2.

46
×

10
−1

1.
33

×
10

0
1.

17
×

10
−3

1.
55

×
10

−3
F6

2.
44

×
10

−2
2.

34
×

10
−2

7.
77

×
10

−3
1.

21
×

10
−2

5.
80

×
10

−6
1.

92
×

10
−6

4.
95

×
10

−6
2.

01
×

10
−6

F7
1.

16
×

10
−4

9.
72

×
10

−5
5.

67
×

10
−5

5.
61

×
10

−5
6.

72
×

10
−5

6.
77

×
10

−5
4.

27
×

10
−5

4.
76

×
10

−5
F8

−1
2,

56
9.

23
61

1.
89

×
10

−1
−1

2,
56

9.
32

29
1.

38
×

10
−1

−1
2,

56
9.

48
66

4.
96

×
10

−6
−1

2,
56

9.
48

66
4.

11
×

10
−6

F9
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0
0.

00
×

10
0

0.
00

×
10

0

F1
0

8.
88

18
×

10
−1

6
0.

00
×

10
0

8.
88

18
×

10
−1

6
0.

00
×

10
0

8.
88

18
×

10
−1

6
0.

00
×

10
0

8.
88

18
×

10
−1

6
0.

00
×

10
0

F1
1

2.
13

×
10

−1
2.

92
×

10
−1

0.
00

×
10

0
0.

00
×

10
0

8.
85

×
10

−3
2.

30
×

10
−2

0.
00

×
10

0
0.

00
×

10
0

F1
2

2.
63

×
10

−3
4.

65
×

10
−3

5.
08

×
10

−5
8.

33
×

10
−5

4.
84

×
10

−8
7.

54
×

10
−8

1.
09

×
10

−7
1.

59
×

10
−7

F1
3

1.
70

×
10

−2
3.

67
×

10
−2

8.
82

×
10

−4
1.

15
×

10
−3

2.
50

×
10

−3
6.

04
×

10
−3

5.
91

×
10

−7
1.

06
×

10
−6

F1
4

9.
98

×
10

−1
2.

60
×

10
−1

1
9.

98
×

10
−1

9.
58

×
10

−1
2

9.
98

×
10

−1
9.

91
×

10
−1

6
9.

98
×

10
−1

8.
05

×
10

−1
6

F1
5

4.
16

×
10

−4
1.

56
×

10
−4

3.
63

×
10

−4
9.

61
×

10
−5

4.
07

×
10

−4
1.

90
×

10
−4

3.
34

×
10

−4
8.

63
×

10
−5

F1
6

−1
.0

31
6
×

10
0

3.
97

×
10

−8
−1

.0
31

6
×

10
0

9.
46

×
10

−8
−1

.0
31

6
×

10
0

1.
67

×
10

−1
1

−1
.0

31
6
×

10
0

1.
87

×
10

−1
1

F1
7

3.
97

89
×

10
−1

6.
82

×
10

−7
3.

97
89

×
10

−1
3.

97
×

10
−7

3.
97

89
×

10
−1

5.
63

×
10

−1
2

3.
97

89
×

10
−1

5.
94

×
10

−1
2

F1
8

3.
00

×
10

0
2.

79
×

10
−9

3.
00

×
10

0
6.

69
×

10
−1

0
3.

00
×

10
0

8.
56

×
10

−1
1

3.
00

×
10

0
9.

42
×

10
−1

1

F1
9

−3
.8

62
7
×

10
0

4.
32

×
10

−5
−3

.8
62

8
×

10
0

4.
68

×
10

−5
−3

.8
62

8
×

10
0

5.
61

×
10

−5
−3

.8
62

7
×

10
0

7.
91

×
10

−5
F2

0
−3

.2
5
×

10
0

5.
98

×
10

−2
−3

.2
85

9
×

10
0

5.
59

×
10

−2
−3

.2
58

3
×

10
0

6.
06

×
10

−2
−3

.2
86

×
10

0
5.

59
×

10
−2

F2
1

−1
.0

15
28

×
10

1
4.

26
×

10
−4

−1
.0

15
29

×
10

1
3.

67
×

10
−4

−1
.0

15
31

×
10

1
9.

07
×

10
−5

−1
.0

15
31

×
10

1
1.

42
×

10
−4

F2
2

−1
.0

40
23

×
10

1
4.

61
×

10
−4

−1
.0

40
25

×
10

1
4.

47
×

10
−4

−1
.0

40
28

×
10

1
8.

31
×

10
−5

−1
.0

40
28

×
10

1
7.

38
×

10
−5

F2
3

−1
.0

53
6
×

10
1

3.
47

×
10

−4
−1

.0
53

62
×

10
1

2.
47

×
10

−4
−1

.0
53

63
×

10
1

9.
44

×
10

−5
−1

.0
53

63
×

10
1

8.
26

×
10

−5

136

Processes 2021, 9, 1774

From Table 3, it can be seen that these four improved algorithms could obtain the
same optimal fitness in F1–F4, F9, F10, F14, and F16–F18. In particular, the theoretical
optimization values were obtained in F1–F4, F9, and F18. Compared to SMAOA, SMAOA1,
and SMAOA2, DESMAOA won in F5–F8, F11, F13, F15, and F20–F24. This demonstrates
that the significant effect with the combination of RCS and SAS. In addition, it is worth
mentioning here that the results of DESMAOA in F12 and F19 were very close to the best
ones. From the values of standard deviations, it was also shown that DESMAOA had good
stability and strong robustness in solving these test functions.

4.2. The Classical Benchmark Functions

This section outlines the 23 classical test functions that were employed for experiments.
The performance of DESMAOA was compared with two newly proposed algorithms (SMA
and AOA) and another five very famous optimization algorithms (GWO [38], WOA [39],
SSA [40], MVO [5], and PSO [12]). Table 4 lists the main parameter values used in each
algorithm. Note that the parameter values used in DESMAOA were the same as those
used in two original algorithms. Therefore, the stable performance could be guaranteed to
some extent for the proposed algorithm. In addition, the test conditions were the same as
previously for equal comparison.

Table 4. Parameter values for the optimization algorithms.

Algorithm Parameter Settings

DESMAOA z = 0.03; α = 5; μ = 0.499
SMA [33] z = 0.03
AOA [34] α = 5; μ = 0.499; Min = 0.2; Max = 1
GWO [38] a = [2, 0]
WOA [39] a1 = [2, 0]; a2 = [−2, −1]; b = 1
SSA [40] c1∈[0, 1]; c2∈[0, 1]
MVO [5] WEP∈[0.2, 1]; TDR∈[0, 1]; r1, r2, r3∈[0, 1]
PSO [12] c1 = 2; c2 = 2; W∈[0.2, 0.9]; vMax = 6

4.2.1. Exploration and Exploitation Capability Analysis

Table 5 lists the experimental results of these algorithms. It was shown that the
performance of DESMAOA is not only better than the original SMA and AOA but also
superior to other comparative algorithms on 20 out of 23 benchmark functions. In F1–F5,
F7–F15, F22, and F23, DESMAOA had the lowest average values and stand deviations. This
reveals that DESMAOA possesses very good stability and also can find the optimal solution.
It is worth noting that the proposed algorithm can obtain the theoretical optimization values
in test functions F1–F4, F9, F11, and F18. In F6, F19, and F20, the results of DESMAOA
were very close to the best ones. Therefore, these results demonstrated the remarkable
effect of the proposed hybrid method. With the help of RCS, the proposed algorithm can
jump out of the local minima and obtain the global optimal solution. In the meantime, high
precision results could be obtained by using SAS.

In addition, the Wilcoxon signed-rank test was utilized to confirm the statistical
superiority of DESMAOA [41], which revealing the statistical differences between two
algorithms. The results are given in Table 6. On the basis of these results and the results
in Table 5, DESMAOA outperformed SMA for 15 benchmark functions (except F1, F3, F7,
F9, F10, F11, F15, and F20) and AOA for 20 benchmark functions (except F7, F15, and
F17). Moreover, DESMAOA was found to be better than other comparative algorithms in
most of the functions. Furthermore, the results of test functions were also evaluated using
the Friedman ranking test [42], which can reveal the overall performance ranking of the
comparative algorithms to the test functions. As can be seen from Figure 2, the proposed
DESMAOA achieved the first rank among these algorithms. In summary, DESMAOA had
excellent optimization performance that was significantly better than SMA and AOA.

137

Processes 2021, 9, 1774

T
a

b
le

5
.

Th
e

re
su

lt
st

at
is

ti
cs

of
be

nc
hm

ar
k

fu
nc

ti
on

s
fo

r
th

e
D

ES
M

A
O

A
an

d
co

m
pe

ti
to

r
al

go
ri

th
m

s.

F
u

n
ct

io
n

M
e

tr
ic

D
E

S
M

A
O

A
S

M
A

A
O

A
G

W
O

W
O

A
S

S
A

M
V

O
P

S
O

F1
M

ea
n

0.
00

×
10

0
9.

93
×

10
−3

02
5.

37
×

10
−6

7.
21

×
10

−2
8

2.
42

×
10

−7
3

3.
96

×
10

−7
1.

34
×

10
0

1.
76

×
10

−4
St

d
0.

00
×

10
0

0.
00

×
10

0
2.

14
×

10
−6

1.
17

×
10

−2
7

8.
81

×
10

−7
3

9.
50

×
10

−7
5.

38
×

10
−1

1.
82

×
10

−4
F2

M
ea

n
0.

00
×

10
0

5.
05

×
10

−1
38

1.
74

×
10

−3
8.

26
×

10
−1

7
8.

81
×

10
−5

2
2.

07
×

10
0

2.
20

×
10

0
7.

05
×

10
0

St
d

0.
00

×
10

0
2.

77
×

10
−1

37
2.

08
×

10
−3

6.
54

×
10

−1
7

2.
46

×
10

−5
1

1.
33

×
10

0
7.

31
×

10
0

7.
01

×
10

0

F3
M

ea
n

0.
00

×
10

0
5.

43
×

10
−3

23
1.

24
×

10
−3

1.
55

×
10

−5
4.

41
×

10
4

1.
66

×
10

3
2.

04
×

10
2

7.
93

×
10

1

St
d

0.
00

×
10

0
0.

00
×

10
0

8.
14

×
10

−4
3.

50
×

10
−5

1.
08

×
10

4
9.

24
×

10
2

6.
63

×
10

1
2.

57
×

10
1

F4
M

ea
n

0.
00

×
10

0
7.

56
×

10
−1

54
1.

53
×

10
−2

8.
03

×
10

−7
4.

68
×

10
1

1.
15

×
10

1
2.

16
×

10
0

1.
12

×
10

0

St
d

0.
00

×
10

0
4.

14
×

10
−1

53
1.

06
×

10
−2

6.
71

×
10

−7
2.

77
×

10
1

4.
04

×
10

0
8.

66
×

10
−1

2.
40

×
10

−1
F5

M
ea

n
1.

17
×

10
−3

8.
56

×
10

0
2.

79
×

10
1

2.
71

×
10

1
2.

82
×

10
1

2.
90

×
10

2
7.

89
×

10
2

8.
16

×
10

1

St
d

1.
55

×
10

−3
1.

21
×

10
1

3.
01

×
10

−1
8.

49
×

10
−1

4.
97

×
10

−1
4.

77
×

10
2

8.
74

×
10

2
7.

03
×

10
1

F6
M

ea
n

4.
95

×
10

−6
5.

74
×

10
−3

3.
06

×
10

0
7.

58
×

10
−1

3.
72

×
10

−1
1.

78
×

10
−7

1.
34

×
10

0
1.

37
×

10
−4

St
d

2.
01

×
10

−6
3.

38
×

10
−3

2.
69

×
10

−1
4.

94
×

10
−1

2.
18

×
10

−1
1.

51
×

10
−7

3.
43

×
10

−1
1.

65
×

10
−4

F7
M

ea
n

4.
27

×
10

−5
1.

24
×

10
−4

6.
74

×
10

−5
1.

69
×

10
−3

3.
15

×
10

−3
1.

73
×

10
−1

3.
21

×
10

−2
2.

55
×

10
0

St
d

4.
76

×
10

−5
1.

07
×

10
−4

7.
11

×
10

−5
8.

95
×

10
−4

3.
61

×
10

−3
5.

61
×

10
−2

1.
32

×
10

−2
4.

54
×

10
0

F8
M

ea
n

−1
2,

56
9.

48
66

−1
2,

56
9.

17
99

−5
.4

8
×

10
3

−6
.0

1
×

10
3

−1
.0

6
×

10
4

−7
.4

7
×

10
3

−7
.5

5
×

10
3

−4
.6

9
×

10
3

St
d

4.
11

×
10

−6
2.

66
×

10
−1

3.
69

×
10

2
6.

42
×

10
2

1.
69

×
10

3
8.

76
×

10
2

6.
27

×
10

2
1.

21
×

10
3

F9
M

ea
n

0.
00

×
10

0
0.

00
×

10
0

1.
66

×
10

−6
2.

26
×

10
0

3.
79

×
10

−1
5

5.
53

×
10

1
1.

20
×

10
2

1.
02

×
10

2

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
27

×
10

−6
3.

27
×

10
0

2.
08

×
10

−1
4

1.
83

×
10

1
3.

29
×

10
1

3.
19

×
10

1

F1
0

M
ea

n
8.

88
18

×
10

−1
6

8.
88

18
×

10
−1

6
4.

36
×

10
−4

1.
01

×
10

−1
3

3.
85

×
10

−1
5

2.
56

×
10

0
2.

03
×

10
0

1.
69

×
10

−2
St

d
0.

00
×

10
0

0.
00

×
10

0
1.

62
×

10
−4

1.
81

×
10

−1
4

2.
10

×
10

−1
5

6.
94

×
10

−1
5.

47
×

10
−1

1.
30

×
10

−2
F1

1
M

ea
n

0.
00

×
10

0
0.

00
×

10
0

8.
42

×
10

−4
6.

19
×

10
−3

1.
68

×
10

−2
1.

88
×

10
−2

8.
60

×
10

−1
4.

39
×

10
−3

St
d

0.
00

×
10

0
0.

00
×

10
0

3.
12

×
10

−3
8.

92
×

10
−3

6.
38

×
10

−2
1.

46
×

10
−2

8.
21

×
10

−2
6.

85
×

10
−3

F1
2

M
ea

n
1.

09
×

10
−7

5.
81

×
10

−3
7.

44
×

10
−1

4.
42

×
10

−2
2.

81
×

10
−2

7.
54

×
10

0
2.

43
×

10
0

2.
07

×
10

−2
St

d
1.

59
×

10
−7

6.
50

×
10

−3
3.

03
×

10
−2

1.
86

×
10

−2
2.

18
×

10
−2

3.
43

×
10

0
1.

39
×

10
0

4.
22

×
10

−2
F1

3
M

ea
n

5.
91

×
10

−7
6.

35
×

10
−3

2.
96

×
10

0
6.

94
×

10
−1

6.
36

×
10

−1
1.

38
×

10
1

1.
96

×
10

−1
5.

55
×

10
−3

St
d

1.
06

×
10

−6
7.

05
×

10
−3

1.
03

×
10

−2
2.

45
×

10
−1

3.
53

×
10

−1
1.

10
×

10
1

1.
26

×
10

−1
9.

01
×

10
−3

F1
4

M
ea

n
9.

98
×

10
−1

9.
98

×
10

−1
9.

87
×

10
0

4.
16

×
10

0
2.

54
×

10
0

1.
36

×
10

0
9.

98
×

10
−1

2.
97

×
10

0

St
d

8.
05

×
10

−1
6

3.
93

×
10

−1
3

3.
89

×
10

0
4.

28
×

10
0

2.
91

×
10

0
8.

82
×

10
−1

4.
31

×
10

−1
1

2.
55

×
10

0

F1
5

M
ea

n
3.

34
×

10
−4

4.
84

×
10

−4
8.

39
×

10
−3

3.
15

×
10

−3
8.

25
×

10
−4

2.
91

×
10

−3
5.

24
×

10
−3

7.
22

×
10

−3
St

d
8.

63
×

10
−5

2.
15

×
10

−4
1.

29
×

10
−2

6.
88

×
10

−3
5.

40
×

10
−4

5.
93

×
10

−3
1.

26
×

10
−2

9.
03

×
10

−3
F1

6
M

ea
n

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

−1
.0

31
6
×

10
0

St
d

1.
87

×
10

−1
1

8.
36

×
10

−1
0

2.
28

×
10

−1
1

3.
13

×
10

−8
1.

68
×

10
−9

3.
89

×
10

−1
4

4.
19

×
10

−7
6.

25
×

10
−1

6

F1
7

M
ea

n
3.

97
89

×
10

−1
3.

97
89

×
10

−1
4.

02
17

×
10

−1
3.

97
89

×
10

−1
3.

97
89

×
10

−1
3.

97
89

×
10

−1
3.

97
89

×
10

−1
3.

97
89

×
10

−1
St

d
5.

94
×

10
−1

2
5.

40
×

10
−9

1.
52

×
10

−2
8.

10
×

10
−7

6.
71

×
10

−6
7.

99
×

10
−1

5
1.

27
×

10
−7

0.
00

×
10

0

F1
8

M
ea

n
3.

00
00

×
10

0
3.

00
00

×
10

0
4.

80
00

×
10

0
5.

70
00

×
10

0
3.

00
01

×
10

0
3.

00
00

×
10

0
3.

00
00

×
10

0
3.

00
00

×
10

0

St
d

9.
42

×
10

−1
1

1.
17

×
10

−9
6.

85
×

10
0

1.
48

×
10

1
8.

14
×

10
−5

2.
13

×
10

−1
3

3.
49

×
10

−6
1.

79
×

10
−1

5

F1
9

M
ea

n
−3

.8
62

7
×

10
0

−3
.8

62
8
×

10
0

−3
.8

62
7
×

10
0

−3
.8

60
5
×

10
0

−3
.8

57
2
×

10
0

−3
.8

62
8
×

10
0

−3
.8

62
8
×

10
0

−3
.8

62
8
×

10
0

St
d

7.
91

×
10

−5
1.

58
×

10
−7

2.
62

×
10

−4
4.

08
×

10
−3

1.
02

×
10

−2
1.

17
×

10
−1

2
7.

73
×

10
−6

2.
58

×
10

−1
5

F2
0

M
ea

n
−3

.2
86

×
10

0
−3

.2
50

3
×

10
0

−3
.2

94
2
×

10
0

−3
.2

33
9
×

10
0

−3
.2

22
5
×

10
0

−3
.2

25
5
×

10
0

−3
.2

45
4
×

10
0

−3
.2

40
2
×

10
0

St
d

5.
59

×
10

−2
5.

95
×

10
−2

5.
12

×
10

−2
7.

30
×

10
−2

1.
10

×
10

−1
5.

45
×

10
−2

5.
93

×
10

−2
8.

13
×

10
−2

F2
1

M
ea

n
−1

.0
15

31
×

10
1

−1
.0

15
31

×
10

1
−7

.8
78

1
×

10
0

−8
.8

06
6
×

10
0

−8
.4

43
8
×

10
0

−6
.9

75
5
×

10
0

−7
.0

48
×

10
0

−6
.3

88
3
×

10
0

St
d

1.
42

×
10

−4
1.

05
×

10
−4

2.
68

×
10

0
2.

54
×

10
0

2.
44

×
10

0
3.

35
×

10
0

3.
28

×
10

0
3.

27
×

10
0

F2
2

M
ea

n
−1

.0
40

28
×

10
1

−1
.0

40
28

×
10

1
−7

.2
81

4
×

10
0

−1
.0

22
39

×
10

1
−7

.0
27

1
×

10
0

−8
.9

38
×

10
0

−9
.0

32
7
×

10
0

−8
.7

12
50

×
10

0

St
d

7.
38

×
10

−5
1.

82
×

10
−4

3.
52

×
10

0
9.

70
×

10
−1

3.
08

×
10

0
2.

99
×

10
0

2.
83

×
10

0
2.

91
×

10
0

F2
3

M
ea

n
−1

.0
53

63
×

10
1

−1
.0

53
63

×
10

1
−6

.6
74

3
×

10
0

−1
.0

53
49

×
10

1
−7

.7
81

5
×

10
0

−8
.1

13
8
×

10
0

−8
.5

20
1
×

10
0

−9
.1

23
3
×

10
0

St
d

8.
26

×
10

−5
9.

71
×

10
−5

3.
31

×
10

0
8.

48
×

10
−4

3.
28

×
10

0
3.

51
×

10
0

3.
20

×
10

0
2.

93
×

10
0

138

Processes 2021, 9, 1774

Table 6. p-values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms.

Function
DESMAOA

vs. SMA
DESMAOA

vs. AOA
DESMAOA

vs. GWO
DESMAOA

vs. WOA
DESMAOA

vs. SSA
DESMAOA

vs. MVO
DESMAOA

vs. PSO

F1 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F6 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.54 × 10−4

F7 2.52 × 10−1 1.88 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 1.22 × 10−4 6.10 × 10−5 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 9.77 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 2.50 × 10−1 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.36 × 10−3

F13 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4

F14 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.14 × 10−2 6.10 × 10−5 7.93 × 10−3

F15 3.30 × 10−1 5.54 × 10−2 4.54 × 10−1 5.54 × 10−2 6.10 × 10−5 1.16 × 10−3 1.22 × 10−4

F16 2.56 × 10−2 3.36 × 10−3 6.10 × 10−5 2.52 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F17 6.10 × 10−4 6.39 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F18 1.81 × 10−2 7.62 × 10−1 8.36 × 10−3 8.36 × 10−3 6.10 × 10−5 8.36 × 10−3 6.10 × 10−5

F19 6.10 × 10−5 1.03 × 10−2 2.56 × 10−2 6.10 × 10−5 6.10 × 10−5 4.27 × 10−3 6.10 × 10−5

F20 6.39 × 10−1 1.81 × 10−2 2.52 × 10−1 2.52 × 10−1 1.51 × 10−2 5.99 × 10−1 2.08 × 10−1

F21 3.05 × 10−4 3.02 × 10−2 6.10 × 10−5 1.22 × 10−4 1.88 × 10−1 1.53 × 10−3 8.04 × 10−1

F22 6.10 × 10−5 4.27 × 10−3 6.10 × 10−4 1.22 × 10−4 8.04 × 10−1 3.03 × 10−1 7.62 × 10−1

F23 6.10 × 10−4 1.21 × 10−1 1.22 × 10−4 6.10 × 10−5 3.30 × 10−1 6.79 × 10−1 6.79 × 10−1

Figure 2. Average Friedman ranking values of DESMAOA and other comparative algorithms on
30 dimensions.

4.2.2. Qualitative Analysis

Figure 3 shows the qualitative results of proposed algorithm in F4, F5, F6, F8, F12, F13,
F15, and F21. From the scatter plot of the search history, we were able to see that search
agents were distributed in the whole search space in the early stage. During the iteration
progresses, they concentrated in a quick time. The density of distribution for different
functions indicates that DESMAOA had balanced performance between exploration and
exploitation. Moreover, some sudden changes in the amplitude were observed clearly

139

Processes 2021, 9, 1774

in the trajectory of the first search agent, which revealed that DESMAOA had strong
exploration capability over the course of iterations when handing these test functions. The
drastic fluctuation of average fitness also showed that DESMAOA can jump out of local
optima and explore more spaces when dealing with different types of optimization issues.
Hence, the local optimal solution can be avoided effectively. Finally, the DESMAOA was
able to find better solutions in most of the functions compared with SMA and AOA, which
demonstrates the effectiveness of the proposed method.

4.2.3. Analysis of Convergence Behavior

It is important to study the convergence behavior of optimization algorithms when
they are searching for the optimal solution. In general, fast convergence speed is required
in the early exploration, which implies the algorithm has powerful exploration capability.
On the other hand, local optima also should be avoided, which can be seen from the
convergence curve. Figure 4 shows the convergence curves of DESMAOA and other
compared algorithms on 30 dimensions. Some benchmark functions are used for analysis
including F4, F5, F6, F8, F12, F13, F15, and F21. From these functions, it can be seen that the
initial convergence speed of DESMAOA is the fastest in most cases. In Figure 5, step-like or
cliff-like declines in the convergence curves of DESMAOA can be observed. This suggests
that the DESMAOA has a prominent exploration capability. From F5, F6, F12, and F13, the
precision of solutions for DESMAOA is further improved with the help of SAS during the
iteration. In sum, DESMAOA achieved the best solutions in these functions.

4.2.4. Scalability Test

The performance fluctuations of optimization algorithms can be revealed according to
the scalability test. In this work, the performance of DESMAOA in different dimensions
(D = 50, 200, 1000) were also tested. It is easy to understand that the higher dimension
will make it harder for the algorithm to find the global optimal solution. Note that only
F1–F13 in the 23 benchmark functions were selected for this test. As mentioned previously,
F1–F7 are single-mode functions that only have one locally optimal solution. In contrast,
F8–F13 are multimode functions that have many locally optimal solutions. Moreover, the
experimental parameters were kept the same as previous experiments. Tables 7 and 8 show
the results of DESMAOA and other algorithms in different dimensions.

Both results of unimodal and multimode functions indicated that DESMAOA had
excellent performance in the conditions of high dimensions. Compared with SMA, AOA,
and other well-known algorithms, DESMAOA was the first in all functions except F7. In
F7, AOA became better and had more stable results in different dimensions. It is also
noted that these comparative algorithms (GWO, WOA, SSA, MVO, and PSO) presented
poor optimization capability in some cases, especially in higher dimensions. Furthermore,
the Wilcoxon signed-rank test and Friedman ranking test were utilized to analyze the
differences between DESMAOA and other algorithms, as listed in Tables 9–12. From
Tables 9–11, it can be seen that DESMAOA had significant differences compared with
these comparative algorithms. Moreover, in Table 12, the proposed DESMAOA ranked
first compared to other algorithms in different dimensions. It is noted that the distance
between the first and second was evident. In summary, the proposed DESMAOA had
better optimization behavior and stability in dealing with high-dimensional problems.

4.3. The IEEE CEC2021 Standard Test Functions

This section describes the IEEE CEC2021 test functions that were employed to further
analyze the performance of proposed DESMAOA on solving global optimization problems.
The comparative algorithms included the SMA, AOA, GWO, WOA, SSA, MVO, and PSO.
To achieve the statistical results, 30 repeated independent tests were conducted for each
function. The experimental results are given in Table 13.

140

Processes 2021, 9, 1774

Figure 3. Qualitative results for the benchmark functions F4, F5, F6, F8, F12, F13, F15, and F21.

141

Processes 2021, 9, 1774

Figure 4. The convergence curves of F4, F5, F6, F8, F12, F13, F15, and F21.

142

Processes 2021, 9, 1774

T
a

b
le

7
.

U
ni

m
od

al
be

nc
hm

ar
k

fu
nc

ti
on

re
su

lt
st

at
is

ti
cs

of
th

e
D

ES
M

A
O

A
an

d
co

m
pe

ti
to

r
al

go
ri

th
m

s
in

di
ff

er
en

td
im

en
si

on
s.

F
u

n
ct

io
n

D
M

e
tr

ic
D

E
S

M
A

O
A

S
M

A
A

O
A

G
W

O
W

O
A

S
S

A
M

V
O

P
S

O

F1
50

M
ea

n
0.

00
×

10
0

3.
94

×
10

−3
10

4.
05

×
10

−5
5.

96
×

10
−2

0
3.

97
×

10
−7

1
6.

27
×

10
−1

9.
07

×
10

0
2.

05
×

10
−1

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
33

×
10

−5
5.

86
×

10
−2

0
2.

17
×

10
−7

0
5.

32
×

10
−1

2.
48

×
10

0
1.

82
×

10
−1

20
0

M
ea

n
0.

00
×

10
0

5.
15

×
10

−2
44

4.
63

×
10

−2
1.

09
×

10
−7

2.
33

×
10

−7
1

1.
76

×
10

4
2.

84
×

10
3

3.
31

×
10

2

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
24

×
10

−2
7.

08
×

10
−8

9.
24

×
10

−7
1

1.
60

×
10

3
3.

15
×

10
2

4.
11

×
10

1

10
00

M
ea

n
0.

00
×

10
0

2.
20

×
10

−2
46

1.
50

×
10

0
2.

53
×

10
−1

3.
57

×
10

−6
8

2.
29

×
10

5
7.

94
×

10
5

4.
11

×
10

4

St
d

0.
00

×
10

0
0.

00
×

10
0

4.
79

×
10

−2
5.

65
×

10
−2

1.
95

×
10

−6
7

1.
19

×
10

4
2.

70
×

10
4

2.
32

×
10

3

F2
50

M
ea

n
0.

00
×

10
0

1.
50

×
10

−1
45

6.
70

×
10

−3
2.

60
×

10
−1

2
1.

56
×

10
−4

9
9.

29
×

10
0

3.
50

×
10

3
2.

58
×

10
1

St
d

0.
00

×
10

0
8.

24
×

10
−1

45
3.

05
×

10
−3

1.
52

×
10

−1
2

7.
19

×
10

−4
9

3.
59

×
10

0
1.

73
×

10
4

1.
89

×
10

1

20
0

M
ea

n
0.

00
×

10
0

7.
90

×
10

−1
38

7.
23

×
10

−2
3.

25
×

10
−5

2.
93

×
10

−4
8

1.
55

×
10

2
5.

08
×

10
77

4.
66

×
10

2

St
d

0.
00

×
10

0
3.

91
×

10
−1

37
1.

18
×

10
−2

7.
69

×
10

−6
1.

17
×

10
−4

7
1.

44
×

10
1

2.
73

×
10

78
6.

40
×

10
1

10
00

M
ea

n
0.

00
×

10
0

5.
92

×
10

−1
1.

58
×

10
0

6.
78

×
10

−1
1.

44
×

10
−4

7
1.

19
×

10
3

3.
59

×
10

27
8

1.
41

×
10

3

St
d

0.
00

×
10

0
2.

92
×

10
0

1.
08

×
10

−1
5.

77
×

10
−1

7.
74

×
10

−4
7

2.
48

×
10

1
In

f
6.

51
×

10
1

F3
50

M
ea

n
0.

00
×

10
0

1.
03

×
10

−2
93

1.
81

×
10

−2
3.

84
×

10
−1

2.
01

×
10

5
9.

10
×

10
3

6.
50

×
10

3
1.

48
×

10
3

St
d

0.
00

×
10

0
0.

00
×

10
0

8.
60

×
10

−3
1.

01
×

10
0

4.
50

×
10

4
4.

69
×

10
3

1.
95

×
10

3
4.

64
×

10
2

20
0

M
ea

n
0.

00
×

10
0

3.
94

×
10

−2
19

7.
32

×
10

−1
1.

98
×

10
4

4.
55

×
10

6
2.

05
×

10
5

3.
16

×
10

5
8.

34
×

10
4

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
86

×
10

−1
9.

23
×

10
3

1.
51

×
10

6
7.

25
×

10
4

3.
10

×
10

4
2.

24
×

10
4

10
00

M
ea

n
0.

00
×

10
0

4.
81

×
10

−1
25

3.
35

×
10

1
1.

53
×

10
6

1.
36

×
10

8
5.

19
×

10
6

7.
98

×
10

6
2.

27
×

10
6

St
d

0.
00

×
10

0
2.

64
×

10
−1

24
6.

49
×

10
0

3.
16

×
10

5
6.

32
×

10
7

2.
46

×
10

6
8.

76
×

10
5

4.
56

×
10

5

F4
50

M
ea

n
0.

00
×

10
0

3.
80

×
10

−1
58

3.
56

×
10

−2
7.

25
×

10
−4

7.
35

×
10

1
1.

94
×

10
1

1.
67

×
10

1
3.

74
×

10
0

St
d

0.
00

×
10

0
2.

06
×

10
−1

57
7.

14
×

10
−3

1.
42

×
10

−3
1.

99
×

10
1

3.
14

×
10

0
4.

24
×

10
0

7.
18

×
10

−1
20

0
M

ea
n

0.
00

×
10

0
3.

11
×

10
−1

14
9.

10
×

10
−2

2.
39

×
10

1
8.

41
×

10
1

3.
52

×
10

1
8.

32
×

10
1

1.
93

×
10

1

St
d

0.
00

×
10

0
1.

19
×

10
−1

13
1.

18
×

10
−2

5.
51

×
10

0
1.

89
×

10
1

3.
49

×
10

0
3.

80
×

10
0

1.
45

×
10

0

10
00

M
ea

n
0.

00
×

10
0

3.
86

×
10

−1
01

1.
54

×
10

−1
7.

88
×

10
1

7.
94

×
10

1
4.

43
×

10
1

9.
81

×
10

1
3.

31
×

10
1

St
d

0.
00

×
10

0
1.

90
×

10
−1

00
7.

55
×

10
−3

3.
25

×
10

0
2.

09
×

10
1

3.
19

×
10

0
6.

42
×

10
−1

1.
52

×
10

0

F5
50

M
ea

n
4.

84
×

10
0

1.
89

×
10

1
4.

83
×

10
1

4.
72

×
10

1
4.

83
×

10
1

1.
64

×
10

3
7.

66
×

10
2

4.
21

×
10

2

St
d

1.
47

×
10

1
1.

93
×

10
1

1.
40

×
10

−1
7.

35
×

10
−1

4.
05

×
10

−1
3.

66
×

10
3

7.
47

×
10

2
2.

18
×

10
2

20
0

M
ea

n
1.

29
×

10
1

6.
23

×
10

1
1.

98
×

10
2

1.
98

×
10

2
1.

98
×

10
2

3.
79

×
10

6
3.

91
×

10
5

5.
98

×
10

5

St
d

3.
68

×
10

1
7.

20
×

10
1

7.
40

×
10

−2
4.

19
×

10
−1

1.
65

×
10

−1
9.

40
×

10
5

1.
21

×
10

5
1.

04
×

10
5

10
00

M
ea

n
1.

11
×

10
2

4.
01

×
10

2
1.

00
×

10
3

1.
05

×
10

3
9.

94
×

10
2

1.
21

×
10

8
2.

33
×

10
9

2.
95

×
10

8

St
d

2.
50

×
10

2
4.

15
×

10
2

2.
71

×
10

−1
2.

55
×

10
1

1.
03

×
10

0
1.

12
×

10
7

1.
85

×
10

8
4.

28
×

10
7

F6
50

M
ea

n
1.

66
×

10
−4

8.
78

×
10

−2
7.

29
×

10
0

2.
57

×
10

0
1.

20
×

10
0

8.
30

×
10

−1
9.

61
×

10
0

1.
97

×
10

−1
St

d
5.

60
×

10
−5

6.
54

×
10

−2
4.

04
×

10
−1

4.
02

×
10

−1
5.

39
×

10
−1

7.
25

×
10

−1
1.

88
×

10
0

1.
74

×
10

−1
20

0
M

ea
n

3.
73

×
10

−2
8.

26
×

10
0

3.
59

×
10

1
2.

91
×

10
1

1.
11

×
10

1
1.

76
×

10
4

2.
99

×
10

3
3.

21
×

10
2

St
d

3.
21

×
10

−2
8.

04
×

10
0

1.
19

×
10

0
1.

28
×

10
0

2.
90

×
10

0
2.

45
×

10
3

4.
10

×
10

2
4.

66
×

10
1

10
00

M
ea

n
3.

34
×

10
0

6.
80

×
10

1
2.

42
×

10
2

2.
02

×
10

2
6.

68
×

10
1

2.
37

×
10

5
8.

04
×

10
5

4.
02

×
10

4

St
d

4.
80

×
10

0
8.

81
×

10
1

1.
23

×
10

0
2.

57
×

10
0

1.
52

×
10

1
1.

11
×

10
4

2.
79

×
10

4
2.

17
×

10
3

F7
50

M
ea

n
1.

36
×

10
−4

1.
96

×
10

−4
6.

63
×

10
−5

3.
54

×
10

−3
3.

97
×

10
−3

4.
86

×
10

−1
1.

07
×

10
−1

3.
97

×
10

1

St
d

1.
18

×
10

−4
1.

69
×

10
−4

5.
90

×
10

−5
1.

90
×

10
−3

4.
79

×
10

−3
1.

53
×

10
−1

2.
32

×
10

−2
2.

76
×

10
1

20
0

M
ea

n
1.

29
×

10
−4

4.
32

×
10

−4
5.

35
×

10
−5

1.
63

×
10

−2
4.

14
×

10
−3

1.
72

×
10

1
5.

40
×

10
0

2.
95

×
10

3

St
d

1.
52

×
10

−4
3.

04
×

10
−4

5.
09

×
10

−5
5.

34
×

10
−3

4.
22

×
10

−3
4.

14
×

10
0

7.
17

×
10

−1
4.

68
×

10
2

10
00

M
ea

n
1.

17
×

10
−4

6.
93

×
10

−4
8.

25
×

10
−5

1.
55

×
10

−1
3.

29
×

10
−3

1.
74

×
10

3
2.

88
×

10
4

2.
39

×
10

5

St
d

1.
28

×
10

−4
4.

85
×

10
−4

6.
96

×
10

−5
3.

32
×

10
−2

3.
73

×
10

−3
1.

75
×

10
2

2.
72

×
10

3
7.

66
×

10
3

143

Processes 2021, 9, 1774

T
a

b
le

8
.

U
ni

m
od

al
be

nc
hm

ar
k

fu
nc

ti
on

re
su

lt
st

at
is

ti
cs

of
th

e
D

ES
M

A
O

A
an

d
co

m
pe

ti
to

r
al

go
ri

th
m

s
in

di
ff

er
en

td
im

en
si

on
s.

F
u

n
ct

io
n

D
M

e
tr

ic
D

E
S

M
A

O
A

S
M

A
A

O
A

G
W

O
W

O
A

S
S

A
M

V
O

P
S

O

F8
50

M
ea

n
−2

.0
94

9
×

10
4

−2
.0

94
7
×

10
4

−8
.3

98
9
×

10
3

−9
.1

46
8
×

10
3

−1
.8

03
0
×

10
4

−1
.2

10
7
×

10
4

−1
.2

35
0
×

10
4

−7
.6

17
2
×

10
3

St
d

1.
54

×
10

−4
2.

27
×

10
0

5.
06

×
10

2
1.

59
×

10
3

2.
78

×
10

3
1.

00
×

10
3

1.
11

×
10

3
2.

18
×

10
3

20
0

M
ea

n
−8

.3
79

6
×

10
4

−8
.3

75
7
×

10
4

−2
.1

65
7
×

10
4

−2
.7

53
3
×

10
4

−7
.1

28
1
×

10
4

−3
.4

38
1
×

10
4

−4
.0

39
9
×

10
4

−1
.5

59
1
×

10
4

St
d

6.
62

×
10

−1
6.

42
×

10
1

1.
27

×
10

3
5.

65
×

10
3

1.
28

×
10

4
2.

25
×

10
3

2.
30

×
10

3
6.

41
×

10
3

10
00

M
ea

n
−4

.1
89

2
×

10
5

−4
.1

86
2
×

10
5

−5
.4

56
6
×

10
4

−8
.4

60
2
×

10
4

−3
.5

94
1
×

10
5

−8
.8

08
4
×

10
4

−1
.1

04
1
×

10
5

−3
.3

23
6
×

10
4

St
d

1.
25

×
10

2
5.

75
×

10
2

2.
29

×
10

3
2.

28
×

10
4

5.
92

×
10

4
7.

25
×

10
3

3.
94

×
10

3
1.

51
×

10
4

F9
50

M
ea

n
0.

00
×

10
0

0.
00

×
10

0
1.

61
×

10
−5

5.
24

×
10

0
1.

89
×

10
−1

5
8.

82
×

10
1

2.
54

×
10

2
2.

84
×

10
2

St
d

0.
00

×
10

0
0.

00
×

10
0

4.
42

×
10

−6
7.

71
×

10
0

1.
04

×
10

−1
4

2.
32

×
10

1
5.

65
×

10
1

5.
01

×
10

1

20
0

M
ea

n
0.

00
×

10
0

0.
00

×
10

0
1.

34
×

10
−3

2.
41

×
10

1
7.

58
×

10
−1

5
8.

27
×

10
2

1.
90

×
10

3
2.

02
×

10
3

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
82

×
10

−4
9.

14
×

10
0

4.
15

×
10

−1
4

8.
74

×
10

1
1.

30
×

10
2

1.
25

×
10

2

10
00

M
ea

n
0.

00
×

10
0

0.
00

×
10

0
3.

79
×

10
−2

2.
06

×
10

2
0.

00
×

10
0

7.
63

×
10

3
1.

46
×

10
4

1.
41

×
10

4

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
94

×
10

−3
5.

67
×

10
1

0.
00

×
10

0
2.

12
×

10
2

2.
44

×
10

2
2.

98
×

10
2

F1
0

50
M

ea
n

8.
88

18
×

10
−1

6
8.

88
18

×
10

−1
6

1.
14

×
10

−3
4.

37
20

×
10

−1
1

4.
32

25
×

10
−1

5
4.

83
×

10
0

3.
56

×
10

0
1.

69
×

10
0

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
93

×
10

−4
2.

44
×

10
−1

1
2.

38
×

10
−1

5
1.

23
×

10
0

3.
13

×
10

0
5.

70
×

10
−1

20
0

M
ea

n
8.

88
18

×
10

−1
6

8.
88

18
×

10
−1

6
1.

06
×

10
−2

2.
18

×
10

−5
4.

09
×

10
−1

5
1.

30
×

10
1

2.
04

×
10

1
6.

61
×

10
0

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
01

×
10

−3
6.

01
×

10
−6

2.
70

×
10

−1
5

4.
61

×
10

−1
2.

15
×

10
−1

3.
38

×
10

−1

10
00

M
ea

n
8.

88
18

×
10

−1
6

8.
88

18
×

10
−1

6
3.

32
×

10
−2

1.
89

×
10

−2
4.

91
×

10
−1

5
1.

45
×

10
1

2.
10

×
10

1
1.

60
×

10
1

St
d

0.
00

×
10

0
0.

00
×

10
0

7.
69

×
10

−4
3.

23
×

10
−3

2.
42

×
10

−1
5

1.
94

×
10

−1
3.

27
×

10
−2

2.
33

×
10

−1

F1
1

50
M

ea
n

0.
00

×
10

0
0.

00
×

10
0

7.
70

×
10

−3
2.

94
×

10
−3

1.
34

×
10

−2
5.

55
×

10
−1

1.
09

×
10

0
1.

62
×

10
−2

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
91

×
10

−2
6.

06
×

10
−3

5.
11

×
10

−2
2.

74
×

10
−1

2.
30

×
10

−2
1.

19
×

10
−2

20
0

M
ea

n
0.

00
×

10
0

0.
00

×
10

0
7.

85
×

10
0

6.
27

×
10

−3
0.

00
×

10
0

1.
46

×
10

2
2.

73
×

10
1

2.
28

×
10

0

St
d

0.
00

×
10

0
0.

00
×

10
0

1.
19

×
10

1
1.

48
×

10
−2

0.
00

×
10

0
1.

88
×

10
1

3.
08

×
10

0
2.

70
×

10
0

10
00

M
ea

n
0.

00
×

10
0

0.
00

×
10

0
1.

33
×

10
4

2.
37

×
10

−2
0.

00
×

10
0

2.
12

×
10

3
7.

25
×

10
3

2.
74

×
10

2

St
d

0.
00

×
10

0
0.

00
×

10
0

2.
64

×
10

3
3.

67
×

10
−2

0.
00

×
10

0
8.

35
×

10
1

3.
01

×
10

2
1.

86
×

10
1

F1
2

50
M

ea
n

6.
67

×
10

−7
6.

02
×

10
−3

9.
06

×
10

−1
1.

22
×

10
−1

3.
46

×
10

−2
1.

26
×

10
1

5.
51

×
10

0
8.

03
×

10
−2

St
d

6.
28

×
10

−7
1.

22
×

10
−2

2.
39

×
10

−2
7.

35
×

10
−2

1.
86

×
10

−2
4.

57
×

10
0

1.
37

×
10

0
1.

53
×

10
−1

20
0

M
ea

n
2.

01
×

10
−5

5.
76

×
10

−3
8.

41
×

10
−1

5.
42

×
10

−1
7.

03
×

10
−2

7.
55

×
10

3
2.

30
×

10
3

4.
84

×
10

1

St
d

1.
57

×
10

−5
8.

11
×

10
−3

5.
60

×
10

−2
6.

68
×

10
−2

3.
52

×
10

−2
1.

01
×

10
4

2.
88

×
10

3
3.

71
×

10
1

10
00

M
ea

n
1.

53
×

10
−4

9.
67

×
10

−3
1.

04
×

10
0

1.
26

×
10

0
1.

05
×

10
−1

1.
16

×
10

7
4.

19
×

10
9

9.
21

×
10

6

St
d

2.
46

×
10

−4
1.

70
×

10
−2

1.
12

×
10

−2
2.

99
×

10
−1

5.
30

×
10

−2
4.

67
×

10
6

4.
67

×
10

8
2.

30
×

10
6

F1
3

50
M

ea
n

1.
08

×
10

−3
2.

52
×

10
−2

4.
94

×
10

0
2.

03
×

10
0

1.
14

×
10

0
8.

07
×

10
1

7.
29

×
10

0
1.

84
×

10
−1

St
d

4.
27

×
10

−3
3.

02
×

10
−2

6.
56

×
10

−4
2.

80
×

10
−1

4.
84

×
10

−1
1.

61
×

10
1

1.
15

×
10

1
1.

16
×

10
−1

20
0

M
ea

n
1.

85
×

10
−3

4.
73

×
10

−1
1.

97
×

10
1

1.
67

×
10

1
6.

18
×

10
0

1.
61

×
10

6
1.

11
×

10
5

5.
27

×
10

3

St
d

1.
29

×
10

−3
7.

17
×

10
−1

9.
97

×
10

−2
4.

32
×

10
−1

1.
75

×
10

0
7.

60
×

10
5

1.
03

×
10

5
2.

58
×

10
3

10
00

M
ea

n
6.

06
×

10
−2

3.
82

×
10

0
1.

00
×

10
2

1.
21

×
10

2
4.

02
×

10
1

1.
47

×
10

8
9.

13
×

10
9

8.
26

×
10

7

St
d

8.
56

×
10

−2
3.

59
×

10
0

3.
49

×
10

−1
7.

98
×

10
0

1.
12

×
10

1
2.

91
×

10
7

8.
64

×
10

8
1.

28
×

10
7

144

Processes 2021, 9, 1774

Table 9. p-values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms on 50 dimensions.

Function
DESMAOA

vs. SMA
DESMAOA

vs. AOA
DESMAOA

vs. GWO
DESMAOA

vs. WOA
DESMAOA

vs. SSA
DESMAOA

vs. MVO
DESMAOA

vs. PSO

F1 5.00 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 5.00 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 5.37 × 10−3 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F6 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F7 8.33 × 10−2 7.30 × 10−2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 2.44 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 2.50 × 10−1 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F13 2.01 × 10−3 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

Table 10. p-Values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms on 200 dimensions.

Function
DESMAOA

vs. SMA
DESMAOA

vs. AOA
DESMAOA

vs. GWO
DESMAOA

vs. WOA
DESMAOA

vs. SSA
DESMAOA

vs. MVO
DESMAOA

vs. PSO

F1 2.50 × 10−1 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 6.10 × 10−5 6.10 × 10−5 9.77 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.54 × 10−4 6.10 × 10−5 6.10 × 10−5

F6 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5

F7 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F8 2.56 × 10−2 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 4.88 × 10−4 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4

F13 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

Table 11. p-Values of the Wilcoxon signed-rank test between DESMAOA and other competitor algorithms on
1000 dimensions.

Function
DESMAOA

vs. SMA
DESMAOA

vs. AOA
DESMAOA

vs. GWO
DESMAOA

vs. WOA
DESMAOA

vs. SSA
DESMAOA

vs. MVO
DESMAOA

vs. PSO

F1 3.91 × 10−3 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F2 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F3 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−4 6.10 × 10−5 6.10 × 10−5

F6 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5

F7 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 8.36 × 10−3

F8 4.21 × 10−1 6.10 × 10−5 1.22 × 10−4 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F9 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F10 1.00 × 100 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

F11 1.00 × 100 6.10 × 10−5 6.10 × 10−5 1.00 × 100 6.10 × 10−5 9.77 × 10−4 6.10 × 10−5

F12 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 1.16 × 10−3

F13 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5 6.10 × 10−5

145

Processes 2021, 9, 1774

Table 12. Experimental results of Friedman test on 50, 200, and 1000 dimensions.

Algorithm
D = 50 D = 200 D = 1000

Mean Rank Mean Mean Rank

DESMAOA 1.1923 1 1.2308 1 1.2692 1
SMA 1.9615 2 2.0000 2 2.1923 2
AOA 4.7692 5 4.5385 5 4.4615 4
GWO 4.3077 3 4.3846 4 4.6923 5
WOA 4.3846 4 3.7692 3 3.4615 3
SSA 6.7692 7 7.0000 8 6.1538 7

MVO 6.8462 8 6.7692 7 7.4615 8
PSO 5.7692 6 6.3077 6 6.3077 6

Table 13. The result statistics of CEC2021 test functions for the DESMAOA and competitor algorithms.

Function Metric DESMAOA SMA AOA GWO WOA SSA MVO PSO

CEC_01 Mean 3.4126 × 103 8.4790 × 103 1.4400 ×
1010 8.5800 × 107 8.8200 × 107 3.0497 × 103 2.0700 × 104 2.6509 × 103

Std 3.2484 × 103 4.3942 × 103 5.4800 × 109 2.0600 × 108 1.0800 × 108 2.6586 × 103 1.2300 × 104 2.8147 × 103

CEC_02 Mean 1.6460 × 103 1.7230 × 103 2.3794 × 103 1.7650 × 103 2.3408 × 103 1.9202 × 103 1.7883 × 103 2.0353 × 103

Std 1.8064 × 102 2.0356 × 102 2.5500 × 102 4.0002 × 102 2.8907 × 102 3.0299 × 102 2.8914 × 102 3.3248 × 102

CEC_03 Mean 7.4197 × 102 7.3268 × 102 8.0255 × 102 7.3186 × 102 7.9430 × 102 7.4133 × 102 7.3257 × 102 7.3096 × 102

Std 1.3713 × 101 9.9242 × 100 8.5999 × 100 1.0358 × 101 2.9899 × 101 1.5608 × 101 9.4278 × 100 1.1527 × 101

CEC_04 Mean 1.9024 × 103 1.9015 × 103 3.9200 × 105 1.9028 × 103 1.9116 × 103 1.9015 × 103 1.9014 × 103 1.9011 × 103

Std 1.5132 × 100 4.7478 × 10−1 2.0400 × 105 1.1137 × 100 8.0854 × 100 4.6367 × 10−1 6.4272 × 10−1 6.8410 × 10−1

CEC_05 Mean 4.7672 × 103 2.0900 × 104 4.6200 × 105 1.1600 × 105 5.8000 × 105 3.2100 × 104 6.7593 × 103 5.0581 × 103

Std 4.2784 × 103 4.6800 × 104 1.1100 × 105 1.9300 × 105 8.5200 × 105 7.2900 × 104 4.2953 × 103 3.3481 × 103

CEC_06 Mean 1.7312 × 103 1.7684 × 103 2.2222 × 103 1.7776 × 103 1.8431 × 103 1.7573 × 103 1.7587 × 103 1.8632 × 103

Std 1.2285 × 102 9.1820 × 101 2.0670 × 102 1.1171 × 102 1.0223 × 102 8.6052 × 101 1.0387 × 102 1.0503 × 102

CEC_07 Mean 7.0311 × 103 6.5603 × 103 2.9700 × 106 1.8000 × 104 3.4500 × 105 7.3733 × 103 7.5164 × 103 6.0549 × 103

Std 7.7063 × 103 6.4319 × 103 3.8500 × 106 3.7100 × 104 5.3700 × 105 4.9714 × 103 6.1260 × 103 2.6469 × 103

CEC_08 Mean 2.2974 × 103 2.4032 × 103 3.5700 × 103 2.3384 × 103 2.4289 × 103 2.3012 × 103 2.3861 × 103 2.4193 × 103

Std 2.2368 × 101 3.1043 × 102 3.7790 × 102 9.1745 × 101 3.3946 × 102 1.4399 × 101 2.6287 × 102 3.7983 × 102

CEC_09 Mean 2.7018 × 103 2.7599 × 103 2.9038 × 103 2.7449 × 103 2.7752 × 103 2.7330 × 103 2.7514 × 103 2.7922 × 103

Std 1.0302 × 102 1.0211 × 101 9.9242 × 101 4.4570 × 101 6.2479 × 101 6.4081 × 101 9.5351 × 100 1.0509 × 102

CEC_10 Mean 2.9231 × 103 2.9323 × 103 3.6576 × 103 2.9366 × 103 2.9545 × 103 2.9289 × 103 2.9290 × 103 2.9234 × 103

Std 2.2799 × 101 3.1577 × 101 4.0387 × 102 2.4483 × 101 6.9125 × 101 2.4243 × 101 2.9085 × 101 2.3865 × 101

Average rank 2.3 3.9 7.9 4.6 6.9 3.3 3.7 3.4
Rank 1 5 8 6 7 2 4 3

Figure 5. Pressure vessel design problem: model diagram (left) and structure parameters (right).

From Table 13, it can be observed that the DESMAOA was able to obtain the best
results in six functions: CEC_02, CEC_05, CEC_06, CEC_08, CEC_09, and CEC_10. Thus,
we can find that the DESMAOA has good performance in hybrid and composition test
functions. By comparing it with other optimization algorithms, we found that DESMAOA
showed very competitive performance for these CEC2021 test functions. Moreover, the
Friedman’s ranking test was also used to evaluate the performance of DESMAOA. The

146

Processes 2021, 9, 1774

average rank and rank were also given in Table 13. It can be seen that DESMAOA obtained
the best statistical ranking result among these algorithms.

Therefore, the results of CEC2021 test functions also showed the high performance for
solving optimization problems.

5. Applicability for Solving Engineering Design Problems

This section reports the three classical engineering design problems we employed to
evaluate the capability of DESMAOA to solve practical problems, which were the pressure
vessel design problem, three-bar truss design problem, and tension/compression spring
design problem. In the same way, 30 search agents and 500 iterations were utilized in the
design procedure of engineering problems for a fair comparison. Meanwhile, other related
results of optimization algorithms proposed by scholars are also given and compared with
proposed algorithm here. Detailed descriptions are shown below.

5.1. Pressure Vessel Design

The design of the pressure vessel is an optimization problem with four variables and
four constraints in the industrial field [43]. The lowest cost of pressure vessel was the
ultimate goal. The structure of pressure vessel is shown in Figure 5. The four design
variables were the thickness of the shell (Ts), thickness of the head (Th), inner radius (R),
and length of the cylindrical section (L). Table 14 lists the comparison between DESMAOA
and other competitor algorithms. From Table 14, we can see that DESMAOA was capable
of finding the optimal solution with the lowest cost.

Table 14. Optimal results for comparative algorithms on the pressure vessel design problem.

Algorithm
Optimal Values for Variables

Optimal Cost
Ts Th R L

DESMAOA 7.943124 × 10−1 3.927124 × 10−1 4.288001 × 101 1.671866 × 102 5.8363262 × 103

SMA [33] 7.931 × 10−1 3.932 × 10−1 4.06711 × 101 1.962178 × 102 5.9941857 × 103

AOA [34] 8.303737 × 10−1 4.162057 × 10−1 4.275127 × 101 1.693454 × 102 6.0487844 × 103

MVO [5] 8.125 × 10−1 4.375 × 10−1 4.2090738 × 101 1.7673869 × 102 6.0608066 × 103

WOA [39] 8.12500 × 10−1 4.37500 × 10−1 4.2098209 × 101 1.76638998 × 102 6.0597410 × 103

MFO [44] 8.125 × 10−1 4.375 × 10−1 4.2098445 × 101 1.76636596 × 102 6.0597143 × 103

GWO [38] 8.125 × 10−1 4.345 × 10−1 4.20892 × 101 1.767587 × 102 6.0515639 × 103

MOSCA [45] 7.781909 × 10−1 3.830476 × 10−1 4.03207539 × 101 1.999841994 × 102 5.88071150 × 103

LWOA [46] 7.78858 × 10−1 3.85321 × 10−1 4.032609 × 101 2.00 × 102 5.893339 × 103

IMFO [47] 7.781948 × 10−1 3.846621 × 10−1 4.032097 × 101 1.999812 × 102 5.8853778 × 103

5.2. Three-Bar Truss Design

The aim of the three-bar truss design is to achieve the lowest weight of three-bar
truss with the constraints of stress, deflection, and buckling, which belongs to the field of
civil engineering [48]. In this design problem, two parameters x1 (or A1) and x2 (or A2)
were involved, as shown in Figure 6. The solutions obtained by the DESMAOA and other
representative algorithms are listed in Table 15. It can be seen that the proposed hybrid
method apparently outperformed other approaches. Moreover, 30 repeated tests were also
performed to evaluate the robustness of the proposed algorithm. The worst value, mean
value, best value, and stand deviation were 2.639079 × 102, 2.638562 × 102, 2.638523 × 102,
and 1.0451 × 10−2. Hence, the statistical results revealed that the proposed algorithm had
very stable and superior performance in solving this design problem.

147

Processes 2021, 9, 1774

Figure 6. Three-bar truss design problem: model diagram (left) and structure parameters (right).

Table 15. Optimal results for comparative algorithms on the three-bar truss design problem.

Algorithm
Optimal Values for Variables

Optimal Weight
x1 x2

DESMAOA 7.882549 × 10−1 4.085642 × 10−1 2.638523657 × 102

SMA [33] 7.729316 × 10−1 4.718874 × 10−1 2.658067955 × 102

AOA [34] 7.9369 × 10−1 3.9426 × 10−1 2.639154 × 102

MBA [48] 7.885650 × 10−1 4.085597 × 10−1 2.638958522 × 102

SSA [40] 7.88665414 × 10−1 4.08275784 × 10−1 2.638958434 × 102

MFO [44] 7.88244771 × 10−1 4.09466906 × 10−1 2.638959797 × 102

PSO-DE [49] 7.886751 × 10−1 4.082482 × 10−1 2.638958433 × 102

HSCAHS [50] 7.885721 × 10−1 4.084012 × 10−1 2.63881992 × 102

5.3. Tension/Compression Spring Design

In the design of a tension/compression spring [51], the objective is to obtain the
minimum optimal weight under three constraints: (1) shear stress, (2) surge frequency,
and (3) deflection. As shown in Figure 7, there were three variables that needed to be
considered. They were the wire diameter (d), mean coil diameter (D), and the number of
active coils (N). The results of DESMAOA and other comparative algorithms are listed
in Table 16. By comparison, the proposed DESMAOA achieved the best solution for this
problem, which was 5.44827 × 10−2, 4.83109 × 10−1, and 5.746128 × 100 for d, D, and N,
respectively. Moreover, the optimal weight was 1.11083 × 10−2.

Figure 7. Tension/compression spring design problem: model diagram (left) and structure parame-
ters (right).

148

Processes 2021, 9, 1774

Table 16. Optimal results for comparative algorithms on the tension/compression spring design problem.

Algorithm
Optimal Values for Variables

Optimal Weight
d D p

DESMAOA 5.44827 × 10−2 4.83109 × 10−1 5.746128 × 100 1.11083 × 10−2

SMA [33] 5.8992 × 10−2 6.23402 × 10−1 3.590304 × 100 1.2128 × 10−2

AOA [34] 5.00 × 10−2 3.49809 × 10−1 1.18637 × 101 1.2124 × 10−2

MVO [5] 5.251 × 10−2 3.7602 × 10−1 1.033513 × 101 1.2790 × 10−2

AO [14] 5.02439 × 10−2 3.5262 × 10−1 1.05425 × 101 1.1165 × 10−2

SSA [40] 5.1207 × 10−2 3.45215 × 10−1 1.2004032 × 101 1.26763 × 10−2

GWO [38] 5.169 × 10−2 3.56737 × 10−1 1.128885 × 101 1.2666 × 10−2

GSA [6] 5.0276 × 10−2 3.23680 × 10−1 1.3525410 × 101 1.27022 × 10−2

WSA [51] 5.168626 × 10−2 3.5665047 × 10−1 1.129291654 × 101 1.267061 × 10−2

6. Conclusions and Future Works

To overcome the shortcomings of basic meta-heuristic algorithms, this paper presents
an effective deep ensemble method of two very new optimization algorithms, i.e., the SMA
and AOA. A preliminary hybrid of these two algorithms was firstly conducted to enhance
the capability of exploration. Then, two strategies were integrated to the hybridized
algorithm to assist it to jump out of the local minima and improve the accuracy of the
solution. The performance of proposed DESMAOA was extensively analyzed by using 23
classical test functions.

First, different combinations of SMAOA and two strategies were analyzed and dis-
cussed. The results revealed the effectiveness of proposed strategies. Then, the results of
DESMAOA were compared with SMA, AOA, and five well-known algorithms. The results
showed that the proposed method had the advantages of both SMA and AOA and that
it also was evidently better than other comparison algorithms. Afterward, experimental
tests in high dimensional environments (50, 200, and 1000) were also investigated among
these comparative algorithms, and the results of scalability test also confirmed the superior
performance of the proposed method. Finally, the proposed DESMAOA was employed to
deal with three engineering design problems. The results show that the proposed method
was good at solving these problems, and in particular it was very stable when solving the
three-bar truss design problem.

As future perspectives, the DESMAOA can be utilized to solve more optimization
problems in other disciplines, such as the feature selection, training of multi-layer per-
ceptron neural network, and image processing. Another investigation is to consider the
implementation of this hybrid method on other optimization algorithms for better opti-
mization performance.

Author Contributions: Conceptualization, R.Z. and H.J.; methodology, R.Z. and H.J.; software, R.Z.
and S.W.; validation, R.Z., H.J. and L.A.; formal analysis, R.Z. and S.W.; investigation, R.Z. and
H.J.; resources, R.Z., H.J. and L.A.; data curation, R.Z.; writing—original draft preparation, R.Z.;
writing—review and editing, R.Z. and H.J.; visualization, Q.L.; supervision, H.J. and L.A.; project
administration, R.Z. and H.J.; funding acquisition, R.Z. and H.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Sanming University introduces high-level talents to
start scientific research funding support project (21YG01, 20YG14), Fujian Natural Science Foun-
dation Project (2021J011128), Guiding science and technology projects in Sanming City (2021-S-8),
Educational research projects of young and middle-aged teachers in Fujian Province (JAT200618),
Scientific research and development fund of Sanming University (B202009), and Funded By Open
Research Fund Program of Fujian Provincial Key Laboratory of Agriculture Internet of Things
Application (ZD2101).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

149

Processes 2021, 9, 1774

References

1. Abualigah, L.; Diaba, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608.
[CrossRef]

2. Abualigah, L.; Diaba, A. A comprehensive survey of the Grasshopper optimization algorithm: Results, variants, and applications.
Neural Comput. Appl. 2020, 32, 15533–15556. [CrossRef]

3. Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic Harris Hawks Optimization with Mutation Mechanism for Satellite Image
Segmentation. Remote Sens. 2019, 11, 1421. [CrossRef]

4. Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [CrossRef]
5. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513. [CrossRef]
6. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
7. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017,

110, 69–84. [CrossRef]
8. Asef, F.; Majidnezhad, V.; Feizi-Derakhshi, M.R.; Parsa, S. Heat transfer relation-based optimization algorithm (HTOA). Soft.

Comput. 2021, 25, 8129–8158. [CrossRef]
9. Corriveau, G.; Guilbault, R.; Tahan, A.; Sabourin, R. Bayesian network as an adaptive parameter setting approach for genetic

algorithms. Complex Intell. Syst. 2016, 2, 1–22. [CrossRef]
10. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 2010, 23, 689–694.
11. Yao, X.; Liu, Y.; Lin, G. Evolutionary Programming Made Faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
12. Chen, G.; Yu, J. Particle swarm optimization algorithm. Inf. Control 2005, 186, 454–458.
13. Gaurav, D.; Vijay, K. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl. Based Syst. 2018,

159, 20–50.
14. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic

optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
15. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine predators algorithm: A nature-inspired metaheuristic. Expert

Syst. Appl. 2020, 152, 113377. [CrossRef]
16. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
17. Satapathy, S.; Naik, A. Social group optimization (SGO): A new population evolutionary optimization technique. Complex Intell.

Syst. 2016, 2, 173–203. [CrossRef]
18. Al-Betar, M.A. β-hill climbing: An exploratory local search. Neural Comput. Appl. 2017, 28, 153–168. [CrossRef]
19. Martínez-Lvarez, F.; Asencio-Cortés, G.; Torres, J.F.; Gutiérrez-Avilés, D.; Melgar-García, L.; Pérez-Chacón, R.; Rubio-Escudero, C.;

Riquelme, J.C.; Troncoso, A. Coronavirus Optimization Algorithm: A bioinspired metaheuristic based on the COVID-19
propagation model. Big Data 2020, 8, 308–322. [CrossRef] [PubMed]

20. Hussain, A.; Muhammad, Y.S. Trade-off between exploration and exploitation with genetic algorithm using a novel selection
operator. Complex Intell. Syst. 2019, 6, 1–14. [CrossRef]

21. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
22. Shehadeh, H.A. A hybrid sperm swarm optimization and gravitational search algorithm (HSSOGSA) for global optimization.

Neural Comput. Appl. 2021, 33, 11739–11752.
23. Kaveh, A.; Rahmani, P.; Eslamlou, A.D. An efficient hybrid approach based on Harris Hawks optimization and imperialist

competitive algorithm for structural optimization. Eng. Comput. 2021, 277, 1–29.
24. Dhiman, G.; Kaur, A. A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In Soft

Computing for Problem Solving; Springer: Singapore, 2019; Volume 1, pp. 599–615.
25. Dhiman, G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl. Based Syst.

2021, 222, 106926. [CrossRef]
26. Banaie-Dezfouli, M.; Nadimi-Shahraki, M.H.; Beheshti, Z. R-GWO: Representative-based grey wolf optimizer for solving

engineering problems. Appl. Soft Comput. 2021, 106, 107328. [CrossRef]
27. Zhang, H.; Wang, Z.; Chen, W.; Heidari, A.A.; Wang, M.; Zhao, X.; Liang, G.; Chen, H.; Zhang, X. Ensemble mutation-driven salp

swarm algorithm with restart mechanism: Framework and fundamental analysis. Expert Syst. Appl. 2021, 165, 113897. [CrossRef]
28. Yu, C.; Heidari, A.A.; Xue, X.; Zhang, L.; Chen, H.; Chen, W. Boosting quantum rotation gate embedded slime mould algorithm.

Expert Syst. Appl. 2021, 181, 115082. [CrossRef]
29. Zhang, H.; Cai, Z.; Ye, X.; Wang, M.; Kuang, F.; Chen, H.; Li, C.; Li, Y. A multi-strategy enhanced salp swarm algorithm for global

optimization. Eng. Comput. 2020. [CrossRef]
30. Che, Y.; He, D. A Hybrid Whale Optimization with Seagull Algorithm for Global Optimization Problems. Math. Probl. Eng. 2021,

2021, 1–31.
31. Hassan, B.A. CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Comput. Appl. 2021, 33,

7011–7030. [CrossRef]

150

Processes 2021, 9, 1774

32. Yue, S.; Zhang, H. A hybrid grasshopper optimization algorithm with bat algorithm for global optimization. Multimed. Tools Appl.
2021, 80, 3863–3884. [CrossRef]

33. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime Mould Algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

34. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

35. Mirjalili, S. SCA: A Sine Cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
36. Molga, M.; Smutnicki, C. Test Functions for Optimization Needs. 2005. Available online: http://www.zsd.ict.pwr.wroc.pl/files/

docs/functions.pdf (accessed on 1 October 2021).
37. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K.; Agrawal, P.; Kumar, A.; Suganthan, P.N. Problem Definitions and Evaluation

Criteria for the CEC 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization.
Cairo University. Tech. Rep. 2020. Available online: http://home.elka.pw.edu.pl/~{}ewarchul/cec2021-specification.pdf (accessed
on 1 October 2021).

38. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
39. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
40. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for

engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
41. Demsar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
42. Garcia, S.; Fernandez, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of

experiments in computational intelligence and data mining: Experimental analysis of power. Inform. Sci. 2010, 180, 2044–2064.
[CrossRef]

43. Kannan, B.; Kramer, S.N. An augmented lagrange multiplier based method for mixed integer discrete continuous optimization
and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [CrossRef]

44. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.
[CrossRef]

45. Rizk-Allah, R.M. Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J.
Comput. Des. Eng. 2018, 5, 249–273. [CrossRef]

46. Zhou, Y.; Ling, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithm for engineering optimization. Eng. Comput.
2018, 35, 2406–2428. [CrossRef]

47. Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Deng, Y. An Improved Moth-Flame Optimization algorithm with hybrid
search phase. Knowl. Based Syst. 2020, 191, 105277. [CrossRef]

48. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving
constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [CrossRef]

49. Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and
engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [CrossRef]

50. Singh, N.; Kaur, J. Hybridizing sine-cosine algorithm with harmony search strategy for optimization design problems. Soft.
Comput. 2021. [CrossRef]

51. Baykasoğlu, A.; Akpinar, S. Weighted superposition attraction (WSA): A swarm intelligence algorithm for optimization problems–
part2: Constrained optimization. Appl. Soft Comput. 2015, 37, 396–415. [CrossRef]

151

processes

Article

Migration-Based Moth-Flame Optimization Algorithm

Mohammad H. Nadimi-Shahraki 1,2,*, Ali Fatahi 1,2, Hoda Zamani 1,2, Seyedali Mirjalili 3,4,*, Laith Abualigah 5,6

and Mohamed Abd Elaziz 7,8,9,10

Citation: Nadimi-Shahraki, M.H.;

Fatahi, A.; Zamani, H.; Mirjalili, S.;

Abualigah, L.; Abd Elaziz, M.

Migration-Based Moth-Flame

Optimization Algorithm. Processes

2021, 9, 2276. https://doi.org/

10.3390/pr9122276

Academic Editor:

Gurutze Arzamendi

Received: 18 November 2021

Accepted: 14 December 2021

Published: 18 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran;
fatahi.ali.edu@sco.iaun.ac.ir (A.F.); hoda_zamani@sco.iaun.ac.ir (H.Z.)

2 Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
3 Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia,

Brisbane 4006, Australia
4 Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
5 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;

laythdyabat@aau.edu.jo
6 School of Computer Sciences, University Sains Malaysia, Pulau Pinang 11800, Malaysia
7 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;

abd_el_aziz_m@yahoo.com
8 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates
9 Department of Artificial Intelligence Science & Engineering, Galala University, Suze 435611, Egypt
10 School of Computer Science and Robotics, Tomsk Polytechnic University, 634050 Tomsk, Russia
* Correspondence: nadimi@iaun.ac.ir (M.H.N.-S.); ali.mirjalili@torrens.edu.au (S.M.);

Tel.: +98-3142292632 (M.H.N.-S.)

Abstract: Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demon-
strates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide
competitive results for complex optimization problems. The algorithm sinks into the local optimum
due to the rapid dropping of population diversity and poor exploration. Hence, in this article,
a migration-based moth–flame optimization (M-MFO) algorithm is proposed to address the men-
tioned issues. In M-MFO, the main focus is on improving the position of unlucky moths by migrating
them stochastically in the early iterations using a random migration (RM) operator, maintaining
the solution diversification by storing new qualified solutions separately in a guiding archive, and,
finally, exploiting around the positions saved in the guiding archive using a guided migration (GM)
operator. The dimensionally aware switch between these two operators guarantees the convergence
of the population toward the promising zones. The proposed M-MFO was evaluated on the CEC
2018 benchmark suite on dimension 30 and compared against seven well-known variants of MFO,
including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. Then, the top four
latest high-performing variants were considered for the main experiments with different dimensions,
30, 50, and 100. The experimental evaluations proved that the M-MFO provides sufficient exploration
ability and population diversity maintenance by employing migration strategy and guiding archive.
In addition, the statistical results analyzed by the Friedman test proved that the M-MFO demonstrates
competitive performance compared to the contender algorithms used in the experiments.

Keywords: optimization; metaheuristic algorithms; swarm intelligence algorithm; moth-flame
optimization (MFO); exploration and exploitation; population diversity

1. Introduction

During past decades, optimization techniques have been developed widely to solve
complex problems that emerged in different fields of science, such as engineering [1–9],
clustering [10–18], feature selection [19–28], and task scheduling [29–32]. Such optimiza-
tion problems mainly involve characteristics such as linear/non-linear constraints, non-
differentiable functions, and a substantial number of decision variables. These characteris-
tics make optimization problems almost impossible to solve by exact methods reasonably,

Processes 2021, 9, 2276. https://doi.org/10.3390/pr9122276 https://www.mdpi.com/journal/processes153

Processes 2021, 9, 2276

and an effective approach is needed to tackle such complexities. Approximate algorithms
are recognized as an effective approach for solving issues due to their stochastic techniques
and global and local search strategies. Although metaheuristic algorithms cannot guaran-
tee the optimality of their solutions, they can offer near-optimal solutions in a reasonable
amount of time, which helps solve real-world problems [33–37].

Metaheuristic algorithms mostly employ stochastic techniques to solve optimization
problems by exploring the search space to promote population diversity in the early it-
erations. In the exploitation phase, the algorithm locally searches the promising areas to
enhance the quality of solutions discovered in the exploration phase. Striking a proper
balance between these two tendencies leads the algorithm toward the global optimum
after a limited number of iterations. The bio-inspired algorithms are the primary approach
to solve optimization problems by employing biological concepts. In the literature, some
of the bio-inspired algorithms, such as genetic algorithm (GA) [38], differential evolution
(DE) [39], particle swarm optimization (PSO) [40], and artificial bee colony (ABC) [41], have
been used to find the optimum of optimization problems in polynomial time. Although the
mentioned algorithms demonstrate satisfactory results for many problems, no single meta-
heuristic can solve all optimization issues based on the no free lunch (NFL) theorem [42].
The NFL is the main reason for continuous developments in the field of optimization. As
a result, numerous bio-inspired algorithms have been developed by introducing novel
methods.

To comprehensively investigate the bio-inspired algorithms, we can classify them
based on their source of inspiration to evolutionary and swarm intelligence (SI) [43]. The
natural biological evolution, reproduction, mutation, and Darwin’s theory of evolution
are the most used fundamentals for developing evolutionary optimization algorithms. Ge-
netic algorithm (GA) [44], genetic programming (GP) [45], differential evolution (DE) [39],
evolution strategy (ES) [46], and, from recent studies, quantum-based avian navigation
optimizer algorithm (QANA) [47] are some evolutionary algorithms. During past years,
many variants have been developed to improve the performance of evolutionary algo-
rithms, such as enhanced genetic algorithm (EGA) [48], an ensemble of mutation strategies
and control parameters with the DE (EPSDE) [49], the real-coded genetic algorithm using
a directional crossover operator (RGA-DX) [50], and an effective multi-trial vector-based
differential evolution (MTDE) [51].

Swarm intelligence (SI) algorithms are grounded in the collective behavior of a group
of biological organisms. SI algorithms can be divided into four categories: aquatic animals,
terrestrial animals, birds, and insects [52]. The natural behavior of aquatic animals, such as
prey besieging and foraging, has been mimicked in many SI algorithms, including the
krill herd (KH) algorithm [53], whale optimization algorithm (WOA) [54], and salp swarm
algorithm (SSA) [55]. Many researchers have simulated the biological behavior of terrestrial
animals to propose functional metaheuristic algorithms, such as grey wolf optimizer
(GWO) [41], red fox optimization algorithm (RFO) [56], chimp optimization algorithm
(ChOA) [57], and horse herd optimization algorithm (HOA) [58]. In the third category, bat
algorithm (BA) [59], cuckoo search algorithm (CS) [60], crow search algorithm (CSA) [61],
and Aquila optimizer (AO) [62] are among the well-known algorithms inspired by birds’
behaviors. Social behaviors of insects, such as self-organization and cooperation, are the
main sources of inspiration behind the fourth group of SI algorithms, including ant colony
optimization (ACO) [63], artificial bee colony (ABC) [64], ant lion optimization (ALO) [65],
dragonfly algorithm (DA) [66], and moth–flame optimization (MFO) [67].

The SI algorithms intrinsically benefit from autonomy, adaptability, and acceptable
time complexity. However, loss of population diversity and sinking into the local optimum
are common issues among most SI algorithms. Therefore, many variants have been
proposed to address these shortcomings and enhance the performance of the algorithms.
Karaboga et al. [68] introduced a quick artificial bee colony (qABC) algorithm to improve
the exploitation ability of the traditional algorithm. The conscious neighborhood-based
crow search algorithm (CCSA) [52] addresses the imbalance between exploration and

154

Processes 2021, 9, 2276

exploitation. An improved grey wolf optimizer (I-GWO) [69] was proposed to maintain
the population diversity. An enhanced chimp optimization algorithm (EChOA) [70] has
been introduced to avoid local optimum.

The moth–flame optimization (MFO) is a prominent bio-inspired metaheuristic al-
gorithm inspired by the moths’ spiral movement around the light source at night. The
MFO algorithm stands out among many metaheuristic algorithms for its simplicity and
acceptable time complexity. Therefore, the MFO is used for solving a broad range of
real-world problems, such as clustering [71–77], feature selection [78–85], and image pro-
cessing [86–91]. Although the MFO is applicable for solving real-world problems and
many improvements have been developed, it has been observed that the MFO and its
variants hereditarily suffer from poor exploration and loss of population diversity before
the near-optimal solution is met, which leads the algorithm toward local optima trapping
and premature convergence.

In this study, an enhanced MFO algorithm, named migration-based moth–flame
optimization (M-MFO) algorithm, is proposed to cope with these weaknesses. The M-MFO
introduces a guiding archive to maintain the population diversity and a hybrid simple
strategy named migration strategy consists of two random migration (RM) and guided
migration (GM) operators which take advantage of an adapted crossover introduced in the
GA [44]. The RM operator is introduced to enhance the exploration ability and population
diversity by crossing the unlucky moths with a randomly generated moth to migrate to
new areas. If the migrated moths obtain better positions, they are updated and added to
the guiding archive to guide other unlucky moths. When the guiding archive size reaches
the size of the problem variables, the archive is mature enough to guide other unlucky
moths using the GM operator. This dimensionally aware switch between operators can
guarantee the convergence of the algorithm toward promising areas.

To evaluate the efficiency of the M-MFO, the CEC 2018 benchmark functions were
conducted to investigate the characteristics and performance of the proposed algorithm
and its competitors in different dimensions, 30, 50, and 100. The convergence curves and
population diversity provided in Section 5, show that the M-MFO can maintain population
diversity until the optimal solution emerges and effectively facilitates the convergence
behavior. Moreover, the Friedman test was conducted to evaluate the obtained results
statistically. The experimental and statistical results were first compared with seven well-
known variants of MFO, including LMFO [92], WCMFO [93], CMFO [94], CLSGMFO [95],
LGCMFO [96], SMFO [97], and ODSFMFO [98] in dimension 30. Then, the top four
algorithms and eight other state-of-the-art swarm intelligence algorithms were considered
for the main experiments. Hence, the total competitors for the main experiments were
KH [53], GWO [41], MFO [67], WOA [54], WCMFO [93], CMFO [94], HGSO [99], RGA-
DX [50], ChOA [57], AOA [100], and ODSFMFO [98]. The experimental evaluations
and statistical tests revealed that the M-MFO algorithm outperforms other competitor
algorithms with overall effectiveness of 91%. The experimental results revealed that the
migration strategy enhances the exploration ability and maintains the population diversity
to avoid local optimum by stochastically migrating the worst individuals across the search
space in the first iterations and exploiting promising areas discovered by the RM operator
in the next iterations. The main contributions of this study are summarized as follows.

• Introducing a guiding archive for storing improved moths to guide other unlucky
moths.

• Introducing a migration strategy using RM and GM operators to improve unlucky
moths.

• The RM operator enhances the exploration ability, while the GM operator converges
the population toward the promising areas by exploiting around improved moths.

• The experiments prove that the M-MFO effectively maintains the population diversity
by taking advantage of the guiding archive.

155

Processes 2021, 9, 2276

• The Friedman test demonstrated that the M-MFO provides the best results compared
to competitors and stands out among MFO variants for solving global optimization
problems.

The remainder of the paper is organized as follows. A literature overview of the MFO
variants is included in Section 2. Section 3 briefly presents the MFO algorithm. Section 4
comprehensively presents the proposed M-MFO algorithm. A rigorous examination of
the effectiveness of the proposed algorithm is provided experimentally in Section 5 and
statistically in Section 6. Finally, Section 7 summarizes the conclusions.

2. Related Work

The MFO algorithm is known as a prominent problem solver due to its simple frame-
work, fewer control parameters, and ease of implementation. However, the MFO suffers
from some issues for solving complex optimization problems. Therefore, since the release
of the MFO, many variants have been developed to address MFO’s shortcomings and offer
improved performance. These variants can be categorized into hybrid improvements and
non-hybrid improvements, as illustrated in Figure 1.

Figure 1. The classification of SI algorithms and variants of MFO.

Since the introduction of MFO, many researchers have proposed hybrid variants
to effectively address shortcomings of the canonical MFO by employing operators of
other algorithms. Bhesdadiya et al. [101] introduced a hybrid PSO-MFO algorithm by

156

Processes 2021, 9, 2276

combining particle swarm optimization (PSO) with MFO to boost the exploitation ability
of the MFO algorithm. MFO-LSSVM [102] is a hybridization of MFO with least squares
support vector machines (LSSVM) to enhance the generalization in the prediction of
the MFO algorithm. To boost the exploitation ability of the MFO, Sarma et al. [103]
introduced the gravitational search algorithm (GSA) to the canonical MFO and proposed
MFOGSA. In WCMFO, Khalilpourazari et al. [93] introduced a combined MFO, water cycle
algorithm (WCA) and a random walk to avoid local optimum and enhance the solution
quality. Rezk et al. [104] designed a hybrid MPPT method by combining an incremental
conductance (INC) approach and MFO, called (INC-MFO), to reach a maximum-power
solar PV/thermoelectric system under different environmental conditions.

Ullah et al. [105] introduced a time-constrained genetic moth–flame optimization
(TG-MFO) algorithm for an energy management system (EMS) in smart homes and build-
ings. The FCHMD [106] algorithm combines Harris hawks optimizer (HHO) and MFO
to cope with the insufficient exploitation and exploration rate of the HHO and MFO, re-
spectively. Moreover, the method of evolutionary population dynamics (EPD) is employed
to address premature convergence and local optima stagnation. ODSFMFO, proposed by
Li et al. [98], is a hybridization of MFO with differential evolution (DE) and shuffled frog
leaping algorithm (SFLA). In addition, the algorithm is enhanced by the addition of a flame
generation strategy and death mechanism. Dang et al. [107] brought up a hybridization
of MFO and three different methods, including the Taguchi method, fuzzy logic, and re-
sponse surface method, to solve the flexure hinge design problem. SMFO has been recently
proposed by [97] to enhance the solution quality and convergence speed of the MFO by
introducing the sine cosine strategy to the MFO algorithm.

The non-hybrid algorithms are mostly developed to cope with issues such as local
optima trapping, premature convergence, the imbalance between search strategies, and
poor local and global search abilities. The LMFO algorithm proposed by Li et al. [92] is an
enhanced version of MFO, improved by Lévy flight to address premature convergence and
local optimum trapping by improving the population diversity. Apinantanakon et al. [108]
established an opposition-based moth–flame optimization (OMFO) algorithm to evade
local optimum by boosting the exploration ability of the MFO. Xu et al. [109] addressed
the MFO’s low population diversity and introduced EMFO by taking advantage of the
Gaussian mutation (GM). Li et al. [110] presented a multi-objective moth–flame optimiza-
tion algorithm (MOMFA) to enhance water resource efficiency by maintaining population
diversity and accelerating convergence speed by taking advantage of opposition-based
learning and indicator-based learning selection-efficient mechanisms.

The CLSGMFO [95] presents an efficient chaotic mutative moth–flame-inspired algo-
rithm by employing Gaussian mutation and chaotic local search to enhance the population
diversity and exploitation rate, respectively. Chaos-enhanced moth–flame optimization
(CMFO), proposed by Hongwei et al. [94], is an improved MFO algorithm that employs
ten chaotic maps. Xu et al. [96] developed LGCMFO to enhance the global and local search
ability of the MFO and avoid local optimum by employing new operators, such as Gaussian
mutation (GM), Lévy mutation (LM), and Cauchy mutation (CM). In BFGSOLMFO, Zhang
et al. [111] introduced orthogonal learning (OL) and Broyden–Fletcher–Goldfarb–Shanno
(BFGS) to the MFO to enhance the solution quality of the MFO. Nadimi-Shahraki et al. [112]
proposed an improved moth–flame optimization (I-MFO) algorithm to evade the local
optima trapping and premature convergence by adding a memory mechanism and taking
advantage of the adapted wandering around search (AWAS) strategy. This algorithm is
designed to solve the numerical and mechanical engineering problems.

3. Moth–Flame Optimization (MFO) Algorithm

The moth–flame optimization (MFO) is a prominent SI algorithm inspired by the spiral
locomotion behavior of moths around a light source at night. This behavior is derived
from the navigation mechanism of moths that is used to fly a long distance in a straight
line by maintaining a fixed inclination to the moon. However, this principled navigation

157

Processes 2021, 9, 2276

mechanism turns into a deadly spiral path toward the light source if the light source
is relatively close to the moths. According to the brief description, the MFO algorithm
consists of moths and flames. As shown in Equation (1), moths are considered search
agents, organized in matrix M (t), that explore the D-dimensional search space, and N is
the number of moths.

M(t) =

⎡
⎢⎢⎢⎣

m1,1 m1,2 · · · m1,D
m2,1 m2,2 · · · m2,D

...
...

...
...

mN ,1 mN ,2 · · · mN ,D

⎤
⎥⎥⎥⎦ (1)

Additionally, the fitness of the corresponding moth is stored in an array OM (t), as
shown below.

OM(t) =

⎡
⎢⎢⎢⎣

OM1(t)
OM2(t)

...
OMN(t)

⎤
⎥⎥⎥⎦ (2)

On the other hand, flames are the best positions discovered by moths and are stored in
a similar matrix F (t), along with their fitness values in an array OF (t). The moths spirally
move around their corresponding flames, as shown in Equation (3), where Mi (t) is the
position of ith moth in the current iteration, the Disi determines the distance between Mi
and its corresponding jth flame (Fj) formulated in Equation (4), b indicates the shape of the
logarithmic spiral, and k is a random number value between intervals [−1, 1].

Mi(t) = Disi(t)× ebk × Cos(2πk) + Fj(t) (3)

Disi(t) =
∣∣Fj(t)− Mi(t)

∣∣ (4)

To converge the algorithm and provide more exploitation, the number of flames
decreases in the course of iterations based on Equation (5), where t determines the current
number of iterations, while N and MaxIt demonstrate the total number of flames and the
maximum number of iterations, respectively.

FlameNum(t) = round
(

N − t × N − 1
MaxIt

)
(5)

4. Proposed Algorithm

The MFO is a prominent population-based algorithm that is successfully applied in
different fields. However, based on the conducted analysis reported in Section 5.2 and
related studies [113–115], the MFO algorithm suffers from poor exploration and rapid
loss of population diversity. While the number of flames converges, the algorithm pro-
vides more local searches throughout the course of the iterations. Hence, the algorithm is
prone to sink into the local optimum due to its limited simple spiral movement of moths
around their corresponding flames which cannot offer further exploration to avoid the
local optimum. Therefore, this study proposes a migration-based moth–flame optimization
(M-MFO) algorithm, which is a hybridization of the MFO algorithm and the crossover
operator introduced in the GA. Moreover, the M-MFO utilizes a guiding archive to main-
tain population diversity and a migration strategy that uses the crossover operator to
boost exploration ability. The migration strategy introduces two operators, RM and GM,
by taking advantage of an adapted GA’s crossover. The RM operator is introduced to
provide sufficient exploration ability during the early iterations, while the GM operator
converges the population toward promising areas. Moreover, to maintain the population
diversity, a guiding archive is introduced, as outlined in Definition 1, to store lucky moths
that have improved using the migration strategy.

158

Processes 2021, 9, 2276

Definition 1 (guiding archive). The guiding archive keeps the position of lucky moths improved by
the migration strategy to maintain the population diversity and suppress the premature convergence
of the population. Both RM and GM add improved moths to the guiding archive, although only the
GM operator exploits the archive. The guiding archive capacity (MaxArc) is formulated in Equation
(6), where D and N are dimensions and population size.

MaxArc = D × [ln N] (6)

To ensure that the guiding archive is mature enough to guide other unlucky moths,
the current size of the archive (δ) needs to be greater than the size of the problem variables
(D). This limitation provides a dimensionally aware switch to choose the right operator in
the migration strategy effectively. In addition, if the value of δ exceeds the MaxArc, the next
moth is replaced with a random member of the guiding archive.

Migration strategy includes RM and GM operators to ensure that there is high enough
exploration capability and convergence toward promising zones. The RM operator pro-
vides further exploration ability by changing the position of Mi stochastically. At the same
time, the GM operator is introduced to converge the population toward promising zones by
exploiting improved moths kept in the guiding archive. Moreover, the migration strategy
benefits from a dimensionally aware switch between these two operators as represented in
Equation (7), where δ indicates the current size of the guiding archive. The pseudo-code
and the flowchart of the M-MFO are presented in Algorithm 1 and Figure 2, respectively.

Mi(t + 1) =

⎧⎨
⎩

RM operator δ < D

GM operator δ ≥ D
(7)

Random migration (RM) operator: Let unlucky moths (t) = {M1, M2, . . . , Mi, . . . },
which is a finite set of unlucky moths, such that OMi (t) > OMi (t − 1). Hence, in this
operator, the position of Mi changes by considering a randomly generated moth (Mr) and
Mi represents the parents in the crossover formulated in Equations (8) and (9), where α
is a random number in [0, 1]. The crossover produces two offspring, and the one with
better fitness is selected and compared with other offspring to choose the best one, and the
position of OMi (t + 1) is added to the guiding archive if it can dominate the OMi (t). The
RM operator satisfies the need for exploration by stochastically moving the unlucky moths
to discover promising areas in the early iterations.

O f f spring1 = α × Mi + (1 − α)× Mr (8)

O f f spring2 = α × Mr + (1 − α)× Mi (9)

Guided migration (GM) operator: The GM operator is employed to change the po-
sition of unlucky moth, Mi, when the size of the GM reaches the size of the problem
variables. The GM changes the position of Mi by employing the crossover formulated
in Equations (10) and (11), where LMr is a random lucky moth from the guiding archive.
Similarly, to the RM operator, if the new offspring obtains a better position compared to
Mi (t), the position of Mi (t + 1) is updated, and it is appended to the guiding archive.

O f f spring1 = α × Mi + (1 − α)× LMr (10)

O f f spring2 = α × LMr + (1 − α)× Mi (11)

159

Processes 2021, 9, 2276

Figure 2. The flowchart of the proposed M-MFO algorithm.

160

Processes 2021, 9, 2276

Algorithm 1. The pseudocode of proposed M-MFO algorithm.

Input: Max iterations (MaxIt), number of moths (N), max size of guiding archive (MaxArc), and
dimension (D).
Output: The best flame position and its fitness value.

Begin

Randomly distributing M moths in the D-dimensional search space.
Calculating moths’ fitness (OM).
Set t and δ = 1 //δ is the number of guiding archive members.
OF (t) ← sort OM (t).
F (t) ← sort M (t).
While t ≤ MaxIt

Updating F and OF by the best N moths from F and current M.
Updating FlameNum (t) using Equation (5).
For i = 1: N

Updating the position of Mi (t) using Equation (3) and computing the OMi (t).
If OMi (t) > OMi (t − 1)

τ ← Generating a random number between intervals [1, D].
For j = 1: τ

If δ ≤ D (The guiding archive is still immature)
Generating the next position Mi (t + 1) using RM operator and

Equations (8) and (9).
Else (The guiding archive is mature)

Generating next position Mi (t + 1) using GM operator and
Equations (10) and (11).

End If

End For

If OMi (t + 1) < OMi (t)
Updating position Mi (t) and adding Mi (t + 1) to guiding archive

using Definition 1 and MaxArc.
End If

End If

End For

Updating the position and fitness value of the global best flame.
t = t +1.

End while

5. Numerical Experiment and Analysis

In this section, the performance of the proposed M-MFO has been evaluated on sev-
eral benchmark functions. In the first section, the population diversity and convergence
behavior of the canonical MFO have been analyzed on some selected functions to pro-
vide some useful information about the shortcomings of the MFO algorithm. Then, the
MFO variants and the M-MFO have been compared on dimension 30 to determine the
top four superior MFO variants to participate in the next experiments. Following that, the
performance of M-MFO has been compared with ten of the state-of-the-art swarm intel-
ligence algorithms: KH [53], GWO [41], MFO [67], WOA [54], WCMFO [93], CMFO [94],
HGSO [99], RGA-DX [50], ChOA [57], AOA [100], and ODSFMFO [98]. The parameters of
the competitor algorithms are reported in Table 1.

161

Processes 2021, 9, 2276

Table 1. Parameter values for the optimization algorithms.

Alg. Parameter Settings

KH Vf = 0.02, Dmax = 0.005, Nmax = 0.01, Sr = 0.
GWO The parameter a is linearly decreased from 2 to 0.
MFO b = 1, a is decreased linearly from −1 to −2.
WOA α variable decreases linearly from 2 to 0, b = 1.
WCMFO The number of rivers and sea = 4.
CMFO b = 1, a is decreased linearly from −1 to −2, chaotic map = Singer.
HGSO l1 = 5 × 10−3, l2 = 100, l3 = 1 × 10−2, alpha = 1, beta = 1, M1 = 0.1, M2 = 0.2.
RGA-DX pcv = 0.9, α = 0.95, and pd = 0.75.
ChOA f decreases linearly from 2 to 0.
AOA μ = 0.5, α = 5.
ODSFMFO m = 6, pc = 0.5, γ = 5, α = 1, l = 10, b = 1, β = 1.5.
M-MFO τ = random number between 1 and D, MaxArc = D × [ln N].

5.1. Experimental Environment and Benchmark Functions

The M-MFO and competitor algorithms were implemented in Matlab 2020a. All exper-
iments were performed 20 times, independently, on a laptop with Intel Core i7-10750H CPU
(2.60 GHz) and 24 GB of memory to ensure fair comparisons. In each run, the maximum
number of iterations (MaxIt) was set by (D × 104)/N where D and N were respectively set
to the dimensions of the problem and 100. In this study, the CEC 2018 benchmark func-
tions [116] were used to evaluate the effectiveness of the proposed M-MFO. There are 29
test functions in the CEC 2018 benchmark suite, each with its own set of characteristics and
different dimensions 30, 50, and 100. These test functions can be classified into unimodal
functions F1 and F3, multimodal functions F4–F10, hybrid functions F11–F20, and composi-
tion functions F21–F30. The experimental results tabulated in Tables 2–5 and Tables A1–A4
in the Appendix A are based on each algorithm’s average and minimum fitness value,
where the bold values illustrate the winning algorithm. Moreover, the symbols “W|T|L”
in the last row of each table demonstrate the number of wins, ties, and losses for each
algorithm.

Table 2. The overall results of MFO variants for dimension 30.

Metric
LMFO
(2016)

WCMFO
(2019)

CMFO
(2019)

CLSGMFO
(2019)

LGCMFO
(2019)

SMFO
(2021)

ODSFMFO
(2021)

M-MFO

Overall
results W|T|L 0|0|29 0|0|29 1|0|28 0|0|29 0|0|29 0|0|29 0|0|29 28|0|1

Table 3. The overall results of the M-MFO and comparative algorithms on unimodal and multimodal test functions.

D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

Overall
results

30 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|1|8 0|0|9 0|0|9 0|0|9 8|1|0

50 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

100 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

Table 4. The overall results of the M-MFO and comparative algorithms on hybrid test functions.

D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

Overall
results

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 9|0|1

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0

162

Processes 2021, 9, 2276

Table 5. The overall results of the M-MFO and comparative algorithms on composition test functions.

D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

Overall
results

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 9|0|1

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 8|0|2

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2

5.2. Population Diversity Analysis

Maintaining population diversity plays a crucial role in metaheuristic algorithms dur-
ing the optimization process, as low diversity among search agents can lead the algorithm
toward getting stuck at a local optimum. In this experiment, the population diversity
and convergence behavior of the MFO algorithm were comprehensively examined to dis-
cover the shortcomings of the MFO algorithm. The population diversity curves shown
in Figure 3 were measured by a moment of inertia (Ic) [117], where the Ic represents the
spreading of each individual from their centroid given by Equation (12) and the centroid cj
for j = 1, 2 . . . D was calculated using Equation (13).

Ic =
D

∑
j=1

N

∑
i=1

(
Mji − cj

)2 (12)

cj =
1
N

N

∑
i=1

Mji (13)

Figure 3. The diversity and convergence curves of the MFO.

163

Processes 2021, 9, 2276

In order to perform a fair analysis and develop a better understanding of how popula-
tion diversity affects the optimization process, Figure 3 illustrates the population diversity
and convergence curves of the MFO side by side. For unimodal function F1, the diversity
fell while the optimal solution had not been met yet. Hence, the algorithm sunk into
the local optimum until the last iterations. For F3, the slope of losing diversity was not
as sharp as F1, and the convergence trend continued until the last iterations. However,
the population diversity was still low, and convergence speed was too slow to reach the
near-optimal solution in the course of iterations. F4 and F7 represent the multimodal
functions in which the MFO could not maintain the population diversity, and the algorithm
experienced premature convergence, beginning at early iterations. F13, F18, F22, and F27
were plotted as representatives of hybrid and composition functions with similar diversity
and convergence behaviors. The standard behavior was the effort of the algorithm to avoid
the local optimum by increasing the population diversity; however, the simple movements
of search agents in MFO could not satisfy the needs of exploration to escape the local
optimum. To sum up, it can be concluded from the plots that the MFO loses its population
diversity before reaching an optimal solution. This behavior was repeated for most of the
functions, proving the deficiency of the algorithm in maintaining the population diversity.

5.3. Comparison of M-MFO with MFO Variants

To compare M-MFO with more variants, the results of M-MFO and seven other well-
known variants of MFO, including LMFO [92], WCMFO [93], CMFO [94], CLSGMFO [95],
LGCMFO [96], SMFO [97], and ODSFMFO [98], were assessed and tabulated in Table 2
and Table A1 in the Appendix A, where the M-MFO outperformed its competitors in
dimension 30. Then, the top four algorithms, including the proposed M-MFO, ODSFMFO,
WCMFO, and CMFO, were selected for main experiments, including comparison results
on dimensions 30, 50, and 100; convergence analysis; population diversity analysis; and
the Friedman test.

5.4. Evaluation of Exploitation and Exploration

The exploitation and exploration abilities of the proposed M-MFO have been evaluated
by unimodal and multimodal test functions, respectively. As the unimodal functions, F1
and F3 have a single global optimum and they are suitable for assessing the exploitation
abilities of optimization algorithms. Based on the results of the unimodal functions reported
in Table 3 and Table A2 in the Appendix A, the M-MFO outperformed competitors for
30, 50, and 100 dimensions, particularly on test function F3, where the M-MFO provided
the global best solution. The main reason for this exploitation ability is to employ the
GM operator, which effectively exploits improved moths kept in the guiding archive. To
assess the exploration ability of the M-MFO, the multimodal test functions F4–F10 were
considered, as multimodal functions have many local optima. The results of multimodal
test functions demonstrated that the M-MFO provides very competitive results compared
to other competitors, mainly because of the RM operator and its stochastic movement
employed for exploring the landscape effectively in the early iterations.

5.5. Local Optima Avoidance Analysis

In this experiment, the local optima avoidance ability and balance between explo-
ration and exploitation of M-MFO were investigated using hybrid F11–F20 and compo-
sition F21–F30 functions with dimensions 30, 50, and 100. The related results, tabulated
in Tables 4 and 5 and Tables A3 and A4 in the Appendix A, proved that the M-MFO is
very competitive in comparison to other algorithms used for approximating the global
optima values. The main reason is that the algorithm optimally trades off exploration
and exploitation by defining two operators—the RM operator, which stochastically moves
the unlucky search agents across the search space, and the GM operator, which exploits
the promising areas located by successful migrants. Additionally, a guiding archive is
introduced to maintain the population diversity by storing new solutions obtained by mi-

164

Processes 2021, 9, 2276

gration strategy. Moreover, defining a dimensionally aware switching between operators
of migration strategy guarantees a proper trade-off between exploration and exploitation.

5.6. The Overall Effectiveness of M-MFO

This study evaluated the overall effectiveness (OE) of the M-MFO and contender
algorithms based on the results reported in Tables 3–5 and Tables A2–A4 in Appendix A.
The OE results reported in Table 6 were calculated using Equation (14), where N indicates
the total number of test functions and L is the number of losing tests for each algorithm.
The results prove that the M-MFO, with overall effectiveness of 91%, is the most effective
algorithm for the various dimensions 30, 50, and 100.

OE (%) =
N − L

N
× 100 (14)

Table 6. The overall effectiveness of the M-MFO and contender algorithms.

D

Algorithms

KH
(W/T/L)

GWO
(W/T/L)

MFO
(W/T/L)

WOA
(W/T/L)

WCMFO
(W/T/L)

CMFO
(W/T/L)

HGSO
(W/T/L)

RGA-DX
(W/T|L)

ChOA
(W|T|L)

AOA
(W|T|L)

ODSFMFO
(W|T|L)

M-MFO
(W|T|L)

30 0/0/29 0/0/29 0/0/29 0/0/29 0/0/29 1/0/28 1/0/28 1/1/27 0/0/29 0/0/29 0/0/29 25/1/3

50 0/0/29 0/0/29 0/0/29 0/0/29 1/0/28 0/0/29 1/0/28 0/0/29 0/0/29 0/0/29 1/0/28 26/0/3

100 0/0/29 0/0/29 0/0/29 0/0/29 0/0/29 0/0/29 1/0/28 1/0/28 0/0/29 0/0/29 0/0/29 27/0/2

Total 0/0/87 0/0/87 0/0/87 0/0/87 1/0/85 1/0/86 3/0/84 2/1/85 0/0/87 0/0/87 1/0/86 78/1/8

OE 0% 0% 0% 0% 1% 1% 4% 2% 0% 0% 1% 91%

5.7. Convergence Rate Analysis

In this experiment set, the convergence properties of the M-MFO were examined
and the results were compared with contender algorithms for dimensions 30, 50, and 100.
Figure 4 illustrates the convergence curves of the average fitness values obtained by each
algorithm on unimodal, multimodal, hybrid, and composition test functions. The first
row shows the convergence behavior of algorithms on F3. The M-MFO hit the global
optimum solution in the early iterations for all dimensions, which proved the sufficient
exploitation ability of the M-MFO. In contrast, the convergence trends of other algorithms
were hampered by local minima or demonstrated a prolonged convergence rate. For
multimodal function F10, the M-MFO provided the best solution among competitors in the
early iterations due to its exploration ability derived from the migration strategy. The third
and fourth rows present the convergence of the hybrid functions. The M-MFO bypassed
the local optima and continued its gradual trend toward the near-optimum solutions
until the final iterations by striking a balance between exploration and exploitation. The
convergence curves of the composition function illustrated in the last row demonstrate
that the M-MFO obtained the best solution among competitors in early iterations. To sum
up, the plots proved that the M-MFO is superior to the other algorithms and provides
sufficient exploitation, exploration, and balance between these two tendencies. In addition,
it can be noticed that the M-MFO offered more consistent results by increasing the size of
the problem variables.

165

Processes 2021, 9, 2276

Figure 4. The convergence behavior of the proposed M-MFO and contender algorithms.

5.8. Population Diversity Analysis

As mentioned in Section 5.2, adequate population diversity can suspend the algorithm
from local optima trapping. Therefore, in this section, the population diversity of M-MFO
and other competitors is provided in Figure 5. Comparing the population diversity with
convergence curves provided in the previous section demonstrated that the M-MFO effec-
tively maintained its population diversity until the promising area was met for different
test functions with dimensions of 30, 50, and 100. Furthermore, the plots suggest that the
M-MFO shows strong robustness for maintaining the population diversity as the size of the
problem variables increases, mainly for its dimensionally aware switch between operators.

166

Processes 2021, 9, 2276

Figure 5. Population diversity of M-MFO and contender algorithms on different dimensions.

5.9. Sensitivity Analysis on the Guiding Archive Maturity Size

As discussed in Definition 1, the M-MFO algorithm switches from RM to GM operator
when the guiding archive has matured. Hence, in this experiment, the impact of considering
different maturity sizes of the guiding archive was evaluated and is discussed in relation
to four different scenarios. Table 7 shows the fitness values gained in each scenario among
five functions (i.e., F1, F9, F17, and F30) for different dimensions 30, 50, and 100.

167

Processes 2021, 9, 2276

Table 7. Results of sensitivity analysis on the guiding archive maturity size.

Scenario 1 (δ = 1) Scenario 2 (δ = 3) Scenario 3 (δ = 5)
Scenario 4 (δ = D)

M-MFO

Dim D30 D50 D100 D30 D50 D100 D30 D50 D100 D30 D50 D100

F1
(Unimodal) 2.04 × 103 1.43 × 103 3.48 × 103 2.28 × 103 1.54 × 103 4.24 × 103 2.30 × 103 1.83 × 103 4.69 × 103 1.66 × 103 1.46 × 103 4.46 × 103

F9
(Multimodal) 9.01 × 102 9.06 × 102 9.58 × 102 9.01 × 102 9.05 × 102 9.57 × 102 9.00 × 102 9.05 × 102 9.49 × 102 9.00 × 102 9.04 × 102 9.45 × 102

F17
(Hybrid) 1.75 × 103 2.05 × 103 2.39 × 103 1.74 × 103 1.99 × 103 2.35 × 103 1.74 × 103 1.99 × 103 2.29 × 103 1.74 × 103 1.93 × 103 2.29 × 103

F30
(Composition) 6.78 × 103 8.29 × 105 1.30 × 104 6.77 × 103 8.26 × 105 1.14 × 104 6.58 × 103 8.22 × 105 1.05 × 104 6.64 × 103 8.16 × 105 9.59 × 103

The reported results indicate that the fourth scenario (δ = D) among all the tested
functions provided better results overall compared to other scenarios. Nevertheless, it
can be noticed that other scenarios provided competitive results, especially for unimodal
functions. The main reason lies behind the fact that the higher value for maturity provides
more population diversity and exploration ability, while the need for exploitation ability is
more highlighted for unimodal functions. Moreover, previous studies [47,52] have proved
that increasing the dimension has a negative impact on the effectiveness and scalability of
metaheuristic algorithms. Hence, the size of the problem variables for maturity condition
(δ = D) can provide dimensional robustness for the algorithm. Furthermore, considering
D as the maturity size does not add any additional parameters to the algorithm, and it
provides an autotune parameter for different dimensions.

6. Statistical Analysis

In this experiment, the Friedman test [118] was conducted to statistically prove the
superiority of M-MFO by ranking the algorithms based on their performance on CEC 2018
benchmark functions. Table 8 illustrates the obtained results for unimodal and multimodal
test functions. In addition, hybrid and composition functions have been tabulated in
Table 9. Inspecting the overall rank of the Friedman test, it is evident that the M-MFO
demonstrated superior performance in comparison to contender algorithms for dimensions
of 30, 50, and 100.

Table 8. Friedman test for unimodal and multimodal functions of the CEC 2018.

Functions Unimodal Functions Multimodal Functions

Dimensions 30 50 100 30 50 100

Algorithms
Avg.

Rank
Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

KH 4.9500 3 5.9500 4 6.6750 5 4.4250 2 4.1250 2 4.3250 3
GWO 6.4000 5 6.6750 5 6.1000 4 4.4500 3 4.7500 3 4.9750 4
MFO 9.0500 9 8.8000 8 8.9500 9 7.8750 8 7.8000 8 7.9250 8
WOA 8.4750 7 4.6250 3 8.3250 7 7.5000 7 6.8000 6 6.8000 6

WCMFO 2.8750 2 2.5750 2 2.6000 2 4.8750 4 4.8750 4 4.2250 2
CMFO 7.7000 6 6.9250 7 6.0750 3 7.4250 6 7.4000 7 7.1250 7
HGSO 8.5000 8 10.3000 10 9.0000 10 10.5500 9 10.6250 9 10.3750 9

RGA-DX 2.0250 1 2.1500 1 1.9250 1 2.2250 1 1.8000 1 2.2500 1
ChOA 9.6750 10 9.9500 9 8.7500 8 11.2750 11 11.2250 11 11.1500 10
AOA 11.2000 11 11.8000 11 10.5500 11 11.0750 10 11.1500 10 11.4250 11

ODSFMFO 5.6750 4 6.9000 6 7.5500 6 5.3250 5 6.1250 5 6.4000 5
M-MFO 1.4750 1 1.3500 1 1.5000 1 1.0000 1 1.3250 1 1.0250 1

In Figures 6 and 7, the M-MFO and competitors are visually ranked based on their
performance in CEC 2018 benchmark suite for various dimensions. Figure 6 depicts the
ranking results of algorithms in solving CEC 2018 benchmark functions, expressed through
a radar graph. Meanwhile the clustered bar chart of Friedman’s test average results
is shown in Figure 7. The radar graph demonstrates that the M-MFO surpassed other
algorithms in the majority of test functions for various dimensions. The clustered bar chart
shows that the M-MFO achieved the best rank among competitors since it has the shortest
bar in the different dimensions of 30, 50, and 100.

168

Processes 2021, 9, 2276

Table 9. Friedman test for hybrid and composition functions of the CEC 2018.

Functions Hybrid Functions Composition Functions

Dimensions 30 50 100 30 50 100

Algorithms
Avg.

Rank
Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

Avg.
Rank

Overall
Rank

KH 6.0350 6 6.0150 6 6.0400 5 6.4450 6 6.9750 6 6.4550 5
GWO 5.8350 4 5.5000 4 6.0500 6 5.1700 3 4.7950 3 5.0550 4
MFO 6.2950 7 7.2050 7 8.1350 8 6.6900 7 6.5750 5 6.9750 6
WOA 9.2400 9 8.0600 8 6.3300 7 8.5450 8 8.6150 8 8.0200 8

WCMFO 5.9700 5 5.7550 5 5.0400 3 5.7500 4 5.3100 4 5.0100 3
CMFO 5.3550 3 5.1900 3 5.4400 4 6.3850 5 7.0250 7 7.3350 7
HGSO 10.9100 11 10.7300 10 10.8550 10 8.9800 9 9.0400 9 9.7600 9

RGA-DX 3.0000 1 2.8400 1 2.3950 1 2.2500 1 2.2350 1 2.0700 1
ChOA 10.8550 10 10.8750 11 10.3950 9 10.3650 10 10.0700 10 9.9350 10
AOA 8.4900 8 9.7400 9 11.2950 11 11.6400 11 11.6800 11 11.8000 11

ODSFMFO 4.3600 2 4.6450 2 4.8800 2 4.3750 2 4.2750 2 4.2250 2
M-MFO 1.6550 1 1.4450 1 1.1450 1 1.4050 1 1.4050 1 1.3600 1

Figure 6. The radar graphs of M-MFO and competitors in different dimensions.

169

Processes 2021, 9, 2276

Figure 7. Friedman’s test average results in different dimensions.

7. Conclusions

The MFO is a successful metaheuristic algorithm inspired by moths’ behavior converg-
ing to a light source at night. The MFO has been used in various real-world optimization
problems during recent years, mainly due to its simple structure. However, as the ex-
periments revealed, the canonical MFO algorithm experiences local optima trapping and
premature convergence due to the rapid dropping of population diversity and poor ex-
ploration. Hence, the M-MFO algorithm is proposed to overcome MFO’s shortcomings
by introducing a migration strategy that includes two new operators to boost exploration
ability and maintain the population diversity.

The performance of M-MFO was experimentally evaluated by conducting CEC 2018
benchmark functions on dimension 30 and compared with seven recent variants of MFO,
including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. The top
four latest high-performing variants and eight other state-of-the-art swarm intelligence al-
gorithms were considered for experiments on the 30, 50, and 100 dimensions. The M-MFO
stood out among competitors by providing highly competitive results and maintaining
robustness while the size of the problem variables increased. In addition, to rank the algo-
rithms, M-MFO and competitors were analyzed statistically by the Friedman test, in which
the M-MFO obtained the first rank. For future works and studies, the migration strategy
and guiding archive could be considered a reference in handling low population diversity
and inefficient exploration of other metaheuristic algorithms. Moreover, the M-MFO can
be used to solve engineering design problems. It can be converted for solving discrete
optimization problems, such as feature selection, data mining, and image segmentation.

Author Contributions: Conceptualization, M.H.N.-S.; methodology, M.H.N.-S. and A.F.; software,
M.H.N.-S., A.F. and H.Z.; validation, M.H.N.-S. and H.Z.; formal analysis, M.H.N.-S., A.F. and H.Z.;
investigation, M.H.N.-S., A.F. and H.Z.; resources, M.H.N.-S., S.M., L.A. and M.A.E.; data curation,
M.H.N.-S., A.F. and H.Z.; writing, M.H.N.-S., A.F. and H.Z.; original draft preparation, M.H.N.-S., A.F.
and H.Z.; writing—review and editing, M.H.N.-S., A.F., H.Z., S.M., L.A. and M.A.E.; visualization,
M.H.N.-S., A.F. and H.Z.; supervision, M.H.N.-S. and S.M.; project administration, M.H.N.-S. and
S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

170

Processes 2021, 9, 2276

Data Availability Statement: The data and code used in the research may be obtained from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 provides the detailed results of the proposed M-MFO algorithm and other
variants of the MFO for solving CEC 2018 benchmark functions in dimension 30. Fur-
thermore, the detailed results of the proposed M-MFO and contender algorithms for
unimodal, multimodal, hybrid, and composition functions of CEC 2018 benchmark suite in
dimensions 30, 50, and 100 are reported in Tables A2–A4.

Table A1. Comparison results of MFO variants.

F D Metrics
LMFO
(2016)

WCMFO
(2019)

CMFO
(2019)

CLSGMFO
(2019)

LGCMFO
(2019)

SMFO
(2021)

ODSFMFO
(2021)

M-MFO

F1 30
Avg 2.402 × 107 1.328 × 104 1.878 × 108 9.430 × 108 4.532 × 108 3.091 × 1010 7.519 × 106 1.660 × 103

Min 1.731 × 107 1.214 × 102 2.464 × 106 1.923 × 108 9.606 × 107 2.010 × 1010 1.570 × 106 1.002 × 102

F3 30
Avg 2.786 × 103 1.887 × 103 4.825 × 104 5.191 × 104 4.491 × 104 8.189 × 104 2.875 × 104 3.006 × 102

Min 1.424 × 103 3.092 × 102 2.643 × 104 3.418 × 104 3.166 × 104 7.186 × 104 1.359 × 104 3.000 × 102

F4 30
Avg 5.335 × 102 4.886 × 102 6.536 × 102 6.009 × 102 5.829 × 102 5.977 × 103 5.335 × 102 4.247 × 102

Min 4.755 × 102 4.239 × 102 5.311 × 102 5.259 × 102 4.890 × 102 3.030 × 103 4.722 × 102 4.001 × 102

F5 30
Avg 6.470 × 102 6.744 × 102 6.150 × 102 6.587 × 102 6.468 × 102 8.721 × 102 5.526 × 102 5.136 × 102

Min 5.707 × 102 6.104 × 102 5.709 × 102 6.140 × 102 6.040 × 102 8.041 × 102 5.270 × 102 5.070 × 102

F6 30
Avg 6.038 × 102 6.225 × 102 6.179 × 102 6.285 × 102 6.208 × 102 6.830 × 102 6.037 × 102 6.000 × 102

Min 6.017 × 102 6.096 × 102 6.116 × 102 6.117 × 102 6.117 × 102 6.615 × 102 6.010 × 102 6.000 × 102

F7 30
Avg 8.986 × 102 8.986 × 102 9.041 × 102 9.291 × 102 9.167 × 102 1.349 × 103 8.151 × 102 7.446 × 102

Min 8.438 × 102 8.402 × 102 8.306 × 102 8.555 × 102 8.532 × 102 1.175 × 103 7.824 × 102 7.363 × 102

F8 30
Avg 9.379 × 102 9.841 × 102 9.127 × 102 9.350 × 102 9.273 × 102 1.096 × 103 8.460 × 102 8.141 × 102

Min 8.797 × 102 9.344 × 102 8.679 × 102 8.859 × 102 8.940 × 102 1.058 × 103 8.262 × 102 8.070 × 102

F9 30
Avg 1.064 × 103 8.747 × 103 2.277 × 103 3.984 × 103 3.275 × 103 9.591 × 103 1.062 × 103 9.005 × 102

Min 9.456 × 102 5.118 × 103 1.626 × 103 2.051 × 103 2.089 × 103 7.754 × 103 9.647 × 102 9.000 × 102

F10 30
Avg 4.422 × 103 4.808 × 103 4.967 × 103 5.252 × 103 4.970 × 103 8.363 × 103 4.221 × 103 1.958 × 103

Min 3.149 × 103 3.333 × 103 3.912 × 103 4.057 × 103 3.939 × 103 7.473 × 103 3.066 × 103 1.348 × 103

F11 30
Avg 1.292 × 103 1.336 × 103 2.126 × 103 1.784 × 103 1.512 × 103 5.265 × 103 1.285 × 103 1.122 × 103

Min 1.177 × 103 1.255 × 103 1.360 × 103 1.334 × 103 1.275 × 103 2.547 × 103 1.210 × 103 1.105 × 103

F12 30
Avg 5.460 × 106 1.254 × 106 4.296 × 107 1.932 × 107 1.814 × 107 4.462 × 109 2.297 × 106 7.118 × 104

Min 1.046 × 106 3.718 × 104 8.503 × 105 3.033 × 106 4.012 × 106 1.749 × 109 2.010 × 105 2.650 × 104

F13 30
Avg 4.494 × 105 1.047 × 105 6.841 × 103 2.837 × 105 1.553 × 105 8.738 × 108 9.819 × 103 1.116 × 104

Min 2.705 × 105 1.436 × 104 2.860 × 103 4.152 × 104 2.770 × 104 2.189 × 108 1.596 × 103 5.053 × 103

F14 30
Avg 2.614 × 104 2.074 × 104 7.665 × 104 3.506 × 105 2.108 × 105 1.548 × 106 5.267 × 104 6.136 × 103

Min 2.724 × 103 6.252 × 103 2.082 × 103 8.610 × 103 1.008 × 104 7.879 × 104 4.686 × 103 1.533 × 103

F15 30
Avg 9.006 × 104 3.448 × 104 5.245 × 103 1.596 × 104 1.131 × 104 4.469 × 107 6.098 × 103 2.252 × 103

Min 5.003 × 104 2.547 × 103 1.693 × 103 3.298 × 103 2.834 × 103 2.375 × 106 1.703 × 103 1.508 × 103

F16 30
Avg 2.640 × 103 2.807 × 103 2.581 × 103 2.763 × 103 2.736 × 103 4.402 × 103 2.334 × 103 1.774 × 103

Min 2.110 × 103 2.095 × 103 2.009 × 103 2.046 × 103 2.025 × 103 3.607 × 103 1.949 × 103 1.602 × 103

F17 30
Avg 2.203 × 103 2.315 × 103 2.050 × 103 2.125 × 103 2.076 × 103 2.752 × 103 1.937 × 103 1.738 × 103

Min 1.801 × 103 1.942 × 103 1.805 × 103 1.864 × 103 1.762 × 103 2.359 × 103 1.771 × 103 1.703 × 103

F18 30
Avg 3.682 × 105 1.734 × 105 4.761 × 105 1.747 × 106 1.130 × 106 2.844 × 107 9.249 × 105 9.790 × 104

Min 8.629 × 104 3.793 × 104 3.856 × 104 1.058 × 105 8.154 × 104 2.007 × 106 9.952 × 104 5.073 × 104

F19 30
Avg 6.193 × 104 3.223 × 104 1.816 × 104 1.949 × 104 1.084 × 104 1.072 × 108 9.241 × 103 6.433 × 103

Min 1.764 × 104 2.168 × 103 2.460 × 103 2.390 × 103 2.973 × 103 5.192 × 106 1.968 × 103 1.946 × 103

F20 30
Avg 2.498 × 103 2.468 × 103 2.494 × 103 2.496 × 103 2.333 × 103 2.847 × 103 2.306 × 103 2.128 × 103

Min 2.180 × 103 2.073 × 103 2.162 × 103 2.069 × 103 2.132 × 103 2.454 × 103 2.053 × 103 2.028 × 103

F21 30
Avg 2.439 × 103 2.493 × 103 2.396 × 103 2.421 × 103 2.420 × 103 2.653 × 103 2.352 × 103 2.312 × 103

Min 2.378 × 103 2.398 × 103 2.347 × 103 2.386 × 103 2.375 × 103 2.552 × 103 2.331 × 103 2.303 × 103

F22 30
Avg 5.006 × 103 6.637 × 103 2.373 × 103 2.507 × 103 2.492 × 103 8.654 × 103 2.318 × 103 2.300 × 103

Min 2.325 × 103 5.330 × 103 2.315 × 103 2.371 × 103 2.358 × 103 5.677 × 103 2.307 × 103 2.300 × 103

F23 30
Avg 2.786 × 103 2.785 × 103 2.828 × 103 2.795 × 103 2.787 × 103 3.283 × 103 2.718 × 103 2.662 × 103

Min 2.710 × 103 2.721 × 103 2.764 × 103 2.745 × 103 2.707 × 103 3.027 × 103 2.699 × 103 2.647 × 103

F24 30
Avg 2.928 × 103 2.978 × 103 2.928 × 103 2.952 × 103 2.959 × 103 3.433 × 103 2.871 × 103 2.827 × 103

Min 2.898 × 103 2.928 × 103 2.877 × 103 2.878 × 103 2.920 × 103 3.217 × 103 2.848 × 103 2.820 × 103

171

Processes 2021, 9, 2276

Table A1. Cont.

F D Metrics
LMFO
(2016)

WCMFO
(2019)

CMFO
(2019)

CLSGMFO
(2019)

LGCMFO
(2019)

SMFO
(2021)

ODSFMFO
(2021)

M-MFO

F25 30
Avg 2.889 × 103 2.894 × 103 3.004 × 103 2.980 × 103 3.005 × 103 3.940 × 103 2.928 × 103 2.888 × 103

Min 2.888 × 103 2.884 × 103 2.933 × 103 2.939 × 103 2.920 × 103 3.463 × 103 2.890 × 103 2.887 × 103

F26 30
Avg 5.012 × 103 5.447 × 103 4.227 × 103 4.838 × 103 4.163 × 103 8.871 × 103 4.425 × 103 3.408 × 103

Min 4.607 × 103 4.955 × 103 2.936 × 103 3.514 × 103 3.241 × 103 5.057 × 103 2.876 × 103 2.800 × 103

F27 30
Avg 3.241 × 103 3.228 × 103 3.257 × 103 3.286 × 103 3.275 × 103 3.688 × 103 3.230 × 103 3.221 × 103

Min 3.200 × 103 3.201 × 103 3.232 × 103 3.224 × 103 3.218 × 103 3.397 × 103 3.222 × 103 3.210 × 103

F28 30
Avg 3.255 × 103 3.194 × 103 3.444 × 103 3.451 × 103 3.290 × 103 5.524 × 103 3.295 × 103 3.110 × 103

Min 3.210 × 103 3.100 × 103 3.247 × 103 3.285 × 103 3.268 × 103 4.419 × 103 3.251 × 103 3.100 × 103

F29 30
Avg 3.785 × 103 3.965 × 103 4.050 × 103 3.976 × 103 3.872 × 103 5.698 × 103 3.669 × 103 3.319 × 103

Min 3.596 × 103 3.650 × 103 3.631 × 103 3.601 × 103 3.556 × 103 4.728 × 103 3.475 × 103 3.312 × 103

F30 30
Avg 1.579 × 105 2.812 × 104 8.574 × 105 3.989 × 105 3.406 × 105 3.278 × 108 1.629 × 104 6.645 × 103

Min 4.934 × 104 1.582 × 104 7.507 × 104 3.747 × 104 4.618 × 104 3.212 × 107 7.769 × 103 6.062 × 103

Summary W|T|L 0| 0| 29 0| 0| 29 1| 0| 28 0| 0| 29 0| 0| 29 0| 0| 29 0| 0| 29 28|0|1

Table A2. Results of the comparative algorithms on unimodal and multimodal test functions.

F D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

F1

30
Avg 1.371 × 104 8.223 ×

108
6.952 ×

109 1.906 × 106 1.328 × 104 5.824 × 107 1.455 ×
1010 2.575 × 103 2.395 ×

1010
4.015 ×

1010 7.519 × 106 1.660 × 103

Min 3.462 × 103 4.405 ×
107

1.027 ×
109 5.654 × 105 1.214 × 102 2.553 × 106 7.442 × 109 1.272 × 102 1.123 ×

1010
3.092 ×

1010 1.570 × 106 1.002 × 102

50
Avg 1.954 × 105 4.523 ×

109
3.099 ×

1010 7.172 × 106 2.826 × 104 1.046 × 109 3.844 ×
1010 3.059 × 103 4.417 ×

1010
1.003 ×

1011 3.066 × 108 1.466 × 103

Min 4.342 × 104 1.231 ×
109

7.095 ×
109 1.980 × 106 6.883 × 102 2.822 × 108 2.159 ×

1010 1.327 × 102 3.506 ×
1010

8.424 ×
1010 9.629 × 107 1.001 × 102

100
Avg 5.646 × 107 3.207 ×

1010
1.173 ×

1011 3.677 × 107 2.017 × 105 3.803 × 109 1.643 ×
1011 4.575 × 103 1.463 ×

1011
2.629 ×

1011 5.316 × 109 4.465 × 103

Min 2.550 × 106 1.634 ×
1010

6.748 ×
1010 1.409 × 107 1.093 × 104 1.832 × 109 1.299 ×

1011 1.587 × 102 1.282 ×
1011

2.350 ×
1011 1.894 × 109 1.032 × 103

F3

30
Avg 4.863 × 104 2.993 ×

104
1.009 ×

105 1.715 × 105 1.887 × 103 4.248 × 104 3.687 × 104 7.905 × 103 5.178 ×
104

7.318 ×
104 2.875 × 104 3.006 × 102

Min 2.979 × 104 1.576 ×
104

1.920 ×
103 8.481 × 104 3.092 × 102 3.385 × 104 2.335 × 104 9.933 × 102 3.954 ×

104
5.445 ×

104 1.359 × 104 3.000 × 102

50
Avg 1.216 × 105 7.147 ×

104
1.650 ×

105 6.180 × 104 1.150 × 104 9.610 × 104 1.363 × 105 2.712 × 104 1.309 ×
105

1.625 ×
105 9.729 × 104 3.000 × 102

Min 6.121 × 104 3.628 ×
104

1.176 ×
104 3.098 × 104 7.428 × 102 6.899 × 104 1.050 × 105 1.139 × 104 1.006 ×

105
1.249 ×

105 6.538 × 104 3.000 × 102

100
Avg 3.477 × 105 2.023 ×

105
4.556 ×

105 5.928 × 105 7.361 × 104 2.317 × 105 2.945 × 105 1.387 × 105 3.065 ×
105

3.325 ×
105 3.252 × 105 3.000 × 102

Min 2.569 × 105 1.595 ×
105

1.191 ×
105 3.355 × 105 3.430 × 104 2.058 × 105 2.601 × 105 7.593 × 104 2.849 ×

105
3.027 ×

105 2.456 × 105 3.000 × 102

F4

30
Avg 4.963 × 102 5.441 ×

102
9.082 ×

102 5.476 × 102 4.886 × 102 5.631 × 102 2.171 × 103 4.896 × 102 2.545 ×
103

8.649 ×
103 5.335 × 102 4.247 × 102

Min 4.043 × 102 4.963 ×
102

5.424 ×
102 4.995 × 102 4.239 × 102 4.759 × 102 1.194 × 103 4.040 × 102 1.134 ×

103
3.825 ×

103 4.722 × 102 4.001 × 102

50
Avg 5.683 × 102 8.767 ×

102
4.098 ×

103 6.676 × 102 5.493 × 102 1.069 × 103 8.889 × 103 5.095 × 102 9.023 ×
103

2.568 ×
104 7.414 × 102 4.872 × 102

Min 4.996 × 102 6.745 ×
102

1.216 ×
103 5.138 × 102 4.849 × 102 6.394 × 102 5.286 × 103 4.285 × 102 5.017 ×

103
1.686 ×

104 6.237 × 102 4.092 × 102

100
Avg 7.431 × 102 2.813 ×

103
2.348 ×

104 9.992 × 102 6.423 × 102 2.354 × 103 2.840 × 104 6.436 × 102 2.822 ×
104

7.733 ×
104 1.400 × 103 5.378 × 102

Min 6.443 × 102 1.870 ×
103

6.743 ×
103 8.615 × 102 5.980 × 102 1.123 × 103 1.677 × 104 5.671 × 102 2.145 ×

104
6.186 ×

104 1.103 × 103 4.753 × 102

F5

30
Avg 6.363 × 102 5.855 ×

102
6.894 ×

102 8.044 × 102 6.744 × 102 5.957 × 102 8.061 × 102 5.430 × 102 7.905 ×
102

7.873 ×
102 5.526 × 102 5.136 × 102

Min 5.936 × 102 5.508 ×
102

6.280 ×
102 7.242 × 102 6.104 × 102 5.678 × 102 7.824 × 102 5.259 × 102 7.471 ×

102
7.217 ×

102 5.270 × 102 5.070 × 102

50
Avg 7.659 × 102 6.892 ×

102
8.934 ×

102 9.209 × 102 8.940 × 102 8.095 × 102 1.049 × 103 6.004 × 102 1.043 ×
103

1.074 ×
103 6.212 × 102 5.296 × 102

Min 7.050 × 102 6.379 ×
102

7.731 ×
102 8.081 × 102 7.743 × 102 7.138 × 102 9.990 × 102 5.677 × 102 9.853 ×

102
9.951 ×

102 5.630 × 102 5.179 × 102

100
Avg 1.216 × 103 1.058 ×

103
1.666 ×

103 1.413 × 103 1.726 × 103 1.297 × 103 1.824 × 103 7.916 × 102 1.787 ×
103

1.960 ×
103 8.658 × 102 5.564 × 102

Min 1.054 × 103 9.864 ×
102

1.455 ×
103 1.329 × 103 1.328 × 103 1.154 × 103 1.701 × 103 7.259 × 102 1.743 ×

103
1.842 ×

103 7.800 × 102 5.368 × 102

F6

30
Avg 6.428 × 102 6.043 ×

102
6.267 ×

102 6.671 × 102 6.225 × 102 6.166 × 102 6.655 × 102 6.000 × 102 6.603 ×
102

6.654 ×
102 6.037 × 102 6.000 × 102

Min 6.175 × 102 6.011 ×
102

6.144 ×
102 6.410 × 102 6.096 × 102 6.078 × 102 6.511 × 102 6.000 × 102 6.537 ×

102
6.566 ×

102 6.010 × 102 6.000 × 102

50
Avg 6.515 × 102 6.105 ×

102
6.437 ×

102 6.760 × 102 6.400 × 102 6.355 × 102 6.813 × 102 6.001 × 102 6.710 ×
102

6.837 ×
102 6.081 × 102 6.000 × 102

Min 6.440 × 102 6.052 ×
102

6.270 ×
102 6.638 × 102 6.165 × 102 6.257 × 102 6.724 × 102 6.000 × 102 6.608 ×

102
6.747 ×

102 6.041 × 102 6.000 × 102

100
Avg 6.587 × 102 6.276 ×

102
6.648 ×

102 6.768 × 102 6.664 × 102 6.528 × 102 6.936 × 102 6.001 × 102 6.860 ×
102

7.029 ×
102 6.184 × 102 6.000 × 102

Min 6.527 × 102 6.229 ×
102

6.467 ×
102 6.676 × 102 6.526 × 102 6.418 × 102 6.867 × 102 6.000 × 102 6.761 ×

102
6.970 ×

102 6.133 × 102 6.000 × 102

172

Processes 2021, 9, 2276

Table A2. Cont.

F D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

F7

30
Avg 8.280 × 102 8.418 ×

102
1.011 ×

103 1.238 × 103 8.986 × 102 8.989 × 102 1.080 × 103 7.801 × 102 1.187 ×
103

1.302 ×
103 8.151 × 102 7.446 × 102

Min 7.853 × 102 7.801 ×
102

8.671 ×
102 1.089 × 103 8.402 × 102 8.415 × 102 1.032 × 103 7.586 × 102 1.063 ×

103
1.154 ×

103 7.824 × 102 7.363 × 102

50
Avg 1.070 × 103 1.016 ×

103
1.701 ×

103 1.684 × 103 1.141 × 103 1.224 × 103 1.530 × 103 8.481 × 102 1.663 ×
103

1.862 ×
103 9.911 × 102 7.684 × 102

Min 9.625 × 102 9.654 ×
102

1.113 ×
103 1.500 × 103 1.020 × 103 1.021 × 103 1.333 × 103 8.062 × 102 1.464 ×

103
1.744 ×

103 9.354 × 102 7.588 × 102

100
Avg 2.118 × 103 1.710 ×

103
4.169 ×

103 3.250 × 103 1.988 × 103 2.421 × 103 3.184 × 103 1.129 × 103 3.326 ×
103

3.694 ×
103 1.619 × 103 8.363 × 102

Min 1.819 × 103 1.542 ×
103

2.576 ×
103 2.814 × 103 1.531 × 103 2.103 × 103 2.813 × 103 9.899 × 102 3.182 ×

103
3.580 ×

103 1.416 × 103 8.161 × 102

F8

30
Avg 9.196 × 102 8.713 ×

102
9.790 ×

102 1.000 × 103 9.841 × 102 8.945 × 102 1.051 × 103 8.434 × 102 1.031 ×
103

1.041 ×
103 8.460 × 102 8.141 × 102

Min 8.707 × 102 8.435 ×
102

8.938 ×
102 9.488 × 102 9.344 × 102 8.574 × 102 1.033 × 103 8.249 × 102 9.726 ×

102
1.002 ×

103 8.262 × 102 8.070 × 102

50
Avg 1.065 × 103 9.792 ×

102
1.229 ×

103 1.249 × 103 1.213 × 103 1.055 × 103 1.369 × 103 9.002 × 102 1.305 ×
103

1.425 ×
103 9.168 × 102 8.315 × 102

Min 1.019 × 103 9.384 ×
102

1.118 ×
103 1.132 × 103 1.087 × 103 9.831 × 102 1.308 × 103 8.567 × 102 1.251 ×

103
1.339 ×

103 8.625 × 102 8.199 × 102

100
Avg 1.576 × 103 1.397 ×

103
1.968 ×

103 1.897 × 103 2.026 × 103 1.533 × 103 2.240 × 103 1.063 × 103 2.151 ×
103

2.414 ×
103 1.193 × 103 8.694 × 102

Min 1.465 × 103 1.225 ×
103

1.717 ×
103 1.716 × 103 1.756 × 103 1.410 × 103 2.093 × 103 9.900 × 102 2.052 ×

103
2.248 ×

103 1.122 × 103 8.398 × 102

F9

30
Avg 3.059 × 103 1.384 ×

103
6.278 ×

103 7.233 × 103 8.747 × 103 1.893 × 103 5.814 × 103 9.064 × 102 6.551 ×
103

5.578 ×
103 1.062 × 103 9.005 × 102

Min 1.768 × 103 1.025 ×
103

4.471 ×
103 4.425 × 103 5.118 × 103 1.554 × 103 3.388 × 103 9.009 × 102 5.576 ×

103
4.101 ×

103 9.647 × 102 9.000 × 102

50
Avg 9.536 × 103 4.571 ×

103
1.644 ×

104 1.783 × 104 2.195 × 104 7.504 × 103 2.616 × 104 9.773 × 102 2.577 ×
104

2.294 ×
104 1.750 × 103 9.045 × 102

Min 6.223 × 103 2.135 ×
103

8.748 ×
103 1.187 × 104 1.190 × 104 3.715 × 103 2.123 × 104 9.213 × 102 1.969 ×

104
1.804 ×

104 1.299 × 103 9.007 × 102

100
Avg 2.251 × 104 2.638 ×

104
4.508 ×

104 3.820 × 104 5.208 × 104 2.315 × 104 6.515 × 104 2.428 × 103 6.876 ×
104

5.410 ×
104 4.877 × 103 9.454 × 102

Min 1.965 × 104 1.102 ×
104

3.679 ×
104 2.557 × 104 3.986 × 104 1.973 × 104 5.587 × 104 1.304 × 103 5.806 ×

104
4.674 ×

104 3.620 × 103 9.174 × 102

F10

30
Avg 4.876 × 103 3.909 ×

103
5.130 ×

103 6.156 × 103 4.808 × 103 4.728 × 103 6.636 × 103 3.700 × 103 7.996 ×
103

6.444 ×
103 4.221 × 103 1.958 × 103

Min 3.664 × 103 2.718 ×
103

3.575 ×
103 4.506 × 103 3.333 × 103 3.522 × 103 5.706 × 103 2.875 × 103 7.199 ×

103
5.410 ×

103 3.066 × 103 1.348 × 103

50
Avg 8.127 × 103 6.428 ×

103
8.566 ×

103 9.478 × 103 7.956 × 103 7.769 × 103 1.242 × 104 5.949 × 103 1.427 ×
104

1.216 ×
104 7.662 × 103 2.391 × 103

Min 6.288 × 103 4.582 ×
103

6.288 ×
103 6.969 × 103 6.204 × 103 6.035 × 103 1.100 × 104 4.819 × 103 1.301 ×

104
1.073 ×

104 5.766 × 103 1.246 × 103

100
Avg 1.549 × 104 1.498 ×

104
1.728 ×

104 2.012 × 104 1.618 × 104 1.578 × 104 2.579 × 104 1.361 × 104 3.140 ×
104

2.787 ×
104 1.733 × 104 4.814 × 103

Min 1.267 × 104 1.141 ×
104

1.417 ×
104 1.687 × 104 1.147 × 104 1.335 × 104 2.440 × 104 1.115 × 104 3.051 ×

104
2.582 ×

104 1.468 × 104 2.834 × 103

Summary

30 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|1|8 0|0|9 0|0|9 0|0|9 8|1|0

50 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

100 W|T|L 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 9|0|0

Table A3. Results of the comparative algorithms on hybrid test functions.

F D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

F11

30
Avg 1.514 × 103 1.406 ×

103
3.749 ×

103 1.462 × 103 1.336 × 103 2.126 × 103 2.811 × 103 1.138 × 103 3.267 ×
103

3.249 ×
103 1.285 × 103 1.122 × 103

Min 1.262 × 103 1.271 ×
103

1.363 ×
103 1.282 × 103 1.255 × 103 1.360 × 103 1.707 × 103 1.109 × 103 1.731 ×

103
1.797 ×

103 1.210 × 103 1.105 × 103

50
Avg 4.926 × 103 3.078 ×

103
7.297 ×

103 1.591 × 103 1.491 × 103 1.984 × 103 5.800 × 103 1.251 × 103 8.848 ×
103

1.587 ×
104 1.725 × 103 1.128 × 103

Min 2.518 × 103 1.480 ×
103

1.574 ×
103 1.421 × 103 1.344 × 103 1.278 × 103 3.881 × 103 1.129 × 103 6.441 ×

103
9.287 ×

103 1.394 × 103 1.123 × 103

100
Avg 7.658 × 104 3.531 ×

104
1.257 ×

105 7.762 × 103 2.191 × 103 4.024 × 104 1.281 × 105 1.033 × 104 7.093 ×
104

1.631 ×
105 3.043 × 104 1.195 × 103

Min 3.912 × 104 1.647 ×
104

2.137 ×
104 4.463 × 103 1.841 × 103 2.012 × 104 1.128 × 105 2.076 × 103 6.100 ×

104
1.268 ×

105 1.322 × 104 1.127 × 103

F12

30
Avg 3.051 × 106 3.900 ×

107
6.158 ×

107 3.770 × 107 1.254 × 106 4.296 × 107 1.343 × 109 7.608 × 105 3.594 ×
109

7.204 ×
109 2.297 × 106 7.118 × 104

Min 1.788 × 105 2.109 ×
106

7.306 ×
104 2.509 × 106 3.718 × 104 8.503 × 105 6.717 × 108 1.016 × 105 6.620 ×

108
3.034 ×

109 2.010 × 105 2.650 × 104

50
Avg 1.249 × 107 4.764 ×

108
2.475 ×

109 1.861 × 108 7.229 × 106 1.684 × 108 1.550 ×
1010 1.983 × 106 1.896 ×

1010
5.311 ×

1010 1.951 × 107 3.292 × 105

Min 1.930 × 106 7.558 ×
107

1.646 ×
107 5.114 × 107 1.549 × 106 6.965 × 106 9.677 × 109 5.848 × 105 1.045 ×

1010
2.948 ×

1010 7.129 × 106 1.293 × 105

100
Avg 6.902 × 107 4.919 ×

109
3.523 ×

1010 6.875 × 108 3.428 × 107 1.982 × 109 5.643 ×
1010 3.019 × 106 6.718 ×

1010
1.822 ×

1011 4.254 × 108 2.834 × 103

Min 2.478 × 107 1.450 ×
109

1.435 ×
1010 2.918 × 108 3.806 × 106 9.911 × 107 3.888 ×

1010 1.129 × 106 4.928 ×
1010

1.296 ×
1011 1.525 × 108 2.195 × 105

173

Processes 2021, 9, 2276

Table A3. Cont.

F D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

F13

30
Avg 3.536 × 104 8.368 ×

105
7.958 ×

106 1.463 × 105 1.047 × 105 6.841 × 103 4.947 × 108 1.173 × 104 8.944 ×
108

4.457 ×
104 9.819 × 103 1.116 × 104

Min 1.619 × 104 1.991 ×
104

1.122 ×
104 2.283 × 104 1.436 × 104 2.860 × 103 1.781 × 108 1.376 × 103 5.646 ×

107
2.158 ×

104 1.596 × 103 5.053 × 103

50
Avg 4.578 × 104 1.532 ×

108
2.428 ×

108 1.657 × 105 8.895 × 104 2.085 × 104 2.604 × 109 4.464 × 103 6.036 ×
109

4.764 ×
109 1.952 × 104 2.083 × 103

Min 2.381 × 104 1.312 ×
105

1.136 ×
105 4.764 × 104 2.174 × 104 6.621 × 103 1.204 × 109 1.455 × 103 8.730 ×

108
1.041 ×

107 9.648 × 103 1.317 × 103

100
Avg 3.464 × 104 4.163 ×

108
4.053 ×

109 8.423 × 104 1.378 × 105 1.269 × 106 9.302 × 109 5.906 × 103 1.894 ×
1010

3.573 ×
1010 5.455 × 104 3.236 × 103

Min 2.377 × 104 1.579 ×
106

2.629 ×
108 3.701 × 104 3.658 × 104 1.538 × 104 5.247 × 109 1.409 × 103 1.203 ×

1010
2.155 ×

1010 1.136 × 104 1.611 × 103

F14

30
Avg 5.166 × 105 1.438 ×

105
8.969 ×

104 9.075 × 105 2.074 × 104 7.665 × 104 3.822 × 105 1.064 × 105 3.622 ×
105

4.148 ×
104 5.267 × 104 6.136 × 103

Min 1.184 × 104 3.679 ×
103

2.197 ×
103 1.364 × 105 6.252 × 103 2.082 × 103 8.651 × 104 5.924 × 103 5.125 ×

104
2.213 ×

103 4.686 × 103 1.533 × 103

50
Avg 5.216 × 105 4.016 ×

105
3.086 ×

105 6.358 × 105 8.151 × 104 2.215 × 105 4.049 × 106 2.251 × 105 1.203 ×
106

3.163 ×
105 5.207 × 105 2.475 × 104

Min 1.101 × 105 4.749 ×
104

1.072 ×
104 9.639 × 104 1.194 × 104 1.658 × 104 1.690 × 106 2.594 × 104 5.706 ×

105
4.727 ×

104 6.023 × 104 8.641 × 103

100
Avg 3.785 × 106 3.480 ×

106
7.558 ×

106 1.876 × 106 3.627 × 105 1.108 × 106 1.595 × 107 6.317 × 105 8.127 ×
106

1.993 ×
107 3.338 × 106 1.466 × 105

Min 2.148 × 106 1.057 ×
106

3.097 ×
105 6.461 × 105 1.387 × 105 3.212 × 105 1.187 × 107 8.401 × 104 5.390 ×

106
6.674 ×

106 1.282 × 106 1.009 × 105

F15

30
Avg 1.744 × 104 3.637 ×

105
3.412 ×

104 8.683 × 104 3.448 × 104 5.245 × 103 2.685 × 106 6.528 × 103 5.743 ×
106

2.428 ×
104 6.098 × 103 2.252 × 103

Min 8.598 × 103 1.847 ×
104

3.640 ×
103 1.368 × 104 2.547 × 103 1.693 × 103 3.185 × 105 1.537 × 103 1.019 ×

106
1.478 ×

104 1.703 × 103 1.508 × 103

50
Avg 2.004 × 104 9.315 ×

106
2.145 ×

107 7.839 × 104 7.164 × 104 9.137 × 103 2.119 × 108 7.314 × 103 1.006 ×
108

3.197 ×
104 7.557 × 103 5.907 × 103

Min 1.128 × 104 1.565 ×
104

4.235 ×
104 2.225 × 104 1.422 × 104 2.035 × 103 1.213 × 108 1.598 × 103 6.005 ×

107
1.979 ×

104 2.315 × 103 2.972 × 103

100
Avg 2.449 × 104 9.478 ×

107
1.045 ×

109 2.527 × 105 9.337 × 104 2.651 × 106 2.409 × 109 2.975 × 103 5.122 ×
109

4.998 ×
109 6.568 × 103 1.821 × 103

Min 1.274 × 104 5.864 ×
105

1.058 ×
105 2.549 × 104 1.223 × 104 3.473 × 103 1.423 × 109 1.621 × 103 1.096 ×

109
1.070 ×

109 3.039 × 103 1.522 × 103

F16

30
Avg 2.908 × 103 2.287 ×

103
2.995 ×

103 3.519 × 103 2.807 × 103 2.581 × 103 3.628 × 103 2.435 × 103 3.456 ×
103

3.700 ×
103 2.334 × 103 1.774 × 103

Min 2.538 × 103 1.744 ×
103

2.487 ×
103 2.728 × 103 2.095 × 103 2.009 × 103 3.221 × 103 1.854 × 103 2.949 ×

103
2.867 ×

103 1.949 × 103 1.602 × 103

50
Avg 3.336 × 103 2.791 ×

103
4.150 ×

103 4.689 × 103 3.778 × 103 3.302 × 103 4.712 × 103 3.313 × 103 5.278 ×
103

6.365 ×
103 2.936 × 103 2.003 × 103

Min 2.736 × 103 2.209 ×
103

3.133 ×
103 3.895 × 103 3.014 × 103 2.761 × 103 3.890 × 103 2.592 × 103 4.488 ×

103
3.693 ×

103 2.394 × 103 1.845 × 103

100
Avg 6.038 × 103 5.610 ×

103
8.085 ×

103 9.811 × 103 6.869 × 103 6.627 × 103 1.213 × 104 5.397 × 103 1.224 ×
104

1.873 ×
104 5.155 × 103 2.566 × 103

Min 5.126 × 103 4.748 ×
103

6.389 ×
103 7.513 × 103 4.978 × 103 4.601 × 103 9.757 × 103 3.740 × 103 1.047 ×

104
1.409 ×

104 4.009 × 103 1.851 × 103

F17

30
Avg 2.253 × 103 1.956 ×

103
2.411 ×

103 2.520 × 103 2.315 × 103 2.050 × 103 2.488 × 103 1.941 × 103 2.595 ×
103

2.601 ×
103 1.937 × 103 1.738 × 103

Min 1.884 × 103 1.777 ×
103

1.975 ×
103 1.931 × 103 1.942 × 103 1.805 × 103 2.223 × 103 1.718 × 103 2.277 ×

103
2.085 ×

103 1.771 × 103 1.703 × 103

50
Avg 3.405 × 103 2.676 ×

103
3.708 ×

103 3.892 × 103 3.758 × 103 3.115 × 103 3.827 × 103 2.846 × 103 4.046 ×
103

4.165 ×
103 2.635 × 103 1.931 × 103

Min 2.871 × 103 2.257 ×
103

2.866 ×
103 3.106 × 103 2.932 × 103 2.590 × 103 3.518 × 103 2.326 × 103 3.304 ×

103
3.228 ×

103 2.084 × 103 1.858 × 103

100
Avg 5.589 × 103 4.439 ×

103
7.668 ×

103 7.212 × 103 6.345 × 103 5.366 × 103 1.919 × 104 4.515 × 103 1.341 ×
104

3.461 ×
105 4.401 × 103 2.292 × 103

Min 4.266 × 103 3.338 ×
103

5.623 ×
103 5.421 × 103 4.935 × 103 3.832 × 103 9.150 × 103 3.706 × 103 9.608 ×

103
1.666 ×

104 3.410 × 103 1.868 × 103

F18

30
Avg 4.488 × 105 6.631 ×

105
3.177 ×

106 2.408 × 106 1.734 × 105 4.761 × 105 2.212 × 106 6.722 × 105 1.276 ×
106

6.751 ×
105 9.249 × 105 9.790 × 104

Min 5.229 × 104 8.000 ×
104

3.737 ×
104 1.933 × 105 3.793 × 104 3.856 × 104 3.218 × 105 5.547 × 104 4.340 ×

105
1.206 ×

105 9.952 × 104 5.073 × 104

50
Avg 2.760 × 106 3.300 ×

106
3.443 ×

106 4.272 × 106 4.064 × 105 5.021 × 106 8.705 × 106 2.036 × 106 8.529 ×
106

2.406 ×
107 2.111 × 106 1.126 × 105

Min 3.941 × 105 2.968 ×
105

1.807 ×
105 1.009 × 106 1.509 × 105 8.293 × 105 3.908 × 106 2.080 × 105 3.639 ×

106
8.365 ×

105 6.113 × 105 5.963 × 104

100
Avg 2.777 × 106 4.158 ×

106
1.162 ×

107 2.020 × 106 8.326 × 105 2.307 × 106 2.039 × 107 1.049 × 106 1.063 ×
107

3.147 ×
107 3.743 × 106 1.629 × 105

Min 1.197 × 106 7.431 ×
105

4.881 ×
105 8.476 × 105 3.782 × 105 6.200 × 105 1.197 × 107 2.595 × 105 5.745 ×

106
9.728 ×

106 1.203 × 106 1.177 × 105

F19

30
Avg 1.127 × 105 2.913 ×

105
4.071 ×

106 2.647 × 106 3.223 × 104 1.816 × 104 8.962 × 106 4.640 × 103 4.874 ×
107

1.068 ×
106 9.241 × 103 6.433 × 103

Min 5.515 × 103 9.466 ×
103

2.093 ×
103 1.744 × 105 2.168 × 103 2.460 × 103 4.803 × 106 2.110 × 103 2.507 ×

106
8.696 ×

105 1.968 × 103 1.946 × 103

50
Avg 2.440 × 105 2.362 ×

106
6.151 ×

106 2.457 × 106 2.362 × 104 8.702 × 104 1.443 × 108 1.438 × 104 3.026 ×
108

4.636 ×
105 1.433 × 104 1.566 × 104

Min 2.445 × 104 6.908 ×
104

5.031 ×
103 1.534 × 105 2.700 × 103 4.883 × 103 7.728 × 107 3.740 × 103 3.919 ×

107
4.438 ×

105 2.057 × 103 9.683 × 103

100
Avg 5.676 × 105 1.003 ×

108
3.561 ×

108 1.529 × 107 7.032 × 104 5.510 × 104 2.661 × 109 2.871 × 103 2.968 ×
109

4.646 ×
109 9.029 × 103 2.852 × 103

Min 8.460 × 104 2.250 ×
106

2.761 ×
106 5.273 × 106 1.223 × 104 2.334 × 103 1.245 × 109 2.008 × 103 7.255 ×

108
1.529 ×

109 2.774 × 103 1.974 × 103

174

Processes 2021, 9, 2276

Table A3. Cont.

F D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

F20

30
Avg 2.550 × 103 2.288 ×

103
2.600 ×

103 2.702 × 103 2.468 × 103 2.494 × 103 2.587 × 103 2.319 × 103 2.932 ×
103

2.647 ×
103 2.306 × 103 2.128 × 103

Min 2.254 × 103 2.154 ×
103

2.215 ×
103 2.327 × 103 2.073 × 103 2.162 × 103 2.485 × 103 2.165 × 103 2.560 ×

103
2.341 ×

103 2.053 × 103 2.028 × 103

50
Avg 3.263 × 103 2.736 ×

103
3.557 ×

103 3.628 × 103 3.432 × 103 3.030 × 103 3.441 × 103 2.889 × 103 3.933 ×
103

3.363 ×
103 2.955 × 103 2.082 × 103

Min 2.765 × 103 2.422 ×
103

2.897 ×
103 2.664 × 103 2.655 × 103 2.476 × 103 3.173 × 103 2.403 × 103 3.576 ×

103
2.634 ×

103 2.549 × 103 2.027 × 103

100
Avg 5.414 × 103 4.469 ×

103
5.692 ×

103 5.875 × 103 5.740 × 103 5.074 × 103 6.761 × 103 4.910 × 103 6.915 ×
103

5.748 ×
103 4.560 × 103 2.504 × 103

Min 4.508 × 103 3.301 ×
103

4.194 ×
103 4.326 × 103 4.438 × 103 4.031 × 103 6.164 × 103 3.965 × 103 6.030 ×

103
4.700 ×

103 3.218 × 103 2.288 × 103

Summary

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 9|0|1

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0

Table A4. Results of the comparative algorithms on composition test functions.

F D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

F21

30
Avg 2.416 × 103 2.383 ×

103
2.476 ×

103 2.558 × 103 2.493 × 103 2.396 × 103 2.564 × 103 2.352 × 103 2.569 ×
103

2.619 ×
103 2.352 × 103 2.312 × 103

Min 2.366 × 103 2.352 ×
103

2.421 ×
103 2.463 × 103 2.398 × 103 2.347 × 103 2.509 × 103 2.326 × 103 2.503 ×

103
2.531 ×

103 2.331 × 103 2.303 × 103

50
Avg 2.541 × 103 2.485 ×

103
2.694 ×

103 2.888 × 103 2.694 × 103 2.489 × 103 2.892 × 103 2.401 × 103 2.885 ×
103

3.012 ×
103 2.409 × 103 2.328 × 103

Min 2.470 × 103 2.440 ×
103

2.575 ×
103 2.744 × 103 2.580 × 103 2.403 × 103 2.831 × 103 2.342 × 103 2.819 ×

103
2.890 ×

103 2.379 × 103 2.315 × 103

100
Avg 3.338 × 103 2.845 ×

103
3.594 ×

103 3.884 × 103 3.539 × 103 2.998 × 103 4.083 × 103 2.600 × 103 4.037 ×
103

4.558 ×
103 2.707 × 103 2.376 × 103

Min 3.166 × 103 2.751 ×
103

3.262 ×
103 3.502 × 103 3.233 × 103 2.781 × 103 3.882 × 103 2.525 × 103 3.916 ×

103
4.276 ×

103 2.639 × 103 2.356 × 103

F22

30
Avg 2.785 × 103 4.413 ×

103
5.843 ×

103 5.949 × 103 6.637 × 103 2.373 × 103 4.016 × 103 2.471 × 103 9.177 ×
103

7.685 ×
103 2.318 × 103 2.300 × 103

Min 2.300 × 103 2.420 ×
103

3.150 ×
103 2.315 × 103 5.330 × 103 2.315 × 103 3.476 × 103 2.300 × 103 8.622 ×

103
5.492 ×

103 2.307 × 103 2.300 × 103

50
Avg 1.029 × 104 8.634 ×

103
1.029 ×

104 1.208 × 104 1.002 × 104 8.679 × 103 1.031 × 104 7.647 × 103 1.654 ×
104

1.475 ×
104 5.348 × 103 2.506 × 103

Min 8.693 × 103 7.065 ×
103

7.958 ×
103 8.721 × 103 8.609 × 103 2.525 × 103 7.356 × 103 2.300 × 103 1.554 ×

104
1.304 ×

104 2.436 × 103 2.300 × 103

100
Avg 2.000 × 104 1.778 ×

104
2.032 ×

104 2.397 × 104 1.943 × 104 2.156 × 104 3.032 × 104 1.604 × 104 3.373 ×
104

3.089 ×
104 1.910 × 104 6.538 × 103

Min 1.641 × 104 1.413 ×
104

1.778 ×
104 2.087 × 104 1.671 × 104 1.965 × 104 2.877 × 104 1.392 × 104 3.258 ×

104
2.791 ×

104 1.574 × 104 5.211 × 103

F23

30
Avg 2.910 × 103 2.732 ×

103
2.801 ×

103 3.032 × 103 2.785 × 103 2.828 × 103 3.095 × 103 2.705 × 103 3.015 ×
103

3.313 ×
103 2.718 × 103 2.662 × 103

Min 2.800 × 103 2.695 ×
103

2.762 ×
103 2.886 × 103 2.721 × 103 2.764 × 103 2.992 × 103 2.680 × 103 2.966 ×

103
3.093 ×

103 2.699 × 103 2.647 × 103

50
Avg 3.407 × 103 2.907 ×

103
3.135 ×

103 3.592 × 103 3.104 × 103 3.133 × 103 3.617 × 103 2.844 × 103 3.525 ×
103

4.337 ×
103 2.885 × 103 2.754 × 103

Min 3.157 × 103 2.835 ×
103

3.046 ×
103 3.377 × 103 2.980 × 103 2.983 × 103 3.310 × 103 2.808 × 103 3.373 ×

103
3.850 ×

103 2.822 × 103 2.737 × 103

100
Avg 4.708 × 103 3.405 ×

103
3.716 ×

103 4.823 × 103 3.545 × 103 3.819 × 103 6.555 × 103 3.061 × 103 4.657 ×
103

6.793 ×
103 3.255 × 103 2.912 × 103

Min 4.375 × 103 3.289 ×
103

3.547 ×
103 4.263 × 103 3.306 × 103 3.603 × 103 4.878 × 103 2.974 × 103 4.424 ×

103
6.011 ×

103 3.123 × 103 2.872 × 103

F24

30
Avg 3.105 × 103 2.904 ×

103
2.974 ×

103 3.167 × 103 2.978 × 103 2.928 × 103 3.304 × 103 2.877 × 103 3.198 ×
103

3.704 ×
103 2.871 × 103 2.827 × 103

Min 3.007 × 103 2.855 ×
103

2.910 ×
103 3.021 × 103 2.928 × 103 2.877 × 103 3.241 × 103 2.851 × 103 3.128 ×

103
3.490 ×

103 2.848 × 103 2.820 × 103

50
Avg 3.663 × 103 3.087 ×

103
3.227 ×

103 3.733 × 103 3.231 × 103 3.237 × 103 3.899 × 103 3.010 × 103 3.721 ×
103

4.772 ×
103 3.026 × 103 2.910 × 103

Min 3.484 × 103 3.000 ×
103

3.152 ×
103 3.545 × 103 3.135 × 103 3.070 × 103 3.726 × 103 2.955 × 103 3.588 ×

103
4.385 ×

103 2.985 × 103 2.894 × 103

100
Avg 5.770 × 103 3.963 ×

103
4.272 ×

103 5.854 × 103 4.293 × 103 5.163 × 103 6.815 × 103 3.598 × 103 5.906 ×
103

1.083 ×
104 3.769 × 103 3.309 × 103

Min 5.279 × 103 3.819 ×
103

4.124 ×
103 5.238 × 103 4.048 × 103 4.336 × 103 6.235 × 103 3.463 × 103 5.543 ×

103
9.106 ×

103 3.590 × 103 3.275 × 103

F25

30
Avg 2.912 × 103 2.957 ×

103
3.107 ×

103 2.945 × 103 2.894 × 103 3.004 × 103 3.300 × 103 2.890 × 103 3.934 ×
103

4.463 ×
103 2.928 × 103 2.888 × 103

Min 2.884 × 103 2.913 ×
103

2.889 ×
103 2.898 × 103 2.884 × 103 2.933 × 103 3.160 × 103 2.887 × 103 3.456 ×

103
3.760 ×

103 2.890 × 103 2.887 × 103

50
Avg 3.091 × 103 3.371 ×

103
4.930 ×

103 3.155 × 103 3.041 × 103 3.954 × 103 6.400 × 103 3.050 × 103 8.767 ×
103

1.387 ×
104 3.240 × 103 3.070 × 103

Min 3.036 × 103 3.055 ×
103

3.159 ×
103 3.039 × 103 2.962 × 103 3.482 × 103 5.561 × 103 2.965 × 103 6.928 ×

103
1.199 ×

104 3.158 × 103 3.017 × 103

100
Avg 3.376 × 103 5.277 ×

103
1.123 ×

104 3.590 × 103 3.321 × 103 5.786 × 103 1.404 × 104 3.319 × 103 1.347 ×
104

2.325 ×
104 4.234 × 103 3.340 × 103

Min 3.228 × 103 4.686 ×
103

4.792 ×
103 3.464 × 103 3.206 × 103 4.182 × 103 1.131 × 104 3.201 × 103 1.142 ×

104
2.080 ×

104 3.774 × 103 3.261 × 103

175

Processes 2021, 9, 2276

Table A4. Cont.

F D Metrics
KH

(2012)
GWO
(2014)

MFO
(2015)

WOA
(2016)

WCMFO
(2019)

CMFO
(2019)

HGSO
(2019)

RGA-DX
(2019)

ChOA
(2020)

AOA
(2021)

ODSFMFO
(2021)

M-MFO

F26

30
Avg 6.150 × 103 4.424 ×

103
5.689 ×

103 7.599 × 103 5.447 × 103 4.227 × 103 6.845 × 103 4.117 × 103 6.353 ×
103

9.214 ×
103 4.425 × 103 3.408 × 103

Min 2.800 × 103 3.954 ×
103

4.921 ×
103 5.975 × 103 4.955 × 103 2.936 × 103 5.878 × 103 2.900 × 103 5.882 ×

103
7.702 ×

103 2.876 × 103 2.800 × 103

50
Avg 9.583 × 103 5.735 ×

103
8.121 ×

103 1.306 × 104 8.059 × 103 8.552 × 103 1.102 × 104 5.018 × 103 1.034 ×
104

1.537 ×
104 5.531 × 103 4.065 × 103

Min 3.154 × 103 5.192 ×
103

6.910 ×
103 9.977 × 103 7.062 × 103 5.725 × 103 8.677 × 103 4.540 × 103 9.266 ×

103
1.326 ×

104 4.905 × 103 3.899 × 103

100
Avg 2.471 × 104 1.263 ×

104
1.741 ×

104 3.111 × 104 1.752 × 104 2.406 × 104 3.573 × 104 9.328 × 103 2.508 ×
104

5.006 ×
104 1.123 × 104 6.251 × 103

Min 2.085 × 104 1.124 ×
104

1.526 ×
104 2.326 × 104 1.518 × 104 1.981 × 104 3.232 × 104 8.106 × 103 2.276 ×

104
4.357 ×

104 9.727 × 103 5.989 × 103

F27

30
Avg 3.402 × 103 3.229 ×

103
3.236 ×

103 3.346 × 103 3.228 × 103 3.286 × 103 3.200 × 103 3.224 × 103 3.492 ×
103

4.337 ×
103 3.241 × 103 3.221 × 103

Min 3.316 × 103 3.212 ×
103

3.208 ×
103 3.282 × 103 3.201 × 103 3.232 × 103 3.200 × 103 3.202 × 103 3.355 ×

103
3.959 ×

103 3.222 × 103 3.210 × 103

50
Avg 4.359 × 103 3.471 ×

103
3.550 ×

103 4.305 × 103 3.504 × 103 4.243 × 103 3.200 × 103 3.375 × 103 4.257 ×
103

6.617 ×
103 3.509 × 103 3.312 × 103

Min 4.013 × 103 3.342 ×
103

3.407 ×
103 3.678 × 103 3.377 × 103 3.769 × 103 3.200 × 103 3.293 × 103 3.997 ×

103
5.870 ×

103 3.448 × 103 3.281 × 103

100
Avg 5.732 × 103 3.854 ×

103
3.867 ×

103 4.945 × 103 3.607 × 103 5.277 × 103 3.200 × 103 3.493 × 103 5.696 ×
103

1.182 ×
104 3.809 × 103 3.422 × 103

Min 4.974 × 103 3.594 ×
103

3.655 ×
103 3.909 × 103 3.482 × 103 4.288 × 103 3.200 × 103 3.437 × 103 5.303 ×

103
9.541 ×

103 3.644 × 103 3.369 × 103

F28

30
Avg 3.235 × 103 3.339 ×

103
3.721 ×

103 3.303 × 103 3.194 × 103 3.451 × 103 3.694 × 103 3.196 × 103 4.272 ×
103

6.044 ×
103 3.295 × 103 3.110 × 103

Min 3.197 × 103 3.269 ×
103

3.318 ×
103 3.269 × 103 3.100 × 103 3.247 × 103 3.300 × 103 3.101 × 103 3.565 ×

103
4.603 ×

103 3.251 × 103 3.100 × 103

50
Avg 3.338 × 103 3.873 ×

103
8.080 ×

103 3.424 × 103 3.298 × 103 4.172 × 103 6.043 × 103 3.306 × 103 6.053 ×
103

1.079 ×
104 3.739 × 103 3.292 × 103

Min 3.271 × 103 3.653 ×
103

5.324 ×
103 3.344 × 103 3.259 × 103 3.761 × 103 3.300 × 103 3.259 × 103 5.216 ×

103
9.575 ×

103 3.481 × 103 3.259 × 103

100
Avg 3.496 × 103 6.692 ×

103
1.749 ×

104 3.721 × 103 7.644 × 103 6.790 × 103 1.916 × 104 3.381 × 103 1.189 ×
104

2.947 ×
104 5.306 × 103 3.331 × 103

Min 3.393 × 103 4.771 ×
103

1.485 ×
104 3.598 × 103 3.333 × 103 4.646 × 103 1.478 × 104 3.346 × 103 9.983 ×

103
2.587 ×

104 4.502 × 103 3.295 × 103

F29

30
Avg 4.170 × 103 3.645 ×

103
4.003 ×

103 4.751 × 103 3.965 × 103 4.050 × 103 4.246 × 103 3.575 × 103 4.362 ×
103

5.610 ×
103 3.669 × 103 3.319 × 103

Min 3.680 × 103 3.460 ×
103

3.603 ×
103 4.062 × 103 3.650 × 103 3.631 × 103 3.690 × 103 3.346 × 103 4.057 ×

103
4.626 ×

103 3.475 × 103 3.312 × 103

50
Avg 5.252 × 103 4.214 ×

103
5.076 ×

103 7.281 × 103 4.671 × 103 5.028 × 103 6.835 × 103 3.673 × 103 6.978 ×
103

1.520 ×
104 4.272 × 103 3.380 × 103

Min 4.165 × 103 3.750 ×
103

4.271 ×
103 6.025 × 103 3.992 × 103 3.985 × 103 5.129 × 103 3.267 × 103 6.045 ×

103
8.818 ×

103 3.748 × 103 3.219 × 103

100
Avg 8.699 × 103 7.229 ×

103
1.370 ×

104 1.413 × 104 7.986 × 103 1.004 × 104 1.509 × 104 5.944 × 103 1.936 ×
104

8.177 ×
104 6.761 × 103 4.020 × 103

Min 6.637 × 103 6.385 ×
103

7.555 ×
103 1.053 × 104 7.019 × 103 8.335 × 103 8.825 × 103 4.620 × 103 1.268 ×

104
3.350 ×

104 5.675 × 103 3.753 × 103

F30

30
Avg 1.679 × 106 7.020 ×

106
3.271 ×

105 6.709 × 106 2.812 × 104 8.574 × 105 6.234 × 107 8.098 × 103 3.332 ×
107

6.074 ×
107 1.629 × 104 6.645 × 103

Min 7.205 × 104 8.830 ×
105

1.393 ×
104 4.463 × 105 1.582 × 104 7.507 × 104 2.348 × 107 5.539 × 103 1.030 ×

107
5.150 ×

106 7.769 × 103 6.062 × 103

50
Avg 5.532 × 107 6.713 ×

107
8.852 ×

107 8.102 × 107 2.475 × 106 2.565 × 107 5.469 × 108 8.623 × 105 4.466 ×
108

7.074 ×
108 1.839 × 106 8.164 × 105

Min 2.289 × 107 3.536 ×
107

2.389 ×
106 4.041 × 107 1.155 × 106 6.414 × 106 3.572 × 108 7.148 × 105 2.097 ×

108
1.864 ×

108 9.999 × 105 7.640 × 105

100
Avg 1.233 × 107 3.958 ×

108
1.283 ×

109 1.922 × 108 1.932 × 106 1.750 × 108 7.461 × 109 1.123 × 104 1.216 ×
10+10

3.109 ×
10+10 8.500 × 105 9.592 × 103

Min 3.908 × 106 5.455 ×
107

3.821 ×
107 7.264 × 107 3.637 × 105 2.473 × 106 4.267 × 109 6.600 × 103 8.263 ×

109
1.450 ×
10+10 1.517 × 105 7.153 × 103

Summary

30 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 9|0|1

50 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 8|0|2

100 W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 1|0|9 0|0|10 0|0|10 0|0|10 8|0|2

References

1. Akay, B.; Karaboga, D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell.
Manuf. 2012, 23, 1001–1014. [CrossRef]

2. Aloui, M.; Hamidi, F.; Jerbi, H.; Omri, M.; Popescu, D.; Abbassi, R. A Chaotic Krill Herd Optimization Algorithm for Global
Numerical Estimation of the Attraction Domain for Nonlinear Systems. Mathematics 2021, 9, 1743. [CrossRef]

3. Gharehchopogh, F.S.; Farnad, B.; Alizadeh, A. A farmland fertility algorithm for solving constrained engineering problems.
Concurr. Comput. Pract. Exp. 2021, 33, e6310. [CrossRef]

4. Ivanov, O.; Neagu, B.-C.; Grigoras, , G.; Scarlatache, F.; Gavrilas, , M. A Metaheuristic Algorithm for Flexible Energy Storage
Management in Residential Electricity Distribution Grids. Mathematics 2021, 9, 2375. [CrossRef]

5. Wang, S.; Jia, H.; Abualigah, L.; Liu, Q.; Zheng, R. An Improved Hybrid Aquila Optimizer and Harris Hawks Algorithm for
Solving Industrial Engineering Optimization Problems. Processes 2021, 9, 1551. [CrossRef]

6. Varaee, H.; Ghasemi, M.R. Engineering optimization based on ideal gas molecular movement algorithm. Eng. Comput. 2017, 33,
71–93. [CrossRef]

176

Processes 2021, 9, 2276

7. Ghasemi, M.R.; Varaee, H. A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm. Eng.
Comput. 2017, 33, 477–496. [CrossRef]

8. Pérez-Rodríguez, R. A Hybrid Estimation of Distribution Algorithm for the Quay Crane Scheduling Problem. Math. Comput.
Appl. 2021, 26, 64. [CrossRef]

9. Bányai, T. Optimization of Material Supply in Smart Manufacturing Environment: A Metaheuristic Approach for Matrix
Production. Machines 2021, 9, 220. [CrossRef]

10. Guerreiro, M.T.; Guerreiro, E.M.A.; Barchi, T.M.; Biluca, J.; Alves, T.A.; de Souza Tadano, Y.; Trojan, F.; Siqueira, H.V. Anomaly
Detection in Automotive Industry Using Clustering Methods—A Case Study. Appl. Sci. 2021, 11, 9868. [CrossRef]

11. Abualigah, L.; Diabat, A.; Geem, Z.W. A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications.
Appl. Sci. 2020, 10, 3827. [CrossRef]

12. Bezdan, T.; Stoean, C.; Naamany, A.A.; Bacanin, N.; Rashid, T.A.; Zivkovic, M.; Venkatachalam, K. Hybrid Fruit-Fly Optimization
Algorithm with K-Means for Text Document Clustering. Mathematics 2021, 9, 1929. [CrossRef]

13. Sikandar, S.; Baloch, N.K.; Hussain, F.; Amin, W.; Zikria, Y.B.; Yu, H. An Optimized Nature-Inspired Metaheuristic Algorithm for
Application Mapping in 2D-NoC. Sensors 2021, 21, 5102. [CrossRef] [PubMed]

14. Rodríguez, A.; Pérez-Cisneros, M.; Rosas-Caro, J.C.; Del-Valle-Soto, C.; Gálvez, J.; Cuevas, E. Robust Clustering Routing Method
for Wireless Sensor Networks Considering the Locust Search Scheme. Energies 2021, 14, 3019. [CrossRef]

15. Valdez, F.; Castillo, O.; Melin, P. Bio-Inspired Algorithms and Its Applications for Optimization in Fuzzy Clustering. Algorithms
2021, 14, 122. [CrossRef]

16. Chattopadhyay, S.; Dey, A.; Singh, P.K.; Geem, Z.W.; Sarkar, R. COVID-19 Detection by Optimizing Deep Residual Features with
Improved Clustering-Based Golden Ratio Optimizer. Diagnostics 2021, 11, 315. [CrossRef]

17. Abualigah, L.; Gandomi, A.H.; Elaziz, M.A.; Hamad, H.A.; Omari, M.; Alshinwan, M.; Khasawneh, A.M. Advances in Meta-
Heuristic Optimization Algorithms in Big Data Text Clustering. Electronics 2021, 10, 101. [CrossRef]

18. Rodríguez, A.; Del-Valle-Soto, C.; Velázquez, R. Energy-Efficient Clustering Routing Protocol for Wireless Sensor Networks Based
on Yellow Saddle Goatfish Algorithm. Mathematics 2020, 8, 1515. [CrossRef]

19. Helmi, A.M.; Al-qaness, M.A.A.; Dahou, A.; Damaševičius, R.; Krilavičius, T.; Elaziz, M.A. A Novel Hybrid Gradient-Based
Optimizer and Grey Wolf Optimizer Feature Selection Method for Human Activity Recognition Using Smartphone Sensors.
Entropy 2021, 23, 1065. [CrossRef]

20. Pichai, S.; Sunat, K.; Chiewchanwattana, S. An Asymmetric Chaotic Competitive Swarm Optimization Algorithm for Feature
Selection in High-Dimensional Data. Symmetry 2020, 12, 1782. [CrossRef]

21. Abukhodair, F.; Alsaggaf, W.; Jamal, A.T.; Abdel-Khalek, S.; Mansour, R.F. An Intelligent Metaheuristic Binary Pigeon
Optimization-Based Feature Selection and Big Data Classification in a MapReduce Environment. Mathematics 2021, 9, 2627.
[CrossRef]

22. Abd Elaziz, M.; Dahou, A.; Alsaleh, N.A.; Elsheikh, A.H.; Saba, A.I.; Ahmadein, M. Boosting COVID-19 Image Classification
Using MobileNetV3 and Aquila Optimizer Algorithm. Entropy 2021, 23, 1383. [CrossRef]

23. Fan, C.; Gao, F. Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method. Sensors
2021, 21, 6434. [CrossRef]

24. Cho, D.-H.; Moon, S.-H.; Kim, Y.-H. Genetic Feature Selection Applied to KOSPI and Cryptocurrency Price Prediction. Mathematics
2021, 9, 2574. [CrossRef]

25. Elgamal, Z.M.; Yasin, N.M.; Sabri, A.Q.M.; Sihwail, R.; Tubishat, M.; Jarrah, H. Improved Equilibrium Optimization Algorithm
Using Elite Opposition-Based Learning and New Local Search Strategy for Feature Selection in Medical Datasets. Computation
2021, 9, 68. [CrossRef]

26. Zamani, H.; Nadimi-Shahraki, M.-H. Feature selection based on whale optimization algorithm for diseases diagnosis. Int. J.
Comput. Sci. Inf. Secur. 2016, 14, 1243.

27. Chatterjee, S.; Biswas, S.; Majee, A.; Sen, S.; Oliva, D.; Sarkar, R. Breast cancer detection from thermal images using a Grunwald-
Letnikov-aided Dragonfly algorithm-based deep feature selection method. Comput. Biol. Med. 2021, 105027, in press. [CrossRef]

28. Zamani, H.; Nadimi-Shahraki, M.-H. Swarm intelligence approach for breast cancer diagnosis. Int. J. Comput. Appl. 2016, 151,
40–44. [CrossRef]

29. Sa’ad, S.; Muhammed, A.; Abdullahi, M.; Abdullah, A.; Hakim Ayob, F. An Enhanced Discrete Symbiotic Organism Search
Algorithm for Optimal Task Scheduling in the Cloud. Algorithms 2021, 14, 200. [CrossRef]

30. Ren, T.; Zhang, Y.; Cheng, S.-R.; Wu, C.-C.; Zhang, M.; Chang, B.-y.; Wang, X.-y.; Zhao, P. Effective Heuristic Algorithms Solving
the Jobshop Scheduling Problem with Release Dates. Mathematics 2020, 8, 1221. [CrossRef]

31. Wang, Y.; Yang, Z.; Guo, Y.; Zhou, B.; Zhu, X. A Novel Binary Competitive Swarm Optimizer for Power System Unit Commitment.
Appl. Sci. 2019, 9, 1776. [CrossRef]

32. Izakian, H.; Abraham, A.; Snášel, V. Metaheuristic Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing
Systems. Sensors 2009, 9, 5339–5350. [CrossRef] [PubMed]

33. Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.; Coello, C.C.; Herrera, F.
Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [CrossRef]

34. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 74.
35. Kar, A.K. Bio inspired computing—A review of algorithms and scope of applications. Expert Syst. Appl. 2016, 59, 20–32. [CrossRef]

177

Processes 2021, 9, 2276

36. Dezfouli, M.B.; Nadimi-Shahraki, M.H.; Zamani, H. A novel tour planning model using big data. In Proceedings of the 2018
International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018; pp. 1–6.

37. Zahrani, H.K.; Nadimi-Shahraki, M.H.; Sayarshad, H.R. An intelligent social-based method for rail-car fleet sizing problem. J.
Rail Transp. Plan. Manag. 2021, 17, 100231. [CrossRef]

38. Bonabeau, E.; Theraulaz, G.; Dorigo, M. Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 1999.
39. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
40. Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the ICNN’95 International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
41. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
42. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
43. Fister, I., Jr.; Yang, X.-S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013,

arXiv:1307.4186.
44. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
45. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112.

[CrossRef]
46. Beyer, H.-G.; Schwefel, H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
47. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl.

Artif. Intell. 2021, 104, 104314. [CrossRef]
48. Bakirtzis, A.G.; Biskas, P.N.; Zoumas, C.E.; Petridis, V. Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power

Syst. 2002, 17, 229–236. [CrossRef]
49. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.-K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and

mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [CrossRef]
50. Das, A.K.; Pratihar, D.K. A directional crossover (DX) operator for real parameter optimization using genetic algorithm. Appl.

Intell. 2019, 49, 1841–1865. [CrossRef]
51. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution

algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [CrossRef]
52. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. CCSA: Conscious neighborhood-based crow search algorithm for solving

global optimization problems. Appl. Soft Comput. 2019, 85, 105583. [CrossRef]
53. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,

17, 4831–4845. [CrossRef]
54. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
55. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
56. Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [CrossRef]
57. Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [CrossRef]
58. MiarNaeimi, F.; Azizyan, G.; Rashki, M. Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional

optimization problems. Knowl.-Based Syst. 2021, 213, 106711. [CrossRef]
59. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483.

[CrossRef]
60. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
61. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.

Comput. Struct. 2016, 169, 1–12. [CrossRef]
62. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic

optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
63. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1470–1477.
64. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Erciyes University, Engineering

Faculty, Computer Engineering Department: Kayseri, Turkey, 2005.
65. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
66. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
67. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
68. Karaboga, D.; Gorkemli, B. A quick artificial bee colony (qABC) algorithm and its performance on optimization problems. Appl.

Soft Comput. 2014, 23, 227–238. [CrossRef]
69. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.

Appl. 2021, 166, 113917. [CrossRef]

178

Processes 2021, 9, 2276

70. Jia, H.; Sun, K.; Zhang, W.; Leng, X. An enhanced chimp optimization algorithm for continuous optimization domains. Complex
Intell. Syst. 2021, 7, 1–18. [CrossRef]

71. Singh, T.; Saxena, N.; Khurana, M.; Singh, D.; Abdalla, M.; Alshazly, H. Data Clustering Using Moth-Flame Optimization
Algorithm. Sensors 2021, 21, 4086. [CrossRef] [PubMed]

72. Shah, Y.A.; Habib, H.A.; Aadil, F.; Khan, M.F.; Maqsood, M.; Nawaz, T. CAMONET: Moth-Flame Optimization (MFO) Based
Clustering Algorithm for VANETs. IEEE Access 2018, 6, 48611–48624. [CrossRef]

73. Kotary, D.K.; Nanda, S.J. Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization.
Eng. Appl. Artif. Intell. 2020, 87, 103342. [CrossRef]

74. Fei, W.; Hexiang, B.; Deyu, L.; Jianjun, W. Energy-Efficient Clustering Algorithm in Underwater Sensor Networks Based on Fuzzy
C Means and Moth-Flame Optimization Method. IEEE Access 2020, 8, 97474–97484. [CrossRef]

75. Ishtiaq, A.; Ahmed, S.; Khan, M.F.; Aadil, F.; Maqsood, M.; Khan, S. Intelligent clustering using moth flame optimizer for vehicular
ad hoc networks. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147718824460. [CrossRef]

76. Mittal, N. Moth Flame Optimization Based Energy Efficient Stable Clustered Routing Approach for Wireless Sensor Networks.
Wirel. Pers. Commun. 2018, 104, 677–694. [CrossRef]

77. Nadimi-Shahraki, M.H.; Moeini, E.; Taghian, S.; Mirjalili, S. DMFO-CD: A Discrete Moth-Flame Optimization Algorithm for
Community Detection. Algorithms 2021, 14, 314. [CrossRef]

78. Zawbaa, H.M.; Emary, E.; Parv, B.; Sharawi, M. Feature selection approach based on moth-flame optimization algorithm.
In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016;
pp. 4612–4617.

79. Khurma, R.A.; Aljarah, I.; Sharieh, A. An Efficient Moth Flame Optimization Algorithm using Chaotic Maps for Feature Selection
in the Medical Applications. In Proceedings of the ICPRAM, Valletta, Malta, 22–24 February 2020; pp. 175–182.

80. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine
using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84.
[CrossRef]

81. Hassanien, A.E.; Gaber, T.; Mokhtar, U.; Hefny, H. An improved moth flame optimization algorithm based on rough sets for
tomato diseases detection. Comput. Electron. Agric. 2017, 136, 86–96. [CrossRef]

82. Ewees, A.A.; Sahlol, A.T.; Amasha, M.A. A bio-inspired moth-flame optimization algorithm for arabic handwritten letter
recognition. In Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization
(ICCAIRO), Prague, Czech Republic, 20–22 May 2017; pp. 154–159.

83. Gupta, D.; Ahlawat, A.K.; Sharma, A.; Rodrigues, J.J.P.C. Feature selection and evaluation for software usability model using
modified moth-flame optimization. Computing 2020, 102, 1503–1520. [CrossRef]

84. Elaziz, M.A.; Ewees, A.A.; Ibrahim, R.A.; Lu, S. Opposition-based moth-flame optimization improved by differential evolution
for feature selection. Math. Comput. Simul. 2020, 168, 48–75. [CrossRef]

85. Nadimi-Shahraki, M.H.; Banaie-Dezfouli, M.; Zamani, H.; Taghian, S.; Mirjalili, S. B-MFO: A Binary Moth-Flame Optimization
for Feature Selection from Medical Datasets. Computers 2021, 10, 136. [CrossRef]

86. Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin Lesion Segmentation and Multiclass Classification
Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics 2021, 11, 811. [CrossRef]

87. Nguyen, T.-T.; Wang, H.-J.; Dao, T.-K.; Pan, J.-S.; Ngo, T.-G.; Yu, J. A Scheme of Color Image Multithreshold Segmentation Based
on Improved Moth-Flame Algorithm. IEEE Access 2020, 8, 174142–174159. [CrossRef]

88. Jaiswal, V.; Sharma, V.; Varma, S. MMFO: Modified moth flame optimization algorithm for region based RGB color image
segmentation. Int. J. Electr. Comput. Eng. 2020, 10, 196. [CrossRef]

89. Said, S.; Mostafa, A.; Houssein, E.H.; Hassanien, A.E.; Hefny, H. Moth-flame Optimization Based Segmentation for MRI Liver
Images. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017, Cairo, Egypt,
9–11 September 2017; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2018; pp. 320–330.

90. Jia, H.; Ma, J.; Song, W. Multilevel thresholding segmentation for color image using modified moth-flame optimization. IEEE
Access 2019, 7, 44097–44134. [CrossRef]

91. Aziz, M.A.E.; Ewees, A.A.; Hassanien, A.E. Whale Optimization Algorithm and Moth-Flame Optimization for multilevel
thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [CrossRef]

92. Li, Z.; Zhou, Y.; Zhang, S.; Song, J. Lévy-flight moth-flame algorithm for function optimization and engineering design problems.
Math. Probl. Eng. 2016, 2016, 1423930. [CrossRef]

93. Khalilpourazari, S.; Khalilpourazary, S. An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization
algorithms for solving numerical and constrained engineering optimization problems. Soft Comput. 2019, 23, 1699–1722.
[CrossRef]

94. Hongwei, L.; Jianyong, L.; Liang, C.; Jingbo, B.; Yangyang, S.; Kai, L. Chaos-enhanced moth-flame optimization algorithm for
global optimization. J. Syst. Eng. Electron. 2019, 30, 1144–1159.

95. Xu, Y.; Chen, H.; Heidari, A.A.; Luo, J.; Zhang, Q.; Zhao, X.; Li, C. An efficient chaotic mutative moth-flame-inspired optimizer
for global optimization tasks. Expert Syst. Appl. 2019, 129, 135–155. [CrossRef]

96. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global
optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]

179

Processes 2021, 9, 2276

97. Chen, C.; Wang, X.; Yu, H.; Wang, M.; Chen, H. Dealing with multi-modality using synthesis of Moth-flame optimizer with sine
cosine mechanisms. Math. Comput. Simul. 2021, 188, 291–318. [CrossRef]

98. Li, Z.; Zeng, J.; Chen, Y.; Ma, G.; Liu, G. Death mechanism-based moth–flame optimization with improved flame generation
mechanism for global optimization tasks. Expert Syst. Appl. 2021, 183, 115436. [CrossRef]

99. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-
based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [CrossRef]

100. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

101. Bhesdadiya, R.; Trivedi, I.N.; Jangir, P.; Kumar, A.; Jangir, N.; Totlani, R. A novel hybrid approach particle swarm optimizer with
moth-flame optimizer algorithm. In Advances in Computer and Computational Sciences; Springer: Singapore, 2017; pp. 569–577.

102. Mustaffa, Z.; Sulaiman, M.H.; Ernawan, F.; Kamarulzaman, S.F. Hybrid least squares support vector machines for short term
predictive analysis. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR),
Nagoya, Japan, 24–26 April 2017; pp. 571–574.

103. Sarma, A.; Bhutani, A.; Goel, L. Hybridization of moth flame optimization and gravitational search algorithm and its application to
detection of food quality. In Proceedings of the 2017 Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017;
pp. 52–60.

104. Rezk, H.; Ali, Z.M.; Abdalla, O.; Younis, O.; Gomaa, M.R.; Hashim, M. Hybrid moth-flame optimization algorithm and incremental
conductance for tracking maximum power of solar PV/thermoelectric system under different conditions. Mathematics 2019, 7,
875. [CrossRef]

105. Ullah, I.; Hussain, S. Time-Constrained Nature-Inspired Optimization Algorithms for an Efficient Energy Management System in
Smart Homes and Buildings. Appl. Sci. 2019, 9, 792. [CrossRef]

106. Abd Elaziz, M.; Yousri, D.; Mirjalili, S. A hybrid Harris hawks-moth-flame optimization algorithm including fractional-order
chaos maps and evolutionary population dynamics. Adv. Eng. Softw. 2021, 154, 102973. [CrossRef]

107. Dang, M.P.; Le, H.G.; Chau, N.L.; Dao, T.-P. Optimization for a flexure hinge using an effective hybrid approach of fuzzy logic
and moth-flame optimization algorithm. Math. Probl. Eng. 2021, 2021, 6622655. [CrossRef]

108. Apinantanakon, W.; Sunat, K. Omfo: A new opposition-based moth-flame optimization algorithm for solving unconstrained
optimization problems. In Proceedings of the International Conference on Computing and Information Technology, Singapore,
27–29 December 2017; Springer: Cham, Switzerland, 2017; pp. 22–31.

109. Xu, L.; Li, Y.; Li, K.; Beng, G.H.; Jiang, Z.; Wang, C.; Liu, N. Enhanced moth-flame optimization based on cultural learning and
Gaussian mutation. J. Bionic Eng. 2018, 15, 751–763. [CrossRef]

110. Li, W.K.; Wang, W.L.; Li, L. Optimization of water resources utilization by multi-objective moth-flame algorithm. Water Resour.
Manag. 2018, 32, 3303–3316. [CrossRef]

111. Zhang, H.; Li, R.; Cai, Z.; Gu, Z.; Heidari, A.A.; Wang, M.; Chen, H.; Chen, M. Advanced orthogonal moth flame optimization
with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems. Expert Syst. Appl. 2020, 159, 113617.
[CrossRef]

112. Nadimi-Shahraki, M.H.; Fatahi, A.; Zamani, H.; Mirjalili, S.; Abualigah, L. An Improved Moth-Flame Optimization Algorithm
with Adaptation Mechanism to Solve Numerical and Mechanical Engineering Problems. Entropy 2021, 23, 1637. [CrossRef]

113. Kaur, K.; Singh, U.; Salgotra, R. An enhanced moth flame optimization. Neural Comput. Appl. 2020, 32, 2315–2349. [CrossRef]
114. Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Deng, Y. An Improved Moth-Flame Optimization algorithm with hybrid

search phase. Knowl.-Based Syst. 2020, 191, 105277. [CrossRef]
115. Li, Y.; Zhu, X.; Liu, J. An improved moth-flame optimization algorithm for engineering problems. Symmetry 2020, 12, 1234.

[CrossRef]
116. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the cec 2017 Special Session and

Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University: Singapore, 2016.

117. Morrison, R.W. Designing Evolutionary Algorithms for Dynamic Environments; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2004.

118. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

180

Citation: Rahimi, I.; Gandomi, A.H.;

Deb, K.; Chen, F.; Nikoo, M.R.

Scheduling by NSGA-II: Review and

Bibliometric Analysis. Processes 2022,

10, 98. https://doi.org/10.3390/

pr10010098

Academic Editors: Luis Puigjaner

and Jie Zhang

Received: 22 October 2021

Accepted: 29 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Review

Scheduling by NSGA-II: Review and Bibliometric Analysis

Iman Rahimi 1, Amir H. Gandomi 1,*, Kalyanmoy Deb 2, Fang Chen 1 and Mohammad Reza Nikoo 3

1 Faculty of Engineering & Information Technology, University of Technology Sydney,
Sydney, NSW 2007, Australia; iman83@gmail.com (I.R.); Fang.Chen@uts.edu.au (F.C.)

2 Computional Optimization and Innovation (COIN) Laboratory, Michigan State University,
East Lansing, MI 48824, USA; kdeb@egr.msu.edu

3 Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat P.O. Box 50, Oman;
nikoo@squ.edu.om

* Correspondence: Gandomi@uts.edu.au

Abstract: NSGA-II is an evolutionary multi-objective optimization algorithm that has been applied to
a wide variety of search and optimization problems since its publication in 2000. This study presents
a review and bibliometric analysis of numerous NSGA-II adaptations in addressing scheduling
problems. This paper is divided into two parts. The first part discusses the main ideas of scheduling
and different evolutionary computation methods for scheduling and provides a review of different
scheduling problems, such as production and personnel scheduling. Moreover, a brief comparison of
different evolutionary multi-objective optimization algorithms is provided, followed by a summary of
state-of-the-art works on the application of NSGA-II in scheduling. The next part presents a detailed
bibliometric analysis focusing on NSGA-II for scheduling applications obtained from the Scopus and
Web of Science (WoS) databases based on keyword and network analyses that were conducted to
identify the most interesting subject fields. Additionally, several criteria are recognized which may
advise scholars to find key gaps in the field and develop new approaches in future works. The final
sections present a summary and aims for future studies, along with conclusions and a discussion.

Keywords: NSGA-II; scheduling; multi-objective optimization; review; scientometric analysis

1. Introduction

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [1] has been proposed as
a powerful decision space exploration engine based on a genetic algorithm for solving
multi-objective optimization problems. The NSGA-II algorithm has been applied to a wide
variety of search and optimization problems since its publication in 2000.

Scheduling problems are dedicated to allocating tasks to resources. Two major schools
of thought in relation to schedule generation are algorithmic and knowledge-based ap-
proaches [2]. The first approach is based on a mathematical formulation that includes
objective function(s) and constraints, while the second approach is not easy to explain in
an analytical format and is often used in cases where a feasible solution is sufficient. In
addition, scheduling problems are generally known to be complex, large-scale, challenging,
NP-hard, and involve several constraints [3,4].

Therefore, discovering efficient and low-cost procedures for use of the scheduling
systems is significantly essential. Although numerous techniques have been proposed
to solve the optimization problem mentioned above, there is still a crucial need for more
suitable techniques. A viable method to manage these issues is to employ global opti-
mization algorithms, including exact optimization methods (e.g., branch-and-bound and
branch-and-cut) and, in some cases, evolutionary computation (EC) techniques [5–9]. EC
techniques have been employed for large, complex real-world problems that cannot be
solved using classical methods [10–12].

Another serious problem is that numerous objectives could be identified to optimize
systems simultaneously. Hence, several objectives must usually be identified for optimizing

Processes 2022, 10, 98. https://doi.org/10.3390/pr10010098 https://www.mdpi.com/journal/processes181

Processes 2022, 10, 98

a real-world scheduling problem. Furthermore, multi-objective optimization problems arise
naturally in most disciplines, and solving them has been a challenging issue for researchers.
Although a variety of techniques have been developed in operations research and other
fields to address these problems, alternative approaches are urgently needed because of
the complexities of their solutions [13–15]. Since EC methods are identified as the more
effective methods to handle this limitation, they are suitable for solving multi-objective
optimization problems (MOOPs) [12,16]. EC approaches repeatedly modify a population
of individual solutions to find the optimal set of solutions to a problem. Additionally,
multi-objective evolutionary algorithms are able to find a set of non-dominated solutions,
known as Pareto solutions, in a single run within an ideal time [12,17,18]. Among the EC
approaches, genetic algorithm (GA)-based solution methods are quickly gaining popularity
due to their dependence on the population and, therefore, are suitable for solving MOOPs.

Non-dominated sorting is a technique used to assign solutions in a population to
different Pareto fronts according to their dominance relationships. Because individuals
of the population in the first front have the maximum fitness value, they can obtain more
copies [1,12,19]. The NGA-II [1,20] is a well-known evolutionary computation technique
that has been used widely by researchers, with more than 40,000 citations as of April 2021.
Owing to its lower computational complexity, elitism, and parameterless nature [20–23],
it has been applied to a wide variety of search and optimization problems since its in-
troduction. The NSGA-II algorithm creates a population of individuals, ranks and sorts
each individual based on the nondomination level, and then performs crowding distance
sorting to keep the population diverse [1]. This paper presents a review of the application
of NSGA-II in scheduling problems.

To better understand the research field in this study and provide new insights from
publications, the information provided in this work attempts to answer the following
questions:

• What is the basic concept of scheduling, and why is NSGA-II important (Section 2)?
• What is the contribution of NSGA-II in scheduling (Section 3.2)?
• What are the different types of scheduling? Which fields of scheduling are the most

important (Section 2)?
• What are the most important problems in scheduling, how do researchers tackle them,

and what do researchers find from their experiments (Sections 2 and 3.2)?
• What are the main topics and keywords regarding NSGA-II and scheduling problems

(Section 4)?
• Which journals have the most contributions in the field? Who are the best researchers

in the area, and what are their respective countries of origin (Section 4)?
• What are the current gaps and future trajectories in scheduling (Sections 5 and 6)?

After a brief introduction of different scheduling problems, scheduling algorithms
are introduced. A comparison of algorithms in both single-objective and multi-objective
scheduling problems is addressed, followed by introducing the application of NSGA-II in
scheduling problems. Moreover, scientometric analysis is conducted in the field. The last
section provides a summary and future studies.

The research procedure in this work was divided into five stages (Figure 1). In
the first stage, documents were gathered from the Scopus (https://www.scopus.com/
31 December 2020) and WoS (https://clarivate.com/products/web-of-science/, accessed
on 31 December 2020) databases. Before initiating the search in the databases, special
keywords, namely “NSGA-II” AND “scheduling”, were searched for in titles, abstracts,
and keywords to identify related articles. First, the authors filtered the documents with
the special keywords to find the results, such as the type of objective function, problem
statement, and solution approaches. Second, in some special cases where the research
methodology using the title, abstract, and keywords did not help, the content of the papers
was reviewed.

182

Processes 2022, 10, 98

Figure 1. Research methodology.

It is worthy to note that this work reviewed only the research article type, exclud-
ing books, book chapters, reviews, conference papers, and short letters, and 683 and
875 published articles (between 2000 and 2020) were extracted from WOS (Supplemen-
tary Material A) and Scopus (Supplementary Material B), respectively. Since some of the
articles were duplicates, they were identified and removed from the library in stage 2

183

Processes 2022, 10, 98

using Mendeley as a powerful reference manager. In addition, some research questions
for this study were designed in stage 2. A comprehensive review was initiated in stage
3 with a general illustration of the basic concepts of scheduling and comparison of the
algorithms. In stage 4, social network analysis was performed to provide a scientometric
analysis of the documents using VOSviewer 1.6.17 and CitNetExplorer 1.0.0 [24,25], which
have been identified as powerful tools for scientometric analysis. Stage 4 required several
steps, including co-occurrence, co-authorship, citation, bibliographic coupling, and citation
network analyses. In the last stage, the results were obtained to formulate a discussion to
answer the proposed research questions. In stage 5, the findings were prepared, important
gaps were identified, and future research directions were determined.

The remainder of the paper is organized as follows. Section 2 gives an overview of the
scheduling. Section 3 discusses the scheduling algorithms, the solution methods based on
the genetic algorithm in scheduling, and state-of-the-art works on the application of NSGA-
II in scheduling. Section 4 presents a detailed scientometric analysis in the field. Finally,
a summary and suggested future studies are given in Section 5, followed by concluding
remarks and a discussion in Section 6.

2. Overview of Scheduling

The following subsections provide an overview of the different aspects of scheduling
in manufacturing and services.

2.1. Scheduling

Scheduling and sequencing are the processes of arranging and optimizing the man-
ufacturing and service activities that play an important role in industries [3,26]. Firms
use backward and forward scheduling to allocate plants and resources, plan production
processes, and purchase materials [27–29]. In addition, the benefits of production schedul-
ing include the following: inventory reduction, leveling [30–32], increased production
efficiency [33–35], accurate delivery date quotes [36–38], and real-time information [39–43].
“Manufacturing model” specifies the machine(s) or resource configuration used in the pro-
duction process. Classification of scheduling in manufacturing was built over the last few
decades, and it is proven and applied in defining the complexity of a scheduling problem.
Since the mathematical model is related to the machine configuration, the system uses
the machine configuration instead of the industry type for categorizing problems [44,45].
Table 1 presents a classification of different models.

2.1.1. Scheduling in Manufacturing

In industry, each order should be converted into a list of operations that the organi-
zation must carry out. These operations should be handled by different machines and
are based on certain sequences. It is pertinent to note that the provided schedule of the
organizations helps to optimize the strategic usage of resources, forecasting of demands,
and resource requirements. Single-machine scheduling or single-resource scheduling is an
optimization problem in computer science and operations research. We are given n jobs of
varying processing times, which need to be scheduled on a single machine in a way that
optimizes a certain objective. Parallel machine scheduling (PMS) is for scheduling jobs
processed on a series of machines with the same function with the optimized objective.

In a general job scheduling problem, we are given n jobs of varying processing times,
which need to be scheduled on m machines with varying processing power, while trying
to minimize the makespan (i.e., the total length of the schedule). Flow-shop scheduling
is a special case of job-shop scheduling where there is a strict order of all operations to
be performed on all jobs. Flow-shop scheduling may apply to production facilities for
computing designs as well.

184

Processes 2022, 10, 98

Table 1. Classification of different scheduling models.

Manufacturing Model Model Type

Single Linear Programing
Parallel Machines Mixed-Integer Programming
Job-Shop Mixed-Integer Quadratic Programming
Flow- or Open-Shop Mixed-Integer Non-Linear Programming
Flexible Manufacturing Queuing Techniques and Simulation
Lot Scheduling System
Project Scheduling

Objective Function Constraints

Economic-Related Objective Economic-Related Constraints

Minimize Makespan Makespan Equation
Minimize or Maximize Tardiness Makespan Value Limitation
Minimize Electricity Cost Tardiness Equation
Minimize Labor Cost Tardiness Value Limitation
Minimize Inventory Cost, etc. Amount of Demand

Environment-Related Objective Total Energy Cost

Minimize Total Energy Consumption Energy Cost in Specific Mode
Minimize Peak Power Electricity Price
Minimize Carbon Emissions Revenue from Power Sold
Minimize Squatted Deviation Labor Cost Equation, etc.

Maximize Utilization Environment-Related Constraints

Minimize Water Consumption Power’s Peak Constraint
Maximize Total Availability System, etc. Total Energy Consumption

Social-Related Objective Energy Consumption in Specific Mode

Minimize Noise Level Total Power Supply
Capacity Limitation
Duration of Initiatives
Carbon Emissions Value Limitation
Carbon Emissions Equation
Amount of Water
Water Quality Class Function
Cleaning Cost
Amount of Water Discharge
Amount of Contaminant
Waste Water and Effluent Limitation, etc.

Social-Related Constraints

Recovery Time
Ergonomic Time Value Limitation, etc.

Machine Scheduling

This type of scheduling includes single-machine, parallel-machine, multi-stage flow-
shop, multi-stage flexible (hybrid) flow-shop, multi-stage assembly flow-shop, job-shop,
flexible job-shop, or open-shop flow-shop, job-shop, and open-shop [46–50]. For example,
there are several objectives pertaining to job-shop scheduling problems, including max-
imizing completion time (Cmax), total flow time (Ctotal), machine workload (Wmax), total
machine workload (Wtotal), and minimizing earliness or tardiness (E/T).

Flexible Manufacturing

A flexible manufacturing system (FMS) is a production approach which is designed
to easily adjust to changes in the type and quantity of the product being produced. As a
result, flexible manufacturing can be an important element of a make-to-order strategy that
allows customers to customize the products [51–54].

185

Processes 2022, 10, 98

Lot Scheduling System

This type of scheduling is suitable for tactical and strategic processes. Unlike the
previous three classes, the production and demand processes are continuous. The objective
functions of lot scheduling include minimizing inventory and cost [55–57].

2.1.2. Personnel Scheduling

In personnel scheduling, a good schedule should satisfy management and increase the
time an employee stays with an employer [1]. All problems are originally divided into static
and dynamic categories. Static scheduling has a structure that does not change over time.
An example could be a 3-month flight schedule chart at an airport. Dynamic scheduling
often has a variable schedule structure. There are several scheduling classifications in the
literature. As an example, Figure 2 presents a classification of personnel scheduling in
service system scheduling. An example is given in the resource schedules [58–101].

Figure 2. A classification of personnel scheduling problems.

3. Scheduling Algorithms

This section and the following subsections aim to justify the importance of NSGA-II
and compare it with other evolutionary algorithms statistically and briefly.

Several optimization methods have been addressed in the literature to solve schedul-
ing problems in addition to different classifications for solving optimization problems,
namely the exact and approximate approaches (Figure 3). Exact methods include the
efficient rule approach [49], mathematical programming approach [102], and branch-and-
bound method [103,104]. Approximate methods pertain to constructive methods [105–107],
artificial intelligence methods [108], local search methods [109], and metaheuristic ap-
proaches [110,111]. While exact methods are typically expensive in terms of computing
time and often result in poor quality solutions, metaheuristic approaches produce alter-
native optimal solutions in a single run [112]. Most exact solution approaches convert
MOOPs into a single optimization problem, while metaheuristic methods solve MOO
problems without this conversion. Some metaheuristics incorporate certain mathematical
methods [113], and others are suitable for solving global optimization problems [114].

186

Processes 2022, 10, 98

Figure 3. Proposed solution approaches used in scheduling problems.

For example, the authors of [115] proposed an idea and scheduling for a flexible job-
shop (FJS) based on a hierarchical approach considering multiple performance objectives.
A genetic algorithm for generating robust solutions for flexible job-shop schedules was
introduced in [116].

The authors of [117] presented a two-job-shop scheduling problem with unrelated
machines and solved it using the classical geometric approach. A hybrid algorithm based on
swarm optimization and simulated annealing for solving multi-objective flexible job-shop
scheduling problems was introduced in [118]. The authors of [119] presented a mixed-
integer nonlinear program for solving common cycle economic lot scheduling in flexible
job-shops. The latter study considered a combination of job-shops and parallel machines,
and the authors suggested an efficient enumeration method for solving the mentioned
problem. An integer linear programming model for flexible job-shop scheduling for the
jobs that were on a make-to-order basis was proposed in [120]. The authors of [121] used a
genetic algorithm approach for solving FJS scheduling under resource constraints. A Tabu
search approach for flexible job-shop scheduling by minimizing Cmax was proposed in [122].
The authors of [123] established evolving dispatching rules for solving FJS scheduling using
applied genetic programming. In total, more than 29,688 articles have been published in
the area of optimization of scheduling problems (since 2000). Among the published articles,
the genetic algorithm owns the most contributions (just above 26%) for solving scheduling
problems, followed by particle swarm optimization (just above 9%), simulated annealing
(6.4%), ant colony optimization (4.09%), and then tau search (4.47%) (Figure 4).

Figure 4. Contribution of different metaheuristic algorithms applied to scheduling problems.

187

Processes 2022, 10, 98

3.1. Genetic Algorithm (GA)-Based Solution Methods

Since genetic algorithms are based on the population, they are suitable for solving
MOO problems. The most famous MOO algorithms based on genetic algorithms are as
follows:

• VEGA (Vector-Evaluated Genetic Algorithm) [124]
• MOGA (Multi-Objective Genetic Algorithm) [125]
• WBGA (Weighted Based Genetic Algorithm) [126]
• RWGA (Random Weighted Genetic Algorithm) [127]
• NSGA (Non-Dominated Sorted Genetic Algorithm) [128]
• NSGA-II (Fast Non-Dominated Sorted Genetic Algorithm) [20]
• RDGA (Rank Density-Based Genetic Algorithm) [129]
• NPGA (Niched Pareto Genetic Algorithm) [130,131]
• DMOEA (Dynamic Multi-Objective Evolutionary Algorithm) [132]

Table 2 presents a comparison of the above-mentioned genetic algorithms based on
three criteria: elitism, diversity, and fitness function.

Table 2. Comparison of different GA-based solution methods.

Algorithm Fitness Function Diversity Elitism Strengths Weakness

VEGA [133–136]
Select subpopulation

using an objective
function

No No Easy to code Fast convergence to
an objective function

MOGA [137–139] Pareto ranking Using fitness
function No Extension of single

objective

Slow convergence
and dependency on
niche size parameter

WBGA [140]
Average normalized
weighted objective

function

Identifying
weights No Extension of single

objective
Difficulty in

nonconvex space

RWGA [141,142]
Average normalized
weighted objective

function

Assign weight
randomly Yes Easy to code Difficulty in

nonconvex space

RDGA [143] Ranking based and
reducing problem

Non-concentration
based on cells Yes Updated cells Difficulty in run

NPGA [144–148] No Niche count No Easy tournament
selection

Dependency on
niche size parameter

DMOEA [149] Ranking based on
cells

Adjusting
density of cells Yes Updated cells Difficulty in run

NSGA [150–154]
Ranking based on

non-dominated
solutions

Using fitness
function No Fast convergence Dependency on

niche size parameter

NSGA-II
[22,155–159]

Ranking based on
non-dominated

solutions
Crowding distance Yes

Uses non-dominated
sorting, crowding

distance, and elitist
techniques

Crowding distance
performs only in

objective functions

3.2. NSGA-II

Most evolutionary multi-objective optimization (EMO) algorithms possess the follow-
ing difficulties:

• Computational cost in non-dominated sorting increases significantly when the popu-
lation increases;

• Lack of elitism reduces the algorithm’s performance and inhibits individuals with
good fitness values in different generations;

188

Processes 2022, 10, 98

• Difficulty in the parameter settings largely affects the performance of the majority of
evolutionary algorithms.

To alleviate these difficulties, NSGA-II was proposed in 2000 [19] and has become one
of the most popular EMO algorithms in use to date, along with multi-objective particle
swarm optimization (MOPSO) and multi-objective ant colony optimization (MOACO).
Figure 5 shows the trend of published articles considering the contributions of these
algorithms. Since 2014, NSGA-II has been the most studied algorithm in scheduling,
followed by MOPSO then MOACO.

Figure 5. Publication counts of the three most-popular EMO algorithms from 2010 to 2019.

The authors of [20] proposed NSGA-II as a revised version of the NSGA [128] that
has lower computational complexity, is parameterless, and possesses elitism [20]. NSGA-II
has been applied in many different fields of study by numerous researchers [22,160–164].
Figure 6 presents the total citations of original NSGA-II papers over the years and indicates
that NSGA-II has been considered by numerous researchers.

Figure 6. Total citations of original NSGA-II papers over the years.

Tables 3–8 present a summary of the literature review in the scheduling field, where
the predominant areas include scheduling problems for job-shop scheduling, routing,
satellites, projects, weapon selection, forest planning, and machinery. It is noteworthy to

189

Processes 2022, 10, 98

mention that some studies have compared NSGA-II with other well-known evolutionary
algorithms, such as MOPSO, Tabu search, and the memetic algorithm. In addition, some
authors have tried to improve the original version of NSGA-II and expand it for a specific
problem. Optimizing the makespan, machining cost, and idle time are among the top
objective functions in the published documents. Multi-objective constrained optimization
was also found to be an interesting area for researchers.

Table 3. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[165]
Weapon selection and

planning
problem

Optimizing net present
value (NPV) and

effectiveness

An MOEA based on
NSGA-II is employed

The proposed measures are
able to adapt to dynamic

changes.

[166] Allocation problem
Integrating MOMO

process and Monte Carlo
simulation technique.

Integrating MOMO,
NSGA-II, and Tabu search

The MOMO technique
possesses a better

performance of seeking
global optimum than other

proposed methods.

[167] Satellite scheduling
problem

Proposing a
multi-objective

optimization method to
solve the mentioned

problem

Designing a decomposition
method.

Expressing a multi-objective
integer-programming model.

Designing multi-objective
genetic algorithm NSGA-II.

The applicability of the
proposed method under
different situations has

been proven.

[168]
High-dose rate
brachytherapy

planning

Determining an
appropriate schedule of a

radiation source

Four different MOEAs have
been employed

Results present that
MO-RV-GOMEA is the best

performing MOEA.

[169]
FJS problem under mixed

work
calendars

Proposing two key
technologies, namely
time reckoning and

sequential scheduling

Designing NSGA-II with an
elite strategy

The suggested technique
can gain an effective Pareto

set within an acceptable
time.

Table 4. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[170]
Reliability in

Cyber-Physical Systems
(CPS) components

Designing and verifying
CPS using

multi-objective
evolutionary
optimization.

Using three scheduling
methods: fixed priority,
earliest deadline first,

and deadline
monotonic.

The results show that the
proposed approach can be

used to design and validate
CPS for performance and
verify timing guarantees.

[171] Job-shop scheduling
problem

Minimizing the mean
weighted completion

time and the sum of the
weighted tardiness costs.

Proposing a new
integer linear
programming.

Modifying PSO and
comparing with

NSGA-II.

The results depict that the
proposed PSO outperforms

NSGA-II.

[172]
Multi-objective

unreliable unbalanced
production lines

Maximizes the
throughput rate and

minimizes the total buffer
capacities and cost.

Proposing DOE and
RSM along with NRGA

and NSGA-II.

The proposed system could be
applied to a large-scale

production line.

190

Processes 2022, 10, 98

Table 5. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[173]
Multi-objective

traveling salesman
problem

Improving a GA-based
algorithm, namely
Physarum-inspired

computational model (PCM).

Using the hill-climbing
algorithm to improve
the proposed method.

Findings show that the
proposed method has a better
performance compared with

the other MOTSP.

[174] Project scheduling
problem

Proposing a robust project
scheduling.

Two-stage
multi-objective buffer
allocation approach.

The results indicate that the
obtained buffered schedule

reduces the cost of disruptions.

[175] Process planning
and FJS scheduling.

Makespan, critical machine
workload, and machine total

workload.

Integration of WGA
and NSGA-II.

The proposed algorithm
outperforms the exact

solutions.

Table 6. Summary of the literature review on NSGA-II application in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[176]

Generator scheduling
considering

environmental and
economic issues.

Optimal generation
scheduling.

Two-phase approach
(hourly and 24-h

scheduling)

Effectiveness of the proposed
approach has been approved.

[177] Multi-objective spatial
forest planning.

Maximizing timber volume
and minimizing sediment

level.

Spatial NSGA-II
approach

The results show that the
proposed method has better

performance for both
constrained and unconstrained

problems.

[178] Resource allocation
problem in a hospital.

Daily scheduling for
residents or patients in a

hospital.

Using variable
neighborhood search,

scatter search, and
NSGA-II

Able to find efficient solutions.

[59]
Nurse scheduling

problem considering
human factors.

Minimizing the total cost of
staffing as well as the sum of

incompatibility and
maximizing the satisfaction.

Keshtel algorithm,
NSGA-II, and Tabu

search.

Effectiveness of the proposed
methods is approved.

Table 7. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[179] Process planning
and scheduling

Optimizing the makespan,
machine workload, and the

total workload of
machines.

Multi-objective
memetic algorithm.

The results compared with
NSGA-II show that the
proposed algorithm has

better performance.

[180] Scheduling of locks and
transshipment problem

Optimizing water–land
transshipment
co-scheduling.

Hybrid heuristic
method using binary

NSGA-II.

The feasibility and the
superiority of the model

have been verified.

[181]
Integration of process

planning and
scheduling

Minimizing of makespan,
machining cost, and idle

time.

Improved version of
NSGA-II.

Results provide optimal and
robust solutions.

[182] Sudden drinking water
contamination incident

Minimizing the volume of
contaminated water and

the operational costs.

Integration of NSGA-II
and EPANET

simulation model.

The validity of the model has
been approved by two water

distribution
networks.

191

Processes 2022, 10, 98

Table 8. Summary of the literature review on NSGA-II applications in different fields, along with
methodology and results.

Source Problem Objective Methodology Results and Findings

[183]

Single machine
scheduling with

controllable processing
times.

Developing a new
multi-objective discrete

backtracking search
algorithm.

Through adaptive
selection scheme and
total cost reduction

strategy.

The performance of the
proposed method compared
with other algorithms was

validated.

[184] Reentrant hybrid
flow-shop scheduling.

Optimizing of makespan
and total tardiness.

Genetic algorithms
with Minkowski
distance-based

crossover operator.

The results show that NSGA-II
outperformed in terms of

convergence, diversity, and
the dominance of solution.

[185]
Sustainable ship

routing and
scheduling.

Estimating the total fuel
consumed and carbon

emission from each vessel
as well as improving the
service level of the port.

Mixed-integer
nonlinear

programming using
NSGA-II and MOPSO.

The robustness of the model has
been approved by

experimental results and
comparative, and sensitive

analysis.

Less than 10% (9.51%) of the papers published on NSGA-II in scheduling have ad-
dressed uncertainty. Among the above-mentioned papers, the power system owns the most
contributions in the field at 32%, followed by project scheduling (13%), resource allocation
(8%), and then job-shop scheduling (8%) (shown in Figure 7).

192

Processes 2022, 10, 98

F
ig

u
re

7
.

D
iff

er
en

tu
nc

er
ta

in
ty

sc
he

du
lin

g
pr

ob
le

m
s

th
at

ha
ve

be
en

so
lv

ed
by

N
SG

A
-I

I.

193

Processes 2022, 10, 98

4. Scientometric Analysis

Scientometric analysis is the field of study that scientifically measures and analyzes the
literature [186]. Bibliometrics is the most famous field of scientometrics that uses statistics
to analyze and measure the impacts of books, research articles, conference papers, etc. [187].
Recently, this field of analysis has attracted much attention from researchers and has been
used in various literature review fields [4,188–192]. To achieve this aim, VOSviewer 1.6.17 [24]
and CitNetExplorer 1.0.0 [25] were employed in this work. The following subsections provide
new insights into scientometric analysis in the field of scheduling.

4.1. Statistics Based on Document Types

Among the document types, including articles, proceedings papers, reviews, and other
items indexed by WoS, a total of 683 publications on scheduling and NSGA-II were found
(Table 9). From the search, articles were the most popular document type with a total of 462
(67.64% of 683 documents) and 2.77 authors per publication (APP). Additionally, reviews
as a document type had the highest CPP 2020 of 31, followed by articles (18.97). Moreover,
there was a significant difference between the TC 2020 article and that of the proceedings
paper. Figure 8 presents the distribution of documents based on different types, according
to WoS. It is clear from the figure that proceedings papers had the greatest contributions
before 2010, followed by articles. However, since 2010, articles had the most contributions
in the field.

Table 9. Citation analysis based on document type.

Document type TP % AU APP TC2020 CPP2020

Article 462 67.64 1282 2.77 8766 18.97

Proceedings paper 231 33.82 652 2.82 1126 4.87

Review 5 0.73 15 3.0 155 31

Other items 15 2.19 154 10.26 269 17.93

Figure 8. Type of research outputs.

TP, AU, APP, TC2020, and CPP2020 refer to the total number of articles, total number
of authors, total number of authors for each publication, total citations from WoS since the
publication year to the end of 2020, and total citations for each paper, respectively. Other
items include early access and letters.

194

Processes 2022, 10, 98

4.2. Keyword Analysis

Figure 9 presents the total citations per year for the published documents (NSGA-II in
scheduling). As an overall trend, it is clear that the sum of the number of times articles were
cited increased gradually until the end of 2012, and then the trend increased sharply up to
2020. Figure 10 presents a treemap visualization of the different categories found by WoS.
Accordingly, computer science artificial intelligence (#86), operation research management
science (#86), computer science interdiscipline applications (#82), industrial engineering
(#71), and manufacturing engineering (#65) were among the top categories, while computer
science information systems (#28), computer science theory methods (#29), and automation
control systems (#33) contributed the least in the field.

Figure 9. Total citations per year including percentage change (NSGA-II in scheduling).

Figure 10. Treemap visualization of different categories (database: WoS https://clarivate.com/
products/web-of-science/, accessed on 31 December 2020).

4.3. Network Visualization

The keywords indicate the basic parts of a certain field of research and can offer
insight into the organization and knowledge provided in the articles. Figures 10 and 11
depict the overlay visualization co-occurrence analyses via a network map based on the
Scopus and WoS databases, respectively. In Figure 11, “scheduling”, “optimization”,
“NSGA-II”, “multi-objective optimization”, “multi-objective genetic algorithm”, “Pareto-
optimal”, “makespan”, and “stochastic models” were identified as the top keywords in

195

Processes 2022, 10, 98

Scopus. Figure 12 reveals that “genetic algorithm”, “algorithm”, “multi-objective genetic
algorithm”, “design”, “cost”, “parallel machines”, “task analysis”, and “operations” were
the most important keywords in WoS. The color of each circle represents the identified
cluster, and the size of each circle illustrates the importance of the keywords; in other words,
the keywords with larger circles were used more than others. The green and yellow colors
show the keywords that were used recently, while the dark blue color indicates those that
were used earlier (around 2012).

Figure 11. Overlay visualization occurrences (database: Scopus www.scopus.com, accessed on 31
December 2020).

Figure 12. Overlay visualization occurrences (database: WoS https://clarivate.com accessed on 31
December 2020).

196

Processes 2022, 10, 98

Tables 10 and 11 present the top 10 keywords of 1-word, 2-word, and 3-word lengths
extracted from WoS and Scopus, respectively. NSGA-II, scheduling, and makespan were the
top three one-word-long keywords for both WoS and Scopus. Multi-objective optimization,
genetic algorithm, and multi-objective were the top three two-word-long keywords in WoS,
while preventive maintenance, NSGA-II algorithm, and project scheduling were the top three
two-word-long keywords in Scopus. In WoS, multi-objective genetic algorithm and particle
swarm optimization were the top two three-word-long keywords, while EMO algorithm and
non-dominated sorting were the top two three-word-long keywords in Scopus.

Table 10. The top 10 keywords of 1-word, 2-word, and 3-word lengths (WoS https://clarivate.com,
accessed on 31 December 2020).

1-Word 2-Word 3-Word

Keyword Frequency Keyword Frequency Keyword Frequency

NSGA-II 76 Multi-objective optimization 86 Multi-objective genetic algorithm 9

Scheduling 38 Multi-objective 19 Particle swarm optimization 6

Makespan 22 Genetic algorithms 17 Unrelated parallel machine 3

Optimization 10 Energy consumption 13 Differential evolution algorithm 3

Reliability 9 Production scheduling 10 Single machine scheduling 3

Uncertainty 8 Cloud computing 9 Flexible job-shop 3

Microgrid 6 Project scheduling 8 Grey wolf optimizer 3

Metaheuristics 5 Preventive maintenance 8 Job-shop scheduling 3

Tardiness 4 Memetic algorithm 7 Just-in-time 3

Heuristic 3 Dynamic scheduling 6 Charge-discharge scheduling 1

Table 11. The top 10 keywords of 1-word, 2-word, and 3-word lengths (Scopus www.scopus.com,
accessed on 31 December 2020).

1-Word 2-Word 3-Word

Keyword Frequency Keyword Frequency Keyword Frequency

NSGA-II 100 Preventive maintenance 10 Multi-objective evolutionary
algorithm 13

Scheduling 54 NSGA-II algorithm 10 Particle swarm optimization 7

Multi-objective 32 Project scheduling 10 Non-dominated sorting 7

Makespan 28 Evolutionary algorithm 9 Ant colony optimization 6

Reliability 9 Multi-objective scheduling 8 Variable neighborhood search 6

Optimization 9 Optimal scheduling 7 Energy efficient scheduling 6

Microgrid 9 Task scheduling 7 Hybrid flow-shop 4

Metaheuristics 7 Memetic algorithm 6 Controllable processing times 4

Rescheduling 7 Generation scheduling 5 Demand side management 3

Uncertainty 6 Demand response 5 Single-machine scheduling 3

4.4. Bibliographic Coupling

When two documents reference other common documents, bibliographic coupling
occurs [147,193]. Figure 13a–d shows the bibliographic coupling in documents from the
WOS database. Specifically, Figure 13a,b presents the network visualization and overlay
bibliographic visualization coupling, revealing that most bibliographic coupling [194–197]
occurred prior to 2016 (dark blue), while the yellow color represents recent studies [198–201].

197

Processes 2022, 10, 98

Figure 13c,d displays the network and overlay visualization bibliographic coupling orga-
nization over the studied time period, revealing that the Islamic Azad University (Iran),
Capital University of Economics and Business (China), and Hong Kong University of Sci-
ence and Technology (Hong Kong) were the three top universities in 2016, 2018, and 2020,
respectively. Figure 14 shows the density visualization of bibliographic coupling based on
item density sources. It is apparent that Computers & Industrial Engineering, International
Journal of Advanced Manufacturing Technology, and Applied Soft Computing were three major
sources, while Science of the Total Environment, Advanced Science Letters, and the IEEE Internet
of Things Journal were three minor sources.

4.5. Publication Statistics Based on the Journal

Table 12 presents the top 10 journals that published the greatest number of related
papers based on Scopus. Accordingly, Lecture Notes in Computer Science (#30), Comput-
ers and Industrial Engineering (#20), and Computer Integrated Manufacturing Systems (#20)
predominated in the field of optimization and evolutionary computations.

Table 12. The top 10 productive Scopus categories.

Scopus ISSN Number of Documents

1 Lecture Notes in Computer Science 1611-3349 30

2 Computers and Industrial Engineering 0360-8352 20

3 Robotics and Computer-Integrated Manufacturing 0736-5845 20

4 International Journal of Advanced Manufacturing Technology 1433-3015 19

5 Applied Soft Computing Journal 1568-4946 18

6 International Journal of Production Research 0020-7543 15

7 Advances in Intelligent Systems and Computing 2194-5365 13

8 IEEE Access 2169-3536 13

9 China Mechanical Engineering 2192-8258 13

10 Computers and Operations Research 0305-0548 11

A total of 683 articles were published in 432 journals, which were classified among the
46 WoS categories in Sci-Expanded. Table 13 lists the 10 most productive WoS categories. A
total of 175 articles (25.62% of 683 articles) were published in the first category (computer
science artificial intelligence), followed by computer science theory methods (7.17%) and
engineering electrical electronic (5.85%). When comparing the top 10 categories, the highest
CPP 2020 of articles published in the computer science cybernetics category was 28.14,
followed by engineering manufacturing (18.55). The highest APP for articles published in
the computer science information systems category was 3.66.

198

Processes 2022, 10, 98

F
ig

u
re

1
3

.
Bi

bl
io

gr
ap

hi
c

co
up

lin
g

(n
et

w
or

k
an

d
ov

er
la

y
vi

su
al

iz
at

io
n)

.(
a

)N
et

w
or

k
vi

su
al

iz
at

io
n

bi
bl

io
gr

ap
hi

c
co

up
lin

g
do

cu
m

en
t(

b
)O

ve
rl

ay
vi

su
al

iz
at

io
n

bi
bl

io
gr

ap
hi

c
co

u
p

lin
g

d
oc

u
m

en
t

(c
)

N
et

w
or

k
vi

su
al

iz
at

io
n

bi
bl

io
gr

ap
hi

c
co

u
p

lin
g

or
ga

ni
za

ti
on

(d
)

O
ve

rl
ay

vi
su

al
iz

at
io

n
bi

bl
io

gr
ap

hi
c

co
up

lin
g

or
ga

ni
za

ti
on

.

199

Processes 2022, 10, 98

Figure 14. Density visualization bibliographic coupling (item density sources).

Table 13. The top 10 productive WoS categories.

Web of Science Category TP AU APP TC 2020 CPP 2020

1 Computer Science Artificial
Intelligence 175 523 2.98 2023 11.56

2 Computer Science Theory
Methods 49 159 3.24 290 5.91

3 Engineering Electrical
Electronic 40 125 3.12 541 13.52

4
Computer Science
Interdisciplinary

Applications
37 118 3.18 664 17.94

5 Operations Research
Management Science 24 82 3.41 418 17.41

6 Automation Control Systems 16 44 2.75 201 12.56

7 Computer Science Information
Systems 15 55 3.66 46 3.60

8 Engineering Manufacturing 9 31 3.44 167 18.55

9 Robotics 8 25 3.12 14 1.75

10 Computer Science Cybernetics 7 19 2.71 197 28.14

TP, AU, APP, TC 2020, and CPP 2020 present the total number of articles, total number of authors, total number
of authors for each publication, total citations from WoS from the publication year to the end of 2020, and total
citations for each paper, respectively. Other items: early access and letters.

4.6. Statistics Based on Authors

Figure 15 shows the top authors with the most publications according to Scopus. Reza
Tavakkoli-Moghaddam from the University of Tehran (Tehran, Iran), Farouk Yalaoui from

200

Processes 2022, 10, 98

Université de Technologie de Troyes (Troyes, France), and Mostafa Zabdieh from Shahid
Beheshti University (Tehran, Iran) were the top 3 authors in the field, as indexed by Scopus,
with 22, 18, and 14 publications, respectively.

Figure 15. The most active authors in the field (Scopus https://www.scopus.com).

4.7. Publication Statistics by Country

Figure 16 presents the distribution of documents by the most active countries in the
database (Scopus). It is apparent that China, Iran, and India were the top three most active
countries in the field. Additionally, it can be seen that there was a significant difference
between the first rank (China) and second rank (Iran) based on the number of publications
indexed by Scopus. Although Iran was identified as the second-ranked country in the field,
when comparing the populations of China and Iran, it is noteworthy to mention that Iran
performed well in this area.

Figure 16. Research output of top 10 most productive countries across the database.

201

Processes 2022, 10, 98

Figure 17 displays the growth rate of the top five active countries. While China, Iran,
and France had smooth trends between 2000 and 2020, India and the United States showed
some fluctuations. Between 2009 and 2015, the US presented the highest growth rate
(positive and negative rate), and then the trend continued smoothly until the end of 2020.

Figure 17. Growth rate of published documents for top 5 countries.

5. Summary

This paper presents a comprehensive review of NSGA-II applied to different schedul-
ing problems. In the first part of the paper, the main idea of scheduling was defined, and
the second part described the scientometric analysis in the field in detail.

It is noteworthy to mention that the European Journal of Operational Research owns the
most contributions (19%) of published documents in scheduling, which is in the area of
operations research.

This paper also reviewed different aspects of scheduling, namely production schedul-
ing and personnel scheduling. It should be noted that about 9.51% of the published articles
in the field considered uncertainty, while the majority of the mentioned articles addressed
scheduling in power systems (32%), followed by project scheduling (13%), resource al-
location (8%), and job-shop scheduling (8%). Among the different objective functions
pertaining to job-shop scheduling, maximum completion time (Cmax) possessed the most
contributions (32%), followed by maximum machine workload (19%).

Although there are several optimization algorithms, metaheuristics are among the top
solution approaches that have been used by researchers. Since genetic algorithms are based
on populations, researchers have widely used genetic algorithms for scheduling problems
(about 26%), followed by simulated annealing (6.4%), ant colony optimization (4.09%),
and tau search (4.47%). The other GA-based solution methods in the field include VEGA,
MOGA, WBGA, RWGA, NSGA, NSGA-II, RDGA, NPGA, and DMOEA. While most of
the evolutionary algorithms possess difficulties, such as high computational cost, lack of
elitism, and difficulty in parameter settings, NSGA-II, proposed in 2002, has attempted to
alleviate all of the above difficulties.

Furthermore, the scientometric analysis indicated that computer science artificial
intelligence (#86), operation research management science (#86), and computer science
interdicipline applications (#82) were among the top categories. In addition, network visu-
alization identified that scheduling, optimization, NSGA-II, multi-objective optimization,
multi-objective genetic algorithm, Pareto-optimal, makespan, stochastic models, design,
cost, parallel machines, task analysis, and operations were the top keywords. Moreover,
the authors of this paper found that NSGA-II, scheduling, and makespan were the top
three one-word-long keywords for both WoS and Scopus. Additionally, two-word- and

202

Processes 2022, 10, 98

three-word-long keywords were identified. Additional analyses, namely citation network,
bibliographic coupling, and journal mapping, were conducted in this work.

Future Studies

In this paper, we discussed the benefits of NSGA-II and its application in different
fields of study. Since NSGA-II was specifically designed to solve two- and three-objective
problems, less than 1% of NSGA-II articles have considered many-objective scheduling
problems (with more than three objectives) [202]. NSGA-III [203,204], its successor, was
designed to solve problems with more than three objectives. Hence, it is suggested to review
the application of NSGA-III in the field while considering many-objective scheduling
problems. Furthermore, the majority of the studies used deterministic approaches, and
there is an urgent need to provide more robust approaches for tackling uncertainties in
scheduling problems. Additionally, a comprehensive review in other fields of solution
methods applied to scheduling problems is encouraged for future studies. As the authors
presented in the paper, MOPSO and MOACO are two other famous EMO algorithms, and
thus, a comprehensive review in the area using the above-mentioned solution approaches is
suggested. Moreover, the application of scheduling for energy conservation is an interesting
area for research.

6. Conclusions and Discussions

Since exact methods are expensive in terms of computing time and often possess poor-
quality solutions, researchers have become more interested in applying metaheuristics in
scheduling problems, which can produce alternative optimal solutions in a single run. This
study reviewed the most important scheduling problems that have been solved by the NSGA-
II method and provides a bibliometric analysis of the published literature. In terms of
MOO problems, most of the exact solution approaches convert MOO problems into a single
optimization problem, while metaheuristic methods obtain solutions without this conversion.

This study addressed the most important subject fields based on keywords and net-
work analysis. Moreover, a detailed scientometric analysis was employed as an influential
tool in the bibliometric analyses and reviews.

According to the analyses performed in the work, several key arguments that are
worthy of further discussion are offered below:

• In terms of keyword analysis, scheduling, optimization, NSGA-II, makespan, design, cost,
genetic algorithm, and decision making are the most prevalent keywords for scholars;

• Among the current scheduling problems, machine scheduling (specifically job-shop
scheduling), routing, satellite scheduling, project scheduling, weapon selection, and
forest planning are most predominant in the reviewed articles;

• Among the proposed solution methods for solving scheduling problems, the genetic
algorithm possessed the greatest contribution of (26%), followed by PSO (9%), SA
(6.4%), ACO (4.09%), and then tabu search (4.47%);

• Since 2014, NSGA-II has been the most studied algorithm, followed by MOPSO and
then MOACO;

• Despite the increasing complexity of scheduling problems, metaheuristic algorithms (specif-
ically NSGA-II) are more suitable for finding efficient solutions or near-optimal solutions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr10010098/s1, The supplementary materials are available for
research purposes in Supplementary Files A and B.

Author Contributions: Conceptualization, I.R., K.D. and A.H.G.; methodology, I.R.; software, I.R.;
validation, I.R., K.D., A.H.G., M.R.N. and F.C.; formal analysis, I.R.; investigation, I.R.; resources, I.R.;
data curation, I.R.; writing—original draft preparation, I.R.; writing—review and editing, A.H.G., M.R.N.,
F.C. and K.D.; visualization, I.R.; supervision, A.H.G. and K.D.; project administration, A.H.G.; funding
acquisition, A.H.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

203

Processes 2022, 10, 98

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany,
2000; pp. 849–858.

2. Salvendy, G. Handbook of Industrial Engineering: Technology and Operations Management; John Wiley & Sons: Hoboken, NJ, USA, 2001.
3. Lenstra, J.K.; Kan, A.H.G.R. Complexity of vehicle routing and scheduling problems. Networks 1981, 11, 221–227. [CrossRef]
4. Pinedo, M.; Hadavi, K. Scheduling: Theory, Algorithms and Systems Development. In Operations Research Proceedings 1991;

Springer: Berlin/Heidelberg, Germany, 1992; pp. 35–42.
5. Gandomi, A.H.; Emrouznejad, A.; Rahimi, I. Evolutionary Computation in Scheduling: A Scientometric Analysis. In Evolutionary

Computation in Scheduling; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–10.
6. Wang, Y.; Dang, C. An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares. IEEE

Trans. Evol. Comput. 2007, 11, 579–595. [CrossRef]
7. Sun, J.; Zhang, Q.; Tsang, E.P.K. DE/EDA: A new evolutionary algorithm for global optimization. Inf. Sci. 2005, 169, 249–262.

[CrossRef]
8. Wang, Y.-J.; Zhang, J.-S. Global optimization by an improved differential evolutionary algorithm. Appl. Math. Comput. 2007, 188,

669–680. [CrossRef]
9. Guo, D.; Wang, J.; Huang, J.; Han, R.; Song, M. Chaotic-NSGA-II: An effective algorithm to solve multi-objective optimization

problems. In Proceedings of the 2010 International Conference on Intelligent Computing and Integrated Systems, Guilin, China,
22–24 October 2010; pp. 20–23.

10. Liu, J.; Abbass, H.A.; Tan, K.C. Evolutionary Computation and Complex Networks. In Evolutionary Computation and Complex
Networks; Springer: Singapore, 2019; pp. 3–22.

11. Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013.
12. Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer:

Berlin/Heidelberg, Germany, 2007; Volume 5.
13. Behmanesh, R.; Rahimi, I.; Gandomi, A.H. Evolutionary Many-Objective Algorithms for Combinatorial Optimization Problems:

A Comparative Study. Arch. Comput. Methods Eng. 2021, 28, 673–688. [CrossRef]
14. Deb, K. Multi-objective optimization. In Search Methodologies; Springer: New York, NY, USA, 2014.
15. Marler, R.; Arora, J. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395.

[CrossRef]
16. Deb, K. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction. In Multi-Objective Evolutionary Optimisa-

tion for Product Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–34.
17. Liu, L.; Gu, S.; Fu, D.; Zhang, M.; Buyya, R. A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition.

KSII Trans. Internet Inf. Syst. 2018, 12, 1–20.
18. Yuan, S.; Deng, G.; Feng, Q.; Zheng, P.; Song, T. Multi-Objective Evolutionary Algorithm Based on Decomposition for Energy-

aware Scheduling in Heterogeneous Computing Systems. J. Univers. Comput. Sci. 2017, 23, 636–651.
19. Long, Q.; Wu, X.; Wu, C. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. J.

Ind. Manag. Optim. 2021, 17, 1001–1023. [CrossRef]
20. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
21. Yusoff, Y.; Ngadiman, M.S.; Zain, A.M. Overview of NSGA-II for Optimizing Machining Process Parameters. Procedia Eng. 2011,

15, 3978–3983. [CrossRef]
22. Deb, K.; Rao, U.B.N.; Karthik, S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case

study on hydro-thermal power scheduling. In Proceedings of the International Conference on Evolutionary Multi-Criterion
Optimization, Matsushima, Japan, 5–8 March 2007; pp. 803–817.

23. Bekele, E.G.; Nicklow, J.W. Multi-objective automatic calibration of SWAT using NSGA-II. J. Hydrol. 2007, 341, 165–176. [CrossRef]
24. Van Eck, N.J.; Waltman, L. VOSviewer Manual; Univeristeit Leiden: Leiden, The Netherlands, 2013; Volume 1, pp. 1–53.
25. Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Inf. 2014, 8,

802–823. [CrossRef]
26. Pinedo, M. Planning and Scheduling in Manufacturing and Services; Springer: Berlin/Heidelberg, Germany, 2005.
27. Özdamar, L.; Ulusoy, G. A note on an iterative forward/backward scheduling technique with reference to a procedure by Li and

Willis. Eur. J. Oper. Res. 1996, 89, 400–407. [CrossRef]

204

Processes 2022, 10, 98

28. Li, K.; Willis, R. An iterative scheduling technique for resource-constrained project scheduling. Eur. J. Oper. Res. 1992, 56, 370–379.
[CrossRef]

29. Gonçalves, J.F.; Resende, M.G.C.; Mendes, J.J.M. A biased random-key genetic algorithm with forward-backward improvement
for the resource constrained project scheduling problem. J. Heuristics 2010, 17, 467–486. [CrossRef]

30. Qi, X. A logistics scheduling model: Inventory cost reduction by batching. Nav. Res. Logist. 2005, 52, 312–320. [CrossRef]
31. Tiemessen, H.; van Houtum, G. Reducing costs of repairable inventory supply systems via dynamic scheduling. Int. J. Prod. Econ.

2013, 143, 478–488. [CrossRef]
32. Liu, W.; Ke, G.Y.; Chen, J.; Zhang, L. Scheduling the distribution of blood products: A vendor-managed inventory routing

approach. Transp. Res. Part E Logist. Transp. Rev. 2020, 140, 101964. [CrossRef]
33. Wang, S.; Wang, X.; Chu, F.; Yu, J. An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production. Int.

J. Prod. Res. 2020, 58, 2283–2314. [CrossRef]
34. Xu, Z.; Zheng, Z.; Gao, X. Energy-efficient steelmaking-continuous casting scheduling problem with temperature constraints and

its solution using a multi-objective hybrid genetic algorithm with local search. Appl. Soft Comput. 2020, 95, 106554. [CrossRef]
35. Li, X.; Jin, X.; Lu, S.; Li, Z.; Wang, Y.; Cao, J. Carbon-Efficient Production Scheduling of a Bioethanol Plant Considering Diversified

Feedstock Pelletization Density: A Case Study. Processes 2020, 8, 1189. [CrossRef]
36. Wang, S.; Che, Y.; Zhao, H.; Lim, A. Accurate Tracking, Collision Detection, and Optimal Scheduling of Airport Ground Support

Equipment. IEEE Internet Things J. 2020, 8, 572–584. [CrossRef]
37. Zhou, B.; Zhu, Z. Optimally scheduling and loading tow trains of in-plant milk-run delivery for mixed-model assembly lines.

Assem. Autom. 2020, 40, 511–530. [CrossRef]
38. Torabbeigi, M.; Lim, G.J.; Kim, S.J. Drone delivery scheduling optimization considering payload-induced battery consumption

rates. J. Intell. Robot. Syst. 2020, 97, 471–487. [CrossRef]
39. Sheikh, S.Z.; Pasha, M.A. Energy-efficient real-time scheduling on multicores: A novel approach to model cache contention. ACM

Trans. Embed. Comput. Syst. 2020, 19, 1–25. [CrossRef]
40. Wang, J.; Yang, J.; Zhang, Y.; Ren, S.; Liu, Y. Infinitely repeated game based real-time scheduling for low-carbon flexible job shop

considering multi-time periods. J. Clean. Prod. 2020, 247, 119093. [CrossRef]
41. Kim, E.; Lee, Y.; He, L.; Shin, K.G.; Lee, J. Power Guarantee for Electric Systems Using Real-Time Scheduling. IEEE Trans. Parallel

Distrib. Syst. 2020, 31, 1783–1798. [CrossRef]
42. Fathollahi-Fard, A.M.; Ranjbar-Bourani, M.; Cheikhrouhou, N.; Hajiaghaei-Keshteli, M. Novel modifications of social engineering

optimizer to solve a truck scheduling problem in a cross-docking system. Comput. Ind. Eng. 2019, 137, 106103. [CrossRef]
43. Bossche, T.V.D.; Çalık, H.; Jacobs, E.-J.; Toffolo, T.A.; Berghe, G.V. Truck scheduling in tank terminals. EURO J. Transp. Logist.

2020, 9, 100001. [CrossRef]
44. Demeulemeester, E.L.; Herroelen, W.S. Project Scheduling: A Research Handbook; Springer Science & Business Media: Berlin,

Germany, 2006; Volume 49.
45. Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; Pesch, E. Resource-constrained project scheduling: Notation, classification,

models, and methods. Eur. J. Oper. Res. 1999, 112, 3–41. [CrossRef]
46. Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [CrossRef]
47. Mosheiov, G. Parallel machine scheduling with a learning effect. J. Oper. Res. Soc. 2001, 52, 1165–1169. [CrossRef]
48. Cheng, T.C.E.; Sin, C.C.S. A state-of-the-art review of parallel-machine scheduling research. Eur. J. Oper. Res. 1990, 47, 271–292.

[CrossRef]
49. Garey, M.R.; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res. 1976, 1, 117–129.

[CrossRef]
50. Fu, Y.; Tian, G.; Fathollahi-Fard, A.M.; Ahmadi, A.; Zhang, C. Stochastic multi-objective modelling and optimization of an

energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. J. Clean. Prod. 2019,
226, 515–525. [CrossRef]

51. Denzler, D.R.; Boe, W.J. Experimental investigation of flexible manufacturing system scheduling decision rules. Int. J. Prod. Res.
1987, 25, 979–994. [CrossRef]

52. Zhang, W.; Freiheit, T.; Yang, H. Dynamic scheduling in flexible assembly system based on timed Petri nets model. Robot. Comput.
Manuf. 2005, 21, 550–558. [CrossRef]

53. Sawik, T. Loading and scheduling of a flexible assembly system by mixed integer programming. Eur. J. Oper. Res. 2004, 154, 1–19.
[CrossRef]

54. Valckenaers, P.; Van Brussel, H.; Bongaerts, L.; Bonneville, F. Programming, scheduling, and control of flexible assembly systems.
Comput. Ind. 1995, 26, 209–218. [CrossRef]

55. Elmaghraby, S.E. The Economic Lot Scheduling Problem (ELSP): Review and Extensions. Manag. Sci. 1978, 24, 587–598. [CrossRef]
56. Dobson, G. The Economic Lot-Scheduling Problem: Achieving Feasibility Using Time-Varying Lot Sizes. Oper. Res. 1987, 35,

764–771. [CrossRef]
57. Rogers, J. A Computational Approach to the Economic Lot Scheduling Problem. Manag. Sci. 1958, 4, 264–291. [CrossRef]
58. Schoenfelder, J.; Bretthauer, K.M.; Wright, P.D.; Coe, E. Nurse scheduling with quick-response methods: Improving hospital

performance, nurse workload, and patient experience. Eur. J. Oper. Res. 2020, 283, 390–403. [CrossRef]

205

Processes 2022, 10, 98

59. Hamid, M.; Tavakkoli-Moghaddam, R.; Golpaygani, F.; Vahedi-Nouri, B. A multi-objective model for a nurse scheduling problem
by emphasizing human factors. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 234, 179–199. [CrossRef]

60. Simić, S.; Milutinović, D.; Sekulić, S.; Simić, D.; Simić, S.D.; Ðord̄ević, J. A hybrid case-based reasoning approach to detecting the
optimal solution in nurse scheduling problem. Log. J. IGPL 2020, 28, 226–238. [CrossRef]

61. Legrain, A.; Omer, J.; Rosat, S. An online stochastic algorithm for a dynamic nurse scheduling problem. Eur. J. Oper. Res. 2020,
285, 196–210. [CrossRef]

62. Jiang, J.; Xiong, X.; Ou, Y.; Wang, H. An Improved Bacterial Foraging Optimization with Differential and Poisson Distribution
Strategy and its Application to Nurse Scheduling Problem. In International Conference on Swarm Intelligence, Belgrade, Serbia, 14–20
July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 312–324.

63. Rerkjirattikal, P.; Huynh, V.-N.; Olapiriyakul, S.; Supnithi, T. A Framework for a Practical Nurse Scheduling Approach: A Case of
Operating Room of a Hospital in Thailand. In International Conference on Applied Human Factors and Ergonomics, San Diego, CA,
USA, 16–20 July 2020; Springer: Singapore, 2020; pp. 259–264.

64. İnanç, Ş.; Şenaras, A.E. Solving Nurse Scheduling Problem via Genetic Algorithm in Home Healthcare. In Transportation, Logistics,
and Supply Chain Management in Home Healthcare: Emerging Research and Opportunities; IGI Global: Hershey, PA, USA, 2020;
pp. 20–28.

65. Aydas, O.T.; Ross, A.D.; Scanlon, M.C.; Aydas, B. New results on integrated nurse staffing and scheduling: The medium-term
context for intensive care units. J. Oper. Res. Soc. 2021, 72, 2631–2648. [CrossRef]

66. Batun, S.; Karpuz, E. Nurse Scheduling and Rescheduling Under Uncertainty. Hacettepe Univ. J. Econ. Adm. Sci. Üniversitesi Iktis.
ve Idari Bilim. Fakültesi Derg. 2020, 38, 75–95. [CrossRef]

67. Roshanaei, V.; Luong, C.; Aleman, D.M.; Urbach, D.R. Reformulation, linearization, and decomposition techniques for balanced
distributed operating room scheduling. Omega 2020, 93, 102043. [CrossRef]

68. Schiele, J.; Koperna, T.; Brunner, J.O. Predicting intensive care unit bed occupancy for integrated operating room scheduling via
neural networks. Nav. Res. Logist. 2020, 68, 65–88. [CrossRef]

69. Zhu, S.; Fan, W.; Liu, T.; Yang, S.; Pardalos, P.M. Dynamic three-stage operating room scheduling considering patient waiting
time and surgical overtime costs. J. Comb. Optim. 2019, 39, 185–215. [CrossRef]

70. Ahmed, A.; Ali, H. Modeling patient preference in an operating room scheduling problem. Oper. Res. Health Care 2020, 25, 100257.
[CrossRef]

71. Najjarbashi, A.; Lim, G.J. A Decomposition Algorithm for the Two-Stage Chance-Constrained Operating Room Scheduling
Problem. IEEE Access 2020, 8, 80160–80172. [CrossRef]

72. Varmazyar, M.; Akhavan-Tabatabaei, R.; Salmasi, N.; Modarres, M. Operating room scheduling problem under uncertainty:
Application of continuous phase-type distributions. IISE Trans. 2020, 52, 216–235. [CrossRef]

73. Barrera, J.; Carrasco, R.A.; Mondschein, S.; Canessa, G.; Rojas-Zalazar, D. Operating room scheduling under waiting time
constraints: The Chilean GES plan. Ann. Oper. Res. 2020, 286, 501–527. [CrossRef]

74. Abdeljaouad, M.A.; Bahroun, Z.; Saadani, N.E.H.; Zouari, B. A simulated annealing for a daily operating room scheduling
problem under constraints of uncertainty and setup. INFOR Inf. Syst. Oper. Res. 2020, 58, 456–477. [CrossRef]

75. Divsalar, A.; Jokar, A.; Emami, S. Operating Room Scheduling considering Patient Priority: Case of Shomal Hospital in Amol. Int.
J. Ind. Eng. Manag. Sci. 2020, 7, 57–68.

76. Roshanaei, V.; Booth, K.E.; Aleman, D.M.; Urbach, D.R.; Beck, J.C. Branch-and-check methods for multi-level operating room
planning and scheduling. Int. J. Prod. Econ. 2020, 220, 107433. [CrossRef]

77. Akbarzadeh, B.; Moslehi, G.; Reisi-Nafchi, M.; Maenhout, B. A diving heuristic for planning and scheduling surgical cases in the
operating room department with nurse re-rostering. J. Sched. 2020, 23, 265–288. [CrossRef]

78. Rahimi, I.; Gandomi, A.H. A Comprehensive Review and Analysis of Operating Room and Surgery Scheduling. Arch. Comput.
Methods Eng. 2021, 28, 1667–1688. [CrossRef]

79. Bandi, C.; Gupta, D. Operating Room Staffing and Scheduling. Manuf. Serv. Oper. Manag. 2020, 22, 958–974. [CrossRef]
80. Oliveira, M.; Bélanger, V.; Marques, I.; Ruiz, A. Assessing the impact of patient prioritization on operating room schedules. Oper.

Res. Health Care 2020, 24, 100232. [CrossRef]
81. Moosavi, A.; Ebrahimnejad, S. Robust operating room planning considering upstream and downstream units: A new two-stage

heuristic algorithm. Comput. Ind. Eng. 2020, 143, 106387. [CrossRef]
82. Bovim, T.R.; Christiansen, M.; Gullhav, A.N.; Range, T.M.; Hellemo, L. Stochastic master surgery scheduling. Eur. J. Oper. Res.

2020, 285, 695–711. [CrossRef]
83. Gegg, D.L. The Impact of Middle School Scheduling Practices on Adolescent Math Achievement in Louisiana Public Schools.

Ph.D. Thesis, 2020.
84. Khan, K.; Sahai, A. Tabu Ant Colony Optimisation for School Timetable Scheduling Problem. Int. J. Eng. Res. Appl. 2020, 10, 1–9.
85. Hao, X.; Liu, J.; Zhang, Y.; Sanga, G. Mathematical model and simulated annealing algorithm for Chinese high school timetabling

problems under the new curriculum innovation. Front. Comput. Sci. 2020, 15, 1–11. [CrossRef]
86. Tan, J.S.; Goh, S.L.; Sura, S.; Kendall, G.; Sabar, N.R. Hybrid particle swarm optimization with particle elimination for the high

school timetabling problem. Evol. Intell. 2020, 14, 1915–1930. [CrossRef]

206

Processes 2022, 10, 98

87. Hoshino, R.; Fabris, I. Optimizing Student Course Preferences in School Timetabling. In Proceedings of the International
Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Vienna, Austria, 5–8 July
2020; pp. 283–299.

88. Tassopoulos, I.X.; Iliopoulou, C.A.; Beligiannis, G.N. Solving the Greek school timetabling problem by a mixed integer program-
ming model. J. Oper. Res. Soc. 2019, 71, 117–132. [CrossRef]

89. Chen, P.S.; Huang, W.T.; Peng, N.C.; Chen, G.Y.H. Modularising school timetabling problems in different types of classes for
Taiwanese elementary and junior high schools. Int. J. Math. Oper. Res. 2020, 17, 110. [CrossRef]

90. Saviniec, L.; Santos, M.O.; Costa, A.M.; Santos, L.M.R.d. Pattern-based models and a cooperative parallel metaheuristic for high
school timetabling problems. Eur. J. Oper. Res. 2020, 280, 1064–1081. [CrossRef]

91. Cacchiani, V.; Salazar-González, J.-J. Heuristic approaches for flight retiming in an integrated airline scheduling problem of a
regional carrier. Omega 2020, 91, 102028. [CrossRef]

92. Zhou, L.; Liang, Z.; Chou, C.-A.; Chaovalitwongse, W.A. Airline planning and scheduling: Models and solution methodologies.
Front. Eng. Manag. 2020, 7, 1–26. [CrossRef]

93. Khanmirza, E.; Nazarahari, M.; Haghbeigi, M. A heuristic approach for optimal integrated airline schedule design and fleet
assignment with demand recapture. Appl. Soft Comput. 2020, 96, 106681. [CrossRef]

94. Bayliss, C.; De Maere, G.; Atkin, J.A.D.; Paelinck, M. Scheduling airline reserve crew using a probabilistic crew absence and
recovery model. J. Oper. Res. Soc. 2019, 71, 543–565. [CrossRef]

95. Sanchez, D.T. Optimising Airline Maintenance Scheduling Decisions; Lancaster University: Lancaster, UK, 2020.
96. Fairbrother, J.; Zografos, K.G.; Glazebrook, K.D. A Slot-Scheduling Mechanism at Congested Airports That Incorporates Efficiency,

Fairness, and Airline Preferences. Transp. Sci. 2019, 54, 115–138. [CrossRef]
97. Kerkemezos, Y.; Karreman, B. On the Benefits of Being Alone: Scheduling Changes, Intensity of Competition and Dynamic Airline Pricing;

Tinbergen Institute Discussion Paper 2020-042/VII; Tinbergen Institute: Amsterdam, The Netherlands, 2020.
98. Shiau, J.-Y.; Huang, M.-K.; Huang, C.-Y. A Hybrid Personnel Scheduling Model for Staff Rostering Problems. Mathematics 2020,

8, 1702. [CrossRef]
99. Chutima, P.; Arayikanon, K. Many-objective low-cost airline cockpit crew rostering optimisation. Comput. Ind. Eng. 2020, 150, 106844.

[CrossRef]
100. Sun, J.Y. Airport curfew and scheduling differentiation: Domestic versus international competition. J. Air Transp. Manag. 2020, 87, 101839.

[CrossRef]
101. Nenem, S.; Graham, A.; Dennis, N. Airline schedule and network competitiveness: A consumer-centric approach for business

travel. Ann. Tour. Res. 2020, 80, 102822. [CrossRef]
102. Wagner, H.M. An integer linear-programming model for machine scheduling. Nav. Res. Logist. Q. 1959, 6, 131–140. [CrossRef]
103. Brooks, G.H. An algorithm for finding optimal or near optimal solutions to the production scheduling problem. J. Ind. Eng. 1969,

16, 34–40.
104. Lomnicki, Z.A. A “Branch-and-Bound” Algorithm for the Exact Solution of the Three-Machine Scheduling Problem. J. Oper. Res.

Soc. 1965, 16, 89–100. [CrossRef]
105. Barker, J.R.; McMahon, G.B. Scheduling the General Job-Shop. Manag. Sci. 1985, 31, 594–598. [CrossRef]
106. French, S. Sequencing and scheduling. In An Introduction to the Mathematics of the Job-Shop; Wiley: Hoboken, NJ, USA, 1982.
107. Morton, T.; Pentico, D.W. Heuristic Scheduling Systems: With Applications to Production Systems and Project Management; John Wiley

& Sons: Hoboken, NJ, USA, 1993; Volume 3.
108. Fonseca, D.J.; Navaresse, D. Artificial neural networks for job shop simulation. Adv. Eng. Inform. 2002, 16, 241–246. [CrossRef]
109. Aarts, E.; Aarts, E.H.L.; Lenstra, J.K. Local Search in Combinatorial Optimization; Princeton University Press: Princeton, NJ, USA, 2003.
110. Reeves, C.R. Modern Heuristic Techniques for Combinatorial Problems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993.
111. Jones, D.F.; Mirrazavi, S.; Tamiz, M. Multi-objective meta-heuristics: An overview of the current state-of-the-art. Eur. J. Oper. Res.

2002, 137, 1–9. [CrossRef]
112. Sarker, R.; Ray, T. An improved evolutionary algorithm for solving multi-objective crop planning models. Comput. Electron. Agric.

2009, 68, 191–199. [CrossRef]
113. Poojari, C.; Beasley, J. Improving benders decomposition using a genetic algorithm. Eur. J. Oper. Res. 2009, 199, 89–97. [CrossRef]
114. Herrmann, J.W.; Lee, C.-Y.; Hinchman, J. Global job shop scheduling with a genetic algorithm. Prod. Oper. Manag. 1995, 4, 30–45.

[CrossRef]
115. Tung, L.-F.; Lin, L.; Nagi, R. Multiple-objective scheduling for the hierarchical control of flexible manufacturing systems. Int. J.

Flex. Manuf. Syst. 1999, 11, 379–409. [CrossRef]
116. Jensen, M.T. Generating robust and flexible job shop schedules using genetic algorithms. IEEE Trans. Evol. Comput. 2003, 7,

275–288. [CrossRef]
117. Mati, Y.; Xie, X. The complexity of two-job shop problems with multi-purpose unrelated machines. Eur. J. Oper. Res. 2004, 152,

159–169. [CrossRef]
118. Xia, W.; Wu, Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind.

Eng. 2005, 48, 409–425. [CrossRef]
119. Torabi, S.A.; Karimi, B.; Ghomi, S.F. The common cycle economic lot scheduling in flexible job shops: The finite horizon case. Int.

J. Prod. Econ. 2005, 97, 52–65. [CrossRef]

207

Processes 2022, 10, 98

120. Gomes, M.C.; Barbosa-Povoa, A.P.; Novais, A.Q. Optimal scheduling for flexible job-shop operation. Int. J. Prod. Res. 2005, 43,
2323–2353. [CrossRef]

121. Chan, F.T.; Wong, T.C.; Chan, L.Y. Flexible job-shop scheduling problem under resource constraints. Int. J. Prod. Res. 2006, 44,
2071–2089. [CrossRef]

122. Fattahi, P.; Mehrabad, M.S.; Jolai, F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. J.
Intell. Manuf. 2007, 18, 331–342. [CrossRef]

123. Tay, J.C.; Ho, N.B. Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems.
Comput. Ind. Eng. 2008, 54, 453–473. [CrossRef]

124. Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st International
Conference on Genetic Algorithms, Pittsburgh, PA, USA, 24–26 July 1985.

125. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006,
91, 992–1007. [CrossRef]

126. Fang, Z. A Weight-Based Multiobjective Genetic Algorithm for Flowshop Scheduling. In Proceedings of the 2009 Interna-
tional Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; Volume 1,
pp. 373–377.

127. Zhou, H.; Cheung, W.; Leung, L.C. Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm. Eur.
J. Oper. Res. 2009, 194, 637–649. [CrossRef]

128. Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 2,
221–248. [CrossRef]

129. Lu, H.; Yen, G. Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Trans. Evol. Comput.
2003, 7, 325–343.

130. Horn, J.; Nafpliotis, N.; Goldberg, D.E. Multiobjective Optimization using the Niched Pareto Genetic Algorithm; IlliGAL Report, No.
93005; Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign: Urbana-Champaign, IL, USA, 1993;
pp. 1–32.

131. Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the
first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence, Orlando, FL, USA, 27–29
June 1994; pp. 82–87.

132. Wang, Y.; Dang, C. An evolutionary algorithm for dynamic multi-objective optimization. Appl. Math. Comput. 2008, 205, 6–18.
[CrossRef]

133. Mao, T.; Xu, Z.; Hou, R.; Peng, M. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm. J. Netw.
2012, 7, 517. [CrossRef]

134. Zhang, W.; Fujimura, S. Multiobjective process planning and scheduling using improved vector evaluated genetic algorithm with
archive. IEEJ Trans. Electr. Electron. Eng. 2012, 7, 258–267. [CrossRef]

135. Zhang, W.; Fujimura, S. Improved vector evaluated genetic algorithm with archive for solving multiobjective pps problem. In
Proceedings of the 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, China, 7–9 November
2010; pp. 1–4.

136. Zhang, W.; Gen, M.; Jo, J. Hybrid sampling strategy-based multiobjective evolutionary algorithm for process planning and
scheduling problem. J. Intell. Manuf. 2014, 25, 881–897. [CrossRef]

137. Wang, X.; Gao, L.; Zhang, C.; Shao, X. A multi-objective genetic algorithm based on immune and entropy principle for flexible
job-shop scheduling problem. Int. J. Adv. Manuf. Technol. 2010, 51, 757–767. [CrossRef]

138. Lee, L.H.; Lee, C.U.; Tan, Y.P. A multi-objective genetic algorithm for robust flight scheduling using simulation. Eur. J. Oper. Res.
2007, 177, 1948–1968. [CrossRef]

139. Chang, F.-S.; Wu, J.-S.; Lee, C.-N.; Shen, H.-C. Greedy-search-based multi-objective genetic algorithm for emergency logistics
scheduling. Expert Syst. Appl. 2014, 41, 2947–2956. [CrossRef]

140. Balasubramanian, H.; Mönch, L.; Fowler, J.; Pfund, M. Genetic algorithm based scheduling of parallel batch machines with
incompatible job families to minimize total weighted tardiness. Int. J. Prod. Res. 2004, 42, 1621–1638. [CrossRef]

141. Kar, C.; Rakesh, V.K.; Samanta, T.; Banerjee, S. A New Approach to Grid Scheduling using Random Weighted Genetic Algorithm
with Fault Tolerance Strategy. Int. J. Comput. Appl. 2012, 48, 42–47. [CrossRef]

142. Qian, B.; Wang, L.; Huang, D.-X.; Wang, X. Multi-objective flow shop scheduling using differential evolution. In Intelligent
Computing in Signal Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1125–1136.

143. Elloumi, S.; Fortemps, P. A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project
scheduling problem. Eur. J. Oper. Res. 2010, 205, 31–41. [CrossRef]

144. Kim, K.; Walewski, J.; Cho, Y.K. Multiobjective Construction Schedule Optimization Using Modified Niched Pareto Genetic
Algorithm. J. Manag. Eng. 2016, 32, 04015038. [CrossRef]

145. Benedict, S.; Vasudevan, V. Scheduling of scientific workflows using Niched Pareto GA for Grids. In Proceedings of the 2006 IEEE
International Conference on Service Operations and Logistics, and Informatics, Shanghai, China, 21–23 June 2006; pp. 908–912.

146. Benedict, S.; Vasudevan, V. A Niched Pareto GA Approach for Scheduling Scientific Workflows in Wireless Grids. J. Comput. Inf.
Technol. 2008, 16, 101–108. [CrossRef]

208

Processes 2022, 10, 98

147. Azevedo, S.G.; Santos, M.; Antón, J.R. Supply chain of renewable energy: A bibliometric review approach. Biomass Bioenergy 2019,
126, 70–83. [CrossRef]

148. Sankar, S.S.; Ponnambalam, S.G.; Rathinavel, V.; Gurumarimuthu, M. A pareto based multi-objective genetic algorithm for
scheduling of FMS. IEEE Conf. Cybern. Intell. Syst. 2004, 2, 700–705.

149. Lu, H.; Xu, X.; Zhang, M.; Yin, L. Dynamic multi-objective evolutionary algorithm based on decomposition for test task scheduling
problem. In Proceedings of the 2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP),
Wuhan, China, 26–28 November 2015; pp. 11–18.

150. Bagchi, T.P.; Jayaram, K.; Srinivas, T.D. Pareto optimal production scheduling by meta-heuristic methods. In Proceedings of the
PICMET’99: Portland International Conference on Management of Engineering and Technology, Proceedings Vol-1: Book of
Summaries (IEEE Cat. No. 99CH36310), Portland, OR, USA, 29 July 1999; Volume 1, p. 448.

151. Bagchi, T.P. A Comparison of Multiobjective Flowshop Sequencing by NSGA and ENGA. In Multiobjective Scheduling by Genetic
Algorithms; Springer: Singapore, 1999; pp. 245–255.

152. Bagchi, T.P. Multiobjective Job Shop Scheduling. In Multiobjective Scheduling by Genetic Algorithms; Springer: Singapore, 1999;
pp. 256–266.

153. Bagchi, T.P. Multiobjective Open Shop Scheduling. In Multiobjective Scheduling by Genetic Algorithms; Springer: Singapore, 1999;
pp. 267–276.

154. Bagchi, T.P. Multiobjective Flowshop Scheduling. In Multiobjective Scheduling by Genetic Algorithms; Springer: Singapore, 1999;
pp. 203–215.

155. Bandyopadhyay, S.; Bhattacharya, R. Solving multi-objective parallel machine scheduling problem by a modified NSGA-II. Appl.
Math. Model. 2013, 37, 6718–6729. [CrossRef]

156. Ciro, G.C.; Dugardin, F.; Yalaoui, F.; Kelly, R. A NSGA-II and NSGA-III comparison for solving an open shop scheduling problem
with resource constraints. IFAC PapersOnLine 2016, 49, 1272–1277. [CrossRef]

157. Rabiee, M.; Zandieh, M.; Ramezani, P. Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and
PAES approaches. Int. J. Prod. Res. 2012, 50, 7327–7342. [CrossRef]

158. Han, Y.-Y.; Gong, D.-W.; Sun, X.-Y.; Pan, Q.-K. An improved NSGA-II algorithm for multi-objective lot-streaming flow shop
scheduling problem. Int. J. Prod. Res. 2013, 52, 2211–2231. [CrossRef]

159. Makaremi, Y.; Haghighi, A.; Ghafouri, H.R. Optimization of Pump Scheduling Program in Water Supply Systems Using a
Self-Adaptive NSGA-II; a Review of Theory to Real Application. Water Resour. Manag. 2017, 31, 1283–1304. [CrossRef]

160. Huang, B.; Buckley, B.; Kechadi, M.T. Multi-objective feature selection by using NSGA-II for customer churn prediction in
telecommunications. Expert Syst. Appl. 2010, 37, 3638–3646. [CrossRef]

161. Xu, W.; Xu, J.; He, D.; Tan, K.C. A combined differential evolution and NSGA-II approach for parametric optimization of a cancer
immunotherapy model. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI,
USA, 27 November–1 December 2017; pp. 1–8.

162. Atiquzzaman, M.; Liong, S.-Y.; Yu, X. Alternative Decision Making in Water Distribution Network with NSGA-II. J. Water Resour.
Plan. Manag. 2006, 132, 122–126. [CrossRef]

163. Wang, S.; Zhao, D.; Yuan, J.; Li, H.; Gao, Y. Application of NSGA-II Algorithm for fault diagnosis in power system. Electr. Power
Syst. Res. 2019, 175, 105893. [CrossRef]

164. Sadeghi, J.; Sadeghi, S.; Niaki, S.T.A. A hybrid vendor managed inventory and redundancy allocation optimization problem in
supply chain management: An NSGA-II with tuned parameters. Comput. Oper. Res. 2014, 41, 53–64. [CrossRef]

165. Xiong, J.; Zhou, Z.; Tian, K.; Liao, T.; Shi, J. A multi-objective approach for weapon selection and planning problems in dynamic
environments. J. Ind. Manag. Optim. 2017, 13, 1189–1211. [CrossRef]

166. Guo, Z.; Wong, W.K.; Leung, S. A hybrid intelligent model for order allocation planning in make-to-order manufacturing. Appl.
Soft Comput. 2013, 13, 1376–1390. [CrossRef]

167. Niu, X.; Tang, H.; Wu, L. Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective
genetic algorithm. Int. J. Disaster Risk Reduct. 2018, 28, 813–825. [CrossRef]

168. Luong, N.H.; Alderliesten, T.; Bel, A.; Niatsetski, Y.; Bosman, P.A. Application and benchmarking of multi-objective evolutionary
algorithms on high-dose-rate brachytherapy planning for prostate cancer treatment. Swarm Evol. Comput. 2018, 40, 37–52.
[CrossRef]

169. Zeng, Q.; Wang, M.; Shen, L.; Song, H. Sequential Scheduling Method for FJSP with Multi-Objective under Mixed Work Calendars.
Processes 2019, 7, 888. [CrossRef]

170. Balasubramaniyan, S.; Srinivasan, S.; Buonopane, F.; Subathra, B.; Vain, J.; Ramaswamy, S. Design and verification of Cyber-
Physical Systems using TrueTime, evolutionary optimization and UPPAAL. Microprocess. Microsyst. 2016, 42, 37–48. [CrossRef]

171. Tavakkoli-Moghaddam, R.; Azarkish, M.; Sadeghnejad-Barkousaraie, A. Solving a multi-objective job shop scheduling problem
with sequence-dependent setup times by a Pareto archive PSO combined with genetic operators and VNS. Int. J. Adv. Manuf.
Technol. 2011, 53, 733–750. [CrossRef]

172. Motlagh, M.M.; Azimi, P.; Amiri, M.; Madraki, G. An efficient simulation optimization methodology to solve a multi-objective
problem in unreliable unbalanced production lines. Expert Syst. Appl. 2019, 138, 112836. [CrossRef]

173. Chen, X.; Liu, Y.; Li, X.; Wang, Z.; Wanga, S.; Gao, C. A New Evolutionary Multiobjective Model for Traveling Salesman Problem.
IEEE Access 2019, 7, 66964–66979. [CrossRef]

209

Processes 2022, 10, 98

174. Ghoddousi, P.; Ansari, R.; Makui, A. An improved robust buffer allocation method for the project scheduling problem. Eng.
Optim. 2016, 49, 718–731. [CrossRef]

175. Shokouhi, E. Integrated multi-objective process planning and flexible job shop scheduling considering precedence constraints.
Prod. Manuf. Res. 2017, 6, 61–89. [CrossRef]

176. Li, D.; Das, S.; Pahwa, A.; Deb, K. A multi-objective evolutionary approach for generator scheduling. Expert Syst. Appl. 2013, 40,
7647–7655. [CrossRef]

177. Fotakis, D.G.; Sidiropoulos, E.; Myronidis, D.; Ioannou, K. Spatial genetic algorithm for multi-objective forest planning. For. Policy
Econ. 2012, 21, 12–19. [CrossRef]

178. Jerić, S.V.; Figueira, J.R. Multi-objective scheduling and a resource allocation problem in hospitals. J. Sched. 2012, 15, 513–535.
[CrossRef]

179. Jin, L.; Zhang, C.; Shao, X.; Yang, X.; Tian, G. A multi-objective memetic algorithm for integrated process planning and scheduling.
Int. J. Adv. Manuf. Technol. 2016, 85, 1513–1528. [CrossRef]

180. Ji, B.; Sun, H.; Yuan, X.; Yuan, Y.; Wang, X. Coordinated optimized scheduling of locks and transshipment in inland waterway
transportation using binary NSGA-II. Int. Trans. Oper. Res. 2019, 27, 1501–1525. [CrossRef]

181. Mohapatra, P.; Nayak, A.; Kumar, S.; Tiwari, M. Multi-objective process planning and scheduling using controlled elitist
non-dominated sorting genetic algorithm. Int. J. Prod. Res. 2014, 53, 1712–1735. [CrossRef]

182. Hu, C.; Yan, X.; Gong, W.; Liu, X.; Wang, L.; Gao, L. Multi-objective based scheduling algorithm for sudden drinking water
contamination incident. Swarm Evol. Comput. 2020, 55, 100674. [CrossRef]

183. Lu, C.; Gao, L.; Li, X.; Wang, Q.; Liao, W.; Zhao, Q. An Efficient Multiobjective Backtracking Search Algorithm for Single Machine
Scheduling with Controllable Processing Times. Math. Probl. Eng. 2017, 2017, 1–24. [CrossRef]

184. Cho, H.-M.; Bae, S.-J.; Kim, J.; Jeong, I.-J. Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm.
Comput. Ind. Eng. 2011, 61, 529–541. [CrossRef]

185. De, A.; Choudhary, A.; Tiwari, M.K. Multiobjective Approach for Sustainable Ship Routing and Scheduling with Draft Restrictions.
IEEE Trans. Eng. Manag. 2019, 66, 35–51. [CrossRef]

186. Leydesdorff, L.; Milojević, S. Scientometrics. arXiv 2012, arXiv:1208.4566.
187. Childress, D. Citation tools in academic libraries: Best practices for reference and instruction. Ref. User Serv. Q. 2011, 51, 143.

[CrossRef]
188. Estabrooks, C.A.; Derksen, L.; Winther, C.; Lavis, J.N.; Scott, S.D.; Wallin, L.; Profetto-McGrath, J. The intellectual structure and

substance of the knowledge utilization field: A longitudinal author co-citation analysis, 1945 to 2004. Implement. Sci. 2008, 3, 49.
[CrossRef]

189. Emrouznejad, A.; Marra, M. Big Data: Who, What and Where? Social, Cognitive and Journals Map of Big Data Publications with
Focus on Optimization. In Big Data Optimization: Recent Developments and Challenges; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 1–16.

190. Rahimi, I.; Ahmadi, A.; Zobaa, A.F.; Emrouznejad, A.; Aleem, S.H.E.A. Big Data Optimization in Electric Power Systems: A Review;
CRC Press: Boca Raton, FL, USA, 2017.

191. Musigmann, B.; Von Der Gracht, H.; Hartmann, E. Blockchain Technology in Logistics and Supply Chain Management—A
Bibliometric Literature Review from 2016 to January 2020. IEEE Trans. Eng. Manag. 2020, 67, 988–1007. [CrossRef]

192. Neelam, S.; Sood, S.K. A Scientometric Review of Global Research on Smart Disaster Management. IEEE Trans. Eng. Manag. 2021,
68, 317–329. [CrossRef]

193. Weinberg, B.H. Bibliographic coupling: A review. Inf. Storage Retr. 1974, 10, 189–196. [CrossRef]
194. Luo, H.; Du, B.; Huang, G.Q.; Chen, H.; Li, X. Hybrid flow shop scheduling considering machine electricity consumption cost. Int.

J. Prod. Econ. 2013, 146, 423–439. [CrossRef]
195. Liu, P.; Guo, S.; Xu, X.; Chen, J. Derivation of Aggregation-Based Joint Operating Rule Curves for Cascade Hydropower Reservoirs.

Water Resour. Manag. 2011, 25, 3177–3200. [CrossRef]
196. Sengupta, S.; Das, S.; Nasir, M.; Vasilakos, A.V.; Pedrycz, W. An Evolutionary Multiobjective Sleep-Scheduling Scheme for

Differentiated Coverage in Wireless Sensor Networks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012, 42, 1093–1102.
[CrossRef]

197. Langdon, W.B.; Harman, M.; Jia, Y. Efficient multi-objective higher order mutation testing with genetic programming. J. Syst.
Softw. 2010, 83, 2416–2430. [CrossRef]

198. Wang, W.; Tian, G.; Chen, M.; Tao, F.; Zhang, C.; Ai-Ahmari, A.; Li, Z.; Jiang, Z. Dual-objective program and improved artificial
bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J. Clean. Prod. 2020,
245, 118714. [CrossRef]

199. Wu, X.; Cao, Y.; Xiao, Y.; Guo, J. Finding of urban rainstorm and waterlogging disasters based on microblogging data and the
location-routing problem model of urban emergency logistics. Ann. Oper. Res. 2020, 290, 865–896. [CrossRef]

200. Xu, X.; Mo, R.; Dai, F.; Lin, W.; Wan, S.; Dou, W. Dynamic Resource Provisioning with Fault Tolerance for Data-Intensive
Meteorological Workflows in Cloud. IEEE Trans. Ind. Inform. 2020, 16, 6172–6181. [CrossRef]

201. Salkuti, S.R. Day-ahead thermal and renewable power generation scheduling considering uncertainty. Renew. Energy 2019, 131,
956–965. [CrossRef]

210

Processes 2022, 10, 98

202. Verma, S.; Pant, M.; Snassel, V. A Comprehensive Review on NSGA-II for Multi-Objective Combinatorial Optimization Problems.
IEEE Access 2021, 9, 57757–57791. [CrossRef]

203. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]

204. Zhang, H.; Wang, G.-G.; Dong, J.; Gandomi, A. Improved NSGA-III with Second-Order Difference Random Strategy for Dynamic
Multi-Objective Optimization. Processes 2021, 9, 911. [CrossRef]

211

Citation: Wu, D.; Jia, H.; Abualigah,

L.; Xing, Z.; Zheng, R.; Wang, H.;

Altalhi, M. Enhance

Teaching-Learning-Based

Optimization for Tsallis-

Entropy-Based Feature Selection

Classification Approach. Processes

2022, 10, 360. https://

doi.org/10.3390/pr10020360

Academic Editor: Jean-Pierre Corriou

Received: 9 January 2022

Accepted: 11 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Enhance Teaching-Learning-Based Optimization for
Tsallis-Entropy-Based Feature Selection Classification Approach

Di Wu 1, Heming Jia 2,*, Laith Abualigah 3,4, Zhikai Xing 5,*, Rong Zheng 2, Hongyu Wang 2

and Maryam Altalhi 6

1 School of Education and Music, Sanming University, Sanming 365004, China; wudi@fjsmu.edu.cn
2 School of Information Engineering, Sanming University, Sanming 365004, China; zhengr@fjsmu.edu.cn (R.Z.);

19890432@fjsmu.edu.cn (H.W.)
3 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;

aligah.2020@gmail.com
4 School of Computer Science, Universiti Sains Malaysia, Penang, Gelungor 11800, Malaysia
5 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
6 Department of Management Information System, College of Business Administration, Taif University,

P.O. BOX 11099, Taif 21944, Saudi Arabia; marem.m@tu.edu.sa
* Correspondence: jiaheming@fjsmu.edu.cn (H.J.); xingzk@whu.edu.cn (Z.X.)

Abstract: Feature selection is an effective method to reduce the number of data features, which
boosts classification performance in machine learning. This paper uses the Tsallis-entropy-based
feature selection to detect the significant feature. Support Vector Machine (SVM) is adopted as the
classifier for classification purposes in this paper. We proposed an enhanced Teaching-Learning-Based
Optimization (ETLBO) to optimize the SVM and Tsallis entropy parameters to improve classification
accuracy. The adaptive weight strategy and Kent chaotic map are used to enhance the optimal ability
of the traditional TLBO. The proposed method aims to avoid the main weaknesses of the original
TLBO, which is trapped in local optimal and unbalance between the search mechanisms. Experiments
based on 16 classical datasets are selected to test the performance of the ETLBO, and the results are
compared with other well-established optimization algorithms. The obtained results illustrate that
the proposed method has better performance in classification accuracy.

Keywords: feature selection; optimization algorithm; Tsallis-entropy; teaching and learning; adaptive
weight strategy; Kent chaotic map

1. Introduction

Machine learning has been widely used in many practical applications such as data
mining, text processing, pattern recognition, and medical image analysis, which often rely
on large data sets [1,2]. From utilizing label information, feature selection algorithms are
mainly categorized as filters or wrapper approaches [3,4]. The wrapper-based methods
are commonly used to finish the classification task [5]. The main step includes classifiers,
evaluation criteria of features, and finding the optimal features [6].

The SVM algorithm is one of the most popular supervised models and is regarded as
one of the most robust methods in the machine learning field [7,8]. SVM has some robust
characteristics compared to other methods, such as excellent generalization performance,
which is able to generate high-quality decision boundaries based on a small subset of
training data points [9]. The largest problems encountered in setting up the SVM model
are how to select the kernel function and its parameter values. Inappropriate parameter
settings will lead to poor classification results [10].

Swarm intelligence algorithms can solve complex engineering problems, but different
optimization algorithms solve different engineering problems with different effects [11,12].
The optimization algorithms can reduce the time and improve the segmentation accuracy.

Processes 2022, 10, 360. https://doi.org/10.3390/pr10020360 https://www.mdpi.com/journal/processes213

Processes 2022, 10, 360

There many optimization algorithms are proposed, such as Genetic Algorithm (GA) [13],
Particle Swarm Optimization (PSO) [14], Differential Evolution (DE) [15], Ant Colony
Optimization (ACO) [16], Artificial Bee Colony (ABC) algorithm [17], Grey Wolf Opti-
mizer (GWO) [18], Ant Lion Optimizer (ALO) [19], Moth-flame Optimization (MFO) [20],
Whale Optimization Algorithm (WOA) [21], Invasive weed optimization algorithm [22],
Flower Pollination Algorithm [23]. Although all algorithms have advantages, no-free lunch
(NFL) [24] has proved that no algorithm can solve all optimization problems.

There is no perfect optimization algorithm, and the optimization algorithm should
be improved to solve engineering problems better. Many scholars study the strategies for
improving optimization algorithm. The strategies commonly used by scholars are as follows
adaptive weight strategy and chaotic map. Zhang Y. proposed an improved particle swarm
optimization algorithm with an adaptive learning strategy [25]. The adaptive learning
strategy increased the population diversity of PSO. Dong Z. proposed a self-adaptive weight
vector adjustment strategy based on a chain segmentation strategy [26]. The self-adaptive
solved the shape of the true Pareto front (PF) of the multi-objective problem. Li E. proposed
a multi-objective decomposition algorithm based on adaptive weight vector and matching
strategy [27]. The adaptive weight vector solved the degradation of the performance of the
solution set. The chaotic map is also a general nonlinear phenomenon, and its behavior is
complex and semi-random. It is mathematically defined as the randomness generated by
a simple deterministic system [28]. Xu C. proposed an improved boundary bird swarm
algorithm [29]. The algorithm combined the good global convergence and robustness of
the birds’ swarm algorithm. Tran, N. T. presented a method for fatigue life prediction of
2-DOF compliant mechanism which combined the differential evolution algorithm and the
adaptive neuro-fuzzy inference system [30]. The experiment result shows that the accuracy
of the proposed method is high.

Teaching-Learning-Based Optimization (TLBO) is proposed by R. V. Rao, which solves
the global problem of continuous nonlinear functions [31]. The TLBO approach works on
the philosophy of teaching and learning. Many scholars study the strategies to improve
the optimization ability for a different problem. Gunji A. B. proposed improved TLBO for
solving assembly sequence problems [32]. Zhang H. proposed a hybridizing TLBO [33].
The approach can enable better tracking accuracy and efficiency. Ho, N.L. presented
a hybrid Taguchi-teaching learning-based optimization algorithm (HTLBO) [34]. The
proposed method had good agreement with the predicted results. The strategies can
improve the optimal ability of TLBO. In this paper, for solving the problem of learning
efficiency and initial parameter setting, we use several strategies to enhance the optimal
ability of the TLBO.

The main contribution of our work includes:

(1) The enhanced Teaching-Learning-Based Optimization (ETLBO) is proposed to im-
prove optimal ability. The adaptive weight and Kent chaotic map are used to enhance
the TLBO. These two strategies can improve the searching ability of the students and
teachers in TLBO.

(2) We adopt the Tsaliis entropy-based feature selection method for finding the crucial
feature. The selected feature x and the parameter α of Tsallis entropy are optimized
by ETLBO.

(3) The parameter c of the SVM classifier is optimized by ETLBO for obtaining high
classification accuracy. The core idea of this method is to automatically determine the
parameter α of Tsallis entropy and parameter c of the SVM under different data.

The proposed method is tested on several feature selection and classification problems
in terms of several comment evaluation measures. The results are compared with other
well-established optimization methods. The obtained results showed that the proposed
ETLBO got better and promising results in almost all the tested problems compared to
other methods.

The rest of the paper is described as follows: Section 2 introduces Tsallis’s entropy-
based feature selection formula. Section 3, Enhance Teaching-learning-based optimization,

214

Processes 2022, 10, 360

and the ETLBO optimizes the feature selection design is introduced. In Sections 4 and 5,
the feature selection results and the algorithm analysis are given. Finally, the conclusions
are summarized in Section 6.

2. Related work

2.1. Tsallis Entropy-Based Feature Selection (TEFS)

TEFS estimates the importance of a feature by calculating its information gain (IG)
with respect to the target feature. The IG is calculated by subtracting the Tsallis entropy of
features concerning target from the total entropy of the target feature. The Tsallis entropy
and IG are defined as follow:

H(m) =
1

1 − α
log

n

∑
i=1

pα
i (1)

IG(m|n) = H(m)− H(m|n) (2)

where, H(m) represents the Tsallis entropy of a feature m, IG(m|n) represents the Tsallis
entropy of a target in terms of a feature n, m is the number of target feature, n is the total
number of the feature.

IG measures the significance of a feature by calculating how much information a
feature obtains us about the target.

2.2. SVM Classifier

SVM finds the optimal separation of hyperplanes between classes by focusing on
the training cases of the edges of effectively discarded classes. For training samples
F = {(x1, y1), . . . , (xn, yn)} in different dimensional spaces, a classifier can be accurately sum-
marized. The main core of SVM is finding a suitable kernel function k(xi, xj) = φ(xi) · φ(xj),
where φ(xi) is a nonlinear function, and the function is used to transfer the nonlinear space
of the sample input to two hyperplanes. The formula can be written as:

f (x) = w · φ(x) + b (3)

where, w is the weight vector, b is the threshold value, and (·) represents the inner product
operation. The objective of SVM is to determine the w, and b when minimizing the wTw/2,
it can be seen below:

min
1
2
‖w‖+ C

n

∑
i=1

ξi (4)

where, ξi is the slack variable, C is the penalty parameter.
The most commonly used kernel is the Gaussian kernel, used for data conversion in

SVM. The Gaussian kernel is defined as:

K(xi, xj) = exp(−‖xi − xj‖2

2δ2) (5)

where, δ > 0 denotes the width parameter, and δ controls the mapping results.
The strategy of reducing multi-class problems to a set of dichotomies enables support

vector machines to be used more appropriately with fewer computational requirements,
that is, to consider all classes at once and thus to obtain a multi-class support vector machine.
One way to do this is by solving a single optimization problem, similar to the “one for all”
approach on a fundamental basis. There are n decision functions or hyperplanes, and the
problems can convert to one problem as:

min
1
2

n

∑
i=1

wT
i wi + C

m

∑
j=1

∑
i �=yj

ξ i
jw

T
yj

ϕ(xj) + byj (6)

215

Processes 2022, 10, 360

where, ξ i
j ≥ 0. The resulting decision function can be represented as:

argmaxi(wT
i ϕ(xi) + bi) (7)

2.3. Fitness Function Design

The main indexes influencing FS are the classification error accuracy and the number
of features. So, how to balance the number of features and the classification is the essential
key for the FS problem. Whereas, f1 is the Normalized Mutual Information (NMI) [13]. The
formula can be seen as follow:

f1(x) = NMI(X, S) =
MI(X; S)

[G(X) + G(S)]/2
(8)

where, X is the set of clusters and S is the set of classes. The MI is the mutual information
between X and S [35]. It can be defined as follow:

MI(X; S) = ∑
k

∑
j

P
(
Xk ∩ Sj

)
log

P(Xk∩Sj)
P(Xk)P(Sj)

= ∑
k

∑
j

|Xk∩Sj|
N log

N|Xk∩Sj|
|Xk ||Sj|

(9)

where, P(Xk), P(Sj), P
(
Xk ∩ Sj

)
is the probability of the Xk, Sj, and Xk ∩ Sj. The G(X)

comes from the maximum likelihood estimation of probability.

G(X) = −∑
k

P(Xk) log P(Xk)

= −∑
k

|Xk |
N log |Xk |

N
(10)

3. Enhance Teaching-Learning-Based Optimization (ETLBO)

In this section, we introduce the proposed method in detail. Firstly, we introduce the
TLBO and the strategies used in the proposed method. And then, the ETLBO is introduced.
Finally, the flowchart of the proposed method is described.

3.1. Teacher Phase

It is the first part of the algorithm where the learner with the highest marks acts as
a teacher, and the teacher’s task is to increase the mean marks of the class. The update
process of i-th learner in teacher phase is formulated as:

Xi,new = Xi + rand × (Xteacher − TF × Xave) (11)

where, Xi is the solution of the i-th learner, Xteacher represents the teacher’s solution,
Xave means the average of all learners, rand is a random number in (0,1), and TF is
the teaching factor that decides the value of mean to be changed. The value can be
either 1 or 2, which is again a heuristic step and decided randomly with equal probability
TF = round[1 + rand(0, 1){2 − 1}].

In addition, the new solution Xi,new is accepted only if it is better than the previous
solution, it can be formulated as:

Xi =

{
Xi,new f (Xi,new) > f (Xi)
Xi otherwise

(12)

where, f means the fitness function.

3.2. Learner Phase

The second part of the algorithm is where the learner updates its knowledge through
interaction with other learners. In each iteration, two learners interact with Xm and Xn, in

216

Processes 2022, 10, 360

which the more innovative learner improves the marks of other learners. In the learner
phase, one learner learns new things if the other learner has more knowledge than himself.
The phenomenon is described as follows:

Xm,new =

{
Xm + rand × (Xm − Xn); f (Xm) > f (Xn)
Xm + rand × (Xn − Xm); f (Xn) > f (Xm)

(13)

The temporary solution is accepted only if it is better than the previous solution; it can
be formulated as:

Xm =

{
Xm,new; f (Xm,new) > f (Xm)
Xm; otherwise

(14)

3.3. Adaptive Weight Strategy

The adaptive weight strategy is easier to jump out of local minima, facilitating global
optimization. While the TLBO solves the problem of the complex optimized function, the
algorithm will easily fall into the local optimum. And a smaller inertia factor is beneficial
for precise local search for the current search domain. We design a new weight strategy t
which can be written as follows:

t = (1 − iter
Max_iter

)
1−sin(π iter

Max_iter)

(15)

where, iter is the current number of the iteration; Max_iter is the max number of the iteration.

3.4. Kent Chaotic Map (KCM)

Chaotic mapping is one kind of nonlinear mapping that can generate a random number
sequence. It is sensitive to initial values, which ensures that the encoder can generate an
unrelated encoding sequence. There are many kinds of chaotic maps, such as Logistic map,
Kent map, etc. In this paper, we use the Kent map as the improved strategy. The formula of
the Kent map can be seen as follow:

f (x) =
{ x

a 0 < x ≤ a
1−x
1−a a < x < 1

(16)

where, a is a variable value, x is the initial value of the x(0). In this paper, a = 0.5.

3.5. Proposed Method

There are two phases in the basic TLBO search process to update the individual’s
position. In the teacher phase, we use the Kent chaotic map to improve the original state
of the teacher. The teacher can be endowed with different abilities to teach the different
students. This strategy allows the abilities of different teachers to be demonstrated. In the
learner phase, we design a learning efficiency to improve the students’ learning state. The
adaptive weight strategy can improve itself with the iteration increases. The students will
learn more knowledge at the beginning phase of the iteration. The students can obtain
enough knowledge at the end of the iteration, and the adaptive weight gets small. The
students can learn the different knowledge at the different phases. The formula can be
represented as follow:

Xm,new =

{
Xm × t + rand × (Xm − Xn); f (Xm) > f (Xn)
Xm × t + rand × (Xn − Xm); f (Xn) > f (Xm)

(17)

where, t is the adaptive weight.
The proposed classification method can be divided into two parts: feature selection

and the parameter selection of the SVM. At first, the Tsallis entropy of the target is calculated
using Equation (1). Then the entropy of each feature concerning the target is calculated and
subtracted from the target’s entropy using Equation (2). In this process, the selected feature

217

Processes 2022, 10, 360

x and the parameter α of Tsallis entropy are optimized by the ETLBO. The parameter α can
decide the ability of the Tsallis entropy.

In the second part, we use the ETLBO to optimize parameter c of SVM. The penalty
coefficient c is the compromise between the smoothness of the fitting function and the
classification accuracy. When c is too large, the training accuracy is high, and the general-
ization ability is poor; while c is too small, errors will be increased. Therefore, a reasonable
selection of parameter c can obviously improve the model’s classification accuracy and
generalization ability.

Finally, the selected feature x, the parameter α of Tsallis entropy, and the parameter
c of SVM are optimized by ETLBO. We use the parameter optimized by the ETLBO and
the SVM to classify the test dataset. The SVM classifier output the classification result. The
flowchart of the proposed method is shown in Figure 1.

Figure 1. The flowchart of the proposed method.

4. Experiment and Result

To analysis the effectiveness of the proposed method, five optimization algorithms are
used for comparison, such as PSO [13], WOA [20], HHO [36], TLBO [29], HSOA [37], and
HTLBO [34]. The PSO, WOA, HHO, and TLBO are the original optimization algorithms.
These optimization algorithms have the strong ability to find the optimal value of the
mathematical function. While these algorithms optimize the engineering problems, the
optimization performance is not well. Many schoolers study the strategies to improve

218

Processes 2022, 10, 360

the optimization algorithms. The HSOA and HTLBO are improved methods. These
two algorithms use the hybrid way to enhance the optimization ability of the SOA and
TLBO. The improved methods have the excellent performance to solve the problems which
mentioned in the reference [34,37]. However, these algorithms may not solve all problems.
Therefore, we select these algorithms as compared algorithms to test the performance of
the proposed method.

The set of parameters is the same as the reference. All the methods are coded and
implemented in MATLAB 2018B. To keep the fairness of the compared algorithms, each al-
gorithm runs 30 times independently. To test the performance of the comparison algorithm,
we set the number of populations to 30 and the maximum iteration to 500. The proposed
ETLBO is training in MATLAB2018B. Experiments are managed on a computer with an
i7-11800H central processing unit.

The results of the proposed method are described in this section. First, the fitness
values obtained by the different optimization algorithms are compared to show the per-
formances of these approaches. Then, we analyze the classification result of the compared
algorithms. Finally, the discussion of the proposed method is described.

4.1. Datasets and Evaluation Index

The benchmark datasets used in the evaluations are introduced. The dataset selects
16 standard datasets from the University of California (UCI) data repository [38]. Table 1
records the primary information of these selected datasets.

Table 1. The datasets used in the experiments.

Datasets Samples Features

1 Iris 150 4
2 Wine 178 13
3 Sonar 208 60
4 Vehicle 846 18
5 Balancescale 625 4
6 CMC 1473 9
7 Cancer 683 9
8 Vowel 871 3
9 Thyroid 215 5
10 WDBC 569 30
11 HeartEW 270 13
12 Lymphography 148 18
13 SonarEW 208 60
14 IonosphereEW 351 34
15 Vote 300 16
16 WaveformEW 5000 40

To evaluate the result of the health index diagnosis, we use the F-score, the accuracy
of the classification and the CPU time as the metric index.

The function of F-score can be defined as follow:

F − score = (1 + β2) · Precision · Recall
β2 · Precision + Recall

(18)

Precision =
Tp

Tp + Fp
(19)

Recall =
Tp

Tp + Fn
(20)

where, Tn is the number of negative classes, Fn is the number of negative classes, Tp is the
number of positive classes, and Fp is the number of positive classes.

219

Processes 2022, 10, 360

4.2. Experiment 1: Feature Selection

Table 2 shows the fitness value of the compared algorithms. The table shows that when
the number of features is small, the compared algorithms can reduce the number of features.
When the number of features increases, it takes a huge challenge for the optimization
algorithms. The ETLBO obtains better performance than compared algorithms. Table 3
shows the std of the fitness values. It can be known from the given table that the ETLBO
has strong robustness.

Table 2. The fitness values of compared algorithms.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271
Wine 0.1846 0.1657 0.1594 0.1709 0.1585 0.1576 0.1521
Sonar 0.2655 0.2147 0.2356 0.2386 0.2268 0.2258 0.2145

Vehicle 0.2972 0.2575 0.2746 0.2528 0.2432 0.2741 0.2716
Balancescale 0.0619 0.0519 0.0540 0.0613 0.0521 0.0556 0.0516

CMC 0.1937 0.1855 0.1837 0.1777 0.1701 0.1758 0.1621
Cancer 0.0629 0.0710 0.0660 0.0645 0.0634 0.0645 0.0612
Vowel 0.1251 0.1251 0.1251 0.1251 0.1251 0.1251 0.1251

Thyroid 0.0934 0.0853 0.0995 0.0922 0.0925 0.0921 0.0851
WDBC 0.3828 0.3155 0.3678 0.3258 0.3234 0.3221 0.3154

HeartEW 0.2942 0.2993 0.3325 0.2869 0.3077 0.2989 0.2814
Lymphography 0.2208 0.2040 0.2127 0.1965 0.1999 0.1989 0.1951

SonarEW 0.3650 0.4065 0.3892 0.3721 0.3610 0.3589 0.3514
IonosphereEW 0.3390 0.3425 0.3718 0.3339 0.3426 0.3411 0.3226

Vote 0.2274 0.2567 0.2460 0.2542 0.2215 0.2218 0.2158
WaveformEW 0.4348 0.4151 0.3998 0.4436 0.4278 0.4025 0.3915

Table 3. The std of fitness values.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 4.56 × 10−4 4.69 × 10−4 5.40 × 10−4 4.60 × 10−4 4.86 × 10−4 4.88 × 10−4 4.50 × 10−4

Wine 6.84 × 10−4 6.53 × 10−4 6.07 × 10−4 6.22 × 10−4 5.79 × 10−4 5.82 × 10−4 5.60 × 10−4

Sonar 1.27 × 10−4 1.12 × 10−5 1.00 × 10−5 1.08 × 10−5 1.10 × 10−5 1.11 × 10−5 1.00 × 10−5

Vehicle 6.54 × 10−4 6.16 × 10−4 6.37 × 10−4 6.95 × 10−4 6.13 × 10−4 6.15 × 10−4 6.10 × 10−4

Balancescale 4.25 × 10−4 4.49 × 10−4 4.50 × 10−4 4.89 × 10−4 4.17 × 10−4 4.20 × 10−4 4.10 × 10−4

CMC 4.13 × 10−4 3.47 × 10−4 3.96 × 10−4 3.56 × 10−4 3.40 × 10−4 3.41 × 10−4 3.30 × 10−4

Cancer 1.15 × 10−3 1.13 × 10−3 1.03 × 10−3 1.03 × 10−3 1.02 × 10−3 1.02 × 10−4 9.60 × 10−4

Vowel 7.80 × 10−4 7.68 × 10−4 8.44 × 10−4 7.94 × 10−4 7.74 × 10−4 7.78 × 10−4 7.50 × 10−4

Thyroid 6.82 × 10−4 6.79 × 10−4 7.33 × 10−4 7.22 × 10−4 7.26 × 10−4 7.26 × 10−4 6.70 × 10−4

WDBC 1.05 × 10−3 1.01 × 10−3 1.02 × 10−3 1.01 × 10−3 9.74 × 10−4 9.78 × 10−4 9.40 × 10−4

HeartEW 9.67 × 10−4 9.34 × 10−4 9.08 × 10−4 1.00 × 10−3 8.91 × 10−4 8.93 × 10−4 8.80 × 10−4

Lymphography 8.62 × 10−4 7.11 × 10−4 8.00 × 10−4 8.13 × 10−4 7.44 × 10−4 7.47 × 10−4 6.90 × 10−4

SonarEW 4.54 × 10−4 3.81 × 10−4 3.91 × 10−4 4.50 × 10−4 4.00 × 10−4 4.02 × 10−4 3.80 × 10−4

IonosphereEW 9.56 × 10−4 8.85 × 10−4 8.22 × 10−4 7.72 × 10−4 7.82 × 10−4 7.88 × 10−4 7.40 × 10−4

Vote 8.81 × 10−4 9.30 × 10−4 9.87 × 10−4 9.64 × 10−4 9.23 × 10−4 9.25 × 10−1 8.50 × 10−4

WaveformEW 4.34 × 10−4 4.51 × 10−4 4.28 × 10−4 4.34 × 10−4 3.92 × 10−4 3.93 × 10−4 3.90 × 10−4

Table 4 shows the number of the selected attributes. The compared algorithms can
reduce the number of features. The attributes are little, and the compared algorithms obtain
the same result. The ETLBO gets the least attributes among the compared algorithms
when the attributes are large. The total attributes of the dataset, the ETLBO also obtain the
least attributes than other algorithms. It means that the ETLBO can reduce the number
of features. However, reducing the number of features does not mean the classification
accuracy is high.

220

Processes 2022, 10, 360

Table 4. The average number of selected attributes.

Attributes PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 4 3 3 3 3 3 3 3
Wine 13 6 6 5 10 6 6 5
Sonar 60 31 32 32 48 29 29 28

Vehicle 18 4 4 4 4 4 4 4
Balancescale 4 4 3 4 4 4 3 3

CMC 9 7 6 6 8 7 8 6
Cancer 9 5 6 5 7 6 6 5
Vowel 3 3 3 3 3 3 3 3

Thyroid 5 4 4 3 4 4 4 3
WDBC 30 9 8 7 10 7 8 6

HeartEW 13 5 5 4 6 5 5 4
Lymphography 18 6 7 7 6 8 6 5
SonarEW 60 19 18 19 22 15 13 12

IonosphereEW 34 25 23 20 17 15 14 12
Vote 16 8 7 9 8 6 6 6

WaveformEW 40 21 26 24 23 20 18 16
Total 336 160 161 155 183 142 136 121

Table 5 shows the parameter obtained by ETLBO. It can be seen from the table that
the ETBLO obtains the different values under the diverse dataset. The ETBLO not only
reduce the number of features but also acquires the parameter α of Tsallis entropy and
the parameter c of SVM. We will test the performance of the compared algorithms in the
next section.

Table 5. The parameter obtained by ETLBO.

α c

Iris 0.52 1.14
Wine 0.64 1.20
Sonar 0.80 1.24

Vehicle 0.22 1.83
Balancescale 0.77 1.17

CMC 0.26 1.22
Cancer 0.15 0.65
Vowel 0.07 1.82

Thyroid 0.61 1.01
WDBC 0.81 1.17

HeartEW 0.78 0.95
Lymphography 0.47 1.64

SonarEW 0.08 1.82
IonosphereEW 0.55 0.99

Vote 0.73 1.58
WaveformEW 0.55 0.73

Total 0.73 1.83

4.3. Experiment 2: Classification

Table 6 shows the classification results of compared algorithms. Table 7 shows the f-score
of the compared methods. The table result shows that the ETLBO is better than the original
TLBO. The strategies improve the optimal ability of the TLBO. At the same time, the HSOA and
ETLBO are better than the other algorithms. It means that the strategies significantly boost the
original optimization algorithms. It can be known that the methods can be ordered as follows
in terms of them F-score result: ETLBO > HTLBO > HSOA > HHO > PSO > WOA > TLBO.
To sum up, the ETLBO obtains the high f-score values.

221

Processes 2022, 10, 360

Table 6. The classification accuracy of compared algorithms.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 0.9545 0.9481 0.9320 0.9167 0.9548 0.9546 0.9579
Wine 0.9413 0.9303 0.9232 0.9369 0.9411 0.9479 0.9488
Sonar 0.9160 0.9375 0.9242 0.9025 0.9347 0.9359 0.9435

Vehicle 0.9012 0.9306 0.9147 0.9358 0.9345 0.9339 0.9414
Balancescale 0.9338 0.9241 0.9308 0.9287 0.9450 0.9442 0.9465

CMC 0.9440 0.9271 0.9259 0.9253 0.9387 0.9371 0.9454
Cancer 0.9060 0.9180 0.9403 0.9356 0.9349 0.9408 0.9438
Vowel 0.9600 0.9477 0.9429 0.9559 0.9628 0.9581 0.9651

Thyroid 0.9031 0.9249 0.9048 0.8849 0.9202 0.9282 0.9285
WDBC 0.9329 0.9351 0.9177 0.9057 0.9345 0.9358 0.9385

HeartEW 0.9230 0.9118 0.9143 0.8995 0.9323 0.9271 0.9358
Lymphography 0.9022 0.9256 0.9001 0.9141 0.9210 0.9180 0.9268

SonarEW 0.9360 0.9115 0.9116 0.9164 0.9336 0.9357 0.9361
IonosphereEW 0.9361 0.9448 0.9276 0.9233 0.9384 0.9441 0.9458

Vote 0.9136 0.9170 0.9217 0.9008 0.9381 0.9378 0.9451
WaveformEW 0.9276 0.9354 0.9229 0.9029 0.9292 0.9284 0.9365

Table 7. The f-score of compared algorithms.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 0.9362 0.9038 0.9193 0.9007 0.9262 0.9334 0.9498
ine 0.9118 0.9116 0.9175 0.9219 0.9194 0.9288 0.9433

Sonar 0.9043 0.913 0.9206 0.8754 0.9223 0.9091 0.9359
Vehicle 0.8782 0.8895 0.9038 0.9142 0.918 0.9164 0.9387

Balancescale 0.9169 0.9055 0.9139 0.9139 0.9309 0.9276 0.9422
CMC 0.9295 0.9 0.8988 0.8977 0.9217 0.9109 0.9429

Cancer 0.8861 0.9119 0.8945 0.9104 0.9133 0.9223 0.9396
Vowel 0.9399 0.914 0.9336 0.9345 0.9464 0.9506 0.9601

Thyroid 0.8812 0.8759 0.8954 0.8585 0.908 0.904 0.9211
WDBC 0.9102 0.9039 0.9071 0.8913 0.9128 0.9143 0.9329

HeartEW 0.8936 0.8887 0.8962 0.8892 0.9045 0.9186 0.9275
Lymphography 0.8894 0.8725 0.9117 0.8891 0.8883 0.9109 0.9184

SonarEW 0.9199 0.8988 0.897 0.8888 0.9066 0.9092 0.9360
IonosphereEW 0.9171 0.9088 0.9212 0.9090 0.9304 0.9168 0.9411

Vote 0.8890 0.9108 0.9057 0.8776 0.9225 0.9204 0.9449
WaveformEW 0.9115 0.8948 0.9106 0.8888 0.9089 0.9102 0.9346

To sum up, the ETLBO obtained the best result in compared algorithms. The ETLBO
not only reduces the number of features but also obtains high classification accuracy. Table 8
shows that the std of classification accuracy. The ETLBO has a better stable ability than other
algorithms. The proposed method has strong robustness to finish the classification task.

A statistical test is an essential and vital measure to evaluate and prove the perfor-
mance of the tested methods. Parameter statistical test is based on various assumptions.
This section uses well-known non-parametric statistical test types, Wilcoxon’s rank-sum
test [39]. Table 9 shows the results of the Wilcoxon rank-sum test. It can be found that the
ETLBO is significantly different from other methods.

The CPU time is also an important index for the practical engineering testing problem.
The CPU time results of the compared algorithms can be seen in Table 10. The CPU time
ordering of each algorithm is: TLBO < PSO < WOA < HHO < ETLBO < HTLBO < HSOA.
Although the ETLBO costs considerable CPU time, the classification accuracy has good
performance. At the same time, the ETLBO uses less CPU time than HSOA. It means that
the strategies have good adaptive effectiveness for the TLBO. The strategies enhance the
TLBO under less CPU time than the improved method.

222

Processes 2022, 10, 360

Table 8. The std of classification accuracy.

PSO WOA HHO TLBO HSOA HTLBO ETLBO

Iris 4.57 × 10−5 4.69 × 10−5 5.45 × 10−5 4.63 × 10−5 4.90 × 10−5 4.60 × 10−5 4.54 × 10−5

Wine 6.87 × 10−5 6.56 × 10−5 6.08 × 10−5 6.22 × 10−5 5.84 × 10−5 6.90 × 10−5 5.65 × 10−5

Sonar 1.28 × 10−6 1.12 × 10−5 1.01 × 10−6 1.08 × 10−5 1.10 × 10−6 1.28 × 10−6 1.00 × 10−5

Vehicle 6.60 × 10−5 6.19 × 10−5 6.39 × 10−5 6.98 × 10−5 6.14 × 10−5 6.63 × 10−5 6.12 × 10−5

Balancescale 4.28 × 10−5 4.50 × 10−5 4.52 × 10−5 4.92 × 10−5 4.18 × 10−5 4.31 × 10−5 4.13 × 10−5

CMC 4.14 × 10−5 3.50 × 10−5 3.97 × 10−5 3.58 × 10−5 3.41 × 10−5 4.18 × 10−5 3.32 × 10−5

Cancer 1.15 × 10−4 1.14 × 10−4 1.03 × 10−4 1.04 × 10−4 1.02 × 10−4 1.16 × 10−5 9.62 × 10−5

Vowel 7.80 × 10−5 7.69 × 10−5 8.48 × 10−5 7.98 × 10−5 7.78 × 10−5 7.88 × 10−5 7.55 × 10−5

Thyroid 6.86 × 10−5 6.83 × 10−5 7.39 × 10−5 7.28 × 10−5 7.33 × 10−5 6.88 × 10−5 6.74 × 10−5

WDBC 1.06 × 10−4 1.01 × 10−4 1.02 × 10−4 1.02 × 10−4 9.84 × 10−5 1.06 × 10−5 9.42 × 10−5

HeartEW 9.76 × 10−5 9.43 × 10−5 9.11 × 10−5 1.00 × 10−4 8.95 × 10−5 9.86 × 10−5 8.86 × 10−5

Lymphography 8.70 × 10−5 7.18 × 10−5 8.07 × 10−5 8.16 × 10−5 7.50 × 10−5 8.73 × 10−5 6.94 × 10−5

SonarEW 4.55 × 10−5 3.84 × 10−5 3.92 × 10−5 4.51 × 10−5 4.02 × 10−5 4.56 × 10−5 3.81 × 10−5

IonosphereEW 9.61 × 10−5 8.88 × 10−5 8.24 × 10−5 7.74 × 10−5 7.87 × 10−5 9.66 × 10−5 7.45 × 10−5

Vote 8.82 × 10−5 9.35 × 10−5 9.97 × 10−5 9.64 × 10−5 9.31 × 10−5 8.89 × 10−5 8.56 × 10−5

WaveformEW 4.38 × 10−5 4.55 × 10−5 4.29 × 10−5 4.35 × 10−5 3.94 × 10−5 4.41 × 10−5 3.92 × 10−5

Table 9. Wilcoxon’s rank-sum test of classification accuracy.

PSO WOA HHO TLBO HSOA HTLBO

p-Value h p-Value h p-Value h p-Value h p-Value h p-Value h

Iris <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Wine <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Sonar <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Vehicle <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Balancescale <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

CMC <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Cancer <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Vowel <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Thyroid <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
WDBC <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

HeartEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
Lymphography <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

SonarEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
IonosphereEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

Vote <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1
WaveformEW <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1 <0.05 1

4.4. Experiment 3: Compared with Different Classifiers

In this section, we compare with the different classifiers. The compared classifiers
contain K-NearestNeighbor (KNN), original SVM, and random forest (RF) [40]. Table 11
shows the configuration parameters and characteristics of the classifier models.

Table 12 demonstrates the evaluation index of the compare algorithsm. The BTLBO
obtains the best result than other compared classifiers in all index. The BTLBO outperforms
KNN, SVM, and RF by yielding an improvement of 3.45%, 2.94%, and 1.62% in F-score
index. To sum up, the optimization algorithms obtain the optimal parameter of the SVM.
The classification accuracy is higher than other compared classifiers.

223

Processes 2022, 10, 360

Table 10. The CPU time of the compared algorithms.

ETLBO PSO WOA HHO TLBO HSOA HTLBO

Iris 2.3973 1.8441 2.0285 2.1794 1.6764 2.637 2.4128
Wine 4.1247 3.1729 3.4902 3.7498 2.8844 4.5372 4.1315
Sonar 6.65 5.1154 5.6269 6.0454 4.6503 7.315 6.6542

Vehicle 4.1722 3.2094 3.5303 3.7929 2.9176 4.5894 4.1765
Balancescale 2.4302 1.8694 2.0563 2.2093 1.6994 2.6732 2.4462

CMC 3.0792 2.3686 2.6055 2.7993 2.1533 3.3872 3.0803
Cancer 1.5509 1.193 1.3123 1.41 1.0846 1.706 1.5669
Vowel 3.6988 2.8452 3.1298 3.3626 2.5866 4.0687 3.7183

Thyroid 3.6676 2.8212 3.1034 3.3342 2.5648 4.0344 3.6827
WDBC 6.4025 4.925 5.4175 5.8204 4.4772 7.0427 6.4075

HeartEW 4.5164 3.4741 3.8215 4.1058 3.1583 4.968 4.5271
Lymphography 6.4656 4.9735 5.4709 5.8778 4.5214 7.1122 6.4850

SonarEW 6.9375 5.3365 5.8702 6.3068 4.8514 7.6313 6.9569
IonosphereEW 7.552 5.8092 6.3901 6.8654 5.2811 8.3072 7.5664

Vote 5.5987 4.3067 4.7374 5.0898 3.9152 6.1586 5.6065
WaveformEW 3.3821 2.6016 2.8618 3.0746 2.3651 3.7203 3.3848

Table 11. Configuration parameters and characteristics of the classifier models.

Classifier Caret Method Value R Package Tuning Parameters Characteristics

KNN knn k-5
Unique classifier. The number of neighbors is

directly compared to the test data using the KNN
function in the Caret package.

SVM svmRadial E1071 Σ−7 × 10−2

c-1
Radial basic function outperformed linear SVM.

RF rf randomForest mtry-8
ntree-150

Overcomes the disadvantage of simple DT using
a large number of DT’s to classify by majority

vote. Use the randomForest function.

Table 12. The evaluation index of compared algorithms.

Classifier Ac Pc R F-Score

KNN 0.9275 0.9135 0.9123 0.9097
SVM 0.9241 0.9178 0.9167 0.9142
RF 0.9352 0.9189 0.9197 0.9261

BTLBO 0.9478 0.9455 0.9427 0.9411

5. Discussion

The proposed method has an optimal ability to solve the Tsallis-entropy-based feature
selection problem in the feature selection domain. The ETLBO selects the suitable parameter
of the Tsallis-entropy. At the same time, the proposed method reduces the number of
features successfully. The optimization algorithms have a robust optimal ability; however,
they do not adapt to solve the different optimized problems. So some adaptive strategies
are very effective for improving themselves.

The proposed method obtains better classification accuracy than the compared algo-
rithms in the classification field. The proposed method finds the proper parameter α of
the SVM classifier. The proposed method has a higher classification accuracy and strong
robustness than the compared algorithms. At the same time, the proposed method is better
than orther compared classifiers. So, the ETLBO algorithms can be used in the classification
task field.

The proposed method’s limitation is that the optimization algorithm needs iteration to
find the optimal solution, which is time-consuming. Improving the optimization capability
and reducing the number of iterations can solve this problem. Therefore, it is necessary to
search for powerful optimization algorithms and new strategies in future work.

224

Processes 2022, 10, 360

6. Conclusions

In this paper, an enhanced teaching-learning-based optimization is proposed. The
adaptive weight strategy and Kent chaotic map are used to enhance the TLBO. The ETLBO
optimizes the selected feature x, the parameter α of Tsallis entropy, and the parameter c of
SVM. The proposed method reduces the number of features through the UCI data experi-
ment and finds the critical features for classification. Finally, the classification accuracy of
the proposed method is better than compared algorithms.

We will design an effective and useful function to reduce the number of features in
future work. We will focus on solving the randomness of the TLBO and obtaining more
stability parameters of the fitness function. At the same time, we will also test the novel
strategies to boost the TLBO.

Author Contributions: Conceptualization, D.W. and H.J.; methodology, D.W. and H.J.; software,
D.W. and Z.X.; validation, H.J. and Z.X.; formal analysis, D.W., R.Z. and H.W.; investigation, D.W.
and H.J.; writing—original draft preparation, D.W. and M.A.; writing—review and editing, D.W.,
L.A., M.A. and H.J.; visualization, D.W., H.W., M.A. and H.J.; funding acquisition. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by National fund cultivation project of Sanming University
(PYS2107), the Sanming University Introduces High-level Talents to Start Scientific Research Fund-
ing Support Project (21YG01S), The 14th five year plan of Educational Science in Fujian Province
(FJJKBK21-149), Bidding project for higher education research of Sanming University (SHE2101), Re-
search project on education and teaching reform of undergraduate colleges and universities in Fujian
Province (FBJG20210338), Fujian innovation strategy research joint project (2020R0135). This study
was financially supported via a funding grant by Deanship of Scientific Research, Taif University
Researchers Supporting Project number (TURSP-2020/300), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ji, B.; Lu, X.; Sun, G.; Zhang, W.; Li, J.; Xiao, Y. Bio-inspired feature selection: An improved binary particle swarm optimization
approach. IEEE Access 2020, 8, 85989–86002. [CrossRef]

2. Kumar, S.; Tejani, G.G.; Pholdee, N.; Bureerat, S. Multiobjecitve structural optimization using improved heat transfer search.
Knowl.-Based Syst. 2021, 219, 106811. [CrossRef]

3. Sun, L.; Wang, L.; Ding, W.; Qian, Y.; Xu, J. Feature selection using fuzzy neighborhood entropy-based uncertainty measures for
fuzzy neighborhood multigranulation rough sets. IEEE Trans. Fuzzy Syst. 2020, 99, 1–14. [CrossRef]

4. Zhao, J.; Liang, J.; Dong, Z.; Tang, D.; Liu, Z. NEC: A nested equivalence class-based dependency calculation approach for fast
feature selection using rough set theory. Inform. Sci. 2020, 536, 431–453. [CrossRef]

5. Liu, H.; Zhao, Z. Manipulating data and dimension reduction methods: Feature selection. In Encyclopedia Complexity Systems
Science; Springer: New York, NY, USA, 2009; pp. 5348–5359.

6. Al-Tashi, Q.; Said, J.A.; Helmi, M.R.; Seyedali, M.; Hitham, A. Binary optimization using hybrid grey wolf optimization for
feature selection. IEEE Access 2019, 7, 39496–39508. [CrossRef]

7. Homayoun, H.; Mahdi, J.; Xinghuo, Y. An opinion formation based binary optimization approach for feature selection. Phys. A
Stat. Mech. Its Appl. 2018, 491, 142–152.

8. Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing
2017, 260, 302–312. [CrossRef]

9. Aljarah, L.; Ai-zoubl, A.M.; Faris, H.; Hassonah, M.A.; Mirjalili, S.; Saadeh, H. Simultaneous feature selection and support vector
machine optimization using the grasshopper optimization algorithm. Cogn. Comput. 2018, 2, 1–18. [CrossRef]

10. Lin, S.; Ying, K.; Chen, S.; Lee, Z. Particle swarm optimization for parameter determination and feature selection of support
vector machines. Expert Syst. Appl. 2008, 35, 1817–1824. [CrossRef]

11. Sherpa, S.R.; Wolfe, D.W.; Van Es, H.M. Sampling and data analysis optimization for estimating soil organic carbon stocks in
agroecosystems. Soil Sci. Soc. Am. J. 2016, 80, 1377. [CrossRef]

12. Lee, H.M.; Yoo, D.G.; Sadollah, A.; Kim, J.H. Optimal cost design of water distribution networks using a decomposition approach.
Eng. Optim. 2016, 48, 16. [CrossRef]

225

Processes 2022, 10, 360

13. Roberge, V.; Tarbouchi, M.; Okou, F. Strategies to accelerate harmonic minimization in multilevel inverters using a parallel genetic
algorithm on graphical processing unit. IEEE Trans. Power Electron. 2014, 29, 5087–5090. [CrossRef]

14. Russell, E.; James, K. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro
Machine and Human Science, MHS’95, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

15. Rahnamayan, S.; Tizhoosh, H.; Salama, M. Opposition-based differential evolution. IEEE Trans. Evolut. Comput. 2008, 12, 64–79.
[CrossRef]

16. Liao, T.; Socha, K.; Marco, A.; Stutzle, T.; Dorigo, M. Ant colony optimization for mixed-variable optimization problems. IEEE
Trans. Evolut. Comput. 2013, 18, 53–518. [CrossRef]

17. Taran, S.; Bajaj, V. Sleep apnea detection using artificial bee colony optimize hermite basis functions for eeg signals. IEEE Trans.
Instrum. Meas. 2019, 69, 608–616. [CrossRef]

18. Precup, R.; David, R.; Petriu, E.M. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric
sensitivity. IEEE Trans. Ind. Electron. 2017, 64, 527–534. [CrossRef]

19. Hatata, A.Y.; Lafi, A. Ant lion optimizer for optimal coordination of doc relays in distribution systems containing dgs. IEEE
Access 2018, 6, 72241–72252. [CrossRef]

20. Mirjalili, S. Moth-flame optimization algorithm: A novel natureinspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.
[CrossRef]

21. Mohamed, A.; Ahmed, A.; Aboul, E. Whale optimization algorithm and moth-flame optimization for multilevel thresholding
image segmentation. Expert Syst. Appl. 2017, 83, 51–67.

22. Sang, H.; Pan, Q.; Li, J.; Wang, P.; Han, Y.; Gao, K.; Duan, P. Effective invasive weed optimization algorithms for distributed
assembly permutation flowshop problem with total flowtime criterion. Swarm Evolut. Comput. 2019, 444, 64–73. [CrossRef]

23. Zhou, Y.; Luo, Q.; Chen, H.; He, A.; Wu, J. A discrete invasive weed optimization algorithm for solving traveling salesman
problem. Neurocomputing 2015, 151, 1227–1236. [CrossRef]

24. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1997, 1, 67–82. [CrossRef]
25. Zhang, Y.; Liu, X.; Bao, F.; Chi, J.; Zhang, C.; Liu, P. Particle swarm optimization with adaptive learning strategy. Knowl.-Based

Syst. 2020, 196, 105789. [CrossRef]
26. Dong, Z.; Wang, X.; Tang, L. Moea/d with a self-adaptive weight vector adjustment strategy based on chain segmentation. Inform.

Sci. 2020, 521, 209–230. [CrossRef]
27. Li, E.; Chen, R. Multi-objective decomposition optimization algorithm based on adaptive weight vector and matching strategy.

Appl. Intell. 2020, 6, 1–17. [CrossRef]
28. Feng, J.; Zhang, J.; Zhu, X.; Lian, W. A novel chaos optimization algorithm. Multimedia Tools Appl. 2016, 76, 1–32. [CrossRef]
29. Xu, C.B.; Yang, R. Parameter estimation for chaotic systems using improved bird swarm algorithm. Mod. Phys. Lett. B 2017, 1,

1750346. [CrossRef]
30. Tran, N.T.; Dao, T.-P.; Nguyen-Trang, T.; Ha, C.-N. Prediction of Fatigue Life for a New 2-DOF Compliant Mechanism by

Clustering-Based ANFIS Approach. Math. Probl. Eng. 2021, 2021, 1–14. [CrossRef]
31. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching learning based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
32. Gunji, A.B.; Deepak, B.; Bahubalendruni, C.; Biswal, D. An optimal robotic assembly sequence planning by assembly subsets

detection method using teaching learning-based optimization algorithm. IEEE Trans. Autom. Sci. Eng. 2018, 1, 1–17. [CrossRef]
33. Zhang, H.; Gao, Z.; Ma, X.; Jie, Z.; Zhang, J. Hybridizing teaching-learning-based optimization with adaptive grasshopper

optimization algorithm for abrupt motion tracking. IEEE Access 2019, 7, 168575–168592. [CrossRef]
34. Ho, N.L.; Dao, T.-P.; Le Chau, N.; Huang, S.-C. Multi-objective optimization design of a compliant microgripper based on hybrid

teaching learning-based optimization algorithm. Microsyst. Technol. 2018, 25, 2067–2083. [CrossRef]
35. Estevez, P.A.; Tesmer, M.; Perez, C.; Zurada, J. Normalized mutual information feature selection. IEEE Trans. Neural Netw. 2009,

20, 189–201. [CrossRef]
36. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
37. Jia, H.; Xing, Z.; Song, W. A new hybrid seagull optimization algorithm for feature selection. IEEE Access 2019, 12, 49614–49631.

[CrossRef]
38. Newman, D.J.; Hettich, S.; Blake, C.L.; Merz, C.J. UCI Repository of Machine Learning Databases. Available online: http://www.ics.

uci.edu/~{}mlearn/MLRepository.html (accessed on 1 June 2016).
39. Derrac, J.S.; Garcia, D.; Molina, F.; Herrera, A. Practical tutorial on the use of non-parametric statistical test as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 2011, 1, 13–18. [CrossRef]
40. Machaka, R. Machine learning-based prediction of phases in high-entropy alloys. Comput. Mater. Sci. 2020, 188, 110244. [CrossRef]

226

Citation: Mehbodniya, A.;

Douraki, B.k.; Webber, J.L.;

Alkhazaleh, H.A.; Elbasi, E.;

Dameshghi, M.; Abu Zitar, R.;

Abualigah, L. Multilayer Reversible

Data Hiding Based on the Difference

Expansion Method Using Multilevel

Thresholding of Host Images Based

on the Slime Mould Algorithm.

Processes 2022, 10, 858. https://

doi.org/10.3390/pr10050858

Academic Editor: Mengchu Zhou

Received: 16 March 2022

Accepted: 24 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Multilayer Reversible Data Hiding Based on the Difference
Expansion Method Using Multilevel Thresholding of Host
Images Based on the Slime Mould Algorithm

Abolfazl Mehbodniya 1, Behnaz karimi Douraki 2, Julian L. Webber 1, Hamzah Ali Alkhazaleh 3,*, Ersin Elbasi 4,

Mohammad Dameshghi 5, Raed Abu Zitar 6 and Laith Abualigah 7

1 Department of Electronics and Communication Engineering, Kuwait College of Science and
Technology (KCST), Kuwait City 7207, Kuwait; a.niya@kcst.edu.kw (A.M.); jwebber@ieee.org (J.L.W.)

2 Department of Mathematics, University of Isfahan, Isfahan 81431-33871, Iran; bkarimidouraki@gmail.com
3 IT Department, College of Engineering and IT, University of Dubai, Academic City, United Arab Emirates
4 College of Engineering and Technology, American University of the Middle East, Kust Kuwait 15453, Kuwait;

ersin.elbasi@aum.edu.kw
5 Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz,

Tabriz 5166-15731, Iran; dameshghi@aol.com
6 Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi, United Arab Emirates;

raed.zitar@sorbonne.ae
7 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;

aligah.2020@gmail.com
* Correspondence: halkhazaleh@ud.ac.ae

Abstract: Researchers have scrutinized data hiding schemes in recent years. Data hiding in standard
images works well, but does not provide satisfactory results in distortion-sensitive medical, military,
or forensic images. This is because placing data in an image can cause permanent distortion after
data mining. Therefore, a reversible data hiding (RDH) technique is required. One of the well-known
designs of RDH is the difference expansion (DE) method. In the DE-based RDH method, finding
spaces that create less distortion in the marked image is a significant challenge, and has a high
insertion capacity. Therefore, the smaller the difference between the selected pixels and the more
correlation between two consecutive pixels, the less distortion can be achieved in the image after
embedding the secret data. This paper proposes a multilayer RDH method using the multilevel
thresholding technique to reduce the difference value in pixels and increase the visual quality and
the embedding capacity. Optimization algorithms are one of the most popular methods for solving
NP-hard problems. The slime mould algorithm (SMA) gives good results in finding the best solutions
to optimization problems. In the proposed method, the SMA is applied to the host image for optimal
multilevel thresholding of the image pixels. Moreover, the image pixels in different and more similar
areas of the image are located next to one another in a group and classified using the specified
thresholds. As a result, the embedding capacity in each class can increase by reducing the value of
the difference between two consecutive pixels, and the distortion of the marked image can decrease
after inserting the personal data using the DE method. Experimental results show that the proposed
method is better than comparable methods regarding the degree of distortion, quality of the marked
image, and insertion capacity.

Keywords: reversible data hiding (RDH); slime mould algorithm (SMA); difference expansion (DE)

1. Introduction

Data hiding (DH) is a way of secretly sending information or data to others. In this
way, data, including text, images, etc., can be inserted into a medium such as an image,
video, audio, etc., using a DH algorithm to make them invisible to others. DH is performed
in two domains of space and frequency. The related data are inserted directly into the

Processes 2022, 10, 858. https://doi.org/10.3390/pr10050858 https://www.mdpi.com/journal/processes227

Processes 2022, 10, 858

host image pixels in the space domain, which is often reversible. Reversibility means
that the inserted data and the original host image are entirely recovered in the extraction
phase. In the frequency domain, first, a frequency transform such as discrete wavelet
transform (DWT), discrete cosine transform (DCT), etc., is applied to the host image. Then,
using a special algorithm, the data are inserted into frequency coefficients that are often
irreversible. The data are then extracted, while the original host image is not fully and
accurately recovered.

Reversible data hiding (RDH) techniques in the space field are divided into several
categories: difference expansion (DE), histogram shifting (HS), prediction-error expansion
(PEE), pixel value grouping (PVG), and pixel value ordering (PVO). Over the years, various
RDH methods have been proposed by researchers in these fields, all of which aim to reduce
distortion and increase the quality of the marked image or increase the capacity to insert
the data, and these issues continue. As the main challenge, this has occupied the minds of
researchers. The following is a brief description of the papers available in each field:

An RDH method was proposed in [1] to increase the capacity based on the DE method.
In this method, the host image is divided into 1 × 2 blocks, and spaces of −1, 0, and +1 are
selected to insert the data. A lossless RDH method based on the DE histogram (DEH) was
proposed to increase the capacity in [2], where the difference histogram (DH) peak point
was selected to insert the data. In [3], a multilayer RDH method based on the DEH was
proposed to increase the capacity and reduce the distortion. However, this method was
not able to improve the capacity sufficiently. In [4], the RDH method was presented for
gray images using the DEH and the module function. The position matrix and the marked
image were sent separately to the receiver with low capacity.

In [5], to improve the capacity performance and increase security, a guided filter
predictor and an adaptive PEE design were used to insert the data in color images using
intrachannel correlation. A two-layer DH method based on the expansion and displacement
of a PE pair in a two-dimensional histogram was proposed to increase the capacity by
extracting the correlations between the consecutive PEs in [6], where their work was both
low-capacity and low-quality. In [7], the authors presented an RDH method based on the
multiple histogram correction and PEE to increase the capacity of the gray images, using a
rhombus predictor to predict the host image pixels. In PE histogram (PEH) methods [8], to
extract the redundancy between adjacent pixels, the correction path detection strategy is
used to obtain a two-dimensional PEH that has a high distortion. In an RDH method [9],
based on a two-layer insertion and PEH, the pixel pairs are selected based on pixel density
and the spatial distance between two pixels. The distortion is much less than in the previous
methods. In [10], an RDH method based on multiple histogram shifting was proposed
that used a genetic algorithm (GA) to control the substantial image distortion. In [11], an
RDH technique was proposed based on pairwise prediction-error expansion (PPEE) or
two-dimensional PEH (2D-PEH) to increase capacity. In [12], an RDH technique based on
the host image texture analysis was proposed by blocking the image and inserting the data
into image texture blocks [13–20].

In another RDH method [21], the PVG method was used by multilayer insertion to
increase the capacity. The PVG was applied on each block. The zero point of the histogram
of the difference was selected to insert the data bits. The pixel-based PVG (PPVG) technique
in [22] was proposed to increase the capacity applied to each block after image blocking.
Each time a pixel is located in the smooth areas of each block for inserting the data, the PE
value is the difference between the reference pixel and the particular pixel. This method has
a low capacity and moderate distortion. In [23], a technique was presented to increase the
reliability of the image for inserting the data. Using PEE based on PVO, the authors inserted
the data in the pins of −1 and +1 from the PEH. The problem was that the quality of the
image was still low, while the capacity was not high. The authors of [24] presented a robust
reversible data hiding (RRDH) scheme based on two-layer embedding with a reduced
capacity-distortion tradeoff, where it first decomposes the image into two planes—namely,

228

Processes 2022, 10, 858

the higher significant bit (HSB) and least important bit (LSB) planes—and then employs
prediction-error expansion (PEE) to embed the secret data into the HSB plane.

In [25], the authors proposed an AMBTC-based RDH method in which the hamming
distance and PVD methods were used to insert information. In [26], a PVD-based RDH
method was used. In [27], the RDH method was based on PVD and LSB reversible insert
information. The authors of [28] proposed an RDH in encrypted images (RDHEI) method
with hierarchical embedding based on PE. PEs are divided into three categories: small-
magnitude, medium-magnitude, and large-magnitude. In their approach, pixels with
small-magnitude/large-magnitude PEs were used to insert data. Their method had a high
capacity, but the image quality was still low.

The authors of [29] proposed an RDH method for color images using HS-based double-
layer embedding. The authors used the image interpolation method to generate PE matrices
for HS in the first-layer embedding, and local pixel similarity to calculate the difference
matrices for HS in the second-layer embedding. In their process, the embedding capacity
was low. In [30], the authors proposed a dual-image RDH method based on PE shift. More-
over, in their work, a bidirectional-shift strategy was used to extend the shiftable positions
in the central zone of the allowable coordinates. In their work, the embedding capacity
was low. Today, optimization algorithms such as the grasshopper optimization algorithm
(GOA), whale optimization algorithm (WOA), moth–flame optimization (MFO) [31], Harris
hawk optimization (HHO) [32], and artificial bee colony (ABC) [33] are used in many
papers [34–38].

This paper proposes a DE-based multilayer image RDH method using the multilevel
thresholding technique. Optimization algorithms are one of the most popular methods
for solving NP-hard problems. Due to this, the slime mould algorithm (SMA) gives good
results in finding the best solutions to solve optimization problems. First, the SMA is
applied to the host image to find the two thresholds, and image pixels are based on the
thresholds located in three different classes. Using the multilevel thresholding creates more
similarities between the pixels of each class. Therefore, due to the reduction in the difference
between each class’ pixels, the quality of the marked image does not decrease with the
insertion of data via DE. At the same time, less distortion is created in the picture, and the
insertion capacity increases. Table 1 shows the critical acronyms and their meanings.

Table 1. Key acronyms and their meanings.

Key Acronyms Their Meanings

DH Data hiding

DWT Discrete wavelet transform

DCT Discrete cosine transform

RDH Reversible data hiding

DE Difference expansion

HS Histogram shifting

PEE Prediction-error expansion

PVG Pixel value grouping

PVO Pixel value ordering

DH Difference histogram

PEH PE histogram

GA Genetic algorithm

PPEE Pairwise prediction-error expansion

2D-PEH Two-dimensional PEH

229

Processes 2022, 10, 858

Table 1. Cont.

Key Acronyms Their Meanings

RRDH Robust reversible data hiding

HSB Higher significant bit

LSB Least important bit

PEE Prediction-error expansion

RDHEI RDH in encrypted images

MSE Mean squared error

PSNR Peak signal-to-noise ratio

bpp Bits per pixel

SSIM Structural similarity index measure

The method of Arham et al. [3] is the basis of the proposed method. Arham et al. [3]
proposed a multilayer RDH method to reduce the distortion in the image. First, the host
image is divided into 2 × 2 blocks in their work. Then, to calculate the value of differences
for both consecutive pixels, the pixel vector is created for each block in each layer, as shown
in Figure 1. A threshold (2 ≤ Th ≤ 30) is considered, and only the blocks in which the
value of differences for both consecutive pixels is positive and less than the threshold value
(2 ≤ Th ≤ 30) are selected to insert the data.

Figure 1. Production of vectors for four layers [3]: (a) Layer-1; (b) Layer-2; (c) Layer-3; (d) Layer-4.

For each the vectors ws where s = {0, 1, 2, 3} in the s-th insertion layer, in order to
ensure reversibility and extract the data in the extraction phase, the s-th pixel from each
block is not inserted, there is a reference pixel in each insertion layer, and three bits of data
are inserted in a block of size 2 × 2. In the first insertion layer, in Figure 1, the pixel vector
ws is created to calculate the values of v1, v2, v3,. The value of differences is calculated
using Equation (1) for both consecutive pixels:

v1= u1 − u0, v2 = u2 − u1, v3 = u3 − u2 (1)

Furthermore, to reduce the distortion and control of overflow/underflow, Equation (2)
is used to reduce the value of vk (k = 1, 2, 3):

v′
k =

{
vk − 2|vk|−1 if 2 × 2n−1 ≤ |vk| ≤ 3 × 2n−1 − 1
vk − 2|vk| if 3 × 2n−1 ≤ |vk| ≤ 4 × 2n−1 − 1

(2)

where n is calculated using Equation (3):

n = log2 (|vk|)� (3)

230

Processes 2022, 10, 858

Then, the value of v′′
k is expanded to Equation (4) by collecting the kth bits of the

three-bit sequence of confidential data b = (b1, b2, b3), as follows:

v′′
k= 2 × v′

k+bk (4)

A location map (LM) is used to separate the range |vk|, as shown in Equation (5),
to recover the original differences and the original pixels of the host image in the extrac-
tion phase:

LM =

{
0, if 2 × 2n−1 ≤ |vk| ≤ 3 × 2n−1 − 1
1, if 3 × 2n−1 ≤ |vk| ≤ 4 × 2n−1 − 1

(5)

Each insertion layer creates a location map (M) to determine the location of blocks
containing data. If the block is inserted with the data bits, the value of M is equal to
1. Otherwise, the value of M is 0. Finally, Equation (6) is used to insert the data in the
vector u0:

v0 = u0+ u1+ u2+ u3
2

u0 = u0, u1 = v′′
1 + u0, u2 = v′′

2 + u2, u3 = v′′
3 + u3

(6)

In the extraction phase, the secret data and the vk are recovered using location maps
LM and M and Equation (7):

vk =

{
v′

k +
(∣∣v′

k

∣∣)+ 1, if LM = 0
v′

k +
(∣∣v′

k

∣∣), if LM = 1
(7)

The remainder of this paper is organized as follows: Section 2 introduces the proposed
plan that uses the Otsu thresholding method and SMA. In Section 3, the proposed methods
are evaluated and compared with other works, and Section 4 contains the conclusions.

2. Proposed Method

The proposed method consists of three phases: In the first phase, the multilevel
thresholding technique using a combination of the SMA and the Otsu evaluation function
is applied to the host image to classify the host image pixels based on the relevant thresholds.
The second phase inserts the data in the pixels of each class using DE, and in the third
phase the extracted inserted data and the original image are recovered. In the following
section, each of these three phases is described in turn:

2.1. Multilevel Thresholding Using the Slime Mould Algorithm

In the DE-based DH methods, the extraction of the best and most extra space for
inserting the data and achieving a high capacity will also create less distortion in the host
image—a significant issue. In other words, the smaller the difference between the two
consecutive pixels and the more similarity between the pixels, the less distortion created in
the image after inserting the data using the DE.

In this paper, we use the multilevel thresholding technique using the combination of
the SMA and the Otsu evaluation function [34] to determine the two optimal thresholds (T1
and T2) for classifying the image pixels. Thus, increases in the similarity and correlation be-
tween the pixels of each class are used to reduce the value of differences for two consecutive
pixels in each class, and to increase capacity and reduce distortion in the marked image.

The Otsu method is an automatic thresholding method obtained according to the
image histogram, and defines the boundaries of objects in the image with high accuracy [34].
In gray images, the pixel intensity is between 0 and 255. Therefore, the Otsu method selects
a threshold from 0 to 255, with the highest interclass variance in gray images, or minimizes
intraclass variance [34]. All image pixels are grouped using multilevel thresholding based
on correlation and similarity [35].

SMA is a new population-based metaheuristic algorithm [36] inspired by the intelligent
behavior of a type of mould called slime mould. Slime mould also behaves intelligently,
and can navigate very quickly and without error. In this paper, the input and output of the

231

Processes 2022, 10, 858

SMA are the image histogram and the thresholds, respectively. The related thresholds in

the SMA are obtained by
→
X∗. The vector represents each slime mould

→
Xkt, in which kt = 1, 2:

→
Xkt = (T1, T2) for 0 < T1 < T2 < H (8)

In Equation (8), T1 and T2 represent the search thresholds. In this paper, we seek to
find the two optimal thresholds T1 and T2, and utilize the SMA to use these two thresholds
to classify image pixels.

The location of each slime mould that represents a threshold value is in the range
[lb, ub], where lb and ub represent the lowest and highest brightness of the pixels in the
host image, respectively. The initial location of the slime moulds is determined randomly,
according to Equation (9):

xi1 = lb + rand(0, 1)× (ub − lb) (9)

where xi1 represents each threshold of the threshold vector. The value of the evaluation
function is then calculated for all slime moulds, and the slime mould for which the evalua-
tion function obtained is the smallest value is taken as the criterion, while the corresponding

location, which is defined as
→
X∗, is set as the related threshold. Slime mould uses the bait

smell released into the air to approach and guide the prey. Equation (10) describes the
routing behavior of slime moulds based on bait smell:

→
X(t + 1) =

⎧⎪⎨
⎪⎩

→
Xb(t) +

→
vb·
(→

W·
→

XA(t)−
→

XB(t)
)

, r < p

→
vc·

→
X(t), r ≥ p

(10)

where
→
vb is a parameter in the range [−a, a],

→
vc is a parameter that decreases linearly from

1 to 0, and t represents the current iteration.
→

Xb(t) Indicates the location of the slime mould

in the tth iteration with the highest smell concentration in the environment.
→

X(t) indicates

the location of the slime mould in the tth iteration.
→

X(t + 1) is the next location of the slime

mould in the tth iteration.
→

XA(t) and
→

XB(t) represent the two randomly selected locations

of the slime mould, and
→
W represents the slime mould’s weight. The value of p is obtained

using Equation (11):
p = tanh|S(i)-DF| (11)

where i = 1, 2, . . . , n represents the number of cells in the slime mould, DF represents
the best evaluation obtained in all iterations, S(i) represents the value of the evaluation

function,
→

X(t) DF represents the best value of the evaluation function obtained during all

iterations, and
→
vb is obtained from Equation (12):

→
vb = [−a, a] (12)

a = arctanh(−(
t

max_t
) + 1) (13)

→
W is obtained using Equation (14):

W(SmellIndex(i) =

⎧⎨
⎩

1 + r. log
(

bF−S(i)
bF−wF + 1

)
, condition

1 − r. log
(

bF−S(i)
bF−wF + 1

)
, others

(14)

SmellIndex = sort(S) (15)

232

Processes 2022, 10, 858

The condition indicates that S(i) is in the first half of the population. The r represents
a random value [0, 1]. The bF represents the value of the obtained optimal evaluation
function in the current iteration. The wF represents the worst evaluation function received
in the current iteration. SmellIndex represents the sequence of values of the evaluated
function (in ascending order). The location of the slime mould is also updated using
Equation (16) [36]:

→
X∗=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rand.(UB − LB) + LB, rand < z
→

Xb(t) +
→
vb.
(

W.
→

XA(t)−
→

XB(t)
)

, r < p

→
vc.

→
X(t), r ≥ p

(16)

where LB and UB are the lower limit and the upper limit, respectively, which in this case
are equal to 0 and 255, respectively; rand and r are randomly determined in the range [0, 1],
and the value of z will be discussed in the parameter setting test. Therefore, this process is
repeated until the stop condition is met. We set the stop condition to reach 100 iterations.

Then, we obtain the output
→
X∗, which represents the optimal threshold vector. Finally, the

host gray image A is divided into three separate classes C1, C2, and C3 using the optimal
thresholds Tkt (kt = 1, 2), as shown in Equation (17):

⎧⎨
⎩

C1 = {g(i, j) ∈ A| 0 ≤ g(i, j) ≤ T1 − 1}
C2 = {g(i, j) ∈ A| T1 ≤ g(i, j) ≤ T2 − 1}
C3 = {g(i, j) ∈ A| T2 ≤ g(i, j) ≤ H}

(17)

where g(i, j) represents each pixel in row i and column j of image A, and H represents
the gray area of gray image A. Thresholds Tkt are obtained by maximizing the evaluation
function F, as shown in Equation (18):

Tkt = MAXTkt F(Tkt) (18)

where F(Tkt) is the same evaluation function for the SMA or the Otsu evaluation function.
The Otsu evaluation function is calculated using Equation (19) [28]:

F = ∑ 2
i=0SUMi(μi − μ1)

2 (19)

SUMi = ∑ Ti+1−1
j=Ti

Pj (20)

μi = ∑ Ti+1−1
j=Ti

i
Pj

SUMi
, Pj = fer(j)/Nump (21)

In Equation (19), μ1 is the average density of the host image A for T1 = 0 and
T2 = H. The μi is the average density of the Cy class for T1 and T2, and SUMi is the
sum of the probabilities. In Equations (20) and (21), Pj shows the probability of the gray
level jth, fer(j) is the frequency of the jth gray level, and Nump represents the total number
of pixels in the host image A [36].

2.2. Data Insertion Process

In this paper, the value of 0 difference is also expanded for inserting the data (0 ≤ Th
≤ 32) to increase the capacity, in addition to the fewer equal to 0 and fewer equal to 32
differences [3]. In this paper, two optimal thresholds T1 and T2 are obtained for the host
image, and the host image pixels are located together in three separate classes based on the
two corresponding thresholds. Therefore, there is more similarity and correlation between
the pixels of each class, and the difference between two consecutive pixels related to each
class is less.

By reducing the value of differences between consecutive pixels in each class, less
distortion is created in the image due to data insertion based on the expansion of the value

233

Processes 2022, 10, 858

of differences. Furthermore, the capacity increases when increasing the number of pixels
with less difference between them.

After determining the optimal thresholds by the SMA, based on the two thresholds of
T1 and T2, starting from the pixel on the first row and the first column of the host image,
pixels belonging to the first class—whose value is smaller than the threshold of T1—are
located in the liner matrix C1. The second-class pixels, whose value is larger than that of
T1 and smaller than that of T2, are located in the liner matrix C2. Eventually, the pixels
belonging to the third class, whose value is larger than that of T2—are located in the liner
matrix C3. Figure 2 shows the status of the three matrices of C1, C2, and C3.

Figure 2. Production of the matrices for three classes: (a) Class C1; (b) Class C2; (c) Class C3.

To insert the data, after classifications of host image pixels, matrix pixels Cy (y = 1,
2, 3) are divided into non-overlapping blocks with a size of 1 × 5. The vector P is then
created for pixels of each block to calculate the different values for both consecutive pixels,
according to Figure 3.

Figure 3. Production of the vector P.

According to Equation (22), differences are calculated for both consecutive pixels in
the vector P: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v1 = pCy,2
− pCy,1

v2 = pCy,3
− pCy,2

v3 = pCy,4
− pCy,3

v4 = pCy,5
− pCy,4

(22)

Given that the proposed method inserts the data by expanding the value of differences
to reduce distortion in the marked image, the blocks are selected to insert the data. The
difference between two consecutive pixels is between 0 and +32 (0 ≤ Th ≤ 32). Moreover,
to reduce distortion in the marked image and the overflow/underflow control, the range
of each difference vk′

(
k′ = 1, 2, 3, 4

)
is diminished. A location map Mq (q = 1, 2, 3, 4) is

created in each insertion layer to determine the locations of blocks inserted with data bits.
If the block is inserted with data bits, it Mq will be equal to 1. Otherwise, it is equal to
0. Furthermore, a location map LMy to separate each of the differences as 2 ≤ vk′ ≤ 32
or 0 ≤ vk′ ≤ 1 is considered, as shown in Equation (23):

LMy =

{
0, if 0 ≤ vk′ ≤ 1

1, if 2 ≤ vk′ ≤ 32
(23)

234

Processes 2022, 10, 858

If 0≤ vk′ ≤ 1, Equation (24) can be used to change the range of vk′ :

v′
k′ = |vk′ + 2| − 2log2 (|vk′ |)� (24)

If 2 ≤ vk′ ≤ 32, Equation (25) can be used to change the range of vk′ :

v′
k′ =

{
|vk′ | − 2log2 (|vk′ |)�−1, if 2 × 2n−1 ≤ |vk′ | ≤ 3 × 2n−1 − 1
|vk′ | − 2log2 (|vk′ |)�, if 3 × 2n−1 ≤ |vk′ | ≤ 4 × 2n−1 − 1

(25)

where n is calculated using Equation (26):

n = log2(|vk′ |)� (26)

In each insertion layer of each y class, a location map LM′
y,f—where f = 1, 2, as shown

in Equations (27) and (28)—is used to recover the original differences. LM′
y,1 and LM′

y,2
are used to separate the differences, as 0 ≤ vk′ ≤ 1 and 2 ≤ vk′ ≤ 32, respectively.

LM′
y,1 =

{
0, if |vk′ | = 0
1, if |vk′ | = 1

(27)

LM′
y,2 =

{
0, if 2 × 2n−1 ≤ |vk′ | ≤ 3 × 2n−1 − 1
1, if 3 × 2n−1 ≤ |vk′ | ≤ 4 × 2n−1 − 1

(28)

The matrices Mq ‘LMy, and LM′
y,f are used to recover the original differences and

original image pixels. Given that in the proposed method, in the sth insertion layer
(s = 1, 2, 3, 4, 5), the sth pixel is not inserted for reversibility, and in each layer, four -
bits of data are inserted in four pixels of each block, the data bits’ sequence is divided into
4-bit subsequences, where bk′ = (b1, b2, b3, b4)2 that k′ = 1, 2, 3, 4. Then, using Equation
(29), v′

k′ expands with a datum:

v′′
k′ = 2 × v′

k′ + bk′ (29)

The first pixel is not inserted from each block in the first layer. Therefore, in the first
insertion layer, insertion of the 4-bit sequence b in pixels of each block is carried out as
shown in Equation (30). In the second insertion layer, the second pixels of each class block
are not selected to insert the data. In this layer, the process of inserting the 4-bit sequence b
in pixels of each block is as shown in Equation (31). In the third insertion layer, the third
pixel of each class block is not selected to insert the data, according to Equation (32). In
the 4th insertion layer, the 4th pixel of each class block is not selected to insert the data,
according to Equation (33). ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pCy,1
′ = PCy,1

pCy,2
′ = v′′

1 + PCy,1

pCy,3
′ = v′′

2 + pCy,2

pCy,4
′ = v′′

3 + pCy,3

pCy,5
′ = v′′

4 + pCy,4

(30)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pCy,1
′ = v′′

1 + PCy,1

pCy,2
′ = PCy,2

pCy,3
′ = v′′

2 + pCy,2

pCy,4
′ = v′′

3 + pCy,3

pCy,5
′ = v′′

4 + pCy,4

(31)

235

Processes 2022, 10, 858

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pCy,1
′ = v′′

1 + PCy,1

pCy,2
′ = v′′

2 + PCy,2

pCy,3
′ = pCy,2

pCy,4
′ = v′′

3 + pCy,3

pCy,5
′ = v′′

4 + pCy,4

(32)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pCy,1
′ = v′′

1 + PCy,1

pCy,2
′ = v′′

2 + PCy,2

pCy,3
′ = v′′

3 + pCy,2

pCy,4
′ = pCy,3

pCy,5
′ = v′′

4 + pCy,4

(33)

Therefore, due to the data insertion process of pixels pCy,1
, pCy,2

, pCy,3
, pCy,4

and pCy,5

from each block, five marked pixels p′
Cy,1

, p′
Cy,2

, p′
Cy,3

, p′
Cy,4

, and p′
Cy,5

are obtained, as is

the marked image A′.
The steps of the data insertion process in each insertion layer are as follows:
Step 1: Dividing the data sequence into 4-bit b. Step 2: Apply SMA on the host image

to determine the optimal thresholds T1 and T2. Step 3: Classification of image pixels based
on thresholds T1 and T2. Step 4: Dividing the class pixels Cy into non-overlapping blocks
of size 1 × 5. Step 5: Production of a location map Mq to determine the block locations with
insertion conditions. Step 6: Produce the vector P for each selected block to calculate the
value of differences. Step 7: Calculate the differences vk′ for both consecutive pixels, and
then calculate v′

k′ . Step 8: Calculate the value of v′′
k′ to reduce image distortion and prevent

overflow/underflow. Step 9: Produce the location map LMy. Step 10: Calculation of the
marked pixels p′

Cy,1
, p′

Cy,2
, p′

Cy,3
, p′

Cy,4
, and p′

Cy,5
. Step 11: Produce the marked image

A′ and save the location maps LMy, LM′
y,f, and Mq, and thresholds T1 and T2 in order to

extract the original data and recover the original image.

2.3. Data Extraction Process

In the extraction phase, the marked image A′ is first classified using the thresholds
T1 and T2, and the pixels belonging to each class are located in the matrix C′

y. Then, the
pixels belonging to the matrix C′

y are divided into blocks of size 1 × 5, and using location
maps the LMy and LM′

y,f the secret data are extracted from the corresponding blocks, and
the original image pixels are recovered. The extraction process is performed from the first
insertion to the last. The vector p′ is created for the pixels of each block after dividing the
matrix C′

y into blocks of size 1 × 5, according to Equation (34):

p′ =
(

p′
Cy,1

, p′
Cy,2

, p′
Cy,3

, p′
Cy,4

, p′
Cy,5

)
(34)

In each insertion layer, the binary value v′′
k′ is obtained. Then, the least significant bit

(LSB) of v′′
k′ as the k′th bit is extracted from the secret data. In the 4th insertion layer, extract-

ing the data bits bk′ and recovering the original pixels from each vector p′ is performed as
follows (see Equations (35)–(38)):

v′′
1 = P′

Cy,k′
− P′

Cy,k′
(35)

bk′ = LSB(v′′
k′) (36)

vk′
′ =
⌊

v′′
k′

2

⌋
(37)

P′
Cy,k′

= P′
Cy,k′−1

+ vk′−1 (38)

236

Processes 2022, 10, 858

If the LM′
y,1 is equal to 0 or 1, Equation (39) can be used to obtain vk′ . If the LM′

y,2 is
equal to 0 or 1, Equation (40) can be used to obtain vk′ .

vk′ =
∣∣v′

k′
∣∣− 2log2 (|vk′ |)� (39)

vk′ =

⎧⎨
⎩
∣∣∣v′

k′
∣∣∣+ 2log2 (|vk′ |)�, if LM′

y, 2 = 0∣∣∣v′
k′
∣∣∣+ 2log2 (|vk′ |)�, if LM′

y,2 = 1
(40)

The values of pCy,1
pCy,2

, b1, and v1
′ are obtained using Equations (41)–(57).

Pcy,1 = P′
cy,1

(41)

v′′
1 = P′

Cy,2
− Pcy,1 (42)

b1 = LSB(v′′
1
)

(43)

v1
′ =
⌊

v′′
1

2

⌋
(44)

Pcy,2 = Pcy,1 + v1 (45)

Therefore, the value v1 is obtained using Equation (39) or Equation (40). Then, pCy,3
,

b2, and v2
′ are obtained using the following equations:

v′′
2 = P′

Cy,3
− Pcy,2 (46)

b2 = LSB(v′′
2
)

(47)

v2
′ =
⌊

v′′
2

2

⌋
(48)

Pcy,3 = Pcy,2 + v2 (49)

Therefore, the value v2 is obtained using Equation (39) or Equation (40).
Then, pCy,4

, b3, and v3
′ are obtained using the following equations:

v′′
3 = P′

Cy,4
− Pcy,3 (50)

b3 = LSB(v′′
3
)

(51)

v3
′ =
⌊

v′′
3

2

⌋
(52)

Pcy,4 = Pcy,3 + v3 (53)

Therefore, the value v3 is obtained using Equations (39) and (40).
Then, pCy,5

, b4, and v4
′ are obtained using the following equations:

v′′
4 = P′

Cy,5
− Pcy,4 (54)

b4 = LSB(v′′
4
)

(55)

v4
′ =
⌊

v′′
4

2

⌋
(56)

Pcy,5 = Pcy,4 + v4 (57)

Therefore, the value v4 is obtained using Equations (39) and (40).

237

Processes 2022, 10, 858

The steps of the data extraction process and the original host image pixel recovery in
each layer are as follows:

Step 1: Classify the pixels of the image A′ to get three classes Cy.
Step 2: Dividing the class pixels Cy into non-overlapping blocks of size 1 × 5.
Step 3: Identify marked blocks using the location map Mq.
Step 4: Production of the vector p′ for each block.
Step 5: Calculate the value v′′

k′ .
Step 6: Extract the inserted data bk′ using the first LSB v′′

k′ .
Step 7: Calculate the value vk′

′.
Step 8: Calculate the value of the vk′ difference using LMy and LM′

y,f.
Step 9: Calculate the original pixels of each block.
Step 10: Recover the original image A.
The marked pixels in the respective block are shown in Figure 4. An example of the

embedding and extraction process:

Figure 4. An example of quad-pixel reversible data embedding: (a) before embedding; (b) after
embedding; (c) after extraction.

Embedding process:

P = (106, 121, 148, 158, 155)⎧⎪⎪⎨
⎪⎪⎩

v1 = 121 − 106 = 15
v2 = 148 − 121 = 27
v3 = 158 − 148 = 10
v4 = 158 − 158 = 0

vk′ = (15, 27, 10, 0), b = (0, 1, 1, 0)
v1 = 15, n = 3, v′1′ = 7, LM′

y,2 = 1, b1 = 0, v′′
1= 2 × 7 + 0 = 14

v2 = 27, n = 4, v′2′ = 11, LM′
y,2 = 1, b2 = 1, v′′

2= 2 × 11 + 1 = 23
v3 = 10, n = 4, v′3′ = 6, LM′

y,2 = 0, b3 = 1, v′′
3= 2 × 6 + 1 = 13

v4 = 0, n = 4, v′0′ = 1, LM′
y,2 = 1, b4 = 0, v′′

4= 2 × 1 + 0 = 2
v′k′ = (7, 11, 6, 1), v′′

k′ = (14, 55, 13, 2), LM′
y,2 = (1, 1, 0)2, M = 1⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1
′ = 106

p2
′ = 106 + 14 = 120

p3
′ = 121 + 23 = 144

p4
′ = 148 + 13 = 161

p5
′ = 158 + 2 = 160

p′(106, 120, 144, 161, 160)

238

Processes 2022, 10, 858

Extraction process:

p′(106, 120, 144, 161, 160)
v′′

1 = 120 − 106 = 14
b1 =LSB(14) = LSB(1110)2 = 0
v1

′ =
⌊

14
2

⌋
= 7

LM′
y,1 = 1, v1 = 15{

pCy,1 = 106
pCy,2 = 106 + 15 = 121

v′′
2 = 144 − 121 = 23

b2 = LSB(23) = LSB(10111)2 = 2
v2

′ =
⌊ 23

2
⌋
= 11

LM′
y,2 = 1, v2 = 27

pCy,3 = 27 + 121 = 148
v′′

3 = 161 − 148 = 13
b3 = LSB(13) = LSB(1101)2 = 1
v3

′ =
⌊

13
2

⌋
= 6

LM′
y,2 = 0, v3 = 10

pCy,4 = 148 + 10 = 158
v′′

4 = 160 − 158 = 2
b4 = LSB(2) = LSB(10)2 = 0
v3

′ =
⌊ 2

2
⌋
= 1

LM′
y,1 = 1, v3 = 0

pCy,5 = 158 + 0 = 158

Finally, the initial pixels of the corresponding block are retrieved as follows.

P = (106, 121, 148, 158, 155)

3. Results

In this paper, the gray images of Lena, Peppers, Airplane, Baboon, Ship, Lake, Bridge,
Cameraman, and Barbara are used as the host image of size 512 × 512, taken from the
USC-SIPI database. Figure 5 shows the host images used in this paper. The proposed
method is simulated using MATLAB 2018b and a Windows 64-bit operating system with a
Core i5 CPU.

239

Processes 2022, 10, 858

Figure 5. Used host images in this paper: (a) Lena; (b) Peppers; (c) Airplane; (d) Baboon; (e) Ship;
(f) Barbara; (g) Cameraman; (h) Lake; (i) Bridge.

3.1. Evaluation Metrics

To evaluate the proposed method and compare it with the methods of Arham et al. [3]
and Kumar et al. [24], the peak signal-to-noise ratio (PSNR), insertion capacity, structural
similarity index measure (SSIM), and processing time metrics were used.

PSNR: To measure the quality of the marked image and the similarity measurement
between the marked image and the original host image, which also specifies the distortion
ratio, the PSNR was used. The PSNR value was calculated using the mean squared
error (MSE), and has a reverse ratio with MSE. MSE and PSNR were calculated using
Equations (59) and (60), respectively [21,22].

MSE =
1

m × n ∑ m
i=1 ∑ n

j=1(A(i, j)− A′(i, j))2 (58)

240

Processes 2022, 10, 858

PSNR = 10Log10(
2552

MSE
) (59)

For the image with a size of m × n, A (i, j) represents the host image pixels, and A′(i, j)
represents the marked image pixels.

Insertion capacity: This paper used a random bit sequence as secret data. For a gray
host image with a size of m × n, the maximum insertion capacity was calculated according
to the number of bits per pixel (bpp), using Equation (61) [3]:

Insertion capacity(bpp) =
Length o f sequence bit

m × n
(60)

In the proposed method, the multilayer insertion technique enhances the capacity.
Arham et al. [3] considered the maximum number of insertion layers to be eight. Therefore,
the data insertion process was performed two times, and at each time, data bits were
inserted under four layers—the first time from the first layer to the fourth layer, and the
second time from the fifth layer to the eighth layer.

SSIM: The SSIM metric is a famous metric used to measure the amount of structural
similarity between the host image A and image A′. This metric can be obtained using
Equation (62) [34]:

SSIM(A, A′) =
(2μ1μA′ + c1)(2σ1,A′ + c2)

(μ2
1 + μ2

A′ + c1)(σ
1
1 + σ2

A′ + c2)
(61)

where μ1 and μA′ are the mean brightness intensity of A and A′, respectively, σA′ repre-
sents the standard deviation of images A and A′, respectively, σ1,A′ represents covariance
between images A and A′, respectively, and c1 and c2 are two constant values of 6.50 and
58.52, respectively. The higher the SSIM value in data hiding methods and the closer it is to
1, the more effective the corresponding process [34].

Processing time: processing time is one of the essential parameters for comparison
to DH methods. Therefore, the total processing time is equal to the total insertion and
extraction time values to compare the proposed method and other methods.

3.2. Comparison with the Other Methods

In this paper, the proposed method is compared with the methods of Arham et al. [3],
Yao et al. [22], and Kumar et al. [16]. Similarity and correlation between pixels belonging to
each class are increased using multilevel thresholding, and the difference between the pixels
decreases. As a result, inserting a few layers of data creates less distortion in the image.

Because, in the proposed method, all of the values of zero and positive differences are
expanded to insert the data, in the first insertion layer and higher insertion layers, it has a
higher insertion capacity and PSNR than the methods of Arham et al. [3], Yao et al. [30],
and Kumar et al. [24]. As a result, the resulting distortion in the marked image for the
proposed method is less than that in the methods of Arham et al. [3], Yao et al. [30], and
Kumar et al. [24]. Table 2 shows the values of insertion capacity maxima for different
images per thresholds T1 and T2 at 0 ≤ Th ≤ +32. The values of T1 and T2 are set by
the SMA. Table 3 shows the values of processing time (seconds) for different images per
thresholds T1 and T2 at 0 ≤ Th ≤ +32.

As can be seen from Tables 2 and 3, for the two thresholds and T2 in the first insertion
layer, the proposed method has more insertion capacity and more PSNR for all images than
the methods of Arham et al. [3] and Kumar et al. [24].

According to Table 2, the insertion capacity of the first insertion layer in the proposed
method for the Airplane, Baboon, Barbara, Ship, Lena, Lake, Bridge, Cameraman, and
Peppers images is 834 bits (0.0032 bpp), 1689 bits (0.0064 bpp), 766 bits (0.0029 bpp), 1561
bits (0.0059 bpp), 2241 bits (0.0085 bpp), 1604 bits (0.0061 bpp), 4402 bits (0.0168 bpp), 4794
bits (0.0183 bpp), and 1571 bits (0.0061 bpp), respectively—more than in the method of
Arham et al. [3].

241

Processes 2022, 10, 858

Table 2. A comparison of the actual embedding capacities in common images.

Proposed Insertion Capacity (bits) Insertion Capacity (bpp)

Image T1 T2 [3] [24] PM [3] [24] PM

Airplane 111 182 194,250 210,000 215,000 0.7449 0.8010 0.8201
Baboon 78 149 193,314 110,000 195,003 0.7374 0.4196 0.7438
Barbara 55 131 191,466 158,000 192,232 0.7304 0.6027 0.7333
Ship 79 156 194,583 160,000 196,144 0.7423 0.6103 0.7482
Lena 85 152 196,768 200,000 209,000 0.7480 0.7629 0.7972
Lake 76 145 191,854 111,000 193,458 0.7318 0.4234 0.7514
Bridge 84 151 192,472 185,000 196,874 0.7342 0.7186 0.7379
Cameraman 91 174 194,968 159,000 199,762 0.7437 0.6039 0.7510
Peppers 61 136 195,414 178,000 196,985 0.7454 0.6790 0.7514

PM = proposed method.

Table 3. A comparison of the processing times in common images.

Proposed Processing Time (s)

Image T1 T2 [3] [24] PM

Airplane 111 182 154.09 1.29 173.94
Baboon 78 149 153.72 1.81 173.60
Barbara 55 131 151.44 1.37 175.35
Ship 79 156 138.11 1.44 160.99
Lena 85 152 153.58 1.67 181.56
Lake 76 145 152.41 1.37 174.56
Bridge 84 151 153.25 1.41 175.92
Cameraman 91 174 139.48 1.62 179.45
Peppers 61 136 154.11 1.15 185.98

PM = proposed method.

In the proposed method, the Lena image has the highest increase in capacity (0.0085
bpp), while the Barbara image has the lowest increase in capacity (0.0029 bpp), compared
to the method of Arham et al. [3]. Therefore, on average, the capacity of the first insertion
layer in the proposed method is 0.0058 bpp more than that of the method of Arham et al. [3].
The average processing time for the proposed method is 173.2367 s, while that for the
method of Arham et al. [3] is 150.8417 s. Therefore, the proposed method is slower than
the method of Arham et al. [3], due to the use of the SMA and its repetitions to obtain
optimal thresholds.

Moreover, the proposed method is better than the method of Kumar et al. [24] in terms
of PSNR and embedding capacity values, as can be seen in Tables 2 and 3, but in terms of
execution time it is slower compared to the methods of Kumar et al. [24] and Arham et al. [3].
Furthermore, the proposed method, compared to the method of Kumar et al. [24] for the
Lake, Bridge, Cameraman, Airplane, Baboon, Barbara, Ship, Lena, and Peppers images,
yields 82,485 bits (3145 bpp), 11,874 bits (0.0324 bpp), 40,762 bits (0.1581 bpp), 5000 bits
(0.0191 bpp), 85,000 bits (0.3242 bpp), 34,232 bits (0.1306 bpp), 36,144 bits (0.1379 bpp), 9000
bits (0.0343 bpp) and 18,985 bits (0.0724 bpp), respectively, showing greater capacity.

Table 4 also compares the PSNR values of the proposed method with the method
of Arham et al. [3] for different capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp, 0.5 bpp,
0.6 bpp, and 0.7 bpp in the first insertion layer. As can be seen from Table 4, the average
PSNR of the proposed method for different capacities is higher than that of the method of
Arham et al. [3].

242

Processes 2022, 10, 858

Table 4. Comparison of the PSNR (dB) value single-layer embedding in terms of visual quality
test images.

PSNR (dB)

0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp 0.6 bpp 0.7 bpp

Airplane [3] 54.35 51.88 48.85 44.36 42.45 41.44 40.92
Proposed 55.17 52.73 49.99 45.40 44.07 43.11 41.86

Baboon
[3] 40.95 38.97 37.98 36.95 36.48 35.97 35.40

Proposed 42.01 40.03 38.88 37.34 37.11 36.54 36.89

Barbara
[3] 49.29 46.73 43.84 41.12 38.98 37.50 36.57

Proposed 50.74 47.43 44.45 42.31 39.12 38.61 37.63

Ship [3] 50.71 46.86 43.85 41.95 40.92 40.46 40.19
Proposed 51.85 48.46 45.48 43.01 42.15 41.64 41.78

Lena
[3] 54.70 50.31 47.74 45.77 44.19 43.03 42.16

Proposed 55.18 52.12 48.61 46.17 45.46 44.61 43.44

Lake
[3] 48.32 44.16 40.35 38.36 36.56 34.79 33.21

Proposed 49.97 45.98 41.68 39.86 37.15 35.96 34.56

Bridge [3] 47.76 43.32 39.86 36.75 34.85 33.45 31.99
Proposed 49.23 44.53 40.96 37.82 35.98 34.59 32.68

Cameraman
[3] 46.12 42.36 38.25 34.91 32.56 31.20 30.05

Proposed 48.06 43.74 39.94 36.20 34.11 32.31 31.11

Peppers [3] 49.66 47.12 45.37 43.92 43.15 42.61 42.05
Proposed 51.11 48.94 46.33 44.61 45.20 43.45 43.11

Figure 6 shows the PSNR comparison diagram of the proposed method with the
method of Arham et al. [3] for different images under the same capacities drawn using the
data shown in Tables 4 and 5. As can be seen from the diagrams in Figure 6, the proposed
method has a higher PSNR value for all images than the method of Arham et al. [3]. For
the first insertion layer, the Airplane image for the capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp,
0.4 bpp, 0.5 bpp, 0.6 bpp, and 0.7 bpp shows increases in quality compared to the method
of Arham et al. [3] of 0.8200 dB, 0.8500 dB, 1.1400 dB, 1.04 dB, 1.6200 dB, 1.6700 dB, and
0.94 dB, respectively.

Table 5. A comparison of the PSNR (dB) value multiple-layer embedding in terms of visual quality
test images.

PSNR (dB)

0.7 bpp 1.5 bpp 2.2 bpp 3 bpp 3.7 bpp 4.5 bpp 5.2 bpp 6 bpp

Airplane [3] 40.5 36.59 35.1 34 32.5 31.9 31 30
Proposed 41.12 38.02 36.25 35.01 33.84 32.56 32.97 31.01

Baboon
[3] 35.1 32 30 28.5 27.1 26.2 25.3 25

Proposed 36.98 33.24 31.12 29.95 28.87 27.97 26.78 26.25

Barbara
[3] 36.2 33.9 32 30.7 29.1 28.83 27.8 27

Proposed 37.45 34.25 33.12 31.99 30.47 30.02 28.11 28

Ship [3] 40.58 36.9 35 33.2 32 31.57 30 29.1
Proposed 42.01 37.2 36.11 34.42 33 33.03 31 30.25

Lena
[3] 42 38.2 37 35.1 34 33 32.1 31.1

Proposed 43.52 39.44 38 36.55 35 34.11 33 32

Lake
[3] 37.26 34.73 32.82 31.74 30.82 29 27.76 26

Proposed 38.99 35.47 34.15 33.26 32.42 30.76 29.12 27.22

Bridge [3] 37.85 33.72 32.25 31.74 29.18 28 26.87 25.10
Proposed 39.23 35.28 33.76 32.06 30.46 29 27.75 26

Cameraman
[3] 40.51 36.97 34.98 32.76 30.56 28.75 27 25.34

Proposed 42.07 38.13 36.46 35.36 32.89 31.46 29.42 26.12

Peppers [3] 41.9 38.3 36.3 35 34 33 32 31.1
Proposed 43 39.85 37 36.55 35.89 34 33 32.34

243

Processes 2022, 10, 858

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Comparison of image quality for single-layer capacity: (a) Airplane; (b) Baboon; (c) Barbara;
(d) Ship; (e) Lena; (f) Peppers; (g) Lake; (h) Bridge [3].

244

Processes 2022, 10, 858

Moreover, the Baboon image for the capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp,
0.5 bpp, 0.6 bpp, and 0.7 bpp, compared to the method of Arham et al. [3], shows increases
in quality of 1.0600 dB, 0.9600 dB, 0.9000 dB, 0.3900 dB, 0.6300 dB, 0.5700 dB and 1.4900 dB,
respectively. Meanwhile, the Barbara image for the capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp,
0.4 bpp, 0.5 bpp, 0.6 bpp, and 0.7 bpp increases in quality by 1.4500 dB, 0.7000 dB, 0.610.0
dB, 1.1900 dB, 0.1400 dB, 1.1100 dB, and 1.0600 dB, respectively, compared to the method of
Arham et al. [3].

The Ship image for the capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp, 0.5 bpp, 0.6 bpp,
and 0.7 bpp increases in quality by 1.1400 dB, 1.6000 dB, 1.6300 dB, 1.0600 dB, 1.2300 dB,
1.1800 dB, and 1.5900 dB, respectively, compared to the method of Arham et al. [3].

The Lena image for capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp, 0.5 bpp, 0.6 bpp
and 0.7 bpp, compared to the method of Arham et al. [3], has an increase in quality of
0.4800 dB, 1.8100 dB, 0.8700 dB, 0.4000 dB, 1.2700 dB, 1.5800 dB, and 1.2800 dB, respectively.
The Peppers image for capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp, 0.5 bpp, 0.6 bpp, and
0.7 bpp, compared to the method of Arham et al. [3], has an increase in quality of 1.6500 dB,
1.8200 dB, 1.3300 dB, 1.50 dB, 0.5900 dB, 1.1700 dB, and 1.3500 dB, respectively. The Lake
image for the capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp, 0.5 bpp, 0.6 bpp, and 0.7 bpp
increases in quality by 1.4700 dB, 1.2100 dB, 1.1000 dB, 1.0700 dB, 1.1300 dB, 1.1400 dB, and
0.6900 dB, respectively, compared to the method of Arham et al. [3].

The Cameraman image for capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp, 0.5 bpp,
0.6 bpp and 0.7 bpp, compared to the method of Arham et al. [3], has an increase in
quality of 1.9400 dB, 1.3800 dB, 1.6900 dB, 1.2900 dB, 1.5500 dB, 1.1100 dB, and 1.0600 dB,
respectively. The Bridge image for capacities of 0.1 bpp, 0.2 bpp, 0.3 bpp, 0.4 bpp, 0.5
bpp, 0.6 bpp, and 0.7 bpp, compared to the method of Arham et al. [3], has an increase in
quality of 1.4500 dB, 1.8200 dB, 0.9600 dB, 1.2400 dB, 1.5000 dB, 0.8400 dB, and 1.0600 dB,
respectively.

The proposed method has more insertion capacity than that of Arham et al. [3] for
the first and higher insertion layers. Table 5 shows the PSNR comparison of the proposed
method and the method of Arham et al. [3] for the eight insertion layers. As the number of
insertion layers increases, the total insertion capacity increases. As shown in Table 5, the
values of insertion capacity and PSNR for the proposed method are higher than those in the
method of Arham et al. [3]. According to Table 5, the average insertion capacity increase
in the eight insertion layers in the proposed method is 0.625 bpp, and in the method of
Arham et al. [3] it is 0.572 bpp. In insertion layer eight, the Peppers, Lena, Barbara, and
Baboon images have the highest increase in capacity, while the Airplane, Ship, Lake, Bridge,
and Cameraman images have the slightest increase in capacity, compared to the method of
Arham et al. [3].

In insertion layer eight, the Baboon image has the highest increase in PSNR (1.25 dB),
while the Barbara image has the lowest increase in PSNR (1 dB), compared to the method
of Arham et al. [3]. In insertion layer eight, the average insertion capacity of the proposed
method and the method of Arham et al. [3] is 6.33 bpp and 6 bpp, respectively, while the
average PSNR in the proposed method and the method of Arham et al. [3] is 29.75 dB
and 28.88 dB, respectively. In insertion layer eight, the proposed method has an average
capacity increase of 0.33 bpp and an average quality increase of 1.63 dB compared to the
method of Arham et al. [3]. Figure 7 shows a comparison diagram of the capacity and
PSNR values of the proposed method and the method of Arham et al. [3] for eight insertion
layers drawn using the data shown in Table 5.

245

Processes 2022, 10, 858

(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparing the quality values for multilayer capacities in different images: (a) Airplane;
(b) Baboon; (c) Barbara; (d) Ship; (e) Lena; (f) Peppers; (g) Lake; (h) Bridge [3].

246

Processes 2022, 10, 858

Table 6 shows the SSIM values of the proposed method and the methods of Arham et al. [3]
and Kumar et al. [16] for maximum embedding capacity (bits). According to Table 6, due to its
nature, the proposed method has a higher SSIM than the compared methods, while the capacity
of the proposed method is also more than that of the compared methods.

Table 6. Comparison of the SSIM in common images for different capacities.

Proposed Insertion Capacity (bits) SSIM

Image T1 T2 [3] [24] PM [3] [24] PM

Airplane 111 182 194,250 210,000 215,000 0.9128 0.9131 0.9261
Baboon 78 149 193,314 110,000 195,003 0.9125 0.9155 0.9298
Barbara 55 131 191,466 158,000 192,232 0.9135 0.9146 0.9283

Ship 79 156 194,583 160,000 196,144 0.9134 0.9124 0.9282
Lena 85 152 196,768 200,000 209,000 0.9132 0.9138 0.9272
Lake 76 145 191,854 111,000 193,458 0.9157 0.9115 0.9284

Bridge 84 151 192,472 185,000 196,874 0.9125 0.9114 0.9279
Cameraman 91 174 194,968 159,000 199,762 0.9148 0.9118 0.9256

Peppers 61 136 195,414 178,000 196,985 0.9136 0.9145 0.9274

PM = proposed method.

Table 7 shows the method proposed by Arham et al. [3], using the SSIM evaluation
metric, which compares one embedding layer and several embedding layers. As can be
seen in Table 7, the proposed method has superior performance for different capacities
(bpp) compared to the method of Arham et al. [3], with a higher SSIM value. As the
capacity value increases in bpp, the SSIM value for the proposed method and the method
of Arham et al. [3] decreases. Still, in any case, the proposed method compared is superior
to the method of Arham et al. [3] in terms of SSIM value.

Table 7. A comparison of the SSIM for single-layer embedding.

SSIM

0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp 0.6 bpp 0.7 bpp

Airplane [3] 0.9736 0.9658 0.9531 0.9462 0.9312 0.9243 0.9134
Proposed 0.9865 0.9736 0.9638 0.9582 0.9462 0.9365 0.9245

Baboon
[3] 0.9735 0.9685 0.9538 0.9425 0.9365 0.9235 0.9141

Proposed 0.9846 0.9734 0.9648 0.9536 0.9468 0.9328 0.9267

Barbara
[3] 0.9762 0.9694 0.9539 0.9462 0.9361 0.9217 0.9119

Proposed 0.9873 0.9725 0.9647 0.9543 0.9486 0.9369 0.9278

Ship [3] 0.9748 0.9657 0.9567 0.9474 0.9313 0.9236 0.9167
Proposed 0.9839 0.9746 0.9625 0.9512 0.9452 0.9385 0.9286

Lena
[3] 0.9743 0.9651 0.9512 0.9436 0.9321 0.9238 0.9118

Proposed 0.9849 0.9783 0.9674 0.9572 0.9445 0.9368 0.9264

Lake
[3] 0.9739 0.9645 0.9536 0.9412 0.9336 0.9225 0.9136

Proposed 0.9818 0.9762 0.9652 0.9548 0.9462 0.9368 0.9275

Bridge [3] 0.9786 0.9638 0.9536 0.9438 0.9356 0.9283 0.9169
Proposed 0.9863 0.9782 0.9671 0.9582 0.9468 0.9397 0.9247

Cameraman
[3] 0.9768 0.9637 0.9532 0.9413 0.9367 0.9214 0.9179

Proposed 0.9864 0.9726 0.9682 0.9551 0.9439 0.9369 0.9264

Peppers [3] 0.9739 0.9632 0.9539 0.9462 0.9363 0.9258 0.9179
Proposed 0.9827 0.9746 0.9648 0.9583 0.9486 0.9378 0.9248

PM = proposed method.

Table 8 shows the PSNR and SSIM values for the proposed method and the method
of Yao et al. [30] for capacities of 30,000 and 50,000 bits. As can be seen from Table 8,
the proposed method has higher SSIM and PSNR values compared to the method of
Yao et al. [30].

247

Processes 2022, 10, 858

Table 8. Compares the PSNR value for the PM and yao et al. [22] method.

30,000 (bits) 50,000 (bits)

psnr ssim psnr ssim

Image Yao et al. [30] PM Yao et al. [30] PM

Airplane 65.56 0.9736 66.12 0.9846 64.34 0.9616 65.22 0.9765
Baboon 65.56 0.9747 66.68 0.9874 64.34 0.9623 65.44 0.9716
Barbara 65.56 0.9732 66.23 0.9834 64.34 0.9675 65.65 0.9736

Ship 65.56 0.9747 66.42 0.9845 64.34 0.9646 65.61 0.9765
Lena 65.56 0.9761 66.29 0.9856 64.34 0.9654 65.12 0.9748
Lake 65.42 0.9719 66.18 0.9885 64.12 0.9638 65.83 0.9716

Bridge 65.56 0.9764 66.47 0.9849 64.34 0.9676 65.79 0.9734
Cameraman 65.55 0.9773 66.42 0.9859 64.34 0.9649 65.68 0.9756

Peppers 65.56 0.9772 66.82 0.9817 64.34 0.9647 65.36 0.9748

PM = proposed method.

In this paper, a multilayer RDH method based on the multilevel thresholding technique
is proposed, aiming to increase the insertion capacity and reduce the distortion after data
embedding by improving the correlation between consecutive pixels of the image. Firstly,
the SMA is applied to find the optimal thresholds of host image segmentation. Next,
according to the specified threshold, image pixels located in different image areas are
classified into different categories. Finally, the difference between two consecutive pixels is
reduced in each class, and then the data are embedded via DE.

4. Conclusions

In this paper, a new multilayer RDH technique was proposed using multilevel thresh-
olding where, first, the SMA was used to determine the optimal thresholds on the host
image. By using the SMA, two optimal threshold values were determined. Image pixels
were then located in their specific classes based on those thresholds. The similar and more
correlated pixels within a group were classified. Therefore, the difference between pixels
related to each class decreased. It was proven that insertion and distortion in the marked
image decreased after inserting the data by reducing the differences between each class’
pixels. The proposed method has a simple implementation. The results showed that the
proposed method, in comparison with the methods of Arham et al. [3] and Kumar et al. [24],
has more capacity and more PSNR, but is slightly slower in comparison with the methods
of Arham et al. [3] and Kumar et al. [24]. In our subsequent work, we intend to use deep
learning methods to extract features and image thresholds in order to classify image fea-
tures and maximize the capacity and quality of the marked image. Therefore, using the
multilevel thresholding technique in the proposed method improved the multilayer RDH
method compared to the other methods. This technique reduced the difference between
the pixels, and the pixels in the same class were very similar to one another.

Author Contributions: Conceptualization, A.M., B.k.D., J.L.W., H.A.A., E.E., M.D., R.A.Z. and L.A.;
methodology, A.M. and L.A.; software, A.M., J.L.W., H.A.A., M.D. and L.A.; validation, A.M., B.k.D.,
J.L.W., H.A.A., E.E., M.D., R.A.Z. and L.A.; formal analysis, A.M., B.k.D., J.L.W., H.A.A., E.E., M.D.,
R.A.Z. and L.A.; investigation, E.E., M.D., R.A.Z. and L.A.; resources, A.M., B.k.D., J.L.W., H.A.A. and
L.A.; data curation, A.M., B.k.D., J.L.W., H.A.A., E.E., M.D., R.A.Z. and L.A.; writing—original draft
preparation, A.M., B.k.D., J.L.W., H.A.A., E.E., M.D., R.A.Z. and L.A.; writing—review and editing,
A.M., B.k.D., J.L.W.; visualization, A.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: The study did not require ethical approval.

Data Availability Statement: Data is available upon the request.

248

Processes 2022, 10, 858

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abdullah, S.M.; Manaf, A.A. Multiple Layer Reversible Images Watermarking Using Enhancement of Difference Expansion Techniques;
Springer: Berlin/Heidelberg, Germany, 2010; Volume 87, pp. 333–342.

2. Zeng, X.; Li, Z.; Ping, L. Reversible data hiding scheme using reference pixel and multi-layer embedding. Int. J. Electron. Commun.
(AEÜ) 2012, 66, 532–539. [CrossRef]

3. Arham, A.; Nugroho, H.A.; Adji, T.B. Multiple Layer Data Hiding Scheme Based on Difference Expansion of Quad. Signal Process.
2017, 137, 52–62. [CrossRef]

4. Maniriho, P.; Ahmad, T. Information Hiding Scheme for Digital Images Using Difference Expansion and Modulus Function. J.
King Saud Univ. Comput. Inf. Sci. 2018, 31, 335–347. [CrossRef]

5. Yao, H.; Qin, C.; Tang, Z.; Tian, Y. Guided filtering based color image reversible data hiding. J. Vis. Commun. Image R 2013, 43,
152–163. [CrossRef]

6. Ou, B.; Li, X.; Zhao, Y. Pairwise Prediction-Error Expansion for Efficient Reversible Data Hiding. IEEE Trans. Image Process. 2013,
22, 5010–5021. [CrossRef] [PubMed]

7. Li, X.; Zhang, W.; Gui, X.; Yang, B. Efficient Reversible Data Hiding Based on Multiple Histograms Modification. IEEE Trans. Inf.
Forensics Secur. 2015, 10, 2016–2027.

8. Fu, D.; Jing, Z.J.; Zhao, S.G.; Fan, J. Reversible data hiding based on prediction-error histogram shifting and EMD mechanis. Int. J.
Electron. Commun. 2014, 68, 933–943. [CrossRef]

9. Ou, B.; Li, X.; Wang, J.; Peng, F. High-fidelity reversible data hiding based on geodesic path and pairwise prediction-error
expansion. Neurocomputing 2016, 68, 933–943. [CrossRef]

10. Wang, J.; Ni, J.; Zhang, X.; Shi, Y.Q. Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram
Shifting. IEEE Trans. Cybern. 2016, 47, 315–326. [CrossRef]

11. Xiao, M.; Li, X.; Wang, Y.; Zhao, Y.; Ni, R. Reversible data hiding based on pairwise embedding and optimal expansion path.
Signal Process. 2019, 19, 30017–30019. [CrossRef]

12. Zhou, H.; Chen, K.; Zhang, W.; Yu, N. Comments on Steganography Using Reversible Texture Synthesis. IEEE Trans. Image
Process. 2017, 26, 1623–1625. [CrossRef] [PubMed]

13. Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine learning
in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [CrossRef] [PubMed]

14. Zhu, X.; Zhou, M. Multiobjective Optimized Cloudlet Deployment and Task Offloading for Mobile-Edge Computing. IEEE
Internet Things J. 2021, 8, 15582–15595. [CrossRef]

15. Zhu, Q.-H.; Tang, H.; Huang, J.-J.; Hou, Y. Task Scheduling for Multi-Cloud Computing Subject to Security and Reliability
Constraints. IEEE/CAA J. Autom. Sin. 2021, 8, 848–865. [CrossRef]

16. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of
clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng.
Appl. Artif. Intell. 2022, 110, 104743. [CrossRef]

17. Otair, M.; Abualigah, L.; Qawaqzeh, M.K. Improved near-lossless technique using the Huffman coding for enhancing the quality
of image compression. Multimed. Tools Appl. 2022, 1–21. [CrossRef]

18. Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems:
Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [CrossRef]

19. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]

20. He, W.; Cai, J.; Xiong, G.; Zhou, K. Improved reversible data hiding using pixel-based pixel value grouping. Optik 2017, 157,
68–78. [CrossRef]

21. He, W.; Xiong, G.; Zhou, K.; Cai, J. Reversible data hiding based on multilevel histogram modification and pixel value grouping.
J. Vis. Commun. Image Represent. 2016, 40, 459–469. [CrossRef]

22. Li, X.; Li, J.; Li, B.; Yang, B. High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error
expansion. Signal Process. 2013, 93, 198–205. [CrossRef]

23. Kumar, R.; Jung, K.H. Robust reversible data hiding scheme based on two-layer embedding strategy. Inf. Sci. 2020, 512, 96–107.
[CrossRef]

24. Kumar, R.; Kim, D.S.; Jung, K.H. Enhanced AMBTC based data hiding method using hamming distance and pixel value
differencing. J. Inf. Secur. Appl. 2019, 47, 94–103. [CrossRef]

25. Kim, P.H.; Ryu, K.W.; Jun, K.H. Reversible data hiding scheme based on pixel-value differencing in dual images. Int. J. Distrib.
Sens. Netw. 2020, 16, 1550147720911006. [CrossRef]

26. Hussain, M.; Riaz, Q.; Saleem, S.; Ghafoor, A.; Jung, K.H. Enhanced adaptive data hiding method using LSB and pixel value
differencing. Multimed. Tools Appl. 2021, 80, 20381–20401. [CrossRef]

27. Yu, C.; Zhang, X.; Zhang, X.; Li, G.; Tang, Z. Reversible Data Hiding with Hierarchical Embedding for Encrypted Images. IEEE
Trans. Circuits Syst. Video Technol. 2021, 32, 451–466. [CrossRef]

249

Processes 2022, 10, 858

28. Tang, Z.; Nie, H.; Pun, C.M.; Yao, H.; Yu, C.; Zhang, X. Color Image Reversible Data Hiding with Double-Layer Embedding. IEEE
Access 2020, 8, 6915–6926. [CrossRef]

29. Yao, H.; Mao, F.; Tang, Z.; Qin, C. High-fidelity dual-image reversible data hiding via prediction-error shift. Signal Process. 2020,
170, 107447. [CrossRef]

30. Salehnia, T.; Izadi, S.; Ahmadi, M. Multilevel image thresholding using GOA, WOA and MFO for image segmentation. In
Proceedings of the 8th International Conference on New Strategies in Engineering, Information Science and Technology in the
Next Century, Dubai, United Arab Emirates (UAE), 2021; Available online: https://civilica.com/doc/1196572/ (accessed on 16
March 2022).

31. Raziani, S.; Salehnia, T.; Ahmadi, M. Selecting of the best features for the knn classification method by Harris Hawk algorithm. In
Proceedings of the 8th International Conference on New Strategies in Engineering, Information Science and Technology in the
Next Century, Dubai, United Arab Emirates (UAE), 2021; Available online: https://civilica.com/doc/1196573/ (accessed on 16
March 2022).

32. Salehnia, T.; Fath, A. Fault tolerance in LWT-SVD based image watermarking systems using three module redundancy technique.
Expert Syst. Appl. 2021, 179, 115058. [CrossRef]

33. El Aziz, M.A.; Ewees, A.A.; Hassanien, A.E. Whale Optimization Algorithm and Moth-Flame Optimization for Multilevel
Thresholding Image Segmentation. Expert Syst. Appl. 2017, 83, 242–256. [CrossRef]

34. Akay, B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft
Comput. 2013, 13, 3066–3091. [CrossRef]

35. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

36. Liu, H.; Zhou, M.; Guo, X.; Zhang, Z.; Ning, B.; Tang, T. Timetable Optimization for Regenerative Energy Utilization in Subway
Systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3247–3257. [CrossRef]

37. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic
optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

38. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 2022,
391, 114570. [CrossRef]

250

Citation: Fatima, S.K.; Abbas, M.;

Mir, I.; Gul, F.; Mir, S.; Saeed, N.;

Alotaibi, A.A.; Althobaiti, T.;

Abualigah, L. Data Driven Model

Estimation for Aerial Vehicles: A

Perspective Analysis. Processes 2022,

10, 1236. https://doi.org/10.3390/

pr10071236

Academic Editor: Xiong Luo

Received: 17 May 2022

Accepted: 9 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Data Driven Model Estimation for Aerial Vehicles:
A Perspective Analysis

Syeda Kounpal Fatima 1, Manzar Abbas 1, Imran Mir 1,*, Faiza Gul 2, Suleman Mir 3, Nasir Saeed 4,*,

Abdullah Alhumaidi Alotaibi 5,6, Turke Althobaiti 7 and Laith Abualigah 8,9

1 Department of Avionics Engineering, Air University, Aerospace and Aviation Campus Kamra,
Islamabad 43600, Pakistan; 195125@aack.au.edu.pk (S.K.F.); manzar.abbas@aack.au.edu.pk (M.A.)

2 Department of Electrical Engineering, Air University, Aerospace and Aviation Campus Kamra,
Islamabad 43600, Pakistan; faiza.gul@aack.au.edu.pk

3 Electrical Department, Fast-National University of Computer & Emerging Sciences,
Peshawar 25000, Pakistan; suleman.mir@nu.edu.pk

4 Department of Electrical Engineering, Northern Border University, Arar 73222, Saudi Arabia
5 Remote Sensing Unit, Northern Border University, Arar 73222, Saudi Arabia; a.alhumaidi@tu.edu.sa
6 Department of Science and Technology, College of Ranyah, Taif Univeristy, P.O. Box 11099,

Taif 21944, Saudi Arabia
7 Department of Computer Science, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia;

turke.althobaiti@nbu.edu.sa
8 Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;

laythdyabat@aau.edu.jo
9 Faculty of Information Technology, Middle East University, Amman 11831, Jordan
* Correspondence: imranmir56@yahoo.com (I.M.); mr.nasir.saeed@ieee.org (N.S.)

Abstract: Unmanned Aerial Vehicles (UAVs) are important tool for various applications, including en-
hancing target detection accuracy in various surface-to-air and air-to-air missions. To ensure mission
success of these UAVs, a robust control system is needed, which further requires well-characterized
dynamic system model. This paper aims to present a consolidated framework for the estimation
of an experimental UAV utilizing flight data. An elaborate estimation mechanism is proposed uti-
lizing various model structures, such as Autoregressive Exogenous (ARX), Autoregressive Moving
Average exogenous (ARMAX), Box Jenkin’s (BJ), Output Error (OE), and state-space and non-linear
Autoregressive Exogenous. A perspective analysis and comparison are made to identify the salient
aspects of each model structure. Model configuration with best characteristics is then identified
based upon model quality parameters such as residual analysis, final prediction error, and fit percent-
ages. Extensive validation to evaluate the performance of the developed model is then performed
utilizing the flight dynamics data collected. Results indicate the model’s viability as the model can
accurately predict the system performance at a wide range of operating conditions. Through this, to
the best of our knowledge, we present for the first time a model prediction analysis, which utilizes
comprehensive flight dynamics data instead of simulation work.

Keywords: Unmanned Speed Aerial Vehicle; system identification ARX; ARMAX; Box Jenkin’s;
Output Error; non-linear ARX

1. Introduction

Over the past few decades, UAVs have become an emerging resource for remote
sensing of various precision, agricultural, military, civil [1], and industrial applications [2,3].
The rapidly increasing fleet of UAVs, along with the widening sphere of their utility,
therefore presents a serious challenge for the designers to formulate unique optimal control
strategies. However, technological advancements in the aviation sector [4–7] and ground
control vehicles [8–19] paved the way for the development of hi-fidelity systems. These
UAVs help researchers by providing means to collect multi-spectral information with

Processes 2022, 10, 1236. https://doi.org/10.3390/pr10071236 https://www.mdpi.com/journal/processes251

Processes 2022, 10, 1236

limited resources and data collection times which is critical for time sensitive dynamic
data [20]. The pivotal factor for a successful and safe remote sensing research/mission is
a robust and fault tolerant UAV control system. Linear and Non-linear control strategies
have been used in diverse ways for solving varying control problems to achieve desired
objectives [21–24]. Developing such control systems require well-characterized dynamic
system models. Similar work [25,26] has been done in the field of ground robotics [8–13,27]
as well. Wind tunnel testing (commonly used method for determining the parameters of
these dynamic systems) is time-consuming and costly. System Identification (SI) can be
used to overcome the limitation of analytical and wind tunnel testing methods for UAVs.
There are several techniques in system identification which can be applied to develop
dynamic system models and identify model parameters. These methods have been applied
to various aerial vehicles in recent years. The developed dynamic model can further be
used to design and verify the autopilot control system of the UAV.

1.1. Related Work

Despite their military importance and abundant usage, owing to the proprietary nature
of these UAVs, very little information related to design and development is available in
literature. Appreciable research work on design and optimization of quad-copters and
UAVs has been done by Mir et al. [22,23]. However, the research work available on model
identification and optimization of UAVs usually covers one or two techniques of system
identification. Perspective analysis and comparison of various techniques on UAVs are quite
sparse. Hopping et al. [28] has used a grey box modeling approach applying the prediction
estimation method (PEM) to model longitudinal dynamics of a UAV named Taurus.

Mir et al. [29] has further done a tremendous contribution towards soaring energetics
of a bio-inspired UAVs. Design optimization of a variable-span morphing wing UAVs and
other design optimization and controllability schemes for UAVs have been discussed in
detail by Mestrinho et al. & Mir et al. [30,31]. Later, the lateral dynamics of the same UAV
was modeled using the same approach and technique by Ahsan et al. [32]. Longitudinal
and lateral dynamics of SmartOne UAV were modeled by Rasheed [33] using grey box
modeling approach with prediction error method along with performance of error analysis.

Belge et al. [34] obtains an estimate of UAV lateral dynamic system response by using
empirical input-output data sets. The accuracy of parametric model estimation (using ARX,
ARMAX and OE model structures) and model degrees are compared for different external
disturbance effects. The model of Load Transporting System (LTS) originally designed on
UAV has been obtained by linear ARX model structure by Altan et al. [35]. ARX system
identification model has also been used to identify Multiple Input Multiple Output (MIMO)
model of a helicopter. Various transfer functions have been used to analyze the flight
dynamics of helicopter. The system identification of a quad rotor-based aerial manipulator
is presented in research carried out by Dube and Pedro [36]. ARX and ARMAX models
have been obtained from linear accelerations and yaw angular accelerations.

Cavanini et al. [37] has proposed a novel online estimation technique using LPV-ARX
model which is both cost effective and storage effective. His method permits to improve
the base of knowledge of the provided LS-SVM by introducing the possibility to learn
from on-line data, neglecting to perform the time-expensive training phase, such that the
proposed approach is suitable for on-line execution. Cavanini et al further [38] presents
a Model Predictive Control (MPC) based autopilot for a fixed-wing Unmanned Aircraft
Vehicle (UAV) for meteorological data sampling tasks, named Aerosonde. The LPV model
is used to design a MPC to drive the UAV. Two different data driven Linear Parameter-
Varying MPC (MPCLPV) algorithms have been proposed by using a subspace identification
technique. Belge et al. [39] performs the optimum path planning and tracking using
Harris hawk optimization (HHO)–grey wolf optimization (GWO), a hybrid metaheuristic
optimization algorithm, to enable the UAV to actualize the payload hold–release mission
avoiding obstacles. His novel approach generates a fast and safe optimal path without
becoming stuck with local minima, and the quad copter tracks the generated path with

252

Processes 2022, 10, 1236

minimum energy and time consumption. Weng et al. [40] addresses the robust trajectory
tracking control problem of disturbed quadrotor UAVs with disturbances, uncertainties
and unmodeled dynamics by devising a novel compound robust tracking control (CRTC)
approach via data-driven cascade control technique. Marc et al. [41] presents the online
updating of the flight envelope of a UAV. His technique is data-driven and the UAV is
subjected to structural degradation for the research.

Yu et al. [42] investigates the problem of neural adaptive distributed formation
control for quad rotor multiple UAVs subject to unmodeled dynamics and disturbance.
Saengphet et al. [43] uses the input and output data obtained from a flight mission of a tail-
less UAV for SISO mathematical model using frequency response. Bnhamdoon et al. [44]
uses Box-Jenkins model structure and presents a novel method of identification of a
quad-copter autopilot system under noisy circumstances.Real time identification of quad-
rotor UAV dynamics using a deep learning techniques for has also been studied by
Ayyad et al. [45]. Another online estimation method for UAV, using Extended Kalman
Filter(EKF) technique has been presented by Mungguia et al. [46].Puttige and Anavatti [47]
uses both online and offline models of nonlinear and complex UAV have been obtained
using system identification procedure based on Artificial Neural Network (ANN).

Wu et al. [48] provides an approximated solution of the graph partitioning problem by
using a deterministic annealing neural network algorithm. The algorithm is a continuation
method that attempts to obtain a high-quality solution by following a path of minimum
points of a barrier problem as the barrier parameter is reduced from a sufficiently large
positive number to 0. A survey of different methods of system identification techniques and
its applications for small low-cost aerial vehicles has been carried out by Mir et al. [6,7] and
Hoffer et al. [49] . The different control-oriented models of a quad-rotor UAV have been
obtained by applying different identification methods presented by Sierra and Santos [50].
Comparison of ARX method for linear estimation and Hammerstein -Wiener method
for non linear estimation for ARF-60 UAV identified models is presented by Khalil and
Yesildirek [20].

In addition to above referred literature, there are numerous other contributions made
by different researchers. Most of the literature is focused on fixed-winged or multi-rotor
UAVs used for research work in the fields of military (target drown, target interceptor, aerial
munition practice) and non-military (search and rescue, area surveillance, environmental,
agriculture) applications. Even for UAVs, the field of side-by-side comprehensive analysis
and comparison of different linear and non-linear system identification techniques still has
a vast potential for research.

1.2. Motivating Problems for This Paper

Model prediction and performance analysis using experimental flights for UAVs or
other aerial vehicles is not feasible due to the involved cost and damage hazard to the
system and the environment in case of any crash. Although wind tunnel testing and CFD
analysis for model prediction and performance analysis can be done, however, system
identification presents a very cost-effective and user friendly solution towards mathematical
modelling of the aerial vehicles. Based on the literature review, it has been observed that
in-spite of system identification being widely used for UAVs, very little work related to
model prediction of UAV using system identification is available. Even in UAVs, the
comparison of predicted models using different linear and non linear methods is yet to
be explored. The authors of this paper felt that the researchers must be provided with a
platform for comparison of linear and non-linear techniques using actual flight data for
model estimation and validation. This lack of literature for UAV model prediction using
actual flight data motivated the author to fill in this gap through this paper.

1.3. Main Contributions of This Paper

As evident from the preamble of related work, very little research is available in
open literature which is based on elaborate comparison of different techniques of system

253

Processes 2022, 10, 1236

identification for UAVs. Most of the literature for model prediction of UAVs is based on
simulation results rather than utilizing actual flight data. Furthermore, when it comes
to UAVs, the research contribution using actual flight data along with comprehensive
performance evaluation and comparison of linear and nonlinear system identification
techniques is even much scarce.

The authors aim to present a base platform for model prediction of UAV utilizing
actual flight data after a comprehensive perspective analysis of linear and nonlinear system
identification techniques. This paper aims to provide a consolidated platform for the
audience which provides a mechanism for model prediction of UAV/UAVs. Besides
providing a comprehensive affect of individual training of actual flight data, the presented
approach will also help the readers to carry out analysis of several regression techniques
in linear and non-linear domain. Moreover, the performance comparison of linear and
nonlinear system identification models for quality parameters like final prediction error,
residual analysis, mean squared errors and fit percentages further enhances the effectively
of the proposed approach.

1.4. Sequence of This Paper

This paper is organized as follows. Section 2 presents the build up of 6-Degree of
Freedom (DOF) aerodynamic model for UAV followed by design parameters of UAV. Then
a brief overview of all system identification used in this research is given. The results and
analysis part gives first presents the flight sorties design conducted for estimation and
validation purposes followed by the response of all linear and nonlinear parametric model
along with residue analysis of each. A detailed analysis and comparison is carried out
for selection of final model. Then the author has also verified the finally selected model
by predicting a second actual flight of UAV. Lastly, the conclusion and limitations of the
research are presented.

2. Problem Formulation

2.1. 6 DOF Flight Dynamics Model

A 6-Degrees of Freedom (DOF) Flight Dynamics Model (FDM) has been used for
studying the motion of UAV in three dimensions. 6DOF refers to the number of axes
that a rigid body may freely move in three-dimensional space. It specifies the number
of independent factors that define the configuration of a mechanical system. The body
may move in three dimensions, on the X, Y, and Z axes, as well as change orientation
between those axes via rotation known as pitch, yaw, and roll. FDM assumes a flat and
non-rotating earth approximations and is based on dynamic equations (deduced by Stevens,
Lewis and Johnson [51]) in body frame reference. These sets of equations, which govern
dynamics of translation (Equation (1)), rotation (Equation (2)), kinematics (Equation (3))
and navigation (4)) respectively, are defined as:

U̇ = RV − QW − g sin θ +
XA + XT

m

V̇ = −RU + PW + g sin φ cos θ +
YA + YT

m

U̇ = QU − PV + g cos φ cos θ +
ZA + ZT

m

(1)

In Equation (1), U̇, V, W are the components of linear velocities along the three body
axes respectively. φ, θ&ψ are the Euler angles which define the orientation of body frame
with respect to inertial frame, P, Q, R are the angular velocities along body x, y and z
axis respectively. XA, YA, ZA & XT , YT , ZT are the Force and Thrust components along the
three axis.

254

Processes 2022, 10, 1236

ΓṖ = JXZ(JX − JY + JZ)PQ

− [JZ(JZ − JY) + J2
XZ]QR + JZl + JXZn

ΓQ̇ = (JZ − JX)PR − JXZ(P2 − R2) + m

ΓṖ = [JX(JX − JY) + J2
XZ]PQ − JXZ(JX − JY + JZ)QR

+ JXZl + JXn

(2)

where JX , Jy, Jz, JXZ and Γ are the inertia matrix components. Also l, m, n are the roll, pitch
and yaw moments.

φ̇ = P + tan θ(Q sin φ + R cos φ)

θ̇ = Q cos φ − R sin φ

ψ̇ =
Q sin φ + R cos φ

cos θ

(3)

ṖE = U cos θ cos ψ + V(− cos φ sin ψ + sin φ sin θ cos ψ)

+ W(sin φ sin ψ + cos φ sin θ cos ψ)

ṖN = U cos θ sin ψ + V(cos φ cos ψ + sin φ sin θ sin ψ)

+ W(− sin φ cos ψ + cos φ sin θ sin ψ)

ḣ = U sin θ − V sin φ cos θ − W cos φ cos θ

(4)

where Pe and Pn are the position coordinates alongside the inertial east and north directions.
h is the vehicle altitude, J is the moment of inertia matrix, m is the mass, g is the acceleration
due to gravity, l, m, n are the angular velocity components (roll, pitch and yaw moments)
in the body axis, α and β are the aerodynamic angles representing angle of attack and side
slip angle respectively.

Aerodynamic Parameters

High fidelity numerical techniques of Computational Fluid Dynamics (CFD) and USAF
DATCOM were utilized for generating FDM based on 6-DOF simulation environment.
Flight conditions define aerodynamic forces and moments acting on high speed and are
governed by Equations (5) and (6) respectively.

L = q∞SCL, D = q∞SCD, Y = q∞SCY (5)

where L, D and Y represent aerodynamic lift, drag and side force respectively in wind axis.
CL, CD, CY are the dimensionless aerodynamic coefficients for lift, drag and side forces
respectively, q∞ is the dynamic pressure and S is the wing area.

lw = q∞bSCl , mW = q∞cSCm, nW = q∞bSCn (6)

where nw, mw and lw are the yaw, pitch and roll moments in wind axis, b is the wing span,
c is the wing chord and Cn, Cm, Cl are the dimensionless aerodynamic coefficients for yaw,
pitch and roll moments respectively. The design of UAV under test was optimized based
on CFD analysis and comparison of various design configurations.

3. Model Identification

The objective of this search is to build an accurate model for UAV. MATLAB was used
for system identification of the system. The adopted research methodology was divided
into following steps:

• Acquiring data for two sorties of experimental UAV.
• Pre-processing and filtering the data for whole flight of the UAV.
• Model identification using flight data from one sortie using ARX, ARMAX, Output

Error, Box Jenkin’s, Non-linear ARX (with various estimators).
• Training of model for each individual technique

255

Processes 2022, 10, 1236

• Selection of best fit model on basis of model quality parameters like Final Prediction
Error (FPE), fit percentage to actual flight data and residual analysis.

• Validation of selected model on a different flight data and analysis of the results.

3.1. Model Structures

Various model structures are used in this research to model MIMO dynamics of the
UAV. The inputs taken were aileron deflection (δa) and Vtail deflection (δe) whereas the
outputs are taken to be yaw rate (P), pitch rate (Q), and roll rate (R).

3.1.1. Auto-Regressive Exogenous (ARX) Model

The second method used is the estimation of ARX model which as per the literature
is assumed to be the most efficient polynomial estimation method as linear regression
equations are in analytic form whose solution is also unique. The estimation of the ARX
model is the most efficient of the polynomial estimation methods because it is the result
of solving linear regression equations in analytic form with a unique solution. when the
model order is high, then ARX model is preferred. For input u(t), output y(t) and noise
e(t), the ARX model is given by Equation (7).

A(q)y(t) =
nu

∑
i=0

Bi(q)ui(t − nki) +e(t) (7)

where A and B are polynomials expressed in time shift operator q−1. Although ARX model
is suited for most high order dynamic systems, it has a disadvantage as the disturbances
are part of the system model. The disadvantage of the ARX model is that disturbances
are part of the system dynamics. However, this disadvantage can be curbed with a good
signal-to-noise ratio.

3.1.2. Auto Regressive Moving Average eXogenous (ARMAX) Model

For dynamics systems with dominating disturbances that enter the process in the early
stages like wind gust in case of aerial systems, ARMAX model comes in handy. ARMAX
model has advantage over ARMAX model by providing more flexibility for handling
disturbances.For input u(t), output y(t) and noise e(t), the ARMAX model is given by
Equation (8).

A(q)y(t) =
nu

∑
i=0

Bi(q)ui(t − nki) +C(q)e(t) (8)

where A, B and C are polynomials expressed in time shift operator q−1.

3.1.3. Box Jenkin’s (BJ) Model

When complete system model dynamics are described by modeling the noise and
system dynamics separately, this comes under the category of BJ’s Model.Very sparse
literature is available related to research carried out on UAVs using BJ model as this model
is particularly useful when the disturbances enter towards the end of the process. The
disturbance is basically the measurement noise. For input u(t), output y(t) and noise e(t),
the BJ model is given by Equation (9).

y(t) =
nu

∑
i=0

Bi(q)
Fi(q)

ui(t − nki) +
C(q)
D(q)

e(t) (9)

where B, C, D and F are polynomials expressed in time shift operator q−1.

3.1.4. Output Error (OE) Model

Output Error model is usually used when there is only the need to parameterize the
system dynamics without estimating the noise model. This model is only suitable for
theoretical modelling of the aerial vehicles, however, its use in practical system dynamics

256

Processes 2022, 10, 1236

may be considered after due consideration. For input u(t), output y(t) and noise e(t), the
OE model is given by Equation (10).

y(t) =
nu

∑
i=0

Bi(q)
Fi(q)

ui(t − nki) +e(t) (10)

3.1.5. State Space Model

State Space model structure was also used in this research owing to its less computa-
tional time in case of iterative analysis which can be attributed to lower model order of the
state space model. Equation (11) describes a state space system.

x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) +e(t)
(11)

In Equation (11), A, B, C, D and K are system matrices. The previously mentioned para-
metric methods of system identification have their own advantages. However, those models
may lead to higher order models and a large number of parameters which could lead to lack
of convergence to global minima and extensive computational times for iterative analysis.

3.1.6. Nonlinear-ARX Model

As depicted by Equation (7), the ARX model predicts the output by using the weighted
sum of linear regressors i.e, weighted sum of current inputs and past inputs and outputs.
The non-linear ARX model provides additional structural flexibility by having a non-linear
function F as a model regressor. Three types of model regressors or mapping functions
namely wavelet network non-linearity, tree partition non-linearity and multilayered neural
network were used for this research. The former two estimators use a combination of
offset, linear weights and non-linearity function for computation of output in which units
of the non-linear function operate on radial combination of inputs. in the later estimator
i.e., multilayered neural network estimator, These networks consists of three type of layers,
one is input, one is output and then we can have multiple hidden layers. This type of
technique has the ability to find the relation of very complex nature and can cover a
large regime of input and output. However, once the network has been trained and is
appropriately selected, it will produce good accuracy for the regime it has been trained,
but its results could be quite misleading for the values of input and outputs outside what it
has been trained.

4. Results and Analysis

The results of various model structures to describe MIMO dynamics od UAV using
aileron deflection (δa), Vtail deflection (δe), height (h), speed (Vt) and thrust (δT) as inputs
and yaw rate (P), pitch rate (Q), and roll rate (R) as outputs of the function are presented.
The data of first flight used to estimate the model has been divided into two parts: the first
part for estimation of the model and second part for validation of the model for the same
flight. a number of iterations were performed and training was done for each technique.
The best model was picked on the basis of Final Prediction Error (FPE) and the picked
model quality is further analysed using the following factors:

• Final Prediction Error (FPE)
• Residual Analysis
• Percentage of fit to validation data
• Mean Squared Error (MSE)

The reader is also presented with a comparative analysis amongst the best model of
each technique and final model is selected analysing the model quality using previously
stated factors. This selected model is further validated to predict the outputs using a
different data of the same flight regime.

257

Processes 2022, 10, 1236

4.1. Flight Designs

The first and foremost step of mathematical modelling of experimental UAV was
data acquisition of inputs and outputs for an actual flight. A flight design was sorted out
to cover all aspects of control surfaces under different flight conditions. Once, the flight
design was finalized, flight was conducted and data was acquired for offline empirical
mathematical modelling of the UAV. After modelling, a second flight was conducted to
compare the predicted response using finalized model with actual flight response.

4.1.1. Flight 1 (Estimation)

The experimental UAV was given full throttle and held back with the catapult mech-
anism. The height profile along with x-axis acceleration and thrust shutoff point at time
of parachute deployment of the UAV was used to identify the whole flight regime to be
used for modelling. The UAV attains a certain height and then maintains that height while
performing maneuvers to capture the complete range of control surface deflections for
different flight conditions (Figures 1 and 2).

Figure 1. Aileron Deflection.

Figure 2. V Tail Deflection.

258

Processes 2022, 10, 1236

After capturing the required data, it was trained offline to use it for system modelling.
The data was divided in half. The first half comprising the takeoff and part of level flight
was used for model estimations and the second half was used used for validation.

4.1.2. Flight 2 (Validation)

Finalizing the the mathematical model using flight 1 data led the authors to conduct
validation trial. A second flight was conducted using the same flight design aspects dis-
cussed in Section 4.1.1. Different profiles for the validation sortie are shown in Figures 3–8.
Complete flight regime (takeoff till parachute deployment) was predicted using the mathe-
matical model and the results are depicted in Section 4.9.

Figure 3. Height: Validation Flight.

Figure 4. X-acceleration Validation.

Figure 5. Thrust: Validation Flight.

259

Processes 2022, 10, 1236

Figure 6. Speed: Validation Flight.

Figure 7. Aileron Deflection: Flight 2.

Figure 8. V-Tail Defection: Flight 2.

4.2. Finite Impulse Response (FIR) Model

From the FIR model response in Figure 9 the excitation orders for all the inputs are
[50 50 50 50 50] and the time delay Ts will be taken zero in further techniques. The FPE and
MSE of FIR model is 3.352 × 106 and 2.6 × 104 respectively and fit percentage between
modeled output and actual output is for pitch rate, roll rate and yaw rate is −1036%, 11.06%,
−9067% respectively. The number of free coefficients of the impulse response model is 1050
which is quite high.

260

Processes 2022, 10, 1236

Figure 9. Finite Impulse Response.

4.3. Auto Regressive Exogenous (ARX) Model

The model order for the ARX model was selected in an iterative fashion where different
combinations of the order of polynomial A(q) (Na), order of polynomial B(q) (Nb) were
chosen. A total of 75 models were derived and training was performed on each of each
model before a best ARX model with minimum FPE of 0.00257 and MSE of 0.6356 was
finalized. Fit percentages to actual outputs are depicted in 1-step ahead prediction response
of ARX model in Figure 10. The auto-correlation and cross-correlation plots of the model
response (Figure 11) also shows that the selected model gives good confidence level as
the residues are within the range the region marked blue which defines the part of the
input response not been able to be predicted by the model. In our research we have set the
confidence region to be 98%.

Figure 10. ARX Model Response.

261

Processes 2022, 10, 1236

Figure 11. ARX Model Residue Correlation.

4.4. Autoregressive Moving Average eXogenous (ARMAX) Model

The same iterative approach was used for model order selection of ARMAX model.
Final ARMAX model was selected after deriving and training a total of 125 model with
FPE and MSE equal to 0.002208 and 0.6352. Fit percentages to actual outputs are depicted
in 1-step ahead prediction response of ARX model in Figure 12. The auto-correlation and
cross-correlation plots of the model response (Figure 13) also shows that the selected model
gives good confidence level.

Figure 12. ARMAX Model Response.

262

Processes 2022, 10, 1236

Figure 13. ARMAX Model Residue Correlation.

4.5. Box Jenkin’s (BJ Model)

Order selection procedure used in [44] was adopted to select the model order which
gives satisfactory residue correlation (Figure 14) and fit percentages (Figure 15) along with
an impressive FPE and MSE 0.005407 and 0.8946 respectively.

Figure 14. BJ Model Response.

263

Processes 2022, 10, 1236

Figure 15. BJ Model Residue Correlation.

4.6. Output Error (OE) Model

The OE model response and residual correlation are shown in Figures 16 and 17
respectively. As shown in the figure, the output error model is not able to predict the
1·step ahead predicted response. This can be attributed to the fact that output error model
acts as a similation model in which the model response is computed using input data and
initial conditions. Since no past outputs are being used to compute the response the error
accumulates and the results deviate from actual response.

Figure 16. OE Model Response.

264

Processes 2022, 10, 1236

Figure 17. OE Model Residue Correlation.

4.7. State Space Model

Figures 18 and 19 shows the state space model fit percentages and residue correlation
respectively. The model order is equal to 6 with FPE and MSE equal to 0.005307 and 0.7822
respectively. The lower model order of the state space model and the residual graphs of the
same show that this model provides ease of computation by reducing the order without
compromising the quality of the response.

Figure 18. SS Model Response.

265

Processes 2022, 10, 1236

Figure 19. SS Model Residue Correlation.

4.8. Non-Linear ARX Model

The fit percentages and residue correlation plots of non-linear ARX models with tree
partition, wavelet network and neural network estimators are presented in Figures 20–22.
The Model order is selected to be the same as the best fit ARX model for further comparison.
Although the results of wavelet network are acceptable but the added complexity in the
model due to non linearity is not favored for time compressed computational environments.
the same quality of model response is also provided by linear models.

Figure 20. NLARX Tree Partition Model Response.

266

Processes 2022, 10, 1236

Figure 21. Tree Partition Residue Correlation.

Figure 22. NLARX Wavelet Network Model Response.

4.9. Comparative Analysis

The comparison analysis of results for all linear and non-linear parametric model
estimation techniques used in this research are tabulated in Table 1 for selection of best
model based on parameters like model order, Final Prediction Error (FPE), Mean Square
Error (MSE), fit percentages of roll rate (P), pitch rate(Q) and yaw rate (R), number of free
parameters and perspective analysis of residue correlation.

267

Processes 2022, 10, 1236

Table 1. Comparison Analysis of Linear and Nonlinear Parametric Model Responses.

Parameter ARX ARMAX BJ OE SS
NLARX

TP WL NN

FPE 0.00257 0.0022 0.00868 2.611 0.0037 - 0.002688 -
MSE 0.6356 0.635 0.8518 16.29 0.74 3.998 0.643 0.6545
PFit 89% 88.04% 88.62% 1.854% 87.46% 63.16% 88.74% 87.7%
QFit 80.68% 81.76% 74.75% −19.5% 66.5% 12.57% 73.85% 77.02%
RFit 82.87% 83.48% 78.23% −173.2% 88.95% −21.28% 82.08% 81.79%

Coeff. 210 135 72 105 102 - - -

ARMAX model and linear ARX model gave best values for FPE, MSE, fit percentages
etc. Finally, ARMAX model was selected based on residue analysis. The next step was to
validate the selected model on a different flight data covering the same flight regime. The
comparison results for predicted output of ARMAX model and actual output data from
validation sortie are presented in Figure 23 along with the residue correlation in Figure 24.
The fit percentages of the ARMAX model are satisfactory and the residue correlation plot
also shows good confidence level.

Figure 23. Validation of ARMAX Model with Second Flight Data.

268

Processes 2022, 10, 1236

Figure 24. Residue Correlation.

4.10. Discussion and Remarks

As evident from Table 1 the linear and non-linear parametric models give results
which are acceptable for use in future design modifications and simulations of the UAV
under test. However, the output error model can’t be used owing to the high deviations in
predicted responses and measured responses. The reason for this can be attributed to the
fact that the output error model takes only the previous inputs rather than the previous
inputs and outputs for the prediction of the model response. The linear ARX model has
higher model order as compared to the linear ARMAX model. However, The ARMAX
model provides a better prediction with lower model order and hence, reducing the number
of free coefficients in the model, which is usually desired.

Box Jenkins and state space model, although giving even lower model order and
lesser number of coefficients in the model, The performance of these models based on
fit percentages, mean squared error and final prediction error states render them of less
utility in comparison to ARMAX and ARX models. The nonlinear ARX models with tree
partition, wavelet network and neural network show acceptable fit percentages but the fact
that the model is nonlinear, which adds to the complexity and computational time with
high model orders, render them with less utilization. The last factor which has contributed
towards the selection of best model amongst all model structures is the residual analysis.
ARMAX model gives the best results on this model quality assessment parameter also.
Hence, ARMAX model was selected as final model for verification of a different flight data.

4.11. Research Limitations

The research pertains to system identification utilizing various linear/nonlinear tech-
niques. Limited research in this regard is available in literature to make it a benchmark
for this research. The flights to be performed for the purpose of data gathering for model
prediction clearly presents a financial and administrative challenge. The integrity of model
prediction and its accuracy greatly enhances with availability of sufficient flight data. We

269

Processes 2022, 10, 1236

believe that the technique presented in this research will present even more accurate results
with the increase in the available flight data.

5. Conclusions

This paper describes the development of 6 DOF Flight Dynamics Model of the UAV
followed by basic parameters of the UAV under test and launch and recovery mechanism
of the same. System identification was applied to actual flight data, and various linear and
nonlinear parametric models with different model structures were developed. The model
structures included the impulse response model, ARX, ARMAX, Box Jenkin’s, Output
Error, State Space, Nonlinear ARX models with tree partition, wavelet network, and neural
network models. Several models were developed for each model structure, and each model
was trained before the selection of the final model from that category. A comprehensive
analysis was carried out for all the models, and after detailed comparison and analysis
best fit model was finalized to be ARMAX model, which has FPE of 0.0022. The model
was further used to predict output of a different sortie with same flight regime and the fit
percentages of the modeled output to actual output of Roll rate (P) was 88.72%, Pitch Rate
(Q) was 72.81% and Yaw Rate (R) was 38.36% which is quite satisfactory. It is imperative to
highlight that the proposed framework presented in this study provides a consolidated
platform which can be utilized by researchers to perform model estimation for any similar
platform. The best fit model structure most suitable for that particular configuration can
be selected accordingly as per the proposed benchmarks. The research presented in this
paper is purely original and to the best of author’s knowledge, such a detailed analysis is
presented for the first time in literature.

Author Contributions: Conceptualization, S.K.F., S.M. & F.G.; methodology, S.K.F. & I.M.; software,
S.K.F.; validation, I.M. & N.S.; formal analysis, S.K.F., I.M., F.G.; investigation, I.M., F.G. & M.A.
resources, N.S., A.A.A. & T.A.; data curation, S.K.F., M.A. & I.M.; writing—original draft preparation,
S.K.F., F.G.; writing—review and editing, F.G., I.M., N.S. & L.A.; visualization, M.A., I.M., N.S., L.A.;
supervision, M.A., I.M.; project administration, M.A., I.M.; funding acquisition, N.S., A.A.A., T.A. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank Taif University for funding this research through Taif Uni-
versity Research Supporting, Project number. (TURSP-2020/277), Taif University, Taif, Saudi Arabia.
Also, the authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of
Education in Saudi Arabia for funding this research through the project number “IF_2020_NBU_432”.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Informed consent was obtained from all individual participants
included in the study.

Data Availability Statement: Data is available from the authors upon reasonable request.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this paper.

Abbreviations

The following abbreviations are used in this manuscript:

c̄ Mean aerodynamic chord (m)
CD, CY , CL Coefficients of drag, side force and lift
Cl , Cm, Cn moment coefficients of Roll, pitch and yaw
D Drag (N)
g Acceleration due to gravitational force (ms−2)
GCM Guidance and Control Module
h Altitude (m)
UAV Unmanned High Speed Aerial Vehicle
Jx, Jy, Jz Components of the inertia matrix components in body frame
Vt Free-stream velocity (m/s)

270

Processes 2022, 10, 1236

L Lift (N)
m Mass of the vehicle (kg)
n,m,l (yaw, pitch and roll moments respectively) defined in body frame (Nm)
Pe, Pn Position coordinates along the inertial east and north directions (m)
p, q, r Roll, pitch and yaw rates in body frame (deg/s)
q∞ Free stream dynamic pressure (N/m2)
SRe f Reference area (m2)
XA, YA, ZA (axial, side and tangential force respectively) in the body frame (N)
T Engine thrust (N)
U,V,W Linear velocity along body x, y and z axis respectively (m/s)
W Weight (N)
ARX Automatic Regression eXogenous
ARMAX Automatic Regression Moving Average eXogenous
BJ Box Jenkin’s
OE Output Error
SS State Space
TP Tree Partition
WL WaveLet Network
NN Neural Network
FPE Final Prediction Error
MSE Mean Squared Error
n Model order for state space model
Nb Order of Polynomial B(q)
Nc Order of Polynomial C(q)
Nd Order of Polynomial D(q)
Nf Order of Polynomial F(q)

Greek Symbols

The following greek symbols are used in this manuscript:

ρ Air density (kg/m3)
β Side slip angle (deg)
α Aerodynamic angle of attack (deg)
φ, θ, ψ Roll, pitch and azimuth angles describing body frame w.r.t inertial frame (deg)
γ Flight path angle (deg)
δa,δe,δ f aileron, elevator and flap controls respectively

References

1. Gul, F.; Mir, I.; Abualigah, L.; Mir, S.; Altalhi, M. Cooperative multi-function approach: A new strategy for autonomous ground
robotics. Future Gener. Comput. Syst. 2022, 134, 361–373. [CrossRef]

2. Din, A.F.U.; Mir, I.; Gul, F.; Nasar, A.; Rustom, M.; Abualigah, L. Reinforced Learning-Based Robust Control Design for Unmanned
Aerial Vehicle. Arab. J. Sci. Eng. 2022, 1–16. [CrossRef]

3. Din, A.F.U.; Akhtar, S.; Maqsood, A.; Habib, M.; Mir, I. Modified model free dynamic programming: An augmented approach for
unmanned aerial vehicle. Appl. Intell. 2022, 1–21. [CrossRef]

4. Mir, I.; Eisa, S.A.; Maqsood, A. Review of dynamic soaring: Technical aspects, nonlinear modeling perspectives and future
directions. Nonlinear Dyn. 2018, 94, 3117–3144. [CrossRef]

5. Mir, I.; Maqsood, A.; Akhtar, S. Biologically inspired dynamic soaring maneuvers for an unmanned air vehicle capable of sweep
morphing. Int. J. Aeronaut. Space Sci. 2018, 19, 1006–1016. [CrossRef]

6. Mir, I.; Maqsood, A.; Akhtar, S. Dynamic modeling & stability analysis of a generic UAV in glide phase. In Proceedings of the
MATEC Web of Conferences, EDP Sciences, Ulis, France, 10 July 2017; Volume 114, p. 01007.

7. Mir, I.; Eisa, S.A.; Taha, H.; Maqsood, A.; Akhtar, S.; Islam, T.U. A stability perspective of bioinspired unmanned aerial vehicles
performing optimal dynamic soaring. Bioinspiration Biomim. 2021, 16, 066010. [CrossRef]

8. Gul, F.; Mir, S.; Mir, I. Coordinated Multi-Robot Exploration: Hybrid Stochastic Optimization Approach. In Proceedings of the
AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1414.

9. Gul, F.; Mir, S.; Mir, I. Multi Robot Space Exploration: A Modified Frequency Whale Optimization Approach. In Proceedings of
the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1416.

10. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P. Multi-Robot Space Exploration: An Augmented Arithmetic Approach. IEEE Access 2021,
9, 107738–107750. [CrossRef]

271

Processes 2022, 10, 1236

11. Gul, F.; Rahiman, W.; Alhady, S.N.; Ali, A.; Mir, I.; Jalil, A. Meta-heuristic approach for solving multi-objective path planning for
autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient Intell. Humaniz.
Comput. 2021, 12, 7873–7890. [CrossRef]

12. Gul, F.; Mir, I.; Rahiman, W.; Islam, T.U. Novel Implementation of Multi-Robot Space Exploration Utilizing Coordinated
Multi-Robot Exploration and Frequency Modified Whale Optimization Algorithm. IEEE Access 2021, 9, 22774–22787. [CrossRef]

13. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques:
Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [CrossRef]

14. Gul, F.; Alhady, S.S.N.; Rahiman, W. A review of controller approach for autonomous guided vehicle system. Indones. J. Electr.
Eng. Comput. Sci. 2020, 20, 552–562. [CrossRef]

15. Gul, F.; Rahiman, W. An Integrated approach for Path Planning for Mobile Robot Using Bi-RRT. In Proceedings of the IOP
Conference Series: Materials Science and Engineering, Kuala Terengganu, Malaysia, 27–28 August 2019; IOP Publishing: Kuala
Terengganu, Malaysia, 2019; Volume 697, p. 012022.

16. Gul, F.; Rahiman, W.; Nazli Alhady, S.S. A comprehensive study for robot navigation techniques. Cogent Eng. 2019, 6, 1632046.
[CrossRef]

17. Szczepanski, R.; Tarczewski, T.; Grzesiak, L.M. Adaptive state feedback speed controller for PMSM based on Artificial Bee Colony
algorithm. Appl. Soft Comput. 2019, 83, 105644. [CrossRef]

18. Szczepanski, R.; Bereit, A.; Tarczewski, T. Efficient Local Path Planning Algorithm Using Artificial Potential Field Supported by
Augmented Reality. Energies 2021, 14, 6642. [CrossRef]

19. Szczepanski, R.; Tarczewski, T. Global path planning for mobile robot based on Artificial Bee Colony and Dijkstra’s algorithms.
In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland,
25–29 April 2021; pp. 724–730.

20. Khalil, B.; Yesildirek, A. System identification of UAV under an autopilot trajectory using ARX and Hammerstein-Wiener
methods. In Proceedings of the 7th International Symposium on Mechatronics and Its Applications, Sharjah, United Arab Emirates,
20–22 April 2010; pp. 1–5.

21. Mir, I.; Akhtar, S.; Eisa, S.; Maqsood, A. Guidance and control of standoff air-to-surface carrier vehicle. Aeronaut. J. 2019,
123, 283–309. [CrossRef]

22. Mir, I.; Taha, H.; Eisa, S.A.; Maqsood, A. A controllability perspective of dynamic soaring. Nonlinear Dyn. 2018, 94, 2347–2362.
[CrossRef]

23. Mir, I.; Maqsood, A.; Eisa, S.A.; Taha, H.; Akhtar, S. Optimal morphing–augmented dynamic soaring maneuvers for unmanned
air vehicle capable of span and sweep morphologies. Aerosp. Sci. Technol. 2018, 79, 17–36. [CrossRef]

24. Mir, I.; Maqsood, A.; Taha, H.E.; Eisa, S.A. Soaring Energetics for a Nature Inspired Unmanned Aerial Vehicle. In Proceedings of
the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1622.

25. Hussain, A.; Hussain, I.; Mir, I.; Afzal, W.; Anjum, U.; Channa, B.A. Target Parameter Estimation in Reduced Dimension STAP for
Airborne Phased Array Radar. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur,
Pakistan, 5–7 November 2020; pp. 1–6.

26. Hussain, A.; Anjum, U.; Channa, B.A.; Afzal, W.; Hussain, I.; Mir, I. Displaced Phase Center Antenna Processing For Airborne
Phased Array Radar. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies
(IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 988–992.

27. Gul, F.; Rahiman, W. Mathematical Modeling of Self Balancing Robot and Hardware Implementation. In Proceedings of the 11th
International Conference on Robotics, Vision, Signal Processing and Power Applications: Universiti Sains Malaysia, Penang,
Malaysia, 5–6 April 2021; Springer: Penang, Malaysia, 2022; pp. 20–26.

28. Hopping, B.M.; Garrett, T.M. Low Speed Airfoil Design for Aerodynamic Improved Performance of UAVs. U.S. Patent 9,868,525,
29 June 2018.

29. Mir, I.; Maqsood, A.; Akhtar, S. Optimization of dynamic soaring maneuvers to enhance endurance of a versatile UAV. In
Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bangkok, Thailand, 2017; Volume 211,
p. 012010.

30. Mestrinho, J.; Gamboa, P.; Santos, P. Design optimization of a variable-span morphing wing for a small UAV. In Proceedings of
the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7
April 2011; Volume 47.

31. Mir, I.; Eisa, S.A.; Taha, H.; Maqsood, A.; Akhtar, S.; Islam, T.U. A stability perspective of bio-inspired UAVs performing dynamic
soaring optimally. Bioinspir. Biomim. 2021. [CrossRef]

32. Ahsan, J.; Ahsan, M.; Jamil, A.; Ali, A. Grey Box Modeling of Lateral-Directional Dynamics of a UAV through System Identification.
In Proceedings of the 2016 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 19–21
December 2016; pp. 324–329.

33. Rasheed, A. Grey box identification approach for longitudinal and lateral dynamics of UAV. In Proceedings of the 2017
International Conference on Open Source Systems & Technologies (ICOSST), Lahore, Pakistan, 18–20 December 2017; pp. 10–14.

34. BELGE, E.; Hızır, K.; PARLAK, A.; ALTAN, A.; HACIOĞLU, R. Estimation of small unmanned aerial vehicle lateral dynamic
model with system identification approaches. Balk. J. Electr. Comput. Eng. 2020, 8, 121–126. [CrossRef]

272

Processes 2022, 10, 1236

35. Altan, A.; Aslan, Ö.; Hacıoğlu, R. Model predictive control of load transporting system on unmanned aerial vehicle (UAV). In
Proceedings of the Fifth International Conference on Advances in Mechanical and Robotics Engineering, Rome, Italy, 1 May 2017;
Institute of Research Engineers and Doctors: Rome, Italy, 2017; pp. 1–4.

36. Dube, C.; Pedro, J.O. Modelling and closed-loop system identification of a quadrotor-based aerial manipulator. J. Phys. Conf. Ser.
2018, 1016, 012007.

37. Cavanini, L.; Ferracuti, F.; Longhi, S.; Monteriù, A. Ls-svm for lpv-arx identification: Efficient online update by low-rank matrix
approximation. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece,
1–4 September 2020; pp. 1590–1595.

38. Cavanini, L.; Ippoliti, G.; Camacho, E.F. Model predictive control for a linear parameter varying model of an UAV. J. Intell. Robot.
Syst. 2021, 101, 1–18.

39. Belge, E.; Altan, A.; Hacıoğlu, R. Metaheuristic Optimization-Based Path Planning and Tracking of Quadcopter for Payload
Hold-Release Mission. Electronics 2022, 11, 1208. [CrossRef]

40. Weng, Y.; Nan, D.; Wang, N.; Liu, Z.; Guan, Z. Compound robust tracking control of disturbed quadrotor unmanned aerial
vehicles: A data-driven cascade control approach. Trans. Inst. Meas. Control 2022, 44, 941–951. [CrossRef]

41. Lecerf, M.; Allaire, D.; Willcox, K. Methodology for dynamic data-driven online flight capability estimation. AIAA J. 2015,
53, 3073–3087. [CrossRef]

42. Yu, Y.; Guo, J.; Ahn, C.K.; Xiang, Z. Neural adaptive distributed formation control of nonlinear multi-uavs with unmodeled
dynamics. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]

43. Saengphet, W.; Tantrairatn, S.; Thumtae, C.; Srisertpol, J. Implementation of system identification and flight control system for
UAV. In Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan,
24–26 April 2017; pp. 678–683.

44. Bnhamdoon, O.A.A.; Mohamad Hanif, N.H.H.; Akmeliawati, R. Identification of a quadcopter autopilot system via Box–Jenkins
structure. Int. J. Dyn. Control 2020, 8, 835–850. [CrossRef]

45. Ayyad, A.; Chehadeh, M.; Awad, M.I.; Zweiri, Y. Real-time system identification using deep learning for linear processes with
application to unmanned aerial vehicles. IEEE Access 2020, 8, 122539–122553. [CrossRef]

46. Munguía, R.; Urzua, S.; Grau, A. EKF-based parameter identification of multi-rotor unmanned aerial vehiclesmodels. Sensors
2019, 19, 4174. [CrossRef]

47. Puttige, V.R.; Anavatti, S.G. Real-time system identification of unmanned aerial vehicles: A multi-network approach. J. Comput.
2008, 3, 31–38. [CrossRef]

48. Wu, Z.; Karimi, H.R.; Dang, C. An approximation algorithm for graph partitioning via deterministic annealing neural network.
Neural Netw. 2019, 117, 191–200. [CrossRef]

49. Hoffer, N.V.; Coopmans, C.; Jensen, A.M.; Chen, Y. A survey and categorization of small low-cost unmanned aerial vehicle
system identification. J. Intell. Robot. Syst. 2014, 74, 129–145. [CrossRef]

50. Sierra, J.E.; Santos, M. Modelling engineering systems using analytical and neural techniques: Hybridization. Neurocomputing
2018, 271, 70–83. [CrossRef]

51. Stevens, B.L.; Lewis, F.L.; Johnson, E.N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems; John
Wiley & Sons: Hoboken, NJ, USA, 2015.

273

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Processes Editorial Office
E-mail: processes@mdpi.com

www.mdpi.com/journal/processes

ISBN 978-3-0365-4772-5

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com

	A9R1uyvbuu_lt3fj5_1sg
	[Processes] Evolutionary Process for Engineering Optimization-V2.pdf
	A9R1uyvbuu_lt3fj5_1sg.pdf

