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Editorial

Precision Medicine in Solid Tumors: How Far We Traveled
So Far?

Nandini Dey 1,2,* and Pradip De 1,2

1 Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA;
pradip.de@avera.org

2 Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
* Correspondence: nandini.dey@avera.org

The future of disease management in solid tumors will rely heavily on how effectively we
understand precision medicine and how successfully we can deliver personalized medicine.
In the post-human genome project era, both translational research as well as clinical care in
oncology has become functions of knowledge-based deliverance of therapy. The knowledge
rides on the technological revolution, next-generation sequencing (NGS), and whole-exome
sequencing/whole transcriptome sequencing (WES/WTS), which provide comprehensive
genomic data in real-time from the tumor, tumor- microenvironment (TME), and blood.
The wealth of information help clinicians interrogate the genomics-driven disease and fuels
the decision-making in precision medicine.

During the inception of this Special Issue, entitled “Precision Medicine in Solid Tu-
mors”, we promised to present an in-depth review of the topic’s current status. We covered
(A) the challenges of NGS and WES/WTS in reaching a saturation point for finding a new
effective target in oncology; (B) the holistic aspect of tumor biology from the viewpoint of
tumor-TME-liquid biopsy; (C) mutation-guided treatment; (D) the enormity and legality
of the data, electronic medical record; and (E) the translation of knowledge to patient
outcomes and clinical guidelines. The Special Issue presents 11 original research articles,
2 review articles, 1 opinion, and 2 brief reports.

1. NGS & WES/WTS

Precision medicine seeks to use genomic data (alteration, such as mutations, amplifi-
cations, copy number variations, chromosomal rearrangements) to help provide the right
treatment to the right patient at the right time. In the last 15 years since the invention
of this breakthrough technology, NGS technology provided the genetic constitution of
different types of cancers. The speed, accuracy, and cost affordability of NGS have helped
spur the advent of precision medicine, which involves designing a treatment based on
disease-driving molecular alterations [1,2] (Collins F. Precision Oncology: Gene changes
predict immunotherapy response (NIH Director’s Blog; accessed on 10 November 2017)).
In today’s world, WES/WTS integrates tumor-normal matched samples. It offers one
comprehensive test to rapidly deliver in-depth (>18,000 genes) molecular insight and avoid
running multiple sequential panels to unlock the answer to a patient’s cancer. WES/WTS-
driven comprehensive molecular analysis has identified a relatively high incidence of
potentially targetable genomic alterations in solid tumors, predictive of response to tar-
geted and immunotherapies. NGS and tumor mutation profiling have become essential
diagnostic/decision-making tools for routine use in oncology clinics, including community-
based clinics. In a retrospective study, Inagaki et al. tested the clinical utility of NGS-based
panels in the Universal Health-Care System in Japan from a single University hospital
in Osaka and reported that the NGS assay should be performed earlier in the clinical
course to maximize the clinical benefit. The study revealed that the broader reimbursement
for the NGS assay would enhance the delivery of precision oncology to patients. Heong
et al. tested the feasibility of a “Multi-Regional” sample biopsy from metastatic lesions

Cancers 2022, 14, 3202. https://doi.org/10.3390/cancers14133202 https://www.mdpi.com/journal/cancers1



Cancers 2022, 14, 3202

to evaluate actionable truncal mutations using a Single-Pass Percutaneous Technique by
WES. They demonstrated the strength of their evaluation in prioritizing precision-therapy
strategies. In debating the implication of NGS in a laboratory setting versus in real-world
clinical practice, Singh et al. presented the impact and diagnostic gaps of comprehensive
genomic profiling in a study participated by the University of Pennsylvania/Abramson
Cancer Center, PA, USA, NYU Langone Perlmutter Cancer Center, New York, USA, and
Montefiore Medical Center/Albert Einstein College of Medicine, Bronx NY, USA. Their
study concluded that routine use of CGP in the community across all cancer types detects
potentially actionable genomic alterations in most patients. In Silico Simulation of targeted
gene panels is a powerful tool for the development of technology. Noskova et al. pre-
sented a study that evaluated TMB in multiple pediatric tumors by Real-Life Whole-Exome
Sequencing and In Silico Simulation of two major targeted gene panels to evaluate the
choice of method which affect the clinical decision. Their study confirmed a significant
technological variability introduced by different laboratory techniques and various settings
of bioinformatics pipelines.

2. Tumor-TME-Blood

Transformed tumor cells reside within their non-transformed host-microenvironment.
With the advent of advanced technology to pinpoint both cellular and acellular character-
istics of a tumor mass, the relationship between tumor cells and their non-transformed
microenvironment has been acknowledged [3,4]. The acknowledgment has come from
the translational and clinical research indicating holistic support of TME to tumor cells
during the progression of the disease [5,6] by influencing tumor growth, formation of stem
cell niches, immunosuppression, metastasis, and drug resistance. The TME encompasses
both cellular components, the extracellular space containing both soluble cytokines and
insoluble extracellular matrix (ECM) components. The recognition of the undeniable conse-
quence of the ‘unholy alliance’ of the neoplastic tumor cells and their inherently dynamic
non-neoplastic components of the microenvironment [7,8] has led to the incorporation
of targeting TME for cancer treatments, including immunotherapy and radiotherapy in
recent years [9–11]. As the interaction between the tumor and its TME evolves in a complex
bidirectional manner, there was a long-lasting search for finding a “mirror room” that could
serve as a surrogate of the actual events at the tumor site. In the last decades, the search has
revealed a source-easy sample that can be the “mirror room” for the tumor-TME events in
peripheral blood (liquid biopsy). Circulating tumor cells (CTC), ctDNA, cancer-associated
fibroblasts (CAF), cell fusions, CAMLS, immune cells, exosomes, soluble proteins (sPD-L1,
sPD-L2, sPD-1) from the blood have been beginning to show the reflection of the tumor-
TME events about cancer screening, early detection, drug effect, on-treatment monitoring,
drug resistance and post-treatment surveillance [12–16]. Burcher et al. demonstrated the
prevalence of DNA repair gene mutations in blood and tumor tissue and their impact on
prognosis and treatment in HNSCC. A single-institution retrospective study was under-
taken to test the profiles of 170 patients with HNSCC and available tumor tissue DNA
(tDNA) and circulating tumor DNA (ctDNA). Results were analyzed for mutations in a set
of 18 DDR genes as well as in gene subsets defined by technical and clinical significance.
This study presents the largest cohort to date to analyze the genomic landscape in both
blood and tumor tissue in patients with HNSCC and reports a high prevalence of DDR gene
mutations in this tumor type. Patients with DDR gene mutations in ctDNA rather than
tDNA had shown significantly worse prognoses, with a more advanced disease burden
at the end of the study and with decreased overall survival. Sulaiman et al. provided a
method for a user-friendly and cost-effective detection of CTC. The technique’s power can
be tested as a single-point at the baseline during surgery and in a multi-point longitudinal
mode during and after a treatment regimen. To this end, studies showed that meaningful
information could be obtained from patients’ plasma, offering an avenue for longitudinal
surveillance during treatment and post-treatment monitoring period. In a brief report,
Shin et al. presented a highly sensitive NGS-based genotyping platform for EGFR muta-
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tions in plasma from NSCLC patients. Their study demonstrated that Sel-Cap is a highly
sensitive platform for EGFR mutations in plasma, and the timing of the first appearance
of T790M mutation in plasma, determined via highly sensitive liquid biopsies, may be
useful for the prediction of disease progression of NSCLC around five months in advance.
Similarly, Kim et al. evaluated 2 EGFR mutation tests on tumors and plasma from patients
with NSCLC. The study reported the interchangeable use of two EGFR mutation tests,
cobas v2 and PANAMutyper, in tumor and plasma EGFR testing. Both tests in their study
have high diagnostic precision in plasma but are particularly valuable in late-stage disease.
Their clinical data in T790M carriers strongly support the clinical benefits of osimertinib
treatment guided by both EGFR mutation tests. De et al. interrogated the role of TME in
the development of resistance to chemotherapy and targeted therapy. Cancer-Associated
Fibroblasts (CAFs) are one of the components of the TME that is used by tumor cells
to achieve resistance to therapy. Their review interrogated the irrefutable role of CAFs
in the development of resistance that would strategize the ability to design improved
therapies inclusive of CAFs in light of currently ongoing and completed CAF-based NIH
clinical trials.

3. Mutation-Guided Treatment-ICI Therapy

Since genomic alteration(s) and chromosomal instability are the primary determinants
of cells that acquire malignant traits, a cancer-specific genomic map provides the roadmap
for the treatment. This treatment philosophy is state-of-art in today’s clinics and is called
precision oncology, which embraces clinical decisions based on genomic/proteomic data.
Today’s success in treatment modalities and overall management of cancer, both pathway-
targeted and immune-targeted therapy, are empowered by mutation-guided target-specific
drugs [17]. Tumors have been known to adopt and bypass the PD-1/PD-L1 axis to achieve
immune evasion, and the PD-1/PD-L1 axis has been accepted as an obvious target treated
by immune checkpoint inhibitors (ICI). On this basis, PD-L1 protein expression on tumor or
immune cells emerged as the first potential predictive biomarker for sensitivity to immune
checkpoint blockade. In 2015, PD-L1 was the first FDA-approved predictive biomarker
for non-small-cell lung cancer (NSCLC) [18]. Nine FDA approvals have been linked to a
specific PD-L1 threshold and companion diagnostics, including bladder cancer (N = 3),
non-small cell lung cancer (N = 3), triple-negative breast cancer (N = 1), cervical cancer
(N = 1), and gastric/gastroesophageal junction cancer (N = 1) out of which 88.9% have
been targeted with ICI monotherapy [19]. Following the IMpower110 (NCT02409342)
clinical trial (in May 2020), the inclusion criteria of high PD-L1 expression ≥50% of tumor
cells or ≥10% of tumor-infiltrating immune cells (as defined by an FDA-approved device)
were FDA approved for the treatment of adult metastatic NSCLC with no EGFR or ALK
genomic aberrations [20]. In the following month, the FDA expanded the approval of
pembrolizumab (PD-1 inhibitor), routinely used as immunotherapy in a variety of cancer
patients) to include unresectable or metastatic tumors with TMB-H (≥10 mutation/Mb)
that have progressed following prior treatment with no satisfactory alternative therapy
options, based on the Keynote-158 study (NCT02628067) [21]. Currently, FDA has approved
3 predictive biomarkers, including PD-L1, microsatellite instability (MSI), and tumor
mutational burden (TMB), including blood-TMB for patient selection for ICI response in
clinical practice. Burcher et al. studied the relationship between TMB, PD-L1, patient
characteristics, and response to ICI in HNSCC. Their work demonstrated the utility of TMB
as a prognostic variable and predictive marker of response to ICI. The study also pointed to
the significant association of high TMB with active tobacco use and primary tumor location
in the larynx. In their study, high PD-L1 values were associated with the African American
race, high T stage, high overall disease stage, non-/ex-smokers, and non-/ex-drinkers.
Higuchi et al. study primary driver mutations in GTF2I specific to the development of
thymomas. Their study showed that the majority of thymomas harbor mutations in GTF2I
that can be potentially used as a novel therapeutic target in patients with thymomas.
Tamara Ius et al. from Italy presented a novel comprehensive clinical stratification model to

3



Cancers 2022, 14, 3202

refine prognosis in GBM. Their prognostic score uses clinical/molecular and images data
that can be useful to stratify GBM patients undergoing surgical resection. By using the
random forest approach [CART analysis (classification and regression tree)] on Survival
time data of 465 cases, they developed a new prediction score resulting in 10 groups based
on the extent of resection (EOR), age, volumetric tumor features, intraoperative protocols,
and molecular tumor classes. Their score could be helpful in a clinical setting to refine the
prognosis of GBM patients after surgery and before postoperative treatment. Hossain et al.
discussed tumor heterogeneity and sub-clonal evolution in primary and metastatic TNBC,
which still remains a challenge for oncologists to design adaptive precision medicine-based
treatment plans.

4. Electronic Medical Record

In today’s clinical world, electronic data recording, management, and safety are as
important as any branches of disease care. One of the reasons for this is that the Electronic
Medical Record (EMR) is viewed as a solution to many of the shortcomings of health
care systems, and therefore, its importance is realized to improve patient care [22]. The
importance of the electronic health record (EHR) system is highlighted by the promise of
substantial benefits, including better patient care and decreased healthcare costs, useability
and accessibility of records in one hand, while the poor EHR system design with improper
implementation invites EHR-related errors jeopardizing the integrity of the information in
the EHR, leading to errors that endanger patients safety or decrease the quality of care and
serious unintended consequences in another hand [23]. A limited EMR is often preferred
to a faulty EMR from the patients’ safety point of view [24–26]. The future will prove
the feasibility of a collaborative, noteless EMR design with minimum information chaos,
the highest level of patient data protection, and a user-friendly operation for managing
team workflows at the clinics [27]. Jibiki et al. investigated a case of Memorial Sloan
Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT), a
tumor profiling test approved by the U.S. FDA in 2017, to examine what factors would
contribute to healthcare innovation. Their study conducted comparative analyses of three
tumor profiling tests approved by the U.S. FDA in 2017, hypothesizing that the FDA’s
regulatory reforms, early application of new technologies to both research and clinical
settings, and open data accumulated as a result of large-scale research programs have
promoted new drug development in oncology. The study set three parameters to observe
cases. First, the FDA regulatory reforms. Second, early application of new technologies,
such as NGS, to both research and clinical settings. The third is the accumulation of open
data. The study discussed the implications potentially suggested by the outcomes and
challenges of the three cases. Brown et al. presented the opinion on the use of EMR to
identify potentially eligible study subjects for lung cancer screening with biomarkers which
explores the current issues in and approaches to lung cancer screening and whether records
can be used to identify eligible subjects for screening and the challenges that researchers
face when using EMR data.

5. Clinical Guidelines & Outcome

Any discourse on “Precision Medicine in Solid Tumors” remains incomplete without
presenting views on the clinical guidelines and outcomes which embody “response evalua-
tion”. Historically, attempts to define the objective response of a tumor to an anticancer
agent were made as early as the early 1960s [28]. Following the introduction of specific cri-
teria for the codification of tumor response evaluation in the late 1970s by the International
Union Against Cancer and the World Health Organization (the 1979 WHO Handbook),
various organizations involved in clinical research reviewed these criteria in 1994 to ready
a set of guidelines. Down the road, a model by which response rates could be derived from
the unidimensional measurement of tumor lesions instead of the usual bi-dimensional
approach was developed, which was validated by the Response Evaluation Criteria in Solid
Tumors Group. The philosophic background to clarify the various purposes of “response
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evaluation” has been presented in an article by Patrick Therasse et al. [29]. The article
covers several aspects of response evaluation, including: (1) details of methods of assessing
codified tumor lesions within the guidelines; (2) Response Evaluation Criteria In Solid
Tumors (RECIST) guidelines; (3) Response Outcomes in Daily Clinical Practice of Oncology;
(4) Response Outcomes in Uncontrolled Trials as a Guide to Further Testing of a New
Therapy; and (5) Response Outcomes in Clinical Trials as a Surrogate for Palliative Effect.
With the advent and success of tumor immunotherapy, attempts have been made to define
systematic criteria, designated immune-related response criteria, to include additional
response patterns observed with ICI therapy beyond those described by Response Evalua-
tion Criteria in Solid Tumors or WHO criteria, especially in advanced melanoma [30–33].
Among them, Wolchok et al. put forward novel criteria to better capture the response
patterns observed with immunotherapies, “Immune-related Response Criteria” (irRC) [33].
The irRC has since then presented a more comprehensive evaluation of immunothera-
pies in clinical trials, in conjunction with either RECIST or WHO, proving that irRC is a
powerful criterion for outcome measurement in clinical investigation. In a retrospective
study, Kuroda et al. presented data on the clinical guideline-guided Outcome consistency
for surgically resected stage III NSCLC, demonstrating that the guideline-consistent alter-
natives, which comprise ATSR (adjuvant treatments after surgical resection) or GMT-R
(guideline-matched first-line treatment for recurrence), can contribute to survival benefits
in pathological stage III NSCLC.

Today’s “Precision Medicine in Solid Tumors” is an evolution of medical practice in
progress, a perfect example of the power of the interdisciplinary approach. It remains
to see how the future liaison of classical medicine and translational research, equipped
with technology, bioinformatics, data safety, advocacy, and social media, will shape the
deliverance of patient care in medicine.

In this Special Issue, we tried an uphill task to present a scientific interrogation on
salient critical features of “Precision Medicine in Solid Tumors.” We will consider ourselves
immensely humble if our collected reviews on the specific topics are of help to our readers.

Conflicts of Interest: The authors declare no conflict of interest.
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Simple Summary: Next-generation sequencing (NGS)-based assay is widely used in clinical practice
due to its reimbursement by Japan’s universal health-care system for cancer patients who finished
standard treatment in June 2019. To clarify the clinical utility of the NGS assay under the universal
health-care system, we retrospectively analyzed patients who underwent NGS assay at our hospital.
Since reimbursement of the NGS assay is restricted to patients who complete standard treatment,
many patients experience clinical disease progression before receiving results; therefore, they could
not use the NGS results for making a therapeutic decision. Broader reimbursement of NGS assays for
advanced cancer patients is needed for making optimum use of the NGS assay results. Providing
good access to clinical trials and off-label agents is necessary for enabling patients to benefit from
NGS assay. Additionally, this study revealed that the disclosure of presumed germline findings is
feasible in clinical practice.

Abstract: Next-generation sequencing (NGS) assay is part of routine care in Japan owing to its reim-
bursement by Japan’s universal health-care system; however, reimbursement is limited to patients
who finished standard treatment. We retrospectively investigated 221 patients who underwent
Foundation One CDX (F1CDx) at our hospital. Every F1CDx result was assessed at the molecu-
lar tumor board (MTB) for treatment recommendation. Based on patients’ preferences, presumed
germline findings were also assessed at the MTB and disclosed at the clinic. In total, 204 patients
underwent F1CDx and 195 patients completed the analysis; however, 13.8% of them could not receive
the report due to disease progression. Among 168 patients who received the results, 41.6% had
at least one actionable alteration, and 3.6% received genomically matched treatment. Presumed
germline findings were nominated in 24 patients, and 16.7% of them contacted a geneticist counselor.
The NGS assay should be performed earlier in the clinical course to maximize the clinical benefit.
Broader reimbursement for the NGS assay would enhance the delivery of precision oncology to
patients. Access to clinical trials affects the number of patients who benefit from NGS. Additionally,
the disclosure of presumed germline findings is feasible in clinical practice.

Cancers 2021, 13, 1121. https://doi.org/10.3390/cancers13051121 https://www.mdpi.com/journal/cancers7
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1. Introduction

Over the last decade, with the increased knowledge in molecular profiles and mecha-
nisms, there has been significant progress in cancer research and treatment. Next-generation
sequencing (NGS) allows the sequencing of a large number of genes in a short time at an
affordable cost and therefore contributes to detecting clinically relevant alterations and
promoting precision oncology. Several studies have shown that molecular profiling with
NGS improves patient response and survival in a selected cohort [1–5].

For example, the Molecular Screening for Cancer Treatment Optimization (MOSCATO
01) study demonstrated that targeted therapy, which was matched to a genomic alter-
ation, improved the survival of 33% (63/193) of the study participants [4]. In addition,
in the Targeted Agent and Profiling Utilization Registry (TAPUR) study, genomically
matched treatment showed good clinical efficacy in the following five cohorts: pertuzumab
and trastuzumab in ERBB2-amplified or overexpressed colorectal cancer [6], emurafenib
and cobimetinib in BRAF V600E/D/K/-mutated colorectal cancer [7], pembrolizumab in
metastatic breast cancer with a high mutational burden [8], pembrolizumab in metastatic
colorectal cancer with a high mutational burden, and palbociclib in non-small cell lung
cancer with CDKN2A alteration [9,10].

NGS assay is widely considered a part of the routine care for patients with cancer,
and it has been reimbursed in several Western and Asian countries [11]. In June 2019,
two types of NGS-based panel testing, Foundation One CDX (F1CDx, developed by
Foundation Medicine, Cambridge, MA) and OncoGuide NCC Oncopanel System test
(developed by Japan’s National Cancer Center; NCC and Sysmex), were reimbursed
by Japan’s universal health insurance system for patients with advanced cancer who
finished standard treatment [12–14]. Although this approval is a big step for advancing
precision oncology in Japan, its application is still challenging due to the complexity of
the interpretation of genetic profiles and integration of personalized treatment into the
health-care system. To investigate the clinical utility of NGS in daily practice, we reviewed
patients who underwent F1CDx assay under the universal health-care system at our
hospital. Herein, we present precise data of the patient characteristics, genetic alterations,
including presumed germline variants nominated by the molecular tumor board (MTB)
and subsequent treatment.

2. Results

2.1. Feasibility of Next-Generation Sequencing (NGS) Assay and Patient Characteristics

Samples were received from 213/221 patients, and nine were withdrawn following a
pathologist evaluation on tumor volume in the samples (Figure S1). A total of 204 were
assayed with F1CDx, and 195 samples (95.6%) were successfully analyzed. Reasons for
analysis failure were insufficient tumor volume (n = 4), insufficient DNA quality (n = 4),
and contamination (n = 1). A total of 168 (86.6%) patients received their F1CDx results and
MTB-approved report at the clinic, while 27 (13.8%) could not due to disease progression
(death; n = 10, declining conditions; n = 17). The median turnaround time, which is defined
as the duration between the date of sample reception and the date of the MTB, was 43 days
(range 35–51 days).

The patient and disease characteristics of 168 patients are listed in Table 1. The
median age of the patients was 62 (range 3–92) years, and 163 (97%) patients had an
Eastern Cooperative Oncology Group performance status (ECOG PS) of 0–1, while five
(3%) patients had an ECOG PS of 2. Most of the patients were heavily pre-treated, and
the median number of previous chemotherapy lines was 3 (range 1–11). Nearly half of
the patients (n = 75, 44.6%) were referred for NGS from smaller partner community-based
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hospitals in the region. The most frequent tumor types were colorectal cancer (n = 45,
26.8%), sarcoma (n = 22, 13.1%), and pancreatic cancer (n = 18, 10.7%). The median survival
time was 217 days (95% confidence interval; 95%CI 185–262 days).

Table 1. Patient demographics and characteristics.

Total 168

Sex Male (n, %) 87 (51.8)
Female (n, %) 81 (48.2)

Age Median (min/max) 62 (3/92)
ECOG PS 0 (n, %) 131 (78.0)

1 (n, %) 32 (19.0)
2 (n, %) 5 (3.0)

No. of previous chemotherapy lines Median (min/max) 3 (1/11)
Referral to our hospital for NGS assay Yes, n (%) 75(44.6)

No, n (%) 93(55.4)
Tissue of Origin Primary site (n, %) 111 (66.0)

Metastatic site (n, %) 57 (34.0)
Turnaround Time Average (min/max) 43 (35/51)

Cancer Type Colorectal 45 (26.8)
Sarcoma 22 (13.0)

Pancreatic 18 (10.7)
Gastric 13 (7.7)
Ovarian 11 (6.5)
Bile duct 9 (5.4)

Esophageal 8 (4.8)
Breast 7 (4.2)

Cervical 6 (3.6)
Small Intestinal 5 (3.0)
Hepatocellular 3 (1.8)

Unknown Primary 3 (1.8)
Endometrial 3 (1.8)

Non-Small Cell Lung 3 (1.8)
Brain 3 (1.8)

Neuroblastoma 3 (1.8)
Melanoma 3 (1.8)

Kidney 1 (0.6)
Prostate 1 (0.6)

Urinary tract 1 (0.6)

NGS: next-generation sequencing; ECOG PS: Eastern Cooperative Oncology Group performance status.

A summary of the genetic alterations is shown in Figure 1A. The median number of
genetic alterations per tumor was 4.72 (range 0–14). The median tumor mutational burden
(TMB) was 2.52 (range 0–21.42), and eight patients had TMB–high (TMB-H) (Figure 1B).

 
Figure 1. (A) Top 40 genomic alterations and (B) distribution of tumor mutational burden (TMB) in 168 patients who
completed analysis. CAN: copy number alteration; SNV: single nucleotide variant.
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2.2. Matched Treatment According to Actionable Mutation

Among the 168 patients who received their results, 107 actionable alterations were
found in 70 (41.6%) patients (Figure 2, Table S1). The median number of actionable muta-
tions per person was 1.53 (range 1–5). The frequencies of each OncoKB level of evidence
were as follows: level 1A, 8.4% (n = 9); level 2, 5.6% (n = 6); level 3A, 5.6% (n = 6); level
3B, 41.1% (n = 44); and level 4, 15.9% (n = 17). The most frequently annotated genes were
PIK3CA (n = 18), TP53 (n = 11), ERBB2 (n = 9), MDM2 (n = 6), and FGFR3 (n = 3) (Figure S2).
One patient had a recommendation of off-label treatment only, 13 patients had a recommen-
dation of off-label treatment and clinical trials, and 56 patients had a recommendation of
clinical trials. Additionally, 14 patients had a recommendation of mutation-driven clinical
trials that were ongoing at our institution. Based on the MTB recommendation, six (3.6%)
patients were treated with targeted treatment (Figure 2, Table S2). Four patients were
enrolled in five genomically matched clinical trials, four of which were conducted at our in-
stitution. Two patients used targeted agents in the off-label treatment, and it was beneficial
to one of them (Figure 3). She was a 75-year-old female patient with pre-treated metastatic
cholangiocarcinoma harboring an ERBB2 amplification (Copy number; CN = 114) and
treated with dual human epidermal growth factor receptor 2 (HER2) blockage therapy
(trastuzumab and pertuzumab), and a good clinical response was observed for 9 months
until the appearance of pleural effusion. Following pleural adhesion, the next treatment
was initiated with trastuzumab deruxtecan, an HER2-targeting antibody–drug conjugate.
She achieved tumor shrinkage after 1.5 months of the treatment, but she requested treat-
ment discontinuation due to grade 3 fatigue, which gradually subsided several weeks
following the discontinuation.

Figure 2. Consort diagram of post-next-generation sequencing (NGS) treatment of patients with at
least one actionable alteration on the molecular tumor board (MTB) report. All numbers do not add
up because some patients were counted in more than one category (i.e., had an actionable alteration
with recommendations of clinical trials and off-label treatment). See Table S2 for detailed information
on the patients who received genomically matched treatment.
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Figure 3. Clinical presentation. (A) The course of tumor markers (carcinoembryonic antigen (CEA) and carbohydrate
antigen 19-9 (CA 19-9)) and (B–F) contrast-enhanced computed tomography (CT) images while receiving treatment with
trastuzumab/pertuzumab and trastuzumab deruxtecan. Multiple lung metastases and liver metastases (which is not shown
here) were observed when treatment with trastuzumab/pertuzumab was initiated (B). Two months after, a good partial
response was obtained (C). After 9 months of treatment, the tumor became refractory to trastuzumab/pertuzumab, and a
massive right pleural effusion was developed (D). After improvement of the pleural effusion with pleurodesis (E), the next
treatment with trastuzumab deruxtecan was initiated, and tumor shrinkage was observed 1.5 months later (F).

2.3. Presumed Germline Findings

A total of 166 (98.8%) patients preferred to be informed about the presumed germline
findings, and 156 (95.1%) adult patients wanted to share the findings with their family
members (Table S3). A total of 26 presumed germline pathogenic variants in 24 patients
(14.3%) were nominated by a germline-focused tumor analysis in the following genes:
SMAD4 (n = 6), BRCA2 (n = 4), PTEN (n = 3), BRCA1 (n = 3), RB1 (n = 2), STK11 (n = 2),
ATM (n = 1), BRIP1 (n = 1), MSH6 (n = 1), RAD51 (n = 1), TP53 (n = 1), and TSC2 (n = 1)
(Table 2). All the findings were described in the MTB-approved report and returned to the
patients. Five of them (20.8%) contacted a genetic counselor, and one patient proceeded for
further germline testing.
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3. Discussion

This study presented the real-world data of patients with advanced malignancies
who exhausted their standard treatment and underwent NGS at our institution. The NGS
assay had a good feasibility in clinical practice with a high success rate and an ordinary
turnaround time [15]. MTB recommendations, subsequent genomic-matched treatment,
and management of presumed germline findings in daily practice were also presented.
Genes that recurrently altered across samples and the percentage of patients who were
provided MTB recommendation were similar to that in other series; however, the number
of patients who received a targeted agent based on the NGS findings in our cohort is
smaller than that in previous reports [16–19]. There are several explanations for the low
rate of treatment with the genomically matched drug received in this study.

First of all, the timing for NGS assay appeared to be too late for making optimum use
of its results. Under the Japanese universal health-care system, reimbursement of the NGS
assay is restricted to patients who have completed their standard treatment and are eligible
for palliative treatment. As a result, we found twenty-seven patients (27/204, 13.2%) who
experienced disease aggravation or death during the wait for NGS results; the NGS results
were not considered for therapeutic decision making. In addition, disease progression is a
major limiting factor for the initiation of treatment after NGS assay, as described in previous
literature [19]. The optimal timing for NGS assay in patients with cancer has not yet been
determined. However, our study suggested that to obtain the maximum therapeutic value
of NGS, it should be performed early in the course of the disease. A prospective study on
the feasibility and utility of large NGS assays before initial systemic treatment is ongoing,
with the aim of reimbursement of NGS assays in the frontline setting for metastatic cancer
patients in Japan [20]. Nearly half of the patients who underwent NGS assay were referred
from smaller partner community-based hospitals that do not have MTB. To make the best
use of NGS, physicians and medical staff need to be encouraged to consider early referral
for panel test assessment.

Secondly, limited access to early phase clinical trials is a major barrier for enrolling
patients in matched clinical trials, as mentioned in previous articles [17,21]. A recent
report from National Cancer Center Hospital (NCCH) demonstrated that 13.3% (25/230)
of the patients who underwent NGS after completing their standard chemotherapy were
treated with matched targeted agents based on the MTB recommendation; this rate is
approximately four times higher than that of our cohort (6/168, 3.6%) [16]. NCCH is a
leading facility in early phase drug development in Japan, and it runs the largest number
of early phase clinical trials [22,23]. Therefore, they have a greater opportunity for the
patients to be enrolled in genomic-driven trials of a drug in development. This leads to
a disparity in the number of patients who received matched targeted agents between the
hospitals. A new basket/umbrella trial, which is similar to the TAPUR study, was started
at our institution in July 2019. It provides 15 targeted agents that were reimbursed in other
indications for patients with matched actionable mutations [24]. This trial would partially
improve access to targeted therapy. Additionally, consultation via a virtual platform is
gradually being adapted in oncology [25,26]. The integration of telemedicine in clinical
trials to enhance clinical trial accessibility is anticipated.

Thirdly, it is difficult to access investigational targeted agents outside the clinical trial
under the Japanese health-care system. We do not have a system similar to the expanded
access program in the United States and Europe. In addition, all the costs related to off-label
use generally need to be paid out-of-pocket, and very few patients can afford it. Moreover,
each case must be approved by an institutional review committee before prescribing an
off-label treatment [27]. Such circumstances make physicians recommend strict off-label
use. Consequently, our MTB recommended off-label use in 8.3% (14/168) of the patients in
this study, and one of two patients who received off-label treatment had a favorable clinical
outcome. Our MTB recommended off-label use for the genetic alterations that responded
beneficially to matched treatment in previous clinical trials and case series such as ERBB2,
BRCA1, BRCA2, and BRAF V600E. The clinical benefit and potential side effects of off-label
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use are controversial. Previous reports revealed that off-label use without concrete clinical
evidence could be harmful to the patients [28,29]. If the indications for off-label use by
the MTB are increased, it may increase the number of patients who use off-label agents;
however, it is unlikely to be beneficial to several patients. Therefore, we believe that our
conservative approach toward off-label use is reasonable in current practice.

The management of presumed germline findings is of increasing importance. A recent
recommendation from the European Society of Medical Oncology (ESMO) advocates for the
active disclosure of presumed germline findings upon tumor-only sequencing. In addition,
the American College of Medical Genetics (ACMG) recommends the reporting of presumed
germline findings, even when those found in the genes are unrelated to the primary medical
reason for genome sequencing. We found that most of the patients in this study provided
consent for reporting presumed germline findings to themselves and their family members.
This has been addressed by several Western studies [30,31]. We understand that Japanese
and Western patients have similar preferences for presumed germline findings. While
26 presumed germline findings were nominated in 24 individuals, five patients contacted
genetic counselors, and one of them underwent further investigation. We learned that
our management of presumed germline findings is practically acceptable in the current
health-care system. The presence of a genetic specialist is not mandatory when returning
presumed germline findings to patients; however, compared to a previous report, this may
result in a small number of patients accessing further genetic consultation and testing [32].
We should reconsider and improve our approach for returning presumed germline findings
in cooperation with cancer genetic specialists.

This study had several limitations. This was a single-canter, retrospective study. The
patient population was heterogeneous, and several patients with extremely advanced
disease who waited for approval of the assay were included. Given a short follow-up
period of 6 months, the certain number of patients lost to follow-up, and the small number
of patients who received targeted treatment, the survival analyses are not statistically
reliable and thus are not shown. The presumed germline findings nominated in this study
are based on the germline-focused analysis of tumor-only sequencing panel. Therefore, the
clear distinction between somatic and germline mutations is difficult, and the interpretation
of the findings needs careful consideration.

The strength of the study is that we presented the first real-world data of patients with
various cancers who underwent NGS under the universal health-care system.

4. Materials and Methods

4.1. Patients

We retrospectively reviewed the medical records of 221 consecutive patients at Osaka
University, who provided their consent to take the F1 CDx covered by the Japanese public
health insurance system from September 2019 to July 2020. The median follow-up period
was 179 days (range: 48–439 days). The patients’ clinical data were extracted from their
medical records.

4.2. The Flow of NGS Assay under National Health Insurance Coverage in Japan

Details of the workflow of the NGS assay under Japan’s universal health care are
found in previous studies [30–32]. Briefly, patients with a histopathological diagnosis of a
solid tumor who finished or have finished their standard chemotherapy were candidates
for insurance-covered NGS. Patients aged below 20 years provided their assent, while
consent was obtained from their parents/guardians with patients’ assent. When consent
was obtained, patients (and parents/guardians) were also asked whether they wanted
to be informed of the results of the presumed germline variants by the physicians (see
Section 4.4). Archival formalin-fixed paraffin-embedded (FFPE) tumor samples (or 20 serial
unstained slides) were collected and pre-screened by board-certified pathologists at Osaka
University to estimate the duration of storage and tumor content of the specimen, and then,
they were sent for NGS assay (F1 CDx), which was carried out following the previously
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described manufacturer’s (Foundation Medicine) instructions [33,34]. Concisely, F1CDx
detects 324 genes, including all coding exons of 309 cancer-related genes, one promoter
region, one noncoding RNA, and select intronic regions of 34 commonly rearranged genes,
the coding exons of 21 of which are also included. F1CDx also simultaneously profiled for
TMB as well as microsatellite instability (MSI) status. We sent thin-sectioned FFPE slides to
a Clinical Laboratory Improvement Amendments (CLIA)-certified and College of American
Pathologists (CAP)-accredited laboratory (Foundation Medicine, Cambridge, MA, USA).
After the pathology review of the specimen, DNA was extracted and quantified prior
to Library Construction (LC). Libraries passed the quality control were hybridized and
then sequenced. Sequence data were analyzed using proprietary software developed by
Foundation Medicine, and quality control criteria that included tumor purity, DNA sample
size, tissue sample size, library construction size, and hybrid capture yields were employed.
Sequence data were mapped to the human genome (hg19) using BWA v0.5.9 [35], PCR
duplicate reads were removed, and sequence metrics were collected using Picard 1.47 [36]
and SAMtools 0.1.12a [37]. Local alignment optimization was performed using GATK
1.0.4705 [38]. Variant calling was performed only in genomic regions targeted by the test.
TMB was measured by counting all coding synonymous and nonsynonymous (SNVs)
and indels present at ≥5% allele frequency and filtering out potential germline variants
according to published databases of known germline polymorphisms, including Single
Nucleotide Polymorphism Database (dbSNP) and Exome Aggregation Consortium (ExAC).
MSI status was determined by analyzing 95 intronic homopolymer repeat loci (10–20 bp
long in the human reference genome) with adequate coverage on the F1CDx assay for
length variability and compiled into an overall MSI score via principal components analysis
(PCA). The report of the F1CDx as well as variant call file were assessed for the actionability
of each alteration by consulting databases, such as ClinVar, Catalogue of Somatic Mutations
in Cancer (COSMIC), and availability of genomically matched clinical trials and off-label
agents in Japan at our own MTB with primary care clinicians, clinical oncologists, genomic
counselor, clinical geneticists, and pathologists, which is a mandatory procedure under
the universal health-care system. Subsequently, the MTB-approved report for the assay
with the treatment recommendation was provided. The report was returned to the patient
and/or their family from his/her primary clinician at the clinic.

4.3. Identification and Classification of Genes with Treatment Recommendation

We defined actionable mutations as mutations for whom genomically matched treat-
ment was recommended by the MTB-approved report. Oncogenic alterations revealed by
the previous testing were excluded unless genomically matched therapies beyond the stan-
dard of care were available. Genetic alterations that predicted resistance to a targeted agent
were also excluded. Additionally, MTB recommendation on the TMB underwent a shift
during the study period, reflecting the Food and Drug Administration (FDA)’s approval
of pembrolizumab for the treatment of adult and pediatric patients with unresectable or
metastatic TMB-H (≥10 mutations/megabase (mut/Mb)) solid tumors. All actionable
mutations were classified according to the OncoKB levels of evidence classification as
follows [39]: level 1, FDA-approved biomarker predictive of response to an FDA-approved
drug in a specific cancer type; level 2A, standard care biomarkers of response to an FDA-
approved drug in a specific indication; level 2B, standard care biomarkers predictive of
response to an FDA-approved drug in another indication; level 3A, compelling clinical
evidence in reported tumor types, which were regarded as biomarkers of therapeutic
response for novel targeted agents that are not yet approved in the standard of care; level
3B, compelling clinical evidence reported in other tumor types, which are regarded as the
biomarkers of therapeutic response for novel targeted agents that are not yet approved in
the standard of care; and level 4; non–FDA-recognized biomarkers that are predictive of
response to novel targeted agents based on compelling biologic data.
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4.4. Presumed Germline Findings

A germline-focused tumor analysis was carried out after consent was obtained. We
assessed the presumed germline findings following the proposal of the Japan Agency for
Medical Research and Development (AMED) study group concerning the information
transmission process in genomic medicine [40] (Supplementary Figure S3). Briefly, a
clinical genetic expert (K.H) extracted the data of 43 genes that were recommended for a
presumed germline finding analysis (Supplementary Table S4) from a variant call format
file and investigated the variant classification by consulting databases, such as ClinVar
and COSMIC. A certified genetic counselor (Y.S) and a clinical geneticist (K.H) assessed
the clinical utility of each alteration in terms of allele frequency and correlation to patient
and family history as well as clinical findings. For BRCA1 and BRCA2, pathological and
likely pathogenic alterations were disclosed as presumed germline findings irrespective
of allele frequency of the variants. Pathological and likely pathogenic mutations found
in other genes were generally disclosed to be presumed germline variants when the
variant allele frequency was ≥30% for single nucleotide substitutions and ≥20% for small
insertions/deletions. Regarding APC, RB1, TP53, and genes of which variant of allele
frequency is lower than the threshold described above, the patients’ phenotypes were
carefully evaluated before disclosure. The assessment was shared and discussed as a
way of disclosure at the MTB. Results of the presumed germline findings assessment were
described in the MTB-approved report and were returned to the patient and/or their family
by his/her primary clinician. Genetic counseling and confirmatory testing are offered to
the patient when presumed germline finding is disclosed.

4.5. Statistical Analysis

Statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical
University, Saitama, Japan), which is a graphical user interface for R (The R Foundation
for Statistical Computing, Vienna, Austria). Most of our data are descriptive. The Kaplan–
Meier method was used to estimate overall survival rates. The study was conducted
in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines.
The study was approved by the Osaka University Institutional Review Board, and all
patients provided written informed consent for the use of their genomic and clinical data
for research purposes.

5. Conclusions

In conclusion, this article highlighted the current status and problems of the clinical
utility of NGS assay under the universal health coverage system at a single university
hospital in Japan. Though it is a top priority in precision oncology to match patients with
the appropriate treatment or clinical trials, a small number of patients received genomically
matched treatment based on the NGS results. Reimbursement of NGS in the universal
health-care system in Japan is restricted to patients who completed their standard treatment,
and quite a few patients experience disease progression before they receive their results.
This led to a decrease in the number of patients whose results could be used to guide
treatment decision-making and administration of matched targeted treatment. NGS assay
should be considered earlier in the course of the disease to maximize the therapeutic
opportunities after testing. We eagerly hope that NGS reimbursement is done for advanced
cancer patients earlier in the course of the disease. The availability of clinical trials in
the region is a barrier to patients benefiting from NGS. Our study demonstrated the
feasibility of managing presumed germline findings in daily practice. NGS would help
bring personalized cancer medicine to routine clinical practice. Adequate integration of
NGS in the health-care system is required to promote the efficient clinical application of
NGS and advance precision medicine.
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Abstract: We investigate the feasibility of obtaining multiple spatially-separated biopsies from a
single lesion to explore intratumor heterogeneity and identify actionable truncal mutations using
whole exome sequencing (WES). A single-pass radiologically-guided percutaneous technique was
used to obtain four spatially-separated biopsies from a single metastatic lesion. WES was performed
to identify putative truncal variants (PTVs), defined as a non-synonymous somatic (NSS) variant
present in all four spatially separated biopsies. Actionable truncal mutations—filtered using the
FoundationOne panel—were defined as clinically relevant PTVs. Mutational landscapes of each
biopsy and their association with patient outcomes were assessed. WES on 50 biopsied samples from
13 patients across six cancer types were analyzed. Actionable truncal mutations were identified in
9/13 patients; 31.1 ± 5.12 more unique NSS variants were detected with every additional multi- region
tumor biopsy (MRTB) analyzed. The number of PTVs dropped by 16.1 ± 17.9 with every additional
MRTB, with the decrease most pronounced (36.8 ± 19.7) when two MRTB were analyzed compared
to one. MRTB most reliably predicted PTV compared to in silico analysis of allele frequencies and
cancer cell fraction based on one biopsy sample. Three patients treated with actionable truncal
mutation-directed therapy derived clinical benefit. Multi-regional sampling for genomics analysis is
feasible and informative to help prioritize precision-therapy strategies.

Keywords: intratumor heterogeneity; multiple biopsies; tumor evolution; clonality classification;
strategic therapeutic intervention
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1. Introduction

Intratumor heterogeneity is a key challenge in precision cancer therapy, contributing to treatment
resistance, therapeutic failure and poor prognosis [1,2]. With the growing use and reducing cost of
next generation sequencing, the full extent of the complexity and genomic diversity within tumors
are becoming more apparent [1,3,4]. Genotype-directed targeted therapies are becoming the standard
of care, and as tumor molecular profiling becomes more widely used in routine practice, physicians
will require the necessary tools to translate genomic information into clinically actionable results.
The consequences of intratumor heterogeneity, such as resistance to drug therapy [3–5] leading to
disease recurrence and death, is at least partially the result of limitations in the ability to define the
clonal frequency of driver events for prioritization of drug targeting in tumors. Furthermore, it has
been demonstrated that high levels of ITH results in poorer survival outcomes across a wide range of
cancer types [6,7]. To mitigate this challenge, a more comprehensive view of the mutational diversity
of each tumor lesion is required.

The mutational diversity attributed to ITH limits our ability to resolve the full spectrum of cancer
pathway aberrations through a single biopsy of the tumor lesion and may under/overestimate driver
alterations [4,8,9]. Therefore, multi-region tumor biopsies (MRTBs) are highly beneficial to attenuate
the challenge of estimating the prevalence of oncogenic clonal driver mutations. Targeting clonal driver
(truncal) mutations would potentially be more effective than targeting subclonal (branch) mutations
in a tumor [10,11]. Yap et al. proposed the targeting of genetic alterations located on the trunk of
an individual’s phylogenetic tree as a more effective clinical strategy [10] as truncal mutations are
more likely to represent the core driver mutations within the tumor [10]. In view of the importance
of identifying truncal mutations, in silico approaches such as the ABSOLUTE algorithm [12] have
been developed to predict truncal variants from a single biopsy sample. However, their ability to
identify actionable truncal mutations that would be clinically relevant is hitherto unknown. Similarly,
various gene panels have been utilized for diagnostic purposes but the minimum number of MRTB
samples needed to address issues associated with ITH remains unknown. This study—conducted
across six major cancer types—aims to outline: (a) the safety and significance of MRTB to help navigate
the complexities of ITH, (b) the minimum number of MRTB samples required when different gene
panels were used for clinical assessment, and (c) the feasibility and clinical efficacy of the approach for
identifying clinically actionable truncal mutations (i.e., mutations present in all MRTB obtained from a
single tumor lesion) and their outcomes when targeted for strategic therapeutic intervention.

2. Results

A cohort of 15 patients with metastatic colorectal carcinoma (CRC; n = 1), non-small cell lung
cancer (NSCLC; n = 6), ovarian carcinoma (OV; n = 3), breast carcinoma (BC, n = 1), uterine carcinoma
(UC, n = 2), hepatocellular carcinoma (HCC; n = 1), or cervical cancer (CC, n = 1) were recruited to the
study. A single-pass radiologically-guided percutaneous biopsy technique was used to obtain MRTBs
from a dominantly-progressing metastatic lesion in each patient with core biopsies taken at least 2 mm
apart within the same metastatic lesion. Two patients (one with NSCLC and another with cervical
cancer) were excluded from analysis as all the MRTB samples collected from them failed quality control
(QC). One patient (UC) (P11; Figure 1) had two (out of four) biopsy samples that failed QC which were
subsequently excluded from the analysis. Similarly, one patient’s (P01) germline sample (i.e., buccal
swab) failed QC and was replaced with whole blood sample. All 15 patients tolerated the procedure
well with no significant adverse events, except for one patient (P09) who developed a moderately-sized
right sided pneumothorax requiring observation overnight and serial imaging to ensure spontaneous
resolution of the pneumothorax.
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Figure 1. Representative workflow of the processing pipeline. (A) Whole-exome sequencing was
performed on all germline and MRTB samples obtained from each patient. Bioinformatics analysis
was subsequently performed: (B) alignment of sequence reads; (C) somatic variant calling and
variant annotation; (D) generation of non-synonymous somatic mutational landscape across all
patients; (E) identification of truncal and branch variants present in each patient; (F) curation of
statistically significant somatic cancer driver mutations; (G) construction of phylogenetic trees from
non-synonymous somatic variants; (H) filtering of genetic variants using AmpliSeq™, TruSight®and
FoundationOne™ cancer gene panels; (I) statistical saturation analysis to determine the minimum
number of MRTB samples needed (to alleviate challenges associated with ITH) in relation to the
gene panel used; (J) copy number alterations analysis; (K) estimation of cancer cell fraction (CCF);
(L) prediction of putative truncal variants using two different threshold metrics, namely variant allele
frequency and CCF; (M) informed targeted therapies were performed based on patients’ mutational
profile that reflects genes from the AmpliSeq™ cancer gene panel. MRTB: multi- region tumor biopsy;
ITH: intratumor heterogeneity; TB: the number of MRTB samples resected from the patient; GL: the
type of germline sample; BL: whole blood sample; BS: buccal swab sample. CRC: Colorectal cancer;
NSCLC: Non-small cell lung cancer; OV: Ovarian Cancer; BC: Breast cancer; UC: Uterine Cancer; HCC:
Hepatocellular Carcinoma; P: Patient.

The investigation pipeline adopted for analyzing whole-exome sequencing (WES) data that passed
QC is illustrated in Figure 1. All processed samples had a DNA concentration greater than 4 ng/μL.
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Average sequencing depth, Q30 percentage and uniformity of coverage obtained were 128X ± 29.2,
87.5% ± 4.35, and 91.2% ± 1.94 respectively.

2.1. Tumour Variant Load

The mutational landscape of each patient was examined to evaluate the extent of ITH across
different cancer types. The non-synonymous somatic mutational load (nssML)—defined as the total
number of non-synonymous somatic (NSS) variants present—was scrutinized for each biopsy sample
(Figure 2A). Results indicate that patient P04 has the highest average non-synonymous somatic
mutational load (608.0 ± 41.7), while patient P05 with NSCLC has the highest diversity (i.e., difference
in non-synonymous somatic mutational load) among the four MRTB samples analyzed (104.3 ± 49.3).
The median diversity across all patients was 7.46 (range: 0.957 to 49.3). Friedman test of difference
among the different MRTB samples indicated no statistically significant difference between the number
of non-synonymous somatic variants present in each MRTB sample (p = 0.691).

2.2. Intratumor Heterogeneity

To investigate the extent of the intratumoral heterogeneity, the amount of truncal (i.e., ubiquitous
non-synonymous somatic variants that occur in all MRTB samples analyzed) and branch
(i.e., non-synonymous somatic variants that do not occur in all MRTB samples) variants were analyzed
(Figure 2B). Phylogenetic trees were also constructed to illustrate this phenomenon graphically
(Figure 2C, Figure S1). As demonstrated, two patients (P01 and P05) did not have any truncal variants
while patients P03 and P13 only had two and one truncal variant(s), respectively. On average, 24.1%
± 20.7, 14.7% ± 13.7 and 61.2% ± 20.6 of non-synonymous somatic variants were truncal, branch
and private mutations, respectively. A high level of intratumoral heterogeneity (75.5% ± 34.6) across
different tumors was observed, with private mutations dominating the mutational landscape (p < 0.05).
When copy number alterations (CNAs) were interrogated, a moderate degree of diversity (branch
amplification: 54.3%± 34.7, p= 0.083; branch deletion: 59.4%± 34.8, p= 0.050) was observed (Figure 2D,
Figure S2).

Statistically significant somatic cancer driver mutations (ssCDMs) were juxtaposed with
non-synonymous somatic variants identified in our study cohort. Results indicate that detectable
somatic cancer driver mutations were more likely to be truncal variants (68.2%; Figure 2E,
Figures S3 and S4); however, the difference was not statistically significant (p = 0.177). Truncal
somatic cancer driver mutations across this study cohort include AKT1, ATM, BCOR, CHD4, KRAS,
MAP3K1, and PIK3CA; conversely, branch somatic cancer driver mutations include ERBB2, FOXA1,
and PPM1D. In our cohort, EGFR mutations were confined to lung cancers, with three out of four (75%)
NSCLC patients found to harbor a truncal variant in at least one reportable mutation in EGFR [13].

2.3. Statistical Saturation Analysis

The relationship between truncal variants and the number of MRTB samples analyzed was
examined. A unique variant in this case refers to a distinct non-synonymous somatic variant that
appears in at least one of the MRTB samples analyzed simultaneously. In general, with an increasing
number of MRTB samples, a monotonically increasing trend in the number of unique variants and
correspondingly decreasing number of truncal variants can be observed (Figure S5).

At the exome level (i.e., WES NSS gene panel), on average 31.1± 5.12 more unique non-synonymous
somatic variants were detected with every additional MRTB sample analyzed. Conversely, using the
number of MRTB samples analyzed simultaneously as the baseline reference to determine putative
truncal variants (PTVs), a monotonically decreasing number of PTVs can be observed with an
increasing number of MRTB samples. The number of PTVs dropped by 16.1 ± 17.9 on average with
every additional MRTB sample, with the decrease most pronounced (36.8 ± 19.7) when two MRTB
samples were analyzed compared to just one. Similar trends were observed from filtered variants
when the WES data was mapped to genes matching four cancer gene panels—namely COSMIC Cancer
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Gene Census (CGC), Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies, Carlsbad, CA,
USA), TruSight®Cancer panel (Illumina Inc, San Diego, CA, USA) and FoundationOne™ cancer gene
panel (Foundation Medicine, Cambridge, MA, USA) (Figure S5, Tables S1 and S2). However, the
change in the number of unique/truncal mutations with increasing MRTB samples was less pronounced
(<2 variants on average).

(B) 

Figure 2. Mutational landscape of patients across six cancer types. (A) Boxplot illustrating nssML.
A cross (+) represents the mean value of the data. (B) Line chart and stacked bar chart representing
the number and proportion of truncal/branch variants, respectively. (C) Representative phylogenetic
tree and mutation heatmap for patient P03. Trunk, branch and private branches of the tree signify
mutations that occur in all, in some but not all, and only one MRTB sample(s) resected from the patient,
respectively. Heatmap demonstrates the presence (green: private; red: branch; blue: trunk) or absence
(gray) of NSS mutations in each MRTB sample. Bx denotes an MRTB sample with identification
number x. The total number of NSS, truncal (percentage), branch (percentage), and private (percentage)
mutations are denoted by ‘n’, ‘C’, ‘S’, and ‘P’, respectively. (D) Heatmap illustrating the presence and
absence (gray) of CNAs for patients with OV. Large-scale amplifications and deletions are represented
with areas filled with green and blue, respectively. (E) ssCDMs for OC and their associated AF and
CCF. CV: clonal (truncal) variant; Y: yes; N: no; AF: allele frequency; CCF: cancer cell fraction.

To quantitatively corroborate the minimum number of MRTB samples required across different
gene panels, statistical saturation analysis was conducted. Results (Figure S6) indicate that every
additional MRTB sample analyzed increases the ability to detect unique variants when WES
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non-synonymous somatic, TruSight®and FoundationOne™ gene panels were used; as for CGC
and AmpliSeq™ gene panels, at least two or three MRTB samples (depending on the panel used)
were required, respectively, before changes in the number of unique variants became statistically
not significant. To identify PTVs, results (Figure 3A) suggest that at least two MRTB samples were
required for the CGC, AmpliSeq™ and TruSight®gene panels, and three samples were required for
the FoundationOne gene panel; the WES NSS gene panel, on other hand, required four or more MRTB
samples based on our analysis. In addition, the positive predictive value (PPV) was determined
to evaluate the extent to which truncal variants (defined using four MRTB samples as the baseline
reference) can be identified among all variants found in a set of less than four MRTB samples.
Results (Figure 3B) indicate that four (or more) and two MRTB samples are needed for WES NSS
and FoundationOne™ gene panels, respectively, while CGC, AmpliSeq™ and TruSight®cancer gene
panels only require a single biopsy sample. The greatest significant increase in PPV based on WES NSS
and FoundationOne panels were from one analyzed sample to two samples (Figure 3B).
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Figure 3. Number, PPV and in silico prediction accuracy of truncal variants across different gene
panels. Five gene panels were scrutinized, namely WES NSS, CGC, AmpliSeq™, TruSight®and
FoundationOne™ cancer gene panels. (A) Boxplot illustrating the number of PTVs across different
numbers of MRTB samples analyzed concurrently. (B) PPV of PTVs in relation to the number of
MRTB samples interrogated simultaneously. (C) Best average prediction accuracy of PTVs across
different cancer types. Two types of thresholds were used to classify variants into either truncal or
branch, namely AF and CCF. Based on the respective threshold, the best average prediction accuracy
achievable (within the defined search domain) among all patients with the same cancer type (across
different gene panels) is portrayed above. A single asterisk (*) denotes p < 0.05, double asterisks
(**) signify p < 0.01, while triple asterisks (***) indicate p < 0.001. A cross (+) represents the mean value
of the data. ‘Not available’ signifies that no variants that are associated with the specific gene panel
were found.

2.4. Prediction of Truncal Mutations

To evaluate the ability to identify truncal variants (defined based on four MRTB samples) using
a single biopsy sample, two metrics were used as classification thresholds, namely allele frequency
(AF) and cancer cell fraction (CCF). Computation of CCF values—the proportion of cancer cells within
which the variant is present—for patient P07 (OV) was unable to be performed due to inadequate
information related to somatic copy number alteration. Hence, patient P07 was excluded for the
purpose of this analysis.

First, the threshold value (for each respective metric) that produces the best average prediction
accuracy across all patients was examined. Results, as illustrated in Figure S7, suggest that AF generally
outperformed CCF across different patients. Average prediction accuracy improved between 2.7%
and 15.3% (across different gene panels) when AF was used as the classification threshold. However,
statistical significance of difference was achieved for the WES NSS gene panel only (p = 0.021).

Next, the threshold value (for each respective metric) that produces the best average prediction
accuracy across patients with the same cancer type was scrutinized. Results, as demonstrated in
Figure 3C, show that AF outperformed CCF by 15.6% to 30.4% across the different gene panels, with the
FoundationOne™ cancer gene panel having the largest difference. Statistical significance of difference
was achieved for the WES NSS gene panel only (p = 0.031).

2.5. Clinical Therapeutic Intervention

Three (23.1%) patients (P06, P10, and P11) received an inhibitor targeting an actionable
truncal mutation based on molecular profiling while another six (46.2%) patients were treated
with non-actionable truncal mutation-directed therapy either because they did not have any actionable
truncal mutations or there was no available therapy to target the actionable truncal mutation at
our center (Table 1). An illustrative example of the patients’ mutational profile can be found in
Figures S8 and S9.

Table 1. Clinical details of patients who received therapy targeting their actionable truncal mutation.

Cancer
Type

Patient Age Sex

No. of MRTB
Samples with
Abnormality of
Interest

No. of MRTB
Samples that CCF
Metric
Classified as Clonal

Targeted
Abnormality

Therapeutic
Intervention

PFS (Months)

PFS Ratio

Radiological
RECIST
(v1.1)
Response

Initial
Therapy

Actionable Truncal
Mutation-Directed
Therapy

NSCLC P06 74 M 4/4 3/4 EGFR T790M T790M
inhibitor 2.5 25.5 10.2 PR

NSCLC P05 43 M 3/4 NA EGFR T790M T790M
inhibitor 2.1 3.6 1.71 SD

BC P10 41 F 4/4 4/4 PIK3CA
H1047R

PI3Kα/β
inhibitor 2 1.9 0.95 PD

UC P11 46 F 2/2 2/2 AKT1 E17K pan-AKT
inhibitor 4 6.1 1.53 SD

M: male; F: female; SD: stable disease; PR: partial response; PD: progressive disease (based on RECIST v1.1);
PFS: progression free survival. RECIST: Response evaluation criteria in solid tumors; EGFR: Epidermal
growth factor receptor; PIK3CA: phosphoinositide-3-kinase catalytic alpha polypeptide; AKT: RAC-alpha
serine/threonine-protein kinase.
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Using each patient as his/her own control as a strategy to attenuate confounding factors resulting
from the diverse patient population and tumor types, we assessed the clinical efficacy of actionable
truncal mutation-directed therapy by comparing progression free survival (PFS) on actionable truncal
mutation-directed therapy (PFS-actionable truncal mutation-directed therapy) or non-actionable truncal
mutation-directed therapy with the PFS for the most recent prior therapy (PFS-A) in each of these
patients [14]. Two NSCLC patients harboring an Epidermal growth factor receptor (EGFR)_T790M
mutation were treated with a single agent EGFR_T790M specific tyrosine kinase inhibitor [15] with
differing clinical outcomes. Patient P06 had a truncal EGFR_T790M mutation while patient P05 had
an EGFR_T790M mutation as a branch mutation. Patient P06 had a partial response and was still on
active treatment at last review with a PFS of >25 months (Figure S10a), while patient P05 developed
worsening neuro-cognitive defects resulting in cessation of treatment after two months. The PFS ratio
for patients P05 and P06 was 0.06 and 10.2, respectively.

Patient P10 with breast cancer and a phosphoinositide-3-kinase catalytic alpha polypeptide
(PIK3CA)_H1047R truncal mutation was enrolled into a highly selective PI3Kα/β inhibitor phase
1 (dose escalation) trial [16], but progressed shortly after with a PFS of 1.9 months and PFS ratio of
0.95 despite deriving symptomatic benefit while on the trial. Lastly, patient P11 with uterine carcinoma
harbored a truncal RAC-alpha serine/threonine-protein kinase (AKT1) E17K mutation in two out of
two of her MRTB cores analyzed (only two of four cores had DNA of sufficient quality for analysis in
her case). She had significant sacral bone pain from bone metastasis and received a pan-AKT inhibitor.
Strikingly, her pain significantly improved and subsequent scans revealed a 21% reduction in the sum
of target lesions with a PFS of 6.1 months (Figure S10b). When compared to the PFS from her most
recent physician’s choice therapy, a PFS ratio of 1.5 was observed.

It is noteworthy that the CCF metric performed relatively well in predicting the truncal status
of the variants targeted. The median PFS-actionable truncal mutation-directed therapy for the small
number of patients treated with actionable truncal mutation-directed therapy was 6.1 months, with
a median PFS ratio of 1.5. These findings do suggest that the truncal status of tumors influences
response and, if validated, could potentially be used in personalized cancer treatment to help prioritize
therapeutic strategies.

3. Discussion

ITH represents a significant challenge to precision medicine and contributes to drug resistance.
Several studies employing multi-region tumor sampling from post-surgical samples have greatly
increased our understanding of tumor evolution and highlighted the importance of tumor sampling
from spatially distinct areas in order to avoid erroneous interpretation of genomic data from single
sampling bias [8–10]. In clinical practice, however, a systematic regional analysis of resected tumor
specimens is unfeasible in the majority of patients with metastatic or recurrent cancer who may only
have limited accessible intracorporeal tissue for sampling/biopsy. Hence, high quality patient samples
across six major cancer types were analyzed to address certain exigent issues related to ITH and devise
a potential novel solution to tackling the complexities of tumor heterogeneity when confronted with
the reality of treatment decision-making based on limited access to tumor tissue.

Results in our small cohort demonstrate a high degree of ITH (>65% branch mutations) across
the majority of patients, with private mutations dominating the mutational landscape. Clearly, this
indicates that ITH is a ubiquitous issue that would confound the ability to identify bona fide truncal
variants. Statistical saturation analysis demonstrates that for small targeted cancer gene panels
like CGC, AmpliSeq™ and TruSight®, a minimum of two MRTB samples are required to identify
PTVs; for a larger cancer gene panel like FoundationOne™, at least three MRTB samples are needed.
The determination of the minimum number of MRTB samples required is highly valuable as it enables
clinicians to find the equilibrium between cost and accuracy (of identifying bona fide truncal variants),
and allows the choice of which cancer gene panel to use with the amount of tumor tissue available.
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Examination of the nssML of each patient indicates that individual intratumor biopsy samples
comprise a similar amount of NSS variants (Figure 2A) while the aggregated nssML shows that every
additional MRTB sample would offer a statistically significant increment in the total number of NSS
variants (Figure S6). Correlation analysis indicates a strong correlation between the average number of
NSS variants among individual intratumor biopsy samples and aggregated NSS variants across all
four MRTB samples (Pearson’s rho = 0.975, p < 0.001). This suggests minimal intratumoral variation in
the ML based on our series and that mutational burden is less likely to be impaired by sampling bias.

Given the coveted utopia of making informed clinical decisions based on a single biopsy sample,
in silico methods for predicting truncal variants are of particular interest. AF and CCF are two favored
metrics commonly used. Empirical experiments indicate that when AF was used as the threshold to
classify truncal variants, it achieved comparable, if not better, accuracy compared to CCF; although
both approaches were less compelling for some cancer types. Of note, different cancer types (at the
whole-exome level) favor different threshold values for segregating truncal from branch variants,
suggesting that each tumor type exhibits distinct biological characteristics that require dedicated
data analytics.

Improved clinical outcomes were observed in two out of three patients whose truncal mutations
were selectively targeted. Remarkably, all patients in our series treated with actionable truncal
mutation-directed therapy derived symptomatic benefit with improvement in their performance
status. The small patient numbers across a diverse spectrum of tumors limits our ability to draw
significant conclusions within each tumor type, but nonetheless demonstrates its applicability in
a variety of tumor types and preliminary evidence of clinical benefit when used for therapeutic
prioritization in selected patients. It is noteworthy that patient P05—who had an EGFR_T790M
branch mutation that was targeted—did not respond well to the treatment (Table 1). This reaffirms
the hypothesis that increased therapeutic efficacy can be achieved by targeting truncal mutations
within a tumor, and that targeting branch mutations may result in only partial treatment efficacy
and/or accelerated growth in non-targeted subpopulations [17]. Undeniably, the cost per patient of
this approach is high; it has been estimated at USD$5000 per patient for the acquisition of biopsy
samples and profiling of four biopsy core samples as well as a germline control, but this is likely to be
mitigated in the future as next generation sequencing technologies become more widely used and cost
of sequencing gradually decreases. Crucially, the data provided by multi-region sequencing of a tumor
could have important implications for the prioritization of druggable targets in the clinical setting.
To the best of our knowledge, this is the first study assessing the feasibility and utility of obtaining
tissue biopsies from multiple spatially separated regions from a single metastatic site percutaneously.
A limitation of this study is the small sample size. Nevertheless, it provides adequate resolution into
the complexity and management of ITH. In addition, the ITH analysis performed in this study is based
on the construction of phylogenetic trees with the implicit assumption that a tumor sample can be
meaningfully summarized as the collection of mutations observed in that sample, or that only a single
or dominant clone exists per sample that carries all mutations, which could lead to biased inferences.

In our study, we only analyzed single nucleotide variants (SNV) which may potentially
underestimate the frequency of clinically actionable mutations and the mutational load of the tumor.
We focused solely on SNV mainly because they make up the majority of pathogenic variants relevant
in solid tumor malignancies (59.39%) compared to other genomic alterations such as indels, structural
variants and copy number loss [18]. Indeed, the majority of annotated variants in oncogenic and
actionable target databases such as OncoKB and cancer hotspots consist of predominantly SNV.
In addition, the majority of approved targeted inhibitors available for solid cancers currently are also
mainly directed at aberrations associated with SNV. As our results relied entirely on WES analysis,
and so one of the limitations of our study is the dependence on the size of the panel testing. As the
number of variants being considered increases, so does the required number of samples. Our study
also used fresh frozen tissue for WES analysis, which resulted in 13 of the 81 samples collected failing
quality assurance due to degradation of DNA. As we continue to expand our taxonomy of tumors and

29



Cancers 2020, 12, 1599

seek to enhance the applicability of this approach in clinical practice, it would be ideal to optimize
this approach for the clinical grade analysis of formalin-fixed, paraffin-embedded tumor samples,
to enable histological and immunohistochemical analyses of samples to be performed in parallel
with genomic analysis in the future. It has been suggested that liquid biopsies based on genomic
analyses of circulating cell-free tumor DNA (ctDNA) and circulating tumor cells (CTC) may obviate
the need for tumor biopsies [19]. Liquid biopsy platforms offer the potential for real-time sampling
and resampling of tumor material for monitoring of therapeutic efficacy [20] and early detection of
resistance subclones [21]. Furthermore, the MRTB approach we have used in this study will not be
feasible in patients with inaccessible lesions. However, the inability to characterize liquid biopsies
histologically limits the extent of biomarker analyses, particularly where tumor microenvironmental
features (e.g., programme cell death-1/programme cell death ligand-1(PD1/PDL1) protein expression),
immune cell infiltrates and stromal content are concerned. Further studies comparing the clinical
utility of multi-spatial or multi-lesional biopsy approaches with that of liquid biopsies in monitoring
the emergence of resistance and therapeutic efficacy are eagerly awaited

4. Materials and Methods

4.1. Patients and Specimens Collection

All patients were recruited and treated at the National University Cancer Institute (NCIS),
Singapore, between December 2014 and May 2016. WES and data analytics were performed at the
National University of Singapore (NUS), Singapore. All procedures were conducted in accordance
with the approved protocols and written informed consent was provided by the patients (File S1).
Eligible patients were at least 21 years of age, had a histological or cytological diagnosis of advanced
or metastatic solid malignancy and had recurrent disease for which tissue biopsy was indicated as part
of routine clinical practice. This study was approved by the National Health Group Domain Specific
Review Board IRB number 2014/00665

Each patient had 5 tumor biopsy samples obtained from one metastatic lesion using a single-pass
radiologically-guided percutaneous biopsy technique. This technique involves the insertion of a
coaxial needle together with its trocar into a lesion. The trocar is subsequently removed to allow
for the introduction of a biopsy device that is composed of a needle with a 1.5 cm throw to facilitate
multiple passes along acute angles from a single lesion via a single percutaneous access. Each biopsy
sample was obtained at least 2 mm apart. One biopsy core was sent to the histopathology lab as part of
routine clinical management while the remaining four tumor biopsy samples were analyzed using
WES. Four patients had biopsies obtained from the lung (P3, P4, P5 and P6), four had peritoneal nodes
biopsied (P1, P7, P8 and P9), three patients underwent a liver biopsy (P10, P11 and P12) and one
patient each had a bone (P13) and supraclavicular lymph node (P2) biopsied. Germline samples were
collected from each patient in the form of a buccal swab. If the germline sample failed quantitative QC,
whole blood would be used as replacement. Samples with DNA concentration <4 ng/μL would be
deemed to have failed QC. Radiological images were obtained as part of clinical care.

4.2. Whole-Exome Sequencing

Extraction of genomic DNA from tumor samples was carried out using the Qiagen Allprep
DNA/RNA Micro Kit (Qiagen, Hilden, Germany). The MasterAmp Buccal Swab Kit (Epicenter,
Madison, WI, USA) was used to extract DNA from buccal swab samples while the Qiagen EZ1 DNA
Blood 350 μL Kit (Qiagen, Hilden, Germany) was used to process whole blood samples. An Illumina
NextSeq 500 Sequencing System (Illumina, San Diego, CA, USA) was utilized to perform 150 base pair
paired-end WES. All experiments were conducted in accordance to manufacturer guidelines at the
Cancer Science Institute of Singapore, NUS. Full patient data can be found in the National Centre for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession number SRP137039
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4.3. Sequencing Reads Alignment and Somatic Variant Detection

Sequence reads were aligned to the hg19 reference genome using the Burrows–Wheeler Aligner
(BWA) v0.7.7 [22] and realignment to the hg19 reference genome was performed by using the Genome
Analysis ToolKit (GATK) v3.3.0 [23]. Variant calling was performed with duplication removal and
base recalibration prior to variant calling using MuTect somatic variant caller v1.1.7 [24] and annotated
using Oncotator v1.8.0.0 [25]. Only NSS variants were filtered out for analysis independent of CCF or
AF. All sequencing data have been made available in the NCBI Sequence Read Archive (SRA) under
accession number SRP137039.

4.4. Copy Number Alterations

Somatic CNAs were detected using several algorithms. Succinctly, the computation of raw
copy number calls and the adjustment of GC content of the raw copy number calls were performed
using VarScan2 v2.3.9 [26]. Re-centering and segmentation of the adjusted copy number calls were
conducted using DNAcopy v1.44.0 [27]. Sample purity was assessed using the ABSOLUTE algorithm
(Appendix A, Table A1).

4.5. Cancer Gene Panels

Five gene panels—WES NSS, COSMIC Cancer Gene Census (CGC), the Ion AmpliSeq™ Cancer
Hotspot Panel v2, the TruSight®Cancer panel and the FoundationOne™ cancer gene panel—were
examined. The WES NSS gene panel comprises of all protein-coding genes (with NSS property) in the
genome, while the CGC gene panel consists of all statistically significant cancer-specific genes curated
from the COSMIC Cancer Gene Census (CGC) [28,29] and The Cancer Genome Atlas (TCGA) [30,31].
The complete list of CGC interrogated genes for CRC (n = 29), NSCLC (n = 30), OV (n = 10), BC (n = 52),
EC (n = 58), and HCC (n = 26) is available in Figures S3 and S4. Commercial cancer gene panels
like AmpliSeq™, TruSight®and FoundationOne™ are comprised of 50, 94, and 315 cancer-related
genes, respectively; their interrogated gene lists are available at ThermoFisher [32], Illumina [33], and
Foundation Medicine [34], respectively.

All NSS variants identified in the WES NSS gene panel were subsequently juxtaposed with
individual targeted cancer gene panels (i.e., CGC, AmpliSeq™, TruSight®and FoundationOne™) and
variants from mismatched genes were winnowed out. The resulting list of variants for each cancer
gene panel was used for subsequent downstream analysis.

4.6. Construction of Phylogenetic Trees

The construction of phylogenetic trees was carried out based on a binary table that represents the
presence or absence of variants across all MRTB samples. Using the PHYLogeny Inference Package
v3.695 (PHYLIP) [35] and matched germline information as the outgroup root, discrete character
parsimony was used to generate the topology of the phylogenetic trees. Based on the computed
mutation counts, the length of the trunk, shared and private branches were drawn accordingly.

4.7. Statistical Saturation Analysis

The computation of the average number of unique variants present when ‘k’ number of MRTB
samples were analyzed concurrently was performed based on the following Formula (1):

Average unique variantsk =
1
n

n∑

i=1

xi, (1)

where ‘n’ denotes the number of permutation combinations available when ‘k’ number of MRTB
samples were selected from 4 MRTB samples, and ‘xi’ refers to the number of variants that are present
in at least one of the MRTB samples examined in combination set ‘i’. Similarly, the average number
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of PTVs was calculated based on the formula above but with ‘xi’ defined as the number of variants
present in all MRTB samples scrutinized in combination set ‘i’.

PPV, on other hand, was computed based on the following Formula (2):

Average PPVk =
1
n

n∑

i=1

C
PCVi,k

, (2)

where ‘n’ denotes the number of permutation combinations available when ‘k’ number of MRTB
samples were selected from 4 MRTB samples, ‘C’ represents the number of variants that occur in all 4
MRTB samples, and ‘PTVi,k’ (i.e., putative truncal variant) refers to the number of variants present in
all ‘k’ number of MRTB samples examined simultaneously in combination set ‘i’.

All statistical hypothesis tests were conducted using the Wilcoxon signed rank test unless otherwise
stated. Statistical significance is considered when the p-value is less than 0.05.

4.8. Cancer Cell Fraction and Allele Frequency

The CCF value was estimated using the ABSOLUTE algorithm [13] for each somatic single
nucleotide variant (SNV) site based on its AF, CNAs, ploidy and purity of the tumor tissue analyzed.
Based on the computed CCF values, a range of thresholds—from 0.90 to 1.00 incremented at a step size
of 0.01—were used to classify variants into either truncal or branch.

AF was calculated by dividing the number of alternative sequence read counts with the total
number of (alternative and reference) sequence read counts. Likewise, the clonality of variants was
determined by comparing the variant’s AF with a range of thresholds (from 0.01 to 0.55 incremented at
a step size of 0.01). The respective thresholds used for both the cancer cell fraction and allele frequency
analysis according to the individual panels are shown in Table 2 below:

Table 2. Thresholds used to determine the clonality of the variants.

Panel CCF AF

FoundationOne 0.92 0.13
AmpliSeq 0.92 0.15
TruSight 0.96 0.13

WES 1 0.16

4.9. Prediction of Truncal Mutations

To stratify variants into either truncal or branch based on a single biopsy sample, different (AF and
CCF) threshold values were investigated. For each threshold value examined, the following formula
was employed to compute the average classification accuracy, by which 4 MRTB samples were used as
the baseline reference for defining bona fide truncal variants (3).

Average Accuracyk =
1
4

4∑

i=1

xi,k

yi
, (3)

where ‘k’ denotes the examined threshold value, ‘xi,k’ represents the number of correct classification
made for biopsy sample ‘i’ using threshold value ‘k’, and ‘yi’ refers to the total number of variants
assessed for biopsy sample ‘i’.

4.10. Assessing Targeted Therapy Outcomes

Treatment decisions were made using molecular profiling results from one core biopsy, as reported
in the Intergrated Molecular Analysis of Cancer (IMAC) study [14] while the remaining four core
biopsies were analyzed for this study. Using each patient as his/her own control as a strategy to attenuate
confounding factors resulting from the diverse patient population and tumor types, we assessed the
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clinical efficacy of actionable truncal mutation-directed therapy by comparing the PFS for each patient
who received actionable truncal mutation-directed therapy (PFS-actionable truncal mutation-directed
therapy) with the PFS for the therapy immediately before actionable truncal mutation-directed therapy
(PFS-A) [36]. If the PFS of PFS-actionable truncal mutation-directed therapy/PFS-A ratio was ≥1.3, then
the molecular profiling-selected actionable truncal mutation-directed therapy was defined as having
benefit for the patient compared to the physician’s choice chemotherapy. The PFS ratio was defined as

PFS–actionable truncal mutation–directed therapy
PFS for the therapy immediately before actionable truncal mutation–directed therapy (PFS–A)

and was used to evaluate
the efficiency of the therapeutic intervention [36].

5. Conclusions

In conclusion, this study has demonstrated: (i) the importance of performing multiple biopsies
despite extant in silico prediction methods, (ii) the minimum number of MRTB samples required to
alleviate challenges related to ITH is dependent on the tested hypothesis and the examined gene panel,
but that at least two biopsies should be submitted for analysis to achieve a PPV of >90% identifying
AT mutations, and (iii) the feasibility and clinical efficacy of adopting the proposed approach for
strategic therapeutic intervention. Further validation of this approach for identifying and targeting AT
mutations in larger cohorts will be required to fully assess its potential value as a precision medicine
strategy to circumvent the challenges of intratumoral heterogeneity in cancer therapy.
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Figure S1: Phylogenetic trees constructed from NSS mutations, Figure S2: Heatmap visualization illustrating the
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MRTB samples and gene panels, Figure S6: Boxplot illustrating the average number of unique variants across
different gene panels and number of MRTB samples, Figure S7: Best average prediction accuracy of PTVs across
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Abstract: Purpose: next-generation sequencing based comprehensive genomic profiling (CGP) is
becoming common practice. Although numerous studies have shown its feasibility to identify
actionable genomic alterations in most patients, its clinical impact as part of routine management
across all cancers in the community remains unknown. Methods: we conducted a retrospective
study of all patients that underwent CGP as part of routine cancer management from January 2013
to June 2017 at an academic community-based NCI-designated cancer center. CGP was done in
addition to established first tier reflex molecular testing as per national guidelines (e.g., EGFR/ALK
for non-small cell lung cancer (NSCLC) and extended-RAS for colorectal cancer). Results: 349 tests
were sent for CGP from 333 patients and 95% had at least one actionable genomic alteration reported.
According to the reported results, 23.2% had a Food and Drug Administration (FDA) approved
therapy available, 61.3% had an off-label therapy available and 77.9% were potentially eligible for
a clinical trial. Treatment recommendations were also reviewed within the OncoKB database and
47% of them were not clinically validated therapies. The CGP results led to treatment change in only
35 patients (10%), most commonly in NSCLC. Nineteen of these patients (54% of those treated and
5% of total) had documented clinical benefit with targeted therapy. Conclusion: we demonstrate
that routine use of CGP in the community across all cancer types detects potentially actionable
genomic alterations in a majority of patients, however has modest clinical impact enriched in the
NSCLC subset.

Keywords: comprehensive genomic profiling; molecular genotyping

1. Introduction

Targeted therapy against driver genomic alterations has improved outcomes for patients with
many different cancers, including lung cancer, melanoma, breast cancer, and others [1]. Next-generation
sequencing (NGS) based tumor comprehensive genomic profiling (CGP) that detects all classes of
genomic aberrations (base pair substitutions, copy number variations, insertions/deletions, and
rearrangements) is increasingly being utilized to match patients to relevant targeted therapies against
several oncogenic drivers [2,3]. The National Comprehensive Cancer Network (NCCN) guidelines
recommend “broad molecular profiling”, including BRAF, ERBB2 (HER2), MET, RET, NTRK, and
ROS1, in addition to EGFR and ALK for metastatic non-small cell lung cancer (NSCLC) [4–7]. Several
in-house as well as commercial testing panels are now available with rapid turnaround times for
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results [1,8–10]. Several NGS-based platforms are being utilized in the care of cancer patients, since
the Food and Drug Administration (FDA) approval of two NGS-based assays in November 2017 for
patients with advanced stage cancer and the national coverage determination of the tests by Centers
for Medicare and Medicaid Services (CMS) [11,12].

Despite guidelines, the uptake of CGP in the community has not been uniform, even in NSCLC
patients and the general impact of CGP as to patient outcomes and cost effectiveness remains unclear [13,14].
A large retrospective study of advanced NSCLC patients treated in the community setting identified
gaps in national guideline based genomic testing for EGFR and ALK [4]. Of 814 patients, 479 (59%) met
guideline recommendations for EGFR and ALK testing and only 63 (8%) underwent testing for all eight
NCCN recommended genomic alterations. The barriers cited for under-genotyping included sample
handling issues, long turnaround times, confusion about test reimbursement, access to targeted therapies,
and insufficient tissue.

Several studies, mostly from large academic centers, have reported successful implementation
of CGP and have shown that most patients will have at least one potentially actionable genomic
alteration on CGP. In a retrospective study of 125 patients who underwent CGP, clinically relevant
genetic alterations were found in 111 (92%) patients [15]. Only 15 (12%) patients received molecularly
targeted therapy, with three who derived clinical benefit. The most common reasons for not receiving
targeted therapy were ongoing standard of care treatment, poor performance status, stable disease,
and lack of access to clinical trials. This trial was smaller than our study, included both adult and
pediatric cases, mostly included brain tumors and assessed patients prior to 2016. A prospective
trial of 100 patients with rare and/or refractory cancers assessed the clinical actionability of CGP, as
determined by recommendations by a molecular tumor board [10]. Ninety-two patients underwent
successful genetic sequencing and 96% (n = 88) had at least one genetic alteration. CGP led to change in
management in 31% of patients, including targeted therapy, change in diagnosis, and germline testing.
However, some of the cases included in this subset were those treated with cytotoxic chemotherapy,
due to lack of driver mutations, e.g., a pancreatic tumor with STK11 mutation treated with pemetrexed.
Barriers to change in management were deteriorating patient clinical status and a lack of access to
relevant clinical trials. Another prospective study assessed the feasibility of implementing CGP for
all cancer patients at the institution and reported the results for the first 3727 patients who were
successfully sequenced with their in-house gene panel [1]. Seventy-three percent of cases had at least
one clinically actionable genetic alteration and only 19% of these were standard of care therapeutic
recommendations at the time. However, this study did not look at actual change in management.
A prospective, single arm study enrolled 500 patients with refractory cancers from a phase 1 oncology
clinic, of which 339 patients underwent CGP [16]. Of these patients, 317 (93.5%) had at least one
potentially actionable molecular alteration. The matching scores were calculated based on the number
of drug matches and genomic alterations per patient. 122 of total 500 (24.4%) patients received matched
therapy and 66 of 500 (13.2%) received unmatched therapy. High matching scores were associated
with a greater frequency of stable disease, partial or complete remission versus low scores (22% vs. 9%
respectively, p = 0.024), as well as longer survival (Hazard Ratio = 0.65; p = 0.05). A subsequent analysis
of the same patient cohort found that patients on matched therapy had longer time on treatment
(1.5 months), longer survival by 2.4 months, and higher drug treatment costs (by $38K) (p < 0.01) [2].
Sixty-six percent of increased drug costs were attributable to longer treatment time, as opposed to
higher monthly drug costs. Patients who received matched therapies as an earlier line of treatment
(1–3) derived more numerical improvement in the aforementioned areas when compared to those
who received them as later line of therapy (4 and above). Although this study provided interesting
results, its definition for “matched” therapies was quite liberal—including any drug that had a half
maximal inhibitory concentration (IC50) in the low nanomolar range or if the target was the primary
one recognized by an antibody. A retrospective review of 439 patients who underwent CGP showed
that 393 (90%) patients had at least one potentially actionable molecular alteration [17]. The alteration
was targetable by at least an experimental drug in a clinical trial in all cases. The drug was only FDA
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approved for their tumor (on-label) in 89 patients (20%), requiring off-label use for most recommended
drugs. Again, this study did not assess actual change in management.

Recently, another study estimated that 8% of cancer patients in the United States were eligible for
genome-targeted therapy and only 4.9% were estimated to actually derive benefit from this therapy
(i.e., responders) [18]. The MOSCATO-1 trial prospectively enrolled 1035 patients with advanced
cancers, of which 843 (89%) underwent successful molecular profiling [19]. 411 patients (48.7%) had
actionable targets and 199 received matched therapy. The outcomes improved (assessed by PFS2/PFS1
score) in 63 patients (7% of total 843 screened) and objective responses were observed in 22 of all
1035 patients (2.1%).

Our study aims to determine the real-world impact of routine incorporation of CGP in the
community across all cancer types, regardless of stage or prior lines of therapy, while these studies
have shed light on the feasibility as well as actionability in advanced cancers after standard treatments
in the setting of clinical trials.

2. Methods

We conducted a retrospective, observational study of all patients that underwent comprehensive
genomic profiling from January 1, 2013 to June 30, 2017 at an academic community-based National
Cancer Institute (NCI)-designated cancer center. The institution has a multidisciplinary molecular
tumor board that was established in September 2015, where some of these cases were referred and
reviewed. CGP was performed either on tumor or plasma samples. Our institution, like many others,
has a two-tier algorithm for molecular testing. The first-tier included tests that are reflexively sent
by the Pathology department based on histology according to established institutional guidelines
following national recommendations. For example, this included during the study era extended RAS
testing for colorectal cancer, HER2 for breast and esophagogastric cancer, and EGFR/ALK for lung
adenocarcinoma. CGP constitutes the second tier and these tests are sent at the discretion of the treating
oncologist. The assays used for NGS-based genomic profiling included the commercially available
Foundation Medicine (Cambridge, MA, USA), Guardant Health (Redwood City, CA, USA), or Genoptix
(Carlsbad, CA, USA) multi-gene panels. Testing facilities reported results defining potentially clinically
actionable genetic alterations and listed treatment options available in three categories: FDA-approved
on-label therapies, FDA-approved off-label therapies, and available clinical trials. Management change
included patients in whom targeted therapy was initiated, continued, or withheld based on the results
of CGP. Those who had clarification or confirmation of primary tumor or were enrolled on clinical
trials based on CGP were also included. Patients already on targeted therapy based on previously
known genetic alterations obtained by sequential or first-tier reflex testing were not included. Two
independent physicians (A.S. and E.S.) reviewed all patient charts to obtain demographic as well as
clinical data.

Next, we utilized the publicly available precision oncology database, OncoKB [20] to assess the
supportive evidence behind treatment recommendations for “actionable mutations” labeled by testing
platforms. According to the database, each potentially clinically actionable genetic alteration was
assigned a level of evidence if applicable. Level 1 denotes FDA-approved targeted therapy available,
level 2 denotes the standard of care, but no FDA approved indication, level 3 and 4 are assigned to
alterations where therapies are not standard of care, but have compelling clinical or biologic evidence
for hypothetical benefit, respectively. Level R1 indicates a standard of care biomarker predictive of
resistance to an FDA-approved therapy. In cases where no level of evidence is assigned, alterations are
classified as oncogenic, likely oncogenic, oncogenic function unknown, or no information available. All
patient information was de-identified. Descriptive statistics and chi-squared analyses were performed
using Microsoft Excel. The Institutional Review Board (IRB) of Albert Einstein College of Medicine
approved the study (IRB number: 2013-2570).
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3. Results

Three hundred and forty-nine tests were sent from 333 adult patients. The median age of patients
was 63 years (range 19–98 years). One hundred and ninety-two (56%) of the patients were female.
112 (32%) patients were black and 71 (20.3%) identified as Hispanic. One hundred and twenty-four
patients (63.4%) had Medicare or Medicaid and 26% had private insurance. The most common
diagnosis for which CGP was sent was NSCLC (n = 107, 31.5%,), followed-by colorectal cancer (n = 58,
16%), ovarian cancer (n = 15, 4.3%), and carcinoma of unknown primary (n = 14, 4%) (a list of all
primary oncologic diagnoses is listed in Table 1 in the appendix). 79.9% (n = 279) of tests were sent
on tumor tissue samples and 20.1% (n = 70) were sent on plasma samples. The median number of
therapies received for metastatic disease at the time of testing was 1 (range 0–5) and the median
turnaround time for results was 12 days (range, 6–304 days). In seven cases, the results were not
reported due to failed sequencing. At least one clinically actionable genomic alteration was detected in
332 (95%) patients. According to result reports from testing platforms, 23.2% (n = 81) had an FDA
approved targeted therapy available for their tumor, 61.3% (n = 214) had an off-label FDA approved
targeted therapy available, and 77.9% (n = 272) were potentially eligible for a clinical trial. A total of
408 treatment recommendations were annotated as FDA-approved or off-label therapies and they were
reviewed within the OncoKB database. Forty-seven percent of these did not have any level of evidence
assigned. Of the 408 actionable alterations, 7.8% were assigned level 1, 9.8% were assigned level 2,
8.6% were assigned level 3, 17.6% as level 4, and 8.6% as level R1. See Table 2 for a list of all actionable
alterations and their corresponding OncoKB levels.

Table 1. Primary diagnosis for patients (Appendix, Online only).

Type of Tumor Number Type of Tumor Number

NSCLC 107 Gastric cancer 5
Colon cancer 47 Sarcoma 4

Ovarian cancer 15 Cervical cancer 4
Carcinoma of unknown

primary 14 Myelodysplastic
syndrome 4

Pancreatic cancer 11 Hepatocellular
carcinoma 3

Uterine cancer 11 Thyroid cancer 3
Head and Neck cancer 10 Lymphoma 3

Renal cancer 9 Pancreatobiliary cancer 3
Breast cancer 9 Parotid cancer 3
Brain tumors 8 Multiple myeloma 2

Prostate cancer 7 Small cell lung cancer 2
Gallbladder cancer 7 Thymoma 2

Rectal cancer 11 B-ALL 2
Bladder cancer 6 Melanoma 2

Esophageal cancer 6 Germ cell tumors 2
Cholangiocarcinoma 5 Others 25

The patients had a median follow-up of 1.3 years from the date of the reported CGP results.
Despite the high number of listed actionable alterations, management was actually changed based on
CGP in only 10% (n = 35) of patients. In another seven patients, treatment change was planned, but the
patient either declined treatment or died prior to its initiation. Of these 42 patients, the most common
diagnosis was NSCLC (n = 28). CGP-driven management change was observed in 50% (n = 1/2) of
thymoma, 40% of head and neck cancer (n = 4/10), 26.2% (n = 28/107) of NSCLC, 27.3% (n = 3/11) of
esophagogastric, 25% (n = 1/4) sarcoma, 22.2% (n = 2/9) of breast cancer, 7.1% (n = 1/14) carcinoma of
unknown primary, and 3.4% (n = 2/58) of CRC patients. Figure 1 shows patients in whom management
changed categorized by diagnoses. We compared the effect of CGP on the two most common patient
diagnoses i.e., lung and colorectal cancer using the Chi-squared test. CGP-led management change
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was significantly higher in lung cancer versus colorectal patients (p = 0.0002). Table 3 describes patient
information and clinical outcomes of patients where CGP changed management. Nineteen patients
(54% of those treated and 5% of total) had documented clinical benefit with targeted therapy based
on CGP. Only one patient received immunotherapy based on CGP testing identifying Microsatellite
Instability–High (MSI-H) status. It should be mentioned that, given routine Mismatch Repair (MMR)
testing at our institution for all colorectal and endometrial cancers, this low frequency is expected.

Table 2. Classification of actionable molecular alterations according to OncoKB levels of evidence (of
note, some alterations had more than one level of evidence assigned depending on the alteration and
specific therapy involved).

OncoKB Level of Evidence Number Percentage

Level 1 32 7.8
Level 2A 9 2.2
Level 2B 31 7.6
Level 3A 4 0.9
Level 3B 31 7.6
Level 4 72 17.6

Level R1 35 8.6
No level assigned, oncogenic 71 17.4

No level assigned, likely oncogenic 57 14.0
No level assigned, oncogenic function unknown 39 9.6

No level assigned, no information available 8 2.0
No level assigned, Tumor mutational burden 8 4.4
No level assigned, Microsatellite Instability 18 0.2

Figure 1. Patients in whom comprehensive genomic profiling changed/potentially changed management
(NSCLC, Non-small cell lung cancer, CRC, Colorectal cancer, CUP, Carcinoma of unknown primary).

Of the 81 patients with FDA approved targeted therapies identified by testing platforms, 55 (67.9%)
did not result in change in management. Twelve of these had previously known mutations in
NSCLC/CRC/gastric/breast cancer as part of established first tier reflex testing. In 37 patients,
the recommended targeted therapy was not standard of care, including high tumor mutational burden
directed immunotherapy, four patients had early disease where targeted therapy was not indicated,
in one patient therapy was reserved for future disease progression, and one patient died. Although
54 patients (15.5%) participated in clinical trials, only five were enrolled in clinical trials based on
results from CGP (including two patients on NCI-MATCH).
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Table 3. Observed/proposed change in management based on comprehensive genomic profiling
(*Documented response or on treatment for at least 3 months).

Diagnosis Molecular Alterations Management Change Observed Benefit

1. Lung adenocarcinoma EML4-ALK fusion (Variant 1) Crizotinib Lost to follow-up
2. Lung adenocarcinoma EGFR amplification, G719A Erlotinib continued Yes
3. Lung adenocarcinoma EGFR G719A, Q701L, amplification Erlotinib continued Yes

4. Lung adenocarcinoma EGFR E746_A750del
MET amplification Crizotinib-Erlotinib Lost to follow-up

5. Poorly differentiated NSCLC,
sarcomatoid morphology NTRK1 TPM3-NTRK1 fusion Died prior to giving Crizotinib N/A

6. Lung adenocarcinoma EGFR amplification, exon 19 deletion Afatinib Yes

7. Lung adenocarcinoma EGFR exon 19 deletion,
T790M Osimertinib Yes

8. Lung adenocarcinoma ALK EML4-ALK fusion (Variant 1) Alectinib Yes

9. Lung adenocarcinoma BRCA2 S1099*
MET amplification

Declined participation in MATCH
study N/A

10. Lung adenocarcinoma EGFR L858R Died prior to starting EGFR-TKI N/A

11. Lung adenocarcinoma EGFR exon 19 deletion, T790M, L792F,
C797S

Osimertinib continued beyond
progression N/A

12. Medullary thyroid cancer RET V804M
Cabozantinib

Lenvatinib
Phase 1 study of MGCD516

Yes

13. Poorly differentiated NSCLC MET amplification Died prior to planned phase 1 trial of
MGCD516 N/A

14. Poorly differentiated NSCLC MET amplification Died prior to planned phase 1 trial of
MGCD516 N/A

15. Lung adenocarcinoma EGFR exon 19 deletion (L747_S752del)
T790M Osimertinib Yes

16. Lung adenocarcinoma
Urothelial bladder cancer Numerous Clarified primary tumor to be

urothelial in origin Yes

17. Gastric adenocarcinoma MSI-High Pembrolizumab Yes

18. Lung adenocarcinoma EGFR exon 19 deletion
(E746_A750del), T790M Osimertinib Yes

19. Lung adenocarcinoma
EGFR amplification, L858R, R776C,

T790M
MET amplification

Osimertinib + crizotinib Yes

20. Lacrimal duct carcinoma ERBB2 amplification Trastuzumab No

21. Nasopharyngeal adenoid cystic
carcinoma PIK3CA H1047R Taselisib on MATCH study Yes

22. Lung adenocarcinoma EGFR exon 19 deletion Erlotinib after clearance of T790M No

23. Thymoma
CDKN2A/B loss
KDM6A W1194* Phase I/IIa trial of ALRN-6924 in

patients with wild typeTP53 Yes

24. Invasive ductal breast cancer CCND1 amplification Abemaciclib No

25. Lung adenocarcinoma RET KIF5B-RET fusion, RET-KIF5B
fusion Phase 1/1b MGCD516

Not documented,
patient withdrew from

study

26. Lung adenocarcinoma BRAF V600E Vemurafenib
Dabrafenib +Trametinib Yes

27. Lung adenocarcinoma EGFR exon 19 deletion Erlotinib after clearance of T790M No

28. Lung adenocarcinoma EGFR amplification, exon 19 deletion
(E746_A750del), T790M Osimertinib Yes

29. Rectal adenocarcinoma ERBB2 amplification, V777L Ado-trastuzumab emtansine on
MATCH study Yes

30. Esophageal adenocarcinoma ERBB2 amplification Trastuzumab
Patient lost to

follow-up/did not
complete treatment

31.
Carcinoma of unknown primary,

likely upper
GI/pancreaticobiliary origin

MET amplification Planned for crizotinib but not
approved by insurance N/A

32. Lung adenocarcinoma EGFR amplification, L858R, T790M Osimertinib Yes
33. Invasive ductal breast cancer CCND1 amplification Palbociclib No
34. Lung adenocarcinoma EGFR exon 19 deletion Afatinib Yes
35. Salivary ductal carcinoma VEGFA amplification Sorafenib No

36. Colon adenocarcinoma Numerous
Pembrolizumab based on numerous
mutations detected and concern for

MSI status
No

37. Esophageal squamous cell
carcinoma EGFR amplification Panitumumab No

38. Lung adenocarcinoma ALK EML4-ALK fusion (Variant 3a/b) Alectinib Yes
39. Lung adenocarcinoma EGFR L964L Erlotinib Yes
40. Follicular dendritic cell sarcoma AKT2 amplification Everolimus Yes
41. Lung adenocarcinoma MET H1094R Died prior to starting crizotinib N/A
42. Lung adenocarcinoma MET exon 14 splice site (D1010N) Crizotinib No

(EGFR, Epidermal growth factor receptor; MATCH, Molecular Analysis for Therapy Choice; TKI, Tyrosine Kinase
Inhibitor; MSI, Microsatellite Instability).

4. Discussion

In our study, CGP identified at least one potentially clinically actionable genomic alteration in
95% of patients, which is similar to several other reports [1,10,21]. However, management changed
based on these results in only 10% of patients. An additional 2% who could have benefited were
unable to, as they either died prior to its initiation or declined therapy. Although our numbers were
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too small to draw any robust conclusion on response rates, 19 patients (54% of those treated and
5% of total) had documented clinical benefit with targeted therapy that was based on CGP, which is
similar to that recently predicted by Marquart et al. [18]. Most of the patients who benefited were
those who had NSCLC, which was also the most common patient diagnosis. When comparing lung
cancer to the next most common diagnosis, colorectal cancer; GCP-led management change was
significantly higher in the former (p = 0.0002). 28 of 107 (26.2%) NSCLC patients had change/potential
change in management based on CGP. As a result of first tier Epidermal Growth Factor Receptor
(EGFR)/Anaplastic Lymphoma Kinase (ALK) testing, the majority of EGFR/ALK mutated patients
were identified outside of CGP testing. If such first-tier testing results were to be included, the impact
of molecular testing would be much higher. In addition, recent studies, for example, with K-Ras
G12C inhibitors offer the hope of further expansion of actionable targets [22]. A recent study utilized
a decision analytic tool to compare upfront CGP vs. sequential testing for genomic alterations in
metastatic NSCLC patients [23]. The study found that upfront CGP led to the same (as panel) or
shorter (vs. sequential testing) turnaround time and lowest payer cost in these patients and it is likely
to become the preferred approach in most institutions.

In other cancer types in our study, the impact was much less, soberingly with only 14 of 242 patients
(5.8%) with change/potential change in management based on CGP results. Again, the impact would
be higher if first-tier testing such as HER2 in breast/upper GI and extended-RAS in colorectal cancer
are included. The impact of CGP will likely also increase with the tissue/site agnostic approval of
pembrolizumab in solid tumors with microsatellite instability and Tropomyosin Receptor Kinase (TRK)
inhibitors for Neurotrophic Tropomyosin-Related Kinase (NTRK)-translocation positive malignancies;
however, the frequency of these alterations admittedly is low [7,24]. Tumor mutational burden (TMB)
as a predictive biomarker for immune checkpoint inhibitors is another emerging use of CGP and it
might add to its impact in routine use in clinical practice, although initial results in the context of
advanced NSCLC have been disappointing [25,26].

Despite the aforementioned emerging uses of CGP, at present, data to support therapeutic
recommendations for many targeted drugs is not robust enough to warrant therapy off a clinical
trial, e.g., trastuzumab in (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) ERBB2
amplified lung cancer. Our review of treatment recommendations in the OncoKB database showed that
47% of them did not have strong clinical evidence to support their use. Only 17.6% of recommendations
were based on level 1 or 2 evidence. Therefore, the actual actionability of these genomic alterations is
currently significantly less than presented. Additionally, an increasing number of commercial as well
as institutional multi-gene panels are now being utilized for CGP; however, there is no standardization
of therapeutic recommendations based on results [27]. Multidisciplinary molecular tumor boards
can certainly help interpret results of CGP, especially in cases where a clinician needs to decide on
whether or not to start a patient on an off-label therapy [28,29]. While currently tissue-based CGP
utilizing panels, such as ones used in our study, are the most widely utilized, admittedly, further
technological advances in circulating tumor DNA (ctDNA), circulating tumor cells (CTC) technology,
and the incorporation of whole exome sequencing (WES) and whole genome sequencing (WGS) will
provide expansion of information as to tumor heterogeneity, clonal evolution, dynamic assessment
of treatment response, and minimal residual disease status that will better inform clinical decision
making [30–36].

Our study has certain limitations, particularly because of its retrospective nature. The timing
and choice of CGP panel was not standardized and it was at the discretion of the treating oncologist;
however, this indeed best captures a “real-world” scenario in the community as compared to other
publishes studies. Another drawback is the short follow-up and the proportion of patients with change
in management based on CGP would likely increase with time, due to disease progression or more
targeted agents becoming standard of care. We did not include patients who benefited from targeted
therapy based on first-tier testing. However, this study specifically assessed the impact of CGP in
settings such as ours, where there might be a two-step process for genomic profiling, likely representing
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the majority of practice patterns both in and especially outside of the United States. Another issue is
optimal timing for CGP. Whereas some patients with actionable genetic alterations had early stage
disease and, hence, not initiated on targeted therapy, some deteriorated clinically prior to the initiation
of treatment. This makes a case for obtaining CGP as soon as possible with metastatic disease or
locally advanced disease with a high risk of recurrence. Serial liquid biopsies are now being utilized
for the real-time assessment of tumor mutations and more studies are needed to inform the decision
of ideal timing for CGP. The lack of available molecularly driven protocols was not a factor, with
more than 200 open clinical trials, including the NCI-MATCH trial actively recruiting patients at our
institution. Moreover, our enrolment rate of 15% was higher than the national average indicating the
robustness of our clinical trials program [37]. Our study focused on patients with whom a change in
management was possible as a result of CGP. However, we are unable to comment whether such a
treatment approach indeed has merit. We realize that the ultimate litmus test of CGP based treatment
is to prove that treating a patient based on a specific mutation is actually superior than offering a
non-molecularly targeted agent, either on or off a clinical trial. One randomized trial attempting to
answer this question is the Therapy Based on Tumor Molecular Profiling Versus Conventional Therapy
in Patients With Refractory Cancer (SHIVA) study, which did not show benefit of the molecularly
directed therapeutic approach [38]. Recent studies add to this database and offer more promise as to
the benefit of CGP in this context [39].

5. Conclusions

Overall, our study provides a real-world experience of the impact of CGP in a community-based
academic NCI-designated cancer center serving a highly diverse patient population, where molecular
testing is based on a two-tier testing algorithm. While recognizing that a 10% overall rate of management
change that is based on CGP is very modest, its use in certain subsets, such as advanced NSCLC,
where the impact currently is most significant appears to be justifiable and it has been found to
be cost effective [40–42]. In addition, we have identified multiple reasons for the relatively smaller
clinical impact of CGP in other tumor types, despite a much larger proportion of patients with
actionable genomic alterations reported. The impact however is anticipated to be increasing in light
of new advances, e.g., recent studies do suggest expanding impact in breast (PI3kinase inhibitors)
and pancreatic malignancies (poly ADP ribose polymerase (PARP) inhibition) [43–46]. Although
issues, such as optimal timing, access to clinical trials, and consolidating genomic testing need to be
addressed at an institutional level, reports from testing platforms need to be carefully interpreted
and ideally discussed in molecular tumor boards to provide the best treatment option possible. More
prospective trials are needed that would better inform our choices for personalized treatment by
providing assessments of overall survival and quality of life with choosing targeted therapies that are
based on CGP when compared to conventional therapies [11].
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Abstract: Background: Tumor mutational burden (TMB) is an emerging genomic biomarker in
cancer that has been associated with improved response to immune checkpoint inhibitors (ICIs)
in adult cancers. It was described that variability in TMB assessment is introduced by different
laboratory techniques and various settings of bioinformatic pipelines. In pediatric oncology, no
study has been published describing this variability so far. Methods: In our study, we performed
whole exome sequencing (WES, both germline and somatic) and calculated TMB in 106 patients with
high-risk/recurrent pediatric solid tumors of 28 distinct cancer types. Subsequently, we used WES data
for TMB calculation using an in silico approach simulating two The Food and Drug Administration
(FDA)-approved/authorized comprehensive genomic panels for cancer. Results: We describe a
strong correlation between WES-based and panel-based TMBs; however, we show that this high
correlation is significantly affected by inclusion of only a few hypermutated cases. In the series of
nine cases, we determined TMB in two sequentially collected tumor tissue specimens and observed
an increase in TMB along with tumor progression. Furthermore, we evaluated the extent to which
potential ICI indication could be affected by variability in techniques and bioinformatic pipelines
used for TMB assessment. We confirmed that this technological variability could significantly affect
ICI indication in pediatric cancer patients; however, this significance decreases with the increasing
cut-off values. Conclusions: For the first time in pediatric oncology, we assessed the reliability of
TMB estimation across multiple pediatric cancer types using real-life WES and in silico analysis of
two major targeted gene panels and confirmed a significant technological variability to be introduced
by different laboratory techniques and various settings of bioinformatic pipelines.

Cancers 2020, 12, 230; doi:10.3390/cancers12010230 www.mdpi.com/journal/cancers

51



Cancers 2020, 12, 230

Keywords: pediatric tumors; tumor mutational burden; TMB; whole-exome sequencing; gene panel
sequencing; immune checkpoint inhibitors

1. Introduction

The cancer cell genome acquires genetic alterations differing from the germline of the host [1].
Somatic mutation rates can be affected by exposure to exogenous factors, such as ultraviolet light
or tobacco smoke [2], or by compounding genetic defects, such as DNA mismatch repair deficiency,
microsatellite instability, or replicative DNA polymerase mutations [1–3]. These somatic genetic
alterations induce and drive carcinogenesis. The type and the number of acquired mutations varies
among the cancer types but also among the affected individuals [4]. Some of these mutations
lead to the formation of tumor-specific neoantigens, which could be recognized by a patient’s
immune system as non-self and which are highly clinically relevant since these neoantigens can make
the cancer cells sensitive to treatment with immune checkpoint inhibitors (ICIs) against cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1) and programmed
death-ligand 1 (PD-L1) in various cancers including melanoma [5], non–small-cell lung cancer
(NSCLC) [6], kidney cancer [7], bladder cancer [8] and others [9]. The genomic landscape of
smoking-induced NSCLC and UV light-induced melanoma is often characterized by a high number of
acquired alterations, while leukemias and pediatric tumors show the lowest mutations counts.

Rapidly developing genomic methods based on next-generation sequencing (NGS) simplified
the detection and quantification of these acquired changes on the level of individual cancer genomes.
Tumor mutational burden (TMB) is a quantitative measure of acquired somatic mutations in the cancer
cell genome. Initial exploratory analyses of TMB in cancer patients [10,11] were carried out using
whole exome sequencing (WES). WES is a comprehensive research tool for assessment of genomic
alterations across the entire coding region of the ~22,000 genes in the human genome, comprising
of 1–2% of the genome [3,12]. Currently, WES-derived TMB values are considered to be the gold
standard, but the high cost and long turnaround time limit routine diagnostic applicability of WES.
Therefore, targeted NGS cancer gene panels have been promoted for TMB estimation as a feasible
and cheaper alternative to WES [13]. Whereas TMB assessed by WES is typically reported as the total
number of mutations per cancer cell exome, TMB assessed by gene panel assays is usually referred
to as mutations per megabase (mut/Mb) because it differs in the number of genes and target region
size [2,3,14]. The precise calculation of TMB may, however, vary depending on the region of tumor
genome sequenced, types of mutations included, methods of subtracting germline variants and other
aspects of bioinformatic analysis pipeline of the sequencing data [3,15]. Both the FDA-approved
FoundationOne CDx (F1CDx) panel and the FDA-authorized Memorial Sloan Kettering-Integrated
Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) panel used correlation between panel-
and WES-based TMB to validate the reliability of panel based TMB estimation, and they claimed that
these panels can assess TMB accurately (R = 0.74 for F1CDx and R = 0.76 for MSK-IMPACT) [2,13,16].
However, as Wu et al. [13] proposed in their recent work, the overall correlation between the panel-
and WES-based TMB could be substantially distorted by outliers (i.e., cases with relatively ultra-high
TMB within each cancer type) [13], which might lead to overestimation of the reliability of panel-based
TMB estimation. Therefore, additional studies are needed to evaluate the significance of correlation
between the WES-based and targeted panel-based TMB values.

As already mentioned, TMB is considered to be a proxy for cancer cell neo-antigenicity and
therefore could potentially serve as a predictive biomarker of therapeutic response to ICI. Several
studies, especially in NSCLC, retrospectively employed WES or larger NGS panels to determine
TMB as a potential response predictor [17–19]. Unfortunately, the definition of cut-off values to
separate “high TMB” from “low TMB” tumors is not consistent in recent NSCLC trials. For example,
in the CheckMate (CM) trials CM012 (nivolumab and ipilimumab) [20], CM227 (nivolumab and
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ipilimumab) [17] and CM026 (nivolumab only) [21] cut-points of 158 mutations, 199 mutations and 243
somatic missense mutations (number of mutations estimated from a commercial gene panel based cut
point of 10 mutations per Mbp) were used, respectively [22].

This is the first study in pediatric oncology that aims to assess the reliability of TMB estimation
using real-life WES across multiple cancer types and in silico analysis of two major gene panels, which
are widely used for routine diagnostics in clinical practice, where various settings of bioinformatic
pipeline were employed. The performance and correlation of WES and panel-based TMB assessment
methods were evaluated together with potential consequences for clinical decision making where
various cut-offs for ICI indication were used.

2. Results

2.1. Comparison of TMB between Real-Life WES and In Silico Targeted Gene Panels

We successfully performed germline and somatic WES and calculated TMB in 106 pediatric
patients of 28 distinct cancer types. We stratified patients based on their diagnosis and expressed TMB
for each group of patients as a median (min–max) or as a concrete value in cases where there was
only one patient within a group (summarized in Table 1). WES-based TMB for each tumor is depicted
in Figure 1. The median TMB ranged widely among diagnoses, from 0.3 mutations/Mb in myeloid
sarcoma to 14.2 mutations/Mb in Burkitt lymphoma.

Table 1. Comparison of TMB determined by real-life WES and in silico targeted gene panels.

Diagnosis

TMB
WES—M1 *

Real-Life
(Median/Value)

(Min–Max)

TMB
MSK—M1 *

In Silico
(Median/Value)

(Min–Max)

TMB
F1CDx—M2 **

In Silico
(Median/Value)

(Min–Max)

HGG glioma
H3K27M+ 2.9 (1.6–15.7) 4.7 (2.6–17.9) 4.5 (2.6–31)

Rhabdomyosarcoma 3.6 (1.7–6.4) 2.6 (1.7–4.3) 2.6 (0–5.2)
Ewing sarcoma 3.1 (0.2–5.1) 2.6 (0–5.1) 2.6 (0–7.8)
Ependymoma 3.1 (1.3–10.4) 1.7 (0–5.1) 3.2 (1.3–9)

Neuroblastoma 3.8 (1.6–17.2) 3.0 (0.9–7.7) 4.5 (1.3–15.5)
Soft tissue sarcoma 3.6 (1.7–6.7) 3.4 (0–6.8) 3.2 (0–9)
Low-grade glioma 3.5 (1.6–6.8) 2.1 (0.9–4.3) 3.9 (1.3–5.2)
High-grade glioma

H3K27M wt 4.5 (1.4–269.8) 3.4 (0.9–294.7) 5.2 (1.3–410.9)

Osteosarcoma 2.2 (1.9–7.5) 3.4 (0–5.1) 5.2 (1.3–6.5)
Burkitt lymphoma 14.2 (6.1–100.7) 19.6 (6.8–46.1) 27.1 (6.5–89.2)
Medulloblastoma 3.8 (3.5–63.6) 3.4 (0.9–61.5) 3.9 (1.3–89.2)

Fibromatosis 6.2 (1.1–56.2) 5.1 (1.7–29) 10.3 (1.3–82.7)
Wilms tumor 3.1 (2.3–3.9) 3.4 (2.6–4.3) 2.6 (1.3–3.9)

Renal cell carcinoma 1.8 (1.5–2.1) 4.3 (2.6–6.0) 4.5 (1.3–7.8)
Adrenocortical

carcinoma 0.9 - 0.9 - 1.3 -

Plexus choroideus
carcinoma 5.2 - 2.6 - 5.2 -

Hepatocellular
carcinoma 3.6 - 0.9 - 3.9 -

Disseminated
adenocarcinoma 2.3 - 4.3 - 6.5 -

Familiar infantile
myofibromatosis 2.1 - 1.7 - 0.0 -

Myeloid sarcoma 0.3 - 0.0 - 0.0 -
Undifferentiated

embryonal tumor of
spinal canal

3.1 - 2.6 - 2.6 -

Nongerminomatous
Germ Cell tumor CNS 2.3 - 1.7 - 1.3 -

Epithelial
hepatoblastoma 0.5 - 0.0 - 0.0 -

Spindle cell
hemangioma 2.1 - 0.9 - 2.6 -
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Table 1. Cont.

Fibrodysplasia
ossificans progressiva 3.1 - 2.6 - 2.6 -

Hepatosplenic
T-lymphoma 0.4 - 0.9 - 0.0 -

Multisystemic
Langerhans cell

histiocytosis
3.1 - 2.6 - 3.9 -

Gastrointestinal
stromal tumor 2.7 - 3.4 - 6.5 -

* M1—Method 1 for calculation of TMB excluding synonymous variants and indels; ** M2—Method 2 for calculation
of TMB including synonymous variants and indels.

Figure 1. Tumor mutational burden (TMB) values determined in our pediatric cancer patient cohort
(WES—Method1) stratified by cancer type. Hypothetical TMB cut-off values are shown as dashed lines
(green, TMB ≥ 5; blue, TMB ≥ 10, red, TMB ≥ 20).

Furthermore, we determined, by an in silico approach, whether TMB, as measured by WES,
correlates with TMB calculated by the gene sets and bioinformatic approaches used by two commercially
available targeted gene panels. Panel-based TMB (MSK-IMPACT and F1CDx) for each group of patients
expressed as a median (min–max) or as a concrete value in cases where there was only one patient in a
group are summarized in Table 2. We confirmed a strong Pearson correlation of the panel TMB with
the WES-based TMB characterized by R = 0.993 (F1CDx), and R = 0.974 (MSK-IMPACT), respectively
(Figure 2A,C). Correlation between MSK-IMPACT and F1CDx panels was R = 0.993 (Figure 2B).
The TMB assessment method was adapted for each panel accordingly (MSK-IMPACT—Method 1;
F1CDx—Method 2). However, when the few hypermutated cases were excluded and only samples
with TMB <10 mut/Mb were considered for analysis, the correlation decreased significantly: R = 0.514
(F1CDx), and R = 0.560 (MSK-IMPACT). Correlation between TMBs determined by the two panels
remained remarkably higher (R = 0.726).
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Table 2. Comparison of TMB determined by real-life WES and the FMI laboratory testing service
FoundationOne Heme (F1Heme).

Gender
Age at

Diagnosis
Diagnosis

TMB
F1Heme

Real-Life (Mut/Mb)

TMB
WES—M1 *

Real-Life (Mut/Mb)

Same Sample
(Yes/No)

F 9 Renal cell carcinoma 1.63 1.45 yes

F 7
Diffuse intrinsic
pontine glioma

H3K27M+
2.44 1.60 yes

M 13 Desmoid
fibromatosis 0.81 1.14 yes

M 6 Spindle cell
hemangioma 0.81 2.05 yes

F 14 Gastrointestinal
stromal tumor 4.07 2.71 yes

F 14 Osteosarcoma 2.44 1.91 yes

M 2 Langerhans cell
histiocytosis 2.44 3.11 yes

M 11 Wilms tumor 1.63 2.34 yes
M 11 Ewing sarcoma 1.63 2.57 yes
F 7 Ependymoma 2.44 3.48 yes

M 18 Embryonal
rhabdomyosarcoma 4.89 2.82 yes

F 14 Ewing sarcoma 1.63 3.57 yes
F 6 Wilms tumor 0.81 3.91 yes
F 18 Ewing sarcoma 0.81 2.97 yes

M 9 Alveolar
rhabdomyosarcoma 3.26 3.62 yes

F 5 Diffuse intrinsic
pontine glioma 2.44 2.85 yes

M 10 Ewing sarcoma 1.63 0.17 yes
F 1 Neuroblastoma 1.63 7.53 yes
F 10 Ewing sarcoma 7.33 4.82 yes

M 20 Glioblastoma
H3G34R+ 7.33 8.02 yes

F 2 Neuroblastoma 5.70 6.33 yes

F 1 Embryonal
rhabdomyosarcoma 1.63 6.39 yes

M 3 Burkitt lymphoma 10.59 6.08 yes
M 7 Burkitt lymphoma 19.55 14.18 yes
M 18 Glioblastoma 265.56 269.75 yes

F 10 Low-grade
astroblastoma 1.63 1.83 no

M 4 Adrenocortical
carcinoma 0.00 0.88 no

M 15 Hepatocellular
carcinoma 2.44 3.59 no

M 3 Epithelial
hepatoblastoma 2.44 0.46 no

M 5 Embryonal
rhabdomyosarcoma 6.52 3.68 no

M 3 Embryonal
rhabdomyosarcoma 4.07 5.71 no

F 7 Glioblastoma 0.81 4.48 no

M 1 Anaplastic
ependymoma 1.63 6.65 no

F 4
Diffuse intrinsic
pontine glioma

H3K27M+
9.78 5.39 no

* M1—Method 1 for calculation of TMB excluding synonymous variants and indels.
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Figure 2. Correlation of tumor mutational burden (TMB) determined by real-life WES and targeted
gene panels: real-life WES vs. in silico MSK-IMPACT (A), in silico F1CDx vs. MSK-IMPACT (B),
real-life WES vs. in silico F1CDx (C), real-life WES vs. real-life laboratory service F1Heme (D).

2.2. Comparison of TMB between Real-Life WES and the Foundation Medicine Inc. (FMI) Testing Service
(Subcohort of Patients)

In the subgroup of 34 patients (randomly selected from the patients where a Formalin-Fixed
Paraffin-Embedded (FFPE) block with tumor tissue was available), comparative study of real-life
WES-based TMB assessment and the FMI testing service was performed. For the WES samples,
tumor and normal tissue were each sequenced in order to distinguish germline polymorphisms
from somatic mutations. For the targeted FMI testing, no matched normal material was sequenced;
rather, genomic variants were stringently filtered to eliminate germline polymorphisms, as declared
by the vendor. For TMB determination from WES data, we used Method 1 (excluding indels and
synonymous mutations). The FMI testing services are done using Method 2 (including indels and
synonymous mutations). In nine cases, different samples from one resection or biopsy collection were
used. This is summarized in Table 2. However, the Pearson correlation between TMBs determined by
these two real-life approaches was comparable to the correlation of real-life WES and in silico F1CDx
panel (R = 0.998 vs. R = 0.993) indicating the relevance of the in silico approach for TMB assessment
comparative studies. When hypermutated cases were excluded, correlation decreased to R = 0.488
(Figure 2D), which is similar to the decrease observed in the in silico approach (R = 0.514).
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2.3. WES-Based TMB Values during Tumor Progression

In nine cases, we determined the TMB by WES in sequential tumor biopsies or tumor tissues from
surgical resection. In five cases, we used tumor tissue from a primary tumor and its relapse. In the
remaining four cases, tumor tissue was collected from two consequent local or metastatic relapses.
TMB values are summarized in Table 3. In seven out of nine cases, an increase in TMB in the second
tumor tissue was observed, with the average increase being 1.6 ± 1.3 mut/Mb.

Table 3. WES-based TMB values during tumor progression in nine patient case cohorts.

Gender
Age at

Diagnosis
Diagnosis Diagnosis/Relapse Year of Biopsy

TMB
(WES M1 *) Real-Life

F 9 Supratentorial
ependymoma local relapse 2016 2.31

local relapse 2018 3.88
F 1 Neuroblastoma metastatic relapse 2017 7.53

metastatic relapse 2018 3.17
M 11 Ewing sarcoma primary tumor 2017 2.57

local relapse 2018 4.19
M 5 DIPG primary tumor 2015 2.51

local relapse 2018 6.68

F 10 LG
astroblastoma primary tumor 2017 1.83

local relapse 2018 3.05

M 3 Epithelial
hepatoblastoma primary tumor 2016 0.46

local relapse 2018 2.48
F 2 Ependymoma primary tumor 2014 10.38

metastatic relapse 2018 10.53
M 18 Osteosarcoma metastatic relapse 2018 7.47

metastatic relapse 2018 8.10

M 1 Infantile
myofibromatosis metastatic relapse 2015 2.08

metastatic relapse 2018 1.88

* M1—Method 1 for calculation of TMB excluding synonymous variants and indels.

2.4. Consequence of TMB Assessment Method for ICI Indication

TMB as a predictive biomarker is currently the focus of several clinical trials with ICI. We have
evaluated how the sequencing region (WES vs. the gene set used in MSK-IMPACT vs. the gene set
used in F1CDx) and method for TMB calculation affect the final TMB and potential ICI indication when
various hypothetical cut-off values are applied. Results of this analysis are summarized in Table 4.
As expected, the number of patients above a cut-off is always higher with WES-based TMB assessment
(compared to panel-based) and when TMB is assessed by Method 2 (including indels and synonymous
mutations). Number of patients above a cut-off differs significantly when low TMB cut-off value is
applied (cut-off ≥ 5). With the increasing cut-off values, the significance of technological variability
introduced by sequencing various genome regions and different TMB calculating methods decreases.
However, even with a relatively high cut-off value (cut-off ≥ 20), the number of pediatric patients
hypothetically indicated for ICI therapy differs between TMB groups calculated with Method 1 and
Method 2 (e.g., four vs. seven pediatric patients with WES).
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Table 4. WES-based TMB values during tumor progression in nine patient case cohorts.

TMB—M1 *
In Silico

(Number of Cases Above Cut-Off)

TMB—M2 **
In Silico

(Number of Cases Above Cut-Off)

Cut-off for ICIs Indication (mut/Mb) ≥5 ≥10 ≥20 ≥5 ≥10 ≥20

WES 30 8 4 75 25 7
MSK-IMPACT 23 6 4 61 12 6

F1CDx 24 7 5 42 11 6

* M1—Method 1 for calculation of TMB excluding synonymous variants and indels; ** M2—Method 2 for calculation
of TMB including synonymous variants and indels; ICIs—immune checkpoint inhibitors.

3. Discussion

The predictive power of TMB as a biomarker for response to ICI is currently being investigated in
many clinical trials across various cancer types. Patients with a higher TMB are more likely to respond
to ICI in various settings, including PD-(L)1 blockade in NSCLC [10], CTLA-4 blockade in malignant
melanoma [11], and combined PD(L)-1 and CTLA-4 blockade in NSCLC [17]. Studies have shown
that TMB is to a large extent independent of the PD-L1 status and might thereby identify additional
subgroups of patients who benefit from ICI [17,20,22].

Based on these clinical observations, TMB became an emerging predictive biomarker for ICI in
various cancer types, and an urgent need occurred to answer the questions concerning the technological
aspects affecting TMB detection by WES and targeted panel sequencing to ensure implementation of
lab developed tests that guarantee optimal reference standard quality for patient stratification [19].

In initial studies, WES was widely used to determine TMB and is still considered to be the
gold standard; however, targeted sequencing panels are more readily interpretable and are a more
pragmatic and potentially cost-effective approach to TMB testing in clinical diagnostics [3]. While in
the context of clinical trial, TMB testing is mainly carried out by commercial vendors, many clinical
laboratories depending on the regulatory approval context may eventually use in-house designed
panels to determine TMB scores [22]. Endris and others have already investigated the minimum
required size of a gene panel by comprehensive in silico analyses of available WES data sets and have
shown that at least 1 Mbp of exonic and/or intronic region should be sequenced to achieve a similar
power in discriminating ICI responders from non-responders comparable to WES [19]. Furthermore,
Buchhalter at al. showed that “size does matter”, with an optimal panel size being between 1.5 and 3
Mbp, considering the benefit–cost ratio, and that the inclusion of all point mutations (instead of only
missense mutations) in the TMB calculation is possible and recommendable to enhance precision [9].

In our study, we focused on the potential technological variability introduced to TMB scoring by
the usage of various platforms and bioinformatic pipelines for their assessment in pediatric tumors.
As a reference method, we performed WES and subsequently in silico simulated two most frequently
used sequencing panels, MSK-IMPACT and F1CDx. We confirmed a strong Pearson correlation of
the panel-based TMB with the WES-based TMB; however, when the few hypermutated cases were
excluded and only samples with TMB < 10 mut/Mb were considered for analysis, the correlation
decreased significantly (Figure 2). This indicates a significant bias introduced to correlation analysis
by only a few hypermutated cases included in the study. Correlation between samples with TMB
< 10 mut/Mb was not satisfactory and probably lead to significant clinical misclassifications in the
routine diagnostic scenario based on the usage of a cut-off value in the range of 5 to 15 mut/Mb. Similar
observations were also provided by other authors describing adult tumors [9,19].

In a subgroup of patients, we performed a comparative study of real-life WES-based TMB
assessment and the FMI testing service where we observed a similar effect of the hypermutated cases
on the correlation significance. In agreement with others [9,19], we observed that the identification of
high TMB tumors can be reliably achieved by any of the tested methods (cases with ultra-hypermutated
tumors). However, the vast majority of tumors have intermediate TMB values; in these cases,
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a technological variability interferes with the reliable differentiation between TMB-high and low
tumors [9,19].

In nine cases, we determined the TMB by WES in sequential tumor biopsies or tumor tissues from
surgical resection. As expected, in seven out of nine cases, there was an increase in TMB in the second
tumor with the average increase being approx. 2 mut/Mb. Surprisingly, in two cases, we observed a
decrease in TMB, which could be explained mainly by the quality of the tumor tissue specimen and a
low content of tumor cells in the second tumor which could decrease detectable mutations used for
TMB assessment. It is important to mention that tumor content in the tissue specimens is an important
factor affecting TMB scoring and is often not considered in TMB studies.

Finally, we evaluated how the sequencing region (WES vs. the gene set used in MSK-IMPACT
vs. the gene set used in F1CDx) and the bioinformatic pipeline used for TMB calculation affect
the final TMB and potential ICI indication when various hypothetical cut-off values are applied.
In general, as expected, the number of patients above a cut-off is always higher in WES-based TMB
assessment (compared to panel-based) and when the TMB is assessed by Method 2 (including indels
and synonymous mutations). We also found that with the increasing cut-off values, the significance
of technological variability and consequent clinical misclassification decreases. However, certain
combinations of settings of TMB assessment methods (e.g., WES-M2 vs. F1CDx-M1), compounded
by the use of a cut-off value of 10 mut/Mb, yield extremely different results. While the first approach
predicts 25 patients to be good responders to ICI, the second approach predicts only seven patients.
This indicates a potentially very strong misclassification issue for routine diagnostics. Based on the
currently available results from clinical trials, it is very difficult to judge whether TMB assessed by
Method 1 or Method 2 is a more accurate predictive biomarker of response to ICI therapy. Unfortunately,
this in silico modeling has not been performed in the context of clinical outcomes from ICI trials.

4. Materials and Methods

4.1. Patients and Biological Specimens

We reviewed tumor mutational burden (TMB) results from 106 patients with pediatric
high-risk/recurrent solid tumors (both newly diagnosed and relapsed) who had undergone laboratory
WES at Central European Institute of Technology (CEITEC, Masaryk University, Brno, Czech Republic).
Informed consent was obtained from all patients and all experiments using clinical samples were
performed in accordance with the approved international guidelines. After surgical resection of the
tumor or collection of the tumor biopsies, tissue samples were evaluated by an experienced surgical
pathologist for the tumor cell content, and only specimens with more than 20% of the tumor cells were
included. In addition, peripheral blood was collected to obtain DNA for germline WES. Number of
patients stratified according to their diagnoses and related clinical data are summarized in Table 5.
In nine cases, we collected two consequent tissue specimens (diagnosis/relapse or two relapses) and
both were used for WES and TMB assessment.

4.2. DNA Isolation

Tumor DNA was extracted from the FFPE samples or fresh frozen tissues using QIAmp DNA FFPE
Tissue Kit (Qiagen, Venlo, The Netherland) or QIAamp DNA Micro Kit (Qiagen). Germline DNA was
extracted from peripheral blood leukocytes using QIAamp DNA Micro Kit (Qiagen). The purified DNA
was quantified using Qubit 2.0 Fluorometer and NanoDrop 2000c spectrophotometer (both Thermo
Fisher Scientific, MA, USA).
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4.3. Whole Exome Sequencing

Libraries for whole exome capture and sequencing were prepared using TruSeq Exome Kit
(Illumina, CA, USA) according to manufacturer´s recommendations. Quantity and quality of the
exome libraries were checked using Qubit 2.0 Fluorometer and NanoDrop 2000c spectrophotometer
(Thermo Fisher Scientific). Prepared libraries were loaded onto NextSeq 500/550 Mid Output Kit
(150 cycles) and sequenced on the NextSeq 500 instrument (both Illumina). Sequencing coverage for
both exomes was >20 × at >90% of captured regions.

4.4. Bioinformatic Analysis

Sequencing reads in FASTQ format were mapped to the human reference genome hg19 with the
BWA-MEM algorithm [23] for both the tumor and the healthy control sample. The resulting alignments
in BAM format were postprocessed with the SAMBLASTER program [24] for marking PCR duplicates.
The final alignment file of the control sample was used to assess single nucleotide variants (SNVs) and
short insertions/deletions (indels). Two variant callers were used for germline variant calling; the GATK
HaplotypeCaller [25] and VarDict [26]. Reported variants were annotated with Annovar [27] and
Oncotator [28] annotation programs. Tumor specific variants were assessed by somatic (paired; tumor
vs. control) variant calling. For this purpose, we used GATK MuTect2 (SNVs), Scalpel [29] (Indels), and
VarDict (SNVs and Indels) variant callers. The annotation of somatic variants was performed with the
addition of the COSMIC database [30]. Overview of the bioinformatic pipeline is depicted in Figure 3.

Figure 3. Workflow for tumor mutational burden (TMB) assessment by WES in this study.

4.5. Tumor Mutational Burden Estimation

An annotated list of somatic variants from the previous step was used to assess the TMB. We chose
to compare two methods of TMB estimation, both based on publicly available approaches.

Method 1 (M1)—In our laboratory, we only consider somatic single nucleotide variants (SNVs)
for TMB calculation from WES data, since indels (short insertions and deletions) tend to be called with
high false positive rates and could potentially skew the outcome. Additionally, two bases before and
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after each exon are considered as splicing mutations. Synonymous variants are filtered out, as they do
not fit the definition of TMB. Finally, variants with variant allele frequency (VAF) of less than 5% are
also filtered out. This approach is also used by MSK-IMPACT NGS panel.

Method 2 (M2)—This approach, used by the Foundation Medicine Inc. (FMI) targeted panels
(e.g., F1CDx [2] as well as F1Heme), defines TMB as the number of SNVs (including synonymous
variants) and indels in the coding regions of targeted genes. However, splicing variants are not
included. A 5% cut-off for the VAF was also applied.

For the final TMB calculation, in both methods, the sum of variants remaining after application of
the all filters, is then divided by the size (in megabases) of the target region from which the variants
have been assessed. The target regions together with their sizes are listed below.

Both methods were applied to the three target regions (as shown in Table 5):

1. All coding sequences (whole exome; 35 Mb; using M1 for TMB calculation);
2. The coding sequences of genes analyzed by the FMI (F1CDx panel; 324 cancer-related genes;

0,8 Mbl using M2 for TMB calculation);
3. The coding sequences of genes analyzed by the Memorial Sloan Kettering Cancer Center

(MSK-IMPACT; 468 cancer-related genes; 1.22 Mb; using M1 for TMB calculation)

The coding region locations on the hg19 genome were downloaded from the UCSC web site.

4.6. Comparative Study with the Foundation Medicine Inc. (FMI) Sequencing Service

FFPE tumor tissue samples of 34 patients who were previously examined by WES in our laboratory
and were sent to the FMI for the FoundationOne Heme (F1Heme) test, which is recommended by vendor
for pediatric tumors. In the nine cases, WES was performed using fresh frozen tissue, while different
FFPE samples were sent for the F1Heme test. These specimens are indicated in the summarizing tables
(Table 3) with the TMB results.

5. Conclusions

We present a study, where, for the first time in the context of pediatric tumors, the reliability of TMB
estimation across multiple pediatric cancer types using real-life WES and in silico analysis of two major
targeted gene panels was assessed. We confirmed a significant technological variability introduced
by different laboratory technologies and various settings of bioinformatic pipelines. These results
may provide valuable information for improving the accuracy of TMB estimation based on targeted
gene panel sequencing in a diagnostic setting. Our study confirmed previous observations from adult
tumors and thus supports the incentive to establish concordance between assay platforms used across
different clinical trials in order to achieve a successful real-world implementation of TMB testing. To
this end, worldwide efforts to ensure the harmonization of TMB assessment are ongoing [31–33].
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Simple Summary: The DNA damage repair (DDR) gene profile is largely unexplored in head and
neck squamous cell cancer (HNSCC), leaving little known about the treatment of HNSCC with PARP
inhibitors. In this retrospective study, the prevalence of mutated DDR genes was studied in the
tissue and/or blood samples (tDNA and ctDNA samples, respectively) of 170 patients with HNSCC.
These findings were correlated with demographic and outcome data. DDR gene mutations were
significantly increased in older patients, patients with primary tumors located in the larynx, patients
with more advanced cancers at diagnosis and patients previously treated with chemotherapy and/or
radiotherapy. Patients with primary tumors in the oropharynx were less likely to have DDR gene
mutations. Patients with DDR gene mutations identified in blood samples were found to have worse
survival. The combined mutational analysis in blood and tumor demonstrated a high prevalence and
an important prognostic role of DDR gene mutations in HNSCC, supporting further clinical research
of PARP inhibitors in the genomic guided treatment of HNSCC.

Abstract: PARP inhibitors are currently approved for a limited number of cancers and targetable
mutations in DNA damage repair (DDR) genes. In this single-institution retrospective study, the
profiles of 170 patients with head and neck squamous cell cancer (HNSCC) and available tumor
tissue DNA (tDNA) and circulating tumor DNA (ctDNA) results were analyzed for mutations in a set
of 18 DDR genes as well as in gene subsets defined by technical and clinical significance. Mutations
were correlated with demographic and outcome data. The addition of ctDNA to the standard tDNA
analysis contributed to identification of a significantly increased incidence of patients with mutations
in one or more genes in each of the study subsets of DDR genes in groups of patients older than
60 years, patients with laryngeal primaries, patients with advanced stage at diagnosis and patients
previously treated with chemotherapy and/or radiotherapy. Patients with DDR gene mutations were
found to be significantly less likely to have primary tumors within the in oropharynx or HPV-positive
disease. Patients with ctDNA mutations in all subsets of DDR genes analyzed had significantly worse
overall survival in univariate and adjusted multivariate analysis. This study underscores the utility
of ctDNA analysis, alone, and in combination with tDNA, for defining the prevalence and the role of
DDR gene mutations in HNSCC. Furthermore, this study fosters research promoting the utilization
of PARP inhibitors in HNSCC precision oncology treatments.

Keywords: HNSCC; ctDNA; tDNA; DDR genes; PARP inhibitors
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1. Introduction

Over the past decade, next generation sequencing (NGS) of genetic material contained
in blood and tissue samples (tDNA and ctDNA, respectively) has revolutionized the field
of oncology [1–3]. Such discoveries have allowed for the treatment of non-small cell lung
cancer with EGFR, ALK and MET inhibitors and basal cell cancer with hedgehog pathway
inhibitors with improved outcomes. These studies have also contributed to outcome data,
which have improved the management of malignant melanoma found to have mutations
in BRAF. Many have considered the targeted treatment plans derived from the NGS of
tDNA and ctDNA to be oncology’s first venture into the world of personalized medicine.

Despite the benefits of NGS in the management of many malignancies, the mutational
landscape of squamous cell cancers of the head and neck (HNSCC) remains largely un-
described. This has left the field without targeted management strategies and reliable
prognostication based on an individual cancer’s genetic profile [4]. Though relatively little
is known, early studies regarding mutations in HNSCC have begun to lay the necessary
groundwork on which clinical trials may be based. For example, data suggest that loss of
function mutations in p53 [5–7], retinoblastoma tumor suppressor [8,9] p16 [5] and activa-
tion of p63 (all constituents of the p53 pathway) [10–12] are known to be frequent mutations
in HNSCC, with up to 80% of patients with HNSCC experiencing loss of function mutation
in p53 [6,7]. Therapies targeted to this pathway (such as adenoviral p53 gene therapy and
use of small molecules to restore TP53 function/disrupt inactivation of wild-type p53)
have been proposed but are yet to meet fruition [13]. Mutations in the NOTCH pathway
are detected less frequently but are estimated to occur in 17% of HPV-positive and 26% of
HPV-negative HNSCCs [6]. Clinical trials for patients with NOTCH1 mutations also remain
in early phases [14]. Other mutations, including those in EGFR, MET, RAS/RAF/MAPK
and JAK/STAT pathways, have also been described in HNSCC with respective treatments
in various phases of investigation [4].

A recent retrospective analysis studied 75 patients with HNSCC and revealed that
38.8% of patients had alterations in one or more DNA repair genes (limited in that study
to APC, ATM, BRCA1 and BRCA2). Not only was this percentage higher than previous
studies would suggest, but the study was also able to demonstrate that patients with such
mutations in ctDNA were associated with decreased overall survival in univariate and
multivariate analysis [15]. Theoretically, cells without functional copies of these genes
(and others) with a direct or an indirect role in homologous recombination repair (HRR) or
the Fanconi anemia (FA) pathway are sensitive to poly (ADP-ribose) polymerase (PARP)
inhibition. Genes involved in HRR resolve breaks in DNA through a PARP-independent
pathway. Defects in HRR result in hypersensitivity to a number of therapeutics, including
PARP inhibitors, topoisomerase inhibitors and many other DNA break inducers. The
genes that encompass the FA pathway encode similarly PARP-independent DNA repair
machinery utilized to resolve interstrand crosslinks. Though classically associated with
hypersensitivity to platinum-based chemotherapies, defects in these genes in HNSCC have
been shown to create cell lineages that rely on PARP mechanisms for DNA repair [16–20].
When mutations in genes involved in HRR or the FA pathway confer loss of function,
PARP inhibitors can be utilized to prevent repair of breaks in DNA, ultimately leading
to cell death. All clinical PARP inhibitors inhibit both PARP1 and PARP2. PARP1 repairs
double-strand DNA (dsDNA) breaks and single-strand DNA (ssDNA) breaks. PARP2
repairs only ssDNA breaks. The clinical utility of PARP inhibition lies in the concept of
“synthetic lethality”, in which neither a mutation in HHR genes nor PARP inhibition, alone,
would be lethal to a cell, but the combination of the two factors in tumor cells ensures cell
death [16].

PARP inhibitors are currently approved for breast, ovarian and pancreatic cancers
carrying BRCA1 or BRCA2 mutations. The FDA has also approved use of PARP inhibitors
for prostate cancers in which BRCA1 or BRCA2 or ATM mutations have been detected.
Investigations regarding the use of PARP inhibitors in HNSCC are currently underway but
are hindered by the low reported prevalence of mutations in applicable genes. Perhaps
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for this reason, these studies focus on their use in combination with traditional chemo- or
radiotherapies rather than in cases in which NGS has directed decision making [21–23].

In this retrospective review, the investigators aim to validate previous findings regard-
ing the prevalence and prognostic value of mutated DNA damage repair (DDR) genes in
HNSCC utilizing combined genomic analysis performed both in blood and in tumor tissue
(ctDNA and tDNA, respectively) in a larger patient population. In addition to the inclusion
of a larger sample size, this study also expanded the DDR gene panel investigated based
on recent studies involving PARP inhibitors [18]. The investigators aim to demonstrate a
significant prevalence of DDR gene mutations in the genomic landscape of HNSCC which
may assist in laying groundwork for NGS-guided investigations of PARP inhibitors in
HNSCC. Correlation of patient characteristics and outcomes of tDNA and ctDNA sequenc-
ing results was also performed to assist in identification of patients with HNSCC likely to
benefit from NGS.

2. Materials and Methods

This study is a single-institution retrospective review of adult patients with HNSCC
who underwent NGS (tDNA, ctDNA or both) at Wake Forest Baptist Health between
August 2014 and October 2020. The Wake Forest School of Medicine Institutional Review
Board approved the study (IRB00057787). HNSCC patients were required to have had a
valid tDNA and/or ctDNA test to be included in the study. Patients with cutaneous SCC or
salivary gland cancers, as well as patients with other active primary cancers, were excluded.

Eighteen DDR genes (BRCA1, BRCA2, ATM, BRIP1, BARD1, CDK12, CHEK1, CHEK2,
FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD51L, APC, ARID1A and
MLL3) were selected for this study based on their involvement with HRR or the FA path-
way [16–20]. All 18 genes were tested for tDNA mutations (substitutions, insertion and
deletion alterations) by the FoundationOne platform (Foundation Medicine, Cambridge,
MA, USA) (FM). Mutations in ctDNA (single nucleotide variants, including indels and
fusion alterations) were tested for by the Guardant360 platform (G360) (Guardant Health,
Redwood City, CA, USA). Variants of unknown significance were included in this analysis.
Six of the eighteen genes selected for this study (APC, ARID1A, APC, BRCA1, BRCA2 and
CDK12) are included in the G360 platform and were analyzed for ctDNA mutations.

Concordance analysis was performed for the six genes sequenced by both Founda-
tionOne and Guardant360 platforms. Concordance was calculated per patient at the gene
level. Full concordance is defined as detection of matching, identical mutations in tDNA
and ctDNA per gene, per patient. Partial concordance is defined as detection of identical
mutations in tDNA and ctDNA and additional mutations in tDNA and/or ctDNA within
a gene. Discordance is defined as detection of different mutations by tDNA and ctDNA in
a gene.

Demographic and disease characteristics were collected from the electronic medical
record with regard to age (grouped as older and younger than the median age), gender,
stage of disease at diagnosis (per cancer staging AJCC 8th edition), HPV status defined
by HPV by PCR and/or p16 status, smoking status (grouped as never-smokers vs. ever-
smokers where ever smokers were defined as former or current smokers), alcohol use,
tumor subsite (oral cavity, oropharynx, larynx, hypopharynx, nasopharynx, paranasal
sinuses or unknown primary) and treatment received before tDNA and before ctDNA
collection (chemotherapy, radiotherapy or both). Outcome measures included overall
survival measured from the time of diagnosis, from the time of tDNA collection or from
the time of ctDNA collection. Survival at 1 and 2 years measured from the date of tDNA or
ctDNA collection, survival at the end of the study and extent/burden of disease at last visit
were also included in outcome data. It should be noted that, for all calculations in which
extent of disease was measured, three categories were considered. These were defined
as “no evidence of disease”, “localized disease” and “metastatic disease.” Patients with
follow-up shorter than 6 months from the date of last NGS testing were excluded from the
outcome analysis.
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Subset analysis was performed for the six genes (ATM, APC, ARID1A, BRCA1, BRCA2
and CDK12) for which alterations could be detected in both tDNA and ctDNA via the
above methods (6-gene subset). Additional subset analyses were conducted for BRCA1 and
BRCA2 genes (2-gene subset), for which PARP inhibitors are FDA-approved in patients
with mutations present in breast, ovarian and pancreatic cancer, and for BRCA1, BRCA2
and ATM (3-gene subset), for which PARP inhibitors have been recently approved when
such mutated genes are identified in prostate cancer. The gene subsets can be reviewed
in (Table 1). Patients were considered positive for a DDR gene mutation if they had a
mutation in one or more DDR gene mutations in tDNA, ctDNA or tDNA and/or ctDNA.

Table 1. 18-Gene panel and gene subsets.

DNA Damage Repair Genes

18-Gene Panel
(Selected based on literature

review)

6-Gene Subset
(Genes common to both tDNA

and ctDNA assays)

3-Gene Subset
(Mutated genes with

approved PARP inhibitors in
prostate cancer)

2-Gene Subset
(Mutated genes with

approved PARP inhibitors in
ovarian, breast and
pancreatic cancer)

BRCA1, BRCA2, ATM, BRIP1,
BARD1, CDK12, CHEK1,
CHEK2, FANCL, PALB2,

PPP2R2A, RAD51B, RAD51C,
RAD51D, RAD51L, APC,

ARID1A, MLL3

ATM, APC, ARID1A, BRCA1,
BRCA2, CDK12 BRCA1, BRCA2, ATM BRCA1, BRCA2

ctDNA, circulating tumor DNA; tDNA, tumor tissue DNA.

Statistical Analysis

Descriptive statistics of means and standard deviations were calculated for continuous
variables. Counts and percentages for categorical variables were also presented. There
was notation of the prevalence of mutations in each of the eighteen selected genes. Several
sets of these results were created based upon the genetic material in which the mutation
was detected (tDNA only, ctDNA only and tDNA ± ctDNA). Composite measures were
then created to determine whether mutations were present in any of the gene subsets
(2-gene, 3-gene or 6-gene). For each of these dichotomous variables, groups of patients
with or without mutated DDR were compared with categorical variables using Fisher’s
exact tests when both variables were binary. Chi-square tests were used when comparing
groups with more than two categories. For analyses comparing mean values of continuous
measures, we used two-sample t tests. When comparing survival curves, Kaplan–Meier
curves were generated and compared groups of patients with DDR mutations to those
without using log-rank tests. For some survival models, groups were compared after
accounting for a stratification variable, such as staging at diagnosis or HPV status. Cox
proportional hazards regression models were used to examine the relationship of survival
(from time of sample collection) to a number of potential risk factors and predictors in the
same model. Age, tobacco use, tumor site, nodal stage at diagnosis and previous treatment
with combined chemoradiation therapy were included in these adjusted models based on
statistical significance and/or clinical importance (i.e., age was included despite not having
been found to be statistically significant based on clinical relevance). Hazard ratios and
corresponding 95% confidence intervals were estimated from these proportional hazards
regression models. In all analyses, two-sided tests with an alpha level of 0.05 were used
to determine significance. SAS version 9.4 (SAS Institute, Cary, NC, USA) was used to
perform all analyses.
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3. Results

3.1. Patient Characteristics

One hundred and seventy total patients met criteria for enrollment. Of these, 139 un-
derwent NGS via tDNA, 146 via ctDNA and 115 via both methods. Demographics and
disease characteristics are available for review in Table 2. Age, race, gender and stage in
this study are congruent with a standard HNSCC population.

Table 2. Patient Characteristics.

Characteristics No. % Characteristics No. %

Age at Diagnosis (Years) Primary Tumor Location

Median 60 - Nasopharynx 14 8.2%
≥60 85 50.0% Oropharynx 68 40.0%
<60 85 50.0% Oral Cavity 40 23.5%

Hypopharynx 10 5.9%
Gender Larynx 27 15.9%

Male 123 72.4% Sino–Nasal 6 3.5%
Female 47 27.6% Unknown 5 3.0%

Race Disease Stage at
Time of DiagnosisCaucasian 142 83.5%

African American 19 11.2%
Other 9 5.3% Cancer Stage

I 21 12.4%
ETOH Status II 30 17.6%

Never 92 54.1% III 37 21.8%
Former 36 21.2% IV 82 48.2%
Active 72 24.7%

Cancer Stage IV
Smoking Status IVA 50 29.4%

Never 48 28.2% IVB 22 12.9%
Former 50 29.4% IVC 9 5.3%
Active 72 42.4%

N Stage
HPV and/or p16 N0 47 27.6%

Negative 61 35.9% N1 35 20.6%
Positive 61 35.9% N2 69 40.6%

Not Tested 48 28.2% N3 19 11.2%
tDNA Tissue Disease Status

Source At Last Visit
Primary Tumor 92 54.1% No Evidence of Disease 61 35.9%

Regional Lymph Node 11 6.5% Locoregional 44 25.9%
Metastatic Lesion 11 6.5% Metastatic (only) 17 10.0%

Recurrence 25 14.7% Locoregional and Metastatic 48 28.2%

ctDNA, circulating tumor DNA; tDNA, tumor tissue DNA.

3.2. Sequencing Results. Prevalence of Mutations in DDR Genes in Study Population

Presence (or absence) of mutated DDR genes was reported per patient, stipulating the
specific DDR gene mutated and sample source (ctDNA and/or tDNA). Detailed informa-
tion about the prevalence of specific mutated DDR genes can be located in Table 3 and in
Figure 1, and the allocation of the DDR gene mutations among patients can be viewed in
Figure 2.
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Table 3. Overall Prevalence of Individual DNA Damage Repair (DDR) Gene Mutations (Any Type of Mutation and
Pathogenic or Presumed Pathogenic Mutations).

Patients with DDR Gene
Mutations in

tDNA
Number (%)

Patients with DDR Gene
Mutations in

ctDNA
Number (%)

Patients with DDR Gene
Mutations in

tDNA and ctDNA
Number (%)

Patients with DDR Gene
Mutations in

tDNA and/or ctDNA
Number (%)

Pathogenic
Mutation(s)

Any
Mutation(s)

Pathogenic
Mutation(s)

Any
Mutation(s)

Pathogenic
Mutation(s)

Any
Mutation(s)

Pathogenic
Mutation(s)

Any
Mutation(s)

All DDR
Genes 16 (11.5%) 66 (47.5%) 18 (12.3%) 54 (36.9%) 4 (3.4%) 11 (9.6%) 30 (17.6%) 97 (57.1%)

BRCA1 3 (2.2%) 6 (4.3%) 5 (3.4%) 13 (8.9%) 2 (1.7%) 2 (1.7%) 6 (%) 17 (10.0%)
BRCA2 3 (2.2%) 21 (15.1%) 1 (0.7%) 14 (9.6%) 0 5 (4.3%) 4 (%) 30 (17.6%)
ATM 2 (1.4%) 9(6.4%) 9 (6.2%) 15 (10.3%) 0 1 (0.9%) 11 (%) 23 (13.5%)

CDK12 1 (0.7%) 11 (7.9%) 1 (0.7%) 2 (1.4%) 0 0 2 (%) 13 (7.6%)
APC 3 (2.2%) 10 (7.2%) 1 (0.7%) 9 (6.2%) 1 (0.9%) 4 (3.4%) 3 (%) 15 (8.8%)

ARID1A 3 (2.2%) 12 (8.6%) 3 (2.1%) 19 (13.0%) 1 (0.9%) 1 (0.9%) 5 (%) 30 (17.6%)

MLL3 1 (0.7%) 10 (7.2%) - - - - - -
BRIP1 0 2 (1.4%) - - - - - -

BARD1 0 3 (2.2%) - - - - - -
CHEK1 0 3 (2.2%) - - - - - -
CHEK2 0 1 (0.7%) - - - - - -
FANCL 0 3 (2.2%) - - - - - -
PALB2 1 (0.7%) 3 (2.2%) - - - - - -

PPP2R2A 0 0 - - - - - -
RAD51B 0 1 (0.7%) - - - - - -
RAD51C 0 0 - - - - - -
RAD51D 0 2 (1.4%) - - - - - -
RAD51L 0 1 (0.7%) - - - - - -

MLL3 1 (0.7%) 10 (7.2%) - - - - - -

Total
Number of

Patients
Tested

139 patients 146 patients 115 patients 170 patients

Occurrences are listed as patients with one or more mutations in the specified gene, rather than total number of mutations encountered
for each gene. tDNA was analyzed by the FM platform, which assesses for mutations in all 18 genes. ctDNA was analyzed by the G360
platform, which is limited to analysis of ATM, APC, ARID1A, BRCA1, BRCA2 and CDK12. Pathogenic/presumed pathogenic mutations
are as defined by FoundationOne and Guardant 360 reports. The number of patients with mutations in any of the DDR genes does not
represent the sum of patients with each individual DDR gene mutations, because a patient could have more than one DDR gene mutated.
ctDNA, circulating tumor DNA; DDR, DNA damage repair; tDNA, tumor tissue DNA.

Figure 1. Histogram of Gene Prevalence. ctDNA, circulating tumor DNA; DDR, DNA damage repair;
tDNA, tumor tissue DNA.
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1
Figure 2. (A) Mutated genes tested in both tDNA and ctDNA. (B) Mutated genes tested in tDNA
only. Green boxes indicate concordant mutations (identical mutations detected by the two platforms).
Gold boxes indicate discordant mutations (different mutations reported by each platform in the same
gene). Purple boxes represent partially concordant mutations (concordant and discordant mutations
reported by the two platforms in the same gene). Red boxes indicate mutations detected in ctDNA
only. Blue boxes indicate mutations that were found in tDNA only.
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We found that 97 of the 170 patients (57.1%) had one (or more) mutations in one (or
more) DDR gene(s) detected in either ctDNA and/or tDNA samples; 81 patients (47.6%)
had mutations in at least one of the genes in the 6-gene subset (ATM, APC, ARID1A, BRCA1,
BRCA2 or CDK12). A total of 70 patients (41.1%) had mutations in BRCA1, BRCA2 and/or
ATM (the 3-gene subset) detected in ctDNA and/or tDNA (Figure 2), and 47 patients
(27.6%) had ctDNA and/or tDNA mutations in BRCA1 and/or BRCA2 (2-gene subset)
(Figure 1 and Table 3). The most frequently mutated DDR genes in the study HNSCC
population were BRCA2 and ARID1A, both mutated in 17.6% of the patients tested by
either tDNA and/or ctDNA. ATM and BRCA1 followed, with mutations identified in 13.5%
and 10% of patients, respectively.

In total, 139 patients underwent tDNA testing. All genes in the 18-gene panel were
included in tDNA testing: 66 of the patients tested (47.5%) had at least one tDNA muta-
tion in the 18-gene panel; 55 patients (39.5%) had tDNA mutations in the 6-gene subset;
34 (24.4%) and 25 (17.9%) patients had tDNA mutations in the 3-gene and 2-gene subsets,
respectively (Figure 1 and Table 3).

Out of the 18 DDR genes tested for mutations in tDNA, 16 were found to be mutated
in one or more patients. Mutations in PPP2R2A and RAD51C were not detected in any
patients. The most frequently mutated DDR genes, on a per patient basis, in tDNA were
BRCA2 (21 patients), ARID1A (12 patients), APC (10 patients), CDK12 (11 patients) and
MLL3 (10 patients), respectively (Table 3). The most frequently altered gene in the tDNA
analysis overall was BRCA2, with 46 mutations in 21 patients. The gene with the highest
number of alterations in a single patient was MLL3, with 4.2 mutations detected in tDNA.
Remarkably, one patient had 9 mutations in BRCA2 and 9 mutations in FANCL gene in the
tDNA analysis (Figure 1 and Table 3).

In total, 146 patients underwent ctDNA testing: 54 of these patients (37.0%) had at
least one ctDNA mutation in the total gene panel assessed by the chosen platform; 34 of
the patients who underwent ctDNA testing had ctDNA mutations in the 3-gene subset,
and 22 of the patients who underwent ctDNA testing had ctDNA mutations in the 2-gene
subset (Table 3).

All six DDR genes included in the panel (BRCA1, BRCA2, ATM, APC, ARID1A and
CDK12) were found to be altered in at least one patient. The most frequently mutated DDR
genes in ctDNA were ARID1A (19 patients), ATM (15 patients), BRCA2 (14 patients) and
BRCA1 (13 patients) (Table 3). The most frequently altered gene in the ctDNA analysis was
ARID1A with 23 mutations in 19 patients.

For the 115 patients with both tDNA and ctDNA results available, concordance of
mutations among the six DDR genes common to both assays, per patient, is depicted in the
oncoprint (Figure 2A). About 4.1% of patients had mutations that were concordant, 4.1%
had partial concordance and 5.2% were discordant. Close to half (44.3%) of patients who
underwent tDNA and ctDNA testing had only tDNA mutations, and 32% of patients had
only ctDNA mutations. The mutations in the genes analyzed by FoundationOne only, per
patient, are depicted in part B of the oncoprint (Figure 2B).

3.3. Pathogenic and Presumed Pathogenic Mutations

Pathogenic or presumed pathogenic mutations, as depicted in FM and G360 reports
and described as “deleterious” or “inactivating,” were reported in a total of 30 of the
170 study patients (17.6%) in ctDNA and/or tDNA: 16 of the 139 (11.5%) patients for
whom tDNA samples were tested were found to have pathogenic or presumed pathogenic
mutations, and 18 of the 146 (12.3%) for whom ctDNA samples were tested were identified
as having such mutations in DDR genes. Only 4 of the 30 patients had pathogenic mutations
identified in both tDNA and ctDNA, with a significant 40% of the patients being identified
exclusively by ctDNA testing (Table 3).
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3.4. Targetable Mutations

FM and G360 reported availability of off-label clinical protocols with PARP inhibitors
for pathogenic mutations in BRCA1, BRCA2, ATM and, more recently, in PALB2, ARID1A
and CDK12. Therefore, pathogenic or presumed pathogenic mutations in these genes
were deemed “targetable” with PARP inhibitors in this study. Based on the information
provided by FM and G360, 27 patients (15.9%) of the study patients would be eligible for
off-label therapy with a PARP inhibitor, with 13 patients (9.3% of the tDNA tested patients)
and 17 patients (11.6% of the ctDNA tested patients) being potential candidates (Table 4).
ATM was the DDR gene with the highest number of pathogenic mutations reported in
11 patients (6.4% of the 170 patients tested by ctDNA and/or tDNA); 9 of the 11 patients
were identified by ctDNA testing. BRCA1 and ARID1A followed, with 6 and 5 patients,
respectively, identified with targetable mutations, with the majority of patients identified
again by ctDNA testing (5 and 3 patients, respectively) (Table 4).

Table 4. Prevalence of Clinically Significant and Targetable Mutations.

tDNA ctDNA Both Off-Label Clinical Protocol with PARP Inhibitors

BRCA1 3 5 2 FM, G360

BRCA2 3 1 0 FM, G360

ATM 2 8 1 0 FM, G360

ARID1A 3 2 1 1 G360

CDK12 1 1 0 G360

APC 2 2 1 1 None

PALB2 1 - - FM

MLL3 1 - - None

Occurrences are listed as number of patients with one or more mutations in a gene, rather than total number of mutations encountered for
each gene. 1 One additional pathogenic mutation was reported in BRCA1 ctDNA in the same patient who is listed under BRCA1. 2 One
additional pathogenic mutation was reported in BRCA2 tDNA in the same patient who is listed under BRCA2. ctDNA, circulating tumor
DNA; FM, FoundationOne Medicine; G360, Guardant 360; tDNA, tumor tissue DNA.

3.5. Prevalence of DDR Gene Mutations across Demographic Groups

Patients were deemed as either positive or negative for mutated DDR genes in the
18-gene panel (all genes) or for ctDNA, tDNA or either (ctDNA and/or tDNA) in each of
the subsets. No significant association was found between patients with mutated DDR
genes in the 18-gene panel and age, gender, race, smoking status, alcohol use or stage at
diagnosis. Patients with mutated DDR genes within the 3-gene subset in ctDNA and in
either/both tDNA and/or ctDNA were statistically more likely to be older than the median
patient age of 60 years (p values of 0.04 and 0.050, respectively). No other associations with
age, gender, race, smoking status, alcohol use or stage at diagnosis were found in any of
the other subsets.

Patients with DDR gene mutations detected in ctDNA and/or tDNA were associated
with HNSCC subsite (p = 0.02) in the 18-gene panel analysis. Laryngeal primaries, specif-
ically, had a higher presence of DDR gene mutations detected in this gene set detected
in ctDNA (p = 0.02), tDNA (p = 0.06) or via in ctDNA and/or tDNA method (p = 0.01).
Oropharyngeal primaries correlated with a lower prevalence of DDR gene mutations in
patients detected in tDNA (p = 0.06) and in tDNA and/or ctDNA (p = 0.01). Statistical
significance of the lower prevalence of patients with DDR gene mutations in oropharyngeal
cancers was preserved in the 6-gene subset analysis (p = 0.04 for tDNA, and p = 0.01 for
tDNA and/or ctDNA), in the 3-gene subset analysis (p = 0.01 for tDNA; p = 0.054 for
ctDNA; and p < 0.01 for tDNA and/or ctDNA) and in the 2-gene subset analysis (p = 0.02
for tDNA, and p = 0.03 for tDNA and/or ctDNA). The 3-gene subset analysis showed
an association in which patients with DDR gene mutations detected via tDNA and/or
ctDNA were more likely to have more advanced disease at time of diagnosis with respect
to advanced cancer stage (I–IV) (p = 0.06), N stage (N0 to N3) (p = 0.02) and within stage IV
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disease (between groups A, B and C) (p = 0.03). N stage also correlated significantly with
the prevalence of patients with ctDNA mutations (p = 0.02).

Patients treated with chemotherapy, radiotherapy or both before collection of ctDNA
had a significantly higher presence of DDR gene mutations in ctDNA (p < 0.01). Data also
indicated an increased prevalence of mutations in tDNA and/or ctDNA in patients treated
before tDNA collection (p = 0.03).

3.6. HPV and Smoking Status and the Prevalence of DDR Genes Mutations

HPV and/or p16 testing was available for 123 (72.35%) patients. HPV and/or p16
were negative in 65 patients (52.84% of those tested) and positive in 58 patients (47.15% of
those tested). Positive HPV and/or p16 tumors were associated with increased probability
to be alive at the end of the study (p < 0.01) and with tendency for better OS measured from
the time of diagnosis (p = 0.06). No significant correlation between HPV status and presence
of a DDR gene mutation on a per patient basis were discovered in the 18-gene analysis.
In the 6-gene subset, however, patients without mutations in tDNA and/or ctDNA were
found to be more likely to have HPV-positive disease (p = 0.04).

Information about smoking status was available for all patients included in the study:
48 of the 170 patients (28.2%) were never-smokers, and 122 patients (71.8%) were ever-
smokers. A nearly significant lower presence of ctDNA DDR gene mutations was found in
non-smokers compared with ever-smokers (p = 0.06) in the 3-gene subset analysis. Non-
smokers had a nearly significant better chance to be alive at the end of the study (p = 0.058)
and a significantly better OS measured from the time of diagnosis (p = 0.03) when compared
to ever-smokers.

3.7. Survival Analysis

All patients had at least 6 months of follow up after the last sample collection for NGS.
Median follow-up time was 615.5 days from the time of diagnosis and 232.5 days from the
time of ctDNA testing. Median survival from the time of diagnosis was 820 days (95% CI
752 to 1140 days) and 372 days (95% CI 262 to 416 days) from the time of ctDNA testing. At
last visit, 35.8% of patients had no evidence of disease, 28.4% had recurrent or progressive
loco–regional disease, and 35.8% had metastatic disease (Table 2). Overall, patients with
mutations in DDR genes had poorer prognosis (Table 5 and Figure 3).

Table 5. Correlation of Mutated DDR Genes with Survival Outcomes.

Survival Start
Time Point

Overall Survival Univariate Analysis Overall Survival Adjusted Analysis 1-Year OS 2-Year OS
Survival
Last Visit

HR 95% CI p Value HR 95% CI p Value p Values

18-Gene Subset
tDNA

- - -

0.14 0.20 0.71tDNA collection 0.91 0.57–1.45 0.68
Diagnosis 0.81 0.51–1.30 0.38

tDNA and/or
ctDNA

0.67 0.75 0.52tDNA collection 1.20 0.74–1.94 0.46
ctDNA collection 1.38 0.83–2.29 0.41

Diagnosis 0.94 0.62–1.44 0.78

6-Gene Subset
tDNA

1.62 0.99–2.65 0.053

0.46 0.85 0.25tDNA collection 1.24 0.77–1.97 0.38
Diagnosis 1.24 0.78–1.98 0.36

ctDNA
0.10 <0.01 0.04ctDNA collection 1.81 1.15–2.85 0.01

Diagnosis 1.38 0.88–2.15 0.16
tDNA and/or

ctDNA
0.40 0.21 0.01tDNA collection 1.68 1.03–2.73 0.04

ctDNA collection 1.56 0.99–2.46 0.053
Diagnosis 1.29 0.85–1.96 0.23
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Table 5. Cont.

Survival Start
Time Point

Overall Survival Univariate Analysis Overall Survival Adjusted Analysis 1-Year OS 2-Year OS
Survival
Last Visit

HR 95% CI p Value HR 95% CI p Value p Values

3-Gene Subset
tDNA

1.85 1.10–3.12 0.02

0.42 0.77 0.92tDNA collection 1.09 0.63–1.86 0.77
Diagnosis 1.08 0.63–1.84 0.78

ctDNA
0.07 0.01 0.01ctDNA collection 2.04 1.26–3.31 <0.01

Diagnosis 1.99 1.23–3.22 0.01
tDNA and/or

ctDNA
0.87 0.16 0.10tDNA collection 1.55 0.96–2.49 0.07

ctDNA collection 1.73 1.09–2.74 0.02
Diagnosis 1.43 0.94–2.19 0.10

2-Gene Subset
tDNA

1.82 0.99–3.38 0.06

0.82 0.93 0.64tDNA collection 0.99 0.53–1.85 0.97
Diagnosis 0.94 0.50–1.74 0.83

ctDNA
0.15 0.04 0.15ctDNA collection 1.77 1.00–3.12 0.04

Diagnosis 1.80 1.01–3.21 0.04
tDNA and/or

ctDNA
0.89 0.36 0.68tDNA collection 1.37 0.82–2.29 0.22

ctDNA collection 1.38 0.83–2.29 0.21
Diagnosis 1.25 0.77–2.03 0.36

Results with p < 0.05 are bolded in italics; results with 0.05 < p < 0.10 are italicized and underlined. Abbreviations: CI, Confidence interval;
ctDNA, circulating tumor DNA; HR, hazard ratio; tDNA, tumor tissue DNA.

3.8. Prognostic Value of Presence of ctDNA Mutations in DDR Genes

Patients without ctDNA DDR gene mutations in the 6-gene subset or in the 3-gene
subset were significantly more likely to be alive at the end of the study (p = 0.04, and
p = 0.01, respectively). Similarly, patients without ctDNA mutations specifically in BRCA2
or in APC genes were more likely to be alive at the end of the study (p = 0.01, and p = 0.01,
respectively). Patients with ctDNA mutations in DDR genes in the 6-gene and in the 3-gene
subsets were more likely to have a more advanced cancer status at the last visit (p = 0.03,
and p = 0.01, respectively). Presence of mutated DDR genes in ctDNA was also associated
with significantly worse 2-year survival (p < 0.01).

Patients with ctDNA DDR gene mutations had significantly worse overall survival
measured from the time of ctDNA collection (p = 0.01) (Figure 3a). This relationship
remained statistically significant in a Cox proportional hazards regression model when
adjusted for age, tobacco use, tumor site, nodal stage at diagnosis and previous treat-
ment with combined chemoradiation therapy in a multivariate analysis model (p = 0.053)
(Table 6). Similar associations with overall survival were found in studies for patients with
ctDNA DDR gene mutations in 3-gene and 2-gene subsets in the univariate (p < 0.01, and
p = 0.04, respectively) and in the multivariate (p = 0.02, and p = 0.04, respectively) analyses
(Tables 5 and 6 and Figure 3c,e). Association with overall survival measured from the time
of diagnosis was statistically significant for patients with ctDNA mutations in the 3-gene
and 2-gene analysis (p < 0.01, and p = 0.04, respectively (Table 5 and Figure 3f).
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Figure 3. Kaplan–Meier curves depicting survival differences in patients with DDR gene mutations in comparison to those
without DDR gene mutations. (a) Survival from time of ctDNA testing in patients with vs. without DDR genes mutations
in ctDNA in the 2-gene subset. (b) Survival from time of diagnosis in patients with vs. without DDR genes mutations in
ctDNA in the 2-gene subset. (c) Survival from time of ctDNA testing in patients with vs. without DDR genes mutations in
ctDNA in the 3-gene subset. (d) Survival from time of ctDNA testing in patients with vs. without DDR genes mutations
in tDNA and/or ctDNA in the 3-gene subset. (e) Survival from time of ctDNA testing in patients with vs. without DDR
genes mutations in ctDNA in the 6-gene subset. (f) Survival from time of ctDNA testing in patients with vs. without DDR
genes mutations in tDNA and/or ctDNA in the 6-gene subset. ctDNA, circulating tumor DNA; tDNA, tumor tissue DNA;
blue solid lines indicate survival curves for patients without mutations in any of the selected gene panel; red dashed lines
indicate survival curves for patients with at least one mutation in any of the selected gene panel.

76



Cancers 2021, 13, 3118

Table 6. Results from Adjusted Cox Proportional Hazard Regression Models of Impact of the Presence of ctDNA Mutations
on Overall Survival.

6-Gene Analysis 3-Gene Analysis 2-Gene Analysis

HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value

ctDNA
mutations 1.62 (0.99–2.65) 0.053 1.85 (1.10–

3.12) 0.020 1.87 (1.02–3.43) 0.042

p value for Adjusted Variables p value for Adjusted Variables p value for Adjusted Variables

Age Below
60 Years Old
(yes vs. no)

0.65 0.70 0.64

Smoking
(never vs. ever) 0.41 0.54 0.55

N Stage (N0 vs N1,
N2, N3) 0.33 0.49 0.31

Subsite
(OP vs. OC,

Pharynx, Other)
0.02 0.02 0.04

CRT Prior to
ctDNA Test
(yes vs. no)

<0.01 <0.01 <0.01

Analyses with p < 0.05 are bolded in italics and underlined; results with 0.05 < p < 0.10 are italicized and underlined. Abbreviations: CI,
Confidence interval; ctDNA, circulating tumor DNA; HR, hazard ratio; CI, hazard ratio confidence interval; CS, chi-squared analysis; N/A,
non-applicable; CRT, combined chemotherapy and radiation therapy; OC, oral cavity; OP, oropharynx.

3.9. Prognostic Value of Presence of tDNA Mutations in DDR Genes

A patients’ possession of tDNA DDR gene mutations showed no significant prognostic
value when analyzed for correlation with disease status at the end of the study, survival at
1 or 2 year(s) or with overall survival. tDNA DDR gene mutations present specifically in
APC or in CDK12 genes were associated with decreased likelihood to be alive at the end of
the study (p = 0.01, and p = 0.01, respectively).

3.10. Prognostic Value of Presence of tDNA and/or ctDNA Mutations in DDR Genes

Patients with mutations in one or more DDR genes in the 6-gene and 3-gene subsets
detected in tDNA and/or ctDNA were significantly more likely to have a greater extent
of disease at last visit (p < 0.01, and p = 0.01, respectively) (Table 5). In the 6-gene subset
analysis, patients with mutated DDR genes had significantly decreased overall survival
measured from the time of ctDNA collection (p = 0.053) or from the time of tDNA collection
(p = 0.04) (Figure 3b) and did not reach significance when measured from the time of
diagnosis (p = 0.07) (Table 5). For the 3-gene subset analysis, patients with mutations in
tDNA and/or ctDNA were also found to have decreased overall survival when measured
from the time of ctDNA collection (p = 0.02) (Figure 3d) and did not reach significance
when measured from the time of tDNA collection (p = 0.07).

Mutations present in APC or CDK12 genes, individually, were again associated with
decreased likelihood to be alive at the end of the study (p = 0.01, and p = 0.01, respectively)
when measured in tDNA and/or ctDNA. Interestingly, mutations in ARID1A as well as
in MLL3 were associated with improved chance to be alive at the end of the study when
measured in tDNA (p = 0.04, and p = 0.06, respectively) or in both tDNA and/or ctDNA
for MLL3 gene (p = 0.053).

4. Discussion

This study is a single-institution retrospective analysis examining the prevalence,
prognostic and potential therapeutic implications of DDR gene mutations in tDNA and
ctDNA in a dedicated cohort of HNSCC patients. To the authors’ knowledge, this study is
the first to elucidate the significance and the role of the genomic profile of DDR genes in
the HNSCC when evaluated by both tDNA and ctDNA analysis, alone, or in combination.
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The selection of the 18 genes chosen for this study was based on literature review
of genes’ roles and importance in DDR pathways as well as on inclusion as biomarkers
in clinical studies [17]. A subset was created for further analysis based on the testing
profile available for both tDNA and ctDNA (6-gene subset). Creation of other subsets
was based on potential clinical therapeutic utility, with 2-gene subset and 3-gene subset
reflecting the gene biomarkers utilized for approval of PARP inhibitors in the management
of breast, ovarian, pancreatic and prostate cancers. Variants of unknown significance were
not excluded from data related to prevalence, analysis of demographics or prognostic
associations. The decision to include these mutations was based on the notion that there
was insufficient scientific data to dismiss them and that their clinical significance may
become apparent in the future. However, variants of unknown significance were excluded
from the reporting of the genes identified as potential targetable mutations in current
clinical protocols.

The population studied in this analysis is consistent with a standard HNSCC popula-
tion in terms of age, gender, race, smoking status and prevalence of HPV driven disease. A
previous study on a fraction of patients in this group (75 of the 170 patients) has demon-
strated a prevalence of mutations in TP53, CDKN2A, TERT, BRCA2 and NOTCH1 similar to
other reported populations [3,15,17,24,25]. Conventional prognostication tools, including
those related to HPV or smoking-driven diseases held true in this analysis. Non-smokers
and those with HPV/p16 positivity had a significantly better overall survival and were
more likely to be alive at the end of the study.

Data presented in this analysis demonstrates a higher than previously reported preva-
lence of DDR gene mutations in HNSCC. In this analysis, 47.4% had at least one tDNA
mutation and 37% had at least one ctDNA mutation in the selected gene profile. BRCA2 and
ARID1A were the two DDR genes with the highest prevalence in our HNSCC population:
both mutated in 17.6% of the patients tested in either tDNA and/or ctDNA. ATM and
BRCA1 were the next most common and were found to be mutated in 13.5% and 10% of
patients, respectively. Other studies have reported a lower frequency of such mutations.
For example, one such study reported 6% for BRCA1 and 7% for BRCA2. It should be noted
that such studies utilized only tumor tissue for NGS evaluation [6,26–29].

When variants of unknown significance and mutations thought to not influence gene
function were excluded, pathogenic or presumed pathogenic mutations in DDR genes
were reported in 29 of the 170 study patients (17%). A total of 11.5% of tDNA samples and
12.3% of ctDNA samples were found to have such mutations. These results compare well
with the DDR gene mutation profile reported by other studies. For example, Heeke et al.
studied genes involved in homologous recombination across multiple tumor types with
the most frequently mutated genes overlapping with our study (ARID1A, BRCA2, BRCA1).
Overall, pathogenic mutations in genes involved in homologous recombination were found
in 17.6% of the 17,566 tumors tested and 6.8% of a total of 206 head and neck tumors [26].
With a variation in the selection of the less frequently mutated genes and with the addition
of ctDNA testing, this study has significantly increased the percentage of theoretically
actionable mutations in the HNSCC, to 17%. Addition of ctDNA to this report increased
the yield of NGS by nearly two-fold when compared to tDNA testing, alone. Concordance
results also supported the use of both NGS analysis methods in combination. Concordance
was limited in the DDR genes analyzed, and, in more than 90% of the patients, each method
brought complimentary information, increasing the yield to identify patients for precision
oncology treatments. It is noteworthy that the DDR gene with the highest incidence of
targetable mutations in this study is ATM, with pathogenic mutations reported in 6.4% of
the 170 patients tested for NGS and with 9 of the 11 patients being identified by ctDNA
testing. Next, BRCA1 was identified with targetable mutations in 6 patients, with majority
of patients identified again by ctDNA testing, and ARID1A in 5 patients.

This analysis demonstrated that several groups were predisposed to DDR gene mu-
tations. For example, patients older than the median (60 years) were more likely to have
mutations in ATM, BRCA1 and/or BRCA2 (the 3-gene subset) detected in ctDNA or in
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ctDNA and/or tDNA. Certain HNSCC subsites were more likely to have mutations in
DDR genes (laryngeal primaries) and others less likely (oropharyngeal) when tested in
tDNA or ctDNA or both. Analysis of the gene subsets also showed decreased prevalence of
DDR gene mutations in oropharyngeal cancer. Patients with more advanced disease stage
(stages I to IV), and those with more advanced stage IV disease (between groups A, B and
C) were more likely to have mutations in ATM, BRCA1 and/or BRCA2 (the 3-gene subset)
detected via tDNA and/or ctDNA. N stage (N0 to N3) also correlated significantly with
the prevalence of ctDNA mutations in the 3-gene subset analysis. Patients treated with
chemotherapy, radiotherapy or both prior to collection of their genetic samples were more
likely to have DDR gene mutations in ctDNA or in samples collected by either method.
To the authors’ knowledge, it is the first time that these demographic correlations were
identified in the study of DDR genomic profile in HNSCC, and comparative studies are
not available for validation.

The 6-gene subset analysis in this study demonstrated a significantly lower prevalence
of mutations in tDNA and/or ctDNA DDR genes in HPV-positive disease. All other subset
analyses in tDNA and/or ctDNA support these findings, without reaching statistical sig-
nificance. These results are further supported by other data in this report. Non-smokers vs.
ever-smokers were also less likely to have gene mutations in the 3-gene subset analysis. In
addition, given that fewer mutated DDR genes (such as in HPV-positive patients and in
non-smokers) were found to be associated with improved survival, it is congruent with
the HPV mutation results. This is in agreement with studies that have demonstrated
increased expression (i.e., increased presence of functional copies) of DNA repair genes
in HPV-positive HNSCC [30]. Two other studies reporting results from genomic cohorts
originating from the University of Chicago and University of Michigan (120 and 34 pa-
tients, respectively) described that mutations in DDR genes and Fanconi Anemia genes (a
spectrum that contains important overlapping genes), respectively, were more frequently
associated with HPV positivity [27,31]. Differences in definition of HPV phenotype, in
NGS techniques and in DDR gene panel selection could account for the discordant results.
Additional effects of confounding variables, such as smoking status, age, stage of disease
and previous treatment(s) could further complicate the relationship between HPV status
and gene mutations.

Presence of mutated DDR genes was found to be a compelling indicator of poor
prognosis. Strong statistically significant correlations were noted between the presence
of DDR gene mutations and decreased overall survival when measured from the time
of genetic sample collection or from time of diagnosis in ctDNA (in all subsets) and in
tDNA and/or ctDNA in selected subsets (Table 3). The relationship between ctDNA DDR
mutations and overall survival remained statistically significant in a Cox proportional
hazards regression model when adjusted for age, tobacco use, tumor site, nodal stage at
diagnosis and previous treatment with combined chemoradiation therapy in all subsets.
No similar correlation was found between tDNA mutations in DDR genes and prognosis.
Existing literature suggests that expression of certain DDR genes, including BRCA1 and
BRCA2, is associated with increased survival in HNSCC patients as the preservation of
efficient repair mechanisms maintains genomic stability [32]. Similarly, another study has
listed BRCA1 expression, alone, to be indicative of survival in HNSCC [30]. As another
indicator of poor prognosis, patients with DDR gene mutations were significantly more
likely to have more advanced disease burden at the time of the last visit, as measured in
ctDNA and in both tDNA and/or ctDNA in the 6-gene and 3-gene subsets.

Overall, statistically significant associations between the presence of mutated DDR
genes and demographic variables and/or survival were more frequently identified in
ctDNA rather than in tDNA. This possibly reflects differences in sampling and in NGS
techniques. Challenges in tissue sample acquisition and appraisal, including availability
and tumor heterogeneity, are universal to tDNA studies. Likewise, studies regarding
ctDNA have uncovered that liquid biopsies do not reflect the complete mutation profile
of the tumor, either, and such studies have noted increased sensitivity with increased
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burden of disease [15,33]. It is also feasible that differences in sequencing results between
samples are also reflective of the different time points at which the samples were collected
(ctDNA studies were typically performed after tDNA studies in this cohort) and, therefore,
may be impacted by tumor progression, interim treatments, etc. Differences between the
FoundationOne and Guardant360 sequencing techniques may affect the concordance of
DDR gene mutation results and, therefore, the correlation with different clinical variables.

The high prevalence of DDR gene mutations in this cohort detected in ctDNA samples,
tDNA samples or both is of considerable clinical interest, as mutations in these genes are
potential targets for novel cancer treatments, including PARP inhibitors. FoundationOne
and Guardant360 report off-label clinical protocols with PARP inhibitors for pathogenic
or presumed pathogenic mutations in BRCA1, BRCA2, ATM and, more recently, in PALB2,
ARID1A and CDK12. No off-label clinical protocols with PARP inhibitors were reported for
mutations in APC or MLL3; therefore, patients with such mutations were not included here.
A total of 15.9% of the 170 study patients would be eligible for off-label PARP1 inhibitor
clinical protocols, with 9.3% of tDNA-tested patients and 11.6 % of ctDNA-tested patients
being potential candidates. These frequencies rival reported frequency of these mutations
in breast (15.6%), ovarian (20.0%), prostate (14.1%) and pancreatic cancers (15.4%) for which
PARP inhibitors are currently FDA approved therapeutics [26].

Notably, this report emphasizes the utility of ctDNA testing by demonstrating im-
proved sensitivity in the identification of patients who might benefit from targeted drug
therapy. Only 3 of the 27 patients identified with presumed targetable mutations for PARP
inhibitors were identified in both tDNA and ctDNA, with more than half (14) of the patients
being identified exclusively by ctDNA testing. These results support efforts made in the
field of precision oncology to revolutionize the treatment of HNSCC, with consideration
for targeted, mutation-guided clinical protocols with single agent PARP inhibitors. Review
of the literature revealed only one study that evaluated efficacy of a single agent PARP
inhibitor, Olaparib, in a limited number of pre-operative HNSCC cases. In this study,
Olaparib was used with or without cisplatin or durvalumab. The report concluded that
mutations in DDR genes were associated with sensitivity to Olaparib in HNSCC, as has
previously been demonstrated in other malignancies [34]. Additional ongoing clinical
trials for treatment of HNSCC with PARP inhibitors rely on combination therapy in which
chemotherapy and/or radiotherapy are used to sensitize tumors to PARP inhibitors. Such
studies find basis in pre-clinical trials in which synergy was noted between PARP inhibitors
and more conventional therapies [35]. These studies and others highlight the tolerability
and effectivity of PARP inhibitors in HNSCC but are all in small cohorts, and none uses
NGS to guide therapy [21–23]. The strong correlation of the presence of DDR gene mu-
tations with poor survival in this study raises the possibility that NGS-guided treatment
with PARP inhibitors in HNSCC might lead to improvement in survival in select patients.

This is among the largest cohorts of patients with HNSCC in whom tDNA mutations
were studied and is the only report in which DDR gene mutations were analyzed in a rela-
tively large HNSCC population by ctDNA, alone, or in combination with tDNA. Findings
from this report support further use of ctDNA analysis to predict prognosis and to increase
sensitivity in the detection of targetable mutations and underscore further investigations
into PARP inhibitors for the treatment of HNSCC. This report has a number of limitations.
Data was collected from a single institution and geographic area. Furthermore, dependence
on the electronic medical record, self-reported data (for smoking and alcohol use) and uti-
lization of commercially available NGS platforms with differences in technical approaches
introduced error that could not be corrected. Finally, this correlative data does not imply
causation, therefore limiting the number and types of conclusions that can be drawn.

Future Directions

This study notably demonstrates both the high prevalence of DDR gene mutations in
HNSCC and the poor prognosis associated with such mutations. The increased prevalence
of DDR gene mutations measured in this study was the result of combining tDNA with
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ctDNA testing. The low overall concordance between tDNA and ctDNA samples, and the
significant contribution of ctDNA testing to the number of identified mutations targetable
with PARP inhibitors, supports using the combination of the two methods in future clinical
practice to raise the sensitivity of genetic testing. These results are expected to urge the
advancement of clinical research with NGS-guided use of PARP inhibitors in the treatment
of HNSCC, rather than the non-targeted combination with other treatment modalities,
which is currently the only approach to PARP inhibitors utilization in the management
of HNSCC. The indisputable association of ctDNA mutations in DDR genes with poor
prognosis and survival in HNSCC further supports the acceleration of investigating PARP
inhibitors in the management of HNSCC with the future goal to improve survival in this
group of patients with notable poor prognosis. Expansion of the DDR gene panel to be
tested for mutations should be considered in the future.

5. Conclusions

Despite the benefits of NGS in the management of many malignancies, the mutational
landscape of HNSCC remains largely undescribed. This study is the largest cohort to date to
analyze the genomic landscape in both blood and tumor tissue in patients with HNSCC and
reports a high prevalence of DDR gene mutations in this tumor type. Utilizing both ctDNA
and tDNA analysis, the incidence of targetable mutations in this HNSCC cohort was found
comparable with other cancers such as breast, ovarian, prostate and pancreatic cancers for
which PARP inhibitors are now standard of care. For the first time, the addition of ctDNA
analysis contributed to the identification of an increased incidence of DDR gene mutations
in patients older than 60 years, in laryngeal primaries, in patients with advanced stage
at diagnosis and in patients with tumors previously treated with chemotherapy and/or
radiotherapy, while the incidence was found significantly decreased in oropharyngeal
cancer and in HPV-positive patients. Patients with DDR gene mutations in ctDNA rather
than tDNA had significantly worse prognoses, with more advanced disease burden at
the end of the study and with decreased overall survival in univariate analysis and in
Cox proportional hazard regression models adjusted for statistically and/or clinically
significant variables. These results are expected to prompt further clinical investigations
with NGS-guided PARP inhibitors for the treatment of HNSCC.
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Simple Summary: Tumor cells that circulate in the peripheral blood of patients with solid tumors are
called circulating tumor cells. Since the source of circulating tumor cells are from primary cancer sites,
metastatic sites, and/or a disseminated tumor cell pool, these cells have clinical significance. The
circulating tumor cells offer a rare glimpse of the evolution of the tumor and its response/resistance
to treatment in a real-time non-invasive manner. Although the clinical relevance of circulating tumor
cells is undeniable, the routine use of these cells remains limited due to the elusive nature of the
cells, which demands highly sophisticated and costly instrumentation. We presented a specific and
sensitive laboratory-friendly parallel double-detection format method for the simultaneous isolation and
identification of circulating tumor cells from peripheral blood of 91 consented and enrolled patients
with tumors of the lung, endometrium, ovary, esophagus, prostate, and liver. Our user-friendly
cost-effective circulating tumor cells detection technique has the potency to facilitate the routine use
of circulating tumor cells detection even in community-based cancer centers for prognosis, before
and after surgery, which will provide a unique opportunity to move cancer diagnostics forward.

Abstract: The source of circulating tumor cells (CTC) in the peripheral blood of patients with solid
tumors are from primary cancer, metastatic sites, and a disseminated tumor cell pool. As 90% of
cancer-related deaths are caused by metastatic progression and/or resistance-associated treatment
failure, the above fact justifies the undeniable predictive and prognostic value of identifying CTC
in the bloodstream at stages of the disease progression and resistance to treatment. Yet enumera-
tion of CTC remains far from a standard routine procedure either for post-surgery follow-ups or
ongoing adjuvant therapy. The most compelling explanation for this paradox is the absence of a
convenient, laboratory-friendly, and cost-effective method to determine CTC. We presented a specific
and sensitive laboratory-friendly parallel double-detection format method for the simultaneous isolation
and identification of CTC from peripheral blood of 91 consented and enrolled patients with various
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malignant solid tumors of the lung, endometrium, ovary, esophagus, prostate, and liver. Using a
pressure-guided method, we used the size-based isolation to capture CTC on a commercially available
microfilter. CTC identification was carried out by two expression marker-based independent staining
methods, double-immunocytochemistry parallel to standard triple-immunofluorescence. The choice
of markers included specific markers for epithelial cells, EpCAM and CK8,18,19, and exclusion mark-
ers for WBC, CD45. We tested the method’s specificity based on the validation of the staining method,
which included positive and negative spiked samples, blood from the healthy age-matched donor,
healthy age-matched leucopaks, and blood from metastatic patients. Our user-friendly cost-effective
CTC detection technique may facilitate the regular use of CTC detection even in community-based
cancer centers for prognosis, before and after surgery.

Keywords: CTC; immunocytochemistry; parallel double-detection; laboratory-friendly

1. Introduction

Circulating tumor cells (CTCs) are rare and heterogeneous cellular components circu-
lating in the peripheral blood of patients with solid tumors [1] and are considered one of
the fundamental elements of the blood-based biopsy. As the source of CTCs in the blood-
stream has been known to be from primary cancer sites, secondary metastatic sites, and/or
a disseminated tumor cell pool, the predictive [2] and prognostic [2,3] values of CTC have
been established in most solid tumors including prostate [4], hepatocellular [5], breast [6–8],
colorectal [9,10] melanoma [11], head and neck [12], bladder [13], testicular [14], and gas-
tric cancers [15] in both localized and metastatic clinical settings [1]. The prognostic and
therapeutic implications of CTC phenotype detection based on epithelial–mesenchymal
transition markers in the first-line chemotherapy of HER2-negative metastatic breast can-
cers indicated the role of CTCs in the management of the disease [16]. CTC enumeration has
also proven its potential to improve the management of cancers in several other ways. The
value of real-time longitudinal CTC fluctuations can provide the opportunity for (1) treat-
ment intensification in patients with a poor prognosis or (2) de-escalation in patients with a
good prognosis. CTC as an endpoint has the potential to evaluate the efficacy of treatment
alongside the molecular characteristics of CTCs, which provides their theranostic value [3].
The utility of CTCs as a multifunctional biomarker focusing on their potential as pharmaco-
dynamic endpoints either directly via the molecular characterization of specific markers or
indirectly through CTC enumeration has been reported [17].

In spite of the well-recognized clinical validity and utility [18] of enumerating CTC in
nonmetastatic and metastatic cancers [3], the determination of CTC as a routine strategic
procedure is yet to be incorporated into standard clinical practice for the management of the
disease [17]. Studies involving the treatment based on (1) CTC count, (2) CTC variations,
and/or (3) the molecular characteristics of CTCs were sometimes inconclusive or are still
ongoing [3]. One of the reasons CTC determination does not serve as a routine standard
liquid biopsy in patients with solid tumors has been identified as the lack of much-needed
improvement in the method to test CTC [19]. We need user-friendly, cost-effective, yet
reproducible methods to determine CTC routinely for diagnostic (especially with germline
mutation or predisposition), predictive, and prognostic purposes across different cancer
centers, including community-based hospitals.

CTCs are a promising yet challenging tumor biomarker to detect. The road-block
is a methodological issue, as a clinically dependable enumeration of CTC is still limited
to primarily established resource-rich, comprehensive centers employing sophisticated
instrumentation. Here we presented a low-cost, specific, sensitive, and fail-safe laboratory-
friendly method for simultaneous isolation and identification of CTC from 91 consented
and enrolled patients with various solid tumors, including lung, endometrial, ovarian,
esophageal, prostate, and liver cancers.
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2. Methods

2.1. Cell Lines and Reagents

Cell lines from endometrial, ovarian, breast, and lung cancers (AN3CA, Cat # HTB-111;
RL-95-2, cat # CRL-1671; OVCAR3, cat # HTB-161; MCF7, cat # HTB-22; HCC1975, cat # CRL-
5908 and NCI-H441 cat # CRM-HTB-174), human uterine fibroblasts (HUF; Primary Uterine
Fibroblasts, Cat # PCS-460-010), and HUVEC cells were procured from ATCC (cat # PCS-
100-013) and were cultured according to the standard cell culture procedures as per ATCC
recommendations. Leucopak, PBMC (peripheral blood mononuclear cells) were procured
from Lonza (Lonza Group Ltd., Basel, Switzerland). The CellSieve enumeration kit with
either DAPI/CK-FITC/EpCAM-PE/CD45-Cy5 or DAPI/CK-FITC/CD31-PE/CD45-Cy5
was procured from Creatv Microtech.

2.2. Patients & Blood Collection

All experimental protocols were approved by the institutional and/or licensing commit-
tee/s. The informed consent(s) was obtained from all subjects and/or their legal guardian(s).
Informed (IRB approved: Protocol Number Study: 2017.053-100399_ExVivo001) consents
for obtaining the peripheral blood were obtained from 91 enrolled patients with various
solid tumors, including lung, endometrial, ovarian, esophageal, prostate, and liver can-
cers. All methods were carried out in accordance with relevant guidelines and regulations.
Blood samples were collected in commercially available CellSave collection tubes (Menarini
Silicon Biosystems, Bologna, Italy) [20]. We included samples from patients with solid
tumors at any stage/grade of the disease undergoing surgery/biopsy with or without
pre-treatment/history of any previous carcinoma. We did not include any bone-marrow
transplant patients or patients with liquid tumors.

2.3. Isolation and Enrichment of CTCs

The isolation and size-based enrichment of CTCs from blood was achieved by
(CellSieveTM; Creatv Microtech, Potomac, MD, USA) using precision, high-porosity litho-
graphic microfilters (high capture efficiency precision CellSieveTM microfilters of biocom-
patible polymer with dense, uniform pores) [21–23]. Size-based filtration was carried out
to eliminate red blood cells differentially and most white blood cells from whole blood,
retaining larger cells on the surface of the filter [24] using a syringe pump (KD Scientific
Legato 110 CMT; Analytical West, Inc., Lebanon, PA, USA) assembled with filter holder
assembly (Creatv Microtech; Potomac, MD, USA).

2.4. Identification of CTCs by Double-Immunocytochemistry Assay

We seamlessly coupled the isolation and enumeration of CTC by double-immunocyto
chemistry staining. The entire procedure of the CK8,18+/CD45− (staining for CK8,18
positivity and CD45 negativity) double immunocytochemistry (ICC×2), from permeabi-
lization to counterstaining, was carried out on a microfilter installed in the syringe pump.
The isolated cells on the microfilter were permeabilized by a dual endogenous enzyme
blocking buffer with 0.3% hydrogen peroxide-containing sodium azide and levamisole
(DAKO; EnVision®+ Dual Link System-HRP (DAB+). Code K4065). Following wash-
ing with TBST, pH 7.1, the microfilter was incubated for 1 h at room temperature in
600–700 microliters of a mixture of 1:6000 diluted mouse mAb cytokeratin 8 and 18 (B22.1
& B23.1) (Cell MarqueTM Tissue Diagnostic, Millipore-Sigma; Cat. Number: 818M-90)
and 1:800 diluted rabbit mAb CD45 (Cell Signaling Technology; D9M8I XP; Catalog #
13917) primary antibodies. Following washing (×3) with TBST, pH 7.1, the microfilter was
incubated for 35–40 min at room temperature in 200–300 microliters of a 1:1 mixture of
secondary rabbit-Ab-AP-Polymer (Abcam DoubleStain IHC Kit: M&R on human tissue
(DAB and AP/Red) Cat. # ab210059) and secondary mouse-Ab-HRP-Polymer (Abcam
DoubleStain IHC Kit: M&R on human tissue (DAB and AP/Red) Cat. # ab210059) under
light-protected conditions. We used DAKO 10× wash buffer (pH 7.6) (DAKO Wash Buffer
10×; Code S300685-2C) supplied as a 1 L concentrated Tris-buffered saline solution (10×)
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containing Tween 20, pH 7.6 (±0.1) for washing. Following washing (×3) with DAKO
wash buffer, the color was developed using DAB (3,3’-diaminobenzidine chromogen)
reagents, DAB substrate buffer pH 7.5, and DAB+ chromogen (DAKO; EnVision®+ Dual
Link System-HRP (DAB+) Code K4065). The chromogenic reaction was stopped by wash-
ing (×1) in DD water. DAB color was monitored under a microscope following washes
(×3) in DAKO washing buffer. The chromogenic reaction of the alkaline-phosphatase
was prepared using permanent Red-Substrate, permanent Red-Activator, and permanent
Red-Chromogen (Abcam; Ab210059). Then, 200–300 microliters of the reconstituted final so-
lution were used for incubation (×2) for 20 min. Following washing (×3) with DD water, the
cells were counterstained (×2) with filtered DAKO hematoxylin (DAKO; Code S3302) for
10–15 min. Hematoxylin color was developed by incubating the microfilter for 3 min each
time and washing using 30 mL of DD water. The air-dried membrane was mounted in a
resin-based permanent non-aqueous mounting media (Richard Allan Scientific Mounting
Media (Thermo Fisher Scientific: Catalog # 4111TS-TS). For ICC×2, pictures were taken at
40× objective of Olympus BX43 Microscope using cellSens 1.18 LIFE SCIENCE IMAGING
SOFTWARE (OLYMPUS CORPORATION).

2.5. Parallel Identification of CTCs by Triple-Immunofluorescence Assay to Validate ICC×2

CellSieve enumeration kit from Creatv Microtech was used for CTC detection employ-
ing standard triple immunofluorescent (IF×3) staining [21–23] with certain modifications.
In short, 7.5 mL whole blood and 7.5 mL fixation buffer were mixed gently in a 50 mL
conical tube and incubated for 15 min at room temperature. The filter holder containing the
membrane with a 7-micron pore size was assembled during this incubation period. KD sci-
entific Legato 110 syringe pump was used to draw fluid through the filter (‘push’ program;
60% force) to move PBS up through the filter to pre-wet it. Next, the fixed blood sample
was applied to the filter and pulled through. As per the manufacturer’s protocol, we used a
kit with CK8,18,19-FITC, EpCAM-PE, and CD45-Cy5 for the staining of CTCs. The images
were acquired using Olympus cellSens 1.18 LIFE SCIENCE IMAGING SOFTWARE (OLYM-
PUS CORPORATION). We used the principle of CD45−/CK8,18,19+/EpCAM+/DAPI for
our immuno-fluorescence method. DAPI was used for the evaluation of the nuclear size
and morphology. In all the photomicrographs of figures (Figures 1–5), we indicate the
measurement of the nuclear diameters.
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Figure 1. Cont.
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Figure 1. Standardization and validation of CTC by IF×3 using breast, ovarian, and lung cancer
cell lines: Patients’ blood samples spiked with titrating number (1000 cells, 750 cells, 375 cells,
250 cells/100 cells) of cell lines of different solid tumors using. Pictures were taken at 60× oil
objective of an Olympus IX71 Microscope with DAPI/FITC/TRITC/CY5 filter sets. (A): MCF7 cells
(750 cells/375 cells per 7.5 mL of patient’s blood) were used for spiking blood samples, and cells
were captured on a microfilter and stained with a CellSieve enumeration kit (Creatv Microtech) with
either DAPI/CK-FITC/EpCAM-PE/CD45-Cy5 (Ai) or DAPI/CK-FITC/CD31 PE/CD45-Cy5 (Aii).
(B): OVCAR3 cells (100 cells per 7.5 mL of patient’s blood) were used for spiking blood samples, and
cells were captured on a microfilter and stained with cell sieve enumeration kit (Creatv MicroTech)
with DAPI/CK-FITC/EpCAM-PE/CD45-Cy5. (C): HCC1975 cells (1000 cells per 7.5 mL of patient’s
blood) were used for spiking blood samples, and cells were captured on a microfilter and stained
with cell sieve enumeration kit (Creatv Microtech) with DAPI/CK-FITC/EpCAM-PE/CD45-Cy5.
(D): NCI-H441 cells (250 cells per 7.5 mL of patient’s blood) were used for spiking blood samples, and
cells were captured on a microfilter and stained with cell sieve enumeration kit (Creatv Microtech)
with DAPI/CK-FITC/EpCAM-PE/CD45-Cy5. The magnification, scale bar, and digital reticle are
represented for each photomicrograph. Fluorescence images from DAPI, FITC, TRITC, and Cy5
channels were separated as pictures with a color bar. The fluorescence-photomicrographs presented
the diameters (μm) of CTC and a representative WBC and their respective DAPI stained nucleus.
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Figure 2. Cont.
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Figure 2. Validation spectrum of CTC by IF×3 using blood from patients with different clinical
statuses and samples of origin: CTC from blood samples from patients with (A) clinical status,
nonmetastatic (Ai) and metastatic (Aii) in endometrial cancers, and (B) samples of origin, during a
biopsy from a patient with metastatic liver cancer (Bi) and during surgical resection of the tumor
in lung cancers (Bii) are presented. The magnification, scale bar, and digital reticle are presented
for each photomicrograph. Fluorescence images from DAPI, FITC, TRITC, and Cy5 channels were
separated as pictures with a color bar. The fluorescence-photomicrographs presented the diameters
(μm) of CTC and a representative WBC and their respective DAPI stained nucleus.

Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. Standardization and validation of CTC by ICC×2 in reference to spiked IF×3 in endometrial
and ovarian cancers: CTCs were captured from blood samples from patients with endometrial
(A) and ovarian (B) tumors and enumerated using ICC×2 (Ai,Bi) in reference to IF×3 (Aii,Bii).
Blood samples were spiked (Spiked samples) with titrating numbers (250 cells/100 cells) of NCI-H441
cells separately for both ICC×2 and IF×3. For IF×3, pictures were taken at 60× oil objective of an
Olympus IX71 Microscope with DAPI/FITC/TRITC/CY5 filter sets. For ICC×2, pictures were taken
at 40× objective of an Olympus BX43 Microscope. The magnification, scale bar, and digital reticle
are represented for each photomicrograph. Fluorescence images from DAPI, FITC, TRITC, and Cy5
channels were separated as pictures with a color bar. The fluorescence-photomicrographs presented
the diameters (μm) of CTC and a representative WBC and their respective DAPI stained nucleus. The
immunocytochemistry-photomicrographs are presented with a scale bar, magnification information,
digital reticule, as well as the diameters (μm) of CTC and a representative WBC.

94



Cancers 2022, 14, 2871

Figure 4. Cont.
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Figure 4. Determining CTC by ICC×2 in endometrial and ovarian cancers: CTCs were captured
from blood samples from patients with endometrial (A) and ovarian (B) tumors and enumerated
using ICC×2 (Ai,Bi). Blood samples were spiked (Spiked samples) with titrating number (250 cells/
100 cells) of NCI-H441 cells separately for ICC×2. Corresponding CTC enumeration by IF×3 (Aii,Bii)
is presented. For IF×3, pictures were taken at 60× oil objective of an Olympus IX71 Microscope
with DAPI/FITC/TRITC/CY5 filter sets. For ICC×2, pictures were taken at 40× objective of an
Olympus BX43 Microscope. The magnification, scale bar, and digital reticle are represented for each
photomicrograph. Fluorescence images from DAPI, FITC, TRITC, and Cy5 channels were separated
as pictures with a color bar. The fluorescence-photomicrographs presented the diameters (μm) of CTC
and a representative WBC and their respective DAPI stained nucleus. The immunocytochemistry-
photomicrographs are presented with a scale bar, magnification information, digital reticule, as well
as the diameters (μm) of CTC and a representative WBC.
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Figure 5. Clinical relevance of determination of the number of CTCs using a single case study: we
determined CTC by ICC×2 from the blood of a patient with grade 2 stage I endometrial cancer:
CTCs were captured from blood samples from the patient and enumerated using ICC×2 (A,B).
Blood samples were spiked (Spiked samples) with titrating number (250 cells/100 cells) of NCI-H441
cells separately for ICC×2. For ICC×2, pictures were taken at 40× objective of an Olympus BX43
Microscope. The magnification, scale bar, and digital reticle are represented for each photomicrograph.
We recorded up to 100 CTCs in the 7.5 mL of the blood with 13 CTCs in a single microscopic field
(A) and mitotic CTCs with a mitotic figure and a cluster of 3 CTCs (B). The immunocytochemistry-
photomicrographs presented with a scale bar, magnification information, digital reticule, as well as
the diameters (μm) of CTC and a representative WBC.

2.6. Validation of CTC Assays by Double Immuno-Cytochemistry Assay and Parallel Triple
Immunofluorescence Assays

Parallel identification of CTCs by triple-immunofluorescence assay was performed
to validate ICC×2. Spike samples of tumor cell lines from endometrial, ovarian, breast,
and lung cancers were used. The cell lines were prefixed, and the number of cells in
the sample was titrated down (100 cells per spike) to test the sensitivity. The specificity
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was tested using epithelial cancer cell lines compared to CD31-positive HUVEC cells or
normal Human Uterine Fibroblasts (HUF). Leucopak, PBMC, and blood (age-matched)
from otherwise healthy persons were used to test the absence of CTC in normal individuals.
The test samples were run parallel to spiked samples each time as an internal positive
control. The background autofluorescence for all five channels (Microscope Olympus IX71
with DAPI/FITC/TRITC/CY5 filter sets) was tested in both CTC samples as well as spiked
samples. The test samples were stained similarly except without the cocktail of primary
antibody-conjugate(s). We used the same blood sample twice and separately spiked it with
NCI-H441 and HUVEC cells to test the cross-reactivity between epithelial cells and endothe-
lial cells in the peripheral blood. The spiked blood samples were stained with CD31 Kit
(containing antibody cocktail for CK 8,18,19/CD45/CD31; specific for detecting endothelial
cells) and EpCAM Kit (having antibody cocktail for CK 8,18,19/CD45/EpCAM; specific
for detecting epithelial cells). Pictures were taken at 60× oil objective of an Olympus
IX71 Microscope with DAPI/FITC/TRITC/CY5 filter sets. The image was acquired using
Olympus cellSens 1.18 LIFE SCIENCE IMAGING SOFTWARE (OLYMPUS CORPORA-
TION). The validation of the double-immunocytochemistry assay was based on a parallel
validation of the triple immunofluorescence assays in the same blood samples. We used
tumor cells from different organ-type cancers for validation. The expression of proteins (CK
8,18,19+/EpCAM+/CD45−/SMA−/CD31−) was simultaneously and independently tested
using immunocytochemistry, immunofluorescence, and flow cytometry. Once validated, we
ran blood samples by immunocytochemistry and immunofluorescence. Out of our 91 blood
samples used for the study, we determined CTC by immunofluorescence in 89 blood sam-
ples and by immunocytochemistry in 47 blood samples. We used both immunofluorescence
and immunocytochemistry methods in 44 blood samples for the concordance study. Each
time a blood sample was run (immunocytochemistry and immunofluorescence), we simul-
taneously ran a tumor cell line, NCI-H441, with it as a positive control. A presentative
picture of the NCI-H441 tumor cell line (CK 8,18,19+/EpCAM+/CD45−/DAPI) as positive
control is presented in the figures (Figures 2 and 3).

3. Results

A total of 91 patients were enrolled in the study (informed consent), and their blood
samples were received for standardization and detection of CTC (Table 1). Table 2 presents
the background characteristics of the patients. Table 3 presents patients’ pre-treatment
status at surgery and history of other cancers. Among the blood samples received from
71 patients with endometrial carcinomas (used for the standardization and testing of CTC),
we observed endometrioid carcinoma (invasive and non-invasive) as the predominant
pathologic subtypes of the disease. The rest of the subtypes included carcinosarcoma and
mixed endometrial adenocarcinomas. Among the blood samples received from 11 patients
with ovarian carcinomas (used for the standardization and testing of CTC), we observed
serous carcinoma (low and high grades) as the predominant pathologic subtypes of the
disease. The rest of the subtypes included ovarian adenocarcinoma, adult granulosa cell
tumors, ovarian mucinous cystadenoma, and appendiceal mucinous neoplasms. The
different pathological subtypes of the lung disease in patients from whom we received
our blood samples included squamous cell carcinoma, well-differentiated neuroendocrine
tumors, and invasive adenocarcinomas. Our study included 48% of patients with Grade
1 disease, out of which blood samples of 6 patients were used for standardization and
38 were used for CTC-testing. Sixteen percent of the total patients had Grade 2 disease, out
of which blood samples of 4 patients were used for standardization, and 11 were used for
CTC-testing. Eighteen percent of the total patients had Grade 3 disease, out of which blood
samples of 3 patients were used for standardization, and 14 were used for CTC-testing.
We first standardized CTC detection by IF×3 by standard triple-immunofluorescence
protocol [21–23] using blood from patients’ samples spiked with several tumor cell lines,
breast, lung, endometrial and ovarian cancers (Figure 1). A total of 15 blood samples
from patients with cancer of different organ types were used for standardization (IF×3
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and ICC×2). In addition to the blood from patients’ samples, parallel blood samples from
age-matched healthy individuals’ leucopaks and PBMCs were used for standardization and
testing auto-fluorescence. Once IF×3 was standardized, we validated our novel procedure
of ICC×2-based CTC determination using standard IF×3.

Table 1. Stage-wise distribution of patients’ blood samples used for the standardization and testing
of CTCs, with tumors from each pathology.

Stages of Patients with
Different Tumors

(Endometrial, Ovary, Lung,
Esophageal, Prostate, and

Liver)

Total Percentage of
Patients’ Blood Used for

the Study (%, n = 91)

Number of Blood Samples
Used for CTC

Standardization (n = 91)

Number of
Blood Samples
Used for CTC

Testing (n = 91)

Percentage of
Patients with
Positive CTC

(IF and/or ICC)
(%)

Stage I 63% 6 51 45%

Stage II 5% 1 4 50%

Stage III 14% 3 10 30%

Stage IV (Metastatic) 10% 4 5 100%

Tumors from Each Organ Type

Tumors from Each Pathology Endometrial Ovary Lung Esophageal Prostate Liver

Stage I 54 3 0 0 0 0

Stage II 2 1 2 0 0 0

Stage III 9 3 0 1 0 0

Stage IV (Metastatic) 3 2 1 0 2 1

Table 2. Pathology parameters of organ type (endometrial, ovarian, lung, prostate, liver, and
esophageal) tumors used for the study (LVI = Lymphovascular Invasion; MI = Myometrial In-
vasion; MSI = Microsatellite Instability; NA = Not Applicable; ND = Not Determined; NAV = Not
Available).

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Endometrial Cancer

Tumor Type-Histological TMN Grade Stage LVI MI (%) MSI

CTC-EC-691 Endometrioid adenocarcinoma pT2
pN0 1 II Present 25 NAV

CTC-EC-702 Endometrioid adenocarcinoma
pT1a
N0
(sn)

1 IA Absent 14 NAV

CTC-EC-713 Endometrioid adenocarcinoma
pT1a
N0
(sn)

1 IA Absent 15 NAV

CTC-EC-724 Endometrioid adenocarcinoma pT1b
N1a 1 IIIC1 Present 95 NAV

CTC-EC-735 Endometrioid adenocarcinoma pT1a pN0
(i+) pMX 2 IA Present 46 NAV

CTC-EC-746 Endometrioid adenocarcinoma pT1a
pN0 3 IA Present 29 NAV

CTC-EC-757 Endometrioid adenocarcinoma pT1a pNX 1 IA Absent 0 NAV

CTC-EC-768 Endometrioid adenocarcinoma pT1a pN0 1 IA Absent 11 NAV

CTC-EC-779 Endometrioid adenocarcinoma pT1b N1a 1 IIIC1 Present 67 NAV
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Table 2. Cont.

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Endometrial Cancer

Tumor Type-Histological TMN Grade Stage LVI MI (%) MSI

CTC-EC-7810
High grade papillary serous

carcinoma pT3b pNX 3 IIIB Absent 100 NAV

CTC-EC-7911 Endometrioid adenocarcinoma pT1a
NX 1 IA Absent 9 NAV

CTC-EC-8012 Endometrioid adenocarcinoma pT1apN0(sn) 1 IA Absent 14 NAV

CTC-EC-8113 Endometrioid adenocarcinoma pT1a pN0
(sn) 1 IA Absent 14 NAV

CTC-EC-8214
Extensive mutltifocal complex

hyperplasia with atypia NA ND I ND ND NAV

CTC-EC-8315 Residual carcinosarcoma pT1a pN0 ND IA Absent 26 NAV

CTC-EC-8416 Endometrioid adenocarcinoma pT1a pNX 1 I Absent 28 NAV

CTC-EC-8517 Endometrioid adenocarcinoma pT2
NX 2 II Present 87 NAV

CTC-EC-8618 Carcinosarcoma pT2
N1mi 3 IIIC1 Present 72 Stable

CTC-EC-8719 Endometrioid adenocarcinoma pT1a pN0sn 1 IA Absent 0 NAV

CTC-EC-8820 Endometrioid adenocarcinoma pT1a pN0sn 1 IA Absent 0 High

CTC-EC-8921

Carcinosarcoma with high grade
serous carcinoma and

rhabdomyosarcomatous
differentiation

pT1a N1mi 3 IIIC1 Absent 38 Stable

CTC-EC-9022
Endometrioid adenocarcinoma

(metastatic)
pT3b pNX

pM1 3 IV Absent 50 Stable

CTC-EC-9223 Endometrioid adenocarcinoma pT1a
N0 2 IA Absent 44 NAV

CTC-EC-9324 Benign endometrial polyp NA NA NA NA NA NAV

CTC-EC-9525
Endometrioid adenocarcinoma

with squamous cell differentiation pT1a N0 1 IA Absent 0 NAV

CTC-EC-9626 Endometrioid adenocarcinoma pT1a
N0 1 I Absent 0 NAV

CTC-EC-9727 Endometrioid adenocarcinoma pT1a pN0 1 IA ND 25 NAV

CTC-EC-9828 Endometrioid adenocarcinoma pT1a N0(i+) 1 I Absent 17 NAV

CTC-EC-9929 Endometrioid adenocarcinoma pT1b
N0 3 IB Absent 95 NAV

CTC-EC-10030 Benign endometrial polyp NA NA NA NA NA NAV

CTC-EC-10131 Endometrioid adenocarcinoma pT1a
N0 2 I Absent 11 High

CTC-EC-10232 Endometrioid adenocarcinoma pT1a
N0 1 IA Absent 29 NAV

CTC-EC-10333 Endometrioid adenocarcinoma pT1a (sn)
pN0 pMX 3 IA Absent 43 NAV

CTC-EC-10434 Endometrioid adenocarcinoma pT1a N0 1 IA Present
(?) 36 NAV

CTC-EC-10535 Complex atypical hyperplasia NA NA NA NA NA NAV

CTC-EC-10636 Endometrioid adenocarcinoma pT1a N0 1 IA Absent 17 NAV
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Table 2. Cont.

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Endometrial Cancer

Tumor Type-Histological TMN Grade Stage LVI MI (%) MSI

CTC-EC-10737 Endometrioid adenocarcinoma pT1a N0 1 IA Absent 34 NAV

CTC-EC-10838 Endometrioid adenocarcinoma
pT1a
(sn)
N0

1 IA Absent 13 NAV

CTC-EC-10939 Endometrioid adenocarcinoma pT1a 2 IA Present 25 NAV

CTC-EC-11040 Endometrioid adenocarcinoma pT1a N0 1 IA Absent 6 NAV

CTC-EC-11141 Endometrioid adenocarcinoma pT1a pN0 3 IA Absent 37 NAV

CTC-EC-11242 Endometrioid adenocarcinoma
pT1a
(sn)
N0

1 IA Absent 35 NAV

CTC-EC-11343 Endometrioid adenocarcinoma pT1a N0 1 IA Absent < 50% NAV

CTC-EC-11444 Endometrioid adenocarcinoma pT1b
N0 3 IB Absent 90 NAV

CTC-EC-11545 Endometrioid adenocarcinoma

pT1a
pN0
(i+)
(sn)

2 IA Absent 15 NAV

CTC-EC-11646 Endometrioid adenocarcinoma pT1a N0 2 IA Absent 32 NAV

CTC-EC-11747 Endometrioid adenocarcinoma pT1a N0 2 IA Absent 8 High

CTC-EC-11848
High-grade serous endometrial

adenocarcinoma pT1a N2mi 3 IIIC2 Present 46 NAV

CTC-EC-11949 Endometrioid adenocarcinoma pT1a sn
N0 1 IA Absent 0 NAV

CTC-EC-12050 Endometrioid adenocarcinoma pT1b sn
N1a 2 IIIC1 Present 57 NAV

CTC-EC-12151 Endometrioid adenocarcinoma
pT1a
pN0
(sn)

1 IA Absent 22 NAV

CTC-EC-12252 Endometrioid adenocarcinoma pT1a (sn)
pN0 1 IA Absent 19 High

CTC-EC-12353 Endometrioid adenocarcinoma pT1a pN0 1 IA Absent 30 NAV

CTC-EC-12454 Endometrioid adenocarcinoma pT1a pN0
(sn) 1 IA Absent 38 NAV

CTC-EC-12555 Endometrioid adenocarcinoma pT1a pN0 1 IA Absent 0 NAV

CTC-EC-12656 Endometrioid carcinoma pT1a pNX
pMX 1 IA Absent 0 NAV

CTC-EC-12757 Endometrioid adenocarcinoma pT1a (sn)
pN0 1 IA Absent 41 NAV

CTC-EC-12858 Endometrioid adenocarcinoma pT1a N0 1 IA Absent 23 NAV

CTC-EC-12959
High-grade serous endometrial

adenocarcinoma
pT2 (sn)

N2mi 3 IIIC2 Present 87 NAV

CTC-EC-13060
Mixed cell adenocarcinoma, (50%
high-grade serous, 50% clear cell) pT1a N0 M1 3 IVB Absent 0 NAV

CTC-EC-13161
High-grade serous endometrial

adenocarcinoma

pT3a (sn)
pN0
(i+)

3 IVB Present 0 NAV

101



Cancers 2022, 14, 2871

Table 2. Cont.

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Endometrial Cancer

Tumor Type-Histological TMN Grade Stage LVI MI (%) MSI

CTC-EC-13262 Uterine carcinosarcoma pT1a pN0 ND IA Absent 13 NAV

CTC-EC-13363
Mixed cell adenocarcinoma, (10%
high-grade serous carcinoma, 90%

endometrioid)

pT1a pN0
(sn) 3 IA Absent 13 NAV

CTC-EC-13464 Endometrioid adenocarcinoma pT1a (sn)
N0 2 IA Absent 6 NAV

CTC-EC-13565
Mixed cell adenocarcinoma, (90%

high-grade serous, 10%
endometrioid adenocarcinoma)

pT1a N0 3 IA Absent 38 NAV

CTC-EC-13866 Endometrioid adenocarcinoma pT1b N0(sn) 1 IB Absent 64 High

CTC-EC-14067 Endometrioid adenocarcinoma pT1a pNX 1 IA Absent 35 NAV

CTC-EC-14268 Endometrioid adenocarcinoma pT1a (sn)
N0 2 IA Absent 10 NAV

CTC-EC-14369 Endometrioid adenocarcinoma pT1a pN1mi
(sn) 1 IIIC1 Absent 46 NAV

CTC-EC-14570 Endometrioid adenocarcinoma pT1a pN0
(sn) 2 I Absent 25 NAV

CTC-EC-14771
Carcinosarcoma (predominantly
endometrioid adenocarcinoma)

pT1a (sn)
pN0i+ 3 IA Present 48 NAV

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Ovarian Cancer

Tumor Type—Histological TMN Grade Stage LVI MSI

CTC-OC-911
Adenocarcinoma consistent with

history of ovarian carcinoma ND ND IIIC/IV NA Stable

CTC-OC-942 Serous carcinoma (y)pT3c pNX
pMX 1 IIIC Present ND

CTC-OC-1363 Adult granulosa cell tumor pT1a NX NA IA Absent NAV

CTC-OC-1374
Low grade serous carcinoma with

abundant psammoma bodies
(omentum)

ND 1 IIIA2 NA Stable

CTC-OC-1395 High-grade serous carcinoma pT3b pN0 3 IIB Absent NAV

CTC-OC-1416 Ovarian mucinous cystadenoma NA NA NA Absent NAV

CTC-OC-1447
Low grade serous borderline tumor

with psammoma bodies

(m)
pT3a
pNX

1 IIIA NA NAV

CTC-OC-1468
Simple cyst with giant cell reaction

in the cyst wall NA NA NA Absent NAV

CTC-OC-1489
Low-grade appendiceal mucinous

neoplasm
pT4b pN0

pM1b 1 IVA Absent NAV

CTC-OC-14910 Low-grade serous carcinoma pT1b pNX 1 IB Absent NAV

CTC-OC-15011 Mucinous borderline tumor pT1a NA 1A NA NAV
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Table 2. Cont.

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Lung Cancer

Tumor Type—Histological TMN Grade Stage LVI MSI

CTC-LC-W201
Moderately differentiated

keratinizing squamous cell
carcinoma

pT1c NX 2 IVC Present NAV

CTC-LC-W212
Well differentiated neuroendocrine

tumor (typical carcinoid)
pT1b
pN0 1 ND Absent NAV

CTC-LC-W223
Invasive moderately differentiated

adenocarcinoma, multifocal pT3 N0 2 IIB Absent NAV

CTC-LC-W234
Necrotizing granulomatous

inflammation NA NA NA NA NAV

CTC-LC-W245
Squamous cell carcinoma,
moderately differentiated pT3 N0 M0 2 IIB Absent NAV

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Liver Neoplasm

Tumor Type—Histological TMN Grade Stage LVI MSI

CTC-LivC-R11 Metastatic squamous cell carcinoma NA NA NA NA Stable

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Prostate Cancer

Tumor Type-Histological TMN Grade Stage LVI MSI

CTC-PC-M11
Poorly differentiated

adenocarcinoma T3b N0 MX 3 IVB Absent NAV

CTC-PC-M22
Metastatic adenocarcinoma of

prostate NA NA IVB NA Stable

De-Identified
Patient Code

Pathological Parameters of Tumor Samples from Patients with Esophageal Cancer

Tumor Type—Histological TMN Grade Stage LVI MSI

CTC-EsoC-G11 Esophageal adenocarcinoma ypT3 N0 2 III Present NAV

Table 3. Demographics of the patients whose blood samples were used for the study (F = Female;
M = Male; BMI = Body Mass Index).

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Endometrial Cancer

Age at Surgery (Years) Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-EC-691 65 F 41.3 None

CTC-EC-702 84 F 25.2 None

CTC-EC-713 79 F 41 None

CTC-EC-724 61 F 37.8 None

CTC-EC-735 64 F 41.2 None

CTC-EC-746 81 F 29 None

CTC-EC-757 49 F 44 None

CTC-EC-768 65 F 37.3 None

CTC-EC-779 60 F 28 None

CTC-EC-7810 68 F 34.9 None

CTC-EC-7911 56 F 60.1 None
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Table 3. Cont.

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Endometrial Cancer

Age at Surgery (Years) Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-EC-8012 76 F 30.1
History of breast cancer treated with

chemotherapy approx. 40 years prior to
diagnosis.

CTC-EC-8113 49 F 42.8 None

CTC-EC-8214 50 F 49.2 None

CTC-EC-8315 64 F 42.8
History of breast ductal carcinoma in situ two

years prior to diagnosis, treated with
anastrozole.

CTC-EC-8416 65 F 39.8 None

CTC-EC-8517 72 F 28.1 None

CTC-EC-8618 68 F 47 None

CTC-EC-8719 52 F 44.2 None

CTC-EC-8820 59 F 34.7 None

CTC-EC-8921 63 F 32.2 None

CTC-EC-9022 83 F 36.6 None

CTC-EC-9223 77 F 40.7 None

CTC-EC-9324 55 F 36.4 None

CTC-EC-9525 71 F 41.4 None

CTC-EC-9626 79 F 37.9 History of basal cell carcinoma of the skin. No
chemo-treatment.

CTC-EC-9727 70 F 23.5 None

CTC-EC-9828 63 F 33.3 None

CTC-EC-9929 65 F 29.9 None

CTC-EC-10030 58 F 52.2 None

CTC-EC-10131 62 F 21.9 None

CTC-EC-10232 68 F 30.5 None

CTC-EC-10333 56 F 31.5 None

CTC-EC-10434 65 F 31.7 History of thyroid cancer

CTC-EC-10535 57 F 33.5 None

CTC-EC-10636 74 F 33.9 None

CTC-EC-10737 43 F 43.2 None

CTC-EC-10838 65 F 34.4 None

CTC-EC-10939 66 F 52 None

CTC-EC-11040 79 F 40.8 None

CTC-EC-11141 77 F 39.8 None

CTC-EC-11242 66 F 51.3 None

CTC-EC-11343 74 F 33.4 History of skin cancer

CTC-EC-11444 62 F 33.3 None

CTC-EC-11545 65 F 32.9 None

CTC-EC-11646 65 F 33.6 None

CTC-EC-11747 46 F 38.4 None
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Table 3. Cont.

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Endometrial Cancer

Age at Surgery (Years) Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-EC-11848 * 56 F 26.4 None

CTC-EC-11949 65 F 29.7 None

CTC-EC-12050 46 F 44.3 None

CTC-EC-12151 44 F 34.9 None

CTC-EC-12252 68 F 41.1 None

CTC-EC-12353 79 F 49.2 None

CTC-EC-12454 68 F 30.9 None

CTC-EC-12555 60 F 38.4 History of astrocytoma

CTC-EC-12656 62 F 43.9 None

CTC-EC-12757 71 F 35.6 None

CTC-EC-12858 71 F 53.3 None

CTC-EC-12959 67 F 44.3 None

CTC-EC-13060 84 F 35.5 None

CTC-EC-13161 59 F 35.2 None

CTC-EC-13262 68 F 33.1 None

CTC-EC-13363 62 F 31.8 None

CTC-EC-13464 75 F 26.9 History of skin cancer

CTC-EC-13565 60 F 62.7 None

CTC-EC-13866 70 F 35.2 None

CTC-EC-14067 71 F 48.1 None

CTC-EC-14268 73 F 37.4 None

CTC-EC-14369 68 F 31.6 None

CTC-EC-14570 74 F 34.3 None

CTC-EC-14771 53 F 27 None

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Ovarian Cancer

Age at Surgery Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-OC-911 62 F 21.1 Heavily pre-treated with multiple
chemotherapeutic agents

CTC-OC-942 58 F 28.9 None

CTC-OC-1363 52 F 32.3 None

CTC-OC-1374 58 F 42 None

CTC-OC-1395 62 F 28.3 None

CTC-OC-1416 44 F 28.5 None

CTC-OC-1447 64 F 47.3 None

CTC-OC-1468 79 F 25.3 History of Diffuse Large B-Cell Lymphoma
treated with RCHOP

CTC-OC-1489 78 F 26.3 None

CTC-OC-14910 82 F 30.4 None

CTC-OC-15011 19 F 35.6 None
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Table 3. Cont.

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Lung Cancer

Age at Surgery Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-LC-W201 53 M 18.7 History of squamous cell carcinoma of lower
lip treated with surgery

CTC-LC-W212 54 F 25.3 History of breast cancer

CTC-LC-W223 70 F 34.6 None

CTC-LC-W234 50 F 38.8 None

CTC-LC-W245 73 M 25.7 None

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Liver Cancer

Age at Surgery Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-LivC-R11 66 M 29.9 None

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Prostate Cancer

Age at Surgery Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-PC-M11 69 M 44.3 None

CTC-PC-M22 79 M 31 None

De-Identified Patient
Code

Patient Demographics of Tumor Samples: Patients with Esophageal Cancer

Age at Surgery Sex BMI
History of Other Cancers/Pre-Treatment

Status at Surgery

CTC-EsoC-G11 66 M 41.2 None

* Patient with African-American ethnicity.

3.1. Standardization and Validation of CTC by IF×3 Using Breast, Ovarian, and Lung Cancer Cell
Lines

Patients’ blood samples were spiked with titrating numbers (1000 cells, 750 cells,
375 cells, 250 cells/100 cells) of MCF7, OVCAR3, HCC1975, and NCI-H441 tumor cell lines.
The captured MCF7 cells, which were used to spike blood samples, were stained with
either DAPI/CK-FITC/EpCAM-PE/CD45-Cy5 or DAPI/CK-FITC/CD31-PE/CD45-Cy5.
When stained with DAPI/CK-FITC/EpCAM-PE/CD45-Cy5, the MCF7 cells were found
to have a proportionately higher diameter (size 15–17 μm) bearing the typical salt-pepper
nuclear morphology in a DAPI stain. The cytoplasm of the cells was positive for CK,
8,18,19, and EpCAM. When stained using the DAPI/CK-FITC/CD31-PE/CD45-Cy5 kit,
the MCF7 cells were CK8,18,19+/CD31−/CD45−/DAPI+ (Figure 1(Aii)) as compared with
CK8,18,19+/EpCAM+/CD45−/DAPI+ when stained using the DAPI/CK-FITC/EpCAM-
PE/CD45-Cy5 antibodies (Figure 1(Ai)). A similar pattern of stains (CK8,18,19+/EpCAM+/
CD45−/DAPI+) was observed for OVCAR3 (Figure 1B), HCC1975 (Figure 1C), and NCI-
H441 (Figure 1D) cells using the DAPI/CK-FITC/EpCAM-PE/CD45-Cy5 antibodies. Since
we did not have the confocal images, we could identify the plasma-membrane EpCAM
positivity of a tumor cell depending on the orientation of the cell on the microfilter as
shown in HCC1975 (Figure 1C) and NCI-H441 (Figure 1D) cells using the DAPI/CK-
FITC/EpCAM-PE/CD45-Cy5 antibodies. All cell lines were found as negative for CD45-
Cy5 for both sets of antibody cocktails.

3.2. Validation Spectrum of CTC by IF×3 Using Blood from Patients with Different Clinical
Statuses, and Sample Origin

We validated CTC by IF×3 from a spectrum of blood from patients with different
(Figure 2A) clinical status, Grade 1, Stage IA nonmetastatic endometrial cancers (pT1a pN0)
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(Figure 2(Ai)) and Grade 3, Stage IVB metastatic (pT3a N0 M1) (Figure 2(Aii)) in endometrial
cancers, and (B) samples of origin, including biopsy sample from a liver lesion in metastatic
squamous cell carcinoma (Figure 2(Bi)) and during surgical resection of Grade 1 (pT1b N0)
tumor in lung cancers (Figure 2(Bii)) using the DAPI/CK-FITC/EpCAM-PE/CD45-Cy5
antibody cocktail. We used blood from the patients with metastatic disease as an internal
positive control for the presence of CTC. Confirming the standard IF×3 protocol, we
observed that CTCs in each of the above-mentioned samples were more than 15–20 micron
in size with an evident pathological/morphological nuclear characteristic of a tumor cell
(a nuclear/cytosol ratio > 50%) by DAPI and were CK8,18,19+/EpCAM+/CD45−/DAPI+

when stained using the DAPI/CK-FITC/EpCAM-PE/CD45-Cy5 antibodies.

3.3. Standardization and Validation of CTC by ICC×2 in Reference to Spiked IF×3 in Endometrial
and Ovarian Cancers

Having confirmed the determination of CTC by IF×3 in a spectrum of blood samples,
we standardized the CTC by ICC×2 (CK8,18+/CD45−). We validated ICC×2 with spiked
control using parallel IF×3 and ICC×2 procedures in the same blood sample in endometrial
and ovarian cancers (Figure 3). As presented before, CTCs were captured from blood
samples from patients with endometrial (Figure 3A) and ovarian (Figure 3B) tumors and
enumerated using ICC×2 (Figure 3(Ai,Bi)) in reference to IF×3 (Figure 3(Aii,Bii)). Blood
samples were spiked (Spiked samples) with titrating numbers (250 cells/100 cells) of NCI-
H441 cells separately for both ICC×2 and IF×3. Both CTC and spiked samples exhibited
a similar pattern of cell size and staining pattern (CK8,18+/CD45−) by ICC×2, which
was comparable to the corresponding IF×3 staining patterns. We observed a cluster of
CTCs with different diameters similar to the spiked samples of NCI-H441 (Figure 3(Ai)).
CTCs were characterized and distinguished by their diameter(s), nuclear morphology (a
nuclear/cytosol ratio >50%), and CK8,18+/CD45− staining. In contrast, WBCs were smaller
in size (9–15 μm) with their characteristics of nuclear morphology and CK8,18−/CD45+

staining.

3.4. Determining CTC by ICC×2 in Endometrial and Ovarian Cancers

Having established ICC×2 staining validated using parallel IF×3 spiked with tumor
cell lines in blood samples of different solid tumors, we finally tested the method for the
determination of CTC by ICC×2 and validated it with corresponding CTC determination
by IF×3. CTCs were captured from blood samples from patients with Grade 1 Stage IA
(pT1a pN0 (sn)) endometrial (Figure 4A) and Grade 1 Stage IVA (pTIVb pN0 pM1b) ovarian
(Figure 4B) tumors and enumerated using ICC×2 (Figure 4(Ai,Bi)). In line with the earlier
results, the CTC in ICC×2 were CK8,18+/CD45− while the WBCs were CK8,18−/CD45+

in ICC×2, which matched with the IF×3 validation samples where CTCs were larger in di-
ameter (>15–20 μM) with CK8,18,19+/EpCAM+/CD45−/DAPI+ while WBCs were smaller
in diameter (9–15 μm) with CK8,18,19−/EpCAM−/CD45+/DAPI+ (Figure 4(Aii,Bii)).

Table 1 shows that our study included 63% of patients with Stage I disease, out of
which blood samples of 6 patients were used for standardization and 51 were used for CTC-
testing. Five percent of the total patients had Stage II disease, out of which a blood sample
of one patient was used for standardization, and four were used for CTC-testing. Fourteen
percent of the total patients had Stage III disease, out of which blood samples of 3 patients
were used for standardization, and 10 were used for CTC-testing. Ten percentof our enrolled
patients had Stage IV metastatic disease, out of which blood samples of four patients were
used for standardization while the remaining five were used for CTC-testing. Although
the percentage of CTC-positive patients with Stage I, Stage II, and Stage III diseases were
45%, 50%, and 30%, respectively, the percentage of CTC-positive patients rose to 100% in
the blood of patients with Stage IV metastatic diseases. We tested the sensitivity of the ICC
method by titrating the number of spiked cells; 25 cells/test, 50 cells/test, and 100 cells/test.
The recovery was >50% for 25 cells/test, >60% for 50 cells/test, and >65% for 100 cells/test.
The specificity was tested by CD45−/CK8,18,19+/EpCAM+/DAPI stain for nuclear size
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and morphology. We also used cell lines from cancer of different organ types, namely
endometrial, ovarian, breast, and lung. We also used the commercially available CD31-kit
to demonstrate the fact that CTC/tumor cells are CD31 negative (Figure 1) and to rule out
a false positive. We used blood from donors, leucopaks, and PBMCs for the control.

Table 1 shows 45% CTC positivity in patients with Stage I disease. However, a detailed
interrogation of the result revealed that the high percentage (45%) was obtained because
we calculated the “presence of CTC” recorded in a “yes-or-no format.” Importantly, we
observed that out of 54 patients (those we tested for CTC) with Stage I endometrial disease,
28 patients were CTC-negative, and 26 were CTC-positive. Out of 26 CTC-positive patients,
77% (20/26) had <1–3 CTCs.

We could not determine any statistically significant correlation between grades and the
number of CTC as the numbers of patients with high-grade tumors in our study cohort were
significantly lower than the numbers of patients with low-grade tumors. Table 4 presents
the Grade-wise distribution of patients’ blood samples used for the standardization and
testing of CTCs, along with tumors from each pathology.

Table 4. Grade-wise distribution of patients’ blood samples used for the standardization and testing
of CTCs, along with tumors from each pathology.

Grades of Patients with
Different Tumors

(Endometrial, Ovary, Lung,
Esophageal, Prostate, and

Liver)

Total
Percentage of

Patients’ Blood
Used for the

Study (%)

Number of Blood Samples
Used for CTC

Standardization

Number of Blood Samples
Used for CTC Testing

Percentage of
Patients with
Positive CTC

(IF and/or ICC)
(%)

G1 47% 5 38 50%

G2 18% 4 12 58%

G3 20% 2 16 69%

Tumors from Each Organ Type

Tumors from Each Pathology Endometrial Ovary Lung Esophageal Prostate Liver

G1 37 5 1 0 0

NAG2 12 0 3 1 0

G3 16 1 0 0 1

However, we observed an interesting association between the presence of CTC and
the high grade/stage of the disease. Out of a total of nine patients with Stage IV/Metastatic
disease, blood samples from three patients were used for standardization. Of six patients
whose blood samples were used for CTC detection, 100% tested positive for CTCs. With
regard to High-Grade (Grade 3) patients, we had a total of 18 patients with Grade 3 disease.
Of these patients, blood samples from two patients were used for standardization. Of
the remaining 16 patients, a 69% CTC positivity (11/16) was observed. There were four
patients who were diagnosed with both Grade 3 and Stage IV/Metastatic disease. The blood
samples from one of these patients were used for standardization; out of the remaining
three patients with both Grade3 and Stage IV/Metastatic disease, 100% were tested and
were found to have CTCs.

Since the CTC expression varied depending on the Stage and the Grade of the disease,
we did not consider the median or average expression values across all; we stratified
patients with CTC positivity according to the Stage and the most common histology type,
endometrioid adenocarcinoma.

However, we determined the rate of detection of CTC in endometrial cancers. In
endometrial cancers, the detection rate was 55% (35/64). The rate of detection can be
explained by the fact that 75% (48/64) of our CTC-tested patients were Stage I.

We also tested the CTC detection rate in the most common histological type of en-
dometrial cancer, endometrioid adenocarcinoma. Out of 64 patient samples tested for
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CTC, 42 patients had endometrioid adenocarcinoma (Out of 42, 86% were Stage I; 36/42),
and the CTC detection rate was 60% (25/42). Out of 25, 80% had Stage I disease (20/25).
Interestingly, 76% (19/25) presented with 1–3 CTCs counts; out of these 19, 79% had Stage I
disease (15/19).

We tested the clinical relevance of a high number of CTCs in a single case study. The
presence of >100 CTCs (Figure 5) was observed at the surgery in a patient with Grade 2,
stage IA endometrioid adenocarcinoma, 6% MI, and absence of lymphovascular invasion,
absence of LN Status as well as Uterine Serosa and Cervical Stroma involvement. We
observed 13 CTCs in a microscopic field with mitotic figures as well as 3-cell CTC clusters.
The patient received four fractions of HDR vaginal cuff brachytherapy. The patient came in
for surveillance, and a lesion was observed. Biopsy demonstrated recurrent endometrioid
adenocarcinoma. A CT scan of the chest, abdomen, and pelvis revealed an area of poorly
defined but somewhat mass-like enhancement in the region of the right vaginal cuff
suspicious of disease recurrence. There were no other changes concerning additional
metastatic disease elsewhere. The patient had an event within 6 months of the date of
surgery.

4. Discussion

Our method of detection of CTC followed the standard CTC determination criteria
including, (1) negative reactivity to immune cell marker (CD45), (2) positive reactivity to
cytokeratin 8, 18, 19, (3) positive reactivity to EpCAM surface marker, and (4) morphologic
characteristics [25]. Our method of determining CTC by ICC×2 gave us a parallel double-
detection format (ICC×2 and IF×3) for a foolproof test with a higher confidence level in
terms of specificity and sensitivity. We observed a concordance close to 80% in our cohort.
We carried out the IF and ICC evaluation of CTC independent/without knowledge of the
final pathology findings of these specimens; however, such findings were incorporated
after completing our IF/ICC of CTC data collections. The sensitivity of our method of
employing a parallel double-detection format was also tested in the built-in nature of our
patient cohort. Close to 65% of our blood samples for CTC detection (standardization
and testing) were samples drawn from patients with Grades 1 and 2 diseases. Table 1
showed that 68% of our blood samples for CTC detection (standardization and testing)
were samples drawn from patients with Stage I and II diseases, wherein we were able to
detect the presence of CTC (Table 1). Interestingly, 45% and 50% of patients with Stage I
and II diseases tested positive for CTC, respectively, indicating the strength of the method
and the format of determination. Our testing format can thus be utilized in monitoring the
progression of the disease post-surgery or in an adjuvant setting, providing a valuable indicator
of the metastatic potential via longitudinal CTC detection. As expected, 100% of our patients
with Stage IV metastatic disease tested positive for CTC, which can be viewed as a positive
control within a disease population. Thus, our method is built on strong validation data,
including internal validation, technical validation, and disease-population-based positive
and negative validation controls. We also tested CTC in blood samples from patients
undergoing both biopsies and surgeries.

Studies reported the feasibility of detection of CTCs using isolation by size-based
Epithelial/Trophoblastic Tumor cells (ISET®) filters and stain by May–Grünwald–Giemsa in
conjunction with identification criteria of nuclear irregularity, negative reactivity to immune
cell marker as well as endothelial cell markers, and presentation of visible cytoplasm [26].
To test the negativity of CTC for CD31 in IF×3, we used the additional staining kit for
DAPI/CK-FITC/CD31-PE/CD45-Cy5. HUVEC (positive control for CD31 and negative
control EpCAM) and NCI-H441 (positive control for EpCAM and negative control for CD31)
cells as validation controls. We used spiked HUVEC cells to represent the cross-reactivity of
the probable endothelial cells in the blood. CK8,18,19−/EpCAM−/CD45+/DAPI+ WBCs
were CK8,18,19−/CD31−/CD45+/DAPI+. CK8,18,19+/EpCAM+/CD45−/DAPI+ NCI-
H441 cells were CK8,18,19+/CD31−/CD45−/DAPI+. HUVEC cells were CK8,18,19±/
CD31+/CD45−/DAPI+.
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Our parallel double-detection format for CTC determination is efficient as it can be ready
for pathological evaluation within the standard working hours of one day. The procedure is
laboratory friendly and requires basic equipment and microscopes, and can be carried out
with a standard grad-school laboratory setup compared with the FDA-approved CellSearch
semi-automated CTC detection system or the CTC detection sensitivity of ISET [26] or using
an immunomagnetic enrichment [25]. Hence, the method is cost-effective, and the cost of
the consumables per 7.5 mL blood sample can be estimated at around $500 only. Thus our
method can be performed at a comprehensive cancer center as well as at a community-
based small cancer hospital with limited resources. Since we did not compare the method
with the rest of the available methods for CTC enumeration, the data for the comparison
are currently unavailable. Yet the method has its niche and edge for the above reasons.
Although our parallel double-detection format for the determination of CTC is limited to at
least 16 mL of blood, the method compensates the volume of blood for the sensitivity and
specificity of CTC. However, the main trade-off for this method is its limited capacity to
scale in a demanding, high-throughput situation.

One of the established pathological parameters associated with the prognosis is the
presence or absence of LVSI (Lympho-Vascular Space Invasion). Our method of CTC
determination will quickly provide a unique opportunity to interrogate CTC’s role as
a more sensitive risk factor vis-à-vis standard pathological parameters like LVSI in the
context of particular histology, grades, and Stage of the disease. This might provide an
opportunity to study wherein CTC can be used preoperatively (after malignant solid
tumors are diagnosed on biopsies) as risk stratification for sentinel lymph nodes (SLN).

Cell-free (cf) circulating tumor (ct) derived DNA is released from tumor cells into
the circulation and is often detected as part of routine liquid biopsy compared to CTC for
clinical decision making. The ctDNA is used as (1) direct detection of early-stage cancers,
(2) a marker for the detection of minimum residual disease, (3) an important tool to provide
prognostic information, and (4) as an indicator of drug response in non-invasive liquid
biopsies [27]. However, the critical challenge of this type of liquid biopsy has been in the
detection/characterization of small amounts of ctDNA in large populations of cfDNA,
as these analyses need to distinguish ctDNA alterations from cfDNA variants related
to clonal hematopoiesis [28]. Blood-based deep-sequencing often encounters concerns
about detection and misclassification of white blood cell (WBC)-derived variants in cfDNA
associated with clonal hematopoiesis, especially in older patients [29,30]. In fact, Hu
et al. reported a false-positive plasma genotyping due to clonal hematopoiesis where
most JAK2 mutations, some TP53 mutations, and rare KRAS mutations detected in cfDNA
were derived from clonal hematopoiesis instead of the tumor as mutations detected in
plasma, particularly in genes mutated in clonal hematopoiesis, which might not represent
the true tumor genotype, the study concluded [31]. The detection of non-tumor-derived
clonal hematopoietic mutations (TP53, DNMT3A, etc.) has been reported as a source of
the biological background noise of ctDNA detection that could lead to an inappropriate
therapeutic decision.

The power of a longitudinal CTC, which enables serial assessments at multiple time
points along a patient’s journey, during or after surgery/treatment, is undeniable. However,
a recent article by Vasseur et al. delineated the limitations of using CTC data in routine
clinical practice [3]. In the view of currently published or ongoing trials assessing the clinical
utility of CTCs [3], it can be recognized that there exist challenges in the enumeration
and phenotyping of CTC [19]. The limitations of CTCs in clinical practice are (1) the
low detection rate with currently available techniques [3] and (2) the need for a costly
comprehensive laboratory setup. Cost-effectiveness, yet specific, sensitive, and fail-safe
nature of our laboratory friendly method of CTC enumeration will potentially support
prospective studies with uniform and standardized definitions of CTCs that are urgently
needed [17] to evaluate the full potential of CTCs not only as prognostic, predictive, and
intermediate endpoint markers but also as PD biomarkers in the future. We are currently
assessing the expression of PD-L1 in CTC, which may be helpful in considering the use of
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PD-1 inhibitors in clinical practice. The limitation of our platform is built in its development
in a community-based cancer center; the platform is not yet tested in a prospective clinical
trial. To this end, we are also actively pursuing customization of the antibody cocktail to
profile the cancer-specific cell surface protein molecules (e.g., CA125) for future studies.

The strength of our method is built in its inherent development in a community-based
cancer center; the method is cost-effective, time-sensitive, laboratory-friendly, and needs a
single full-time employee. To this end, we tested the clinical relevance of our method in
a case study. We reported on a stage I patient with >100 CTCs at surgery (with 13 CTCs
in a single microscopic field; Figure 5). The patient with endometrioid adenocarcinoma
had no apparent pathological features indicative of high risk for recurrence. Unfortunately,
she presented with an adverse event within 6 months of surgery, strongly indicating the
prognostic significance of CTC as reported in the earlier studies in different organ type
cancers.

5. Conclusions

The need for easy detection of CTC is undeniable. Our user-friendly and cost-effective
detection method provided an opportunity to incorporate CTC detection as a companion
entity with the standard diagnostic and monitoring tests in clinics. The power of the
method can be tested as a single-point and multi-point longitudinal mode in a clinical
setting at the baseline, during, and after a treatment regimen. The baseline evaluation of
CTC can be helpful for patient stratification, while longitudinal CTC evaluation during
and after treatment can be useful for monitoring treatment response and early indicators of
disease progression/drug resistance, respectively. The study presented in the MS is part
of a patent application (United States Patent and Trademark Office; Application number
16/875,910.
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Simple Summary: In this study, Sel-CapTM, a next-generation sequencing (NGS)-based genotyping
platform, showed high sensitivity for detection of epidermal growth factor receptor (EGFR) gene
mutations in plasma samples collected from 185 patients with non-small cell lung cancer (NSCLC).
In the early-stage NSCLC, Sel-Cap liquid biopsy was able to detect more than half the EGFR mutations,
which were detected in tumor tissue (sensitivity: 50% and 78% for Ex19del and L858R respectively,
with tumor results as the references), while the conventional NGS could not detect any. Sel-Cap
liquid biopsy was particularly sensitive for resistant mutation T790M (sensitivity: 88%). In addition,
we conducted a retrospective study to monitor T790M using Sel-Cap in 34 patients who progressed
on first-line tyrosine kinase inhibitors (EGFR-TKIs). The study suggested that the first appearance of
T790M in plasma, ranging from at treatment baseline to over three years post-EGFR-TKI initiation,
may be useful for prediction of disease progression (around 5 months in advance).

Abstract: Sel-CapTM, a digital enrichment next-generation sequencing (NGS)-based cancer panel,
was assessed for detection of epidermal growth factor receptor (EGFR) gene mutations in plasma for
non-small cell lung cancer (NSCLC), and for application in monitoring EGFR resistance mutation
T790M in plasma following first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI) treatment. Using
Sel-Cap, we genotyped plasma samples collected from 185 patients for mutations Ex19del, L858R, and
T790M, and compared results to those of PNAclampTM tumor biopsy (reference method, a peptide
nucleic acid-mediated polymerase chain reaction clamping) and two other NGS liquid biopsies.
Over two-thirds of activating mutations (Ex19del and L858R), previously confirmed by PNAclamp,
were detected by Sel-Cap, which is 4–5 times more sensitive than NGS liquid biopsy. Sel-Cap showed
particularly high sensitivity for T790M (88%) and for early-stage plasma samples. The relationship
between initial T790M detection in plasma and progression-free survival (PFS) following first-line
EGFR-TKIs was evaluated in 34 patients. Patients with T790M detected at treatment initiation
(±3 months) had significantly shorter PFS than patients where T790M was first detected >3 months
post treatment initiation (median PFS: 5.9 vs. 26.5 months; p < 0.0001). However, time from T790M
detection to disease progression was not significantly different between the two groups (median
around 5 months). In conclusion, Sel-Cap is a highly sensitive platform for EGFR mutations in plasma,
and the timing of the first appearance of T790M in plasma, determined via highly sensitive liquid
biopsies, may be useful for prediction of disease progression of NSCLC, around 5 months in advance.

Cancers 2020, 12, 3579; doi:10.3390/cancers12123579 www.mdpi.com/journal/cancers
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1. Introduction

Nearly one in every five cancer deaths worldwide is caused by lung cancer (World Health
Organization Report on Cancer, 2020, https://apps.who.int/iris/rest/bitstreams/1267643/retrieve).
Non-small cell lung cancer (NSCLC) makes up the vast majority of all lung cancer cases, and
approximately three-quarters of NSCLC patients are diagnosed at advanced-stage. Currently,
the first-line systemic treatment for advanced-stage NSCLC is targeted therapy for those who bear
driver oncogene mutations in tumor, for example, epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitors (TKIs) for patients with drug-activating mutations in the EGFR gene [1].

Exon 19 deletion (Ex19del) and exon 21 L858R are the most frequent EGFR-activating mutations,
and the secondary gatekeeper mutation T790M, which can result from long-term exposure to first-line
EGFR-TKIs, is one of the primary causes for acquired EGFR-TKI resistance [2]. During re-biopsy,
T790M is found in over half of the tumor samples taken from EGFR-TKI-resistant patients [3]; however,
tumor re-biopsy is usually performed post tumor relapse, and is often not feasible in clinical situations
such as those involving patients in poor physical condition and/or with hardly accessible target lesions.

Cell-free DNA (cfDNA) refers to all nucleic acid fragments circulating in blood; in cancer patients,
0.01% to 90% cfDNA may consist of tumor-derived DNA [4]. Several detection techniques for
EGFR mutations in plasma-derived cfDNA have been developed as non-invasive alternatives to
tumor EGFR genotyping [5], such as cobas® EGFR mutation test v2, BEAMing-PCR (BEAM refers to
Beads, Emulsions, Amplification and Magnetics) PCR [6], ARMS-PCR (ARMS refers to Amplification
Refractory Mutation System), and ddPCRTM (dd refers to Droplet Digital). These techniques are
characterized by quantitative results and a short turnaround time, but are limited to pre-defined
mutations, and the sensitivity needs improvement, particularly in early-stage disease [7].

Sel-Cap lung cancer panel (hereinafter referred to as Sel-Cap) is a next-generation sequencing
(NGS)-based oncogene genotyping platform, equipped with a pre-sequencing mutation-enrichment
feature [8] (limit of detection: 0.01–0.05%, limit of detection is defined as the percentage of mutation
copies that must be present in the specimen for a mutation to be identified). The primary objective
of this study was to evaluate Sel-Cap’s capacity for detecting EGFR mutations (Ex19del, L858R, and
T790M) in plasma-derived cfDNA, by comparing it to other commonly used genotyping platforms
such as peptide nucleic acid clamping (PNAclamp; currently, the most popular platform in Korea)
in tumor, as well as conventional NGS (which is a non-commercialized mutation panel based on the
commonly used NGS technique) and an NGS-based cancer panel in plasma. In addition, to explore
Sel-Cap’s potential application in monitoring for EGFR resistance mutation T790M in plasma to predict
resistance to first-line EGFR-TKI treatments, a retrospective longitudinal study was carried out in
patients who exhibited this resistance.

2. Materials and Methods

2.1. Study Population

Plasma samples used in this study were collected from patients histologically diagnosed with
NSCLC (adenocarcinoma) between January 2011 and January 2019 in Seoul St. Mary’s Hospital.
All samples were stored by Seoul St. Mary’s Hospital biobank. Before sample collection for the
biobank, all the patients provided a written informed consent for the possible use of their samples in
the future research.
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In this study, only samples which had been previously genotyped by PNAclamp EGFR mutation
detection kit ver.2 (PNAC-3002, Panagene, Daejeon, Korea) were included. This study was approved
by the institutional review board (IRB) in Seoul St. Mary’s Hospital (No. KC17TNSI0184), and
was performed in accordance with the national laws, regulations, and good clinical practice (GCP)
guidelines for patient data protection.

2.2. Sample Preparation

To prepare plasma samples, patients’ blood was drawn into ethylenediaminetetraacetic acid
(EDTA) tubes, and was immediately centrifuged at 1200× g at 4 ◦C for 15 min. The supernatant was
then transferred to 1.5 mL sterile Eppendorf tubes, and centrifuged at 13,000× g at 4 ◦C for 10 min [9].
The separated plasma was stored at −80 ◦C until use.

cfDNA was extracted from plasma samples using a DNeasy Blood and Tissue Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The concentration of cfDNA was quantified
using a QubitTM dsDNA HS Assay Kit (ds refers to double strand, HS refers to High-Sensitivity)
with QubitTM 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). The purity of cfDNA was
evaluated with a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA), and only samples with an A260/A280 ratio of 1.8–2.0 passed quality control. The cfDNA was
then end-repaired and size selection was performed, followed by adenylation of the 3′ end [10].

2.3. EGFR Mutation Detection Platforms

In this study, four different platforms were used for EGFR mutation detection, and all procedures
were carried out in accordance with the manufacturer’s instructions. PNAclamp, the standard
diagnostic method for EGFR tumor biopsy in the hospital, was used as a reference, and the methodology
was described in detail, previously [11]. The limit of detection of PNAclamp was determined to
be >0.1%. In addition, a conventional NGS panel (Ion AmpliSeq™ Cancer Hotspot Panel, Life
Technologies, Carlsbad, CA, USA), a 30-gene NGS lung cancer panel (Theragen, Suwon, Korea), and a
Sel-Cap lung cancer panel (SeaSun Biomaterials, Daejeon, Korea) were used for comparison in plasma
samples in two separate studies. The mutation detection cut-off value was 0.1% for Sel-Cap, and
1% for the conventional NGS and 2% for the 30-gene NGS lung cancer panel. The cut-off value was
determined to be the average minimum variant allelic frequency that could be reliably detected (variant
allelic frequency: percentage of mutant reads over total reads at one locus). Mutations in exon 18–20
were genotyped (Exon 18: L718Q, G719X; Exon 19: deletion; Exon 20: insertion, T790M, and S768I;
Exon 21: L844V, L858R, L861Q).

2.4. Sel-Cap Mutation Enrichment PCR

In enrichment polymerase chain reaction (PCR), wild-type-specific blockers were used to
preferentially hybridize with wild-type alleles and reduce the background wild-type sequence
amplification, which therefore resulted in enrichment of mutant PCR fragments. The assay used 30 ng
of cfDNA and was performed according to the manufacturer’s protocol (SeaSun Biomaterials, Daejeon,
Korea). In addition, to improve the performance of NGS, nonspecific PCR products (mainly primer
dimers) were removed by Agencourt AMPure XP beads (Beckman Coulter, Vienna, Austria) using a
1:1 DNA-to-bead ratio.

2.5. NGS Library Preparation

Sequencing library preparation PCR was performed using the following: 2 μL of purified PCR
product from mutation enrichment PCR amplification as the template, EGFR Insight 2× Seq Lib Pep
Premix (SeaSun Biomaterials, Daejeon, Korea), and barcoded primer pairs. For the library preparation
PCR, multiple indexing adapters were ligated to the ends of DNA fragments, and DNA fragments
with specific adapters were amplified. Any unwanted short fragments were removed with Agencourt
AMPure XP beads (Beckman Coulter, Brea, CA, USA) using a 1:1 DNA-to-bead ratio. The insert size
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of the library was detected on an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara,
CA, USA), and effective concentration of the library was accurately quantified using a QubitTM 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA).

2.6. Monitoring EGFR T790M in Plasma for EGFR-TKI Treatment

To explore the application of Sel-Cap in monitoring plasma EGFR resistance mutation T790M to
predict resistance to first-line EGFR-TKIs, a retrospective inspection was conducted on the serial plasma
samples collected from patients with advanced disease who (1) were treated with first/second-generation
EGFR-TKIs (gefitinib, erlotinib, or afatinib) and (2) had already developed disease progression (PD).
Progression-free survival (PFS) was defined as the interval between EGFR-TKI initiation and PD.
Tumor response was assessed by imaging techniques (such as computed tomography and magnetic
resonance imaging) and determined based on the Response Evaluation Criteria in Solid Tumors
(RECIST) version 1.1 [12].

2.7. Statistical Analyses

The diagnostic performance of liquid biopsies was evaluated based on sensitivity, specificity,
accuracy, and Kappa coefficient, with the PNAclamp tumor biopsy serving as the reference. Sensitivity
was calculated as the percentage of positive diagnoses (EGFR mutations) by test platform vs. by reference
platform. Specificity was calculated as the percentage of negative diagnoses (EGFR wild-type) by test
platform vs. by reference platform. Accuracy was calculated as the percentage of positive plus negative
diagnoses by test platform vs. by reference platform. A Kappa coefficient, a statistical measure used
to assess agreement between platforms, between 0.6 and 0.8 is generally regarded as “substantial
agreement”, while a Kappa coefficient over 0.8 is generally regarded as “almost perfect agreement”.
Statistical analyses were performed using the SPSS (version 22.0) program (IBM Corporation, Armonk,
NY, USA).

3. Results

3.1. Study Population

The CONSORT flow diagram is presented in Figure 1. We identified 250 eligible patients whose
tumor samples were available and previously genotyped for EGFR mutations by PNAclamp, and
185 of those patients had plasma samples available. The median age of the 185 patients at diagnosis
was 64 years old, and the ratio of male to female was about 4 to 5. Nearly half of the patients (57.3%)
were in TNM stage III/IV (TNM: a globally standardized cancer staging system, T: primary tumor, N:
regional lymph node, M: distant metastasis).

Three separate studies were conducted to evaluate Sel-Cap liquid biopsy, using plasma samples
collected from 185 different patients. In the first study, plasma samples from 61 patients were tested
for Ex19del and L858R by both Sel-Cap and conventional NGS (T790M was not tested because these
patients’ PNAclamp tumor biopsies did not include T790M); in the second study, plasma samples
from all 185 patients were genotyped for Ex19del, L858R, and T790M by Sel-Cap, and in the third
study, plasma samples were collected from 21 patients after they had developed resistance to first-line
EGFR-TKIs and genotyped using both Sel-Cap and the NGS cancer panel. Finally, for the retrospective
longitudinal T790M monitoring study, out of the patients with T790M-positive plasmas who progressed
on first-line EGFR-TKIs, 34 eligible patients were identified and divided into two groups (early T790M
detection and late T790M detection, based on the first time T790M was detected in plasma). Patients in
the late T790M detection group all had serial plasma samples taken every 3–6 months along with a
tumor response evaluation by imaging.
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3.2. Sel-Cap Showed High Sensitivity for EGFR Mutations in Plasma

In the first study, the diagnostic performance of Sel-Cap liquid biopsy and a conventional NGS
liquid biopsy in 61 patients, looking at Ex19del and L858R, is presented in Table 1 (with the PNAclamp
tumor biopsy as the reference). The sensitivity of Sel-Cap liquid biopsy (75% for Ex19del and 65%
for L858R) is 4–5 times higher than that of NGS (17% for Ex19del and 13% for L858R). When the
results were stratified by disease stage, NGS showed a low sensitivity for Ex19del and L858R (36% and
22%, respectively) in advanced-stage disease, and was unable to detect any mutations in early-stage
disease, while Sel-Cap showed good sensitivity in advanced-stage (72% and 78% for Ex19del and
L858R, respectively) and early-stage (78% and 50%, respectively) plasma samples (Figure 2).

Although it is not the primary objective of this study, Sel-Cap was also evaluated for tumor
biopsy and showed almost perfect agreement (Kappa coefficient = 1.00 and 0.96 for Ex19del and L858R,
respectively) with PNAclamp tumor biopsy (Table S1).
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Figure 2. Comparison of sensitivity between Sel-Cap and conventional NGS liquid biopsies for two
EGFR-activating mutations in NSCLC patients (n = 61, Table 1), stratified by disease stage (n = 30
and 31 for early-stage and advanced-stage, respectively). Sensitivity was calculated against paired
PNAclamp tumor biopsy.

In the second study, the concordance between genotyping results from Sel-Cap liquid biopsy and
PNAclamp tumor biopsy in 185 patients is presented in Table 2. The sensitivity for Ex19del, L858R,
and T790M are 72%, 67%, and 88%, respectively. The concordance data for T790M was only calculated
in 85 (out of 185) patients whose tumor samples were tested for T790M by PNAclamp, and plasma
and tumor samples were collected within an interval of less than 30 days, because if there is a large
time interval between plasma and tumor sample collection, the sensitivity of Sel-Cap may have been
overestimated due to the occurrence of acquired T790M mutation.

Table 2. Diagnostic performance of Sel-Cap liquid biopsy for three EGFR mutations in NSCLC patients
(n = 185), regardless of disease stage, with PNAclamp tumor biopsy as the reference.

Sel-Cap
Ex19del L858R T790M a

Mutant Wild Total Mutant Wild Total Mutant Wild Total

PNAclamp
Mutant 50 19 69 24 12 36 7 14 21

Wild 1 115 116 3 146 149 1 63 64
Total 51 134 185 27 158 185 8 77 85

Sensitivity (95% CI) 72% (61–82%) 67% (50–80%) 88% (53–98%)
Specificity (95% CI) 99% (95–100%) 98% (94–99%) 82% (72–89%)
Accuracy (95% CI) 89% (84–93%) 92% (87–95%) 82% (73–89%)

Kappa (95% CI) 0.76 (0.65–0.86) 0.71 (0.57–0.85) 0.40 (0.13–0.68)
a Only patients with time interval between tumor and plasma sample collection < 30 days (because T790M is an
acquired mutation) and patients who were previously tested by PNAclamp tumor biopsy for T790M were included
for data analyses (n = 85).

In the third study, plasma samples collected from first-line EGFR-TKI-resistant patients (n = 21)
were genotyped by Sel-Cap and NGS cancer panel (Table 3). Sel-Cap discovered three times more
T790M-positive plasma samples (n = 12) than NGS cancer panel (n = 4), and two plasma samples were
determined to be T790M-positive by both methods.
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Table 3. Concordance between two NGS-based lipid biopsy platforms for EGFR mutations in NSCLC
patients (n = 21), post development of resistance to first-line EGFR-TKIs.

No. EGFR-TKI
Tumor Plasma

PNAclamp NGS Cancer Panel Sel-Cap

1 Erlotinib Ex19del a Ex19del Ex19del, T790M d

2 Erlotinib Ex19del a Wild T790M d

3 Erlotinib L858R a L858R, T790M d Wild
4 Erlotinib Ex19del a Wild T790M d

5 Erlotinib Ex19del a Ex19del d Wild
6 Gefitinib Ex19del, T790M a Wild Wild
7 Gefitinib Ex19del a Ex19del, T790M Ex19del, T790M
8 Afatinib Ex19del a Wild Wild
9 Afatinib Ex19del a Ex19del Ex19del, T790M d

10 Gefitinib L858R, T790M b L858R, T790M d L858R
11 Gefitinib Ex19del, T790M b Wild Wild
12 Afatinib Ex19del b Ex19del Ex19del, T790M d

13 Erlotinib T790M c Wild Wild
14 Erlotinib T790M c Wild Wild
15 Erlotinib L858R, T790M c L858R L858R, T790M d

16 Erlotinib Ex19del, T790M c Ex19del Ex19del
17 Erlotinib Ex19del, T790M c Wild Ex19del, T790M d

18 Erlotinib Ex19del, T790M c Ex19del Ex19del, T790M d

19 Gefitinib Ex19del, T790M c Wild Ex19del, T790M d

20 Gefinitib Ex19del, T790M c Wild Ex19del, T790M d

21 Gefinitib L858R, T790M c L858R, T790M L858R, T790M
a No.1–9: tumor samples collected before first-line EGFR-TKI initiation. b No.10–12: tumor samples collected
before PD diagnosis. c No.13–21: tumor samples collected before second-line EGFR-TKI osimertinib initiation.
d Underlined text indicates disconcordant results between Sel-Cap and NGS cancer panel.

3.3. Timing of First T790M Detection in Plasma is Critical for PFS of First-Line EGFR-TKIs

Forty-eight patients who developed drug resistance to first-line EGFR-TKIs (gefitinib, erlotinib,
or afatinib) and had T790M-positive plasma samples were identified (Figure 1), and 26 patients had
single-point plasma samples while the rest of the 22 patients had serial plasma samples which were
collected every 3 months along with a tumor response evaluation by imaging techniques (the actual
sampling time varied between patients). In the study to clarify the relationship between the timing of
first T790M detection and PFS, single-point T790M-positive plasma samples that did not clearly show
whether the mutation was detected for the first time were excluded (n = 14). The clinical characteristics
of included patients (n = 34) are shown in Table S2.

The PFS following first-line EGFR-TKI treatment, and the intervals between the first T790M
detection and PD, are shown in Figure 3. The PFS is significantly longer in patients where initial
detection of T790M was >3 months after treatment initiation (late T790M detection), compared to
patients where initial T790M detection was within ±3 months of treatment initiation (early T790M
detection): the median PFS is 26.5 (range: 11.6–50.2) months vs. 5.9 (range: 1.2–24.1) months,
respectively (Logrank test: hazard ratio [HR] = 4.2, 95% confidence interval [CI]: 1.7–10.6, p < 0.0001).
In addition, the median interval between the first T790M detection and PD is 3.6 (range: 0–18.6) months
for the late T790M detection group vs. 5.8 (range: 1.2–24.2) months for the early T790M detection group,
which is not significantly different (p = 0.27). Acquired resistance to EGFR-TKI is clinically determined
at least 6 months after treatment using diagnostic imaging, but T790M can be detected in plasma
2–3 months before diagnosis of acquired resistance; therefore, a cutoff at 3 months post-EGFR-TKI
initiation was used in this study. The timeline plots of these patients are shown in Figure S1.
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Figure 3. In patients treated by first-line EGFR-TKIs, (A) progression-free survival (PFS, interval
between treatment initiation and disease progression) was significantly longer in the late T790M
detection group (n = 18; first T790M detection: >3 months after treatment initiation) than in the early
T790M detection group (n = 16; first T790M detection: at treatment initiation ± 3 months); (B) however,
the interval between first T790M detection and disease progression was not significantly different
between the two groups. p-values were obtained by Logrank test.

4. Discussion

In this study, we evaluated the Sel-Cap lung cancer panel, an NGS-based genotyping platform for
the detection of EGFR mutations in patients with NSCLC, and we focused specifically on its diagnostic
performance while serving as a liquid biopsy platform. To do so, Sel-Cap was compared to a standard
tumor biopsy (PNAclamp) and two other liquid biopsy platforms (conventional NGS and NGS-based
cancer panel) using plasma samples collected from 185 patients.

PNAclamp is currently the most popular diagnostic platform for EGFR mutations in Korea. In this
study, PNAclamp tumor biopsy is used as the reference for all liquid biopsies. In the first study, Sel-Cap
was compared to conventional NGS for detecting EGFR-activating mutations in 61 plasma samples.
Sel-Cap showed 4–5 times higher sensitivity than NGS in plasma (75% vs. 17% for Ex19del, and 65%
vs. 13% for L858R). The second study consisted of a larger sample size (n = 185) and was consistent
with the first study: Sel-Cap detected over two-thirds of EGFR-activating mutations that were detected
by PNAclamp in tumor (sensitivity: 72% for Ex19del and 67% for L858R). Sel-Cap showed very high
sensitivity (88%) for EGFR resistance mutation T790M in plasma samples, and among the 85 plasma
samples tested, Sel-Cap identified 14 more T790M-positive samples which the PNAclamp tumor biopsy
was unable to detect.

Our recently published work evaluating a popular liquid biopsy cobas® EGFR mutation
test v2 (cobas v2) shows that its sensitivity for EGFR mutations is NSCLC stage-dependent [13].
In advanced-stage disease, the sensitivity of cobas v2 liquid biopsy is satisfactory for Ex19del (over
80%) but falls short in L858R and T790M (both are below 40%); furthermore, in early-stage disease,
cobas v2 shows disappointingly low sensitivity [13]. In the current study, which looked at 61 plasma
samples, the sensitivity of Sel-Cap liquid biopsy for both Ex19del and L858R was high, not only
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in advanced-stage disease (>70%), but it also showed much higher sensitivity than cobas v2 in
early-stage disease (78% vs. 13% for Ex19del, and 50% vs. 0% for L858R). Although Sel-Cap and cobas
v2 were not compared directly, both of the studies used an established tumor biopsy for reference
(PNAclamp and cobas v2 tumor biopsy, respectively. Our previous study showed that the Kappa
co-efficient of the two tumor biopsies was 0.82, indicating almost perfect agreement [13]); therefore, this
indirect comparison is reasonably justifiable. In the future, the clinical significance of EGFR mutations
detected in plasma at early-stage should be studied, and may be particularly valuable in clarifying the
connection between EGFR mutations in plasma and the risk of tumor relapse, especially considering
tumor EGFR mutation status-associated EGFR protein expression is a significant risk factor for tumor
relapse in early-stage NSCLC [14,15]. Finally, in the 21 plasma samples collected from advanced-stage
patients who developed drug resistance to first-line EGFR-TKIs, Sel-Cap detected three times more
T790M-positive plasma samples than a different NGS-based cancer panel.

To the best of our knowledge, the sensitivity of Sel-Cap liquid biopsy is the highest among all
liquid biopsy platforms on record for EGFR mutations in early-stage NSCLC, and Sel-Cap shows
one of the highest sensitivities for overall disease stage, which is comparable to ddPCR, currently
regarded as the most sensitive liquid biopsy to date [16,17]. The high sensitivity of Sel-Cap for liquid
biopsy is attributed to its mutation-enrichment feature. NGS-based cancer panels usually require PCR
amplification of regions of interest prior to sequencing, however, the amplification of low copy number
mutations tends to be exponentially less efficient than that of the wild-type allele, often leading to
selective negativity of the mutations (PCR bias) [18]. In order to solve the problem, Sel-Cap assay uses
wild-type-specific blockers to suppress the amplification of wild-type alleles and thus can preferentially
amplify mutant alleles. In addition to the high sensitivity, another clinically meaningful advantage
of Sel-Cap liquid biopsy is that less plasma (0.7–0.8 mL) is required for each test compared to other
platforms (2–10 mL).

For some of the patients in the study, T790M mutation was detected in plasma by Sel-Cap even
at what is considered the baseline for first-line EGFR-TKIs (treatment initiation within ±3 months).
Our study did not calculate the portion of T790M-positive patients among all EGFR-TKI-naïve
patients, but previous studies estimate that T790M can be found in around 2% of EGFR-activating
mutation-positive EGFR-TKI-naïve plasma samples [19] and frozen tumor samples [20]; however, the
percentage can be much higher (>40%) in FFPE tumor samples, likely due to higher incidence of false
positives [20]. This disadvantage (false positivity) of EGFR testing using FFPE tumor also suggests that
if liquid biopsy sensitivity can rival that of tumor biopsy, it may become a good surrogate for tissue
EGFR testing [21], since it usually shows low false positivity.

It is estimated that nearly half of first-line EGFR-TKI-treated patients may acquire the T790M
mutation after long-term treatment [3], which is in line with the T790M-positive rate observed in the
21 post-PD plasma samples in our study. Before liquid biopsy platforms were available, the conventional
T790M detection was conducted through tumor re-biopsy after disease progression, and the prognostic
value of T790M diagnosis was very limited [22]. In recent years, an increasing number of studies on
monitoring T790M in plasma have been conducted [17,19,23–26]. In our study, excluding those who
were already T790M-positive at treatment baseline (early T790M detection group), the median time for
the initial detection of T790M in plasma (in late T790M detection group) was 23.4 months (ranging
from 5.5 to 38.2 months) post-EGFR-TKI initiation, which is similar to the results reported in a recently
published monitoring study [23]. Interestingly, regardless of whether T790M is initially detected
at baseline or after long-term treatment, the time to PD post-T790M detection was not significantly
different (median time ~5 months). Several previous studies conducted similar longitudinal monitoring
for T790M in NSCLC patients who had tumor progression on EGFR-TKI treatments [19,24]. In their
studies, 40–70% of the patients showed initial T790M detection in plasma at the time of PD or after.
For those whose T790M first appeared before PD diagnosis, the time between the detection and PD
was typically 2–3 months. Our study shows that Sel-Cap can not only detect T790M before PD for the
vast majority of patients (16/18 patients, according to the late T790M detection group), but it can also
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predict PD at least 2–3 months earlier than an ordinary liquid biopsy, and therefore could increase the
time window for physicians to plan the next treatment and monitoring programs.

In addition, our study emphasized that monitoring programs should be individualized.
For instance, because the patients with T790M detected at baseline tend to develop drug resistance to
first-line EGFR-TKIs much faster than those who have T790M detected >3 months later, a monitoring
program with more frequent intervals may be needed for patients with baseline T790M. On the
other hand, in patients without baseline T790M, since the longitudinal monitoring period for initial
T790M detection varies vastly, for those who continuously respond to first-line EGFR-TKIs, longer
monitoring intervals between liquid biopsies can be considered to ease the financial burden of testing.
More importantly, in future studies, the risk factors for the occurrence of T790M in plasma should
be investigated and considered [27] so that monitoring of T790M by liquid biopsy may become more
efficient. Previous studies found that T790M was more prevalent in metastatic tumors than primary
tumors in NSCLC patients [28], and tumor size was positively and significantly correlated with cfDNA
level in ovarian cancer [29] and melanoma [30]. Our team is currently looking for correlations between
primary and/or metastatic tumor size, EGFR mutations in plasma, and disease progression.

This study has several limitations. First, in the study with 185 plasma samples (the third study),
the sensitivity of Sel-Cap was not stratified by disease stage because this information was not known
for all of the samples. Second, all the patients included in the retrospective monitoring study had at
least one T790M-positive plasma sample and developed disease progression on first-line EGFR-TKI
treatments, and the study did not include samples collected from those who might have missed
diagnosis of T790M due to single sampling, or from those who were still responding to first-line
EGFR-TKI treatments. A prospective study is needed to validate the clinical application of Sel-Cap for
prediction of disease progression, compared to the standard imaging diagnostic techniques. Third,
in this real-world study, the plasma sampling for the longitudinal monitoring of T790M did not strictly
follow a schedule; in some patients, the actual T790M detection time in plasma could have been a few
months earlier.

Sensitive and reliable genotyping platforms are the premise of successful lung cancer target
therapy. Ideally, such platforms should also be non-invasive, fast, and affordable. So far, our study has
generated encouraging results for the application of Sel-Cap, a highly sensitive digital enrichment NGS
liquid biopsy for NSCLC. With the increasing discovery of other EGFR-TKI resistance mechanisms
besides T790M (for example, EGFR mutation copy number [26] and c-met overexpression [31]) and with
the increasing understanding of other factors influencing the detection of T790M in plasma-derived
cfDNA, we may be able to predict the occurrence of drug-resistance more accurately and determine
the optimal time to switch to the third-generation EGFR-TKIs. We foresee that regular monitoring for
EGFR mutations with sensitive liquid biopsy platforms, such as Sel-Cap, may become the standard of
practice in the future precision medicine for NSCLC.

5. Conclusions

In this study conducted using plasma samples collected from 185 NSCLC patients, Sel-Cap, a
digital enrichment NGS-based lung cancer panel, shows very high sensitivity for EGFR mutations
in cfDNA, even in early-stage disease. The application of Sel-Cap liquid biopsy in a retrospective,
longitudinal monitoring study suggests that highly sensitive platforms for EGFR resistance mutation
T790M in plasma may allow for prediction of disease progression around 5 months in advance,
unlike tumor re-biopsy or less sensitive liquid biopsy, where the T790M is often detected after
disease progression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3579/s1,
Figure S1: Timeline plots showing intervals between EGFR-TKI initiation, first T790M detection, and disease
progression in patients (n = 34) who developed drug resistance to first-line EGFR-TKI treatments. Table S1:
Diagnostic performance of Sel-Cap and NGS tumor biopsies for two EGFR activating mutations in NSCLC patients
(n = 61), with paired PNAclamp tumor biopsy as the reference. Table S2: Clinical characteristics of patients
included in the retrospective longitudinal monitoring study (n = 34).
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Abstract: Epidermal growth factor receptor (EGFR) mutation testing is essential for individualized
treatment using tyrosine kinase inhibitors. We evaluated two EGFR mutation tests, cobas v2 and
PANAMutyper, for detection of EGFR activating mutations Ex19del, L858R, and T790M in tumor
tissue and plasma from 244 non-small cell lung cancer (NSCLC) patients. The Kappa coefficient (95%
CI) between the tests was 0.82 (0.74–0.92) in tumor samples (suggesting almost perfect agreement) and
0.69 (0.54–0.84) in plasma (suggesting substantial agreement). In plasma samples, both tests showed
low to moderate sensitivity depending on disease stage but high diagnostic precision (86%–100%) in
all disease stages (sensitivity: percentage of mutations in tumors that are also detected in plasma;
precision: percentage of mutations in plasma which are also detected in tumors). Among the 244
patients, those previously diagnosed as T790M carriers who received osimertinib treatment showed
dramatically better clinical outcomes than T790M carriers without osimertinib treatment. Taken
together, our study supports interchangeable use of cobas v2 and PANAMutyper in tumor and
plasma EGFR testing. Both tests have high diagnostic precision in plasma but are particularly valuable
in late-stage disease. Our clinical data in T790M carriers strongly support the clinical benefits of
osimertinib treatment guided by both EGFR mutation tests.

Keywords: circulating free DNA; liquid biopsy; epidermal growth factor receptor; tyrosine kinase
inhibitor; osimertinib

1. Introduction

The introduction of tyrosine kinase inhibitors (TKIs) for non-small cell lung cancer (NSCLC)
has greatly improved treatment outcomes in patients with epidermal growth factor receptor (EGFR)
mutations [1–3]. The importance of EGFR mutation testing in TKI treatment is well-recognized [4],
and its cost-effectiveness has been established in many countries [5–7]. Inaccurate EGFR mutation
tests may cause marked loss of quality-adjusted life-years [8]. Direct sequencing of tumor DNA is the
gold standard diagnostic method for detecting EGFR mutations, but clinical utility is limited due to
its high cost, long turnaround time, and low sensitivity (limit of detection >20%; limit of detection
is defined as the percentage of tumor cells that must be present in the specimen for a mutation to
be identified [4]). New EGFR mutation tests such as real-time polymerase chain reaction (RT-PCR),
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amplification refractory mutation system (ARMS), peptide nucleic acid (PNA)-based PCR, and droplet
digital PCR (dd-PCR) provide reliable, quick test results with high sensitivity (limit of detection:
0.01%–1%) and have therefore gained currency in clinical settings [9]. Meanwhile, due to the difficulty
in obtaining sufficient amounts of tumor tissue and repeat tumor biopsy, there is a growing trend of
testing EGFR mutations using liquid biopsy.

The objective of this study was to evaluate the concordance of two commercial EGFR mutation
tests: an RT-PCR method cobas EGFR mutation test v2 (cobas v2) and a PNA-based PCR method
PANAMutyper R EGFR (PANAMutyper) in tumor tissue and plasma from NSCLC patients. The
cobas v2 was initially approved by the US Food Drug Administration, and the PANAMutyper was
initially approved by the Korea Ministry of Food and Drug Safety. The PANAMutyper test combines
PNA-based PCR clamping (PNAClamp) with multiplex fluorescence melting curve analysis (PANA
S-Melting) using a fluorescence-labeled PNA probe, which allows detection of 47 hotspot mutations
between EGFR exon 18 and exon 21 [10]. While evaluating the concordance of the tests, we particularly
focused on the performance of the tests in plasma samples and in a subgroup of patients with diagnosis
of EGFR T790M mutation (An acquired TKI resistance-related EGFR gatekeeper mutation, which
substitutes a threonine with a methionine at position 790 of exon 20).

2. Materials and Methods

2.1. Study Population

Electronic medical records (EMRs) were used to identify eligible patients histologically diagnosed
with NSCLC between January 2013 and April 2019 with tumor tissue or plasma sample stored at the
Seoul St. Mary’s Hospital Biobank. When multiple samples were available from the same patient,
samples from the first biopsy were used for testing. Almost all of the eligible patients had been
tested for EGFR mutations using PNA-based PCR clamping [11] (PNAClamp, Daejeon, Korea) before.
For patients treated with osimertinib (Tagrisso, formerly AZD9291; AstraZeneca, Macclesfield, UK),
samples from the latest biopsy before osimertinib treatment initiation were used. The research plan of
the current study was approved by the Institutional Review Board (IRB) of Seoul at St. Mary’s Hospital
(KC17DESI0147). At the time of sample collection, all patients provided a biobank-written informed
consent form for the possible use of their samples in future research.

2.2. EGFR Mutation Tests

Tumor samples were collected and prepared as formalin-fixed, paraffin-embedded sides. Tumor
DNA was extracted using a Maxwell 16 FFPE Tissue LEV DNA Purification Kit (Promega, Madison,
WI, USA) for PANAMutyper tests (PANAGENE, Daejeon, Korea) and using a cobas DNA Sample
Preparation Kit (Roche Molecular Systems, Pleasanton, CA, USA) for cobas v2 tests. Plasma was
prepared by the Seoul St. Mary’s Hospital Biobank and stored at −70 ◦C. For this study, plasma samples
were used to separate the supernatant for circulating free DNA (cfDNA) extraction. The cfDNA was
extracted using QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany) and cobas cfDNA
Sample Preparation Kit (Roche Molecular Systems, Pleasanton, CA, USA). Only DNA samples that
passed qualitative and quantitative quality control (according to the kit manufacturers’ protocols) were
used for EGFR mutation tests.

For PANAMutyper test, 5 μL DNA was added to 20 μL polymerase chain reaction (PCR) reagent
(a mixture of 19 μL of peptide nucleic acid (PNA) probe and 1 μL of Taq DNA polymerase). PCR
was carried out using the CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA).
The PCR-generated melting curves and the genotype of each sample were determined according
to the specific fluorescence and melting temperature (Tm) of the melting curves. For cobas v2 test,
DNA concentrations were set to 2 ng/μL and detected using a defined workflow channel in a cobas
v2 4800 analyzer (Roche Molecular Systems, Pleasanton, CA, USA). Mutation analysis of cobas v2
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was performed by Roche Korea using an algorithm specific to the cfDNA test. Both analyses were
performed according to the manufacturers’ protocols.

2.3. Data Analyses

The concordance of the EGFR mutation tests was evaluated with cobas v2 as the reference using (1)
positive percentage agreement (PPA) or sensitivity (the percentage of mutations in cobas v2 that is also
detected in PANAMutyper); (2) negative percentage agreement (NPA) or specificity (the percentage of
wild-type determined by cobas v2 that is also determined by PANAMutyper); (3) overall percentage of
agreement (OPA) or accuracy (the percentage of wild-type plus mutations in cobas v2 that are also
detected in PANAMutyper); and (4) Kappa coefficient (a statistical measure used to assess agreement
between observers that provides more information than OPA because it takes into account chance
agreement). A Kappa coefficient between 0.6 and 0.8 is generally regarded as “substantial agreement”,
and a Kappa coefficient over 0.8 is generally regarded as “almost perfect agreement” [12]. Diagnostic
precision in plasma was evaluated to indicate the percentage of mutations detected in plasma that
were also detected in tumors. Tumor response was assessed by imaging techniques (such as computed
tomography and magnetic resonance imaging) and determined based on the Response Evaluation
Criteria in Solid Tumors (RECIST) 1.1 [13]. Survival time was defined as the period between osimertinib
treatment initiation (or biopsy for patients who did not receive osimertinib) and the last follow-up
(the study was closed on December 28 2019). All statistical analyses were performed with SPSS v.21
software (IBM SPSS, Armonk, NY, USA), and p value < 0.05 was considered statistically significant.

3. Results

3.1. Patients

A total of 244 eligible patients were identified (Figure 1). The ratio of male to female was 1.24:1,
the median age was 66 years (range 29–85 years), and 133 were non-smokers (55%). Nearly half
of the patients (51%) were in TNM stage III/IV (TNM: cancer staging system; T: primary tumor; N:
lymph node; M: distant metastasis), and three-quarters of the patients had lung adenocarcinoma (76%).
Nineteen tests from 17 patients were determined to be invalid (tests were invalid if samples failed to
pass qualitative and quantitative quality control); 13 patients had invalid PANAMutyper test results
(all from blood samples); 6 patients had invalid cobas v2 tests (5 from tumor samples and 1 from blood
sample). These patients were excluded from data analyses. Considering the large sample size, both
tests were considered successful in generating valid results.

Of the 227 patients with valid test results, the clinical characteristics of patients with EGFR
wild-type were demographically different from those with EGFR activating mutations (Table 1). The
median age of the wild-type group was five years older than that of the mutant group, and there were
significantly less females, more smokers, and more squamous cell cancer in the wild-type group than
the mutant group (p < 0.001 for all comparisons).

133



Cancers 2020, 12, 785

 

Figure 1. Consort diagram and study flowchart. a Tests were considered valid only if samples failed
to pass qualitative and quantitative quality control. b Original test was peptic nucleic acid (PNA)
clamping test.

Table 1. Characteristics of patients (n = 227) with valid EGFR test results using two mutation tests.

Patient Demographics (Wild
vs. Mutant)

PANAMutyper Test Result cobas v2 Test Result

Wild Mutant p value
Wild Mutant p Value

(n = 130) (n = 97) (n = 143) (n = 84)

Age a

Median y (range) 68 (44–85) 63 (35–83) p < 0.001 68 (44–85) 63 (35–83) p < 0.001

Sex b

Male 89 (39%) 36 (16%) p < 0.001 99 (44%) 26 (12%) p < 0.001
Female 41 (18%) 61 (27%) 44 (19%) 58 (26%)

Smoking history b

Never 57 (25%) 68 (30%)
p < 0.001

61 (27%) 64 (28%)
p < 0.001Former 57 (25%) 24 (11%) 66 (29%) 15 (6.6%)

Current 16 (7.0%) 5 (2.2%) 16 (7.0%) 5 (2.2%)

Histology b

Adenocarcinoma 83 (37%) 91 (40%)
p < 0.001

90 (40%) 84 (37%)
p < 0.001Squamous 45 (20%) 6 (2.6%) 51 (23%) 0

Large cell 2 (0.9%) 0 2 (0.9%) 0

TNM stage b,c

I 48 (21%) 33 (15%)

p = 0.644

53 (23%) 28 (12%)

p = 0.491II 22 (9.7%) 9 (4.0%) 23 (10%) 8 (3.5%)

III 29 (13%) 11 (4.8%) 34 (15%) 6 (2.6%)

IV 31 (14%) 44 (19%) 33 (15%) 42 (19%)
a Independent t-test for EGFR wild vs. EGFR mutant groups diagnosed by the same assay. b Chi-square test for
EGFR wild vs. EGFR mutant groups diagnosed by the same assay. c TNM stage was determined at the sample
collection (TNM: cancer staging system; T: primary tumor; N: lymph node; M: distant metastasis).
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3.2. Concordance between Two Tests in Tumor and in Plasma

The concordant and discordant EGFR mutation test results in tumor tissue are shown in Table 2.
In tumor tissue, the mutation detection rate was 43% by PANAMutyper and 37% by cobas v2. When
cobas v2 was used as the reference for PANAMutyper, sensitivity (PPA) was 94%, specificity (NPA) was
90%, and accuracy (OPA) was 91%. Kappa coefficient was 0.82, indicating almost perfect agreement
between tests in tumor samples.

In plasma, the mutation detection rate was 15% by PANAMutyper and 14% by cobas v2. For
PANAMutyper, sensitivity (PPA) was 72%, NPA was 96%, and OPA was 93%. Kappa coefficient of the
tests was 0.69, indicating a substantial agreement in plasma.

Table 2. Concordance of two EGFR mutation tests in tumor tissue and plasma samples.

Test Results Tumor Tissue Plasma
(Reference: cobas v2) (n = 217) (n = 201)

Concordant Results

Both Wild 123 (57%) 165 (82%)

Both Mutant 75 (35%) 21 (10%)

Ex19del 17 (8.5%) 11 (5.5%)

L858R 14 (6.5%) 3 (1.4%)

T790M 1 (0.5%) 2 (1.0%)

L858R+T790M 30 (14%) 3 (1.5%)

Ex19del+T790M 13 (6.0%) 2 (1.0%)

Discordant Result

P_Mutant/c_Wild a 14 (6.5%) 7 (3.5%)

c_Mutant/P_Wild b 1 (0.5%) 6 (3.0%)

Different Mutant 4 (1.8%) 2 (1.0%)

Test Evaluation

Sensitivity (PPA) c(95% CI) 94% (86%–97%) 72% (54%–85%)

Specificity (NPA) c(95% CI) 90% (84%–94%) 96% (92%–98%)

Accuracy (OPA) c (95% CI) 91% (87%–94%) 93% (88%–95%)

Kappa Coefficient(95% CI) 0.82 (0.74–0.92) 0.69 (0.54–0.84)
a P_Mutant/c_Wild: PANAMutyper result is mutant but cobas v2 result is wild; b c_Mutant/P_Wild: cobas v2
result is mutant but PANAMutyper result is wild; c Calculation with cobas v2 as reference; EGFR, epidermal
growth factor receptor; OPA, overall percentage agreement; PPA, positive percentage agreement; NPA, negative
percentage agreement.

3.3. Concordance of Test Results between Tumor Tissue and Plasma

The EGFR mutation test results between tumor tissue and plasma were compared. For subjects
with early-stage disease (stage I/II), only a small portion (0%–20%) of mutations found in tumor
samples were also detected in plasma by PANAMutyper and cobas v2. Contrastingly, for subjects
with advanced-stage disease (stage III/IV), test sensitivity (PPA) in plasma (with results in tumor
samples as references) was markedly higher: around one-third of L858R and T790M and more than
two-thirds of Ex19del in tumor can be detected in plasma (Figure 2A). For all disease stages, diagnostic
precision for the three mutations in plasma (with results in tumor samples as references) was 100% by
PANAMutyper and 86%–100% by cobas v2 (Figure 2B).
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Figure 2. Detection of three EGFR mutations in plasma samples. (A) PPA of the two tests in plasma,
stratified by disease stage. PPA is calculated as percentage of mutations detected in tumor that are
also detected in plasma. (B) Precision of the two tests in plasma for all disease stages. Precision is
calculated as the percentage of mutations detected in plasma that are also detected in tumor. PPA,
positive percentage agreement; EGFR, epidermal growth factor receptor.

3.4. Re-Analyses of Discordant Results

Test results from 19 tumor samples were discordant between PANAMutyper and cobas v2 tests.
These were compared to the original test results obtained using PNA clamping (Table 3). Ten tumor
sample results were consistent between cobas v2 and PNA clamping, including nine wild-types and
one Ex19del+T790M. Six tumor sample results were consistent between PANAMutyper and PNA
clamping, including three L858R, one Ex19dels, one Ex19del+T790M, and one L858R+T790M. Two
tumor sample results differed on all three tests. We attempted to verify the discordant results using
dd-PCR. However, only six tumor samples had sufficient tissue for DNA extraction: four test results
were in agreement with PANAMutyper, and two were in agreement with cobas v2.
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Table 3. Reanalysis of discordance between PANAMutyper and cobas v2 tests.

No TNM Stage PANAMutyper Cobas v2 PNA Clamping dd-PCR

1 IIa Ex19del Wild Ex19del -

2 Ib Ex19del Wild Wild -

3 Ia Ex20ins Wild Wild -

4 IIIa G719S Wild Wild -

5 IIa G719S Wild Wild -

6 IIIb G719S+T790M Wild Wild -

7 IIIb L858R Wild Wild Wild

8 Ib L858R Wild Wild -

9 IIIb L858R Wild Wild L858R

10 Ia L858R Wild L858R a -

11 IV L858R Wild L858R a -

12 IV L858R Wild L858R L858R

13 IIIa T790M Wild Ex20 Gln787Gln b -

14 Ia T790M Wild Wild -

15 IV L858R+T790M T790M L858R+T790M L858R+T790M

16 Ia G719C+S768I+T790M G719X+S768I - -

17 IV Ex19del Ex19del+T790M Ex19del+T790M Ex19del+T790M

18 IV Ex19del+T790M Ex19del Ex19del+T790M Ex19del+T790M

19 IV Wild Ex19del T790M -

Underlined results indicate concordance with PANAMutyper, and framed results indicate concordance with

cobas v2. a PNA clamping result is L858R or L861Q; b Synonymous mutation, c.2361G>A.

3.5. Test Results in Patients with T790M Mutation

Of the 227 patients with valid test results, 47 patients were identified as T790M carriers by
original PNA clamping test. These patients provided 46 tumor and 23 plasma samples (Figure 3). The
concordance of PANAMutyper and cobas v2 results from this subgroup was evaluated using PPA only
because all patients were diagnosed as EGFR mutants by the original PNA clamping test, and Kappa
coefficient is inappropriate for skewed tests. The PPA (95% CI) of PANAMutyper was 91% (79%–97%)
in tumor samples and 82% (52%–95%) in plasma. Among the 47 previously identified T790M carriers,
34 patients received osimertinib treatment. These 34 patients were at TNM stage IV and heavily
treated at the time of osimertinib initiation (having previously received 3–10 lines of treatment). Of
these patients, objective tumor response (complete response or partial response) was achieved in 74%
(n = 25) of patients, and disease control was achieved in 88% (n = 30) of patients (Figure 3A). On the
other hand, 16 patients were diagnosed with EGFR T790M mutation from the tumor samples by both
PANAMutyper and cobas v2 but did not receive osimertinib treatment, including three patients who
had early-stage disease without progression and 13 patients with late stage disease. Eight late-stage
patients received tumor response evaluation, only one had stable disease, and the others showed
progression. Six patients died, and seven patients were lost to follow-up (Figure 3B).
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Figure 3. Survival and the best tumor response in patients with EGFR T790M mutation. (A) Patients
who received osimertinib following development of drug resistance and T790M detection. All patients
had previously received 3–10 lines of treatment, and osimertinib was used based on detection of T790M
mutation using the PNA clamping test. (B) Patients with late-stage disease who were diagnosed with
T790M mutation (by PNA clamping test: n = 10; by PANAMutyper and cobas v2: n = 3) but did not
receive osimertinib. Arrows indicate ongoing follow-up; diamonds indicate loss to follow-up. PR,
partial response; CR, complete response; SD, stable disease; PD, progressive disease; NE, not evaluated;
FU loss, loss to follow-up; ORR, objective response rate.

4. Discussion

This study is the first to compare PANAMutyper and cobas v2, two popular commercial EGFR
mutation tests in Korea, for testing in both tumor and plasma samples from NSCLC patients. A large
sample size of 244 patients was obtained, including 191 patients with paired samples (tumor and
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plasma). Results of the current study provide evidence that the two tests are equally accurate and can
be used interchangeably.

A meta-analysis published in 2015 included over 30,000 NSCLC patients to create a “global EGFR
mutMap” for global EGFR mutation frequency [14]. This study demonstrated that the overall EGFR
mutation frequency is much higher in the Asia-Pacific area (47%) compared to Europe and America
(15%–25%) and reported that the frequency in Korea is 43% (20%–56%), which is close to our result of
43% by PANAMutyper and 37% by cobas v2.

We observed significant demographic differences between those diagnosed with EGFR wild-type
and those with EGFR mutations (Table 1). Consistent with previous reports [15–17], those with EGFR
mutations were more likely to be female or non-smokers. In addition, patients without EGFR mutations
were about five years older than those with EGFR mutations. This is probably because we included
patients with squamous NSCLC who are less likely to have EGFR mutation but tend to be older than
those with non-squamous NSCLC [18].

In this study, the two EGFR mutation tests were concordant in more than 90% of tumor and plasma
samples (Table 2). The Kappa coefficient, a robust measurement for test agreement [12], showed that
the two tests were in almost perfect agreement in tumors and in substantial agreement in plasma.
Our results support use of the two tests interchangeably for EGFR activating mutation diagnosis in
tumor samples.

The PNA-based PCR technology used by PANAMutyper has a lower limit of detection (>0.1%) [10]
than the RT-PCR technology used by cobas v2 (>1%, according to cobas v2 label: https://www.accessdata.
fda.gov/cdrh_docs/pdf12/P120019S007c.pdf). The difference in limit of detection between the two tests
may explain why most of the inconsistent results (14 out of 19 samples) formed the same pattern:
diagnosis of wild-type by cobas v2 but mutant by PANAMutyper (Table 3). Retesting these samples
with a more sensitive method (such as dd-PCR) may validate the results. Unfortunately, only six of the
discordant tumor samples had sufficient tissue remaining for dd-PCR retests, meaning that the sample
size is too small to draw a conclusion for validation.

In the current study, the EGFR mutation detection rate in plasma was considerably low in
early-stage cancer (stage I/II), similar to reports by other studies [19,20]. However, in late-stage cancer
(stage III/IV), the two tests were able to detect over two-thirds of Ex19del and one-third of L858R and
T790M mutations in tumors using plasma samples (Figure 2). Plasma detection rates by cobas v2 were
consistent with a previous study [9].

Notably, despite a much lower detection rate in plasma than tumor, the diagnostic precision of both
tests was very high (100% for PANAMutyper, 86%–100% for cobas v2). Therefore, although the current
efficacy of osimertinib has only been established in patients with T790M-positive results in tumor, but
not in patients with T790M-positive results only in plasma (according to cobas v2 label), the very high
T790M diagnostic precision of both tests in plasma suggests that patients with T790M-positive plasma
findings almost certainly have the mutation in tumor tissue also. Therefore, T790M-positive results in
plasma should be considered sufficient evidence to initiate osimertinib treatment. Indeed, the latest
guideline published by the International Association for the Study of Lung Cancer (IASLC) [21] and
lung cancer education book published by the American Society of Clinical Oncology [4] place a higher
priority on liquid biopsy over tumor biopsy in patients with progressive or recurrent disease.

In the subgroup of patients with previously diagnosed T790M mutation, PANAMutyper and cobas
v2 tests were equally effective in identifying T790M mutation. Our real-world data in Figure 3 indicates
that patients with T790M mutation respond favorably to osimertinib, with an impressive objective
response rate of 74%. Contrastingly, those who did not receive osimertinib treatment showed very
poor clinical prognosis and follow-up; for the most part, these patients were not treated by osimertinib
because T790M mutations were diagnosed before osimertinib was approved or reimbursed through
insurance in Korea (Figure 1). Although these osimertinib efficacy data are not from a randomized
controlled study, they are consistent with a recently published phase III trial [3] and clearly show that
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osimertinib treatment, if guided by a reliable EGFR T790M mutation test, may lead to fundamentally
superior clinical outcomes.

5. Conclusions

Two commercial EGFR mutation tests approved in Korea, cobas v2 and PANAMutyper, show
highly concordant test results in both tumor and plasma samples from NSCLC patients. Although
both tests show low sensitivity in plasma in early-stage disease, their high diagnostic precision in
plasma make them attractive screening tools for identifying TKI treatment-feasible patients. Our study
shows that around one-third or two-thirds (depending on the mutation) of the TKI treatment-feasible
patients with late-stage NSCLC can be identified using liquid biopsy with both tests. Our real-world
data reinforce the important role of reliable EGFR T790M mutation tests in guiding third-generation
TKI treatments.
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Simple Summary: Tumor cells struggle to survive following treatment. The struggle ends in either
of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells
and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of
the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs,
which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed
element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the
cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts
are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells
in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable
component of resistance to the treatment, are one of the most logical targets within tumors that
eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts
in the development of drug resistance in solid tumors. In the future, we will establish the specific
mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-
fibroblast-inclusive personalized therapy.

Abstract: In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance
to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized
by these transformed tumor cells. Cancer cells undergo several reprogramming events towards
adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy
involves changes within the transformed tumors cells as well as in their neighboring non-transformed
extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts
(CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to
therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the
microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the
establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also
diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs
interact in unison with both tumor cells and all other components of the TME towards the progression
of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome
of the disease is their participation in the development of resistance to treatment. CAFs resist therapy
in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor
of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors
of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy.
Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with
their role in orchestrating the development of resistance to different chemotherapies and targeted
therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in
light of their dialogue with tumor cells and the two components of the TME, the immune component,
and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development
of treatment resistance will impact our future strategies and ability to design improved therapies
inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic
standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
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1. Introduction

Cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) are
non-transformed, tumor-cell-activated heterogeneous populations of cells having multiple
origins and functions [1,2]. Detailed descriptions of the origin, functions, interactions with
tumor cells, and heterogeneity of CAFs were previously provided by us elsewhere [3,4].
CAFs are activated by tumor cells in their favor. Once activated in an established tumor,
CAFs act as crucial supporters of tumor growth, progression, and response to treatment.

The functions of CAFs in an established tumor include the following: (1) ECM (extra-
cellular matrix) remodeling via collagenolysis to promote invasion and EMT (endothelial–
mesenchymal transition); (2) increasing tissue stiffness to initiate angiogenic resistance
and immune suppression; (3) induction of tumor angiogenesis; (4) secretomic induction
of EMT by TGFbeta; (5) increasing secretomic factors of tumor-promoting or immune-
suppressing ligands such as hepatocyte growth factor; fibroblast growth factors 1 and 2;
stromal cell-derived factor 1 (SDF1/CXCL12); chemokine (C-C motif) ligands (CCL) 2, 5, 7,
and 16; interleukin 6/8; and platelet derived growth factor; (6) metabolic reversal of reverse
Warburg effect (non-glycolysis in tumor cells, glycolysis in stroma cells) and ‘lactate shuttle’
effect; (7) immune evasion via activation of M2 macrophages (CD163 positive); (8) inhibition
of apoptosis in tumor cells; (9) activation of many of pro-proliferative tumor cell signaling;
(10) immune reprogramming and antigen presentation; (11) adaptation to oxidative stress
and hypoxic response; (12) promotion of stemness-promoting signals; (13) promotion of
metastasis-associated phenotypes; (14) attenuation of drug response [1,5–18].

The range of functions of CAFs is comprehensive, and the actions of CAFs are con-
textual. The interactions of CAFs with tumor cells and TME components change with the
evolution of the tumor, its metastatic progression, and its response to therapy. In summary,
the functions of CAFs are structured to assist and promote tumor cells via direct and indirect
interactions. Thus, CAFs form a centralized communication network within the TME that
favors tumor cell growth, metastasis, and resistance to drug treatment [19]. The versatility
of the functions of CAFs’ make them abettors of drug resistance and identifies them as
prospective anti-tumor therapy targets [20,21]. Here, we investigate the role of CAFs in
the development of resistance to chemotherapy and targeted therapy. We seek to evaluate
whether co-targeting CAFs will have a participatory benefit towards managing the burden
of resistance. We discuss the opportunity that CAFs present to improve and evolve the
management of the disease from a tumor-centric approach to a tumor–CAF-centric approach.

2. CAF Heterogeneity and Resistance to Chemotherapy in Solid Tumors

2.1. CAF Heterogeneity

CAFs are heterogeneous in terms of their origin in different organ-type cancers, as
well as in the progression of the disease. The heterogeneous subpopulations of CAFs,
such as myoblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs), have been exten-
sively studied in fibroinflammatory PDAC disease characterized by dense and highly
proliferating desmoplastic stroma. In fact, Li et al. identified genes associated with the
differentiation of myCAFs and iCAFs [22–24]. Adipose-derived MSCs (AD-MSCs) have
been shown to possess a high multilineage potential and self-renewal capacity and were
reported as the CAF sources in PDAC by Miyazaki et al. [24]. Their study identified that
AD-MSCs could differentiate into distinct CAF subtypes, myCAFs and iCAFs, depending
on the different co-culture conditions in vitro. The diverse functions of iCAFs and myCAFs
have also been reported in cholangiocarcinoma; breast cancers; prostate, head, and neck
squamous cell carcinoma; and bladder and colon cancers. The diversity of CAF subpopula-
tions was also recently reported to promote the growth of cholangiocarcinoma, wherein
hepatic stellate cells (HSC) are the primary cause of CAF differentiation into myCAFs
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and iCAFs [25]. The hyaluronan synthase 2 myCAFs, but not type I collagen-expressing
myCAFs, promoted tumor progression, while HGF-expressing iCAFs enhanced tumor
growth via tumor-expressed MET, thereby directly linking CAFs to tumor cells. Another
subset of CAFs, FAP+CAFs, were identified by Kieffer et al. in breast cancers that me-
diated immunosuppression and immunotherapy resistance via a positive feedback loop
between specific CAF-S1 clusters and Tregs [26]. In prostate cancer, a differential mode
of activation of iCAFs and myCAFs has been reported [27]. IL-1a/ELF3/YAP pathways
are involved in iCAF differentiation, while TGF-beta1 induces myCAFs. One of the ways
CAFs classically interact with the tumor cell EMT function was reported by Goulet et al. in
bladder cancer, where IL-6 cytokine was found to be highly expressed in iCAFs, and its
receptor IL-6R was found on RT4 bladder cancer cells [28]. Perhaps the most intriguing
functional heterogeneity of CAFs was reported by Pan et al. in PDAC-CAF-exhibited
organ-specific metastatic potential leading to different levels of heterogeneity of CAFs in
different metastatic niches [29]. Several cell signaling pathways have been reported to be
involved in the functioning of iCAFs and myCAFs, including the Hedgehog pathway [30];
Wnt pathway [31]; integrin a11B1 signaling [32]; cMET-HGF pathway [25]; IL-6 signal-
ing [28]; EMT signaling via transcription factors SNAIL1, TWIST1, and ZEB1 [28]; and
IL1B-mediated crosstalk [33]. Recently, Steele et al. reported that the Hedgehog pathway
acts in a paracrine manner in PDAC, with ligands secreted by tumor cells signaling to
stromal CAFs. The Hedgehog pathway activation is higher in PDPN+ alphaSMA+ myCAFs
compared with iCAFs, and its inhibition impairs tumor growth by altering the fibroblast
compartment in PDAC. Hedgehog pathway inhibition resulted in a reduction in myCAF
numbers and a significant expansion of iCAFs, leading to an increase in the iCAF/myCAF
ratio. As iCAFs are a source of inflammatory signals, the authors observed an increase in
iCAFs upon Hedgehog inhibition, which correlated with changes in immune infiltration
(significantly decreased CD8+ T cells and increased CD4+ T cells and CD25+CD4+ T cells;
abundant FOXP3+ regulatory T cells) that are consistent with a more immunosuppres-
sive pancreatic cancer microenvironment. The paracrine activation differentially elevated
myCAFs compared with iCAFs, leading to favorable alterations of cytotoxic T cells and
Tregs, causing increased immunosuppression [30]. Wnt signaling in CAFs represents a
non-cell-autonomous mechanism for colon cancer progression [31]. Mose et al. reported
Sfrp1 epithelial–mesenchymal transition phenotype induction in tumor cells without af-
fecting tumor-intrinsic Wnt signaling, suggesting involvement of non-immune stromal
cells. Low levels of Wnt signals induced the iCAF subtype, which in co-culture with
organoids induced EMT, whereas high levels induced contractile myCAFs to attenuate the
EMT phenotype.

The tumors with (1) an accumulation of stromal CAFs, (2) the presence of fibrotic
stroma, (3) a high expression level of stroma signature genes, or (4) a high tumor/stroma
ratio in the primary tumor are associated with poor prognosis in various cancers, in-
cluding colon, gastric, esophagus, breast, NSCLC (non-small cell lung cancer), and liver
cancers [34–40]. It is understood that chemotherapy’s limited effect (benefit) and the pro-
gression or recurrence of disease through therapy in many solid tumors are attributed to
the development of resistance within tumor cells in support of the stroma. As a dominant
component of tumor stroma, CAFs interact with both a tumor cell and the TME. The
versatility of CAF functions and their several modes of interaction with tumor cells and all
components of stroma (ECM and cells of the TME) indicate that a metastasis or progression
of disease following treatment is aided and abetted by CAFs. Once a therapy-resistive
circuitry is established between tumor cells and the CAFs of the stroma, tumor-centric
therapy alone essentially becomes insufficient. Figure 1 presents the distribution pattern
of the types of resistance to chemotherapy based on specific mediators of CAF functions
in solid tumors. The four types of mediators of action employed by CAFs to orchestrate
the development of resistance to chemotherapy are presented in the cartoon. The most
common mode of interaction is a paracrine, wherein CAFs signal to either tumor cells or
other components of the TME via characteristic secretomes. In addition to the involve-

145



Cancers 2022, 14, 1519

ment of characteristic secretomes, exosomal cargos delivering different miRNAs that target
various cell signaling proteins are common mediators of CAFs. The paracrine mode of
action of CAFs is the predominant form of action, represented by six types of organ tumors
(organ tumors are indicated by their respective ribbon colors, as presented in the figure
legends). CAF crosstalk with tumor cells, and the TME occurs via exosomal cargo, impart-
ing resistance to four organ cancers. The extracellular vesicle, secretome, and autocrine or
paracrine modes are much less involved in the modes of action (Figure 1). The sizes of the
boxes indicate the number of studies in each box. Among resistance to different types of
chemotherapies, cisplatin resistance has been found to be very common, which is involved
in both paracrine and exosomal cargo modes of action (the shapes in the inset indicate the
types of resistances in different tumors).

Figure 1. Distribution pattern of types of resistance to chemotherapy based on specific mediators of
CAF functions in solid tumors: The four mediators employed by CAFs to orchestrate the development
of resistance to chemotherapy are presented in the cartoon. The most common mode of interaction is
paracrine, wherein CAFs signal to either tumor cells or other components of the TME via characteristic
secretome. In addition to the involvement of the characteristic secretome, exosomal cargos delivering
different miRNAs that target various cell signaling proteins are common mediators of CAF actions.
Among different organ cancers, gastric cancers have been reported to be the most common tumors in
which CAFs are involved in the development of resistance to chemotherapy. The sizes of the boxes
indicate the number of studies in each box. The shapes indicate the types of resistance in different
tumors (inset). L-OHP is a new derivative of oxaliplatin; 5-FU is fluorouracil. Organ tumors are
indicated by their respective ribbon colors. Head and neck cancer: white and burgundy; stomach
cancer: periwinkle blue; colon cancer: dark blue; ovarian cancer: teal; lung cancer: white or pearl;
breast cancer: pink; pancreatic cancer: purple; bladder cancer: blue, yellow, and purple.

Among the different types of solid tumors, gastric cancers have been reported to be
the most common tumors exhibiting CAF-mediated resistance to chemotherapy, which
involve paracrine, exosomal cargo, extracellular vesicle, and secretomic modes of action.
Secretion of IL-11 from CAFs activated the IL-11/IL-11R/gp130/JAK/STAT3/Bcl anti-
apoptosis signaling pathway in gastric cancer cells. Thus, CAF-derived IL-11 secretion
caused resistance to chemotherapy regimens in gastric cancers [41]. In another study, CAF-
induced activation of the JAK-STAT signaling has been proposed to confer chemoresistance
in gastric cancer cells, while interleukin-6 (IL-6) was identified as a CAF-specific secretory
protein that protects gastric cancer cells via paracrine signaling. Interestingly, clinical
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data have shown that IL-6 was differentially expressed in the stromal portion of cancer
tissues, while IL-6 upregulation was positively correlated with poor responsiveness to
chemotherapy [42]. In line with the above facts, several CAF-targeting agents have been
tested in experimental models, as reviewed elsewhere [43]. Resistance to conventional
chemotherapeutics in gastric cancers has been reported to be mediated by CAF-derived
extracellular vesicles [44]. Annexin A6 initiated network formation and drug resistance
within the ECM via activation of beta1 integrin-FAK-YAP signaling. Annexin A6 within
CAF extracellular vesicles has been shown to stimulate FAK-YAP signaling by stabilizing
beta1 integrin at the cell surface of gastric cancer cells, which subsequently induces drug
resistance. In addition to extracellular vesicles, CAFs also communicate via exosomal
cargos, which carry miRNAs and mediate resistance to specific chemotherapeutic agents,
as presented in the following section.

2.2. CAFs and Specific Resistance to Cisplatin

Reports of CAF-mediated development of cisplatin resistance are more prevalent than
any other chemotherapy agent. In certain solid tumors, the mechanism involved intracellu-
lar pathway signaling such as JNK or NF-κB, adhesion molecules such as annexin A3, or
specific proteins such as plasminogen activator inhibitor-1. In lung cancers, CAFs have been
reported to express a higher level of annexin A3 (ANXA3) than normal fibroblasts. The
crosstalk was demonstrated using CAF-CM (CAF-conditioned media) incubation, which
increased the ANXA3 level in lung cancer cells, which subsequently enhanced cisplatin
resistance by inhibiting cisplatin-induced apoptosis involving ANXA3/JNK signaling [45].
In lung adenocarcinoma, cisplatin resistance was associated with the expression of SMAal-
pha expression [46]. In their study, Masuda et al. demonstrated that the inhibition of
plasminogen activator inhibitor-1 increased the chemotherapeutic effect in lung cancer
through suppressing the myofibroblast characteristics of CAFs. CAF-derived IL-8 pro-
moted chemoresistance to cisplatin in gastric cancer via NF-κB activation and ABCB1
upregulation [47]. In bladder cancers, stromal CAFs enhanced cisplatin resistance via
stimulating IGF-1/ERbeta/Bcl-2 signaling, wherein CAFs regulated ERbeta expression
through IGF-1/AKT/c-Jun signaling following c-Jun phosphorylation and promoted ESR2
gene transcription [48]. In other cancers, exosomal cargo carried miRNA to mediate the
CAFs’ effect. In ovarian cancer, CAF-mediated cisplatin resistance was reported to involve
CAF-derived exosomes, which overexpressed miR-98-5p [49]. In immunocompromised
mice, miR-98-5p targeted CDKN1A to inhibit CDKN1A expression and promoted cisplatin
resistance by virtue of cell cycle progression. In head and neck cancer, cisplatin resistance
is perpetrated by CAF-derived exosomal miR-196a targeting CDKN1B and ING6 [50].
Whether the nature of CAF mediators of cisplatin resistance is organ-specific or not needs
to be concluded with more data in this field. From the current literature, it is evident
that exosomal miRNA predominantly mediates platinum-based chemotherapy resistance
(cisplatin and oxaliplatin), with a few exceptions such as tamoxifen resistance in breast [51]
and radioresistance in colorectal cancers [52,53]. In the context of resistance to radiotherapy,
CAFs are highly radio-resistant, even at high doses of radiation. CAFs resist apoptosis
signals following radiation and become senescent, producing a distinct combination of
immunoregulatory molecules. Hence, acquired radio resistance has been associated with
CAF function [54,55]. A recent minireview summarized findings on the interactions be-
tween CAF, ionizing radiation, and immune cells in the tumor microenvironment [56].
Targeting CAFs, regulatory T cells, and tumor-associated macrophages in combination
radio–immunotherapies has been reported to improve cancer treatment [57]. Future studies
will also need to clarify the functional segregation of the two modes of events and whether
it exists in the development of CAF-mediated resistance in solid tumors.

2.3. CAFs and Specific Resistance to Paclitaxel

CAF-mediated resistance to paclitaxel was reported in ovarian cancers. In ovarian
cancers, the lipoma-preferred partner gene has been reported to mediate CAF–endothelial
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cell crosstalk in signaling chemoresistance [58]. CAFs upregulated the lipoma-preferred
partner gene in microvascular endothelial cells via calcium-dependent signaling, and
lipoma-preferred partner expression levels in intratumoral microvascular endothelial cells
correlated with survival and chemoresistance in patients. Lipoma-preferred partners up-
regulated focal adhesion and stress fiber formation to promote endothelial cell motility and
permeability. Experimental suppression of lipoma-preferred partners improved paclitaxel
delivery to cancer cells by decreasing intratumoral microvessel leakiness.

2.4. CAFs and Specific Resistance to a Combination of Cisplatin and Paclitaxel

Specific resistance to a combination of cisplatin and paclitaxel aided by CAFs is
encountered in gastric cancers. Exosomal miR-522 suppressed ferroptosis and promoted
acquired chemoresistance (decreased chemosensitivity) by targeting ALOX15 and blocking
lipid–ROS accumulation involving the intercellular pathway. Both cisplatin and paclitaxel
treatment promoted miR-522 secretion from CAFs by activating the USP7/hnRNPA1 axis,
leading to ALOX15 suppression and decreased lipid–ROS accumulation in gastric cancer
cells [59].

2.5. CAFs and Specific Resistance to Oxaliplatin

CAFs orchestrate oxaliplatin resistance in colorectal cancers [60]. Colorectal cancer-
associated lncRNA is transferred from CAFs to the cancer cells via exosomes, where it
suppresses colorectal cancer (CRC) cell apoptosis, confers chemoresistance, and activates
the Wnt/beta-catenin pathway. Long-non-coding RNA interacts directly with mRNA
stabilizing protein (human antigen R) to increase beta-catenin mRNA and protein levels.
Specific resistance to 5-FU/L-OHP (oxaliplatin) has been reported in colorectal cancers. In
colorectal cancers, chemotherapy resistance was attributed to CAF-secreted exosomes [61].
A direct transfer of exosomes to colorectal tumor cells led to a significant increase in miR-
92a-3p levels in cancer cells. An increased expression of miR-92a-3p activated the Wnt/beta-
catenin pathway and inhibited mitochondrial apoptosis by directly inhibiting FBXW7 and
MOAP1, contributing to stemness, EMT, metastasis, and 5-FU/L-OHP resistance.

2.6. CAFs and Specific Resistance to Gemcitabine

CAF-mediated resistance to gemcitabine involves CAF-derived SDF-1. SDF-1 stim-
ulated malignant progression and gemcitabine resistance in pancreatic cancer due to
paracrine induction of SATB-1 within tumor cells. SDF-1-mediated upregulation of SATB-1
expression in tumor cells contributed to the maintenance of CAF properties, forming a
reciprocal feedback loop involving the SDF-1/SATB-1 pathway [62]. It is apparent from
the results of the above studies that mediators of CAFs in the development of resistance to
different chemotherapeutics are specific not only to organ cancers but also the particular
drug. In an ideal world, we should be searching for an organ-specific blood-based marker
that can correlate or indicate CAF-mediated development of resistance to chemotherapy.

3. CAFs and Resistance to Targeted Therapy in Solid Tumors

CAF-mediated resistance to targeted therapy in solid tumors can be categorized into (1)
specific resistance to hormone-receptor-targeted anti-cancer drugs and (2) specific resistance
to non-hormonal pathway-targeted anti-cancer drugs (Figure 2). One characteristic feature
of this type of resistance is the lack of mediation via miRNA compared to resistance to
chemotherapy. The only exception to this characteristic is a novel subset of CD63+ CAFs
that mediated resistance to tamoxifen in breast cancers via exosomal miR-22 [51]. CD63+
CAFs have been reported to secrete miR-22-rich exosomes, which act through its targets,
ERalpha and PTEN, to confer tamoxifen resistance in breast cancer cells. The details of the
development of resistance to hormone receptor-targeted anti-cancer drugs mediated by
CAFs in breast cancers have been reviewed elsewhere [63]. CAFs have been involved in
mediating anti-androgen resistance in prostate cancers in a paracrine manner. Zhang et al.
identified neuregulin 1 (NRG1) in the CAF supernatant [64]. CAF-derived NRG1 promoted
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resistance in tumor cells through the activation of HER3 involving the NRG1/HER3 axis,
proving a paracrine mechanism of anti-androgen resistance in prostate cancer. In line with
the above fact, an inadequate response to second-generation anti-androgen therapy was
recorded in castration-resistant patients with NRG1 activity.

Figure 2. Distribution pattern of types of resistance to targeted therapy based on specific mediators of
CAF functions in solid tumors: The four types of mediators of action employed by CAFs to orchestrate
the development of resistance to targeted therapy are presented in the cartoon. The most common
mode of interaction is paracrine, wherein CAFs signal to either tumor cells or other components of
the TME via characteristic secretome. In addition to the involvement of characteristic secretome,
exosomal cargos delivering different miRNAs that target various cell signaling proteins are common
mediators of CAF action. The sizes of the boxes indicate the number of studies in each box. The
shapes indicate the types of resistance in different tumors (inset). Organ tumors are indicated by their
respective ribbon colors. Lung cancer: white or pearl; skin cancer: black. liver cancer: emerald green;
breast cancer: pink; prostate cancer: light blue.

The role of the activation of EGFR, Wnt/beta-catenin, Hippo, TGF-beta, and JAK/STAT
cascades in CAFs in relation to the chemoresistance and invasive or metastatic behavior
of cancer cells [65] has strengthened the concept that CAFs should be included as a target
for therapy in solid tumors. CAF-mediated resistance to non-hormonal pathway-targeted
anti-cancer drugs has been observed in lung, breast, melanoma, and hepatocellular cancers.
CAF-mediated non-cell-autonomous adaptive resistance to MET- and EGFR-targeted thera-
pies in lung cancers via a metabolic shift involving paracrine crosstalk between tumor cells
under drug exposure and their surrounding CAFs has been reported [66]. Apicella et al.
demonstrated that with prolonged exposure to tyrosine kinase inhibitors (TKIs), EGFR- or
MET-addicted cancer cells undergo a metabolic shift upregulating glycolysis and lactate
production. High secreted levels of lactate stimulate CAFs to produce hepatocyte growth
factor (HGF) in a nuclear factor kappa B (NFkB)-dependent manner. This HGF, in turn,
activates MET-dependent signaling within cancer cells, counteracting the effects of tyrosine
kinase inhibitors (TKIs). In tumor cells of lung adenocarcinoma with EGFR mutations, pri-
mary EGFR-TKI resistance was associated with high hepatocyte growth factor in CAFs [67].
Conditioned media from CAFs increased the resistance of PC-9 cells to EGFR-TKI, indi-
cating that with the secretion of higher amounts of CAF-derived humoral factors, HGF is

149



Cancers 2022, 14, 1519

responsible for EGFR-TKI resistance [67]. Understandably, this kind of fail-safe metabolic
reprogramming not only allows cellular resistance to the drug but also re-establishes a
tumor–TME circuitry, which can also merge with the local immune signaling [68–71]. As
with prostate cancers [64] and melanomas [72], CAFs have been involved in developing
resistance to targeted therapies in breast cancers. CAFs participate in the HER2-targeted
therapy resistance in breast cancers via the TAF/FGF5/FGFR2/c-Src/HER2 axis [73]. CAF-
derived NRG1 (an HER3 ligand) causes resistance to trastuzumab [74,75], TKIs [76], and
T-DM1 [77] in HER2-positive breast cancers. In the Neosphere trial, HER2-positive breast
tumors with high NRG1 expression appeared to resist trastuzumab–docetaxel but not
pertuzumab–trastuzumab–docetaxel [78]. Guardia et al. identified CAFs as the primary
source of NRG1 in HER2-positive breast cancers. The study showed their role in mediating
resistance to trastuzumab, which can be overcome by dual anti-HER2 blockade following
pertuzumab–trastuzumab [78]. Recently, a study examined the value of ‘pathological reac-
tive stroma’ (defined as stromal-predominant breast cancer) as a predictor for trastuzumab
resistance in patients with early HER2-positive breast cancer receiving adjuvant therapy in
the FinHER phase III trial, reporting an association between trastuzumab resistance and the
presence of ‘reactive stroma’ [79]. The pathological reactive stroma and the mRNA gene
signatures that reflected reactive stroma were tested in 209 HER2-positive breast cancer
samples and were found to be correlated with distant disease-free survival. Interestingly,
reactive stroma did not correlate with tumor-infiltrating lymphocytes. The study concluded
that the ‘pathological reactive stroma’ in HER2-positive or ER-negative early breast cancer
tumors might predict resistance to adjuvant trastuzumab therapy.

In line with the pro-tumorigenic role of ‘pathological reactive stroma’, CAFs are
known to promote organoid tumor growth in co-culture. The paracrine crosstalk between
CAFs and cancer cells regulated physiological characteristics of CAFs, which in turn
imparted resistance to cancer cells. In metastatic melanomas, CAFs resist the function
of BRAF inhibitors via their crosstalk with tumor cells (vascular mimicry), the ECM,
and endothelial cells (neovascularization). The development of drug resistance to BRAF
inhibitors is mediated via ECM reprogramming action of CAFs [19]. Recently, Liu et al.
reported the activation of nuclear beta-catenin signaling in melanoma CAFs during the
development of resistance to BRAF inhibitor or MEK inhibitors, underscoring the role of
BRAF-inhibitor-induced CAF reprogramming in matrix remodeling and the therapeutic
escape of melanoma cells [80].

CAF populations expressing FAP/ITGA11/COL1A1/CCN2 have been shown to be
negatively correlated with disease-free survival in this cancer. The resistance to BRAF
inhibitors is the result of CAF-mediated reprogramming of the ECM. The stiffness of the
ECM caused by CAFs has been associated with integrin-dependent signaling. Fibroblast-
specific production of CCN2, whose overexpression in melanomas was independent of
BRAF mutational status, signals through integrins and was found to be essential for
neovascularization and vasculogenic mimicry. In hepatocellular carcinomas, tumor cells
resist targeted anti-cancer drugs including sorafenib, regorafenib, and 5-fluorouracil in
the presence of CAFs via a direct cell–cell contact, as tested in a transwell system through
paracrine signaling [81].

CAF signaling in the development of drug resistance is tumor-specific in prostate
cancers and lung adenocarcinomas, as presented above. In prostate cancers, CAF-derived
neuregulin 1 NRG1 promotes resistance in tumor cells by activating HER3 involving the
NRG1/HER3 axis, proving a paracrine mechanism of antiandrogen resistance in a paracrine
manner, as presented above [64]. In lung adenocarcinomas bearing EGFR mutations,
primary EGFR-TKI resistance is mediated via hepatocyte growth factor from CAFs. CM
from CAFs increased the resistance of EGFR mutant lung adenocarcinoma cell line PC-9
cells to EGFR-TKI, indicating that the secretion of higher amounts of HGF is the robust
feature of EGFR-TKI-resistance-promoting CAFs [67]. The mode of action of CAFs and
the nature of their involvement with respect to the tumor cells and the TME are less
studied. The pattern of crosstalk is just beginning to emerge, which can define distinct
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therapeutic paradigms. In a recent study, Engelman’s group reported three subtypes of
lung CAFs that can influence the personalized treatment of non-small cell lung cancer
patients. The 3 subtypes of CAFs identified in their study are (1) subtype I with HGFHigh,
FGF7High/Low, p-SMAD2Low, targeting driver, HGF-MET, and FGF7-FGFR2; (2) subtype II
with HGFHigh, FGF7High, p-SMAD2Low, targeting driver, and FGF7-FGFR2; and (3) subtype
III with HGFLow, FGF7Low, and p-SMAD2High [82]. They reported that specific subtypes are
associated with particular functions and clinical responses. Subtype I and II CAFs function
to protect cancer cells, while subtype III CAFs are involved with a better clinical response
via immune cell migration with additional value in immuno-oncology. In addressing the
heterogeneity of CAFs, the study systematically connected functions of subpopulations of
lung CAFs to specific functions of CAFs in the context of clinical response and resistance
to pathway-targeted drugs. Similar studies in the future will delineate the relationships
of the mode of action of CAFs with drugs in organ-type cancers in solid tumors. Despite
the different mediating actions of CAFs, it will be imperative to know how CAFs support
a tumorigenic pathway in cancer cells in the face of pathway-targeted treatment that
ultimately leads to the ineffectiveness of the therapy. Supplemental targeting of CAF
signals opens an opportunity to improve personalized medicine and bears the promise of a
better outcome.

4. Regulation of CAF Functions and Therapeutic Opportunity

4.1. CAFs as the Target within the TME

The irrefutable involvement of CAFs in the development of resistance to chemo- and
targeted therapy and progression as presented above justifies the recognition of CAFs
as a logical target for treatment. The interest in CAFs as a target of therapy arose from
analyses of data from the conventional tumor-cell-centric view of cancer, targeting only the
tumor component. The limited success of tumor-cell-centric therapies is a direct proof-of-
concept that the TME bears undeniable responsibility for successful disease progression in
solid tumors. From the conceptual aspect, any sequence-based therapy primarily refers
to sequencing of the entire tumor tissue, which constitutes both cancer and the TME
(CAFs along with immune cells and angiogenic components). Hence, the approach does
not provide separate information on the subgroups, tumor cell cluster, CAF cluster, or
immune cluster. Intratumoral heterogeneity contributes to the development of resistance
to anti-cancer therapeutics. Thus, the heterogeneity of CAFs presents opportunities for
CAF-targeted cancer therapies in precision medicine [65,83]. However, the burden of cost
and management needs to be taken into account. CAFs as components of the TME have
been targeted to suppress tumor growth [84]. Based on their specific surface markers and
secreted molecules, Laplagne et al. reviewed the potential of targeting different aspects of
CAFs, including cells inducing depletion, reprogramming, differentiation, or inhibition of
their pro-tumor functions or recruitment. Several approaches involving immunotherapies,
vaccines, small interfering RNA, or small molecules were developed to target components
of the TME, as reviewed elsewhere [84].

CAFs are a coherent target in the TME [85]. The versatility of CAFs means they are
a target for anti-tumor therapy to ‘switch off’ the pro-tumor stroma [20,65,86]. There are
five ways to counter the CAF-mediated patronage of cancer cells, which eventually cause
resistance to treatment and disrupt disease management. The strategic points to control the
function of CAFs are (1) preventing the activation of CAFs by targeting or counteracting
signals from tumor cells, (2) regulating the activation of CAFs by targeting the CAF pop-
ulation directly, (3) regulating the pro-tumorigenic signals from CAFs, (4) regulating the
pro-angiogenic signals from CAFs, and (5) regulating the pro-immune evasion and anti-
immune surveillance signals from CAFs (Figure 3). These potential CAF intervention points
represent ‘action items’ to ’switch off’ the pro-resistance CAFs within the tumor stroma.
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Figure 3. Strategic opportunities to regulate CAF functions in an established or progressing solid
tumor. The strategic points to control the function of CAFs are (1) prevention of activation of CAFs by
targeting or counteracting signals from tumor cells, (2) regulating the activation of CAFs by targeting
the CAF population directly, (3) regulating the pro-tumorigenic signals from CAFs, (4) regulating
the pro-angiogenic signals from CAFs, and (5) regulating the pro-immune evasion and anti-immune
surveillance signals from CAFs. These strategic points represent ‘action items’ to ‘switch off’ the
pro-resistance CAFs within the tumor stroma.

4.2. Stromal Normalization and CAF-Targeted Therapy in Combating Resistance to Chemotherapy
and Targeted Therapy

CAFs co-operate with tumor cells to drive the progression of the disease [65–67]. The
progression of the disease can be attributed to this collaboration of CAFs with tumor cells
based on several factors and events, either individually or collectively, including (1) the
EMT; (2) stemness; (3) response to hypoxia; (4) pro-proliferative and anti-apoptotic signals;
(5) immune, metabolic, and ECM reprogramming; (6) metastasis-associated phenotypes;
and (7) escape and resistance to therapy.

CAFs have been targeted using both conventional and unconventional modes of dis-
ease management in solid tumors, diagnostics, and therapeutics. Although CAFs have
been identified using several markers, FAP and alpha-SMA are among the most versa-
tile markers associated with the identification and function of CAFs [87]. FAP has been
targeted in tumors for imaging and therapy using several approaches, including immuno-
conjugates (an antibody–maytansinoid conjugate (mAb FAP5-DM1)), CAR T cells, tumor
immunotherapy, vaccines, peptide drug complexes, FAP inhibitors, and antibodies [87–89].
The depletion of FAP-positive CAFs enhanced anti-tumor immunity, as reported in several
studies [90–94], proving the validity of the target. In fact, co-targeting FAP in combination
with tumor-centric FAP-targeting strategies was shown to be more effective [95–97]. Anti-
FAP antibody sibrotuzumab labeled with 131Iodine has been reported for the treatment of
patients with metastasized FAP-positive carcinomas in a phase I dose-escalation study [98].
To test the diagnostic and prognostic value of the imaging of activated fibroblasts, Lindner
et al. developed the radiotracers FAPI-01 and FAPI-02 with specific binding to human
and murine FAP with a rapid and almost complete internalization [86]. The DOTA-linked
compound FAPI-02 with better pharmacokinetic and biochemical properties was tested
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for quantitative analysis of tracer uptake in 80 patients with 28 different tumor entities
(54 primary tumors and 229 metastases). Their study indicated that FAP inhibitors have a
promising role as tracers for diagnostic applications in desmoplastic tumors.

CAFs have been targeted using nano or gold particles in a radio-pharmacological
manner. CAFs have been reported to be explicitly targeted by nanocarriers with opti-
mized physicochemical properties in liver cancer. Surface-modified nanocarriers with a
cyclic peptide binding to the PDGFRβ or mannose-6-phosphate binding to the IGFRII
effectively directed the drug to activate CAFs in vivo [99]. Gold nanoparticles measuring
20 nm in diameter inhibited CAF activation by disrupting multicellular communication
between the tumor and microenvironment and altering the levels of multiple fibroblast
activation or inactivation proteins, such as TGF-β1, PDGF, uPA, and TSP1, secreted by
ovarian cancer cells and TME cells [100]. Passive and active strategies for the nanodelivery
systems targeting CAFs for improved anti-tumor effect and tumor drug penetration have
been summarized elsewhere [101,102]. The recent advancements in targeting CAFs with
diagnostic and therapeutic radiopharmaceuticals by applying new radiotheranostic com-
pounds (targeted radionuclide imaging and therapy) using clinically identified biomarkers
to improve clinical outcomes are promising [103,104].

CAF targeting has also been studied in rare solid tumors with highly desmoplastic
stroma in intrahepatic cholangiocarcinomas [105–107]. Mertens et al. reported that navi-
toclax induced apoptosis in CAFs and in myofibroblastic human hepatic stellate cells but
lacked similar effects in quiescent fibroblasts or cholangiocarcinoma cells, arguing for the
use of navitoclax (Bcl2/Mcl inhibitor) for destroying CAFs in the TME [108]. In desmoplas-
tic cholangiocarcinoma, the use of light-activated nanohyperthermia has been described to
modulate the tumor microenvironment [109]. A recent study employed multifunctional
iron oxide nanoflowers decorated with gold nanoparticles (GIONF) as efficient nanoheaters
to achieve complete tumor regression following three sessions of mild hyperthermia. CAFs
were targeted via preferential uptake of GIONF. A photothermal depletion of CAFs resulted
in a significant early reduction in tumor stiffness (normalized tumor stiffness) followed by
tumor regression. Katsube et al. employed near-infrared photoimmunotherapy (NIR-PIT)
as a novel method of cancer treatment using a highly selective monoclonal antibody (mAb)–
photosensitizer conjugate against fibroblast activation protein (FAP)-targeted NIR-PIT, in
which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAF-targeted
NIR-PIT: CAFs-PIT) [110]. The elimination of CAFs by CAFs-PIT demonstrated that the
combination of 5-FU and NIR-PIT caused a 70.9% tumor reduction, while 5-FU alone
achieved only a 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich
esophageal tumors in experimental models.

Yet another classic example of stromal resistance mediated through CAFs is repre-
sented by PDAC (pancreatic ductal adenocarcinoma), a disease in which the five-year
overall survival for pancreatic cancer is still less than 10%, despite advances in therapeutic
modalities [111]. Pancreatic tumors present a highly fibrotic stroma containing activated
CAFs, which create an immunosuppressive TME. CAFs secrete immunoregulatory and
chemo-attractive factors, preventing tumor-reactive T-cell responses. Gorchs and Kaipe
summarized different therapy strategies targeting the CAF–T cell axis, focusing on CAF-
derived soluble immunosuppressive factors and chemokines to highlight the strategies
that can be used to target CAFs in the context of the capability of heterogeneous CAFs to
modulate functions of TILs and myeloid cells in desmoplastic pancreatic ductal adenocarci-
nomas (PDACs) [111]. Although the CAF-immune cell dialogue is beyond this review’s
scope, identifying the immunological functions of different CAF subsets (for example,
inflammatory fibroblasts (iCAFs) and myofibroblasts (myCAFs)) that help tumor cells to
(1) evade immune surveillance and (2) potentiate immune exhaustion may be essential for
the development of an effective combinational treatment for desmoplastic solid tumors.
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4.3. CAF-Mediated Immune Reprogramming

Since CAFs induce immunotherapy resistance and influence tumor immunity and
immunotherapy [112,113], CAFs have been targeted using various modes in anti-cancer
immunotherapy [114]. The establishment of mechanisms of CAF-mediated blockade of
CD8+ cytotoxic T-cell accumulation in tumors has provided therapeutic opportunities [115].
CAFs crosstalk and co-evolve with cancer stem cells [116]. Therapeutic targeting of the
manipulation of cancer stem cells [116,117] and immune-reprogramming using CAFs pro-
vides a window of opportunity beyond this review’s scope. In an exceptionally aggressive
and treatment-resistant human cancer, the role of dermal fibroblasts in suppressing the
tumorigenesis has been documented, which are subsequently converted or activated to
CAFs, which are phenotypically and epigenetically different from normal dermal fibrob-
lasts. Flach et al. demonstrated that melanoma cells could stimulate the recruitment of
fibroblasts and activate them, resulting in melanoma cell growth by providing both struc-
tural (extracellular matrix proteins) and chemical support (growth factors). Thus, CAFs
collaborate with melanoma cells and resist drug therapy [118]. Kinugasa et al. demon-
strated that established CAFs enhance tumor growth in vivo in B16 melanoma-bearing
mice. These CAFs strongly express CD44 in the hypovascular and hypoxic areas of the TME
or following treatment with angiogenesis inhibitors. CD44 expression in CAFs maintains
the stemness of cancer stem and initiating cells via direct interaction and is involved in drug
resistance [119]. Bellei et al. reviewed the melanoma–CAF dialogue based on TGF-beta,
MAPK, Wnt/beta-catenin, and Hippo signaling [120]. It makes sense that the activation of
the Wnt/beta-catenin pathway may lead to the expression of CD44 (target gene) in CAFs
and signaling for the stemness-driven drug resistance of the disease.

4.4. CAF-Mediated EMT and ECM Reprogramming

The induction of stemness and EMT are two main phenotypic steps of the multi-step
process of metastasis in solid tumors. It is worth mentioning that stemness and mor-
phological transition between the epithelioid and fibroblastoid features of tumor cells
are closely integrated, especially in the types of solid tumors, wherein cancer cells with
fibroblastoid morphological changes exhibit increased motility and invasiveness due to
decreased cell–cell adhesion, reminiscent of EMT in many solid tumors. In promoting
metastasis, the silencing of DNMT1 is correlated with the enhancement of the induction of
EMT and the CSC (cancer stem cells) phenotype in prostate cancer cells [121]. functional
connection of CAFs in EMT via DNA methylation was presented in the study by Pistore
et al. in advanced prostate cancer. The secreted factors in conditioned media from CAFs
explanted from two unrelated patients were found to stimulate concurrent DNA hypo-
and hypermethylation required for EMT and stemness in PC3 and DU145, indicating that
CAF-released factors induce genome methylation changes required for EMT and stemness
in EMT-prone cancer cells [122]. One such secreted factor from CAFs was reported to be
TGF-beta in several solid tumors [123–126]. Cardenas et al. demonstrated that TGF-beta
stimulated EMT and that metastasis catalyzed the global DNA hypermethylation changes
in the epithelial ovarian cancer cells, while the DNMT inhibitor blocked the hypermethyla-
tion and EMT [127]. In fact, TGF blockade has been reported to improve the distribution
and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma inter-
stitial matrix by decreasing collagen I content to improve the intratumoral penetration of
both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic
Doxil [128]. CAF-induced epigenetic modification of cancer cells leading to drug resistance
could be a potential way to design a CAF-targeted inclusive strategy for therapy in the
future. In line with the association of CD44 expression in CAFs as discussed above, CAFs
have been shown to secrete soluble factors belonging to Wnt family members and the
Wnt/beta-catenin pathway. WNT16B and SFRP2 activated the canonical Wnt pathway in
tumor cells and induced cytotoxic chemotherapy resistance in prostate cancer [129,130]. In
colorectal cancers, chemoresistance in cancer-initiating cells was also increased by CAFs.
Lotti et al. conducted a comparative analysis of matched colorectal cancer specimens

154



Cancers 2022, 14, 1519

from patients before and after cytotoxic treatment to demonstrate a significant increase in
CAFs. Chemotherapy-treated human CAFs promoted cancer-initiating cell self-renewal
via IL-17A, and IL-17A was found to be overexpressed in colorectal CAFs in response to
chemotherapy, as validated directly in patient-derived specimens without culture [131].
The study directly proved that CAFs respond to therapy in favor of tumor cells and strongly
supported the unmet need to include a CAF-directed therapy towards the ‘normalization’
of the ‘resistant stroma’.

4.5. CAF-Mediated Metabolic Reprogramming and Hypoxic Response

As cancer cells biochemically reprogram their metabolism as their hallmark, they
generate lactic acid from glucose or glutamine. Cancer cells export lactic acid out, pre-
venting intracellular acidification causing increased lactate levels and an acidic pH level
in the extracellular milieu [71]. Lisanti et al. reviewed metabolic coupling between mito-
chondria in cancer cells and catabolism in stromal fibroblasts [132]. Unlike tumor cells,
CAFs are catabolic by default. CAFs donate L-lactate, ketones, glutamine, other amino
acids, and fatty acids to cancer cells to metabolize via their TCA cycle and oxidative phos-
phorylation. This metabolic coupling explains how metabolic energy and biomass are
supplied by the CAFs to cancer cells. Lisanti et al. demonstrated that catabolic metabolism
and the glycolytic reprogramming in the CAFs (a loss of caveolin-1 and an increase in
MCT4 in CAF) are influenced by oncogenes in epithelial cancer cells, including BRCA1-
deficient breast and ovarian cancer cells, in concert with the TME [133]. Interestingly,
both oncogenic activation (of RAS, NFkB, and TGF-β) and loss of the tumor suppressor
(BRCA1) have comparable effects on CAF. Arguably, such a ‘metabolic symbiosis’ could
provide an explanation for the ‘fibroblast addiction’ or ’metabolic parasites’ in primary
and metastatic tumor cells [134] and could present a target for therapy, wherein CAFs
could be decoupled from tumor cells. The ensuing hypoxic environment adds yet another
layer to the chemoresistance [135] due to the influence of low pH on the cytotoxicity of
paclitaxel, mitoxantrone, and topotecan [136]. Hypoxia is a fact of life for cancer cells in
solid tumors [137–139]. As a critical player in the development of drug resistance, it is
most logical that CAFs will have a direct role in modulating drug sensitivity or action in a
hypoxic environment. CAFs secrete elements of different angiogenic and immunogenic
signaling pathways, including VEGF and T-cell-mediated cytotoxicity, respectively, under
hypoxic conditions [140–142]. Masamune et al. reported hypoxia-induced pro-fibrogenic
and pro-angiogenic responses in pancreatic stellate cells [143]. Pancreatic stellate cells
expressed several angiogenic molecules, including VEGF receptors, angiopoietin-1, and
Tie-2. Studying the effects of hypoxia and conditioned media of hypoxia-treated pancreatic
stellate cells on cell functions and on human umbilical vein endothelial cells, Masamune
et al. demonstrated that hypoxia accelerated migration, type I collagen expression, and
VEGF production in pancreatic stellate cells. Conditioned media of hypoxia-treated pan-
creatic stellate cells induced migration of pancreatic stellate cells, which was inhibited by
the anti-VEGF antibody. Conditioned media of hypoxia-treated pancreatic stellate cells, on
the other hand, induced endothelial cell proliferation, migration, and angiogenesis in vitro
and in vivo. In line with the above study, endothelial cells co-cultured with CAFs under
hypoxia or exposed to the conditioned medium of hypoxic CAFs have been shown to
sprout significantly more than the normoxic counterpart in breast cancers [144]. These
data functionally connect CAF activity with the tumor angiogenesis and resistance or
metastasis progression associated with tumor cell phenotypes under hypoxic conditions,
strengthening the argument in favor of a CAF-inclusive treatment strategy.

4.6. CAF-Based NIH Clinical Trials

The clinical trials targeting CAFs in solid tumors are based on antagonizing CAF
functions. Overall, trials can be divided into (1) reprogramming of CAFs, (2) inhibition
of CAF functions, (3) targeting of CAF-mediated desmoplasia, and (4) CAF-specific im-
munotherapy. The details of these trials are presented elsewhere [145]. FAP proteins are
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some one of the common targets in the clinical trials related to CAFs. Accordingly, anti-
FAP vaccination has been reported in various tumor models [146]. The other aspects of
CAF-related trials involve targeting the interactions between tumor-promoting CAFs and
the surrounding microenvironment and reprogramming CAFs into quiescent fibroblasts
or reprogramming tumor-promoting CAFs into tumor-restraining CAFs, as presented in
detail elsewhere [147].

Reviewing the CAF-associated clinical trials on the ClinicalTrials.gov site, we present
17 trials involving CAFs (Table 1). These studies have used various aspects of markers or
functions of CAFs, the culture or co-culture of CAFs, testing of drug combinations targeting
CAFs, or disease detection using CAF-based radiochemicals, as mentioned before. The
studies ranged from observational to interventional or treatment to open-label. The primary
purposes also varied from diagnostic to treatment to exploratory basic science. Most of the
trials were conducted in disease conditions of advanced or malignant neoplasms of solid
tumors in adults. Table 1 presents the relevant ongoing and completed trials involving
CAFs posted in ClinicalTrials.gov (as of February 2022). The studies were performed in
advanced or malignant neoplasms of solid tumors in adults, including hepatocellular,
lung, breast, and pancreatic cancers. The observational study, NCT01549275, is among
the two completed studies. This ‘case-only’ prospective study enrolled 105 patients with
hepatocellular carcinomas. The prospective study evaluated the success rate of the primary
culture of hepatocellular carcinoma cells and CAFs from the residual specimens in routine
fine-needle aspiration of hepatic tumors and the potential application of this method as an
additional tool for personalized treatment of patients. The primary outcome measure was
to find the correlation between the growth speeds of the cultured cells and the AJCC TNM
stage (7th Eds) at entering the study within a time frame of 28 days after plating of cells.
The other completed study, NCT02161523, tested the impact of lung CAFs on mast cell
activation in lung cancers. This prospective observational study involved fewer patients
than the first, with non-small cell lung carcinomas. This study evaluated the paracrine
function of CAFs and directly measured the factors in the lung TME (which includes
other cells such as fibroblasts that are attributed to mast cell activation). The trial was
conducted to determine whether CAF cells derived from lung tumors, together with the
lung cancer cells or microvesicles derived from these cells, are able to stimulate mast cells
to degranulate or release various cytokines and chemokines. CAFs were co-cultured with
both lung cancer cell lines (A-549) or microvesicles derived from these cells and the human
mast cell line (LAD2). The collected supernatants were used to determine degranulation
and cytokine release from these mast cells as the primary outcome by measuring the levels
of b-hexosaminidase (a marker for mast cells degranulation) and the cytokines levels within
a time frame of 1–2 weeks.

In addition to the studies covering the functions of CAFs, studies have also been
undertaken to utilize CAFs in developing resistance to chemotherapy in solid tumors in
combination with tumor-centric therapy. The role of CAFs in the reprogramming of the
ECM by altering the state of hyaluronic acid and the consequences for the tumor ECM and
tumor vasculature have been presented in several reviews [148–150]. Hyaluronan synthase
2 has been reported to be expressed in CAFs to promote invasion in oral cancers [151]. An
in vitro evaluation of simultaneous targeting of tumor cells and CAFs with a paclitaxel–
hyaluronan bioconjugate was carried out in non-melanoma skin cancers by Bellei et al. [152].
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CAFs can provide a physical and vascular barrier, depriving the tumor of TILs and
protecting against chemotherapy. Hence, the ‘normalization of the TME’ has been proposed
as a viable target of treatment, especially in solid tumors with high desmoplastic reactions
such as chemotherapy-resistant advanced PDAC. The NCT03481920 study was a pilot
trial of PEGPH20 (pegylated hyaluronidase) in combination with avelumab (anti-PD-L1
MSB0010718C) in chemotherapy-resistant pancreatic cancers. The purpose of this multi-
center, open-label, non-randomized early phase 1 trial (intervention–treatment) was to
evaluate the pharmacodynamics, safety, and efficacy of PEGPH20 in combination with
avelumab in adult patients with chemotherapy-resistant advanced or locally advanced
PDAC. The study tested the hypothesis that elimination of HA (hyaluronic acid) in the
pancreatic TME mediated by PEG PH20 would result in increased tumor vascularization
and vessel patency, as well as stromal remodeling with increased immune infiltration. The
activity of immune checkpoint inhibitors such as avelumab was facilitated by at least two
mechanisms, including an increase in drug delivery and increasing immune infiltration.

Another function of CAFs within the TME is associated with EMT and mesothelial–
mesenchymal transition in the context of peritoneal dissemination. Peritoneal dissemi-
nation is a frequent metastatic route for cancers of the ovary and gastrointestinal tract.
Solid tumors in the abdomen, such as gastric, colorectal, and ovarian cancers, commonly
disseminate via a transcoelomic route, an event associated with a poor prognosis [153].
Metastases are influenced by CAFs, a cell population that derives from different sources.
CAFs are known to derive from mesothelial cells via mesothelial–mesenchymal transition
during a peritoneal metastasis [154]. A type II EMT, known as mesothelial–mesenchymal
transition (MMT), occurs after peritoneal damage. Myofibroblast conversion of mesothelial
cells contributes to peritoneal fibrosis associated with peritoneal dialysis and post-surgical
peritoneal adhesion. In a recent report, Gordillo et al. reported that MMT contributes
to the generation of CAFs in locally advanced primary colorectal carcinomas [155]. In a
prospective recruiting study, NCT03777943, the role of the peritoneal microenvironment in
the pathogenesis and spread of colorectal carcinomatosis (MMT) was evaluated. The study
investigated the extent and role of MMT and CAFs in the pathogenesis of colorectal peri-
toneal carcinomatosis. The primary outcome of the study was the analysis and sampling of
peritoneal tissue via immunohistochemistry of CD44, integrins, ICAM-1, hyaluronate, and
VCAM-1 (adhesion molecules); calretinin, mesothelin, WT1, cytokeratins, and E-cadherin
(mesothelial markers); α-SMA, FAP, and podoplanin (CAF specific markers); and PDGF,
VEGF, and other angiogenesis-related markers within 6 months after the collection of the
samples from patients presenting with colorectal peritoneal carcinomatosis.

Normal residential fibroblasts become activated by tumor cells and are sources of
CAFs. Fibroblast activation protein (FAP) is one of the emerging reliable markers of
CAFs [1,156,157]. FAP is a transmembrane protein expressed on CAFs and has been shown
to be differentially present on a number of solid tumors as a marker of CAFs. FAPs have
been exploited for certain diagnostic and treatment purposes in clinical trials. Radionuclide-
labeled fibroblast activation protein inhibitors (FAPI) targeting FAP as a tracer for PET
imaging have been tested for targeted diagnosis and treatment of cancer. Although the
function of FAP is yet to be established, imaging studies have shown that FAP could be
detected with FAPI PET/CT.

The interventional open-label clinical Trial, NCT04554719, with a primary diagnostic
purpose, studied the clinical application of FAP PET/MRI for diagnosis and staging. This
prospective trial, in which 100 patients with malignant neoplasm participated, was based
on the background that FAP is overexpressed in CAFs, which is closely related to tumor
growth, invasion, metastasis, immunosuppression, and prognosis, while the expression
level of FAP in normal tissues and organs is very low. The trial used integrated PET/MR
and PET/CT with the agent 68Ga-FAPI ((gallium-68 (68Ga)–FAPI) as a new novel positron
tracer and the conventional imaging agent F-18 (fluorodeoxyglucose 18F-FDG) to diagnose
and stage various cancers with the aim of making up for the deficiency in FDG–PET
imaging in the diagnosis and staging of certain cancers. Another clinical trial was named
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NCT04621435, with a primary purpose of diagnosis based on FAP-2286, a peptidomimetic
molecule that binds to FAP. The study was a single-arm prospective trial that evaluated the
ability of a novel imaging agent gallium-68-labeled (68Ga-) FAP-2286 (68Ga-FAP-2286) to
detect metastatic cancer in adults with solid tumors using 68Ga-FAP-2286 tracer. In contrast
to the above studies, the phase 1/2 recruiting trial NCT04939610 (LuMIERE) tested 68Ga-
FAP-2286 and 177Lu-FAP-2286 for the primary purpose of treatment. This multicenter,
open-label, non-randomized study investigated the safety, tolerability, pharmacokinetics,
dosimetry, and preliminary activity of 177Lu-FAP-2286 in 170 participating patients with
advanced solid tumors. Phase 1 of the study evaluated the safety and tolerability of
177Lu-FAP-2286 and determined the recommended phase 2 dose (RP2D) in patients with
advanced solid tumors. Phase 2 of the study evaluated the objective response rate (ORR) in
patients with specific solid tumors. NCT04459273, a prospective exploratory trial, studied
the PET biodistribution of 68Ga-FAPI-46 (FAPi PET/CT) in patients with a wide range
of solid tumors. The study investigated how an imaging technique called 68Ga-FAPi-
46 PET/CT can determine where and to which degree the FAPi (fibroblast activation
protein inhibitor) tracer (68Ga-FAPi-46) accumulated in normal and cancer tissues in
patients. The trial sought to define the biodistribution of gallium Ga 68 fibroblast activation
protein inhibitor (FAPi)-46 (68Ga-FAPi-46) in normal and cancer tissues of patients with
various malignancies.

CAFs are responsible for metabolic reprogramming in the TME, involving ROS in
certain solid tumors [123,158]. The NCT01878695 trial, sponsored by the Sidney Kimmel
Cancer Center at Thomas Jefferson University, on the contrary, plans to assess the feasibility
of evaluating the effects of n-acetylcysteine on tumor cell metabolism by determining the
changes in expression of caveolin -1 and MCT4 in CAFs in pre- and post-therapy breast
tissue samples treated with NAC (N-acetyl derivative of the naturally occurring amino
acid, L-cysteine). This interventional open-label clinical trial with a primary purpose of
treatment is a pilot study of anti-oxidant supplementation with N-acetyl cysteine in stage
0/I breast cancers.

From the detailed overview of the clinical trials presented above, it is apparent that
CAFs offer a reasonable target that is complementary to the tumor-centric management
of the disease. CAFs and their markers offer a basic scientific, diagnostic, and comple-
mentary (companion) treatment opportunity, more so in advanced solid tumors of breast,
pancreas, peritoneal, and lung carcinomatosis. One remarkable fact emerging from the
current literature is the conspicuous lack of basic and translational data regarding gyneco-
logical malignancies such as ovarian and endometrial cancers. The role of the endometrial
stroma in pathogenesis is known, and human endometrial stromal cells have been found to
express CD90, CD10, and CD140b [159]. In situ staining of the human myometrium and
endometrium demonstrated heterogeneous staining for Thy 1. Freshly derived fibroblast
strains from the myometrium and endometrium showed heterogeneous Thy 1 expres-
sion [160]. In fact, the prognostic significance of the tumor/stromal ratio (TSR), which is
established in several solid tumors, has also been reported in endometrial carcinoma [161].
In their first attempt to characterize the fibromyxoid stromal reaction (desmoplasia) and
a lymphocytic infiltrate, Espinosa et al. sought to find out the relationship between the
desmoid-type fibromatosis stromal signature and the presence of desmoplasia [162]. Al-
though a study by Micke et al. failed to find a significant difference in the Kaplan–Meier
plots of the overall survival between stroma-rich and stroma-poor groups of endometrial
patients [163], Espinosa et al. demonstrated that desmoplasia correlated positively with the
desmoid-type fibromatosis expression signature, and stromal signatures have significant
clinicopathological associations. Considering the (1) presence of fibroblasts in the uterine
stroma, (2) the role of CAFs in the neoplastic transformation and progression of the disease,
and (3) the significance of the stromal signature in endometrial cancers, the inadequacy
of data and lack of trials in endometrial cancers remain puzzling. The conspicuous lack
of information on the role of CAFs in the development of drug resistance in endometrial
tumors can be explained by (1) the absence of relevant data regarding the characterization
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of CAFs based on a drug resistance condition in the context of different pathological pa-
rameters, genomic alterations, and outcome data and (2) the absence of a correct model
system. It is understood that a bulk of endometrial cancers are detected early, whereby
patients undergo surgical resection. Drug resistance conditions in the advanced or late
stages in endometrial cancers are rarely presented where the tumor tissue can be accessed
surgically. The characterization of endometrial CAFs and their presentation in the context
of pathological parameters, genomic alterations, and outcome data in the future will pave
the pathway for developing a model to test the functions of endometrial CAFs in a drug
resistance scenario. However, it should be emphasized that we are only beginning to
understand the complexity of the functions of CAFs and their function-specific markers in
solid tumors. The future will unveil the clinical utility of the knowledge.

5. Forward Thinking

Resistance to therapy is a pro-tumorigenic event. CAFs are employed by tumor
cells to create a pro-tumorigenic microenvironment following treatment. Resistance to
treatment is the outcome of a highly efficient adaptive strategy orchestrated by cancer cells
via reprogramming of their default signals, which co-occurs with the reprogramming of
every component of the TME in their favor, including CAFs. Such an opportunistic event
allows the tumor cells to gain contextual survival and progressive metastatic advantages.
Tumor–stroma co-evolution can lead to the development of drug resistance. The liaison
between CAFs and tumor cells can be viewed as a bête noire of therapy. Thus, CAFs as
the critical or indispensable components of stromal resistance to treatment are the most
logical targets within a tumor that has eventually progressed despite therapy. As the roles
of CAFs in several aspects of tumor progression and the development of drug resistance are
unfolding, the notion of CAFs being friend or foe [164] is evolving. CAFs are neither heroes
nor villains [165]. CAFs are less cause for panic but demand more urgent action, especially
in scenarios involving a therapy-resistant progressing tumor. We need to know more
about how CAFs form multi-faceted support systems for drug-resisting progressing tumors
to exercise that knowledge in empowering the management of the disease by including
CAF-directed stromal-targeting agents [166] in the arsenal of targeted therapy options.

The roles of CAFs in several common and rare tumors, as presented above, give us an
idea about their role in (1) tumor progression and (2) modes of development of resistance to
treatment. It has to be recognized that the heterogeneity of CAFs could be associated with
better outcomes or response to therapy as opposed to their pro-tumor actions. Bhattacharjee
et al. demonstrated direct CAF–tumor interactions as a tumor-promoting mechanism,
mediated by myCAF-secreted hyaluronan and inflammatory-iCAF-secreted HGF [167].
The pro-tumorigenic effects seen in their study were opposed by myCAF-expressed type I
collagen, which suppressed tumor growth by mechanically restraining the tumor spread.
Their study directly indicated that there is a scope for the therapeutic maneuvering of
CAF function in favor of the patient outcome by targeting specific signals for the tumor-
promoting function of CAFs, while promoting the myCAF-expressed type I collagen. This
report, similar to other articles [25], indicated the possibility of establishing therapeutically
targetable CAF-subtype-specific mediators for future treatment directed towards stromal
normalization of desmoplastic tumors.

The study of CAFs and their origins, markers, and functions in the development of
drug resistance can be conducted in tumors of the pancreas, breasts, stomach, esophagus,
colorectal, prostate, and lungs, as well as melanoma, head and neck squamous cell car-
cinoma, renal cell carcinoma, and cholangiocarcinomas. Understandably, CAF-inclusive
clinical trials are instituted in these organ cancers via various modes of intervention [145].
In a recent review, Koustoulidou et al. presented an overview of several modes of interven-
tion using (a) anti-FAP mAbs (b)-engineered T-cells expressing an FAP-recognizing mAb
(e.g., CAR-T cells) to target FAP+ CAFs, which resulted in their immune-cell-mediated
destruction and removal, (c) enzymatic breakdown of hyaluronic acid to remodel the ECM
for better accessibility of drugs to immune cells with tumor parenchyma, (d) blocking
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of CAF activity by interleukin-6, (e) transformation of CAFs into the quiescent state by
vitamin D, and (f) blocking of CAF-induced metabolic reprogramming of tumor cells [104].
Recently, organ-specific subtypes of CAFs have been identified and associated with dif-
ferent functions in aiding and abetting tumor cells, as reported by Engelman’s group [82].
Their study will encourage others to study the organ-specific roles of subtypes of CAFs
and their particular modes of action in the progression of tumors.

As we evaluate the participatory role of CAFs in the development of drug resistance
in solid tumors, we will have to design a workable model to test our hypotheses; ideally
on a patient-to-patient basis in the context of each patient’s unique genomic alteration(s).
The possibility of co-targeting CAFs and testing whether they will have a clinical benefit
towards managing the burden of resistance in the future will rely on such a model system,
which will accommodate tailored testing of the roles of patient-derived CAFs in the context
of both tumors cells and other components of the TME. Although much effort is still needed
to translate CAF-directed anti-cancer strategies from the bench to the clinic, the future will
establish the specific modes of action of CAFs in particular organ-type solid tumors, paving
the way for CAF-inclusive personalized therapy in solid tumors.

In summary, we will require actionable insights into the functions of CAF subtype(s)
to incorporate CAF-directed therapy in clinics. Actionable information on the CAF sub-
types in the context of their functions will be needed regarding (1) specific clusters asso-
ciated with immunosuppression and immunotherapy resistance [26], (2) therapeutically
targetable CAF-subtype-specific mediators [25], (3) the Hedgehog pathway inhibition by
a smoothened antagonist, LDE225-mediated differential activation of myCAFs or iCAFs
leading to alterations of cytotoxic T cells and Tregs [30], (4) IL1B blocking agents to coun-
teract the iCAF-mediated pro-tumorigenic actions associated with tolerance to cytotoxic
drugs [33], and (5) differential targeting of tumor-promoting CAF mediators while preserv-
ing the specific anti-tumor functions, for example in the way type I collagen may ‘normalize’
stroma from tumor-promoting to tumor-restricting phenotypes [167].

6. Take-Home Message

The undeniable subpopulation-specific functions of CAFs in tumor growth, progres-
sion, and drug or immunotherapy resistance directly provide evidence for the therapeu-
tically targetable role of CAFs. The aim of normalization of the TME by targeting CAFs
remains unmet. CAFs are heterogeneous and organ-type-specific in origin, markers, and
function. Hence, the best way to develop a ‘workable hypothesis’ for the functions of CAFs
would be to generate strictly organ-specific experimental evidence. It is imperative to know
the functions of specific signals from different CAF subtypes within the TME of organ-type
cancer(s). We can exploit the information for (1) targeting of the pro-normalization signals
from CAFs while attenuating the pro-growth progression and immunosuppressive CAF
signals and (2) identifying potential CAF markers to investigate the mechanisms underlying
the roles of CAFs in the TME.

7. Conclusions

In the era of precision medicine, which offers clinicians to treat patients with genomics-
guided matched drug combination(s), the cure still remains an exception and not the
rule. CAF-mediated development of resistance is the bête noire of chemotherapy and
targeted therapy as CAF directly supports the development of resistance. The state-of-art
management of today’s disease does not necessarily include a CAF-inclusive therapy. We
are just beginning to appreciate that the knowledge about the CAF functions and inhibition
is critical in managing the disease towards developing a CAF-inclusive therapy.
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Simple Summary: Immunotherapy has prompted a dramatic change in the management of head and
neck squamous cell carcinoma (HNSCC), but the percentage of patients benefiting from treatment
is limited to 20% or less. The application of precision oncology to HNSCC introduces the potential
for the emergence of biomarkers that may predict a response to immunotherapy and assist with
the selection of patients that may benefit from treatment with an immune checkpoint inhibitors.
In this retrospective study, the results of tumor mutational burden and programmed death ligand-
1 measurements from HNSCC tumors were evaluated independently for their associations with
demographics, risk factors, disease characteristics, survival, and response to ICI. Results of this study
are expected to assist in laying the groundwork for creating a framework in which PD-L1 and TMB
coexist with other variables to predict response to ICI on an individual level.

Abstract: Failure to predict response to immunotherapy (IO) limited its benefit in the treatment of
head and neck squamous cell cancer (HNSCC) to 20% of patients or less. Biomarkers including tumor
mutational burden (TMB) and programmed death ligand-1 (PD-L1) were evaluated as predictors of
response to IO, but the results are inconsistent and with a lack of standardization of their methods. In
this retrospective study, TMB and PD-L1 were measured by commercially available methodologies
and were correlated to demographics, outcome, and response to PD-1 inhibitors. No correlation
was found between TMB and PD-L1 levels. High TMB was associated with smoking and laryngeal
primaries. PD-L1 was significantly higher in African Americans, patients with earlier stage tumors,
nonsmokers, and nonethanol drinkers. Patients with high TMB fared better in univariate and
multivariate survival analysis. No correlation was found between PD-L1 expression and prognosis.
There was a statistically significant association between PFS and response to IO and TMB. There was
no association between response to ICI and PD-L1 in this study, possibly affected by variations in the
reporting method. Further studies are needed to characterize the biomarkers for IO in HNSCC, and
this study supports further research into the advancement of TMB in prospective studies.

Keywords: HNSCC; TMB; immunotherapy; immune checkpoint inhibitors; PD-L1
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1. Introduction

Prognoses in oncology have dramatically improved with the development of im-
munotherapy (IO), particularly with the advent of immune checkpoint inhibitors (ICI).
Antibodies to programmed death-1 (PD-1) receptor and the programmed death ligand-1
(PD-L1) are specific kinds of ICI which function by inhibiting the binding of the pro-
grammed death-1 (PD-1) receptor to PD-L1, thus allowing tumor cells to be recognized as
“other” and eliminated by a patient’s immune system (Figure 1) [1]. Emerging data indicate
patients with HNSCC are likely to benefit from breakthroughs in ICI, presumably due to the
high levels of circulating immune cells and high levels of neoantigens within these tumors
(Figure 1) [2]. Clinical trials evaluating the response to ICIs in recurrent unresectable and
metastatic HNSCC have shown significant improvement in overall survival (OS) when
PD-1 inhibitors are utilized alone or in combination with chemotherapy [3–7].

Figure 1. A brief review of the mechanism of action of PD-1/PD-L1 ICIs. Abbreviations: MHC, major
histocompatibility complex; PD-1, programmed death-1; PD-L1, programmed death ligand-1; and
TCR, T-cell receptor.

Despite these promising developments, fewer than 20% of HNSCC patients respond to
treatment with ICI within the FDA approved setting, with the majority of patients displaying
primary resistance [8]. With current clinical trials seeking to advance PD-1 ICI to curative
settings, improved patient selection as a means of increasing the percentage of responders is
critical, urging the development of reliable biomarkers predictive of the response to ICI. Many
immune biomarkers including PD-L1 expression, tumor mutational burden (TMB), tumor
immune cell infiltration, circulating immune cells, HPV, changes within the microbiome, and
certain risk factors such as smoking have been suggested as predictors of HNSCC response to
ICI, but the data remain in its infancy, without causative association and often with conflicting
results within the literature [9]. Furthermore, there remains a limited understanding of
how responses to ICI, prognosis, and each of the proposed biomarkers may be impacted by
environmental factors or individual patient characteristics.

As a logical biomarker for the prediction of response to anti-PD1/PD-L1 agents, PD-L1
expression remains the only biomarker studied in prospective clinical trials in HNSCC.
Studies place HNSCC amongst the malignancies with the highest frequency of PD-L1
positivity, defined as PD-L1 expression ≥ 1% when measured by either tumor proportion
score (TPS) or combined positive score (CPS). It has been estimated that between 57% and
82% of HNSCC patients are PD-L1 positive [5,10,11]. PD-L1 expression is often described
as an inexact measurement of response to ICI with levels broadly correlating to response

176



Cancers 2021, 13, 5733

rates; however, it is well known that some PD-L1 negative patients do respond to ICI, and
some patients with high PD-L1 levels do not [12].

Given the inconsistencies in results produced by the utilization of PD-L1 to predict
response to ICI, many alternative biomarkers have been suggested. The chief prospect
amongst these alternatives is TMB, a measure of the total number of coding mutations in a
tumor’s genome and reported in number of mutations per mega base (mut/Mb) of DNA
sequenced [13]. In theory, higher TMB conveys a higher expression of tumor neoantigens,
which elicit an increased antitumor immune response, conferring greater sensitivity to ICI
(Figure 1) [9]. This has been proven to be the case in many malignancies, and at times,
TMB has been reported to outperform PD-L1 in prediction of response; however, the data
are incomplete and occasionally contradictory, and thus no consensus has been reached
regarding widespread clinical use [13–25]. Although TMB has been approved for the
selection of patients with cancer for IO treatment independent of tumor type [26], few
data are available in HNSCC. Additionally, few studies correlate TMB to demographics or
survival of HNSCC patients, and the results of studies that do attempt these correlations
remain inconsistent [26,27]. The predictive power of TMB in regard to response to ICI in
HNSCC also has yet to be defined. To date, there are no prospective studies regarding the
use of tissue TMB as a biomarker to predict response to ICI, but retrospective analyses have
successfully correlated high TMB with response to ICIs in HNSCC [9,24,27–29]. Similarly,
the emerging role of circulating/blood TMB remains undefined, but preliminary results
are promising [30,31].

Inconsistency in results is common in the literature regarding biomarkers such as PD-
L1 and TMB. This is not exclusive to HNSCC. The variation in the assays used to measure
these variables and reporting appear to be important contributors. Standardization efforts
are ahead for PD-L1, with FDA approval of PD-L1 IHC 22C3 pharmDx reported as CPS, as
a companion diagnostic for pembrolizumab treatment in HNSCC. Validation in clinical
research and practice is ongoing. No such efforts have been undertaken for TMB, which
has not yet been evaluated in prospective setting in HNSCC.

Joining the effort to lay a groundwork for the use of PD-L1 and TMB biomarkers
to guide protocols regarding the use of PD-L1 ICI in HNSCC, this retrospective study
correlates the level of expression of these biomarkers with demographic and outcome data
in a dedicated HNSCC population. Additionally, the investigators correlate PD-L1 and
TMB expression with response to PD-L1 ICI in the cohort of treated HNSCC patients. The
primary objective of this study is to investigate the feasibility of continued pursuits of
PD-L1 and TMB in prospective clinical trials in which ICI would be used to treat HNSCC.
Importantly, the commercially available methodologies for measurement of the biomarkers
were utilized.

2. Materials and Methods

This is a single-institution retrospective review of adult patients with HNSCC treated
at the Wake Forest Baptist Comprehensive Cancer Center between August 2014 and October
2020 who had tumor tissue submitted for next-generation sequencing (NGS) and/or PD-L1
testing. The Wake Forest School of Medicine Institutional Review Board (IRB00057787)
reviewed this study and granted approval. HNSCC patients were required to have had
a valid TMB or PD-L1 test to be included in this study. Patients with cutaneous SCC or
salivary gland cancers were excluded.

TMB was measured via FoundationOne (F1) testing (Foundation Medicine, Cambridge
MA, USA) (F1). PD-L1 was analyzed by the standard, FDA-approved, immunohistochem-
istry 22C3 pharmDx kit, performed commercially by F1 and, in a small number of patients,
by Mayo Clinic laboratories. PD-L1 expression was reported as a tumor proportion score
(TPS) until 2019 and by the combined positive score (CPS) thereafter. PD-L1 was analyzed
both as a 3-tiered and 2-tiered variable. The 3-tiered PD-L1 variable (3tPD-L1) was divided
into categories similar to those in Keynote-048 and consisted of three groups: those with
a PD-L1 of 0 (3tPD-L1-(0)), those with a PD-L1 between 1 and 19 (3tPD-L1-(1–19)) and
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those with PD-L1 greater than or equal to 20 (3tPD-L1-(20+)). Due to the low number of
patients in the 3tPD-L1-(0) group, PD-L1 was also analyzed as a 2-tiered variable (2tPD-L1).
In the 2tPD-L1, the 3tPD-L1-(0) and 3tPD-L1-(1–19) were grouped together and referred
to as 2tPD-L1-(<20) and was compared to a group of patients with PD-L1 values greater
than or equal to 20 referred to as 2tPD-L1-(20+). TMB was likewise initially divided into
three categories (3-tiered-TMB) with low scores (TMB less than 6 mut/Mb), intermediate
scores (TMB greater than or equal to 6 but less than 20 mut/Mb), and high scores group
(TMB greater or equal to 20 mut/Mb) as recommended by F1, but, due to poor distribution
across the sample population, no analysis was performed for the 3-tiered variable. Similar
to PD-L1, TMB was recategorized into a 2-tiered variable, with those with TMB scored
less than 6 mut/mb in the TMB-(<6) category and those with TMB of 6 or greater in the
TMB-(6+) category. In instances in which PD-L1 or TMB tests were repeated, the highest
resulted number was reported.

Demographic data and patient characteristics were obtained from the electronic med-
ical record and included age (greater or less than 60 years old), sex, disease stage at
diagnosis per AJCC 8th edition, HPV by PCR or p16 status, smoking status (grouped as
never-smokers vs. ever-smokers, where ever-smokers were defined as former or current
smokers), alcohol use, tumor subsite (oral cavity, oropharynx, larynx, hypopharynx, na-
sopharynx, paranasal sinuses, or unknown primary), and treatment received before tumor
tissue collection (chemotherapy, radiotherapy, or both).

Outcome measures included OS measured from the time of diagnosis and from the
time of tumor tissue collection. Survival at 1 and 2 years measured from the date of tumor
tissue collection, survival at the end of the study, and extent/burden of disease at last visit
were also included in outcome data. It should be noted that for all calculations in which
the extent of disease was measured, three categories were considered. These were defined
as “no evidence of disease”, “localized disease”, and “metastatic disease”. Multivariate
analysis was performed for both TMB and PD-L1 groups separately.

Treatment response was measured by CT or MRI and categorized according to RECIST
v1.1. Patients with complete response (CR), partial response (PR), or stable disease (SD) for
at least 6 months as best overall response (BOR) were grouped in a category called “respon-
ders”. Patients who progressed through the treatment (PD) without achieving a response
as above were called “nonresponders”. Progression-free survival (PFS) was measured from
the first day of treatment with ICI to the day of confirmed tumor progression, or to the day
of death if the patient died before tumor progression was documented, or until the last
visit if there was no tumor progression.

Statistical Analysis

Descriptive statistics were calculated for all variables. These included means and
standard deviations for continuous measures and counts and percentages for categorical
measures. TMB and PD-L1 levels were portioned into tiers as described above (TMB into
2 tiers and PD-L1 into 2 or 3 tiers). We then examined the association between categorical
variables and the TMB/PD-L1 groupings using Fisher’s exact test (for binary variables)
and chi-square test for categorical variables with 3 or more levels. Continuous variables
were compared across TMB/PD-L1 groups using t-tests (for 2 tier groups) and one-way
analysis of variance models for 3tPD-L1. Time-to-event data were examined in two ways:
one examining time from diagnosis until event (i.e., death) and the second examining time
from testing until event. Kaplan–Meier curves were generated for examining survival
distributions both overall and by TMB or PD-L1 groups. Log-rank tests were used to
compare groups. Next, Cox proportional hazards regression models were fit to examine
the relationship of TMB or PD-L1 groups with survival after adjusting for patient level
characteristics including age, tobacco use, tumor site, stage at diagnosis, and prior treat-
ment with combined chemoradiation therapy. Next, we evaluated treatment response to
immunotherapy as BOR and PFS. Fisher’s exact tests and chi-square tests (as described
above) were used to determine whether PD-L1 and TMB categories were associated with

178



Cancers 2021, 13, 5733

the BOR treatment categories. We compared average PFS days between responders and
nonresponders using a 2-sample t-test. Next, we compared PFS days by PD-L1 and TMB
categories as described above using 1-way ANOVA models and PD-L1 and TMB levels
(as continuous values) using Pearson correlations. Hazard ratios and corresponding 95%
confidence intervals were estimated from these proportional hazard regression models. In
all analyses, an alpha level of 0.05 was used to determine the significance of data. Statistical
analysis system (SAS) 9.4 was used to perform all analyses in this study.

3. Results

3.1. Patient Characteristics

In total, 139 patients met inclusion criteria for this study. Of these, 128 patients
had TMB results, 95 patients had PD-L1, and 92 patients had results for both metrics.
The demographic and disease characteristics of the patients included in this analysis are
available for review in Table 1. Age, race, and gender in this study are congruent with a
standard population of patients with HNSCC.

Table 1. Characteristics of all patients included in the study.

Characteristics

TMB
Patients

PD-L1
Patients Characteristics

TMB
Patients

PD-L1
Patients

No. (%) No. (%) No. (%) No. (%)

Age at Diagnosis (Years) Primary Tumor Location
Median 60 61 Nasopharynx 8 (6.2) 7 (7.4)
≥60 64 (50) 50 (52.6) Oropharynx 50 (39.1) 37 (38.9)
<60 64 (50) 45 (47.4) Oral Cavity 33 (25.8) 23 (24.2)

Hypopharynx 7 (5.5) 5 (5.3)
Gender Larynx 22 (17.2) 16 (16.8)

Male 89 (69.5) 68 (71.6) Sino-Nasal 5 (3.9) 4 (4.2)
Female 39 (30.4) 27 (28.4) Unknown 3 (2.3) 3 (3.2)

Race Disease Stage at Time of
DiagnosisCaucasian 108 (84.4) 79 (83.2)

African American 13 (10.2) 13 (13.7)
Other 7 (5.4) 3 (3.1) Cancer Stage

I 19 (14.8) 17 (17.9)
ETOH Status II 21 (16.4) 18 (18.9)

Never 63 (49.2) 46 (48.4) III 29 (22.7) 15 (15.8)
Former 28 (21.9) 22 (23.2) IV 59 (46.1) 45 (47.4)
Active 37 (28.9 27 (28.4)

Cancer Stage IV
Smoking Status IVA 39 (66.1) 29 (64.4)

Never 37 (28.9) 29 (30.5) IVB 14 (23.7) 11 (24.4)
Former 39 (30.5) 30 (31.6) IVC 6 (10.2) 5 (11.2)
Active 52 (40.6) 36 (37.9)

N Stage
HPV and/or p16 N0 37 (28.9) 27 (28.4)

Negative 56 (43.8) 43 (45.3) N1 29 (22.7) 20 (21.1)
Positive 40 (31.2) 29 (30.5) N2 49 (38.3) 37 (38.9)
Not Tested 32 (25) 23 (24.2) N3 13 (10.1) 11 (11.6)

BMI Tissue
Source

<18.5 19 (14.7) 11 (11.9) Primary Tumor 83 (65.4) 55 (60.4)
18.5–24.9 42 (32.6) 33 (35.9) Regional Node 11 (8.7) 10 (11.0)
25–29.9 39 (30.2) 30 (32.6) Metastatic Lesion 11 (8.7) 9 (9.9)
≥30 29 (22.5) 18 (19.6) Recurrence 22 (17.3) 17 (18.7)

Abbreviations: BMI, body mass index; HPV, human papilloma virus; PD-L1, programmed death ligand-1; TMB, tumor mutational burden.
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3.2. Prevalence of PD-L1 and TMB within the Study Population and Correlation between the
Two Variables

Of the 95 patients with recorded measurements of PD-L1 expression, 80 patients
(84%) had results from testing performed by F1, and 15 patients (16%) had results from
testing performed by the Mayo Clinic Laboratory. PD-L1 was measured by TPS in
52 patients (55%) and by CPS in the remaining 43 patients (45%). The mean PD-L1 score
was 26.41% (standard deviation 33.78). The median score was 10%. Twelve patients (13%)
had 3tPD-L1-(0). In addition, 46 patients (48%) had 3tPD-L1-(1–19), and 37 patients (39%)
had 3tPD-L1-(20+) (Figure 2A). The 2tPD-L1 re-distribution resulted in 58 patients (61%) in
the 2tPD-L1-(<20) group and 37 patients (39%) in the 2tPD-L1-(20+) group.

Figure 2. Distribution of continuous PD-L1 and continuous TMB and scatter plot demonstrating the relationship between
each. (A) Distribution of PD-L1 across 3tPD-L1-(0) (group 1, circles), 3tPD-L1-(1–19) (group 2, triangles) and 3tPD-L1-(20+)
(group 3, squares); (B) Distribution of TMB across TMB-(<6) (group 1, circles) and TMB-(6+) (group 2, triangles); (C) Scatter
plot demonstrating the failure of PD-L1 to correlate to TMB. Abbreviations: PD-L1, programmed death ligand-1; and TMB,
tumor mutational burden.
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The mean TMB of the 128 patients included in TMB analysis was 6.98 mut/Mb (standard
deviation 6.85), and the median was 5.0 mut/Mb. The TMB-(<6) category consisted of
70 patients (55%), and 58 patients (45%) were in the TMB-(6+) category (Figure 2B).

A total of 92 patients had both PD-L1 and TMB testing results available. Of these,
12 patients (13%) were in the 3tPD-L1-(0) category, 44 patients (48%) were in the 3tPD-
L1-(1–19) category, and 35 patients (39%) were in the 3tPD-L1-(20+) category. In addition,
38 patients (42%) were in the TMB-(6+) category, and 53 patients (58%) were in the TMB-
(<6) category. There were no statistically significant correlations identified between PD-L1
expression and TMB as categorical variables (p = 0.84) (Figure 2C).

3.3. Correlation between PD-L1 Expression and Patient Characteristics

African Americans had statistically significant higher PD-L1 expression than Cau-
casians, with 69.2% vs. 35.4% classified in the 2tPD-L1 ≥ 20 (p = 0.04). The analysis lost
statistical significance in the three-tiered variant. There were no significant correlations
identified between age or gender and 3tPD-L1 or 2tPD-L1, although it was noted that
patients older than 60 and women regardless of age had a tendency toward higher PD-L1
expression. There was no significant correlation between HPV status and PD-L1, both in
2tPD-L1 (p = 0.74) and 3tPD-L1 (p = 0.35) analysis; however, in the 3tPD-L1 analysis it was
noted that there were no HPV-positive patients in the 3tPD-L1-(0) category, while 18.6% of
HPV-negative patients were 3tPD-L1-(0) (Table 2).

Table 2. Correlation of select demographic and patient specific data with 3-tiered-PD-L1 and 2-tiered TMB categories.

Variable

3tPD-L1 Analysis TMB Analysis

No. (Row %)
p

No. (Row %)
p

≥20 1–19 0 ≥6 <6

Age
<60 14 (31.1) 25 (55.6) 6 (13.3)

0.240
31 (48.4) 33 (51.6)

0.478≥60 23 (46.0) 21 (42.0) 6 (12.0) 27 (42.2) 37 (57.8)

Gender
Male 24 (35.3) 35 (51.5) 9 (13.2)

0.510
37 (41.6) 52 (58.4)

0.199Female 13 (48.1) 11 (40.7) 3 (11.1) 21 (53.8) 18 (46.2)

Race
Caucasian 28 (35.4) 41 (51.9) 10 (12.7)

0.046
52 (48.1) 56 (51.9) 0.087

AA 9 (69.2) 2 (15.4) 2 (15.4) 3 (23.1) 10 (76.9)

HPV
+ 11 (38.0) 18 (62.1) 0 (0.0)

0.354
16 (40.0) 24 (60.0)

0.804− 18 (41.9) 17 (39.5) 8 (18.6) 21 (37.5) 35 (62.5)

Smoking
History

Current 12 (33.3) 17 (47.2) 7 (19.4)
0.044

31 (59.6) 21 (40.4)
0.029Former 10 (33.3) 16 (53.3) 4 (13.3) 13 (33.3) 26 (66.7)

Never 15 (51.7) 13 (44.8) 1 (3.4) 14 (37.8) 23 (62.2)

Alcohol
History

Current 7 (25.9) 15 (55.6) 5 (18.5)
0.012

18 (48.6) 19 (51.4)
0.326Former 6 (27.3) 12 (54.5) 4 (18.2) 15 (53.6) 13 (46.4)

Never 24 (52.2) 19 (41.3) 3 (6.5) 25 (39.7) 38 (60.3)

BMI
≥30 10 (55.5) 7 (38.9) 1 (5.6) 0.072 9 (31.0) 20 (69.0) 0.071
<30 25 (33.8) 37 (50.0) 12 (16.2) 50 (50.0) 50 (50.0)

Previous
CRT

+ 15 (41.7) 16 (44.4) 5 (13.9)
0.868

23 (51.1) 22 (48.9)
0.331− 22 (37.3) 30 (50.8) 7 (11.9) 35 (42.2) 48 (57.8)

Primary
Tumor

Location

OC 10 (43.5) 11 (47.8) 2 (8.7)
0.400

16 (48.5) 17 (51.5)
0.685Other 21 (36.2) 28 (48.3) 9 (15.5) 35 (44.3) 44 (55.7)

Laryngeal 6 (37.5) 8 (50) 2 (12.5)
0.984

16 (72.7) 6 (27.3)
0.004OTT 25 (38.5) 31 (47.7) 9 (13.8) 35 (38.9) 55 (61.1)

OP 15 (40.5) 16 (43.2) 6 (16.2)
0.965

15 (30.0) 35 (70.0)
0.003Other 16 (36.4) 23 (52.3) 5 (11.4) 36 (58.1) 26 (41.9)
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Table 2. Cont.

Variable

3tPD-L1 Analysis TMB Analysis

No. (Row %)
p

No. (Row %)
p

≥20 1–19 0 ≥6 <6

Stage at
Diagnosis

I 10 (58.8) 7 (41.2) 0 (0.0)

0.035

7 (36.8) 12 (63.2)

0.522
II 7 (38.9) 11 (61.1) 0 (0.0) 11 (52.4) 10 (45.5)
III 4 (26.7) 6 (40.0) 5 (33.3) 11 (37.9) 18 (62.1)
IV 16 (35.6) 22 (48.9) 7 (15.6) 29 (49.2) 30 (50.8)

IVA 5 (71.4) 2 (28.6) 0 (0.0)
0.802

22 (56.4) 17 (43.6)
0.146IVB 13 (59.1) 6 (27.3) 3 (13.6) 5 (35.7) 9 (64.3)

IVC 11 (68.8) 3 (18.8) 2 (12.5) 2 (33.3) 4 (66.7)

T0–2 20 (46.5) 23 (53.5) 0 (0.0)
0.008

23 (42.6) 31 (57.4)
0.864T3–4 17 (54.8) 2 (6.5) 12 (38.7) 39 (52.7) 35 (47.3)

N0 11 (40.7) 10 (37.0) 6 (19.4)

0.949

17 (45.9) 20 (54.1)

0.751
N1 9 (45.0) 11 (55.0) 0 (0.0) 11 (37.9) 18 (62.1)
N2 13 (35.1) 20 (54.0) 4 (10.8) 24 (49.0) 25 (51.0)
N3 4 (36.3) 5 (45.5) 2 (18.2) 6 (46.2) 7 (53.8)

M0 34 (38.2) 43 (48.3) 12 (13.5)
0.372

54 (45.0) 66 (55.0)
0.784M1 3 (50.0) 3 (50.0) 0 (0.0) 4 (50.0) 4 (50.0)

Results with p ≤ 0.05 are bolded in italics; results with 0.05 < p < 0.10 are italicized and underlined. 3tPD-L1, 3-tiered PD-L1; AA, African
American; BMI, Body Mass Index; CRT, chemoradiotherapy; HPV, human papilloma virus; OC, oral cavity; OP, oropharyngeal; OTT, other
throat tumors; PD-L1, programmed death ligand-1; and TMB, tumor mutational burden.

In the evaluation of modifiable traits, current nonsmokers had a significantly higher
percentage of patients in the 3tPD-L1-(20+) category when compared with current smok-
ers (51.7% vs. 33.3%; p = 0.04). The same significance held true when never-smokers
were compared to ever-smokers (current and former smokers) (p = 0.04). Similarly, PD-L1
and alcohol use were associated in a statistically significant manner. More than half of
never-drinkers (52.2%) vs. only 25.9% of drinkers were within the 3tPD-L1-(20+) category
(p = 0.01). The statistical advantage was maintained in the 2tPD-L1 analysis (p = 0.04). Low
PD-L1 was also noted to be associated with low BMI, but this trend did not reach signifi-
cance (2tPD-L1 p = 0.088 and 3tPD-L1 p = 0.07). Exposure to radiotherapy, chemotherapy,
or to chemoradiotherapy before tumor tissue collection for NGS or PD-L1 testing did not
correlate with either PD-L1 analysis.

There was no correlation found between 2tPD-L1 or 3tPD-L1 expression and the
primary tumor site (p = 0.36 and p = 0.61, respectively), and no trends were identified to
influence further analysis.

A statistically significant correlation was found in the 3tPD-L1 analysis of the disease
stage (I–IV) at diagnosis, with a higher percentage of patients with early-stage disease
having 3tPD-L1-(20+) (58.8% patients with stage I disease vs. 35.6% with stage IV disease;
p = 0.04). In particular, PD-L1 associated with tumor stage but not with nodal stage. In
early tumor stages (T0–T2), 46.5% of patients were identified with 3tPD-L1-(20+) vs. only
32.7% of patients with tumor stages T3–T4, and 0% patients with early T stage vs. 23% of
patients with advanced T stages were in the 3tPD-L1-(0) group (p < 0.01).

3.4. Correlation between TMB and Patient Characteristics

Due to the extremely low proportion of patients within TMB 20+ category (just five
patients) in the three-tiered TMB variable (Figure 2B), no attempts were made to a three-
tiered TMB correlative analysis. Going forward, all references are limited to the two-tiered
TMB analysis. There were no significant correlations found between the TMB and age
(p = 0.48) or gender. There was a notably higher proportion of women in the TMB-(6+)
group (53.8% vs. 41.6%), but the association was not statistically significant (p = 0.20).
Correlation of TMB with race showed that 48.1% of Caucasians vs. only 23 % of African
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Americans had a TMB-(6+) (p = 0.09). Of note, there was no correlation between TMB and
HPV status (p = 0.80).

Active tobacco users were significantly more likely to be in the TMB-(6+) category when
compared to former and never-smokers (60% vs. 33.3% and vs. 37.8%; p = 0.03). There was no
significant association between TMB and alcohol use. Patients with a body mass index (BMI)
great than 30 were more likely to have low TMB-(<6) (69% vs. 50%), but this trend failed to
meet statistical significance (p = 0.07). Patients with previous exposure to chemoradiotherapy
(CRT) before tumor tissue collection were more likely to be in the TMB-(6+) category but
this trend did not reach significance (p = 0.09). Exposure to treatment with radiation or
chemotherapy or both prior to tissue collection was not associated with TMB.

A strongly significant correlation was found between TMB and primary tumor location
(p < 0.01). Specifically, the patients within the TMB-(6+) category were significantly more
likely to have cancers of the larynx in comparison to other locations (72.7% vs. 38.9%;
p < 0.01) and significantly less likely to have cancers of the oropharynx as opposed to other
locations (29.4% vs. 70.6%; p < 0.01). The stage at the time of diagnosis (I–IV) did not
correlate to TMB. Similarly, there was no correlation between T stage, N stage, or M stage
and TMB.

3.5. Prognostic Value of PD-L1 Expression

For all patients with PD-L1 expression data, the median follow-up time for testing
was 588 days from the time of diagnosis with a median survival time of 791 days (95%
CI 708 to 1199 days). Overall, 47 patients (66%) were alive at one year from diagnosis
and 13 (23.2%) were alive at two years from diagnosis. Survival at one or two years was
not associated with PD-L1 expression level. More than half of surviving patients (67%)
had residual disease at last visit. There was no correlation between PD-L1 groups and the
extent of disease at last visit.

PD-L1 expression did not correlate to survival in 2tPD-L1 or 3tPD-L1 analysis from
time of tissue collection or from time of diagnosis. In the 2tPD-L1 analysis, the median
survival in the 2tPD-L1-(<20) group was 521 days (95% CI 412–1008 days) and was not
significantly different from median survival in the 2tPD-L1-(20+) group, 541 days (95% CI
415–666 days) (p = 0.89). Survival from time of diagnosis was also found to be insignificantly
different between 2tPD-L1 groups where the median survival in the 2tPD-L1-(<20) group
was 1044 days (95% CI 711–1292 days) and the median survival in the 2tPD-L1-(20+)
group was 752 days (95% CI 504–1320 days) (p = 0.47). Differences in survival between
3tPD-L1 groups were similarly unimpressive in regard to time from tissue collection and
diagnosis (p = 0.95 and p = 0.51, respectively). Additional information regarding correlation
between PD-L1 and outcome/survival can be found in Table 3, Table 4, and Figure 3. In an
adjusted Cox proportional hazard regression model, the impact of the 3t-PD-L1 variable
was not related to survival when controlled for age, smoking, nodal status, subsite, and
exposure to CRT (p = 0.09) and related to poorer OS in the two-tiered analysis (p = 0.03)
(Tables 3 and 4). When TMB score was added to the adjusted variables above, the 2tPD-L1
more accurately could predict survival; however, this, too, did not quite reach significance
(p = 0.051) (Table 4).

3.6. Prognostic Value of TMB

For all patients with TMB score data, the median follow-up time was 616 days from
the time of cancer diagnosis with a median survival from diagnosis of 521 days (95% CI
412–1008 days). Overall, 72 patients (69.9%) were alive at one year from diagnosis, and
25 (30.86%) were alive at two years from diagnosis. At the time of the last visit, 39% of
patients had no evidence of disease, 24% had recurrent or progressive locoregional disease,
12% had metastatic disease, and 25% had locoregional and metastatic disease. There was
no association between disease status at last visit and TMB (p = 0.39).
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Table 3. Association of high PD-L1 expression and TMB with survival outcomes.

Survival Start Time
Point

Overall Survival Univariate
Analysis for Highest Scores

Overall Survival
Adjusted Analysis for Highest

Scorers
1 Year OS 2 Year OS

HR 95% CI p value HR 95% CI p value p values

2tPD-L1
From Time of

Diagnosis 1.28 0.72–2.27 0.473
2.02 (1.06–3.86) 0.033 0.951 0.320

From Time of
Sample Collection 1.05 0.57–1.97 0.888

3tPD-L1
From Time of

Diagnosis 0.97 0.42–2.22 0.938
1.28 (0.46–3.61) 0.092 0.522 0.386

From Time of
Sample Collection 0.95 0.41–2.24 0.949

TMB
From Time of

Diagnosis 0.51 0.30–0.86 0.081
0.49 (0.27–0.90) 0.021 0.950 0.121

From Time of
Sample Collection 0.63 0.37–1.06 0.014

Results with p < 0.05 are bolded in italics and underlined; results with 0.05 < p < 0.10 are italicized and underlined. Abbreviations: 3tPD-L1,
3-tiered PD-L1; 2tPD-L1, 2-tiered PD-L1; CI, confidence interval; HR, hazard ratio; PD-L1, programmed death ligand-1; OS, overall survival;
and TMB, tumor mutational burden.

Table 4. Results from adjusted Cox proportional hazard regression models of impact of the presence of PD-L1 and TMB on
overall survival.

3tPD-L1 TMB TMB and 2tPD-L1

HR 95% CI p HR 95% CI p PD-L1
HR

PD-L1
95% CI

PD-L1
p

TMB
HR

TMB
95% CI

TMB
p

Highest
Scoring
Groups

1.28 (0.46–
3.61) 0.092 0.49 (0.27–0.90) 0.021 1.99 (1.0–

3.97) 0.051 0.35 (0.16–0.76) 0.008

p values for Adjusted
Variables

p values for Adjusted
Variables

p values for Adjusted
Variables

Age Below 60
Years Old

(yes vs. no)
0.52 0.508 0.656

Smoking
(never vs.

ever)
0.016 0.058 0.005

N Stage
(N0, N1, N2,

N3)
0.003 0.709 0.007

Subsite
(OP vs. OC vs

Pharynx vs.
other)

0.338 0.126 0.518

Previous CRT
(yes vs. no) 0.027 0.0209 0.182

Analyses with p < 0.05 are bolded in italics and underlined; results with 0.05 < p < 0.10 are italicized and underlined; Abbreviations: 2tPD-L1,
2-tiered PD-L1; 3tPD-L1, 3-tiered PD-L1; CI, confidence interval; HR, hazard ratio; N/A, nonapplicable; CRT, combined chemotherapy and
radiation therapy; PD-L1, programmed death ligand-1; and TMB, tumor mutational burden.
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Figure 3. Kaplan –Meier curves for PD-L1 and TMB variables. (A) Survival from time of diagnosis in patients with
3tPD-L1-(20+) vs. 3tPD-L1-(1–19) vs. 3tPD-L1-(0); (B) Survival from time of tissue acquisition in patients with 3tPD-L1-(20+)
vs. 3tPD-L1-(1–19) vs. 3tPD-L1-(0); (C) Survival from time of diagnosis in patients with TMB-(6+) vs. TMB-(<6); (D) Survival
from time of tissue acquisition in patients with TMB-(6+) vs. TMB-(<6). Abbreviations: PD-L1, programmed death ligand-1;
3tPD-L1-(20+), PD-L1 ≥ 20; 3tPD-L1-(1–19), 0 < PD-L1 < 20; 3tPD-L1-(0), PD-L1=0; and TMB, tumor mutational burden;
TMB-(<6), TMB less than 6; TMB-(6+), TMB greater than or equal to 6. Legend: Blue solid lines indicate survival curves for
patients with TMB-(<6) or with 3tPD-L1-(0); Red dashed lines indicate survival curves for patients with TMB-(6+) or with
3tPD-L1-(1–19); Green dashed lines indicate curves for patients with 3tPD-L1-(20+) in the 3tPD-L1 analysis. Abbreviations:
PD-L1, programmed death-ligand1; and TMB, tumor mutational burden.

Generally, patients within the TMB-(6+) category fared better than those within the
TMB-(<6) category, but differences in survival at 1 and 2 years were not significant (Table 3).
Survival from the time of diagnosis was significantly better in patients within TMB-(6+)
(752 days (95% CI 599–905 days) and 1165 days (95% CI beginning at 902 with the upper
limit not yet reached, p = 0.01). When considered from the time of tumor sample collection,
survival was only marginally better in the TMB-(6+) category (p = 0.08). The survival
significance from the time of diagnosis was upheld in an adjusted Cox proportional hazard
regression model of survival controlled for PD-L1 category, age, smoking, nodal status,
subsite, and previous exposure to CRT (p = 0.02). This remained significant in an analysis
in which 2tPD-L1 was added to the analysis (p < 0.01) (Table 3, Table 4, and Figure 3).

3.7. Treatment with PD-L1/PD-1 Inhibitors and Correlation with PD-L1 and TMB

A total of 79 patients in this study received at least one treatment with an ICI. Treatment
efficacy was able to be evaluated in 51 of these patients. Of the 28 patients that could
not be evaluated, nine patients (32%) received a planned treatment with less than three
administrations of a PD-L1 inhibitor in a neoadjuvant setting and were not able to be
evaluated for treatment efficacy. Nineteen patients (68%) had treatment cessation before
the initial scans to measure therapeutic response, due to treatment toxicity, poor tolerance,
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continued rapid progression of malignancy leading to complications or hospice transitions,
or decision to discontinue treatment by the patient for other reasons. Of the 51 patients
with measurable response, there were 27 patients who progressed, 3 patients with stable
disease, 10 patients with partial response, and 11 patients with complete response. In
total, 44 of the 51 patients were treated with pembolizumab, and only two patients were
treated with a PD-L1 inhibitor within a clinical protocol (Supplementary Table S1). In
all analyses regarding response to ICI, patients who had CR, PR, or SD with more than
6 months duration were grouped in a category referred as “responders” and were compared
against patients with tumor progression referred to as “nonresponders”. Amongst all
51 patients, 24 patients were categorized as responders, and 27 patients were categorized
as nonresponders. Responders received an average 19.6 (range: 3–35) administrations of
an ICI, while nonresponders received only 5.3 (2–9) administrations. The average PFS was
910 days for patients with CR, 388 days for patients with PR, 237 days for the patients
with SD, and 109 days for patients with PD. PFS was statistically significantly longer in
responders with an average of 661.7 days (185 to 1825 days) vs. nonresponders who had
an average of 109 days (63–190 days) (p < 0.01).

Of the 51 evaluable patients, there were 36 patients with available PD-L1 expression
data with 19 patients defined as responders and 17 patients as nonresponders. There
were no associations found between PD-L1 level and response to treatment with ICI.
When compared as a continuous variable, the mean PD-L1 was 26.4 (95% CI 9.6–43.2) in
responders vs. 26.5 (95% CI 11.0–41.9) in nonresponders (p = 0.99). When compared as a
three-tiered variable, the percentage of responders and nonresponders in the 3tPD-L1-(0)
category was 10.5% and 11.6%, respectively, and 36.8% and 41.1% in the 3tPD-L1-(20+)
category (p = 0.89). Similarly, there were no associations identified between PD-L1 and PFS
in patients treated with ICIs. PFS was 208 days for 3tPD-L1-(0), 374 days for 3tPD-L1-(1–19),
and 404 days for the 3tPD-L1-(20+) category (p = 0.66). There was no significant correlation
between PD-L1 measured as a continues variable and PFS (p = 0.62)

There were 40 patients with available TMB data that were able to be evaluated for
treatment response, with 20 patients categorized as responders and 20 patients categorized
as nonresponders. There was a statistically significant association between the response
to treatment with ICI and continuous TMB, with a mean TMB of 11.3 mut/Mb (95%
CI 6.6 mut/Mb-16.0 mut/Mb) in responders and 4.9 mut/Mb (95% CI 3.4 mut/Mb-6.4
mut/Mb) in nonresponders (p = 0.01). Correlation of treatment response with TMB as a
categorical variable demonstrated a similar correlation, with 12 responders (60% of the
total responders) and 6 nonresponders (30% of the total responders) found within the
TMB-(6+) category (p = 0.056). Similarly, there was a statistically significant association of
TMB with PFS when analyzed as a continues variable (p = 0.01), and statistical significance
was maintained in a categorical analysis, with PFS found to be 261.7 days in the TMB-(0–5)
and 538.7 in the TMB-(6+) (p = 0.04).

4. Discussion

The establishment of PD-L1 ICIs has brought about a new era in the management of
patients with HNSCC. Efforts in clinical research are now focused on defining strategies
to increase the efficacy of PD-L1 ICIs by identifying those who are best suited to receive
these therapies. PD-L1 and TMB have been the dominant targets investigated as potential
biomarkers of response to ICIs, yet, especially in HNSCC, the results remain not only scarce
but frequently inconsistent.

In this single-institution retrospective analysis, the PD-L1 and TMB data of 132 HN-
SCC patients (95 patients with PD-L1 data, 128 patients with TMB data, and 91 patients
with both PD-L1 and TMB data) were correlated with their demographics, survival and,
when appropriate, response to ICI. This study population is consistent with a standard
HNSCC population in terms of age, gender, race, smoking, and HPV status (Table 1).
Conventional prognostication tools held true in this analysis. Smoking, as well as advanced
nodal stage were associated with worse survival in a multivariate analysis (Table 4). Both
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PD-L1 and TMB were measured with standardized, commercially available methods. To
the authors’ knowledge, this is one of few studies involving a comprehensive analysis of
both TMB and PD-L1 in a dedicated HNSCC population, utilizing universally available,
standardized measurements of each variable. Published studies present frequently conflict-
ing results, most likely affected by variations in the utilized assays, as well as variations in
the thresholds used to define results.

The median PD-L1 score in this study was 10%, and 87% of patients with PD-L1 data
expressed PD-L1 positivity (PD-L1 expression ≥ 1). This proportion of PD-L1 positive
disease is slightly higher than previous HNSCC cohorts analyzed in the literature where
studies have demonstrated positivity rates between 57% and 82% [5,10,11]. It was thought
that earlier disease stage might account for this finding, as significantly more patients in
this study who were diagnosed at an earlier stage (overall and with respect to T stage
alone) were found to have higher PD-L1 expression (Table 2), and there was a relative
surplus of early-stage patients in the study cohort in comparison to the predominance of
recurrent/metastatic disease in cohorts from the literature.

PD-L1 was evaluated as both a three-tiered and two-tiered variable. The tier cutoff
points of the 3tPD-L1 variable were influenced by the KEYNOTE-048 study [32]. Although
the three tiered approach had the considerable advantage of distinguishing PD-L1 negative
disease (3tPD-L1-(0)), an important category in the decision tree guiding therapy in the
current standard first line management of metastatic/recurrent HNSCC, the distribution
of the patients in the resultant groups were dissimilar. In an attempt to help offset the bias
introduced by the lack of uniformity in the methods used to measure PD-L1 expression
(TPS vs. CPS) and the low number of patients in the 3tPD-L1-(0) group, the decision
was made to combine the lower two categories into a single group, thereby generating
the two-tiered variable (2tPD-L1). Ultimately, there were more significant associations
between the 3tPD-L1 variable and demographic data, thus illustrating the importance of
distinguishing PD-L1 positivity from PD-L1 negativity in HNSCC.

The median TMB analyzed was 5 mut/Mb, consistent with other reports [33]. Al-
though the split of TMB between groups was based on Foundation Medicine guideline,
the groups would be similar for a threshold based on median TMB, with 70 patients in
the TMB-(<6) group and 58 patients in the TMB-(6+) group. Similar to the reports in HN-
SCC [27,28] and in other malignancies [24,33,34], this study demonstrated that there was
no significant relationship between PD-L1 and TMB, reflecting the dynamic interactions
between the two variables.

This study is the first to demonstrate an association between higher PD-L1 expression
and the African American race. This held true in both the 2tPD-L1 and the 3tPD-L1
analysis. Notably, the 3tPD-L1 analysis also correlated Caucasian race to lower PD-L1 in a
statistically significant manner. Conversely, a higher proportion of Caucasians had high
TMB-(6+) than African Americans (48.1% vs. 23%), although this higher proportion was
not statistically significant.

A study of The Cancer Genome Atlas (TCGA) HNSCC population did not find any sig-
nificant correlation between TMB and race or gender but did identify a statistically significant
association between high TMB and age above 60 [34]. This finding was confirmed by other
reports on the same public TCGA HNSCC database [35] as well as in another study involving
100,000 human cancer genomes in which many malignancies were considered [33]. Such
correlations of TMB or PD-L1 with age were not identified in this study.

Female gender was the only category in this analysis to show a trend toward both
higher PD-L1 expression (48% of females vs. 35.3% of males were in the 3tPD-L1-(20+)
group) and higher TMB (53.8% of females vs. 41.6% of males were in the TMB-(6+) group).
This trend did not reach statistical significance possibly due to the inherent lower number
of females inflicted by this type of cancer and subsequently being included in our analysis.
Similar association of PD-L1 overexpression with female gender was reported by two
studies in patients with oral cavity SCC [36,37], while a retrospective study of patients with
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oropharyngeal HNSCC reported no significant difference in age and gender and PD-L1
expression [38].

Smokers were found to have both a lower level of PD-L1 expression and higher TMB,
compared with never-smokers or former smokers. This TMB finding is further supported
by two other recent reports. One such project was dedicated to a population size similar
to this study [28] and another analyzed the TCGA-HNSCC [34]. Our study additionally
demonstrated an association between alcohol consumption and lower PD-L1 expression.
A review of the literature revealed two studies, focused on oral cavity SCC on this topic
(a meta-analysis [36] and a smaller retrospective study of 55 patients [39]) which found a
similar significant relationship between low-PD-L1 with alcohol consumption.

There are no consensus data regarding HPV status in association with PD-L1 and
TMB. Previous studies in HNSCC concerning patients treated with surgery and adjuvant
CRT [40] and those with oropharyngeal primaries [41] reported a significant correlation
of PD-L1 expression with p16 status. Conversely, another study regarding patients with
oropharyngeal SCC did not identify any significant difference in PD-L1 expression between
HPV positive and negative tumors [38]. Similarly, there are conflicting data in the literature
concerning the relationship between HPV/p16 and TMB. Some studies have shown that
high TMB was associated with HPV negative disease [28,42], and others have demon-
strated no significant correlation between the two variables [34]. There was no significant
association between HPV and PD-L1 or TMB in this study. It was noted, however, that
more patients with HPV negative disease were in the 3tPD-L1-(0) group (18.5% of patients),
and no patients with 3tPD-L1-(0) had HPV positive disease. Although these findings did
not reach significance, they support the theory that the relationships between PD-L1, TMB,
and immune cell infiltration are more complicated and the immune pathways that assist in
response are influenced by many components of the tumor microenvironment including
HPV status, alcohol use, and/or tobacco use [42].

In this cohort, a trend that did not reach statistical significance suggested that BMI
greater than 30 was associated with high PD-L1 and low TMB. Interestingly, reports in
976 patients with diverse tumors treated with PD-1/PD-L1 inhibitors showed that the
response to treatment was significantly higher in overweight/obese patients compared to
nonoverweight patients [43].

In concordance with two other reports on patients with HNSCC [34,44], this study
found that TMB was associated with tumor location in a statistically significant way. The
proportion of patients with laryngeal tumors was significantly increased, and oropharyn-
geal cancer decreased, in the TMB-(6+) group when compared to patients with any other
throat tumor location. No correlation of PD-L1 with tumor location was identified.

Advanced cancer stage (I–IV) and advanced T stage (T3–T4 vs. T0–T2) were associated
with low PD-L1 in this analysis. Of the 12 patients with PD-L1(0), seven patients had
T4, and five patients had T3 tumors (Table 4). This finding is supported by a meta-
analysis in patients with oral cavity SCC [36] but diverges from a study in oropharyngeal
cancer [38]. Furthermore, in a review of a TCGA HNSCC population, Zhang et al. reported
an association of advanced clinical stage and large tumor size with TMB rather than with
PD-L1 [42]. This correlation was not identified in our study.

PD-L1 did not correlate with survival at 1 or 2 years or with OS in univariate analysis
(Table 3). In the multivariate survival analysis of the 2tPD-L1 variable, 2tPD-L1-(20+) predicted
worse survival comparative with 2tPD-L1-(0–19). Previous studies have found the same,
including one meta-analysis and two retrospective reviews, all addressing oral cavity SCC
patients [36,37,45]. Another meta-analysis in HNSCC and a study in oropharyngeal SCC
patients reported no association of PDL1 expression with survival [38,46]. Conversely, three
retrospective reviews of HNSCC patients reported the association of PD-L1 expression
with improved OS [40,47–49].

TMB significantly correlated with OS measured from the time of diagnosis (Table 3).
This significance was maintained in a Cox proportional hazards regression model when
adjusted for age, tobacco use, tumor site, nodal stage at diagnosis, previous treatment

188



Cancers 2021, 13, 5733

with chemotherapy, radiation or combined chemoradiation therapy, and PD-L1 level in
a multivariate analysis model (Table 4). Similar with PD-L1, the literature reports are
controversial regarding TMB’s association with survival. This is not surprising given the
expected influences of disease characteristics, treatment, biopsy sites, and the variability in
measurement techniques. Additionally, the finding that those in the higher TMB group
had a better response to PD-L1 ICI in combination with the facts that a high proportion
of our patient population had TMB-(6+) and were treated with PD-L1 ICI, most likely
influenced survival in this study. Reports in the literature support the correlation between
high TMB and improved OS, including the reports of univariate and multivariate survival
of patients with oral cavity squamous cell cancer treated with surgery as their primary
intervention [50]. Conversely, a multicenter retrospective study of patients treated with
definitive CRT found a significant correlation of TMB with poor survival [51]. Finally, a
study of 10,000 patients from TCGA with different tumors showed an association of TMB
with response to IO but not with OS [25].

A total of 79 patients in this study received at least one treatment with an ICI, of which
51 patients were evaluable for treatment response. It should be noted that the percentage
of responders in this study is higher than previously reported in the literature (26.5%),
with a particularly high percentage of patients with CR (13.9%). This finding might be
correlated with the fact that almost half of these patients (5 out of 11 patients) were treated
with other therapeutic interventions that might have potentiate immune response to ICIs
(palliative radiotherapy (three patients), combined palliative chemotherapy (one patient),
and concurrent definitive chemoradiotherapy for a second head and neck cancer primary
(one patient)) (Supplementary Table S1). One patient with metastatic HNSCC who achieved
a durable CR (1875 days to date, with no recurrence) after just three administrations of
a PD-1 inhibitor will be presented in a separate publication. Of the 51 patients with
evaluable response, 40 patients had TMB results, and 36 patients had PD-L1 results. There
was a statistically significant association between the response to treatment with ICI and
continuous TMB score with a mean TMB of 11.2 in responders and 4.9 in nonresponders
(p = 0.01). Evaluation as a categorical variable demonstrated that 66.6% of the responders
and 33.3% of the nonresponders were within the high TMB (6+) category (p = 0.055).
Furthermore, TMB corelated significantly with PFS in both categorical and continuous
analysis. There are other published reports supporting TMB as a possible predictor of
response to ICIs. In a retrospective analysis of 126 HNSCC patients treated with anti-PD-
1/PD-L1 agents, TMB was found to be significantly higher among responders (21.3 vs.
8.2 mut/MB, p < 0.01) [28]. The study of a cohort from KEYNOTE-012 sought to characterize
this further and demonstrated that TMB was predictive of response to pembrolizumab
in HPV negative patients but not in HPV positive patients [29]. Finally, though the role
of circulating/blood TMB has yet to be defined, retrospective studies in HNSCC have a
linked response to ICI with circulating/blood TMB ≥ 16 mut/Mb [45,47].

There was no association between response to treatment with ICI or PFS and PD-L1
level analyzed as a categorical (p = 0.66 and p = 0.89, respectively) or continuous variable
(p = 0.62 and p= 0.99, respectively). In this study, PD-L1 values were measured by both
TPS (55% of patients) and CPS (45% of patients), and due to the small sample size, no
attempts were made to separate the analysis of PD-L1 by the reporting technique and
correlate each of these distinct groups with PFS or response to treatment with ICI. It should
be noted that the literature suggests that such an analysis could yield a different result;
KEYNOTE-040 and -048 reported PD-L1 by CPS and demonstrated a significant correlation
between PD-L1 and response to ICI [10,52,53], but CHECKMATE-141 failed to show a
significant correlation between tumor response to Nivolumab and PD-L1 overexpression
when PD-L1 was reported by TPS [5].

In summary, this study reported significant association of high PD-L1 expression with
the African American race, nonsmoking and nonalcohol use, with early clinical cancer stage
and early tumor stage, and with poor survival in a multivariate analysis. No predictive value
for PFS or for BOR to ICIs was identified in the PD-L1 analysis. High TMB was reported to
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be significantly associated with smoking, tumor location in the larynx, and survival in both
univariate and a multivariate analysis, as well as with PFS and BOR to ICIs.

Notably, this study comprehensively analyzed both PD-L1 and TMB in a dedicated
HNSCC cohort. The utilization of standardized, commercially available methodologies
is another unique feature among reports in HNSCC, encouraging the reproducibility and
building of a consistent database. A direct comparison between TMB and PD-L1 results
was not employed due to the variation of PD-L1 reporting (TPS and CPS) triggered by the
more recent approval by the FDA of CPS as a companion diagnostic. The other limitations
of this study include the retrospective nature of the review and a limited sample size,
especially in the analysis regarding response to ICI.

Future Directions

Furthermore, additional studies are needed to generate the necessary context and
framework of standardized variables aimed to predict response of HNSCC to IO in general
and to ICIs in particular. The standardization of assays is the next step in assisting with the
creation of consistent results and the development of thresholds for high and low scoring
groups that are both sensitive and specific in HNSCC for further predictive analysis. The
recent availability of TMB as a circulating biomarker that bypasses the need for tissue
procurement and allows a dynamic assessment makes it a more attractive biomarker. The
association of TMB with prognosis and response to ICI presented by this study and others
warrants further attention and prompts the advancement of TMB in future prospective
clinical studies of ICIs, with the ultimate goal of becoming a companion diagnostic for
recommendation of ICIs in HNSCC.

5. Conclusions

ICIs have changed the landscape of the treatment of HNSCC. Regardless, less than
20% of the treated patients benefit from these novel therapeutics, prompting urgent studies
to help identify predictors of response and improve patient selection. This study has
demonstrated the utility of TMB as a prognostic variable and predictive marker of response
to ICI. In addition, the study pointed to the significant association of high TMB with active
tobacco use and with primary tumor location in the larynx. High PD-L1 values were
associated with the African American race, high T stage, high overall disease stage, non-
/ex-smokers, and non-/ex-drinkers. More information is needed to create a framework
in which PD-L1 and TMB co-exist with other variables to predict response to ICI on an
in-dividual level. Nonetheless, the existing data for each of these independent variables
are promising in the world of precision oncology, and the results of the current study argue
for the advancement of TMB in prospective research.
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Abstract: Thymomas are rare mediastinal tumors that are difficult to treat and pose a major public
health concern. Identifying mutations in target genes is vital for the development of novel therapeutic
strategies. Type A thymomas possess a missense mutation in GTF2I (chromosome 7 c.74146970T>A)
with high frequency. However, the molecular pathways underlying the tumorigenesis of other
thymomas remain to be elucidated. We aimed to detect this missense mutation in GTF2I in
other thymoma subtypes (types B). This study involved 22 patients who underwent surgery for
thymomas between January 2014 and August 2019. We isolated tumor cells from formalin-fixed
paraffin-embedded tissues from the primary lesions using laser-capture microdissection. Subsequently,
we performed targeted sequencing to detect mutant GTF2I coupled with molecular barcoding. We used
PyClone analysis to determine the fraction of tumor cells harboring mutant GTF2I. We detected the
missense mutation (chromosome 7 c.74146970T>A) in GTF2I in 14 thymomas among the 22 samples
(64%). This mutation was harbored in many type B thymomas as well as type A and AB thymomas.
The allele fraction for the tumors containing the mutations was variable, primarily owing to the
coexistence of normal lymphocytes in the tumors, especially in type B thymomas. PyClone analysis
revealed a high cellular prevalence of mutant GTF2I in tumor cells. Mutant GTF2I was not detected in
other carcinomas (lung, gastric, colorectal, or hepatocellular carcinoma) or lymphomas. In conclusion,
the majority of thymomas harbor mutations in GTF2I that can be potentially used as a novel therapeutic
target in patients with thymomas.

Keywords: thymoma; driver mutation; sequencing; molecular barcoding

1. Introduction

Thymoma is a relatively rare mediastinal tumor that is difficult to treat [1,2]. Based on the
histological classification by the World Health Organization, thymomas can be categorized into the
types A, AB, B1, B2, and B3 depending on the tumor cell morphology and proportion of coexisting
lymphocytes [3]. Thymomas of the A category are the least aggressive with the best prognosis;
the extent of aggressiveness increases and the prognosis worsens according the order: type A, AB, B1,
B2, and B3 [4,5]. Owing to the absence of effective treatment other than surgical resection, there is an
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urgent need to develop novel drug therapies for patients with inoperable advanced-stage thymomas
and those with postoperative relapses of the tumor [6–9].

Analyzing the mutant genes present in thymomas is important in identifying novel treatment
strategies. Recent studies showed a missense mutation (chromosome 7 c.74146970T>A) in GTF2I (GTF:
general transcription factor) present with high frequency in type A thymomas [10,11]. Thymomas are
encapsulated tumors. Type AB thymomas histologically comprise a complex mixture of type A and
B thymomas. Thus, it seemed unreasonable to hypothesize that mutations in GTF2I account for the
development of the type A component, with other mechanisms responsible for the development of the
type B component. Thus, we focused on the importance of mutations in GTF2I in the development
of type B thymomas using targeted sequencing coupled with techniques in molecular barcoding:
more sensitive and specific assays than the whole-exome sequencing approach used in previous
studies [10,11]. We expect that candidates that are commonly mutated in the majority of thymomas
will help develop novel therapeutic targets in molecular targeting and gene therapies in the future.

2. Results

2.1. Patient Characteristics

We analyzed samples from 22 patients with thymomas who had undergone surgery (n = 21)
or surgical biopsy (n = 1) at Yamanashi Central Hospital between January 2014 and August 2019.
Table 1 shows the clinicopathologic characteristics of the patients, such as the age, sex, histology,
tumor size, stage, smoking status, and diagnosis of myasthenia gravis. Among the 22 patients, 12 and
10 were males and females, respectively, and 14 and 8 were smokers and non-smokers, respectively.
Using histological examination, there were five, three, seven, five, and two patients with type A, AB,
B1, B2, and B3 tumors (Table 1). There were no cases of micronodular thymoma. The 22 patients
recruited in this study were divided according to the Masaoka stages: stage I (n = 7), II (n = 12),
III (n = 2), and IV (n = 1). The maximum tumor diameter ranged from 20 mm to 95 mm (mean tumor
diameter, 43.6 ± 22.8 mm). The age of the patients ranged between 42 and 81 years (66.5 ± 12.6 years).
One patient with type B2 thymoma exhibited comorbidity with myasthenia gravis (Case 16; Table 2).

Table 1. Patient Characteristics.

Parameter Number of Patients Overall Percentage

Total number 22

Age (years), median (range) 66 (42–81)

Sex

Male 12 54.5%

Female 10 45.5%

Histology

Type A 5 22.7%

Type AB 3 13.6%

Type B1 7 31.8%

Type B2 5 22.7%

Type B3 2 9.1%

Tumor size (cm)

≤ 3 9 40.9%

3 < size ≤ 5 9 40.9%

5< 4 18.2%
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Table 1. Cont.

Parameter Number of Patients Overall Percentage

Masaoka Stage

I 7 31.8%

II 12 54.5%

III 2 9.1%

IV 1 4.5%

Smoking Status (B.I.) a

0 8 36.4%

1 < B.I. ≤
600 10 45.5%

600< 4 18.2%

Myasthenia gravis

+ 1 4.5%

− 21 95.5%
a B.I., Brinkman index.

Table 2. Characteristics of the Genomic Clusters.

Patient Age Sex Masaoka Stage Histology GTF2I AF b (%)
Coverage

(Nucleotides)
PD-L1 (%)

1 71 M a I A 40.6 1651 1<
2 65 M I A 45.7 1793 0
3 80 F a III A 66.7 1801 0
4 65 M I A 36.3 3401 30
5 68 F II A 42.8 3343 80

6 76 M II
AB-A 34.3 2149 0
AB-B 11.4 2780 3

7 62 M I
AB-A 35.8 2675 0
AB-B 9.4 2342 0

8 45 F I
AB-A 38.8 7557 0
AB-B 16.0 6065 10

9 42 F II B1 4.5 5639 0
10 76 F II B1 5.0 1623 1
11 48 F II B1 2.0 1867 0
12 73 M II B1 N.D c −
13 46 M II B1 4.3 5158 7
14 76 F II B1 N.D − 70
15 66 M II B1 N.D − 55

16 76 M I B2 N.D − 70
17 65 M II B2 14.1 1652 70
18 53 F I B2 N.D − 50
19 67 M IV B2 N.D − 70
20 44 F II B2 N.D − 60

21 81 M III B3 N.D − 90
22 81 F II B3 40.5 9140 80

a M, male; F, female. b AF, allele fraction. c N.D, not detected.

2.2. Targeted Sequencing

Table 2 shows the data obtained from the sequencing. The sequencing coverage ranged between
1623–9140 (mean ± SD: 3566 ± 2309). We detected point mutations in GTF2I in all the type A and
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AB thymomas; several type B thymomas were also positive for these GTF2I mutations. The type A
and B portions of the type AB thymomas harbored mutant GTF2I. The allele fraction with the mutant
GTF2I was lower in type B thymomas compared to in type A thymomas; this could be attributed to
the presence of normal cells in the tumor specimens. Mutations in GTF2I were detected in 14 out
of 22 patients with thymomas (64%). Mutant GTF2I was detected in at least one sample from all
the subtypes of thymomas (A, AB, B1, B2, and B3). Thus, the GTF2I mutation may well be called a
prevalent mutation in thymomas in general.

2.3. PyClone Analysis

In our analysis of somatic mutations, there was a need to alleviate the allelic imbalances
due to normal-cell contamination, especially in lymphocyte-rich type B thymomas. In this context,
PyClone analysis was performed to estimate the cellular frequency patterns of mutations in a population
of tumor cells. Mutant GTF2I was harbored in ~20%–90% of the tumor cells among all the thymomas
(Figure 1), suggesting a high cellular prevalence of mutant GTF2I. This GTF2I mutation appeared to
trigger clonal expansion and is retained ubiquitously within the tumors of the same clone.

 Type A Type AB Type B

Figure 1. The cellular prevalence of GTF2I in the clonal population. The estimated cellular frequency
for mutant GTF2I is represented by the distribution of the posterior probability using the PyClone
model. The colored part represents the distribution of mutant GTF2I in each tumor.

2.4. PD-L1 Expression

PD-L1 expression was evaluated immunohistochemically in thymomas with the GTF2I mutation
(GTF2I+) and without (GTF2I−; Figure 2A,B). Samples from the GTF2I+ group included 3 PD-L1-positive
and 11 negative cases, whereas those in the GTF2I− group comprised 7 PD-L1-positive and 1 negative
case. The distribution of positive and negative cases was significantly different between the two groups
(p < 0.05; Chi-square test). The staining intensity of PD-L1 was significantly higher in the GTF2I+
group compared to in the GTF2I− group (Figure 2C), which suggests the mutually exclusive presence
of PD-L1 expression and the GTF2I mutation in tumor cells.
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 GTF2I GTF2I

Figure 2. Immunostaining for PD-L1 in thymomas with and without mutant GTF2I. (A) A representative
thymoma with mutant GTF2I (Case 1, type A) shows weak staining for PD-L1. (B) A representative
thymoma without mutant GTF2I (Case 15, type B1) shows relatively strong PD-L1 expression. Each scale
bar indicates 100 μm. (C) The PD-L1 levels were significantly higher in thymomas without mutant
GTF2I. *, p < 0.05.

2.5. Correlation between the Clinical Factors and Genomic Profiles of Patients

The age, sex, smoking habits, tumor size, histological type, Masaoka stage, and PD-L1 expression
were assessed using multivariate analysis to identify factors affecting the mutation status of GTF2I.
Based on a Cox proportional hazards model, the histology and PD-L1 expression were factors that
determined the presence of mutations in GTF2I; sex (p = 0.41), age (p = 0.43), smoking habit (p = 0.68),
tumor size (p = 0.97), and tumor stage (p = 0.46) did not correlate with the mutation status of GTF2I.
In essence, mutant GTF2I was detected at a higher extent in type A and AB thymomas compared to in
types B1–B3. PD-L1-negative thymomas harbored mutant GTF2I significantly more frequently when
compared to PD-L1-positive thymomas (HR: 12.60, 95% CI: 1.19–133.89).

2.6. Peripheral Blood Parameters

Peripheral blood markers were examined to better characterize the cases in reference to the
clinical benefits in immunotherapy. An elevated lactate dehydrogenase (LDH) level was reported to be
indicator of tumor burden that is typically associated with lower response rates to immunotherapy,
while an elevated platelet-lymphocyte ratio (PLR) was also associated with lower response rates
in patients treated with immunotherapy [12]. The pre-surgery blood exam data were analyzed,
which revealed that serum LDH levels were significantly higher in thymomas with mutant GTF2I than
those with wildtype GTF2I (thymomas with mutant GTF2I, 224.3 ± 13.3; thymomas with wildtype
GTF2I, 183.7 ± 12.1; p < 0.05). In addition, the PLR was significantly higher in thymomas with mutant
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GTF2I than those with wildtype GTF2I (thymomas with mutant GTF2I, 137.2 ± 13.1; thymomas with
wildtype GTF2I, 97.0 ± 15.7; p < 0.05).

2.7. Specificity of GTF2I Mutations in Thymoma

In order to examine the specificity of the GTF2I mutation, patients with other malignant diseases
were also enrolled in the study. The patients who underwent surgery or biopsy at our hospital between
January 2014 and August 2019 were enrolled without bias, and they exhibited a wide range of histology
and stages. Mutant GTF2I was not detected in other carcinomas, such as brain cancer, lung cancer,
gastric cancer, colorectal cancer, hepatocellular carcinoma, and breast cancer, or in lymphomas (n = 20
for each, Table 3), indicating the specificity of mutant GTF2I in thymomas.

Table 3. The Presence of Mutant GTF2I in Other Cancers.

Type of Malignancy Age (Mean ± SD) Sex (Male/Female) Frequency of Mutant GTF2I

Brain cancer 51.0 ± 15.5 12/8 0/20
Lung cancer 69.4 ± 8.6 13/7 0/20

Gastric cancer 71.2 ± 11.5 11/9 0/20
Colorectal cancer 65.8 ± 10.6 13/7 0/20

Hepatocellular carcinoma 68.2 ± 11.0 19/1 0/20
Breast cancer 52.7 ± 12.6 0/20 0/20
Lymphoma 58.9 ± 14.1 12/8 0/20

3. Discussion

In this study, we investigated the presence of point mutations in GTF2I in thymomas using
targeted sequencing coupled with molecular barcoding to validate previous findings obtained by
whole-exome sequencing [10,11]. We demonstrated a widespread distribution of mutant GTF2I in all
types of thymomas, including type B. The SIFT and Polyphen 2 algorithms predicted that the GTF2I
mutation (p.L424H) was somatic and altered protein structure and function [13,14]. Mutant GTF2I
did not induce anchorage-independent growth but accelerated cell proliferation in vitro [10]. Type A
thymomas were reported to harbor this point mutation [10,11]; however, our study also demonstrated
the prevalence of this mutation in type B thymomas.

The presence of mutant GTF2I in type B thymomas, in addition to type A thymomas, in this
study, unlike previous studies, can be attributed to three reasons. First, previous studies used
macrodissection on formalin-fixed paraffin-embedded surgical specimens, whereas we performed
laser-capture microdissection. Thymomas comprise tumor and normal cells. In particular, type B
thymomas consist of a significant proportion of lymphocytes [15,16]. Contamination with normal cells
reduces the probability of detecting mutations in tumor cells. We used laser-capture microdissection to
select tumor cells to maximize the chances of detecting the point mutation.

Second, previous reports used whole-exome sequencing, whereas we performed deep-targeted
sequencing with the molecular-barcoding technique. The sequence coverage was more extensive in
our study compared to that in previous studies, and thus the sensitivity and specificity of detecting
mutant GTF2I were theoretically much higher in our study. Third, we excluded the influence of
pseudogenes and manually counted the DNA strands harboring the mutation in the real GTF2I
gene. The pseudogenes could have potentially biased the measurement, thereby reducing the
chance of detecting GTF2I since the heterozygous mutations were present in 1 out 6 (17%) of the
amplicons. Thus, by eliminating such bias, we increased the chances of detecting mutations in GTF2I
by approximately six-fold. Meanwhile, Feng et al. demonstrated that the GTF2I mutation was detected
by quantitative real time PCR and the fraction of mutant GTF2I was the highest in type A and AB
thymomas, followed by type B1, B2, and B3, consistent with our results [17].

The findings in this study will help in developing molecular GTF2I-targeted therapies. Over recent
years, targeted drugs have been shown to exert dramatic effects on various carcinomas and have
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revolutionized cancer treatment [18,19]. For example, first-line therapy can be selected based on the
gene mutation profiles of individual tumors, including epidermal growth factor receptor-tyrosine
kinase inhibitors for lung cancer, mammalian target of rapamycin inhibitors for renal cell carcinoma,
and human epidermal growth factor receptor-2 inhibitors for breast cancer [20–23]. However, there are
no efficacious therapeutic agents for thymomas owing to the lack of knowledge regarding driver
mutations. Empiric therapies constitute the currently available treatment strategies for advanced-stage
thymoma; the outcomes of these therapies are mostly unsatisfactory. The common driver mutation
in GTF2I was detected in ~64% of all thymomas; thus, molecular targeted therapy for GTF2I may be
developed as the primary therapeutic strategy for patients with thymomas in the future.

Immunotherapy has been used in treating various carcinomas. Thus, the GTF2I point mutation
may serve as a neoantigen for use as a therapeutic target. Treatment strategies using this cancer
antigen, such as gene therapy, vaccine therapy, and chimeric antigen receptor T cell therapy coupled
with the antibody against PD-1, may be promising for patients in the future [24,25]. In this study,
PD-L1 expression and the presence of mutant GTF2I were inversely correlated; very few patients were
positive for both PD-L1 and mutant GTF2I. In addition, blood marker data (serum LDH and PLR) in
our study suggested that thymomas without the GTF2I mutation exhibited a higher response rate to
immunotherapy. We hope that, with further studies, molecular targeted therapy and immunotherapy
can be non-redundantly used in different subsets of patients [26].

However, this study is associated with some limitations. First, the patient cohort was relatively
small owing to the rarity of the tumor. Second, patient survival could not be analyzed as no patients
have shown recurrence in the cohort. Third, we sequenced the cell-free DNA in the serum of all
patients, and mutant GTF2I could not be detected in these DNA samples. Liquid biopsies utilizing this
mutation are deemed unavailable based on our data. In this context, a larger series will be needed
to more comprehensively evaluate the genomic landscape of thymomas and more clearly elucidate
associations with clinical parameters in a more comprehensive multivariate analysis. However, as the
major aim of this preliminary analysis was to identify the driver mutation that should be prioritized
for clinical development, the modestly sized sample can still provide useful insights.

4. Methods

4.1. Patient Cohort and Sample Preparation

In this study, we unbiasedly enrolled 22 patients who underwent surgical resection for thymoma
at our hospital between January 2014 and August 2019. We obtained written informed consent
for genetic research from all the patients in accordance with the protocols approved by the
Institutional Review Board at our hospital (Institutional Review Board at Yamanashi Central Hospital).
The specimens were categorized histologically based on the classification guidelines by the World
Health Organization [16,27], and staged according to the Masaoka staging system [7,15,28]. Sections of
formalin-fixed and paraffin-embedded tissues were stained with hematoxylin-eosin and microdissected
using the ArcturusXT laser-capture microdissection system (Thermo Fisher Scientific, Waltham, MA,
USA). For type AB thymomas, the type A and B portions were microdissected and examined separately.
The GeneRead DNA FFPE Kit (Qiagen, Hilden, Germany) was used according to the manufacturer’s
instructions, and the DNA quality was checked using primers against ribonuclease P.

4.2. Targeted Deep Sequencing and Data Analysis

There were two pseudogenes with 99.4% sequence homology within approximately 500 base pairs
upstream and downstream of the mutation site in GTF2I that limited the detection of GTF2I mutations.
A single base difference (cytosine (C) in GTF2I and thymine (T) in the pseudogenes) upstream of the
mutation site was used to identify GTF2I (Figure 3). Thus, we designed our primers for the polymerase
chain reaction of the region inclusive of this single nucleotide variation. The primers were designed
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for use in targeted sequencing using Ion AmpliSeq Designer (Thermo Fisher Scientific) as described
previously [29–38].

 
Figure 3. Sequence alignment of GTF2I (main) and its pseudogenes showing the single nucleotide
variation (as indicated by the arrow) upstream of the point mutation (*). The substitution mutation
(* mutation site, thymine (T)>adenine (A)) on the true GTF2I DNA strand with cytosine pointed by the
arrow was categorized as the true mutation.

Multiplex PCR was performed with an Ion AmpliSeq HD primer and Ion AmpliSeq HD Library
Kit (Thermo Fisher Scientific) in accordance with the manufacturer’s instruction. Primer sets comprised
two different primer pools. The reaction mixture comprised 3.7 μL of 4× Amplification Mix, 1.5 μL
of 10× forward primer mix, 1.5 μL of 10× reverse primer mix, 1–20 ng of FFPE or plasma DNA,
and nuclease-free water up to a 15 μL total volume. PCR was performed to amplify the target regions
with the following cycling conditions: three cycles of 99 ◦C for 30 s, 64 ◦C for 2 min, 60 ◦C for 6 min,
and 72 ◦C for 30 s; 72 ◦C for 2 min; and a final hold at 4 ◦C. After combining the PCR products,
the amplicons were partially digested with 5 μL of SUPA reagent. The reactions were performed using
the following conditions: 30 ◦C for 15 min, 50 ◦C for 15 min, 55 ◦C for 15 min, 25 ◦C for 10 min, 98 ◦C
for 2 min, and a hold at 4 ◦C. The libraries were amplified with 4 μL of Ion AmpliSeq HD Dual Barcode
Kit with the following conditions: 99 ◦C for 15 s; 5 cycles of 99 ◦C for 15 s, 62 ◦C for 20 s, and 72 ◦C for
20 s; 15–17 cycles of 99 ◦C for 15 sec and 70 ◦C for 40 s; 72 ◦C for 5 min; and a hold at 4 ◦C.

The sequencing libraries were prepared using the Ion AmpliSeq™HD Library Kit (Thermo Fisher
Scientific) as previously described [39]. After barcoding with Ion AmpliSeq HD Dual Barcode Kit
(Thermo Fisher Scientific), the libraries were purified using Agencourt AMPure XP (Beckman Coulter,
Brea, CA, USA) and quantified using the Ion Library Quantitation Kit (Thermo Fisher Scientific).
Emulsion PCR and chip loading was performed on the Ion Chef with the Ion 540 Kit-Chef or Ion PI
Hi-Q Chef kit; sequencing was performed using Ion 540 Kit-Chef on the Ion GeneStudio S5 Prime
System or Ion PI Hi-Q Sequencing Kit on an Ion Proton Sequencer (Thermo Fisher Scientific).

4.3. Molecular Barcoding

The raw data were analyzed using Torrent Suite version 5.10.0 and processed using the standard
Ion Torrent Suite Software running on the Torrent Server. The pipeline consisted of signal processing,
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base calling, quality score assignment, read alignment to the human genome 19, quality control of the
mapping, and coverage analysis. Single nucleotide variants, insertions, and deletions were annotated
using the Ion Reporter Server System (Thermo Fisher Scientific). The data were visualized with the Ion
Reporter™ Genomic Viewer. We manually counted the GTF2I DNA strands with C at the site of the
single nucleotide variation. In such DNA strands, the substitution of T>adenine (A) at the hotspot
(c.74146970) was considered as a true mutation in GTF2I and used for analysis (Figure 3).

4.4. PyClone Analysis

PyClone is a Bayesian clustering tool to group sets of deep sequenced somatic mutations into
putative clonal clusters while estimating their cellular prevalence. This method accounts for allelic
imbalances introduced by changes in the segment copy number and sample contamination by normal
cells [40]. In this study, PyClone analysis was performed to estimate the fraction of cancer cells
harboring mutant GTF2I [40–42].

4.5. Immunohistochemistry for PD-L1

Specimens from 20 patients obtained between January 2000 and December 2013 were fixed
with 10% buffered formalin. Formalin-fixed paraffin-embedded tissues were cut into 5 μm sections,
deparaffinized, rehydrated, and stained in an automated system (Ventana Benchmark ULTRA system;
Roche, Tucson, AZ, USA) using commercially available detection kits and antibodies against PD-L1
(28–8, ab205921; Abcam, Cambridge, MA, USA). PD-L1 was primarily localized to the cell membrane
of tumor cells, and its expression was determined quantitatively by two pathologists based on
the proportion of PD-L1-positive tumor cells. Cells were considered PD-L1-positive based on a
≥1% PD-L1 expression.

4.6. Presence or Absence of Gtf2i Mutation in Other Malignant Diseases

Other samples, such as brain cancer, lung cancer, gastric cancer, colorectal cancer, hepatocellular
carcinoma, breast cancer, and lymphoma, were collected at our institution during regular clinical
practice. After obtaining signed informed consent, their sample tissues were analyzed for the presence
of the GTF2I mutation.

4.7. Statistical Analyses

Continuous variables were represented as the mean and standard deviation. Categorical variables
were compared using the Chi-square test. Multivariate analyses and calculation of the hazard ratio
(HR) and 95.0% confidence interval (CI) were performed using JMP (SAS Institute, Cary, NC, USA).
Two-tailed p < 0.05 was considered statistically significant.

5. Conclusions

A missense mutation in GTF2I was detected with high prevalence in and specific to thymomas.
This mutation may be a major driver mutation in the tumorigenesis of thymomas and serve as a
promising therapeutic candidate to be used in “precision medicine” for patients with thymomas.
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Abstract: Despite recent discoveries in genetics and molecular fields, glioblastoma (GBM) prognosis
still remains unfavorable with less than 10% of patients alive 5 years after diagnosis. Numerous
studies have focused on the research of biological biomarkers to stratify GBM patients. We addressed
this issue in our study by using clinical/molecular and image data, which is generally available
to Neurosurgical Departments in order to create a prognostic score that can be useful to stratify
GBM patients undergoing surgical resection. By using the random forest approach [CART analysis
(classification and regression tree)] on Survival time data of 465 cases, we developed a new prediction
score resulting in 10 groups based on extent of resection (EOR), age, tumor volumetric features,
intraoperative protocols and tumor molecular classes. The resulting tree was trimmed according to
similarities in the relative hazard ratios amongst groups, giving rise to a 5-group classification tree.
These 5 groups were different in terms of overall survival (OS) (p < 0.000). The score performance
in predicting death was defined by a Harrell’s c-index of 0.79 (95% confidence interval [0.76–0.81]).
The proposed score could be useful in a clinical setting to refine the prognosis of GBM patients after
surgery and prior to postoperative treatment.

Cancers 2020, 12, 386; doi:10.3390/cancers12020386 www.mdpi.com/journal/cancers
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1. Introduction

Glioblastoma (GBM) is the most common primary malignant central nervous system (CNS)
tumor in adults, representing about 25% of primary CNS tumors and 50%–55% of adult gliomas [1–3].
The current standard of care for GBM includes maximal safe surgical resection followed by concomitant
chemoradiation therapy and adjunct chemotherapy [4–8]. Despite decades of advances in surgery
and discovery in the molecular landscape, encouraging outcomes are not typically observed; patients
diagnosed with these tumors generally have a dismal prognosis and poor quality of life as the disease
progresses. The median survival time has been reported to be less than 15 months in cases. Survival
longer than 3 years and 5 years have been reported for approximately 3%–5% and 0.5% of GBM patients,
respectively. There is thus a pressing need to identify new systemic therapies [9–11]. The variety in
overall survival and response to treatment in GBM is largely due to the high heterogeneity of GBM
with a different distribution of aggressive biological traits across tumors, as well as within a single
tumor [12–14]. To classify GBM cases according to this heterogeneity, different prognostic factors
have been suggested for GBM, including age, performance status, specific molecular markers [e.g.,
MGMT methylation (O6-methylguanine-DNA methyl-transferase), mutation of IDH1, IDH2(isocitrate
dehydrogenase) or TERT (telomerase reverse transcriptase), 1p19q codeletion, overexpression of EGFR
(epidermal growth factor receptor)], the size of necrosis and the extent of resection (EOR) [15–22].
The role of EOR in improving survival in patients with GBM has widely been demonstrated, with
more extensive resections providing added advantages [8,9,16,18,19,23–33].

In this context, survival benefit based on extent of tumor resection has been reported to be as low
as 78% and the greatest survival advantage has been seen in patients with EOR >95% [9]. Despite the
infiltrative nature of this tumor, it still remains unclear if the resection beyond the contrast enhancement
portion of the tumor translates into improved outcomes for patients with GBM [23].

In a clinical setting, the need for classification tools based on the prognostic stratification of
GBM cases undergoing surgical protocols is of increasing importance. Numerous attempts have been
developed to classify GBM patients, which include combination models of clinical, molecular and
radiomic variables used in daily clinical practice [34–38].

Given the importance of each individual factor, it is often difficult to establish how these interact
with each other and how they impact survival in the complexity of the clinical settings. In other words,
classical survival models do not concomitantly evaluate multiple variables and establish the burden of
different combinations of determinants on survival.

In the present investigation, we proposed a novel prognostic model comprehensively evaluating
clinical, surgical volumetric and molecular factors to define prognosis of GBM-affected patients
undergoing surgery.

2. Results

Demographic, clinical, neurophysiological and radiological features of the study population are
summarized in Tables A1 and A2.

2.1. Survival Analysis and Risk Factors

The 1- and 2- year overall survival (OS) and progression-free survival (PFS) rates for the assessed
patients were estimated to be 54.78% and 22.28%, and 33.05% and 13.82%, respectively (Figure 1).
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Figure 1. Kaplan–Meier curves displaying overall survival (OS) (A) and progression-free survival (PFS)
(B) in the whole sample of 465 glioblastoma (GBM) included in the study.

Univariate analysis showed a significant better survival in patients with a younger age (p = 0.000),
higher EOR (p = 0.000), methylated MGMT promoter (p = 0.000), mutation of IDH1/IDH2 genes
(p = 0.033), presence of lower residual tumor (p = 0.000) and lower preoperative ΔT1/T2 MRI Index
(p = 0.000) (Figure 2). Gender, tumoral side and tumoral site, however, did not statistically influence OS.

At multivariate Cox analysis, considering the variables with a significant p value in univariate
analysis, EOR (p = 0.000), age (p = 0.000), MGMT methylation status (p = 0.000) and preoperative
ΔT1/T2 MRI Index (p = 0.000) were confirmed as independent predictors for OS (Table 1).

Table 1. Univariate and multivariate analysis of OS in GBM patients.

Variable
Univariate Analysis Multivariate Analysis

Hazard Ratio 95% CI p-Value Hazard Ratio 95% CI p-Value

Age (yrs) 1.029 1.018–1.040 0.000 1.028 1.017–1.039 0.000

Sex

Male 1

Female 0.900 0.713–1.137 0.377

Side

Left 1

Right 1.124 0.898–1.406 0.308
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Table 1. Cont.

Variable
Univariate Analysis Multivariate Analysis

Hazard Ratio 95% CI p-Value Hazard Ratio 95% CI p-Value

Tumor Site

Precentral 1

Retrocentral 1.092 0.825–1.446 0.539 0.954 0.718–1.267 0.745

Temporal + Insular 1.250 0.961–1.626 0.097 1.286 0.986–1.677 0.063

Radiological Features

Ependymal involvement
(yes vs no) 1.135 0.890–1.448 0.309

Corpus Callosum
involvement (yes vs no) 1.012 0.799–1.281 0.922

Necrotic-cystic component
(yes vs no) 0.923 0.725–1.176 0.517

Midline shift (yes vs no) 0.970 0.775–1.214 0.789

Preoperative Tumoral
Volume computed on

postcontrast T1-weighted
images, cm3

1.001 0.996–1.006 0.652

Preoperative Tumoral
Volume computed on

T2-weighted images, cm3
0.993 0.991–0.995 0.000 0.997 0.995–1.000 0.058

Preoperative ΔT1/T2 MRI
Index 1.022 1.017–1.026 0.000 1.016 1.009–1.022 0.000

Residual tumor, cm3 1.085 1.067–1.103 0.000 0.962 0.925–1.000 0.053

EOR (continuous variable) 0.946 0.938–0.954 0.000 0.937 0.923–0.950 0.000

EOR (categorical variable)

EOR = 100% 1

99% ≤ EOR ≤ 90% 1.755 1.314–2.343 0.000

89% ≤ EOR ≤ 80% 2.477 1.757–3.492 0.000

EOR ≤ 79% 6.300 4.537–8.748 0.000

Biological Features

MGMT promoter
methylation (yes vs no) 0.605 0.482–0.760 0.000 0.606 0.480–0.765 0.000

IDH 1/2 mutation (yes vs no) 0.638 0.423–0.964 0.033 0.925 0.605–1.416 0.721

Ki67 1.001 0.995–1.007 0.725

Table showing the influence of different factors on the OS rates as per univariate survival analysis and multivariate
analysis on the entire GBM patients cohort. (p-value < 0.05 at Log-rank test). Boldfacing values represent statistical
significant results (p < 0.05). CI = confidence interval; p-value = level of marginal significance; MRI =magnetic
resonance image; preoperative ΔT1/T2 MRI Index = ratio between pre-operative tumoral volume on post-contrast
T1-weighted and T2 weighted images; EOR = extent of resection; CWs = Carmustine Wafers; RT = radiotherapy;
CT = chemotherapy; MGMT = O6-methylguanine-DNA methyl-transferase; IDH = isocitrate dehydrogenase;
OS = overall survival.

Similarly, when PFS was considered, univariate Cox regression analyses confirmed age (p = 0.000),
EOR (p = 0.000), methylation status of MGMT promoter (p = 0.000) and preoperative ΔT1/T2 MRI
Index (p = 0.000) as factors influencing the tumor progression. By performing multivariate Cox
analysis considering the variables with a significant p value in univariate analysis, EOR (p = 0.000),
age (p = 0.002), methylation status of MGMT promoter (p = 0.000) and preoperative ΔT1/T2 MRI Index
(p = 0.000) were confirmed as independent predictors for PFS, however, no correlation was observed
with other observed variables such as sex, tumor size and site, IDH-1 status and Ki67% (Figure 3,
Table 2).
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Figure 2. Kaplan-Meier curves displaying OS of GBM patients according to Age (A); EOR (B); MGMT
promoter methylation status(C); and preoperative ΔT1/T2 MRI Index (D).

Figure 3. Kaplan-Meier curves displaying PFS of GBM patients according to Age (A); EOR (B): MGMT
promoter methylation status (C); and preoperative ΔT1/T2 MRI Index (D).
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Table 2. Univariate and Multivariate Analysis of PFS in GBM patients.

Variable
Univariate Analysis Multivariate Analysis

Hazard Ratio 95% CI p-Value Hazard Ratio 95% CI p-Value

Age (yrs) 1.017 1.008–1.027 0.000 1.015 1.006–1.024 0.002

Sex

Male 1

Female 0.851 0.687–1.054 0.140

Side

Left 1

Right 1.091 0.889–1.339 0.404

Tumor Site

Precentral 1

Retrocentral 1.045 0.811–1.347 0.733

Temporal + Insular 1.031 0.810–1.312 0.806

Radiological Features

Ependymal involvement
(yes vs no) 1.114 0.893–1.390 0.338

Corpus Callosum
involvement (yes vs no) 0.917 0.737–1.142 0.439

Necrotic-cystic component
(yes vs no) 0.974 0.781–1.215 0.816

Midline shift (yes vs no) 0.979 0.797–1.202 0.838

Preoperative Tumoral
Volume computed on

postcontrast T1-weighted
images, cm3

1.003 0.999–1.008 0.170

Preoperative Tumoral
Volume computed on

T2-weighted images, cm3
0.996 0.994–0.998 0.000 0.999 0.996–1.001 0.311

Preoperative ΔT1/T2 MRI
Index 1.016 1.012–1.020 0.000 1.011 1.005–1.016 0.000

Residual tumor, cm3 1.083 1.067–1.100 0.000 0.977 0.943–1.013 0.208

EOR (continuous variable) 0.949 0.942–0.957 0.000 0.948 0.935–0.961 0.000

EOR (categorical variable)

EOR = 100% 1

99% ≤ EOR ≤ 90% 1.622 1.254-2.098 0.000

89% ≤ EOR ≤ 80% 2.425 1.783-3.298 0.000

EOR ≤ 79% 5.245 3.854-7.138 0.000

Biological Features

MGMT promoter
methylation (yes vs no) 0.639 0.518-0.787 0.000 0.673 0.544-0.833 0.000

IDH 1/2 mutation (yes vs no) 0.706 0.488-1.023 0.066 0.894 0.612-1.305 0.561

Ki67 1.000 0.995-1.006 0.873

Table showing the influence of different factors on the PFS rates as per univariate survival analysis and multivariate
analysis on the entire GBM patients cohort. (p-value < 0.05 at Log-rank test). Boldfacing values represent statistical
significant results (p < 0.05). CI = confidence interval; p-value = level of marginal significance; MRI =magnetic
resonance image; preoperative ΔT1/T2 MRI Index = ratio between pre-operative tumoral volume on postcontrast
T1-weighted and T2 weighted images; EOR = extent of resection; CWs = Carmustine Wafers; RT = radiotherapy;
CT = chemoteraphy; MGMT = O6-methylguanine-DNA methyl-transferase; IDH = isocitrate dehydrogenase;
OS = overall survival.

2.2. Classification and Regression Tree (CART) Model

In order to create a prognostic model comprehensively evaluating clinical, molecular and
treatment-associated factors to stratify GBM-affected patients undergoing surgery, we used a
classification and regression tree (CART) approach. The algorithm relied on the clinical variables
that showed a significant impact as independent predictor factors in multivariate analysis (age, EOR,
MGMT methylation status, preoperative ΔT1/T2 MRI Index, preoperative volumetric tumor volume
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on T2- weighted images. (Figure 4). The application of the CART analysis led to the definition of 10
terminal nodes (Figure 4). According to the relative hazard ratio (RHR) obtained by performing the
CART analysis, a clinical predictive score (GAPS = GBM-associated prognostic score) was elaborated.
In detail, a score from 0 to 4 was then assigned to the 11 terminal nodes (score 0, assigned to the nodes
with RHR ≤ 0.40; score 1 assigned to the nodes with RHR between 0.40 and 1.00; score 2 assigned to
the nodes with RHR between 1.00 and 2.00; score 3 assigned to the nodes with RHR between 2.00–4.00;
score 4 was assigned to the nodes with RHR > 4.00). Each score group was defined based on the
following characteristics: Score 0: patients with EOR > 96%, preoperative ΔT1/T2 MRI Index < 0.72
and age < 53; Score 1: patients with EOR > 96%, T1/T2 < 0.72 and age > 53; patients with EOR between
81% and 95% if they have a preoperative ΔT1/T2 MRI Index < 0.72 and preoperative T2-weight volume
> 147 cm3; Score 2: patients with EOR between 81% and 95%, preoperative ΔT1/T2 MRI Index < 0.72
and preoperative T2-weight volume < 147 cm3; patients with EOR > 80%, preoperative ΔT1/T2 MRI
Index > 0.72, if they have EOR between 91% and 100%; patients with EOR between 56% and 80% if
they are aged < 59; Score 3: patients with preoperative ΔT1/T2 MRI Index > 0.72 and EOR between
81% and 90%; patients with EOR between 56% and 80% if they have age > 60; Score 4: all patients
with EOR < 55%. The obtained 5 groups of GBM cases were associated with different OS: score 0
group included 45 cases (accounting to the 9.68% of cases), score 1 included 157 cases (33.76%), score 2
included 165 cases (35.48%), score 3 included 79 cases (16.99%), and score 4 included 19 cases (4.09%).

Figure 4. Random forest (classification and regression tree, CART).

Once the scores were obtained, a univariate Cox regression was performed to evaluate the
predictive ability of the score.

Compared to score 0 (low risk), score 1 had hazard ratio (HR) = 2.6 (95% CI: [1.4–5.0], p = 0.003);
score 2 had HR = 9.6 (95% CI: [5.1–18.3], p = 0.000); score 3 had HR = 28.1 (95% CI: [14.4–54.7], p = 0.000);
score 4 had HR = 85.4 (95% CI: [38.5–189.3], p = 0.000).

The goodness of fit of the score model in predicting death was estimated with a Harrell’s c-index
of 0.78 (95% IC [0.76–0.81]). The 1-yr estimated OS was computed for each score category (Table 3).
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Table 3. One-year estimated overall survival and hazard ratios for each score with relative 95%
confidence intervals. A score (GBM-associated prognostic score, GAPS) from 0 to 4 was then assigned
to the 10 terminal nodes thus defined based on the relative hazard ratio (RHR).

Score Variables OS% (95% CI) HR (95%CI) p-Value

0 Preoperative ΔT1/T2 MRI Index < 0.72;
EOR > 96%; Age < 53 92.24 (77.82–97.43) 1 -

1

Preoperative ΔT1/T2 MRI Index < 0.72;
EOR > 96%; Age > 53 84.36 (77.39–89.33) 2.6 (1.4–5.0) 0.003

Preoperative ΔT1/T2 MRI Index < 0.72;
EOR: 81%–95%; Preop T2-w vol > 147 cm3

2

Preoperative ΔT1/T2 MRI Index < 0.72;
EOR: 81%–95%; Preop T2-w vol < 147cm3

43.85 (35.94–51.48) 9.6 (5.1–18.3) 0.000Preoperative ΔT1/T2 MRI Index > 0.72;
EOR >91%

EOR: 56%–80%; Age < 59

3
Preoperative ΔT1/T2 MRI Index > 0.72;

EOR 81%–90% 11.58 (5.69–19.76) 28.1 (14.4–54.7) 0.000

EOR: 56%–80%; age > 60

4 EOR < 55% 5.26 (0.36–21.43) 85.4 (38.5–189.3) 0.000

The algorithm relied on six clinical variables that shows the interaction between the significant
variables at multivariate analysis (age, EOR, MGMT methylation status, preoperative ΔT1/T2 MRI
index, pre-operative volumetric tumor volume on T2-weighted images and intraoperative protocol).

The score (GAPS) from 0 to 4 was then assigned to the 10 terminal nodes thus defined based on
the relative hazard ratio (RHR). Percent values indicated in the in green ovals represent the presence of
the variable considered; the red color indicates absence of that variable.

2.3. Treatment at Tumor Progression

In this study, a population of 369 cases experienced tumor progression; 298 were treated with
salvage treatments, while the others with supportive care (SC).

Among patients treated with salvage treatments (298), the impact of treatment type (TMZ, second
surgery, TMZ + RT, RT alone, photemustine-lomustine) on OS was analyzed.

At tumor progression, TMZ was administered in 215 patients, 43 patients underwent a second
surgery. Twenty-four patients were treated with TMZ + RT, 8 patients with RT alone and 8 patients
with photemustine-lomustine.

By applying the Kaplan–Meier survival estimates and the logrank test, there were no differences
in survival on the basis of the treatment adopted at tumor progression (p = 0.236 considering all the
subgroups taken separately; p = 0.199 combining TMZ + RT, RT and photemustine-lomustine). The
Cox regression analysis also confirmed this evidence taking the TMZ treatment as a reference and
combining the others salvage treatments. There was no association for intervention (HR = 0.760 [95%
CI: 0.513–1.126], p = 0.172); TMZ+RT (HR = 0.670 [95% CI: 0.394–1.140], p = 0.140); RT (HR = 1.280
[95% CI: 0.628–2.608], p = 0.496); photemustine-lomustine (HR = 0.643 [95% CI: 0.263–1.571], p = 0.332).

One-year estimated PFS was computed in all generated GAPS class scores, resulting in being
significantly different in each score class (Kruskall–Wallis test, p = 0.001) (Table 4).

Table 4. One-year estimated PFS according to GAPS score.

GAPS Score 1-Year Estimated PFS

Score 0 65.60%

Score 1 55.54%

Score 2 13.09%

Score 3–4 3.93%
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3. Discussion

Despite decades of therapeutic, surgical and genetics refinements, GBM still remains the
highest-grade malignant primary tumor of the central nervous system with an extremely poor
prognosis [4,10,11,19,39].

Age, performance status, extent of surgical resection and MGMT methylation status are well known
prognostic factors for GBM patients [4,21–34,39–44]. Nevertheless, the high degree of clinical/molecular
heterogeneity found among GBM patients do not generally allow us to correctly classify GBM patients
with the use of a single predictor or a few predictors. There is thus an increasing need of comprehensive
predictive classification models, which concomitantly evaluate multiple clinical/molecular/radiomic
biomarkers. Moreover, given the high degree of heterogeneity in survival rates among GBM
patients, it becomes essential to use tools that are capable of considering the possible interaction
between the significant independent survival variables as further possible source of differences in the
survival outcome.

In the present study, we set up a prognostic model that comprehensively evaluated clinical,
molecular and treatment-associated factors to stratify GBM-affected patients undergoing surgery using
a random forest approach (CART). This model generated an integrative visualization of risk factors,
giving rise to an easy and immediate interactive interpretation of results.

The analysis consisted of 3 main steps: first, the most informative variables were identified;
then, a decision tree algorithm was applied to differentiate the survival and lastly the GAPS score
was generated.

Five variables were selected as the most informative amongst the 20 variables considered.
The highest classification accuracy included age, preoperative tumor volume computed on
T2-wheighted MRI, preoperative ΔT1/T2 MRI Index, EOR, and MGMT methylation status.
The interactions were analyzed using the CART model.

There has been an increasing number of volumetric investigations highlighting the association
between the EOR and survival [8,9,16,18,19,23,25,33]. Nowadays an increasing variety of neurosurgical
methods are available (e.g., frameless navigational systems, intraoperative imaging, ultrasonography,
and functional mapping) to achieve the optimum balance between a maximal resection and a
safe resection.

By performing the random forest approach, the EOR was placed on top of the decision tree.
Specifically, the obtained results showed that cases with EOR >80% were associated with a longer
survival rate. This finding is in keeping with previously published retrospective investigations
suggesting that at least 70%–78% of the contrast-enhancing tumor volume represents the ideal resection
target for survival benefit [9,25]. Sanai and colleagues were the first that have highlighted the
importance of EOR threshold in GBM survival [9]. In line with their contribution, our study reported
the best survival rate in patients with an EOR higher than 96% with estimated 1-yr OS of 92%.

Another important finding highlighted by the CART was the relevant impact on GBM prognosis for
preoperative volumetric radiological features. The hallmarks of GBM on MRI are the contrast-enhancing
tumor with its central necrosis and surrounding peritumoral edema. Each tumoral component could
represent a potential imaging marker to predict the OS.

There is still open discussion among neuroncologists regarding which tumoral component has to
be considered (e.g., contrast enhancement, peritumoral edema, central necrosis [13,23,45].

In this investigation, the preoperative MRI index based on the ΔT1/T2 MRI ratio was computed as
previously described [45], resulting as being an independent predictor both for OS and PFS. Specifically,
patients with a preoperative ΔT1/T2 MRI Index ratio close to 1 had a poor prognosis compared to those
with preoperative T1/T2 MRI ratio close to 0, in other words lesions with ratio close to 1 should have
more aggressive growth, as opposed to lesions with a ratio close to 0. However, we cannot ultimately
identify which aspects of tumoral behavior determine the preoperative ΔT1/T2 MRI Index and given
the wide heterogeneity of GBM, future investigations based on texture features from multiparametric
MRI and next generation sequences analysis, may further clarify this issue.
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Elderly age negatively affected the prognosis only in cases of limited resection, supporting the
role of surgery in fit older patients when a safe and large resection can be planned [42–44].

Regarding the molecular features, the MGMT methylation status positively influenced the
prognosis only in patients younger than 54 years with an EOR higher than 96%, thus suggesting the
possibility of other genetic abnormalities potentially affecting survivals of GBM patients.

CART analysis provided 10 terminal nodes; the RHR of which were used to generate the
score (GAPS) with the purpose of facilitating the survival stratification before patients were
discharged postoperatively.

GAPS were elaborated to detect the impact of variables interaction on the overall survival giving
rise to an easy and immediate interpretation score. Patients belonging to score 0 (preoperative ΔT1/T2
MRI Index < 0.72; EOR > 96%; Age < 53) had the better survival with a 3 years estimated OS of
25%, otherwise, the worse survival was for patients with score 3 and 4 (preoperative ΔT1/T2 MRI
Index > 0.72; EOR 81%–90%, or EOR: 56%–80%; age > 60; or EOR < 55) with 1 year-estimated OS of
11.58% and 5.26% respectively after surgery being equal with regards to the post-operative treatments.

The novelty of this approach is that the focus is on the interaction of different factors rather than the
single determinant. This allows the building of a model as close as possible to the real clinical setting.

The GAPS score could be useful in a day-to-day clinical environment and in a research setting
to draw future prospective clinical trials. Moreover, GAPS score could be useful when deciding and
discussing prognosis to better handle the entire GBM management.

We aware that our study has several limits, which include the retrospective nature of the
investigation and the different treatments performed at tumor progression. Moreover, the retrospective
study did not permit a standardized follow-up.

The GAPS score could be useful in a day-to-day clinical environment and in a research setting to
draw future prospective clinical trials. Moreover, GAPS score could be adopted in discussing prognosis
to better handle the entire GBM management.

We aware that our study has several limits, which include the retrospective nature of the
investigation and the different treatments performed at tumor progression. Moreover, the retrospective
study did not permit a standardized follow-up.

The statistical limitations of such a retrospective analysis are well known and cannot be completely
controlled with any statistical model.

Treatments at GBM relapse represents a crucial issue. The recurrence of GBM is inevitable, in
which management often tend to be unclear and case-dependent. Although re-radiation, re-resection,
bevacizumab, and chemotherapy are still the most widely used therapies for treating recurrent GBM,
the clinical benefit from these treatments is still not well established [46–50].

It is well known that to improve the prediction models, salvage treatments information should be
updated in the analysis at the time of tumor progression.

Longer PFS resulted in late tumor recurrence and consequently in better OS [46].
In this investigation, patients with lower GAPS score had a longer PFS and consequent better OS.

The predictive survival score computed in this investigation can, thus, be considered as an indirect
measure of tumor progression. Patients with GAPS score of 0 had a better survival and prolonged PFS
determined by the combination of radiological, surgical and molecular factors before tumor recurrence.
The score was analyzed based on the characteristics of the patients included in the model. This tool
provides information regarding a more or less rapid risk of progression before the administration
of salvage treatments at tumor progression itself. For this reason, the salvage treatments cannot be
considered. In addition, progression time is different in the different GAPS score classes and time
dependent analysis should be applied to evaluate the effect of salvage treatments on OS.

Data regarding selection criteria adopted at tumor recurrence to plan the salvage treatment were
not available. Each patient underwent an individualized management at tumor progression. We have
not developed standardized protocols for treatments at tumor progression, which is another drawback
of this study that requires future investigation.
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Future prospective multicenter studies in a larger group of patients with a long follow-up are
needed to overcome the inherent limitations of a retrospective study and to confirm the potential
clinical usefulness of this tool in the management of GBM patients. Genetic studies could be integrated
in this preliminary model in order to improve the accuracy of the score in the stratification of GBM
patient prognosis.

4. Materials and Methods

A shared co-operative record databased 520 adult patients who underwent surgery for newly
diagnosed GMB between January 2015 and December 2018; 465 GBM patients were enrolled in the
case cohort according to the following inclusion criteria: age ≥ 18 years; no previous surgery; no
preoperative chemo- or radiotherapy; objective evaluation of preoperative tumor volume on MRI
images in DICOM format based on post-contrast T1-weighted MRI sequences and T2-weighted MRI
sequences; objective estimation of EOR on post-contrast T1-weighted MRI sequences; revision of
histopathological specimens by using the new 2016 World Health Organization (WHO) Classification
of Tumors of the Central Nervous System [51]; MGMT promoter methylation and IDH1/IDH2
mutation status assessment. Cases were excluded from the case cohort if one or more of the following
criteria were present: incomplete imaging data, follow-up interval, and multicentric tumors. Clinical,
histopathological and molecular data were collected at the time of diagnosis from medical records.
No central histopathological review and no additional molecular analyses were performed for the
purpose of the study

Histological examination, immunohistochemistry for Ki67 and IDH1R132H, analysis of the genetic
status of O6-methylguanine-DNA-methyltransferase (MGMT) promoter and isocitrate dehydrogenase
(IDH1/2) genes were performed as previously described. Gliomas were defined as methylated when
the average percentage of methylation of CpG islands was ≥8% [52].

Patients were clinically evaluated both prior to discharge, and at subsequent 4-monthly intervals.
Patients that exhibited no clinical improvement by 6 months after surgery were considered to have a
permanent deficit. In the follow-up period MRI images were obtained at regular (4-monthly) intervals.

The present study was approved by the local Ethics Committee (protocol N. 0036566 /P/ GEN/
EGAS, ID study 2538). Written informed consent was obtained for surgery. Considering that the study
was retrospective, written consent to participate in the study was not applicable.

4.1. Volumetric Analysis

All pre and postoperative tumor segmentations were performed manually across all MRI slices
using the OsiriX software tool [53].

The achieved EOR in each case was objectively evaluated using preoperative and postoperative
MRI images (DICOM format), based on the contrast area of post-contrast T1 MRI sequences, using the
below formula: (Pre-operative tumor volume – Post-operative tumor volume)/Pre-operative tumor
volume) [54].

With the aim of evaluating the role of tumor growing pattern on OS, a novel predictive preoperative
MRI index was defined as follows T1/T2 = preoperative volumetric tumor volume on post contrast
T1-weighted images/ preoperative volumetric tumor volume on T2-weighted images.

4.2. Post-Operative Treatment

After surgery, all patients were treated with combinations of concomitant adjuvant radiotherapy
and chemotherapy, followed by adjuvant chemotherapy, as recommended by Stupp [5].

External-beam (either conformal or stereotactic) radiotherapy was used to administer a total
dose of 60 Gy (delivered in 30 fractions of 2 Gy over a 6-week period), followed by adjuvant oral
chemotherapy with temozolomide (75 mg/m2/day, 7 days/wk). Four weeks after the end of this
treatment protocol, patients underwent at least six cycles of consolidation chemotherapy with oral
temozolomide (150–200 mg/m2/day, for 5 days/28 days).
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4.3. Statistical Analysis

Categorical variables were reported as percentages, continuous variables were reported as
mean ± standard deviation or median and range as appropriate, according with the data distribution.
Normality of the continuous variables was tested using the Shapiro–Wilk test. The OS time was defined
as extending from surgery until patient death; PFS time was defined as extending from surgery until
the demonstration of gadolinium enhancement on follow-up imaging. OS and PFS were estimated
using the Kaplan–Meier approach. The association between variables and survival distribution
was tested using univariate and multivariate Cox proportional hazard models (after verification of
proportional hazard assumptions). Patients with unknown survival were censored as of their last
scan date. The variables we considered for univariate analysis were age, sex, KPS score, preoperative
tumor volume computed on post contrast T1-wheighted images and on T2- weighted images MRI,
tumor location, tumor side, EOR, postoperative adjuvant protocol used, IDH 1

2 mutation, MGMT
mutilation status and Ki-67. The EOR was modeled both as a continuous and an ordinal variable (≤79%,
80%–89%, 90%–99%, 100%) in univariate analysis to ensure consistency with the previous 46 studies
that focused on the impact of glioma resection in terms of volumes. The preoperative ΔT1/T2 MRI
Index was calculated by the ratio between pre- operative tumor volume calculated on post-contrast
T1-wheighted images MRI and the pre-operative tumor volume calculated on T2-weighted images
MRI. In the univariate Cox regression, the preoperative ΔT1/T2 MRI Index was initially analyzed as a
continuous variable. To better understand the variable’s association pattern, the Cox regression was
then applied to the quintiles splitted variable. Subsequently, the variable was dichotomized using
a cut-off we identified at the quintile that showed a significant hazard ratio. The variables resulted
in being significantly associated in the univariate model with p < 0.05. All statistical analyses were
performed by Stata/IC 13.0 (StataCorp LP, College Station, TX, USA).

4.4. Classification and Regression Tree (CART) Method

To determine subgroups patients with different clinical prognosis, we used the decision tree model
using the CART method [55,56].

This method is a machine learning model, composed of hierarchic decision rules involving
optimal cutoff values that recursively split independent factors into different groups. The groups of
individuals are called nodes, and form a branch node tree. Terminal nodes are groups of individuals
that cannot be further subdivided on the basis of the established parameters (minimum size of
subgroup, minimum number of events, maximum p-value required) to proceed in further subdivisions.
The CART algorithm was performed on the entire sample (465 cases). In our study, nodes were
required to have a minimum size of 15 patients, a minimum of 10 events and a maximum p-value
of 0.05. Factors initially introduced into this CART analysis are the following: EOR, preoperative
ΔT1/T2 MRI Index, age, MGMT methylation, pre-operative volumetric tumor volume on T2-weighted
images and intraoperative protocol. Once the regression tree was generated, the nodes of the terminal
branches were pruned (aggregated) on the basis of their relative hazard ratios (RHRs) in order to obtain
final groups with homogeneous mortality risk. The final groups were converted in a score ordered
according to their hazard ratios (HRs).

Differences in terms of overall survival probability among the score categories were investigated
using univariate Cox regression analysis. The performance of the score in predicting time to death
was estimated through Harrell’s c-index [57]. All statistical analyses were performed by Stata/IC 13.0
(StataCorp LP, College Station, TX, USA).

5. Conclusions

Nowadays, the current standard of care for GBM still includes maximal safe surgical resection
followed by concomitant chemoradiation therapy and adjunct of chemotherapy. The high degree
of clinical heterogeneity found among GBM highlights a rising need for comprehensive predictive
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classification models concomitantly evaluating multiple clinical/molecular/radiomic biomarkers.
The CART prediction model allowed to elaborate a novel comprehensive clinical score (GAPS) to
stratify prognosis of glioblastoma patients undergoing surgical resection. Although GAPS needs to be
validated in further multicenter studies, it could facilitate the survival-risk grading, guiding clinicians
in the decision-making process.
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Appendix A

Table A1. Baseline characteristics of the study population.

Parameters
Value
(N and %, Mean ± Standard Deviation (SD) or
Median and Range)

No. of patients 465

Age (years) 63 (20–85)

Sex

Female 176 (37.85%)

Male 289 (62.15%)

Side

Left 228 (49.03%)

Right 237 (50.97%)

Tumor Site

Precentral 182 (39.14%)

Postcentral 128 (27.53%)

Temporal + Insular 155 (33.33%)

Intra-operative protocol

CEUS + / 5-ALA + 43 (9.25%)

CEUS - / 5-ALA + 35 (7.53%)

CEUS + / 5-ALA - 34 (7.31%)

CEUS - / 5-ALA - 353 (75.91%)

Radiological Features

Ependymal involvement (yes vs. no) 143 vs. 322 (30.75% vs 69.25%)

Corpus Callosum involvement (yes vs. no) 155 vs. 310 (33.33% vs 66.67%)

Necrotic-cystic component (yes vs. no) 319 vs. 146 (68.60% vs 31.40%)
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Table A1. Cont.

Parameters
Value
(N and %, Mean ± Standard Deviation (SD) or
Median and Range)

Midline shift (yes vs no) 222 vs. 243 (47.74% vs 52.26%)

Preoperative Tumoral Volume computed on
postcontrast T1-weighted images, cm3 31 (0.682–136)

Preoperative Tumoral Volume computed on
T2-weighted images, cm3 65 (3–497)

Preoperative ΔT1/T2 MRI Index 48.55 (1.13–100)

Residual tumor, cm3 0.959 (0–37.506)

EOR (continuous variable) 95 (38–100)

EOR (categorical variable)

EOR = 100% 184 (39.57%)

99% ≤ EOR ≤ 90% 133 (28.6%)

89% ≤ EOR ≤ 80% 76 (16.34%)

EOR ≤ 79% 72 (15.48%)

Biological Features

MGMT methylation (yes vs no) 290 vs. 175 (62.37% vs. 37.63%)

IDH 1/2 mutation (yes vs no) 38 vs. 427 (8.17% vs. 91.83%)

Ki-67 25 (2-95)

Two-gene model

MGMT met and IDH 1/2 mut 27 (5.81%)

MGMT met and IDH 1/2 wt 263 (56.56%)

MGMT unmet and IDH 1/2 mut 10 (2.15%)

MGMT unmet and IDH 1/2 wt 165 (35.48%)

Postoperative Protocol

Stupp protocol 345 (74.2%)

Stupp protocol + CWs 60 (12.9 %)

Stupp interrupted for side effects 60 (12.9 %)

Features of the study population are described using means ± standard deviation or median and range for
continuous variables, number of cases with relative percentages reported in parentheses for categorical variables.
EOR = extent of resection; MRI = magnetic resonance image; preoperative ΔT1/T2 MRI Index = ratio between
pre-operative tumoral volume on postcontrast T1-weighted and T2 weighted images; CWs = Carmustine Wafers;
MGMT =O6-methylguanine-DNA methyl-transferase; IDH = isocitrate dehydrogenase.

Table A2. Clinical and follow-up characteristics of the study population.

Value
(N and %, Mean ± SD or Median and Range)

Clinical presentation

No deficits 41 (8.82%)

Not-specific symptoms (headache, nausea, vomiting,
disorientation etc.) 165 (35.48%)

Motor deficits 89 (19.14%)
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Table A2. Cont.

Value
(N and %, Mean ± SD or Median and Range)

Sensory deficits 16 (3.44%)

Visual/speech deficits 66 (14.19%)

Seizures 88 (18.92%)

Post-operative course

No deficits 263 (56.56%)

Not-specific symptoms (headache, nausea, vomiting,
disorientation etc.) 64 (13.76%)

Motor deficits 80 (17.20%)

Sensory deficits 3 (0.65%)

Visual/speech deficits 52 (11.18%)

Seizures 3 (0.65%)

6-monts follow-up (in 394 pts alive)

No deficits 245 (62.18%)

Not-specific symptoms (headache, nausea, vomiting,
disorientation etc.) 94 (23.86%)

Motor deficits 35 (8.88%)

Sensory deficits 1 (0.25%)

Visual/speech deficits 17 (4.31%)

Seizures 2 (0.51%)

KPS

Pre-operative 90 (50–100)

Immediate post-operative 90 (50–100)

6-monts follow-up (in 394 pts alive) 90 (50–100)

OS (alive vs dead) 158 vs. 307 (33.98% vs. 66.02%)

OS at 1-year follow-up 54.78%

OS at 2-year follow-up 22.28%

PFS (no recurrence vs recurrence) 96 vs. 369 (20.65% vs. 79.35%)

PFS at 1 year follow-up 33.05%

PFS at 2 year follow-up 13.82%

Characteristics of the study population are described using means ± s.d. (standard deviation) or median and range
for continuous variables, number of cases with relative percentages reported in parentheses for categorical variables.
KPS = Karnofsky Performance Status; OS = overall survival; PFS = progression-free survival.
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Simple Summary: The implementation of precision medicine will revolutionize cancer treatment
paradigms. Notably, this goal is not far from reality: genetically similar cancers can be treated
similarly. The heterogeneous nature of triple-negative breast cancer (TNBC) made it a suitable
candidate to practice precision medicine. Using TNBC molecular subtyping and genomic profiling, a
precision medicine-based clinical trial is ongoing. This review summarizes the current landscape and
future directions of precision medicine and TNBC.

Abstract: Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast
cancer associated with a high recurrence and metastasis rate that affects African-American women
disproportionately. The recent approval of targeted therapies for small subgroups of TNBC patients
by the US ‘Food and Drug Administration’ is a promising development. The advancement of next-
generation sequencing, particularly somatic exome panels, has raised hopes for more individualized
treatment plans. However, the use of precision medicine for TNBC is a work in progress. This
review will discuss the potential benefits and challenges of precision medicine for TNBC. A recent
clinical trial designed to target TNBC patients based on their subtype-specific classification shows
promise. Yet, tumor heterogeneity and sub-clonal evolution in primary and metastatic TNBC remain
a challenge for oncologists to design adaptive precision medicine-based treatment plans.

Keywords: triple-negative breast cancer (TNBC); precision medicine; breast cancer; targeted therapy;
TNBC subtypes; immunotherapy

1. Precision Medicine: Perspective and Challenges

The human genome project opened a path to understanding human gene structure
and function and identifying disease-associated mutations in our DNA. Since the human
genome project, there have been dramatic advancements in genetic technology, with contin-
uous progress towards more cost-efficient and powerful techniques [1]. The development
of the chip-based microarray allowed early gene expression profiling studies as well as
genome-wide association studies for millions of single nucleotide polymorphisms (SNPs).
Still, it was eventually replaced for most non-SNP applications by the high-throughput
next-generation sequencing (NGS) of genomic DNA and RNA-derived cDNA [2]. These
advancements have paved the way for genomic medicine. Genomic medicine is an inte-
gral part of precision medicine, defined by the NIH as an emerging approach of tailoring
treatment and prevention based on individual variability in genes, environments, and
lifestyle to classify individuals into specific subgroups susceptible to one particular treat-
ment plan [3]. Although some think of precision medicine and personalized medicine
interchangeably, the two concepts are not identical. “Precision” medicine uses data and
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genomics to tailor treatments to specific groups sharing genetic and/or clinical, environ-
mental and lifestyle features. “Personalized” medicine would imply treatments designed
specifically for individual patients. Except in unique circumstances, such as tumor vac-
cines or tumor-infiltrating lymphocytes (TIL) produced from individual tumors, truly
personalized medicine remains an aspirational goal. In 2015, US President Barack Obama
announced an NIH-funded precision medicine initiative to assemble the most significant
medical research cohort in history, collecting health and behavioral data as well as DNA
and other biospecimens from one million or more Americans reflecting the diversity of
our population. The centerpiece of the precision medicine initiative is the “All of US”
research program [3]. This program is expected to collect and share data from genome
sequencing, electronic medical records, personal reported information, and digital health
technologies [3]. Using these integrated datasets, researchers will assess the effectiveness of
treatments and identify genetic variations associated with a higher or lower risk of disease
or adverse medication events of any particular group of people. This information can form
the basis for the design of novel biomarker studies and therapeutic trials. In effect, the goal
is to stimulate a progressive transition away from generalized, broad-spectrum therapies
to more precise treatments in well-defined patient populations [4].

Knowing the genetics of diseases will allow physicians to make health care decisions
that are more effective for the patient to improve the quality of care and decrease unnec-
essary screenings or procedures [3]. For example, genetic analysis revealed that there
are subgroups of type I and II diabetes that differ in medication responsiveness due to
genetic differences. Thiazolidinedione use has declined, but genetic analysis could identify
patients who are more likely to respond to this group of drugs [5]. Genome-wide associa-
tion studies (GWAS) analyze human DNA variation to identify risk factors and improve
treatment strategies [2]. One of the first GWAS studies identified polymorphisms in the
cytochrome P450 2C9 (CYP2C9) complex and the vitamin K epoxide reductase complex 1
(VKORC1), which are both correlated with Warfarin pharmacokinetics [6]. Pharmacoge-
nomics studies have revealed several other genetic variants associated with differential
drug metabolism [7–9]. Despite advancements in precision medicine, there are many obsta-
cles to its routine clinical deployment. One significant barrier to the clinical use of genomic
data is the high number of variants of unknown significance in the human genome and
the difficulty in attaining sufficiently large sample sizes to analyze their possible roles [10].
Additionally, identifying risk factors is not always straightforward, as the relationship
between risk factors and their biology is often more complex than previously anticipated.
Two patients with the same risk factors do not necessarily share the same disease [11].
There is also difficulty in identifying the standard features of polymorphisms between
ancestral groups. For instance, African genomes are more polymorphic and have less
linkage disequilibrium in single nucleotide polymorphisms than Europeans [2]. Another
barrier to the advancement of precision medicine is the lack of infrastructure and education
in clinical-based settings. Routine precision medicine practice will require highly integrated
patient datasets, including clinical, lifestyle, and genetic data [3], and there is a lack of
genetics professionals in hospitals [12]. Finally, cost and reimbursement issues must be
solved before fully integrating genetic data into the clinical setting [12,13]. Solutions to
these barriers include developing technology infrastructure, outcome-based reimburse-
ment policies, education and promotion to personnel in clinical-based settings [14], and
patient willingness to participate in precision medicine [3]. There is a promising future for
precision medicine, but it must overcome a number of obstacles before it is fully integrated
into the healthcare system.

One field that is currently benefiting from the development of clinical genomics is
oncology. Many new cancer therapies [4] use precision medicine and genomic tests based
on NGS as a strategy to identify cancers that are more likely to respond, as opposed
to anatomical sites. Whole-exome sequencing (WES) helped discover and understand
driver mutations and copy number variants in cancers, and WGS is slowly improving our
limited knowledge of mutations in non-coding regions [15]. One of the earliest therapeutics
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developed based on genetic alterations was trastuzumab for cancers carrying genomic
amplification of a region of chromosome 17 containing the ERBB2/HER2 gene, which
led to better outcomes than first-line chemotherapy [16]. Subsequently, genetic analysis
revealed that cetuximab effectively treated colorectal cancers in patients without KRAS
mutations [17]. Targetable prostate cancer mutations have been lacking, but PARP-1
inhibition has been effective in certain patients [18]. The discovery of specific mutations can
advance the development of therapeutics for the treatment of other cancers with the same
mutation, though context can make a difference. For example, trastuzumab also benefits
gastric cancers with HER2 amplification [19]. In contrast, BRAF inhibitors were effective
in hairy cell leukemia with BRAF mutations but not in colorectal cancer, highlighting the
limitations of single gene-based approaches and the importance of clinical trials for targeted
therapy [20]. Prevention strategies have also been proposed for patients with a genetic
predisposition to some cancers, such as sulindac and celecoxib causing polyp regression in
patients with Familial Adenomatous Polyposis [21]. Despite the development of potentially
effective therapies based on mutational profiles, tumor heterogeneity adds another barrier
to precision medicine in oncology. The clonal heterogeneity of tumors and the evolution
of clones carrying additional mutations compared to the original drivers is a significant
obstacle to the effectiveness of targeted cancer therapies, particularly as monotherapy.
Frequently, after targeted treatment based on a driver mutation produced clinical responses,
the tumor will circumvent the targeted pathway blockade through genetic evolution or
epigenetic plasticity and will find a way to resume progression [22]. Clonal heterogeneity
is often based on mutational heterogeneity, with some cells showing specific mutations,
while other cancer cells display different mutational profiles [23]. Evolutionary “trees” of
tumor clones under the form of “tropical fish plots” effectively show this phenomenon [24].
Usually, the development of new mutations under therapy-imposed selection results in
treatment resistance [25]. One group of cancers that would greatly benefit from precision
oncology is triple-negative breast cancer (TNBC).

2. Triple-Negative Breast Cancer (TNBC)

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype
of breast cancer. TNBC was found to be negative for the estrogen receptor α (ER−),
the progesterone receptor (PR−), and the human epidermal growth factor receptor two
loci (HER2−) by immunohistological analysis [26–30]. TNBC constitutes 11–20% of all
breast cancers and typically affects premenopausal women, especially African American
women [26,30,31]. TNBC has a higher rate of mortality and recurrence than other types
of breast cancer, especially in the first five years [26]. There are currently a few targeted
therapies available for TNBC, but chemotherapy remains the mainstay of treatment, while
immunotherapy is a recent and increasingly important addition [27,31–33]. Optimizing the
treatment of TNBC based on genomic and possibly immunological features would be a
significant advancement.

Comorbidities have significant effects on the risk and outcomes of TNBC, in part by
affecting tumor biology. Obesity is linked with increased incidence and a worse prognosis
of triple-negative breast cancer [34]. One theory of obesity’s relation to TNBC biology is
that obesity increases the development of a pro-inflammatory and metabolically activated
phenotype of macrophages (MMe). MMe macrophages are dominant in obese human and
mouse mammary adipose tissue. They are tumorigenic due to the increased secretion of IL-
6 in a NADPH oxidase-2 (NOX2)-dependent fashion. IL-6 signals through glycoprotein-130
induce stem-like properties in TNBC cells [34]. Another study concluded that the increased
inflammation and reactive oxygen species from obesity drive the increased expression of a
splicing variant of methyl-CpG-binding domain 2 (MBD2_v2), increasing the stem cell-like
properties of TNBC cells [35]. Increased adipose tissue caused by obesity also increases
the secretion of the hormone leptin, which enhances the expression of genes linked to
stem cell-like properties and epithelial–mesenchymal transition [36]. Another theory
is that hyperinsulinemia secondary to insulin resistance increases the activation of the
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AKT/mTOR pathway, promoting proliferation and survival in TNBC cells. Additionally,
the AKT/mTOR pathway increases glucose uptake and promotes the Warburg effect, a
shift from aerobic oxidation in the mitochondria to anaerobic glycolysis, which allows for
rapid growth and resistance to apoptosis [37–39]. The development of targeted therapies
for TNBC must consider these factors, including the cross-talk between the adipose tissue,
metabolism, and tumor biology.

The progression of a primary tumor to a metastatic tumor is based on its ability to leave
the original site and spread into the blood and/or the lymphatic system, potentially forming
new tumors in other locations in the body. Breast tumors start in the mammary ducts or
lobules but can spread into the surrounding adipose tissue and migrate to other parts of the
body, escaping immune surveillance mechanisms [40]. Metastatic TNBC is more aggressive
compared to other breast cancers, and the average rate of patient survival is lower than
other subtypes [41]. Understanding the biological differences between a primary TNBC
tumor and a metastatic TNBC tumor could benefit therapy. Primary TNBC is associated
with relatively few somatic single-nucleotide variants, but numerous somatic copy number
variations (CNV) [42]. The cell cycle’s loss of function mutations and the apoptosis regulator
p53 [42–45] as well as the gain-of-function PIK3CA mutations are common in primary
TNBC [43,44]. However, the possible mutational landscape for TNBC is very broad and
contains numerous other genes associated with the control of cell shape, motility, and
extracellular signaling [43]. Metastatic TNBC is associated with p53, LRP1B, HERC1, CDH5,
RB1, and NF1 mutations in general [45]. The biology of the progression from a primary
tumor to metastasis is not completely understood. Comprehensive gene expression profiles
in primary and metastatic breast cancer revealed many differentially expressed genes in
metastatic versus primary disease [46]. Metastatic breast cancer, including metastatic TNBC
(mTNBC), is a major concern in the inpatient treatment regimen. Recent advancements in
immunotherapy and targeted therapies in breast cancer improve the longevity of cancer
patients. In addition to the advancement of targeted therapies, locoregional resection also
plays an important role in preventing metastasis [47,48]. Further understanding of the
genetic landscape associated with primary and secondary TNBC is an urgent need.

3. TNBC Subtypes and Current Treatment Options

TNBC molecular subtypes are a useful starting point on the road to TNBC preci-
sion treatment [26–31,49–51]. Based on the gene expression profiles of TNBC samples,
Lehmann et al. classified TNBC patients into six subtypes: basal-like 1 (BL1), basal-like 2
(BL2), mesenchymal (M), mesenchymal stem-like (MSL), immunomodulatory (IM), and lu-
minal androgen receptor (LAR) [52]. These authors also developed a web-based subtyping
tool (TNBCtype) to predict subtype assignment for new TNBC samples to guide biomarker
or treatment studies [53]. Subsequently, Burstein et al. classified TNBC into four subtypes:
LAR, M, BLIS (basal-like immunosuppressed), and BLIA (basal-like immune-activated) [54].
They reported that the prognosis was the worst for BLIS tumors and the best for BLIA
tumors in terms of disease-free survival (DFS) and disease-specific survival (DSS). The
order from best to worst prognosis was BLIA > M > LAR > BLIS for both DFS and DSS [54].
Liu et al. classified TNBC tumors based on the expression profiles of both mRNAs and
lncRNAs and proposed the Fudan University Shanghai Cancer Center (FUSCC) classifi-
cation as well as the analysis of its interaction with the Lehman/Pietenpol subtypes [55].
They divided TNBC tumors into four subtypes including the immunomodulatory subtype
(IM), the mesenchymal-like subtype (MES), the luminal androgen receptor subtype (LAR),
and the basal-like and immune-suppressed (BLIS) subtype [55]. In 2016, Lehmann et al.
re-classified the TNBC molecular subtypes from six (TNBCtype: (BL1, BL2, IM, M, MSL
and LAR)) to four (TNBCtype-4) tumor-specific subtypes (BL1, BL2, M, and LAR) based
upon the complexity and overlapping of the varying histological landscapes of tumor
samples [56]. The IM and MSL subtypes were dependent upon transcripts from immune
infiltrates and other tumor stromal cells. While these transcripts may affect tumor biology,
their reproducibility was linked to levels of tumor infiltration. These authors demonstrated
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that TNBC subtypes had a significantly different response to neo-adjuvant chemotherapy
and suggested that the classification will benefit future clinical trial design [56]. Different
TNBC subtype classifications are presented in Figure 1.

Figure 1. Major TNBC subtypes based on gene expression profiles. (a) Lehmann et al. classified TNBC patients into six
subtypes (TNBCtype) in 2011: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem-like (MSL),
immunomodulatory (IM), and luminal androgen receptor (LAR) [52]. In 2016, Lehman et al. re-classified the TNBC molecular
subtypes from six (TNBCtype) to four (TNBCtype-4) tumor-specific subtypes: BL1, BL2, M, and LAR [56]. (b) Burstein el al.
suggested four subtypes: luminal androgen receptor (LAR), mesenchymal (MES), basal-like immunosuppressed (BLIS),
and basal-like immune-activated (BLIA) [54]. (c) FUTURE trial schema: LAR, immunomodulatory (IM), mesenchymal-like
(MES), and basal-like immune-suppressed (BLIS) [57].

TNBC has higher rates of early recurrence and mortality than other types of breast
cancer. The reason for the poor outcomes of TNBC is the lack of effective targeted therapies.
Endocrine agents such as aromatase inhibitors or HER2 targeted monoclonal antibodies or
small molecules are not effective for TNBC patients [58–61]. Therefore, standard cytotoxic
chemotherapy (doxorubicin, docetaxel, 5-fluorouracil, platinum drugs, and/or cyclophos-
phamide and other agents in different combinations) remains the standard of care for
TNBC patients [62–65]. It is essential to consider the risks and benefits of treating early-
stage TNBC patients. Over-treatment increases toxicity and undesirable adverse effects,
compromising the patient’s quality of life. Early-stage TNBC patients without lymph node
involvement generally have a good prognosis in terms of five-year relapse-free survival
(RFS) and five-year distant recurrence-free survival (DRFS) [66,67]. Chemotherapy is the
choice of care for TNBC patients with a tumor size > 5 mm with or without lymph node
(LN) metastases. Combinations of anthracyclines, alkylators, and taxanes with carboplatin
are common chemotherapy regimens for TNBC [68]. The ABC trial suggested that the
addition of an anthracycline to docetaxel and cyclophosphamide therapy significantly
improves invasive disease-free survival (IDFS) for early stage TNBC patients [69].

In the adjuvant (post-surgical) setting, the treatment of eight weeks of paclitaxel fol-
lowed by the standard regimen of adjuvant fluorouracil, epirubicin, and cyclophosphamide
(FEC) decreased tumor relapse and improved DFS in LN-positive breast cancer [70]. Neoad-
juvant chemotherapy (NACT) is now used as the standard of care to treat high-risk TNBC
to reduce tumor volume before surgery [71–79]. Patients treated with standard NACT
have approximately 30–40% pathologic complete response rates (pCR) [49,80–82]. Tumors
that do not achieve pCR have significantly higher recurrence rates than tumors that do.
The ability to predict which patients achieve pCR and/or to increase pCR rates without
increasing toxicity would be major advances in the treatment of TNBC. Tumor-infiltrating
lymphocytes (TIL) within residual tumors post-NACT are considered as a semi-quantitative
assessment of immune response [83–90]. In a landmark study, Denkert et al. [91], analyzed
the results of the GEPAR-Sixto clinical trial and, determined that increased levels of stro-
mal TILs predicted pCR. Gene expression profiling revealed three immune subtypes with
different pCR rates. The most predictive transcripts were PD-L1 and CCL5. Subsequent
studies confirmed the predictive value of immunophenotyping and TILs, suggesting a
role of the immune system in clearing tumor cells during chemotherapy [92]. Another
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gene signature consisting of HLF, CXCL13, SULT1E1, and GBP1 in pre-treatment samples
predicted the extent of lymphocytic infiltration after NACT [93]. Tumor mutational burden,
possibly resulting in higher numbers of tumor-associated antigens, was identified as an
independent predictor of pCR in addition to TIL [94]. Conversely, the presence of a PIK3CA
H1047R mutation was associated with lower rates of pCR [95].

Following NACT, the most commonly used prognostic factor in TNBC is pCR. How-
ever, pCR is not an absolute predictor, as some TNBC patients who achieve pCR develop
relapses [96–99]. Studies from the MD Anderson Cancer Center have reported a more
quantitative evaluation scale called the Residual Cancer Burden (RCB), which is based
on tumor size, invasive cancer cellularity, and node status post-NACT [100,101]. RCB is
classified on a 0-III range, with the higher values indicating the probability of subsequent
recurrence, metastatic spread, and increased mortality.

4. Recently FDA-Approved Therapies for TNBC

Chemotherapy and surgery remain the standard of care for most TNBC patients. How-
ever, a few classes of agents, such as Immune Checkpoint Blockers (ICBs), PARP inhibitors
(PARPi), and Antibody Drug Conjugates (ADC), have demonstrated clear benefits in TNBC
patients, and in some cases, have received FDA approval. Nonetheless, response rates with
the new agents are variable, and predicting the response to these new classes of agents will
be the focus of a major precision oncology effort.

4.1. Approved Checkpoint Inhibitors

Many TNBC tumors are immunologically “cold”, meaning they lack sizeable TIL
infiltrates (see above for biomarkers of tumor immunity). Converting “cold” TNBC to “hot”
tumors and making them amenable to treatment with ICBs would be a potentially valuable
treatment strategy. Approximately 40% of TNBC expresses PD-L1 in TILs, and PD-L1
positive tumors (PD-L1 positivity is defined by PD-L1 expression on tumor-infiltrating
immune cells covering ≥1% of the tumor area) tend to respond favorably to treatment
with anti-PD-L1 therapy [102–104]. In an analysis of a PD-L1-positive TNBC cohort, the
addition of atezolizumab, a humanized monoclonal antibody to PD-L1, in combination with
nab-paclitaxel compared to chemotherapy (nab-paclitaxel)-alone significantly improved
median progression-free survival (PFS) to 7.5 months versus 5.0 months, respectively (HR
0.62; 95% CI, 0.49–0.78), and improved OS to 25 months from 15.5 months, respectively
(HR, 0.62; 95% CI, 0.45–0.86) [105]. Based on this compelling data, on 8 March 2019,
the FDA granted the accelerated approval of atezolizumab (Tecentriq) in combination
with nab-paclitaxel (Abraxane) for the treatment of PD-L1-positive unresectable locally
advanced and metastatic TNBC tumors [106]. The FDA also granted accelerated approval
to Merck’s anti-PD-1 monoclonal antibody, pembrolizumab (Keytruda), in combination
with chemotherapy for locally recurrent or metastatic TNBC in November, 2020 [107].
A first-line treatment regimen of pembrolizumab with chemotherapy extended PFS by
35% compared to a placebo. However, the FDA declined to grant accelerated approval to
Keytruda in either neoadjuvant or adjuvant settings for high-risk, early-stage TNBC. The
FDA panel reasoned that a 15% increase in pCR would not necessarily be indicative of an
increase in overall survival (OS).

Other Immune Checkpoint Inhibitors in Clinical Trials

A recent paper described details about clinical trials involving PD-1/PD-L1 block-
ade either as monotherapy, in combination with chemotherapy, or with other targeted
therapies [108]. Gagliato et al. also described the success and challenges of PD-1/PD-L1
immunotherapy for TNBC patients [109]. In addition to PD-1 and its ligand (PD-L1),
other immune checkpoint inhibitors are also being investigated in TNBC clinical trials,
including cytotoxic T lymphocyte-associated protein 4 (CTLA-4), Lymphocyte-activation
gene 3 (LAG-3), and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) [110].
Ipilimumab, a CTLA4 blocking antibody, is in a phase 2 TNBC clinical trial with nivolumab,
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a PD-1 blocking antibody with taxane-based neoadjuvant chemotherapy (Clinicaltrials.gov:
NCT03546686). Another phase 2 clinical trial is ongoing with nivolumab in combina-
tion with ipilimumab for advanced or metastatic solid tumors, including TNBC (Clin-
icaltrials.gov: NCT01928394). Tremelimumab, another anti-CTLA-4 monoclonal anti-
body, is in a phase I clinical trial with durvalumab (anti-PD-L1 monoclonal antibody) in
combination with chemotherapy in advanced solid tumors, including TNBC (Clinical-
trials.gov: NCT02658214). Tremelimumab is also being tested in phase 2 clinical trials
as a monotherapy or with MEDI4736 for advanced solid tumors, including in TNBC
(Clinicaltrials.gov: NCT02527434).

Bottai et al. suggested that LAG-3 and PD1 were co-expressed in approximately
15% of TNBC patients, and their co-expression positively correlated with the presence of
tumor-infiltrating lymphocytes (TILs) [111]. LAG525 (IMP701), an anti-LAG-3 antibody
in combination with spartalizumab (an anti-PD-1 checkpoint inhibitor) is under a phase
I clinical investigation in patients with advanced or metastatic TNBC (Clinicaltrials.gov:
NCT03742349). TSR-033, an anti-LAG-3 monoclonal antibody, is in a phase 1 clinical
trial alone and in combination with the anti-PD-1 antibody dostarlimab in patients with
advanced solid tumors (Clinicaltrials.gov: NCT03250832). Another anti-LAG-3 antibody
(INCAGN02385) is under a phase I clinical investigation in patients with advanced ma-
lignancies, including TNBC (Clinicaltrials.gov: NCT03538028). TIM-3, another immune
checkpoint, plays an important role in tumor immunity [112]. An anti-TIM-3 antibody,
INCAGN02390, is in phase I clinical trials in select advanced malignancies, including
TNBC (Clinicaltrials.gov: NCT03652077).

4.2. Poly-ADP-Ribose Polymerase (PARP) Inhibitors

The loss of function mutations in the BRCA1 and BRCA2 genes have long been known
to confer a high risk of TNBC. The loss of BRCA1/BRCA2 function mutations impairs
DNA double-stranded break (DSB) repair in normal cells, leading to the accumulation of
genetic damage and chromosomal aberrations. About 19.5% of TNBC cases are associated
with germline BRCA1/BRCA2 gene mutations [113]. Cancer cells that are defective in DSB
repair are susceptible to other mechanisms of DNA damage. Poly-ADP-Ribose Polymerase
(PARP) is an enzyme involved in single strand break (SSB) DNA repair. Cells with DSB
repair defects are vulnerable to SSBs, which trigger apoptosis. PARP inhibitors (PARPi)
exploit this vulnerability. PARPi are well-tolerated and improve both progression free
survival (PFS) and OS in TNBC patients with germline BRCA1/BRCA2 mutations, which
is reviewed in [114,115]. The FDA approved two PARP inhibitors to treat TNBC patients
with BRCA-mutant tumors. In January 2018, olaparib (Lynparza) was approved for the
treatment of patients with BRCA-positive, HER2-negative metastatic breast cancer [116].
Talazoparib (Talzenna) was also approved in the same year for the treatment of patients
with BRCA-mutated and HER2-negative locally advanced or metastatic breast cancer [117].

4.3. Antibody-Drug Conjugates (ADC)

Antibody-Drug Conjugates (ADC) are chemically modified monoclonal antibodies
(mAb) usually linked to high-potency cytotoxic payloads. In such cases, the mAb is used
to selectively target the toxic payload of cancer cells. ADCs are one of the fastest-growing
classes of cancer therapeutics in the past few decades [118]. In 2020, the FDA granted
accelerated approval to sacituzumab govitecan, an ADC sold under the brand name
Trodelvy [119]. Accelerated approval was granted for the treatment of adults with TNBC
that has metastasized and has received at least two prior therapies. Sacituzumab govitecan
(Trodelvy) received regular approval from the FDA on 7 April 2021 for unresectable locally
advanced or metastatic TNBC (mTNBC) [120]. Trodelvy is a Trop-2-directed antibody
conjugated to govitecan, a topoisomerase inhibitor. However, despite mAb-mediated
selective delivery, this agent has significant toxicity that has prompted a boxed warning:
severe neutropenia and severe diarrhea are common. Patients experiencing neutropenia
are advised to receive treatment with G-CSF to stimulate bone marrow hematopoiesis. A
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recent review paper highlighted the use of the ADCs, including sacituzumab govitecan
(SG), ladiratuzumab vedotin (LV), and trastuzumab deruxtecan (T-DXd) in mTNBC [121].
Although T-Dxd has proven efficacy in HER2-overexpressing metastatic breast cancer, it has
also shown better clinical responses in patients with low HER2-expressing metastatic breast
cancers, including TNBC [121]. A phase Ib clinical trial (Clinicaltrials.gov: NCT04556773)
is currently recruiting patients with metastatic HER2-low advanced or metastatic breast
cancer to evaluate the efficacy of T-DXd in combination with other therapies.

5. Precision Medicine in TNBC: Emerging Therapies and Ongoing Studies

5.1. Receptor Tyrosine Kinases (RTKs) and Downstream Signaling Pathways

RTKs in TNBC signaling operates through two main downstream signaling cascades:
the RAS/MAPK and the PI3K/AKT/mTOR signaling axis. RTKs in TNBC cells transduce
signals downstream of EGFR, PDEGFR, VEGFR, IGFR, TGF-β, and FGFR. Almost 60–80%
of TNBC tumors have dysregulated EGFR expression [122]. EGFR expression is associ-
ated with aggressive TNBC. Post NACT, EGFR expression frequently persisted in TNBC,
suggesting that anti-EGFR therapy may offer an additional window of opportunity for pa-
tients with therapy-refractory EGFR-positive TNBC tumors [123]. The KRAS/SIAH/EGFR
pathway is frequently upregulated in TNBC. The seven in absentia homolog (SIAH), an E3
ligase and the most downstream “gatekeeper” of the EGFR/KRAS signaling cascade, is
often upregulated in TNBC along with EGFR [58,123]. Paired gene expression of SIAH and
EGFR has been proposed as a prognostic biomarker in TNBC [123]. A decrease in SIAH
and EGFR expression in a patient-derived specimen post-NACT compared to pre-NACT
levels predicts treatment benefits.

Targeting EGFR would thus appear to be a potentially attractive strategy for TNBC.
However, EGFR inhibitors have significant off-target toxicities [124], and multi-center
clinical trials have not shown cetuximab, an anti-EGFR, to be an effective therapy for
TNBC, probably due to the activation of compensatory signaling mechanisms such as
PI3K-AKT (see below) [58].

Lapatinib, a dual EGFR/HER2 RTK inhibitor effective in HER2- positive breast cancer,
was not effective in TNBC [125]. The MEK inhibitor selumetinib blocked the motility and
invasiveness of the MDA-MB-231 and SUM149 TNBC cell lines in vitro [122]. Furthermore,
selumetinib appeared to decrease lung metastasis in a TNBC-bearing mouse xenograft
model [126], supporting the study of MEK inhibitors in TNBC. Compared to monotherapy,
combining MEK inhibition with PD-L1/PD-1 inhibition increased therapeutic efficacy in a
murine syngeneic TNBC model [127].

5.2. PI3K/AKT/mTOR Targeted Therapy

The PI3K/AKT/mTOR pathway is one of the most active cell survival pathways in
cancer, often leading to chemoresistance [128]. This pathway, which is initiated by PI3K
family kinases and receives input from EGFR family receptors, insulin, and insulin-like
growth factor receptors, is a significant player in regulating apoptosis and metabolism.
It also perpetuates the effect of BRCA mutations by stabilizing DNA double-stranded
breaks [68]. PI3K/AKT/mTOR pathway dysregulation frequently occurs in TNBC. The
PI3KCA-gain of function mutations is observed in 23.7% of TNBC patients [129]. Notably,
the loss of function mutations or epigenetic silencing of the gene encoding PI3K negative
regulator phosphatase PTEN, including promoter silencing and functional suppression,
are detected in 25–30% of TNBC cases [122]. AKT and mTOR hyperactivation portend a
poor prognosis in TNBC patients. The dual inhibition of AKT and mTOR (necessary to
avoid feedback activation of AKT by mTORC2 after inhibition of mTORC1) may offer a
promising therapeutic option for TNBC treatment [122,130] based on preclinical results.
Investigational AKT inhibitors like ipatasertib and capivasertib have demonstrated incre-
mental benefits in improving outcomes for patients with high-risk TNBC [131,132]. The
FDA-approved mTORC1 inhibitor everolimus increases progression-free survival when
combined with the non-steroidal aromatase inhibitor exemestane for patients with HR(+)
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and HER2(−) advanced breast cancer [133]. Everolimus combined with carboplatin has
been proposed as an effective therapy for metastatic TNBC patients [134,135] because of
the link between mTOR activation and platinum resistance [136]. PI3K inhibition can also
decrease the expression of BRCA1 and 2 and can sensitize BRCA1/2 wild-type TNBC tumors
for PARP inhibition [137]. Based on this observation, a clinical trial with BKM120 (buparlisib)
and olaparib was initiated [122]. Interestingly, resistance to mTOR inhibitors in TNBC was
accompanied by the appearance of Notch-dependent cancer stem-like cells (CSCs) [138],
suggesting that Notch inhibitors may be combined with mTOR/AKT inhibitors.

5.3. Notch Signaling and TNBC

Notch signaling activation is correlated with TNBC tumor growth, CSCs maintenance,
expansion, tumor invasiveness, and metastasis [139–142]. Notably, ~10% of TNBC carry
driver Notch1/Notch2 chromosomal rearrangements that produce constitutively active,
oncogenic forms of Notch1 or Notch2 [143]. Efforts to target Notch signaling in cancers,
including in TNBC, have been ongoing for the past 15 years. However, an FDA-approved
Notch inhibitor/drug is still elusive, though at least one of them is currently in phase 3. For
an extensive review of the field, readers are directed to [142]. An abundance of preclinical
data provided a compelling case for the use of gamma-secretase inhibitors (GSIs) to inhibit
Notch signaling and reverse tumor progression in TNBC. However, GSI demonstrated
mechanism-based dose-dependent gastrointestinal (GI) toxicities that limited their clinical
applications [142,143]. Intermittent dosing of GSIs to circumvent their GI toxicities has
been adopted in numerous clinical trials. Still, we do not know whether intermittent dosing
is sufficient to eliminate TNBC CSCs [142,143]. Non-GSI, new generation Notch inhibitors
are in clinical development. Among them, CB-103 appears particularly promising.

CB-103 (Cellestia biotech, Basel, Switzerland; https://www.cellestia.com/, accessed
on 16 July 2021) is a first-in class, oral pan-Notch small molecule inhibitor with a unique
mode of action. CB-103 inhibits the Notch transcriptional complex assembly and blocks
Notch signaling in receiving cells [142,143]. Importantly, CB-103 does not induce mechanism-
based dose-dependent GI toxicity, unlike GSIs. Furthermore, its action mechanism implies
that CB-103 would be effective against the truncated forms of Notch1 or Notch2 produced
by genetic rearrangements associated with ~10% of TNBC. The safety and efficacy of CB-103
in Notch-dependent advanced or metastatic solid tumors or hematological malignancies
are being investigated in a phase I/II clinical trial (Clinicaltrials.gov: NCT03422679).

5.4. Cyclin-Dependent Kinases (CDKs)

Cyclin-dependent kinases (CDKs) play an essential role in modulating cell division by
regulating cell cycle and transcriptional activities. Similar to many tumors, the aberrant
expression of CDKs (e.g., CDK4 and CDK6) are also common in TNBC. CDK inhibitors
have been used successfully to inhibit TNBC growth in preclinical settings. Dinaciclib, a
pan-CDK inhibitor, is in phase I clinical trial in combination with pembrolizumab (Clinical-
trials.gov: NCT01676753) for TNBC and advanced or metastatic breast cancer. Trilaciclib, a
CDK 4/6 Inhibitor, is in phase 1 clinical trial in combination with gemcitabine and carbo-
platin for metastatic TNBC (mTNBC) (Clinicaltrials.gov: NCT02978716). Ribociclib, another
CDK 4/6 Inhibitor, is in phase I/II clinical trial in combination with bicalutamide, an an-
drogen receptor (AR) inhibitor for advanced AR+ TNBC (Clinicaltrials.gov: NCT03090165).
A phase II study of PF-06873600 (CDK inhibitor) in combination with endocrine therapy is
ongoing for metastatic breast cancer, ovarian cancer, and TNBC (NCT03519178). Another
phase II study of abemaciclib (selective ATP-competitive inhibitor of CDK4 and CDK6 ki-
nase activity) for TNBC is also ongoing (Clinicaltrials.gov: NCT03130439). CDK inhibitors
(mainly CDK4/6) augment anti-tumor immunity through T-cell activation, supporting the
rationale for combination with immunotherapy [108,144,145]. A phase Ib clinical breast
cancer study of pembrolizumab with abemaciclib demonstrated tolerability with clinical
benefits [108].
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5.5. Androgen Receptor (AR) Expression and TNBC

There is a lack of consensus among breast cancer researchers on whether AR expression
is a favorable prognostic indicator in TNBC [146]. AR expression is upregulated in 10–43%
of the TNBCs andfalls into the LAR molecular subtype. Therapy with AR antagonists
showed clinical benefits in some TNBC patients [58,147–150]. A phase II randomized
clinical trial is currently investigating the efficacy of a new AR antagonist, darolutamide,
for unresectable or metastatic TNBC patients (Clinicaltrials.gov: NCT03383679) [58].

5.6. Angiogenesis and TNBC

Angiogenesis is one of the necessary adaptations that cancer cells must adopt to form
macroscopic tumors. VEGF-A is the most critical pro-angiogenic secretory factor produced
by solid tumors (see [58,151] for recent reviews). Elevated VEGF expression in TNGC is
linked to poor prognosis independent of tumor size, histological grade, or nodal status [152].
The use of an anti-VEGF antibody, bevacizumab, in combination with chemotherapy was
shown to improve PFS but failed to provide statistically meaningful improvements in OS
in TNBC compared to chemotherapy alone [58,153]. The combined inhibition of VEGF and
Notch ligand DLL4, which is also required for angiogenesis, through bispecific monoclonal
antibodies is currently being investigated [142].

5.7. Investigational Antibody-Drug Conjugates (ADC)

Following the FDA approval of Trodelvy in 2020, several pharmaceutical companies
are interested in ADC for TNBC treatment. In addition, the phase I study demonstrated
favorable efficacy and tolerability using ladiratuzumab vedotin [118]. Recent review papers
described other ADCs under clinical investigations [118,154].

6. Other Targeted Therapies

Recent progress in preclinical studies with small-molecule agents for the targeted
therapy of TNBC has been summarized in recent publications [28,110,155]. Islam et al.
described targeting the Bcl-2 family, proteasome, STAT3, histone deacetylase (HDACs),
Src in TNBC in detail [155]. P53 mutations are prevalent in TNBC, which lead the cells
to rely on checkpoint kinase 1 (ChK1) and ataxia telangiectasia related to Rad3 (ATR)
for DNA repair management [110]. LY2606368, a ChK1/2 inhibitor, is under a phase 2
clinical trial for various tumors (ovarian, breast, and prostate), including TNBC (Clini-
caltrials.gov: NCT02203513). Another phase 2 clinical trial is ongoing with olaparib in
combination with an ATR inhibitor (ceralasertib) and adavosertib for metastatic TNBC
patients (Clinicaltrials.gov: NCT03330847).

6.1. Cancer Vaccines

Apart from ICBs, an immunotherapeutic strategy that has been in development for
decades but has yet to achieve its full clinical potential is cancer vaccines. Despite preclini-
cal successes and the safety and immunogenicity in humans that have been documented in
many clinical trials [156], cancer vaccines have yet to produce meaningful and reproducible
clinical responses in TNBC [157]. This may be due to immune editing, a phenotypic and
genetic adaptation process whereby cancers evade the immune system [157] and/or insuf-
ficiently robust T cell responses [156]. Perhaps the rapid evolution in vaccine technology
sparked by the COVID19 pandemic, which borrowed from the field of cancer immunology,
will eventually produce clinically effective cancer vaccines. Table 1 lists the active clinical
trials from Clinicaltrials.gov as of 18 June 2021.
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Table 1. Active TNBC clinical trials using targeted therapy and Immunotherapy (Clinicaltrials.gov, accessed on 18 June 2021).

Title Phase Status Age ID

Evaluation of IPI-549 combined with front-line
treatments in patients with TNBCr or Renal Cell

Carcinoma (MARIO-3)
Phase II Active 18 and over NCT03961698

Testing the addition of Copanlisib to Eribulin for
the Treatment of Advanced-Stage Triple Negative

Breast Cancer
Phase I/II Active 18 and over NCT04345913

Study of Pembrolizumab (MK-3475) plus
chemotherapy vs. placebo plus chemotherapy for
previously untreated locally recurrent inoperable

or metastatic TNBC

Phase III Active, not recruiting 18 and over NCT02819518

Atorvastatin in treating patients with stage IIb-III
TNBC who did not achieve a PCR after receiving

neoadjuvant chemotherapy
Phase II Active 18 and over NCT03872388

A Study of Atezolizumab in combination with
Nab-Paclitaxel compared with placebo with

Nab-paclitaxel for participants with previously
untreated metastatic TNBC

Phase III Active, not recruiting 18 and over NCT02425891

Avelumab With Binimetinib, Sacituzumab
Govitecan, or Liposomal Doxorubicin in treating
patients with stage IV or unresectable recurrent

TNBC (InCITe)

Phase II Active 18 and over NCT03971409

A Study of Atezolizumab and Paclitaxel versus
placebo and paclitaxel in participants with
previously untreated locally advanced or

metastatic TNBC (Impassion131)

Phase III Active, not recruiting 18 and over NCT03125902

A Study evaluating the efficacy and safety of
multiple immunotherapy-based treatment
combinations in patients with metastatic or

inoperable locally advanced TNBC
(Morpheus-TNBC)

Phase I/II Active 18 and over NCT03424005

A Study of Cobimetinib plus paclitaxel,
Cobimetinib plus Atezolizumab plus Paclitaxel,

or Cobimetinib plus Atezolizumab plus
Nab-Paclitaxel as initial treatment for participants

with TNBC that has spread

Phase II Active, not recruiting 18 and over NCT02322814

Women’s MoonShot: Neoadjuvant treatment
with PaCT for patients with locally

advanced TNBC
Phase II Active 18 and over NCT02593175

A phase II study of Nivolumab in combination
with Cabozantinib for metastatic TNBC Phase II Active, not recruiting 18 and over NCT03316586

FUSCC Refractory TNBC Umbrella (FUTURE) Phase I/II Active 18 to 75 years NCT03805399

Peri-Operative Ipilimumab + Nivolumab and
Cryoablation in women with TNBC Phase II Active 18 and over NCT03546686

Trilaciclib (G1T28), a CDK 4/6 Inhibitor, in
Combination with Gemcitabine and Carboplatin

in metastatic TNBC
Phase II Active, not recruiting 18 and over NCT02978716

6.2. Combination Regimens

The molecular heterogeneity and frequent multi-clonality of TNBC strongly suggest
that precision combination therapies are more likely to be successful than monotherapeu-
tic strategies. The use of targeted agents plus standard chemotherapy or other targeted
agents has shown promising results. One study found that olaparib, a PARP inhibitor,
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combined with the PI3K inhibitor buparlisib and carboplatin caused cytotoxic effects by
promoting of non-homologous DNA end joining in TNBC cells [158]. A phase I study
is assessing an olaparib–buparlisib combination regimen in TNBC and ovarian cancer
(Clinicaltrials.gov: NCT01623349). PARP inhibitors have also shown activity with ADCs
and chemotherapy, such as olaparib with sacitizumab govetican in TNBC cells with and
without BRCA mutations [159] and iniparib in combination with gemcitabine and carbo-
platin [160]. PARPi have also been explored in combination with immunotherapy. PARPi
have been shown to upregulate PD-L1, and PD-L1 inhibitors were documented to restore
breast cancer sensitivity to PARP inhibitors [156]. In contrast, Higuchi et al. found no
improvement of the efficacy of PARPi in BRCA-negative ovarian cancer with PD-1/PD-L1
inhibition, but they [161] did find improvement if PARPi were used in combination with
CTLA-4 inhibitors [161]. Buparlisib in combination with DSF/Cu (Disulfiram/copper)
and paclitaxel caused decreased tumor burden and recurrence rates in TNBC compared to
paclitaxel alone [162]. In addition, a clinical trial involving the AKT inhibitor ipatasertib
combined with paclitaxel has shown promising results (Clinicaltrials.gov: NCT02162719).

Combination therapy involving Notch targeting may be an attractive strategy. A late
clinical development stage GSI, PF-03084014 combined with the AKT inhibitor MK-2206
or the NF-kB inhibitor Bay11-7082 effectively treated TNBC cells with a Notch mutation
and wild-type PTEN [163]. Another study found a correlation between Notch3 inhibition
and the increased effectiveness of the tyrosine kinase inhibitor gefitinib targeting EGFR in
TNBC cells [164].

Combinations of immunotherapeutics with chemotherapy or with targeted agents
are potentially promising. The I-SPY trial found success in combining the PD-1 inhibitor
pembrolizumab with paclitaxel (Clinicaltrials.gov: NCT01042379), and the KEYNOTE 173
trial is seeing antitumor activity with pembrolizumab and neoadjuvant chemotherapy
(Clinicaltrials.gov: NCT02622074). Another clinical trial is investigating PD-1 (nivolumab)
and CTLA-4 inhibitors (ipilimumab) together along with cryoablation (Clinicaltrials.gov:
NCT02833233). Many potential immunogenic tumors do not respond to immune check-
point blockers. Kim et al. found significant improvement in outcomes when ICBs were used
in combination with epigenetic-modulating drugs targeting myeloid-derived suppressor
cells (MDSCs) or a PI3K inhibitor that reduced MDSCs [165].

7. Design of Precision Medicine-Based Clinical Trials in TNBC: The Path Forward

The future of TNBC developmental therapeutics depends on increasingly precise,
biomarker-based, adaptive clinical trials. A perfect example is the ongoing FUTURE trial
(Clinicaltrials.gov: NCT03805399) [57]. This is a phase I/II subtyping-based and genomic
biomarker-guided umbrella trial where the investigators have classified metastatic TNBC
patients based on molecular subtyping and genomic profiling. Patient classification for
this trial relies on an integrative analysis that combines somatic mutations, copy number
aberrations (CNAs), and gene expression profiles as well as validated immunohistochem-
istry surrogates. Based on these criteria, TNBC patients are stratified into four subtypes:
(1) luminal androgen receptor (LAR), (2) immunomodulatory (IM), (3) basal-like immune-
suppressed (BLIS), and (4) mesenchymal-like (MES) [57]. Within the LAR group, patients
with HER2 mutations are treated with pyrotinib and capecitabine, while patients without
HER2 mutations are treated with an androgen receptor antagonist and a CDK4/6 inhibitor.
For the IM group, patients are treated with anti-PD-1 immunotherapy plus nab-paclitaxel.
If the patients have BRCA1/2 germline mutation within the BLIS group, they are treated
with a PARP inhibitor. If no BRCA1/2 germline mutations are detected, the patients are
treated with anti-VEGFR therapy. Within the MES group, if patients have PI3K/AKT path-
way mutations, they are treated with an mTOR inhibitor (Everolimus) with nab-paclitaxel.
In contrast, patients without PI3K/AKT pathway mutations are treated with anti-VEGFR
therapy. New arms can be added or existing arms can be terminated based on the ongoing
examination of the study results. This type of study design is likely to become standard in
TNBC and beyond.
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8. Conclusions

The rapid evolution of targeted therapy and immunotherapy guided by somatic
and in some cases germline genomics gives us realistic hopes for the more effective,
more precise, and less toxic treatment of TNBC in the near future. However, further
research is necessary to realize the full potential of precision medicine in TNBC. Somatic
NGS alone has limitations, and we must move beyond simplistic one-gene-one therapy
paradigms. Mutational landscapes change with time, and a single NGS test performed
before treatment may not be representative of the tumor after chemotherapy or radiation.
Longitudinal testing, if accessible tumor or perhaps circulating tumor cells are available, is
likely to provide more accurate information. Many genotyped tumors reveal no targetable
mutations, or, even when such mutations are identified, the patient may not respond
to treatment [166]. This may be due to compensatory mutations, epigenetic changes,
phenotypic plasticity, or clonal heterogeneity. Despite these limitations, genomic-driven
therapy is already improving outcomes. An MD Anderson study found a higher response
rate and more prolonged survival when treating single-mutation cancers with matched
therapy [167].

Phenotypic screening using 3D tumor organotypic spheroids [168] may offer a promis-
ing alternative or complementary strategy, provided that results can be obtained rapidly,
and treatment can potentially be adapted to tumor evolution using more than one round of
screening. Pauli et al. were able to improve drug sensitivity screening using 3-D cultures
and PDX models, showing that integration of exome sequencing with these methods could
help better identify the best therapy [166]. An important limitation of these methods is
that they require accessible tumor tissue. “Liquid biopsy,” a group of evolving methods
to obtain circulating tumor cells or circulating tumor DNA from patient blood, could be
an avenue for therapeutic screening and the longitudinal monitoring of molecular tumor
profiles [169]. Single-cell RNA sequencing to identify resistant clones is now a reality [170].
Proteogenomics combining proteomic and genomic results is an attractive strategy if costs
can be brought down [171]. The study of tumor metabolism and metabolomics is another
highly promising precision medicine field that can be combined with genomics. A re-
cent manuscript described a targetable retinoblastoma tumor suppressor, (RB1)-glucose
transporter 1 (GLUT1) metabolic axis, in TNBC and suggested targeting GLUT1 in TNBC
patients based on their RB1 protein expression levels [172]. The promise of precision
medicine in the treatment of TNBC and other solid tumors is undeniable, and combinations
of increasingly sensitive “omics” and phenotypic screening may significantly accelerate
the development of novel therapeutics.
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Simple Summary: The advancement in both science and technology has contributed to the develop-
ment of novel diagnostic technologies; such technologies enable medical practitioners to diagnose
diseases that could not be previously detected. However, in order to translate new technologies
into practical applications, various types of challenges need to be overcome. To address these chal-
lenges, including those in clinical management and regulatory science, healthcare policies have been
constantly implemented to promote the practical application of outcomes generated by healthcare
innovation. This study conducted comparative analyses of three tumor profiling tests approved by
the U.S. Food and Drug Administration (FDA) in 2017, hypothesizing that the FDA’s regulatory
reforms, early application of new technologies to both research and clinical settings, and open data
accumulated as a result of large-scale research programs have promoted new drug development
in oncology. The study then discussed the implications potentially suggested by the outcomes and
challenges of the three tests.

Abstract: This study investigated a case of Memorial Sloan Kettering-Integrated Mutation Profiling
of Actionable Cancer Targets (MSK-IMPACT), a tumor profiling test approved by the U.S. Food
and Drug Administration (FDA) in 2017, to examine what factors would contribute to healthcare
innovation. First, we set the following three parameters to observe cases: (i) the FDA regulatory
reforms, (ii) early application of new technologies, such as next-generation sequencing (NGS), to
both research and clinical settings, and (iii) accumulation of open data. Then, we performed a
comparative analysis of MSK-IMPACT with FoundationOne CDx and Oncomine Dx Target Test,
both of which were FDA-approved tumor profiling tests launched in 2017. As a result, we found that
MSK-IMPACT secures neutrality as a non-profit organization, achieves the active incorporation of
basic research results, and performs superiorly in clinical operations, such as patient enrollment. On
the contrary, we confirmed that FoundationOne CDx was the most prominent case in terms of the
number of new drugs and expanded indications approved in which the FDA’s expedited approval
programs were considerably utilized. Consequently, to uncover the full potential of MSK-IMPACT, it
is suggested that more intersectoral collaborative activities between various healthcare stakeholders,
in particular, pharmaceutical companies, for driving clinical development must be carried out based
on an organizational framework that facilitates collaboration.

Keywords: new drug development; next-generation sequencing (NGS); open data; regulatory reform;
tumor profiling test
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1. Introduction

1.1. Next-Generation Sequencing (NGS) for Advanced Medicine

As genome science advances, personalized medicine, which would enable tailor-made
medical solutions based on personal biological information, is expected to become a reality.
The 2015 State of the Union Address announced that the United States would make
nationwide efforts to realize the Precision Medicine Initiative, which sought to establish
healthcare, considering differences among individuals that could be caused by genes,
environment, lifestyle, and so forth [1]. The initiative covered a variety of issues, such as
the development and delivery of cancer care, establishment of a nationwide research cohort
leveraging over 1 million volunteers, development of new validation methods for Next
Generation Sequencing (NGS) instruments and data sharing platforms, and regulatory
reforms [1].

NGS is known to have dramatically reduced sequencing costs [2] and has contributed
to the practice of large collaborative research projects worldwide. Since this technology
has enabled researchers to efficiently analyze the genetic information of target samples at
a reasonable cost, the application of NGS now ranges from analysis of genetic mutations of
cancer patients to that of information on microbial samples, such as the human microbiome.
NGS can surely extend the frontier of healthcare by practically helping researchers realize
the application of personalized medicine in a clinical setting.

Although new technologies, such as NGS, allow scientists to explore new research
areas, they do not necessarily ensure safety due to the lack of data and precedents. There-
fore, the development and further application of new therapeutic options to a clinical
setting based on bioinformatics requires, to a certain extent, regulatory efforts by relevant
authorities that can simultaneously ensure both the safety and efficacy. In addition, it is rec-
ommended that biological data necessary for the development of new therapeutic options
be open to the public. It is reasonable to assume that the researchers can be encouraged to
access a database of biological information if they can use it at any given time. It is also
recommended that such data be regularly updated, with a certain degree of standardization
and compatibility between different datasets. In general, no researcher wants to use either
obsolete or unstandardized data without their compatibility with other datasets, as these
are factors that can affect the quality of the scientific research.

1.2. Regulatory Reforms for the Pharmaceutical Industry

Healthcare innovation can be induced by implementing efficient regulations [3]. This
can apply not only to pharmaceuticals, but also to new technological fields, such as mobile
health (mHealth). Onodera et al. 2018 revealed that the regulatory reforms implemented by
the FDA indirectly contributed to the increase in the number of FDA-cleared mobile medical
apps during the mid-2010s [4]. This implies that regulations can even stimulate innovation
in such an emerging field with uncertainly if they are appropriately implemented to support
innovators. The question here is to what extent pharmaceutical regulations in the United
States have facilitated innovation in terms of conventional pharmaceutical development
and commercialization.

The U.S. Food and Drug Administration (FDA) has started making regulatory reforms
in drug approvals with a certain degree of organizational efforts since the early 1980s. Such
reforms are supposed to have partly contributed to promoting innovation. For example,
the distribution of orphan drugs among all FDA-approved drugs increased from 17 percent
(1984–1988) to 31 percent (2004–2008) after the Orphan Drug Act of 1983, which was enacted
at the earliest stage of the regulatory reforms by the FDA [5]. Moreover, the proportion of
approved drugs that qualified for the FDA’s expedited approval programs (i.e., Orphan
Drug Act (1983) [6], Fast Track Designation (1988) [7], Accelerated Approval Program
(1992) [8], and Breakthrough Therapy Designation (2012) [9]) has increased from 1984 to
2018 [10]. For example, 22 out of the 39 FDA-approved drugs in 2012 were reported to
have utilized such programs [11].
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On the other hand, Golodner et al. 1998 raised a concern that expedited approval
programs, which were intended to shortcut a drug review process toward approval, would
deliver “dangerous or unnecessary drugs” to the users [12]. Since data obtained through
the use of such programs rely on early-stage clinical trials, the quantity of clinical evidence
tends to be limited and unstable [11]. The trade-off between the speed of the approval
process and the efficacy of a drug candidate has remained a critical issue for the FDA
to overcome.

Meanwhile, the FDA has succeeded in shortening the drug review time from more
than 3 years in 1983 to less than 1 year in 2017 [10]; the major strategies were (1) to
collect user fees from pharmaceutical companies to raise funds needed to review the
increasing number of new drug applications under the Prescription Drug User Fee Act
(PDUFA) of 1992 [10,13], and (2) to encourage the use of surrogate measures for clinical
trials [10,14]. Nonetheless, the total time needed for clinical trials, which ranges from
the application for Investigational New Drug (IND) to the FDA approval, has not been
reduced from 1986 to 2017 [10]; it averaged at approximately 8 years during this period [10].
As expedited programs were utilized for the development of drugs for rare diseases,
recruitment challenges for clinical trials and therapeutic challenges, both of which were
found to be the typical difficulties specific to the drug development for such diseases, have
arisen; these may have prolonged the overall clinical development time [10].

In addition, a series of regulatory reforms have not necessarily led to a dramatic
increase in the number of new drugs approved between 1982 and 2018 [10]. The mean
number of new drug approvals per annum, including those for biologics, between 1990
and 1999, was 34 [10]. However, the number remained at 41 between 2010 and 2018 [10].
To summarize, the FDA has taken certain actions to implement the regulatory reforms for
the past three decades while undergoing some occasional setbacks.

1.3. Open Data and Healthcare Innovation

Previous research on the association between healthcare innovation and open data
has been scarce. Goodsell et al. 2019 clarified in their study that the Protein Data Bank
(PDB) archive, which was the “first open-access digital data resource” that provided
researchers with data on three-dimensional (3D) protein structures, has contributed to
new drug development since its establishment in 1971 [15]. The PDB database, which
allowed open access to approximately 6000 protein structures, contributed to the FDA’s
new drug approval of “88% of 210 new molecular entities” from 2010 to 2016 [15]. The PDB
archive has grown dramatically over time through the accumulation of data on protein
structures and other relevant topics. PDB users and data depositors, including a global
expert community in structural biology, deposit data regarding protein structures into the
archive [15]. Moreover, PDB data are updated on a weekly basis by integrating them with
multiple external databases [15].

NGS technologies, in turn, generate biological data on target samples that a researcher
intends to analyze. However, the contribution of such technologies to innovation is yet to
be adequately discussed. Kahn et al. 2014 reported that the discussions were held on how
NGS should be utilized for scientific research at the NGS for Cancer Drug Development
conference held in Boston, USA, in September 2013 [16]. Participants from both the industry
and academia discussed how they utilized data generated by NGS, such as the utilization
of biomarker data for cancer drug development [16]. The use of “publicly available NGS
data for target discovery,” along with the importance of “data integration” and “quality
control,” were also discussed at this conference [16]. However, whether such data have
contributed to facilitating innovation is yet to be thoroughly discussed.

1.4. Purpose of the Study

This study aimed to identify the institutional and organizational factors that can
facilitate (or hinder) the development and dissemination of novel bioinformatics-based
therapies. Considering the uniqueness of the product and its early practical utilization
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as a catalyst for an entry into cancer care services with NGS technologies, this study
specifically focused on the case of Memorial Sloan Kettering-Integrated Mutation Profiling
of Actionable Cancer Targets (MSK-IMPACT) to discuss how clinical sequencing and
genomic cancer medicine could be promoted.

MSK-IMPACT, one of the first three FDA-approved tumor profiling tests launched in
the market [17], is unique in that it was developed by the Memorial Sloan Kettering Cancer
Center (MSKCC), a private cancer center located in Manhattan, New York City, USA; this
was unlike FoundationOne CDx (Foundation Medicine, Inc., Cambridge, MA, USA) and
Oncomine Dx Target Test (Life Technologies Corporation, Carlsbad, CA, USA), both of
which were developed by companies and approved in the same year. MSK-IMPACT was a
product developed by a hospital and had indeed been applied to a clinical setting before it
was approved by the FDA as an in vitro diagnostic (IVD) test.

This study was centered around the following two questions: (i) How have the FDA’s
regulatory reforms facilitated the development of new drug candidates identified by MSK-
IMPACT? and (ii) how has MSK-IMPACT helped identify new drug candidates in oncology,
leveraging open data accumulated through global research projects. To better answer these
questions, this study particularly investigated the following regulatory and technological
aspects: (i) FDA’s regulatory reforms and their outcomes, (ii) the contribution of publicly
accessible open databases, specifically those based on the genetic mutations provided
by cancer patients and established through large-scale research projects, and (iii) early
application of new technologies (i.e., MSK-IMPACT) to both research and clinical settings.
To ensure both fairness and objectiveness and to better clarify the outcomes of each panel
test, we carried out a comparison between MSK-IMPACT and the other two panel tests, all
of which were the first marketed products [17].

Based on the analysis of such comparisons, we then attempted to understand the
characteristics and challenges associated with MSK-IMPACT by comparing them with
those associated with FoundationOne CDx. Furthermore, we have also discussed how
clinical sequencing in oncology should be further promoted to deliver and maximize the
benefits of the technology in an efficient manner.

2. Materials and Methods

2.1. The Case

Following a review of the existing literature, this study sought to consider whether
the FDA’s regulatory reforms have led to an early application of new technologies in
both research and clinical settings, with a specific focus on the case of MSK-IMPACT. It
also aimed to examine whether bioinformatics-driven innovation had been promoted in
clinical sequencing in oncology as a result of the accumulation and utilization of publicly
accessible open data on genetic information. Overall, research was conducted by referring
to the public information released by the relevant organizations and employing a semi-
structured interview with a key individual in the clinical oncology sequencing community.
To offer a better understanding of the results of the research, Table 1 summarizes various
types of relevant stakeholders and catalysts for cancer care innovation identified by the
investigation of this study.
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Table 1. Major stakeholders and catalysts.

Category Stakeholders/Catalysts
Major Roles in Cancer Care

Innovation

Regulatory authority U.S. Food and Drug Administration
(FDA)

Take responsibilities to set out
and periodically reform

pharmaceutical and medical
devices regulations

Assay developer

Foundation Medicine, Inc., Life
Technologies Corporation,

Memorial Sloan Kettering Cancer
Center (MSKCC)

Develop and commercialize
tumor profiling tests

Developer of public
data sharing platform

National Center for Biotechnology
Information (NCBI), National

Human Genome Research Institute

Establish and provide access to
publicly accessible open data

through international research
programs/projects

International research
program/project

Cancer Genome Atlas, Genome
Reference Consortium,

International HapMap Project,
Personal Genome Project, 1000

Genome Project

Help researchers obtain genetic
information from cancer

patients

Drug manufacturer
Pharmaceutical companies (i.e.,

Roche Holding AG, Basel,
Switzerland)

Develop new drugs and/or add
new indications to the existing
drugs on the basis of the use of

tumor profiling tests

Healthcare institution Hospitals providing healthcare
services (i.e., MSKCC)

Provide cancer patients with
opportunities for cancer care

and clinical trials

Direct beneficiary of
healthcare innovation Cancer patients

Provide genetic data and use
newly developed cancer

therapies through clinical trials

2.2. Document-Based Analysis

Considering the nature of the study, we mostly referred to qualitative information
released by the FDA and MSKCC as well as to other relevant articles as the major sources
of information.

For the first step of a literature search, this study employed the Patient, Intervention,
Comparison, Outcome (PICO) framework for a preliminary search to gain a better under-
standing about the case, and to develop literature search strategies. Some of the typical
search terms used were as follows: “cancer patients,” “MSK-IMPACT,” “FoundationOne
CDx,” “Oncomine Dx Target Test,” and “new drug development.” Second, we hypoth-
esized that (i) regulations, (ii) publicly accessible open data, and (iii) early application
of new technologies induced by the regulations as key drivers of bioinformatics-driven
innovation. After that, we performed database searches to obtain relevant articles that
cover issues of the above 3 hypotheses; we performed each database search on Web of
Science (https://www.webofscience.com/wos/woscc/basic-search, accessed on 7 March
2020) by using up to any of the 3 search terms at a time from the following: “bioin-
formatics,” “innovation,” “facilitate,” “facilitation,” “new drug development,” “NGS,”
and “regulation.” As a result, we found 148 articles in total. Of these, we selected and
examined 13 articles that were considered most relevant to the topics and hypotheses
for this study. Furthermore, we conducted an issue-specific literature search on Scopus
(https://www.scopus.com/search/form.uri?display=basic#basic, accessed on 21 June 2020)
and Google Scholar (https://scholar.google.com/, accessed on 21 June 2020), focusing on a
single issue relating to any of the above 3 hypotheses (i.e., a combination of issue-specific
search terms “FDA Modernization Act” and “drug development”).

We also conducted a database search using PubMed (https://pubmed.ncbi.nlm.nih.
gov/, accessed on 3 January 2019) and ClinicalTrials.gov (https://clinicaltrials.gov/, ac-
cessed on 3 January 2019) to gain quantitative implications and sought to confirm the
number of scientific publications relating to data on genetic information and the number of
clinical trials relating to cancer genomic medicine from the early 2000s to the late 2010s. In
order to confirm the former, we used the search terms “GWAS” (genome-wide association
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study) and “SNP” (single nucleotide polymorphism) to separately investigate the numbers
of publications regarding these technological issues on PubMed. Regarding the latter, we
applied a combination of the search terms “cancer/NGS or WES (whole exome sequencing)
or WGS (whole genome sequencing)” to confirm the number of clinical trials relating to
cancer genomic medicine on ClinicalTrials.gov.

2.3. Comparative Analysis

Based on the information collected from the above research and analyses, this study
sought to confirm whether MSK-IMPACT had made a certain contribution to promoting
innovation in clinical sequencing in oncology. To ensure the fairness of the research,
a comparative analysis between MSK-IMPACT, FoundationOne CDx, and Oncomine Dx
Target Test was performed to gain objective insights.

First, this study investigated the characteristics of MSK-IMPACT and other tests
to better understand if they have particular foundations to promote scientific research
for innovation, which would help pharmaceutical companies conduct clinical trials and
develop new cancer therapies.

Second, it also investigated whether these tests helped in the facilitation of healthcare
innovation, particularly analyzing whether new drugs were successfully developed based
on the use of such tests. For better clarification, this study defined the outcomes of the
tests as ”drugs identified using three panel tests as a result of either patient screening
or confirmatory testing of gene expressions upon the onset of clinical trials.” Overall, it
appeared to be difficult to fully cover such outcomes in this study. As of 30 November
2020, ClinicalTrials.gov suggested only 2 observational studies through a keyword search
using a single search term “MSK-IMPACT” [18]. Since observational studies were not
considered as clinical trials, the search result did not indicate that the test had led to
the development of new drugs for cancer treatment. Following this result, and due
in part to the difficulties in accessing certain information on the outcomes of the tests,
this study took different approaches to investigate the outcomes of MSK-IMPACT and
those of the other tests, as illustrated in Figure 1. It then examined whether the new
drugs among these outcomes identified by this investigation method utilized any of the
FDA’s expedited approval programs using a drug development database Cortellis.com
(https://www.cortellis.com/intelligence/home.do, accessed on 24 April 2021). This was
intended to confirm the impact of the FDA’s regulatory reforms on the outcomes of each test.

Figure 1. Investigation methods to define contribution to new drug development by the three tumor
profiling tests.
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2.4. Interview-Based Analysis

A semi-structured interview was conducted with an anonymous expert, the presi-
dent of a company that provided its customers with clinical sequencing services, such as
analytical services using NGS and tumor profiling tests, including MSK-IMPACT. The in-
terview was focused on 3 key topics: (1) FDA’s regulatory reforms that have promoted the
utilization and early application of new technologies in a clinical setting, (2) accumulation
of publicly accessible open data on genetic information and its contribution to the devel-
opment of new therapies in oncology, and (3) benefits and challenges of MSK-IMPACT
in comparison with those associated with other tumor profiling tests from an innovation
point of view. The interview was conducted for 1 h on 8 May 2020.

3. Results

3.1. FDA’s Regulatory Reforms and Their Outcomes

Figure 2 illustrates the historical overview of the regulatory reforms implemented
by the FDA over the last three decades. As explained earlier, the series of regulatory
reforms implemented by the FDA began after the enactment of the Orphan Drug Act of
1983, followed by that of expedited programs as well as other relevant acts to promote
comprehensive healthcare innovation. The FDA Modernization Act (FDAMA), which
was enacted in 1997 to reduce the review time for new drug candidates by extending the
PDUFA of 1992, also sought to cover the medical devices. Meanwhile, the FDA intended to
balance the risks between the early approval of new drugs and lack of scientific data. Under
the FDA Amendments Act of 2007, the Risk Evaluation and Mitigation Strategy (2007) and
Sentinel Initiative (2008) were implemented [10]. These programs were implemented to
promote the safe use of medications [10,19] and mitigate risks by monitoring data regarding
the adverse effects of drugs in certain patient populations [20]. Equally important was
that the 21st Century Cures Act [21] of 2016 had sought to promote the utilization of
medical data for new drug development, which triggered the facilitation of data utilization and
accumulation of data on genetic mutations obtained through clinical sequencing in oncology.

 

Figure 2. Historical overview of regulatory reforms by the U.S. Food and Drug Administration
(FDA). This figure illustrates the association between the four major acts and relevant regulatory
programs, actions, etc. in chronological order. The four major acts are lined up on the center line and
are tied up with essential regulatory programs and actions implemented under any of such acts (i.e.,
the FDASIA and the Breakthrough Therapy Designation). The association between the subpart E
regulations and the Fast Track Designation is expressed using the dotted lines because the former is
the predecessor of the latter.
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Not only did the FDA work on reforming the pharmaceutical regulations, but it also
performed practical actions to modernize the regulations for medical devices. This study
was only focused on the regulations that can be considered to have facilitated the approval
process of MSK-IMPACT. By employing the combination of the De Novo pathway and
510(k) 3 PR Program, both of which were implemented under the FDAMA, the FDA
approved MSK-IMPACT, taking lesser time than originally envisioned. The FDA saved
time by approving the test as an IVD in 51 days, which was shorter than the 150 days
duration [22] originally set by the organization as the performance goal for the review of
De Novo applications (through an email query to the FDA on 24 November 2020, we have
additionally confirmed that “150 days” was the performance goal for the FDA De Novo
reviews). It was also remarkable to note that these regulations allowed the test, which was
originally considered as a Laboratory Developed Test (LDT), to be approved as an IVD.
Prior to the implementation of these programs, there was no formal IVD approval process
for LDTs; these were merely not-for-sale products developed in laboratories certified by
the Clinical Laboratory Improvement Amendments and were not allowed to be distributed
for commercial purposes.

Furthermore, to realize precision medicine, the FDA held public workshops twice in
2015 to take practical measures to establish regulations for clinical testing based on the
utilization of NGS, gathering various stakeholders, including the College of American
Pathologists, National Institutes of Health (NIH), National Institute of Standards and
Technology, and Centers for Disease Control (CDC), as well as those from academia and
manufacturers of diagnostic tools and instruments [23,24]. Based on a series of discussions,
the FDA released the guidance draft to establish a regulatory pathway for cancer genomic
medicine in 2016 [25]. Further, referring to the public comments, the FDA released certain
guidelines in 2018, which summarized issues of how the FDA would interpret the clinical
validity and significance of a product upon consideration of its regulatory approval [26].

3.2. The Contribution of Open Databases

Datasets of genetic information have been accumulated over time and were disclosed
to the public in parallel due to the large-scale collaborative research programs triggered by
the political will, combined with the advancement in DNA sequencing and analytical tech-
nologies. In 1999, the National Center for Biotechnology Information (NCBI) collaborated
with the National Human Genome Research Institute to establish dbSNP, a data-sharing
platform that provides genetic data on single nucleotide polymorphisms (SNPs) [27]. The
International HapMap Project, which began in 2003, allowed researchers to analyze the ref-
erence dataset using the Genome-Wide Association Study (GWAS), a method that enabled
the analysis of the association between diseases and relevant SNPs along with quantitative
traits. The utilization of the reference dataset, encouraged by the establishment of the
analytical tool, has contributed to the radical increase in the number of scientific publica-
tions [28]. In fact, according to the search results yielded using the search term “genome
wide association study” on PubMed, the number of scientific publications relating to GWAS
increased from 1 to 1808 between 2002 and 2018 [29]. Similarly, as a result of a keyword
search using the search term “SNP” on PubMed, the number of SNP-related publications
was also shown an increase from 721 in 2002 to 3826 in 2018 [29]. Such an accumulation in
scientific knowledge of the association between diseases and SNPs eventually fueled the
practical application of relevant technologies to a clinical setting; typical examples included
tumor profiling tests and direct-to-consumer genetic testing services [28].

The barrage of scientific outcomes was reinforced by the practical application of
NGS technologies after the launch of the world’s first NGS instrument in 2005. Some
international collaborative research programs started using NGS, and the data obtained
from these research programs were publicly released; the Genome Reference Consortium,
the Personal Genome Project, and the 1000 Genome Project are some of the examples of
such programs [30,31]. Data on genetic information obtained and accumulated from, both,
basic research and clinical applications were further utilized. The NCBI has developed
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a data sharing platform by integrating different datasets with each other; it has become
a foundation for further scientific research on and clinical applications of genetic testing [32].
Researchers are obliged to register data obtained from research programs supported by
the NIH. Nevertheless, the platform has become popular among the global scientific
community due to its user-friendliness. In the meantime, the rising tide of data disclosure
further spilled over into the field of oncology. The Cancer Genome Atlas, which started in
2007, released a dataset of 4,938,362 genetic mutations from 7042 cases in 2013, accounting
for 30 types of cancers [33].

As these genetic-information-based datasets continuously accumulated, activities
to secure and improve the analytical validity of such data were also conducted through
these large-scale, multicenter research programs by standardizing NGS instruments, tools,
analytical protocols, and overall infrastructure required for scientific research. The CDC
also organized the Next-Generation Sequencing: Standardization of Clinical Testing (Nex-
StoCT), and published recommendations for the utilization of NGS in a clinical laboratory
setting in 2012, specifically focusing on (1) validation, (2) quality control, (3) proficiency
testing, and (4) reference materials [34].

Considering all these facts, it is worth paying attention to the recent trends in the
field of cancer genomic medicine; a search result obtained using multiple search terms
on ClinicalTrials.gov showed that the number of clinical trials in this field has gradually
increased from 1 in 2008 to 30 in 2018 [18].

3.3. An Early Application of the New Technologies

The application of cancer genetic testing to both research and clinical settings was
accelerated by the FDA’s approvals for Oncomine Dx Target Test, MSK-IMPACT, and
FoundationOne CDx as IVDs in 2017 [35–37]. The FDA then simplified the review process
for additional biomarkers, which would be brought after the approval of these tests, by al-
lowing the test developers to report claims “without an FDA submission [38].” The decision
was made based on the FDA’s approach that genetic mutations would fall into one of the
three different evidence levels in accordance with the clinical significance, and that these
evidence levels would be continuously updated as the science advances [38]. Companion
diagnostics (CDx) were categorized as “Level 1” [38]. This level requires a genetic mutation
to provide the highest clinical significance to be considered as a biomarker on the basis of
clinical trials incorporating either “patient outcomes” or “clinical concordance to a previ-
ously approved CDx”, along with “analytical validity” of the test for that mutation [38].
“Level 2” requires “analytical validity” and “clinical validity” of the test, which is typically
“publicly available clinical evidence” [38]. “Level 3” merely requires “analytical validation”
in combination with the minimal level of clinical significance, such as “peer-reviewed
publications” and “in-vitro preclinical models [38].” Genetic mutations that are neither
Level 1 or 2 are considered Level 3, and these are not considered as biomarkers [38].

Based on the concept of three-tiered clinical significance, the FDA has allowed the
test developers to move a genetic mutation from Level 3 to 2 without an additional FDA
submission, if it can be recognized within the clinical community based on the accumulation
of clinical evidence [38]. In addition, not only has the FDA allowed for a genetic mutation
that accounts for a specific cancer type to be considered as a biomarker, but it has also
paved the way for its approval as a biomarker for other cancers that can result from the
same mutation.

Aside from the FDA’s regulatory efforts to simplify the review process for biomarkers,
MSK-IMPACT was used as an LDT at MSKCC even before it was granted the FDA approval
as an IVD in 2017 as stated earlier. It should also be emphasized again that MSK-IMPACT
was approved in an accelerated manner as a result of the FDA’s regulatory efforts to
establish the regulatory pathways for LDTs as mentioned earlier.
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3.4. The Utilization Structure of MSK-IMPACT

Figure 3 illustrates the overall structure of how MSK-IMPACT was utilized at MSKCC,
which offers cancer care, diagnostic services, and opportunities for cancer patients to par-
ticipate in the clinical trials in New York and New Jersey [39]. The utilization structure was
gradually established as it was being used as an LDT. Genetic mutations data with clinical
implications, collected from cancer patients, were accumulated and anonymously released
to the public on “cBioPortal for Cancer Genomics” [40]. The hospital also developed an
open source software that visualized data obtained through MSK-IMPACT; such data were
released on GitHub to the public, and researchers are allowed to access them for free to
facilitate further research for the development of novel therapeutic options in combination
with the data released on cBioPortal [41,42]. Further, the spillover effect stemmed from
the utilization of open data generated by MSK-IMPACT was found in a case of The Hyve
B.V. (Utrecht, The Netherlands), a company that has developed free public software for
cBioPortal [43]. Their software allows researchers to use data released on the data sharing
platform [43]. Moreover, MSKCC has also established “OncoKB,” a knowledge base that
helps healthcare professionals determine therapies based on the diagnostic outcomes pro-
vided by MSK-IMPACT [44]; this knowledge base, in accordance with the evidence levels
regularly updated by the FDA, constantly updates information and data that are beneficial
for decision-making for cancer therapies, such as those on cancer genetic mutations, cancer
types, and molecular target drugs that can be potentially used for cancer treatment.

 
Figure 3. Key technological assets and their relationship in MSK-IMPACT [36,45,46]. Overall, this
figure shows that the utilization structure of MSK-IMPACT contributes to both research and clinical
settings. The structure helps genetic data obtained from cancer patients to be accumulated over time
and be released to the public for further research. It also helps cancer patients participate in clinical
trials. The structure has been established and reinforced based on interactions among various types
of stakeholders (i.e., the FDA, MSKCC, cancer patients, pharmaceutical companies, etc.), and has
provided research and clinical contributions, both of which are imperative for new drug development
in oncology.

MSKCC has also established multiple processes to facilitate clinical trials by efficiently
recruiting eligible patients in a timely manner, utilizing data collected through the appli-
cations of MSK-IMPACT. The hospital promotes phase 1 clinical trials by encouraging
the treating physicians to introduce the Early Drug Development (EDD) Service to the
eligible patients [45], which were identified by the DARWIN Cohort Management System,
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an original informatics platform used for the screening and management of patient cohorts
for “genotype-matched clinical trials” [47]. In fact, the test suggested approximately 30%
of patients would be eligible for clinical trials among more than 10,000 cancer patients
in a study in which the clinical utility of MSK-IMPACT was evaluated using sequencing
data obtained from such patients [48]. Furthermore, the hospital has recently initiated the
Program for Drug Development in Leukemia (PDD-L) to promote the development of
leukemia treatments by inducing leukemia patients to enroll in phase 1 clinical trials [49].

MSKCC has also functioned to conduct “basket trials,” which cover various cancer
types by focusing on a specific genetic mutation that is considered to cause tumors [50].
Rather than focusing on a specific cancer type, basket trials enable researchers and drug
developers to simultaneously cover the patients with different types of cancers [50]. In such
a setting, rare cancers, for which the patient populations were generally small, can also be
covered [50]. Vemurafenib (ZELBORAF®) was developed through a basket trial. The drug
was first approved in August 2011 for the treatment of unresectable or metastatic melanoma
associated with the BRAF V600 mutation [51]. MSKCC further provided an additional
opportunity to conduct a basket trial to test the drug for BRAF V600 mutation-positive
nonmelanoma patients [52]. As a result, the FDA approved the drug for the treatment of
Erdheim–Chester disease (ECD), an extremely rare cancer, in November 2017 [53,54].

3.5. Comparison between MSK-IMPACT and Other Panel Tests

The results of the comparative analyses are shown in Tables 2–4. Table 2 summarizes
the basic information regarding MSK-IMPACT, FoundationOne CDx and Oncomine Dx
Target Test. The remarkable difference between these three assays is that MSK-IMPACT
was not approved as a companion diagnostic assay, while its competing IVDs were listed
as FDA-approved companion diagnostic devices [55]. The other difference was found
in their data management systems; FoundationOne CDx and MSK-IMPACT appeared
to have their own data sharing platforms, while OncomineCDx Target Test was merely
found to possess its data management system, which would not be intended for data
sharing with others. Second, Table 3 reveals the contribution of these three assays to
new drug development. FoundationOne CDx appeared to be the most prominent, while
Oncomine Dx Target Test, the other companion diagnostic device, seemed to have struggled
to produce certain outcomes. In addition, there were 24 FDA-approved drugs associated
with FoundationOne CDx for cancer care, while the number of such drugs for Oncomine
Dx Target Test remained at 5 [55]. Although there were no CDx-tied drugs with MSK-
IMPACT, it helped in the production of two FDA-approved drugs and two other drug
candidates, which are currently under development. The other finding was that three
of these drugs were identified through basket trials. Third, Table 4 shows the expedited
approval programs that were helpful in obtaining FDA approvals for the new drugs
produced based on the use of each panel test; considering the significance as well as
difficulties of innovation, this study only focused on the new drugs, and thus excluded
the existing drugs with history of expanding additional indications. It should be noted
that these new drugs were found to have utilized multiple programs to accelerate the drug
development process. Moreover, the average time frame between IND and FDA approval
for these drugs was found to be approximately 3.5 years, which was significantly shorter
than approximately 8 years that averaged from 1986 to 2017 as explained earlier [10].
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Table 2. Comparison of basic information.

Item FoundationOne CDx
[37,55–57]

MSK-IMPACT
[36,45,46,58]

Oncomine Dx Target Test
[35,55,59,60]

Developer Foundation Medicine, Inc. Memorial Sloan Kettering Cancer Center
(MSKCC) Life Technologies Corporation

Date of FDA
approval as IVD 30 November 2017 15 November 2017 22 June 2017

Specimen type FFPE tumor tissue FFPE tumor tissue and patient-matched
blood/normal tissue as a normal control FFPE tumor tissue

Number of genes
covered 324 468 23

Biomarker
SNVs, Indels, CNVs, gene
rearrangements, TMB, MSI

and HRD

SNVs, Indels, CNVs, Promoter mutation
(TERT), Gene rearrangements, TMB and

MSI
SNVs, Deletions and Fusion

gene (ROS1)

FDA approval for
CDx

Granted for diagnosis of breast
cancer, cholangiocarcinoma,

colon/rectum cancer, non-small
cell lung cancer (NSCLC),

malignant melanoma, ovary
cancer, prostate cancer, and

solid cancer

None
Granted for diagnosis of

non-small cell lung cancer
(NSCLC)

Availability and
functions of data

management
and/or sharing

platform for new
drug

development

Allows access to open data on
cancer patients through
FoundationInsights, a

cloud-based data platform.
Provides access to

FoundationCore through
FoundationInsights, a

knowledgebase with data
obtained from cancer patients

Facilitates research for the development of
new therapies through cBioPortal for

Cancer Genomics (open database)
Provides and updates clinical data

obtained from cancer patients through
OncoKB (knowledgebase)

Allows patients to access Phase 1 clinical
trials for solid tumors identified by the
DARWIN Cohort Management System

Manages study cohorts for clinical trials on
a timely basis

Analyzes and reports
sequencing data through the

Torrent Suit Dx Software,
which works on Google

Chrome browser
Allows sequencing results and

reports to be automatically
archived to an external server

The abbreviations for the terminology in genome science indicated in this table originally stand for the following: formalin fixed paraffin
embedded (FFPE), single nucleotide variant (SNV), insertion/detection (Indel), copy number variation (CNV), tumor mutational burden
(TMB), microsatelite instability (MSI), homologous recombination deficiency (HRD).

Table 3. Comparison of outcomes.

Product
Name

New Drugs Expanded Additional Indications to Existing Drugs

Drug Name Biomarker
Indication/Therapy

Type
Status Drug Name Biomarker

Indication/Therapy
Type

Status

Founda-
tionOne

CDx

PEMAZYRE®

(pemigatinib)
[61,62]

FGFR2 Cholangiocarcinoma/
Monotherapy

Approved
(April 2020)

GILOTRIF®

(afatinib) [63,64] EGFR
Squamous cell

carcinoma
(lung)/Monotherapy

Approved
(April 2016)

ROZLYTREK®

(entrectinib)
[65,66]

NTRK Solid tu-
mors/Monotherapy Approved

(August 2019)

KEYTRUDA®

(pembrolizumab)
[67,68]

TMB TMB-H solid tu-
mors/Monotherapy

Approved
(June 2020)

ROS1
Non-small cell lung

cancer
(NSCLC)/Monotherapy

LYNPARZA®

(olaparib)
BRCA1/2

Ovarian can-
cer/Monotherapy

[69,70]

Approved
(December

2018)
TABRECTA™
(capmatinib)

[71,72]

Mutation
relating to
MET exon

14 skipping

Non-small cell lung
cancer

(NSCLC)/Monotherapy

Approved
(May 2020)

HRR
genes

mCRPC/Monotherapy
[73,74]

Approved
(May 2020)

VITRAKVI®

(larotrectinib)
[75,76]

NTRK Solid tu-
mors/Monotherapy

Approved
(November

2018)

ZELBORAF®

(vemulafenib)
[52,54]

BRAF
V600

Erdheim-Chester
disease

(ECD)/Monotherapy

Approved
(November

2017)

MSK-
IMPACT

AZD5363
(capivasertib)

[18,77]
AKT1/2/3

Multiple indications
(breast cancer,

prostate cancer, solid
tumors, etc.)/Either

monotherapy or
combination

Phase 1~ (as of
April 2021)

NERLYNX®

(neratinib) with
XELODA®

(capecitabine)
[77,78]

HER2 Breast can-
cer/Combination

Approved
(February

2020)

LOXO-195
(selitrectinib)

[18,79]
NTRK

Solid tumors (with
resistance to Larotrec-
tinib)/Monotherapy

Phase 1/2 (as
of April 2021) - - - -

VITRAKVI®

(larotrectinib)
[75,76]

NTRK Solid tu-
mors/Monotherapy

Approved
(November

2018)
- - - -

Oncomine
Dx Target

Test

GAVRETO™
(pralsetinib)

[80,81]
RET

Non-small cell lung
cancer

(NSCLC)/Monotherapy

Approved
(September

2020)

TAFINLAR®

(dabrafenib)
with MEKINIST®

(trametinib) [82]

BRAF
V600 E

Non-small cell
lung cancer

(NSCLC)/Combination

Approved
(June 2017)
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Table 4. Association between the FDA’s expedited approval programs and the new drugs identified by the three tumor
profiling tests. To a greater or lesser extent, all the new drugs identified by the tests were found to have succeeded in
speeding up the review process by utilizing a combination of the expedited approval programs.

Drug Information Expedited Approval Programs [83]

Drug Name
(Generic
Name)

Assay Used
for Clinical

Trials
Indication

IND
Submission

Date

Approval
Date

Orphan
Drug

Fast
Track

Breakthrough
Therapy

Priority
Review

Accelerated
Approval

GAVRETO™
(pralsetinib)

Oncomine Dx
Target Test

Non-small cell
lung cancer

(NSCLC)

August 2019
[84]

September
2020 [81] Yes No Yes Yes Yes

PEMAZYRE®

(pemigatinib)
FoundationOne

CDx
Cholangio-
carcinoma

January 2018
[85]

April. 2020
[62] Yes No Yes Yes Yes

ROZLYTREK®

(entrectinib)
FoundationOne

CDx

Solid tumors February
2014 [83]

August
2019 [66] Yes No Yes Yes Yes

Non-small cell
lung cancer

(NSCLC)

May 2017
[65]

August
2019 [66] Yes No No Yes Yes

TABRECTA™
(capmatinib)

FoundationOne
CDx

Non-small cell
lung cancer

(NSCLC)

January 2015
[86]

May 2020
[72] Yes No Yes No Yes

VITRAKVI®

(larotrectinib)

FoundationOne
CDx, MSK-
IMPACT™

Solid tumors February
2014 [87]

November
2018 [76] Yes No Yes Yes Yes

4. Discussion

4.1. Implications of Regulatory Reforms to Corporate Activities

The number of outcomes produced by each panel test implies that FoundationOne
CDx has benefited from the FDA’s regulatory reforms, early application of new technolo-
gies, and accumulation of publicly accessible open data. It would be reasonable to assume
that the FDA has encouraged drug developers to facilitate drug development activities
through the implementation of a series of regulatory reforms, including expedited ap-
proval programs. In the meantime, pharmaceutical regulations have become stringent in
monitoring the safety of drug candidates under the FDA Amendments Act. The FDA’s
strategies to balance the flexibility and stringency in drug development should be consid-
ered to be a reasonable action because the efficacy and safety of new therapies need to be
secured and appropriately balanced, especially when such therapies are developed based
on the utilization of the new technologies. It would also be reasonable to assume that data
accumulation and disclosure to the public, along with the efforts for standardization and
compatibility development between different datasets, has facilitated drug development
activities in which FoundationOne CDx was incorporated. On the contrary, MSK-IMPACT
does not seem to have fully benefitted from these regulatory efforts, although it succeeded
in shortening the FDA’s review process for its IVD approval.

This may be because of the differences in the organizational interests and incentives
between the developers. Foundation Medicine falls under the umbrella of the pharmaceu-
tical giant Roche Holding AG (Basel, Switzerland), while MSKCC is a hospital. There is no
doubt that the former has an interest in expanding collaborations with other players, such
as pharmaceutical companies, to facilitate drug development activities using its products,
considering the relationship with its parent company. On the other hand, the primary
interest of MSKCC, as a healthcare provider, is to serve its patients.

In addition, the number of outcomes by Oncomine Dx Target Test was found to be
inadequate despite its CDx approval. At this point, the fact that Life Technologies is a
manufacturer of laboratory tools and is not directly involved in the drug development
activities may account for this result. Therefore, it is reasonable to assume that, unlike
the relationship between Foundation Medicine and Roche, the capital relationship of
Life Technologies with its parent company, Thermo Fisher Scientific Inc. (Waltham, MA,
USA), which is not a pharmaceutical company, has not functioned enough to motivate the
company to be involved in new drug development.

261



Cancers 2021, 13, 3448

4.2. Characteristics of MSK-IMPACT

Our study has identified tangible and intangible values of MSK-IMPACT. First, the
test has been embedded into the patient recruitment activities of MSKCC for efficient
enrollment in clinical trials. Second, there is an established utilization structure of data for
genetic mutations in cancer patients collected using the test, which can be used for further
research. Third, although the extent of the contribution of the test to basic cancer research
has yet to be clear, the case of The Hyve, a free software developer, implies that MSK-
IMPACT is believed to have contributed to basic research through its data sharing platform
cBioPortal in combination with The Hyve’s free software. It is likely that researchers have
gained some benefits from these tools as they can access the open data for free. This case
represents the differentiation of MSK-IMPACT from FoundationOne CDx, which provides
similar benefits at the researchers’ expense, such as the provision of data on a closed basis.
Fourth, MSKCC and MSK-IMPACT have functioned as a catalyst to promote the practice
of basket trials, which are an advanced form of clinical trials. Lastly, the test has thus
far contributed to the development of both monotherapies and combination therapies for
cancer. In contrast to FoundationOne CDx, the advantages associated with MSK-IMPACT
were mostly identified in its integrated utilization structure within the MSKCC community.

Key challenges of MSK-IMPACT were pointed out from a marketing and business
development point of view, considering the potential differences between this test and
FoundationOne CDx. First, the test was basically used within the MSKCC community. This
seems to have caused limitations for the test in gaining utilization opportunities outside
the hospital group. Since the hospital has a well-established utilization structure of the
test within its own community with a specific priority of saving patients, it has struggled
to expand opportunities for the test to be used at other hospitals. The hospital may have
also missed alliance and collaboration opportunities with other counterparts, such as
pharmaceutical companies, for drug development activities. Second, cancer patients at
MSKCC do not have to pay test fees because they are covered by donations [88]. This
casts a concern about the sustainability of the testing practice. Since MSK-IMPACT has
limitations in expanding marketing opportunities outside the MSKCC community, the
hospital may have to consider alternative measures to ensure the sustainability of the
testing practice for its patients.

4.3. Recommendations for a Better Clinical Sequencing in Oncology

Based on these considerations, we emphasize the importance of collaborations with
external organizations, including other hospitals and pharmaceutical companies, for a
non-profit model such as MSKCC to better promote drug development. Mirnezami et al.
2012 have pointed out that collaboration between various healthcare stakeholders, such
as the governments, researchers, and pharmaceutical industries, would be required to
promote precision medicine [89]. Looking at the comparison between MSK-IMPACT
and FoundationOne CDx, the number of outcomes produced by the latter seems to be
overwhelming, due in part to its CDx approval. The potential interest in drug development
activities between Roche and Foundation Medicine should have been the major driving
force. The difference in organizational interests can affect one’s motivation to facilitate
innovation and even its consequences. As a case of collaborative development of cancer
drugs, Makino et al. 2018 argued in their quantitative research that there was a positive
correlation between the number of alliances (i.e., R&D licensing, marketing licensing, etc.)
and a number of patents relating to CDx [90]. This implies that a challenge for MSK-
IMPACT is to promote collaborative opportunities with external counterparts for drug
development activities.

Despite these issues, MSKCC has established the utilization structure of MSK-IMPACT
over time. Patients with cancer at MSKCC can easily be notified regarding their eligibility
for clinical trials. Data on genetic mutations in patients at the hospital can also be utilized
for further research. These processes can both, directly and indirectly, contribute to saving
patients. Based on these findings, this study insists that even more patients would be saved
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if the characteristics of these two tests were to be mixed. It is recommended that MSKCC
considers reinforcing collaborations with other hospitals, pharmaceutical companies, and
the like and providing relevant resources to them to promote drug development activities.

Equally importantly, regulatory authorities need to consider establishing a certain
institutional framework that integrates different healthcare stakeholders to facilitate drug
development activities. For example, in the field of cell and gene therapy in Japan, a double-
track regulation of providing values through medical services based on translational re-
search and products based on clinical trials has been implemented, guaranteeing a variety
of opportunities for companies and non-profit institutions [91]. Such an innovative ap-
proach in regulatory science will provide more opportunities for cancer drug development,
which will eventually contribute to providing more treatment options for cancer patients.

4.4. Study Limitations

This study had some potential limitations. First, ClinicalTrials.gov did not function to
accurately find clinical trials that employed MSK-IMPACT for either screening or confirma-
tory purposes, as pointed out earlier. Second, the investigation method to find outcomes
by FoundationOne CDx and Oncomine Dx Target Test was not intended to cover ongoing
clinical trials for their pre-approval drugs, while it detected some for MSK-IMPACT. Third,
the method was not intended to cover the outcomes of basket trials by FoundationOne
CDx and Oncomine Dx Target Test, while it found that the majority of the outcomes of
MSK-IMPACT were developed through this form of clinical trials. Since the study focused
on investigating the CDx-tied drugs with these two tests, the results did not convey the
extent to which they were being used in the basket trials. Overall, the fact that numerous
clinical trials involving cancer clinical sequencing have already been conducted accounts
for the difficulties in fully covering the outcomes of these three tests. At this point, there is
still room for further research to investigate the contribution of these three tests to cancer
care innovation.

5. Conclusions

The present study explored factors that contribute to facilitating innovation in cancer
clinical sequencing with a particular focus on the case of MSK-IMPACT with two com-
parative cases, FoundationOne CDx and Oncomine Dx Target Test. Through comparative
analyses between these three tests, FoundationOne CDx appeared to have outweighed
the MSK-IMPACT and Oncomine Dx Target Test in terms of the number of generated
outcomes, whereas MSK-IMPACT was functioning as a hub to efficiently enroll cancer
patients in clinical trials with its in-house data management platform. These results suggest
two key challenges that MSK-IMPACT needs to overcome. First, more collaborations
with external organizations for drug development activities, including but not limited to
other hospitals and pharmaceutical companies, need to be pursued. Another challenge
lies in the sustainability of the testing practice: since the use of the test is limited within
the MSKCC community, it is ideal for the hospital to secure alternative financial sources
to ensure continued testing practice. To address these challenges, MSK-IMPACT should
expand the use of the test for collaborations with external organizations to develop novel
cancer therapies. It should also be noted from a regulatory perspective that pharmaceutical
regulations need to be supportive of drug developers, while balancing the efficacy and
safety of new therapies under development in an appropriate manner. All these efforts will
eventually contribute to the development of novel therapies for cancer patients.
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Simple Summary: Recent cancer screening trials have found that using low-dose computed tomog-
raphy (LDCT), compared to chest radiography, resulted in a significant reduction in lung cancer
mortality. To effectively carry out this intervention, individuals at a high risk of developing lung
cancer are targeted. However, accurately identifying and retaining these groups can be challenging.
As electronic medical records (EMRs) contain important demographic and clinical information, they
could be used to accurately identify subjects for screening. To determine whether EMRs can be used
for this purpose, this paper examines the evidence around the use of EMRs in screening trials and the
information contained in them that could be used to aid researchers in identifying eligible subjects.

Abstract: Lung cancer screening trials using low-dose computed tomography (LDCT) show reduced
late-stage diagnosis and mortality rates. These trials have identified high-risk groups that would
benefit from screening. However, these sub-populations can be difficult to access and retain in trials.
Implementation of national screening programmes further suggests that there is poor uptake in
eligible populations. A new approach to participant selection may be more effective. Electronic
medical records (EMRs) are a viable alternative to population-based or health registries, as they
contain detailed clinical and demographic information. Trials have identified that e-screening using
EMRs has improved trial retention and eligible subject identification. As such, this paper argues
for greater use of EMRs in trial recruitment and screening programmes. Moreover, this opinion
paper explores the current issues in and approaches to lung cancer screening, whether records can be
used to identify eligible subjects for screening and the challenges that researchers face when using
EMR data.

Keywords: cancer; screening; smoking; electronic records

1. Introduction

Lung cancer remains one of the most aggressive and frequently diagnosed cancers in
the UK [1]. Mortality rates for the disease remain high, at 21% for both males and females,
making it the most common cause of cancer-related death [2]. As late-stage lung cancer
(i.e., stage III/IV) is less susceptible to curative medical interventions, such as surgical
resection, there is a low survival rate for individuals diagnosed at these stages (2–3%) [2].
The majority of lung cancer cases are diagnosed with late-stage cancer, leading to overall
low survival rates at 1 (40%) and 5 years (16%) post-diagnosis [1,3,4].

To reduce late-stage diagnosis, lung cancer screening using low-dose computed tomog-
raphy (LDCT) has been recommended [5]. Screening trials using LDCT, compared to usual
care (i.e., chest X-rays), have provided evidence of a significant mortality benefit. Trials
such as the NLST, NELSON and UK Lung Cancer Screening Trial found those undergoing
LDCT scans had a reduced probability of dying from lung cancer [6–8]. The Early Detection
of Cancer of the Lung Scotland (ECLS) trial also indicated that blood-based biomarkers are
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effective when used in conjunction with LDCT, significantly reducing late-stage diagnosis
and lung cancer mortality [9].

While these trials support the use of LDCT in screening programmes to identify lung
cancer, there are practical barriers that can reduce participant engagement, limiting the
effectiveness of interventions [10]. These practical barriers include difficulties accessing
target groups and identifying patients that fit screening inclusion criteria [10–12]. However,
electronic medical records (EMRs) contain important clinical and demographic information
that can reduce and resolve these issues [13].

This paper covers the current issues in and approaches to lung cancer screening and
appraises the methods used and evidence for the effectiveness and appropriateness of using
electronic medical records as a way of identifying those at high risk of developing cancer.

Defining high-risk groups for lung cancer screening is an ongoing challenge. Age,
occupation, family history, some respiratory conditions (particularly emphysema) and
environmental factors such as air pollution and radon exposure are important risk factors
for lung cancer [14,15]. The strongest determinant of lung cancer, however, is smoking,
with over 70% of cases in the UK linked to smoking [16,17]. As a result, smoking status has
been used to identify eligible participants for lung cancer trials. In this article, we consider
an important characteristic of high-risk groups to be whether they are current smokers, and
thus papers which report on the recording of smoking in EMRs in order to identify eligible
subjects are included in this article. Other health, sociodemographic and environmental
risk factors for lung cancer that appear in EMRs are also examined.

2. Issues and Approaches to Current Lung Cancer Screening Programmes

Lung cancer screening programmes use a targeted approach, whereby those most at
risk, and thus most likely to benefit from screening, are eligible for inclusion. Trials such
as the NELSON and NLST use patient self-declared age and the number of pack years
as bases for inclusion using a questionnaire [6,18]. Trials utilising risk models to identify
high-risk groups have provided further risk factors to consider for screening criteria, such
as family history of lung cancer and respiratory diseases [19]. The use of these models
for participant selection has led to lower numbers of individuals eligible for selection but
enabled greater prevention of lung cancer death in trials [15,20].

Despite progress in the identification of high-risk individuals, low participation and
retention rates can hinder the effectiveness of interventions. Table 1 presents the approach
response rates, methods of recruitment and percentage of respondents randomised for
some of the major European lung cancer screening trials. Previous lung cancer trials have
had approach response rates (i.e., the proportion of individuals who responded when
approached) between 23 and 52% [21]. To improve these rates, the barriers and issues
around lung cancer screening implementation must be explored.

There are both participant- and provider-related barriers to lung cancer screening
engagement. The UK Lung Cancer Screening Pilot Trial identified participant demographic
factors associated with a reduced likelihood of participation. It was found that those who
were female, older, current smokers and from a lower socioeconomic group were less likely
to participate [27]. Further, there are both emotional and practical barriers to participation.
Practical barriers such as a participant’s state of health and emotional barriers such as
fear of screening and information avoidance are cited as reasons for non-participation by
eligible subjects [27–29]. The stigma associated with lung cancer may also act as a barrier
for both participants and providers [30,31]. Patients with lung cancer report feeling more
stigmatised by themselves and others compared to individuals with cancers such as breast,
cervical and skin cancer, as there is a perception that they have brought the illness upon
themselves by smoking [32]. This can delay individuals seeking help and receiving timely
investigation and treatment, which can have a detrimental effect on patient outcomes [33].
Stigma is also associated with reduced levels of screening uptake [34].

270



Cancers 2021, 13, 5449
T

a
b

le
1

.
Th

e
re

cr
ui

tm
en

ts
tr

at
eg

ie
s,

nu
m

be
rs

of
su

bj
ec

ts
ap

pr
oa

ch
ed

,n
um

be
rs

of
re

sp
on

de
nt

s
an

d
th

e
pe

rc
en

ta
ge

of
re

sp
on

de
nt

s
ra

nd
om

is
ed

in
m

aj
or

Eu
ro

pe
an

lu
ng

ca
nc

er
sc

re
en

in
g

tr
ia

ls
.

L
u

n
g

C
a

n
ce

r
S

cr
e

e
n

in
g

T
ri

a
l

R
e

cr
u

it
m

e
n

t
P

e
ri

o
d

N
u

m
b

e
r

o
f

S
u

b
je

ct
s

A
p

p
ro

a
ch

e
d

N
u

m
b

e
r

o
f

S
u

b
je

ct
s

T
h

a
t

R
e

sp
o

n
d

e
d

A
p

p
ro

a
ch

R
e

sp
o

n
se

R
a

te

N
u

m
b

e
r

o
f

E
li

g
ib

le
S

u
b

je
ct

s
T

h
a

t
C

o
n

se
n

te
d

%
o

f
R

e
sp

o
n

d
e

n
ts

R
a

n
d

o
m

is
e

d
M

e
th

o
d

o
f

R
e

cr
u

it
m

e
n

t

N
EL

SO
N

[6
]

20
03

–2
00

6
60

6,
40

9
15

0,
92

0
24

.9
%

15
,8

22
10

.5
%

D
ir

ec
tm

ai
l

IT
A

LU
N

G
[2

2]
20

04
–2

00
6

71
,2

32
17

,0
55

23
.9

%
32

06
18

.8
%

D
ir

ec
tm

ai
l

LU
SI

[2
3]

20
07

–2
01

1
29

2,
44

0
95

,7
97

32
.8

%
40

52
4.

2%
D

ir
ec

tm
ai

la
nd

m
as

s
m

ed
ia

N
LS

T
[1

8]
20

02
–2

00
4

n/
a

53
,4

54
n/

a
52

,4
86

n/
a

D
ir

ec
tm

ai
l,

m
as

s
m

ed
ia

an
d

ou
tr

ea
ch

U
K

LS
[8

]
20

11
–2

01
4

24
7,

35
4

98
,7

46
39

.9
%

40
61

4.
1%

D
ir

ec
tm

ai
l

LS
U

T
[2

4]
20

15
–2

01
7

20
12

10
58

52
.6

%
77

0
72

.8
%

D
ir

ec
tm

ai
l

LH
C

M
an

ch
es

te
r

[2
5]

20
16

–2
01

8
16

,4
02

28
27

17
.2

%
13

84
49

.0
%

Se
ar

ch
ed

G
P

re
co

rd
s

to
se

nd
di

re
ct

m
ai

l
in

vi
ta

ti
on

s
LH

C
Li

ve
rp

oo
l

[2
6]

20
16

–2
01

8
11

,5
26

45
66

39
.6

%
13

18
28

.9
%

Se
ar

ch
ed

G
P

re
co

rd
s

to
se

nd
di

re
ct

m
ai

l
in

vi
ta

ti
on

s

EC
LS

[9
]

20
13

–2
01

6
77

,0
77

18
,6

57
24

.2
%

12
,2

09
65

.4
%

Se
ar

ch
ed

G
P

re
co

rd
s

to
se

nd
di

re
ct

m
ai

l
in

vi
ta

ti
on

s,
m

as
s

m
ed

ia
an

d
ou

tr
ea

ch

271



Cancers 2021, 13, 5449

The significant barriers that providers face relate to identifying and recruiting eligible
subjects. Previous lung cancer screening trials identified subjects through population-
based registries [21]. Information that could aid in the identification of high-risk groups
may not be present in these registries. Additionally, the information that is present may
not be accurate and, as a result, researchers risk contacting individuals who do not meet
trial eligibility criteria. Trials that use electronic medical records (EMRs) for identifying
subjects have shown that both identification and uptake can match those of trials that have
utilised population registries. The LHC Liverpool study utilised EMRs to search for eligible
subjects before contacting them; this targeted approach resulted in the trial obtaining one
of the highest approach response proportions out of recent lung cancer screening trials
(40%) [21,26]. The ECLS trial similarly searched for eligible participants through primary
care EMRs. This trial recruited 12,208 participants and is, consequently, the largest trial for
the detection of lung cancer using blood-based biomarkers [9,35]. Additionally, the ECLS
and both LHC trials had a lower percentage of respondents drop out between response to
invitation and randomisation (see Table 1). This indicates that EMRs can potentially aid
researchers in identifying and retaining eligible study subjects.

3. Can Records Be Used to Aid in Identifying Eligible Subjects for Screening?

EMRs have been used to aid in identifying patients eligible for screening. A large-scale
study in Minhang District in China, conducted between 2008 and 2016, used EMRs of
5 million patients to identify those eligible for screening multiple cancers including colorec-
tal, gastric, liver, lung, cervical and breast cancer [36]. As a result, more cases of cancer were
detected at an early stage, including a number of individuals who were identified as being
at high risk of cancer. Similarly, trials for Lung Health Check programmes, implemented
in Liverpool and Manchester, were able to recruit and retain a significant proportion of
respondents approached [9,26]. These studies indicate that EMRs could be used to conduct
more focused interventions. In addition, previous studies have also used machine learning
algorithms on smoking history information, identified from EMRs, to create a registry
of patients eligible for cancer control efforts, such as smoking cessation and lung cancer
screening, which could additionally aid in targeting eligible patients for screening [37,38].

3.1. What Codes Are Associated with LC and Appear in EMRs?

Codes are frequently used to identify patients with various health conditions. Pub-
lished comorbidity indices and phenotype code lists, such as CALIBER, the Charlson
Comorbidity Index, the Elixhauser Comorbidity Index and the Quality and Outcomes
Framework (QOF), have compiled a list of codes for lung cancer [39–43]. Moreover, dif-
ferent coding formats are used within different data sources in the EMRs, for example,
primary care settings use read codes and secondary care settings use ICD codes [44,45]. A
sample code list is presented in Appendix A, Table A1.

Various smoking codes are present within EMRs. These can be used to identify high-
risk smokers for screening. Wiley et al. (2013) and Atkinson et al. (2018) examined whether
smoking read codes present in EMRs could be used to determine the smoking status of
participants [46,47]. Wiley et al. used ICD-9 smoking codes and found that they could
accurately detect true smokers in a general population [46]. The combination of codes and
free text improved sensitivity to ever smokers, however. Atkinson et al. used smoking
read codes found in primary care general practice records to assess participants’ smoking
history [47]. They found that read codes compared well with a population health survey
(Kappa–0.64), indicating that read codes are moderately accurate and, thus, can be used in
the identification of smokers.

Codes for health conditions and environmental factors present in EMRs could also
be used to identify high-risk groups. A study utilising EMRs from general practices
across the UK found that asbestos exposure, COPD and symptoms such as coughing and
chest pain were frequently recorded in EMR documentation and prevalent among those
diagnosed with lung cancer [48]. Further to this, COPD recording has been explored in
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EMRs. Algorithms have been developed to determine the presence of COPD in patients.
Quint et al. (2014) and Chu et al. (2021) developed two such algorithms that performed
well, with positive predictive values (PPVs) of 86.5% and 93.5% [49,50].

Other risk factors such as alcohol consumption and asthma have also been examined.
Read codes for alcohol consumption have been validated by comparing EMR data to a
health survey. The study by Mansfield et al. (2019) found similar prevalence rates between
both a health survey and an EMR dataset, indicating EMRs can be accurately used to
identify both current and non-drinkers [51]. Asthma has been validated in EMRs, with the
PPVs of studies comparing asthma codes to a reference ranging from 46 to 100% [52].

While there are other social and environmental determinants of lung cancer, such
as air pollution and radon exposure, this detailed information is not routinely collected
in EMRs. To examine environmental factors, recent studies have linked geospatial and
environmental data to EMRs in order to examine related health outcomes [53–55]. Greater
consensus on measures to be captured in EMRs, as well as improvements in the linking of
external sources of environmental data, could address this issue.

3.2. Use of Free Text to Identify Eligible Participants?

Most studies have used structured variables such as smoking status (non-smoker; ex-
smoker; light smoker; moderate smoker; heavy smoker), asthma diagnosed ever (yes/no),
pneumonia diagnosed ever (yes/no) and family history of lung cancer (yes/no) to estimate
the risk of having lung cancer and to identify participants eligible for lung cancer screening
studies [19,56,57]. However, recent studies have begun to explore free text in EMRs to
identify eligible patients [58–60].

Natural language processing provides a feasible way to extract various types of
information from EMRs. This technique has been successfully used to extract and quantify
smoking information in EMRs. De Silva et al. and Palmer et al. used text analysis to
quantify pack years from EMR free text [61,62]. This was successfully performed for the
majority of cases, but due to the heterogeneity of clinical notes, mis-categorisation and
missing cases remained an issue. Smoking status can also be identified accurately from
EMRs. Groenhof et al. extracted information on smoking behaviours from free text to
categorise participants into current, past and never smokers. Smoking information was
accurately retrieved for the majority of cases [63].

This method of smoker identification may be more accurate and less costly and
time consuming compared to asking potential participants to fill out questionnaires or to
assess their own eligibility for screening. Indeed, free text in EMRs has provided more
accurate and comprehensive information on smoking than structured sources of data from
EMRs [64]. As these papers indicate that smoking information is present in EMRs and that
smokers and non-smokers can be accurately identified from the information contained in
them, this method of identification may be feasible for participant identification.

4. What Are the Challenges in Using EMR Data to Detect and Identify
High-Risk Populations?

While, when utilising EMR data, screening programmes may achieve better targeting
of eligible subjects, there are significant challenges to using EMR data. Data completeness
for certain coded data elements can vary, with diagnostic and lifestyle data being less popu-
lated than prescription data [62]. Indeed, two prevalent issues affecting data completeness
are missing data elements and errors in the recording of health conditions/lifestyle factors.
Martin found 43% of the electronic records examined contained errors. Indeed, multiple
errors were found in participant records which resulted in a total of 229 errors in 169 par-
ticipant records [65]. Marston et al.’s study found that 20% of their sample had missing
smoking data [66]. While overall trends show that the recording of risk factors such as
smoking status has improved, missing data are still a concern, with recorded information
on health care indicators only present in 10–40% of sampled EMRs [67–70].

The accuracy and quality of EMR data are a further issue. This is usually examined
by comparing coded or extracted EMR data against a “gold standard” reference. Studies
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examining data quality show mixed results. Booth et al. examined CPRD data compared to
population survey data [71]. They found little difference between the prevalence of smoking
in CPRD data compared to the population survey. Estimates for current smokers and non-
smokers were similar to survey data estimates, but there was underreporting of former
smokers in EMRs. Similarly, asthma recording in EMRs was found to compare moderately
well with manual chart reviews, with NLP and diagnosis code-based algorithms generating
PPVs of 88.0% and 57.1% [72]. Conversely, Modin et al. found significant discordance
between pack years recorded in EMRs and pack years determined from a shared decision-
making conversation [73]. This research highlights the difficulties in truly determining
data accuracy as references may not contain accurate information.

Obtaining ethical approval to access EMRs is equally challenging. EMRs contain
sensitive information which means it is imperative that the data are stored and accessed in
a secure way. As a result, it can be both costly and time consuming to access and obtain
EMR data. Given that the use of EMR data in clinical research has grown, the development
and usage of Data Safe Havens to store EMR data have mitigated some of the ethical
concerns around the accessibility and storage of the data.

5. Future Research

There has been significant research on the extraction and classification of smoking
status in EMRs. However, further research on the use of EMR information to identify and
flag patients for follow-ups or screening is required. Safety netting is viewed as a best
practice for those at risk of cancer, although there is little evidence for its effectiveness
for cancer detection [74]. The use of EMRs to detect and flag patients for follow-ups has
been successfully implemented to detect risk of adverse events, delays in follow-ups to
abnormal lung imagining findings and delays in cancer diagnosis [75–77]. Algorithms that
detect delays in follow-ups have identified a lack of appropriate follow-up action based on
four diagnostic cues. The same could be performed to investigate their use for flagging
patients that either partially or fully meet screening criteria.

While there is a significant amount of research examining the validity of smoking
behaviours in EMRs, further research could be conducted to examine quality for other data
elements. There are few papers examining environmental factors such as asbestos and
radon exposure. Examining the completeness, accuracy and frequency of recordings for
these exposures could aid in identifying high-risk populations.

Further research on lung cancer risk modelling using EMR data is also required [6].
Many risk models have been developed which include clinical and demographic factors.
These models utilise trial or registry data and, as a result, there is a lack of research
examining the use of real-world EMR information and the use of linked datasets in risk
modelling [78]. Wang et al. used EMR data to model the incidence of lung cancer, and they
were able to extract a large number of features to include, demonstrating the usefulness of
EMR data in modelling [79]. Additionally, further examination of risk models using EMR
data would be useful to identify whether models apply well to other datasets.

6. Conclusions

Lung cancer screening using LDCT and biomarkers has the potential to reduce late di-
agnosis, thereby lowering mortality rates and improving survival of the disease. However,
there are significant issues with the detection of subjects eligible for lung cancer screening.
Screening trials and programmes have low approach response rates, despite targeting those
at a higher risk of developing cancer.

EMRs have provided useful information for clinicians and researchers which has
resulted in greater engagement. For example, both the LSUT study and ECLS trial recruited
a large number of participants by identifying eligible patients through EMRs. Further, the
research presented in this article has shown there are data features contained in EMRs that
have the ability to aid screening, such as smoking information contained in codes and free
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clinical text. This information can ensure that eligible populations are easier to access for
researchers/clinicians and that, as a result, these individuals can be better targeted.

There are significant challenges to using EMR data such as a lack of data completeness
and data accuracy. With the advances in text analysis and improvements in EMR structure
and codes, they may be a viable option that both health systems and researchers can use to
identify populations for lung cancer screening.
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Appendix A

Table A1. Read codes and their associated read terms and conditions.

Read Code Read Term Condition

B220100 Malignant neoplasm of mucosa of trachea Primary Malignancy-Lung
B220.00 Malignant neoplasm of trachea Primary Malignancy-Lung
B220z00 Malignant neoplasm of trachea NOS Primary Malignancy-Lung
B221000 Malignant neoplasm of carina of bronchus Primary Malignancy-Lung
B221100 Malignant neoplasm of hilus of lung Primary Malignancy-Lung
B221.00 Malignant neoplasm of main bronchus Primary Malignancy-Lung
B221z00 Malignant neoplasm of main bronchus NOS Primary Malignancy-Lung
B222000 Malignant neoplasm of upper lobe bronchus Primary Malignancy-Lung
B222100 Malignant neoplasm of upper lobe of lung Primary Malignancy-Lung
B222.00 Malignant neoplasm of upper lobe, bronchus or lung Primary Malignancy-Lung
B222.11 Pancoast’s syndrome Primary Malignancy-Lung
B222z00 Malignant neoplasm of upper lobe, bronchus or lung NOS Primary Malignancy-Lung
B223000 Malignant neoplasm of middle lobe bronchus Primary Malignancy-Lung
B223100 Malignant neoplasm of middle lobe of lung Primary Malignancy-Lung
B223.00 Malignant neoplasm of middle lobe, bronchus or lung Primary Malignancy-Lung
B223z00 Malignant neoplasm of middle lobe, bronchus or lung NOS Primary Malignancy-Lung
B224000 Malignant neoplasm of lower lobe bronchus Primary Malignancy-Lung
B224100 Malignant neoplasm of lower lobe of lung Primary Malignancy-Lung
B224.00 Malignant neoplasm of lower lobe, bronchus or lung Primary Malignancy-Lung
B224z00 Malignant neoplasm of lower lobe, bronchus or lung NOS Primary Malignancy-Lung
B225.00 Malignant neoplasm of overlapping lesion of bronchus and lung Primary Malignancy-Lung
B22.00 Malignant neoplasm of trachea, bronchus and lung Primary Malignancy-Lung
B22y.00 Malignant neoplasm of other sites of bronchus or lung Primary Malignancy-Lung
B22z.00 Malignant neoplasm of bronchus or lung NOS Primary Malignancy-Lung
B22z.11 Lung cancer Primary Malignancy-Lung
BB5S200 [M]Bronchiolo-alveolar adenocarcinoma Primary Malignancy-Lung
BB5S211 [M]Alveolar cell carcinoma Primary Malignancy-Lung
BB5S212 [M]Bronchiolar carcinoma Primary Malignancy-Lung
BB5S400 [M]Alveolar adenocarcinoma Primary Malignancy-Lung
Byu2000 [X]Malignant neoplasm of bronchus or lung, unspecified Primary Malignancy-Lung
ZV10100 [V]Personal history of malig neop of trachea/bronchus/lung Primary Malignancy-Lung
ZV10111 [V]Personal history of malignant neoplasm of bronchus Primary Malignancy-Lung
ZV10112 [V]Personal history of malignant neoplasm of lung Primary Malignancy-Lung

ICD10 code ICD10 term Condition
C33 Malignant neoplasm of trachea Primary Malignancy-Lung
C34 Malignant neoplasm of bronchus and lung Primary Malignancy-Lung
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Simple Summary: Evidence-based guidelines provide valuable management recommendations that can
significantly improve patient treatment and outcome, thereby reducing clinical variability. Recent clinical
trials demonstrated that personalised treatments based on genomic and immune profiles can contribute
to the prognosis of non-small cell lung cancer (NSCLC). This retrospective study investigated whether
guideline-consistency, including adjuvant treatments after surgical resection (ATSR) and guideline-
matched first-line treatment for recurrence (GMT-R), could influence overall survival (OS). From 2006 to
2017, 308 patients with pathological stage III NSCLC were eligible, among whom 207 (67.2%) recurrence
cases were identified. ATSR and GMT-R were allowed in 164 (53.2%) and 129 (62.3%) cases, respectively.
The 5-year OS in guideline-consistent cases receiving ATSR and GMT-R was significantly better than that
in guideline-inconsistent cases (p < 0.01). Subgroup analyses further revealed that the 5-year OS after
propensity adjustment was significantly better in guideline-consistent than in guideline-inconsistent cases
(p < 0.01). Hence, guideline-consistent treatment alternatives effectively contribute to better outcomes.

Abstract: Clinical guidelines can help reduce the use of inappropriate therapeutics due to localism
and individual clinician perspectives. Nevertheless, despite the intention of clinical guidelines to
achieve survival benefit or desirable outcomes, they cannot ensure a robust outcome. This retrospective
study aimed to investigate whether guideline-consistency, including adjuvant treatments after surgical
resection (ATSR) and guideline-matched first-line treatment for recurrence (GMT-R), according to the
genomic profiles and immune status, could influence overall survival (OS). From 2006 to 2017, the
clinical data of 308 patients with stage III non-small cell lung cancer (NSCLC) after surgical resection
were evaluated. ATSR and GMT-R were allowed in 164 (53.2%) and 129 (62.3%) patients cases after
surgical pulmonary resection, among which 207 (67.2%) recurrences were identified. The 5-year OS in
guideline-consistent cases was significantly better than that in guideline-inconsistent cases (p < 0.01).
Subgroup analyses further showed that the 5-year OS after propensity adjustment was significantly
better in guideline-consistent than in guideline-inconsistent cases (p < 0.01), but not in either ATSR or
GMT-R (p = 0.24). These data suggest that the guideline-consistent alternatives, which comprise ATSR
or GMT-R, can contribute to survival benefits in pathological stage III NSCLC. However, only either
ATSR or GMT-R has a potential survival benefit in these patients.

Keywords: clinical guideline; non-small cell lung cancer; outcome; overall survival; adjuvant
chemotherapy; epidermal growth factor receptor; anaplastic lymphoma receptor tyrosine kinase
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1. Introduction

The landscape of anticancer agents available in the clinical setting has significantly
evolved over the past 50 years. In particular, the combination of chemotherapy with
cisplatin to target non-small cell lung cancer (NSCLC) that has progressed has allowed the
support of a mean length of life of 8–12 months. However, the outcome of these patients
still remains poor and further therapeutic options are limited [1]. In the 21st century, due to
the bright results of molecular targeted techniques, genome medicine, and immunobiology,
the diagnostic and therapeutic efficacy for NSCLC has greatly progressed. These advances
have paved the way for physicians and surgeons to be realistically able to see results from
translational research. Therefore, a strategy to unify fragmented treatment and, thereby,
improve treatment efficacy in clinical practice is indispensable.

The clinical evidence-based quality of treatment indicators for NSCLC is clinically
required to ensure adequate management and better treatment strategies. The treatment of
NSCLC at various stages is established by correct clinical staging, and treatment strategies
are delineated by multidisciplinary teams. Therefore, evidence-based clinical guidelines
can provide physicians and surgeons with the same basic principles for conducting lung
cancer treatment. Various clinical practice guidelines have been developed to reduce
inappropriate treatments, eliminate local and geographic deviations, and authorise the
effective use of cancer treatment resources. If resistance to guideline-based first- or second-
line treatments is quickly developed, physicians may suggest additional therapies or best
supportive care to patients harbouring a more advanced stage.

Our previous report on 2756 NSCLC patients whose tumours were surgically resected
between 1990 and 2012 revealed that the 5-year overall survival (OS) rates were 47.6%
and 24.1% for patients with stage IIIA (n = 536, 19%) and IIIB (+IIIC) (n = 146, 5%) cancer,
which mainly had lymph node metastasis or involvement of neighbouring structures,
respectively [2]. Staged-III NSCLC has locally advanced non-metastatic assets as well as a
heterogeneous profile. Accurate staging of patients being investigated by multidisciplinary
teams can pave the way for most effective treatments, such as neoadjuvant or adjuvant
chemotherapy, with or without surgery, chemotherapy, or additional radiotherapy. Alter-
natively, for patients with resectable tumours, multimodality treatment, including surgery,
can be offered in an attempt to improve survival. Adjuvant chemotherapy has been ap-
proved for the treatment of surgically resected stage IB–IIIA NSCLC and is recommended
as a standard treatment strategy according to various guidelines [3].

Clinical guidelines have the intention to promote survival benefit or desirable out-
comes based on selected randomised studies; however, they cannot ensure a robust outcome.
This study focused on two main key words in perioperative clinical guidelines: ‘adjuvant
treatments after surgically resection’ (ATSR) and ‘guideline-matched first-line treatment for
recurrence’ (GMT-R). The aim of this study was to explore whether guideline-consistency
could provide specific outcomes according to these two therapeutic alternatives.

2. Materials and Methods

In this prospective cohort, we examined 308 patients with staged-III primary NSCLC
who underwent pulmonary resection at the Aichi Cancer Hospital between January 2006
and December 2017. This study was conducted in accordance with the Declaration of
Helsinki. The institutional review board of the Aichi Cancer Centre approved this study
(2020-1-614). Informed consent obtained by individuals was waived because of the retro-
spective nature of this cohort. The following exclusion criteria were applied: (1) salvage
surgery; (2) patients having final diagnosis as small cell lung cancer or carcinoid; (3) induc-
tion chemotherapy with or without radiotherapy; and (4) sublobar resection. All patients
with NSCLC underwent lobectomy or more with mediastinal lymph node dissection or
sampling. Data postoperatively collected from patient records included age, gender, era,
clinical N stage determined by positron emission tomography and computed tomography,
prognostic nutrition index or PNI (calculated using the following formula = serum albu-
min levels (g/dL) × 10 + total lymphocyte count (per mm3) × 0.005)] [4], and smoking
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status (pack-years). Computed tomography is routinely used as the standard for preopera-
tive lymph node staging, and the commonly used criterion for a clinical diagnosis of N
evaluation is a short axis diameter > 10 mm. Resectable indication of cN2 is only single
station. If multiple station metastases is clinically suspected, we performed endobronchial
ultrasound-guided transbronchial needle aspiration. Pathological stages were defined ac-
cording to the 8th edition of Union for the International Cancer Control (UICC)/American
Joint Committee on Cancer (AJCC) TNM staging criteria [5].

The NCCN guideline [6] indicated these following recommendation: (a) The overall
plan of treatment as well as needed imaging studies should be determined before any
non-emergency treatment is initiated; (b) Anatomic pulmonary resection is preferred for
the majority of patients with NSCLC. (c) N1 or N2 node resection and mapping should be a
routine component of lung cancer resections—a minimum of three N2 stations sampled or
complete lymph node dissection; (d) Patients with pathologic stage II or greater should be
referred to medical oncology for evaluation; (e) The presence of N2-positive lymph nodes
substantially increases the likelihood of positive N3 lymph nodes. Pathologic evaluation of
the mediastinum must include evaluation of subcarinal station and contralateral lymph
nodes; (f) Neoadjuvant chemotherapy would be considered, followed by surgery, when
a patient is likely, based on initial evaluation, to require a pnumonectomy. According
to guidelines, neoadjuvant treatment is recommended for cN2 disease, but we excluded
the patients who had received neoadjuvant chemotherapy or chemoradiotherapy. Our
institutional criteria for neoadjuvant therapy is mostly to escape the pnumonectomy.
Therefore, we did not consider that enough evaluation of mediastinal lymph node was
obtained, preoperatively.

Statistical Analyses

All computations relied on standard software (SPSS version25.0; SPSS Inc, Chicago, IL,
USA). Comparisons between the two groups were performed by Mann–Whitney U-tests.
Propensity adjustment is defined as the conditional probability calculated by preoperative
covariates. Propensity adjustment was estimated using a logistic model including limited
variables, which showed a significant difference (p < 0.05) by univariate analyses. The
Kaplan–Meier method was used to analyse survival rates in the patient subsets; between-
group differences in survival were assessed with the log-rank test. Potential correlates of
survival were subjected to univariate and multivariate analyses using the Cox proportional
hazards regression model.

3. Results

3.1. Patient Flow Algorism

Between January 2006 and December 2017, 308 patients with surgically resected
NSCLC were diagnosed with pN2 (cancer spread to 1–4 lymph nodes). Patients who
received neoadjuvant chemotherapy were excluded from the analysis because precise
information on lymph node mapping could not be obtained. EGFR mutations (exons 18–21)
have been assessed using the cycleave PCR method since 2006. ALK rearrangement and
ROS1 were first screened by immunochemistry, and the final definition was performed by
fluorescence in situ hybridisation. Information on these fusion genes has been clinically
used since 2007 and 2016. BRAF assessment (exons 11 to 15) was based on reverse tran-
scription PCR, coupled with direct sequencing, as previously reported [7]. The expression
status of the programmed death-ligand 1 (PD-L1) was determined by immunostaining
using two antibodies, either 28-8 or 22C3 pharmDx kits (Dako North America, Carpinteria,
CA, USA), and the total proportion score was calculated. Patient flow diagram of this study
is shown in Figure 1. The cases were classified as guideline inconsistent or consistent based
on the National Comprehensive Cancer Network (NCCN) guideline for NSCLC. Overall,
179 guideline-inconsistent and 129 guideline-inconsistent cases were identified.
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Figure 1. Patient flow diagram.

3.2. Patient Characteristics

Table 1 shows the relevant patient characteristics. According to clinical guidelines
for recurrence, ATSR was established as follows: the molecular target drug for EGFR
from 2006, for ALK from 2007, for BRAF from 2014, for ROS1 from 2016, for an immune
checkpoint inhibitor from 2017, for tumour proportion score (TMS) ≥ 50% of program
cell death protein 1 (PD-1). Guideline inconsistency was defined as patients with ATSR
and GMT-R.

Table 1. Clinicopathological characteristics before propensity adjustment.

Characteristics
Inconsistent Consistent

p-Value
n = 179 n = 129

Age (years old), median 67 63 <0.01
IQR (61–73) (58–67)

Gender, male (%) 104 (58.1%) 73 (56.6%) 0.79

Era 0.82
2006–2013 116 (64.8%) 82 (63.6%)
2014–2017 63 (35.2%) 47 (36.4%)

Smoking history (pack-year), median 34.0 16.0 0.08
IQR (0–52.0) (0–46.5)

Prognostic nutritional index, median 49.8 52.4 <0.01
IQR (46.3–53.3) (49.3–54.7)

Clinical stage N (number, %) 0.31
cN0 98 (54.7%) 63 (48.8%)
cN1–2 81 (45.3%) 66 (51.2%)

Clinical stage 0.80
cI 68 (38.0%) 51 (39.5%)
cII 46 (25.7%) 32 (24.8%)
cIII 65 (36.3%) 46 (35.7%)
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Table 1. Cont.

Characteristics
Inconsistent Consistent

p-Value
n = 179 n = 129

Histology (number, %) 0.05
Adenocarcinoma 117 (65.4%) 98 (76.0%)
Others 62 (34.6%) 31 (24.0%)

Type of procedures (number, %) 0.02
Lobectomy 149 (83.2%) 119 (92.2%)
Pneumonectomy/Bilobectomy 30 (16.8%) 10 (7.8%)

ATCR (yes, %) 35 (19.6%) 129 (100%) <0.01

Pathological-Stage <0.01
IIIA 167 (93.2%) 123 (95.3%)
IIIB 12 (6.7%) 6 (4.7%)

Single lymph node involvement 0.35
(yes, %) 29 (16.2%) 16 (12.4%)

Mutation status (yes/no/uninformative)
EGFR 68/111/0 55/74/0 0.41
ALK 5/140/34 6/95/28 0.35
BRAF 0/62/117 0/40/89 NA
ROS1 0/24/155 1/16/107 NA

Treatment after recurrence (yes, %) 136 (76.0%) 74 (57.4%) 0.04
Local control 26 (19.1%) 7 (9.0%)
Chemotherapy ± Radiotherapy 55 (40.4%) 21 (28.4%)
Molecular target drug 37 (27.2%) 44 (59.5%)
Immune checkpoint inhibitor 4 (3.0%) 2 (2.7%)
Others 14 (10.3%) 0 (0%)

ALK, anaplastic lymphoma kinase; ATSR, adjuvant treatments after surgical resection; BRAF, v-raf murine
sarcoma viral oncogene homolog B1; EGFR, epidermal growth factor receptor; IQR, interquartile range; NA, not
available; ROS1, c-ros oncogene 1.

The methods for the analysis of each mutations, EGFR, ALK, BRAF, and ROS1 have
been previously described [8]. EGFR (exons 18–21) mutations were identified using the
cycleave polymerase chain reaction method. BRAF (exons 11–15) mutation was assessed us-
ing fragment analysis, and the results were validated by direct sequencing. ALK and ROS1
mutations were first screened using immunohistochemistry, and the final confirmation was
performed using fluorescence in situ hybridization.

The guideline-inconsistent group (n = 179) comprised older patients (p < 0.01) and
patients with lower prognostic nutritional index (p < 0.01) compared with guideline-
consistent cases (n = 128). Patients within the guideline-consistent group were less likely to
undergo lobectomy (p = 0.02) and were more like to have non-adenocarcinoma (p = 0.05).
ATSR was performed in 35 (19.6%) guideline-inconsistent cases.

3.3. Surgical Outcomes and Therapeutic Efficacy in Recurred Patients

The median follow-up duration was 54.4 months (interquartile range (IQR): 30.1–92.5).
The 5-year and median OS were significantly better in stage III cases who received ATSR
(n = 164; 68.0% and 111.3 months, respectively) than in those who did not (n = 144; 47.6%
and 56.0 months, respectively) (p < 0.01) (Figure 2a). Moreover, the 5-year and median
disease-free survival (DFS) were significantly better in stage III patients who received
ATSR (34.6% and 25 months, respectively) than in those who did not (n = 23.8% and 12.8%,
respectively; p = 0.02) (Figure 2b).
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Figure 2. Kaplan–Meier curves. (A) Overall survival curve and (B) disease-free survival curve after surgical tumour
resection stratified according to the adjuvant treatments. Red and black lines represent with and without adjuvant
treatments, respectively. (C) Overall survival curve after recurrence stratified according to the guideline matched first-line
treatment for recurrence. Red and black lines represent yes and no, respectively. (D) Overall survival after surgical tumour
resection. Red and black lines represent guideline-consistent and guideline-inconsistent cases, respectively.

Overall, 207 patients (67.2%) experienced tumour recurrence during the study period.
As shown in Appendix A, the frequent mutation was EGFR (n = 96, 46.4%), followed
by ALK (n = 8, 3.8%) and ROS1 (n = 1, 0.5%), while total proportion score ≥ 50% were
seen in 5 (2.4%). Among them, target therapy was performed in 69 (71.8%) of EGFR, in 5
(62.5%) of ALK, and in 1 (100%) of ROS1, while 3 patients (60.0%) received immunecheck
point inhibitor as first-line treatment. Seventy-two patients from ATSR (67.2%) were
subjected to GMT-R, including local therapy in 6 (8.3%), chemotherapy only in 16 (22.2%),
chemoradiotherapy in 5 (7.0%), and targeted therapy in 45 (62.5%). The 5-year and median
OS were significantly better in recurred patients who received GMT-R (n = 132; 21.2%
and 32.1 months, respectively) than in those who did not (n = 75; 13.3% and 18.8 months,
respectively; p < 0.01) (Figure 2c). Furthermore, the 5-year and median OS were significantly
better in the guideline-consistent group (n = 129; 74.8% and not reached, respectively) than
in the guideline-inconsistent group (n = 179; 46.5% and 54.9%, respectively; p < 0.01)
(Figure 2d).

3.4. To Investigate the Prognostic Factor for OS

Multivariate Cox regression analysis of OS after surgical tumour resection was per-
formed according to the results of the univariate analysis. Univariate analyses revealed that
age, male sex, prognostic nutritional index (<50), era (2006–2013), guideline-inconsistency,
and any genetic mutations were independent OS predictors (Table 2). Multivariate analyses
further confirmed that age, era (2006–2013), and guideline inconsistency were independent
predictors (Table 2).
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Table 2. Univariate and multivariate analyses of overall survival.

Variables

Univariate Multivariate

p-Value
Hazard Ratio

(95% CI 1)
p-Value

Patient characteristics
Age <0.01 * 1.02 (1.01–1.04) 0.02 *
Male <0.01 * 0.73 (0.50–1.06) 0.10
Pack-year 0.11

Prognostic nutritional index
Score < 50 0.02 * 0.74 (0.54–1.03) 0.08

Era
2006–2013 <0.01 * 0.50 (0.33–0.76) <0.01 *

Clinical N stage
N1–2 0.27

Histology
Adenocarcinoma 0.57

Procedures
More than lobectomy 0.81

Guideline
Inconsistent <0.01 * 0.49 (0.34–0.71) <0.01 *

Any mutation
Yes <0.01 * 1.36 (0.94–1.97) 0.10

Pathological N status
Single involvement 0.39

* Statistically significant p-value. 1 CI, confidential index.

3.5. Subgroup Analyses for OS

The study cohort was divided in four groups, as follows: no recurrence (NR), guideline-
consistent, either ATSR or GMT-R (EAG), and guideline-inconsistent. The 5-year OS in
the guideline-consistent group was significantly better than that in the EAG (p = 0.03) and
guideline-inconsistent groups (p < 0.01). Nonetheless, the 5-year OS in the EAG groups
was significantly better than that in the guideline-inconsistent group (p < 0.01; Figure 3a).

Figure 3. Kaplan–Meier curves in subgroup analyses. Overall survival curve after surgical tumour resection (A) before
and (B) after propensity adjustment. Black, blue, red, and dotted lines represent no recurrence (NR group), both adjuvant
treatments after surgical resection and guideline-matched first-line treatment for recurrence (guideline-consistent group),
either treatment (EAG group), and neither treatment (guideline-inconsistent group).
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Propensity adjustment was estimated using a logistic model including age, sex, era,
pack-year, prognostic nutritional index, and any mutations, which were selected based on
the results of univariate analyses (Table 3). The 5-year OS after propensity adjustment in the
guideline-consistent group was significantly better than that in the guideline-inconsistent
cases (p < 0.01), but not in the EAG group (p = 0.24; Figure 3b). However, a significant
difference was not observed in the 5-year OS after propensity adjustment between the EAG
and guideline-inconsistent groups (p = 0.09; Figure 3b).

Table 3. Clinicopathological characteristics after propensity adjustment.

Characteristics
Inconsistent Consistent

p-Value
n = 106 n = 108

Age (years old), median 64 64 0.98
IQR (60–68) (58–69)

Gender, male (%) 61 (57.5%) 59 (54.6%) 0.67

Era 0.97
2006–2013 69 (65.1%) 70 (64.8%)
2014–2017 37 (34.9%) 38 (35.2%)

Smoking history (pack-year), median 20.0 32 0.49
IQR (0–49.1) (0–50.8)

Prognostic nutritional index, median 0.81
IQR 36 (34.0%) 35 (32.4%)

Any mutation (EGFR/ALK/BRAF/ROS1)
(yes, %) 50 (47.2) 50 (46.3%) 0.90

ALK, anaplastic lymphoma kinase; ATSR, adjuvant treatments after surgical resection; BRAF, v-raf murine
sarcoma viral oncogene homolog B1; EGFR, epidermal growth factor receptor; IQR, interquartile range; NA, not
available; ROS1, c-ros oncogene 1.

4. Discussion

According to the clinical guidelines, complete dissection of at least three mediasti-
nal nodal stations is recommended for the treatment of NSCLC. After complete pul-
monary resection with pN2 proven and negative margins, adjuvant chemotherapy is
recommended, whereas for incomplete or complete unknown cases either re-resection or
additional chemotherapy or radiotherapy is recommended. In clinical practice, therapeutic
guidelines for advanced NSCLC can be substituted by those for metastatic NSCLC. This
study was designed to explore whether adherence to therapeutic management guidelines
could provide survival benefit for patients with stage III NSCLC. Multimodality staging
may have led to superior patient outcomes by supporting more accurate staging and, subse-
quently, more appropriate treatment allocation. Nevertheless, one clinical question remains,
“which of these two possibilities (adjuvant chemotherapy or therapeutic adherence) has a
greater impact for metastatic NSCLC?” Herein, adherence to clinical guidelines for both
ATSR and GMT-R showed promising potential to improve patient survival.

During the last decade, the development of molecular targets has dramatically evolved,
enabling precision medicine and personalised treatment alternatives. The six currently
approved U.S. Food and Drug Administration (FDA) EGFR inhibitors have demonstrated
excellent efficacy regarding objective response rate and prognosis in EGFR-positive NSCLC,
with fewer adverse effects [9,10]. Erlotinib was first approved in 2013 by the FDA as a
first-line treatment, and afatinib was approved later on in the same year. In the present
study, analysis of EGFR in all stage III NSCLC patients showed that 39.9% (123/308)
harboured EGFR mutations. These patients were authorised to receive EGFR inhibitors as
first-line treatment for tumour recurrence, in agreement with the guidelines. From 2006 to
2013, 92 (44.4%) patients were diagnosed with metastatic NSCLC, among whom 32 (34.8%)
harboured EGFR mutations. First-line EGFR inhibitors were clinically used in 11 (34.4%) of
these patients after approval by the institutional review board.
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ALK rearrangement is widely recognized as being associated with NSCLC at younger
age, never-to-light smoking, and a preference to affect the central nervous system, which
contributes to a dismal prognosis [11]. Crizotinib was first approved by the FDA for
metastatic NSCLC in 2011 [12]. Moreover, the ALFEX trial comprising 303 Asian advanced
NSCLC patients harbouring the ALK rearrangement revealed a clinical benefit of alectinib
as a first-line treatment [13]. In the present cohort of patients with surgically resected
NSCLC from 2007 to 2012, ALK was assessed in 68.7% (136/198) of patients, among whom
0.6% (9/136) harboured an ALK rearrangement. In addition, our previous report revealed
a significantly higher incidence of occult lymph node metastases in ALK-positive NSCLC,
which makes these patients good candidates for adjuvant chemotherapy according to the
clinical guidelines [14].

The BRAF and ROS1 status in this cohort have been investigated since 2014 and 2016,
respectively, but the BRAF inhibitors dabrafenib and trametinib were only approved by
the FDA in 2017. No BRAF-positive patients were identified in this study, whereas 2.6%
(1/43) of patients with stage III NSCLC were ROS1-positive; thus, crizotinib was used as
per the guidelines as a first-line treatment for tumour recurrence.

Recently, immune checkpoint inhibitors (ICIs) have dramatically revolutionised the
treatment of metastatic or advanced NSCLC, but their efficacy is limited to a well-equipped
immune microenvironment [6]. Pembrolizumab was clinically approved in 2016 as a first-
line treatment for metastatic NSCLC in patients with a total proportion score ≥ 50% and
without EGFR or ALK mutations after the KEYNOTE 024 and 042 clinical trials [15,16]. In
agreement, our previous study also suggested that ICI treatment was significantly less
efficacious in patients with ALK rearrangement than in patients with EGFR mutations, and
that PD-L1 expression was not a critical biomarker for ICI treatment in patients with one of
these mutations [8]. Herein, six patients with recurrence (20.0%, 6/30) were treated with
first-line ICI, according to the clinical guidelines stipulated since 2016.

Wilshire et al. reported that guideline-inconsistent diagnosis and staging occurred
in 58% of clinical stage III cases, which was associated with incomplete staging, a higher
number of additional procedures, and delayed management [17]. Moreover, absence of
invasive mediastinal lymph node sampling in 43% of patients suspected of having clinical
stage III disease before the initiation of treatment was associated with a higher number of
additional procedures and delayed management [17]. In the present study, pathologically
proven N2 cases were specifically selected, which may have contributed to obtaining
precise efficacy in treatments after surgical resection. In addition, several prospective
randomised trials in patients with stage I-IIIA NSCLC have demonstrated the survival
efficacy of cisplatin-based adjuvant chemotherapy [18,19].

Herein, the single centre clinical data from before the establishment of various clin-
ical guidelines were evaluated. Mutational information from operative specimens were
assessed using direct sequencing, which allowed determination of the therapeutic statistics
according to the mutational status of the patients, which also reflects the social changes
over time. ATSR was established as a survival benefit of ~11% in DFS, but an additional
benefit of 20% was identified in OS. Hence, guideline inconsistency, even in pathological
stage III, might improve the survival outcome and allow application of precision medicine
by introducing the new strategies established from newly acquired knowledge.

This study has several limitations. First, the data were collected and analysed ret-
rospectively, which could have caused selection bias. Second, this study was based on
data collected at a single centre with a relatively middle scale. Third, direct sequencing is
not currently performed as a standard clinical tool because it only investigates a limited
gene sequence portion. In addition, it should be also noted that the systematic process
for identifying genomic mutations only recently was made available; for example, ALK
since 2007, BRAF since 2014, and ROS1 since 2016. Therefore, only few patients included
in the present analysis were treated with more specific treatments. Nevertheless, targeted
selection or exclusion of these patients did not seem reasonable as they would not represent
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the typical phases of medical application development or ongoing clinical investigation.
Fourth, we restricted the therapeutic alternative to first-line treatment only.

5. Conclusions

This retrospective study suggests that a guideline-consistent treatment alternative
comprising ATCR and GMT-R, depending on the genomic profiles and immune envi-
ronments, can provide a survival benefit for patients with pathological stage III NSCLC.
Both ATCR and GMT-R are optional in clinical practice, but at least one of them may be
recommended to improve the outcome of these patients.
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Appendix A

Figure A1. Patient flow diagram after recurrence according to the mutational information and program death—ligand
1 status.
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