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Cell membranes separate the interior of cells and the exterior environment, providing
protection, controlling the passage of substances, and governing the interaction with
other biomolecules and signalling processes. They are complex structures that, mainly
driven by the hydrophobic effect [1], are based upon phospholipid bilayer assemblies
containing sterols, glycolipids, and a wide variety of proteins located both at the exterior
surface and spanning the membrane [2,3]. There exist a large number of different types of
phospholipids, each with a given function, although we understand only a small fraction of
them [4]. Recently, studies of the physical and biochemical characteristics of lipid molecules
as been referred to as lipidomics [5] in recognition of their fundamental importance for the
understanding of cell biology.

Over the years, a great variety of experimental techniques have been developed to in-
vestigate the structure, dynamics and function of phospholipid membranes. These include
nuclear magnetic resonance [6], X-ray scattering [7], small angle and quasi-elastic neutron
scattering spectroscopy [8], scanning tunneling microscopy [9], and more recently new
techniques to probe previously unaccessible length- and time-scales, such as stimulated
emission depletion microscopy-fluorescence correlation spectroscopy [10], terahertz time-
domain spectroscopy [11], or microfluidic techniques [12], to mention just a few. In parallel,
in recent decades the increase of computer power and the development of new modeling
and simulation techniques have allowed a significant improvement in the theoretical de-
scription of lipid membranes. As a consequence, plenty of papers have been devoted to the
modeling and simulation of cell membranes, from pioneering works at the atomic level of
description [13–15] to a multiplicity of coarse-grained approaches [16], the latter allowing
to run for long simulations over larger and larger time and distance scales and to study
processes such as lipid rafts [17] or full membrane dynamics [18]. Indeed, computer simu-
lations provide relevant information on the structure and dynamics of lipid membranes,
and can be used to complement and interpret the experimental data, which is limited by
the length and time resolution of the experiment.

This Special Issue of Membranes discusses recent progress in the study of membrane
systems mainly using computational (usually molecular dynamics) or mixed methodolo-
gies. It contains eight research articles. The complete description of each study and the
main results are presented in more detail in the full manuscript, which the reader is invited
to read. A brief summary of the articles is presented as follows.

Sessa et al. [19] investigate with a combination of permeability experiments and
molecular dynamics simulations the crucial issue of the interaction between proteins and
phospholipid membranes. The authors compare the effects on a model lipid bilayer of
a natural peptide and an analog synthetic peptide which contains a highly hydrophobic
azobenzene group. Their computer simulations suggest that the affinity of the peptide
is significantly enhanced by the inclusion of such residue. In addition, simulations and
experiments on the entrapment capacity of large vesicles show that the modified peptide
induces a larger perturbance on the structure of the lipid bilayer, increasing its permeability.

Membranes 2022, 12, 549. https://doi.org/10.3390/membranes12060549 https://www.mdpi.com/journal/membranes1
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Understanding this effect may be important for the design of new peptides with specific
functionalities with potential therapeutic applications.

The article by Lu and Marti [20] highlights the influence of cholesterol in the orienta-
tions and structural conformations of the oncogene KRas-4B. This protein is well known
for its extended presence in a wide variety of cancers and because of its undruggabil-
ity. The authors have performed microsecond molecular dynamics simulations using the
CHARMM36 force field to observe that high cholesterol contents in the cell membrane
favor a given orientation with the protein exposing its effector-binding loop for signal trans-
duction and helping KRas-4B mutant species to remain in its active state. This suggests
that high cholesterol intake will increase mortality of some cancer patients.

The next contribution was due to Aragon-Muriel et al. [21] and it reports a study
of a newly designed Schiff base derivative from 2-(m-aminophenyl)benzimidazole and
2,4-dihydroxybenzaldehyde interacting with two synthetic membrane models prepared
with pure 1,2-dimyristoyl-sn-glycero-3-phosphocholine and a 3:1 mixture of this lipid with
1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, in order to mimic eukaryotic and prokary-
otic membranes. The study was performed by means of a combined in vivo-in silico
study using differential scanning calorimetry, spectroscopic and spectrometric techniques
and molecular dynamics simulations. The main results indicate that the Schiff deriva-
tive induces higher fluidity at the mixed membrane. As a second part of their study,
the authors modeled an erythrocyte membrane model formed by 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamine, N-(15Z-tetracosenoyl)-sphing-4-enine-1-phosphocholine
and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and observed that the Schiff deriva-
tive showed high affinity to the different membranes due to hydrophobic interactions or
hydrogen bonds.

The interplay between scattering experiments and molecular dynamics simulations
to obtain information on the structure of model phospholipid membranes is discussed in
the article [22]. Zec and co-workers provide a detailed comparison between the results
of scattering experiments (neutron and X-ray reflectometry and small angle scattering
measurements) and calculated values obtained from standard all-atom MD simulations of
bilayers composed of popular phospholipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine. The authors show that MD sim-
ulations can be used to interpret from a nanoscopic perspective the results from scattering
experiments, which prove larger length and time scales. Their analysis also identifies the
uncertainties and sources of error from scattering experiments and simulations, which need
to be considered in order to draw significant conclusions from their comparison.

In the paper by Radhakrishnan et al. [23] the authors used molecular dynamics
techniques in order to study the permeation of membranes by several relevant solutes, such
as Withaferin A, Withanone, Caffeic Acid Phenethyl Ester and Artepillin C when they are at
the interface of a cell membrane model formed by phosphatidylserine lipids. Their results
indicated that exposure of phosphatidylserine can favor the permeation of Withaferin A,
Withanone and of Caffeic Acid Phenethyl Ester through a cancer cell membrane when
compared to a normal membrane. The authors showed the ability of phosphatidylserine
exposure-based models for analyzing how cancer cells are able to perform drug selectivity.

In Reference [24], Trejo and co-workers review the main properties of red blood cells’
(RBC) membranes and their effect on blood rheology. The authors describe the mechan-
ical properties of RBC membranes and the mesoscopic theory to model their relevant
elastic features, as well as the resulting membrane dynamics. They also discuss the in-
teraction of RBCs with the constituents of blood plasma through the membrane, of great
importance to understand RBCs mutual interactions and the formation of RBCs aggre-
gates. The consequences of RBCs properties on fluid dynamics of blood in the circulatory
system (hemodynamics) are also reviewed, giving an account of recent advancements in
numerical and experimental techniques which have provided new information on the
subject. In particular, Trejo et al. review in detail the use of recent microfluidic techniques
to obtain information on the properties of single RBCs as well as on collective effects which
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determine the rheological properties of blood (hemorheology). Finally, a review of the
disorders which alter the hemodynamics and rheological properties of blood is provided,
and an account is given of the microfluidic techniques developed for their diagnostic.

In the work of Hu and Marti [25], the authors reported a molecular dynamics study on
the atomic interactions of a lipid bilayer membrane formed by dioleoylphosphatidylcholine,
1,2-dioleoyl-sn-glycero-3-phosphoserine and cholesterol with a series of derivatives of the
drug benzothiadiazine, designed in silico, all within a potassium chloride aqueous solution.
The benzothiadiazine derivatives were obtained by single-hydrogen site substitution and
it has been revealed that all them have strong affinity to remain at the cell membrane
interface, with variable residence times in the range 10-70 ns. The authors observed that
benzothiadiazine derivatives can bind lipids and cholesterol chains with single and double
hydrogen-bonds of rather short characteristic lengths.

The influence of the membrane on the properties of transmembrane proteins is investi-
gated by Asare and co-workers using numerical simulations [26]. The authors perform MD
simulations of KCNE3, a transmembrane protein associated with several potassium chan-
nels, inserted in different phospholipid bilayers: DMPC, 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine (POPC), and a mixture of POPC and POPG (1-Palmitoyl-2-oleoyl-sn-
glycero-3-phosphatidylglycerol) in a 3:1 proportion, to study how such environments
determine its structural and dynamical properties. Their simulations indicate that the
central part of the protein immersed in the membrane, the transmembrane domain, is
more rigid and stable than the two ends of the protein which are surrounded by the elec-
trolyte. The results reported by Asare and co-workers can help complement the information
extracted from experiment on KCNE3’s function in its native membrane environment.

Despite studies of model lipid membranes have been carried out for long time, there
are still many aspects and theoretical findings that have not been yet verified experimentally
and for which the existing results are incomplete or inconsistent. Conversely, there are also
experimental results which still lack of appropriate microscopical interpretation. Therefore,
the main objective of this Special Issue was to collect a sample of recent scientific works
on the modeling and simulation lipid membranes, with special aim in the interactions of
the two principal techniques (theory-simulation vs. experiments) and their mutual benefit.
The techniques presented here, from purely computational to the mixture of simulation
and experimental methods in some cases, have helped us to understand essential physical
properties as the structure and dynamics of specific lipid membranes and solutes. These
studies will provide new insights into the fundamental principles underlying physiological
functions of cell membranes and their relationship with other components of cells and
tissues. We believe that this objective has been successfully achieved, for which we express
our heartfelt appreciation to all authors and reviewers for their excellent contributions.

Author Contributions: Writing—original draft preparation, review and editing, J.M. and C.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This contribution received no external funding.
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Abstract: We showcase the combination of experimental neutron scattering data and molecular
dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray
reflectometry and small-angle scattering measurements are determined by the scattering length
density profile in real space, but it is not usually possible to retrieve this profile unambiguously from
the data alone. MD simulations predict these density profiles, but they require experimental control.
Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The
strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the
opportunities provided by this combination.

Keywords: neutron reflectometry; X-ray reflectometry; small-angle neutron scattering; small-angle
X-ray scattering; molecular dynamics simulations; scattering length density profile; phospholipid
membrane

1. Introduction

Phospholipid-based bilayers are the main components of biological membranes and
represent their basic structural elements [1]. The main role of the cell membrane is to protect
the cell from its surroundings, allowing it to have a well-defined environment and accomplish
its vital functions [2]. Given the importance of the membrane, structural details for the cell
biology, several characterization methods have been used to investigate the structure under
different conditions (microscopy [3,4], spectroscopy [5,6], scattering methods [7–10] and
simulations [11–14]). Of special interest in this paper are the scattering methods that give
access to the structure and dynamics of the system under investigation. These methods
are non-invasive, non-destructive over the duration of the data collection and probe a large
sample volume, thus providing statistically relevant information [15]. The typical membrane
length scales are relatively large compared to atomic dimensions, hence the focus of this
work is on scattering by large-scale structures which can be investigated by reflectometry
and small-angle scattering methods.

Fundamentally, two main types of probe can be used for these scattering experiments:
X-rays and neutrons. Laboratory X-ray sources provide the possibility of performing
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many useful experiments and high-flux synchrotron sources make very fast and extremely
sensitive measurements feasible. Neutron scattering experiments can only be performed
at large-scale facilities, but they nevertheless play a fundamental role in the landscape of
membrane characterization methods [16–19]. In contrast to X-rays, neutrons interact in a
non-destructive fashion with the material under examination. Due to their weak interaction
with matter, neutrons have a large penetration depth for most materials, allowing for an
elaborate sample environment. Being scattered by the nuclei, and not by the electrons
as in the case of X-rays, neutrons offer the possibility to add isotopic sensitivity to the
measurements. As a great opportunity for biological systems, the neutron scattering power
of hydrogen and deuterium differs widely and neutrons are thus extremely sensitive to the
distribution of hydrogen in the sample. The most obvious strategy for taking advantage
of this property is to perform measurements on membranes prepared in light or heavy
water, but more complex (and more costly) isotopic substitution methods targeting specific
molecular sites can also be utilized.

All scattering methods provide a description in reciprocal space, which can be un-
derstood as the Fourier transform of the structure of the sample. The data thus tell about
periodicity and spatial correlation in the sample [20,21]. The interpretation of such data is
by no means intuitive and the eventual aim of all measurements is to describe the actual
position of all atoms or molecules in the sample. In the process of inverting the information
contained in scattering data from reciprocal to real space, problems arise (in particular, the
phase problem [21]), which usually hinders finding an unequivocal solution. To tackle this
issue, independent information must be found in order to put constraints on the inversion
problem. Unfortunately, there is no available experimental method offering the needed
spatial resolution over the required length scales. Nevertheless, computer simulations in
the framework of Molecular Dynamics (MD) provide invaluable insights in the real space
structure of these complex systems.

MD simulations applied to phospholipid membranes provide an atomic-level de-
scription of the system. The positions of individual atoms are followed by numerically
solving classical equations of motion. Therefore, MD simulations provide atomic resolution
unavailable to the experiments presented here. Combining MD simulations and scattering
experiments is beneficial for studying phospholipid membranes but can also be used for
the structural analysis of completely unrelated systems [22].

MD and the experimental methods described here (SAS and reflectometry) probe the
sample’s structure over a limited range of length scales. Those ranges overlap, and, hence,
cross-validation is only possible over this restricted domain [23]. Another important aspect
to consider is the fact that an MD simulation typically only describes a very brief time
interval while the integration times used for data acquisition in NR and SANS are orders of
magnitude longer (from seconds to hours). Similarly, simulations typically cover some cube
nanometers, while experiments tend to average over cube millimeters. Precautions must
thus be taken to ensure that MD simulations do not merely describe transient structures
which would be averaged out in the measurements. Conversely, simulations give access to
the Ångström scale, which is not directly probed by these experimental techniques.

In classical MD simulations, the interaction potential energy is described in the form
of a force field, based on both empirical and quantum chemical data. Validation of the
force-field parameters is a tedious and challenging task, so online topology and force-field
parameter builders have become popular as a simple solution [24–26]. One has to be
very critical of the parameters obtained in this way and ensure that the theoretical model
and applied methodology describe the molecule of interest “reasonably well”. On the
other hand, besides lower spatial resolution compared to the MD and the phase problem,
small-angle scattering and reflectometry experiments have additional experimental uncer-
tainties related to the sample and instrumentation. It is therefore theoretically possible that
inaccurate experimental data match an incorrect MD simulation perfectly.

To successfully combine these techniques, a certain level of understanding of both
scattering experiments and computer simulations is essential in order to fully understand
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the advantages and limitations of both methods and avoid putting too much (or too little)
confidence in the results extracted from one of these methods alone. One can use MD
simulation trajectories to extract neutron scattering length density profiles, directly calculate
the corresponding reflectivity or small-angle scattering pattern and plan an experiment in
order to optimize the use of beam-time at large-scale facilities. One can see the effect of
changing different parameters such as instrumental resolution, get a hint as to whether
the effect can be experimentally observed and plan an experiment in an effective and
efficient manner.

In this article, the study of a single bilayer of DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine) and multilamellar SoyPC (mainly composed of 1,2-dilinoleoyl-sn-glycero-
3-phosphocholine) is used to showcase the joint use and cross-validation of MD simulation
and scattering experiments. DMPC is a double-saturated phospholipid composed of
two myristoyl chains, used in many biophysical studies [27,28] and as an excipient in
pharmaceutical formulations [29]. SoyPC is a mixture of phospholipids found in soy and
used as a model bilayer in some studies aimed at investigating the interaction of cell
membranes and active ingredients [30,31]. The aim of this work is not so much to discuss
the properties of the selected phospholipids as to describe the methodology of combining
simulation and experiment and the challenges behind it. Since there are many things that
can go wrong in both, it is important to establish the methodology and find sources of
potential errors before focusing on more complex systems.

The approach to combine simulations with scattering experiments is not new; it was
for example used to study peptide self-organization into switchable films at an air–water
interface by Xue et al. [32] and by Vanegas et al. [33] to study the insertion of the dengue
virus envelope protein into phospholipid bilayers. These techniques were also applied to
investigate the contact angles and adsorption energies of nanoparticles at the air-liquid
interface [34]. Back in 2005, Benz et al. [23] developed a protocol for comparing MD
simulations with X-ray (XRR) and neutron reflectivity (NR) and showed that neither the
united-atom GROMACS nor the CHARMM22/27 force fields could reproduce experimen-
tal data. More recently, a method for producing continuous scattering length density (SLD)
profiles from MD simulations has been presented for interpreting reflectivity data from
phospholipid bilayers [35]. Koutsioubas [36] performed coarse-grained MD simulations
with the standard MARTINI force field and obtained quantitative and semi-quantitative
agreement with neutron reflectivity data for DPPC membranes in the liquid and gel phase,
respectively. On the other hand, McCluskey et al. [37] observed that the MARTINI poten-
tial model did not accurately describe the 1,2-distearoyl-sn-phosphatidylcholine (DSPC)
monolayer, while the Berger and Slipid potential models showed better agreement.

Several computer programs for reading MD simulation trajectories, calculating the
scattering length density profile and neutron reflectivity, and making direct comparison
with the experiment have been developed over the years. SIMtoEXP [38] and Neutron-
RefTools (as a VMD plug-in) [39] were developed particularly for phospholipid membrane
research. The high number of citations shows that these solutions have been accepted and
regularly used by the scientific community. Being completely aware of their existence, we
employ here a self-written software solution that will be published soon.

In the following, we describe the different techniques, show two examples of phospho-
lipid molecules in two different morphologies and discuss the robustness of experimental
features and their constraints on real space structure.

2. Background

In order to provide the tools needed in the discussion, this section introduces some
fundamentals of scattering theory and puts them in the context of the present problem.
Keeping in mind the typical expectations of the computer simulation community, the
strong points as well as the pitfalls of the scattering methods are stressed along the way.
Momentum transfer �Q, the natural variable against which scattering intensity is measured
in an actual experiment, is introduced first. This variable takes the radiation characteristics
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(wavelength) and the geometrical details of the experiment into account. The SLD, which
describes how strongly a given medium will scatter as a function of its composition, is then
introduced and used to express the index of refraction, which in turn is used to predict the
propagation of neutrons or photons (both considered as waves) in matter and eventually
analyze reflectometry and small-angle experiments.

Neutron and X-ray scattering experiments measure the number of scattered neu-
trons/photons as a function of the vector �Q, which describes the momentum transfer the
wave undergoes upon scattering. �Q is a function of the experiment geometry, which we
symbolically represent here by θ, and of the wavelength of the radiation used, λ:

�Q(θ, λ) = �k f − �ki (1)

where �ki and �k f are the wave vectors of the incident and scattered radiation, respectively.

∣∣∣�Q∣∣∣ = Q ∝
2π

l
(2)

signifies that the modulus of each Q vector in reciprocal space is associated with an inter-
distance l in direct (real) space, which is characteristic of the size of the scattering structure
in the corresponding direction.

The practical problem is to compute the real space sample structure which is compat-
ible with the scattering intensity distribution, measured in the reciprocal or Q space. In
tackling this task, which is central to the whole crystallography field, the most fundamental
obstacle is the phase problem. What the detectors actually measure is the intensity, i.e.,
square of the amplitude of the scattered waves. Consequently, all information relative to the
phase of those waves is irremediably lost. From the measurement, it is therefore impossible
to unequivocally deduce the positions of the scattering particles in an absolute way and a
given experimental dataset can correspond to a multitude of real-space structures.

There are several ways to work around this ambiguity: First, one can gain additional
experimental data by performing measurements for specifically adjusted scattering con-
trast of the different constituents without affecting the sample’s structure [40]. How this
is practically achieved is discussed in detail in the next sections. While this reduces the
number of possible real-space structures considerably, a usually unachievable n(n + 1)/2
contrasts would have to be measured to be able to solve the real-space structure of n compo-
nents from the data analytically—and even if that many measurements can be performed,
experimental imperfections and limited counting statistics limit their usefulness [41].

A second method is to form periodic structures in the system. In the case of mem-
branes, this can for example be achieved by using stacks of bilayers (multilayers) that are
periodic in the direction of the membrane normal. This leads to the formation of Bragg
peaks in the scattered intensity at values of Q where the phase is either 0◦ or 180◦. In a
traditional approach, one would then use only the scattered intensity at the Bragg peak
positions where the phase can be determined [42]. Although this approach leaves the
whole information contained in the rest of the scattering pattern unused, the SLD profile
can be reconstructed precisely if many Bragg peaks are measured. In reality, however, it is
only possible to measure ∼2–5 Bragg peaks due to the disorder inherent in the system and
experimental limitations, severely limiting the precision of the extracted information. It is
also possible to take the whole scattering pattern into consideration (see [43] and references
therein), but the presence of Bragg peaks makes the precise measurement of the specular
reflectivity between the Bragg peaks somewhat unreliable, as discussed below.

Complementary to these experimental approaches, one can use a theoretical approach
in which a real-space model of the system is built with as many external constraints
as possible. The MD method is here the instrument of choice. As shown elsewhere,
although one needs to take care of several practical details [22,35,38,39], it is relatively
straightforward to compute the scattering pattern corresponding to an MD simulated
structure and compare it to the experimental data. This goes beyond the normal fitting
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procedure in which a set of parameters describing the structure is optimized in order to
reproduce the data. While this method cannot prove the accuracy of a given model, it can,
however, falsify many models, which must not be underestimated.

2.1. Scattering Length Density

In the following, we briefly describe the scattering processes and introduce the fun-
damental concept of scattering length density and its influence on the transmission and
refraction of the waves in a medium. At the end of this section, the practical possibility
of taking advantage of probe type and isotopic composition to control scattering contrast
is apparent.

The treatment for X-rays and neutrons is very similar and differs only in the interaction
of the corresponding radiation with matter. Neutrons interact with the nuclei (we leave
aside the magnetic interactions with electrons, which is generally less relevant for the study
of biological materials) while X-rays, being an electromagnetic wave, interact with the
electron cloud. We thus here use the general wording “wave” and show probe-specific
expressions only where relevant.

The interaction between a wave and a medium is described in quantum mechanical
terms by the average potential V

V =
2πh̄2

m
ρ (3)

where m is the neutron mass, h̄ the Planck constant divided by 2π, and

ρ =
1

volume ∑
j

bj (4)

is the so-called scattering length density of the medium (which we also denote by SLD)
and is the result of the superposition of all contributions bj (scattering lengths) describing
the interaction strength of each individual scatterer j.

A general solution of the Schrödinger equation which satisfies the potential V and
describes the propagation of a wave at every point�r in the medium is

Ψ(�r) = A exp
(

in�k0 ·�r
)

(5)

where n is the complex index of refraction relating k0, the wave momentum in vacuum,
and k, the momentum it would have in a material medium,

n =
k
k0

. (6)

The real part of n describes the wave phase velocity in the medium, while the imagi-
nary part describes the absorption phenomena by damping the wave intensity, which is
the square of the modulus of Ψ. In the neutron case, the absorption is usually negligibly
small and n is a real number.

Similar to what we experience in everyday life while looking at things, scattering
methods give us the ability to distinguish different parts of the samples from each other
only if their indices of refraction differ, irrespective of their chemical nature.

For X-rays, the scattering length is proportional to the product of the atomic number
Z and the classical electron radius or Thomson scattering length r0 ≈ 2.82 fm. The energy
dependence of the scattering length, which varies abruptly around absorption edges, is
described by semi-empirical atomic scattering factors f1 and f2, leading to the following
expression for the refraction index where N denotes the number concentration of the
given atom:

nX = 1 − 1
2π

Nr0λ2( f1 + i f2) (7)
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For neutrons, the energy-independent nuclear scattering length b substitutes the
electron radius in the previous expression and one gets

nn0 = 1 − 1
2π

λ2ρ . (8)

As can be intuitively expected from the nature of their interaction, in the case of
neutrons the scattering lengths of different isotopes of the same element differ from each
other. This isotopic dependency of b is seemingly random [44], but it is very interesting to
observe that, in the case of hydrogen and deuterium, the difference is very large, bH being
−3.74 fm for hydrogen and bD = 6.67 fm for deuterium.

From those observations, it is clear that X-rays and neutrons will experience a different
index of refraction between the components of the sample, thereby introducing a contrast
between those regions. As hinted in the Introduction, one can thus obtain additional
independent information about the system under investigation by: (a) combining X-ray
and neutron measurements; and/or (b) varying the isotopic composition of the sample
used for neutron scattering while keeping its chemical composition and structural details
essentially unchanged. In the context of molecular biology, it is clear that advantage can be
taken of this method by tuning the isotopic composition of the ubiquitous water molecules.
By simply mixing H2O and D2O, one can adjust the contrast with precision [45,46]. More
complex isotopic substitution schemes, for instance at specific molecular sites, can also be
used to achieve more targeted control [47,48].

2.2. Reflectometry

Reflectometry takes advantage of the variation of the index of refraction across planar
interfaces in order to investigate structural and compositional profiles.

When a wave impinges on a flat and smooth horizontal surface separating two media
(denoted 1 and 2), it can be reflected back into the original medium (reflection into 1) or
refracted into medium 2. Since the ideal interface we describe is an SLD fluctuation along
the vertical direction only, it cannot affect the in-plane components of the incident wave’s
momentum. The reflection is purely specular and happens under the same angle as the
angle of incidence.

The convenient variable to describe this problem is again the momentum transfer
vector �Q, which is here strictly vertical:

�Q = �k f − �ki =
∣∣∣�Q∣∣∣ · �nz = Qz · �nz , (9)

where �nz is the unit vector along the vertical direction, z.
Since we are only considering elastic scattering, the norm of the momentum of the

wave is conserved and

Qz =
4π sin(θ)

λ
(10)

where θ is the angle of incidence on the surface.
Regarding the refracted wave, since the index of refraction differs in the two media

k1/k2 = n2/n1, (11)

and, following the above argument that the in-plane components of k cannot change, we get

n1 cos(θ1) = n2 cos(θ2) (12)

where θ1 is the angle of incidence and θ2 is the refraction angle, both measured between
the surface and the corresponding propagation vector. The above relationship is no other
than Snell’s law of optics, which also holds for neutrons and X-rays.
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From this relation, if the index of refraction is smaller than 1 (often the case for
neutrons and X-rays), there exists a critical Q below which θ2 will be zero, i.e., below which
the incident wave will undergo total reflection by the interface:

Qc = 4
√

π(ρ1 − ρ0) (13)

The amplitude reflectivity (r) and amplitude transmitivity (t) of the surface are given
by the Fresnel relationships, which can be derived from continuity conditions. Applying
the small-angle approximation, which holds in the case of reflectometry measurements,
leads to [49]

r =
Areflected
Aincident

=
θincident − θrefracted
θincident + θrefracted

and (14)

t =
Arefracted
Aincident

=
2θincident

θincident + θrefracted
, (15)

where A represents the respective amplitudes.
In the case of stratified media on a semi-infinitely thick substrate, a valid description

of practical experiments one might perform to study supported thin films, the impinging
wave can undergo reflection or refraction at each interface. The wave emerging from the
surface is the superposition of all the waves which have traveled paths through the sample
that do not end up being transmitted into the semi-infinite substrate.

Similar to the simple case of a single interface, one can express the amplitude re-
flectivity and the amplitude transmitivity via the Fresnel equations. Starting from the
semi-infinite substrate where no multiple reflections are to be considered, one can then re-
cursively reconstruct the reflectivity at the topmost surface. This method, which leads to an
exact result, was introduced by Parratt [50]. A computationally convenient method based
on the formalism of optical transfer matrices was independently proposed by Abelès [51,52]
and leads to the same exact result.

If the interface between regions of different SLD is diffuse rather than sharp as as-
sumed above, two approaches can be used for the evaluation of the reflectivity. The
first approximation was proposed by Névot and Croce [53]. It introduces an interfacial
roughness factor which damps the reflected waves and which is expressed in a similar
way as the Debye–Waller factor describing, in crystallography, the effect of the thermal
motion blurring the atomic positions and thereby lowering the diffracted intensities. In
this model, the position of the interface is described as normally distributed around its
nominal position with a given standard deviation σ. The corresponding SLD profile is
a smooth transition from one SLD to the next in a sigmoidal step described by the error
function associated to the standard deviation. This approach has the obvious advantage of
describing the diffuse interface by a single number. However, it has to be stressed that this
approximation is only valid if the roughness is much smaller than the layer thickness.

The second method used to deal with diffuse interfaces, while more computationally
demanding, makes it possible to describe arbitrary SLD profiles. In this second approach,
the SLD profile is simply discretized into bins thin enough to ensure that they can be
considered to be of constant SLD. The reflectivity computation can then follow without
further approximation by means of either the Paratt or the Abeles algorithm. Although
this approach is potentially able to better “follow” the actual SLD profile and can deal with
diffuse areas too broad to be safely described by a Nevot–Croce roughness parameter, it
lacks the ability to condense structural information in simple and clear parameters such
as layer thickness, width of a transition region, etc. Such a convenient description can of
course nevertheless be obtained a posteriori by adjusting an analytical model to the binned
SLD profile used for the simulations.

It should be kept in mind that, whatever the chosen approach used to describe diffuse
SLD transition regions, different lateral distributions of matter could lead to the same SLD
profile along the vertical. The in-plane fluctuations, which have been averaged out here,
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would be the cause of the off-specular scattering. The two types of reflections—specular
and off-specular—can be easily understood with the help of an everyday-life analogy: the
specular (literally, mirror-like) behavior is what we observe when we contemplate the
sunset reflection on the surface of a perfectly still lake, on a windless evening. This image
of an undeformed sun tells us that the surface of the water is perfectly flat (and reflective).
If we repeat this contemplation while a strong wind is blowing, we will only be able to
see a blurry image of the sun on the water surface: the lateral structures on the surface,
its roughness, will reflect the light away from the expected ideal trajectory, hence in an
off-specular or non-specular way. A detailed analysis of the blurred image could lead to an
understanding of the details of the wavy surface. Practical implications of the presence of
off-specular scattering are discussed briefly when dealing with actual measurements.

The description of the specular reflectivity evaluation for a given SLD profile given
above is exact and can be used for numerical evaluations. It is, however, interesting to keep
the results obtained in the framework of the first Born approximation in mind, i.e., in the
limit of weak scattering. In this case, one gets the “master-equation of reflectivity” [49]:

R = RFresnel

∣∣∣∣
∫ dρ

dz
exp(iQz)dz

∣∣∣∣
2

(16)

which relates the reflectivity of an interface with arbitrary interfaces to the reflectivity of a
multilayer with sharp interfaces (RFresnel) and the spatial rate of change of the SLD, ρ.

The Born approximation clearly does not hold for small values of Q, for which many
reflections or even total reflection take place, but it can be used to gain intuition about
the reflectivity observed at large Q. This expression of scattering as a Fourier transform
of real space makes it clear that the reflectivity curve of a layer of thickness l will display
oscillations as a function of Q having a period given by 2π/l. In the case of periodic
structures such as those encountered, for instance, in multilayered phospholipids, intensity
will build up at specific locations in Q space and appear as the Bragg peaks known in
diffraction. Moreover, it is clear from this expression that only regions which display an SLD
contrast (i.e., where the derivative of the SLD is not zero) will contribute to the reflectivity.
Last but not least, this Fourier-transform approach also helps understand the origins of
the spatial resolution limits of the scattering methods: the maximal observed Q value will
determine the size of the smallest object which can be resolved by a scattering experiment.

Reflectometry is the method of choice when focusing on planar surfaces or buried
interfaces. The sample consists of ∼10 cm2 substrate covered with a sample layer, resulting
in very low amounts of sample required for an experiment. The measurement geometry
means that one is exclusively sensitive to the direction along the interface normal in
specular scattering and can get separate information about in-plane correlations through
off-specular scattering.

2.3. Small-Angle Scattering

Differently from reflectometry, which probes the characteristics of planar interfaces,
in a small-angle scattering (SAS) experiment, the characteristics of scattering objects (gels,
polymer blends, porous structures, micelle aggregates, etc.) are measured in bulk [54]. In
SAS geometry, a collimated beam hits a sample, such as an aqueous solution or a solid,
and is (elastically) scattered. As the name indicates, only scattering at low angles (≤30 deg)
is recorded by a detector. For isotropic samples, the scattering pattern has no azimuthal
dependence and depends uniquely on the modulus of the vector �Q, Q = 4π sin(2θ/2)/λ,
where 2θ is the scattering angle. From reduction of the experimental data, an important
quantity, namely the scattering cross section dΣ/dΩ, is obtained as a function of �Q. This
quantity represents the ratio between the number of particles (photons or neutrons) that in
the unit of time are scattered in a certain direction reaching a solid angle element dΩ and
the product between the flux of the incident particles on the sample and the value of the
solid angle element itself. dΣ/dΩ provides important information about the shape of the
scattering structures inside the sample, as well as on the inter-particle interactions [55].
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In contrast to reflectometry, the first-order Born approximation is used for the evaluation
of SAS data over the whole Q range since multiple scattering effects can usually be neglected.
This simplifies data evaluation since, under this approximation, dΣ/dΩ may be expressed as
the square modulus of the Fourier transform of the SLD profile ρ(�r) [56]:

dΣ
dΩ

=
∣∣∣ρ(�r) exp

(
i�Q�r

)
d3�r

∣∣∣2 (17)

For the case of scattering from objects with spherical symmetry, integration may be
carried out in spherical coordinates and Equation (17) may be simplified to:

dΣ
dΩ

=

∣∣∣∣4π
∫

ρ(r)r2 sin(Qr)
Qr

dr
∣∣∣∣
2

(18)

which can be used to simulate the cross section starting from the knowledge of the SLD
profile obtained from MD.

Compared to reflectometry, where the surface to be probed is suitably prepared on an
optically smooth surface, SAS experiments are performed in bulk. The sample is therefore
certainly not perturbed by the addition of a substrate. The absence of a substrate also
means that it does not have to be described in the model to evaluate the data. Last but not
least, the sample preparation is typically easier than the preparation of samples used in
reflectometry, where many experimental efforts must be provided to deposit a layer on
the substrate.

2.4. Molecular Dynamics Simulations

There are several ways to perform atomistic or coarse-grained computer simulations
of phospholipid membranes, in particular using Monte-Carlo (MC) or Molecular Dynamics
(MD) approaches. In both cases, the interaction potentials between all atoms in the system
have to be defined in a force field. There are two parts to a force field: the functional forms
of the potentials (e.g., exponential or polynomial) and the parameters in these functions.
The choice of the appropriate force field (all-atom, united-atom or coarse grained) and
its parameters is the crucial step in every MD simulation. Among many available force
fields (AMBER, GROMOS, OPLS, CHARMM, etc.) and their variations, the one validated
against the reliable experimental data for the molecules of interest has to be used [57]. If
there is no reliable force-field validation data in the literature or if the simulation does
not reproduce experimental data, non-trivial force-field parameterization is required. For
generating multi-component lipid membrane configurations for MD simulations, there are
the MemGen web server [58] and Packmol package [59].

The simulations necessarily simplify the system enormously; a striking example is the
contraction of the atoms’ electron clouds into usually fixed point-like partial charges, hereby
removing, inter alia, polarizability effects. The simulations can therefore not be expected to
reproduce all the properties of the membrane at the same time. The art of creating a force
field is therefore to tune the functions and parameters such that the quantities of interest
are reproduced while others can be incorrect.

MD simulations produce trajectories depicting the motions of atoms over a specified
simulation time, usually on the nanosecond to microsecond timescale—depending on the
force-field complexity and available computational resources. Some of the most impor-
tant analyses, technical challenges and existing protocols that can be performed on MD
trajectories of the phospholipid membrane were reviewed by Moradi et al. [60]. However,
biological processes related to phospholipid membranes are complex and usually challeng-
ing either from an experimental or computational aspect. This comprises membrane pore
formation, membrane fusion, stalks, domains and curvatures [11,12,61].
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3. Materials and Methods

3.1. Materials

For the experiments on a single supported bilayer of DMPC (1,2-dimyristoyl-sn-
glycero-3-phosphocholine, Avanti polar lipids), lipids were dissolved in chloroform fol-
lowed by solvent evaporation under a stream of nitrogen gas. The lipids were subsequently
dissolved in 50 mM HEPES, 50 mM NaCl pH 7.3 buffer followed by sonication to produce
vesicles, before being pumped across the reflectivity cell to form a continuous bilayer in
50 mM HEPES, 50 mM NaCl pH 7.3 buffer.

The substrate for the DMPC bilayer consisted of a highly polished silicon block
coated with a natural silicon oxide layer. The reflectivity cell was connected to a sys-
tem where a HPLC pump was used to run the buffers through the sample. Four buffer
contrasts were used in these experiments: H2O with SLD = −0.56 × 10−6 Å−2, D2O
(SLD = 6.35 × 10−6 Å−2), silicon matched water (SiMW) composed of 38% D2O and 62%
H2O (SLD = 2.07 × 10−6 Å−2) and 4-matched water (4 MW) composed of 66% D2O and
34% H2O, (SLD = 4.00 × 10−6 Å−2). The mass of DMPC in the neutron beam during the
reflectometry experiment was on the order of 1μg.

The experimental procedures used to prepare multilayers of SoyPC have been dis-
cussed elsewhere [31] together with the chemicals used. Briefly, the phospholipid mixture
was dissolved in pure isopropanol and the resulting solution was poured on top of an
ultra-polished silicon mirror. The solvent was then removed by keeping the mirror at first
at reduced pressure and then under vacuum for a few hours. The mirror was then mounted
into a custom-made sample cell and filled with heavy water. In order to visually inspect
the SoyPC layer and check for eventual air bubbles formed after injection of D2O, the cell
was equipped with a glass cover. Samples used for SANS investigations were prepared
starting from a stock solution, dissolving a suitable amount of SoyPC in pure chloroform.
The dissolution was favored by a slight warming (40 ◦C) and a very short sonication
treatment (≈5 min). A thin film was subsequently obtained through slow evaporation
of the chloroform in a stream of argon, in order to prevent phospholipid oxidation. The
phospholipid film was hydrated with D2O, and the resulting suspension was vortexed and
then gently sonicated (≈30 min). An aliquot was then repeatedly extruded through a poly-
carbonate membrane of 100 nm pore size 11 times. The concentration of the hydrogenated
SoyPC in D2O was 5.0 mmol/kg. The mass of SoyPC in the neutron beam during the
SANS experiment was on the order of 1 mg. During the SANS experiment, the sample was
contained in a closed Hellma 404-QX quartz cell that had a thickness of 2 mm, to prevent
solvent evaporation.

3.2. Reflectometry

The neutron reflectivity measurements on DMPC were taken at the ISIS and Muon
Source at the Rutherford Appleton Laboratory, Harwell Science and Innovation Centre,
using the time-of-flight SURF instrument [62]. The neutron wavelength ranges from 0.5
to 7 Å, a Q range between ∼0.01 and 0.3 Å −1 was obtained by measuring three different
angles θincident = 0.35◦, 0.65◦ and 1.5◦. The slits were chosen to ensure a footprint of 30 mm
by 60 mm at the sample stage with an angular resolution of dQ/Q = 3.5%. Vertical slits
were scaled linearly with angle. The time-of-flight spectra were recorded with a 3He point
detector [63].

Specular and off-specular reflectivities of the SoyPC multilayer were measured at the
vertical reflectometer MARIA [64,65] at Heinz Maier-Leibnitz Zentrum (MLZ) in Garch-
ing, Germany, as detailed elsewhere [31]. A neutron beam with an average wavelength
λ = 10.0 Å and a wavelength spread of Δλ/λ = 0.10 was used. A 4.1 m collimation length
with entrance and exit openings of 1.0 mm was used to collimate the incident beam. The
sample was mounted on a goniometer and aligned. Reflectivities were measured by
varying the incident angle and recording the pattern of the scattered neutrons with a
two-dimensional 3He position sensitive detector positioned at 1.9 m from the sample. The
experiments were carried out at room temperature.
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3.3. Small-Angle Scattering

A SANS measurement on SoyPC liposomes was carried out at the KWS-1 diffrac-
tometer [66] installed at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.
As detailed elsewhere [31], neutrons with average wavelengths of λ = 5.0 Å and a wave-
length spread Δλ/λ = 0.10 were used, by means of a mechanical velocity selector. A
two-dimensional 128 × 128 array 6Li scintillation position sensitive detector measured neu-
trons scattered from the sample. Three collimation (C)/sample-to-detector (D) distances
(namely, C8/D2, C8/D8 and C20/D20, with all distances in meters) allowed collection of
data in the scattering vector modulus Q = 4π sin(2θ/2 )/λ ranging between 0.0012 and
0.43 Å−1, with 2θ being the scattering angle. The investigated sample was kept under
measurement for a period so as to have ≈2 million counts of neutrons. The obtained
raw data were corrected for background and empty cell scattering and were then radially
averaged. Detector efficiency corrections and transformation to absolute scattering cross
sections were executed using a secondary plexiglass standard [67].

3.4. Molecular Dynamics Simulations

MD simulations were carried out using GROMACS 2018.1 package [68]. Initial config-
urations were generated using Packmol [59].

1,2-dilinoleoyl-sn-glycero-3-phosphocholine simulations were carried out in a fully
flexible simulation cell containing two phospholipid bilayers consisting of 128 molecules
per bilayer (64 molecules per sheet) and 3000 SPC water molecules between the layers
was simulated at NPT conditions using Parrinello–Rahman pressure coupling and Nosé–
Hoover temperature coupling. The pressure was set to 1 atm through a semi-isotropic
coupling with the x/y isothermal compressibility set to 4.5 × 10−5 bar−1, while the phos-
pholipids and water were independently coupled to thermal baths at 300 K with a coupling
constant of 0.1 ps. The simulations were run for 100 ns with a time step of 1 fs. The equa-
tions of motion were integrated using the Verlet leap-frog algorithm. The long-range
electrostatic interactions after a cut-off distance at 0.8 nm were accounted for by the particle-
mesh Ewald (PME) algorithm [69]. The 12-6 Lennard–Jones interactions were treated by
the conventional shifted force technique with a switch region between 1.2 and 1.4 nm.
Cross-interactions between different atom types were derived using the standard Lorentz–
Berthelot combination rules. United-atom GROMOS 54A7 force-field parameters were
used. The model includes 63 atoms (as opposed to to 134 atoms for the all-atom model)
since the hydrogen atoms are integrated into the heavy atoms. Periodic boundary con-
ditions (PBC) were applied in all dimensions. The first step of the simulation was an
equilibration process for 5 ns. After that, 100 ns of NPT simulation were performed, saving
coordinates every 2 ps for analysis.

DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) simulations of 128 DMPC phos-
pholipids and 3655 SPC water molecules were performed with the Berger parameters [70],
with the coordinate, force-field and topology files distributed by D. Peter Tieleman
(http://wcm.ucalgary.ca/tieleman/downloads, accessed on 1 June 2021). Twenty nanosec-
onds of NPT simulation were performed with 1 fs time steps, saving coordinates every 2 ps.
The resulting area per phospholipid was found to be 60 Å2, which is the same value as the
one obtained by Darré et al. [39] with the CHARMM36 force field and TIP3P water model.

Snapshots were rendered in VMD [71]. The trajectories were either analyzed us-
ing TRAVIS-1.14.0 [72,73] and Python scripts written in-house or a new Python program
dedicated to this purpose, Made2Reflect. This approach allows automatizing analysis of
very large trajectories (20–100 ns, i.e., ∼20–30 GB in .pdb format), consequently improv-
ing statistics and the calculation of scattering length density profiles on the 10–30 min
timescale. Using Python makes the script flexible and easy to adjust to the specific needs
of monolayers, multilayers, substrates, etc. In Travis, the density profile function (DProf)
was used to calculate the number density distribution of particles along the z axis, i.e., the
direction perpendicular to the phospholipid membrane. The result is a histogram that
gives the particle density of a selected particle type (either in nm−3 or relative to uniform
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density) in thin slices of the system perpendicular to the chosen vector. The distribution is
calculated for every molecule and each atom type. In the next step, the number distribution
was multiplied by the atomic scattering length obtaining a scattering length density profile.
Since the number distribution is calculated for each atom, it allows for a selective deutera-
tion, i.e., selective isotopic substitution, simply by multiplying the number distribution of
selected atoms by the scattering length of D instead of H.

4. Results

4.1. Single Bilayer Neutron Reflectivity of a DMPC Bilayer

To model the scattering of a single DMPC bilayer, a scattering length density profile
has to be constructed in real space. This can be achieved either by using an analytic
approach where the number densities of different atom types are approximated, e.g., by a
Gaussian, or using a numerical approach such as the discretized number density generated
from MD simulations. We use here the discretized number density profile of each atom
type calculated from the MD simulation so that one can plot and visualize the distribution
of the single atom type, specific molecule or its parts. Figure 1 shows the number densities
of different elements extracted from an MD simulation, summed up for phospholipid
heads and tails separately as an example. Many snapshots along the trajectory were sliced
into fine bins (with 0.13 Å thickness) along the z axis, the membrane normal, and the
different elements/isotopes were histogrammed in these bins. The time average (using the
full length of the trajectory) was taken and the number densities of each atom type were
multiplied with their respective neutron scattering lengths. The sum of all contributions,
i.e., the total scattering length density profile, is also shown in this figure for different
H/D substitutions of the water, i.e., contrast variation—H2O, D2O, water with a scattering
length density matched to the one of silicon (SiMW, 2.07 × 10−6 Å−2) and water with a
scattering length density matched to be 4 × 10−6 Å−2 (4 MW).

The first validation step of the calculated SLD profile is to compare the numerical H2O,
D2O, SiMW and 4MW SLD values with the theoretical bulk SLD values given as dashed
lines on the right-hand side of Figure 1. If these were mismatched, either the density
obtained from the simulation or the SLD calculation would be incorrect. The next step
is to model a semi-infinite silicon substrate with a native SiO2 layer. The SLD, thickness
and roughness of this layer must be obtained through NR measurements and subsequent
modeling of Si/SiO2/D2O and Si/SiO2/H2O. The very same characterized silicon wafer
is then used for measuring the NR of the phospholipid bilayer. The modeled substrate is
given with dashed lines on the left-hand side of the SLD profile (Figure 1). Merging the
simulation SLD with the solid substrate SLD has to be performed with caution since one
can produce unwanted artefacts in the reflectivity curve [35]. Particular attention has to be
given to the treatment of the substrate roughness, as shown below.

Figure 2 shows the comparison between the measured NR of a single DMPC bilayer
and reflectivity calculated directly from an MD simulation. Very good agreement can be
observed since the MD curves match all four measured contrasts simultaneously. As the
simulations were run without a solid support and the silicon was added by hand while
building the SLD profile, the water layer between the substrate and phospholipid head
groups also has to be adjusted to fit the experimental data [36]. The layer being about 1 nm
thick is in agreement with the literature [74]. The effect of changing this thickness on NR is
also shown in Figure 2 (dashed lines). The 5 Å thinner water layer considerably flattens
the bump in the reflectivity. As shown below, the influence of this water layer on NR is
comparatively minor for multilamellar phospholipid systems.
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(a)

(b)

(c)

Figure 1. (a) Snapshot of the MD simulation of a single free-floating DMPC bilayer in water. The
lipid tails can be seen in green, whereas the water molecules are red/white. (b) The extracted number
density of atoms after averaging over the whole simulation time and summed together based on
their presence in a certain group (water/heads/tails). (c) Neutron scattering length density (SLD) at
four different contrasts calculated from the different atomic number densities. Shaded regions are
hand-modeled SLD values for Si/SiO2 (left) and bulk solvent (right). The SLD can be negative.
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Figure 2. Neutron reflectivity of a DMPC bilayer on a silicon substrate in water for four different H/D
contrasts. Points represent experimental data and lines are neutron reflectivity calculated directly
from the MD simulations. The curves are shifted along the y axis by a factor 10 each for clarity; they
all extrapolate to R(Q = 0) = 1. Dashed lines show the effect of reducing the water layer thickness
between the substrate and phospholipid head groups from 10 to 5 Å.

There are several parameters related to the experimental setup that have to be taken
into consideration when calculating reflectivities from an MD simulation, such as the
instrumental resolution, background scattering and substrate roughness. It can also be
seen that only two contrasts (D2O and 4 MW) exhibit a critical edge and that only the D2O
measurement covers it with data points. This means that, for all but the D2O measurement,
one has to rely on the scaling of the measured intensities to absolute values.

4.2. Neutron Reflectivity of a SoyPC Multilayer

The experimented presented in Section 4.1 demonstrated the methodology used on
a single phospholipid bilayer. When simulating membrane fusion or stalk formation, of
course at least two membranes are required, but, given the low density of stalks, experi-
mentally multilayers (some tens to thousands of bilayers) have to be measured in order
to obtain a detectable signal. MD simulations of this many bilayers are neither practically
feasible nor useful, since the multilayer can be constructed by repeating the SLD profile of
a single bilayer a suitable number of times. This section focuses on the main new features
observed and the data evaluation challenges encountered during the study of a multilayer
via reflectometry. As an exemplary system, multilamellar SoyPC was chosen since it was
hypothesized that, for this phospholipid mixture, the presence of a drug promotes stalks
formation [31], and, before MD and scattering methods can be used to look into the details
of this question, a good description of the pure and unperturbed system is needed. SoyPC
is a mixture of five major lipid components; only the most abundant polyunsaturated 1,2-
dilinoleoyl-sn-glycero-3-phosphocholine (which we indicate in the following with DLPC, to
not be confused with saturated 1,2-dilauroyl-sn-glycero-3-phosphocholine) was simulated
by MD.

As in the previous case of DMPC, two DLPC bilayers separated by a water layer were
simulated and the obtained SLD is presented in Figure 3 for two different contrasts. Once
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the SLD profile of a single bilayer is extracted from the MD, a multilayer is straightforwardly
built by simply repeating the SLD profile n times in z direction. In the case of DLPC, 36
phospholipid bilayer repetitions were used. When applying such a perfect periodicity, this
manual merging of two repetitions (usually in the water region) must be performed with
caution so that the thickness of each water layer stays the same. Otherwise, an artificial
rupture of symmetry can be introduced and the lattice constant would then be doubled.
This would introduce a new peak in the calculated NR, at a Q position corresponding
to half that of the first Bragg (demonstrated in Figure 4 as a dashed red peak). It is,
however, also easily possible to introduce a certain degree of disorder in this step by
adding randomness to the water layer thicknesses. In order to simulate the reflectivity in
this case, one has to produce a large number of such structures and average the simulations.
Such an incoherent addition is valid here since it is expected that the lamellar fluctuations
and the corresponding interlamellar distances should be uncorrelated [75].

(a)

(b)

Figure 3. Cont.
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(c)

Figure 3. (a) MD simulation snapshot of the double phospholipid bilayer. (b) SLD profile of the first contrast,
H2O/bilayer/H2O/bilayer/H2O. Note that there are negative SLD values. The dash-dotted line indicates the SLD
of pure H2O. (c) SLD profile of the second contrast, D2O/bilayer/D2O/bilayer/D2O. The dash-dotted line indicates the
SLD of pure D2O.

The SLD profile obtained for multilamellar DLPC in D2O was then used to calculate
the reflectometry curve. The comparison with the experimental data is given in Figure 4. It
is obvious that the simulated reflectivity (blue line) reproduces the first Bragg peak and fits
the data well up to ≈0.1 Å−1. Between 0.1 and 0.2 Å−1, a discrepancy can be observed.

Figure 4. Experimental neutron reflectivity of SoyPC multilayer in D2O compared with different
models. Green line, analytical model published by Mangiapia et al. [31]; blue line, neutron reflectivity
calculated directly from the MD simulation. The dashed vertical line marks the theoretical Qc of
Si/D2O. The dashed red peak reveals the artificial asymmetry in the repartition of the water layer
thicknesses (details in the text). The blue line in the inset shows an adjusted MD model (details in
the text).

The measurements of SoyPC were in the past evaluated with an analytical model
consisting of water, a head group region and a tail group region [31]. The different regions
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were represented by Gaussian density distributions and repeated without disorder. The
algorithm then varied the flexible parameters of the model, e.g., layer thicknesses, etc.
The data could be fitted well (green line in Figure 4) and the parameter results were very
reproducible and independent of the starting parameters: The phospholipid tail region
was fitted to be only 11 Å thick—a surprisingly small value. The water layer was 42 Å
thick. The size of the unit cell (the repeat distance of the bilayers) is very well constrained
(66 Å) by the positions of the Bragg peaks in the data. The unit cell size was therefore
kept constant by the fit, proportionally enlarging the water layer between bilayers when
reducing the bilayer thickness.

By comparing the MD SLD profile in Figure 3 with the analytical model published
in [31], it is apparent that the analytic fit of the data proposes a smaller membrane thickness
than the MD simulation. The water layer thickness in the simulation must be defined
a priori by the number of water molecules between the adjacent lipid bilayers in the
simulation box. However, this part of the SLD profile can (and must) be adjusted during
the SLD profile modeling. Taking the MD model as a starting structure and adjusting the
layer thicknesses, it was possible to reproduce the experimental data (see inset in Figure 4).
This suggests that the force field and simulation parameters have to be adjusted to increase
the density and reduce the thickness of the hydrophobic region. It might also mean that
the MD simulation of a pure DLPC system is structurally still different from the mixture
present in SoyPC.

Another feature worth noting is shown in Figure 5, which includes a zoom on the
critical edge region. The exact position of the critical edge for total reflection is a function
of the SLD difference between the semi-infinite medium on which the beam is reflected
and the semi-infinite surroundings from which the beam comes. In our case, the beam
comes through the side of a thick silicon wafer and is reflected at the interface with D2O.
The exact shape of the reflectivity decay is obviously influenced by the additional layers,
but the value of Qc below which the beam is totally reflected must remain the one of
the material combination Si–D2O. A deviation of the critical edge from the theoretical
position leads to the suspicion of a possible contamination of the D2O by hydrogenated
molecules. Two possibilities of hydrogenated molecules come to mind: normal water
(H2O) or phospholipids detached from the multilayer whose hydrogenated tails would
significantly lower the overall SLD. In the case of H2O contamination, one would expect it
to be homogeneously distributed across all hydrated parts of the sample. In the case of
the phospholipid contamination, however, the contamination would be confined to the
bulk water. Figure 5 shows the effect of both scenarios on the NR starting from the MD
simulated SLD.

The blue reflectivity curve is obtained by scaling the bulk SLD of D2O by a factor
of 0.8 on account of detached phospholipids with hydrogen-rich tails diffusing to the
bulk. In this case, the SLD of D2O between the bilayers was not scaled. The red dashed
curve is obtained by scaling the SLD of all D2O molecules by a factor of 0.8, simulating
D2O contamination with H2O during the experiments. Since these corrections did not
affect the interlamellar distance, the position of the Bragg peaks is not affected by this
change in contrast. Scaling down the D2O SLD moves Qc close to the observed value.
Adjusting the water SLD inside the lamellar structure, as in the hypothesis of light water
contamination, has the effect of reducing the overall contrast of the lamellae and affects the
Bragg peak intensity and reflectivity in the 0.1–0.15 Å−1 region. One could hope to be able
to discriminate two solvent contamination origins on this basis. However, as shown by the
green dashed curve in Figure 5, tuning the water SLD has a similar effect on the reflectivity
as reducing the number of bilayers in the multilayer.
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Figure 5. The influence of varying the SLD of D2O on the critical edge (Qc) of NR calculated from the
MD simulation. Blue line, SLD of only bulk D2O scaled by a factor of 0.8; dashed red line, SLD of all
D2O in the system scaled by a factor of 0.8; dashed green line, SLD profile after reducing the number
of layers in the modeled multilayer from 36 to 20. The dashed vertical line marks the theoretical Qc

of Si/D2O.

Neutron reflectivity measurements and reflectivity calculated directly from the MD
simulations hint at the different structure of the investigated SoyPC multilayer. While the
phospholipid bilayer thickness obtained from MD is larger than allowed by the position of
the experimental Bragg peaks, the direct unconstrained fitting of the reflectivity using the
analytical model suggests an extremely thin hydrophobic region (11 Å). From the MD point
of view, such high compression seems hardly achievable since the hydrophobic region in
that case has to be thinner than the polar heads. Additional experimental data at different
contrasts could help to lift the ambiguity. Since these experimental data were not available,
small-angle neutron scattering measurements of a single SoyPC bilayer were compared
with the MD simulations.

4.3. Small-Angle Neutron Scattering of SoyPC Bilayers

Scattering cross sections obtained from SANS experiments on SoyPC in heavy water
are reported in Figure 6. The data can be fit very well with a model of spherical unilamellar
vesicles with polydisperse solvent cores [76,77], which is also expected based on the
preparation method. A very careful inspection of the data revealed the presence of a
small contribution of multilamellar vesicles [31], which can be neglected in the Q range
presented here.

The best fit of the analytical model yields vesicles with a double-layer thickness of
(33.0 ± 1.2) Å. The SLD profile obtained from the MD simulations was used for a compar-
ison to the data. It was inserted into a model of n concentric spherical shells; the inner
radius of the vesicle and their polydispersity was optimized by a fitting procedure. The
results are displayed with a continuous red curve in Figure 6. There is a clear discrepancy
between the experimental data and the description provided by the MD results, which is
mainly due to a mismatch of the total membrane thickness. In particular, the oscillation at
Q ≈ 0.25 Å−1 is quite sensitive to this parameter. This is illustrated in the inset of Figure 6,
where two dashed curves represent adding and subtracting 2.0 Å to the optimized bilayer
thickness: a small change shifts the oscillation to higher or lower Q-values. The shoulder
at Q ≈ 5 × 10−3 Å−1 is in contrast not sensitive to the change in bilayer thickness at all and
is determined by the total size of the vesicles.

The SANS data on unilamellar vesicles clearly favor a thinner membrane than what is
simulated by MD. The associated tail thickness of only 11 Å is, however, so incredibly thin
that additional measurements on the pure DLPC system and with a variety of contrasts
should be performed before addressing an optimization of the MD force field.
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Figure 6. Scattering cross sections obtained for an extruded sample of SoyPC in D2O. The blue
line corresponds to the theoretical cross sections obtained by fitting the model described in the
text, whereas the red curve is obtained from the MD SLD profile. The inset shows a zoom on the
high-Q region together with two additional dashed curves obtained by adding (in dark green) and
subtracting (in orange) 2 Å to the value of the bilayer thickness extracted from the best fit.

5. Discussion

Both reflectometry and small-angle scattering are low-resolution techniques. Their

spatial sensitivity is limited to about dmin ∼ 2π/Qmax ≈ 2π/(0.3 Å
−1

) ≈ 20 Å. Smaller
features can still change the scattering pattern if they change the average SLD of the layer
in which they are embedded, but the information content in the data will not confine the
shape of this feature. Reflectometry has the advantage over small-angle scattering that the
sample is aligned and it is therefore possible to probe the SLD profile along the membrane
normal. The scattering signal in small-angle scattering is generally an orientational average.

Despite the limitations of the scattering data, they are some of the very few experi-
mental windows into this nano-world, and it is easy to compare simulations to the data.
This combination is particularly powerful since the simulations provide a model that is
already heavily constrained by many external inputs via the force field, while the scattering
data provide a sensitive indicator of the plausibility of the simulated structures. The ease
of comparing simulated and measured scattering curves to each other can, however, lead
to an inflated degree of trust—from an experimenter’s point of view in the simulations
and from a simulator’s point of view in the measurements. In the following, we there-
fore raise the awareness of each of the two communities for the potential problems of
the other one—while, and this cannot be stressed enough, unreservedly recommending
this combination.

23



Membranes 2021, 11, 507

5.1. Reflectometry

For the comparison of the reflectivity curves calculated from analytical or numerical
SLD profiles to measured data, one has to take into account instrumental and sample
non-idealities.

Effects caused by the instrument vary between different instrument types (e.g.,
monochromatic or time-of-flight) and even between different instruments of the same
type. A non-exhaustive list is given in the following.

• Every instrument will have sources of background which contaminate the intensity
with a more or less random noise. These can be independent of the experiment (e.g.,
the perfectly random detection of cosmic particles) or instrument setting related (e.g.,
scattering of the probing particles on air or windows in the beam—also random and
scattering on slits—a usually more or less strongly peaked effect).

• When the sample is illuminated under a very shallow angle, it might happen that
only a fraction of the beam actually illuminates the sample. This geometric effect
will be a function of the incident angle and the real intensity distribution in the beam
(usually treated as Gaussian). In some configurations, this function could be strongly
wavelength dependent, due to the ballistic effect: on their way to the sample, long
wavelength neutrons, being slower, fall more than the short wavelength ones under
the action of gravitation. They will thus impinge on the sample at a different spot and
slightly different incident angle (an effect which also has to be taken into account to
properly evaluate Q).

• Both aforementioned effects contribute to a normalization issue: since R is a relative
measurement, one must ascertain that the full incident intensity is accurately mea-
sured. This can cause practical problems since the primary beam intensity is always
orders of magnitude more intense than the reflected one. Gross errors in this step can
be detected if enough data points have been taken in the regime of total reflection, but
more subtle effects such as the above-mentioned over-illumination are much more
difficult to detect if they affect the region where reflectivity intrinsically varies. It
should be stressed that it is quite easy to overlook significant systematic errors since
the R value is usually plotted on a logarithmic scale with 5–6 orders of magnitude.

• The measured intensity can be described by the convolution of the ideal signal with
the instrumental resolution function. This convolution smears the measured curve
and limits the possibility to resolve adjacent features (oscillations, peaks) in Q space.
In real space, this translates to an upper limit for the measurable layer thickness and
sensitivity to long-range correlations. Typically, the instrumental resolution of neutron
reflectometers ranges about 1–10% ΔQ/Q and consists of contributions of the often
dominant wavelength uncertainty and the beam divergence.

• A very careful treatment of error propagation during data reduction of the counted
intensities is needed in order to preserve the possibility to evaluate the statistical
agreement between a simulation and experimental data. Obviously, the error bar
validity issue is paramount when dealing with fitting methods, and this is even more
so when the fitted data vary over several orders of magnitude, as is the case for both
reflectivity and SANS [78].

The sample itself also contributes features to the scattering data that are not reproduced
by the computation of the reflectivity from the SLD profile:

• The sample membrane in a reflectometry measurement has to be supported by a
substrate, either solid or liquid. This substrate can have an influence on the mem-
brane properties, such as its rigidity. Studies looking at embedding larger proteins
into the membrane might even experience collisions between the proteins and the
substrate [46]. Further, the surface of the substrate can be ill-defined. While a reason-
ably thin silicon oxide layer usually does not influence the scattering data too much,
the surface roughness of the substrate has an immediate effect on the data and can
render the data useless if the roughness is not controlled to be below ∼5 Å. Besides
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influencing the quality of the data, it is clear that large surface irregularities will also
affect the membrane morphology. The other half-infinite side also adds possibilities
for imperfections that might not be mapped into the simulation: the solvent (espe-
cially when deuterated) might be contaminated with another isotope—either from
the experimental setup of channels leading to the sample chamber or by hydrogen or
hydrogen-containing groups escaping from the sample layer. This might have hap-
pened in the DLPC multilayer presented here where an amount of bilayers could have
detached from the multilayer and float in some form through the solvent, lowering
its SLD.

• A more subtle point concerns the water contrast variation. In order to make use of the
different contrasts that can be achieved by isotopic substitution, one has to assume
that the exchange between hydrogen and deuterium changes only the scattering
lengths and not the actual structure. This is generally a justifiable approximation. The
density [79,80] and many of the molecular interactions do change between H2O and
D2O [80,81], but mostly very slightly. These—usually small—changes that happen in
the real sample will of course not be reproduced by only one simulation where the
isotopic exchange is performed a posteriori by assigning different scattering lengths
to the atoms.

• The sample layer itself can also deviate from the modeled version in several aspects:
concerning the SLD, it is basically impossible for an experimenter to ascertain the
deuteration degree of the purchased phospholipids. Further, the deposition of phos-
pholipids on the substrate might not have produced the structure that was intended
(e.g., a single bilayer)—either on the complete sample or as inhomogeneities within
the membrane plane. Neutron reflectometry measurements probe a surface on the
order of 10–100 cm2: it is rather unrealistic that a phospholipid layer would coat such
a large area homogeneously. Last, inhomogeneities can of course also occur in the
direction of the membrane normal, such as a disorder of the water layer thickness
between neighboring membranes in a multilayer.

• The sample will not only scatter neutrons/X-rays into the specular spot, but will
also itself contribute an isotropic background which will add up to the extrinsic
background sources discussed above. In the case of neutron scattering, this sample-
related background level is dominated by the incoherent scattering from hydrogen
atoms in the sample and will therefore vary between different contrasts of a given
system. In the case of X-rays, the diffuse background is generated by the inelastic
Compton scattering. It is measured and subtracted from the signal together with the
off-specular scattering (see below). A remaining Q-independent background has to
be accounted for in the modeling.

• Most importantly, in reflectometry, the sample will also generate off-specular scattering.
This scattering intensity is caused by fluctuations of the SLD profile parallel to the
membrane due, for instance, to membrane fluctuations. In the current context, this
additional intensity overlaps the purely specular signal and needs to be subtracted
from the experimental values before R can be evaluated. The length scale of the
fluctuations responsible for off-specular scattering is up to the micrometer regime [20],
which renders, as hinted above, an evaluation from the computer simulations im-
possible. The usual approach is therefore to measure the scattered intensity on both
sides of the specular condition near to it in order to then interpolate the background
intensity. On modern instruments using bidimensional detectors, one does not need
to perform any additional experiment since a whole range of reflected angles is being
covered around the specular direction. Figure 7 shows the intensity distribution as a
function of incident angle (θincident) and reflection angle (θreflected). The specular line
is seen along the main diagonal (θincident = θreflected), and it shows the total reflec-
tion region at the smallest angles. Along this line, the intensity maxima correspond
to the Bragg peaks. The most prominent feature of this intensity map is, however,
the broad off-specular band which follows the condition θincident + θreflected = θBragg,
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which in Q space translates to Qz = QBragg. As hinted above, this intensity band is
thus characteristic of the in-plane correlations of the structures responsible for the
Bragg peak. The broad width of the Bragg peak in the reciprocal space shows that the
bilayers are only coherent over very small length scales. Subtraction of the underlying
off-specular signal is clearly a challenging task, especially in regions where the overall
reflectivity is low, leading to poor statistics. One needs to be aware of the risk of
introducing systematic deviations from the true specular reflectivity during this data
reduction step.

Figure 7. Off-specular reflectivity map (log scale) of the multilayer sample as a function of the angle
of incidence (θincident) and of the reflection angle (θreflected). The specular reflected beam contributes
only at θincident = θreflected. The width of the recorded band around the specular line is defined by
the detector size.

5.2. Small-Angle Scattering

While there is no substrate in small-angle scattering experiments, the other issues
mentioned for reflectometry also exist for this technique. For example, unilamellar vesicles
might be neither as spherical nor as homogeneously unilamellar as assumed. If they were
produced by extensive sonication, the phospholipid molecules might even have been
damaged and lyso-phospholipids can be present in the sample [82].

Factors that do not play a role for the samples used in reflectometry but have to
be considered in SAS include the vesicle size polydispersity, which is basically always
modeled with rather simple assumptions, such as a the Schulz–Zimm distribution. It is
absolutely possible that the real size distribution is far more complex and does not smear
the features in the scattering curve in exactly the way that is modeled. In addition, the
positioning of different vesicles with respect to each other has an—often subtle—influence
on the scattering data. If the interaction between the vesicles is known, it can (and should)
be taken into consideration in the model.

The effects of an isotropic background and instrumental resolution are very similar
to those observed in reflectometry. The background due to the sample itself is usually
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accounted for in the modeling, while all other background contributions are subtracted
from the data using measurements of the empty sample container and the intrinsic noise of
the detector. The instrumental resolution has to be taken into consideration much in the
same way as for reflectometry.

Instrumental challenges that are more specific to small-angle scattering than reflectom-
etry are related to the calibration of the detector efficiency [83], especially when attempting
to obtain absolute units for the data in order to measure concentrations. Additionally,
a full small-angle scattering curve is often measured in several steps with varying colli-
mation lengths and the individual curves have to be stitched together before modeling,
mostly manually.

As discussed in the Introduction, the theoretical treatment of SANS curves relies on
the applicability of the first Born approximation. Care must be taken to avoid multiple
scattering as this is not incorporated in the theoretical evaluation of the data—unfortunately,
the absence or presence of multiple scattering is usually not apparent in the data. A practical
rule of thumb is to lower the concentration until the sample transmits at least roughly 85%
of the beam without interaction.

5.3. Molecular Dynamics Simulations

As in the case of the experiments, there are several aspects of computer simulations
that might not be immediately clear to the non specialist, which might lead to misinter-
pretation of the results. In contrast to the DMPC phospholipid, containing saturated fatty
acid chains, where simulations match experimental data very well, there is a disagreement
in the case of polyunsaturated DLPC (the main component of SoyPC). The DLPC lipid
bilayer thickness and area per lipid obtained in the MD simulation are not in agreement
with the NR and SANS measurements. The experiments suggest a larger area per lipid
(75 Å2) than the MD simulations (60 Å2) using the GROMOS 54A7 force field. The same
problem was observed for polyunsaturated 1-stearoyl-2-docosahexaenoyl-sn-glycerco-3-
phosphocholine (SDPC) bilayers [84] where high-level quantum mechanical calculations
are used to improve the force fields’ (CHARMM36) dihedral potential of neighboring
double bonds. An approach was proposed by Marquardt et al. [8] constraining the average
area per lipid while allowing the z axis to expand and contract. This issue, including the
force field reparameterization, is out of the scope of this article and will be addressed in
our future work on SoyPC, including the measurements and comparison of pure mono-
and multilamellar DLPC with the simulations.

It is important to say that simulated SLD profiles cannot be used “as received” and
several adjustments have to be made. A first crucial point is related to the thickness of
water layers: since the number of water molecules is fixed at the start of the simulation,
the water layer thickness will also be artificially defined by the MD simulation. However,
this issue can easily be solved and the water layer thickness can be adjusted as a parameter
during the SLD profile calculation while keeping all the other parameters untouched. There
are other practical reasons why the simulated system does not perfectly describe the actual
sample used during the neutron/X-ray experiments. The MD simulation will not include
the substrate and even less its interface imperfections. Due to limited computation power,
the simulated volume usually represents a small fraction of the actual sample and cannot
reproduce large-scale features such as the radius of curvature or fluctuations. The same
argument justifies why the simplest subelements of quasi-periodic systems are simulated
and then artificially reproduced, as for instance a bilayer is simulated in details rather than
a true multilayer system.

There are some more obvious reasons a simulation might not be a true representation
of reality: in a complex lipid mixture, the composition of the system under study has to
be drastically simplified. In the current example of SoyPC, it was approximated by the
most abundant phospholipid. In addition, the effects of pH are hard to reproduce: while
the pH clearly plays a major role in reality, a simulation box will contain only very few
OH−/H3O+ ions if they are included at all—and the most common force fields will not
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allow the phospholipids to change their protonation state. Besides these factors that limit
the realism of the simulations, two more craftsmanship-related issues have to be considered
since MD is nothing more than a means of sampling the phase space. First, the simulation
has to be equilibrated for a long enough time. Second, the production run has to cover a
long enough time for the system to sample the configurations in the vicinity of the energy
minimum with accurate statistics. Transitions over energy barriers or phase transitions can
pose significant obstacles against sufficient sampling. Further, there are severe limitations
in simulations when it comes to temperature and pressure: both of these can typically not
be expected to have a 1:1 relation to the real physical quantities. Just to name one example,
the freezing point of commonly used water models varies between 213 and 271 K [85]. The
last, even more general comment is that all available force fields represent only a part of the
interactions that happen in reality. Moreover, even for the interactions taken into account,
the force fields are always not more than mere simplifying parameterization. One might be
tempted to discard classical MD and make use of a priori more realistic methods based on
first principles. Apart from the fact that computing power severely limits the applicability
of those methods to a smaller number of atoms, it should be noted that even the ab initio
molecular dynamics simulations, which explicitly deal with many more effects than the
classical simulations, still contain a number of adjustable parameters that have to be chosen
by the simulation operator.

One aspect which has only been discussed briefly here and deserves some more
comments is related to lateral correlations in the plane of the sample (such as lamellar
fluctuations, undulations and fusion sites, e.g., stalks). We mention this point in the
discussion of data reduction and specifically of background subtraction. Obviously, this
scattering transports very important information about the exact nature of the in-plane
structure and treating it as mere background is wasting information. However, given
the very large length scales involved, atomic MD cannot produce relevant data and other
methods, such as coarse-grained simulations, need to be used. Once a model of the
structure has been constructed, however, well-documented software packages already exist
which could be used to compute the corresponding off-specular scattering patterns from
the reconstructed SLD distribution [86].

6. Conclusions

In this study, we showed, on the basis of a set of actual examples, how the structures
obtained from MD simulations can be used to compute the corresponding scattering
patterns in SANS and NR. It appeared along the way that several oversimplifications and
assumptions have to be carefully dealt with, notably in producing a reliable description
of the sample involving some “details” which are not simulated by MD (the substrate in
reflectometry, the multilayer, D2O/H2O contamination, substrate roughness, etc.).

Clearly, potential imperfections and intrinsic limitations of all the techniques have to be
kept in mind and overconfidence in a single observation to draw conclusions is at best risky.
In our experience, however, confronting the experiment to the simulation and vice versa is a
beneficial process for both sides as it opens opportunities for further understanding of the
systems under study and, on a more mundane level, it helps to detect and/or understand
inconsistencies (such as solvent contamination, the importance of fluctuations, etc.).

The complementarity of scattering methods and MD simulations is striking, not only
because it bridges the divide between direct and reciprocal space and helps to solve the
age old phase problem, but also because each method sheds light in the blind spot of the
other, for instance in terms of accessible length scales and timescales.

Apart from suggesting new experiments to be performed on this very system (e.g.,
monolayers and increasingly thick multilayer systems, more contrasts and eventually
moving to more complex/interesting systems such as those including drugs), this work
hints at possible methodological developments such as the systematic use of MD models
for the preparation and analysis of scattering experiments.
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The calculation of expected, reasonable scattering patterns can assist in the preparation
and the optimization of experiments to be performed at large-scale facilities. Subtle
instrumental effects could be simulated in the framework of virtual experiments such as
those performed using Monte-Carlo simulation packages [87]. Knowing where to expect
important features or how these would differ between competing models would allow
measurements to be tailored to concentrate on these regions.

One can further imagine a range of tools that would allow the investigator to alter the
MD simulation to optimize the agreement between calculated scattering curves and experi-
mental data: first, one could tweak the SLD profile without touching the simulation itself,
simply using it as a suitable starting point. Second, the deviation between calculated and
measured scattering curves can be employed as an additional contribution to the potential,
driving the simulation into a compatible configuration [88]. Third, it might be possible
to adjust individual parameters in the force field, possibly via big data/machine learning
approaches. Scattering methods are possibly the only class of experiments that probe
directly the very thing MD simulates, giving a unique angle in this ambitious endeavor.

To facilitate these ideas, a new software for calculating neutron and X-ray small-angle
scattering and reflectivity patterns directly from the MD simulation trajectory, Made2Reflect,
will be published soon. This standalone Python program allows the fast and simple analysis
of large trajectories and is applicable not only for phospholipid membranes but also for
electrochemistry, corrosion and batteries, i.e., solid–liquid and liquid–liquid interfaces
in general.
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38. Kučerka, N.; Katsaras, J.; Nagle, J.F. Comparing Membrane Simulations to Scattering Experiments: Introducing the SIMtoEXP
Software. J. Membr. Biol. 2010, 235, 43–50. [CrossRef] [PubMed]

39. Darré, L.; Iglesias-Fernandez, J.; Kohlmeyer, A.; Wacklin, H.; Domene, C. Molecular Dynamics Simulations and Neutron
Reflectivity as an Effective Approach To Characterize Biological Membranes and Related Macromolecular Assemblies. J. Chem.
Theory Comput. 2015, 11, 4875–4884. [CrossRef]

40. Grillo, I. Small-Angle Neutron Scattering and Applications in Soft Condensed Matter. In Soft Matter Characterization; Springer:
Dordrecht, The Netherlands , 2008; pp. 723–782.

41. Fischer, H.E.; Barnes, A.C.; Salmon, P.S. Neutron and X-ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 2005, 69,
233–299. [CrossRef]

42. Tristram-Nagle, S.; Liu, Y.; Legleiter, J.; Nagle, J.F. Structure of Gel Phase DMPC Determined by X-ray Diffraction. Biophys. J.
2002, 83, 3324–3335. [CrossRef]

43. Salditt, T.; Li, C.; Spaar, A.; Mennicke, U. X-ray reflectivity of solid-supported, multilamellar membranes. Eur. Phys. J. E 2002, 7,
105–116. [CrossRef]

44. Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26–37. [CrossRef]
45. Heinrich, F.; Kienzle, P.A.; Hoogerheide, D.P.; Lösche, M. Information gain from isotopic contrast variation in neutron reflectome-

try on protein–membrane complex structures. J. Appl. Crystallogr. 2020, 53, 800–810. [CrossRef]
46. Böhm, P.; Koutsioubas, A.; Moulin, J.F.; Rädler, J.O.; Sackmann, E.; Nickel, B. Probing the Interface Structure of Adhering Cells by

Contrast Variation Neutron Reflectometry. Langmuir 2018, 35, 513–521. [CrossRef]
47. Junghans, A.; Watkins, E.B.; Barker, R.D.; Singh, S.; Waltman, M.J.; Smith, H.L.; Pocivavsek, L.; Majewski, J. Analysis of

biosurfaces by neutron reflectometry: From simple to complex interfaces. Biointerphases 2015, 10, 019014. [CrossRef] [PubMed]
48. Mushtaq, A.U.; Ådén, J.; Clifton, L.A.; Wacklin-Knecht, H.; Campana, M.; Dingeldein, A.P.G.; Persson, C.; Sparrman, T.; Gröbner,

G. Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation.
Commun. Biol. 2021, 4, 507. [CrossRef]

49. Nielsen, J. Elements of Modern X-ray Physics; Wiley: Hoboken, NJ, USA, 2011.
50. Parratt, L.G. Surface Studies of Solids by Total Reflection of X-Rays. Phys. Rev. 1954, 95, 359–369. [CrossRef]
51. Abelès, F. La théorie générale des couches minces. J. Phys. Radium 1950, 11, 307–309. [CrossRef]
52. Born, M. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light; Cambridge University Press:

Cambridge, UK, 2019.
53. Névot, L.; Croce, P. Caractérisation des surfaces par réflexion rasante de rayons X. Application à l'étude du polissage de quelques

verres silicates. Rev. Phys. Appl. 1980, 15, 761–779. [CrossRef]
54. Penfold, J.; Thomas, R.K. Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent

progress. Curr. Opin. Colloid Interface Sci. 2014, 19, 198–206. [CrossRef]
55. Brumberger, H. (Ed.) Modern Aspects of Small-Angle Scattering; Springer: Dordrecht, The Netherlands , 1995.
56. Svergun, D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Plenum Press: New York, NY, USA, 1987.
57. Poger, D.; Caron, B.; Mark, A.E. Validating lipid force fields against experimental data: Progress, challenges and perspectives.

Biochim. Biophys. Acta BBA Biomembr. 2016, 1858, 1556–1565. [CrossRef]
58. Knight, C.J.; Hub, J.S. MemGen: A general web server for the setup of lipid membrane simulation systems: Fig. 1. Bioinformatics

2015, 31, 2897–2899. [CrossRef] [PubMed]
59. Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular

dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [CrossRef]
60. Moradi, S.; Nowroozi, A.; Shahlaei, M. Shedding light on the structural properties of lipid bilayers using molecular dynamics

simulation: A review study. RSC Adv. 2019, 9, 4644–4658. [CrossRef]
61. Khattari, Z.; Köhler, S.; Xu, Y.; Aeffner, S.; Salditt, T. Stalk formation as a function of lipid composition studied by X-ray reflectivity.

Biochim. Biophys. Acta BBA Biomembr. 2015, 1848, 41–50. [CrossRef] [PubMed]
62. Penfold, J.; Richardson, R.M.; Zarbakhsh, A.; Webster, J.R.P.; Bucknall, D.G.; Rennie, A.R.; Jones, R.A.L.; Cosgrove, T.; Thomas,

R.K.; Higgins, J.S.; et al. Recent advances in the study of chemical surfaces and interfaces by specular neutron reflection. J. Chem.
Soc. Faraday Trans. 1997, 93, 3899–3917. [CrossRef]

31



Membranes 2021, 11, 507

63. Roldan, J.L.O.; Campana, M.; Barker, R.; Yoldi, I.; Hendry, A. Elucidating the Membrane Interaction Mechanism of Chloride Intracellular
Channel Proteins; STFC ISIS Neutron and Muon Source: 2018. Available online: https://doi.org/10.5286/ISIS.E.RB1820565
(accessed on 1 June 2021).

64. Mattauch, S.; Koutsioubas, A.; Pütter, S. MARIA: Magnetic reflectometer with high incident angle. J. Large Scale Res. Facil. 2015,
1, 8. [CrossRef]

65. Mattauch, S.; Koutsioubas, A.; Rücker, U.; Korolkov, D.; Fracassi, V.; Daemen, J.; Schmitz, R.; Bussmann, K.; Suxdorf, F.; Wagener,
M.; et al. The high-intensity reflectometer of the Jülich Centre for Neutron Science: MARIA. J. Appl. Crystallogr. 2018, 51, 646–654.
[CrossRef] [PubMed]

66. Frielinghaus, H.; Feoktystov, A.; Berts, I.; Mangiapia, G. KWS-1: Small-angle scattering diffractometer. J. Large Scale Res. Facil.
JLSRF 2015, 1, 28. [CrossRef]

67. Wignall, G.D.; Bates, F.S. Absolute calibration of small-angle neutron scattering data. J. Appl. Crystallogr. 1987, 20, 28–40.
[CrossRef]

68. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable
Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [CrossRef]

69. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems. J. Chem. Phys.
1993, 98, 10089–10092. [CrossRef]

70. Berger, O.; Edholm, O.; Jähnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full
hydration, constant pressure, and constant temperature. Biophys. J. 1997, 72, 2002–2013. [CrossRef]

71. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
72. Brehm, M.; Thomas, M.; Gehrke, S.; Kirchner, B. TRAVIS—A free analyzer for trajectories from molecular simulation. J. Chem.

Phys. 2020, 152, 164105. [CrossRef]
73. Brehm, M.; Kirchner, B. TRAVIS—A Free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories. J. Chem.

Inf. Model. 2011, 51, 2007–2023. [CrossRef]
74. Krueger, S.; Koenig, B.W.; Orts, W.J.; Berk, N.F.; Majkrzak, C.F.; Gawrisch, K. Neutron Reflectivity Studies of Single Lipid Bilayers

Supported on Planar Substrates. In Neutrons in Biology; Springer: Boston, MA, USA, 1996; pp. 205–213.
75. Nouhi, S.; Koutsioubas, A.; Kapaklis, V.; Rennie, A.R. Distortion of surfactant lamellar phases induced by surface roughness. Eur.

Phys. J. Spec. Top. 2020, 229, 2807–2823. [CrossRef]
76. Degiorgio, V. Physics of Amphiphiles—Micelles, Vesicles, and Microemulsions: Varenna on Lake Como, Villa Monastero, 19–29 July 1983;

Elsevier Science Publishers: New York, NY, USA, 1983.
77. Kotlarchyk, M.; Chen, S.H. Analysis of small angle neutron scattering spectra from polydisperse interacting colloids. J. Chem.

Phys. 1983, 79, 2461–2469. [CrossRef]
78. Pardo, L.C.; Rovira-Esteva, M.; Busch, S.; Moulin, J.F.; Tamarit, J.L. Fitting in a complex χ2 landscape using an optimized

hypersurface sampling. Phys. Rev. E 2011, 84, 046711. [CrossRef] [PubMed]
79. Soper, A.K. The Radial Distribution Functions of Water as Derived from Radiation Total Scattering Experiments: Is There

Anything We Can Say for Sure? ISRN Phys. Chem. 2013, 2013, 1–67. [CrossRef]
80. Jancsó, G. Isotope Effects. In Handbook of Nuclear Chemistry; Springer: Boston, MA, USA, 2011; pp. 699–725.
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Abstract: Most linear peptides directly interact with membranes, but the mechanisms of interaction
are far from being completely understood. Here, we present an investigation of the membrane
interactions of a designed peptide containing a non-natural, synthetic amino acid. We selected a
nonapeptide that is reported to interact with phospholipid membranes, ALYLAIRKR, abbreviated as
ALY. We designed a modified peptide (azoALY) by substituting the tyrosine residue of ALY with
an antimicrobial azobenzene-bearing amino acid. Both of the peptides were examined for their
ability to interact with model membranes, assessing the penetration of phospholipid monolayers,
and leakage across the bilayer of large unilamellar vesicles (LUVs) and giant unilamellar vesicles
(GUVs). The latter was performed in a microfluidic device in order to study the kinetics of leakage of
entrapped calcein from the vesicles at the single vesicle level. Both types of vesicles were prepared
from a 9:1 (mol/mol) mixture of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPG
(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1′-rac-glycerol). Calcein leakage from the vesicles was
more pronounced at a low concentration in the case of azoALY than for ALY. Increased vesicle
membrane disturbance in the presence of azoALY was also evident from an enzymatic assay with
LUVs and entrapped horseradish peroxidase. Molecular dynamics simulations of ALY and azoALY
in an anionic POPC/POPG model bilayer showed that ALY peptide only interacts with the lipid
head groups. In contrast, azoALY penetrates the hydrophobic core of the bilayers causing a stronger
membrane perturbation as compared to ALY, in qualitative agreement with the experimental results
from the leakage assays.

Keywords: peptide; MD; GUV; LUV; azo-amino acid

1. Introduction

Membrane interacting peptides are an exciting topic of research, because they cover different
classes of peptides with several biological activities. The interactions between peptides and lipid
membranes are involved in many critical biological processes [1,2]. Depending on their structural
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characteristics, different peptides employ different mechanisms of interaction with the membrane,
causing membrane alteration or permeation [3,4]. Moreover, during their interactions, peptides and
membranes may undergo a sequence of structural changes. Even for short and linear peptides, the
molecular details of the process are often not completely understood. Numerous studies have been
carried out to clarify the interactions of peptides with lipid bilayers, when considering the position,
orientation, structure, and the effects on the surrounding lipids [5–10]. A better understanding of
peptide-membrane interactions at a molecular level is not only essential in the study of various
biological processes, but it could also help in designing peptides with specific functionalities that may
be exploited for therapeutic applications. We performed theoretical and experimental studies using
model lipid membranes to develop a novel semi-synthetic peptide with a direct effect on membrane
perturbation [11]. Here, we report the results of such investigations highlighting the interactions
of a designed peptide with lipid membranes. We selected a membrane interacting nonapeptide,
ALYLAIRKR (abbreviated as ALY) [12], after a screening of peptides in the database YADAMP [13].
This peptide is known to interact with liposomal membranes and cause an increase in membrane
permeability proportional to the peptide concentration. It is known that linear peptides and membrane
proteins affect membrane structure [14–17], but little is known regarding peptides with azo-modified
amino acids.

We used this peptide as a reference peptide to develop a novel modified peptide (azoALY)
replacing the tyrosine (“Y”) in the ALY sequence with an unnatural amino acid bearing an azo group,
which may affect the membrane permeability and the antimicrobial activity. We chose to modify the
tyrosine residue of ALY by replacing one of the hydrogen atoms of the phenyl ring in the side chain
with an azobenzene group (via a diazo coupling reaction).

The novel azo-amino acid (azoTyr) was then employed in order to synthesize the peptide chain
without further modifications. The choice of azobenzene in the peptide chain was determined by its
hydrophobicity and intrinsic antimicrobial properties. In our previous works [18,19], we have already
studied the antibacterial and antifungal activity of the azobenzene group. Therefore, a modified
peptide might have antimicrobial activity due to the presence of azobenzene, and it might act as a
prodrug, releasing the antimicrobial azo compound in vivo. However, this work is not focused on
the antimicrobial aspects, rather on the membrane perturbation effect. With this purpose, molecular
dynamics (MD) simulations are a useful method for studying peptide-membrane interactions. They
provide a detailed description of the processes at a molecular level, in which all of the components can
be studied, as well as being able to visualize their organization and dynamics [20].

In the first part of the work, we used MD simulations to understand the different modes of
interactions between the two peptides (ALY and azoALY) and a model bilayer. We employed a mixture
of POPC/POPG at a molar ratio of 9:1 to study the interaction of the peptides with the surface of lipid
bilayers, according to previous studies [21,22]. POPC/POPG lipids are frequently used to build a model
of bacterial membranes (see, e.g., [23–25]). It is relevant to evidence that, although POPC is widely
used in both molecular dynamics simulations and vesicle preparations, it is not common to find it in
bacterial membranes. Still, the preparation of POPC/POPG membranes offers two essential advantages.
First, the results can be easily compared with similar settings in the scientific literature. This kind of
vesicle is prepared in a standard and easy way due to low phase transition temperature of the lipids.
Second, it allows for the building of a negatively charged membrane without introducing curvature
stress. The MD trajectories allowed for us to analyse the dynamics of the peptides in the lipid bilayer
and their effects on the lipid molecules. Membrane-active peptides can induce an immediate and
complete release of entrapped solutes from the aqueous interior of lipid vesicles (liposomes) into the
bulk solution by forming membrane pores [26,27]. In the second part of the work, we prepared vesicles
with the same composition (POPC/POPG, 9:1) to assess the amount of membrane perturbation that is
caused by the interaction with the peptides. Two different approaches were used. First, we estimated
the release of entrapped calcein that is induced by the two peptides from giant unilamellar vesicles
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(GUVs). Secondly, we performed measurements of the leakage of entrapped horseradish peroxidase
isoenzyme C enzyme (HRPC) from large unilamellar vesicles (LUVs) after peptide addition.

2. Materials and Methods

2.1. Selection of the Reference Peptide ALY

The database YADAMP was used to select a membrane-interacting peptide [13]. The criteria for
the selection were: (i) a tyrosine in the amino acid sequence; (ii) a sequence length of ≤10 residues; (iii)
a helicity value higher than 4.5; and, (iv) a cell-penetrating potential value higher than 0.5.

The helicity value is estimated on a scale range between 0 and 9, whereby the value 9 corresponds
to the highest probability of α-helix secondary structure formation [28]. The cell-penetrating value is
estimated on a scale range between 0 and 1, whereby 1 corresponds to the highest probability of a
peptide in order to penetrate a membrane and 0 indicates the impossibility to enter a membrane [29].

We selected the peptide ALYLAIRKR (H-Ala-Leu-Tyr-Leu-Ala-Ile-Arg-Lys-Arg-NH2) [12]. The
peptide is abbreviated as ALY, whereas the modified peptide was named azoALY.

2.2. Molecular Dynamics (MD) Simulations

The three-dimensional structures of the peptides were built by MD simulations. In MD simulations,
Newton’s equations of motion are solved at each step of the atom movement, which is probably the
most reliable method for investigating protein interactions. MD simulations were performed while
using the script protein_folding_by_MD.js, accessible in the Abalone software 2.1.4.2 Version [30],
setting the AMBER94 force field, the temperature to 350 K, and the implicit water model (continuum
solvent). After force field assigning, we performed structure optimization to avoid overlapping. The
simulation time of 10 ns was enough to reach the native protein conformation. The interactions of
peptides with membranes were evaluated on the model membrane of POPC/POPG. The membrane
was generated while using the web tool CHARMM-GUI Membrane Builder [31] using a relative
composition POPC/POPG of 9 to 1. Each monolayer of the membrane was made of 110 lipids. A
periodic simulation cell (X = 85.58 Å, Y = 100.00 Å, Z = 84.44 Å) was built around the entire complex.
The charges were assigned at physiological conditions (pH 7.4). The MD simulations were performed
using the software YASARA Structure 17.3.30 [32]. We used AMBER14 as a force field with long-ranged
PME potential and a cutoff of 8.0 Å. The simulation box was filled with TIP3P water, choosing a density
of 0.997 g/mL. The system was neutralized with NaCl at a concentration of 0.9%. The membranes were
equilibrated during 200 ps. After equilibration, both peptides ALY and azoALY were embedded in
the membrane, placing the transmembrane regions of the peptides perpendicular to the membrane.
Short energy minimization was performed in order to optimize the membrane geometry and fill
the membrane pores. The simulation was then initiated at 298 K and integration time steps for
intramolecular forces every 1.25 fs. The simulation snapshots were saved at regular time intervals of
100 ps. The total simulation time was 50 ns.

The bilayer thickness is defined as the average distance between the lipid phosphorus atoms of
the opposing leaflets. It was calculated averaging the 50 snapshots of the last 5 ns of simulations. In
addition, in order to provide an overview of the local membrane deformation along with the simulation,
we used MembPlugIn in VMD [33] to interpolate the lipid head’s positions and compute a 2D thickness
map. The fluidity was indirectly measured by calculating the deuterium order parameter (SCD) with
the VMD MembPlugin software version 1.1.

The mass density profile indicates the atom distribution of the membrane component along the
bilayer. This analysis offers useful information regarding the structural changes in membranes [11].
Profiles are determined by dividing the simulation box along the perpendicular to the z-axis (normal
to the bilayer) into several thin portions 1 Å thick, and by finding the mass density of the atoms that
are positioned in each portion [34].
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2.3. Synthesis of Azobenzene-Modified Tyr (azoTyr) and the Peptides ALY and azoALY

All of the reagents and solvents were purchased from Sigma–Aldrich (Milan, Italy) and used
without further purification. The 1H NMR spectra were recorded with a Bruker DRX/400 spectrometer
(Bruker, Billerica, MA, USA). Chemical shifts are reported relative to the residual solvent peak
(dimethylsulfoxide-d6: δ = 2.50 ppm). Mass spectrometry measurements were performed while using
a Q-TOF premier instrument (Waters, Milford, MA, USA) that was equipped with an electrospray ion
source and hybrid quadrupole-time of flight analyser. The mass spectra were acquired in positive ion
mode, in 50% CH3CN solution, over the 200–800 m/z range. Instrument mass calibration was achieved
by a separate injection of 1 mM NaI in 50% CH3CN. The data were processed using MassLynx software
(Waters, Milford, MA, USA).

The azo-amino acid 3-(p-tolyldiazenyl)-N-Fmoc-L-tyrosine was synthesized according to a diazo
coupling reaction, as illustrated in the following Scheme 1:

Scheme 1. Synthetic path of amino acid azoTyr.

0.011 mol of p-toluidine were suspended in a solution containing 19.2 mL of water and 4.8 mL of
HCl 37% (w/w). The solution was cooled at 0–5 ◦C and a solution of 0.85 g of sodium nitrite (0.012 mol)
dissolved in 2.4 mL of water was added dropwise, obtaining a suspension of the diazonium salt
(suspension A). Separately, a solution containing 0.018 g of NaOH and 0.068 g of NaHCO3 in 20 mL of
water with 2.00 g of Fmoc-L-tyrosine (0.00496 mol) was prepared (solution B). Suspension A was added
dropwise to solution B, under stirring at 15 ◦C, adjusting the pH at 9–10, with the addition of NaOH, if
necessary. The system was left reacting for 20 min. A reddish precipitate of the azo compound formed.
The crude precipitate was filtered, dried under vacuum, and then crystallized from chloroform. The
product was recovered as a dark red microcrystalline powder, with a final yield of 85%. 1H NMR
(DMSO-d6): (δ, ppm) = 11.25 (s, OH); 7.87 (d, 2H); 7.80 (d, 2H); 7.63 (dd, 2H); 7.60 (d, 2H); 7.38 (m, 1H);
7.34 (m, 2H); 7.28 (m, 2H); 7.19 (d, 1H); 6.89 (d, 1H); 4.34 (m, 1H); 4.18 (m, 2H); 3.10, 2.98 (m, 2H); and,
2.40 (s, 3H). HRMS (ESI): m/z: 522.20 [M+H+].

Peptides ALY (ALYLAIRKR; Mw = 1103.361 g mol−1) and azoALY (ALXLAIRKR;
Mw = 1221.497 g mol−1) were synthesized by Zhejiang Ontores Biotechnologies Co., Ltd (Shanghai,
China). Purity for ALY peptide was 96.44% and for azoALY peptide was 96.27%.

A stock solution of ALY was prepared by dissolving a few μg of the peptide in 1 mL of MilliporeQ
water. The exact peptide concentration was calculated from the absorbance at 275 nm while using
ε275 = 1400 M−1 cm−1 for the single tyrosine chromophore [35,36]. The solution was filtered through a
0.22 μm pore size syringe filter.

Similarly, a stock solution of azoALY was prepared and the concentration was calculated from the
absorbance at 334 nm using ε334 = 36805 M−1 cm−1 for the single modified tyrosine amino acid. The
molar extinction coefficient was determined by measuring the UV-Vis spectrum of a solution of azoTyr
at a determined concentration. The solution was filtered through a 0.22 μm pore size syringe filter.
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2.4. Permeability Tests with POPC/POPG (9:1) Vesicles

2.4.1. Materials

POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-
glycero-3-phospho-(1′-rac-glycerol) (sodium salt)) (≥99%) were from Sigma–Aldrich Chemie GmbH
(Buchs, Switzerland). The membrane indocarbocyanine dye DiI and phosphate-buffered saline (PBS,
pH = 7.2) were obtained from Invitrogen Thermo Fisher Scientific (Thermo-Fisher, Waltham, MA,
USA)). Calcein was purchased from Fisher Scientific AG (Wohlen, Switzerland). HRPC (Horseradish
peroxidase isoenzyme C, EC 1.11.1.7, RZ A403/A280 > 3.1) was from Toyobo Enzymes (Osaka, Japan).
The diammonium salt of ABTS2− (2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate)) and Triton X-100
were purchased from Sigma–Aldrich Chemie GmbH (Buchs, Switzerland). Hydrogen peroxide (H2O2,
30%) was from Acros Organics Fisher Scientific AG (Wohlen, Switzerland), 4-morpholineethanesulfonic
acid (MES ≥ 99%) was purchased from Fluka Fisher Scientific AG (Reinach, Switzerland). Sepharose 4B
and chloroform (stabilized with ethanol, 99.8%) were purchased from Sigma–Aldrich Chemie GmbH
(Buchs, Switzerland).

2.4.2. Calcein Release Test with Giant Unilamellar Vesicles (GUVs)

Wide-field microscopy was performed with an inverted microscope (IX70, Olympus America,
Melville, NY, USA) equipped with a mercury lamp and a 40×/0.65 NA air objective lens. The images
were recorded with an EMCCD camera (iXon DV887, Andor Technology, South Windsor, CT)). The
fluorescence intensity of the calcein within three separate vesicles was monitored while using a confocal
laser-scanning microscope (Axiovert 200 M, Zeiss, Oberkochen, Germany), and an appropriate optical
filter sets for DiI and calcein. The GUVs were prepared by electroformation following the procedure
that was originally described by Angelova et al. [37], but conducted in a modified chamber [38]. Briefly,
the setup used for the preparation of the vesicles consisted of two conductive indium tin oxide (ITO)
coated glasses separated by a 1.5 mm thick silicone rubber spacer to maximize the yield of vesicles.
POPC/POPG lipids (9:1 mol/mol) were dissolved in chloroform/methanol (9:1 v/v) at a concentration of
1 mM. The orange-red fluorescent dye DiI was added at a concentration of 1 μM. A drop of 2.5 μL
of the mixture was deposited on one of the conductively coated glasses, and this was repeated in
12 locations. The lipid film was then dried under vacuum overnight and hydrated with MilliQ water
containing 10 μM calcein. The chambers were sealed by a second ITO slide and held at 60 ◦C within a
custom-built heating device. GUVs were formed by applying 0.7 V at a frequency of 10 Hz for 4 h
while using a function generator. After applying 1 V at 4 Hz for 30 min. to detach the vesicles from the
surface, harvesting was achieved by careful pipetting. GUVs were stored at room temperature and
used within 48 h. For the analysis of calcein release from the GUVs, we used a microfluidic platform
that was able to trap single GUVs in an array of chambers [39] (see Figure S1 in Supp. Mat.). By
exchanging the solution inside the chip and subsequently opening the valves, it is possible to perform
fast kinetic studies from the seconds to minutes timescale. GUVs containing fluorescent calcein were
trapped in order to investigate the membrane perturbation and subsequent leakage of calcein across
the membrane. Because of the hydrophilic nature of calcein, it does not permeate the membrane and
remains encapsulated. Once trapped, the GUVs remain stable for long times (at least 12 h), and no
significant deformation or rupture of the vesicles was observed. The solution was then exchanged with
MilliQ water while using a syringe-pump (neMESYS, Cetoni, Germany) until only calcein fluorescence
inside GUV was visible and no more calcein was detected in the surrounding solution (See Figure
S2 in Supp. Mat.). The same pump was used to exchange the aqueous solution outside the donuts
with an aqueous solution of the peptide, with a total flow rate of 5 μL min−1. The release measured
in the absence of the peptide was used as the control, and the amount of calcein within the GUV
remained constant, indicating that photobleaching did not occur. The error bars were calculated from
the standard error, estimated by population standard deviation divided by the square root of the
sample number. The number of individual experiments at a given peptide concentration was n = 3.
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2.4.3. Enzymatic Permeability Assay with Large Unilamellar Vesicles (LUVs)

LUVs that were composed of POPC/POPG (9:1 mol/mol) and loaded with HRPC were prepared by
lipid film hydration, followed by mechanical extrusion using for final extrusions 200 nm polycarbonate
membranes, in a similar way described before for POPC vesicles containing HRPC [40]. Weighted
amounts of lipids (20 mM) were first dissolved in chloroform that was stabilized with ethanol and then
mixed in a 100 mL round bottom flask. The solvent was removed by rotatory evaporation at 35 ◦C and
dried in high vacuum overnight. The obtained thin lipid film was hydrated with 3.5 mL of 20 μM
HRPC solution in 10 mM (MES) buffer (pH = 5.0) at room temperature. The hydration was made by
gentle agitation of the flask to exclude enzyme denaturation. Ten freezing-thawing cycles were carried
out in order to homogenize and equilibrate the enzyme-containing multilamellar vesicles suspension
(MLV), cooling the flask in liquid nitrogen for 20 seconds followed by placing the flask in a warm
(50 ◦C) water bath for 30 seconds. The MLV suspension was first extruded 10 times through track-etch
polycarbonate membranes with cylindrical pores of 400 nm size under moderate pressure (three-bar) at
room temperature, followed by extrusion with a 200 nm membrane increasing the pressure to five-bar
at the same temperature conditions. The non-entrapped enzyme molecules were separated from the
enzyme-containing vesicles by size-exclusion chromatography by using a 2 × 20 cm glass column that
was filled with Sepharose 4B equilibrated with MES buffer (pH = 5), the flow rate of 0.5 mL/min.

We performed turbidity measurements of each eluted fraction to select the most concentrated
fraction of HRPC-containing vesicles with the lowest amount of free enzyme (pI (HRPC) ≈ 10) possibly
bound to the outer membrane of the anionic vesicles (see Figure S3 in Supp. Mat. for details). The
fraction with the highest optical density at 403 nm was used in order to establish the release of HRPC
from enzyme containing POPC/POPG vesicles.

The activity of HRPC was measured with ABTS2−. ABTS2− is frequently used as a sensitive
chromogenic substrate for the quantification of horseradish peroxidase [40,41]. ABTS2− has an
absorption maximum at 340 nm. Depending on the experimental conditions, HRPC catalyses the
oxidation of ABTS2− forming a stable nitrogen-centered radical cation, so that the obtained product is
overall negatively charged, ABTS•−. ABTS•− has an absorption maximum at 414 nm and three other
bands centered around 650, 735, and 814 nm. Therefore, UV/Vis-spectroscopy is most convenient for
determining the catalytic activity of HRPC by following the rate of reaction product formation [42,43].
The rate of ABTS•− formation (monitored at λmax = 414 nm) during the first 5 min. of the reaction was
followed spectrophotometrically and found to linearly depend on the HRPC concentration between
50 and 350 pM under the conditions used (see the curve in Figure S4, Supp. Mat.). The following
reaction conditions for the spectrophotometric quantification of the HRPC activity were found to be
appropriate: [ABTS2−]0 = 0.25 mM, [peptide] = 4 μM, [H2O2]0 = 80 μM, 100 μL of pooled fraction
diluted at 25 ◦C in MES buffer pH 5, for a total assay volume of 1 mL and reaction time of 5 min. The
activity measurements were carried out, as follows: buffer to reach the assay volume of 1 mL, ABTS2−
(final concentration of 0.25 mM), and HRPC stock solution was mixed in a reaction tube. Immediately
before the spectrophotometric analysis, H2O2 was added (final concentration of 80 μM). The mixture
was transferred into a polystyrene cuvette (path length = 1 cm) and the development of the absorption
spectrum of the reaction mixture was monitored as a function of time (see Figure S4 in Supp. Mat.)
while using a diode array spectrophotometer (Specord 5600 Analytik Jena, Jena Germany). The spectra
were recorded every 10 sec immediately after the initiation of the reaction (up to 5 min.). All of the
measurements were carried out three times. Triton X-100 was used as the control. For the control assay,
we used [ABTS2−]0 = 0.25 mM, [H2O2]0 = 80 μM, 100 μL of pooled fraction 100× diluted and 20 μL 5%
v/v Triton X-100 at 25 ◦C in MES buffer, pH 5. Because of the delay of inactivation in the course of
substrate reaction [44], we built a calibration curve in the presence of Triton X-100 (see Figure S5 in
Supp. Mat.). For the assay, we used a surfactant concentration of 0.1% in the assay mixture containing
HRPC and ABTS2− solutions. After 5 min. from Triton X-100 addition, the reaction was started adding
hydrogen peroxide, and the enzymatic reaction was followed by UV/Vis spectrophotometry.
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3. Results and Discussion

3.1. Peptide Localization within Lipid Bilayers: a MD Simulation Analysis

In this study, we analysed two peptides, a natural peptide, named ALY, and a modified peptide,
azoALY. They both have a short sequence of nine amino acids that fold into an alpha helix structure.
The azo amino acid slightly deforms the helix structure adopted by azoALY. In the MD simulations, the
hydrophobic regions of the peptides ALY and azoALY were embedded perpendicularly to the membrane
bilayer of POPC/POPG (9:1) at the starting point. We used an online tool to predict the position
of membrane proteins (https://opm.phar.umich.edu). The model suggested the insertion for both
peptides in membrane with a tilt angle of 48◦ and with the hydrophobic portion (Ala-Leu-Tyr-Leu-Ala)
immersed in the core membrane. The charged portion of the peptide (Arg-Lys-Arg) is external to the
membrane for both peptides (see Figure S6 in Supp. Mat.). After the first 200 ps of the simulation, the
ALY peptide comes out of the bilayer and it is located between the head groups and the water phase in
the outer part of the membrane. In contrast, the azoALY peptide is anchored to the membrane for the
whole simulation time (see Figure S6 in Supp. Mat.). The density profile indicates the position of the
different atoms of the system along the normal phospholipid bilayer in the last 5 ns of a simulation of
50 ns. In Figures 1 and 2, the density profiles of ALY and azoALY (normalized to 1 by water mass) in
the POPC/POPG membrane is reported. The cyan line represents the water continuum; it is outside
the bilayer, ensuring membrane hardness. The phosphorus and nitrogen atoms (continuous blue and
dashed blue line. respectively) represent the head group of the phospholipids; the dashed black line
indicates the carbon chains of the phospholipid, while the black line represents the terminal carbons.
After a simulation time of 45 ns, the ALY peptide (red line in Figure 1) is placed below the phosphorus
atoms between the head group and the water phase, as seen in Figure 1. In contrast, the peptide
azoALY (red line in Figure 2) is anchored to the core membrane for the same simulation time (from 45
to 50 ns).

Figure 1. Density profile of the system ALY-POPC/POPG (9:1) after 45 ns of molecular dynamic (MD)
simulation. Cyan line: water molecules; blue line: phosphorous atoms; dashed blue line: nitrogen
atoms; dashed black line: carbon chains of the phospholipid, black line: terminal carbons of the
phospholipid; red line ALY peptide.
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Figure 2. Density profile of the system azoALY-POPC/POPG (9:1) after 45 ns of MD simulation. Cyan
line: water molecules; blue line: phosphorous atoms; dashed blue line: nitrogen atoms; dashed black
line: carbon chains of the phospholipid, black line: terminal carbons of the phospholipid; red line
azoALY peptide.

For both peptides, the membrane thickness of the peptide/membrane systems was measured
in order to estimate the perturbation of the membrane packing induced by the peptide, when only
considering the lipids surrounding the peptide with a distance of 4 Å. The membrane thickness was
measured as the average distance between the center of mass of the phosphate atoms of the inner layer
and the outer layer. The thickness of the pure POPC/POPG bilayer did not change during the 50 ns
simulation, suggesting that the system was equilibrated with an initial value of 38.5 ± 0.3 Å. In the
presence of the two peptides, in the last 5 ns of the simulations, the membranes thickness values were
38.7 ± 0.3 Å with ALY and 36.4 ± 0.5 with azoALY. The modified peptide causes a reduction of the
membrane thickness. This different perturbation is due to different peptide-membrane interactions.
The peptide ALY is placed between the water molecules and head groups, and it does not cause
perturbation of the membrane packing. On the other hand, azoALY is anchored to the membrane core,
which affects the invagination of the lipid surrounding and produces a significant reduction of the
membrane thickness.

From Figure 2, in fact, the peptide azoALY (red line) is in the same position as the terminal
carbon atoms of the lipid tails. This simulation suggests that the peptide is anchored to the core of the
membrane in the last 5 ns of the simulation time. The azo group has a significant influence on the
peptide-membrane interaction: due to its rigid and planar structure, the azo amino acid permeates
the membrane, causing disorder in the lipid leaflet. We performed a deuterium order parameter
(SCD) analysis. SCD studies provide comprehensive information on membrane fluidity of lipophilic
phospholipid chains near peptide molecules to assess whether the modified peptide causes a change in
membrane fluidity. The analysis, performed on the surrounding lipids with a distance of 5 Å from
the peptides, confirmed a different behavior of the two peptides. azoALY increases the mobility in
the lipid head more than peptide ALY. The results are shown in Figure S7 in the Supplementary
Materials section.

The thickness maps in Figure 3 show the local membrane deformation along with the simulation.
The ALY peptide has a minimal effect on membrane thickness with a constant fluctuation of lipids
around a value of 38 Å (Figure 3a). The azo-modified peptide causes the invagination of the membrane,
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reducing the thickness of the surrounding lipids that are represented by the blue hole in top leaflet of
the membrane (Figure 3b).

Figure 3. Thickness maps of POPC/POPG/ALY (a) and POPC/POPG/azoALY (b) during the last 5 ns of
the MD simulation (total time 50 ns). The top panel is the deformation profile as a color map projected
onto the surface defined by fitting a grid (spacing 2 Å) to the positions of the phosphate atoms in the
top leaflet during the trajectory, followed by time averaging and spatial smoothing.

3.2. Experimental Membrane Permeability Measurements

3.2.1. Calcein Leakage from GUVs

The membrane perturbing effects of the modified peptide azoALY were also investigated while
using calcein leakage experiments in a suspension of giant unilamellar vesicles (GUVs) formed by
POPC/POPG (9:1, mol/mol). In this assay, a fluorescent probe (calcein) was employed, and its release
from the GUVs was followed by measuring its fluorescence intensity inside the vesicles. Excessive
leakage upon adding peptides or other compounds to the GUVs indicates instability in the structure of
the vesicle membrane (alteration of the packing of the lipids). This, in turn, suggests that the peptide
added to the GUVs strongly interacts with the lipid membrane. GUVs represent an excellent model
representing the lipid membrane of biological cell membranes and they have become an essential tool
in biophysical research [45,46]. The experiments were carried out using two different concentrations
of peptides: 1 μM and 50 μM of ALY and azoALY. Figure 4 shows a representative confocal image
series after the addition of 50 μM azoALY, where calcein diffuses out of the GUVs via a decrease in
fluorescence intensity.

 

Figure 4. Confocal fluorescence images of calcein leakage from an exemplary POPC/POPG (9:1) GUV
with azoALY added externally (50 μM at time 0 min. A single GUV was held in one spatial location
using a microfluidic platform; for details, see reference [39]. Scale bar: 5 μm.

After 15 min. of incubation with the peptides, the GUVs preserved their membrane structure (i.e.,
no visible defects), so we exclude the destruction of the membrane or micron-sized pore formation.
However, a considerable amount of calcein remained entrapped inside the vesicles after 15 min. under
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the used conditions. The analysed GUVs were selected to have the same diameter of approximately 12
μm to maintain the same surface area for comparable results. The mean pixel intensities within each
GUV were normalized and plotted against time (Figure 5).

Figure 5. Kinetics of calcein release from POPC/POPG (9:1) GUVs for externally added ALY or azoALY
(1 and 50 μM) using 3 separate vesicles. Control measurements without the addition of peptide showed
no calcein release (data not shown).

At low concentrations of ALY peptide (1 μM), during the first 15 min. of exposure, the calcein
fluorescence undergoes a decrease of 17%. Nevertheless, while using the same concentration of the
modified azoALY peptide, a decrease of 31% in intensity was observed at the same time. In contrast,
when high concentrations of peptides were used (50 μM), it was possible to observe that the percentage
of calcein release is similar for both of the peptides. In that case, the addition of azoALY resulted in
a faster calcein release than the reference peptide ALY. In fact, during the first three minutes of the
experiment, 25% of calcein leakage was observed, though, after 15 min., both of the peptides reached
the same calcein leakage.

3.2.2. Permeabilization of LUVs

We performed an enzymatic assay for detecting possible changes in the permeability of LUVs to
further evaluate the membrane permeability increase upon peptide addition to the calcein-containing
GUVs. For this purpose, LUVs containing entrapped horseradish peroxidase isoenzyme C (HRPC)
were prepared. Afterward, the chromogenic substrate ABTS2− and hydrogen peroxide (H2O2) were
added to the enzyme-containing vesicles. An unperturbed phospholipid membrane is impermeable
for HRPC and ABTS2−. The HRPC molecules cannot cross the membrane due to their large size, and
ABTS2− molecules cannot move from the external bulk solution into the interior of the vesicles due to
their negative charge. On the contrary, H2O2, being small and uncharged, can easily permeate across
fluid phospholipid bilayers [47]. The release of HRPC from the LUVs and/or the uptake of ABTS2− by
the LUVs after peptide addition can be conveniently monitored by UV-vis spectrophotometry as the
HRPC-catalysed oxidation of ABTS2− to ABTS•− results in increased absorbance (see Figure 6 for a
schematic representation of the permeability assay).
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HRPC was entrapped in LUVs with a diameter of about 200 nm. We used the same formulation
for the vesicles, as in the case of the experiments with GUVs, i.e., POPC/POPG (9:1). The amount of
entrapped HRPC was quantified by measuring the HRPC activity after adding Triton X-100 (0.1 vol%)
that causes immediate vesicles destruction and the release of the entrapped enzyme into the assay
solution (dilution factor 2000×). The increase of membrane permeability (without added Triton X-100,
but with added peptides) was estimated by measuring the enzyme activity with ABTS2− and H2O2 as
HRPC substrates, monitoring the formation of ABTS•−.

Figure 6. Horseradish peroxidase isoenzyme C enzyme (HRPC) enzyme leakage from large unilamellar
vesicles (LUVs), measured with H2O2 and ABTS2−, the latter being membrane impermeable.

We analysed the interactions of ALY and azoALY with POPC/POPG (9:1) LUVs containing
entrapped HRPC (dilution factor 100×). We used as blank the system POPC/POPG (9:1) LUVs with
entrapped HRPC, without peptides (dilution factor 100×), in order to exclude the presence of enzyme
molecules bound to the outer membrane surface of the vesicles. Measurements were performed after
different incubation times (0, 5, 10 min.) to estimate a possible time dependence of the interactions and
understand if and how much the azo-amino acid inserted in the amino acidic sequence could affect the
membrane permeability. The preparation of the vesicles with entrapped enzyme was repeated three
times and, for each mixture, we evaluated the membrane perturbation due to the action of ALY and
azoALY. In all cases, we obtained analogous enzyme leakage. Therefore, we excluded the possibility of
false-positive results by the oxidation of the phenol moiety (in tyrosine) and azo-group in the peptides.
Moreover, we excluded a possible shift of the characteristic peaks of the oxidized ABTS2− form (414 nm,
650, 735, and 814 nm) due to the presence of peptides. We also checked if a mixture of “empty” vesicles
and peptide influences the enzymatic reaction and we exclude enzyme inhibition by the assay mixture.

Linear regression of ABTS•− absorbance at λmax = 414 nm as a function of reaction time allowed
for the determination of the HRPC activity, read as the slope of the linear fit (dA414nm/dt), see Figure 7.

The enzymatic activity for the blank was very low, and the corresponding HRPC concentration
in the assay solution was lower than 50 pM (for the calibration curve see Figure S5 in Supp. Mat.).
Besides, the activity for this system was not time-dependent: the slope value did not change for the
three different incubation times. This means that the amount of HRPC that was possibly bound to the
outer membrane was quite low; additionally, there was no leakage of the enzyme or uptake of the
substrate. Vice versa, a significant increase in enzyme activity was observed after 5 min. of incubation in
enzyme-containing vesicles plus the surfactant Triton X-100 (0.1%). Analysing the calibration curve in
the presence of Triton X-100 (see Figure S5 in Supp. Mat.), the concentration of the entrapped enzyme
was estimated to be around 400 nM (when considering a dilution factor 2000×). The ALY peptide
produced a small increase in enzyme activity. At the beginning (incubation 0 min.), the effect on the
membrane permeability was comparable to the blank. After 10 minutes of incubation, we recorded
an enzymatic activity corresponding to an enzyme concentration lower than 5 nM (dilution factor
100×). The situation was completely different while using the modified peptide azoALY: an immediate
significant increase in HRPC activity was registered, and the activity increase was time dependent.
When considering a dilution factor 100×, the amount of enzyme released for 0 min. of incubation
corresponds to an enzyme concentration of HRPC around 10 nM, for 5 min. was 25 nM and for 10 min.
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was 33 nM. We could estimate an increase of enzyme release or ABTS2− uptake time dependent with
an enzyme concentration in the pooled fraction of 10 nM, 25 nM, and 32.5 nM, respectively.

Figure 7. Enzymatic activity time dependence in four different systems: (grey bar) Blank vesicles
with HRPC entrapped without peptides (dilution factor 100×); (green bar) control vesicles with HRPC
entrapped, adding Triton X-100 (dilution factor 2000×); (yellow bar) vesicles with HRPC entrapped,
adding a solution of ALY at 4 μM (dilution factor 100×); and (blue bar) vesicles with HRPC entrapped,
adding a solution of azoALY at 4 μM (dilution factor 100×). Each data point shown is the average from
three measurements and the small standard deviation is indicated with a bar.

The HRPC/LUV experiments indicate a time-dependent increased membrane permeability upon
the addition of azoALY. However, it remains to be clarified whether the higher enzymatic activity is
ascribed to ABTS2− uptake or HRPC release from the vesicles.

4. Conclusions

The combined use of MD simulations, together with experimental tests, allowed for us to investigate
the interaction of a natural peptide and its azobenzene modified analog with artificial membrane
models. We have designed a novel peptide (azoALY) by modifying a natural membrane-active peptide
(ALY) with a tyrosine containing an azo-group in the side chain. Computational and experimental
permeability studies with model membrane systems (vesicles of POPC and POPG at a molar ration of
9:1) suggest that the insertion of the modified tyrosine residue in the peptide sequence increases the
peptide affinity to the vesicle membrane. A different membrane permeability for ALY and azoALY
was observed in experimental membrane permeability assays while using GUVs and LUVs: increased
calcein release form GUVs and increased HRPC leakage from the LUVs or increased ABTS2− uptake
by the LUVs. The MD simulations on model membranes support these results. The all-atom molecular
dynamics showed a higher membrane perturbation by the modified peptide (azoALY) than the
unmodified peptide (ALY) under the same conditions. The azoALY peptide penetrates the hydrophobic
core of the bilayers, while the ALY structure only interacts with the lipid headgroups, causing a lower
extent of membrane alteration. As a more general consideration, our investigations showed that the
results obtained from physical-chemical in vitro investigations with simple membrane model systems
might not directly correlate with the in vivo behavior of biological membranes of living cells. The
vesicle and the bacterial membrane compositions were very different, and the actual concentrations in
terms of peptides and membrane components were difficult to compare. Similar conclusions were
drawn before from other studies [48,49].
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Still, based on the obtained results, the presence of a modified amino acid residue appears to
be essential in determining the perturbation effect of the azobenzene peptide membrane. Under
such conditions, modified peptides could increase peptide-membrane interaction and complete their
biological task (for example, antimicrobial agents). The novel semi-synthetic peptide could act as a
prodrug, generating in vivo the antimicrobial azo compound. The preliminary results of membrane
permeability underlined a higher membrane perturbation with time-dependence leakage from lipid
vesicles after interaction with modified peptide as compared to the unmodified peptide under the
same conditions. In conclusion, we evidenced a different behavior of the natural and the azo-modified
peptide, and we suggested the use of azo-modified amino acid moieties to increase the membrane
modification. Although only one peptide pair and one membrane model were studied, the different
effects on membrane perturbation suggest that these effects are potentially of broader significance.
Additional work is needed in order to clarify the possible generalization of the results that were
observed in this study.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/10/10/294/s1.
Figure S1. Scheme showing a trapped GUV isolated by a donut valve; Figure S2. Wide-field fluorescence image of
a single GUV trapped hydrodynamically by the posts; Figure S3. OD403 originating from light scattering (turbidity)
of the vesicles present in the fractions eluting up to an elution volume of about 12 mL, and HRPC activity of the
different fractions, measured with ABTS2−/H2O2 as substrates. Figure S4. Changes of the absorption spectrum of
the reaction solution as a function of reaction time; Figure S5. HRPC concentration dependency of the absorbance
of the reaction solution at 414 nm; Figure S6. Snapshot of the starting configuration of both peptide/POPC-POPG
systems and the last frame at 50 ns of simulation time. Figure S7. Order parameter SCD for (a) the unsaturated
oleic and (b) the saturated palmitoyl acyl chains of phospholipids in POPC/POPG/peptide.
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Abstract: The Ras family of proteins is tethered to the inner leaflet of the cell membranes which plays
an essential role in signal transduction pathways that promote cellular proliferation, survival, growth,
and differentiation. KRas-4B, the most mutated Ras isoform in different cancers, has been under
extensive study for more than two decades. Here we have focused our interest on the influence of
cholesterol on the orientations that KRas-4B adopts with respect to the plane of the anionic model
membranes. How cholesterol in the bilayer might modulate preferences for specific orientation
states is far from clear. Herein, after analyzing data from in total 4000 ns-long molecular dynamics
(MD) simulations for four KRas-4B systems, properties such as the area per lipid and thickness of
the membrane as well as selected radial distribution functions, penetration of different moieties
of KRas-4B, and internal conformational fluctuations of flexible moieties in KRas-4B have been
calculated. It has been shown that high cholesterol content in the plasma membrane (PM) favors
one orientation state (OS1), exposing the effector-binding loop for signal transduction in the cell
from the atomic level. We confirm that high cholesterol in the PM helps KRas-4B mutant stay in
its constitutively active state, which suggests that high cholesterol intake can increase mortality
and may promote cancer progression for cancer patients. We propose that during the treatment of
KRas-4B-related cancers, reducing the cholesterol level in the PM and sustaining cancer progression
by controlling the plasma cholesterol intake might be taken into account in anti-cancer therapies.

Keywords: KRas-4B; mutation; post-translational modification; HVR; anionic plasma membrane;
signaling; cholesterol

1. Introduction

The cell membrane plays an important role in controlling the passing of nutrients, wastes,
drugs, and heat between the inner and outer parts of a cell. The principal components of human
cellular membranes are phospholipids, cholesterol, and proteins, etc. Moreover, the concentration
of each constituent differs for different types of cells. Phospholipids provide the framework to
biomembranes and they consist of two leaflets of amphiphilic lipids with a hydrophilic head
and one or two hydrophobic tails which self-assemble due to the hydrophobic effect [1,2].
For instance, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) belongs to the unsaturated
phospholipids which is a typical constituent of real biological membranes. Furthermore,
1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) is the most common anionic lipid in the plasma
membrane (PM) of mammalian cells, which is preferentially targeted by the PM intracellular surface
protein KRas-4B [3] for signal transduction.

PM systems have been extensively studied over several decades [4–8] on their association with
proteins. Recent studies have shown that the role of proteins and their interactions with components of
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PM is extremely important to understand the mechanisms of protein anchoring into the membrane that
can lead to oncogenesis [9]. GTPases are a large family of hydrolase enzymes that bind to the nucleotide
guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). GDP/GTP cycling
is controlled by two main classes of regulatory proteins. Guanine-nucleotide-exchange factors
(GEFs) promote the formation of the active, GTP-bound form, while GTPase-activating proteins
(GAPs) inactivate Ras by enhancing the intrinsic GTPase activity to promote the formation of the
inactive GDP-bound form [10–12]. Ras proteins are small molecular weight GTPases and function as
GDP/GTP-regulated molecular switches controlling pathways involved in critical cellular functions,
like cell proliferation, signaling, cell growth, and anti-apoptosis pathways [13]. The three Ras genes give
rise to three base protein sequences: KRas, HRas, and NRas. Over 30% of cancers are driven by mutant
Ras proteins, thereinto, one method called catalog of somatic mutations in cancer (COSMIC) [14]
confirms that HRas (3%) are the least frequently mutated Ras isoforms in human cancers, where KRas
(86%) are the predominantly mutated isoforms followed by NRas (11%) [15].

KRas can be found as two splice variants designated KRas-4A and KRas-4B. They both have
polybasic sequences that facilitate membrane-association in acidic membrane regions [16], however,
for KRas-4A, it is covalently modified by a single palmitic acid. KRas-4B is distinguished from KRas-4A
isoform in the residue 181 that serves as a phosphorylation site within its flexible hypervariable region
(HVR, residues 167–185) that contains the farnesyl group (FAR) serving as the lipid anchor. The HVR
of KRas-4B contains multiple amino-acid lysines that act as an electrostatic farnesylated switch which
guarantees KRas-4B’s association with the negatively charged phospholipids in the inner PM leaflet.
It has been reported that the KRas-4B activation level in diseased cells is linked to phosphatidylserine
contents [17]. Anionic lipids could influence the membrane potential which in turn regulates the
orientation, location, and signaling ability of KRas-4B [18,19].

The catalytic domain (CD, residues 1–166), which contains the catalytic lobe (lobe 1, residues 1–86)
and the allosteric lobe (lobe 2, residues 87–166), highly homologous, conserved, and the structure is
shared and identical for KRas-4A and KRas-4B. According to P. Prakash et al. [20–22], three distinct
orientation states of the oncogenic G12V-KRas-4B mutant on the membrane have been reported, namely,
OS1, OS2, and OS0. OS1, with an accessible effector-binding loop, and OS2, with the effector-binding
loop occluded by the membrane, has been reported. They differ in the accessibility of functionally
critical switch loops to the downstream effectors, suggesting that membrane reorientation of KRas-4B
on the inner cell leaflet may modulate its signaling [21]. The idea of the more flexible in the structure
of proteins, the larger the number of their populated states have been pointed out [23]. We and other
researchers have recently shown that despite the HVR and FAR anchor, the CD of KRas-4B could
interact with anionic model membranes by forming steady salt bridges and hydrogen bonds to help
organize its orientations in cells [18,24,25].

All Ras proteins’ signaling strongly depends on their correct localization in the cell membrane and
it is essential for activating downstream signaling pathways. KRas-4B function, membrane association
and interaction with other proteins are regulated by post-translational modifications (PTMs) [26–28],
including ubiquitination, acetylation, prenylation, phosphorylation, and carboxymethylation,
see Figure 1. Firstly, the prenylation reaction, catalyzed by cytosolic farnesyltrasferase (FTase) or
geranylgeranyltransferase (GGTase), proceeds through the addition of an isoprenyl group to the
Cys-185 side chain. Then, farnesylated KRas-4B is ready for further processing: hydrolysis, catalyzed
by the endopeptidase enzyme called Ras-converting enzyme 1 (RCE1); during the process, the VIM
motif (HVR tail is composed of three amino acids: valine-isoleucine-methionine) of the C-terminal
Cys-185 is lost in step 2.
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Figure 1. Post-translational modifications (PTMs) steps of KRas-4B: prenylation, hydrolysis,
carboxymethylation and decarboxymethylation.

In step 3, KRas-4B is transferred to the endoplasmic reticulum for carboxymethylation at the
carboxyl terminus of Cys-185 catalyzed by isoprenylcysteine carboxyl methyltransferase (ICMT),
forming a reversible ester bond. The reversible ester bond can go through decarboxymethylation,
catalyzed by prenylated/polyisoprenylated methylated protein methyl esterases (PMPEases) giving
rise to a farnesylated and demethylated KRas-4B (KRas-4B-Far). Carboxymethylation is one of the
best known reversible PTMs in HVR [29]. This reversible reaction can modulate the equilibrium
of methylated/demethylated KRas-4B population (KRas-4B-FMe/KRas-4B-Far) in tumors and
consequently can impact downstream signaling, protein–protein interactions, or protein–lipid
interactions [30]. Another well-known reversible PTM in the HVR is phosphorylation [28,31,32].
There are two sites (Ser-171 and Ser-181) within HVR that could be phosphorylated. Phosphorylation
involves the addition of phosphate (PO3−

4 ) group to the side chain of the amino acid serine, then the
phosphorylated serine is obtained. In this work, we have only applied the phosphorylation at Ser-181
(PHOS) for the oncogenic KRas-4B. Phosphorylation at Ser-181 operates a farnesyl-electrostatic
switch that reduces but does not completely inhibit membrane association and clustering of
KRas-4B, leading to the redistribution of the cytoplasm and endomembranes [27,33,34]. Functionally,
the phosphorylation of KRas-4B can have either a negative [35,36] or positive [34,37] regulatory
effect on tumor cell growth, depending on the conditions [30]. For instance, from a molecular
dynamics (MD) simulation of the HVR peptide with the FAR at Cys-185 of KRas-4B in two types of
model membranes, it has been observed that phosphorylation at Ser-181 prohibits spontaneous FAR
membrane insertion [38]. According to Agell et al., KRas-4B binding with calmodulin leads to different
behaviors: short or prolonged signaling whether KRas-4B is at its phosphorylated state on residue
Ser-181 [34,39]. Moreover, according to Barcelo et al. [37], phosphorylation at Ser-181 of oncogenic
KRas is required for tumor growth. In summary, the phosphorylation of the HVR of KRas-4B can affect
its function, membrane association, and reacting with downstream effectors [30].

Phosphodiest-eraseδ (PDEδ) has been revealed to promote effective KRas-4B signaling by
sequestering KRas-4B-FMe from the cytosol by binding the prenylated HVR and help to enhance its
diffusion to the PM throughout the cell, where it is released to activate various signaling pathways
required for the initiation and maintenance of cancer [40–43], hoping to identify a panel of novel PDEδ

inhibitors. As described in our earlier work [24], despite KRas-4B-Far’s poor affinity for PDEδ [40],
it can still be transferred to the PM through trapping and vesicular transport without the help of
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PDEδ [44]. Moreover, according to Ntai et al., 91% of the mutant KRas-4B and 51% of wild-type
KRas-4B proteins in certain colorectal tumor samples have been found to exist in its KRas-4B-Far form.
While there is a relatively high abundance of KRas-4B-Far (wild-type and mutant) lacking the methyl
group of Cys-185 in tumors, the effects of demethylated KRas-4B-Far on downstream signaling have
yet to be determined [45]. While extensive research has been focused on methylated KRas-4B-FMe,
we believe that demethylated KRas-4B-Far could play a big role in the signaling pathway that happens
on the inner leaflet of the membrane bilayers.

Cholesterol plays an important role in maintaining the structure of different membranes and
regulating their functions [46,47], and cancer development as well [48]. In some types of cells, however,
the distribution of cholesterol is different in the inner and outer leaflets of the membrane, ranging from
0.1% to 50% of total membrane lipids depending on the cell type [49]. The average value of cholesterol
concentration in the PM fell in the range of the reported value of 19–40 % [50–52]. For example, in red
cells, the percentage of cholesterol differs in the outer leaflet (51%) and the inner leaflet (49%) [53].
In other types of cells, cholesterol constitutes about 33.3% of the outer leaflet in healthy colorectal
cells [50]. Previous simulations with percentages of 10%, 20%, and 40% for DPPC lipid bilayers showed
no further relevant physical changes compared to the cholesterol percentages of 0%, 30% and 50%
adopted in our previous work [54].

The fluidity of the membrane is mainly regulated by the amount of cholesterol, in such a way that
membranes with high cholesterol contents are stiffer than those with low amounts but keeping the
appropriate fluidity for allowing normal membrane functions. Extensive research has been done on
the influence of cholesterol on the mechanism of membrane structures [55], the 18-kDa translocator
protein (TSPO) binding in the brain [56], etc. Pancreatic ductal adenocarcinoma (PDAC) is one of the
most lethal cancers with the lowest survival rate (five-year survival of only 8%) among the cancers
reported by the American Cancer Society [57]. There is evidence that shows that high cholesterol
increases PDAC cancer risk. According to Chen et al. [58], a linear dose–response relationship has
attested that the risk of pancreatic cancer rises by 8% with 100 mg/day of cholesterol intake through the
dose-response analysis. In addition, cholesterol does not influence the mortality among patients with
PDAC cancer for both statin users and nonusers measured at different time windows and analyzed as
continuous, dichotomous, and categorical variables [59].

The mechanisms underlying the cholesterol-cancer correlation have not been fully elucidated.
In the present work, we used molecular dynamics (MD) simulations, a very successful tool to describe
a wide variety of molecular setups at the all-atom level, such as complex biological and aqueous
systems [60–62]. We have investigated whether cholesterol in membranes affects the signaling of
Ras proteins by interfering with their orientations when the oncogenic and wild-type KRas binding
with the membrane. Moreover, two percentages of cholesterol (0% and 30%) have been considered.
Gaining a precise understanding of the influence of cholesterol on the reorientation of mutant and
wild-type KRas-4B-Far binding at the anionic model membranes is the goal of the current work.

2. Results and Discussion

2.1. Area Per Lipid

Area per lipid is often used as the key parameter when assessing the validity of MD simulations
of cell membranes. It has been proposed that a good test for such validation is the comparison of the
area per lipid and thickness of the membrane with experimental data obtained from scattering density
profiles [63]. The area per lipid and thickness along the simulation time of the last 500 ns have been
computed (see Figure A1 of Appendix A.1) and the average values are reported in Table 1.
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Table 1. The average area per lipid (A) and thickness (Δz) of the anionic membrane for four KRas-4B-Far
systems studied in this work. The thickness of the membrane Δz by computing the mean distance
between phosphorus atoms of DOPC head groups from both leaflets. Estimated errors in parenthesis.

System A (nm2) Δz (nm)

wt. chol.-0% 0.679 (0.008) 3.84 (0.04)
wt. chol.-30% [24] 0.523 (0.007) 4.35 (0.05)

onc. chol.-0% 0.679 (0.008) 3.89 (0.04)
onc. chol.-30% [24] 0.525 (0.006) 4.23 (0.04)

The experimental value of 0.71 nm2 for area per lipid of DOPC/DOPS (4:1) at 297 K was
reported in Ref. [64] and the experimental value of thickness to be of 3.94 nm at 303 K was reported
by Novakova et al. [65]. As temperature increases, atoms in the lipid structure oscillate more
perpendicularly to their bonds. So, increasing the temperature of the system leads to an increased area
per lipid of certain phosphatidylcholine lipids, as was observed for temperatures below 420 K [66].
It was previously reported that KRas-4B can interact with head groups of DOPC and DOPS lipid
molecules through long-lived salt bridges and hydrogen bonds [24]. Accordingly, when the system
temperature rises, for the same model membrane, its thickness decreases. Our results of the area
per lipid (0.03 nm2) and thickness (∼0.1 nm) are smaller than the experiment values for pure lipid
systems. The main reason is the contribution of the joint effect of raising the system temperature and
the appearance of KRas-4B-Far, showing a slight condensing effect on the membrane. According to
earlier research [67], in the case of relatively high cholesterol concentration, 10 ∼ 20% smaller area
per lipid will be considered to be reasonable and close to equilibrium ones. From another work [68],
compared to pure DMPC bilayer, the area per lipid of DMPC with cholesterol (30%) has been decreased
by 32% from 0.62 to 0.42 nm2. In the regime with chol. ≤ 30%, the area per lipid has been reported to
decrease sharply as cholesterol is added into the system [69]. In Table 1, the area per lipid for high
cholesterol cases (chol.-30%) has been decreased by 23% when compared with the cholesterol-free cases
(chol.-0%). The results make much sense when compared with the experimental values confirming
cholesterol’s condensation effect on DOPC/DOPS membrane bilayers. The results of the area per lipid
and thickness of membrane bilayers we have investigated are in good agreement with experimental
values. Hence, the validity of MD simulations reported here, regarding the structural characteristics of
the membrane, has been established.

2.2. Preferential Localization of Kras-4b-Far on Membranes

Ras proteins are activated following an incoming signal from their upstream regulators and
interact with their downstream effectors only when they are anchored into the membrane and being at
the GTP-bound state. Tracking the movement of the FAR of KRas-4B-Far and GTP along the membrane
normal could give us direct information on how the KRas-4B proteins and GTP molecule regulate each
other. We report in Figure 2, the Z-axis positions of the centers of FAR and GTP from the center of
lipids (i.e., Z = 0) using the second half of 1000 ns simulation for all cases.

As is described in Ref. [24], the FAR of the wild-type KRas-4B-Far is revealed to be able to anchor
into and depart from the membrane without difficulty in the chol.-30% case when GTP favors bind
with the interface of the membrane through salt bridges and hydrogen bonds, located at around
2.39 nm from the membrane center. The FAR can have two preferred localisations: (1) 3.90 nm when
FAR wanders in the water region, and (2) 1.73 nm when FAR anchors inside of the PM. However,
in the chol.-free case, the FAR of the wild-type KRas-4B-Far is found to be anchoring constantly into
the anionic membrane for the entire duration of the simulations. FAR keeps locating around 1.30 nm,
while GTP keeps binding to the CD, staying around 4.38 nm.
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Figure 2. The localizations of the farnesyl group (FAR) and GTP of four KRas-4B systems studied in
this work with respect to the center of the membrane along with the membrane normal as a function of
simulation time. Geometric centers of the FAR, GTP, and phosphorus atoms of DOPC lipids from both
leaflets are indicated as triangle up in violet and circle in turquoise, respectively. Data for chol.-30%
shown here are adopted from our previous work [24] for the convenience of the audience. The average
values of the FAR and GTP are indicated in dashed lines.

For the mutant KRas-4B-Far, when diffusing in the DOPC/DOPS (4:1) bilayer, GTP tends to
wander around 2.78 nm away from the membrane center along with the membrane normal direction.
When 30% of cholesterol was considered, GTP favors binding with the CD instead of wandering near
the interface region of the membrane. For both oncogenic cases, FAR is revealed to be anchoring
constantly into the anionic membrane as a function of the simulation time, as might be expected.

By comparing the four systems we studied, we propose that adding cholesterol into the system has
less influence on the behavior of FAR of the oncogenic KRas-4B-Far anchoring to the anionic membrane.
Moreover, for a different type of KRas-4B-Far, GTP’s localization cannot be predicted according to
different types of mutations in the KRas-4B’s structure and the constitution of the cell membrane we
are studying. Remarkably, the existence of cholesterol helps FAR of the mutant KRas-4B-Far anchor
0.17 nm deeper into the anionic membrane than the chol.-0% case.

2.3. Conformation of the 5-Aa-Sequence in The Hvr

As suggested by Dharmaiah et al. [40], a 5-amino-acid-long sequence motif in its HVR
(K-S-K-T-K, residues 180-184), which is shared by KRas-4B-Far and KRas-4B-FMe, may enable PDEδ to
bind prenylated KRas-4B.
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The root mean square deviation (RMSD) of certain atoms in a molecule with respect to a reference
structure, defined as Equation (1), is the most commonly used quantitative measure of the similarity
between two superimposed atomic coordinates [70].

RMSD =

√
1
n

n

∑
i=1

d2
i (1)

where di is the distance between the two atoms in the i-th pair and the averaging is performed over
the n pairs of atoms.

A closer investigation of RMSD of this 5-aa-sequence of the HVR of two KRas-4B-Far
(wt. and onc.) binding to two different anionic model membranes has been done.

Figure 3 presents the results of adding cholesterol into the system to their respective reference
structures. Obviously, cholesterol doesn’t have as much impact as two mutations (G12D and PHOS) in
its sequence for the same type of KRas-4B-Far, highlighting the significant influence of the mutations on
the conformational change of the 5-aa-sequence in the HVR. It also demonstrates that for the wild-type
KRas-4B-Far protein, the RMSD of the 5-aa-sequence ranges from 0.24 to 0.3 nm, and for the oncogenic
one, the value ranges from 0.35 to 0.42, due to inherent structural flexibility.

Figure 3. The RMSD of the 5-aa-sequence of the HVR during the last 500 ns of the 1 μs time span for
four systems.

2.4. Orientational Distributions of Kras-4b-Far on Different Anionic Membranes

Several previous studies have shown that the orientations of Ras proteins on membranes
significantly impact their function in cell [20,21,71–73]. Cell membranes are platforms for cellular
signal transduction. Their structure and function depend on the composition of cholesterol and
related phospholipids [74]. Furthermore, both clinical and experimental studies have found that
hypercholesterolemia and a high-fat high-cholesterol diet can affect cancer development [48,75].
Increased cholesterol levels in the human body are associated with a higher cancer incidence,
and reducing its level through drugs (for instance: statins) could reduce the risk and mortality of some
cancers, such as prostate, colorectal, and breast cancer [76–78]. Increased serum cholesterol levels
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could be used as an indicator for developing cancers, such as colon, prostatic, testicular, and rectal
cancer [79,80].

To explore the influence of cholesterol on the orientation of KRas, we employed the definition
of the orientation of KRas-4B-FMe described by Prakash et al. [20] to compare with the results from
this work and propose a new method to define the orientation of KRas binding to the PM. In general,
two order parameters have been adopted: (1) the distance (z) between Cα atoms of the residue 132
on the lobe 2 and the residue 183 on the HVR, and (2) the angle Θ between the membrane normal
direction and a vector running the Cα atoms of the residue 5 and the residue 9 which belong to the first
strand β1 in the structure of KRas-4B. The results of the density distribution of conformations defined
by the order parameter z and cosΘ during the last 500 ns simulation time for four systems studied in
this work have been presented in Figure 4.

Two distinct orientations of KRas were proposed in their work: OS1, in which the loop is
solvent-accessible, and OS2, in which the effector-binding loop is occluded by the membrane.
The remaining conformations are categorized into the intermediate state OS0.

Moreover, we define a new parameter, the angle Φ that runs the membrane normal and a vector
running the Cα atoms of residues 163 and 156 on the last helix α5 of lobe 2. According to data from
references [81–83], it is known that dimerization of KRas-4B is a requirement for KRas signaling
activity and tumor growth. The helix α5 has been reported to be involved in its dimerization interface.
However, despite this being a relevant and interesting topic, dimerization of KRas-4B is outside of the
scope of the MD study reported here, since the classical force field we have employed in the present
work (CHARMM36) does not allow us to simulate the breaking and formation of chemical bonds.
Due to its highly conserved structure for the CD, providing the information of the angle Θ along with
the Φ could provide a new way for researchers to define the movement and orientation for KRas when
binding to the membranes. We have calculated the angle and distance as described above. Moreover,
the parameter we newly introduce here will be discussed further later.

Through the two-dimensional histogram, (z, cosΘ), three orientation states OS1 , OS2, and OS0

were reported to be centered around (1.86, −0.5), (4.97, 1), and (3.33, 0.9), respectively, according
to Prakash et al. [20]. In OS1, KRas-4B can interact with other proteins in cells, confirming that
cholesterol has an important impact on the signaling activity for KRas-4B, especially for mutant
ones, by increasing the flexibility and fluctuation in its CD with the exposed effector-binding loop.
In Figure 4, we can observe that only when oncogenic KRas-4B-Far is bound to the chol.-30% membrane,
can OS1 be shown for KRas-4B in a time span of 500 ns. As expected, when binding to the chol.-30%
membrane, the wild-type Kras-4B-Far has been observed to stay in its inactive state (OS2). From the
last 500 ns simulation time analyzed in this work, when binding to the anionic cholesterol-rich
membrane, the wild-type and mutant KRas-4B-Far proteins can reach all three conformational regions,
indicating more flexibility for the CD in the membrane normal direction and less affinity to the
cholesterol-rich PM.

However, using these two coordinates (z, cosΘ) defined by Prakash et al. makes it difficult for us to
categorize the conformational states of (wild-type and oncogenic) KRas-4B-Far for the cholesterol-free
systems, and no clear OS1, OS2, and OS0 have been observed, see the upper panels in Figure 4.
However, OS1 for the oncogenic KRas-4B-Far in Figure A3 and OS2 for the wild-type KRas-4B-Far in
Figure A4 have been observed for the chol.-0% membrane systems. So, using two well-defined angles
to describe the orientation of KRas-4B on the anionic membrane could be a good idea.

We have also investigated the time evolution of z for each system as reported in Figure A2,
which shows major conformational fluctuations for four systems (oncogenic KRas-4B-Far and wild-type
KRas-4B-Far, for 0 and 30% chol). For the cholesterol-free membrane systems, the protein majorly
fluctuates between two distinct states in ranges of 2.4 ≤ z ≤ 4.3 and z > 4.3 nm, rarely visiting lower
z values.
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Figure 4. Density distributions of configurations of the oncogenic KRas-4B-Far and wild-type
KRas-4B-Far systems with given values of coordinates z and cosΘ for 0 and 30% cholesterol.
Observed OS1, OS2, and OS0 have been encircled in their corresponding locations.

For the two cholesterol-free systems, are the orientation states of wild-type and oncogenic
KRas-4B-Far always in its intermediate state OS0 according to Prakash et al.’s work [20]? This is
a question that we want to answer.

2.5. Reorientation of Mutant Kras-4b-Far on the Anionic Membranes

By adopting the two angles (Θ and Φ) defined above, we analyzed the corresponding density
profiles. We present the reorientation of the mutant KRas-4B-Far when bound to the anionic membrane
with 30% of the cholesterol in Figure 5. Results for the remaining three systems studied here are
reported in Figures A3–A5.

From Figure 5, the reorientation of mutant KRas-4B-Far on the chol.-30% bilayer has been
observed during the 500 ns simulations time, giving a hint on the low free energy barriers between two
orientation states (OS1-OS0, and OS0-OS2). Mutant KRas-4B spends most of the time in the active OS1

state, centered at (80◦, 105◦) on chol.-30% membrane, and fluctuates around (99◦, 83◦) when binding to
the chol.-free bilayer, also in its OS1 state. Wild-type KRas-4B protein, regardless of the cholesterol’s
content, prefers staying in its inactivate state, centered at (59◦, 52.5◦) and (53◦, 37◦) for chol.-0% and
chol.-30%, respectively. This suggests that the orientation with the effector-binding loop occluded by
the membrane (OS2) is disfavored in the wild-type KRas-4B-Far protein.

Here, we could conclude that high cholesterol in the PM helps KRas-4B mutant stay in its
constitutively active state, which suggests that high cholesterol intake can increase mortality and may
promote cancer progression for cancer patients. Our findings agree with the experimental and clinical
results [55,56,58,59].
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Figure 5. Reorientation of the oncogenic KRas-4B on the chol.-30% membrane. Density distribution
of conformations projected onto a plane defined by the reaction coordinates Φ and Θ in degrees (◦).
The relative frequency of each coordinate is shown on the right and upsides. The membrane bilayer
is shown as a white surface. Lobe 1 is highlighted in orange, lobe 2 in blue, HVR backbone in green,
GTP in red, and FAR in violet. Water and ions are not shown here for the sake of clarity.

3. Methods

We performed four independent MD simulations of wild-type and mutated GTP-bound
KRas-4B-Far attached to DOPC/DOPS (4:1) bilayers.

Eventually, some of the lipids were replaced by cholesterol molecules in such a way that two
cholesterol percentages were considered: 0% and 30%. Each system contains a total of 304 lipid
molecules fully solvated by 60,000 TIP3P water molecules and 48 potassium chloride at the human
body concentration (0.15 M), yielding a system size of 222,000 atoms. All MD inputs were generated
using a CHARMM-GUI web-based tool [84]. The force field was CHARMM36m for proteins [85] and
CHARMM36 [86] for other molecules in each system. The crystal structure of KRas-4B with the partially
disordered hypervariable region (pdb 5TB5) and GTP (pdb 5VQ2) were used to generate full-length
GTP-bound KRas-4B-Far proteins. Two sequences of the wild-type and oncogenic KRas-4B-Far are
presented in Figure A6.

After model building, each system was energy minimized for 5000 steps followed by three 250 ps
simulations, and then four additional 500 ps equilibrium runs while gradually reducing the harmonic
constraints on the systems. We used the NPT ensemble with the constant pressure of 1 atm maintained
by the Parrinello–Rahman piston method with a damping coefficient of 5 ps−1 and temperature of
310.15 K controlled by the Nosé–Hoover thermostat method with a damping coefficient of 1 ps−1.
Meaningful production runs were performed with an NPT ensemble for 1 μs from the last configuration
of equilibrium run for each system, for a total of 4 μs. Time steps of 2 fs were used in all production
simulations and the particle mesh Ewald method with a Coulomb radius of 1.2 nm was employed
to compute long-ranged electrostatic interactions. The cutoff for Lennard–Jones interactions was set
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to 1.2 nm. In all MD simulations, the GROMACS/2018.3 package was employed [87] and periodic
boundary conditions in three directions of space have been taken.

4. Conclusions

In this work, we performed MD simulations on four systems of wild-type/oncogenic KRas-4B-Far
protein binding to membranes with different cholesterol contents (0% and 30%) to study the influence
of cholesterol on the orientation of KRas. KRas-4B-Far shows the condensing effect on the area per lipid
of the anionic model membrane through strong interactions between its CD and HVR moieties with the
head groups of the lipids. More flexibility in its CD structure of KRas-4B-Far has been observed when
binding to the PM with high cholesterol concentration, for both wild-type and mutant KRas-4B-Far
proteins. The reorientation of mutant KRas-4B-Far on the anionic chol.-30% model membrane has been
observed during the 500 ns simulations time, giving a hint on the low free energy barriers between
a pair of orientation states (e.g., OS1-OS0, and OS0-OS2).

It has been shown for the first time that cholesterol makes it much easier for the mutant
KRas-4B-Far shifting between different orientation states. The high cholesterol content in the PM
favors OS1, exposing the effector-binding loop for signal transduction in cells from the atomic level.
We propose that during the treatment of KRas-4B-related cancers, reducing the cholesterol level in the
PM and sustaining cancer progression by controlling the plasma cholesterol intake should be taken
into account in anti-cancer therapies. The present study of the role of cholesterol in Kras-4B orientation
can provide one more direction and method for the treatment and prevention of cancer. By conducting
four μs MD simulations, we confirm that high cholesterol in the PM helps KRas-4B mutant stays in its
constitutively active state, which suggests that high cholesterol intake can increase mortality and may
promote cancer progression for cancer patients.
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Abbreviations

The following abbreviations are used in this manuscript:

MD molecular dynamics
PM plasma membrane
DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine
DOPS 1,2-dioleoyl-sn-glycero-3-phospho-L-serine
GDP guanosine diphosphate
GTP guanosine triphosphate
GEF guanine-nucleotide-exchange factors
GAP GTPase-activating proteins
COSMIC catalog of somatic mutations in cancer
KRas-4B-Far farnesylated and demethylated KRas-4B
KRas-4B-FMe farnesylated and methylated KRas-4B
HVR hypervariable region
FAR farnesyl group
CD catalytic domain
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PHOS phosphorylated serine
PTMs post-translational modifications
OS orientation state
RMSD root mean square deviation
PDEδ phosphodiest-eraseδ

FTase farnesyltrasferase
GGTase geranylgeranyltransferase
RCE1 Ras-converting enzyme 1
ICMT isoprenylcysteine carboxyl methyltransferase
PMPEases prenylated/polyisoprenylated methylated protein methyl esterases
TSPO translocator protein

Appendix A. Supporting Information

Appendix A.1. Area Per Lipid
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Figure A1. Area per lipid of four wild-type/mutant KRas-4B-Far systems with different content of
cholesterol as a function of simulation time. The black dashed line indicates the average value for each
system of the second half of the total 1000 ns production runs.
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Appendix A.2. Orientation of Kras-4b on the Pm

Figure A2. Time evolution of z during the last 500 ns MD simulations of the onc. and wt. KRas-4B-Far
proteins for four cases studied in this work. The ratios of the different regions defined in Ref. [20] of
the distance are shown on each panel. Three different pools of conformational states are depicted in
different colors: z ∈ [0, 2.4) in red, z ∈ [2.4, 4.3] in green, and z ∈ (4.3, 6] in blue. Panel (A) refers to onc.
chol.-0%, panel (B) refers to the wt. chol.-0% system, panel (C) stands for the onc. chol.-30% system,
and panel (D) represents the wt. chol.-30% system, respectively.

Figure A3. Orientation of the mutant KRas-4B-Far on the chol.-0% membrane. Colors defined as
Figure 5.
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Figure A4. Orientation of the wild-type KRas-4B-Far on the chol.-0% membrane. Colors defined as
Figure 5.

Figure A5. Orientation of the wild-type KRas-4B-Far on the anionic chol.-30% membrane.
Colors defined as Figure 5.

Appendix A.3. Sequences of Wild-Type and Mutant Kras-4b-Far Proteins

Here in Figure A6, sequences for wild-type and mutated KRas-4B-Far are presented.
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Figure A6. Two sequences of oncogenic and wild-type KRas-4B-Far. Mutated sites are in red color.
Here C f denotes the farnesylated Cys-185 and Sp represents the phosphorylation adopted in the
present work.
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Abstract: Biological membranes are complex dynamic systems composed of a great variety of
carbohydrates, lipids, and proteins, which together play a pivotal role in the protection of organ-
isms and through which the interchange of different substances is regulated in the cell. Given the
complexity of membranes, models mimicking them provide a convenient way to study and better un-
derstand their mechanisms of action and their interactions with biologically active compounds. Thus,
in the present study, a new Schiff base (Bz-Im) derivative from 2-(m-aminophenyl)benzimidazole
and 2,4-dihydroxybenzaldehyde was synthesized and characterized by spectroscopic and spectro-
metric techniques. Interaction studies of (Bz-Im) with two synthetic membrane models prepared
with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC/1,2-dimyristoyl-sn-glycero-3-
phosphoglycerol (DMPG) 3:1 mixture, imitating eukaryotic and prokaryotic membranes, respectively,
were performed by applying differential scanning calorimetry (DSC). Molecular dynamics simu-
lations were also developed to better understand their interactions. In vitro and in silico assays
provided approaches to understand the effect of Bz-Im on these lipid systems. The DSC results
showed that, at low compound concentrations, the effects were similar in both membrane models.
By increasing the concentration of Bz-Im, the DMPC/DMPG membrane exhibited greater fluidity as
a result of the interaction with Bz-Im. On the other hand, molecular dynamics studies carried out on
the erythrocyte membrane model using the phospholipids POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine), SM (N-(15Z-tetracosenoyl)-sphing-4-enine-1-phosphocholine), and POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) revealed that after 30 ns of interaction, both
hydrophobic interactions and hydrogen bonds were responsible for the affinity of Bz-Im for PE and
SM. The interactions of the imine with POPG (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoglycerol)
in the E. coli membrane model were mainly based on hydrophobic interactions.

Keywords: model membranes; molecular dynamics; calorimetry; Schiff base; imine; benzimidazole;
2,4-dihydroxybenzaldehyde

1. Introduction

Biological membranes are essential for life since they regulate the entry and exit of
nutrients, neurotransmitters, and drugs [1]. Biological membranes contain three main
types of lipids: phospholipids, glycolipids, and cholesterol. Phospholipids are, in turn,
divided into different groups according to the structural properties of the polar head:
phosphatidylcholine (PC), sphingomyeline (SM), and phosphatidylethanolamine (PE) are
common lipids present in eukaryotic cell membranes [2].
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Since drugs operate through different mechanisms when their main targets are intracel-
lular and, therefore, they must penetrate the cell membrane to exert their pharmacological
action, it is essential to understand drug–membrane interactions [3]. However, the com-
plexity of the structure and functionality of cell membranes, as well as the highly dynamic
nature of lipid–lipid and lipid–protein interactions, make drug–membrane system studies
difficult [4].

Thus, artificial model membrane systems were developed to facilitate the understand-
ing of the effects of membrane lipids on drug transport and absorption in cells, drug activity,
and even drug toxicity [5,6]. Within the different types of model membranes, liposomes
are highly suitable for permeability research and drug delivery systems. Additionally,
they allow for the use of various thermoanalytical and spectroscopic techniques—such
as isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), Fourier
transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, and nuclear magnetic
resonance (NMR) methods—to study biophysical interactions of the drug–membrane
complex [7–11].

In studies that make use of model membranes, saturated or unsaturated PC species
are used to mimic eukaryotic cells, while the PC/PG model is used to mimic bacterial
membranes [12]. Studies have revealed that the effect of azole compounds on model
membranes [13,14], including membranes based on the PC/PG species, is controlled by
drug–membrane interactions which depend on the length, unsaturation, and head group
of the phospholipids, as well as the surface charge of the target cell [15]. In particular,
compounds derived from benzimidazole interact with model membranes of human ery-
throcytes using the passive diffusion method [16]. In silico studies demonstrated that
hydroxyl groups present in derivatives of benzimidazole decrease the hydrophobic charac-
ter of DPPC (dipalmitoylphosphatidylcholine) model membranes and interact with the
phosphate group of the polar heads present in the membrane [17].

Studies including compounds with the benzimidazole motif on their structures are
interesting for the scientific community, not only because of their known antibacterial
and cytotoxic properties [18–20], but because of the high conjugation that they exhibit
when forming Schiff bases, improving their electronic characteristics and often conferring
fluorescent properties that facilitate the monitoring of morphology in microorganisms
subjected to these types of drugs [21].

Hence, based on the antibacterial and cytotoxic properties that Schiff bases obtained
from (1H-benzimidazol-2-yl)anilines have demonstrated [22–24], this article describes the
synthesis and characterization of 4-(((3-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)
benzene-1,3-diol and the study of its possible mechanism of interaction with bacterial and
mammalian membrane models by analyzing the thermodynamic profiles of the phase
transition by DSC. In addition, in order to explore the Bz-Im effect on the thermotropic
behavior of bacterial and mammalian systems, proper membrane models consistent with
experimental membrane models were developed. Thus, the interaction of the imine
towards model membranes of human erythrocytes and E. coli were described from results
by molecular dynamics (MD) simulations.

2. Materials and Methods

2.1. Synthesis of Benzimidazole Schiff Base
2.1.1. Materials

All chemical reagents used for the synthesis of benzimidazole and subsequent imine
were used as received and without further purification. Elemental analyses were performed
using Flash EA 1112 Series CHN Analyzer. A Shimadzu Affinity 1 FT-IR spectrometer was
used to obtain the infrared spectra. IR data are reported using the following abbreviations:
vs = very strong; s = strong; m = medium; w = weak; sh = shoulder; br = broad. 1H and
13C{1H} NMR spectra were obtained on a Bruker Avance II 400 spectrometer using DMSO-
d6 as a solvent at 25 ◦C. The following abbreviations were used: s = singlet; d = doublet;
t = triplet; m = multiplet. The mass spectrum of the benzimidazole was recorded on a
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Shimadzu-GCMS-QP2010 at 70 eV by electronic impact (EI) ionization, while the mass spec-
trum of the derived imine was obtained by direct analysis in real time (DART) ionization
system on a JEOL AccuTOF JMS-T100LC.

2.1.2. Synthesis of 2-(m-aminophenyl)benzimidazole (Bz)

The condensation reaction of o-phenylenediamine with m-aminobenzoic acid was carried
out following a similar methodology to that previously reported [25]. o-phenylenediamine
(0.54 g, 5 mmol), m-aminobenzoic acid (0.69 g, 5 mmol), and polyphosphoric acid were
mixed and stirred for 2.5 h at 180 ◦C. After this time, the resulting reaction mixture was
allowed to cool and then neutralized with sodium carbonate (20%) before the resulting
solution was filtered. The violet precipitate was then washed with distilled water, purified
with activated carbon, and recrystallized in ethanol to give the final product as a beige
powder. Yield: 0.87 g, 83%. C13H11N3 (209.25 g·mol−1): Calc. C, 74.62; H, 5.30; N, 20.08.
Found: C, 74.58; H, 5.36; N, 20.09%. IR (ATR cm−1): 3826 w, 3739 w, 3425 w, 3321 w, 3205 w,
2328 w, 1683 w, 1616 vs. 1566 s, 1510 s, 1463 s, 1394 m, 1346 m, 1234 m, 1062 m, 945 w,
893 m, 835 w, 750 vs. 1H NMR (DMSO-d6) δ (ppm) 12.70 (s, 1H), 7.62 (d, J = 7.0 Hz, 1H),
7.49 (d, J = 7.0 Hz, 1H), 7.43 (s, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.23–7.11 (m, 3H), 6.68 (d,
J = 7.8 Hz, 1H), 5.30 (s, 2H). MS (EI, m/z): 209.

2.1.3. Synthesis of 4-(((3-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)benzene-1,3-diol
(Bz-Im)

As was the case for the intermediate Bz, the imine Bz-Im was synthesized based
on previously reported procedures [26,27]. 2-(m-aminophenyl)benzimidazole (0.52 g,
2.5 mmol), 2,4-dihydroxybenzaldehyde (0.35 g, 2.5 mmol), and methanol were mixed
and set to reflux under stirring for 2 h. After this time, the yellow precipitate obtained
was washed with cold water and then dried under vacuum for 4 h. Yield: 0.72 g, 87%.
C20H15N3O2 (329.36 g·mol−1): Calc. C, 72.94; H, 4.59; N, 12.76. Found: C, 72.83; H, 4.56; N,
12.91%. IR (ATR cm−1): 3381 w, 3046 w, 1891 w, 1600 s, 1567 sh, 1512 w, 1494 vs. 1451 m,
1384 s, 1268 sh, 1259 s, 1222 m, 1143 s, 1114 m, 963 w, 910 m, 856 s, 807 vs. 725 vs. 1H NMR
(DMSO-d6) δ (ppm) 13.46 (s, 1H), 12.98 (s, 1H), 10.34 (s, 1H), 8.94 (s, 1H), 8.22–8.01 (m, 2H),
7.70–7.45 (m, 5H), 7.24 (s, 2H), 6.45 (dd, J = 8.4, 2.3 Hz, 1H), 6.35 (d, J = 2.3 Hz, 1H). 13C{1H}
NMR (DMSO-d6) δ (ppm) 163.7, 163.5, 163.2, 151.3, 149.3, 144.2, 135.5, 135.1, 131.83, 130.6,
124.6, 123.2, 122.8, 122.3, 119.6, 119.4, 112.6, 111.9, 108.5, 102.9. MS (DART+) m/z: 330.

2.2. Interaction with Models of Synthetic Membranes
2.2.1. Membrane Preparation

Model membranes mimicking mammalian and bacterial membranes were prepared
following the methodology reported previously [28]. Thus, DMPC and DMPG lipids at
a molar ratio of 3:1 were dissolved in chloroform/methanol (2:1 v/v) to imitate gram-
negative bacterial membranes [2], while the DMPC lipid alone was dissolved in chloro-
form/methanol (2:1 v/v) to imitate zwitterionic human cell membranes. The lipid mixture
was first dried under a stream of nitrogen and then under vacuum for a further three hours.
The hydration process was performed by preparing different concentrations of Bz-Im using
HEPES buffer (25 mM HEPES, pH 7.0; 100 mM NaCl and 0.2 mM EDTA), which were
added to the existing dry lipid mixture and vigorously shaken with a vortex for 2 min
before incubation for 10 min at 37 ◦C above the phase transition temperature (Tm). The
multilamellar vesicles (MLVs) were obtained after repeating the shaking and incubation
process three times [29].

2.2.2. Differential Scanning Calorimetry

For the acquisition of thermograms by DSC analysis, a TA instrument DSC Q25 was
used. Multillamellar vesicles (MLVs) were prepared using 2 mg of lipids hydrated with
Bz-Im diluted in HEPES buffer to give three Bz-Im–lipid ratios: 1:50, 1:25, and 1:10. HEPES
buffer was used as a reference solution. The samples were placed and subsequently sealed
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within standard aluminum DSC pans, and were analyzed over a range of 10 to 35 ◦C
at a heating rate of 1 ◦C/min. Trios software (TA Instruments) was used to obtain the
phase transition temperature (Tm), the transition enthalpy (ΔH), and the full width at
half-maximum from thermograms (FWHM, ΔTm/2).

2.3. Molecular Dynamics (MD) Studies
2.3.1. Construction of the 3D Structure of Bz-Im

The 3D structure of Bz-Im was drawn using Chemdraw software (https://chemdrawdirect.
perkinelmer.cloud/js/sample/index.html, access date: 8 March 2021). The Bz-Im structure
was optimized using the universal force field (UFF) [30] and the steepest descent algorithm
with Avogadro version 1.2 software.

2.3.2. Erythrocyte Membrane Construction

The zwitterionic model membrane of erythrocyte cells, which was mimicked by
zwitterionic phosphatidylcholine for DSC assays, was built with the CHARMM-GUI [31]
platform using, as a basis, the phospholipid composition mentioned by Texeira et al. [32].
The phospholipid proportions used were 20 units of POPE, 40 units of SM, and 40 units
of POPC, which were distributed both in the upper and lower layer of the membrane.
For the placement of the ions, the Monte Carlo method was used with a concentration
of 0.15 M NaCl. In addition, a water thickness of 22.5 Å, and a force field for the entire
CHARMM36m system was used [33]. The files were prepared to minimize energy, balance,
and dynamics with GROMACS [34] at 310 K.

2.3.3. Construction of Gram-Negative Bacterial Membrane Models

The membrane model systems for E. coli were constructed based on the data reported
by Epand et al. [35], using the same distribution published by Liscano et al. [36] for a
gram-negative membrane model system (POPE = 80 units and POPG = 20 units), with
CHARMM-GUI software [31].

2.3.4. Implementing Molecular Dynamics

The minimization energy of the erythrocyte model membrane and E. coli membrane
system with the ligand Bz-Im was adjusted with the steepest descent algorithm in 5000 steps
using the Verlet cutoff scheme. Equilibration was performed for 2 ns using the Berendsen
algorithm to equilibrate the temperature and pressure of the system. Molecular dynamics
were run for 10 ns at 310 K using the Nose–Hoover and Parrinello–Rahman algorithms to
adjust temperature and pressure.

Gromacs software version 2020.1 [34] was used for the molecular dynamics simulation
of gram-negative bacterial and erythrocyte membrane models. The CHARMM36m force
field [33] was used for the simulation. For the localization of the ions, the Monte Carlo
method was used with 0.15 M NaCl in water 22.5 Å thick. For the energy minimization,
the steepest descent algorithm was used, running for 1 ns. Using the Berendsen algorithm,
the system was adjusted to a temperature of 310 K with an equilibration of 2 fs/step for
300 ps to 155,000 n-steps. Once the system was equilibrated the molecular dynamics were
run for 30 ns for both erythrocyte and E. coli model membranes, using the Nose–Hoover
and Parrinello–Rahman algorithms to adjust the temperature and pressure.

2.3.5. Interaction Analysis

Gromacs was used to obtain the hydrogen bonds between Bz-Im and the phospholipids
of each membrane model system within 30 ns. PyMOL PDB files were obtained for each
membrane system at six different times: 1, 5, 10, 20, 25, and 30 ns. These files were used to
visualize and analyze the interactions between the different components of each model
system and the Bz-Im using Discovery Studio Visualizer software.
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3. Results and Discussion

3.1. Schiff Base (Imine) Characterization

The synthesis of Schiff base 4-(((3-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)
benzene-1,3-diol (Bz-Im) was carried out from the reaction between 2,4-dihydroxybenzaldehyde
and 2-(m-aminophenyl)benzimidazole (Bz) (Scheme 1).

Bz Bz-Im  
Scheme 1. Synthesis of Bz-Im.

Compound Bz-Im was obtained in high yield (87%) as a yellow powder, and its
structure was unequivocally determined by mass spectrometry, elemental analyses (C,
H, and N), infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The FT-
IR spectra of Bz-Im showed bands corresponding to υ (3425 and 3321 cm−1) stretching
and deformation δ (1616 cm−1) vibrations of the amino group in Bz disappeared after
the formation of the imine, while a new band was observed at 1600 cm−1, characteristic
for this type of compound, confirming the formation of the N=CH bond [37]. In the
infrared spectrum, the characteristic band of the stretching vibration υC-O at 1259 cm−1

was also observed (phenolic fragment). In addition, the 1H NMR spectrum of Bz-Im
showed the characteristic signal of the imine group at 8.94 ppm, while signals due to the
aromatic protons were observed around 8.25–6.25 ppm [22,27]. Additionally, the 13C{1H}
NMR spectra exhibited a typical signal due to the imine carbon at ~163 ppm. This one-
dimensional NMR analysis was further supported with two-dimensional studies that can
be consulted in Figures S4, S6, and S7 of the supplementary material. Finally, analysis by
mass spectrometry (DART+) afforded a spectrum exhibiting the peak due to the molecular
ion [M+1] at 330 m/z (Figure S9). Elemental analysis results were also in agreement with
the proposed structure.

3.2. Model Membrane Studies
3.2.1. Thermotropic Behavior of Synthetic Model Membranes

The membrane models included mammalian-like membranes consisting of the phos-
pholipid DMPC and bacterial-like membranes consisting of a 3:1 ratio of DMPC:DMPG. By
gradually heating the vesicles without compound, the acquisition of thermotropic profiles
was achieved (Figure 1), where a pre-transition endothermic peak was observed at 12.94 ◦C
for the DMPC systems and at 12.71 ◦C for the DMPC: DMPG 3:1 mixture. PCs have a fairly
bulky headgroup, creating a size mismatch with their acyl chains, especially below the
main phase transition [38]. As the temperature increases, the main transition peak emerges
at 23.02 ◦C for the two systems mentioned above—these results being consistent with those
reported previously [28].
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Figure 1. Thermotropic profile of MLVs made up of (A) DMPC and (B) DMPC-DMPG (3:1), under different amounts of
imine. Compound–lipid molar ratios: 0:1 (—); 1:50 (—); 1:25 (—); and 1:10 (—).

By addition of Bz-Im in a 1:50 compound–lipid molar ratio, changes were observed
in the pre-transition of both systems (Table 1), suggesting that this compound affects the
transition from a flat membrane phase (Lβ) to a ripple phase (Pβ) as a result of the changes
in size mismatch with the phosphatydilcholine headgroup hydration [38]. Interestingly, in
the pre-transition from the DMPC: DMPG mixture, two subtle peaks emerged (Figure 1B).
Riske et al. [38] described that up to 20% fluid lipid population were detected between
the pre- and the main transitions. In addition, gauche conformers are introduced into
the acyl lipid chains in the pre-transition [39]. By increasing the concentration of Bz-Im
(1:25 compound–lipid molar ratio), the pre-transition is abolished, the Tm is changed
moderately, and the size of the peak of the main transition decreases as the width of
the peak increases in both lipid systems (Figure 1). The surface of the bilayer must be
considered as a set of several phospholipid “clusters”, where all the molecules of each
cluster exhibit a simultaneous behavior in the transition. This cooperative property of
the melting process defines more sharp and symmetrical curves at the transition peak. In
this way, Bz-Im is able to penetrate into the bilayer since the “clusters” noticeably increase
in number [40]. ΔTm/2 is a relative measure of molecular cooperativity and it linearly
increases with the concentration of Bz-Im, ranging from 0.98 to 1.14 ◦C and from 0.73 to
1.08 ◦C for DMPC and DMPC:DMPG systems, respectively, suggesting the insertion of
“free volumes” into the bilayer structure [40]. Therefore, the full width at half-maximum of
the main transition peak is a variable that indicates how cooperative the phospholipids are
when they undergo a transition [41]. Similarly, the enthalpy of transition is considerably
and moderately reduced in DMPC and DMPC/DMPG, respectively (Table 1), suggesting
that the addition of anionic lipids to the zwitterionic lipids avoids greater alterations to
the interactions between lipid acyl chains, i.e., the disruption of trans-gauche isomerization
and the inter- and intramolecular van der Waals interactions [7]. This can be explained
by a strong adhesion of the Bz-Im on the anionic surface by phosphatidylglycerol at this
concentration, where the small size and the reduced flexibility of Bz-Im prevents their
hydrophobic moieties from being inserted inside the bilayer.
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Table 1. Tm, ΔTm/2, and enthalpy transition (ΔH) values of MLVs constituted by DMPC and DMPC/DMPG (3:1) before
and after the addition of Bz-Im at different Bz-Im–lipid molar ratios.

MLV
Compound–Lipid

Molar Ratio
Pretransition

Temperature (◦C)
Tm (◦C) ΔTm/2 (◦C) ΔH (J·g−1)

DMPC 0:1 12.94 23.02 0.98 1.48

DMPC-Compound
1:50 11.58 22.94 1.09 1.05
1:25 - 22.60 1.14 0.78
1:10 - 22.38 1.23 0.76

DMPC/DMPG (3:1) 0:1 12.71 23.02 0.73 1.71

DMPC/DMPG
(3:1)-Compound

1:50 12.49 22.98 0.90 1.46
1:25 - 22.24 1.08 1.38
1:10 - 19.72 2.34 1.13

At the maximum concentration of Bz-Im, the size of the peaks representing the main
transition were decreased. Interestingly, a pronounced change in Tm and in the width of
the peak was observed only in the DMPC/DMPG mixture (Figure 1), suggesting that Bz-Im
at this concentration increases the fluidity and the lateral phase separation in membranes
that mimic those of bacteria. In fact, fluidity is known to increase in response to an increase
in the lateral diffusion rates of lipid molecules [42], and has been related to alterations
within the hydrophobic nucleus of the bilayer [43]. Thus, it is likely that more moles of
Bz-Im bind to a smaller unit area in DMPC/DMPG than to an entire surface area of DMPC,
reaching a lower threshold concentration due to the presence of DMPG, which is related to
the degree of insertion of compounds inside the bilayer [44].

3.2.2. Analysis of Molecular Dynamics

In order to understand the results of the thermotropic profile of the membrane mod-
els, the interaction between Bz-Im and the molecular models of erythrocyte zwitterionic
membranes was analyzed by molecular dynamics. Figure 2 shows the root mean square
deviation (RMSD) of Bz-Im in the erythrocyte membrane over 30 ns. From 0 to 10 ns a
continuous variation of the RMSD is observed (Figure 2A), suggesting the whole structure
fluctuates, or it might reflect only large displacements of a small structural subset within an
overall rigid structure [45] as a result of the loss of bonds between phospholipids and the
formation of Bz-Im-membrane interactions during the insertion and adjustment of the com-
pound inside the polar head of the phospholipids in these first nanoseconds (Figure 2B). A
stabilization of the structural configuration of Bz-Im is observed from 10 ns that coincides
with the penetration of Bz-Im inside the polar region of the membrane, indicating that it
does not bring any considerable changes to the overall conformation of the system over
30 ns MD trajectories.
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Figure 2. Behavior of Bz-Im in the erythrocyte membrane model system for 30 ns. (A) Root mean square deviation (RMSD)
of Bz-Im in the erythrocyte membrane system at 30 ns. (B) Bz-Im movement from the surface of the erythrocyte membrane
during the 30 ns.

Figure 3 shows the interactions of Bz-Im with the components of the erythrocyte
membrane model system, observing a greater number of hydrogen bond-type interactions
with water molecules in the first nanoseconds after starting the simulation due to the
interaction with the membrane-water interfacial region. These interactions with water
decrease as time progresses from 10 to 30 ns. Conversely, interactions with SM and POPE
increase as time progresses since they are the phospholipids that most interact with Bz-Im
in comparison with POPC (Figure 3) due to the presence of the amine group in POPE
which forms the additional bonds [46]. In addition, PC and SM have the same polar head
but differ in their interfacial structures due to a decrease in headgroup size of the SM
causing closer molecular packing. The increased interactions at the membrane interface
could influence increased affinity of Bz-Im for SM as compared with POPC [47]. Both
hydrophobic interactions and hydrogen bonds are responsible for the affinity of Bz-Im for
PE and SM (Figure 3A), suggesting that the C-N bonds are oriented towards the core of the
bilayer and the O-H groups are oriented towards the water phase (Figure 2B).
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Figure 3. Intermolecular interactions between Bz-Im and the erythrocyte membrane system (A) at
1 ns (blue color), 5 ns (orange color), 10 ns (gray color), 15 ns (yellow color), 20 ns (light blue color),
25 ns (green color), and 30 ns (dark blue color). HB, hydrogen bond; HI, hydrophobic interaction; E,
electrostatic interactions (B) Hydrogen bonds between Bz-Im and the phospholipids of the system.
SM, sphingomyelin; POPC, phosphatidylcholine; POPE, phosphatidylethanolamine.

Figure 3B shows the number of hydrogen bonds between Bz-Im and phospholipids
through time. Interestingly, interactions with SM emerge from 11 nanoseconds, remaining
up to 30 ns, suggesting an initial selectivity for PE, which would directly interact with the
NH3

+ moiety and not with the quaternary amine group of choline. When replacing PE
by PC, this could arise from the sole removal of the hydrogen-bonding capability of the
headgroup [48]. However, there are also hydrogen bonds between Bz-Im and POPC from 2
to 8 ns while it was entering the membrane. This could be due to the larger size of the PC
polar head, compared with those of PE and SM, occupying a greater volume and exhibiting
a better probability of initial contact with Bz-Im. Once it is internalized, a strong interaction
with sphingomyelin is maintained. It was revealed that the OH-group or NH-function of
SM play an important role in hydrogen bonding interactions with foreign compounds [49].

Based on the above, Bz-Im can be buried up to the interfacial region of the outer mono-
layer of a zwitterionic membrane, decreasing the van der Waals interactions between the
phospholipids, while interactions that require less heat to undergo the transition are formed
(Figure 1A). Hence, it is likely that Bz-Im exhibits cytotoxic activity against mammalian
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cells, a property that could be explored and exploited for tumor cells (Supplementary
materials, Section 2).

Figure 4 shows the behavior of Bz-Im on the E. coli model membrane for 30 ns. The
RMSD reveals that during the first 6 ns there is a great structural variation of Bz-Im related
to its location between the surface of the membrane and the water phase, which causes
intermittent contact with both water molecules and POPE or POPG. Between 10 and 20 ns
there is a slight structural variation of Bz-Im and during this time the molecule remains
submerged in the membrane. Again, Bz-Im re-emerges on the membrane surface between
the aqueous and lipid phase, which is reflected in a greater structural deviation between
20 and 21 ns as a result of different solvation changes. Finally, Bz-Im is internalized again
inside the head group of phospholipids between 28 and 30 ns. Unlike the erythrocyte
membrane, the position of the Bz-Im in the E. coli membrane model fluctuated highly
during the 30 ns. To explain this, it must be considered that the erythrocyte membrane is
made up of only 20% POPE while that of E. coli has 80% POPE. The NH3

+ group of PE
binds with oxygen from unesterified phosphate by very close contacts [50]. Subsequently,
the bonds between adjacent phosphates form a very compact network of PE polar heads
in the surface of the membrane, hindering the access of Bz-Im and reorienting it within
the lipid phase over the first 20 ns. On the other hand, the glycerol moiety of PG mimics
the solvation water of the phosphate group [51]. This internal hydrogen bonding makes
the hydrogen bonding between the foreign compounds and the phosphate less favorable
than when the phosphate is linked to cholines. Thus, phosphate must be shielded by the
glycerol moiety in PG, avoiding the formation of hydrogen bonds with compounds at the
expense of dehydration [52].

 

Figure 4. Behavior of Bz-Im in the E. coli membrane model system for 30 ns. (A) Root mean square
deviation (RMSD) of Bz-Im in the E. coli membrane model system for 30 ns. (B) Bz-Im movement
from the surface of the E. coli membrane model system during the 30 ns.
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Figure 5A shows a greater interaction with water molecules through hydrogen bonds
in the first 15 nanoseconds. From 10 ns there is a tendency to form hydrophobic bonds
with both phospholipids; this type of interaction is maintained until 30 ns, suggesting
that Bz-Im must penetrate at least partially into the hydrophobic core of the phospholipid
bilayer. As the system is highly dynamic, it is probable that the hydrophobic moiety of the
aromatic heterocyclic ring interacts with the acyl chains in a region close to the interface
(Figure 4B). The partial insertion into the hydrophobic core would be responsible for the
increase in the fluidity described in bacterial model membranes at a 1:10 Bz-Im:lipid molar
ratio (Figure 1B), since interaction of compounds with the phospholipid acyl chains has
been related to a net fluidizing effect of the apolar part of the bilayer [43]. Finally, Figure 5B
shows the number of hydrogen bonds formed between Bz-Im and the phospholipids of
the E. coli model membrane; a similar interaction with POPE and POPG was observed,
except for at 10 and 22 ns when interaction peaks with POPE of up to six hydrogen bonds
were found. The amine group of PE which forms additional bonds [46] would be favorably
oriented towards the polar groups of Bz-Im at both times.

 

Figure 5. Intermolecular interactions between Bz-Im and the E. coli membrane model (A) at 1 ns
(blue color), 5 ns (orange color), 10 ns (gray color), 15 ns (yellow color), 20 ns (light blue color), 25 ns
(green color), and 30 ns (dark blue color). HB, hydrogen bond; HI, hydrophobic interaction; EI,
electrostatic interactions. (B) Hydrogen bonds between Bz-Im and the phospholipids of the system.
POPE, phosphatidylethanolamine; POPG, phosphatidylglycerol.
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4. Conclusions

A benzimidazole-derived imine was successfully synthesized and characterized by
spectroscopic and spectrometric techniques. The thermotropic profiles indicate that this
compound can bind both to DMPC and DMPC:DMPG (3:1), which mimic the mammalian
and bacterial membranes, respectively. Our results suggest that Bz-Im can increase the
fluidity in membranes that mimic those of bacteria, which might be correlated with their
potential antibacterial activity, representing a valuable contribution towards the further
design of antimicrobial compounds based on benzimidazole-derived imine analogues.
Preliminary evidence shows that compound Bz-Im has affinity for PC phospholipids,
suggesting that this molecule may have effects against normal human cells, that is, the
Bz-Im compound could be cytotoxic toward these cells. At 30 ns of simulation, hydrogen
bonding interactions between Bz-Im and SM prevail in erythrocyte membrane models,
while in E. coli membrane models the hydrophobic interactions between Bz-Im and PG/PE
play an important role on the fluidizing effect exhibited in bacterial membrane models.
Although 30 ns is a relatively short simulation time, it is sufficient to understand the
behavior of the system since a trend is clearly defined from 10 ns. Finally, this study
serves as a prototype for better understanding of the interactions between these kinds
of molecules and biological membranes, as well as opening prospects for future work in
this area.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11060449/s1. Section 1: Spectral data. Figure S1: Comparative FT-IR spectra of
Bz and Bz-Im. Figure S2: NMR-1H spectra of Bz. Figure S3: NMR-1H spectra of Bz-Im. Figure S4:
NMR-COSY spectra of Bz-Im. Figure S5: NMR-13C{1H} spectra of Bz-Im. Figure S6: NMR-HSQC
spectra of Bz-Im. Figure S7: NMR-HMBC spectra of Bz-Im. Figure S8: Mass spectra (EI) of Bz.
Figure S9: Mass spectra (DART+) of Bz-Im [M+1]; Section 2: Figure S10: Root-mean-square deviation
(RMSD) of Bz-Im in the system. Figure S11: Hydrogen bonds between Bz-Im and the phospholipids
of the system.
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Abstract: Development of drugs that are selectively toxic to cancer cells and safe to normal cells
is crucial in cancer treatment. Evaluation of membrane permeability is a key metric for successful
drug development. In this study, we have used in silico molecular models of lipid bilayers to
explore the effect of phosphatidylserine (PS) exposure in cancer cells on membrane permeation of
natural compounds Withaferin A (Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester (CAPE)
and Artepillin C (ARC). Molecular dynamics simulations were performed to compute permeability
coefficients. The results indicated that the exposure of PS in cancer cell membranes facilitated the
permeation of Wi-A, Wi-N and CAPE through a cancer cell membrane when compared to a normal
cell membrane. In the case of ARC, PS exposure did not have a notable influence on its permeability
coefficient. The presented data demonstrated the potential of PS exposure-based models for studying
cancer cell selectivity of drugs.

Keywords: phosphatidylserine; cancer cells; MD simulation; membrane permeability; withaferin A;
withanone; CAPE; artepillin C

1. Introduction

Cancer cells are highly complex and extremely difficult to treat due to the involvement
of multifactorial signaling pathways involved in the process of carcinogenesis. These
involve genetic and somatic aberrations that are highly heterogeneous, often leading to
intra-tumor heterogeneity. Molecular targeted therapies use small molecules to target
one or more proteins involved in the regulation of cell cycle progression, cancer signaling
pathways, angiogenesis, growth arrest and/or apoptosis in cancer cells. By activating or
inhibiting the target proteins, such small molecules/drugs block cancer cell proliferation
and tumor growth. Many of these small molecules can also affect cell migration and
invasion capability, and therefore are used for blocking cancer metastasis. However, most
cancer drugs have very low therapeutic indices and are used near their maximum-tolerated
doses to attain clinically meaningful results [1]. Adverse side effects of chemotherapeutic
drugs pose a major concern in cancer chemotherapy [2]. These can be attributed to their
effect on normal cells, due to low or lack of selectivity to cancer cells [1]. Hence, there is
a need to develop innovative strategies to predict and measure the cancer cell selective
effects of chemotherapeutic drugs.

Interactions of drugs with the cell membrane are critical, as the drugs must cross the
lipid bilayer of the cells to reach their intra-cellular targets. Malignant transformation has
been shown to involve alterations in the lipid profile of cell membranes [3,4]. Changes
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in the levels of different types of lipid molecules in cell membranes have been reported
in various types of cancers [5–10]. A common hallmark observed across several types of
cancers appears to be the loss of asymmetry in the distribution of different types of lipid
molecules between the two leaflets of the cell membrane [11–13]. The basic structure of
the cell membrane consists of a lipid bilayer that is mainly composed of phospholipids.
Phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS),
phosphatidylinositols (PI) and sphingomyelins (SM) form the majority of the phospholipids
in the cell membrane [14]. A non-uniform distribution of these lipids across the two leaflets
of the bilayer is a characteristic feature of a normal eukaryotic cell membrane [14,15]. PS and
PE are usually present in the inner leaflet, while the outer leaflet is mostly composed of PC
and SM [14,15]. This asymmetric distribution is actively maintained by the ATP-dependent
enzymes, flippases and floppases [16]. PS and PE are transported from outer leaflet to inner
leaflet by flippases, while PC and SM are transported in the opposite direction by flop-
pases [16]. An absence of such asymmetric distribution of phospholipids has been reported
in cancers. Exposure of phosphatidylserine and phosphatidylethanolamine molecules on
the outer leaflet has been reported in cancer cells [11–13]. The altered distribution of lipids
in cancer cell membranes makes their structural and biophysical properties different to that
of normal cells. Such changes could modulate drug penetration, thereby influencing drug
activity [4].

Molecular dynamics simulations using atomistic models of lipid bilayers made up of
PC, SM, PS, PE and/or cholesterol have been used by different studies to investigate the
effects of asymmetric lipid distribution on membrane properties [17–20]. Studies on the
permeability of lipid bilayers to small molecules using molecular dynamics simulations
have demonstrated the potential of in silico membrane models in analyzing the membrane
permeation of drugs [21–24].

In the present study, molecular dynamics simulations involving in silico atomistic
models of lipid bilayers have been used to explicitly explore the effect of PS exposure in
cancer cells on membrane permeation of natural compounds reported to have anti-cancer
properties. Atomistic lipid bilayer models of cancer and normal cell membranes used in
this study are based on the relative distribution of two kinds of phospholipids: the most
common phospholipid, phosphatidylcholine (PC), and the anionic phospholipid which is
exposed exclusively in cancer cells, phosphatidylserine (PS). Both the bilayer models were
built using PC and PS in the ratio 2:1 that roughly equates to their reported proportion [14].
The normal cell membrane model was built to have all the 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphoserine (POPS) molecules in the inner leaflet, whereas the cancer cell membrane
model was built with POPS molecules in both leaflets of the membrane. For simplicity,
other types of phospholipids and sterols were not included in the model.

The natural anti-cancer compounds chosen for this study included Withaferin A
(Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC)
(Figure 1). These are bioactive molecules from natural sources known for their therapeutic
potential with lesser side effects compared to synthetic drugs. Wi-A and Wi-N are secondary
metabolites from Ashwagandha that have been extensively studied for their anti-cancer
activities [25–28]. Molecular modeling approaches accompanied with in vitro assays have
revealed the multi-modal anti-cancer activities of Wi-A and Wi-N [25–27,29]. Although Wi-
A and Wi-N are closely related structural analogs, several previous studies have reported
their different levels of cytotoxicity in cancer and normal cells [30,31]. Whereas Wi-A
showed stronger cytotoxicity to both cancer and normal cells, Wi-N exhibited milder toxicity
to cancer cells and was safer for normal cells [31]. CAPE, a bioactive compound isolated
from New Zealand honeybee propolis, was earlier studied for its anti-cancer activities
and reported to cause the death of cancer cells selectively [26]. Another propolis-derived
bioactive compound, ARC—particularly enriched in Brazilian honeybee propolis—has also
been reported for its anti-cancer activity [32–34].
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Figure 1. The 2D pictorial representation of natural compounds: Withaferin A (Wi-A), Withanone
(Wi-N), Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC).

In this study, we examined the permeation of Wi-A, Wi-N, CAPE and ARC using the
models of cancer and normal cell membranes, with particular reference to the effect of PS
exposure in cancer cells. Computational free energy profiles of drugs across the membrane
provide a good understanding of their permeation mechanisms [35,36]. Potential of mean
force (PMF) values derived through molecular dynamics simulations demonstrate the free
energy landscape of permeation of drugs through the membrane. Classical molecular
dynamics simulations are not suitable for efficiently sampling the configuration space for
PMF calculations, as the systems might remain trapped in local free energy minima leaving
out the events involving large energy barriers. Umbrella sampling methods coupled with
molecular dynamics simulations have been proven to be well suited for generating PMF
profiles [37]. Steered molecular dynamics (SMD) simulations, in which an external force is
applied to an atom of the drug molecule to pull the molecule through the membrane, can
be used for generating initial configurations for umbrella sampling. SMD simulations and
umbrella sampling methods have been successfully used by different studies for deriving
the PMF profiles of lipid membrane traversal of the small molecules [22,23,38–40]. Here,
SMD and umbrella sampling simulations were employed to derive the effect of PS exposure
in the cancer membrane on the permeation of chosen molecules.

2. Materials and Methods

2.1. Generation of Lipid Bilayer Systems

Two atomistic lipid bilayer systems were generated using CHARMMGUI [41]. Each of
the generated systems contained 48 molecules of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine), 24 molecules of POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine)
and ~5000 water molecules. Table 1 shows the distribution of lipids in the leaflets of the
membrane. NaCl was used to neutralize the system and an additional 0.15 M NaCl was
added to maintain the salt concentration.

Table 1. The distribution of POPC and POPS molecules in cancer and normal membrane models.

Membrane
No. of POPC Molecules No. of POPS Molecules

Outer Leaflet Inner Leaflet Outer Leaflet Inner Leaflet

Normal 36 12 0 24
Cancer 24 24 12 12

2.2. Equilibration of Lipid Bilayer Systems

Classical molecular dynamics simulations were used for equilibrating the generated
cancer and normal membrane systems. CHARMM36 force field parameters were used for
all molecules in the systems [42]. TIP3P water model was used. All molecular dynamics
simulations were performed in GROMACS 2020 using leap-frog integrator and Verlet
cutoff scheme [43]. PME method with a cut-off distance of 1.2 nm was used for calculating
coulomb interactions [44]. The systems were periodic in all directions.
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Energy minimization was performed for 5000 steps using steepest descent algorithm.
During energy minimization, position restraints were applied to phosphate atoms with a
force constant of 1000 kJ/mol/nm2. After energy minimization, simulation was conducted
in canonical (NVT) ensemble for 100 ps with a timestep of 1 fs, during which a temperature
of 310 K was reached using a velocity rescale thermostat with a time constant of 1 ps.
During NVT equilibration, position restraints were applied to phosphate atoms with a
force constant of 1000 kJ/mol/nm2.

After NVT equilibration, the systems were equilibrated in isothermal–isobaric (NPT)
ensemble in six stages: from NPT-1 to NPT-6 for 502.5 ns. Position restraints applied to
the phosphate atoms were gradually relieved during NPT-1 to NPT-4, with no restraints
applied in NPT-5 and NPT-6. The force constants used for position restraints on phosphate
atoms were 600 kJ/mol/nm2, 400 kJ/mol/nm2, 200 kJ/mol/nm2 and 50 kJ/mol/nm2 from
NPT-1 to NPT-4, respectively. Timestep was set to 1 fs in NPT-1 and NPT-2, while from
NPT-3 onwards it was set to 2 fs. From NPT-1 to NPT-5, temperature was maintained
at 310 K using a velocity rescale thermostat with a time constant of 1 ps, while pressure
was maintained at 1 atm by semi-isotropic coupling using Berendsen barostat with a time
constant of 5 ps. During NPT-6, Nose–Hoover thermostat with a time constant of 1 ps
and Parrinello–Rahman barostat with a time constant of 5 ps were used to maintain the
temperature and the pressure at 310 K and 1 atm, respectively. NPT-1 to NPT-6 were run
for a duration of 250 ps, 250 ps, 1 ns, 1 ns, 300 ns and 200 ns, respectively. The production
simulation during which membrane properties were assessed was run in NPT ensemble
for 200 ns. No position restraints were used during production and the time step was 2 fs.
Thermostat and barostat used were the same as for the NPT-6 equilibration. Snapshots
were saved every 10 ps for analysis.

2.3. Calculation of Membrane Properties

Area per lipid and order parameters of lipid tails were calculated using MEMBPLU-
GIN through VMD [45,46]. Area per lipid was computed by selecting a triad of atoms
for phospholipids, projecting their x and y coordinates into a plane, dividing them into
polygons using a Voronoi diagram [47] and then calculating the area of the polygons. The
formula used for order parameter (SCD) calculation is as follows [48]:

SCD= −1
2

3 cos2θ − 1, (1)

where θ is the instantaneous angle between the C–H bond and the bilayer normal.

2.4. Steered Molecular Dynamics Simulations and Umbrella Sampling

To compute PMF and diffusivities of the molecules, configurations and energies of
drug molecules had to be sampled along the bilayer normal. Steered molecular dynamics
simulations were performed to generate the initial configurations for sampling. The force
field parameters of small molecules Wi-A, Wi-N, CAPE and ARC were generated using
CGENFF server [42].

The small molecule was inserted into the water at around 2 nm from the lipid head
groups. After insertion of the small molecule into the system, energy minimization was
performed using steepest descent algorithm for 5000 steps, followed by NVT and NPT
equilibration for 50 ps and 100 ps, respectively. Position restraints were applied to the small
molecule in Z-direction during NVT and NPT equilibration. Steered MD simulations were
performed in NVT ensemble using the pull-code of GROMACS. Nose–Hoover thermostat
with a time constant of 1 picosecond and Parrinello–Rahman barostat with a time constant
of 5 ps were used to maintain the temperature and pressure at 310 K and 1 atm, respectively,
during the pulling simulation. The small molecule was pulled along Z-direction from
water, towards the hydrophobic core of the membrane, using an umbrella potential with
a force constant of 100 kJ/mol/nm2 and a pulling rate of 0.00025 nm/ps. After pulling,
configurations were sampled every 0.2 nm along the reaction coordinate: the Z-component
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of distance (z). A total of 22 windows spaced 0.2 nm apart were taken for umbrella
sampling (US).

For each window, US simulations were performed in NPT ensemble, with a harmonic
force constant of 100 kJ/mol/nm2. Nosé–Hoover thermostat was used for maintaining
temperature at 310 K, with a semi-isotropic Parrinello–Rahman barostat used to maintain
pressure at 1 atm. Each window was run for 40 ns, and data from the last 25 ns were
used for analysis. Positions and forces along the reaction coordinate were saved every
2 fs. For the cancer cell membrane, US simulations were performed along only one leaflet,
as the membrane has a symmetric distribution of lipids between the two leaflets. For
the normal cell membrane, US sampling simulations were performed along both leaflets
independently.

2.5. Calculation of PMF and Permeability Coefficients

PMF profiles were estimated using Weighted Histogram Analysis Method (WHAM)
implementation in GROMACS [27]. For the normal membrane model, PMF values were
calculated for both leaflets separately, starting from bulk water to membrane core, and
the PMF curves were smoothened by using moving average spanning 0.5 Å. In the case
of the cancer membrane, PMF values of one leaflet were duplicated for the other, with
moving average smoothing conducted the same way as for the normal membrane. The
convergence of PMF profiles was confirmed by checking PMF values at different intervals
of umbrella sampling simulations (Supplementary Materials: Figure S1). The permeability
coefficient (P) was calculated using the Inhomogeneous Solubility Diffusion model [35,36].
Accordingly, P was derived from effective resistivity (Reff) using the relation,

P =
1

Reff
, (2)

and Reff was calculated using,

Reff =
∫ z2

z1

R(z) dz, (3)

where z is a collective variable describing the relative position of the solute along the
reaction coordinate and R(z) is the resistivity at z. R(z) was calculated from free energies
(ΔG(z)) and diffusion coefficients (D(z)) along z using the equation,

R(z) =
e βΔG(z)

D(z)
(4)

where β is the inverse of the Boltzmann constant times the temperature.
Diffusion coefficients were calculated using the method proposed in 2005 by Hum-

mer [49], from the autocorrelation function (Czz(t)) of z and variance (var(z)) of z as follows.

D(z) =
var(z)2∫ ∞

0 Czz(t) dt
(5)

Czz(t) was calculated using the ”analyze” module of GROMACS.

3. Results and Discussion

The phospholipid PS is usually present in the inner leaflet of the cell membranes
of normal cells [14,15]. Exposure of PS on the cell membrane of cancer cells has been
reported in a wide range of cancers [11,12,50,51]. Here, atomistic models of cancer and
normal membranes based on a relative PS distribution between the outer and the inner
leaflets of the membrane were built to study the permeation of some natural compounds
(Wi-A, Wi-N, CAPE and ARC) shown to possess anti-cancer activity. The built membrane
models consisted of only two types of lipid molecules, POPC and POPS, in contrast to
the diversity of lipid molecules in the cell membrane. Usage of such simplistic models
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reduced the simulation time needed for proper equilibration and production, compared
to complex models. The non-inclusion of other types of lipid molecules of the biological
cell membrane in our models may have some limitations. However, the models fitted the
purpose of simulation, which was to study the influence of PS exposure on the membrane
outer surface on drug permeation. Simplistic models composed of one/two kinds of lipid
molecules have been conservatively used in the past for drug–membrane interaction studies
and have been shown to produce results comparable with experimental studies [52]. The
lipid bilayer systems were equilibrated for roughly 500 ns and production simulations were
run for 200 ns prior to introducing drug molecules into the systems. Figure 2 shows the
cancer and normal lipid bilayer systems after equilibration. Different properties of the lipid
membranes were computed during the production runs, to check if the membranes were
adequately equilibrated.

Figure 2. Equilibrated bilayer systems: Carbon atoms of POPC are shown in white, carbon atoms of
POPS in magenta, sodium atoms in yellow and chloride atoms in cyan, with hydrogen atoms not
shown. The outer (extracellular) leaflet is at the top and the inner (cytoplasmic) leaflet at the bottom.
The normal cell membrane model contains POPS only in the inner leaflet, whereas the cancer cell
membrane model contains POPS in both leaflets.

3.1. Structural Properties of Lipid Bilayer Systems

Densities of different system components across the bilayer normalwere measured
to verify the localization of different molecules in the systems. The densities of different
components of the systems along the direction of normal to the membranes (Z-direction)
are shown in Figure 3. On the horizontal axis, “0” indicates the center of the hydrophobic
core of the membrane, while negative values point towards the outer leaflet and positive
values point towards the inner leaflet. The peaks at “−2” and “+2” indicate the polar
heads of lipid molecules. Figure 3d shows the asymmetric distribution of POPC and POPS
molecules in the normal membrane in contrast to the symmetric distribution in the cancer
membrane (Figure 3b). The area per lipid denotes the average cross-sectional area of lipid
molecules in the membrane leaflets. Time evolution of the average area per lipid is a good
criterion to check if the system has reached a steady state [53]. The time-dependent area
per lipid of the leaflets of cancer and normal membranes is shown in Figure 4. As there
are no noticeable drifts in area per lipid over the course of simulation, it was assumed
that the bilayers were stable. Lipid-tail-order parameters are a measure of alignment of
lipid tails with respect to the bilayer normal. The use of order parameter profiles is a
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widely used method for characterizing the structure of hydrocarbon region in lipid bilayers.
Order parameters were calculated for sn1 and sn2 tails of POPC and POPS molecules in
the membrane using Equation (1) described in the Section 2. Figure 5 shows the order
parameters of lipid molecules in cancer and normal membranes. Order parameter plots
of sn2 tails are characteristically different from that of sn1 tails because of the low order
parameters around carbons 9 and 10 of sn2 tails, attributed to the presence of a double
bond in the oleoyl group. The values were close to the previously reported values in the
literature [20,54]. In view of these data, the membrane models were considered equilibrated
enough and used for drug permeation studies.

Figure 3. Densities of components of the equilibrated membrane systems: (a,b) cancer cell membrane
and (c,d) normal cell membrane. The densities of the whole system (yellow), lipids (magenta) water
(cyan), POPC (green) and POPS (orange) along the reaction coordinate “z” are shown. On the
horizontal axis, the value 0 indicates the center hydrophobic core of the membrane, negative values
indicate the outer (extracellular) leaflet and positive values indicate the inner (cytoplasmic) leaflet.

Figure 4. Time-dependent area per lipid values of the membrane models: (a) normal membrane and
(b) cancer membrane. POPC (cyan) and POPS (magenta).
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Figure 5. Order parameters of hydrophobic tails of lipid molecules in equilibrated systems: (a) POPC
sn1, (b) POPC sn2, (c) POPS sn1 and (d) POPS sn2. The outer and inner leaflets of a normal membrane
are shown in solid cyan and dashed cyan lines, respectively. The outer and inner leaflets of a cancer
membrane are shown in solid magenta and dashed magenta lines, respectively.

3.2. PMF Profiles of the Natural Compounds

SMD and umbrella sampling simulations were used to generate the PMF profiles of
the selected small molecules Wi-A, Wi-N, CAPE and ARC. The PMF profiles show how
the free energy changes as a function of position of the molecule through the membrane
along the direction of the bilayer normal. Here, the Z-axis is the reaction coordinate along
which PMF is defined. Figure 6 shows the computed PMF curves of the small molecules.
The raw PMF values, with their standard deviation before moving average smoothing,
are shown in Supplementary Materials: Figure S2. The magenta solid curves in Figure 6
indicate PMF in the cancer membrane and the cyan-dashed curves indicate PMF in the
normal membrane. The highest point in PMF (ΔGmax) indicates the energy barrier that
has to be overcome for the passage of small molecules through membranes. Wi-A, Wi-N
and CAPE had ΔGmax in the center of the hydrophobic core of the membranes (Figure 6).
Hence, the hydrophobic core of the membranes formed the principal hindrance for the
passage of these three molecules. The ΔGmax values of Wi-A, Wi-N and CAPE were in the
order CAPE < Wi-A < Wi-N (Figure 6), predicting that CAPE is able to traverse through
the membrane easily compared to Wi-A and Wi-N. Furthermore, Wi-A showed easier
traversal compared to Wi-N. Previous studies that have used atomistic models of “POPC
+ cholesterol” bilayers to study the permeability of Wi-A and Wi-N have reported easier
permeation of Wi-A through the cell membrane compared to Wi-N [23]. Our results based
on POPC + POPS models were in line with the earlier report [23]. The ΔGmax of Wi-A, Wi-N
and CAPE was higher in the normal membrane compared to that in the cancer membrane
(Figure 6). Hence, PS exposure in the outer leaflet may have facilitated easier permeation
of Wi-A, Wi-N and CAPE through the membrane by reducing the energy barrier in the
hydrophobic core. In the case of ARC, ΔGmax occurred at the polar head group regions of
lipid molecules (Figure 6). Unlike Wi-A, Wi-N and CAPE, the lipid head groups caused
the principal hindrance for ARC permeation. The magnitude of ΔGmax of ARC was much
lower than that of the other three drug molecules in comparison (Figure 6), predicting that
ARC may traverse through the membrane easier than Wi-A, Wi-N and CAPE.
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Figure 6. PMF profiles of Withaferin A (Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester
(CAPE) and Artepillin C (ARC). The solid magenta line indicates the PMF profile in the cancer cell
membrane model and the dashed cyan line indicates the PMF profile in the normal cell membrane
model. On the horizontal axis, the value 0 indicates the center of the hydrophobic core of the
membrane, negative values indicate the outer (extracellular) leaflet and positive values indicate the
inner (cytoplasmic) leaflet.

As Wi-A and Wi-N are structural analogs, they have comparable PMF landscapes in
cancer and normal membrane models. They show interesting differences in PMF between
z ≈ −2.5 and z ≈ −1.5 (Figure 6). It is the region along the reaction coordinate where the
centers of masses of drug molecules pass from bulk water to membrane. At this cell–water
interface, the difference between PMF values of Wi-N in cancer and normal membranes was
prominent, while Wi-A had proximate values in cancer and normal membranes (Figure 6).
Differences in PMF values in cancer and normal membranes for Wi-N indicated differential
binding of Wi-N to the outer leaflet of cancer and normal membranes. Lower values of
PMF in the cancer cell membrane implied that more Wi-N molecules could bind to the
cancer membrane compared to the normal cell membrane. Hence, it can be inferred that
the exposure of PS could potentially facilitate selective binding of Wi-N to cancer cells.
The propolis compounds CAPE and ARC had dissimilar structures, as did their PMF
landscapes. The hydrophobic cores of both cancer and normal membranes had a higher
affinity for ARC compared to CAPE, indicated by the lowest values in its PMF profile
(Figure 6). This is due to the presence of the hydrophobic diprenyl groups in its structure.

The simulation trajectories were visualized, with reference to the PMF profiles, to
gain insights into the structural aspects of permeation. Snapshots of the last frame from
different umbrella sampling windows shown in Figures S3–S6 in Supplementary Materials
indicate the converged orientations of Wi-A, Wi-N, CAPE and ARC, respectively, along the
reaction coordinate at different regions of the membrane during permeation. Figures S3–S6:
subfigures B and E in Supplementary Materials show the preferred orientation of molecules
inside the outer and inner leaflets of the normal membrane, respectively, associated with
the troughs in the PMF curves. Figures S3–S6: subfigure H in Supplementary Materials
shows the preferred orientation of molecules inside the cancer membrane. In the preferred
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orientation, the polar groups of the natural compounds are oriented towards the head
groups of lipids, with hydrophobic groups of natural compounds oriented towards the
lipid hydrocarbon region. The passage of natural compounds through the membrane core
involves a flip in the orientation of natural compounds from their polar groups oriented
towards the head groups of outer leaflet lipids to that of lower leaflet lipids. In the case of
Wi-A, Wi-N and CAPE, the primary barrier to permeation—related to ΔGmax—is associated
with the traversal of their polar groups through the hydrophobic core of the membrane. In
light of this fact, the hydrophobic cores of cancer and normal membranes were inspected.
It was found that the lipid head polar groups of the two leaflets of cancer membrane were
slightly closer to the hydrophobic core in the cancer membrane compared to that in the
normal membrane (Supplementary Materials: Figure S7). This could be the basis for the
lower ΔGmax of Wi-A, Wi-N and CAPE in the cancer membrane. In the case of ARC, the
primary barrier to permeation is associated with the passage of its hydrophobic diprenyl
groups through the hydrophilic head region of lipids.

3.3. Resistivity Profiles of the Natural Compounds

Resistivity profiles of the drug molecules were calculated from PMF (Figure 6) and
diffusivity profiles (Supplementary Materials: Figure S8) using Equation 4. The calculated
resistivity profiles are shown in Figure 7. The curves of Wi-A, Wi-N and CAPE were
similar in shape, showing the highest resistance for permeation in the hydrophobic core
of the membrane (Figure 7). The resistance offered by the hydrophobic core of the cancer
membrane was less compared to that of the normal membrane for Wi-A, Wi-N and CAPE,
indicating higher permeation rates in the cancer membrane. ARC had resistivity peaks at
polar regions of the membrane (Figure 7). ARC had higher resistance in the inner leaflet
of the normal membrane, where POPS molecules were high in number compared to that
in the cancer membrane. It implied that the presence of POPS head groups increased the
resistance for the passage of ARC through polar regions of the membrane.

3.4. Permeability Coefficients of the Natural Compounds

Permeability coefficients (P) of the drug molecules were calculated using the In-
homogeneous Solubility Diffusion model (ISD) [35,36]. Table 2 shows the permeability
coefficients of Wi-A, Wi-N, CAPE and ARC in cancer and normal membranes. The perme-
ability coefficients were compared with the computed octanol–water partition coefficients
(XLogP3-AA) of the drug molecules obtained from the Pubchem database [55,56]. The
octanol–water partition coefficient is a measure of lipophilicity of the molecule. The calcu-
lated permeability coefficients were directly correlated with the octanol–water partition
coefficients obeying Meyer–Overton’s rule [57], confirming the validity of the methods
used in our study (Table 2). The calculated permeability coefficients were in the order
Wi-N < Wi-A < CAPE < ARC (Table 2). The lower permeability coefficients of Wi-A and
Wi-N were anticipated due to their bigger size and the presence of polar groups all over
their structures. The lower permeability of Wi-N compared to that of its analog Wi-A is in
line with the higher IC50 values of Wi-N compared to that of Wi-A, as reported in previ-
ous studies (IC50 for Wi-A and Wi-N for most cancer cells is 0.3–0.5 μM and >10–20 μM,
respectively) [26,29,30]. The higher permeability coefficients of ARC and CAPE is due
to the presence of hydrophobic diprenyl group and phenethyl group in their structures,
respectively. The higher lipophilicity (XLogP3-AA in Table 2) of ARC and CAPE also
implies that they undergo higher membrane retention compared to Wi-A and Wi-N. The
relatively extreme negative PMF values of ARC within the membrane core surrounded by
PMF peaks at lipid polar regions (Figure 6) implies that more ARC molecules will become
trapped inside the membrane core. This might be an underlying cause of the low efficacy
of ARC (IC50 = 275 μM) [58].
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Figure 7. Resistivity profiles of Withaferin A (Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester
(CAPE) and Artepillin C (ARC). The solid magenta line indicates the resistivity profile in the cancer
cell membrane model and the dashed cyan line indicates the resistivity profile in the normal cell
membrane model. On the horizontal axis, the value 0 indicates the center of the hydrophobic core of
the membrane, negative values indicate the outer (extracellular) leaflet and positive values indicate
the inner (cytoplasmic) leaflet.

Table 2. Calculated permeability coefficients of the drug molecules. Note: XLOGP3-AA indicates the
computed octanol–water partition coefficients retrieved from the Pubchem database.

Cancer Cell Membrane Normal Cell Membrane
XLOGP3-AA

P (cm/s) log P P (cm/s) log P

Withanone (Wi-N) 7.64 × 10−6 −5.12 1.33 × 10−6 −5.88 3.1
Withaferin A (Wi-A) 1.16 × 10−3 −2.94 1.06 × 10−4 −3.98 3.8

Caffeic Acid Phenethyl Ester (CAPE) 8.37 × 10−1 −0.08 2.31 × 10−1 −0.64 4.2
Artepillin C (ARC) 4.67 0.67 4.14 0.62 5.4

Wi-N, Wi-A and CAPE had notable differences in their permeability coefficients for
the cancer and the normal cell membrane models, whereas ARC had closer values (Table 2).
This implied that the differential distribution of PS in the membrane models does not
have a notable influence on the permeation rate of ARC compared to that of Wi-A, Wi-N
and CAPE. The permeability coefficients of Wi-N, Wi-A and CAPE were higher in cancer
membranes compared to normal membranes, implying higher permeations rates due to the
presence of PS in both leaflets (Table 2). The structural analogs Wi-N and Wi-A had similar
fold differences in permeation rates between cancer and normal membranes (Table 2). As
inferred from the PMF curves, the presence of PS in the outer leaflet lowered the free energy
in the cell–water interface of the cancer membrane, aiding more molecules to bind to it.
Hence, PS exposure may render higher tumor selectivity for Wi-N compared to Wi-A.

3.5. Implications of the Study

With the use of atomistic models and umbrella sampling methods to perform molecu-
lar dynamics simulations, the possible role of PS exposure in cancer cells in modulating
the permeation of selected anti-cancer compounds have been interpreted. Several carrier
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systems using nanoparticles, synthetic polymers, liposomes, peptides and antibodies have
been reported in the literature for targeted delivery of drugs to cancer cells [59–64]. How-
ever, successful clinical translations of such systems are limited. The present study relied
on the fact that studying the molecules, which are inherently selective to cancer cells in
action, will aid in understanding the molecular mechanisms that confer them selectivity.
Though there are numerous factors that govern selectivity of a drug towards cancer cells,
we have focused only on the effect of PS exposure on modulating membrane permeation.
The exposure of PS caused alterations in the free energy landscapes underlying the traversal
of the drug molecules through the membrane, thereby influencing the permeation. The
molecular models and methods employed in this study have explained the selectivity of
Wi-A, Wi-N and CAPE by differences in PMF landscapes and permeability coefficients
between cancer and normal membrane models. In the case of ARC, PS exposure did not
seem to have notable effects on the permeation rates. The interesting case is the structural
analogs Wi-A and Wi-N, whose differential selectivity was explained by differences in free
energy landscapes underlying membrane permeation. The used models demonstrate the
possible contribution of PS exposure to drug selectivity. Hence, studying the influence of
PS exposure on drug permeation offers, though not complete, a reasonable understanding
of tumor selectivity of the drugs.

This study used simplistic molecular models to evaluate the possible contribution
of PS exposure to drug selectivity and, hence, the limitations associated with the used
materials and methods must be understood. The effect of PS exposure has been explored in
the absence of other diverse types of lipid molecules, which might have led to a reduction
in accuracy. The combination effect of different types of lipids and their distribution
on the permeability of small molecules will differ from the observed sole effect of PS
distribution in our binary lipid mixture. The models are not completely reflective of the
cellular membrane, however, they aided in exploring one specific aspect that contributes to
the differences in permeability between cancer and normal cells. The effect of PS exposure
using complex models containing other major lipids will be explored in the future in light
of the findings from this study. The proportion of charged species of small molecules in the
tumor microenvironment and their interaction with the cell membrane also influence the
permeation, and thereby their activity. Here, only the neutral species of the small molecules
were studied.

4. Conclusions

Permeability of drugs through the cell membrane is crucial for its bioactivity. In
this study, we have built cancer and normal membrane models based on PS distribution
between membrane leaflets and assessed the permeation of natural compounds (Wi-A,
Wi-N, CAPE and ARC) that have been shown to possess anti-cancer potential. It has been
shown that PS exposure may influence drug permeation and thereby the drug activity. The
cancer cell selectivity of these compounds was clearly evident. This study highlighted
the effect of PS exposure in the cancer cell membrane on selective action of the chosen
molecules. Though the simplistic models based on PS exposure might not be sufficient to
explain the tumor selectivity of all drugs, this study explored a potential niche area, which
may aid in the development or optimization of drugs that are inherently selective to cancer
cells in action. With a high number of drugs failing in clinical trial due to lack of selectivity,
the molecular differences between cancer and normal cell membranes can be exploited to
improve the selectivity of potent drugs. Similar specialized in silico models of cancer cell
membranes can be easily developed in the future to assess the tumor selectivity of existing
drugs and to screen compound libraries to find cancer selective drugs.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12010064/s1, Figure S1: PMF curves of Withaferin A
(Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC) calculated
after 10, 20, 30 and 40 ns: (A) PMF values in outer (extracellular) leaflet of normal membrane, (B)
PMF values in inner (cytoplasmic) leaflet of normal membrane and (C) PMF values in outer leaflet
of cancer membrane. Figure S2: PMF values of Withaferin A (Wi-A), Withanone (Wi-N), Caffeic
Acid Phenethyl Ester (CAPE) and Artepillin C (ARC) before moving average smoothing: Magenta
markers indicates PMF values in the cancer cell membrane model and cyan markers indicate PMF
values in the normal cell membrane model. ‘0’ in horizontal axis indicates the center hydrophobic
core of the membrane, negative values indicate the outer (extracellular) leaflet, positive values
indicate the inner (cytoplasmic) leaflet. Error bars show standard deviation. Figure S3: Snapshots
of last frame from umbrella sampling windows showing the converged orientations of Withaferin
A (Wi-A) associated with permeation through (A–F) normal and (G–I) cancer membranes: Outer
(extracellular) leaflet is shown at the top and inner (cytoplasmic) leaflet is shown at the bottom. (B,E)
Orientations corresponding to the lowest points in PMF in the outer and inner leaflets of the normal
membrane model. (H) Orientation corresponding to the lowest points in PMF in the leaflets of the
cancer membrane model. Orientations are shown for only one leaflet in cancer membrane, as the
cancer membrane model is symmetric. Colors are as per CPK rules. Figure S4: Snapshots of last
frame from umbrella sampling windows showing the converged orientations of Withanone (Wi-N)
associated with permeation through (A–F) normal and (G–I) cancer membranes: Outer (extracellular)
leaflet is shown at the top and inner (cytoplasmic) leaflet is shown at the bottom. (B,E) Orientations
corresponding to the lowest points in PMF in the outer and inner leaflets of the normal membrane
model. (H) Orientation corresponding to the lowest points in PMF in the leaflets of the cancer
membrane model. Orientations are shown for only one leaflet in cancer membrane, as the cancer
membrane model is symmetric. Colors are as per CPK rules. Figure S5: Snapshots of last frame
from umbrella sampling windows showing the converged orientations of Caffeic Acid Phenethyl
Ester (CAPE) associated with permeation through (A–F) normal and (G–I) cancer membranes: Outer
(extracellular) leaflet is shown at the top and inner (cytoplasmic) leaflet is shown at the bottom.
(B,E) Orientations corresponding to the lowest points in PMF in the outer and inner leaflets of the
normal membrane model. (H) Orientation corresponding to the lowest points in PMF in the leaflets
of the cancer membrane model. Orientations are shown for only one leaflet in cancer membrane,
as the cancer membrane model is symmetric. Colors are as per CPK rules. Figure S6: Snapshots
of last frame from umbrella sampling windows showing the converged orientations of Artepillin
C (ARC) associated with permeation through (A–F) normal and (G–I) cancer membranes: Outer
(extracellular) leaflet is shown at the top and inner (cytoplasmic) leaflet is shown at the bottom.
(B,E) Orientations corresponding to the lowest points in PMF in the outer and inner leaflets of the
normal membrane model. (H) Orientation corresponding to the lowest points in PMF in the leaflets
of the cancer membrane model. Orientations are shown for only one leaflet in cancer membrane,
as the cancer membrane model is symmetric. Colors are as per CPK rules. Figure S7: Density of
polar groups of cancer (magenta) and normal (normal) membranes along the reaction coordinate
‘z’. ‘0’ in the horizontal axis indicates the center hydrophobic core of the membrane, negative values
indicate the outer (extracellular) leaflet, positive values indicate the inner (cytoplasmic) leaflet. Figure
S8: Diffusivities of Withaferin A (Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester (CAPE)
and Artepillin C (ARC): Magenta markers indicates diffusivity values in the cancer cell membrane
model and cyan markers indicate diffusivity values in the normal cell membrane model. ‘0’ in
horizontal axis indicates the center hydrophobic core of the membrane, negative values indicate the
outer (extracellular) leaflet, positive values indicate the inner (cytoplasmic) leaflet. Error bars show
standard deviation.
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Abstract: In this article, we describe the general features of red blood cell membranes and their effect
on blood flow and blood rheology. We first present a basic description of membranes and move
forward to red blood cell membranes’ characteristics and modeling. We later review the specific
properties of red blood cells, presenting recent numerical and experimental microfluidics studies
that elucidate the effect of the elastic properties of the red blood cell membrane on blood flow and
hemorheology. Finally, we describe specific hemorheological pathologies directly related to the
mechanical properties of red blood cells and their effect on microcirculation, reviewing microfluidic
applications for the diagnosis and treatment of these diseases.

Keywords: membrane elasticity; red blood cells; hemodynamics; hemorheology; microfluidics

1. Introduction

The membrane is a fundamental structure in all living organisms, as it defines the
cell as an entity. It separates the external environment from the cell’s inner region, which
contains all the organelles and molecular machinery. The elastic behavior of more complex
membranes, such as those present in mammalian cells, is still subject to lively debate in
the literature. In this context, most research has focused on the study of human red blood
cells as a mechanical model system [1,2], due to its structural simplicity and the lack of a
nucleus and any internal structure.

From a theoretical point of view, our knowledge about membranes’ molecular compo-
sitions and functioning has continuously increased from the pioneer biological model of
the fluid mosaic by Singer and Nicolson [3]. In the last 40 years, membranes have also been
studied by physicists, providing a complementary picture about membrane behavior and
the properties of vesicles and cells. The subject was first approached by Canham in 1970 [4]
and then by Helfrich in 1973 [5,6], and based on their models an outstanding number of
membrane phenomena have been understood and explained from a physical perspective.
Additionally, in spite of membranes’ intrinsic complexity, physical models have explained
a high number of phenomena observed experimentally, inviting an extensive theoretical
exploration of biological membranes.

Erythrocytes or red blood cells (RBCs hereafter) present a remarkable capability to
deform and pass through very thin capillaries, and in microcirculation they acquire strange
shapes, the benefits of which are still unknown; see the article of G. Tomaiuolo 2009 [7].
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The dynamics of RBCs in shear flow have been studied and an unsteady tumbling solid-
like motion has been observed when cells are suspended in plasma [8]. Additionally,
at high shear stress they exhibit a drop-like tank-treading motion characterized by a steady
orientation and membrane rotation about the internal fluid [9–11]. They also develop a
number of different morphologies if their membranes are altered or damaged, as known
from a number of anemias, malaria, or during blood storage [12]. The delicate membrane
equilibrium at the molecular scale ultimately affects the mechanisms taking place at a much
larger scale, such as cell shape and blood properties.

Initially, RBCs were studied from a numerical point of view, considering confined
geometries to simulate the circulatory system conditions. In the present decade, the devel-
opments in microfluidics technologies have contributed significantly to the experimental
study of RBCs’ membrane properties [13] and the rheological properties of blood and its
relation to the RBCs [14,15]. The combination of biological studies with microfluidics has
been fundamental in the biomedical research of the biomechanical properties of the RBCs
in health and disease [16] and the development of new Point of Care Diagnostics (PoCD)
techniques using blood [17–19].

Considering that the blood is the most important fluid in our body and that blood
circulation plays a fundamental role in maintaining an appropriate environment in the
body’s tissues, ensuring the optimal functioning of cells, understanding the flow properties
of blood is crucial. These properties depend on the composition of blood and the particular
properties of its constituents. The blood is known to be a complex mixture of blood plasma
and blood cells. It presents a non-Newtonian behavior, even if blood plasma behaves as
a Newtonian fluid by itself. The study of blood flow can be approached from two points
of view: we can study the fluid dynamics of the blood flow as a continuous fluid with its
constitutive equations or we can study the flow properties and rheology of blood and its
components’ contributions, from single cells to their collective behavior.

This review is dedicated to describing the general features of RBC membranes and
their effect on blood flow, using numerical and experimental studies based on microfluidics
technologies. Section 2 is dedicated to describing the composition of the cell membrane in
order to understand its constitution. In Section 3, we discuss current numerical modeling
techniques of RBC membranes. In Section 4, we review the composition of blood, and the
mechanical properties of RBCs. Here, we define how these properties affect the behavior of
blood and its consequences. In Section 5, we refer to the past and current studies of the
characteristics of RBCs and blood flow at the microscale and their effect on blood rheology
from a single cell to the collective behavior. Finally, Section 6 is dedicated to describing our
interest in hemorheology, exposing its high importance in the diagnosis of diseases related
to blood viscosity and the properties of RBC membranes, focusing on novel microfluidics
applications for diagnosis and treatment.

2. Cell Membranes

Cell membranes represent an essential element in the development of living organisms.
They constitute the cells’ boundaries, separating the interior of the cell from the external
environment. Membranes enclose the organelles and components that together form
the basic units of life. However, membrane functionality is not limited to its simple
structural role, but membranes are also responsible for the interactions of the cell with
neighboring cells. These interactions are mediated by a certain type of transmembrane
proteins that coordinate the cell signaling, enabling the cell’s response to environmental
pressures. Additionally, membranes maintain ion gradients which allow the synthesis
of ATP, the basic energetic molecule [20]. The plasma membrane is the most important
membrane of the cell, but other types of membranes are present in organelles such as the
nucleus, the Golgi apparatus, the endoplasmic reticulum and the mitochondria. All the
membranes of the cell constitute around 30% of the total protein activity [21].

All biological membranes share a common structure and composition in spite of being
part of different entities, and regardless of their function. Membranes are composed of
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different lipid molecules that assemble to form bilayers. Lipid bilayers are selectively
permeable to the exchange of polar molecules and host a high density of transmembrane
proteins, which essentially define the specific membrane functionality. Lipids are bound by
relatively weak, non-covalent interactions that allow a rapid lateral interchange of positions,
leading to a significant surface diffusion over the membrane plane, D ≈ 10−12 m2/s,
refs. [12,22]. The lipids practically behave as a fluid in the bilayer plane, a property
with important implications for the cell activity. The membrane is connected with the
inner cytoskeleton, a three-dimensional mesh formed by actin filaments which provides
compactness and structural ordering, and determines the cell shape, which in turn depends
on the type of cell and its function. In some cells, an exterior cytoskeleton also exists,
and it connects with neighboring cells in order to facilitate a coordinate response of the
tissue. The membrane equilibrium is controlled by a number of active processes, including
a flip-flop rearrangement of the different lipid species of the bilayer, remodeling of the
cytoskeleton, or the balance of lipid densities during vesiculation processes (e.g., during
endo- and exocytosis), which are able to occur due to the existence of lipid reservoirs in the
interior of the cell.

Lipids represent up to 50% of the total mass of the membrane in mammalian cells [23,24].
They are amphiphilic molecules with a polar head (which prefers to contact and interact
with other polar molecules, such as water) and a tail formed by two hydrocarbon chains
which present a strong hydrophobicity, and therefore the tails avoid the interacting with
water. If lipids are immersed in water, they tend to self-assemble to avoid the hydrophobic
interactions with the surrounding water. Two basic structures can be formed by these aggre-
gates. Sometimes they assemble to form micelles, a closed structure, with all the tails in the
inner, free-water region, and the lipid heads oriented to the exterior, in contact with water.
Another possibility is the formation of bilayers and vesicles, when two lipid monolayers
fold in opposite directions, so that the heads form two parallel sheets whereas the tails are
trapped in the intermediate region, without contact with the aqueous environment, see
Figure 1. Lipids rearrange to avoid the presence of edges, forming closed surfaces in which
the water is at both the inner and outer regions, but there is no direct interaction with the
tails. The strong hydrophobicity causes these closed structures to be much energetically
favorable, thus ensuring large stability under thermal fluctuations and other mechanical
disruptions [23].

Figure 1. Different aggregates formed by lipids: micelle, bilayer, and closed bilayer, forming a vesicle.
The preference of the lipids to aggregate in one structure or another is determined by the shape of the
lipid; phospholipids form bilayers. Credits: Mariana Ruiz Villareal available under Public Domain.

A eukaryotic cell is typically composed of 500–1000 different species of lipids; however,
the major components reduce to the phospholipids, which are asymmetrically distributed
in the bilayers. A discussion on the polymorphism of lipids can found in the work of Cullis
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(1986) [25]. In addition to the phospholipids, animal cell membranes also contain cholesterol
and glycolipids. Cholesterol is a small molecule with a polar hydroxyl group and a short
hydrocarbon chain. Cholesterol occupies the space between phospholipid tails in the inner
region of the bilayer, with its head oriented close to the phospholipid head. Mammalian
cell membranes are rich in cholesterol, which plays an important role in the control of
bilayer fluidity, and it also affects the membrane rigidity when present at abnormally high
densities [26,27]. Another important constituent of the cell membrane is transmembrane
proteins, responsible for the main processes that take place in the membrane, and therefore
they define the membrane functionality. Depending on the membrane, proteins represent
25–75% of the total mass of the membrane. Since proteins are much larger than lipids,
this concentration corresponds to a protein per ≈50–100 lipids. Transmembrane proteins
are also amphiphilic and orient their polar groups to the aqueous environment (cytosol
and exterior of the cell), whereas the hydrophobic groups interact with the lipid tails.
The bilayers of mammalian cells are complex structures with a bewildering number of
proteins working on and through them. They have a typical thickness of 4 nm, while most
eukaryotic cells are ≈5 μm–8 μm in length. Thus, the membrane thickness is three orders
of magnitude smaller than the overall cell length. Although the bilayer is usually fluid, this
property presents a strong dependence on the temperature and lipid composition [28].

Most cells have a complex mesh formed by actin filaments that occupies most of the
inner cytosolic volume and connects the different organelles and microstructures of the cell.
This structural element provides mechanical strength to the cell and it often participates
in determining the cell shape and cell mobility. This structure, known as a cortical cy-
toskeleton, is connected with the membrane in order to coordinate the response to external
perturbations [29]. The cells also contains a much simpler cytoskeletal structure, the so-
called membrane cytoskeleton, which lies underneath the lipid bilayer. The membrane
cytoskeleton has a structural functionality, providing strength and preventing from certain
shape deformations, such as vesiculation or the pinching-off of the bilayer. The membrane
cytoskeleton is a two-dimensional spectrin network anchored to the inner (cytosolic) mono-
layer of the plasma bilayer of certain cells [30], such as human erythrocytes. The presence
of ATP is crucial for maintaining the cytoskeleton properties, and when this molecule is
depleted, the cell experiences drastic shape changes. Although this phenomenon is not
completely understood, the fluid gel hypothesis assumes that the network is subjected to
continuous remodeling, which allows the relaxation of cytoskeleton tensions [31]. Hence,
when active processes cease, the cytoskeleton loses its fluidic behavior and stiffens.

Eukaryotic cells present an extensive variety of shapes, as an adaptation to their
specific function and location within the different tissues. The cortical cytoskeleton and the
plasma membrane are the two main elements responsible for the cell shape and mechanical
response. Still, the different organelles occupy an important portion of the cell volume,
and their presence implies that the cell must accommodate them. Hence, while studying
the mechanical properties of the cell, it is difficult to discern between the different effects,
obscuring the understanding of the specific properties of the membrane. Taking into
account this problem, the RBC represents an interesting case. Mammalian RBCs lack
a nucleus and any internal structure, so that their unique components are the plasma
membrane with its underlying cytoskeleton [32]. Accordingly, the shape of the RBC can be
directly understood as the result of its membrane properties. The RBC is therefore studied
as a model system in order to understand plasma membrane properties and, indeed, many
of the studies that have elucidated key insights on membrane biology focused on RBCs.
Nevertheless, RBCs are interesting not only as a model system but also due to their crucial
role in our lives, as they are the main component of blood and the unique carriers of oxygen.

3. Cell Membrane Modeling

To develop a physical approach to membrane modeling, the use of mesoscopic theo-
ries is beneficial. Considering the membrane as locally homogeneous and introducing a
continuum description, each small part of the membrane is characterized by some certain
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local properties. These properties must be consistent with the local molecular structure of
the membrane, so that a connection between the micro and meso scales can be derived.
The molecular complexity of biological membranes only affects a few essential aspects
of relevance in a physical description of membranes: length scale separation, fluidity,
hydrophobicity of the lipid tails, bilayer architecture, membrane cytoskeleton and active
processes [33].

In this context, the Helfrich bending energy represents the fundamental theory of
membrane elasticity. Helfrich adapted the general theory of elasticity to the particu-
lar characteristics of membranes, accounting for the structural membrane properties [5].
The main assumption of this approach is that the cell membrane can be described as a
two-dimensional sheet, based on its small thickness compared to the cell length. Helfrich
proposed that, from the main types of deformations that a layer can undergo—shear, tilt,
stretch and bending—only the latter plays a relevant role in the membrane elasticity to
characterize the shape of the RBC. He generalized the bending energy to describe the
elasticity of lipid membranes, proposing a free energy, which depends on a bending rigidity
modulus κ. For a bilayer, the bending modulus depends on the area-compression modu-
lus KA, which represents the energetic cost of expand/compress the area of the a single
layer. Hence, assuming a homogeneous layer and considering a pure bending deformation,
the general elastic energy reduces to the bending contribution.

3.1. Cell Membrane Dynamics

In recent years, several numerical models to understand and replicate the elastic
properties of cells have been developed [34]. Various numerical techniques have been
reported to model a single RBC’s mechanics and its elastic properties, such as the finite
element method [35], boundary integral models [36,37] lattice-Boltzmann method [38–40]
and dissipative particle dynamics [41,42]. Most of these methods use a multiscale approach
for single-cell modeling.

The representation of the membrane as a two-dimensional layer is reasonably accurate,
the simplest and most direct formulation consists of defining a mesh of points which
represents the membrane neutral surface, and from there extract the local mean curvature or
deformation tensor necessary to compute the elastic energy. The most important examples
include the immersed boundary methods [43,44], integral boundary methods [45,46] or
multiparticle collision dynamics [47,48]. Methods in this direction have been successfully
applied to the study of many membrane-related topics [31,49]. All these methods require
of an explicit tracking of the membrane position and the calculation of the deformation
variables, i.e., the curvature.

A different approach, based on a Eulerian rather than a Lagrangian description, are the
phase-field models [50]. The membrane is identified from an auxiliary scalar field defined
in the entire space, and the method details the dynamics of the field, instead of specifically
dealing with the evolution of the interface. This formulation also avoids the problem of
defining the boundary conditions at the membrane surface. Although the application of
phase-field methods to amphiphilic systems was extensively investigated in the past [51],
it is only recently that these models have been used in the study of cell morphology and
dynamic response [39,52–54].

Combining the Helfrich free energy model, mentioned earlier in this section, and a
phase field method, the dynamics of a membrane are defined as a function of an order
parameter φ, which varies between −1 and 1, defined as Φ[φ] = −φ + φ3 − ε2∇2φ and a
mean bending modulus κ̄ = 3

√
2

4ε3 κ. Here, ε is the interfacial width, and the order parameter
is given as φ(x) = tanh(x/(

√
2ε)) [55]. The dynamic of the membrane is described as

∂φ

∂t
= κ̄∇2{(3φ2 − 1)Φ[φ]− ε2∇2Φ[φ] + ε2σ̄(x)∇2φ + ε2∇σ̄(x) · ∇φ}, (1)
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where the term μmem = (3φ2 − 1)Φ[φ]− ε2∇2Φ[φ] + ε2σ̄(x)∇2φ represents the chemical
potential of the membrane. The parameter σ is the mean surface tension of the membrane
defined as σ̄(x) =

√
2

6ε3κ̄
σ(x).

3.2. Membrane Dynamics and Hydrodynamic Coupling

The dynamics of the membrane are dictated by Equation (1), but, in many systems,
the hydrodynamic effects of the aqueous environment are also crucial in the membrane
evolution. A typical example is the study of lipid vesicles in shear flow [56,57], which
serves as a model system for RBCs while flowing along capillaries forced by an external
flow. To model the interaction of the membrane with the surrounding fluid, the Navier–
Stokes equation is frequently used to describe the dynamics of the fluid, and both equations
are coupled describing the membrane–fluid interaction. The complete Navier–Stokes
phase-field model (NS-PF) [58,59] is

∂φ

∂t
+ v · ∇φ = M∇2μmem, (2)

ρ

[
∂v

∂t
+ (v · ∇v)

]
= −∇P − φ∇μmem + η∇2v + fext, (3)

where φ is the order parameter, v is the velocity of the fluid, μmem is the chemical potential
of the membrane, ρ is the density of the suspension, P is the pressure exerted on the fluid
and fext are the external forces applied to the fluid.

From the perspective of RBC elasticity, the membrane mechanics are often character-
ized with the bending and shear modulii. The minimization of the Helfrich free energy
for an ellipsoidic shape under the appropriate values of area and volume leads to the
biconcave discocyte of the RBC as the equilibrium shape. Nevertheless, to obtain an accu-
rate model of RBC membranes, the cytoskeleton’s elastic properties must be considered.
The cytoskeleton presents a low resistance to bend, with a bending modulus at least two
orders of magnitude lower than that of the bilayer. It does present, however, resistance to
shear and compression in the membrane layer, and it is known to play a fundamental role
in inhibiting budding and vesiculation processes. Different models have been formulated
to model the cytoskeleton’s elasticity. A simple way is to represent it as a spring mesh,
relating the spring constant with the elastic modulii. A different approach is to recover the
continuum mechanics description and consider the finite strain theory [60].

The elastic properties of the RBC membrane are highly dependent on the specific
bilayer lipid composition, ATP concentration, age of the cell, and temperature. They are
also known to vary with the morphological state of the cell, and echinocytes or spherocytes
are considerably more rigid than discocytes. The bending rigidity has been measured by
different experimental techniques [61], such as, micropipette [1], AFM [62] and optical
tweezers [63]. Typical values fall between 10 and 50 kBT, with slight deviations depending
on the specific technique. The shear modulus of the bilayer is negligible due to its fluidic
nature in the membrane plane, given that any shear stress is instantaneously relaxed by the
rapid lateral rearrangement of lipids.

With the improvement of miniaturization techniques and methods in the past 20 years,
microfluidics has become a fundamental aspect for studying the elastic and mechanical
properties of the RBCs from an experimental point of view. As a result, several studies have
been successful in relating theoretical and numerical analyses with experiments [7,64,65].

4. Human Red Blood Cells and Blood Components

4.1. Human Red Blood Cells

Mammalian RBCs have different shapes and sizes, depending on the animal’s physio-
logical requirements (e.g., oxygen consumption in animals inhabiting high-altitude moun-
tains). Human RBCs have a disk shape with a typical diameter of 8μm, with a concave
region in the center where the cell achieves its minimum thickness of 1μm, and a convex

104



Membranes 2022, 12, 217

outer rim where it reaches a maximum thickness of 2μm; see Figure 2. This particular shape
is usually known as the biconcave discocyte, and it corresponds to the healthy state of the
cell. The typical cell area and volume of a healthy individual are 140μm2 and 90μm3 [66],
respectively. Cells present specific regulatory systems to maintain their area and volume
constant, thus ensuring that their resting shape is fixed.

In humans, RBCs exhibit a huge intraindividual variability, with strong correlation
with sex and age. Cells of men are up to 20% larger than in women, and men also present
higher hematocrit in the circulatory system. Aging affects to the RBC membrane rigidity, so
that old individuals present more rigid cells. The biconcave discocyte, however, represents
just one of the many morphologies exhibited by RBCs, and it responds to a very specific
conditions of area-to-volume ratio, bilayer and cytoskeleton elastic properties, membrane
internal asymmetry and pH of the surrounding aqueous environment, among others. Other
well-known morphologies are the stomatocyte, when the cell acquires a cup-like shape,
and the echynocyte, when the cell becomes spherical and it develops many spikes around
its contour. The entire shape deformation comprises a sequence of different morphologies
usually known as stomato-discoechynocyte [67], and it is triggered by the disruption of the
membrane microstructure which changes the membrane asymmetry.

Figure 2. Photograph of RBCs. In this picture, the biconcave disc shape of RBCs is observed. The RBCs
are from a healthy 18-year-old male and were imaged on a SEM microscope as quickly as possible so
the blood cells did not shrink and distort. The image has been digitally modified to add the red color
typical of RBCs. Credits: Annie Cavanagh available under Creative Commons by-nc-nd 4.0 from
http://wellcomeimages.org/, accessed on 30 January 2020.

The origins of the peculiar discocyte shape have been subject to debate for decades.
It seems reasonable that the large cell area compared to volume (compared to that of a
sphere, the so-called reduced volume vred = V/(4πR2/3) = 0.6, where R =

√
A/(4π) is

the radius of a sphere with equal area to the cell; thus, for a sphere, vred = 1), responds to
the necessity of optimizing the diffusion of oxygen across the membrane. Alternatively,
it has been proposed that the disk has a low inertial momentum, so that it does not
rotate when flowing in the main arteries, minimizing the formation of turbulent flows [68].
Another hypothesis postulates that the discocyte is an appropriate shape to undergo strong
deformations and pass through the smallest capillaries, after recovering the normal relaxed
shape [69].

Three fundamental effects, derived from the characteristic geometry of RBCs, affect
blood flow: (1) The geometry gives them the capacity to align with the direction of flow.
(2) The cellular membrane of a healthy RBC is flexible, which means that it can change
its shape and deform under different flow conditions. (3) RBCs’ shape facilitates their
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adhesion together, forming aggregates. All these properties of the RBCs act together to
give blood a viscosity that is substantially higher than blood plasma and contribute to its
non-Newtonian properties.

4.2. Blood Components

Human blood is a two-phase fluid system and consists mainly of an aqueous poly-
meric and ionic solution of low viscosity, the plasma, in which is suspended a 0.45–0.50
concentrated cellular fraction [70]. The plasma is a liquid-phase mixture of metabolites,
proteins and lipoproteins suspended in a salt solution composed mostly of water. The cel-
lular fraction is a complex mixture of erythrocytes (RBCs), leukocytes (white blood cells),
and thrombocytes (platelets). Nearly 99% of the cellular fraction in blood is represented
by RBCs [71]. The complete set of blood components is usually referred to as whole blood.
Given the complex constitution of blood, it is considered as a non-Newtonian fluids, which
presents a shear-thinning behavior. The rheological properties of blood are primarily due
to the diversity and particular features of its constituents.

Human blood plasma is known to behave as a Newtonian fluid; however, some recent
studies have observed viscoelastic behavior in human blood plasma [72]. Plasma proteins
play an important role in the hemorheological properties of whole blood. First, even
though blood plasma is ≈92% water, due to plasma proteins, its viscosity at 37 ◦C is around
1.7 times the viscosity of water at the same temperature [73]. Second, plasma proteins
(especially fibrinogen) cause RBCs to stick together, forming aggregates, such as piles of
coins, known as rouleaux. Rouleaux formation is important because it causes the viscosity
of blood to be very dependent on the shear rate to which it is exposed [74].

The erythrocytes’ volume fraction in blood is commonly referred as hematocrit.
The normal range of hematocrit differs between men and women, 40 to 50% and 36
to 46%, respectively. Leukocytes and thrombocytes together only comprise about 1% of
the cellular fraction. This high concentration of RBCs is the main reason that they are
hemorheologically important. Additionally, the physical and morphological properties of
RBCs also contribute to the non-Newtonian behavior of blood.

White blood cells (WBCs) and platelets do not have a significant hemorheological
role, mainly due to their low concentration in blood in comparison with RBCs. Despite
WBCs being bigger in size, presenting viscoelastic properties by themselves, and playing an
important role in microcirculation resistance, their volume concentration is approximately
three orders of magnitude lower than RBCs. Thus, their effects are less relevant in general
circulation. In the case of platelets, they are much smaller than RBCs (2–4μm) and their
volume in blood is even smaller than the leukocytes’ volume. As a consequence, they
neither influence whole-blood viscosity directly nor microvascular resistance. However,
recent studies have considered the biomechanics of platelets to be fundamental in clinical
diagnostics [75,76].

5. Hemodynamics and Hemorheology

The circulatory system is an organ system that circulates blood along all the cells and
tissues, facilitating the transport of oxygen and nutrients, which allows the nourishment of
the cells [77]. It also serves as a carrier of other molecules or matter, and is used in processes
such as the transport of waste products towards the excretory system, or a fast transport
of hormones from one part of the body to another in response to a certain environmental
condition [78]. Generally, the main function of the circulatory system is to provide the
molecules that the body tissues need at each moment.

The circulatory circuit is composed of a collection of blood vessels. These blood vessels
decrease in size from the arteries and veins, through arterioles and venules, to capillaries
where they reach the organ tissues and nutrient exchange takes place. The circulation of
blood in these microvessels: arterioles, venules and capillaries is know as microcircula-
tion [79].
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Blood circulates constantly around the body, and therefore the study of blood flow and
its rheological properties is crucial to understand the processes underlying microcirculation.
Moreover, several studies have demonstrated that the alteration of hemodynamics and
hemorheology is associated with various diseases that affect the normal circulation of
blood [16,80–82]. In this section, we will review the general features of hemodynamics and
hemorheology, and the contribution of recent numerical and experimental microfluidic
techniques, to study the hemodynamical and hemorheological properties of blood from a
single-cell effect to their collective behavior.

5.1. Hemodynamics and Hemorheology for a Single Cell

Hemodynamics is the area of biophysics and physiology that studies the fluid dynam-
ics of blood flow inside the different structures of the circulatory system: arteries, veins,
arterioles, venules and capillaries. Blood flow in the human body is affected by several
factors, such as the driving pressure of the flow, the flow characteristics of blood and
the geometric structure and mechanical properties of blood vessels [83]. Hemodynamics
research has a long history and is an attractive topic, with several theoretical, experimental
and computational studies having been developed in the past 50 years [84–88]. The field
continues to expand due to recent advancements in numerical and experimental techniques
at the microscale. These new techniques have enabled the prediction and observation
of blood flow in vitro, emulating in vivo conditions. The combination of computational
hydrodynamics and microfluidics have become key elements to approximating the blood
flow in the microcirculatory system.

Blood circulates the human body pumped by the heart, which generates a pressure
difference in the system. As the blood flows through the circulatory system, the pressure
falls progressively by the time it reaches the termination of the venae cavae where they
empty into the right atrium of the heart [78]. The heart pumping is pulsatile, and therefore
the arterial pressure alternates between a systolic pressure level and a diastolic pressure
level. This pressure difference allows blood to flow through the different blood vessels in
our body, enabling microcirculation.

Microcirculation flow is characterized by a low Reynolds number Re = ηvD
ρ < 1,

where v is the velocity of the flow, D is the diameter of the microvessel, η is the dynamic
viscosity of the fluid and ρ is the fluid density. The Reynolds number is defined as the
ratio between the inertial and viscous forces, and in the microvessels it ranges between
0.001 < Re < 0.1. Hence, the viscous effects are more significant than the inertial effects,
and the flow is laminar. In microvessels over 200μm diameter, it can be assumed that blood
is a homogeneous continuous fluid. This assumption is not true for smaller microvessels
and here the individual motion of RBCs becomes important. When small objects, such
as droplets or cell, enter a microchannel, the hydraulic resistance along the channel is
given as the addition of the resistance of the channel in the absence of the particle and the
resistance developed across the length of the object. The resistance of the object will depend
on the local characteristics of the flow and the viscoelastic properties of the object [89].

To measure the factors that affect hemodynamics, several numerical and experimental
techniques are used, such as dielectrophoresis, magnetic interaction, optical traps and
biomarkers [14]. Using these techniques, researchers have been able to study blood flow
behavior from a single RBC to their collective behavior and blood as a homogeneous fluid.
When studying blood flow in confined geometries for a single cells, the effect of the system
walls are relevant, enabling RBCs to form a single train at the center of the microchannel.
However, when studying the collective behavior of RBCs, a focusing phenomenon arise
due to the presence of walls and cells to cells interactions. The effects of focusing, or RBC
migration, affects the rheological properties of blood, affecting its viscosity and therefore
the blood flow.

From a numerical point of view, several techniques have been reported to model RBCs
in blood flow [90–94]. Most of these methods have in common a multiscale approach
for single-cell modeling in confined geometries. Confinement is crucial to exploring the
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RBCs’ elasticity effect in microcirculation, since it replicates the in vivo conditions of
blood circulation.

To model the interaction between RBC membrane elasticity and flow, a dimensionless
quantity, Cκ (usually referred to as capillary number) is defined as the ratio between the
elastic relaxation time, τm, of the membrane of cells suspended in the fluid, and a viscous
time τη associated with the viscous forces of the fluid [58,59]

Cκ =
τκ

τη
=

η0v̄zd2

κ

(
d
b

)
, (4)

where v̄z is the mean velocity in the direction of the flow, η0 is the viscosity of the sur-
rounding fluid, d is the diameter of the RBC d ≈ 8 μm, b is a geometrical parameter which
accounts for the confinement and κ is the bending modulus. For human RBCs, the typical
values of the bending modulus are κ ≈ 50kBT = 2 × 10−19 J. The ratio d/b is a parameter
that relates the RBC size to the size of the system to establish the confinement. The dy-
namics of the cell membrane are controlled by the viscosity ratio between the inner and
outer regions of the cell, and the capillary number which characterizes the shear rate of the
force relative to the membrane rigidity. The effective (or apparent) viscosity of the whole
suspension (i.e., liquid and cells) is computed from the relation of the applied force, f0,
and the outcome flow given by the mean velocity v̄z,

ηe f f =
f0

12v̄z
b2. (5)

Figure 3 shows three different RBC morphologies in a Poiseuille flow, modeled using
the Navier–Stokes phase field models discussed in Section 3, as a function of the capillary
number [58,59]. The effects of the hydrodynamics on the viscosity of the solution is shown
in Figure 4.

Figure 3. Red blood cell morphologies in a Poiseuille flow, modelled through Equations (4) and (5)
for an increasing capillary number, Cκ . The letters associated to the red blood cells represent different
stages of the cell morphology. The parameter used to model the RBC was a reduced volume
vred = 0.48 and a confinement d/b = 0.71, defined as the ratio between the RBC size and the system
size. The colored regions represent the three main morphological regimes, namely the discocyte
(yellow), the slipper (red), and the parachute (blue). The dotted line represents the channel axis,
and the crosses are the center of mass of each RBC. Image reproduced from Lázaro et al. (2014) [58].

From an experimental point of view, early hemodynamical experiments only provided
a qualitative understanding of blood flow. Quantitative information, such as rheological
effects and blood cell deformability were difficult to obtain due to lack of time and spatial
resolution. Eventually, high-speed and high-resolution cameras, with an enhanced sen-
sitivity and mounted to an optical microscope, enabled velocity measurements of such
small-scale flows. In this aspect, several techniques have been developed to measure
the velocity fields of blood and RBCs at the microscale, such as μPIV (microparticles im-
age velocimetry) or PTV (particle tracking velocimetry) and wavelet-based optical flow
velocimetry (wOFV) [95–99].
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Figure 4. Effective viscosity of an RBC suspension as a function of the capillary number for different
bending rigidities, κ, at confinement is d/b ≈ 0.71. The value of ηe f f , obtained from Equation (5), is
averaged for different initial conditions of the RBC. The coloured regions correspond to the three
morphological regimes shown in Figure 3. The curves for different rigidities as a function of the
shear rate show the sensitivity of the viscosity and RBC morphology to the rigidity of its membrane;
however, the curves collapse when the relative effect between the viscous and elastic forces is
considered. Image reproduced from Lázaro et al. (2014) [58].

The rise of microfluidics in the last two decades has enabled the increase in exper-
imental options to study RBCs’ properties and their effect on blood flow [89,100–102].
The easiness of replicating small structures in microfluidics allowed the development of
various designs and structures to observe and analyze the deformation of RBCs [103–105].
Typical microfluidics approaches consider a forced, or gradual, constriction of RBCs, as they
circulate through very narrow slits. The viscoelastic properties of the RBC membrane are
obtained, establishing a relation between the shear flow and the pressure gradient ap-
plied to them [106]. Moreover, the combination of numerical and experimental models
has enabled a deeper study of the biomechanical properties of RBCs [107,108] and their
sensitivity to blood flow [109]. These have been successful in capturing several changes in
the morphology of the RBCs, replicating the slipper and parachute shapes of RBCs under
shear flow [65,110]; see Figure 5. Other studies on the elasticity of RBCs have submitted
them to extreme deformation circulating through submicrons slits [111], to simulate the
filtration of RBCs in the spleen.

Figure 5. Comparison between slipper (left) and parachutes (right) obtained from numerical and
experimental results. Numerical images reproduced from G. R. Lazaro et al. (2014) [58]. Experimental
snapshots adapted by permission from RSC, G. Tomaiuolo et al. (2009) [7] under license 1181911-1.

5.2. Experimental Hemorheology: Collective Behavior of Red Blood Cells

Hemorheology is the study of the rheological properties that affect blood flow. These
properties are mostly related to the non-Newtonian nature of blood, due to its composition
and to the biomechanics of its erythrocytes. In vivo, blood flow is determined by multiple
factors, including hematocrit levels, RBCs deformability, the elasticity of venules and arter-
ies, and blood pressure. The rheological properties of blood have been studied for many
years and it has been demonstrated that it presents a shear-thinning behavior [112–115],
which means that, as the flow velocity increases, the viscosity of blood decreases. This
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rheological properties of blood highly depend on the properties of its RBCs, which affect
the viscosity of blood, as well as its shear-thinning behavior. Typical values for the viscosity
of healthy blood at a low shear rate (0.28 s−1) are 39 ± 4 mPas for females and 48 ± 6 mPas
for males. At high shear rates (128 s−1), the viscosity values are 4.3 ± 0.2 mPas and
4.7 ± 0.2 mPas for females and males, respectively [116].

From a macrorheological point of view, the viscosity of blood is directly related to the
fraction of RBCs suspended in plasma. Given the particular properties of RBCs, the increase
or decrease in its concentration in plasma (hematocrit) will affect the behavior of blood,
where the erythrocyte concentration is directly proportional to the viscosity [117]. Therefore,
increased hematocrit levels will lead to an increased viscosity of blood and decreased hema-
tocrit levels will lead to a decreased viscosity. Thus, the concentration of RBCs in plasma
affects the whole-blood viscosity values, as well as its non-Newtonian behavior, which is
lost at low hematocrit levels [118]. From a microscopical point of view, two properties of
RBCs are particularly important in the effort to understand the shear-thinning behavior of
blood: their deformability [119] and their tendency to form aggregates [74,120,121]. Both
properties cause the highly non-Newtonian behavior observed for RBC suspensions in
plasma [122]. At low shear rates, the viscosity of blood is high, whereas, at a high shear
rate, red cell disaggregation and deformation reduces the viscosity of blood.

The viscosity of fluids is measured using viscometers. Complex fluids’, such as blood,
rheological properties are studied using a rheometer, capable of measuring their behavior
under different flow conditions. Rheometers differentiate from the type of flow they induce
on a material; these may be drag or pressure-induced flows. Typical drag flow rheometers
are cone-plate and cylindrical Couette rheometers. On the other hand, the most typical
pressure-driven flow is the capillary rheometer. The capillary rheometer was the first
rheometer, and is still the most common method to measure viscosity, due its low cost
and easy operation. In comparison with rotational rheometers (cone-plate and Couette),
they can be closed devices, which avoid the evaporation of solvents and the expulsion
of samples. Capillary viscometers and rheometers have been used since the beginning
of hemorheology in the 1960s, to measure the viscosity of blood plasma and blood [123].
However, the rise of microfluidics at the end of the 1990s brought new applications and
innovation in this area. In recent years, a variety of microfluidics devices and methods have
been developed with the objective of measuring the viscosity of blood plasma [124–127]
and blood [128], using optical detection techniques [75,129–134], pressure sensors [135,136]
and electrical sensors [137–139]; see Figure 6.and electrical sensors [137–139]; see Figure 6.

Figure 6. Images of two different microfluidics devices developed to measure blood viscosity.
(a) Image reprinted by permission from Springer Nature, Morhell and Pastoriza (2013) [135] under
license 5235930238113. (b) Image adapted by permission from MDPI Kang (2018) [132] under Creative
Commons CC by 4.0 license.
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In a capillary, the viscosity of the fluid is measured by establishing the relation between
the pressure difference exerted on the fluid and the flow velocity. The pressure difference,
which moves the fluid inside the microchannel, is generated through gravity, gas com-
pression, pistons or suction. For Newtonian fluids, the viscosity is determined as the ratio
between the shear stress, σ, defined as a function of the pressure exerted on the fluid,
and the shear rate, γ̇, defined as a function of the velocity. However, for non-Newtonian
fluids, the relation between these parameter becomes non-linear and the viscosity of
blood is measured through a local relation between the shear stress and the shear rate.
Typical non-Newtonian viscosity models used for blood are the power law, the Carreau,
the Carreau–Yasuda and the Casson models [140]. Nonetheless, the simplicity of the two
parameters of the power law model makes it the most popular model used to estimate
blood viscosity. This model states that the viscosity of the fluid is defined as a function of
the shear rate through:

η = mγ̇n−1, (6)

where m is a consistency factor that depends on the fluid and n is the behavior factor that
defines the character of the fluid. When n = 1 the fluid is Newtonian, for n < 1 the fluid is
shear thinning and for n > 1 the fluids is shear thickening.

A basic method to determine the viscosity of blood is the Front Microrheology method,
which consists of inducing a pressure difference in the fluid through hydrostatic pressure
Phyd = ρgH. The pressure is controlled through a fluid column inside a reservoir set at
different heights H and connected to a bio-compatible tube with uniform internal cross-
sections of radius r and length lt. The tube connects the reservoir with a rectangular
microchannel of width w = 1 mm, depth b = 0.3 mm and length lc = 4 cm, fabricated in
PDMS over a glass substrate using typical microfabrication techniques [141–143]. Figure 7a
shows a schematic view of the experimental setup described. The observation of the
blood–air interface (blood front) inside the microchannel is made using a microscope and
a high-speed camera; see Figure 7b. The velocity of the blood front is measured tracking
the mean front position as a function of time between several contiguous images. A full
description of the microfluidic device and details of the experimental method are reported
by Trejo-Soto et al. (2016) [127].

Figure 7. (a) Schematic representation of the experimental set up to perform blood viscosity mea-
surements using microfluidics. The pressure difference is generated through hydrostatic pressure
Phyd = ρgH, where H is the height from the fluid in the reservoir to a microchannel of width w, depth
b and length lc. These are connected through a tube of radius r and length lt. (b) Photograph of the
experimental set up. Top image: A view of the microdevice under a microscope. Bottom image: View
of the blood–air interface inside the microfluidic channel, taken with an Optika XDS-3 microscope
and a high-speed camera Photron Fastcam Viewer 3. Images reproduced from the work of Trejo-Soto
et al. (2017) [130].
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According to this experimental setup, an effective pressure ΔPe f f = ρgH − PL is
defined, where PL is the Laplace pressure due to the curvature of the fluid interface. This
effective pressure is related to the stress through [130]:

σ =
r

2lt
(ρgH − PL), (7)

where r and lt are the internal radius and the length of the tube, respectively. The shear rate
of the system is defined as a function of the velocity of the interface, and the geometrical
parameter of the coupled system tube-microchannel, through the following expression:

γ̇F(n) =
b2w
πr3

(
3 +

1
n

)
v
b

, (8)

where b and w are the geometrical parameters of the experimental microchannel. The pa-
rameter n is the behavior exponent obtained using a power law model to describe the
viscosity of blood. The viscosity of blood and its shear-thinning behavior have been mea-
sured and observed using several methods [144]; see Figure 8. Using the power law model,
typical values of the exponent for blood are around n = 0.80 [129,136].

Figure 8. Viscosity of blood as function of the shear rate. In both images, the non-Newtonian nature
of whole blood is shown. At a low shear rate, RBCs form aggregates which are responsible for an
increase in viscosity. As the shear rate increases, cells disaggregate and move freely through blood
vessels. If the shear rate keep increasing, RBCs deform, elongate and align with the direction of
the flow, which happen in microcapillary vessels. The image on the left (a) shows one of the first
viscosity measures of blood obtained using a typical rheometer, image reproduced from Baskurt et al.
(2007) [116]. On the right (b), shows the viscosity of a fresh 48% hematocrit blood sample (magenta)
and the same sample 5 days from extraction (blue), we observe how the aging of the sample affects
the viscosity of the sample. Image reproduced from Trejo-Soto et al. (2017) [130].

Although this standard procedure provides important information about the bulk
behavior of the fluid, it is of limited interest for understanding the flow in very confined
systems, when the rheological behavior can be severely affected. For a single cell, elastic
properties are more relevant, and RBCs as an ensemble are mainly affected by confinement
and focusing.

5.3. Comparison with Numerical Results of the Collective Behavior of RBCs

As mentioned earlier, the flow of RBCs in tubes and channels is critically controlled by
the hematocrit. The interactions between the RBCs, involving hydrodynamic interactions,
purely geometrical constraints, or aggregation, play a fundamental role in the collective
dynamics of the RBC suspension. At low concentrations, vesicles and hard spheres flowing
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in thick tubes migrate from the center line and reach a stable trajectory at ≈0.6r from
the axis, forming an annulus of high density at this radial distance, the so-called Segre–
Silberberg effect [145]. At high concentrations, however, RBCs distribute along the tube
core, avoiding the region close to the wall. The transition from the single-cell to the high
hematocrit behavior is still poorly understood in spite of its importance in the rheological
behavior of the fluid.

When blood measures are at the microscale, other effects may be observed, namely,
the Fåhraeus [146] and the Fåhraeus–Lindqvist effects [147]. The latter, characterized by
a dependence of the blood viscosity with the channel thickness, are perhaps the most
important example [148]. In the range between roughly 300μm and 10μm of the tube
diameter, the effective viscosity decreases up to 4–5 times. This effect occurs as a conse-
quence of the strong repulsion from the walls that forces the blood cells to concentrate on
the central region of the channel. The formation of layers free of cells close to the walls
allows a rapid flow in these regions, enhancing the overall fluidity. At high confinements,
the walls’ proximity enforces a more concentrated distribution of cells in the center and
consequently broader layers of free flow are present [149]. In larger channels, the free layers
are proportionally thinner until their effect becomes eventually negligible. Although, in
the narrowest channels (<10μm), RBCs are ordered in a single row for flow at low con-
centrations, and thus interactions between cells are disregardable. At an intermediate
channel size (≈20μm), RBCs present a more complex behavior and collective effects must
be considered [150].

While flowing in thicker channels, where cells typically flow at higher concentrations,
RBCs do interact, and collective effects substantially change the flow properties. From a
theoretical point of view, the organization in trains (observed for single cells) also offers
an interesting way to study the hydrodynamic interactions between neighboring cells,
and how it affects the RBCs’ dynamics. The membrane stiffness dictates the flow disruption
induced by the RBCs. Rigid cells induce stronger perturbations of the incoming flow than
softer ones. Even if deviations from the imposed flow are small when RBCs are distant,
interactions strengthen for lower distances between cells, favoring RBCs’ collective behavior.
If RBCs are initially placed very close to each other, even at high capillary numbers, they
do not migrate towards the walls but flow whilst maintaining a centered position.

RBCs are very sensitive to the hydrodynamic interactions with other cells, and the
competition between these interactions and the wall effects dictates different RBC flow
properties when several cells are flowing at high and moderate concentrations. For in-
stance, in the inertial regime, the limit of single-cell behavior is characterized by the
Segré–Silberberg effect, when cells migrate towards a specific lateral position, whereas at
higher concentrations the collective behavior dominates and cells are located at the tube
core, the Fåhraeus–Lindqvist effect. The dynamics of several RBCs at moderate concen-
trations have proven to differ in several aspects from the single-cell case, and this affects
the rheological behavior of the suspension. Recent numerical analyses have computed the
effective viscosity for three configurations (one ordered and two disordered initial condi-
tions), at a low volume fraction and concluded that the viscosity curves show the expected
shear-thinning behavior, though two main differences were found with respect to the
single-cell case: the magnitude of the effective viscosity obtained and the Cκ , Equation (4),
required to observe the shear-thinning decay [151]; see Figure 9.

Other important characteristics of RBCs in their collective interaction is their aggrega-
tion. RBCs have a tendency to form stacked structures (aggregation), commonly known
as rouleaux. The formation of aggregates affects blood flow and its rheological properties,
increasing blood viscosity, and therefore slowing down the flow. These structures have
several characteristics, such as, the number of RBCs per rouleau being variable and side-
to-side formations being possible, due to the particular discocyte shape of the RBCs [74].
Figure 10 shows two images of rouleaux formation of two blood samples with different
hematocrit levels, where some of these characteristics are observed.
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Figure 9. (a) Simulation of RBCs during flow in a confined channel. (b) Numerical results of the
effective viscosity for an RBC suspension at a low concentration of RBCs and low confinement
as a function of the capillary number, Equation (5). Three initial conditions, one ordered and
two disordered, are calculated, obtaining similar results. The curve shows the expected shear-
thinning behavior, and the differences with the single-cell case. Image reproduced from Lázaro et al.
(2019) [151].

Figure 10. (a) Red blood cells aggregates from a blood sample at 5% hematocrit. The image was
taken with an inverted Optika XDS-3 microscope using a 50× magnitude objective. (b) Large RBC
aggregate from a blood sample at 38% hematocrit. The image was taken with an Optika B-353LDI
microscope using a 40× magnitude objective.

Aggregation has rheological consequences in blood and it determines its non- New-
tonian behavior at low shear rates. When RBCs are aggregated, more shear is required
to move the fluid, but as shear increases, RBCs start to disaggregate, making it easier to
change the state of motion of blood. If we keep increasing the shear, cells start to align with
the flow, deform, and elongate. Therefore, if aggregation increases, then blood viscosity
increases as well and the shear-thinning behavior of blood is altered. Numerical studies
have demonstrated the effects of aggregation in blood viscosity [120,122,152–154] and
experimental studies have observed that RBCs’ deformability induces cell aggregation
during flow in microcapillaries, allowing the formation of clusters of cells [98,155,156].
Moreover, the aging of storaged RBCs also contributes to the increase in aggregation and
affects its viscosity. However, when scaling according to adhesion energies, a collapse in
the viscosity curves defines a single universal behavior for blood viscosity [130]. To analyze
the effects of aging, the hematocrit levels were fixed and the behavior of the blood sample
as it ages was studied, showing that as the sample aged, the aggregate formation increased.
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By introducing a non-linear scaling parameter, the adhesion scaling number, A, the effects
of aging on RBC aggregation was quantified. This quantity is defined as

A =
η0γ̇d3

kaE0
, (9)

where η0 is the viscosity of plasma, d is the average diameter of an RBC, E0 is the energy
scale associated with the aggregation energy between RBCs [122], and ka is a scaling factor
that accounts for the relative increase in the adhesion energy when the blood ages. Then,
the parameter A can be interpreted as the ratio between the characteristic viscous energy
scale and the aggregation energy. When the viscosity of the fluid is normalized according
to the hematocrit levels and blood plasma ηe f f = η/η0, the changes in the viscosity depend
only on the adhesion scaling number. Figure 11a shows the effect on blood viscosity due to
RBC aggregation, induced by aging.

Figure 11. The plot shows how the normalized viscosity, η/η0, follows a universal curve as the
adhesion scaling number changes. Image reproduced from Trejo-Soto et al. (2017) [130].

In general, blood rheology has been proven to be experimentally difficult to measure.
Thus, inaccurate interpretations have frequently been made [157]. Many microfluidics
techniques have been able to reduce difficulties using capillary rheometry and pressure-
driven flow. The advantages of microfluidics in this area stand out, mainly portability
and the need for only a small sample. Additionally, some microfluidic techniques related
experimentally blood viscosity with the properties of RBCs [158]. Still, many considerations
need to be taken into account to obtain feasible results.

6. Hemorheological Pathologies and Emergent Microfluidics Diagnostics Techniques

As mentioned in previous sections, human blood is an unusual fluid. While blood
plasma alone behaves as a Newtonian fluid, the complete set of blood components are
non-Newtonian, meaning that, its viscosity varies according to the speed at which it
circulates. This characteristic presents two important issues in clinical hemorheology. First,
in vitro measurements of the viscosity of plasma alone never reflect the totality of events
occurring in vivo in patient circulation. Second, the cellular elements, by acting as particles
in suspension, are mainly responsible for the non-Newtonian behavior of blood. This is
why, instead of considering only abnormal plasma proteins in diseases, we should also
consider the rheological abnormalities of the erythrocytes. The dynamics and the elastic
mechanics of RBCs in confined systems are subjects of fundamental interest due to their
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enormous application potential in biomedical engineering, as they affect hemorheology
during blood handling and storage, or manipulate cells in pathology diagnosis. Altered
blood due to abnormal RBC concentrations or stiffening of the cells can lead to a reduction
in the oxygen delivered or obstruction of the blood vessels. The healthy running of RBC
circulation and oxygen transport can be affected by different disorders.

Plasma proteins are responsible for the elevation of blood plasma viscosity in com-
parison to water; a change in their composition may as well alter the hemorheological
properties of blood. Some diseases, such as Wasldenstrom’s macroglobulinaemia, induce
an increase in macrogobulins, which increases the viscosity of blood plasma [159]. Further-
more, in this condition, it is more likely that proteins will form rouleaux, which increases
blood viscosity at low shear rates. An elevated concentration of fibrinogen in plasma gener-
ates an abnormal increase in RBC aggregation, changing the rheological behavior of blood.
Aggregation and its effect in blood rheology have been related to several diseases [160–162],
such as inflammation, diabetes [80,163,164], hypertension [165], obesity [166] and coronary
syndromes [167–169].

Although plasma affects blood viscosity, RBCs are the most prominent hematological
factor influencing hemorheology. Among circulating blood cells, erythrocytes interact
most significantly with plasma, mainly as a function of the hematocrit levels. Most typi-
cal diseases related to blood viscosity are related to the percentage of RBC concentration
(hematocrit), such as anemia (low % hematocrit) or polycythemia (high % hematocrit) [116].
Elevated values of blood viscosity are characteristic of hyperviscosity syndromes. Hy-
perviscosity may occur due to different properties of blood: an increase in the viscosity
of blood plasma, a high production of fibrinogen, an increased numbers of cells (poly-
cythemia or leukemia) or a increased resistance of cells to deformation (sicklemia or
spherocytosis) [170,171]. In the case of whole blood, the most influential factor to increase
its viscosity is hematocrit. If the hematocrit levels of blood exceed 65% (which is the case
of polycythemia), various rheological abnormalities arise, for example, the sedimentation
rates decrease significantly as a result of RBC crowding. Additionally, in severe cases, the
elasticity and deformation properties of RBCs become crucial to achieving smooth driven
flows; otherwise, microcirculation may be severely compromised. On the contrary, anemias
present low hematocrit levels, less than 35%. Anemia may have different origins: iron
deficiency, hemolysis due to particular diseases or heredity. Hematocrit levels lower than
30% tend to neglect almost every non-Newtonian characteristic and usually displays a
Newtonian behavior. However, in some cases of hemolytic anemias, low hematocrit levels
lead to high viscosity, due to the alterations of the RBCs’ properties.

Other disorders concern inherited pathologies which affect the RBC membrane, pro-
ducing abnormalities in RBC shape or deformability, which potentially reduce the healthy
functioning of blood circulation. These membrane alterations provide important informa-
tion about the membrane’s structural balance, and their main causes and consequences are
disorders such as sickle cell anemia, hemolytic anemias and thalasemic syndromes, which
are directly related to the RBC elasticity, deformation or aggregation properties [16,172].
In addition, some infectious diseases, such as malaria (which does not have a genetic
origin), are also known to impair the membrane microstructure, leading to cell stiffening,
affecting whole-blood viscosity [173].

Sickle cell anemia (drepanocytosis) is characterized by the formation of sickle cells
(ISC) that lose their capability to deform and recover the discocyte shape, altering oxygen
delivery. The molecular basis for this is an abnormal phosphorilation of hemogoblin that
promotes a massive aggregation of this molecule under low concentrations. The formation
of these molecular aggregates affects the concentration of the protein band 3, and the
cell membrane is damaged in a process similar to aging, becoming rigid [174]. Patients
affected by this pathology present a reduced life expectancy, although modern medical
treatments allow a normal life. Due to the presence of ISC, in oxygenated conditions,
the ”htc/viscosity” ratio is lower than for normal blood samples. If the natural hematocrit
levels of the sample are raised to the typical levels of non-anemic blood, an increased
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viscosity is observed at all shear rates [82]. The plasma viscosity of subjects with sickle cell
anemia is also higher than the viscosity of healthy subjects. In severe cases, ISCs obstruct
microvessels, altering the normal circulation of blood. In the last decade, microfluidic
devices have played the important role of determining the biophysical characteristics of
sickle red cells [175], measuring the mechanical stresses on erythrocytes in sickle cell dis-
ease [176], studying vaso-oclusion [104,177,178], identifying biophysical markers [179,180],
segregating sickle cells [181], and developing point-of-care diagnostic technologies for
low-resource settings [182] and possible treatments [183].

Hemolytic anemias are diseases characterized by the reduction in RBC life expectancy
(120 days) and an increased destruction of RBCs (trought hemolysis). Hemolytic disorders
originated due to the hereditary defects of three RBC components: the membrane, enzymes
and hemoglobin. Hemolysis occurs via two mechanisms, extravascular hemolysis, where
RBCs are eliminated prematurely from circulation through the microcirculation fagocitic
system (liver and spleen), and intravascular hemolysis, where RBC membranes rupture
during blood circulation [184]. In hereditary spherocytosis, patients present a high con-
centration of spheroidal-shaped RBCs, as a consequence of defects in several proteins of
the membrane (mainly from the bilayer–cytoskeleton links), which cause fragility of the
membrane. The alteration of membrane properties allows vesiculation and a loss of the
membrane surface, triggering cell-shape deformation. Spherocytes rapidly retire from
circulation due to the spleenic system, leading to hemolysis. Patients must be treated with
blood transfusions for critical levels of anemia [185]. Hereditary elliptocytosis is character-
ized by abnormalities in the spectrin dimers, causing weakness of the cytoskeleton, which
impairs membrane stability. RBCs deform into ellipsoidal (or cigarshaped) cells. The RBC
functionality might not be severely affected, as most patients are asymptomatic and only
10% present anemia. Thalassemia syndromes such as αthalassemia and βthalassemia
are genetic hematological disorders caused by defects in the synthesis of one or more
hemoglobin chains. α-thalassemia, also known as HbH disease, is caused by a reduced or
absent synthesis of the α-globin chains, and an excess of β-globin chains in the cytoskele-
ton. It has been reported [186,187], through measurements of cellular deformability, that
α-thalassemic and β-thalassemic erythrocytes exhibit increased surface areas in relation to
cell volume, increased membrane rigidity and increased membrane viscosity. Although
the stability of α-thalassemic erythrocytes membranes are normal, they are uniformly less
dense than healthy erythrocytes. A typical diagnosis for hemolytic anemias is made using
a technique known as ektacytometry [188,189]. However, in recent years, microfluidic and
lab-on-a-chip devices have presented new alternatives to study RBCs deformation using
diverse techniques such as deformability cytometry [103,190], magnetic measurement [191],
electrical measurement [192], single-cell chamber arrays [193], combination of microfluidics
with machine learning [194] and pressure-driven microrheometry [195].

Malaria is caused by the infection of a parasite of the genus Plasmodium. Infected
RBCs develop advanced proteinic machinery, including the formation of organelles similar
to the Golgi apparatus, which are used for nutrient transport and storage, and allow
enzymatic activity. The parasite is hosted in a vacuole, and during its maturation it reaches
the size of a nucleus in a typical eukaryotic cell. Apart from this new internal structure,
the parasite produces changes in the membrane proteins that affect the deformability of the
cell [196]. RBCs also adopt a more spherical shape, and proteins allocated in the external
face of the membrane promote aggregation with other infected cells, avoiding hemolysis
in the spleen. All these conformational changes strongly affect the cells’ mechanical
properties, modifying the rheological properties of blood [197,198]. As in the case of
non-infectious diseases, in recent years, microfluidic devices have been developed to
support Malaria diagnosis mostly directed to low-resource locations [199–201] or to find
possible treatments [202–204].

Severe hemorheological disorders are usually related to alterations in the RBCs’ me-
chanical properties. RBCs have physical properties of their own, and are capable of directly
influencing blood flow regardless of hematocrit levels, hence the importance of taking
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RBCs properties into account when studying its effects on diseases that affects whole
blood viscosity. Therefore, understanding these properties from theoretical, numerical,
and experimental points of views is the key to improving diagnostics techniques and to
developing successful treatments. Microfluidic technologies play a remarkable role in
biomedical research, and in combination with biomimetics, lab-on-a-chip and organ-on-a-
chip technologies are the cornerstone of future medical diagnoses and treatments.

7. Conclusions

In this review, we have described the general features of RBC membranes and their
effects on blood flow, from numerical and experimental perspectives, highlighting the
achievements of microfluidics technology in performing in vitro studies assessing RBC
membranes’ elasticity, hemodynamics and hemorheology.

First, we described the main composition of mammalian cell membranes and refer
to the RBC membranes, due to the their special characteristics, specifically their lack of a
nucleus and simple structure, which makes them easier to model. We mentioned several
methods to model the RBC membranes’ elasticity; however, we discussed the Helfrich free
energy model combined with a phase field model to study the cells and vesicles from a
single RBC to their collective behavior. In this matter, we found that the dynamics of a
single isolated cell immersed in a Poiseuille flow can be modeled using a phase field model
coupled with the Navier–Stokes equations. Through this model, we were able to observe
the deformation of the RBCs in shear flow.

We later discussed blood and its constitution to relate the elastic properties of the RBCs
to the bulk behavior of blood, describing its effect in hemodynamics and hemorheology,
again from single-cell to their collective behavior. We presented numerical and experimental
points of view considering the latest advances in microfluidics technology to achieve new
observations in vitro. From an experimental point of view, we were able to determine
the viscosity of blood using microfluidic technology and to determine the effect of RBC
aggregation and erythrocyte concentration on whole-blood rheological properties.

Finally, we reviewed and described hematological disorders associated with whole
blood and the elastic properties of red blood cells, and how their alterations affect the
hemodynamics and rheological properties of blood. We addressed these diseases taking
into account the new microfluidic methods that are being developed for diagnostics and
future treatment of blood pathologies and their RBC membrane abnormalities. Even
though the development of these devices has increased significantly in the past decade,
new applications and improvements are being created and discovered every year. Hence,
microfluidics applications to diagnostics through the analysis of whole-blood properties or
RBCs properties are still and will remain a hot topic in the future.
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Abstract: The use of drugs derived from benzothiadiazine, a bicyclic heterocyclic benzene derivative,
has become a widespread treatment for diseases such as hypertension, low blood sugar or the
human immunodeficiency virus, among others. In this work we have investigated the interactions of
benzothiadiazine and four of its derivatives designed in silico with model zwitterionic cell membranes
formed by dioleoylphosphatidylcholine, 1,2-dioleoyl-sn-glycero-3-phosphoserine and cholesterol at
the liquid–crystal phase inside aqueous potassium chloride solution. We have elucidated the local
structure of benzothiadiazine by means of microsecond molecular dynamics simulations of systems
including a benzothiadiazine molecule or one of its derivatives. Such derivatives were obtained by the
substitution of a single hydrogen site of benzothiadiazine by two different classes of chemical groups,
one of them electron-donating groups (methyl and ethyl) and another one by electron-accepting
groups (fluorine and trifluoromethyl). Our data have revealed that benzothiadiazine derivatives
have a strong affinity to stay at the cell membrane interface although their solvation characteristics
can vary significantly—they can be fully solvated by water in short periods of time or continuously
attached to specific lipid sites during intervals of 10–70 ns. Furthermore, benzothiadiazines are able
to bind lipids and cholesterol chains by means of single and double hydrogen-bonds of characteristic
lengths between 1.6 and 2.1 Å.

Keywords: benzothiadiazine derivatives; drug design; molecular dynamics; phospholipid membrane

1. Introduction

Plasma membranes are fundamental in the behavior of human cells, being not only
responsible for the interactions between the cell and its environment but also for processes
such as cellular signaling [1], enzyme catalysis [2], endocytosis [3] and transport, among
others. The main structure of the cell membrane is composed of bilayer phospholipids
including sterols, proteins, glycolipids and a wide variety of other biological molecules.
High compositional complexity and versatility of membranes are closely related to the
environment and the physiological state of cells [4,5] so that many diseases such as cancer,
cardiopathies, diabetes, atherosclerosis, infectious diseases or neurodegenerative patholo-
gies are accompanied by changes in the composition of cell membranes [6–9]. For such a
reason, the knowledge of the behavior of drugs interacting with different membrane com-
ponents and their distribution in damaged tissues maybe key to improving drug efficiency
and the therapy of the diseases and it has become a topic of greatest scientific interest.

It is well known that the composition of cell membranes in different tissues and organs
of the human body exhibits large variations. In the treatment of diseases, an efficient drug
design could enhance the interaction of active pharmaceutical ingredients with membrane
components in specific tissues helping to reach the target site successfully. Thus, there is a
great demand for a full understanding of the rules of drug–membrane interactions, which
may help us predict the distribution and curative effect of drugs in the body when it comes
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to the designing and testing of new drug molecules. Generally, medicinal chemists tended
to overcome the difficulty of drugs in entering cells or crossing biological barriers, such as
the blood–brain barrier [10–12] by modifying their structures to enhance the lipophilicity of
drugs. However, little research has been performed on the influence of drug structure on the
rule of drug–membrane interaction, notably the direct information on atomic interactions
of drug-membrane systems at the all-atom level. In this work we establish a procedure for
the in silico design of derivatives of the well-known family of benzothiadiazines.

Heterocyclic compounds are ubiquitous in the structure of drug molecules [13,14]
playing an important role in human life [15,16]. Such compounds are common parts of
commercial drugs having multiple applications based on the control of lipophilicity, po-
larity and molecular hydrogen bonding capacity. Among them, benzothiadiazine and its
derivatives have wide pharmacological applications, such as diuretic [17], anti-viral [18],
anti-inflammatory [19], regulating the central nervous system [20] and, more recently, as
anti-cancer agents [21–23]. In addition to the above-mentioned biopharmacological activi-
ties, benzothiadiazine derivatives also have bio-activity such as Factor Xa inhibition [24],
anti-Mycobacterium [25,26] and anti-benign prostatic hyperplasia [27]. 3,4-dihydro-1,2,4-
benzothiadiazine-1,1-dioxide (DBD) being the main common structure of the benzoth-
iadiazine family was investigated in a previous work [28] to elucidate the mechanisms
responsible for the interactions of DBD with the basic components of cell membranes in
all-atom level for the first time. In the present work, our aim was to design in silico DBD
derivatives that may be employed with the purpose of inhibiting a limited variety of tumors
produced by the oncogenic protein KRas-4B (such as pancreatic, lung or colorectal [29,30]),
work currently in progress in our lab. For such a purpose, it has been found convenient
to model the substrate cell membrane with DOPC/DOPS lipids, since these particular
components are most relevant for the absorption of the oncogene at the cell membrane’s
interface (see for instance [31,32]). Further, in an effort to produce a more realistic setup,
we decided to include cholesterol in the membrane model. Cholesterol constitutes about
33.3% of the outer leaflet in healthy colorectal cells [33], which is in good agreement with
the 30% of cholesterol adopted in this work. We have already observed [28] that DBD
has a strong affinity to the DOPC species of lipids and that it is also able to bind other
membrane components by single and double hydrogen bonds. In this paper, we modified
DBD and evaluated the effect of different substitutes on the affinity of the DBD to cell
membrane components.

2. Methods

Five models of lipid bilayer membranes in aqueous solution have been constructed
using the CHARMM-GUI web-based tool [34,35]. The membrane components and the
amount of particles of each class are as follows: all systems include one single DBD deriva-
tive, 112 neutral DOPC lipids, 28 DOPS associated with K+ (DOPS-K) lipids, 60 cholesterol
molecules, 49 potassium ions, 21 chlorine ions and 10,000 water molecules. The lipids
have been distributed in two symmetric leaflets embedded inside an electrolyte potassium–
chloride solution at 0.15 M concentration. We have considered five different setups, where
only the benzothiadiazine derivative is different in each case. We considered a previously
investigated [28] standard DBD species as the reference (DBD1) and four more DBD deriva-
tives (DBD2, DBD3, DBD4 and DBD5), designed by ourselves using in silico techniques.
The way we designed the new DBD species followed the fact that medicinal chemists
modify the chemical structure of the drug for the purpose of improving its therapeutic
effect, reducing toxicity and side effects. The modification method depends on the structure
of the drug. Generally, when performing the structure modification, the basic structure
of the drug will remain unchanged and only some functional group will change. When
the drug acts, the binding methods of drug and receptor form a reversible complex and
are generally by ionic bond, hydrogen bond or covalent bond. In a previous work [28]
we observed that DBD can form hydrogen bonds (HB) and become absorbed by the cell
membrane with DBD having strong affinity for DOPC. ‘H2’ and ‘H4’ sites of DBD are
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important for the formation of such HB with membrane components. The ‘R’ site (shown
in Figure 1) is very close to the ‘H2’ and ‘H4’ sites so that the size, electronegativity and
other properties of the R substituent will affect the ability of ‘H2’/‘H4’ to form hydrogen
bonds with cell membrane components. So, with the tool of CHARMM-GUI platform
“Ligand Reader & Modeller”, we introduced methyl, ethyl, fluorine and trifluoromethyl
into this site in order to assess the effect of new drug structures on the behavior of DBD in
cell membranes.

Sketches of all species are reported in Figure 1. Each DBD species and each phospho-
lipid was described with atomic resolution (DBD1 and DBD4 have 20 sites, DBD2 and DBD5
have 23 sites, DBD3 has 26 sites, DOPC has 138 sites, DOPS has 131 sites and cholesterol has
74 sites). In all simulations water has been represented by rigid 3-site TIP3P [36] molecules,
included in the CHARMM36 force field [37,38], that was adopted for lipid—lipid and
lipid—protein interactions. In particular, we selected the version CHARMM36m [39],
which is able to reproduce the area per lipid for the most relevant phospholipid membranes
in excellent agreement with experimental data. The parameterization of the DBD species
was performed by means of the “Ligand Reader & Modeller” tool in CHARMM-GUI
platform (https://charmm-gui.org/?doc=input/ligandrm, accessed on 31 December 2021).
All bonds involving hydrogen atoms were set to fixed lengths, allowing fluctuations of
bond distances and angles for the remaining atoms. Van der Waals interactions were cut off
at 12 Å with a smooth switching function starting at 10 Å. Finally, long-ranged electrostatic
forces were computed using the particle mesh Ewald method [40], with a grid space of 1 Å,
updating electrostatic interactions every time step of the simulation runs.
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Figure 1. Chemical structures of benzothiadiazine derivatives, phospholipids and cholesterol. Site ‘R’
stands for the five DBD derivatives considered in the present work.

Molecular dynamics (MD) simulations have been revealed to be a very reliable tool
for the simulation of the microscopic structure and dynamics of all sorts of condensed
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systems, such as aqueous solutions in bulk or under confinement [41–47] towards model cell
membranes in electrolyte solution [48–50] and, more recently, small-molecule and protein
systems attached to phospholipid membranes [51–53]. Five sets of MD runs were performed
by means of the GROMACS2021 simulation package [54–58]. We run all the simulations at
the fixed pressure of 1 atm and at the temperature of 310.15 K, typical of the human body
and also well above the crossover temperatures for pure DOPC and DOPS needed to be
at the liquid crystal phase (253 and 262 K, respectively) [59]. In all cases, the temperature
was controlled by a Nose–Hoover thermostat [60] with a damping coefficient of 1 ps−1,
whereas the pressure was controlled by a Parrinello–Rahman barostat [61] with a damping
time of 5 ps. In the isobaric—isothermal ensemble, i.e., under the condition of a constant
number of particles, pressure and temperature, equilibration periods for all simulations
were around 200 ns. In all cases, we recorded statistically meaningful trajectories of 600 ns.
The simulation boxes had the same size in all cases, i.e., 78.1 × 78.1× 95.7 Å3. We have
considered periodic boundary conditions in the three directions of space. The simulation
time step was fixed to 2 fs in all cases.

3. Results and Discussion

3.1. Characteristics of the Bilayer Systems

The phospholipid bilayer considered in this work was previously simulated and its
main characteristics were reported [28,30]. We found reliable values of the area per lipid
A and the thickness Δz of the membranes to be in qualitative agreement with available
experimental data. In order to corroborate these results in the present work where the
system contains DBD derivatives, we computed A and Δz as usual, considering the total
surface along the XY plane (plane along the bilayer surface) divided by the number of
lipids and cholesterol in one single leaflet [62] and the difference between the z-coordinates
of the phosphorus atoms of the two leaflets, respectively. The results of the averaged
values obtained from the 600 ns production runs are reported in Table 1, whereas the time
evolution of both properties is displayed in Figure 2.

Table 1. Area/lipid A and thickness Δz of the systems simulated in this work, given in Å2 and Å
units, respectively. Estimated errors based on standard deviations correspond to the last significant
figures, i.e., ±0.01 in each case.

DBD Derivative A Δz

DBD1 52.18 43.04
DBD2 52.20 43.02
DBD3 52.23 42.98
DBD4 52.19 43.02
DBD5 52.23 42.97

The results shown in Figure 2 indicate that the simulated trajectories were well equili-
brated in all cases. The comparison with previous results indicates that the effect of DBD
derivatives on the area per lipid and thickness of the membrane is totally marginal. Firstly,
the averaged result of A = 52.2 Å2 in all cases matches perfectly the previous reported
value of 52.0 Å2 [30] (where a large protein was embedded in the system) and also the
experimental value of 54.4 Å2 reported by Nagle et al. [63]. Area/lipid shows fluctuations
around 5% of the averaged values. Secondly, thickness of the membranes are also in good
qualitative agreement with previous works: from Figure 2 we observe fluctuations less than
5% of the averaged values, of around 43.0 Å, as expected. Such value is in qualitative agree-
ment with the experimental measurement of Δz = 40 Å for the DOPC-cholesterol (30%)
bilayer, as reported by Nagle et al. [63] and it matches the previously found Δz = 43.0 Å
obtained in previous simulations for the DOPC/DOPS/cholesterol membrane [30].
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Figure 2. Area per lipid A and thickness Δz of the membrane systems including DBD derivatives as a
function of simulation time t. DBD1 (continuous line); DBD2 (dotted line); DBD3 (dashed line); DBD4
(circles); DBD5 (squares). Long-dashed (purple) lines indicate the average values reported in Table 1.

3.2. Local Structure of Benzothiadiazine Derivatives
3.2.1. Radial Distribution Functions

We considered the so-called atomic pair radial distribution functions (RDF) gAB(r),
defined, in a multicomponent system, for a species B close to a tagged species A as:

gAB(r) =
V 〈nB(r)〉

4 NB πr2 Δr
, (1)

where nB(r) is the number of atoms of species B surrounding a given atom of species A
inside a spherical shell of width Δr. V is the total volume of the system and NB is the total
number of particles of species B. The physical meaning of the RDF stands for the probability
of finding a particle B at a given distance r of a particle A. Our RDF are normalized so that
tend to 1 at long distances, i.e., when the local density equals the averaged one.

We have evaluated the local structure of the DBD derivatives when solvated by lipids,
cholesterol and water according to Equation (1). Only a few of all possible RDF are reported,
since we have selected the most relevant ones for the purpose of highlighting the main
interactions between the tagged particles. The results are presented in Figures 3–5, where
we have selected the hydrogen sites ‘H2’, ‘H4’, ‘O11’ and ‘O12’ of DBD derivatives, since
these are the most active sites, able to form hydrogen bonds with the surrounding partners
(lipid, cholesterol species and eventually water). In all cases we can observe a clear first
coordination shell associated to the binding of DBD derivatives to the membranes, with
corresponding maxima indicating the typical HB distances, together with much lower
second shells centered around 4–5 Å. As a general fact, the HB detected cover a noticeably
wide range of distances, between 1.6 and 2.1 Å.
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Figure 3. Radial distribution functions between site ‘H2’ of DBD derivatives and selected oxygen
sites in DOPC and DOPS phospholipids. Sites ‘O13-14’ stand for head groups of the cell membrane
phospholipids and sites ‘O22-32’ stand for tail groups located deeper in the membrane interface.

The structure of DBD derivatives described by their ‘H2’ site (see Figure 1) indicates the
existence of HB formed by ‘H2’ and several sorts of lipid oxygen sites and it is represented
in Figure 3. We can notice that the typical HB length is of 1.7 Å in all cases, both for
the binding with oxygen atoms of the phosphoryl group ‘O13-14’ (located at the head
groups of DOPC and DOPS, with both oxygen sites sharing a negative charge) and for
the binding with sites ‘O22-32’ (located in the tail groups of the lipids) as well. This is the
typical distance of the binding of small-molecules to cell membranes, such as tryptophan
to dipalmytoilphosphatidylcholine (see for instance the review [64]). It should be pointed
out that using fluorescence spectroscopy, Liu et al. [65] obtained values for the HB lengths
of tryptophan-water between 1.6 and 2.1 Å, i.e., of the same range as those reported here.

This indicates that: (1) all sorts of DBD derivatives can bind the membranes at both
head and tail groups and (2) depending on the oxygen sites, some derivatives are able to
create HB stronger than others; however, the strength of the HB binding is not uniform
and it clearly depends of the class of derivative and lipid chain involved. Despite we will
qualitatively analyze the strength of the HB in Section 3.2.2, we can give some general clues
here. For instance, DBD2 is able to bind DOPC more strongly than DBD1 (species that we
will consider as the reference), with the remaining derivatives making bonds of similar
strength. Nevertheless, when DOPS is concerned, all derivatives form stronger HB than
DBD1, with DBD3 the strongest. Similar trends are observed when the internal tail group
sites ‘O22-32’ are analyzed: DBD5 makes the strongest HB with DOPC and DBD4 makes
the strongest bond with DOPS. In this latter case, the enhancement of the HB is milder
than it occurred in the former case (head group bindings). Overall, we can observe that
the one-site modifications proposed with the design of the new DBD-derivatives reported
in this work has produced significant changes and enhancement of the HB connections to
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the model cell membrane. Generally speaking, electron-donating groups (DBD2-DBD3)
produce similar qualitative effects on the DBD–membrane hydrogen bond connections,
whereas electron-accepting types (DBD4-DBD5) tend to produce opposite effects. This
can be valuable information to assess the affinity of new designed drugs to target specific
oncogenes such as KRas-4B, work that it is been currently developed in our group.

Concerning hydrogens ‘H4’ of DBD derivatives and their binding characteristics when
associated to DOPC and DOPS (Figure 4), we observed that they can be also connected
either to ‘O11’ or ‘O12’ of the phospholipids (head groups), either to ‘O22’ or ‘O32’ (tail
groups). Interestingly, in the case of DBD’s ‘H4’, HB lengths are within the range of
2–2.1 Å, significantly longer than those formed by H2 (range around 1.6 to 1.8 Å). This
was already observed for the reference DBD1 in a previous work [28]. In this case, the
strongest HB is observed when ‘H4’ of DBD3 is connected to DOPS’s ‘O11-12’ oxygens. In
this particular case, the new DBD derivatives have shown to be able to bind the internal
regions of the membrane, whereas the original benzothiadiazine species (DBD1) had a very
low probability to penetrate these regions. Again for the ‘H4’ binding site, we have found
a general enhancement of the binding of DBD derivatives with the main phospholipids
forming our cell membrane system.

Figure 4. Radial distribution functions between site ‘H4’ of DBD derivatives and selected oxygen
sites in DOPC and DOPS phospholipids.

In the third RDF set (Figure 5) we report interactions between sites ‘H2’, ‘H4’ and
‘O11-12’ of DBD with water (plots at the left column) and cholesterol (plots at the right
column). In the case of water, HB can be established between ‘H2’ and the oxygen site of
water (top) or, alternatively, between ‘H4’ and the oxygen of water (bottom). In both cases,
the strength of the interaction is low, which suggests that DBD derivatives are strongly
bound to the cell membrane and can be solvated by a few water molecules located at the
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interface. We have not observed long term episodes of DBD derivatives fully solvated
by water.

Figure 5. Radial distribution functions between sites ‘H2’ and ‘H4’ of DBD derivatives and selected
sites of water (left column) and cholesterol (right column).

We have located some extent of hydrogen-bonding between DBD and cholesterol.
However, no significant binding of ‘H2’ with cholesterol has been observed, whereas
interactions of both ‘H4’ and ‘O11-12’ sites of DBD derivatives have been detected. In
particular, the strongest contributions are seen for with hydroxyl’s oxygens of cholesterol
with ‘H4’ of the DBD species, which were undetected for the reference original DBD1 as
well as for oxygens of the DBD derivatives with hydroxyl’s hydrogen of cholesterol. In
the latter case, we found a particularly strong contribution of DBD4, i.e., the derivative
containing a fluoride residue instead the original hydrogen atom. The HB lengths are in
the range of 2.1 Å in all cases.

3.2.2. Potentials of Mean Force between Benzothiadiazine Derivatives and Lipids

Among the wide variety of one-dimensional free-energy methods proposed to com-
pute the potential of mean force (PMF) between two tagged particles [66] a simple but
meaningful choice is to consider the radial distance r as an order parameter, able to play
the role of the reaction coordinate of the process, within the framework of unbiased simula-
tions as those reported in the present work and to proceed with a direct estimation of the
reversible work as described below. This has become one of standard choices to compute
free-energy barriers in MD simulations, together with constrained MD simulations [67] or
the popular umbrella sampling procedure [68]. In case that more accurate values of the free-
energy barriers are needed, the optimal choices are: (1) to use constraint-bias simulation
combined with force averaging for Cartesian or internal degrees of freedom [66]; (2) the use
of multi-dimensional reaction coordinates [69] such as transition path sampling [70–72] or
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(3) considering collective variables, such as metadynamics [30,73] although such methods
require a huge amount of computational time. Since the determination of reaction coordi-
nates for the binding of DBD at zwitterionic membranes is out of the scope of this work,
we limit ourselves to use radial distances between two species as our order parameters to
perform reversible work calculations.

In this framework, a good approximation of the PMF can be obtained by means of
the reversible work WAB(r) required to move two tagged particles (A, B) from infinite
separation to a relative separation r (see for instance Ref. [74], chapter 7):

WAB(r) = − 1
β

ln gAB(r), (2)

where β = 1/(kBT) is the Boltzmann factor, kB the Boltzmann constant and T the temper-
ature. In the calculations reported here, the radial distance r is the distance used in the
corresponding RDF (Section 3.2) i.e., it is not related to the atom position relative to the
center of the membrane. All free-energy barriers are simply defined (in kBT units) by a neat
first minimum and a first maximum of each W(r), with barrier size ΔW obtained as the
difference between the former. As a sort of example, we present the free-energy barriers
with largest values for each DBD species in Figure 6.

Figure 6. Potentials of mean force for the binding of ‘H2’ sites of DBD derivatives to the sites ‘O13-14’
of DOPC and DOPS.

The full set of free-energy barriers for a wide selection of bound pairs has been
reported in Table 2. There we can observe overall barriers between 1.2 and 5.2 kBT, which
correspond to 0.7–3.1 kcal/mol, for the simulated temperature of 310.15 K. We observe
stable binding distances (given by the position of the first minima of the PMF) matching
the typical hydrogen-bond distances, as expected. As a reference, it is known that the
typical energy of water–water hydrogen-bonds estimated from ab initio calculations is of
4.9 kcal/mol for a water dimer in vacuum [75], whereas in our model system (including
TIP3P water) the barrier associated to the HB signature, given by the first maximum of
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water’s oxygen–hydrogen RDF, is of 1.1 kcal/mol. This low value can be directly associated
with two facts: (1) first, we have estimated this energy in the bulk, condensed phase of the
aqueous ionic solvent, whereas the reference value of Feyereisen et al. [75] corresponds
to an isolated water dimer, i.e., can be related to gas phase; (2) secondly, the TIP3P water
model included in the CHARMM36 force field is well known to have significant drawbacks
to describe liquid water [76].

Table 2. Free-energy barriers ΔW (in kBT) from reversible work calculations for the binding of DBD
to cholesterol, lipids and water. In order to quantify the height of all barriers, 1 kBT = 0.596 kcal/mol.
Labels as indicated in Figure 1. Estimated errors of ±0.1 in all cases.

DBD Site Lipid Site
ΔW

DBD1 DBD2 DBD3 DBD4 DBD5

H2 O13-14 DOPC 4.2 4.0 4.0 4.2 5.2
H2 O22-32 DOPC 3.4 3.2 2.5 4.4 3.7
H2 O13-14 DOPS 4.2 3.8 5.0 4.7 4.7
H2 O22-32 DOPS 2.8 3.5 3.3 3.0 2.2
H4 O11 DOPC 2.0 2.5 2.4 1.9 3.1
H4 O22-32 DOPC 1.6 2.2 1.9 2.3 2.3
H4 O11 DOPS 2.3 1.2 3.5 1.8 3.8
H4 O22-32 DOPS 1.8 1.6 2.0 4.0 3.9
H4 O Cholesterol 1.2 3.2 2.9 2.4 3.4

O11-12 H Cholesterol 1.8 2.4 2.2 2.6 2.3

In an earlier work [28] we reported by the first time DBD–membrane related free-
energy barriers. For the sake of comparison with other similar systems, we can remark
that the PMF of tryptophan in a di-oleoyl-phosphatidyl-choline bilayer membrane shows
a barrier of the order of 4 kcal/mol [77], whereas the barrier for the movement of trypto-
phan attached to a poly-leucine α-helix inside a DPPC membrane was reported to be of
3 kcal/mol [78]. Finally, neurotransmitters such as glycine, acetylcholine or glutamate were
reported to show small barriers of about 0.5–1.2 kcal/mol when located close to the lipid
glycerol backbone [79]. These values could further indicate that our estimations match well
the order of magnitude of the free-energy barriers for other small-molecules of similar size.

We designed two sets of DBD derivatives according to their characteristics: in DBD2
and DBD3 we replaced a hydrogen by electron-donating groups (methyl and ethyl, re-
spectively) whereas in DBD4 and DBD5 we replaced a hydrogen by electron-accepting
groups (fluorine and trifluoromethyl, respectively). Regardless of the type of replacement
considered, our general result is that most of the barriers are in the range of 1–5 kcal/mol,
regardless of the specific derivative considered. As more specific features, we can observe
that the barriers corresponding to the HB formed by the residue ‘H2’ of the DBD deriva-
tives are overall larger than those related to the hydrogen-bonds formed by ‘H4’, which
suggests that ‘H2’ is the most stable binding site between DBD species and the model
cell membranes considered in this work. Among the five DBD species analyzed we can
observe that, regarding the ‘H2’ site of DBD, interactions of its derivatives with DOPC
are about 10% stronger that those with DOPS but when ‘H4’ is concerned, the strength
of its HB with DOPC is weaker than those with DOPS only when the tail groups ‘O22-32’
are considered. Nevertheless, the barriers of ‘H4’ to head groups are of similar size for
both DOPC and DOPS. Further, we should remark a gross feature based on the class of
substitution: derivatives DBD2 and DBD3 (where the -H group of the original DBD1 was
replaced by electron-donating groups) show similar free-energy barriers and close to the
values obtained for DBD1, whereas derivatives DBD4 and DBD5 (where the -H group of the
original DBD1 was replaced by electron-accepting groups) also show similar free-energy
barriers but less similar to the values obtained for DBD1. Finally, the binding of DBD with
cholesterol is revealed to be sensibly weaker than that to DOPC and DOPS.
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With the aim of a better understanding of the geometrical shape of the HB established
between DBD and lipid species and as a sort of example, we report in Figure 7 a series of
three snapshots describing the simultaneous binding of DBD4 with a few counterparts: so,
we can observe that DBD4’s ‘H2’ and ‘H4’ are able to bridge oxygens ‘O13’ and ‘O14’ of
DOPC and ‘O22-32’ of DOPS (A), also ‘O22-32’ of DOPC and ‘O’ of the hydroxyl group
of cholesterol and finally ‘O13’ and ‘O14’ of DOPS and ‘O’ of the hydroxyl group of
cholesterol. This remarkable bridging properties of DBD4 are qualitatively similar to those
of DBD1. Both species, and to some extent all of DBD derivatives, can also form closed-ring
structures (see Ref. [28], Figure 6). The bridging bonds highlighted here are quite similar to
the HB structures observed in tryptophan [80] and melatonin absorbed at cell membrane
surfaces [53].

Figure 7. Snapshots of relevant configurations between benzothiadiazine derivative DBD4 (green)
and their partner hydrogen-bonding sites. Lipid molecules: DOPS (pink), DOPC (cyan), cholesterol
(orange). Specific sites: DBD4-H2 (black), DBD4-H4 (magenta), oxygen atoms in DBD4, DOPS, DOPC
and cholesterol are depicted in red whereas hydrogen atom in cholesterol is depicted in white. Typical
hydrogen-bond distances are indicated in red. This figure has been created by means of the “Visual
Molecular Dynamics” package [81].

3.2.3. Time-Dependent Atomic Site–Site Distances

Once the local structures of the DBD derivatives have been fully evaluated, we make
an estimation of the HB dynamics by computing the average lifetime of some of the HB
reported by RDF. Other typical MD properties involving time-correlation functions such
as power spectra [82,83], relaxation times or self-diffusion coefficients [84,85] that were
considered in previous studies, are out of the scope of this paper and have not been
considered here. We display the time evolution of selected atom–atom distances d(t) in
Figure 8 only for the pairings of ‘H2’ of DBD3 and sites ‘O13’ and ‘O14’ of DOPC and
DOPS (top panel) and for ‘H4’ of DBD3 and sites ‘O11’ and ‘O12’ of DOPC and DOPS
(bottom panel), as a sort of example. The full set of averaged values are reported in Table 3.
We have selected in Figure 8 representative intervals (of more than 100 ns) from the full
MD trajectory of 600 ns where the pattern of formation and breaking of HB is clearly
seen, including a large extent of fluctuations. This means that such patterns have been
systematically observed throughout the whole trajectory.

We can observe that typical HB distances of 1.7 and 2.05 Å are reached. Sites ‘O13’
and ‘O14’ (and ‘O11’ and ‘O12’) of DOPC and DOPS have been averaged given their
equivalence. Typical HB lifetimes can vary enormously, between short lived HB of less
than 1 ns (DBD1 with cholesterol) up to long-life HB of more than 70 ns (DBD2 with the
head-group of DOPC, i.e., sites ‘O13-14’). As general trends, we can highlight that (1)
sites ‘H2’ of the benzothiadiazine derivatives are able to form much longer lived HB than
sites ‘H4’, especially for the DOPS species and (2) DBD–cholesterol hydrogen bonds have
rather short lifetimes in the range of 1–10 ns. A closer look indicates that the longest
living HB established between DBD and cholesterol are those composed by cholesterol’s
hydrogen as donor and oxygens of DBD as acceptors, about twice longer that HB formed
by hydroxyl’s oxygen of cholesterol and hydrogen ‘H4’ of DBD derivatives. For the sake of
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comparison, we should remark that the typical lifetime of hydrogen-bonds in pure water
has been estimated to be of the order of 1 ps [86]. Finally, we should indicate that the shorter
lifetimes reported in a previous work where DBD1 was studied [28] must be attributed to
the shorter trajectories considered there and, especially, to the fact that some lifetimes were
estimated without taking into account short-lived breaking and reformation of HB, as we
did in the present work.

Figure 8. Time evolution of distances between selected sites of DBD3 (‘H2’, ‘H4’) and their partner
oxygen sites of DOPC and DOPS.

Table 3. Averaged distances (in Å) between selected sites of DBD and the membrane. Continuous
time intervals (τ, in ns) have been obtained from averaged computations along the 600 ns trajectory.
Labels as indicated in Figure 1. Estimated errors of ±0.1 in all cases.

DBD Site Lipid Site Distance τDBD1 τDBD2 τDBD3 τDBD4 τDBD5

H2 O13-14 DOPC 1.7 67.4 73.7 63.2 28.4 38.5
H2 O22-32 DOPC 1.8 20.4 11.8 12.3 19.4 24.6
H2 O13-14 DOPS 1.7 6.9 8.8 27.0 9.6 9.7
H2 O22-32 DOPS 1.8 1.4 1.9 2.3 3.1 0.9
H4 O11-12 DOPC 1.9 42.5 64.4 61.5 15.6 35.9
H4 O22-32 DOPC 2.0 16.5 14.0 13.0 16.6 28.4
H4 O11-12 DOPS 1.9 1.3 1.9 24.8 1.9 6.4
H4 O22-32 DOPS 2.0 1.8 1.4 0.9 2.6 1.9
H4 O Cholesterol 2.0 0.5 3.4 4.4 3.7 3.6

O11-12 H Cholesterol 1.9 4.6 4.5 6.6 10.3 6.0
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4. Conclusions

We report results from molecular dynamics simulations of benzothiadiazine deriva-
tives embedded in a phospholipid bilayer membrane formed by 200 lipid molecules with
concentrations of 56% of DOPC, 14% of DOPS and 30% of cholesterol in aqueous potassium
chloride solution using the CHARMM36m force field. Starting from a standard 3,4-dihydro-
1,2,4-benzothiadiazine-1,1-dioxide molecule we have designed in silico four derivatives
based on the replacement of a single hydrogen atom by two different classes of chemical
groups, one of them electron-donating groups (methyl and ethyl) and another one by
electron-accepting groups (fluorine and trifluoromethyl). The electronegativity of these
two groups is very different: whereas the electronegativity of electron-donating groups
is smaller than that of hydrogen atoms, the electronegativity of electron-accepting groups
is larger. In this paper, the electronegativity of methyl and ethyl groups, being smaller
than that of hydrogen has the inductive effect of electron donation, which will increase
the electron density of the DBD molecule to a certain extent. On the contrary, fluorine
and trifluoromethyl will reduce the electron density of the molecule. When the hydrogen
of the C-H bond in the DBD molecule is replaced by a substituent, the electron density
distribution of the molecule changes, which has significant impact on the formation of
hydrogen bonds between the drug and cell membrane components, as it has been reported
in the present work.

As a gross feature, the same class of chemical groups produce similar effects on the
HB between DBD and cell membranes, whereas different types tend to produce overall
opposite effects. With this kind of study our aim is to elucidate the effects of different
chemical groups on DBD–cell interactions. Our analysis is based on the computation of the
local structures of the DBD derivatives when associated to lipids, water and cholesterol
molecules. After the systematic analysis of meaningful data, we have found that the location
of DBD at the interface of the membrane is permanent. We have computed RDF defined
for the most reactive particles, especially hydrogens ‘H2’ and ‘H4’ and oxygens ‘O11-12’ of
DBD (see Figure 1) correlated with sites of lipids and cholesterol able to form HB with DBD.
All RDF have shown a strong first coordination shell and a weak second coordination shell
for all DBD–lipid structures. The first shell is the signature of HB of lengths between 1.7
and 2.1 Å, in overall good agreement with experimental measurements [65] for comparable
small-molecules at interfacial membranes.

The analysis of PMF of DBD–lipid interactions has revealed free-energy barriers of
the order of 1–3 kcal/mol (Table 2), with the largest barriers corresponding to hydrogen
bonds between DBD’s ‘H2’ site and oxygens sites of DOPC and DOPS; however, it has been
observed that DBD derivatives are able to bind to cholesterol as well as the two classes
of phospholipids, providing bridging connections that are able to locally estabilize and
compactify the cell membrane, although the area per lipid and thickness of the whole
membrane are not affected by the presence of the DBD species in any case. The influence of
cholesterol has been especially noted in the weakening of DBD–lipid HB connections, which
should be taken in consideration for the interaction of drugs with cell membranes from
a pharmaceutical point of view. After a thorough analysis monitoring relative distances
between tagged sites of DBD and lipids we have estimated the lifetime of HB by averaging
data from the 600 ns MD trajectories to range in between 1 and 70 ns.
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Abstract: KCNE3 is a potassium channel accessory transmembrane protein that regulates the function
of various voltage-gated potassium channels such as KCNQ1. KCNE3 plays an important role in the
recycling of potassium ion by binding with KCNQ1. KCNE3 can be found in the small intestine, colon,
and in the human heart. Despite its biological significance, there is little information on the structural
dynamics of KCNE3 in native-like membrane environments. Molecular dynamics (MD) simulations
are a widely used as a tool to study the conformational dynamics and interactions of proteins
with lipid membranes. In this study, we have utilized all-atom molecular dynamics simulations to
characterize the molecular motions and the interactions of KCNE3 in a bilayer composed of: a mixture
of POPC and POPG lipids (3:1), POPC alone, and DMPC alone. Our MD simulation results suggested
that the transmembrane domain (TMD) of KCNE3 is less flexible and more stable when compared to
the N- and C-termini of KCNE3 in all three membrane environments. The conformational flexibility
of N- and C-termini varies across these three lipid environments. The MD simulation results further
suggested that the TMD of KCNE3 spans the membrane width, having residue A69 close to the
center of the lipid bilayers and residues S57 and S82 close to the lipid bilayer membrane surfaces.
These results are consistent with previous biophysical studies of KCNE3. The outcomes of these
MD simulations will help design biophysical experiments and complement the experimental data
obtained on KCNE3 to obtain a more detailed understanding of its structural dynamics in the native
membrane environment.

Keywords: KCNE3; structural dynamics; lipid bilayers; molecular dynamics simulation; membrane
mimetic

1. Introduction

KCNE3 is a potassium channel accessory transmembrane protein belonging to the
KCNE family that regulates the function of various voltage-gated potassium channels such
as KCNQ1 and KCNQ4 [1–4]. KCNE3 has been expressed in the small intestine, colon, and
human heart [5–7]. Previous studies have shown that in the presence of KCNE3, KCNQ1’s
voltage sensitivity shows a linear current-voltage (I-V) relationship that gives rise to a
potassium ion conductivity in non-excitable cells as polarized epithelial cells of the colon,
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small intestine, and airways [3,8,9]. Its malfunction has been proven to contribute to health
disorders such as cardiac arrhythmia, long QT syndrome, tinnitus, cystic fibrosis, and
Menière’s disease [3,5,10–15]. For such a biologically significant membrane protein, little
information is known about the structural and dynamic properties of KCNE3 in native
like membrane environment, where interactions between lipids and proteins help stabilize
the structure of the protein and influence protein function within the membrane. Previous
NMR studies of KCNE3 in detergent micelles and isotropic bicelles by the Sanders lab
have shown KCNE3’s structure consists of an extracellular N-terminus surface associated
amphipathic helix connected by a loop to an alpha helical transmembrane domain [16].
A disordered C-terminus is connected to the transmembrane domain by a short juxta
membrane helix [16]. Recent studies by Sun et al. using cryo-electron microscopy (Cryo-
EM) showed that KCNE3 tucks its single membrane spanning helix against KCNQ1 at a
point that appears to keep the voltage sensor in its depolarized confirmation [8]. However,
it is not fully understood how these various sections behave structurally and dynamically
in various membrane bilayer environments.

Molecular dynamics (MD) simulations serve as a structure biology tool to complement
experimental studies in order to study the stability and structural dynamic properties of
membrane proteins at an atomic level [17–21]. Here, we use all-atom MD simulations
in the course of 105 ns to study stability and structural dynamic properties of KCNE3 in
bilayers composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)/POPG
(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt)) (3:1), POPC
alone, and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) only. The POPC/POPG
mixtures, POPC alone and DMPC are widely used lipid systems to mimic biological mem-
brane bilayers for biophysical studies [16,17]. Previous MD simulation studies on similar
membrane proteins and other protein systems have suggested that the simulation times
of 10–100 ns can provide reliable analysis of protein–detergent and protein–lipid inter-
actions [17,22–24]. We have analyzed MD simulation trajectory data to obtain several
structural dynamics related parameters such as backbone root mean square deviation
(RMSD), root mean square fluctuation (RMSF), lipid bilayer membrane width, Z-distances,
total protein–lipid interaction energy, TMD helical tilt angle, and a heat map of the correla-
tion between parameters, results that yield insight into the stability, molecular motion and
interaction of KCNE3 in different phospholipid bilayer membranes.

2. Methods

2.1. Molecular Dynamics Modeling of Wild-Type KCNE3 in Lipid Bilayers

Nanoscale molecular dynamics (NAMD) [25] version 2.14 with the CHARMM36
force field was employed to perform molecular dynamics simulations on a full length
KCNE3 (PDB ID: 2M9Z, the original pdb file is available in the Supporting Information
of the ref. [16] in lipid bilayers composed of POPC/POPG (3:1), POPC alone, and DMPC
alone [26–28]). The simulation set up and input files were generated by using CHARMM-
GUI [29]. The visual molecular dynamics software (VMD) Xplor version 1.13 [30,31] was
used for MD trajectory data analysis. The bilayer, composed of a pre-equilibrated lipid
molecules with a ~12,010.5 Å2 surface, was built using membrane builder protocol under
CHARMM-GUI [29,32]. The total charge of KCNE3 was 2.0 in the simulation. The positively
charged amino acid residues were protonated, and negatively charged amino acids were
deprotonated. The histidine (HIS) residues were protonated to the neutral form (HSD).
The protein was inserted into the membrane and the system was solvated into a TIP3
water box and ionized to add bulk water above and below the membrane and to neutralize
the system with KCl using the membrane builder protocol [29,32]. The final assembled
system comprised waters, phospholipids, ions and the protein (a total of ~174,071 atoms).
Six equilibration steps of each protein-lipid system were performed for 50–200 ps with 2 fs
timesteps using the NAMD program with input files generated by CHARMM-GUI [29,32].
The minimization equilibration utilized collective variable restraints to slowly release
system motion and facilitate simulation stability. Starting from this equilibrated system,
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NAMD simulations were carried out for ~105 ns using Langevin dynamics for the three
membrane environments [18]. Electrostatic interactions were computed using the Particle-
Mesh Ewald algorithm with a 12 Å cutoff distance [33] and Van der Waals interactions
were computed with a 12 Å cutoff distance and a switching function to reduce the potential
energy function smoothly to zero between 10–12 Å. Periodic-boundary conditions were
used, and constant temperature (303 K) and pressure (1 atm) were maintained. Equations
of motion were integrated with a timestep of 2 fs and trajectory data was recorded in 20 ps
increments [18].

2.2. Analysis of the MD Simulation Data

The structures in the MD trajectory data were aligned with respect to the starting
structure in the production run for each membrane bilayer environment before further
analysis. The stability and structural dynamic behavior of KCNE3 was obtained from the
aligned trajectory data by calculating root mean square deviation (RMSD) of all atoms
of the backbone, root mean square fluctuation (RMSF), lipid bilayer membrane width, Z-
distances, total protein–lipid interaction energy, and TMD helical tilt angle using the scripts
available in the VMD software package [30]. The heatmaps for the correlation between
different simulation parameters were graphed using Matlab (https://www.mathworks.com
accessed on 10 February 2022). The images were prepared using the Igor Pro graphics
program (https://www.wavemetrics.com accessed on 10 February 2022). All molecular
dynamics simulations were run on the Miami Redhawk cluster computing facility at
Miami University.

3. Results and Discussions

The stability and structural dynamic properties of KCNE3 in different phospholipid
bilayer environments were investigated using NAMD molecular dynamics simulation
trajectory data. A wild-type KCNE3 protein was incorporated into three different lipid
bilayer environments including POPC/POPG (3:1), POPC alone, and DMPC alone to
study how structural and dynamic properties of KCNE3 behave in different lipid bilayer
environments; POPC and POPG are monounsaturated lipids and DMPC is saturated lipid.
These lipids are widely used in studying membrane protein/peptides. POPG lipids contain
a negative charge and hence the mixture of POPC and POPG at the molar ratio of 3 to 1 may
provide more favorable condition to stabilize the TMD of KCNE3 buried into lipid bilayers
while spanning the width of the bilayer membrane [34,35]. Figure 1A shows the chemical
structure of the lipids used in this study. The protein lipid systems were set up beginning
with the NMR structure of KCNE3. KCNE3 was inserted into the respective lipid bilayer
with the transmembrane helix spanning the membrane with the C- and N-terminal helices
oriented on either side of the bilayer and interacting with the solvent. Figure 1B shows
the setup for the KCNE3-POPC/POPG system; the amino acid sequence of the wild-type
KCNE3 is indicated in Figure 1C with the red box indicating the transmembrane helix, the
blue boxes indicating the N- and C-terminal helices and the distribution of charged amino
acids by color codes [16].

Molecular Motion of KCNE3 in Different Phospholipid Bilayer Environments

An all-atom molecular dynamics simulation on wild-type KCNE3 in three different
lipid bilayer environments was carried out over the course of 105 ns. Figure 2 shows the
snapshots of the representative MD simulation output trajectory data of KCNE3 incorpo-
rated into all three lipid bilayer systems (POPC/POPG, POPC alone, and DMPC alone)
for 16 ns, 40 ns, 80 ns and 105 ns. The interaction of C- and N-termini of KCNE3 with the
lipid bilayer surface is flexible and dynamic for all three lipid compositions. Interestingly,
the initial few amino acid sites of N-terminal of KCNE3 showed formation of a short beta
strand structure in the DMPC lipid system.
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Figure 1. (A) Chemical structure of phospholipids used in the NAMD molecular dynamics simula-
tions. (B) An illustrative example of the cartoon representation of the NMR structure of KCNE3 (PDB
ID: 2M9Z) incorporated into POPC/POPG lipid bilayers and solvated into water box [16]. Amino
acid sites 1–56 represent N-terminus, amino acid sites 57–82 represent TMD and sites 83–103 represent
C-terminus. The amino acid sites 57 and 82 are colored yellow. (C) Amino acid sequence of the
wild-type KCNE3 with distribution of charges. Positive charges (Red), negative charges (Blue), and
Histidine (Green) are color coded. The highlighted red box represents the transmembrane domain
and blue boxes represent N- and C-terminal helices.

In order to analyze the conformational stability and molecular motion of the wild-
type KCNE3 in membrane environments, a backbone root mean square deviation (RMSD)
was calculated from the trajectory data and plotted as a function of simulation time for
different segments of the protein including transmembrane domain (TMD), C-terminus,
N-terminus, C-terminal helix, and N-terminal helix for POPC/POPG (3:1), POPC alone,
and DMPC lipid bilayers as shown in Figure 3. We omitted analysis of the first 15 ns of each
trajectory of the production run to avoid the equilibration time of the system. The RMSD
measures the mean position of the amino acid residues in the structure of the subsequent
simulation frames and compares them to the initial structure [22]. The RMSD is important
in identifying regions of the proteins that have higher flexibility as well as regions that
are stabilized. The initial trajectories for all simulations in the POPC/POPG and POPC
alone systems are similar. The RMSD profile pattern for POPC/POPG (Figure 3A) shows
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that the RMSD values for the TMD of KCNE3 are lower than that of N-terminus and
N-terminal helix until 49 ns and then increases to have similar values by 105 ns. The
RMSD values for C-terminal and C-terminal helix are lower than the that of the TMD,
N-terminus and N-terminal helix and vary throughout the simulation. Similarly, the RMSD
profile pattern for POPC (Figure 3B) shows that the RMSD values for the TMD of KCNE3
are very close to that of N-terminus and N-terminal helix during the simulation. The
RMSD values for the C-terminal helix are relatively lower than the TMD, N-terminus
and N-terminal helix and C-terminus with fluctuating values. The RMSD values for the
C-terminus are also close to these values, but fluctuate throughout the simulation. The
RMSD profile pattern for DMPC (Figure 3C) shows that the RMSD values for the TMD,
N-terminus, N-terminal helix, C-terminal helix, and C-terminus behave similarly with
similar RMSD values. KCNE3 appears to be more stable in DMPC than in POPC/POPG
or POPC alone, as the RMSD profiles for each segment are suppressed by comparison. In
the POPC/POPG and POPC alone systems, the N-terminus and N-terminal helix have the
highest RMSDs of all the segments of KCNE3. These data suggest that these regions of the
protein have conformationally higher backbone fluctuations in the KCNE3 structure. This
is expected, as the N-terminus contains a larger number of amino acid residues compared
to the C-terminus and the TMD [16]. In the POPC/POPG and POPC alone systems, the
RMSD values of the TMD begins at higher values than that of the C-terminus and C-
terminal helix. However, the C-terminus and C-terminal helix have larger fluctuations
as compared to the TMD, suggesting that the C-terminus is more mobile and unstable
than the TMD. The overall fluctuations of the C-terminus are, however, lower than that of
the N-terminus. The relatively smaller fluctuations observed for the TMD throughout the
simulation suggests that it is the most stable segment of the protein and has the greatest
stability of all segments studied. In the DMPC membrane mimetic system, the TMD is
observed to have similar backbone fluctuations as in the POPC/POPG and POPC alone
systems. However, the C-terminus segment starts out with a higher RMSD than that of the
N-terminus, in contrast to the other two POPC/POPG and POPC alone systems. Similarly,
higher backbone fluctuations for N- and C-termini reveal a similar level of conformational
instability in the DMPC bilayer system. The average RMSD values for different segments
of the KCNE3 are also calculated for all three lipid systems from the data in Figure 3 and
shown in Table 1. The average RMSD values vary between 10.4–23.5 Å for POPC/POPG,
10.3–17.4 Å for POPC alone, and 9.5–15 Å for DMPC. The average RMSD value for the
TMD in DMPC is the least value for TMD of all three lipid systems studied. The C-terminal
helix has the lowest average RMSD value when compared to different segments of the
protein in all three corresponding lipid systems. The standard deviation calculated of the
average RMSD data show higher values for the outside regions of the protein compared to
the TMD in all three corresponding lipid systems. The RMSD data for different regions
of KCNE3 in different lipid bilayer environments suggest that the backbone flexibility for
different segments of KCNE3 is different in POPC/POPG, POPC alone, and DMPC bilayer
membranes. Our overall RMSD data suggest that the regions of the KCNE3 that is outside
the membrane or interact with the surface are more flexible while DMPC lipid system plays
a more stabilizing role.

Table 1. Average RMSD calculated from the RMSDs shown in Figure 3. The error represents standard deviation.

Average RMSD (Å)

POPC/POPG POPC DMPC

TMD 14.7 ± 3.5 14.2 ± 3.1 9.7 ± 1.6
N-terminal helix 18.6 ± 3.5 15.9 ± 3.3 11.3 ± 4.4

N-terminus 23.5 ± 3.8 17.4 ± 3.1 13.3 ± 4.0
C-terminal helix 10.4 ± 4.0 10.3 ± 2.5 9.5 ± 1.6

C-terminus 11.3 ± 2.6 14.0 ± 3.9 15 ± 2.8
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Figure 2. Snapshots of the representative MD simulation trajectory data of KCNE3 at 16 ns, 40 ns,
80 ns, and 105 ns for POPC/POPG (A), POPC alone (B), and DMPC alone (C) lipid bilayers. The
hydrogen atom and water are omitted to make visualization simple and clear.

The RMSD data only provide the average behavior of the motion of the different
segments of the protein while interacting with lipid bilayer membrane. We also wanted
to understand how the flexibility of the particular regions assessed above contributed to
the overall fluctuations that disturb the KCNE3’s stability. The residue fluctuation profile
of bilayer-integrated KCNE3 were quantitatively determined by the root mean square
fluctuation (RMSF) throughout the simulation as shown in Figure 4. While the RMSD
indicates positional differences of entire structures over the course of the simulation, the
RMSF calculates how much a residue fluctuates during the simulation [22]. Consequently,
it helps determine the flexibility of individual residues. Figure 4 shows the RMSF for
KCNE3 residues in the three bilayer conditions. The profile for KCNE3 is similar for all
three bilayer compositions. Overall, residues 1–9 (unstructured region) and ~25–35 (around
the terminal of N-terminal helix) of the N-terminus and residues ~96–103 (unstructured
region) of the C-terminus have the largest RMSF, suggesting they are the most flexible.
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Figure 3. Root mean square deviation (RMSD) as a function of simulation time for different segments
of KCNE3 in POPC/POPG (A), POPC alone (B), and DMPC (C).

Figure 4. Plot of the root mean square fluctuation (RMSF) of KCNE3 as a function of simulation time
for three different lipid compositions: POPC/POPG (Red), POPC (Blue), and DMPC (Black).
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These results agree with the RMSD calculations that highlighted the highest fluctua-
tions in the C- and N-termini. The RMSF of N-terminal residues 11–24 (helical region) and
the TMD section from residue 57–82 are lower and indicate stability. The smallest RMSF
fluctuations of the TMD region occur in DMPC, which is in agreement with our observa-
tions regarding the RMSD of this region. The previous NMR data-restrained molecular
dynamics simulation on KCNE3 in DMPC lipid bilayers suggested the dynamic interaction
of N- and C-termini helices with membrane surface [16]. These helices contain amphipathic
amino acid sequences that do not deeply bury into the lipid bilayers, and hence these
helices can dynamically interact with bilayer surfaces. The fluctuation of different segments
of KCNE3 as suggested by the RMSF plot is consistent with the RMSD data and earlier
NMR studies [16]. Our RMSF data suggest the N- and C-termini are more flexible with
higher RMSD values in all three lipid compositions.

We wanted to better understand the formation of the lipid bilayer in the presence of
reconstituted KCNE3, since we observed a suppressed RMSD for the KCNE3 TMD region
in DMPC, in comparison to POPC/POPG and POPC alone. Both tails of the DMPC lipid
only have 14 carbons, while POPC and POPG have 16 and 18 (Figure 1A). We measured the
width of the membrane bilayer as a function of the simulation time for all three membrane
mimic environments (POPC/POPG, POPC alone, and DMPC) to determine whether DMPC
was forming compacted bilayers that stabilized the KCNE3 TMD. The membrane width
was calculated by measuring the distance between the center of mass of the phosphorus of
the upper and lower lipid head groups. The membrane width is shown as a time series
in Figure 5A, while the probability distribution of the timeseries data is represented in
Figure 5B. The membrane width of DMPC is the lowest of all three systems, as expected
based on the length of hydrocarbon chains. The membrane width probability distribution
plot (Figure 5B) shows the membrane width peak is centered around 37 Å for POPC/POPG,
35 Å for POPC and 31 Å for DMPC. The membrane width for POPC/POPG lipid bilayers is
thicker than that of POPC lipid bilayers, despite having the same number of carbon atoms
in the acyl chains.

Figure 5. Membrane bilayer width incorporating KCNE3 protein as a function of simulation
time (A) and membrane width probability distribution (B) for POPC/POPG (Red), POPC (Blue), and
DMPC (Black) bilayers.

Next, we wanted to understand the protein topology with respect to the lipid bilayer
membrane, since we observed that each bilayer had a different membrane width. The
membrane thickness is oriented about the z-axis with the center of mass of the membrane
bilayer located at Z = 0. We calculated the distance from the z-axis (Z-distance) of different
segments of KCNE3 from the center of the mass of the lipid bilayers in all three different
lipid membrane environments (POPC/POPG, POPC alone and DMPC). Previous NMR
studies in micelles and isotropic bicelles suggested that amino acid residue sites 57 to
82 belong to the TMD of the KCNE3 that spans the membrane bilayer width [16]. The
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Z-distances of the center of mass of the N-terminal helix, residues S57, A69 and S82, and
the C-terminal helix from the center of mass of the lipid bilayers were calculated from the
MD trajectory data. These Z-distance data can provide us with the information on how
much various residues and different segments in the protein structure moved away from
the center of the lipid bilayers when incorporated into different membrane environments.
Figure 6 shows the plot of Z-distance as a function of simulation time for center of mass
of different segments (N- and C-termini helices), and sites S57, A69, and S82 of TMD of
KCNE3 in three different lipid bilayer environments (POPC/POPG, POPC alone, and
DMPC). Figure 6A indicates that the TMD termini sites S57 and S82 are close to the surface
of the lipid bilayer and span the width of the membrane for POPC/POPG lipid bilayers.
The amino acid residue A69 lies close to the center of the lipid bilayers for POPC/POPG as
indicated by the Z-distance around zero. The Z-distance for N- and C-termini helices varies
outside the membrane width range. A similar trend of Z-distance profiles were observed
for POPC alone and DMPC lipid bilayer environments. However, the Z-distance ranges
for the TMD termini residues S57 and S82 for DMPC is lower than that for POPC/POPG
and POPC alone. This is expected, as the DMPC bilayer width is lower than that of the
POPC/POPG and POPC alone (Figure 5). The behavior of Z-distance pattern profile for
these lipid bilayer environments is consistent with the membrane width profile shown in
Figure 5.

Figure 6. The plot of z-axis distance (Z-distance) as a function of simulation time for KCNE3
incorporated into POPC/POPG (A), POPC (B), and DMPC (C) lipid bilayers. Shaded regions
represent the average width of the corresponding lipid bilayers calculated from Figure 5.
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To understand the stability of the interaction of the KCNE3 reconstituted into lipid
bilayer membrane environments, we calculated the internal energy of KCNE3 and plotted
this energy as a function of simulation time for all three membrane bilayer environments.
The corresponding histograms for total internal energy, electrostatic energy contribution
and van der Waals energy contribution are shown in Figure 7. Figure 7A shows similar
total energy profiles for all three systems. When the data is represented as a probability
distribution (right panel), the total internal energy of the KCNE3 is the lowest, with more
favorable values in the POPC/POPG lipid bilayers. The total internal energy of KCNE3
increases for POPC bilayers and is the least favorable in DMPC. Figure 7B shows the similar
internal energy trends and histogram profiles for electrostatic energy contribution when
compared to the total energy profile for all three systems. Figure 7C shows a lower van der
Waals contribution to the total internal energy when compared to the electrostatic energy
contribution. The probability distribution (Figure 7C, right panel) shows the van der Waals
energy of KCNE3 has a slightly lower value in POPC/POPG lipid bilayers when compared
to the POPC alone and DMPC alone systems both having similar van der Waals energy
contributions. The electrostatic interactions are the dominant contribution to the total
energy for all three lipid environments. The trend of the total internal energy in all three
lipid environments suggests that the overall protein structure is more stable in POPC/POPG
bilayer membrane compared to the cases of POPC and DMPC. Our hypothesis is that when
the KCNE3 is unable to interact with the lipids, it relies on internal interactions to stabilize
the structure.

Figure 7. Internal energy of KCNE3 in lipid bilayer membranes as a function of simulation
time (left panel) and corresponding histogram (right panel) for total internal energy (A), electro-
static energy (B) and van der Waals energy (C). The x-axis of the histogram plot represents the
probability distribution.
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To test this hypothesis, we computed the interaction energy of different segments
of the KCNE3 with the lipid bilayer membrane as shown in Figure 8. In all three lipid
environments, the interaction energy of the TMD section with the lipid is lower than
that of C-terminus, C-terminal helix, and N-terminal helix with the respective lipid. The
interaction energy of the N-terminus is close to interaction energy of the TMD but fluctuates
throughout the simulation. While the interactions of the N- and C- termini appear to be
strong and exhibit large fluctuations, the N- and C-termini helices weakly interact with the
lipid. Inspection of the trajectory data suggests these helices are closely interacting with
the membrane surface throughout the simulation, where the interaction energy attains
the lowest values. The average interaction energies for each section of KCNE3 during the
simulation were calculated for all three lipid systems from the interaction energy data
(Figure 8) as shown in Table 2. The average interaction energy for the TMD of KCNE3 is not
significantly different for all three lipid systems. Similarly, other segments of the protein
have similar average interaction energy (within the error) in all three corresponding lipid
systems. However, the standard deviation values are larger for the N- and C-termini in
all three lipid systems. These data suggest that the interactions of the N- and C-termini of
KCNE3 with the membrane surface are dynamic.

Figure 8. Interaction energy of different segments of KCNE3 with lipid bilayer membranes as a
function of simulation time for POPC/POPG (A), POPC (B), and DMPC (C) lipid bilayers.
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Table 2. Average interaction energy calculated from the interaction energy shown in Figure 8. The
error represents standard deviation.

Average Interaction Energy (KCal/Mol)

POPC/POPG POPC DMPC

TMD −313.7 ± 42.3 −316.6 ± 37.5 −317.5 ± 42.2
N-terminal helix −5.6 ± 10.9 −8.0 ± 14.8 −5.4 ± 9.4

N-terminus −465.3 ± 85.3 −371.8 ± 105.3 −401.3 ± 86.8
C-terminal helix −4.9 ± 8.8 −11.6 ± 20.2 −7.5 ± 13.7

C-terminus −162.5 ± 64.5 −184.7 ± 63.7 −200.6 ± 68.5

These interaction energy data suggest that the N-terminus interacts most strongly
with the membrane surface but the interaction is dynamic and unstable, as the standard
deviation in the average energy calculation is very high for this segment of the protein.
While the interaction energy of TMD is higher than that of the N-terminus, the stability
of the TMD structure may be attributed to the internal energy of the protein its transient
interactions with water molecules [16].

To better understand the conformational stability and the interaction of the transmem-
brane domain (TMD) of KCNE3 with membrane bilayers, we calculated the helical tilt of
the TMD within the bilayer. In our previous results, we saw that the membrane thickness
was dependent upon the lipid environment, though there were minute differences in the
Z-distances of the terminal residues of the TMD helix. We wanted to establish whether
the deformation of the helix occurred to accommodate the structure within the bilayer.
We have plotted the probability density of the transmembrane (TM) helical tilt of KCNE3
with the membrane normal and the Z-distance of the TMD of KCNE3 from the center of
the mass of lipid bilayers for all three different membrane environments (POPC/POPG,
POPC alone, and DMPC) as shown in Figure 9. The initial Z-distance fluctuates around 0 Å.
When KCNE3 is embedded in the POPC/POPG lipid bilayer, two conformations of the
TMD helix are observed; the dominant population is centered around a Z-distance of −3 Å
and a helical tilt of 45◦, while the second less populated conformation is at a Z-distance of
2 Å and a helical tilt of 75◦. In the case of POPC alone, similar conformations are observed
as in the POPC/POPG system, though the populations are more diffuse with sampling
of many intermediate states between the two dominant conformations. By comparison,
only one dominant conformation exists in the DMPC lipid, which is unique to DMPC
and not observed in the other two lipid environments. The highest probability is centered
around a Z-distance of 3.5 Å, while the helical tilt fluctuates between 45◦ and 70◦. These
data suggest that there is a strong correlation between TM helical tilt angle and Z-distance
for POPC/POPG bilayers and DMPC bilayers, and a weak correlation for POPC bilayers.
Interestingly, the dominant probability density for the DMPC membrane appears for the
Z-distance of the TMD of around 4 Å from the center of the mass of the bilayers and TM
helical angle of around 45–70◦. This suggests that the TMD helix tilts to remain embedded
within the lipid bilayers. However, in DMPC the TMD helix is more stationary at the
Z-distance and samples less tilt angles, suggesting that it is more stable in this lipid system.
In contrast, when the TMD helix is in POPC/POPG and POPC alone, the tilting behavior of
the TMD helix results in changes in Z-position, suggesting the TMD helix is more mobile
within these lipids. These probability distribution patterns are also consistent with the
membrane width data shown in Figure 5.

We wanted to further understand the conformational stability and interaction of
different segments of KCNE3 with membrane bilayers. We plotted the correlation between
the total interaction energy of different segments of KCNE3 (N-terminus, N-terminal helix,
TMD, C-terminal helix and C-terminus) and the corresponding Z-distances from the center
of the mass of the membrane bilayers in Figure 10. Figure 10A shows the probability density
for the N-terminus. Similar trends are observed for POPC/POPG and DMPC, with one
dominant population that varies between Z-distances of 35–50 Å and interacts strongly with
the lipids with energies ranging from −550 to −750 kcal/mol. Interestingly, the probability
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density for POPC alone is more dispersed and involves much lower interaction energies.
Visualization of the trajectory data suggests that the interaction of the N-terminus with the
POPC membrane surface is dynamic and very unstable, with a wide spreading of its portion
above the surface with occasionally anchoring to it. For the N-terminal helix of KCNE3
(Figure 10B), the probability densities are similar for all three lipid environments. However,
an additional disperse density with higher interactions and Z-distances closer to the lipid
head groups is observed for POPC/POPG. Visualization of the trajectory data suggests that
N-terminal helix also interacts dynamically with the POPC/POPG membrane surface and
develops a bending in the helix during the interaction during certain periods of simulation
times. A similar trend of a dominant population for the TMD helix is observed for all three
systems (Figure 10C). However, an additional dispersed density with higher interactions
with same Z-distance has been observed in POPC. The probability density for the TMD
helix also shows higher interactions in DMPC. For the C-terminal helix (Figure 10D) and
the C-terminus (Figure 10E), similar populations are observed in all three lipid systems
with a slightly weaker interactions observed in the POPC/POPG system. Together, these
data suggest that the TMD of KCNE3 stably interacts with all three lipid systems, with
DMPC conferring the greatest stability. While the N-terminus of KCNE3 is interacting
strongly with POPC/POPG, it is more dynamic and less stable. The interaction trend of
C-terminus is similar in POPC alone and DMPC. The weak interaction of the C-terminus
in POPC/POPG suggests that the unanchored regions of either termini are stabilized by
the interactions with water. The probability density pattern for different KCNE3 segments
observed in these three environments are consistent with our RMSD, RMSF, membrane
width, Z-distances, and total interaction energy data (Figures 3–7).

Figure 9. Probability density plot of transmembrane (TM) helical tilt angle against the Z-distance
of TMD of KCNE3 in different lipid bilayer membranes. The yellow color indicates the highest
probability, and the blue color represents the lowest probability.

NMR studies by the Sanders lab on KCNE3 in LMPC (lyso-myristoylphosphatidyl
choline) micelles and DMPG (dimyristoylphosphatidylglycerol)/ DHPC (dihexanoylphos-
phatidylcholine) isotropic bicelles have suggested that KCNE3 adopts a single α-helical
transmembrane domain (57–81). This is connected to a flexible loop with N-terminal surface
associated amphipathic helix (10–30) and a short juxtamembrane helix (90 to 95) and a
disordered C-terminus (96 to 103) [16]. The previous double electron electron resonance
(DEER) electron paramagnetic resonance (EPR) data on KCNE3 in POPC/POPG bilayered
vesicles suggested that the TMD helix of KCNE3 adopts a moderate curvature with residues
T71, S74, and G78 facing the concave side of the curvature [16]. The TMD of KCNE3 is
crucial to its function, and the curvature is important for binding to the activated-state
channel [16]. A recent cryo-electron microscopic (Cryo-EM) spectroscopic study on the
KCNE3-KCNQ1 complex in detergent micelles suggested that there is a deviation on the
structure of KCNE3 interacting with KCNQ1 relative to the KCNE3 NMR structure model
in isotropic bicelles with a root mean square deviation (RMSD) of 7.6 Å between the two
structures [8]. Our all-atom molecular dynamics simulation data for 105 ns obtained on
KCNE3 in POPC/POPG, POPC alone and DMPC bilayers reported in this study suggested
that the center of mass of the KCNE3 TMD is slightly increased and more stable in DMPC
when compared to POPC/POPG and POPC alone. In contrast, N- and C-termini were
more conformationally flexible and interacted differently in all three environments. The
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N- and C-termini helices dynamically interacted with the solvent or partially interacted
with the membrane surface. The MD simulation results further suggested that the TMD of
KCNE3 spans the membrane bilayer width with the amino acid residue A69 situated close
to the center of lipid bilayers and the residues S52 and S82 are close to the surface of the
membrane bilayer. The total internal energy of KCNE3 suggested that the POPC/POPG
lipid bilayer membrane provides more stability in protein–membrane interactions. Our
molecular dynamics simulation data are consistent with earlier experimental biophysical
studies on KCNE3 [8,16,36]. Extending the MD simulation time longer than 105 ns may
provide additional insight on the structural dynamic properties of KCNE3 while interacting
with different mimetic systems.

Figure 10. Probability density plot of total interaction energy of N-terminus (A), N-terminal helix
(B), Transmembrane domain (C), C-terminal helix (D) and C-terminus (E) of KCNE3 with lipid
bilayers against corresponding Z-distances from the center of mass of the lipid bilayers for different
lipid bilayer membranes. The yellow color indicates the highest probability and blue color represents
the lowest probability.
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4. Conclusions

All atom molecular dynamics simulations for 105 ns were performed on KCNE3
incorporated into POPC/POPG, POPC alone and DMPC alone membrane bilayer environ-
ments to study the structural dynamic properties of KCNE3. The MD simulation results
suggested that the TMD of the KCNE3 is less conformationally flexible and more stable
when compared to the N- and C-termini in all three membrane environments. The N- and
C-termini of KCNE3 are conformationally more flexible and dynamic in all these three lipid
environments. The MD simulation results further suggested that the TMD of KCNE3 spans
the membrane width, with residue A69 located near the center of the lipid bilayers and
residues S57 and S82 located at the opposing lipid bilayer membrane surfaces. These MD
simulation results complement the experimental biophysical studies of KCNE3 in lipid
bilayer membranes to illuminate its structural dynamic properties in more detail.
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MD molecular dynamics;
RMSD root mean square deviation;
RMSF root mean square fluctuation;
LMPC lyso-myristoylphosphatidyl choline;
DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine;
DHPC dihexanoylphosphatidylcholine;
DMPG dimyristoylphosphatidylglycerol;
POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine;
POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt);
TMD Transmembrane Domain;
EPR electron paramagnetic resonance;
DEER double electron-electron resonance.
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