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Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact
on Clinical Performance of Patients Monitored with AI-TeleHealth System
Reprinted from: Healthcare 2021, 9, 1695, doi:10.3390/healthcare9121695 . . . . . . . . . . . . . . 41

Ibrahim El rube’, David Heatley and Mohamed Abdel-Maguid
Detecting a Stroke-Affected Region in the Brain by Scanning with Low-Intensity
Electromagnetic Waves in the Radio Frequency/Microwave Band
Reprinted from: Healthcare 2021, 9, 1170, doi:10.3390/healthcare9091170 . . . . . . . . . . . . . . 65

Mohamed Yaseen Jabarulla and Heung-No Lee
A Blockchain and Artificial Intelligence-Based, Patient-Centric Healthcare System for
Combating the COVID-19 Pandemic: Opportunities and Applications
Reprinted from: Healthcare 2021, 9, 1019, doi:10.3390/healthcare9081019 . . . . . . . . . . . . . . 85

Tania Pereira, Joana Morgado, Francisco Silva, Michele M. Pelter, Vasco Rosa Dias and Rita
Barros et al.
Sharing Biomedical Data: Strengthening AI Development in Healthcare
Reprinted from: Healthcare 2021, 9, 827, doi:10.3390/healthcare9070827 . . . . . . . . . . . . . . . 107

Gianluca Tornese, Riccardo Schiaffini, Enza Mozzillo, Roberto Franceschi, Anna Paola
Frongia and Andrea Scaramuzza et al.
Telemedicine in the Time of the COVID-19 Pandemic: Results from the First Survey among
Italian Pediatric Diabetes Centers
Reprinted from: Healthcare 2021, 9, 815, doi:10.3390/healthcare9070815 . . . . . . . . . . . . . . . 119

Na-Eun Cho
The Impact of Health Information Sharing on Hospital Costs
Reprinted from: Healthcare 2021, 9, 806, doi:10.3390/healthcare9070806 . . . . . . . . . . . . . . . 129

Chung-Feng Liu, Chien-Cheng Huang, Jhi-Joung Wang, Kuang-Ming Kuo and Chia-Jung
Chen
The Critical Factors Affecting the Deployment and Scaling of Healthcare AI: Viewpoint from an
Experienced Medical Center
Reprinted from: Healthcare 2021, 9, 685, doi:10.3390/healthcare9060685 . . . . . . . . . . . . . . . 139

Norbert Hosten, Britta Rosenberg and Andrzej Kram
Project Report on Telemedicine: What We Learned about the Administration and Development
of a Binational Digital Infrastructure Project
Reprinted from: Healthcare 2021, 9, 400, doi:10.3390/healthcare9040400 . . . . . . . . . . . . . . . 151

v



Svea Storjohann, Michael Kirsch, Britta Rosenberg, Christian Rosenberg, Sandra Lange and
Annika Syperek et al.
The Accuracy of On-Call CT Reporting in Teleradiology Networks in Comparison to In-House
Reporting
Reprinted from: Healthcare 2021, 9, 405, doi:10.3390/healthcare9040405 . . . . . . . . . . . . . . . 173
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Abstract: Emergency departments (EDs) had to considerably change their patient flow policies in

the wake of the COVID-19 pandemic. Such changes affect patient crowding, waiting time, and other

qualities related to patient care and experience. Field experiments, surveys, and simulation models

can generally offer insights into patient flow under pandemic conditions. This paper provides a

thorough and transparent account of the development of a multi-method simulation model that

emulates actual patient flow in the emergency department under COVID-19 pandemic conditions.

Additionally, a number of performance measures useful to practitioners are introduced. A conceptual

model was extracted from the main stakeholders at the case hospital through incremental elaboration

and turned into a computational model. Two agent types were mainly modeled: patient and rooms.

The simulated behavior of patient flow was validated with real-world data (Smart Crowding) and

was able to replicate actual behavior in terms of patient occupancy. In order to further the validity, the

study recommends several phenomena to be studied and included in future simulation models such

as more agents (medical doctors, nurses, beds), delays due to interactions with other departments in

the hospital and treatment time changes at higher occupancies.

Keywords: healthcare; emergency department; patient flow; simulation modeling; agent-based

modeling; pandemic decision support

1. Introduction

Emergency departments (EDs) are complex and crucial systems for accommodating
patients in urgent and responsive need of health care [1]. Lately, there has been a partic-
ular focus on the ED under COVID-19 pandemic conditions [2], forcing us to rethink its
organization [3]. Due to the pandemic conditions, EDs have had to adjust their operations
according to regulations while cost-effectively managing their resources.

In order to comply with restrictions and guidelines, several management policies
have been imposed simultaneously, e.g., changes in patient arrival handling, priorities of
patients with suspected virus contamination, structural changes in patient flow, and the
use of available space. Although such measures have put unprecedented strain on the
department and its vital resources, they aim to ensure less overcrowding and treatment
time while keeping the risk of contamination as low as possible.

In the past, ED crowding has been shown to have adverse effects on patient response
time [4–8]. Overcrowding and treatment time can be regarded as systemic effects of
several agent behaviors and multiple operating scenarios, which might be hard to explain
by medical staff or revealed by field experiments or surveys. Computer modeling and
simulation, in particular agent-based modeling, can thus be useful, as it allows to model
organizational participants with their collective behavior [1,9–12]. It can further be used
for decision support and to evaluate interventions, scenarios, operational risks, and cost-
effectiveness of policies.
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Overall, there is an increasing body of literature on modeling and simulation of ED
patient flow [13,14]. There are several simulation models where the discrete event or
system dynamics approaches mimic ED patient flow during normal conditions [13]. Such
modeling and simulation approaches have also been used to model COVID-19 spread and
transmission [4] and mass-vaccination facilities [15]. However, there is an unmet need
for simulation models that mimic, explain, and predict ED patient flow under pandemic
conditions while considering multiple agent behaviors [11], a feature not available in
the discrete event or system dynamics approaches. Moreover, there is a lack of studies
demonstrating rigorous and transparent construction of a conceptual model of an ED,
which leads to difficulties for readers to understand, assess and build trust in such models.
Furthermore, from a practitioner’s point of view, there are several performance measures
that ED managers use (such as time to treatment, the average length of stay, % full of triage
room, etc.) that are not yet considered in existing simulation models.

This paper thus aims to answer the following research question:

How can we build a simulation model of the emergency department patient flow during
COVID-19 pandemic conditions while considering multiple agent behaviors?

In this paper, we present a thorough description of how we developed such a simula-
tion model. We first detail how we developed a conceptual model building on system
knowledge and expertise from a case organization. Following that, we show how this
conceptual model was incorporated into a hybrid computational model, where agent-based
modeling was used to model patient behavior, and discrete event modeling was used to
model resources (e.g., treatment rooms, triage beds, extra treatment rooms, pre-triage). The
modeling approach we used consisted of (1) case study and systems analysis, (2) concep-
tual modeling, (3) computational modeling, and (4) verification and validation. Moreover,
the main key performance indicators (KPIs) for patient flow used by practitioners were
integrated and visualized.

The remainder of this article is organized as follows: the following Materials and
Methods section will briefly illustrate the applied four-step simulation modeling process,
fundamentals of the main methods used, description of the case study (process, facility),
and input data (patient arrival data). Next, the Results section will provide rigorous
documentation of the conceptual model, including the purpose, KPIs, interfaces, process
flows, and sequential interactions between agents. Additionally, the computational model
and a comparison between the simulated and real-world data will be presented. Finally, the
Discussion section will go through the implications and possibilities drawn from the results,
and the Conclusions section will state the final, conclusive remarks of the research findings.

2. Materials and Methods

This section will present the modeling methodology and empirical case. First, the
simulation modeling methodology and methods to collect and analyze the model inputs
and structure will be presented for both conceptual and computational models. Next,
we will present our case organization—the ED of the Stavanger University Hospital in
Norway—and the case data that were used to build, validate, and verify the models.

2.1. Simulation Modeling Methodology: Randers’ Model

In the original literature on modeling and simulation, there are several formalized
ways of carrying out simulation studies [16]. In this study, we followed the process
defined by Randers’ [17], which divides the process of modeling into four main phases:
(1) conceptualization, (2) formulation, (3) testing, and (4) implementation (see Figure 1).

2
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Figure 1. Randers’ modeling methodology.

Randers’ structure was chosen because it focuses on model purpose rather than a
singular and finite problem as a starting predicate for the model. More importantly, Ran-
ders’ approach is perhaps the most paradigm-independent among the available modeling
protocols from the research literature. Therefore, in the context of a hybrid model which
combines two or more paradigms (discrete-event and agent-based modeling) into one sim-
ulation study, Randers’ protocol was considered the most appropriate. The methodological
aspects that will be given primary focus hereunder are those of the “conceptualization”
and “formulation” steps. The last two steps were out of scope for this paper but will be
pursued by the authors in a subsequent paper.

2.1.1. Conceptual Modeling

In a previous paper [18], we developed and presented a general model for an ED,
mimicking the patient flow process before the pandemic situation. In this study, the model
has been expanded and presented in further detail to cover patient regimens during a
pandemic situation. Like the general model, this model expansion was carried out in
collaboration with the case organization through several meetings. As recommended in
the literature, this stage was started before any computational modeling was made [19].

The conceptual modeling followed the four steps of Albin’s [20] process for construct-
ing rigid conceptual models, shown in Figure 2. The four steps are: “Step 1–Define the
purpose of the model”, “Step 2–Define the boundary and key variables”, “Step 3–Describe
the system behavior”, and “Step 4–Describe the basic mechanisms of the system”. Although
the steps here are numbered from 1 to 4, it does not imply a necessity for a strict chronologi-
cal enactment. The overall simulation modeling process is a recursive and iterative process
that will be developed in a back-and-forth manner, an issue we will revert to in Section 2.3.4.

 

Figure 2. Model conceptualization process defined by Albin [20] and the associated systems engi-
neering tools.

For each step we used a system engineering tool to aid communication with the
case organization and to help analyze and understand the processes together with the
stakeholders. The steps and their corresponding tools are shown in Figure 2.

The following subsections describe these four systems engineering tools.

2.1.2. Purpose Tree

A purpose tree, shown in Figure 3, is an illustrative tool representing the purpose
behind the simulation model of interest and its measurable key performance indicators
(KPIs). Different versions of tree structures are commonly used in management disciplines,
e.g., work breakdown structure in the project management discipline, and organization

3
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charts. The purpose tree is used similarly to elaborate the fundamental aim of the model
and decompose it to achieve an overview of the model purpose and what system elements
the model purpose builds upon.

 

1′ 3′

Figure 3. A generic purpose tree and its KPIs decomposition.

2.1.3. Interface Diagram

The interface diagram, shown in Figure 4, also known under the name “N2-matrix”,
visually illustrates the interfaces between involved entities or agents, as well as external
inputs. The principal diagonal (Principal diagonal: the diagonal going from the uppermost
left corner, “Subssytem 1” in Figure 4, to the lowermost right corner, “Subssystem 3” in
Figure 4.) in the matrix constitutes different subsystems. The remaining squares in the
matrix constitute interfaces between the various subsystems. The blocks above the principal
diagonal constitute downstream interfaces, and the blocks below the principal diagonal
constitute interface feedback upstream in the system. The top row of the matrix contains
descriptions of subsystem input from external parts. The rightmost column of the matrix
illustrates the output from the subsystems.

1′ 3′

 

Figure 4. Generic interface diagram.

The principal diagonal of the N2-matrix may be procedural steps of a process, or a
distinct group of assets used by system agents. Figure 4 shows a generic interface diagram
where subsystems 1–3 are considered. Like the purpose tree, this tool is flexible as it can be
used at several different units (e.g., health, patient, medicine, information) and levels (e.g.,
health trust, hospital, department, ward, treatment room) of analysis. For multi-purpose
models, one can construct one diagram for each purpose and analyze them separately.

2.1.4. Flow Chart

A flow chart, shown in Figure 5, is a high-level description of the system’s behavior. It
describes the process in terms of connected steps necessary to accomplish a task. In our
study, the flow chart representation was divided into states that coincide with the most
important and distinct processes the patient goes through in the ED.

4
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Figure 5. A generic flow chart of a process containing three linearly connected subprocesses.

2.1.5. Sequence Diagram

The sequence diagram, shown in Figure 6, is a detailed-level description that shows the
entity/agent interactions arranged in a time sequence. Complex social systems, e.g., EDs,
rarely have a linear progression through the system’s different subprocesses. The system
may have several feedback loops, resulting in a plethora of different system realizations,
depending on specific details of the agent traveling through the system.

 

Figure 6. Simple illustration of a sequence diagram progressing through three subprocesses.

The sequence diagram provides a systemic way to capture, analyze, and discuss how
different system agents progress throughout the various subprocesses of the system. A
fully detailed sequence diagram thus visualizes all the unique passages an agent can take
through the system in a more detailed manner than a flow chart can illustrate.

2.2. Computational Modeling–Hybrid Simulation Modeling

Following the conceptualization step, the next step in the overall modeling was to
perform the Formulation step, as shown in Figure 7. The formulation is about structuring
the conceptual model into software by using a computer programming language. A
computational model will thus be another layer of codification on the conceptual model
and be significantly contingent on the software’s codification abilities (i.e., a meta-model).

Figure 7. In the process of modeling, the next step after the conceptual modeling is formulation.

In order to carry out the modeling, it was found necessary to use an agent-based
simulation in order to be able to adequately implement the complex patient flow logic
of the case organization. However, a pure agent-based modeling approach was found to
be insufficient when we were to model the resources and their use by the patient agents.
Some agents would behave dominantly in a discrete-event manner, e.g., room seizing
and releasing.

This required us to expand from strictly agent-based modeling (ABM) to a hybrid
combination by including discrete event simulation (DES) model elements. To implement
this type of hybrid model that allowed for the utilization of both ABM and DES, we used
AnyLogic 8 Personal Learning Edition 8.7.2.

Agent behavior was defined using the statechart, which is an integrated feature in
AnyLogic describing agent behavior. A statechart is a blueprint for the behavior of each
agent. The statechart is common for every agent (of the same type) that becomes initiated
into the model. However, every patient will each have their individual realization of

5
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the statechart. The resource allocation logic, which included elements of discrete-event
modeling, was codified by using the “process modeling” flow chart in AnyLogic.

In making the model, we collected data about how the emergency department in our
case study normally works in a pre-pandemic situation. This model served as a basis for
the model development. We then added the complexities introduced by the pandemic
restrictions, e.g., a waiting zone, extra treatment rooms, and the associated procedures.

We then validated the model in two manners: Firstly, we set the patient contamination
rate (PCR) to 0% to simulate a pre-pandemic situation, ran the model with real-life pre-
pandemic patient arrival data and compared the output of the run with real-life pre-
pandemic patient crowding data.

Secondly, we ran the model with peri-pandemic patient arrival data, using a PCR set
to 30%, since this was the actual patient contamination rate in the real peri-pandemic data,
and again compared to the real-life peri-pandemic patient crowding data.

2.3. Case Study: ED of Stavanger University Hospital

In order to obtain a good understanding of the studied ED, three aspects will be
presented in this section:

(1). The facility and layout to understand the capacity, routes, and waiting zones.
(2). The data management systems that store and visualize the patient arrival and crowd-

ing rates, (in this case, two systems called Meona and Smart Crowding, respectively).
(3). The involved experts who provided descriptions of operations, policies, and expected

performance measures.

2.3.1. Facility and Layout

The case subject of this study is the ED of the public hospital Stavanger University
Hospital, located in the city of Stavanger in the south-western part of Norway. The hospital
is a large hospital with more than 500 beds, over 7800 employees, and 33 wards serving
369,000 city inhabitants. The case ED serves approximately 35,000 patients each year,
averaging around a hundred patients daily. During normal circumstances, the case ED is
equipped with 13 treatment rooms, 11 triage beds, and seven medical doctors (1 foundation
house officer, three surgeons, two neurologists, and one orthopedist) [21–24].

2.3.2. Case Data

Three categories of data were utilized in this study, displayed in Figure 8; (1) data used
as inputs to run the simulation model, (2) data used to construct the simulation model, and
(3) data used to validate the simulation output. Figure 8 shows a schematic overview of the
case data categories.

 

Figure 8. The data categories used in constructing, running, and validating the simulation model.

The first category—data used for simulation input—consisted of anonymized patient
arrival time registrations for patients in the ED. These data were pre-existing data recorded

6
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independently of this study and were thus secondary data. The dataset we utilized was
collected from a local database in an information and communication technology (ICT)
system called Meona at the case hospital. Each record of data in Meona represented the
time of arrival to the ED of one new patient. The number of data entries on a particular day
in Meona thus represented the number of patients arriving at the ED that day.

The second category—data used for simulation model developments—was mainly
obtained through interviews with knowledgeable stakeholders from the case organization.
This category of data represented information about the patent flow process in the ED.
These data were thus primary qualitative data. The steps in the patient flow process, and
the criteria for the choice of alternative routes through the system, were explained to us by
a group of key stakeholders at the case hospital.

Furthermore, we were given a blueprint of the layout of the ED, shown in Figure 9,
which served as an outset for the construction of the computational model.

 

Figure 9. Blueprint of the studied ED before the pandemic measures was put in place.

Using the blueprint eased the process of mapping out the patient movement path and
laying out the resources. In addition to being informative in the model layout, this was
also an important part of data collection to understand how the ED operates. For example,
knowing the spatial positioning of the resources was necessary for ensuring that the model
represented the actual system. Additionally, it directly revealed how many resources there
were, e.g., number of treatment rooms which were limited to 13, and amount of triage beds
limited to 11.

Additionally, we were given a walkthrough inside the case ED to observe the daily
operation and obtain an understanding the workings of the real system.

For the final category—data used for the simulation output—we used secondary
data retrieved from an ICT system at the hospital called SmartCrowding for verification
and validation. These data consisted of graphs showing the patient flow development
throughout the time of the days. Patient flow development was represented through a
number of measures, such as time of day when crowing reached a certain percentage of
room capacity, peak crowding level, etc. Thus, while the data from Meona represented

7
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the actual arrival of patients to the ED on a particular day, the data from SmartCrowding
showed the actual resulting patient flow development on the same day.

2.3.3. Arrival and Crowding

The set of real-life numerical data we were given, gathered from Meona, consisted of
registration times for each patient’s arrival at the ED. The record of the data spanned over
two full days, altogether 48 h. Our informants selected these two days as two representative
days. These two days of data collection were two regular separate working days at the
hospital (i.e., not in sequence) in the pre-pandemic situation, i.e., prior to the COVID-19
pandemic onset. The crowding data for the same two days, gathered from SmartCrowding,
are shown in Table 1a.

Table 1. a. Patient crowding in the ED gathered from Smart Crowding for two regular days in a
pre-pandemic situation. b. Patient crowding in the ED gathered from Smart Crowding for two
separate days in a peri-pandemic situation.

a

Day 1 Day 2 †

R
ea

ld
at

a

b

† Graph ‘Day 2′ is not following day after ‘Day 1′ as the naming may suggest.

 

† Graph ‘Day 2′ is not following day after ‘Day 1′ as the naming may suggest.

b

Day 1 Day 2 †

R
ea

ld
at

a

 

† Graph ‘Day 2′ is not following day after ‘Day 1′ as the naming may suggest.

 

† Graph ‘Day 2′ is not following day after ‘Day 1′ as the naming may suggest.
† Graph “Day 2” is not immediately the following day after “Day 1” as the naming may suggest.

We were also given a similar set of real-life numerical data gathered from Meona
during the pandemic, i.e., in a peri-pandemic situation, which consisted of registration
times for patients arriving at the ED in the case hospital. Data spanning over two separate
full days were selected also from this dataset. The real-life crowding data for the same
two days, gathered from SmartCrowding, are shown in Table 1b.

2.3.4. Operations and Experts’ Descriptions

Dialog with a case organization is essential for a modeling process to succeed and
benefit the system stakeholders. Accordingly, a significant portion of the data for this study
was the qualitative data gathered through talking with the organization’s stakeholders.
These individuals are personnel that work closely with the ED on a day-to-day basis.

The communication occurred as a mix of meetings on both a scheduled basis and an on-
need basis for clarification in the model development. Development of both the conceptual

8
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and the computational model required intensive gathering of qualitative data by direct
communication with the case organization. Testing of the computational model would
quickly reveal misunderstandings in the conceptual modeling, resulting in an iterative
development process in dialog with the stakeholders, as we indicated in Section 2.1.1.
The development process, shown in the overall modeling methodology in Figure 2, was,
thus, in practice, a nonlinear process, where the steps had to be revisited continually and
iteratively throughout the lifetime of the model’s development process.

3. Results

Applying Randers’ model of simulation modeling [17] allowed us to obtain three
main results:

(1) The conceptual model that represents the real-world structure and context of the ED
during both pre-pandemic and peri-pandemic status.

(2) The computational model that mimics the patient flow behavior in the ED during
both the pre-pandemic and peri-pandemic situations.

(3) The output (the simulated behaviors) of the computational model, where both real
(from the patient crowding data) and simulated behavior are compared.

3.1. Result from Conceptual Modeling of the Case

Performing the conceptual modeling process described in Section 2.1.1 and Figure 2,
resulted in a model including the following elements:

(1) Definition of the model purpose and twelve performance measures that the simulation
model should be able to perform.

(2) Definition of model boundary and key variables, including critical interfaces between the
layout agents of the ED (pre-treatment, triage, treatment rooms, waiting-zones, discharge).

(3) Description of the system behavior, including interactions between patient agents
(ordinary and contaminated patient) and layout agents to describe the room seiz-
ing/releasing process, and

(4) Description of the basic mechanisms of the system.

3.1.1. Step 1—Definition of the Purpose of the Model

The model’s primary purpose was to model the patient flow behavior in the ED to
test several policies and interventions in a virtual and low-cost environment. From an
operational perspective, the patient flow could be divided into three main segments, as
illustrated in Figure 10: patient inflow, patient throughput within the department, and
patient output.

 

out ∙� � Time entering TR − Time entering ED �Nout tn = 0∀ ∈ � � out ��𝑃𝑃 𝑛𝑛 𝑃𝑃𝑥𝑥 𝑛𝑛 𝑁𝑁𝑖𝑖𝑖𝑖 𝑡𝑡𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡 𝑡𝑡

Figure 10. Purpose tree breakdown structure and KPIs for ED operations.

Implementation of the Patient Flow Key Performance Indicators

Performance indicators were selected and constructed within the simulation software
to measure relevant aspects of patient flow within the ED. The following comprises a
brief description of the KPI implementation as well as their mathematical equations (main
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contributor of this paper is the author of these equations), illustrating the calculations
programmed into the simulation model.

1. Time to treatment (TTT) [h/pt]: This KPI tracks the time spent on all the activities
prior to the treatment. Then, it is calculated as an average. TTT is calculated for all
the patients (Tot.), the patients that are suspected to be pathogen contagious (Cont.),
and the patients that are found likely not to be pathogen carrying (Ord.).

TTT(t) = 1
Nout(t)

·∑
Nout(t)
n =0

(

PTime entering TR(n)− PTime entering ED(n)
)

∀ P ∈ [P (0), . . . , P(Nout(t))]

P(n)–nth patient agent, Px(n)–parameter x of the nth patient agent, Nin(t)–Number of
patients who entered the ED at time t, Nout(t)–Number of patients left the ED at time t,
t–time; acting as the independent discrete-time variable going from 00:00:00 to 23:59:59,
running in increments of seconds.

2. The average length of stay (ALOS) [h/pt]: This calculates the average time the patients
spend in the ED. This measure can also be calculated individually for the different
patient populations.

ALOS(t) = 1
Nout(t)

·∑
Nout(t)
n =0

(

PTime leaving ED(n)− PTime entering ED(n)
)

∀ P ∈ [P (0), . . . , P(Nout(t))]

P(n)–nth patient agent, Px(n)–parameter x of the nth patient agent, Nin(t)–Number of
patients who entered the ED at time t, Nout(t)–Number of patients left the ED at time t,
t–time; acting as the independent discrete-time variable going from 00:00:00 to 23:59:59,
running in increments of seconds.

3. Crowding [%]: Crowding is defined as the number of patients simultaneously staying
within the ED facility, i.e., prevalence. This measure tracks how long the crowding in
the ED is above certain predefined levels and divides it by the total amount of time
passed. The crowding levels are selected according to the case organization’s plan for
high activity, 15, 20, and 30.

Crowding
>15(t) =

∑
t
n =0 u(t)

t
· 100%, u(t) =

{

1 if (Nout(t)− Nin(t)) > 15
0 otherwise

P(n)–nth patient agent, Px(n)–parameter x of the nth patient agent, Nin(t)–Number of
patients who entered the ED at time t, Nout(t)–Number of patients left the ED at time t,
t–time; acting as the independent discrete-time variable going from 00:00:00 to 23:59:59,
running in increments of seconds.

4. Peak crowding: This measure is intended to present information on how many
patients are present at the peak of the day.

Peak crowding(t) = max[Nout (t)− Nin(t)]
∀ t ∈ [0, t]

P(n)–nth patient agent, Px(n)–parameter x of the nth patient agent, Nin(t)–Number of
patients who entered the ED at time t, Nout(t)–Number of patients left the ED at time t,
t–time; acting as the independent discrete-time variable going from 00:00:00 to 23:59:59,
running in increments of seconds.

5. Time of peak [time]: This measure states records at which the previously mentioned
peak of crowding occurs.

6. Time start use [time]: This measure keeps track of when the different resources start
being used within the ED. Measures were chosen to be tracking the use of the extra
treatment rooms (E.Tr.), triage (Tri.), and the waiting zone (WZ).

10
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7. Time in use [%]. This estimates the amount of time the resources are used as a
proportion of the total time simulated. Equation (5) shows the calculation for the extra
treatment rooms (E.Tr.).

Time in useE.Tr.(t) =
∑

t
n=0 u(t)

t
· 100%, u(t) =

{

1 if N@E.Tr.(t) > 0
0 otherwise

P(n)–nth patient agent, Px(n)–parameter x of the nth patient agent, Nin(t)–Number of
patients who entered the ED at time t, Nout(t)–Number of patients left the ED at time t,
t–time; acting as the independent discrete-time variable going from 00:00:00 to 23:59:59,
running in increments of seconds.

8. Time full [time]: Similar to the “time start use”, this measure keeps track of when the
resource first reached its full capacity (i.e., there was no more left of the resource for a
new patient for the first time).

9. Waiting time pr pts [h/pt]: This measure calculates the average waiting time in WR
across the different patient agent groups.

10. Times TR blocked for contaminated patients [#]: This measure keeps track of the
number of times a patient with virus suspicion is blocked from going directly to a
treatment room after undergoing the pre-triage screening. Such a blockage occurs
under the following conditions: (1) all the ordinary and all the extra treatment rooms
are fully utilized, and (2) no ordinary patients can leave their treatment room, either
due to the lack of a waiting zone available or because none of the patients currently in
the treatment rooms have stayed their minimum amount of time in their treatment
rooms. Therefore, this measure is critical, because if this condition occurs, it means
that a potentially contaminated patient has to wait, which poses an increased risk
of contamination.

11. Times TR (WZ) seized [#]: Similar to the previous, this one is a pure counter. This
measure counts the number of times a treatment room (or waiting zone) is seized by a
patient agent. The main reason for keeping track of this is that seizing rooms is work
intensive. Rooms need to be set up and sanitized and thus constitute an economic
and resource burden both directly and indirectly. Additionally, besides the pure labor
aspect, the management of seizing and releasing may cause an error and be costly. In
addition, having patients leave their rooms might be a high cost for the individual
patients, as this might yield stress and other discomforts for the patient.

3.1.2. Step 2—Definition of Model Boundary and Key Variables

The organizational structures of EDs may vary across hospitals. In the case organiza-
tion, the ED was organized as its own independent department, not as a subdivision of
another department, which is typical in smaller Norwegian hospitals.

In this step, the overall purpose was to convey patient flow elements in the simulation
model. Figure 11 illustrates the inputs and outputs of each process step, identified by
applying to our case the Interface (N2) diagram tool presented in Section 2.1.3.

11
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Figure 11. N2 diagram for ED facilities under pre- and peri-pandemic conditions.

3.1.3. Step 3—Description of the System Behavior

In this step, a simple flowchart depiction of the patient flow process was developed.
The result is shown in Figure 12. The following descriptions explain each element in
the flowchart:

 

Figure 12. Flow chart for patient flow under the pre-and peri-pandemic situation.

“Pre-Treatment”

The first stage in the flow chart was pre-treatment. This stage included everything
from when the patient arrived at the ED until the patient left registration to be admitted
into either the triage or treatment room. Imposed by the pandemic situation, the ED
had decided to install a pre-triage area outside the entrance of the ED, where all patients
arriving at the ED needed to be pre-screened. From here, if it was found likely that the
patient was infected by the COVID-19 virus, the patient would immediately be directed to
a prepared treatment room (TR) to ensure a reduction in intra-departmental contamination.
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This implied that a treatment room was de-sanitized whenever it had been used to treat a
patient who was suspected to have COVID-19.

“Triage”

Triage here refers to the physical location where admitted patients wait for treatment.
It is used in situations where no treatment rooms are vacant. We will later address the
distinction between action and physical location, as triage can refer to both the action of
triaging a patient according to a specific triage system and the physical location within the
ED where the triaging of patients is primarily taking place.

“Under Treatment”

This stage of the patient pathway is where the actual treatment takes place. Then,
according to the prescribed medical protocol, the patient receives medical treatment from
doctors and nurses. The standard treatment rooms in use before the pandemic amounted
to 13. Extra treatment rooms were introduced for expanded capacity to cope with the
pandemic situation. Once the standard treatment rooms were filled, the extra treatment
rooms would be used to accommodate more patients.

To cope with the risk of transmission between the patients, patients suspected of being
contaminated would be expedited to a treatment room. After treatment, the treatment
room would be de-sanitized before accepting a new patient. If the regular treatment rooms
were full and a new patient with suspected contamination arrived, then a patient that had
stayed in the room for at least 1 h would have to leave their treatment room and move over
to a waiting zone.

“Waiting Zone”

As said in the previous stage, the waiting zone was for patients evaluated not to be
incumbents of the virus. Here, patients would wait until there was an available treatment
room that they could return to for their treatment to continue.

“Discharge”

The last stage in the flow chart was the discharge. This step is where the patient finally
has undergone the treatment and is ready to be discharged from the ED.

3.1.4. Step 4—Description of the Basic Mechanisms of the System

The fourth step in the development procedure was to capture the basic mechanisms
of the system at a more detailed level than the simple flowchart. Discussions with the
stakeholders in the case organization revealed a variety of possible pathways through the
ED. These are illustrated in the sequence diagram in Figure 13, where the conditions for each
route are indicated. These will be further elaborated in Table 2 in our computational model.
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Figure 13. Effect on patient flow operation illustrated in sequence diagram pre- and peri-pandemic situation.

Table 2. Description of the elements (states, transitions and initial conditions) of the patient agent statechart.

Name Description Logic Code

Patient arrival will be arriving according to
the numerical data attained from the case
organization. Arrivals can be programmed
based on a probability distribution that will
make for a stochastical model. Alternatively,
arrivals can be programmed according to
recorded arrival times; the model will then
be deterministic.

‘Stay’

State-Stay: The sole purpose of this
state-block is to calculate the length of stay of
patients throughout their lifetime, i.e., the
entire statechart. Timer3 here does the
counting. No other logic is contained within
this state block.

Timeout for each second in
simulation in order to
increment the timer value
within Timer3 according to
criteria in the code. Variables:
(integer) v_LOS

Action: v_LOS += inState(Stay) ? 1: 0;

‘S1’

State-Pre-treatment: First compound state in
the overall patient flow. This state contains
all the states for the pre-treatment activities a
patient is undergoing. Like the previous
state, counting is performed. It is worth
noting counter is placed here instead of the
‘Stay’ state block to reduce the calculation
power needed for each discrete increment.

Timeout for each second in
simulation in order to
increment the timer value
within Timer1 according to
code. Variables:
v_time_in_PreTriage,
v_time_in_WR

Action: v_time_in_PreTriage +=
inState(PreTriage)? 1: 0;
v_time_in_WR +=
inState(WaitingInWR) ? 1: 0;
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Table 2. Cont.

Name Description Logic Code

‘s1-1’

State-Incidence: Patient agent takes place
into the statechart after being transferred
from the ‘Exit’ block in DES (Figure 14). The
sole purpose of this state block is that t serves
the programmatic purpose of letting the
patient agent enter the statechart. Once the
patient agent is instantiated into this state, it
is immediately passed onto the transition.

- -

‘t1-1’

Transition: Patient agent arrives from the
DES. Transition is triggered on the string
message “occurrence,” which is sent from the
‘Exit’-block in the DES model.

- -

‘s1-2’
State–PreTriage: Patient agent is getting
moved from the entry node to the Pre-triage
node, i.e., light green field in Figure 14.

The patient agent initiates
movement from the Entry
node to the te pre triage node.

Action:
moveTo(main.PreTriageNode);

‘t1-2’
Transition: Transition from the state
PreTriage to branch B1.

Transition is executed
periodically for every fixed
time interval in order to ensure.
Parameter used:main.p_
RegistrationCheckInterval

‘B1’
Branch: This branch carries out the selection
for what path the patient agent should
proceed in.

Three different outgoing
transitions: (1) If there is a
suspicion that the patient is
contaminated, the patient will
go to S2. (2) If the patient
agent is found not to be
contaminated, the patient will
go to the waiting room after a
specified waiting time, i.e.,
state s1-3. (3) T3: If the patient
agent has virus suspicion and
there are no more treatment
rooms, the patient must wait
in the Pre-triage.

(1) Condition: p_contaminated &&
!f_is_TR_full()
(1) Action:
main.enter_SeizeTR.take(this);
(2) Condition: !p_contaminated &&
(v_time_in_PreTriage >
main.p_minTimeInPreTriage)
(3) Action:
if (p_contaminated && f_is_TR_full()
&& v_BlockFlag == false) {
main.v_Virus_Patient_TR_
Decline ++;
v_BlockFlag = true;}

‘s1-3’
State–WalkingToWR: Patient agent walking
to the waiting room from the pre triage.

The patient agent walks along
the path between the
pre-triage and waiting room
shown in Figure 14.

Action: moveTo
(main.waitingRoomNode);

‘t1-3’
Transition: The patient agent is simply
transitioning between walking to the waiting
room and waiting in the waiting room.

This transition is triggered
once the patient agent stops
walking and arrives at its
place in the waiting room.

-

‘s1-4’
State–WaitingInWR: This state for the patient
agents when waiting in the waiting room
(WR); see the node in Figure 14.

- -

‘t1-4’
Transition: Here, the patient agent will
attempt to see if it is ready to proceed.

This transition will trigger
periodically. It will check if it
can fulfill any of the
transitions branch B4 for each
periodic interval.

-
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Table 2. Cont.

Name Description Logic Code

‘B4’

Branch: This is the pathway forward after the
PreTreatment state. Patient agents from here
either have to go to the treatment room,
triage or wait further if the above-mentioned
is full.

Three outgoing transitions: (1)
T1–Going to triage if there are
no more treatment rooms left,
(2) T2–Going to a treatment
room, and
(3) Stay in the waiting room if
the above-mentioned
transitions do not fulfill their
execution conditions. None of
the transitions have
dependencies on the patient
virus suspicious status, as
these are already sorted in the
previous branch B1.

(1) Conditions: f_is_TR_full() &&
!f_is_Triage_full() &&
(v_time_in_WR >
main.p_minTimeInWR)
(1) Action:
main.enter_seize_Triage.take(this);
(2) Action:
main.enter_SeizeTR.take(this);
(3) Conditions: !f_is_TR_full() &&
f_is_WZ_empty() &&
f_is_Triage_empty() &&
(v_time_in_WR
>main.p_minTimeInWR)

‘S2’

State–IntraTreatment: This is the second
major compound state of the overall patient
flow. As the name suggests, this is where the
patient finally undergoes treatment. The
patient agent is released from the treatment
room seizing pathway shown in the DES
block diagram (Figure 14)

The treatment is simulated by
the patient agent waiting
inside the treatment room.
The treatment time differs
according to whether the
patient has suspicion of virus
contamination. (1) Timer
variable: v_time_in_TR. (2)
Counter variable:
main.p_number_room_exit

v_time_in_TR += inState(Treatment) ? 1: 0;
main.p_number_room_exit++

‘s2-1’

State–WalkingToAndSeizingTR: This is the
state the patient agent is contained within
until it has been transferred from the
seize-path, as mentioned earlier.

- -

‘t2-1’
Transition–The patient agent is transitioned
to the next state once the message is received
from the

The patient agent is
transitioned to the next state
once the message is received
from the

-

‘s2-2’
State–Treatment: This is the state in which
the patient agent is under treatment.

The patient agent stays in this
state while the counter
is increasing.

-

‘t2-2’
Transition–Transition out of treatment leads
to a branch where there are three
options possible.

This transition is cyclical and
repeats every second during
model runtime for patients’
agents that stay within the
treatment state.

-

‘B2’
Branch: This branch leads the patient agent
to go to the waiting zone, leave the ED, or
stay to continue the treatment.

The branch is leading to three
outgoing transitions (1) T6:
Patient agents pause the
treatment and makes the
patient go to the waiting zone.
(2) T7: Patient agent has
completed treatment and will
head to exit the ED. (3)
Treatment is not carried out,
and it will proceed until it is
either completed or has to
pause because the treatment
room needs to be seized by a
patient suspicious of
contamination.

(1) Action:
main.enter_seize_WZ.take(this);
(1) Condition: !p_contaminated &&
f_is_TR_full() &&
!f_is_WZ_full() &&
v_time_in_TR > main.p_minTimeTR &&
f_is_this_longest_in_TR(this) &&
f_is_any_contaminated_in_WR() &&
main.b_is_WZ_in_use
(2) Action: main.enter.take(this);
(2) Condition:
p_contaminated ? v_time_in_TR >
main.p_TreatmentTime_VirusSuspicion:
v_time_in_TR >
main.p_TreatmentTime_OrdinaryPatient
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Table 2. Cont.

Name Description Logic Code

‘S3’

State–Triage: Compound state element
emulating the patient standing by in the
triage until there is room for the patient in
the treatment rooms.

Time is tracked. Variable:
v_time_in_Triage

v_time_in_Triage += inState(Triage) ? 1: 0;

‘s3-1’

State-WalkingToTriage: The patient agent
walks from the waiting room node to the
triage node. The patient agent is retrieved
from the DES path shown in Figure 14,
distributing the triage bed to the patient agent.

- -

‘t3-1’
Transition–Transition is executed once the
patient agent is transferred from the DES
flow chart.

- -

‘s3-2’ State–WaitingInTriage:
This state emulates the
waiting time in the triage.

-

‘t3-2’
Transition: Transition for checking if it is
time to leave the triage. Decision-making
through the branch (B5) in the next row.

Transition executed
periodically; every second
patient stays state
‘WaitingInTriage.’

-

‘B5’
Branch: Checking if the patient agent can
leave the triage to go to a treatment room.

The branch is leading to two
outgoing transitions. (1)
Transition for when there is a
treatment room ready. (2) No
treatment room is available for
the patient agent, returning to
the previous state.

(1) Condition: !f_is_TR_full() &&
f_is_WZ_empty() &&
!f_is_any_contaminated_in_WR() &&
(v_time_in_Triage >
main.p_minTimeInTriage)
(1) Action:
main.enter_SeizeTR.take(this);

‘S4’
State-WaitingZone: This is the compound
state encompassing the states that emulate
the waiting zone for the patient agents.

This compound statement has
no time counters as the time is
directly relevant for when a
patient agent will leave this
state. However, as seen in the
outgoing transition (T5), the
patient agent can leave once
there is room again for the
patient agent to return to the
treatment room.

-

‘s4-1’

State–GoingToWZ: The patient is retrieved
from the DES chart, it has been allocated to a
waiting zone, and walking to the spot it has
been granted.

- main.enter_seize_WZ.take(this);

‘t4-1’
Transition: Patient agent is finished walking
to the waiting zone and will proceed by
waiting in the waiting zone.

This transition is carried out
once the patient agent has
arrived at the granted waiting
zone spot. This transition is
executed by receiving a
message from the DES-chart

-

‘s4-2’
State-WaitingInWZ: The patient agent is
waiting in the waiting zone.

- -

‘t4-2’
Transition: Transition going out from waiting
in the waiting zone.

This transition is periodically
executed every second
of runtime.

-

17



Healthcare 2022, 10, 840

Table 2. Cont.

Name Description Logic Code

‘B3’
Branch: Branch for going further to the
treatment room or keep on waiting.

This branch does have two
outgoing transitions for the
patient agents staying in the
triage (1) T4–Going to the
IntraTreatment state. (2) Keep
on waiting in the triage.

(1) Condition: !f_is_TR_full() &&
f_is_WZ_empty() &&
!f_is_any_contaminated_in_WR() &&
(v_time_in_Triage >
main.p_minTimeInTriage)
(1) Action:
main.enter_SeizeTR.take(this);

‘S5’

State–Discharge: Patient agent is here on its
way out of the model. The state does not do
anything besides being a mediator between
the two states.

- -

 

•
•
•
•
•

Figure 14. Process diagram programmatically carrying out the resource allocation. Patients are
input in the source and output in the sink; resources will be seized and released depending on the
individual patient agent’s situation.

3.2. Computational Model

The following documentation of the computational model will be segmented into
the following subjects: Environment, Resources, Agents, and Interaction topology, which
are some of the elements STRESS guidelines suggested for documenting DES and ABS
models [25].

The computational modeling process resulted in:

(1) Animated layout to visualize the patient flow behavior in a virtual ED environment.
(2) A discrete-event model for facility resources (treatment rooms, waiting zones, triage)

and patient arrival rate.
(3) An agent-based model for patient flow (for ordinary and COVID-19 contaminated

patients), where the sequence (state and transitions), policies (conditions, triggers),
and service time (treatment time, waiting time) are modeled.

These will be presented in the following, and the modeling assumptions will be listed.
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3.2.1. Virtual ED Model

The computational model was modeled using AnyLogic 8.0 Learning Edition, and the
present study was limited to considering the spatial resources of the ED. These resources
were overlaid on top of the case organization’s blueprints for convenience and accuracy.

3.2.2. Resource Allocation Model

The resource allocation of this model was programmed through a process flow chart
using the discrete-event modeling approach.

3.2.3. Patient Flow Behavior Model

The agents, depending on variable characteristics, will progress through the following
main groups of activities:

• Pre-treatment;
• Triage;
• Intra treatment;
• Waiting Zone;
• Discharge.

In Figure 15, the patient flow sequence is described in a statechart, where the main
states (physical locations, e.g., triage, treatment room, waiting zones) and the triggers to
move from one state to another are illustrated. The statechart is the programmatic entity
that orchestrates the behavior of the individual agents in the model [26].

In our current model, the only agents acting are patients. Whether the patients
are ordinary, or COVID-19 contaminated, patients have a clear flow throughout several
facilities (triage, treatment rooms, waiting zones). Specific conditions trigger the flow or
patient movement, e.g., if a treatment room is empty, a patient moves from triage into
that treatment room. Thus, there are several states and transitions that each patient has
to undergo within the ED. As there are specific transitions that are time-dependent and
executed depending on how much time the patient agents have spent in different states, it
was necessary to implement timers to keep track of the duration patients stay in different
parts of the patient flow process.

As seen in the statechart (Figure 15), there is a correlation between the flowchart in
the conceptual model developed in the previous subsections (Figure 12) and the resulting
statechart. The main blocks in the flowchart and statechart are the same. However, the
statechart has one more level of granularity as some of the main blocks (“PreTreatment”,
“Triage”, “IntraTreatment”, “WaitingZone”) have a flow chart of activities within them.

In Figure 15, there is a unique transition (T3) for COVID-19 contaminated patients
to move from the pre-triage room (S1-2) at B1 to treatment rooms (S2). This particular
transition represents the mentioned priority rule that our case organization implemented
in the ED during the pandemic for channeling the patients directly to treatment rooms.
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Figure 15. Statechart of patient flow behavior at the studied ED.

In Table 2, the first three columns describe each state and transition and their logic in
the following table. These were all discussed and verified by our stakeholders in the case
organization. The rightmost column shows the code of each element implemented in the
computational model.

3.3. Model Outcome and Output Validation

There are two primary outcomes from the computational model:

(1) Patient crowding timeline in the ED;
(2) Key performance indicators of patient flow, e.g., waiting time and time to treatment.

Table 3 show comparisons between simulation output and actual patient crowding
data in a pre-pandemic and peri-pandemic setting, respectively. Figures 16 and 17 show
snapshots of simulated key performance indicators during the same pre-pandemic and
peri-pandemic settings, respectively.
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Table 3. a. Model output validation comparing graphs of patient crowding in the ED in a pre-
pandemic situation. (a) Actual patient crowding data gathered from SmartCrowding, (b) Simulated
patient crowding. b. Model output validation comparing graphs of patient crowding in the ED
in a peri-pandemic situation. (a) Actual patient crowding data gathered from SmartCrowding, (b)
Simulated patient crowding.
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of this paper’s Discussion chapter.

Figure 16. Snapshot of simulated KPI of patient flow in a pre-pandemic setting.

 

’

“ ”

Figure 17. Snapshot of simulated KPIs of patient flow in a peri-pandemic setting.

As can be seen in Table 3, the curve shapes from the actual patient crowding data in the
case organization system (SmartCrowding) in row (a) and our simulated patient crowding
in row (b) show a reasonably close resemblance. There are, however, discrepancies of the
primary two main types. Firstly, the curves from the actual data (row a) are more elevated
than the simulation output curves (row b) and secondly, a slight time lag seems present
between the actual curves and the simulated output curves. These discrepancies will be
further discussed in Section 4.2.1 of this paper’s Discussion chapter.

In the conceptualization stage, we presented the key performance indicators of patient
flow to be implemented and estimated by the simulation model. Figure 16 shows how
these measures were represented in a table within the simulation software. The values will
change dynamically throughout the simulation runtime.

As shown in Table 3, the curve shapes from the actual patient crowding data in row (a)
and simulated patient crowding in row (b) also show reasonably close resemblance in a
peri-pandemic setting. The same discrepancies between the curves for simulated and actual
patient crowding (i.e., slight differences in elevation level and time lag) discussed above for
Table 3 can also be observed here.

Figure 17 shows how key performance indicators were represented in the peri-
pandemic setting. As in the pre-pandemic setting, the values will change dynamically
throughout the simulation runtime.

4. Discussion

In this section, the conceptual and computational modeling process is discussed, fol-
lowed by a discussion of the simulated results and their validity. Finally, some implications
and future work will be highlighted.
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4.1. Discussion of the Conceptual Modeling

The conceptual model in this present paper is documented in a paradigm-independent
manner, providing freedom for modelers. Additionally, this approach provides trans-
parency of the fundamental logic of the model. It makes it accessible for researchers
determined to use a simulation paradigm or a mix of simulation paradigms different from
the one used in this study. Furthermore, using systems engineering methods for conceptual
modeling supports several purposes.

The purpose tree provided a direction for modeling by identifying and decomposing
the over-arching purpose of the model. It also helped establish what key variables were es-
sential to communicate in any output dashboard of the end product. The interface diagram
aided us in mapping out both downstream and upstream patient flow interfaces between
subcomponents of the system. Thereby one sets the model’s boundary by determining the
input and output, in addition to giving a systemic view of the process interactions between
subcomponents.

The flow chart offers a simple overview of the whole patient flow process and provides
valuable direct guidance on how to construct the statechart of the following computational model.

Lastly, in the conceptual modeling process, the sequence diagram captured and high-
lighted the feedback loops and the plethora of different realizations throughout the patient
flow system that the ED entails. In particular, the sequence diagram highlighted how much
the complexity of the patient flow increased when the ED had to perform the prioritization
of regular and contamination suspected patients.

In their unique way, each of these tools helped arrive at the necessary understanding
of the patient flow complexities to proceed to the computational modeling. We assert that
this understanding goes beyond the understanding one can gain by solely using a flowchart
as a conceptualizing tool, as commonly seen in many patient-flow simulation studies.

Utilizing the conceptual modeling approach as demonstrated in this study is useful
as it demonstrates the use of a set of tools for data collection and communication with the
stakeholders. It can also be used to verify and validate if the conceptual model represents a
credible understanding of the real-world case and to validate if the computational model
is traceable to the conceptual model. It is important to emphasize the benefit of the tools
being software independent.

The synergic effect of the combination of the different tools is essential. The tools
represent four abstractions of the same patient flow process. They serve as four different
low-resolution lenses to perceive the actual process. We believe that the diversity within
these “lenses” forces the simulation modeler and the participating stakeholders to perceive
the system from different conceptual perspectives. This, in turn, helps extract as much
relevant information as possible, in line with the stated purpose(s) of a conceptual model,
thus increasing the chance of representing the actual system behavior. We believe the
approach we have followed helps the stakeholders articulate important elements they
otherwise might consider too obvious to mention or that they may have not reflected
thoroughly upon.

4.2. Computational Model

The computational model, represented by a discrete event process diagram and state-
charts, has been structured based on the conceptual model diagrams. It is clear that any
computational model has a structure, behavior (formulas, rules, etc.) and inputs. The rules
and conditions have been extracted from interviews with staff working and managing the
ED at SUS. The input data such as ‘time of arrival’ was extracted from a real-time database,
i.e., Meona. The service time for treatment and waiting time are assumed based on expert
experience. Finally, the simulated results were validated in two manners: (1) compared
with real-life patient flow data (2) dialogue with stakeholders in the ED to ensure that our
understanding has mimicked real-world structure and relationships.

The comparison between the actual real-life data provided by SmartCrowding and the
simulation results provided by our model, illustrated in Table 3, clearly shows similarities in
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the daily pattern (i.e., curve shape) of the patient prevalence in the ED. Producing a realistic
output that reasonably replicates the system behavior, confirmed by the expert group in
the meetings as being credible, gained confidence from the group. We experienced that this
confirmation was a sign of trustworthiness of the model and yielded our acceptance with
the system stakeholders as the model continued to develop.

One particular problem experienced during the model development, which had a
practical solution, was the way to emulate the limited resources (i.e., emergency treatment
rooms). This was solved by making these model elements use discrete-event modeling
rather than agent-based modeling. There were, thus, interfaces between the DES portion of
the model and the ABM part of the model. Agents would be programmed to temporar-
ily exit their statechart, seize their supposed resources, and return to progress through
the statechart.

The resulting model ended up fairly complex. Data will be gathered and calculated
every second, and the agents will check conditions for several transitions. However,
a regular modern laptop can run this model, simulating 24 h of operation in less than
one minute.

The computational model provides reliable and consistent results in several runs.
However, three assumptions have been taken regarding the model: (1) static patient
infection rate, (2) no intra-hospital contamination, and (3) perfect sorting of the patients in
the pre-screening. The patient rate is modeled as a variable that users of the model will
have the ability to vary. However, intra-hospital contamination and imperfect sorting might
require further development to model such complex phenomena. It is worth highlighting
that the developed simulation model is generalizable in two terms. First, it can be utilized
for other EDs in Norway or hospitals with similar operating procedures. The process of ED
patient flow in our case organization widely coincides with the commonly used process
described in the ED report from the Norwegian Directorate of Health [27]. Second, it has
the potential to be utilized for other pandemics with different types of diseases.

The resulting computational model constitutes perhaps the biggest contribution of
this paper. Being a hybrid model, including two major simulation paradigms: agent-based
simulation and discrete event simulation, it is a result consistent with the recommendation
of other studies to use more advanced simulation methods to incorporate more of the
underlying complexities of the healthcare delivery system [10].

4.2.1. Simulation Model Validity

The conceptual model, represented by the purpose tree, N2-matrix flowchart, and
sequence diagram, has been extracted from discussions with staff working at and managing
the ED at SUS. Through continual and incremental verification from the system experts,
the model was developed and tailored to mimic the patient flow system of the entire ED in
the case hospital.

Confidence in the computational model was achieved by running the model and
comparing the simulation output with actual data, both in a pre-pandemic and a peri-
pandemic setting. There were sufficient overall similarities between real-world data and
simulated data in both settings to gain confidence in the model’s accuracy.

Our simulation model does not yet provide point prediction [28] in the sense that the
simulation results yielded the same results at every time point as the empirical data from
the same period. As mentioned, the simulation output from our computational model
(Table 3, row b) showed some discrepancies in the empirical data (Table 3, row a) that
covered the same periods (2 separate days) as our simulations. The discrepancies between
(a) the real and (b) the simulation output data were subject to discussion with the case
organization stakeholders and possible explanations were offered.

One explanation could be our simplified assumption of a 2,0-hour treatment time
for every patient. Although our participating stakeholders at the case hospital suggested
this simplification, they did indicate that treatment times would vary in practice. In
particular, they stated that under periods of high patient crowding, most procedures tend
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to take longer than average, thereby extending the treatment time. Under these conditions,
patients will stay in the system longer than the current simulation model assumes, thereby
elevating the empirical curves higher than the simulation curves, as shown in Table 3. Our
stakeholders based this perception (calling it the “syrup effect”) on their experience rather
than any available empirical data. We intend to develop our simulation model to address
this issue in our future simulation studies. However, given the underlying assumptions
and simplifications necessary in any simulation model, we assert that our model provides
a reasonably good pattern prediction [28].

Another explanation offered by the stakeholder group was the subtle difference present
in reporting between the two datasets. The real data gathered from the SmartCrowding
system, plotted in row ‘a’ of Table 3, tracks the number of patients registered to the ED.
This means that patients traveling to the hospital from their general practitioners or via an
ambulance are registered as prevalent patients. However, the data used in the simulation
model has a registration based upon actual arrival in the physical ED space. This difference
results in a delay between the curves, as observed in Table 3, where the simulation output is
slightly lagging behind the real data. This discrepancy will also be taken into consideration
in future model development.

The differences between our simulation output and the actual patient flow data might
also be explained by other phenomena that take an active role in the ED, such as the latency
associated with higher crowding, staff shifts, or higher variation in the treatment times.
The differences might also highlight the implication of the model delimitations that we
have taken. For example, patients and rooms were the only two modeled agents; medical
staff (doctors, nurses) and beds were excluded. Moreover, the interactions between the ED
and other departments were excluded, such as blood test, and X-ray laboratories, where
patients are usually sent to those departments between their stay at the ED.

The “syrup effect,” potential delays in availability of doctors, nurses, and beds, and
time spent at other departments all directly affect patient flow in the ED. In fact, such issues
show the need and implication of using a multi-method simulation approach instead of
only a discrete event or system dynamics approach. In future model development, more
agents shall be considered in order to mimic the real-world behavior of the ED.

4.3. Assumptions and Simplifications

In addition to the above, there are other assumptions and simplifications that were
taken at this stage of model development, as follows:

1. The percentage of COVID-19-contaminated patients out of total patients entering
the ED, i.e., the patient contamination rate (PCR), was considered 30% in the peri-
pandemic scenarios and 0% in the pre-pandemic scenarios. This percentage was
constant throughout the entire day, while it may have varied throughout the day in
real life.

2. Treatment time for each patient agent was assumed to be constant. However, re-
alistically, the treatment time will most likely vary throughout the day according
to what types of patients arrive to the emergency department. In this model, the
treatment time was set static to a 2-hour average, based on an assessment by the case
stakeholders.

3. No intra-hospital contamination was put into the model.
4. Therefore, the model implicitly assumes that there is a perfect sorting, i.e., a sorting

error is not taken into consideration regarding the patients in the pre-triage.

4.4. Practical Implications

This work was carried out in the context of the COVID-19 pandemic. However, the
model we have developed can be applied to other pandemic contexts, provided they require
similar patient flow operation and intervention policies similar the ones used in this paper,
i.e., that infected patients needs to go directly to their own treatment room and should
avoid the waiting room and triage. On the other hand, the transparency of our account
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should facilitate other researchers to make necessary modifications to the model to suit
their particular contexts.

Although the interventions (i.e., pre-triage, waiting zone) might be unique for this
particular ED in our study’s context, this paper shows how such interventions can be
brought into a computational model.

The interventions shown here are a snapshot of one particular time in the case organi-
zation. Such policies will need to change in accordance with the best medical knowledge
at the time in order to maintain the required quality of treatment. Detailed modeling can
be quite time-consuming, and in the worst case, a model can be deemed obsolete by the
time it is ready to be used. Additionally, it might be difficult for researchers to gain access
to relevant stakeholders in such a high-paced and hands-on environment as an ED. There
will likely be a need and demand from these to achieve fast-paced tangible outcomes to
maintain stakeholder interest.

4.5. Further Work

As the scope of this paper was only to show the model building itself, a natural
continuation from this is to carry out actual simulation tests. A natural expansion of the
work presented in this paper is to progress further onto the next step in Randers’ overall
simulation modeling process, as illustrated in Figure 3. In subsequent work, we will
demonstrate how our simulation model can be used to study the effects of pandemic-
related policies on patient flow. For example, introducing a waiting zone and/or an extra
treatment room in the ED are some of these policies.

Although the model resulting from the study presented in this paper is relatively ad-
vanced compared to previous studies, since multiple agents and multi-method simulation
approaches are considered, we believe this study is merely scratching the surface of what
truly is the potential of ABM in conveying patient flow problematics. The proposed model
can be expanded in several different directions. In this regard, there are several avenues for
further work in the modeling work presented in this study. Examples are:

• Replacing our assumption of a constant contamination rate with a dynamically chang-
ing rate as a pandemic develops through time throughout a population.

• Replacing our assumption of no intra-hospital contamination with a probability of
such contamination.

• Replacing our assumption of perfect sorting of incoming patients with a probability of
classification inaccuracies.

5. Conclusions

This study set out to model the patient flow behavior in the ED under pandemic
conditions. We conclude, based on a comparison between actual and simulated behavior
of patients, that patient flow behavior under pandemic conditions with multiple agents
(patients, department resources) and operational complexities (transitions, conditions,
priorities, processing time, resource limitations) can be modeled with an acceptable degree
of accuracy. We found that the prioritization of COVID-19-contaminated patients has
complicated the ED behavior and has significantly affected the studied key performance
measures. Moreover, compared to the actual data, the simulated results highlight the need
for further study, including other vital agents (doctors, nurses, beds, other departments)
and behavioral phenomena related to the studied patient flow regiment.

The final simulation model could emulate the patient flow behavior, as this research
set out to accomplish. This was confirmed with stakeholder informants who had extensive
knowledge and familiarity with the system itself. By this, the model was confirmed to pose
a valid re-representation of the patient flow process of the case organization.

We found and concluded that neither discrete-event nor agent-based modeling on
their own was effectively able to encompass the resulting patient flow complexities stem-
ming from the COVID-19 pandemic. However, combining the two in a hybrid simulation
model capitalized on the strengths from both discrete-event and agent-based modeling.
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The strength utilized from discrete-event modeling was the ability to model the resource al-
location between patient agents. Similarly, the strength utilized from agent-based modeling
was the ability to model the patient agent’s complex journey through the system.

In line with our stated research goals, this paper has provided:

• A conceptual and a computational model that mimics, explains, and predicts ED
behavior under pandemic conditions while considering multiple agent behaviors.

• An account demonstrating the rigorous and transparent implementation of conceptual
modeling of patient flow in the ED, to a greater extent than shown in previous research
literature. By documenting the entire thought process behind each step of the modeling
process and showing the resulting model, we believe that we contribute to modeling
practice by making these steps transparent and accessible to others. This will be
helpful to other researchers to understand, assess and build trust in such models, and
provides an example than can be emulated by others to build their own thoroughly
validated models.

• The computational model we have provided includes several performance measures
that will be useful for practitioners but have not been previously introduced in simula-
tion studies of patient flow in the ED.

• Furthermore, we have discussed the broader applicability of our models and are
currently undertaking further research using the presented model to study patient
flow in the ED under pandemic conditions.
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Abstract: Digital interventions are important tools to promote mental health literacy among university

students. “Depression in Portuguese University Students” (Depressão em Estudantes Universitários

Portugueses, DEEP) is an audiovisual intervention describing how symptoms can be identified and

what possible treatments can be applied. The aim of this study was to evaluate the impact of this

intervention. A random sample of 98 students, aged 20–38 years old, participated in a 12-week

study. Participants were recruited through social media by the academic services and institutional

emails of two Portuguese universities. Participants were contacted and distributed into four study

groups (G1, G2, G3 and G4): G1 received the DEEP intervention in audiovisual format; G2 was

given the DEEP in text format; G3 received four news articles on depression; G4 was the control

group. A questionnaire was shared to collect socio-demographic and depression knowledge data

as a pre-intervention method; content was then distributed to each group following a set sched-

ule; the depression knowledge questionnaire was then administered to compare pre-intervention,

post-intervention and follow-up literacy levels. Using the Scheffé and Least Significant Difference

(LSD) multiple comparisons test, it was found that G1, which received the DEEP audiovisual in-

tervention, differed significantly from the other groups, with higher depression knowledge scores

in post-intervention stages. The DEEP audiovisual intervention, compared to the other formats

used (narrative text format; news format), proved to be an effective tool for increasing depression

knowledge in university students.

Keywords: digital interventions; mental health literacy; audiovisual

1. Introduction

There are many digital resources that provide mental health information and support.
Digital technology has become an addictive element used by young university students
as a privileged tool to access information [1]. It is not surprising that young people seek
support and information about mental health on the Internet [2–4]. However, much of the
digital content on the Internet does not have scientific validity [5,6], which can become a
problem due to the use of unreliable information.

Providing mental health knowledge and promoting health literacy to young university
students is a challenge for universities and the public health system [7,8]. Nowadays, an
increasing number of cases of young people with depression are undetected, unrecognized
and undertreated, leading to tragic episodes such as suicide and causing a great impact on
the family and social environment [9–11]. According to the World Health Organization,
depression is the leading cause of disability worldwide [12]. University students are
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exposed to specific challenges given their new responsibilities and are reported as a risk
population for mental health problems, namely anxiety and/or depression [13], which
can trigger other, more serious, disorders [11]. Young people are often reluctant to seek
professional help for a mental/psychological disorder [7,14], due to preconceived ideas
imposed by society, low mental health literacy and fear of being exposed [15,16].

Depression, according to Becken [17], is caused by a negative view of the world. A
person with depressive symptoms has a negative cognition of the things around them.
Depression is an illness in which feelings of deep sadness, emptiness, tiredness and lack of
interest are present, which can lead to serious consequences such as suicide, causing great
difficulties in family and social contexts [11].

Health literacy is of fundamental importance to guarantee a better quality of life on
a personal and social level. This is a process that comprises three fundamental points,
namely the capacity to analyze, understand and communicate [16,18], and depends on
the skills that the individual or society develops in order to obtain the expected results.
The significance of mental health literacy highlights the need to increase knowledge of
mental-psychological disorders, so that help and information are sought and stigma is
reduced [8,18].

In recent years, digital programs have been developed for the promotion, education
and prevention of mental illnesses and/or disorders, with an emphasis on depression [18].
According to Frank, Pong, Asher and Soares [19], the use of digital programs may have
positive effects on the understanding of depressive symptoms. The use of digital media to
support interventions on depressive symptoms has been the subject of recent studies [20,21],
which demonstrates the potential for using technology as a tool for the distribution of
digital content in the area of depression [22]. Despite the wide variety of digital resources
to treat and prevent depression, only a small number have been validated by specialists
in the field [6,23]. For this reason, it is essential to develop further studies to validate the
use of digital interventions on depression [24,25], and to better understand how the use of
digital resources can provide well-being and mental health for university students.

Digital interventions can be used to provide a set of educational strategies with a
cognitive orientation, allowing participants to learn about and/or face situations related
to psychiatric disorders [26]. These interventions promote the integration of participants
regardless of their geographical location [26,27] and can therefore bring together a large
number of people. This makes the learning and/or treatment process more productive,
easier and more enjoyable [28]. Digital interventions aimed at mental health promotion and
education address specific needs and have a high success rate in overcoming stigma [29].
Importantly, digital resources have great potential for health information provision [30].
Social support, lack of geographic boundaries, free access and ease of access are some of the
advantages of digital resources for health promotion and literacy [19,31,32]. However, there
are several concerns, such as disparities in Internet access, the quality of online health infor-
mation and the lack of real support to monitor how this information is processed [1,29,33].

For Michie et al. [34], Hollis et al. [35] and Alkhaldi et al. [36], digital interventions for
mental health promotion and care must pay close attention to the content and information
to be presented [33,37]. These are special interventions that, because they deal with sensitive
issues, must be supported and monitored by specialists to prevent them from being non-
beneficial resources for the participants [38]. Similarly, these digital resources for mental
health promotion and literacy are based on pedagogical techniques, adapted to the needs
of the participants. The information and content developed must have a technological,
educational and explanatory context to ensure that the objective of a digital mental health
literacy intervention is met [39].

The incorporation of an audiovisual format in the area of mental health literacy is
considered an effective strategy to communicate, promote and support mental health
literacy [40–42].

The evolution of technology and the digital world are part of the general population’s
life, especially among young people, thus allowing digital social media to be used as a
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tool to carry information in the area of mental health [43,44]. The concept of literacy that is
associated with the ability to read and write thus expands and becomes the competence to
promote or acquire information about, in this case within the scope of mental health [20,45].
The concept of literacy linked to technology is represented through images, sounds and
videos, among other things [46]; therefore, the audiovisual format can be defined as a
strategy to carry information in different forms of representation that generate interest in
young audiences [47].

The digital audiovisual intervention DEEP consists of 23 short videos interspersed
between a web series called “The Sara Wound” and informational videos about depression,
divided into two stages. The first stage is “DEEP IN”, which exposes the onset and
acceptance of depressive symptoms, and the second stage “DEEP OUT”, which presents
the phase of seeking help and recovery.

This study aimed to evaluate the impact of the DEEP digital audiovisual intervention
on Portuguese university students. The study considered their knowledge about the
relevance they should give to symptoms and possible treatments, compared the audiovisual
format of the intervention with the narrative text format and the news format and assessed
the level of literacy before and after the intervention.

2. Materials and Methods

2.1. Study Context and Ethical Considerations

This study was conducted as part of the eMental project (evaluation of digital in-
terventions for depression and suicide promotion and literacy), which aims to develop
digital interventions for young university students and to understand the role they play in
depression and suicide literacy. This research was developed as a randomized controlled
trial, and the research protocol was approved by the Ethics Board of the University of
Aveiro, Portugal (46-CED/2019).

2.2. Study Design and Sample

The evaluation of the impact of the intervention was conducted over a period of
14 weeks with an initial sample of 98 students, aged between 18 and 38 years old, of which
66% were female and 34% were male. The participants were students from two Portuguese
universities and were randomly and equally divided into four groups, each group having
access to information through different formats during the intervention. It should be
noted that Group 1 received the DEEP intervention in audiovisual format and Group 4
was the control group. The purpose of having four groups was to allow comparison of
the audiovisual format of DEEP intervention with the narrative text format of the same
intervention, the narrative news format and to have a control group. It is important to note
that only 71 students completed the first phase of the study.

Full access to the final version of this intervention cannot be presented in this paper as
DEEP is still under analysis and development.

2.3. Recruitment of Participants

Students from two Portuguese universities were invited to participate in the study
by means of an institutional email sent to all students, poster publications on the social
networks of the universities’ academic associations and printed posters placed in the
common areas of the universities. The only criterion for participation was to be a university
student, and the willingness to participate. No exclusion criteria were applied.

2.4. Instruments

After the recruitment campaign, those who were interested responded to the email
quieroparticipar@ua.pt, sharing their intention to participate in the study. One week
afterwards, participants were randomly divided into four groups. All groups were then
sent a link via email to the initial questionnaire containing an introduction, an informed
consent to participate form, a socio-demographic assessment (age and gender) and the
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pre-intervention knowledge literacy questionnaire. The literacy questionnaire was adapted
from Griffiths et al. [15], Hart et al. [38] and Heickie et al. [48] and was tested in a pilot
evaluation [25]. The questionnaire consists of true and false questions, divided into two
parts: a first part of 25 questions on symptoms of depression, and a second part with
11 questions related to possible treatments. For the elaboration of the questionnaires and
data collection, the software LimeSurvey was used on the platform https://forms.ua.pt/
(accessed in 10 January 2022), from the University of Aveiro, Portugal.

Subsequently, content was sent via email to each group, ranging from DEEP inter-
vention in the digital format for G1, to DEEP intervention in narrative text for G2, to four
news items on depression for G3, and it followed a distribution schedule (Appendix A)
for a period of 23 working days between 3 p.m. and 8 p.m. At the end of the distribu-
tion of content for each group, the literacy questionnaire was sent as a post-intervention
measurement instrument.

The purpose of the literacy questionnaire was to characterize participants’ knowledge
about depression at pre-intervention, post-intervention and follow-up. Finally, and after
receiving the follow-up responses, DEEP intervention was sent in audiovisual format
to all groups, including the control group (G4). Figure 1 represents the timeline of the
assessment design.

pre-intervention post-intervention follow-up 

Distribution of the 4 groups
Sociodemographic data collection and 
pre-intervention evaluation (literacy 

questionnaire)

Post intervention evaluation 
(literacy questionnaire)

follow-up evaluation (literacy questionnaire), 
send to all groups including G4 or control the 

DEEP intervention in audio-visual format. 
end of the intervention 

distribution of contents  
23 days

2 months

Figure 1. Timeline of the assessment design.

2.5. Statistical Analysis

For the quantitative data analysis, IBM® SPSS® software, version 24.0 for Windows®,
was used to compare the total scores of the four groups in the three evaluation phases (pre-,
post-intervention and follow-up), using one-factor ANOVA. When it was verified that there
was no normality in the sample, the Kruskal–Wallis test was used as a non-parametric
alternative. Since significant differences were found, multiple comparison tests were carried
out using the Scheffé and Least Significant Difference (LSD) tests as they are adjusted when
there is no normality and homogeneity of variances. For all cases, a level of 5% was used
for the statistically significant value (p < 0.05).
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3. Results

The results of the socio-demographic data are shown in Table 1. Considering the
71 university students who completed the entire literacy questionnaire and the socio-
demographic data questionnaire in the pre-intervention phase, the age range was from 18
to 38 years old, the largest number of participants were female, and for the marital status of
the participants, 60 out of the 71 were single. Regarding the place where they lived during
the class period, 51 had to move from the family residence into a university residence due
to the geographical distance between their home residences and the university.

Table 1. Socio-demographic characteristics of participants (n = 71).

n = 71 Gender Marital Status
Place of Residence during the Period of

University Classes

Age Range Male Female Single Married Partnership
Student

Residence
At Home with
Their Family

20 and 38 years old 24 47 60 9 2 51 20

It is important to note that the initial sample decreased when comparing each of the
phases (pre-, post- and follow-up) of the intervention. Only 36 students reached the end
of the study, a drop-out rate of 63.36%. Table 2 shows the number of students per group
throughout the study and the results per group of the two literacy questionnaire sections.

Table 2. Results per literacy questionnaire group: number of participants, significant differences, and
means in each phase of the study.

Study
Group

Pre-Intervention (n = 71) Post-Intervention (n = 56) Follow-Up (n = 36)

Section 1 Section 2 Section 1 Section 2 Section 1 Section 2

Mean
p

Value
Mean

p

Value
Mean

p

Value
Mean

p

Value
Mean

p

Value
Mean

p

Value

G1 20.85 0.056 7.55 0.35 22.19 0.019 * 8.88 0.015 * 20.53 0.095 8.90 0.092
G2 20.82 0.107 6.71 0.451 21.36 0.175 7.14 0.118 20.11 0.264 7.00 0.242
G3 21.81 0.054 7.41 0.262 19.33 0.045 7.33 0.092 18.40 0.043 5.50 0.468
G4 20.41 0.118 7.71 0.094 20.42 0.091 7.50 0.059 20.80 0.191 7.60 0.445

* The mean difference is significant at the 0.05 level.

To measure the knowledge of respondents in the three phases of the intervention
(pre-, post- and follow-up), the literacy questionnaire was used, divided into two sections:
“Symptom identification” (Section 1) and “Possible treatments” (Section 2). For each section,
the number of correct answers was added together, resulting in a final score. Therefore, the
scores for Section 1 ranged from 0 to 25, and for Section 2, the scores ranged from 0 to 11.

It was necessary to test the normality of G1 data in the post-intervention phase,
and no statistical significance was obtained. Hence, the assumption that G1 follows a
normal distribution was rejected, and therefore, a non-parametric Kruskal–Wallis test was
performed to measure if there were significant differences and to determine if the level of
knowledge was equal or not in all phases.

In Table 3, the results of the Kruskal–Wallis test can be observed. For Sections 1 and 2 of
G1, it can be seen that the significant group differences for each section are under 5%, thus
rejecting the hypothesis that knowledge about depression is the same in all three phases.

After rejecting the hypothesis of equality, it was important to know which phase was
responsible for this difference by creating a score-ordering variable for multiple compar-
isons between phases, using the Scheffé test for Section 1 and the LSD (least significant
difference) test for Section 2.
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Table 3. Kruskal–Wallis test results.

Teste
G1

Section 1 Section 2

Kruskal–Wallis H 12.367 7.126
p value 0.028 * 0.02 *

* The mean difference is significant at the 0.05 level.

The results of these multiple comparison statistical tests are in Table 4. The signif-
icant differences are marked with an asterisk, where it can be observed that G1 in the
follow-up phase showed higher literacy levels compared to the pre-intervention phase.
In Sections 1 and 2 in the pre-intervention phase, G1 had lower literacy levels than in the
post-intervention and follow-up phases.

Table 4. Results of multiple comparison tests between phases of G1.

Group G1 Group G1 Sheffeé Test LSD test

Section 1 Section 2

Phase (I) Phase (J)
Mean Difference

(I–J)
Std. Error Sig.

Mean Difference
(I–J)

Std. Error Sig.

Pre-intervention
Post-intervention −9.506250 3.872342 0.060 −10.275000 * 4.140478 0.017

Follow-up −17.450000 4.471395 0.001 −10.700000 * 4.781013 0.030
Post-

intervention
Pre-intervention 9.506250 3.872342 0.060 10.275000 * 4.140478 0.017

Follow-up −7.943750 4.653976 0.244 −0.425000 4.976236 0.932

Follow-up
Pre-intervention 17.450000 * 4.471395 0.001 10.700000 * 4.781013 0.030
Post-intervention 7.943750 4.653976 0.244 0.425000 4.976236 0.932

* The mean difference is significant at the 0.05 level.

4. Discussion

This study evaluated the impact of the DEEP audiovisual intervention on university
students. When comparing the results obtained in the pre- and post-intervention phases, it
becomes clear that the mean number of correct answers in both sections only increased in
groups G1 and G2. Significant differences (p > 0.05) were only obtained in G1. Therefore,
depression literacy levels were significantly higher in this group, which demonstrates that
digital content has a high potential to provide mental health literacy [25,26,33,39,40,49].

It is noteworthy that the knowledge of G3, who received information about depression
in narrative notecard format, decreased, and that G4, or the control group, maintained the
same knowledge in these phases. These results may suggest that young university students
find it easier to obtain information through digital content because of the importance they
place on the use of technology. At the same time, based on study findings, it may be inferred
that the use of other formats may discourage young university students from acquiring
new knowledge [2,8,9,13].

According to Carbonell et al. [1], Horgan and Sweeney [2], Griffiths et al. [15] and
Uddin et al. [30], university students are immersed in the world of digital technology, so
they are more interested in obtaining information and knowledge when the content is
digital, which was corroborated by this study’s findings, since it was shown that the format
used for G3 and G4 was not as captivating as the digital format to generate interest in
learning. However, for the follow-up phase, 2 months afterward, the scores did not increase.
Despite this, the G1 and G2 groups maintained a level of knowledge very close to that of the
pre-intervention phase. Although a decrease in knowledge of digital literacy interventions
over time has been described in the literature [21,47,50], the DEEP intervention managed
to maintain relatively unchanged knowledge levels of depression in the participants in the
follow-up phase. It is important to further explore the impact of these results and the factors
that influenced them by conducting an evaluation with more students and analyzing the
different scenarios for each group.
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The G4 or control group increased knowledge between the post-intervention and
follow-up phases, but this increase was not statistically significant. This could confirm that
when there is the presence of a control group, these groups feel the need to seek information
on the topic because they are not involved in the interventions.

This work has several limitations, which must be acknowledged.
One limitation was the recruitment of participants to the study. Despite the strategies

used, it was difficult to motivate students to agree to participate. Another possible limitation
may have been the use of a questionnaire as a measurement instrument. Although this
methodological choice was made in order to measure knowledge during all stages of the
intervention, it may have contributed to participants dropping out of the intervention, since
many students did not complete the questionnaire in the post-intervention and follow-up
phases and therefore gave up continuing in the study. Studies with more than two follow-
up phases generally have a high drop-out rate, especially if the participants do not receive
a reward that interests them [9,11]. In this study, the drop-out rate was high, representing
63% of the initial sample. In this case, the representativeness of the sample is not fully
accomplished, since the final results obtained cannot be generalizable.

However, the drop-out rate during the study did not impede the study, nor did it affect
the results, as all four groups maintained an equivalent number of students. Although it is
not possible to generalize the conclusions, the results found presuppose an initial step for
future studies, in which a strategy should be considered to keep participants enrolled in
the study for the duration of the intervention and thus reduce the drop-out rate.

Another limitation of this study was the fact that we could not 100% control the risk
of contamination between groups. The choice of participants per group was random; we
did not know and could not identify the participants due to the General Data Protection
Regulation (GDPR). Alternatives to control the groups were not possible to implement
because they would identify the participants; we only checked G1 for the number of views
of each video during the time of the intervention.

It could also be considered a limitation of this work that G3 received only four news
articles about depression in digital format during the intervention. In fact, this group
differed both in content and format from the other groups, but this strategy was used
to try to compare the audiovisual format of the digital intervention with the remaining
formats, and thus find out if the DEEP intervention in audiovisual format would have more
influence on participants’ knowledge of depression.

Youth mental health literacy should be an area of further exploration, so that young
people can recognize and respond appropriately to the signs and symptoms of depression
or other mental disorders [3,4,9]. Future studies should focus on developing effective
technology-linked interventions to improve knowledge and thus raise awareness among
young university students about how to care for and maintain good mental health.

5. Conclusions

The DEEP digital intervention is based on an audiovisual strategy, grounded in a
clinical-social approach, with the aim of improving the depression knowledge of Portuguese
university students and with the intention of increasing quality of life and creating a state
of full well-being.

The results of this study provide evidence that digital audiovisual content is more
likely to increase depression literacy in university students than other formats. Young
people learned more from the audiovisual content of the DEEP intervention than students
who received the other formats with equivalent information. It is necessary that these
interventions are evaluated by specialists before being delivered to the participants, be-
cause, as they deal with sensitive topics, information may be shared that is harmful to the
participants.

Evaluating the DEEP intervention enriched the perception of the role of digital tech-
nologies to promote literacy in depression, highlighting the importance of complementing
interventions with two different approaches: information videos (as a substitute for a
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specialist in the area) interspersed with videos of Sara’s story (portraying the reality of a
university student).

Digital technology and mental health together form a key partnership to address cur-
rent public health challenges and are allies in improving the quality of mental health among
university students, which is currently even more fragile due to the pandemic scenario.
The DEEP digital intervention format highlighted the potential for videos as a vehicle
to increase depression literacy, enabling the understanding of the disease, considering
symptom identification and possible treatments. It is also important to note that digital
interventions can be scaled up to all audiences and thus provide better health care whether
for promotion/literacy/therapy or treatment of mental disorders.
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Appendix A

This section presents the timetable used for sending the contents to each group. The
sending occurred via email, and in Table A1, the days on which the groups received the
contents are highlighted in bold.

Table A1. Calendar with the days when the contents were sent.

Mon Tue Wed Thu Fri

Day 1 Day 2 Day 3 Day 4 Day 5
Day 6 Day 7 Day 8 Day 9 Day 10

Day 11 Day 12 Day 13 Day 14 Day 15
Day 16 Day 17 Day 18 Day 19 Day 20
Day 21 Day 22 Day 23 Day24 Day 25
Day 26 Day 27 Day 28 Day 29 Day 30
Day 31 Day 32 Day 33 Day 34 Day 35
Day 36 Day 37 Day 38 Day 39 Day 40

Table A2 shows the day, time and content sent to each group. The time varies between
4:00 p.m. and 7:00 p.m., generating a surprise factor when each content was sent.
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Table A2. Timetable and contents sent to each group.

Content Distribution Schedule

Day Hour Content Group 1 Content Group 2 Content Group 3

Day 1 16:00 Teaser/PE-Video 1 Teaser/PE-Video 1 Article 1
Day 2 18:00 FS Video 1 FS text 1
Day 5 19:00 PE Video 2 PE text 2
Day 7 17:00 FS Video 2 FS text 2
Day 9 16:00 PE Video 3 PE text 3
Day10 18:00 FS Video 3 FS text 3
Day 11 19:00 PE Video 4 PE text 4
Day 13 18:00 FS Video 4 FS text 4 Article 2
Day 14 19:00 PE Video 5 PE tex5
Day 17 16:00 FS Video 5 FS text 5
Day 20 19:00 PE Video 6 PE text 6
Day 21 17:00 FS Video 6 FS text 6
Day 23 16:00 FS Video 7 FS text 7
Day 24 18:00 PE Video 7 PE text 7 Article 3
Day 27 17:00 FS Video 8 FS text 8
Day 28 19:00 PE Video 8 PE text 8
Day 30 16:00 FS Video 9 FS text 9
Day 31 19:00 PE Video 9 PE text 9
Day 34 17:00 FS Video 10 FS text 10
Day 35 18:00 FS Video 11 FS text 11
Day 37 16:00 FS Video 12 FS text 12 Article 4
Day 38 19:00 PE Video 10 PE text 10
Day 40 17:00 FS Video 13 FS text 13

FS video X: video of “the wound Sara”, episode X; PE video X: psychoeducational video, episode X; FS text X:
narrative text of “the wound Sara”, episode X; PE text X: psychoeducational narrative texts; article X: news article
from some Portuguese newspapers.
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Abstract: Background: Treatment of malocclusion with clear removable appliances like Invisalign®

or Spark™, require considerable higher level of patient compliance when compared to conventional

fixed braces. The clinical outcomes and treatment efficiency strongly depend on the patient’s discipline.

Smart treatment coaching applications, like strojCHECK® are efficient for improving patient compliance.

Purpose: To evaluate the impact of computerized personalized decision algorithms responding to

observed and anticipated patient behavior implemented as an update of an existing clinical orthodontic

application (app). Materials and Methods: Variables such as (1) patient app interaction, (2) patient

app discipline and (3) clinical aligner tracking evaluated by artificial intelligence system (AI) system—

Dental monitoring® were observed on the set of 86 patients. Two 60-day periods were evaluated; before

and after the app was updated with decision tree processes. Results: All variables showed significant

improvement after the update except for the manifestation of clinical non-tracking in men, evaluated by

artificial intelligence from video scans. Conclusions: Implementation of application update including

computerized decision processes can significantly enhance clinical performance of existing health care

applications and improve patients’ compliance. Using the algorithm with decision tree architecture could

create a baseline for further machine learning optimization.

Keywords: orthodontic treatment; clear aligners; smart application; AI; computerized learning;

behavior change techniques; decision tree algorithm; telemedicine

1. Introduction

Prevalence of malocclusion and orthodontic treatment need is well researched. No-
ticeable incisor irregularity occurs in the majority of all ethnic groups, with only 35% of
adults having well-aligned mandibular incisors [1]. Irregularity is severe enough in 15%
that both social acceptability and function could be affected, and major arch expansion or
extraction of some teeth would be required for correction. About 20% of the population
have deviations from the ideal bite relationship; in 2% these are severe enough to be disfig-
uring and are at the limit for orthodontic correction. Application of the Index of Treatment
Need to the survey data reveals that 57% to 59% of each racial/ethnic group has at least
some degree of orthodontic treatment need [1].

Both clear aligners and braces are effective in malocclusion treatment. Clear aligners
had advantage in segmented movement of teeth and shortened treatment duration, but
were not as effective as braces in producing adequate occlusal contacts, controlling teeth
torque, and retention [2].

Clear Aligners therapy (CAT) is considered efficient orthodontic treatment. It aligns
and levels the arches; and is effective in controlling anterior intrusion but not anterior
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extrusion; it is effective in controlling posterior buccolingual inclination but not anterior
buccolingual inclination; it is effective in controlling upper molar bodily movements; and
is less effective in controlling rotation of rounded teeth in particular [3].

However, CAT is currently under intense innovative technological pressure including
new optimized attachment systems with high potential to use whole exposed tooth surface
for application of forces to achieve proper tooth movements. This article is focused on
support of modern CAT with smart mobile application and effect of its artificial intelligence
(AI) upgrade.

1.1. Mobile Applicationsin Orthodontics

Mobile applications (apps) are to be a crucial tool in management of modern aesthetical
and comfortable treatments where patient compliance is the key. They already play an
increasingly important role in daily life and patients’ social networks like Instagram
represents an aid to the standard verbal motivation performed by orthodontists towards
young patients under an orthodontic treatment [4]. With the number of orthodontic-
related apps continuing to increase, and the rapid development of artificial intelligence,
the potential to yield tremendous benefits to both clinicians and patients is apparent. More
advanced features of artificial intelligence have been introduced to orthodontic applications
recently. For example, three-dimensional convolutional neural networks (3D CNN) have
high potential for automatized 3D cephalometric evaluation directly from the Cone-Beam
Computed Tomography (CBCT) or facial growth predictions [5].

These advanced forms of artificial intelligence can overtake also the process of
orthodontic auxiliaries designing where currently dominates Finite Element Analysis
(FEM) [6].

If orthodontic apps are to become mainstream and obtain greater acceptance, scientific
validation and investigation of these apps are to be undertaken. The current situation in the
clinical field shows only 20 publications about apps used in orthodontics. Their structure
is expanded in the Table 1. In summary:

• 8 studies were Randomized Controlled Trials (RCTs) (35%)
• 10 were case-controls (53%)
• 1 was a cohort study (retrospective) (6%)
• 1 cross-sectional study was found (6%)

Seven studies (35%) were based on apps used for diagnostics, and all were cephalo-
metric apps. 7 studies (41%) investigating apps used for reminders were present. 4 studies
(24%) investigated dedicated remote monitoring apps and all four studied Dental Monitor-
ing [7,8].

Table 1. The characteristics of current studies about apps used in orthodontics (n = 20).

Study Type Author Domain of Use Focus Group of Apps

RCT Alkadhi [9] 2017 Reminders Patient
RCT Deleuse [10] 2020 Reminders Patient
RCT Li [11] 2016 Reminders Patient
RCT Scheerman [12] 2020 Reminders Patient

RCT Zotti [13] 2016
Reminders; remote

monitoring
Patient; clinician

RCT Zotti [14] 2019
Reminders; remote

monitoring
Patient; clinician

RCT Al-Abdallah [15] 2021 Reminders Patient; clinician
RCT Ross [16] 2019 Reminders Patient

Case-control
Abdul Khader [17]

2020
Diagnostics Clinician

Case-control Aksakalli [18] 2017 Diagnostics Clinician
Case-control Goracci [19] 2014 Diagnostics Clinician
Case-control Kumar [20] 2020 Diagnostics Clinician

42



Healthcare 2021, 9, 1695

Table 1. Cont.

Study Type Author Domain of Use Focus Group of Apps

Case-control Kuriakose [21] 2019 Remote monitoring Patient; clinician
Case-control Livas [22] 2019 Diagnostics Clinician
Case-control Morris [23] 2019 Remote monitoring Patient; clinician
Case-control Moylan [24] 2019 Remote monitoring Patient; clinician
Case-control Sayar [25] 2017 Diagnostics Clinician
Case-control Caruso [26] 2021 Remote monitoring Patient; clinician
Retrospective
cohort study

Hansa [27] 2020 Remote monitoring Patient; clinician

Cross-sectional Underwood [28] 2015 Reminders Patient

In comparison to app analyzed in this research paper (StrojCHECK®, Bratislava,
Slovakia, 3Dent Medical, osim.sk (accessed on 1 November 2021)—Society for Medical
Innovation (SMI)), most of the current apps used for orthodontic purposes, are simple apps
without back-end or any Artificial Intelligence (AI) implementations. There is no publica-
tion about orthodontic apps other than simple reminders, basic diagnostics (cephalometry)
or remote monitoring. Most of the app regarding orthodontic therapy are focused on oral
hygiene status and coaching [12,29]. Despite the current weak scientific coverage, there are
no doubts tele-orthodontics is the future of dental digitalization [30–33].

With the current situation described above, it is worth to highlight that over 90% of
all apps used in orthodontics are single apps without any server back-end as well as they
possess any truly intelligent behavior. Potential of implementations of machine learning
algorithms and other levels of artificial intelligence features might bring significant leap in
their clinical efficiency. This paper describes effect of an update of existing orthodontic app
with AI algorithms of decision processes.

Technologies in our mobiles transformed almost every aspect of our lives. Smart-
phones enable patients to request, receive, and transmit information irrespective of the time
and place. Also, the global pandemic has forced healthcare providers to employ TeleHealth
technology to help handling this tense situation [34].

1.2. Tele-Orthodontics—Dental Monitoring and Other Aspects of TeleHealth

Tele-orthodontics—Dental Monitoring® (DM) (Dental Monitoring Co., Paris, France)
with distant monitoring is current reality in orthodontics. We can, as the clinical orthodon-
tists proactively monitor our patients with virtual examinations to supplement chairside
appointments. Though this approach is tainted with negative connotations associated with
the direct to patient business model [27,30], there are undisputable advantages of remote
monitoring to the clinical practice of orthodontics [35].

Interesting aspect of this research paper is a true clinical evaluation of the impact of
the app AI update. Performance of the app before and after the update was different. To
evaluate clinical impact an AI Tele-Health system was used (DM). This system is capable
to evaluate various clinical situations from the patients’ home-made video-scans [26]. AI
evaluation recognizes various clinical situations like: loss of attachment, loss of various
accessories, gingivitis, caries and many other. In this paper this telemedicine system is
used for frequent clinical evaluation of aligners tracking on the teeth. This AI TeleHealth
system is frequently used in other studies and its accuracy and reliability is well evalu-
ated [23,26,27,36–38]. How this study examined the true clinical performance of patients
with this system is described in Material and methods chapter in more detail.

Dental Monitoring is reducing (not eliminating) the need for in-office visits. However,
nearly half of the studies currently published on this topic comparing clinical treatment
with DM and without DM, frequently misunderstand the focus of this technology. The
spotlight of this AI-powered DM is not on reduction of patient’s visits rather enhanced
level of control over treatment development. As described earlier in this paper, the CAT in
general, is prone to patients’ indiscipline. Patient not wearing aligners properly (more than
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22 h per day), results in situation called “non-tracking”. This manifests as a discrepancy
between shape of the aligner and real teeth position. This can be evaluated with DM.
Possible lower frequency of physical visits to dental clinic is only secondary. However,
it is beneficial for both the orthodontist and the patient, as the orthodontist can improve
treatment and chairside efficiency, while the patients can avoid the extra financial and time
costs of traveling to the practice [35,38]. The key point remains that DM setup protocol
allows better control over the treatment despite they might result even in more frequent
patient visits as every lost attachment is noticed and the alarms are triggered. In contrary
the frequency of non-DM-patient checkups are defined by the orthodontist and loss of
attachment might be overlooked and despite longer time between in-office visits of such a
patient, the treatment with CAT with missing attachments will probably result in aligner
non-tracking or even a necessity to restart the treatment.

Dental monitoring protocols are not paradigm shifting to older orthodontic techniques
like fixed vestibular orthodontics treatments. These require a frequent chairside activation.
On the other hand, customized appliances such as CAT may take full advantage of DM
due to the preprogrammed tooth movement [38].

A typical implementation of TeleHealth systems like Dental Monitoring® (Dental
Monitoring Co., Paris, France) require initial patient education. The patients’ own mobile is
used for the app and the scanning. First patient downloads the free Dental Monitoring app
and activates the free DM app (Figure 1b). Then the first scan is performed with support of
nurses in the clinic (Figure 1a). All consecutive video scans are created by patient usually
in a home environment. Patient is provided with scan-box that improves quality of video
scans (Figure 1a,b).

Figure 1. Introduction of Dental Monitoring® (DM): (a) Patient holding scan-box looking into the mirror, instructed by
nurse, is scanning her first intraoral scan with her own mobile. (b) DM has its own app that is used for requests, uploading
and reporting of the scans. Its first use is usually also instructed by nurse. The photo was taken for purposes of this article
and is published with full written consent of the person.

Dental Monitoring® (Dental Monitoring Co., Paris, France) [39] is described as a
software that allows patients to accurately capture their dentition using a patient’s own
smartphone and special cheek retractors. A special protocol with GoLive® (Dental Monitor-
ing Co., Paris, France) option in DM is specifically targeted at CAT. Instead of conventional
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automatic aligner changes, the patients receive a weekly “GO” or “NO-GO” notification.
“NO-GO” notification means the clinical situation was not evaluated as suitable for aligner
change and patient is expected to stay on the current aligner without further step in the
treatment. These notifications are paired with the orthodontists customized pre-recorded
instructions. These indicate to patients whether they should proceed to the next aligner
or remain in the current one for a few days more. The orthodontist is informed when a
NO-GO notification is sent, and individual teeth tracking issues, poor oral hygiene, or
broken attachments can be identified. The orthodontist can override a NO-GO if desired.
DM has its own app; however, this app is different from the app StrojCHECK® (Bratislava,
Slovakia, 3Dent Medical, osim.sk—Society for Medical Innovation (SMI)) analyzed in this
research. The DM with its powerful AI capabilities can be used to clinically evaluate the pa-
tient clinical performance. Under clinical performance is meant the evaluation of patient’s
fit of aligners on teeth. Clinical accuracy of DM is well researched and validated [21,23,24].

Use of tele-orthodontics like DM can improve the monitoring of patients during the
COVID-19 dissemination [40]. It allowed us to monitor all patients during pandemic
lockdowns, reduced the costs and limited direct contact when was not necessary. With all
these means it has decreased the risk of COVID-19 dissemination [41].

Attitude of dentists and patients towards the use of Dental Monitoring is positive. Both
groups positively judged this tele-orthodontic approach, considering it a technologically
advanced tool increasing the perception of quality and accuracy of the treatment [42].

The current state of the research, described above, reviewed aspects of orthodontic health
issues, their prevalence and the TeleHealth technologies addressing them. Telemedicine
based on orthodontics mobile apps with AI clinical evaluation with Dental Monitoring
system is supportive backbone of the future orthodontic care. The next subchapter of
introduction describes the researched subject of this research paper—the orthodontic
mobile app (strojCHECK) and its AI update that implemented the computerized learning
algorithms. And mathematical algorithms, provided by artificial intelligence, continuously
boost new therapeutic paradigms [43].

1.3. Mobile Application StrojCHECK

Mobile application StrojCHECK® (Bratislava, Slovakia, 3Dent Medical, osim.sk—
Society for Medical Innovation (SMI)) is a free smart app for orthodontic patients and
doctors. Currently its further development drives the community of medical special-
ists and other enthusiasts associated under community—Society for Medical Innovation
(www.OSIM.sk, accessed on 1 November 2021). The app was originally designed, in 2015
by an orthodontist—MUDr. Andrej Thurzo, PHD, MPH, MHA as simply a solo mobile
app without any server background. Its original functions were mostly simple remainders
and patient compliance observation. Further it has developed as a solution for complex
treatment couching and motivation of orthodontic patients undertaking clear aligner ther-
apy. Application now implements various functions dedicated to support patients on CAT.
The app is free to use for everybody, and does not expose users to any form of commercial
approach. It requires the clinic/dental office to be registered in the system to manage
settings for its patients.

In general introduction of this app’s purpose, it can be recapitulated that this smart-
app is used for establishing proper treatment routines of orthodontic patients. This app
evaluates activities registered by patient, motivates and educates patient enabling him to
achieve proper behavioral patterns linked with successful therapy (Figure 1). Central screen
is the “Main dashboard” (Figure 2a). This screen provides the complex view of the current
day activities, remaining possible time of aligners removed, planned and all executed
activities. In the lower chart of this screen there is a visualization of daily performance of
time of aligners out-of-mouth. Above this is a current balance of earned points/treatment
discount and current number of aligners. Remainder function is frequent feature of many
orthodontic apps [10,11]. Remainders are frequently sent as a push notification to patient
mobile and wearable either inquiring if the patient has ended an activity and forgot to
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return the aligners or is still performing the activity (Figure 2b). The activity can be finished
by active patient interaction (with bonus) or automatically (with sanction) (Figure 2c). The
settings side menu (Figure 2d) allows user to personalize the app and its communication.
It provides a management screen for setting up scheduled routines or language. This is the
section where patient can learn about his own performance or contact his doctor or nurses
directly reporting an event. The events that can be possibly reported include situations
of app malfunctions or attachment debonding. Smart functions of the app StrojCHECK®

(Bratislava, Slovakia, 3Dent Medical, osim.sk—Society for Medical Innovation (SMI)) and
their researched modifications are described in Materials and methods chapter.

Figure 2. Main screens of orthodontic smart-app StrojCHECK®: (a) Main dashboard of the app provides complex view
of the current day, remaining time, planned and executed activities, lower chart visualizes daily performance of time of
aligners out-of-mouth, above it is current balance of earned points/treatment discount and current number of aligner (b)
Remainders are frequently send as a push notifications to patient mobile and wearable either inquiring if the patient has
ended an activity and forgot to return the aligners or is still performing the activity. (c) An activity can be finished by active
patient interaction (with bonus) or automatically (with sanction) (d) Side menu allows user to personalize the app, set up
scheduled routines, language, learn about his own performance or contact his doctor directly reporting an event.

1.4. Decision Tree Algorithm and Behavior Change Techniques (BCTs)

Smart algorithms that were subject of the app StrojCHECK update and their clinical
impact is researched in this paper are introduced in this subchapter.

Mobile apps have been proven to be an effective tool in changing patients’ behavior in
orthodontics and can be used to improve their compliance with treatment [44]. In analysis
of EU Google play and Apple App Store in August 2021 we have observed approximately
300 orthodontic apps. Some were not fully functional and was difficult to verify their full
functionality. In approximately 30 of them the Behavior Change Techniques (BCTs) were
observed. This well correlates with the recent findings in publication from September
Siddiqui et al. 2021 [44].

The current availability of apps of sufficient quality for patient orthodontic coaching is
very limited. There is therefore a need for high-quality orthodontic apps with appropriate
BCTs to be created, which may be utilized to improve patients’ compliance with treatment.
This paper explores the usefulness and potential of implementation of AI algorithms for
enhancing Behavior Change Techniques.
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Decision Tree algorithm belongs to the family of supervised learning algorithms.
Unlike other supervised learning algorithms, the decision tree algorithm can be used for
solving regression and classification problems too.

The goal of using a Decision Tree in general is to create a training model that can be
used to predict the class or value of the target variable by learning simple decision rules
inferred from prior data (training data).

In Decision Trees, for predicting a class label for a record it begins from the root of the
tree. The values of the root attribute are compared to the record’s attribute. On the basis of
comparison, the branch corresponding to that value is followed and algorithm jumps to
the next node [45]. Types of decision trees are based on the type of target variable available.
It can be of two types:

1. Continuous Variable Decision Tree: Decision Tree has a continuous target variable
then it is called Continuous Variable Decision Tree.

2. Categorical Variable Decision Tree: Decision Tree which has a categorical target
variable then it called a Categorical variable decision tree.

Practical examples of implemented decision tree process algorithms are described in
more detail in Materials and methods chapter.

To keep this introduction comprehensible to scientists outside the field of orthodontic
and AI-engineering research, it is necessary to clarify why personalization is currently ideal
by means of patient and doctor computerized education. The system allows both groups
to improve based on data gathered, evaluated, compared to other users of the system and
calculating optimal suggestions. These are set by system autonomously, however from the
clinical experience, these might be not optimal for every patient and personalization in this
early stage is necessary.

1.5. Aim of This Research Paper

The goal of this research paper is to evaluate AI upgrade of an existing orthodontic
mobile coaching app and clinical impact of such upgrade.

Secondary goal is to introduce the advantages of AI (decision tree process algorithm)
implementation and method of clinical impact evaluation by means of tele-monitoring systems.

2. Materials and Methods

2.1. Participants, Statistical Analysis and Hypothesis

86 subjects (54 females and 32 males) in age between 12 and 68 years, were observed
with DM 60 days before and 60 days after the AI update of the mobile app they were using.
All patients were using the same orthodontic app for treatment coaching—StrojCHECK®

(Bratislava, Slovakia, 3Dent Medical, osim.sk—Society for Medical Innovation (SMI)).
The research did not require any approval for human trials as the Dental Monitoring

is well clinically established and certified technology [23,26,27,36–38] and patients’ mobile
application was modified in general (for all patients) with the central update on the official
release hubs (App Store for iPhones and Google Play Store for Android mobiles). This was
not an interventional study where some of the participants receive different treatment than
others in order to evaluate it so there is no control group.

The statistical analysis was performed in Microsoft Office Excel 2016 (Microsoft Cor-
poration, Redmond, WA, USA), Statistica 13.1 software (TIBCO Software Inc., Palo Alto,
CA, USA) and StatsDirect 3.3.5 (StatsDirect Ltd., Cheshire, UK).

The collected demographic and clinical, as well as patient-generated data collected
through mobile phones were summarized using descriptive statistics. Continuous variables
are presented as means with the respective SD (standard deviation) as well as median and
interquartile range.

Wilcoxon signed rank test was used to compare the difference in the outcome variables
after the upgrading. After-before differences in the outcome variables were computed
and regressed to age. The strength of the associations was evaluated by simple bivariate
(Spearman’s nonparametric) correlation coefficient.
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All presented p values were two sided. Values of p < 0.05 were considered to indicate
a statistically significant difference. Statistical analyses were performed using StatsDirect
3.3.5 (StatsDirect Ltd., Cheshire, UK) statistical software.

The basic hypothesis of this research paper is, that performance of patients interacting with
the app (after AI update) will not be significantly different from the time prior to the update.

A possible controversial and diverging hypothesis could be a consideration of a patient
using the app only virtually—lying about his true performance.

This would result in significant discrepancies between the app performance and
clinical reality. Despite “lying” to the app is possible, it is extremely frustrating, time
consuming and easily detectable.

2.2. Description of the Basic Functionality and Workflow Examples

The mobile app StrojCHECK® (Bratislava, Slovakia, 3Dent Medical, osim.sk—Society
for Medical Innovation (SMI)) gathers patient data and helps to build a proper routine
with focus on the first 120 days of treatment. After 4 months in the treatment, patient
usually fixes the routines, even if they are wrong and inappropriate for the treatment.
The app communicates with the patients even through their wearables like Apple watch®

(Apple Inc., Cupertino, CA, USA), which is very practical. Modern mobile phones include
a variety of sensors that can be used to gather data about the user’s behavior [46]. The
app functionality is based on these modalities. Mobile app, its back-end and technical
background with statistical methods are described in later subchapters. Below are two
examples of system intelligent workflows that became possible after the AI-update:

Example 1: Predictions

Let’s say we have a problem to predict whether a patient will have his CAT interrupted
with significant non-tracking of his removable aligners on his teeth (yes/no). Here
we know that the “time-without-aligners” of patient is a key—significant variable but
the doctor does not have exact time details for all his patients. Now, as we know this
is an important variable, then we can build a decision tree to predict patient “time-
without-aligners” based on treatment type, occupation, age, app-monitored-interactions,
app-monitored-discipline, treatment difficulty and various other variables. In this case,
we are predicting values for the continuous variables.

Example 2: Incentives

System regularly calculates the most frequent drop-out rate in the use of the app by
patients, after 12 days of permanent use, it automatically suggests with push notification
to every patient a special motivational badge for completing the continuous streak of daily
proper use for another 7 days, however the patient psychology is much more complex
and there are various reasons which can be addressed by clinician better who knows the
patient personality. So, the doctor is allowed to bypass the system setting and can in
particular cases employ a special clinical check-up or another, more suitable form, to
bridge a difficult treatment period for the patient. Doctors’ interactions in the system are
recorded and will be used later to program separate decision tree algorithm.

2.3. Description of the Supportive Complex System (App StrojCHECK and Its Back-End)

The back-end, also called the server side, consists of the server which provides data
on request, the application which channels it, and the database which organizes the
information (Figure 3). The system consists of three parts:

- The first part is the patient interface in the form of a patient mobile smart application
and a possible wearable device.

- The second part of this biomedical system is its “bioinformatic brain”—that is responsible
for data gathering, sorting and processing. Also, for some autonomic decision processes
and possible future machine-learning algorithms with its own top-admin interface.

- The third part of the system is the admin-interface (Figure 4) for clinical doctors
and managers. Here is available the data gathered and processed from mobiles and
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wearables of their patients. This back-end also allows them to fully customize their
clinical set-ups, rules and patient motivation.
The 2nd and 3rd part are running as the software on the server and here is the platform
where the future sophisticated AI algorithms will be trained and applied.

Figure 3. Global schematics of technological platforms fundamental to the complex system of
StrojCHECK® from the back-end server through different dental clinics with their separate adminis-
trator portals up to end-user devices.

Methods of registration of complex patient behavior on clear aligner therapy depends
on way too many variables to be simply programmed. Especially when their statistic
evaluation could not be that straightforward. Sophisticated data mining algorithms in
the future might be successful in extracting and discovering patterns in large data sets of
patients’ behaviors during CAT with other complementary data [47].

Figure 4. The view of the screen for administration. The portal of the server back-end for doctors and other administrators
provides useful interface for statistical data processing and interactions with the system. Pie charts from left describe
percentage of active users within the last 72 h (from all registered users), types of monitored appliances in the active
users (Spark lite, Spark full, Invisalign teen, Invisalign lite, Invisalign comprehensive, Invisalign first), types of monitored
appliances in the non-active users, types of daily limits of removed aligners (over 120 min, within 120 min limit and under
15 min). On the Figure bellow there are visualized user statistics, average times for various habits, Average time per aligner
or frequency of patient reports.
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Methods in apps processing with AI algorithms data images like X-ray, various
sounds or ECG have regularly big datasets available that are essential to better training for
deeper neural networks [48–51]. This is not situation for CAT. Variables include not only
various behavioral patterns but also different biomechanical approaches on various types
of malocclusions.

2.4. Description of the UPDATE (the Set of Computerized Methods Implemented in the Update)

The important part of this research paper is description of the set of computerized
methods implemented in the update and later evaluated clinically with Dental Monitoring.
All observed patients were using DM, which has its own positive clinical effect [36].

StrojCHECK app installed on the mobiles of the users collects tens of thousands
of entries every day. This is not only information regarding their eating, drinking or
brushing habits. System allows analysis of patterns of patients’ dwindling discipline or
their behavioral responses on the motivational events triggered by doctor(admin) or the
system itself. We call these events “incentives”.

The following three related parts with decision processes were implemented by the
update (Figure 5):

(1) System activation. System learns when and where the patient does successfully per-
form her/his routines. When the system notices that the patient is underperforming
daily routines or goals the app decides to push the notification in proper time and
geo location. These responsivity functions are very simple yet and can be turned off
by clinician or the user. System every day after midnight automatically recalculates
the settings for various thresholds:

(a) User drop-out rate (what day most users stop using the app)
(b) First day of unfulfilled daily rules (what day most users have first discipline

failure while using the app)
(c) Incentives default settings (Badges) (Figure 6.)

[1] Total domination Badge is achieved after more than X continuous days of
proper app use (sum-up).

[2] Badge of Sincere Hunger achieved after reaching at least X-th day average
of more than 5 eating activities per day.

[3] Badge of Huxley-Orwell, achieved after X-th day of using dental monitoring.
[4] Badge of Mysophobia, achieved after X days with average aligner cleaning

of 3 times per day and more.
[5] Badge of the White Fang, achieved after X days with average teeth cleaning

of 3 times per day and more.
[6] Badge of compliance, achieved after X-th aligner change and XX days of

continuous app use.

System sets the default settings for these stimuli according to recalculated system data.
However, these can be changed and fixed by doctor led by his own clinical experience. Oth-
erwise, the system automatically triggers the stimuli—motivational bonuses and rewards
to prevent loss of users or their discipline deterioration.

(2) Doctor activation. Computerized calculation of various variables, especially time
of aligners removed or non-fulfilling the basic criteria (described later) can result in
evaluation of patient as underperforming user. 10% of the worse performing users
are flagged and clinical team is educated about these patients on a regular basis.
Human clinical response to such events most frequently results in extra call from the
nurses or extra check-up by the doctor or a special motivational event triggered by
doctor manually to prevent the anticipated negative event. The doctor’s behavior in
troubleshooting the underperforming patients and the results of such intervention is
registered into the system and evaluated. Later the system will learn from it.

(3) Patient activation. Computerized analysis of patient performance in relation to all
the compulsory clinician rules and also to performance of all other patients using
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the app was formed as an important tool for patient education. Learning about
own weaknesses is first step for improvement. The intelligent system generates and
delivers an individualized email report to each patient every 7 days. The report
explains the nonperformance events and their probable reasons. Computerized
automatic recalculation of patient’s performance can be delivered to patient email and
possibly also email of his/her parents. This feature was supposed to help patient learn
more about himself/herself and the reason of the failures to prevent them in the future.

Figure 5. Scheme of three related parts with decision processes that were implemented by the update
and represent three layers of system-user interaction.

Every day, after midnight, the system does calculations and analyses where it evaluates
treatments during the previous day. It calculates how many times which patient removed
aligners from his mouth, for how long, for what reason, if he returned them automatically
within or after the limit, if he needed remainder or how many times the patient broke
the rules and hundreds of other calculations for hundreds of patients. System finalizes
the calculations by points allocation to each patient according to their performance and
compliance with the rules. Points are allocated for each routine activity when interacting
with the app (like eating, drinking, cleaning, monitoring etc.). Points can be gained also
by special and rare events like computer-game achievements—called badges and also for
sharing these badges on their social networks where the patient can boast about special
treatment achievements. All previously mentioned points are credited after midnight
only if the basic clinical requirements were met. These can be set differently for each
participating clinic; however, default rules are required:

� clean the teeth at least twice a day (with a gap of 6 h between events)
� clean the appliance at least twice a day (with a gap of 6 h)
� at least one eating and one drinking
� and finally keep all the “aligners-time-out” between 15 and 120 min
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Figure 6. Screens of StrojCHECK® app regarding incentives: (a) Patient view of gained points that
equal total discount from the treatment budget (b) Achieved incentives(badges) and other badges
to be achieved are introduced grayed, dynamically introduced by the system. (c) List of gained
points by following the rules and fulfilling motivational bonuses offered by the system (as special
motivational events).

2.5. Technical Description of the Software Background

It is built on the latest and greatest available technologies which are popularly used
nowadays for mobile app development. Our app architecture is divided into two main
departments known as backend and frontend. Backend as the brain of our application,
which stores all available data of our patients in the database, calculates and analyses their
treatments, and many more logic operations which are necessary for a mobile application
to work. Our CRM solution is running in the cloud on Ubuntu/Linux operating system.
We use the latest relation database MySQL 8, the programming language is PHP 8 with
help of Laravel framework 8, which is popular in the development of a large scale of CRM
applications. Our frontend part of the application is running on Android and IOS mobile
devices as a mobile application. We developed our mobile application on hybrid mobile
app technology, which means we use one shared core of the application in both Ios and
Android platforms. In other words, we do not need to develop two separate applications,
which reduced the cost and development load of our developers. Our hybrid app is
running on HTML5/CSS 3/Javascript and mainly VueJs 3 with the Ionic 5 framework.

3. Results

3.1. Age and Gender Impact

It is analyzed below whether age has an impact on how individual subjects have
improved/deteriorated in the given parameters. Figure 7 shows correlation of Age vs.
Interaction change after and before the AI update. Figure 8 shows correlation of Age vs.
Discipline after and before the AI update. Figures 9 and 10 show correlation of aligner
tracking AI evaluation with DM (GO and NO-GO scan evaluations). In short, the results
shows that age does not affect the change in any of the monitored parameters.
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Figure 7. Prediction interval and linear regression line for Interaction (after-before) vs. Age in the
investigated sample (correlation coefficient (r) = 0.160; p = 0.1416). Each circle represents a data point.
The red line is the regression line (the linear model) and the black lines show the 95% prediction
band for the forecasted Interaction (after-before).

Figure 8. Prediction interval and linear regression line for Discipline (after-before) vs. Age in the
investigated sample (r = 0.210; p = 0.0528). Regression line and 95% prediction interval are denoted
as in Figure 7.

53



Healthcare 2021, 9, 1695

Figure 9. Prediction interval and linear regression line for No-go scans (after-before) vs. Age in the
investigated sample (r = 0.0507; p = 0.6433). Regression line and 95% prediction interval are denoted
as in Figure 7.

Figure 10. Prediction interval and linear regression line for Age vs. GO scans change (After-Before)
vs. Age in the investigated sample (r = 0.0507; p = 0.6433). Regression line and 95% prediction interval
are denoted as in Figure 7. Coefficient (r) = 0.089831 p = 0.4108.

The influence of gender and differences in individual parameters before vs after and
their statistical significance (evaluated by Wilcoxon signed-rank test) is in the Table 2 below.
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Table 2. The influence of gender and differences in individual parameters before vs after the AI update and their statistical
significance (evaluated by Wilcoxon signed-rank test).

Parameter Statistics

Females Males All

Before After
Difference

(After-Before)
Before After

Difference
(After-Before)

Before After
Difference

(After-Before)

Interaction n 54 54 54 32 32 32 86 86 86
Mean 166.7 204.8 38.07 99.71 151.5 51.78 141.8 185 43.17

Std. Deviation 190.3 153.3 110 99.85 128.1 44.46 165.2 146 91.18
Minimum 18 13.25 −359.3 15 35.75 8.25 15 13.3 −359.3

25%
Percentile

50 83.19 15 50 65 15 50 65 15

Median 78.7 149.3 40.06 50 97.25 37.17 64.63 141 40.06
75%

Percentile
223.5 293.8 93.85 101.6 164.8 75.9 197.2 275 82

Maximum 802.4 544.4 290.2 432.6 562.3 160.2 802.4 562 290.2
p-value <0.0001 <0.0001 <0.0001

Discipline Mean 34.7 47.44 12.74 35.22 47.59 12.38 34.9 47.5 12.6
Std. Deviation 19.44 16.57 19.7 18.46 17.83 15.07 18.97 17 18.02

Minimum 0 2 −28 1 0 −16 0 0 −28
25%

Percentile
17.5 45.75 −2 19.25 42 3.5 18.75 45.8 0

Median 34.5 55 11 37.5 56 9 36 55 10
75%

Percentile
55 59 25.5 51.75 59 18.75 53.25 59 24

Maximum 60 60 55 60 60 50 60 60 55
p-value <0.0001 <0.0001 <0.0001

NO-GO
scans

Mean 11.43 6.167 −5.259 11.44 6.813 −4.625 11.43 6.41 −5.023

Std. Deviation 10.82 6.911 11.24 11.53 6.64 11.6 11.02 6.78 11.31
Minimum 1 0 −35 1 0 −35 1 0 −35

25%
Percentile

3 1 −8.25 3.5 1.25 −10 3 1 −9.25

Median 7 4 −3 6 5 −3 7 4 −3
75%

Percentile
19.75 11 1 15 12 2.75 15.25 12 1

Maximum 45 30 26 50 25 14 50 30 26
p-value 0.0002 0.0525 <0.0001

GO scans Mean 10.87 11.15 0.2778 11.44 11.41 −0.03125 11.08 11.2 0.1628
Std. Deviation 4.112 3.779 5.738 3.975 3.301 4.092 4.047 3.59 5.163

Minimum 0 5 −14 2 5 −7 0 5 −14
25%

Percentile
7.75 8 −3 10.25 10 −2 9 9 −3

Median 12 12 0 12 12 0 12 12 0
75%

Percentile
13 14 3.25 13 13 3 13 14 3

Maximum 20 18 14 20 18 9 20 18 14
p-value 0.7029 0.9207 0.7692

3.2. Differences of Evaluated Parameters before and after the Update

The graphs in this section present box differences caused by the AI update of the mo-
bile app StrojCHECK® (Bratislava, Slovakia, 3Dent Medical, osim.sk—Society for Medical
Innovation (SMI)). Figure 11a shows differences before and after the update in regard to
app interaction parameter for all participants. Figure 11b shows differences before and
after update regarding app interaction for all participants.

In short, the summary of the results is that there are significant differences in all
parameters except GO scans for all and NO-GO scans for boys/men.

The Figure 12a shows differences before and after the app update regarding GO scans
for all participants. Figure 12b shows NO-GO scans before and after the update, evaluated
with Paired t test. Figure 13 shows in (a) females and (b) males’ differences before and after
the app AI-update in NO-GO Dental monitoring scans, where in (a) Females (is the difference
significant) and in (b) Males is the difference not significant (despite were less frequent).
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Figure 11. (a) Differences before and after update regarding app interaction for all participants. (Paired t test of variable
Discipline) Measured parameter represented patient app interaction in easy and mostly fun interactions including sharing
on social networks or achieving interesting badges. (b) Differences before and after update regarding app interaction for all
participants (Paired t test of variable Discipline). Measured parameter represented patient app interaction in difficult and
regular way fulfilling required rules of disciplined use that included teeth and appliance cleaning twice a day (separated by
180 min), at least once per day eating and drinking and as well as fitting the aligner out-of-mouth time between 15 and
120 min. This parameter improved significantly as well.

Figure 12. Differences before and after the app update regarding patient clinical performance observed with dental
monitoring for all participants. (Paired t test) (a) Dental monitoring evaluated GO scans focused on proper aligner tracking,
here is not a significant difference. (b) Dental monitoring evaluated NO-GO scans focused on proper aligner tracking, here
is a significant improvement.
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Figure 13. Differences before and after the app update in NO-GO Dental monitoring scans in (a) Females (significant) (b)
Males. Difference, despite were less frequent, is not significant.

NO-GO scan is a clinical situation, for this research purposes focused only on “aligner
non-tracking” evaluated by AI system of DM. Other reasons of NO-GO scans were not
calculated as NO-GO scan, but it was counted into GO-scans group. Figure 14 shows
differences before and after the app AI-update in frequency of GO Dental Monitoring scans
that were not significant in (Figure 14a) in females (insignificant) and also insignificant in
(Figure 14b) Males.

Figure 14. Differences before and after the app update in GO Dental monitoring scans were not significant (a) in females
(insignificant) (b) Males (insignificant).

3.3. Collateral Interesting Findings

The use of the system and computerized statistical data processing revealed other inter-
esting information, that were not main objectives of this research. To understand the power
of such complex TeleHealth app providing support to many patients, is the realization of
unprecedented knowledge about the users (patients and doctors). Table 3 shows some of the
interesting collateral findings about patient behavior noticed by the system.
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Table 3. Information from statistical data processing of the large set of patients.

Activity 1 Median Session Length Average Time

Teeth cleaning 6 min 8 min
Eating 14 min

Drinking 6 min
Appliance cleaning 2 3 min

Dental monitoring 5 min
1 Activity describes only one uninterrupted session.

4. Discussion

This paper focuses on impact evaluation of Computer-based learning (CBL), Decision
Tree Algorithms (DTA) and other computerized learning improvements to an existing
mobile app—StrojCHECK® (Bratislava, Slovakia, 3Dent Medical, osim.sk—Society for
Medical Innovation (SMI)).

The main aim of the research was to evaluate clinical impact of implementation of
decision processes to an existing healthcare application for orthodontic treatment. The sec-
ondary goal was to use AI system (DM) to evaluate the clinical situation in high frequency
established on video scans of patient teeth and their appliances.

The results invalidated the basic hypothesis of this research paper. That performance
of patients interacting with the app (after the AI update) will not be significantly different
from the time prior to the update.

With the use of decision processes methods applied in an existing healthcare app, unprece-
dented data about orthodontic patients’ behavior are available for analysis. New technique for
clinical research using patients’ made video-scans has been presented as successful scientific
tool [37]. The information about application StrojCHECK was never published before. It
represents a complex healthcare system driven by computational methods.

Results show that impact of the app is significant in evaluation of patient—app
interaction. The amount of GO scans is not significantly reduced and this might be
explained due to the fact, that frequency of scans is defined by doctor and if everything
goes well, the patient will go as prescribed and do the scan regularly.

The decrease of frequency of NO-GO scans is slightly significant only in women and
not in man. This can be interpreted by fact that farther the patient goes into the treatment
there is higher probability of discrepancy between teeth positions and aligners. So simply
the clinical development shall deteriorate over time.

Results also confirmed that change in performance was significant in all observed
parameters except the GO scans and NO-GO scans for males. Results also showed they
are unrelated to the age. In general, the AI update of the app resulted significantly better
clinical performance. The clinical variables like insignificant change in GO scans can be
explained that first 60 days of treatment contains usually the better compliance and as
well as the tracking of the patient that worsens in time. The clinical non-tracking gets
worse over time naturally. It is the fact that GO scans frequency is defined by rigid doctor
instruction and shall not change unless doctor indicates to speed up the protocol.

Result in insignificant improvement of NO-GO scans in males is showing the dis-
crepancy of their increased app-activity regarding interactions with the app as well as the
discipline, however without clinical effect. This might be explained by natural lag of clinical
performance as well as rule described above regarding worsening clinical performance of
tracking over-time.

In context to other publications, it is known the App update on the verge of AI can
have a significant effect on its user behavior [28,44]. The success of further app development
relies on understanding of the patient (user) behavior. CBL is a term used for any kind
of learning with the help of computers. Computer-based learning makes the use of the
interactive elements of the computer applications and software and the ability to present
any type of information to the users. Authors of this paper have published their experience
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in smart learning algorithms implementation [52,53], albeit any sophisticated A.I. upgrade
requires simple computerized learning features first.

TeleHealth solutions are currently driven with AI implementations in various medical
fields from treatments of chronic pulmonary diseases, depressions or intellectual disabilities
to other chronic diseases [54–61].

Another highlight of this study is that not necessarily a universal approach to modifi-
cation of patient behavior would result in better clinical results as every patient behavior
is unique and we need to differentiate between behavioral patterns of our patients first,
program the proper motivational responses later. So, the concept was to invest the benefits
of first intelligent features of the system into doctor module and patient module of the
app. Under this we understand to provide the data of particular patient behavior to the
doctor and allow him to adjust the motivational responses of the system as well as provide
regularly the information about the patient’s weaknesses to the patient himself.

Dentistry needs to expand its understanding of how dental apps; digital workflow
models and digital health information are transforming dental practice in order to anticipate
how this digital shift will impact the whole field of dentistry [62].

As has been stressed in this article repetitively—the CAT success strongly depends
not only on patient motivation and discipline but also on patient’s understanding of the
basic treatment rules and his own weaknesses. These are frequently unknown to patient
and often also to his doctor.

Recently published retrospective cohort study in the Journal of Clinical medicine
presented interesting findings about factors influencing patient compliance during CAT [63].
These also can be used to guide practitioners towards limitedly compliant individuals,
allowing early intervention and later to help program a sophisticated A.I. algorithms.

Clear aligners weakness is patient forgetfulness. As the CAT’s effectivity is compro-
mised when aligners are not on patient’s’ teeth for longer than 120 min per day. Patient
removes them for cleaning the teeth and appliance, or during eating and drinking especially
coloring food and drinks [64].

In wider context, authors of this paper were searching for a complex personalized solu-
tion that would significantly improve patient treatment compliance by the means of using
a smart healthcare app. Today it seems impossible to achieve this without implementation
of smart computerized data processing algorithms.

The big data automatically collected by the system is crucial for future machine
learning. Analysis of the daily routines of CAT patients and understanding the patterns of
their discipline, motivation, bad habits and behavioral responses to stimulus are foundation
to successful future programming of more advanced AI algorithms. The goals of future AI
implementation shall be:

1. Early identification of non-compliant patient
2. Anticipation of incoming drop of discipline according to app use pattern
3. Designing ideal treatment patterns for specific patient types upon their behavioral as

well as clinical parameters
4. Designing ideal motivational impulses according to patient type, daily routines and

specifics of his/her particular treatment

5. Conclusions

The principal conclusion of this research is that implementation of AI decision pro-
cesses algorithm is not only the first step towards more sophisticated machine-learning
decision optimization models, but also an already effective enhancement of an existing app
with measurable benefits to patients. This conclusion is based on the results of this research
as in all pairs of monitored variables was observed a significant improvement except for
AI evaluation of clinical tracking of aligners in men.

Secondary conclusion is that Dental Monitoring is a useful tool in evaluation of clinical
situation on the principles of telemedicine.
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18. Aksakallı, S.; Yılancı, H.; Görükmez, E.; Ramoğlu, S. Reliability Assessment of Orthodontic Apps for Cephalometrics. Turk. J.

Orthod. 2016, 29, 98–102. [CrossRef]
19. Goracci, C.; Ferrari, M. Reproducibility of Measurements in Tablet-Assisted, PC-Aided, and Manual Cephalometric Analysis.

Angle Orthod. 2014, 84, 437–442. [CrossRef] [PubMed]
20. Kumar, M.; Kumari, S.; Chandna, A.; Konark; Singh, A.; Kumar, H.; Punita. Comparative Evaluation of CephNinja for Android

and NemoCeph for Computer for Cephalometric Analysis: A Study to Evaluate the Diagnostic Performance of CephNinja for
Cephalometric Analysis. J. Int. Soc. Prev. Community Dent. 2020, 10, 286–291. [CrossRef] [PubMed]

21. Kuriakose, P.; Greenlee, G.M.; Heaton, L.J.; Khosravi, R.; Tressel, W.; Bollen, A.-M. The Assessment of Rapid Palatal Expansion
Using a Remote Monitoring Software. J. World Fed. Orthod. 2019, 8, 165–170. [CrossRef]

22. Livas, C.; Delli, K.; Spijkervet, F.K.L.; Vissink, A.; Dijkstra, P.U. Concurrent Validity and Reliability of Cephalometric Analysis
Using Smartphone Apps and Computer Software. Angle Orthod. 2019, 89, 889–896. [CrossRef] [PubMed]

23. Morris, R.; Hoye, L.; Elnagar, M.; Atsawasuwan, P.; Galang-Boquiren, M.; Caplin, J.; Viana, G.; Obrez, A.; Kusnoto, B. Accuracy of
Dental Monitoring 3D Digital Dental Models Using Photograph and Video Mode. Am. J. Orthod. Dentofac. Orthop. 2019, 156,
420–428. [CrossRef] [PubMed]

24. Moylan, H.; Carrico, C.; Lindauer, S.; Tüfekçi, E. Accuracy of a Smartphone-Based Orthodontic Treatment-Monitoring Application:
A Pilot Study. Angle Orthod. 2019, 89, 727–733. [CrossRef] [PubMed]

25. Sayar, G.; Kilinc, D.D. Manual Tracing versus Smartphone Application (App) Tracing: A Comparative Study. Acta Odontol. Scand.

2017, 75, 588–594. [CrossRef] [PubMed]
26. Caruso, S.; Caruso, S.; Pellegrino, M.; Skafi, R.; Nota, A.; Tecco, S. A Knowledge-Based Algorithm for Automatic Monitoring of

Orthodontic Treatment: The Dental Monitoring System. Two Cases. Sensors 2021, 21, 1856. [CrossRef]
27. Hansa, I.; Semaan, S.J.; Vaid, N.R. Clinical Outcomes and Patient Perspectives of Dental Monitoring® GoLive® with Invisalign®—

A Retrospective Cohort Study. Prog. Orthod. 2020, 21, 16. [CrossRef] [PubMed]
28. Underwood, B.; Birdsall, J.; Kay, E. The Use of a Mobile App to Motivate Evidence-Based Oral Hygiene Behaviour. Br. Dent. J.

2015, 219, E2. [CrossRef]
29. Farhadifard, H.; Soheilifar, S.; Farhadian, M.; Kokabi, H.; Bakhshaei, A. Orthodontic Patients’ Oral Hygiene Compliance by

Utilizing a Smartphone Application (Brush DJ): A Randomized Clinical Trial. BDJ Open 2020, 6, 24. [CrossRef]
30. Kravitz, N.; Burris, B.; Butler, D.; Dabney, C. Teledentistry, Do-It-Yourself Orthodontics, and Remote Treatment Monitoring. J.

Clin. Orthod. 2016, 50, 718–726.
31. Bauer, J.; Brown, W. The Digital Transformation of Oral Health Care. Teledentistry and Electronic Commerce. J. Am. Dent. Assoc.

2001, 132, 204–209. [CrossRef] [PubMed]
32. Sfikas, P.M. Teledentistry: Legal and Regulatory Issues Explored. J. Am. Dent. Assoc. 1997, 128, 1716–1718. [CrossRef] [PubMed]
33. Lins, R.M.L.; Alves, G.F.; Costa, J.C.S.; Barbosa, M.S.M.; da Silva, C.B.V.; Santos, J.W.; Pugliesi, D.M.C.; Santos Junior, V.E.

Development of a Mobile Application for Acquiring Clinical and Laboratorial Skills and Abilities in Pediatric Dentistry and
Orthodontics. Pesquisa Brasileira em Odontopediatria e Clínica Integrada 2020, 20, 1–8. [CrossRef]

34. Park, J.H.; Rogowski, L.; Kim, J.H.; al Shami, S.; Howell, S.E.I. Teledentistry Platforms for Orthodontics. J. Clin. Pediatric Dent.

2021, 45, 48–53. [CrossRef]
35. Mandall, N.; O’Brien, K.; Brady, J.; Worthington, H.; Harvey, L. Teledentistry for Screening New Patient Orthodontic Referrals.

Part 1: A Randomised Controlled Trial. Br. Dent. J. 2005, 199, 659–662. [CrossRef] [PubMed]
36. Hansa, I.; Katyal, V.; Ferguson, D.J.; Vaid, N. Outcomes of Clear Aligner Treatment with and without Dental Monitoring: A

Retrospective Cohort Study. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 453–459. [CrossRef]

61



Healthcare 2021, 9, 1695

37. Impellizzeri, A.; Horodinsky, M.; Barbato, E.; Polimeni, A.; Salah, P.; Galluccio, G. Dental Monitoring Application: It Is a Valid
Innovation in the Orthodontics Practice? Clin. Ter 2020, 171, 260–267. [CrossRef]

38. Roisin, L.-C.; Brézulier, D.; Sorel, O. Remotely-Controlled Orthodontics: Fundamentals and Description of the Dental Monitoring
System. J. Dentofac. Anom. Orthod. 2016, 19, 408. [CrossRef]

39. Official Web Site—Home—DentalMonitoring. Available online: https://dental-monitoring.com/ (accessed on 1 November
2021).

40. Giudice, A.; Barone, S.; Muraca, D.; Averta, F.; Diodati, F.; Antonelli, A.; Fortunato, L. Can Teledentistry Improve the Monitoring
of Patients during the COVID-19 Dissemination? A Descriptive Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 3399.
[CrossRef] [PubMed]

41. Maspero, C.; Abate, A.; Cavagnetto, D.; El Morsi, M.; Fama, A.; Farronato, M. Available Technologies, Applications and Benefits
of Teleorthodontics. A Literature Review and Possible Applications during the COVID-19 Pandemic. J. Clin. Med. 2020, 9, 1891.
[CrossRef] [PubMed]

42. Dalessandri, D.; Sangalli, L.; Tonni, I.; Laffranchi, L.; Bonetti, S.; Visconti, L.; Signoroni, A.; Paganelli, C. Attitude towards
Telemonitoring in Orthodontists and Orthodontic Patients. Dent. J. 2021, 9, 47. [CrossRef] [PubMed]

43. Soares dos Santos, M. What Can Mathematics Say about Unsolved Problems in Medicine? Insights Biol. Med. 2018, 2, 1–2.
[CrossRef]

44. Siddiqui, N.R.; Hodges, S.J.; Sharif, M.O. Orthodontic Apps: An Assessment of Quality (Using the Mobile App Rating Scale
(MARS)) and Behaviour Change Techniques (BCTs). Prog. Orthod. 2021, 22, 25. [CrossRef]

45. Chauhan, N.S. Decision Tree Algorithm, Explained—KDnuggets. Available online: https://www.kdnuggets.com/2020/01/
decision-tree-algorithm-explained.html (accessed on 1 November 2021).

46. Castro, L.A.; Favela, J.; Quintana, E.; Perez, M. Behavioral Data Gathering for Assessing Functional Status and Health in Older
Adults Using Mobile Phones. Pers. Ubiquitous Comput. 2015, 19, 379–391. [CrossRef]

47. Chang, P.-Y.; Cheng, C.-Y.; Hon, J.-S.; Kuo, C.-D.; Yen, C.-L.; Chai, J.-W. Traditional versus Microsphere Embolization for
Hepatocellular Carcinoma: An Effectiveness Evaluation Using Data Mining. Healthcare 2021, 9, 929. [CrossRef]

48. Almalki, Y.E.; Qayyum, A.; Irfan, M.; Haider, N.; Glowacz, A.; Alshehri, F.M.; Alduraibi, S.K.; Alshamrani, K.; Basha, M.A.A.;
Alduraibi, A.; et al. A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images. Healthcare 2021,
9, 522. [CrossRef]

49. Soto-Murillo, M.A.; Galván-Tejada, J.I.; Galván-Tejada, C.E.; Celaya-Padilla, J.M.; Luna-García, H.; Magallanes-Quintanar, R.;
Gutiérrez-García, T.A.; Gamboa-Rosales, H. Automatic Evaluation of Heart Condition According to the Sounds Emitted and
Implementing Six Classification Methods. Healthcare 2021, 9, 317. [CrossRef] [PubMed]

50. Wu, L.; Xie, X.; Wang, Y. ECG Enhancement and R-Peak Detection Based on Window Variability. Healthcare 2021, 9, 227. [CrossRef]
[PubMed]

51. Gómez-Quintana, S.; Schwarz, C.E.; Shelevytsky, I.; Shelevytska, V.; Semenova, O.; Factor, A.; Popovici, E.; Temko, A. A
Framework for AI-Assisted Detection of Patent Ductus Arteriosus from Neonatal Phonocardiogram. Healthcare 2021, 9, 169.
[CrossRef]
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58. Krysta, K.; Romańczyk, M.; Diefenbacher, A.; Krzystanek, M. Telemedicine Treatment and Care for Patients with Intellectual
Disability. Int. J. Environ. Res. Public Health 2021, 18, 1746. [CrossRef] [PubMed]

59. Corea, F.; Ciotti, S.; Cometa, A.; De Carlo, C.; Martini, G.; Baratta, S.; Zampolini, M. Telemedicine during the Coronavirus Disease
(COVID-19) Pandemic: A Multiple Sclerosis (MS) Outpatients Service Perspective. Neurol. Int. 2021, 13, 25–31. [CrossRef]

60. Pradana, A.; Sahar, J.; Kesehatan, H.P.-J. Utilization of Information Technology in Prevention of Depression in Older Adults. J.

Kesehat. 2021, 14, 14–20. [CrossRef]
61. Alghamdi, S.M.; Rajah, A.M.A.; Aldabayan, Y.S.; Aldhahir, A.M.; Alqahtani, J.S.; Alzahrani, A.A. Chronic Obstructive Pulmonary

Disease Patients’ Acceptance in E-Health Clinical Trials. Int. J. Environ. Res. Public Health 2021, 18, 5230. [CrossRef]
62. Neville, P.; van der Zande, M. Dentistry, e-Health and Digitalisation: A Critical Narrative Review of the Dental Literature on

Digital Technologies with Insights from Health and Technology Studies. Community Dent. Health 2020, 37, 51–58. [CrossRef]

62



Healthcare 2021, 9, 1695

63. Timm, L.H.; Farrag, G.; Baxmann, M.; Schwendicke, F. Factors Influencing Patient Compliance during Clear Aligner Therapy: A
Retrospective Cohort Study. J. Clin. Med. 2021, 10, 3103. [CrossRef] [PubMed]

64. Bowman, S.J. Improving the Predictability of Clear Aligners. Semin. Orthod. 2017, 23, 65–75. [CrossRef]

63





healthcare

Article

Detecting a Stroke-Affected Region in the Brain by Scanning
with Low-Intensity Electromagnetic Waves in the Radio
Frequency/Microwave Band

Ibrahim El rube’ 1 , David Heatley 2,* and Mohamed Abdel-Maguid 3

Citation: El rube’, I.; Heatley, D.;

Abdel-Maguid, M. Detecting a

Stroke-Affected Region in the Brain

by Scanning with Low-Intensity

Electromagnetic Waves in the Radio

Frequency/Microwave Band.

Healthcare 2021, 9, 1170. https://

doi.org/10.3390/healthcare9091170

Academic Editor: Marco P. Soares dos

Santos

Received: 30 July 2021

Accepted: 30 August 2021

Published: 6 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Engineering Department, Taif University, Taif 21944, Saudi Arabia; Ibrahim.ah@tu.edu.sa
2 Heatley Consulting, Ipswich IP5 3RE, UK
3 Faculty of Science, Engineering & Social Sciences, Canterbury Christ Church University,

Canterbury CT1 1QU, UK; mohamed.abdel-maguid@canterbury.ac.uk
* Correspondence: consulting@davidheatley.co.uk

Abstract: There is a compelling need for a new form of head scanner to diagnose whether a patient

is experiencing a stroke. Crucially, the scanner must be quickly and safely deployable at the site

of the emergency to reduce the time between a diagnosis and treatment being commenced. That

will help to improve the long-term outlook for many patients, which in turn will help to reduce

the high cost of stroke to national economies. This paper describes a novel scanning method that

utilises low-intensity electromagnetic waves in the radio frequency/microwave band to detect a

stroke-affected region in the brain. This method has the potential to be low cost, portable, and widely

deployable, and it is intrinsically safe for the patient and operator. It requires no specialist shielding

or power supplies and, hence, can be rapidly deployed at the site of the emergency. That could be at

the patient’s bedside within a hospital, at the patient’s home or place of work, or in a community

setting such as a GP surgery or a nursing home. Results are presented from an extensive programme

of scans of inanimate test subjects that are materially valid representations of a human head. These

results confirm that the scanning method is indeed capable of detecting a stroke-affected region in

these subjects. The significance of these results is discussed, as well as ways in which the efficacy of

the scanning methodology could be further improved.

Keywords: stroke detection; portable head scanner; low-intensity EM waves; intrinsically safe; low

carbon footprint

1. Introduction

Strokes are the 4th most prevalent cause of death and the leading cause of long-term
invalidity in the UK [1]. Globally, the statistics are considerably worse with strokes being
the 2nd most prevalent cause of death, although they are only the 3rd leading cause of
long-term invalidity [2]. In the UK, around 110,000 people experience a stroke each year
and around 1.2 M survivors are living with the consequences today. The treatment and
rehabilitation for these patients, including the loss of productivity in the workplace and
the high volume of benefit claims, costs the UK economy around GBP 26bn annually [1].
That figure is projected to reach GBP 75bn by 2035 if the current trajectory is sustained.

Given that the total healthcare expenditure in the UK for 2018 was GBP 214.4bn, which
accounted for about 10.0% of GDP that year [3], it is clear that the cost of stroke alone
is a significant percentage. That cost is intimately linked to the survivability of stroke
patients and the proportion who require protracted treatment and long-term rehabilita-
tion. The percentage figure for that proportion is influenced by the time between the
occurrence of their stroke and treatment being commenced. The often-quoted mantra in
medical circles, “time is brain”, perfectly sums up the criticality of stroke patients receiving
treatment promptly in order to save as much healthy brain tissue as possible and lessen
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the long-term consequences. Stroke patients who receive treatment within the first hour
following their stroke—the so called “golden hour”—have the highest probability of a
good recovery requiring little, if any, rehabilitation (assuming there are no pre-existing
underlying health issues that dominate the outcome). However, once past the golden hour,
the long-term outlook for surviving patients begins to decline, and beyond around 3–4 h the
outlook rapidly diminishes, with some degree of long-term invalidity becoming inevitable.
Typically, around 66% of these patients leave hospital with a long-term disability [1].

The current pathway for stroke patients requires them to be transported from the
site of the emergency, which in many cases is their own home or place of work, to the
nearest acute stroke unit to receive a CT and/or MRI scan. Only then can a conclusive
diagnosis be made on whether the patient has indeed experienced a stroke and about
which type of stroke they experienced (ischaemic: i.e., a clot, haemorrhagic: i.e., a bleed).
Only then can the appropriate treatment be administered. Delays, sometimes significant,
can occur at several points in the pathway, between the emergency call being made and
treatment commencing. In the UK, thrombolysis treatment for ischaemic strokes, which
are about 85% of all cases [1], is only licensed to be administered to patients within 4.5 h
from the onset of their symptoms [1]. If the time when symptoms began is unknown,
or it is known that more than 4.5 h have elapsed since symptoms began, the treatment
cannot be provided. The outlook for those patients is inevitably compromised given that
thrombolysis reportedly increases the chance of a good outcome by 30% [1].

If a diagnosis can be made at the site of the emergency and the stroke is confirmed
to be ischaemic, there is the potential for many more patients to fall within the eligibility
window for thrombolysis if it can be administered at that location. That will help to increase
the proportion of stroke survivors who require little or perhaps even no long-term care and
rehabilitation. Statistics show that the number of patients who survive a stroke and are
able to return to their normal lives without any added assistance increases by 2% when
thrombolysis is given within 3 h [1]. Besides that being of huge benefit to those patients, it
will also help to reduce the enormous cost of stroke to the nation. However, administering
thrombolysis at the site of the emergency is not yet approved in the UK. Furthermore, there
is not yet a widely available capability to determine the type of stroke at the site of the
emergency. Trials are underway in some countries with specially adapted ambulances
that contain a CT scanner to deliver a diagnostic capability for stroke at the site of the
emergency [4,5]. These vehicles will always be extremely few in number due to their high
cost, and hence, they will only be available to an extremely small number of cases that
happen to arise in a favourable location. This resource, although of immense benefit to the
few stroke patients involved, will nevertheless have a negligible impact on the national
statistics for stroke.

However, there is also the potential for time to be saved elsewhere in the patient
pathway, specifically, by shortening the door-to-needle time (i.e., the time between the
patient arriving at the hospital door and treatment being commenced). Although this
is not as profound a saving of time compared with commencing treatment at the site of
the emergency, shortening the door-to-needle time is readily implementable within the
current pathway procedures and will make an important contribution to increasing the
proportion of ischaemic stroke patients who are eligible to receive thrombolysis. Figure 1
illustrates how this can be achieved by equipping the attending paramedics at the site of
the emergency with a new form of head scanner that is capable of reliably determining
whether the patient is or is not experiencing a stroke, regardless of the type. This is the
motivation for the authors’ research reported in this paper. If the diagnosis is positive, the
attending paramedics can alert the acute stroke unit’s clinicians that a confirmed case of
a stroke is now in transit. In addition, diagnostic data and images could be shared with
these clinicians in real time during the journey via 4G/5G mobile connections, enabling
the stroke unit to be more fully prepared to fast track the patient upon arrival. To quote
a seminal review of this topic published in The Lancet [6], “Stroke physicians should be
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engaged not only in the in-hospital phase, but also in the pre-hospital phase of acute stroke
management”.

Figure 1. Reducing delay in the patient pathway for stroke.

Clearly there is a compelling need and significant benefits to be gained from a new
form of head scanner for stroke diagnosis that can be carried in all present-day ambu-
lances and other first response vehicles and quickly and safely deployed at the site of
the emergency. The authors are researching a new method of scanning that has the po-
tential to meet this challenge. It uses low-intensity electromagnetic waves in the radio
frequency/microwave band to detect the presence of a stroke-affected region in the brain.
No specialist shielding or bespoke high-voltage power supply are required, which enables
the new scanning modality to be operated almost anywhere with no prior planning. The
use of low-cost COTS devices throughout the experimental apparatus and a compact,
lightweight, portable construction provides a credible blueprint for a future commercially
developed scanner that could be carried in ambulances and first response vehicles and
operated on-scene in complete safety. Such a scanner could also be widely deployed in
hospitals on crash trolleys and operated at the bedside in emergency departments and
high-dependency wards, and similarly in nursing and care homes where there is a localised
elderly population at an increased risk of stroke. The material and operational carbon
footprint of the scanner would be intrinsically low, and the absence of any form of ionizing
radiation and toxic materials avoids costly end-of-life disposal directives.

In this paper, the authors describe their research into the new scanning modality
and report the latest results from a comprehensive programme of scans of inanimate
test subjects that are materially valid representations of a human head. The results are
presented in a visual format that illustrates how a diagnosis could be displayed to the
scanner operator. This serves to highlight the simplicity in interpreting these images, which
enables the operator to quickly form a diagnosis. It is clear from these results that the
new modality is indeed capable of detecting the presence and location of a stroke-affected
region in the test subjects. At this stage of development, it is not yet known whether
the new modality has the ability to reliably determine the type of stoke—ischaemic or
haemorrhagic. However, discussions with stroke specialists have revealed that the ability
to reliably confirm a stroke/no-stroke diagnosis at the site of the emergency, and then to
alert the acute stroke unit ahead of arrival, would be a significant and welcome advance
over the current protocols. That is the focus of the authors’ current research and the results
reported in this paper.
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2. Related Work in This Field

Methods of scanning and imaging human anatomy with low-intensity radio frequen-
cies/microwaves are being researched by other institutions across the world. For example,
researchers at the University of Queensland at Brisbane, Australia [7–9], are investigating
a scanning modality for stroke diagnosis that has some similarities with that reported in
this paper. Their scanning apparatus acquires data across a similar range of frequencies,
although they use a different approach to reconstruct an image of a stroke inclusion in
their test subjects. They have also avoided the need for mechanical movements in their
scanning apparatus by implementing a ring of stationary antennas encircling the subject
that electronically translate the scanning beam in a circular path. Their results demonstrate
that a stroke inclusion can be detected using their particular scanning modality, which is
consistent with the findings from the different scanning modality reported in this paper.

Other institutions have taken their research in this area to commercialisation. Medfield
Diagnostics (Gothenburg, Sweden) is commercialising in their Strokefinder product [10,11]
with work undertaken by researchers at the Chalmers University of Technology in Gothen-
burg, Sweden and partner institutions [12,13]. They are also targeting stroke diagnosis
using low-intensity radio/microwave frequencies; however, their approach differs from
the authors of this study in several key areas. Firstly, their scanning modality uses a pulsed
beam and the acquired data from the scanning chamber contains time-of-flight information,
akin to radar. Secondly, their scanning beam does not translate around the phantom in
a circular orbit. Instead, an array of stationary antennas is arranged in a bowl-shaped
geometry that fits over the patient’s head. One antenna is assigned as the pulse transmitter
at any moment while the others are receivers, then a different antenna is assigned as the
transmitter while the others are receivers. That sequence progresses around all of the
antennas in a defined but noncircular sequence.

Micrima (Bristol, UK) is commercialising in their Maria product [14] work that was
originally undertaken at the University of Bristol [15,16]. Maria also uses low-intensity ra-
dio/microwave frequencies in a radar-like modality; however, its application is exclusively
breast screening. It also uses an array of stationary antennas arranged in a bowl-shaped
geometry but designed to accommodate a woman’s breast. The scanning modality and
the manner in which it has been implemented in Maria affords a number of advantages
over conventional breast screening, in particular, a greatly increased degree of safety for
the patient and operators through the absence of X-rays, and a much-improved degree of
comfort for the patient during the examination. These and other advantages are described
in the referenced articles.

A common thread running through these examples and the authors’ work reported
in this paper is the intrinsic safety of the scanning modalities as well as the potential for
some of the scanners to be portable and deployed at the patient’s location with no prior
planning. This is a profound departure from their equivalents that use X-rays or intense
magnetic fields.

3. Materials and Methods

3.1. Considerations in Computed Tomography

In X-ray CT, the scanning beam is arranged to penetrate the whole subject, from front
to back, then detected as it emerges on the far side. Information about the scanned subject
is contained within the characteristics of the detected signal. That form of propagation and
detection is labelled S21 according to scattering parameters convention (S-parameters) [17].
The extremely short wavelength of X-rays (0.01–10 nm) and the intensity of the beam
ensure that the projection (i.e., shadow) cast by the subject on the detectors has a well-
defined outline with little diffusion around the edges. An image of the scanned subject is
reconstructed from the data delivered by the detectors using an algorithm based on the
Inverse Radon Transform [18], which is well suited to the sharply defined edges of the
projection and the low level of diffusion.
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Initially the authors adopted the S21 configuration in their new scanning modality in
deference to the well-established convention in X-ray CT. However, it was found that the
Inverse Radon Transform is not suited to the new implementation because the wavelength
of the scanning beam is many orders of magnitude longer than that of X-rays. In addition,
the beam undergoes significantly more attenuation, diffusion, and scatter during its passage
through the scanned subject. Consequently, the outline of the projection is highly blurred
and feint against the naturally occurring background noise. Reconstructing an image from
the acquired data is therefore significantly more challenging than the case with X-rays.

Attention is now being given to the data acquired from the reflected portion of the
scanning beam, labelled S11 in the S-parameters convention. Although the scanning beam
is still subjected to attenuation, diffusion, and scatter, the typically shorter path length that
the reflected portion undergoes ensures that data quality is improved, particularly if the
stroke-affected region in the brain happens to be close to the surface. In addition, whereas
S21 requires two antennas to translate around the subject multiple times in a co-ordinated
pattern, S11 requires only one antenna to orbit the subject just once. Consequently, S11
facilitates a shorter scanning duration as well as a simpler construction of scanning chamber
that surrounds the subject. Details are given in the next section.

It is important to note that S11 data, although derived from the reflected portion of
the scanning beam, are not the same as pulsed radar in which discrete pulses are emitted
from an antenna and the reflected signals are detected. S11 data in the context of the new
scanning modality derive from a continuous-wave signal—not a pulsed signal, and S11
data characterise the dielectric properties of the static environment in close proximity to
the antenna—not the round-trip propagation time of pulses.

S11 data are implicit in all of the experimental results reported in this paper.

3.2. Experimental Scanning Apparatus

To ensure that the experimental scanning apparatus affords maximum flexibility and
ease of modification, its construction employs readily available materials and devices, and
a simple mechanical movement. Figure 2 shows the totality of the apparatus. It comprises
a scanning chamber in which an antenna, labelled Tx, mechanically translates around the
test subject, labelled phantom, under the action of a stepper motor. While the antenna is in
motion, the phantom is stationary. This is the same convention used in CT. The antenna
employs a compact Vivaldi design that is rated to operate across 5–18 GHz, although in
reality, the operating range extends down to 1 GHz.

Figure 2. Components of the experimental scanning apparatus.
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The antenna is connected to a Vector Network Analyser (VNA model P9374A, manu-
factured and supplied by Keysight Technologies, Santa Rosa, CA, USA), which measures
S11 over a broad range of frequencies. The VNA, as well as the stepper motor, are under
the control of a bespoke script running on a laptop PC, which also stores and processes the
acquired data. It is evident that the scanning apparatus is minimalist, comprising only the
scanning chamber, a VNA, and a controller. This supports the view that, in due course, a
commercial version of the scanner could be compact, lightweight, and portable, as well
as relatively low cost, particularly if the full-featured benchtop VNA in the photograph is
replaced with a low-profile version that delivers only the required features. Preferably, the
mechanically translated single antenna would also be replaced with a ring of stationary,
electronically switched antennas.

During the scans reported in this paper, the antenna translates through 360 degrees in
100 equal steps (3.6 degrees per step), pausing for a brief moment at each step while the
VNA measures S11 at 1601 spot frequencies between 1 GHz and 20 GHz. At each frequency,
the S11 data include the magnitude and phase of the signal detected at the antenna.
Consequently, each scan acquires 320,200 data points. These data and the frequency
range are more than is needed for a reliable diagnosis; however, the current priority is to
acquire as much data as are available to facilitate later work on refining the operation and
performance of the scanner.

The use of a VNA ensures that the apparatus is highly immune to electromagnetic
interference (EMI) in the surrounding environment, from sources such as Wi-Fi hubs,
mobile phones, and masts, as well as other wireless services. This benefit stems from the
fact that the detector side of the VNA is internally locked in frequency and phase to the
transmitter side. Consequently, only the transmitted signal is recognised and accepted
by the receiver. All other sources are effectively ignored. It is plausible that a future
commercial development of this scanning apparatus would embed a low-profile VNA
in its construction, thereby ensuring a high degree of EMI immunity. In addition, the
scanning chamber that encloses the patient’s head and houses the antenna system would
be designed to function as an electromagnetic screen.

A primary goal of the new scanning modality is that it must be fundamentally safe for
the patient and operators and requires no specialist shielding or other safety precautions.
To achieve that goal the intensity of the scanning beam must be very low. In the absence
of formal regulatory guidance on the approved beam intensity for the kind of scanning
modality being researched, the decision was taken early on to adopt a beam power of
only 1 mW, 0 dBm. That is 100× lower than the radiated power of domestic Wi-Fi hubs
(typically 100 mW, +20 dBm). At such low power levels, patients could be continuously
scanned on a 24/7 basis with no safety concerns. There is no practical reason for that to be
done, but it nevertheless serves to highlight the unparalleled safety margin that the new
scanning modality affords compared with X-ray CT. In due course, when guidance for the
new scanning modality is formally ratified by the regulatory authorities, it is reasonable
to expect that the approved beam intensity will be at least 100× or even 1000× greater
than the level being used because of the very short exposure period during a scan, while
still remaining within the guidance limits for non-scanning wireless applications such
as mobile telecommunications. However, for the time being, the authors’ research will
continue with a conservative power level of 1 mW, 0 dBm. That level is implicit in all of
the results reported in this paper.

3.3. Test Subjects (Phantoms)

The test subjects used in the scans, commonly referred to as phantoms, are constructed
using fluids that closely replicate the dielectric properties of the anatomical constituents
of a human head. These fluids are contained in the polycarbonate vessels shown in
Figure 3. That material is used because of its high transparency at the beam frequencies.
The phantoms have a cylindrical geometry in order to maintain a constant gap of 3–4 mm
between the antenna and the outer edge of the phantom while the antenna is in motion
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around the stationary phantom. The cylindrical geometry also simplifies data interpretation
by limiting the acquired data to a single slice in the horizontal X-Y plane, located at the
mid-point of the vertical Z axis. Future work will use ‘head-shaped’ phantoms and will
acquire data at multiple X-Y planes along the Z axis.

Figure 3. Polycarbonate vessels used in the construction of the phantoms.

The 175 mm diameter container in Figure 3 represents an adult head, while the 150 mm
diameter container represents an adolescent. Both containers have a 5–7 mm wide outer
compartment that is filled with a proxy fluid for skull bone. The large inner compartment
is filled with a proxy fluid for brain matter. Stroke-affected regions are implemented by
placing one of the inclusion containers in the brain proxy fluid, anchored to the top lid of
the outer container. The different diameters of the inclusion containers (11 mm, 21 mm,
30 mm, 44 mm) represent strokes of different severity and stage of progression, while their
fluid contents are selected to represent an ischaemic or haemorrhagic stroke. By moving
the top anchorage point of these containers along the slot in the top lid, strokes at different
depths within the brain are represented. The use of nylon bungs and fixings with these
containers ensures that they have minimal influence on the data acquired during scans.
The photograph at the left in Figure 3 shows an example fully populated 175 mm phantom
with the 44 mm stroke inclusion installed and located close to the surface of the brain. The
comprehensive program of scans that produced the results reported in this paper used
both phantom sizes and all four stroke inclusions at a variety of locations between the
surface of the brain and the centre.

The anatomical simplicity of these phantoms contrasts with the steps taken by some
of the other researchers in this field in the construction of their phantoms. For example, the
University of Queensland group elected to create discrete anatomical structures within their
phantoms, each with a distinct set of dielectric properties for that particular anatomical
element [19]. Similarly, Micrima employed phantoms that contained a degree of anatomical
geometry. Notwithstanding the undoubted validity of these approaches to phantom
construction, the authors of this paper decided instead to favour an intrinsically simpler
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construction for several important reasons. Firstly, the wavelength of the scanning beam
inside a phantom head (or a human head alike) ranges from several mm to several cm.
Consequently, fine structural details within the phantom are inherently smeared out in the
data, leaving just the macro-level details. It is therefore sufficient that the phantoms used in
this study incorporate a simple geometry while still being a materially valid representation
of a human subject. Secondly, for the purposes of a triage diagnosis at the site of the
emergency, fine detail of the kind displayed in CT images is not required. The priority
is firmly on determining whether the patient has or has not experienced a stroke. The
simplicity of the authors’ phantoms is consistent with that priority. Thirdly, in order to
physically assemble and sustain a detailed anatomical structure within a phantom, the
proxy materials must have a solid, or at least a semi-solid consistency. Consequently,
individual phantoms must be constructed from scratch for every different size/severity
and location of the stroke-affected region that needs to be studied. That could amount to a
great many phantoms if the study is wide ranging, as is the authors’ study reported herein.
In contrast, the simpler anatomy favoured by the authors coupled with the use of fluid
proxies enables a broad range of stroke size/severity and location to be represented with
ease in just a single construction of a phantom for each head size: one for an adult and one
for an adolescent.

Sourcing the correct proxy fluids is vital for the material validity of the phantoms. The
dielectric properties of the fluids, and particularly their relative permittivity as a function
of frequency, define how they interact with the scanning beam of the new modality. These
parameters are therefore central to selecting fluids that have a relative permittivity that is
closest to the human material(s) they represent. The proxy fluid selected for brain matter
is produced by the National Physical Laboratory [20] to an international standard and
supplied to the telecoms industry for use in specific absorption rate (SAR) tests associated
with the safety of mobile phones and the influence of their emissions on brain tissue [21]. Its
relative permittivity characterises that of grey and white matter and cranial fluids (blood,
CSF, ECF, ISF, etc.) in a single unified medium. This off-white opaque fluid is evident in
the fully populated phantom in Figure 3. Figure 4 shows plots of its relative permittivity
against frequency (measured by the supplier) and compares those plots with measured and
computed plots for the individual constituents of a human body that are widely available
in the literature and frequently referenced by researchers in this field [22–27]. Figure 4 also
includes a single data point for Ethylene Glycol, which serves as a proxy fluid for skull
bone. It too is a single unified medium that characterises cancellous and cortical bone and
marrow.

Figure 4. Relative permittivities of the proxy fluids obtained from NPL and published plots for other human anatomical
constituents.
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The proxy fluids for an ischaemic inclusion and a haemorrhagic inclusion are RS-I
fluid [28] and defibrinated sheep blood [29], respectively. Given that 85% of all diagnosed
strokes are ischaemic [1], this paper focusses on the results obtained with RS-I fluid
representing an ischaemic stroke. The results from defibrinated sheep blood representing a
haemorrhagic stroke will be reported in due course, together with the authors’ investigation
into whether the two types of stroke can be discriminated by the new scanning modality.

3.4. Data Processing

During a scan, the real and imaginary components of the detected S11 signal, denoted
Sr[tx,k] and Si[tx,k], respectively, are acquired by the VNA at each of 100 stationary locations
of the antenna tx as it steps around the phantom through 360 degrees. At each location,
the VNA measures Sr[tx,k] and Si[tx,k] at up to 1601 spot frequencies between 1 GHz and
20 GHz, where tx = 1:100 is the antenna location index and k = 1:1601 is an index that
corresponds to the spot frequencies actually used.

The signature of the stroke cannot be easily identified within this complex data for
several reasons, but principally the following:

• The beam intensity launched from the antenna is very low (1 mW, 0 dBm) for the rea-
sons given earlier. In addition, the attenuation of the beam as it propagates through the
phantom is significant, particularly towards the upper end of the range of frequencies.
Consequently, the signal-to-noise ratio of the acquired data is low.

• The beam undergoes significant scatter and diffusion during its passage through the
phantom. This greatly reduces the definition of the signature of the stroke in the data
against the naturally occurring background fluctuations and noise in the data.

To resolve these challenges several processes are performed on the dataset to facilitate
a more effective search for features in the data that signify a stroke. The complex S11 signal
Sc[tx,k] detected at the antenna at each measurement instant is thus expressed as follows:

Sc[tx, k] = Sr[tx, k] + jSi[tx, k] (1)

Using this expression, Figure 5a shows the magnitude of the totality of raw data
acquired from the antenna during a scan of the 175 mm phantom containing a 44 mm
stroke inclusion located close to the surface. The actual phantom is shown in the photo
in Figure 3 in the previous section. All of the results reported in this section derive from
a scan of that particular phantom, which is henceforth referred to as ‘scan #1’ for brevity.
The results from scans of a broad range of phantoms and inclusions of different sizes and
locations are presented in the next section.

Figure 5. Magnitude of the raw data acquired during scan #1: (a) with the stroke inclusion, (b) without the inclusion, and
(c) the absolute (ABS) of the difference between (a,b).

Interestingly, when the same scan is repeated with the stroke inclusion removed from
the phantom vessel, the resulting raw data in Figure 5b are superficially unchanged. This
highlights the challenge faced in extracting the signature of the stroke inclusion from the
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raw data. It is at an extremely low level relative to the surrounding data. One potential
solution explored by the authors involved subtracting the ‘no inclusion’ data from the ‘with
inclusion’ data to accentuate information about the stroke inclusion and its location. This
method was ultimately rejected for two primary reasons. Firstly, in a practical setting, it is
all but impossible to envisage a scenario when clinicians will have two recent scans of the
same patient: one taken shortly before the onset of their stroke and the other taken while
their stroke is occurring. Consideration was given to utilising publicly accessible libraries
of scans of healthy patients and developing a method to use those data as a generalised ‘no
inclusion’ scan. However, the challenges in ensuring that these scans not only accurately
represented a stroke patient prior to the onset of their stroke, but that they can also be
formatted in a way that precisely replicates the output of the new scanning modality had it
actually been used, were felt to be insurmountable. Secondly, subtracting the two scans
from each other produces the highly complex data field in Figure 5c. Reliably identifying
and extracting the low-intensity signature of the stroke inclusion from within a data field
containing such extreme variability is challenging, particularly for stroke inclusions that
are small in size and deeply seated within the brain. The decision was therefore taken to
develop the following robust and computationally efficient method that reliably extracts
the signature of a stroke inclusion in the raw data from just a single scan of the patient
while they are experiencing their stroke.

The Inverse Fast Fourier Transform (IFFT) is used to transform the dataset in Figure 5a
from the frequency domain to the time domain. Given that the S11 scanning modality that
underpins this paper uses only one antenna, the data acquired at each stationary location of
the antenna as it steps around the phantom are not influenced by a second nearby antenna,
as was the case in the previous S21 scanning modality that was briefly alluded to earlier. It
is therefore sufficient to perform a 1D IFFT on the complex signal Sc[tx,k] in Equation (1) at
each antenna location, which produces:

s[tx, n] =
1
N

N

∑
k=1

Sc[tx, k]ej2π(n−1)(k−1)/N (2)

where N = 1:1601, tx = 1:100, and n = 1:1601. If only real data are applied to the transforma-
tion, the output data are reflected around its centre. However, for the purposes of this study,
the real and imaginary components of the acquired data are applied to the transformation,
which yields values in just the first half (i.e., left half) of the transform domain, as is evident
in Figure 6.

Figure 6. IFFT transformed data acquired from scan #1.

The output of the IFFT, denoted s[tx,n] in Equation (2), comprises N complex 1D
sequences that are computed independently in accordance with the structure of the data
acquired during a scan. Therefore, at each antenna location as it steps around the phan-
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tom, the average of the transformed sequence over the temporal domain is calculated by
averaging the sequence s[tx,n], and thus:

sav[tx] =
1
N

N

∑
n=1

s[tx, n] (3)

This 1D averaged data sav[tx] describes the S11 signal at the antenna for all frequencies
that are the input to the IFFT at each antenna location. However, for each antenna location,
sav[tx] does not yield a distinct unmistakable signature of the stroke inclusion because of
the strong influence of unwanted values on it. This is evident in Figure 7, which shows
multiple peaks and troughs computed from Equation (3), rather than a single distinct
signature.

Figure 7. Magnitude values computed from Equation (3).

Further study of the transformed series s[tx,n] in Figure 6 using scans of several
different phantoms in which the inclusion is present in some while is absent in others,
reveals that the position of n = N/4 is dominant when the inclusion is present but not
when the inclusion is absent. The data sequence around the n = N/4 index can therefore be
summed to resolve a more distinct signature of the stroke inclusion. Equation (3) can then
be rewritten as:

ŝav[tx] =
1

2a + 1

N
4 +a

∑
n= N

4 −a

s[tx, n] (4)

where a ≥ 0 represents the width of the span centred on n = N/4. The value of a is selected
in accordance with the strength of the signature of the inclusion. For example, in instances
when the strength is high, the value of a is not critical, whereas when the strength is low,
studies have found that a = 2 returns optimum results. Throughout the results presented in
this paper, a is assumed to be 2. The real and imaginary components of the complex data
sequence represented by Equation (4) are shown in Figure 9.
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Both components carry vital information about the presence and location of the stroke
inclusion. It is therefore prudent to use both. They can be combined by computing the
absolute value of the averaged data sequence in Equation (4), expressed thus as:

sMag[tx] = |ŝav[tx]| (5)

Figure 8 shows the data computed by Equation (5). The signature of the stroke
inclusion is visible in the form of a distinctive peak, the location of which corresponds with
the location of the inclusion on the horizontal axis.

Figure 8. sMag[tx] computed from Equation (5) for scan #1.

To reduce the intensity of the data on either side of the peak in Figure 8, and thereby
increase the distinctiveness of the signature, sMag[tx] in Equation (5) can be differentiated
as follows:

sd[tx] = sMag[tx + 1]− sMag[tx] (6)

Figure 10 shows the differentiated data computed by Equation (6). The presence of
the stroke inclusion is evidenced by the distinctive double peak, while the location of the
inclusion on the horizontal axis coincides with the zero crossing between the two peaks.

Figure 9. Real (left) and imaginary (right) values of ŝav[tx] for scan #1.
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Figure 10. sd[tx] computed from Equation (6) for scan #1.

The above results confirm that the method of data analysis devised for this study
successfully extracts the signature of a stroke inclusion from the raw data acquired during
a scan. The next section presents the results from a comprehensive programme of scans of
phantoms of different sizes and inclusions of different sizes and locations. In this way, the
results are representative of a population of adults and adolescents who are experiencing
strokes of different severity and depth within the brain.

4. Results and Analysis

To ensure consistency across the scans reported in this paper, the majority were carried
out with the stroke inclusion at the 9 o’clock position on a clock face, as illustrated in
Figure 11 for the 44 mm inclusion in the 175 mm phantom.

Figure 11. Signature of a 44 mm inclusion in the 175 mm phantom.
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The antenna begins and ends every scan at the 6 o’clock position and translates
anticlockwise around the phantom. The 6 o’clock position can therefore be designated
0 degrees, as shown, in which case the inclusion is located at 270 degrees. As the antenna
translates around the phantom, the signature of the stroke inclusion is highly visible as the
double peak (i.e., differentiated pulse) first observed in Figure 10. The middle zero crossing
between the two peaks corresponds to the location of the inclusion. This result and those
that follow confirm that the new scanning modality is indeed capable of detecting the
presence and location of a stroke inclusion.

The data plots in Figure 12 show that progressively smaller inclusions in the 175 mm
phantom are detectable down to 22 mm in size; however, the smallest 11 mm inclusion
is beyond the sensitivity threshold of the apparatus. However, Figure 13 shows that the
smallest 11 mm inclusion is detectable in the 150 mm phantom, which indicates that the
sensitivity threshold of the apparatus is in fact at or close to 11 mm for both phantom sizes.

Figure 12. Data from scans of the 175 mm phantom with inclusion sizes of 44 mm (left), 30 mm, 21 mm, 11 mm (right).

Figure 13. Data from scans of the 150 mm phantom with inclusion sizes of 44 mm (left), 30 mm, 21 mm, and 11 mm (right).

It is important to remember that the power level in the scanning beam is only 1 mW,
0 dBm, for the reasons outlined earlier. Had these scans been carried out at a higher beam
intensity of the magnitude that could be approved by regulatory authorities in due course,
it is reasonable to assume that the 11 mm inclusion, and perhaps even smaller, would be
consistently detectable.

During the scans in Figures 12 and 13, the inclusion is located close to the surface of
the proxy brain. The scans in Figure 14 show the impact of locating the inclusion more
deeply within the proxy brain of the 175 mm phantom. Scans of the 150 mm phantom
reveal the same trend, so they need not be included. It is clear that the scanning beam is
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unable to penetrate to a depth approximately half-way between the surface and centre of
the proxy brain. Again, it is important to note the low intensity of the scanning beam and
the likelihood that an approved higher intensity will penetrate more deeply and be more
detectable by the apparatus.

Figure 14. Data from scans of progressively deeper 44 mm inclusions in the 175 mm phantom.

The data plots reported thus far all derive from scans in which the stroke inclusion
is located at 9 o’clock on a clock face. As stated at the start of this section, that was done
to ensure consistency across those data plots and to facilitate valid comparisons between
the plots. However, in order to confirm that the signature is indeed caused by the stroke
inclusion and is not an artefact of the scanning apparatus or the surrounding environment
that just happens to be at the correct location, the additional scans in Figure 15 were carried
out with the inclusion located at 12 o’clock and 3 o’clock. The resulting data plots confirm
that the location of the signature correctly tracks the actual location of the inclusion.

Figure 15. Data from scans in which the 44 mm inclusion is at different locations relative to the start of each scan.

Scans were also carried out in which there is no stroke inclusion in the phantom, as
well as scans in which there is no phantom present in the scanning apparatus. The data from
some of these scans are shown in Figure 16. The absence of any form of signature provides
further confirmation that neither the framework of the phantom (i.e., the structural vessel
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excluding any inclusion) nor the scanning apparatus and the surrounding environment
influenced the results reported throughout this paper.

Figure 16. Data from scans of the 175 mm and 150 mm phantoms with no stroke inclusion present, and a scan of just the
scanning apparatus.

5. Discussion

The results confirm that the new scanning modality is capable of detecting the presence
and location of a proxy for an ischaemic stroke. The clarity of the signature of the stroke
in the data is testament to the efficacy of the analytical procedure devised specifically
for this application. Besides being computationally efficient, which helps to minimise
the time to display a diagnosis, the simplicity of the signature it produces lends itself to
rapid, unambiguous interpretation with minimal training. It should, however, be noted
that the phantoms used in the scans are simplified, idealised versions of a human subject.
Notwithstanding that the phantoms were constructed from proxy materials that closely
replicate the dielectric properties of human tissue, fluids, and bone, the complexities of
a vascular structure and the anatomy of different tissue types and fluid-filled cavities
are absent in the phantoms. In justification of that, the simplification of the phantoms
should be viewed as an ‘averaged’ human subject in which the boundaries between
different anatomical regions are blurred to the point of completely merging into one
medium. Indeed, the proxy medium used in the phantoms for brain matter is a single fluid
specifically manufactured by NPL [20] to a materially valid formula that represents the
unified dielectric properties of white and grey matter and all brain fluids. Furthermore,
given that the wavelength of the beam inside a phantom or a human subject alike ranges
from several mm to several cm, fine structural details present in the subject are inherently
smeared out in the data, leaving just the macro-level details, which are manifest in the
signature of the stroke. It is therefore consequential, as well as beneficial, that the phantoms
used in this study need only incorporate a simple geometry while still being a valid
representation of a human subject.

The long wavelength of the scanning beam also speaks to an important distinction
between the new scanning modality and X-ray CT. For the purposes of a triage diagnosis
at the site of the emergency, the fine detail in CT images is not required. Indeed, even the
location of the stroke is not essential. The priority is firmly on determining whether the
patient is or is not experiencing a stroke. The new scanning modality has demonstrated its
suitability in that role. The fact that it also indicates the location of the stroke is an added
benefit.

In a further simplification of the anatomy of the stroke inclusion, the authors assumed
that any previous or non-vascular cerebral lesions that the patient might have experienced

80



Healthcare 2021, 9, 1170

are closely co-located with the stroke-affected region itself. Consequently, the anomalous
region that is detected is assumed to be a singular amorphous mass. However, in practical
settings that assumption is not always valid. Previous or non-vascular cerebral lesions
could be present in locations removed from the stroke-affected region. To take account of
this, the next phase of the study will include phantoms that contain multiple inclusions to
represent stroke patients whose ongoing stroke and previous cerebral lesions are dispersed
throughout the brain.

Beam intensity has been shown to be a critical factor in the ability to detect a deeply
seated stroke inclusion. Striking the optimum balance between having sufficient intensity
to penetrate the patient’s brain to a useful depth while remaining safe to the patient and
scanner operator is a fundamental objective of the new scanning methodology promoted
in this paper. It is creditable that the current experimental apparatus, despite using a
very low-beam intensity, is achieving sufficient penetration for stroke inclusions close
to the surface to be detected, even for inclusions as small as 11 mm. However, given
that the current beam intensity of 1 mW (0 dBm) is some 100× lower than that emitted
by a domestic Wi-Fi hub, there is scope to increase the beam intensity by 100× or even
1000× while still remaining within the guidance limits for non-scanning applications
such as mobile telecommunications. In due course, it is reasonable to expect that medical
regulatory authorities will approve beam powers significantly higher than those used in
this study given the very short exposure period. The next phases of the project will employ
higher powers to assess the performance of the new scanning modality under more realistic
conditions.

It is important to emphasise that the new scanning modality will not replace nor
displace X-ray CT or MRI; quite the contrary. Its purpose is to add a valuable new capability
for stroke diagnosis that complements X-ray CT and MRI in settings where they are
unsuited, particularly when the scanner needs to be brought to the patient’s location.

The whole life cost is a further important consideration that favours the new scanning
modality. The end-of-service disposal costs of X-ray CT and MRI scanners can be a
significant proportion of their whole life cost. In contrast, the scanning modality described
in this paper does not use radioactive devices nor does it produce any form of toxic long-
term contamination. In addition, its energy carbon footprint is significantly lower since it
does not require a specialist high-voltage power supply and, indeed, has the potential to
be battery operated.

It should be noted that all of the results presented in this paper relate to an ischaemic
stroke. Approximately 85% of all strokes are ischaemic [1], hence, why it was prioritised
in this paper. The authors also carried out preliminary scans of phantoms with the proxy
fluid for the inclusion is defibrinated blood to represent a haemorrhagic stroke. The results
are very similar to those in this paper for an ischaemic stroke, which is to be expected since,
as is evident in Figure 4, the relative permittivity of blood and CSF are very similar. It has
yet to be determined whether the new scanning modality in its current experimental form
is able to reliably distinguish between both types of stroke. Without that determination
the correct treatment for the particular stroke cannot be commenced. Consequently, an
on-scene diagnosis can only be a stroke or no-stroke determination. Nevertheless, as
mentioned earlier, discussions with stroke specialists revealed that the ability to reliably
confirm a stroke/no-stroke diagnosis at the site of the emergency, and then to alert the
acute stroke unit ahead of arrival, would be a significant and welcome advance over
the current protocol. Notwithstanding that trials are underway in some countries with
specialist ambulances that contain a mobile CT unit [4,5] that can differentiate the two
types of stroke, these units will always be extremely few in number due to their high
cost and are therefore not a scalable solution. The hope is that new scanning modalities,
such as the modality described in this paper, which have the potential to be carried in all
ambulances and first response vehicles and used in complete safety, will pave the way for
on-scene diagnosis and treatment if the ability to differentiate the two types of stroke can
be developed and proven. Meeting that challenge is a priority supported by The Lancet
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article [6], which states, “The strategy of treatment directly at the emergency site (mobile
stroke unit concept), could contribute to more efficient use of resources and reduce the
time taken to instigate treatment to within 60 min—the golden hour—of the onset of the
symptoms of stroke”. The authors’ work towards differentiating the two types of stroke
will be reported in due course.

6. Conclusions

The results presented in this paper conclusively show that low-intensity electro-
magnetic waves in the radio frequency/microwave band can detect the presence of a
stroke-affected region in a materially valid phantom of a human head. A key step in
achieving that outcome is the computationally efficient method of data analysis devised for
the purposes of this study, which makes the signature of a stroke inclusion highly visible in
the raw data from the experimental scanning apparatus. The performance of this method
will continue to be improved as the project progresses. Alternative methods that show
good promise will also be investigated.

There is scope in the next development phases of the project to increase the intensity
of the scanning beam used in this study by 100× or even 1000× and still remain within the
safety guidelines for mobile communications and other non-scanning applications. That
is certain to enable smaller and more deeply seated stroke inclusions to be detected. The
results from that work will be reported in due course.

The next development phases will also employ more complex phantoms that represent
patients who have multiple anomalous regions in their brain caused by previous or non-
vascular cerebral lesions in addition to the stroke that is occurring at that moment.

It is certain that being able to administer stroke treatment at the site of the emergency
has the potential to reduce the time expired from the occurrence of a stroke to the absolute
minimum. However, for that fundamental departure from the current patient pathway to
be approved by all of the relevant regulatory authorities and clinical and patient advisory
groups, it is vital that the scanning methodology deployed at the site of the emergency
is proven to be capable of reliably differentiating between ischaemic and haemorrhagic
strokes. Achieving that with the scanning modality described in this paper in its current
form has been shown to be challenging due to the very similar dielectric properties of
the fluids involved in both types of stroke. However, given that this scanning modality
undoubtedly has the potential to deliver a reliable stroke/no-stroke diagnosis at the site
of the emergency, that alone will help to shorten the time to treatment by enabling the
acute stroke unit to be alerted that a confirmed stroke patient is in transit. That patient
can then be fast tracked upon arrival to shorten the door-to-needle time. That will make
a valuable contribution towards minimising the overall time from the occurrence of the
stroke to treatment being administered in hospital. That will be a highly beneficial interim
measure for stroke patients until such a time in the future when new scanning modalities
of the kind reported in this paper are able to reliably discriminate between both types of
stroke, and treatment is approved to be administered at the site of the emergency.

There is no doubt that the new scanning modality has the potential to be simple and
low cost to implement, and it is therefore suited to manufacture at scale. Such scanners
could be carried in all first response emergency vehicles and be in situ in hospitals and
acute stroke units, GP surgeries, and residential care homes. It is that kind of coverage that
is needed to transform the outlook for stroke patients and have a significant positive impact
on the current stroke statistics and the enormous cost of stroke to national economies.

Author Contributions: Conceptualization, D.H.; methodology, I.E.r., D.H. and M.A.-M.; software,
I.E.r.; formal analysis, D.H. and I.E.r.; investigation, D.H.; writing—original draft preparation, D.H.
and I.E.r.; writing—review and editing, D.H., I.E.r. and M.A.-M.; project administration, D.H. All
authors have read and agreed to the published version of the manuscript.

Funding: An earlier phase of this research was partially funded by Innovate UK (then the Technology
Strategy Board), grant number 710830.

82



Healthcare 2021, 9, 1170

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the contributions of past colleagues in Scannerfutures
Ltd, UK. and TTP plc UK during an earlier phase of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. State of the Nation—Stroke Statistics February 2018. Published by the Stroke Association, a UK Registered Charity. Available online:
www.stroke.org.uk (accessed on 6 July 2021).

2. Johnson, W.; Onuma, O.; Owolabi, M.; Sachdev, S. Stroke: A global response is needed. Bull. World Health Organ. 2016, 94,
633–708. [CrossRef] [PubMed]

3. Healthcare Expenditure. UK Health Accounts: 2018; Published by the UK Office of National Statistics: 2020. Available online:
www.ons.gov.uk (accessed on 6 July 2021).

4. Cerejo, R.; John, S.; Buletko, A.B.; Taqui, A.; Itrat, A.; Organek, N.; Cho, S.-M.; Sheikhi, L.; Uchino, K.; Briggs, F.; et al. A Mobile
Stroke Treatment Unit for Field Triage of Patients for Intra-arterial Revascularization Therapy. J. Am. Soc. Neuroimaging 2015, 25,
940–945. [CrossRef] [PubMed]

5. Calderon, V.J.; Kasturiarachi, B.M.; Lin, E.; Bansal, V.; Zaidat, O.O. Review of the Mobile Stroke Unit Experience Worldwide.
Interv. Neurol. 2018, 7, 347–358. [CrossRef] [PubMed]

6. Fassbender, K.; Balucani, C.; Walter, S.; Levine, S.R.; Haass, A.; Grotta, J. Streamlining of prehospital stroke management: The
golden hour. Lancet Neurol. 2013, 12, 585–596. [CrossRef]

7. Mohammed, B.J.; Abbosh, A.M.; Mustafa, S.; Ireland, D. Microwave System for Head Imaging. IEEE Trans. Instrum. Meas. 2014,
63, 117–123. [CrossRef]

8. Abbosh, A.M.; Zamani, A.; Mobashsher, A.T. Real-time Frequency-Based Multistatic Microwave Imaging for Medical Applications.
In Proceedings of the IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical
and Healthcare Applications (IMWS-BIO), Taipei, Taiwan, 21–23 September 2015.

9. Mobashsher, A.T.; Abbosh, A. Microwave Imaging System to Provide Portable Low-Powered Medical Facility for the Detection of
Intracranial Hemorrhage. In Proceedings of the 1st Australian Microwave Symposium, Melbourne, Australia, 26–27 June 2014.

10. Medfield Diagnostics—Strokefinder™. Available online: www.medfielddiagnostics.com/products/ (accessed on 6 July 2021).
11. Strokefinder MD100 Microwave Tomography for Early Diagnosis of Stroke Type. March 2014. Publication of the National

Institute for Health Research. Available online: http://www.io.nihr.ac.uk/wp-content/uploads/migrated/2569.8dda16ee.
StrokefinderMD100AlertFinal2.pdf (accessed on 6 July 2021).

12. Persson, M.; Fhager, A.; Trefna, H.; Yu, Y.; McKelvey, T.; Pegenius, G.; Karlsson, J.; Elam, M. Microwave-Based Stroke Diagnosis
Making Global Prehospital Thrombolytic Treatment Possible. IEEE Trans. Biomed. Eng. 2014, 61, 2806–2817. [CrossRef] [PubMed]

13. Ljungqvist, J.; Candefjord, S.; Persson, M.; Jönsson, L.; Skoglund, T.; Elam, M. Clinical Evaluation of a Microwave-Based Device
for Detection of Traumatic Intracranial Hemorrhage. J. Neurotrauma 2017, 34, 2176–2182. [CrossRef] [PubMed]

14. Micrima—Evolving Medical Imaging. Available online: https://micrima.com/ (accessed on 6 July 2021).
15. New Technology Could Revolutionise Breast Cancer Screening; University of Bristol Press: Bristol, UK, 2008.
16. Klemm, M.; Craddock, I.; Leendertz, J.; Preece, A.; Benjamin, R. Experimental and clinical results of breast cancer detection using

UWB microwave radar. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, San Diego, CA,
USA, 5–11 July 2008.

17. Carlson, A.B. Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 3rd ed.; University of
Michigan: Ann Arbor, MI, USA; McGraw-Hill: New York, NY, USA, 1986.

18. Pan, X. Tomographic Image Reconstruction. In Proceedings of the 41st Annual Meeting of the American Association of Physicists
in Medicine, Nashville, TN, USA, 25–29 July 1999.

19. Mobashsher, A.T.; Wang, Y. Microwave System to Detect Traumatic Brain Injuries Using Compact Unidirectional Antenna and
Wideband Transceiver with Verification on Realistic Head Phantom. IEEE Trans. Microw. Theory Tech. 2014, 62, 1826–1836.
[CrossRef]

20. Tween-Based Tissue-Equivalent Liquid, Manufactured and Supplied by National Physical Laboratory (NPL England) as per IEEE 1528

Standard; IEEE: Piscataway, NJ, USA, 2016.
21. IEEE Standard 1528-2013: IEEE Reccommended Practice for Determining the Peak Spatial Average Specific Absorption Rate (SAR) in the

Human Head for Wiresless Communications Devices: Measurement Techniques; IEEE: Piscataway, NJ, USA, 2013.
22. Gabriel, C.; Gabriel, S. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies. 1997. Available

online: http://niremf.ifac.cnr.it/docs/DIELECTRIC/home.html (accessed on 6 July 2021).
23. Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz. Publication of the Italian National

Research Council, Institute for Applied Physics. Available online: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php
(accessed on 6 July 2021).

83



Healthcare 2021, 9, 1170

24. Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41,
2231–2249. [CrossRef] [PubMed]

25. Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz–20
GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [CrossRef] [PubMed]

26. Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum
of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [CrossRef] [PubMed]

27. Peyman, A.; Holden, S.J.; Watts, S.; Perrott, R.; Gabriel, C. Dielectric properties of porcine cerebrospinal tissues at microwave
frequencies: In vivo, in vitro and systematic variation with age. Phys. Med. Biol. 2007, 52, 2229–2245. [CrossRef] [PubMed]

28. AQIX. RS-I Fluid. Supplied by Aqix Ltd, UK. 2016. Available online: www.aqix.com (accessed on 6 July 2021).
29. Defibrinated sheep blood supplied by TCS Biosciences Ltd, UK. Available online: www.tcsbiosciences.co.uk (accessed on 6 July

2021).

84



healthcare

Review

A Blockchain and Artificial Intelligence-Based, Patient-Centric
Healthcare System for Combating the COVID-19 Pandemic:
Opportunities and Applications

Mohamed Yaseen Jabarulla and Heung-No Lee *

Citation: Jabarulla, M.Y.; Lee, H.-N.

A Blockchain and Artificial

Intelligence-Based, Patient-Centric

Healthcare System for Combating the

COVID-19 Pandemic: Opportunities

and Applications. Healthcare 2021, 9,

1019. https://doi.org/10.3390/

healthcare9081019

Academic Editor: Marco P. Soares dos

Santos

Received: 30 June 2021

Accepted: 28 July 2021

Published: 8 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,
Gwangju 61005, Korea; yaseen@gm.gist.ac.kr
* Correspondence: heungno@gist.ac.kr

Abstract: The world is facing multiple healthcare challenges because of the emergence of the COVID-

19 (coronavirus) pandemic. The pandemic has exposed the limitations of handling public healthcare

emergencies using existing digital healthcare technologies. Thus, the COVID-19 situation has forced

research institutes and countries to rethink healthcare delivery solutions to ensure continuity of

services while people stay at home and practice social distancing. Recently, several researchers have

focused on disruptive technologies, such as blockchain and artificial intelligence (AI), to improve

the digital healthcare workflow during COVID-19. Blockchain could combat pandemics by enabling

decentralized healthcare data sharing, protecting users’ privacy, providing data empowerment, and

ensuring reliable data management during outbreak tracking. In addition, AI provides intelligent

computer-aided solutions by analyzing a patient’s medical images and symptoms caused by coro-

navirus for efficient treatments, future outbreak prediction, and drug manufacturing. Integrating

both blockchain and AI could transform the existing healthcare ecosystem by democratizing and

optimizing clinical workflows. In this article, we begin with an overview of digital healthcare services

and problems that have arisen during the COVID-19 pandemic. Next, we conceptually propose a de-

centralized, patient-centric healthcare framework based on blockchain and AI to mitigate COVID-19

challenges. Then, we explore the significant applications of integrated blockchain and AI technologies

to augment existing public healthcare strategies for tackling COVID-19. Finally, we highlight the

challenges and implications for future research within a patient-centric paradigm.

Keywords: digital healthcare; patient-centric; blockchain; artificial intelligence; federated learning;

coronavirus (COVID-19); pandemic management; healthcare transformation; public health strategies

1. Introduction

The novel coronavirus disease (COVID-19) has spread to almost every country since
the outbreak in December 2019 from Wuhan, China. The severity of this epidemic became
extensive within a month of the virus’s widescale spread. Thus, a Public Health Emer-
gency of International Concern (PHEIC) was declared by the World Health Organization
(WHO) [1]. The outbreak forced several nations to close their borders, maintain lockdowns,
and practice social distancing to limit the spread of COVID-19. These led to massive
interruptions in the economy of many sectors, such as industry, insurance, agriculture,
supply chains, transport, and tourism [2]. The pandemic has had an unexpected impact
at the global level, not just on an economic scale, but also pushing healthcare systems
around the world to their limits, such as through a lack of personal protective equipment
(PPE) for healthcare workers and by causing difficulties in diagnosing and monitoring
large populations [3]. In general, the healthcare system has operated in a closed ecosystem
of siloed institutions, where healthcare professionals (i.e., doctors, radiologists, clinicians,
and researchers) have served as the primary stakeholders of medical information. The flow
of information has gone in one direction, i.e., healthcare expert to patient. However, in
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the era of digitized patient health records, data are growing and flowing across a closed
healthcare system faster than ever before. The one-to-one flow of information is giving way
to a multiplicity of information, sharing relationships with many-to-many, one-to-many,
and many-to-one [4]. In such cases, most coronavirus information collected from the public,
hospitals, and clinical laboratories may not be faithful, since the data are not gathered
according to set guidelines [5] and are not monitored or stored appropriately because
of the vastness of digitized patient health records. The existing healthcare technology
requires trustable data, which is crucial to providing the correct widespread information
about the novel coronavirus. Furthermore, the virus test procedure using medical tools
for detecting coronavirus infections often takes several days to complete because of the
inaccuracy and manual processing of large volumes of data. Finally, tracking or surveilling
infected patients or their contacts raises several privacy issues [6]. These insufficiencies
exposed by COVID-19 have prompted healthcare organizations to transform the existing
digital healthcare system to combat pandemic situations. Overall, the digital healthcare
ecosystem needs to facilitate clinical trials, frontline care, data surveillance, medical billing,
telemedicine, drug delivery, treatment facilities, and strategy discovery. In addition, it is
essential to design a more patient-centric and democratized digital healthcare ecosystem
for combating COVID-19 and future pandemics by using digital platforms.

Recently, several researchers have focused on utilizing disruptive technologies, such as
blockchain and artificial intelligence (AI), to provide solutions for these ongoing COVID-19
crises [7,8]. Blockchain is a peer-to-peer (P2P) distributed and shared ledger, where trans-
actions are digitally recorded into blocks. The nodes (miners) of the blockchain network
are responsible for linking the blocks to each other in chronological order. Blockchain
nodes contain a copy of the stored information and keep their network active [9]. Thus,
blockchain provides the entire history or provenance of data. It is possible to store sample
test results, patient records, discharge summaries, and vaccination statuses in a blockchain
digital ledger. These will support clinical laboratories, patients, hospitals, and government-
funded healthcare organizations in a decentralized way to manage healthcare information
using self-executing contracts called “smart contracts” [8]. Smart contracts are computer
programs that execute the predefined terms of an agreement between participants when
certain conditions are met within the blockchain network [10]. Furthermore, smart con-
tracts based on blockchain technology could automate auditing processes, medical supply
chain management, outbreak tracking, and remote patient monitoring [10]. On the other
hand, AI technologies, such as machine learning and deep learning, have been used as
powerful tools for enhancing COVID-19 detection, diagnosis, and vaccination/drug dis-
covery, and for performing extensive data analysis [11]. In addition, the federated learning
paradigm [12,13] has gained traction for healthcare applications to solve the data privacy
and governance problems by training AI models collaboratively without sharing the raw
datasets. Thus, AI could process an enormous amount of data in less time and at a fraction
of the cost by performing tasks that are difficult to achieve manually. Meanwhile, the
blockchain could promote secure data access and interoperability while protecting the
privacy and security of health data [14]. Integrated blockchain and AI technology could
reshape the healthcare ecosystem by advancing the patient-centric approach [15–17]. A
patient-centric approach could provide a viable solution to cope with the coronavirus
epidemic for disseminating treatment and managing pandemic situations.

Although researchers have reviewed blockchain and AI to combat COVID-19 [18],
these reviews mainly focused on the role of blockchain, such as the development of
data storage, managing big data, and security issues for COVID-19 patients [14]. Other
reviews focused on analytics and decision tools for healthcare professionals to combat
COVID-19 using AI technologies [11]. However, these reviews lacked a concrete and
comprehensive study on integrating blockchain and AI for COVID-19 responses based on
a patient-centric approach in the healthcare ecosystem, a limitation that was the primary
driver for conducting our research. This paper aimed to provide and explore insight into
combined blockchain and AI technology to mitigate the COVID-19 pandemic’s challenges
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by transforming the traditional healthcare ecosystem. Then, we discuss the services
and practical applications of using these innovative technologies to facilitate COVID-19
healthcare strategies. The contributions of this article are as follows:

1. We conceptually redefined the traditional healthcare model by integrating blockchain
and AI for tackling COVID-19 in a patient-centric paradigm.

2. We exploited the existing public health strategies, such as patient information sharing,
data management for diagnosing the infection, contact tracing, monitoring, and
mitigation of the impact on healthcare, using the proposed decentralized, patient-
centric frameworks.

3. Based on the study, we discussed the challenges, solutions, and future research
directions that are anticipated to be of significant value for patients and healthcare
organizations.

This work is organized as follows: Section 2 includes related research work and recent
trends in healthcare systems that utilize blockchain and AI technologies. Section 3 provides
an overview of digital healthcare services and describes the background of blockchain and
AI technologies. In Section 4, we exploit a blockchain- and AI-based conceptual framework
for delivering patient-centric healthcare services to combat COVID-19. Section 5 explores
the potential applications of the decentralized, patient-centric framework to facilitate
pandemic healthcare strategies. In Section 6, we discuss the relevant open issues, possible
solutions, and further research directions. Finally, we conclude the paper in Section 7.

2. Related work

2.1. Blockchain and AI in Healthcare Systems

In this section, state-of-the-art research related to healthcare systems based on blockchain
and AI is presented. The key risks and issues in a traditional healthcare system include a
single point of failure, data alterations, high chances of malicious cyberattacks, centralized
authority, high data management cost, and databases that are not transparent. To address
these issues, researchers have proposed numerous blockchain-based solutions. The authors
of [19] addressed the security and privacy concerns by using a blockchain-based server–
client architecture network to store the hashed patients’ data. However, these server–client
architectures are prone to a single-point failure. Thus, a blockchain-based distributed
mechanism for data accessibility between patients and doctors in a healthcare system is
presented in [20]. The authors of [10] designed a smart contract-based, real-time patient
monitoring system to record wearable device data as events and share that information with
healthcare professionals. The primary goal of this system is to eliminate third parties and
resolve the vulnerability issues in remote monitoring. In other studies [21,22], researchers
created a secure and trusted digital environment using a smart contract-based healthcare
system to prevent data breaches in electronic health records (EHRs). To attain decentralized
data management in healthcare, the authors of [16] proposed a framework to store patient
EHRs in a decentralized, patient-centric framework that allows patients to control their
data using a rule-based smart contract. On the other hand, healthcare systems based on
AI [23] require more computational power due to the exponentially increased parameter
numbers, complex architectures, and sufficient data to achieve accurate deep learning
solutions. Meanwhile, the data are accumulated from different sources and stored on the
central server to find a global model. Therefore, researchers have proposed distributed
AI approaches based on blockchain that leverages parallel computing power, as well as
focuses on distributed data storage. One such effective distributed learning solution is
federated learning that trains locally stored data with local computational power while
protecting privacy [12]. The federated learning approach allows researchers to obtain
decent insight from patient data without revealing any sensitive information (medication
history of patients, text messages, and patient names, etc.). Researchers are typically
looking for statistical results rather than raw data, and researchers can achieve unbiased
statistical insight without even having access to the data itself. Jonathan et al. [24] proposed
a conceptual framework based on blockchain-orchestrated federated learning for healthcare
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consortia. Their architecture provides a privacy-preserving audit trail that logs events in
the network without revealing identities.

2.2. Trends in Related Research

More recently, the massive outbreak of the COVID-19 pandemic has prompted var-
ious researchers, scientists, and organizations around the world to conduct large-scale
research to help develop efficient pandemic management and response strategies. Sev-
eral patient-centric approaches [15,17] have been studied in the context of the COVID-19
pandemic, such as facilitating pharmaceutical care [25], clinical trials [26], conducting
ethical research [27], and health system restructuring [28]. The emergence of disruptive
technologies like AI and blockchain leveraged several healthcare applications [11,14,18,29]
that emphasized COVID-19 data analysis, data security, data privacy, authenticity, and data
sharing at various levels. In this regard, Samuel et al. [30] have reviewed the role of AI in
the arena of predicting, contact tracing, forecasting, screening, and drug development for
coronavirus and its related epidemic. The authors of [14] reviewed the existing literature
on blockchain technology in solving challenging problems due to the COVID-19 pandemic.
The authors proposed a blockchain-based platform that discussed significant blockchain
applications for solving issues arising from the COVID-19 pandemic. Nguyen et al. [18]
introduced a new conceptual architecture that integrates blockchain and AI for combating
the COVID-19 pandemic. However, this article only consists of an extensive survey about
the latest research efforts on blockchain and AI applications for combating COVID-19. In
addition, none of these works provided an overall architecture of the blockchain and AI
framework based on a patient-centric paradigm.

From the abovementioned works, we concluded that, although several studies were
focused on the current scenario of the COVID-19 outbreak, they provided only a limited
idea about integrating blockchain and AI technologies to combat COVID-19. To the best of
our knowledge and at the time of writing, no study has provided a decentralized, patient-
centric framework that emphasizes the COVID-19 pandemic and its potential implications
using converged blockchain and AI technologies. To this end, our present work has more
potential to address the research gaps while presenting the conceptual framework with a
detailed explanation of each layer and its functionalities. The purpose of our study was
to provide the readers with an initial systematic framework of how integrated blockchain
and AI are able to facilitate traditional public healthcare strategies, such as patient infor-
mation sharing, data management for diagnosing the infection, contact tracing, monitor-
ing, and the mitigation of the impact on healthcare, using the envisioned decentralized,
patient-centric frameworks.

3. Overview

3.1. Digital Healthcare Services during the COVID-19 Pandemic

Digital health can improve pandemic strategies and responses by increasing access
to healthcare-related services for individuals and enhancing the experience of delivering
or receiving care [31]. Digital health is an umbrella term that includes mobile health
(mHealth), electronic health (eHealth), and emerging technologies, such as the use of
blockchain, medical internet of things (MIoT), AI, and big data [32,33]. Although some
digital technologies, such as telemedicine and telehealth, have existed for decades, they
have poor penetration into the healthcare market due to the sparsity of supportive payment
structures and heavy regulations [34]. A nationwide surge of COVID-19 cases forced
healthcare organizations to transform healthcare delivery by leveraging the power of digital
technologies [33,35]. The use of telemedicine for diabetic patients in fighting the COVID-19
pandemic has already been demonstrated [36,37]. Various technologies, such as biosensors,
multi-drone systems, and industry 4.0 [29,38,39], could be employed for combating the
coronavirus disease. The viewpoint of the authors of [40] represents pandemic management
and response strategies based on a methodological application of digital technologies.
Their framework highlights the ways in which successful countries (e.g., South Korea,
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Australia, Germany, Singapore, and Taiwan) have adopted digital technologies in the
real world for pandemic healthcare services, such as contact tracing, testing, surveillance,
pandemic planning, and quarantine. Table 1 summarizes specific healthcare services [14] by
highlighting the functions, challenges, and digital technologies utilized for the pandemic’s
management and response strategies.

Table 1. Summary of the COVID-19 pandemic’s management and response strategies [40,41].

Strategies Functions Digital Technologies Challenges

Contact
Tracking

Identifies and monitors individuals that
come into contact with an infected person

within a specific duration of time.

Bluetooth Low Energy
technology, mobile phone

applications, wearables, and
IoT devices.

Security and privacy issues,
since individuals’ data are
analyzed and stored in a
centralized cloud system.

Quarantine and
Self-Isolation

In quarantine, individuals are requested to
stay in a place (i.e., home or government

facilities) for 14 days after being exposed to a
COVID-19-infected person. In self-isolation,
an infected person isolates within a house or

other location to prevent contacting
uninfected persons.

AI, a global positioning
system, cameras, and

recorders.

Breaches civil liberties,
restricted access to essential

services, and fails to track the
individual who runs away
from a quarantine facility

without their device, like a
mobile phone.

Automated
Surveillance

To identify and monitor individuals without
facemasks, social distancing, and accidental
touching in public gathering places. Detects

symptoms, such as breathing difficulties,
coughing, and fever, using self-tracking

digital technologies.

Facial recognition, digital
thermometers, surveillance

cameras, and thermal
cameras.

Security attacks, operational
cost.

Clinical Data
Management

Used to diagnose infected individuals and
provides the capacity for telemedicine
services and virtual care, prediction of

clinical outcomes, and monitoring of clinical
status by clinicians.

Picture archiving and
communications system

(PACS).

Not cost efficient, privacy
breaches may occur, failure in

diagnosis.

Patient
Information

Sharing

Patient health and medical information
sharing could decrease the possibility of
duplicate testing and avoid medication

errors. Furthermore, sharing patient data
among the global research community plays
an essential role in coronavirus research by

formulating powerful raw data sets.

AI, web-based toolkits, and
PACS.

Satisfying Health Insurance
Portability and Accountability

Act (HIPAA) compliances,
lack of anonymity, security,

privacy, and data
management issues.

Contactless
Delivery

During the lockdown, contactless delivery of
essential supplies, such as medicine, food,
and sanitizers, prevents direct interactions
with people, since doorstep delivery might
not be safe during a high transmission rate.

Robots and drones.
Security attacks, operational
costs, and legal issues in the

case of an accident.

Supply Chain
Management

Identify and secure logistics capacity based
on the type of goods, such as medical

equipment and vaccines/drugs or other
pharmaceutical medicines.

Mobile platforms, data
analytics, cloud, and IoT.

Procuring medical equipment,
pharmaceutical medicines,

and household essentials are
difficult due to the surge in

demand.

Disaster Relief
and Insurance

Financial organizations and governments
have to help the public by providing

unemployment insurance relief, loans to
protect their business losses, and health

insurance that covers treatment costs during
the COVID-19 outbreak.

Web-based toolkits and
mobile applications.

Time-consuming and
ineffective due to paper-based

procedures and centralized
authority.

Figure 1 illustrates a representation of a complex healthcare ecosystem with multiple
stakeholders who constantly integrate, interrelate, and interoperate with digital technolo-
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gies during pandemic situations. The key stakeholders of the healthcare ecosystem are
described below:

• Patient—anyone who seeks medical care can be termed a patient, and their data play
a crucial role in pandemic preparedness and response.

• Providers—Includes physician groups, hospitals, laboratories, doctors, and other
healthcare professionals and medical facilities that deliver medical care to patients.
Patient data, such as electronic medical records (EMRs), are stored, organized, and
managed in a large-scale centralized clinical repository. Providers contribute to clinical
teams and researchers by providing health information to combat diseases.

• Payers—A payer is a company (for example, an insurance company) that pays people
or bodies, other than the patient, to finance or refund the cost of the medicinal products
and healthcare services. A payer is responsible for processing payments, patient
eligibility, enrollment, and claims.

• Pharma—Pharmaceutical companies are the makers of vaccines prescribed by health-
care providers. They supply medicines and provide other supporting services, such
as patient disease and medication management.

• Researchers—Conduct pharmaceutical and biomedical research. Digital healthcare
can augment researchers’ insights by analyzing the healthcare data, clinical trials, and
public health research.

• Regulators—Healthcare industries and government agencies that oversee industry
standards, enforce and write regulations, and set healthcare policy.

• Government—Handles public safety and emergencies. It implements stay-at-home or-
ders or lockdown to reorganize, rebalance resources, and protect health workers while
combating COVID-19. They execute policies that encourage and support innovators
to create healthcare solutions based on information technologies where information
flows securely to the required parties. Involved in the management of the procurement
of PPE kits, medicinal supplies, and appliances/oxygen condensers. Provides staff
training on COVID-19 prevention and provision of patient counseling on medicines.

 

’

–

’s

Figure 1. Healthcare ecosystem and digital services for pandemic preparedness and response during
COVID-19.
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Health services need trustable data to provide the correct information about the novel
coronavirus’s spread or outbreak. Multiple efforts are being made around the world to
cultivate a patient-centric culture by using ever-growing volumes of research, patient data,
and applications of digital technologies [4,42–44]. Specifically, disruptive technologies,
such as AI and blockchain, are emerging in digital healthcare, which uses the greater
availability of health data to identify high-risk patients, track the spread of COVID-19,
predict mortality risk, manage healthcare data, and fight against coronavirus and other
pandemics [11,14,18]. AI gives us the unprecedented capability to decouple complex
variables and reach a nuanced understanding of the effect and cause at the population as
well as the individual levels. AI allows organizations to understand what their data are
depicting and use that to develop targeted interventions. Blockchain plays a vital role in
health information exchange by facilitating the healthcare transition to patient-driven and
patient-mediated interoperability [45]. In this article, we propose a decentralized, patient-
centric framework that integrates AI and blockchain technologies for tackling COVID-19.
We explore the potential applications and use cases of these combined technologies for
facilitating the healthcare response to the COVID-19 pandemic [16,41].

3.2. Blockchain and Artificial Intelligence Technologies

Blockchain is a promising and revolutionary technology, mainly used where central-
ization is unnatural and privacy is essential [46,47]. Blockchain [8,48] has a particular
interest in health data, with an emphasis on sharing, distribution, and encryption. De-
centralization and cryptographic hashing are the fundamental concepts of a blockchain.
The contents or databases stored in a blockchain are shared across the network. The net-
work creates a decentralized distributed chain that allows every participant to access the
blockchain’s contents. The security of the network is protected by a mechanism called
consensus. A consensus mechanism is a fault-tolerant mechanism that uses a set of rules to
achieve necessary agreement on the status of the blockchain ledger among all participants.
Blockchain consists of three key components: blocks, nodes, and miners. Here, a block is
like a record book page that records some or all of the recent transaction data that have
not been stored in any prior blocks. Each time a block is completed or mined, it gives way
to the next block in the blockchain. Starting from the genesis block, each block consists
of data, its own unique nonce, and hash value that links to the previous block via a hash
label, which creates a chain of blocks and prevents any modification risks [49]. Nodes
are responsible for the functioning of a blockchain network, and ensure the storage of the
given data in the distributed ledger. Each node has its copy of the blockchain, and the
participating node creates new blocks in the chain for which participants receive a reward.
The consensus mechanism provides equal rights to all participants in the network to access
the distributed ledger and protect the chain from third-party entities to avoid security
issues, such as double-spending attacks [50]. There are several consensus mechanisms
available, such as proof-of-work (PoW), Byzantine faulty tolerant (BFT), zero-knowledge
proof, and proof-of-stake (PoS) [49]. Furthermore, smart contracts are used to enhance the
transparency and trust between two parties by using blockchain technology to enable the
creation of accessible and immutable contracts. In a blockchain network, each participant
has a unique alphanumeric identification number that shows their transactions. Therefore,
every action can be easily monitored and viewed by the participants in the distributed
ledger. The smart contract makes secure transactions that help to avoid disruption from
centralized authorities. Ethereum Virtual Machine or Solidity platforms [51,52] could
be used to build smart contracts for automatizing auditing processes, providing time-
bound access to distributed patients’ data, and improving the supply chain management
of pharmaceutical products. The healthcare industry has become overloaded by data, and
blockchain can provide solutions to healthcare stakeholders to handle this enormous data
in reality. In addition, blockchain establishes reliable and privacy-preserving data exchange
protocols within the healthcare ecosystem. Blockchain’s immutable and decentralized
nature [53] has demonstrated its promising potential in healthcare applications, such as
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secure data management [54], transparent medical data storage [55], and healthcare data
privacy [16,56].

Artificial intelligence (AI) technology appears in every technology field, and is becom-
ing inseparable from daily life activities. Moreover, Accenture researchers [57] predicted
that the application of AI in the healthcare market is expected to increase from $600 million
to $6.6 billion between the years 2014 and 2021. Recent studies show that AI-based ML and
DL models are utilized for solving coronavirus-related issues [11]. ML plays an important
role in AI research, and has a huge potential to detect patterns and anomalies of medical
image data. Then, it matches those data into learning models to automate decision-making
processes for healthcare specialists [58]. For example, ML can be used to perform an
automated facial recognition framework to detect temperature on the human body for
mitigating coronavirus-infected people [58,59]. Meanwhile, DL models consist of multiple
neural network layers to form a deep learning architecture [60]. A deep neural network
architecture consists of an input layer, output layer, and a single hidden layer for receiving
data samples, training data samples, and generating training outcomes. Here, the depth
of the DL architecture depends on the number of hidden layers. Either unsupervised or
supervised learning techniques are used to estimate the desired output using unlabeled or
labeled data samples, which are associated with the adjustment of the hyper-parameters.
Several AI companies have created DL-based models to predict and analyze coronavirus
infection [61]. For example, DarwinAI developed a COVID-Net framework using a convo-
lutional neural network architecture to detect COVID-19 from chest radiography images,
and Google uses neural network software to predict patient outcomes, such as the length
of a visit, odds of death, and readmission possibilities. However, AI algorithms require
large, varied, high-quality, and confidential coronavirus datasets that may be siloed across
different healthcare institutions. Thus, obtaining patient coronavirus data securely for
training the datasets with a global AI model for the detection of positive COVID-19 cases
is a challenging task. To address this data security problem, McMahan et al. [12] proposed
federated learning frameworks to train an AI model securely by analyzing a broad range
of data located at multiple sites. Federated learning secures data and aggregates only the
AI model parameters from multiple organizations [13,62,63]. However, several federated
learning approaches are based on a centralized server, which raises concerns about the
privacy of sensitive data. Thus, researchers proposed blockchain-based federated learning
approaches for several applications [63–65] to implement asynchronous collaborative AI
models between a distributed network. Hence, the blockchain-based federated learning
method enables collaborations between several healthcare organizations to train the ML
or DL models without relying on any centralized server and avoids the direct sharing of
sensitive clinical data with each other. A blockchain smart contract, such as Ethereum, is
used to realize the automated management of the entire federal learning method with an
incentive mechanism. For instance, Microsoft researchers [66] are developing a system that
collaboratively improves ML algorithms hosted on a public blockchain. The collaboration
through the system is incentivized, since blockchain makes it possible to reward people
who provide data for improving AI models using smart contracts. This decentralized
approach to train models preserves privacy and security and ensures the immutability of
uploaded AI models via computing and recording their quality in the blockchain.

The patient-centric approach aims to facilitate the democratization of ever-growing
volumes of patient data and effectively uses it for the application of AI and blockchain
to mitigate COVID-19 challenges. Figure 2 depicts the important features of blockchain
and AI technology that are essential in combating COVID-19. AI and blockchain are
catalyzing the pace of innovation in digital healthcare, which directly impacts patients
and service providers. Moreover, these two technologies have their degree of technical
complexity as well as ethical concerns, but converging both technologies may be able to
redesign the entire traditional healthcare paradigm into a decentralized, patient-centric
paradigm to mitigate COVID-19. In summary, the advantages of utilizing blockchain and
AI technologies in healthcare to mitigate COVID-19 challenges are as follows:
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• Blockchain helps to improve interoperability among different healthcare organiza-
tional platforms, such as pharmaceutical needs, hospital databases, supply chain
logistics, and insurance claims.

• Storage and management of health record data using blockchain platforms offer
patients the protection of their data and provides access to their health records based
upon request.

• Blockchain improves information management among stakeholders in the healthcare
ecosystem.

• Blockchain reduces centralized control over patient datasets. Thus, it helps to boost
medical research and treatment.

• A smart platform can be developed using AI for the automated surveillance, monitor-
ing, detection, and prediction of the spread of this virus.

• The use of AI in reviewing and analyzing radiology images, such as CTs and X-rays,
could help to increase COVID-19 detection accuracy.

• AI could automatically estimate the number of positive COVID-19 cases and death
cases in any region. In addition, AI helps to determine the most virus-exposed
countries, regions, and people to take measures accordingly in advance.

• The application of artificial intelligence (AI) in medication development can help
pharmaceutical companies streamline drug repurposing and discovery.

 

Figure 2. Key features to mitigate COVID-19 challenges using blockchain and AI.

4. The Proposed Patient-Centric Framework

In this section, we present a patient-centric digital healthcare framework by integrat-
ing AI and blockchain technology. Figure 3 illustrates the schematic representation of
the envisioned patient-centric framework using blockchain and AI for COVID-19. The
framework is conceptually organized into three layers: blockchain, AI, and decentralized
storage layers. These three layers are integrated with the smart contract to make decisions
and maintain accessibility within the patient-centric healthcare ecosystem. The blockchain
as a decentralized technology enables multiple healthcare participants, such as regulators,
researchers, providers, pharma, payers, and government, to benefit from the patient-centric
healthcare services and applications.
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Figure 3. Schematic representation of the envisioned patient-centric framework using blockchain and AI technologies.

The decentralized storage layer consists of the P2P storage system. All the coronavirus
data from hospitals, clinical labs, patient-generated data (IoT sensors and mobile operators),
and several other sources are combined to construct a primary dataset that subsequently
leads to big data. These big data are encrypted and stored in a decentralized storage
system by utilizing privacy and security features [67,68]. In a decentralized storage system,
the data are distributed into different chunks and stored inside various nodes of a P2P
network, instead of storing all the coronavirus-related data in a centralized server. The
advantages of utilizing a decentralized storage system include security, privacy, no single
point of failure, and cost effectiveness [69]. There have been a few successful distributed
file-sharing systems, like IPFS, storj, swarm, orbitDB, GUN, skeps, and sia [69,70]. These
file-sharing systems combined blockchain technology to enable off-chain and on-chain stor-
age mechanisms. In off-chain storage, data are not publicly accessible, and the transaction
agreement happens outside of the blockchain. An on-chain storage mechanism refers to
blockchain transactions that are valid when transacted on the publicly distributed ledger.
The significant purpose of a decentralized storage system is to enable the distributed and
immutable off-chain and on-chain storage networks to facilitate patient-centric manage-
ment for coronavirus data. For instance, an infected X-ray image has been encrypted for
privacy purposes by a doctor and uploaded to the IPFS network to store the image data
off-chain. The stored encrypted image returns an IPFS hash value, and this hash value
is stored on-chain in the blockchain ledger after being verified by the key participants of
the healthcare ecosystem [70]. Key participants can be a doctor, clinicians, and hospital
administrators. Thus, combining on-chain and off-chain data storage mechanisms allows
the building of a permanently addressable decentralized storage system that could be
connected securely to other crucial databases or systems in the world to form a global
healthcare network [16,71].

The blockchain layer consists of provider nodes, user nodes, and training nodes. The
provider node includes participants, such as hospitals, clinics, or healthcare organizations,
to store and update every patient information (name, patient’s unique ID, prescribed
medicines, and discharge summaries) in the blockchain ledger. Furthermore, provider
nodes assign ownership to the patient medical data in the on-chain blockchain distributed
ledger, as well as store coronavirus-related electronic health records, such as CT scans,
chest X-rays, and medical reports, in off-chain decentralized storage networks. The user
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node consists of patients who manage and control their coronavirus-related datasets on
blockchain platforms. This operation can be achieved by implementing an Ethereum-based
smart contract protocol, such as patient-centric access control (PCAC-SC), to enable a dis-
tributed and trustworthy access control policy [16]. The smart contract ensures access to the
control and safety of patient-sensitive data without using a centralized infrastructure. The
participants in the patient-centric healthcare ecosystem are synchronized with the provider
blockchain network to share communications between them regarding accessing the patient
data for establishing pandemic management and response strategies. The patient-centric
approach allows patients to protect and give access to COVID-19 data based upon the
healthcare entities’ requests. The blockchain-based, patient-centric framework could offer
a number of feasible solutions for coronavirus-related services and applications with im-
proved interoperability among different healthcare platforms, such as insurance claims,
pharmaceutical needs, hospital databases, supply chains, and clinical data management.

The AI layer is integrated with blockchain and a decentralized storage network using
the smart contract protocol. The AI layer consists of federated machine learning and deep
learning models, where data providers, such as hospitals or clinics, train an AI model
locally using the private data obtained from patients and upload only the locally trained AI
model parameters to the decentralized storage network. The reference to the parameters of
the locally trained AI model is stored in the distributed blockchain ledger to update the
global model. For example, let us consider a scenario where two hospitals and one research
institute teamed up to build an AI model that can automatically analyze CT scan data for
detecting COVID-19 infections. The team employs a blockchain-based federated learning
approach to maintain the global deep neural network. Each hospital would receive a copy
of the AI model to train the model with a CT scan dataset available in their healthcare
infrastructure. Once the AI model has been trained locally in the hospital for a couple
of iterations, the participants would send only their updated version of the AI model
back to the blockchain network. The contributions from all participants would then be
aggregated from the decentralized storage network. The updated AI model parameters
are shared with participating healthcare organizations, such as hospitals, to continue
the local training. Thus, hospitals only share weights and gradients by keeping their
patients’ sensitive data privately within their healthcare infrastructure. Here, blockchain
technology distributes the AI model parameters among hospitals. The decentralized
architecture for hospitals can share their data among multiple healthcare organizations
without any leakage of the patients’ privacy. The smart contract in the framework ensures
a decentralized trust among the involved participants by defining rules for the model
training agreement and automatically enforcing those obligations [72]. Smart contracts
record agreements as a computer code with certain rules. When the rules are satisfied,
the agreement is enabled. Smart contracts not only facilitate rule-based accessibility, but
also provide flexibility to implement custom federated learning solutions. In addition,
smart contracts enable different incentives based on participants’ contributions, restrict
operations, and define new rules consisting of upcoming requirements. The trained model
in the blockchain network provides better and more accurate predictions, because it holds
the most up-to-date information about COVID-19 symptoms. These models are deployed
to disseminate and analyze data, which can directly impact patients, service providers, and
other participants of the patient-centric healthcare ecosystem. Furthermore, blockchain
can accelerate the development of data-hungry AI applications using rule-based smart
contract protocols [73], since, in healthcare, patients’ archival data need to be immutable
and accessible only to specific researchers for privacy purposes.

The use of smart contracts for rule-based model training is a novel concept, and
blockchain is an ideal platform for standardizing health data structures for AI training,
clinical trials, and regulatory purposes. The summary of various technical aspects and
their benefits for implementing the conceptually proposed framework over traditional
healthcare systems are presented in Table 2. The proposed blockchain-based, patient-
centric healthcare system could facilitate AI models and large datasets to be widely shared,
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updated, and trained to increase the rate of AI adoption and effectiveness. AI implication
procedures were developed in the healthcare industry for fighting the COVID-19 pandemic
by performing accurate analysis and reliable predictions on vast data collected from
coronavirus sources. The blockchain and AI technology that supports patient-centered care
has to coordinate the flows of COVID-19 data that are coming from a variety of sources
through services and applications, such as outbreak estimation, coronavirus detection,
drug/vaccine development, coronavirus analytics, future case projections, and performing
automated surveillance.

Table 2. Comparison between traditional healthcare systems over proposed healthcare system based on various technical
aspects and their benefits.

Aspects Standard Healthcare System Proposed Healthcare Platform

Source Data Storage
The COVID-19 data are stored in a

centralized cloud-based storage system,
like PACS.

The COVID-19 data are stored in decentralized
storage systems, such as IPFS.

Database Sharing Mechanism and
Integrity

Depends on a cloud-based mechanism
and EHR databases managed by a

third-party clearinghouse. Thus, there are
possibilities of data tampering.

Depends on a blockchain-based sharing
mechanism and EHR databases managed by the
participants of the healthcare ecosystem. Thus,

databases are immutable.

Administration Performance and
Scalability

More transactions are processed per
second and enable great scalability.

Process minimal transactions per second, and
there are scalability issues since the framework is

at its developing stage.

Implementation Cost
Easy to implement and maintain due to

its large-scale adoption.
Uncertainty in the operating costs.

Incentive Mechanism for Sharing
Data

Not available.
The patient can receive an incentive for sharing

their medical data for research purposes.

Data Accessibility Depend on healthcare entities.
Patients have complete access to and control

over their data.

Anonymity
High risk of privacy leakage and identity

theft.

The identity of the patients and the transactions
between healthcare participants remain

anonymous since blockchain public addresses do
not link to anyone’s identity.

Data Auditability
Always depends on administrators to

audit the data.

The moment the blockchain reaches a
predetermined state, any node in the blockchain
network can track and trace the data right from

its origin based on cryptography technology.

Computational Performance of AI
Computationally expensive for training
large datasets acquired from different

sources in a centralized server.

The federated learning approach reduces the
computational power by enabling collaborations
between several healthcare organizations to train
the distributed global AI models without relying

on any centralized server.

Decision Making Human involvement. Human involvement, AI, and a smart contract.

Fault Tolerance Risk of a single point of failure.
A distributed blockchain ledger is highly
fault-tolerant because of the consensus

mechanism.

5. Applications for Healthcare Management and Response Strategies during COVID-19

In this section, we explore the digital service opportunities and applications of the
blockchain- and AI-based, patient-centric framework for facilitating COVID-19 healthcare
strategies. Figure 4 shows the possible decentralized digital healthcare services and ap-
plications offered by the converged blockchain and AI technologies to participants in a
patient-centric healthcare ecosystem. The traditional healthcare system has drawbacks,
such as limited access to COVID-19 data, participants’ struggles to manage data, and high
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costs. The proposed patient-centric framework ensures distributed data access and secure
logging of digital transactions and at the same time maintains the security and privacy of
patients’ data.

’

’

 

’s

Figure 4. The convergence of blockchain and AI for a decentralized, patient-centric healthcare system
to tackle COVID-19.

5.1. Patient-Centric Information Sharing and Clinical Data Management

In COVID-19 research, interoperability among healthcare participants is of predom-
inant importance. However, interoperability mechanisms must avoid violating interna-
tional and national data-sharing regulations, such as the General Data Protection Reg-
ulation (GDPR) compliance and Health Insurance Portability and Accountability Act
(HIPAA) [74,75]. These compliances demand that patients be the holder of their data
ownership and not organizations, such as hospitals, clinics, or research centers, that gen-
erate or create the revenue from data. Therefore, it is necessary to enable individuals to
control their COVID-19 data for better communication between healthcare organizations
and caregivers to obtain a higher standard of care. The patient’s COVID personal health
information (PHI), such as scanned medical images, blood oxygen level, heart rates, med-
ication doses, and history of health conditions, are gathered with high privacy through
medical IoT (MIoT) and AI-powered decentralized applications (dApps) developed on
the blockchain using smart contracts. These gathered data are uploaded directly to the
proposed blockchain-based system to eliminate data forging and mutation issues. In ad-
dition, the proposed decentralized framework enables patients and physicians to easily
participate in telemedicine rather than visiting hospitals during the pandemic. The clinical
data are managed using distributed ledger technology and P2P networking features with
no centralized management costs, apart from the minimal fees of the Ethereum network [9],
thus enhancing patient empowerment.

In general, the actual COVID-19 data are not stored in the blockchain; instead, the meta-
data of the COVID-19 health information is encrypted and maintained in the blockchain
as a pointer. The actual information collected from data sources is stored off-chain in a
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decentralized storage network, such as IPFS, swarm, and sia. Thus, the blockchain offers
security and privacy by storing patients’ personal health information in a decentralized
storage network. There are several techniques and prototypes that have been recently
adopted by researchers to implement permissioned blockchain-based patient information
sharing, such as MedChain [76] and MedRec [9]. These healthcare prototypes provide
the patient with full control over his or her medical records and enable data sharing and
authentication processes. Incorporating such techniques in our proposed architecture
eliminates the costly middleman who manages the centralized databases and enables
patients to have full control over their data. In addition, a decentralized, patient-centric
approach allows data monetization through smart contracts, such as patients retaining
their data ownership and remunerating with tokens for their sharing of COVID-19 data
with participants, such as researchers. For example, Health Wizz [77] uses blockchain to
tokenize data to enable patients to securely aggregate, share, donate, trade, and organize
their PHR. Thus, a patient could monetize their COVID data for training an AI model for
faster and accurate diagnosis using the patient’s X-Ray or CT scans or for predicting the
future outbreak [63]. The patient-centric approach helps to protect patients’ privacy and
maintains trust among participants by providing transparency in storing and sharing data.
Smart contracts in the blockchain can serve as security promoters for clinical trial data [78].

5.2. Decentralized Contact Tracing

Contact-tracing applications are among the key digital healthcare services helping to
fight the COVID-19 pandemic. There are several technologies that could provide contact
tracings, such as mobile phone platforms like quick response (QR) codes, Bluetooth, mobile
applications, social graphs, contact details, network-based API, GPS, and wi-fi. However,
data privacy and security concerns remain as hurdles that could complicate the process
of identifying virus-exposed persons [79]. The decentralized, patient-centric approach
based on blockchain and AI can ease those concerns by balancing public health needs
with privacy concerns and data analysis [80]. Individuals use blockchain technology to
securely share their personal information without revealing their identity to public health
agencies, such as a government-aided corporate database or government health authorities.
This could help to notify individuals who come into contact with the coronavirus-infected
patients without sharing the other personal or medical data of the infected persons [81]. In
addition, the gathered data can be used to identify the clusters and hotspots by analyzing
the data through an AI model. The outcome of the AI model could be used as a key tool to
facilitates a more responsible reopening of the economy without causing a surge in the case.
Researchers utilize blockchain technology to issue blockchain-protected digital COVID-19
vaccine passports to immunized citizens. These health certificates can be authenticated
easily by public health authorities to verify the status of an individual [82].

5.3. Outbreak Estimation

The general coronavirus data, such as the number of newly infected cases, death cases,
recovered cases, and infected regions, are obtained from media platforms to estimate the
risks of the infection and its likely spread using AI models. AI enables the identification
of the most vulnerable people and countries, and predicts the number of positive cases to
take measures accordingly in advance. In addition, AI can combat COVID-19’s spread by
analyzing people’s phone usage patterns to estimate the outbreak size, considering the
fact that a COVID-infected patient or a dead person’s phone usage patent will change,
since the phone might be used by a family member or will be idle. These pattern changes
could be detected by analyzing the datasets obtained from wireless operators using AI
models [83]. Sarker et al. [84] used ML to model and predict the phone usage records of
individuals through learning their personalized diverse mobile activities. Furthermore,
J. Shen et al. [85] used DL to accurately estimate the mobile phone application usage, i.e.,
abnormal calling behaviors and phone service inactivity. Specifically, deploying blockchain-
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enabled dApps on patients’ mobile devices helps to forecast and track the spread of the
virus infection globally by anonymously preserving the patient information.

5.4. Coronavirus Detection and Analysis

AI facilitates an automated decision-making system, which helps to develop a new
cost-effective diagnosis system for the COVID-19 cases using ML and DL algorithms. For
instance, facial recognition [86] using AI helps to detect the temperature on a human face
and predict whether the person is wearing a mask or not so that healthcare officials can iden-
tify the COVID symptoms and violations related to COVID-19. AI enables computerized
diagnosis of the infected cases by analyzing CT, chest X-rays, and MRI scan images. The
authors of [87] proposed a detection system using two-dimensional and three-dimensional
DL algorithms that were combined with available AI models to identify COVID-19 thoracic
CT features with high accuracy. The work in [88] proposed a CT image analysis model to
screen COVID-19 by differentiating COVID-19 pneumonia characteristics from influenza A
viral pneumonia. The authors used a pulmonary CT image set for feature detection and to
differentiate influenza A viral pneumonia, COVID-19 viral pneumonia, and healthy cases.
In another study [89], convolutional neural network-based models were used to analyze
chest X-ray radiographs to detect patients’ viral pneumonia caused by the COVID-19 virus.
From the aforementioned examples, we can note that coronavirus data plays a crucial role.
However, the healthcare data for training the AI models are fragmented and stored in a
private server to maintain privacy. Thus, creating a robust result across populations is a
difficult task. The decentralized, patient-centric framework facilitates a federated learning
approach to train a shared AI global model within a blockchain network. Meanwhile, keep-
ing all the sensitive patient COVID-19 data in the decentralized storage network, ensures to
connect the fragmented healthcare data sources with privacy preservation. This approach
increases trust by allowing advanced machine learning to be developed on distributed data
with full respect of the confidentiality for the data providers and maintains the property
rights of the companies that propose the machine learning models.

5.5. Disaster Relief and Insurance

COVID pandemic situations are often accompanied by significant threats, such as
disrupting the healthcare delivery infrastructure and extending the effect of the physical
health of individuals living in affected communities for short- and long-term periods due
to nationwide lockdowns and social distancing rules. Governments, financial organiza-
tions, and healthcare delivery infrastructures are compromised by the loss of facilities;
difficulties in providing loans and other financial lifelines; scarcity of health professionals
in the impacted area; and disruption of critical supports, such as information sharing and
data management technology, pharmaceuticals supplies, supply chain management, and
medically necessary social services. The key reasons for such challenges are that the exist-
ing healthcare infrastructure is centralized, non-transparent, and relayed on paper-based
procedures, which consumes more time and is ineffective.

The blockchain smart contract in the decentralized, patient-centric approach eliminates
third-party intermediaries and the inherent processing delays associated with traditional
paper-based policies. The smart contract simplifies complicated applications to ease the
approval process for providing insurance and loans with reduced operational risk. The
policy agreements are created and deployed in blockchain networks by the participants,
such as governments, pharma, and regulators, to enable fast, reliable, and scalable solutions
in the patient-centric healthcare consortium. Furthermore, patients are now at the center of
healthcare operations, such as the revenue cycle [90]. Therefore, patients have choices for
the providers they utilize, such as the hospitals, payers, and pharma, and the providers
are now expected to deliver retail-like service levels. This patient-centric healthcare model
calls for new solutions in infrastructure, technology, and mindset to ensure a transparent
financial experience for both the patient and provider. Another application includes
managing the medical billing data by AI. The AI model helps to learn about health plans
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by feeding the sensitive databases into the AI models from different platforms stored on
a blockchain. AI would analyze the necessary sensitive information in the blockchain
provided by the appropriate entity, disseminate the understandable data, and provide
answers related to health plans and medical bills.

5.6. Supply Chain Management

The healthcare provider and the supply chain play a critical role in protecting the pa-
tients’ safety and treatment. The shockwave of the COVID-19 pandemic created disruptions
in the global supply chain due to the abrupt changes in delivery routes, individuals buying
patterns, and supply shortages. For example, there was a surge in demand for household
essentials due to panic buying. Specifically, COVID-19 exposed the difficulties in managing
medical equipment and pharmaceutical supply chains due to the lack of integration and
alignments of interest in the healthcare supply chain. Therefore, it is necessary to critically
redesign the existing supply chain system to manage the flow of medical supplies and
respond to additional challenges presented due to the ongoing global pandemic.

The decentralized, patient-centric approach plays a crucial role in designing a more
resilient, fully connected, and trustworthy supply chain environment using blockchain
technology. Here, the blockchain anonymously considers various stakeholders with uniting
factors, such as delivering a higher quality of care and improved customer service. The
patients will be at the center of the healthcare supply chain and integrated with the
system data using blockchain-enabled dApps. Thus, immutable recording of data logs
supports auditability, transparency, and provenance. By using a blockchain, supply chain
organizations achieve a rapid flow of supplies from the origins to the destinations in a
reliable and trusted manner. These help to harmonize just-in-time manufacturing with
disaster preparedness. Meanwhile, a well-programmed smart contract gives a high level of
automation and access restrictions to save billions of dollars and thousands of lives [91].
The patient-centric supply chain management system utilizes AI to increase the system’s
efficiency for reporting and analyzing the obtained data from medical and logistic teams.
The supply chain data are interpreted to derive insights that will enable continued tweaking
of the system for even better results.

5.7. Contactless Delivery and Automated Surveillances

Contactless delivery eliminates direct communications among people (e.g., person–
person interactions changed to person–machine or person–machine–person) [92] and
delivers healthcare services or products between individuals, patients, healthcare profes-
sionals, and other providers through digital technologies. Thus, many people and mildly
infected patients prefer contactless online treatments and contactless (automated robotic)
delivery of essential supplies, such as medicine and food, during a lockdown or quarantine
period. The goal is to maintain an individual’s safety by avoiding face-to-face interactions
and sending a person for doorstep delivery. Accordingly, telemedicine services were natu-
rally contactless and widely practiced in the pre-COVID period. The telemedicine services
encompass remote consultation through audio/video calls using a robot with a camera and
video features with a tablet, smartphone, or computer. In telemedicine services, patient
data are generally stored and managed through a centralized platform [36]. Hence, there is
a possibility of security attack, raising questions regarding the patient’s privacy of data. In
addition, it is necessary to monitor people who violate COVID-19 rules by not wearing
facemasks and not maintaining social distancing.

To address challenges, drones and robots are used for contactless delivery and auto-
mated surveillance in response to COVID-19, such as monitoring public space; providing
guidance during lockdown and quarantine; lab sample pick-up and delivery; transporting
medical supplies to minimize the transportation times and infection exposure; and aerial
spraying of public areas in order to disinfect potentially contaminated places [29]. Though
the utilization of AI technologies facilitates UAVs and robots to precisely operate and
execute the task without human interventions, it leads to security attacks, such as device
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hacking, data theft, and modifications in robot functions. A blockchain- and AI-enabled,
patient-centric approach offers a vast range of possibilities to mitigate the issues by inte-
grating with technologies, such as robots and UAVs. The blockchain enables independent
drones or robots to reach a consensus in a decentralized way, and shares knowledge to
improve the performance of the system [93]. The blockchain, along with smart contracts
designed to ensure a high level of security, automates the operations of robots [94] un-
der policies implemented via the government or healthcare organizations’ supervision.
Blockchain and AI empower personalized care for patients and monitors people using
secured and automated UAVs and robots.

6. Discussions

6.1. Challenges and Solutions

Healthcare professionals and medical industries around the globe are urged to fight
the pandemic with rapid screening, forecasting, contact tracing, and the development of
drugs or vaccines with more accurate and reliable operation. Blockchain- and AI-based,
patient-centric approaches enable a personalized healthcare service to patients and healthy
people. However, some challenges must be addressed for a patient-centric approach to
embrace blockchain and AI technology and to leverage maximum benefit.

The first challenge is related to the increased volume of raw clinical data, and the veri-
fication of new transactions can take time on the blockchain, depending on the consensus
algorithm. For example, the latency for PoW is higher due to the time taken to approve
each transaction by the blockchain infrastructure, which leverages scalability issues. The
scalability issues could be overcome by utilizing a permissioned blockchain built to handle
large transaction volumes without time-intensive validation. Recently, researchers have
been developing novel solutions, such as sharding [95], to achieve network-wide scalability
by dividing rapidly growing blockchain networks into groups called shards. Furthermore,
designing specific hierarchical blockchain systems and consensus algorithms could help to
resolve the scalability issues.

The second challenge is related to privacy and security issues. The blockchain data
are distributed to all the nodes which, in turn, leads to non-compliance with privacy laws
(e.g., HIPPA and GDPR) and vulnerabilities [96]. Therefore, it is necessary to store data
off-chain in order to maintain data privacy and security. The privacy of data can possibly be
achieved by new privacy methods, such as homomorphic and attribute-based encryption,
secure multiparty computation, zero-knowledge proof, obfuscation, and format-preserving
encryption. The different security levels in a system could be accelerated by designing
with hybrid privacy methods and using security-enhancing technologies, such as a homo-
morphic signature [97], which works better than public key certificates. More importantly,
COVID-19 data gathered from hospitals, clinical labs, and patients can be altered by any
malicious attacker and makes AI learning invalid. Therefore, it is necessary to collect
the COVID-19 data without any privacy leakage from different sources using federated
learning combined with blockchain technology. Possibly the largest barrier to the adoption
of a patient-centric framework based on AI and blockchain relates to legal disputes or
regulatory issues. The central entity of each healthcare organization is liable for any legal
issues and is responsible for the overall smooth functioning of the centralized healthcare
systems. However, a decentralized, patient-centric system leads to difficulties in solving
any legal dispute or discrepancies in the public blockchain infrastructure. For example,
copyright infringement and defamation problems arise when personal information runs
on converged AI and blockchain platforms. In addition, countries are reluctant to share
coronavirus-related databases, which creates additional difficulties in performing a large-
scale AI operation. Therefore, regulatory approaches would need to be cleverly balanced
by developing corresponding administrative processes and a new legal framework among
countries and healthcare organizations, such as the WHO, while recognizing the possibility
of the technology [98].
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6.2. Future Work

In short, the proposed conceptual framework tries to generalize the process of a de-
centralized, patient-centric healthcare ecosystem to fight the COVID-19 situation with a
clearer understanding of possible applications and functionalities. The framework takes
full advantage of blockchain and AI technologies to establish better solutions in solving
pandemic-related issues. In our future work, we aim to implement the conceptually pro-
posed framework and test our system with the applications related to healthcare strategies.
We will focus on conducting experiments by optimizing the blockchain technology to
achieve better performance in terms of improved security and increased throughput. In
addition, we will deploy a real-time adaptive AI architecture model using a blockchain-
based federated learning approach with the potential to manage multimedia healthcare
data for predictive modeling, patient monitoring, and emergency department operations
in response to critical healthcare situations. Democratizing aspects of healthcare provide
personalized care, as well as save time and money for patients. Moreover, this conceptual
framework will motivate researchers to pay more attention and explore the combination of
other technologies, such as drones, smart MIoT, robots, and digital twin technologies, to
help fight future epidemics and pandemics.

7. Conclusions

In this paper, we provided an overview of digital healthcare services in response
to COVID-19 pandemic management services. Then, we presented a conceptual frame-
work for a decentralized, patient-centric healthcare system by integrating blockchain and
AI technologies to fight against the coronavirus epidemic. The proposed decentralized,
patient-centric framework can contribute in four ways. Firstly, it improves the interoper-
ability of different healthcare platform stakeholders, such as providers, payers, pharma,
governments, and researchers. Secondly, patients store COVID-19 health records securely
on the patient-centric blockchain platforms and own their sensitive data. Thirdly, the
blockchain reduces siloed patient datasets and eliminates centralized organizations, thus
improving medical research and treatment by using AI models for predictive diagnosis and
analysis. Fourthly, the blockchain enables federated learning techniques, where AI models
train the COVID-19 data with the patients’ permission at the hospital side while preserving
their privacy, and aggregates the knowledge from the nodes to learn a global model. Here,
only the global AI model parameters are shared with the hospitals, and once the training is
performed locally at hospitals, the model parameters are sent back for aggregation. Thus,
the machine learning or deep learning models are trained collaboratively in the distributed
network while maintaining hospital and patient data privacy. In addition, we explored
the possibilities and potential applications of these combined technologies to facilitate the
traditional public health strategies for tackling COVID-19, such as contact tracing, outbreak
estimation, coronavirus detection, analysis, clinical data management, supply chain man-
agement, contactless delivery, automated surveillance, disaster relief, and insurance. The
acceptance of a patient-centric healthcare model could transform the centralized healthcare
system into a decentralized healthcare system, thus placing the patients at the center of
the healthcare ecosystem to control, access, and share their healthcare data, facilitating
research and personalized treatment.
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Abstract: Artificial intelligence (AI)-based solutions have revolutionized our world, using extensive

datasets and computational resources to create automatic tools for complex tasks that, until now,

have been performed by humans. Massive data is a fundamental aspect of the most powerful

AI-based algorithms. However, for AI-based healthcare solutions, there are several socioeconomic,

technical/infrastructural, and most importantly, legal restrictions, which limit the large collection

and access of biomedical data, especially medical imaging. To overcome this important limitation,

several alternative solutions have been suggested, including transfer learning approaches, generation

of artificial data, adoption of blockchain technology, and creation of an infrastructure composed

of anonymous and abstract data. However, none of these strategies is currently able to completely

solve this challenge. The need to build large datasets that can be used to develop healthcare

solutions deserves special attention from the scientific community, clinicians, all the healthcare

players, engineers, ethicists, legislators, and society in general. This paper offers an overview

of the data limitation in medical predictive models; its impact on the development of healthcare

solutions; benefits and barriers of sharing data; and finally, suggests future directions to overcome

data limitations in the medical field and enable AI to enhance healthcare. This perspective is dedicated

to the technical requirements of the learning models, and it explains the limitation that comes from

poor and small datasets in the medical domain and the technical options that try or can solve the

problem related to the lack of massive healthcare data.

Keywords: biomedical data; medical imaging; shared data; massive databases; AI-based healthcare

solutions

1. Introduction

Artificial intelligence (AI) applications are revolutionizing the way we live, creating
automatic solutions for several tasks previously performed by humans with fewer errors [1].
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The increase in computational power and the amount of data available has opened up the
opportunity to develop novel AI solutions in several areas. Image classification has been
one of the most successful AI applications, which has allowed, for example, the creation
of a self-driving car or facial recognition on social networks [2]. The great innovation for
image classification happened with the creation of the ImageNet [3], which is the most
recognizable dataset available with a massive amount of labeled data; thus, allowing a
technological breakthrough in image classification. Before the creation of ImageNet, there
were only relatively small datasets with tens of thousands of labeled images [4]. These
image databases only allow simple recognition tasks [4] since all the variability of the
population cannot be covered by these small databases. ImageNet is composed of more
than 14 million images with 21,841 synsets and more than 1 million bounding box annota-
tions [5]. However, in order to deal with the variability of data, it was necessary to develop
architectures with an automatic feature learning capacity. After the creation of ImageNet,
several powerful neural network architectures for image classification were developed,
such as AlexNet (2012), ZFNet (2013), VGGNet (2014), Googlenet (2014), Inception (2014),
ResNet (2015), ResNeXt (2016), DenseNet (2016), Xception (2017), and SENet (2018) [6,7].
Such progress in a few years was possible due to transparency in the evaluation process.
A fair comparison with related works must be done to assess real improvements, and the
public availability of ImageNet data allowed this evaluation.

An ideal AI-based model should be robust, reliable, and understandable [8]. To achieve
this type of model, it is imperative to have an extremely large amount of data that must
be representative of all population features. A massive dataset to cover the population’s
heterogeneities will only be possible by sharing data collected from multiple institutions.
A model trained with this type of representative dataset would then be able to cope with
heterogeneities that exist within a population. A robust model should be able to avoid
overfitting to generalize well, which would allow the ability to capture the boundaries
between classes that will be useful to predict the unseen elements from the test dataset.
Generalization is the ability of a classifier to handle new scenarios [9]. One way to test
generalization is to evaluate existing models using new independent data that are identi-
cally distributed to the original training set [10]. Overfitting occurs when the algorithm,
during the learning process, creates a model that performs too well, sometimes by chance,
on training data but fails to generalize to new and unseen data (test set) [11]. By allowing
the model to achieve an overly specific knowledge of the training examples, it results in a
performance decrease on test data [11]. In order to ensure that the model does not rely on
the specific elements of the training set, it generally uses strategies such as leave-one-out
or splitting a dataset into multiple parts to separate the model training from the valida-
tion. With small amounts of data, models will not be able to create a boundary between
classes with good accuracy on unseen data and may be biased by some characteristics of
the training set [12]. As an alternative way of overcoming the lack of massive training
data, Transfer Learning techniques have been explored for several biomedical challenges,
allowing to use the knowledge learned with a larger and more generic dataset for a specific
application, helping to avoid overfitting by reducing the number of trainable parameters
necessary for the learning process of the target task.

Regarding the ideal characteristics of massive data, this has to have five basic dimen-
sions: volume, variety, value, velocity, and veracity, namely the 5 Vs [13]. In fact, the need
of large datasets is related with the need to ensure those properties. Only with the extensive
collections (high volume of data) is possible to cover the variability of the population using
a variety of sources of meaningful data (veracity), which is robust to the noise in the data
and labels and allows to capture the statistical relations. The velocity of data generation
has an impact on the technological sources available and the protocols, which could change
rapidly and influence the acquisition [13]. For example, a novel technological solution
can make a traditional clinical exam inadequate and outdated, which makes the previous
acquisitions unuseful.
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Almost all technological areas have benefited from the combination of powerful AI-
based methods, computational resources, and the amount of data available; however,
in healthcare, the situation is different. In the exciting era of data-driven and fast growing
AI applications, AI-based development in healthcare has been constrained by the lack
of access to large datasets [14]. In the healthcare field, AI-based algorithms can aid in
the diagnosis, clinical assessment/staging, screening, and/or treatment plan decision
making by providing objective and comprehensive information to clinicians that can be
taken into consideration for the final decision [15]. Access to large amounts of biomedical
data (medical history, medications, allergies, immunization status, laboratory test results
(blood and urine), physiologic signals (ECG, PPG, EEG, arterial pressure), medical image
(CT, X-ray, MRI, PET), histopathological images, molecular and all “omics” data) will
leverage biomedical knowledge, improving the accuracy of diagnosis, allowing early
detection of physiological changes and increasing understanding of the clinicopathological
events [16–18]. Precision medicine is based on solutions that “provide the right treatments
to the right patients at the right time” [19]. Fast and deep characterization of the patient
will be aided by AI-based methods that allow the assessment of the main biomarkers
that are fundamental for the selection of the most appropriated treatment plan in a short
time frame. Massive datasets combined with AI methods allow identifying and inferring
meaning of patterns or trends to be directly learned from the data themselves that are
not otherwise evident in smaller data sets. Thus, if the hypotheses tested on individual
scientific studies were based on a cohort of patients with specific characteristics, chances
of lack of generalization for completely different patients are increased. This information
will help to develop novel target therapies, innovative biological knowledge, and, as a
consequence, personalized medicine. This work gives an overall perspective of the benefits
and barriers associated with data sharing (summarized in Figure 1). Current challenges of
biomedical data sharing, addressing the impact on the development of healthcare solutions,
and major data limitations are discussed.
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Figure 1. Representation of main benefits and barriers of data sharing. Data sharing has several bene-
fits for healthcare solutions development. Some of the main barriers to data sharing are fundamental
for patient data protection.
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2. Benefits of Data Sharing

Data sharing, which ensures privacy and security for patients, will enable huge
and fast progress in healthcare. Currently, automatic methods, such as computer-aided
diagnosis (CAD), have promising results and would lead to improvements in patient care
workflow and reduce costs related to examinations, the rate of medical interactions and,
as a result, the costs [20]. AI applied to medical diagnosis has been shown to achieve, for the
detection of some clinical conditions, better performance than clinicians [21]. Nevertheless,
there is still a huge potential to improve CAD performance with large amounts of data in
several applications.

On the other hand, scientific studies would be comparable and reproducible, which is
only possible with shareable datasets. Usually, each scientific study uses a specific and small
dataset that is not representative of all the heterogeneities of the population. Consequently,
the performance results depend on the samples used and are not comparable across studies.
The use of the same datasets would allow comparison between studies to choose the best
solution to be implemented in the clinical decision.

With publicly available datasets, it would be possible to disseminate the use of data
collection for multiple projects. Biomedical data have the potential to be used for multiple
applications to solve distinct problems, or they can be analyzed from different perspectives
to extract relevant clinical information.

From this imperative need of data, institutions promote more synergies with other
institutions—companies, universities, R&I organizations and hospitals. The need for data
has fostered more collaborations to share this resource, which can be considered as a
positive side effect in the biomedical field and, ultimately, benefit patients.

3. Barriers to Access

The barriers to data sharing for health-related research are complex in nature: a
combination of economic and social factors intersect with major legal and ethical concerns,
to which can be added relevant technical obstacles to overcome.

In the last years, AI-based solutions have created a fundamental shift in business
models, and nowadays, data are recognized as a new currency for companies. Data owners
will shape the future by creating the new generation of tech solutions [22,23]. From the
biggest tech companies to small start-ups, there is a deep and growing commercial interest
in healthcare data, since the future and disruptive clinical technological solutions will
depend on the data available for use. Biomedical data are even more valuable than other
types of data, given the considerable investment required not only in data acquisition,
but also in data preservation and storage.

In the healthcare setting, privacy, confidentiality, and security are the fundamental
issues that must be addressed [24,25]. The use of health-related information is often strictly
regulated, subject to demanding legal requirements regarding information security and
organizational measures (anonymization, pseudonymization techniques and encryption),
confidentiality, and the respect for data subjects rights. Furthermore, data protection is es-
sentially a fragmented reality worldwide, often mirroring conflicting or, at least, discrepant
conceptions with respect to underlying principles and protected social values. The Eu-
ropean General Data Protection Regulation (GDPR) represented a major achievement in
this regard. It had a global impact, not only as a result of its extraterritorial provisions
but also because it was rapidly acknowledged as a relevant international benchmark in
the field of data protection, and it was an important source of inspiration for legislation
approved shortly after in several states, from Brazil to California, to the UK in the context of
Brexit, or to Canada’s ongoing reforms. However, and despite its uniformization ambitions,
the GDPR abounds in vague clauses and open standards, the application of which often
requires balancing competing interests. In the case of AI applications, mostly related to
biomedical data, the uncertainties are aggravated by the novelty of the technologies, their
complexity, and the wide scope of their individual and social effects. GDPR grants to
Member States a significant margin of discretion in several fields, where deviations and
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specifications are allowed: for example, maintaining or introducing further conditions or
limitation regarding the processing of biometric, genetic, or health data. Therefore, lack of
harmonization persists in this regard, not only internationally, reflecting different cultures
and legal traditions, but, to some extent, even within the EEA. Additionally, the regulation
of international data transfers represents another relevant barrier. Following the recent and
highly debated case Schrems II, judged by the European Court of Justice, data transfers
between EU and US blocks was seriously affected [26], jeopardizing health research collab-
orations. It should be noted that under EU law, mere (remote) access constitutes a form of
data transfer for this purpose.

In the technical realm, harmonization difficulties persist. Biomedical data are usually
distributed among several heterogeneous and semantically incompatible health informa-
tion systems, leading to interoperability problems [27]. The goal of data integration is to
create a unique semantic reference to ensure data consistency and reuse and, consequently,
improve clinical practice, medical research, and personalized medicine [28]. There has been
an increase in the adoption of Semantic Web Technologies in healthcare [29]; however, se-
mantic interoperability is far from being applied across all healthcare organizations. Most of
these institutions lack comprehensive semantic definitions of the information they contain
and have limitations in extracting parameters to solve semantic service discrepancies [30].
In these cases, a human integrator is required to make final semantic decisions [31]. Further-
more, and since biomedical concepts are constantly evolving, the continuous development
of semantic integration is essential [31].

Additionally, the majority of medical solutions have been based on supervised algo-
rithms, which require human annotation of the data. There are several annotation platforms,
such as MTurk [32] and Figure Eight (formerly Crowdflower) [33], which are usually based
on nonspecialized annotators that follow a very restrict and objective set of rules to define
the classes for labeling [34]. However, the annotation of biomedical data needs to be done by
experts, usually clinicians, due to the complexity of the physiological knowledge required
for annotation. In the end, both data collection and annotation represent a large investment
for institutions, due to all the issues related to protecting the large number of samples and
the human capital involved in AI-based studies [35]. Because of these large investments and
the possible opportunities that data can generate, along with legal barriers, data holders
have concerns and economic reasons for not sharing the data collections. While, on the one
hand, the sharing of such data, either by hospitals, universities, or other entities for public
interest or scientific research purposes, is legally possible under certain conditions and un-
doubtedly represents a high added value for scientific development, the access and control
exerted by companies, especially technological and pharma companies, over such databases
raises questions as to their ethical use of health data and the possibility of commercial
interests taking precedence over scientific impact and the common good [22].

4. Possible Solution Strategies

Several initiatives have emerged to help healthcare science improve its ability to
develop medical tools and overcome the limitation associated with biomedical data access;
however, so far none of them can completely overcome the limitation or represent a solution
that will solve the problem in the near future.

4.1. Transfer Learning

Recently, TL has been tried as an option to overcome this limitation; however, there is
still a lack of large and standardized clinical datasets with potential to be used for multiple
biomedical problems [36]. For instance, a dataset from a cohort of patients could be used for
several different studies and for the development of multiple AI-based solutions to predict,
detect, or assess pathophysiological phenomena, and the multiple associated biological
changes. Some studies have attempted to use ImageNet for clinical applications [37,38],
using the learning features of a neural network trained on those images; however, due to
the dissimilarity between ImageNet and the medical images, its use is limited. Despite the

111



Healthcare 2021, 9, 827

ImageNet creation and the TL approach, there still remains a need for large and standardized
clinical datasets that can be used to train models.

4.2. Blockchain

Blockchain is an extendable database capable of storing large volumes and various
types of biomedical data and is an emerging technology with significant potential in the
healthcare domain [39]. Compared to traditional databases, blockchain technology offers
many advantages for the biomedical field. Besides its decentralized architecture, the key
benefits include immutable audit trail, data provenance, availability, and scalability [40].
It has the potential to address interoperability challenges and has so far been proposed
to address several security and privacy issues in a number of different applications in
the biomedical sector [41], despite the inevitable tension with important data protection
principles and individual rights, when considering the current state of the distributed tech-
nology [42]. Although this technology is still more associated with the financial area [43],
nowadays, there are many pilot projects currently underway, such as FHIRChain [44],
Cancer Gene Trust [45], and Zenome [46]. While the implementation of the blockchain
technology in clinical routine can address critical issues related to privacy, legal compliance,
avoiding fraud, and improving patient care in cases of remote or emergency monitoring,
further production developments, detailed proof-of-concept applications, and research arti-
cles are crucial for this technology to move forward and be implemented in the biomedical
field. In fact, it must be recognized that despite the immense potential of the supporting
architecture of blockchain to transform the delivery of healthcare, medical, clinical, and life
sciences, challenges still remain, such as standards and interoperability problems, informa-
tion privacy and security concerns [40], mainly related to the protection of data flows and
data retention periods of datasets. A legal obligation established by the GDPR is to ensure
that data subjects can invoke their rights and data-protection principles are implemented
by means of appropriate technical and organizational measures.

4.3. Synthetic Data

Generative models have recently been applied to generate augmented data for biomed-
ical datasets, thus emerging as a useful tool to increase the number and variability of
available examples [47]. Synthetic data are non-reversible, artificially created data that
replicate the statistical characteristics and correlations of the original data. This new data
overcomes common sharing obstacles, allowing securely access and sharing across insti-
tutions, since distributions of real datasets are used to create the synthetic dataset that
does not contain identifiable information [48,49], which allows to protect patient privacy
while preserving data utility. To build large datasets, synthetic data can be promoted and
encouraged, for example, by publishing scientific studies in international journals with
the corresponding synthetic data instead of the original datasets. Several studies have
been devoted to evaluating synthetic data by analyzing the impact on the performance
of learning models compared to the performance obtained with real data. The results
showed a small decrease in accuracy for models trained with synthetic data compared to
models trained with real data [49]. Synthea™ (MITRE Corporation, Bedford, MA, USA) [50]
is one of the most relevant open-source synthetic patient generators due to the massive
patient cohort generated; however, the generator showed limited capabilities to model
heterogeneous health outcomes [51], and it is still in development. Generating synthetic
electronic health records is an enormous challenge because it requires large databases with
a combination of linear and nonlinear associations between all medical elements, as well
as random associations. Once again, the small databases are the main limitation for data
synthesis, restricting the quality of the estimated statistical characteristics of the original
data. Furthermore, and since the interactions and correlations are preserved by the synthetic
data, the original databases will need to ensure that high-order and complex relationships
can be captured. Another limitation is the lack of metrics to evaluate the realism of the gen-
erated data. In medical imaging, the validation from clinicians in distinguishing synthetic
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images from real ones is usually considered the ultimate test, but this evaluation may favor
models that concentrate on limited sections of the data (i.e., overfitting, memorizing, or low
diversity). Quantitative measures, although less subjective, may not directly correspond to
how humans perceive and judge generated images. These, along with other issues such as
the variety of probability criteria and the lack of perceptually meaningful image similarity
measures, have hindered the evaluation of generative models [52].

4.4. International Strategies

In order to overcome the challenges in accessing biomedical data and facilitate its
discovery and use, the set of principles proposed by Wilkison et al. [53] should be fulfilled.
These requirements are referred to as the FAIR Data Principles and declare that data should
be Findable, Accessible, Interoperable and Reusable [54]. More recently, ten principles for
data sharing and commercialization have been proposed, which will help guide healthcare
institutions to share clinical data with the aim of improving patient care and fostering
innovation [55]. The European Commission (EC) has dedicated special attention to this
problem and has adopted strategies to boost actions by the European Union (EU), mak-
ing the importance of personalized medicine a priority through a shared European data
infrastructure [56].

In fact, one of the priorities of the Commission for 2025 is the creation of a European
Health Data Space in order to promote a better exchange and access to different types of
health data, also for health research and health policy making purposes (not only primary
but also secondary use of data). Regarding the entire data system, the EC has announced
that will be built on transparent foundations and reinforce the portability of health data,
as stated in the GDPR [57]. In addition, it will propose a new data governance model
and encourage the creation of common European data spaces in crucial sectors. Fully
aware of the problem, the EC is proposing a set of measures to increase data availability
in the EU to promote the free flow of non-personal data in the Digital Single Market [58]
as part of its new data strategy and the underlying data. Indeed, the White Paper on
Artificial Intelligence is another pillar of the new digital strategy of the EC, focusing on
the need to put data subjects first in the development of technology, in line with the GDPR
goals. European GDPR has been in place since May 2018, and it represents a robust data
protection guidelines for better quality healthcare [59]. Some of the key privacy and data
protection requirements of the GDPR include consent of subjects for data processing, data
anonymization, and secure handling the data transfer across borders [59]. The GDPR
outlines a special regime for scientific research, demonstrating that research occupies a
privileged position within it. In the healthcare sector there is an ethical and scientific
imperative to share personal data for research purposes [60].

The most disruptive solution to this major challenge could be the creation of cloud-
based repositories of data abstractions (anonymized and abstracted data). The procedures
for data abstraction would be developed for each data format using data abstraction tech-
niques such as data masking, pseudonymization, generalization, data swapping, and other
techniques using Neural Networks for feature-based masking. These data abstraction
procedures would irreversibly convert patient data into anonymized features, preserving
the confidentiality and privacy required for biomedical data and thus fully complying with
GDPR and all data protection regulations. This type of platform would enable increased
reliability of AI applications in the field and provide more training data for AI systems.
The data abstractions extracted from medical data would allow the data to be integrated
for several other scientific projects as AI-based solutions to improve diagnosis, treatment,
and follow-up and contribute to a more precise and personalized medicine. These infras-
tructures should also address the issue of harmonization of data storage by designing a
standard template to define the roles of data that can be submitted in the platform. Since
the objective is to collect data from multiple centers, the infrastructure should allow for
the submission of the dataset under an objective protocol. All datasets must be checked
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after the submission, and if they meet all the requirements related to ethical issues and
data protocols, they could be added to the repository.

Data from multiple institutions are generated in numerous formats, frequently without
a specific structure and with additional semantic information. Data from multiple sources
need to be converted into a unified representation, aggregated, and integrated to extract
relevant knowledge that can be used by AI-based models to make predictions, exchange
data between different healthcare applications, and enable integration with future data [61].
Clinical annotations, medical reports, lab results, imagiological findings, and expressive
description of data using standardized procedures are key elements to maximize the
quality and applicability of the next generation of the AI-based models [62]. A common
infrastructure with common standards for the integration of multiple data sources into
one platform (data integration) is fundamental to allow data sharing [63]. Fast Healthcare
Interoperability Resources (FHIR) presents standards and technical specifications to define
how the information contained in Electronic Health Records (EHRs) should be structured
and semantically described [64]. FHIR ensures the requirements for having patient records
in an accessible and available format by providing a comprehensive framework and
related standards for the exchange, integration, sharing and retrieval of electronic health
information. Despite the extreme importance of standards-based data interoperability and
EHR integration, their implementation is not consensual [61].

4.5. Research Resource for Medical Imaging

Despite all the other technical possible options presented, real data remain indispens-
able. The Cancer Genome Atlas (TCGA) represents the most important source of data for
cancer development from thousands of individuals representing over 30 different types
of cancers and containing genomic, epigenomic, transcriptomic, and proteomic data, CT
images, histopathological images, etc. [65]. The Cancer Imaging Archive (TCIA) hosts
a large archive of medical images of cancer accessible for public download, containing
MRI, CT, digital histopathology, etc, and supporting image-related data such as patient
outcomes, treatment details, genomics, and expert analyses [66]. Database resources of
the National Center for Biotechnology Information comprise hundreds of thousands of
databases with biological and genomic information for multiple organisms [67]. Those
databases have been allowing the most important developments of AI-based solutions on
“omics” and cancer; however, the applications based on medical images still suffer from
the insufficient number of cases to use the most powerful deep learning methods. Stanford
Center for Artificial Intelligence in Medicine & Imaging announced the creation of “Medical
ImageNet”, which would be a searchable repository of annotated de-identified clinical
(radiology and pathology) images, linked to other clinical information, for use in computer
vision systems [68]. Ideally, these databases should comprise data from multiple centers
to cover the heterogeneities of the population. The development of these repositories
would be more efficient and reliable if the computer systems in clinics and hospitals had
built-in software that automatically integrated the annotations and de-identified images
into the databases.

5. Summary

A large amount of data that include population heterogeneities would allow a revolu-
tion in the healthcare field. However, current limitations on access to biomedical data are
hindering the development of powerful AI-based tools and restricting improvements in
healthcare solutions and medical science development. Recognizing that confidentiality
and privacy must be fundamental requirements, it is imperative to find a solution to this
limitation. This topic deserves special attention from the entire community working in
the biomedical engineering field and key healthcare stakeholders. A paradigm shift in the
perception of data in society and institutions, regarding its importance and risks, will create
novel solutions to share this extremely valuable resource and perhaps even shift perspectives
from patient rights to a duty as a citizen [69].
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The limitations imposed on data sharing have hindered a wide range of infectious dis-
eases researchers’ access to crucial data, even at times like the present, during the COVID-19
pandemic. However, during this pandemic situation, the urgent need allowed for exceptional
effort and cooperation to develop rapid knowledge and find solutions [70]. Establishing
protocols, regulations, methodologies, and definitions to preserve the confidentiality and
privacy of data that permit sharing will enable a faster and better scientific response to a
similar situation in the future. In fact, the COVID-19 pandemic exposed the extreme need to
cooperate, combine effort and share data and knowledge to enable scientific development at
a pace never before experienced.
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Abstract: Background: Use of telemedicine for children and adolescents with type 1 diabetes at the

beginning of the COVID-19 pandemic was investigated. Method: 68 Italian pediatric diabetes centers

were invited to complete a survey about telemedicine usage in their pediatric patients, allocated

to the no-tech group (multiple daily injections and self-monitoring blood glucose) and the tech

group (insulin pump and/or flash- or continuous-glucose monitoring). Results: 60.3% of the centers

completed the survey. In both the no-tech and tech groups, the most used ways of communication

were generic download portals, instant messaging with personal physicians’ mobiles, working emails,

and phone calls to physicians’ mobiles, with no difference, except for the use of email being higher in

the no-tech group (p = 0.03). Seventy-four percent of the centers did not have any systematization

and/or reimbursement, with significant differences among regions (p = 0.03). Conclusions: Almost

all Italian pediatric diabetes centers use telemedicine in a semi-volunteering manner, lacking proper

codification, reimbursement system, legal traceability, and accreditation system.

Keywords: telemedicine; continuous glucose monitoring; insulin pump; continuous subcutaneous

insulin infusion; pediatric diabetes

1. Introduction

Telemedicine is a term thought up in the 1970s, which literally means “healing at a dis-
tance” [1]. It involves the use of information and computer technology to improve patient
outcomes by increasing access to care and medical information. Recognizing that there is
no definitive description of telemedicine, a 2007 study revealed the existence of 104 peer-
reviewed definitions of the word [2] and the World Health Organization adopted a broad
delineation of the term: “The delivery of healthcare services, where distance is a critical
factor, by all healthcare professionals using information and communication technologies
for the exchange of valid information for diagnosis, treatment, prevention of disease and
injuries, research, evaluation, and for the continuing education of healthcare providers, all
in the interests of advancing the health of individuals and their communities” [3].
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Some think that telemedicine differs from telehealth, with the former limited to the
service provided only by physicians, and the latter including healthcare professionals in
general, such as nurses, pharmacists, and others.

Telemedicine has four key elements: (1) Its purpose is to provide clinical support;
(2) it is intended to overcome geographical barriers, connecting users who are not in the
same physical location; (3) it involves the use of various types of information and computer
technology; (4) its goal is to improve health outcomes [4].

Initially, it was intended to be used, especially in developing countries, to overcome
the distances between people and hospitals. However, during these hard times due to
COVID-19, where social distancing has become a rule in many countries, including Italy,
telemedicine could play a crucial role. In this regard, Hollander and Carr [5] in their
recently published perspective on telemedicine stated that “disasters and pandemics pose
unique challenges to health care delivery.”

Due to the COVID-19 pandemic, on 9 March 2020, Italy was placed under its first
national lockdown. A law decree issued by the Prime Minister’s Office (called #stayhome,
or #iorestoacasa in Italian) ordered people across the entire peninsula, with unprecedented
measures, to stay at home, and banned all public meetings and travel, excluding only
those for “urgent, verifiable work situations and emergencies or health reasons” [6]. This
occurrence led Italy to rediscover smart working in many contexts, including telemedicine.

However, if telemedicine already offers a way to be close to patients even from afar,
there is still insufficient evidence to support its use in glycemic control and other clinically
relevant outcomes among patients with type 1 diabetes [7]. Moreover, there is still little
information available about the use of telemedicine in pediatric diabetes, and so far, no
studies have evaluated its extension and modalities in Italy.

This survey aimed to investigate in all Italian pediatric diabetes centers at the begin-
ning of the COVID-19 pandemic: (a) The tools used to provide telemedicine services for
children and adolescents with type 1 diabetes, both in patients using or not using techno-
logical tools (e.g., insulin pumps and/or flash/continuous glucose monitoring systems);
(b) the administrative recognition for telemedicine activities; (c) the reimbursement of
telemedicine activities.

2. Materials and Methods

2.1. Participants

All of the 68 Italian pediatric diabetes centers belonging to the Italian Society for
Pediatric Endocrinology and Diabetes (ISPED) [8] were invited to complete a survey to
collect data about telemedicine usage in their patients.

2.2. Questionnaire Development and Pre-Testing

A survey tool was developed composing questions using distinct and interactive
steps [9]. The initial list included ten questions evaluated for face and content validity by
two expert pediatric diabetologists (G.T. and E.M.) who worked independently and then
agreed on the final list, providing feedback on content accuracy, wording, question order,
and survey structure. A preliminary version of the survey composed of ten questions was
self-administered and piloted in a convenient sample of six pediatric diabetologists. The
sample reported that questions were not ambiguous, the wording was straightforward,
and the self-administered experience was successful.

According to insulin treatment and blood glucose monitoring, patients were allocated
into two groups to detect any differences in telemedicine use: No-tech group for patients
using multiple daily injections and self-monitoring blood glucose, and tech group for
patients using insulin pumps and/or flash- or continuous-glucose monitoring.

2.3. Questionnaire Implementation

A self-administered questionnaire divided into two sections (A and B) was used: In
section A, the demographic variables of respondents (i.e., sex and age class) and information
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about the center (i.e., city, number of individuals with T1DM treatment, setting, and
staff) were investigated by one open-ended question (i.e., city) and five closed-ended
questions; in section B, data on telemedicine were examined by four closed-ended questions
(telemedicine ways used for the no-tech and tech groups, codification, and reimbursement
of telemedicine activities). The possible answers, which could be selected through a list of
checkboxes shown to the respondents, were decided by the study authors, then modified
and confirmed by the authors during the survey structuring phases.

2.4. Data Collection Procedure

The survey was web-based, using a commercially available survey host ( it.surveymonkey.
com, accessed on 10 March 2020). Responses were collected over three weeks, which started
on 22 March 2020 up until 12 April 2020. An email reminder was sent two weeks after the
initial contact. After ISPED permission, all subscribers of the Diabetes Study Group were
contacted by email containing the link to the survey and a brief note outlining the aim of
the study, data handling, informed consent statement, invitation to complete the survey,
and presentation of the authors. By clicking on the survey link, respondents provided
their consent to participate. Participation was voluntary, and no incentives were offered
to the participants; all questions were compulsory, although it was possible to quit the
questionnaire at any time. The participants were able to review or change their responses
using a back button before submitting their answers. Data were downloaded and stored
on an encrypted computer, and only the authors had access to the information during
all stages of the study. The participants were ensured that their identities would not be
disclosed to the investigators: All data were de-identified to maintain confidentiality and
data protection [9].

2.5. Data Analysis

The empirical analysis was based on the survey data downloaded from SurveyMon-
key into Excel spreadsheets and reviewed for accuracy and missing value. Cities were
grouped according to geographical regions (i.e., northern, central, and southern Italy).
Statistical analysis was conducted using JMP™ software (version 15.1.0, SAS Institute Inc.,
Cary, NC, USA). Data are presented as frequencies and percentages or as median and
interquartile ranges (IQRs). Mann–Whitney rank-sum and two-tailed Fisher exact tests
were performed to evaluate the relationship between variables. The Wilcoxon signed-rank
test was carried out to check the differences of paired data. A p-value < 0.05 was considered
statistically significant.

3. Results

Among the 68 centers belonging to the Italian Society for Pediatric Endocrinology and
Diabetology (ISPED), 41 (60.3%) completed the web-based survey and returned complete
data (Table 1). The average time to complete the survey was 3.5 min. In 10 centers, more
than one physician completed the survey (two in seven centers and three in three centers)
for a total of 54 people who responded to the survey (66.7% female, 45% working in public
hospitals, and 55% in academic settings). The percentage of groups divided by age was:
16.4% in the 30–39-year range, 34.6% in the 40–49-year range, 27.3% in the 50–59-years
range, and 21.7% in the over 60-year range.
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Table 1. Survey center characteristics.

Center Characteristics Percentage of Centers Number of Centers

Region

Northern Italy 43.9% 18
Central Italy 36.6% 15

Southern Italy 19.5% 8
Number of Individuals with T1DM Treated in the Center

<100 individuals 24.4% 10
100–299 individuals 46.3% 19
≥300 individuals 29.3% 12

Setting

Hospital 58.5% 24
Academic 41.5% 17

Median IQR
Staff

Pediatric diabetologist 2 (1–2)
Dedicated specialist nurse 1 (1–1)

Dedicated dietician 1 (1–2)
Dedicated psychologist 1 (0–1)

In Table 2, the different methods of using telemedicine have been summarized. The
most useful methods to communicate with the diabetes team in the no-tech group were:
Generic download portals (e.g., Tidepool, Diasend™, and Glooko™) (80%), instant mes-
saging with personal physicians’ mobiles (76%), working emails (71%), and phone calls
to physicians’ mobiles (59%). In the tech group, the ranking of the tools was as follows:
Generic download portals (88%), branded download portals (90%), instant messaging with
personal physicians’ mobiles (76%), working emails (59%), and phone calls to physicians’
mobiles (59%). There was no significant statistical difference between or within groups,
except for the use of email, which was higher in the no-tech group than in the tech group
(p = 0.03). No significant difference was observed when analyzing the data according to
country macro-region (northern, central, or southern), size of the center and hospital, or
academic setting (Table 2). Only one center declared not using any tool to communicate
with its tech group patients. All of the other centers declared using more than one method
to communicate, with a statistical difference between the no-tech group, with a median of
4 (IQR 3–5), and the tech group, with a median of 5 (IQR 4–6) (p = 0.002).

In Italy, the health sanitary system is free of charge for all citizens, while the health
interventions listed in the “International Statistical Classification of Diseases, Injuries and
Causes of Death” (ICD10) are fully or partially reimbursed, according to age, health, and
economic status. No telemedicine intervention is officially listed; however, the survey
asked if any of the telemedicine interventions have been recognized and reimbursed
locally? Most of the centers (74%) did not have any systematization for their telemedicine
interventions (Table 3).
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Table 2. Telemedicine methods used for the no-tech and tech groups according to the region, the number of patients with type 1 diabetes treated in the center, and the setting. “Others”
in no-tech group: (1) Dedicated app on a smartphone; (2) paid consultation platform; (3) Skype/Webex. “Others” in the tech group: (1) “Visitami” app/Zoom; (2) dedicated app on a
smartphone; (3) paid consultation platform; (4) Skype/Webex.

Hospital
Dedi-
cated
Portal

Generic
Data

Download
Portal

Branded
Data

Download
Portal

Working
Emails

Personal
Emails

Instant
Messag-
ing with
Hospital

Phone

Instant
Messag-
ing with
Personal

Phone

SMS to
Hospital

Phone

SMS to
Personal

Phone

Call to
Hospital

Phone

Call to
Personal

Phone

None of
the

Previous
Other

No-Tech
Group

Total 12% 80% 71% * 29% 2% 76% 10% 32% 51% 59% 0% 7%
Northern 17% 83% 83% 17% 6% 72% 22% 33% 61% 56% 11%
Central 0% 80% 67% 20% 0% 80% 0% 27% 53% 47% 7%

Southern 25% 75% 50% § 75% 0% 75% 0% 38% 25% 88% 0%
p <0.01

<100 individuals 10% 90% 60% † 30% 0% 90% 20% 20% 50% 50% 0%
100–299

individuals
5% 79% 84% 11% 5% 79% 11% 42% 58% 63% 0%

>300 individuals 25% 75% 58% 58% 0% 58% 0% 25% 42% 58% 25%
p 0.02 0.02

Hospital 4% 75% 63% ‡ 25% 4% 88% 13% 33% 46% 54% 8%
Academic 24% 88% 82% 35% 0% 59% 6% 29% 59% 65% 6%

p 0.04

Tech
Group

Total 10% 88% 90% 59% * 32% 5% 76% 7% 32% 51% 59% 2% 10%
Northern 17% 89% 94% 78% 28% 11% 72% 17% 33% 61% 56% 6% 17%
Central 0% 93% 93% 60% 13% 0% 80% 0% 27% 53% 47% 0% 7%

Southern 13% 75% 75% 13% § 75% 0% 75% 0% 38% 25% 88% 0% 0%
p <0.01 <0.01

<100 individuals 10% 90% 80% 30% † 40% 10% 90% 10% 20% 50% 50% 10% 0%
100–299

individuals
5% 84% 89% 79% 21% 5% 79% 11% 42% 58% 63% 0% 5%

>300 individuals 17% 92% 100% 50% 42% 0% 58% 0% 25% 42% 58% 0% 25%
p 0.03 0.04

Hospital 4% 83% 88% 50% ‡ 33% 8% 88% 8% 33% 46% 54% 4% 13%
Academic 18% 94% 94% 71% 29% 0% 59% 6% 29% 59% 65% 0% 6%

p 0.04
Differences
between
No-Tech
vs. Tech
Groups

p

* 0.03
§ 0.04
† 0.04
‡ 0.04

123



Healthcare 2021, 9, 815

Table 3. Codification of telemedicine activities.

Percentage of Respondents

Region
Individuals with

T1DM Treated
Practice Setting

Hospital Parameter for
Codification

Total Northern Central Southern <100 100–299 >300 Hospital Academic

Methods that should be used 9% 11% 20% 0% 20% 0% 18% 13% 12%
Content of requests from

individuals
6% 11% 7% 0% 10% 0% 12% 8% 6%

Time within which the
doctor has to reply

2% 6% 0% 0% 0% 0% 6% 0% 6%

Possibility during
working hours

7% 11% 7% 0% 0% 7% 12% 4% 12%

Not codified 74% 72% 53% 100% 80% 79% 59% 75% 65%
Other (specify):

- Specifying “telemedicine”
in the report (n = 2)

- Codified when using
hospital portal (n = 2)

- With a fee for
the individual

12% 6% 27% 0% 0% 11% 25% 8% 18%

The academic centers of central Italy, with less than 100 patients, were those with a
higher rate of uncodified service (Table 3). Most centers did not have any reimbursement for
telemedicine interventions, with significant differences among regions (100% in southern,
72% in northern, and 47% in central Italy; p = 0.03) (Table 4).

Table 4. Reimbursement of telemedicine services.

Percentage of Respondents

Region
Individuals with T1DM

Treated
Practice Setting

Hospital Parameter for
Reimbursement

Total Northern Central Southern <100 100–299 >300 Hospital Academic

Time spent answering 2% 0% 7% 0% 0% 0% 6% 0% 0%
“Exam overview” service 6% 6% 13% 0% 10% 0% 12% 0% 0%
“Diabetes visit” service 26% 28% 47% 0% 10% 29% 41% 0% 0%

None of the above 70% 72% * 47% * 100% * 80% 71% 59% 0% 0%
Other (specify):

- After duty hours
2% 0% 7% 0% 0% 7% 0% 0% 0%

* p = 0.03, Fisher’s exact test.

4. Discussion

On 20 February 2020, the so-called Italian Patient 1 was admitted to the intensive
care unit (ICU) of the local hospital due to a deteriorating clinical condition as a result of
COVID-19 infection. After a few days, most Italian hospitals, considering the growing
number of people infected by COVID-19, decided to suspend outpatient activities. This
decision was extended to all hospitals on 9 March 2020, due to the lockdown, which is
still ongoing.

For this reason, most ISPED centers have begun telemedicine activities, even if, in
many cases, these have never been officially started. Therefore, this survey was conducted,
and, to the best of the authors’ knowledge, it is the first to be conducted among the pediatric
diabetes centers in Italy and perhaps in Europe.
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Telemedicine was originally proposed to facilitate contact between people and health-
care providers in developing countries [1–3]. However, to facilitate the containment of
the epidemiological emergency due to COVID-19, telemedicine is now the only way to
provide healthcare services for the treatment of chronic diseases that do not need physical
proximity (e.g., type 1 diabetes in pediatric patients, among others).

The technological development in recent years in the type 1 diabetes field has led to
an increase in the use of technology, with the possibility of remote access to continuous
glucose monitoring systems and insulin pump data, downloaded by patients in the comfort
of their own homes. This opportunity leads to synergy, the involvement of the patients
and families, and a sharing of practices that do not require a physical presence (which also
remains fundamental in some situations) and could be implemented to save time, travel,
and expenses.

In the present survey, all centers, except one, used at least one telemedicine tool, with
an average of four methods for the no-tech group and five for the tech group patients, which
resulted significantly higher, probably due to the use of insulin pumps and continuous
glucose monitoring systems in the latter group.

The most used methods were data download portals, working emails, instant messag-
ing, or phone calls to personal mobiles with no significant differences between the no-tech
and tech groups. For the use of working emails only, the no-tech group showed a signifi-
cantly higher percentage of centers that used them compared to the tech group. The reason
could be that the tech group is more prone to using telemonitoring and connection devices
than the no-tech group. Indeed, the tech group used the branded download software to
a greater extent, which could be of help in data transfer (e.g., CareLink Personal™ and
Dexcom Clarity™).

According to the results of this survey, the application of telemedicine appears to
be commonly used by Italian pediatric diabetes centers for assisting patients in manag-
ing diabetes, as it facilitates the communication of accurate and reliable data between
patients and their healthcare providers. It also empowers patients’ attitudes and behavior
toward a healthier lifestyle, while providing them with an outlook for better glycemic
control. These telemedicine services could be categorized into synchronous (real-time),
asynchronous (whereby data are stored and forwarded subsequently), and continuous
(remote monitoring).

Nevertheless, it is a shame that only one of four centers reported organization and
reimbursement of telemedicine activities. Unfortunately, almost all pediatric diabetes
centers in Italy used telemedicine in a semi-volunteering manner because of the lack of
proper codification and a reimbursement system. Moreover, most of the methods used
(i.e., working emails, text messaging, instant messaging, and phone calls) showed a lack of
any legal traceability and are not subject to any accreditation system that might guarantee
patients, healthcare providers, and the paying subject [10].

The Italian National Guidelines on Telemedicine published in 2014 [11] state that
telemedicine “involves the secure transmission of medical information and data in the
form of texts, sounds, images or other forms necessary for the prevention, diagnosis,
treatment and subsequent monitoring of patients.” Moreover, it adds that “the use of
Information and Communication Technology tools for the treatment of health information
or the online sharing of data and health information do not in themselves constitute
telemedicine services: as an example, telemedicine does not include health information
portals, social networks, forums, newsgroups, emails or others.”

In Italy, though, these guidelines provide the regulatory framework, and the new
basic healthcare levels (what the National Health System reimburse) were approved in
2017 [12], comprising of telemedicine as an “alternative and augmentative communication
tools and software.” However, the present survey showed that telemedicine in pediatric
diabetes is still used in a semi-voluntary way, due to the lack of adequate and uniform
platforms, legally accurate traceability of most telemedicine tools, and non-recognition of
the work and “televisits” in budgetary terms.
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The ability to encrypt emails, thereby ensuring patient confidentiality, is considered
difficult when using regular email accounts and none of the respondents reported using
certified email accounts. Alternative web-based applications (such as dedicated hospital
portals) where the encryption could be implemented would be a good option for security
and direct codification, as well as subsequent reimbursement; however, to date, only 11%
of centers have had the chance to use this option in Italy.

It is believed that telemedicine must be subjected to an accreditation system that
guarantees patients, healthcare providers, and paying subjects, but this system has not yet
been implemented.

Although the Italian Health Sanitary System is free of charge (including telemedicine
services), the issue of equity problems in telemedicine (similarly to in distance learning
programs) should be kept in mind, since poorer families often do not have proper technical
devices and a reliable internet connection. Data published in May 2020 by the Italian
National Institute of Statistics (ISTAT) revealed that 12.3% of young people aged 6–17 years
did not have any personal computer or tablet at home [13].

It is vital to build awareness of these barriers regarding the development of telemedicine
and to remove financial barriers (e.g., implementing waivers to purchase essential devices
and internet access).

5. Conclusions

Almost all of the surveyed Italian pediatric diabetes centers use telemedicine in a semi-
volunteering manner, lacking proper codification, reimbursement system, legal traceability,
and accreditation system.

Therefore, the time has come, starting from an extraordinary situation, such as the
need to assist our pediatric patients during the COVID-19 pandemic, for the Italian National
Health System and our hospitals to carefully examine the advantages of telemedicine to fill
this gap [14].
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Abstract: Despite substantial progress in the adoption of health information technology (IT), re-

searchers remain uncertain as to whether IT investments benefit hospitals. This study evaluates the

effect of health information sharing on the cost of care, and whether the effect varies with context.

Our results suggest that information sharing using health IT, specifically the extent (breadth) and

level of detail (depth) of information sharing, helps to reduce the cost of care at the hospital level. The

results also show that the effects of depth of information sharing on cost savings are salient in poor

and less-concentrated regions, but not in wealthier, more-concentrated areas, whereas the the effects

of breadth of information sharing on cost savings are equivalent across wealth and concentration.

To realize the benefits of using health IT more effectively, policy makers’ strategies for encouraging

active use of health IT should be informed by market characteristics.

Keywords: health information technology; information sharing; hospital costs; poverty

ratio; concentration

1. Introduction

More than 10 years have elapsed since the passage of the Health Information Tech-
nology for Economic and Clinical Health (HITECH) act of 2009 designed to spur adoption
and promote the use of electronic health records (EHR) for the purposes of improving
quality and reducing costs [1]. Putting aside ongoing debate as to whether this policy
intervention has helped drive hospital adoption of health IT [2,3], the EHR adoption rate
has risen substantially—more than 95% of non-federal acute care hospitals reported to
possess certified health IT as of 2017 [4]. The more important question then becomes
whether the use of health IT has achieved the predicted benefits.

Research to date examining how adoption of health IT affects hospital outcomes has
produced mixed results regarding effects on quality and cost of care [5–9]. Although most
studies conclude that effects are generally positive (e.g., lower morality rates, reduced
costs, fewer complications, fewer unnecessary tests), some research suggests that health IT
implementation does not always generate desired results [5–9]. EHR adoption was found
by one study to have no effect on quality and costs [5], and by another to increase costs,
especially in non-IT-intensive locations [7].

A number of factors could account for the inconclusive results of prior research.
One is that most prior studies have focused simply on the adoption of health IT [5–9].
Since the federal government began emphasizing the prevalence of this new technology,
determinants of and barriers to adoption, including financial, technical, psychological,
social, legal, organizational, etc., have been the main subjects of the extant literature [10,11].
Although in the early stage of adoption it was difficult to collect data on use patterns,
according to the information systems literature, it is use patterns—that is, how information
is shared among stakeholders—not adoption, that determine the benefits an organization
derives from IT [12–15]. To better understand why some institutions have realized benefits
from using health IT and others have not, the present study uses data on use patterns not
employed in prior studies. Further, notwithstanding previous scholars’ emphasis on the
importance of taking into account context when examining the effect of health IT, research
examining how the impact of health IT might vary with context remains lacking [8]. The
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present work addresses the mixed findings of earlier studies by examining the effects of
health information sharing, specifically with regard to the extent (breadth) and level of
detail (depth) of information shared, and whether the effects vary with context.

Analyzing data variously obtained from the American Hospital Association’s (AHA’s)
annual and IT surveys, the Center for Medicare and Medicaid Services’ (CMS’) Hospital
Compare database, and the Census Bureau’s small-area income and poverty estimates,
we find that both breadth and depth of information sharing help to reduce the cost of
care at the hospital level. We find depth of information sharing to provide cost savings
only in poor, less-concentrated regions, not in in wealthier, more-concentrated areas, and
breadth of information sharing to yield equivalent cost savings regardless of the wealth
and concentration of regions. The results of the current study suggest that policy makers
and practitioners carefully modify their strategies for using health IT to reflect market
characteristics.

The paper is organized as follows. In Section 2, we describe our data and model, and
in Section 3 discuss our empirical tests. The results are discussed in Section 4. We present
our conclusions in Section 5.

2. Materials and Methods

2.1. Hypotheses Development

As mentioned in the Introduction, the present study aims to fill a gap in previous
research that has produced inconclusive findings [5–9]. The current study examines
actual use patterns, specifically, breadth and depth of information sharing, which thus
far have received little attention in the literature [12]. The prior literature suggests that
hospitals can realize economies of scale and achieve complementarity in operations as
information is shared with more external parties [5,6]. Information sharing among multiple
stakeholders can also reduce avoidable hospital readmissions and duplicate tests [16,17].
Sharing information at a detailed level reflects a degree of trust between hospitals and
external parties that facilitates collaboration across these organizations [12]. This leads to
the following hypothesis.

Hypothesis 1 (H1). Breadth and depth determine the degree to which information sharing decreases
hospital costs.

The current study examines differences in context that might strengthen or weaken
the effect of health IT, specifically, how its effect varies with wealth and concentration in
the areas in which the hospitals studied operate. We expect health IT to have a greater
effect in poor (high povery ratio) than in rich (low poverty ratio) areas because the need
for complementarities from other parties would be greater for those with fewer than for
those with abundant resources. Similarly, we expect health IT to have a greater effect in
competitive (low HHI) than in concentrated (high HHI) regions. A high concentration level
indicates that a market is dominated by a small number of firms. An HHI of 1 implies that
there exists only one hospital in our sample. Given only one or a few hospitals in a market,
the importance of sharing information about operations decreases, reducing the marginal
effect of information sharing. This leads to the following hypothesis.

Hypothesis 2 (H2). The effects of breadth and depth of information sharing is more salient in poor,
less concentrated than in wealthy, highly concentrated regions.

2.2. Data

We compiled data from the American Hospital Association’s annual and IT surveys
(https://www.ahadata.com/, accessed on 15 February 2021) and the Census Bureau’s
small-area income and poverty estimates (https://www.census.gov/, accessed on 1 April
2021) for 2014–2016. We also obtained data on “Medicare Spending Per Beneficiary—
National” for 2015–2017 from the Center for Medicare and Medicaid Services’ Hospital
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Compare database (https://data.cms.gov/provider-data, accessed on 1 April 2021). Note
that independent and control variables are lagged by one year. We merged the data from
the AHA surveys and CMS database using the respective identification numbers and added
the census data using county-level FIPS codes. The AHA’s annual surveys provide data
on hospital characteristics, including bed size, ownership type, teaching status, system
affiliation, physician-hospital integration, revenue models, and total facility admissions.
The IT surveys provide information on how broadly a hospital electronically shares patient
data with other stakeholders, and the level of detail of the information that is shared. The
publicly available CMS data include information on cost of care. The census data provide
county-level information on poverty ratios.

2.3. The Model

Our main dependent variable, hospital costs, from Medicare spending per beneficiary
(MSPB) at CMS Hospital Compare, is a measure of a specific hospital’s expenditure for an
episode of care compared to the national median. The measure considers not only patient
age and health status, but also geographic payment differences, enabling us to control
patient characteristics indirectly. Note that each hospital’s expenditure is divided by the
median of the national episode-weighted expenditure.

Information sharing, our main independent variable, is measured in terms of breadth
and depth of information sharing. AHA IT surveys include the question, “Which of the
following patient data does your hospital electronically exchange/share with one or more
of the provider types listed below? (check all that apply)” We used the answers to this
question to generate the variables of breadth and depth of information sharing [12]. For
the breadth variable, we summed the values of the answers to the above question, (1) for
hospitals within a system, (2) for hospitals outside a system, (3) for ambulatory providers
within a system, and (4) for ambulatory providers outside a system. This implies that the
minimum value of breadth is 0 and the maximum value is 4. For the depth variable, we
summed the values of the answers to the above question, (1) for patient demographics,
(2) for laboratory results, (3) for medication history, (4) for radiology reports, and (5) for
clinical/summary care records in any format. This implies that the minimum value of
depth is 0 and the maximum value is 5. As theorized above, we expect the coefficients of
breadth and depth of information sharing to be negative.

Among several control variables included in our model, bed size, to avoid multi-
collinearity, is measured with 8 pre-defined codes from the AHA annual survey. Bed size
ranges are (1) 6–24 beds, (2) 25–49 beds, (3) 50–99 beds, (4) 100–199 beds, (5) 200–299 beds,
(6) 300–399 beds, (7) 400–499 beds, and (8) 500 or more beds. If there exist economies of
scale, the ex ante expectation of the effect of bed size on hospital costs is negative; if there
exist diseconomies of scale, the ex ante expectation is positive. Thus, our ex ante expectation
of the effect of bed size is not predicted. For-profit ownership and government ownership
are dummy variables that show differences between for-profit and government-owned
hospitals, respectively. When both dummies are equal to zero, a voluntary nonprofit
hospital is implied. We expect the for-profit hospital dummy to be positive, for-profit
hospitals being likely to offer more profitable services, usually accompanied by expensive
equipment and supplies [18]. We expect the government hospital dummy to be negative,
with government-run hospitals being supported by limited funds and typically offering
unprofitable services [18]. Teaching hospital is a binary variable that takes the value of
1 if the hospital is a member of the Council of Teaching Hospitals (COTH) or Association
of American Medical Colleges, and 0 otherwise. We expect teaching hospital to have a
negative effect on hospital costs. Contrary to the general perception that teaching hos-
pitals are more expensive than non-teaching hospitals, it has recently been found that
despite higher initial hospitalization costs, lower costs of follow-up and fewer readmis-
sions result in overall lower total costs [19]. We also control for system affiliation and
physician-hospital integration. System affiliation is a dummy variable that takes the value
of 1 if a hospital is part of a system, and 0 otherwise. As with bed size, the sign of which
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depends on the existence of (dis)economies of scale, the ex ante expectation is not predicted.
Physician–hospital integration is a binary variable that takes the value of 1 if a hospital
has an arrangement (among many other arrangements) whereby physicians are employed
by the hospital under an integrated salary model, and 0 otherwise. Emphasizing the
integration costs that arise from changes in the behavior of physicians whose employment
status changes [20], we expect the effect of physician–hospital integration on hospital costs
to be positive. Capitation revenue ratio is the % of a hospital’s net revenue paid on a fixed
amount per patient for delivery of healthcare services. We expect the capitation revenue
ratio to have a negative effect on hospital costs, as providers with a capitated contract are
encouraged to avoid unnecessary tests and procedures in order that overall costs do not
exceed the fixed amount.

For market characteristics, we included as controls the poverty ratio and Herfindahl–
Hirschman index (HHI). The poverty ratio is the number of people whose income falls
below the poverty line divided by the total population at a county-level variable. We expect
the effect of poverty ratio to be negative, people in wealthy areas being more likely to be
able to afford expensive treatments. The Herfindahl–Hirschman index (HHI) is calculated
based on total facility admissions. The lower the Herfindahl index, the more competitive
the market. The ex ante expectation of the effect of the Herfindahl index is not predicted
for the following reasons. On the one hand, hospitals in highly competitive environments
are under greater pressure to strive for efficiency, thereby reducing costs. On the other
hand, competition can increase costs as health insurance renders patients insensitive to
prices, encouraging hospitals to provide unnecessary services [21].

Hosptial Costsit+1 = α + β1 In f ormation Sharingit

+β2Bed Sizeit + β3For − pro f itit + β4Governmentit

+β5Teachingit + β6System A f f iliationit

+β7Physician − Hospital Integrationit

+β8Capitation Revenue Ratioit + β9Poverty Ratioit

+β10HHIit + Yeart+ ∈it

3. Results

Table 1, which presents descriptive statistics for 5291 hospitals, shows the minimum
hospital cost for an episode of care compared to the national median to be 0.61 and the
maximum to be 1.62. In our sample, 17% are for-profit, 15% are government, and 68% are
non-profit hospitals.

Table 1. Descriptive statistics.

Variable Mean SD Min Max

Hospital costs 0.985 0.074 0.610 1.620
Breadth 3.235 1.138 0 4
Depth 4.709 0.998 0 5

Bed size 4.613 1.845 1 8
For-profit 0.173 0.379 0 1

Government 0.154 0.361 0 1
Teaching 0.096 0.295 0 1

System affiliation 0.710 0.454 0 1
Physician–hospital integration 0.413 0.492 0 1

Capitation revenue ratio 0.450 0.498 0 1
Poverty ratio 15.375 5.409 3.400 46.800

HHI 0.592 0.355 0.027 1.000

Table 2 shows the main results of our OLS regression analyses regarding the effect
of breadth (column (1)) and depth (column (2)) of information sharing. As predicted, the
coefficients of information sharing are negative and significant for both breadth and depth,
supporting H1. The coefficients of for-profit ownership, teaching hospital, and capitation
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revenue ratio are consistent with our stated ex ante expectations, and thus not discussed
further. The coefficient of bed size is positive and statistically significant, supporting the
existence of diseconomies of scale. The coefficients of government ownership, system
affiliation, and poverty ratio are statistically insignificant, which suggests that they do
not affect hospital costs. The coefficient of physician–hospital integration is negative and
statistically significant, opposite to our prediction. This result is consistent with transaction
cost economics that suggest that opportunistic behavior by physicians can be controlled
well within a hierarchy [22]. The coefficient of the Herfindahl index is negative and
statistically significant, suggesting that competition can increase overall hospital costs.

Table 2. The impact of health information sharing on spending.

DV: Hospital Costs (1) DV: Hospital Costs (2)

Breadth −0.003 ** Depth −0.004 **
[0.001] [0.002]

Bed Size 0.010 *** Bed Size 0.010 ***
[0.001] [0.001]

For-profit 0.036 *** For−profit 0.037 ***
[0.004] [0.004]

Government 0.002 Government 0.003
[0.005] [0.005]

Teaching −0.013 *** Teaching −0.013 ***
[0.004] [0.004]

System Affiliation −0.000 System Affiliation −0.001
[0.003] [0.003]

Physician-hospital Integration −0.008 ***
Physician−hospital

Integration
−0.009 ***

[0.003] [0.003]
Capitation Revenue Ratio −0.018 *** Capitation Revenue Ratio −0.018 ***

[0.002] [0.002]
Poverty Ratio −0.000 Poverty Ratio −0.000

[0.000] [0.000]
HHI −0.048 *** HHI −0.048 ***

[0.004] [0.004]
Constant 0.984 *** Constant 0.991 ***

[0.009] [0.011]
Observations 5291 Observations 5291

R-squared 0.180 R-squared 0.180

Standard errors (in brackets) are clustered at the hospital level; *** p < 0.01, ** p < 0.05.

Noting that market characteristics, the poverty ratio, and the concentration ratio are
more or less deterministic from the perspective of policy makers and hospital adminis-
trators, we conducted sub-sample analyses to examine whether the effect of breadth and
depth of information sharing varies across the variables: county-level poverty ratio and
Herfindahl index.

In columns (1) and (2), we divide our sample into wealthy (i.e., low poverty ratio)
and poor (i.e., high poverty ratio) regions by median poverty ratio. Results are reported
in Table 3. Estimated coefficients of the control variables are the same for the sub-sample
(Table 3) as for the full sample (Table 2) analysis. Interestingly, our results suggest that depth
of information sharing reduces hospital costs only in poor (i.e., high poverty ratio) areas,
as shown in column (4). The effect of depth of information sharing becomes statistically
insignificant in relatively wealthy (i.e., low poverty ratio) regions, as shown in column
(3). A Wald’s test confirmed that the difference in the depth coefficients across the low
and high poverty ratio groups (as shown in columns (3) and (4)) is statistically significant
(p-value < 0.1), supporting H2. Breadth of information sharing yields cost savings in both
poor and wealthy areas, as shown in columns (1) and (2), not supporting H2. Overall, our
results partially support H2.
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Table 3. The impact of health information sharing on spending by poverty ratio.

DV: Hospital
Costs

(1) (2) DV: Hospital
Costs

(3) (4)
Low

Poverty
Ratio

High
Poverty

Ratio

Low
Poverty

Ratio

High
Poverty

Ratio

Breadth −0.003 ** −0.004 *** Depth 0.000 −0.005 ***
[0.001] [0.001] [0.002] [0.001]

Bed Size 0.013 *** 0.012 *** Bed Size 0.000 *** 0.000 ***
[0.001] [0.001] [0.000] [0.000]

For-profit 0.042 *** 0.038 *** For−profit 0.040 *** 0.035 ***
[0.004] [0.004] [0.004] [0.004]

Government −0.011 *** 0.002 Government −0.011 *** −0.001
[0.004] [0.004] [0.004] [0.004]

Teaching −0.005 −0.009 ** Teaching −0.007 −0.004
[0.005] [0.005] [0.006] [0.005]

System Affiliation 0.003 0.006 * System Affiliation 0.003 0.009 ***
[0.003] [0.003] [0.003] [0.003]

Physician-hospital
Integration

−0.010 *** −0.013 ***
Physician−hospital

Integration
−0.010 *** −0.013 ***

[0.003] [0.003] [0.003] [0.003]
Capitation

Revenue Ratio
−0.014 *** −0.015 ***

Capitation
Revenue Ratio

−0.013 *** −0.013 ***

[0.003] [0.003] [0.003] [0.003]
Constant 0.934 *** 0.939 *** Constant 0.961 *** 0.990 ***

[0.006] [0.006] [0.008] [0.007]
Observations 2692 2599 Observations 2692 2599

R-squared 0.140 0.135 R-squared 0.110 0.101

Standard errors (in brackets) are clustered at the hospital level; *** p < 0.01, ** p < 0.05, * p < 0.1.

We conduct an additional sub-sample analysis by dividing our full sample into more
competitive (low HHI) and more concentrated (high HHI) regions by median HHI. The
estimated coefficients of the control variables are the same in the sub-sample (Table 4) as in
the full sample (Table 2) analysis. Our results suggest that depth of information sharing
that reduces cost of care in the full sample analysis does not decrease hospital costs in
concentrated areas, as shown in column (4). The coefficient of depth of information sharing
is, however, negative and statistically significant in column (3), which suggests that it does
decrease hospital costs in competitive regions. A Wald’s test confirmed that the difference
in the depth coefficients across the low and high HHI groups is statistically significant
(p-value < 0.1), supporting H2. Breadth of information sharing consistently decreases
hospital costs regardless of concentration ratio, not supporting H2. Overall, the results
from Table 4 partially support H2.

Overall, our results suggest that policy makers should consider modifying their
strategies for using health IT to account for the finding that benefits are contingent on
market characteristics. In countries still in an early stage of health IT investment or with
limited resources, poor and competitive regions in which the benefits of health IT can be
maximized should be the initial targets of implementation strategy. In countries that have
already achieved nationwide adoption of EHR (e.g., the United States), the focus should be
on increasing the breadth of information sharing. Policy makers should provide guidelines
for increasing the level of detail of information sharing that reflect a consideration of
market characteristics.
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Table 4. The impact of health information sharing on spending by HHI.

DV: Hospital
Costs

(1) (2) DV: Hospital
Costs

(3) (4)
Low HHI High HHI Low HHI High HHI

Breadth −0.003 ** −0.004 *** Depth −0.006 *** −0.001
[0.001] [0.001] [0.001] [0.001]

Bed Size 0.009 *** 0.012 *** Bed Size 0.009 *** 0.012 ***
[0.001] [0.001] [0.001] [0.001]

For-profit 0.039 *** 0.035 *** For−profit 0.038 *** 0.037 ***
[0.004] [0.004] [0.004] [0.004]

Government −0.004 0.003 Government −0.004 0.004
[0.005] [0.003] [0.004] [0.003]

Teaching −0.010 ** −0.003 Teaching −0.011 *** −0.004
[0.004] [0.007] [0.004] [0.007]

System Affiliation 0.004 −0.001 System Affiliation 0.004 −0.002
[0.003] [0.003] [0.003] [0.003]

Physician-hospital
Integration

−0.012 *** −0.008 ***
Physician−hospital

Integration
−0.012 *** −0.008 ***

[0.003] [0.003] [0.003] [0.003]
Capitation

Revenue Ratio
−0.018 *** −0.015 ***

Capitation
Revenue Ratio

−0.017 *** −0.015 ***

[0.003] [0.003] [0.003] [0.003]
Constant 0.967 *** 0.929 *** Constant 0.986 *** 0.925 ***

[0.006] [0.006] [0.008] [0.007]

Observations 2659 2632 Observations 2659 2632
R-squared 0.096 0.115 R-squared 0.101 0.112

Standard errors (in brackets) are clustered at the hospital level; *** p < 0.01, ** p < 0.05.

4. Discussion

Despite widespread adoption of EHR systems, not all hospitals seem to benefit from
health IT, as evidenced by inconclusive findings regarding its effect [5–9]. Believing
the mixed results to be a consequence of an emphasis on adoption and inattention to
specific configuration strategies in information sharing, we examine how breadth and
depth of information sharing affect hospital costs. There being few studies of how the
effects of health IT vary with context [8], we seek to resolve the inconsistency of previous
results by specifically examining different contexts (poor vs. wealthy, less concentrated
and highly concentrated regions) that may intensify or weaken the effect of health IT.
Our finding that depth of information sharing decreases costs in poor and competitive
regions, but not in rich and concentrated regions, and that breadth of information sharing
decreases overall hospital costs, has implications for both research and practice. Our study
enhances the research community’s understanding of why some hospitals are successful
and others unsuccessful in realizing the benefits of health IT. In the area of practice, our
study provides guidance for government in promoting active use of health IT. Our findings
regarding positive effects of breadth and depth of information sharing can usefully inform
administrators’ and providers’ monitoring of how adopted IT systems are used. For
countries with high health IT adoption to derive greater benefit from using health IT, more
incentives should be given to hospitals located in poor and competitive regions. Our
findings also have implications for countries that have not yet invested in EHR systems or
lack the necessary resources to implement IT systems nationwide. Governments of such
countries might purposefully focus on poor or competitive regions in order to maximize
the effect of the limited resources they possess, these being the areas that exhibit consistent
cost savings when hospitals share information either broadly or in considerable detail.

The present study’s limitations present opportunities for future research. For example,
we do not have information about precise reductions in duplicate tests or treatment that
can result from active information sharing among stakeholders. A future study could
examine the number of CT scans or medication changes when patients receive a sum-
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mary of care record electronically during the process of transitioning to another care
setting. Future research could also examine the role specific information (e.g., patient de-
mographics/laboratory results/medication history/radiology reports/clinical/summary
care records) plays in reducing tests or treatment. Similarly, whereas our study consid-
ers two types of information sharing, breadth and depth, and two contexts that vary by
poverty and concentration ratio, a future study might examine other types of information
sharing (e.g., volume, diversity) [23] or other contexts, such as patient mix (e.g., Medicare
or Medicaid share), race, specific IT vendors, etc.

5. Conclusions

The present research shows an understanding of health information sharing beyond
mere adoption of EHR systems to be important to the realization of the benefits of health
IT. The study further suggests a significant opportunity to effectively lower healthcare
costs by targeting specific areas in which the effect of health IT is maximized. The results
of our study can usefully guide efforts to strategically support and tailor policy to enable
hospitals to achieve the overarching goal of reducing escalating healthcare costs.
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Abstract: Healthcare Artificial Intelligence (AI) has the greatest opportunity for development. Since

healthcare and technology are two of Taiwan’s most competitive industries, the development of

healthcare AI is an excellent chance for Taiwan to improve its health-related services. From the

perspective of economic development, promoting healthcare AI must be a top priority. However,

despite having many breakthroughs in research and pilot projects, healthcare AI is still considered rare

and is broadly used in the healthcare setting. Based on a medical center in Taiwan that has introduced

a variety of healthcare AI into practice, this study discussed and analyzed the issues and concerns

in the development and scaling of medical AIs from the perspective of various stakeholders in the

healthcare setting, including the government, healthcare institutions, users (healthcare workers),

and AI providers. The present study also identified critical influential factors for the deployment

and scaling of healthcare AI. It is hoped that this paper can serve as an important reference for the

advancement of healthcare AI not only in Taiwan but also in other countries.

Keywords: artificial intelligence; healthcare AI; deployment and scaling; medical center; critical

factors; stakeholders

1. Introduction

AI has been given a lot of attention worldwide due to its continued significant scientific
and technological advancements. People from all walks of life have gained tremendous
interest in AI-related technologies resulting in the development of several amazing AI-
related products. For example, the manufacturing industry is now utilizing intelligent
solutions through AI in many of its areas, such as defect identification on the production
line, automatic process control, predictive maintenance, and raw mix optimization (e.g., [1]).
Some industries are using AI for the development of unmanned factories. AI-related
research has grown substantially in the past 10 years [2], but most of them only reported
the quality of prediction models (such as accuracy, sensitivity, specificity, and Area Under
Curve (AUC) values), which makes it difficult to judge their practical feasibility. In terms of
the use of AI in healthcare, there is still much space for enhancement, which could overturn
the ecology of traditional healthcare. According to Gartner’s report [3], 54% of data science
projects in most organizations were never deployed or only partially deployed in practice.
Indeed, different from other industries, the healthcare industry is strictly limited and
restricted by many laws and regulations. Therefore, the experience of using AI in general
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industries cannot be directly applied to the healthcare industry (an unmanned hospital is
obviously impossible).

Two of Taiwan’s most competitive industries are healthcare and technology. The
development of healthcare AI is an excellent opportunity for Taiwan since it is becoming
increasingly popular and could potentially help a lot of people. Therefore, from the
perspective of economic development, it is urgent to promote healthcare AI. Two of the
four AI Research Centers established in 2018 by the Ministry of Science and Technology in
Taiwan are connected with the healthcare industry (one is located at the National Taiwan
University and the other at the National Cheng Kung University). The establishment
of these centers allows the Taiwanese government to improve the overall quality of the
nation’s healthcare through AI. The development of healthcare AI also aims to lower the
total medical expenditures at a national level. Moreover, as the positive benefits of AI are
gradually being recognized and emphasized by healthcare institutions, relevant specialized
units have sprung up (e.g., Big data center and AI center) to perform more research and
development. Healthcare AI is considered as one of the industries where AI has the
most opportunities for development [4,5]. Therefore, many technological manufacturers
and start-ups invest heavily in innovative development, hoping to gain an advantage
and to initiate the trend in healthcare AI. However, it is important to determine how the
biggest consumers of healthcare AI, namely the hospitals and healthcare workers, will
react towards such a trend. Whether the hospital obtained AI by developing it or through
external purchase, it would require a vast amount of time, special manpower, including
AI engineers, and financial resources for building basic infrastructures (GPU servers, data
warehouse, and development platform), purchasing various AI products, and storing and
transforming big-data. Therefore, calculating the obtainable investment efficiency is the
most fundamental and significant concern for hospitals in AI evaluation and development.

The healthcare industry can simplify the calculation of investment efficiency of AI
by measuring the income increase, cost reduction, and quality improvement. After this,
they could assess the working efficiency improvement, working pressure reduction, and
patient satisfaction improvement. In Taiwan, hospital income mainly comes from the
national health insurance (NHI) payment under the global budget payment system, which
is not directly correlated to the type of equipment and devices used in hospitals (AI could
be viewed as a kind of equipment). This means that the introduction of AI in hospitals
may not directly generate new sources of income. Additionally, many scholars pointed
out that AI performs better than other medical professionals, such as in medical image
interpretation (e.g., [6]). Furthermore, many have begun to question whether healthcare
workers could be replaced by AI (e.g., [7]). As a response, the government proposed clear
regulations to stipulate how the number of healthcare workers should match with the
hospital scale. Hence, it may be impractical to say that AI could reduce the volume of
healthcare workers in the short term. Additionally, there may be limitations in using AI to
reduce the deployment of equipment and devices, and the acceptance of AI by healthcare
workers also deserves attention. Since hospitals tend to be busy, many healthcare workers
believe that using AI will only consume their time and attention, which they could use in
attending to patients instead. Moreover, they believe that they can accurately evaluate some
disease outcome changes even without AI; thus, it is safe to assume that some healthcare
workers lack the willingness to use AI.

The authors of this paper are affiliated with Chi Mei Hospital, a hospital with three
branches in Taiwan. In August 2019, Chi Mei Hospital established the AI Center in its
general faculty as the base for developing healthcare AI. Relying on big data accumulated
over ten years, the hospital has focused on developing AI-smart clinical outcome prediction.
As of March 2021, it has self-developed 15 kinds of AI systems, which are then coordinated
with the existing Hospital Information System (HIS) to help healthcare workers in their
clinical decision. So far, all of the hospital’s branches have installed the AI systems in
several departments, including the Emergency, Surgery, Anesthesiology, Intensive Care
Unit, and Nursing departments. In addition, as the AI Center is gradually developing
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and improving the AI systems, it was able to study and observe the use of AI in the
healthcare setting and publish them in international journals [8,9]. Based on the experience
of Chi Mei Hospital in the implementation of its AI systems, this paper reported the
current situation and the challenges being faced by healthcare AI from the perspectives of
the government, hospitals, users, and manufacturers. It also determined the key factors
affecting the deployment of healthcare AI.

2. Development of AI in Chi Mei Hospital

2.1. AI Computing Infrastructure

Supported by the Board of directors and the Superintendent, Chi Mei Medical Center
built the Center for Big Medical Data and AI Computing (hereinafter referred to as AI
center) in May 2019. As the base for developing AI in the three branches of the hospital,
this center has two main tasks: (1) to establish Big Medical Data (data warehouse) and (2) to
develop AI applications. It is hoped that AI will not only be used for academic research
but is also expected to produce practical applications for clinical use. The Big Medical
Data acts as a retrospective data source for AI development and healthcare researches, and
its main source is the online database of HIS. Since the structure of the data warehouse
and HIS database are very different from each other, it makes this project enormous and
complicated. Therefore, the AI Center usually develops and establishes the topic-specific
big database with the most researchers first. To do this, the Department of Information
Systems (IS) in hospitals is tasked to help in transferring the needed data from the HIS
database. Figure 1 shows the AI Computing Infrastructure of Chi Mei Hospital.

 
 

 
 

 

Figure 1. AI Computing Infrastructure of Chi Mei Hospital.

* HIS: Hospital Information System; AI: Artificial Intelligence.

Based on the Service-oriented Architecture (SOA), the IS department designed three
types of web service program (WS) that interacts with HIS to process the AI prediction
(Figure 2). These are as follows:

i. HIS interface WS (HWS)
The HWS receives calls from the existing (HIS) and sends the prediction result (e.g.,
risk probability) back to the HIS.

ii. Feature extraction WS (FWS)
The FWS receives calls from HWS, retrieves the patient’s characteristic values (such
as age, blood pressure, lab data, etc.), and sends them back to HWS. This may include
the use of IoT technology to retrieve physiological information at the bedside.

iii. AI prediction WS (AWS)
The AWS receives calls from HWS, enters the acquired feature values of the patient,
performs the AI prediction, and returns the result to HWS.
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Six sending/receiving messages are completed while a prediction is triggered by users
(healthcare workers). They contain only short messages and only cause minor impacts on
the online HIS. So far, 15 healthcare AI predictions (15 AI WSs) are being used on the AI
Web Services server (see Figure 1), which is routinely monitored by IS engineers. Because
AI is positioned as an assistance role, system failure has little effect on the overall clinical
operation.

clinical operation. 

Figure 2. AI Web Service Interaction.

* HIS: Hospital Information System; AI: Artificial Intelligence

2.2. Promotion Strategy

To demonstrate its commitment to developing AI, Chi Mei Hospital has subsidized the
training of hundreds of healthcare workers in AI practice. Each training lasts for 4 weeks
to 4 months, depending on the complexity of the AI. Moreover, the AI Center has assigned
different personnel to give mini-lectures on how to develop AI and create specialized
individual roles, evoking wide repercussions among healthcare workers. Because of this,
the hospital’s workers no longer feel that AI is inaccessible, allowing them to propose
various ideas proactively. To determine the plausibility of the staff’s ideas, inter-disciplinary
meetings with healthcare workers, AI analysts, and IT engineers as participants are being
held. The approved ideas are then constructed as AI projects and finally implemented
and used in practice. Since the establishment of the AI Center, the emergency department
(ED) was the first department to join the AI development and has completed a variety
of disease outcome prediction systems (e.g., older patients with influenza, patients with
chest pain). Due to the success of the AI systems implementation in the ED, the AI center
revised the systems depending on the needs of the other departments and promoted their
use (e.g., outcome prediction of burns for surgical treatment, anesthesia risk assessment,
mortality prediction and timing prediction for weaning mechanical ventilation in ICU, and
fall detection in elderly wards). Figure 3 shows a screenshot of the outcome prediction
system in ED patients with chest pain [8]. The system has been integrated with the existing
emergency computerized order entry system. Until 30 April 2021, a total of 50 AI projects
have been proposed mainly focusing on physicians’ clinical requirements; 15 of which
have been deployed in the clinical practice (integrated into the existing HIS); 25 are still
being completed; 10 have been completed but have not yet been implemented. Among the
10 completed projects, five have not yet been used because the physicians considered their
model quality not good enough for clinical use (model AUC < 0.7) and need improvement,
while the other five projects are scheduled for further development but are under slow
progress due to heavy workload in the IS department.
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Figure 3. A Screenshot of a Deployed AI System.

* AMI: Acute Myocardial Infarction

Because of previous promotions, the heads of each hospital department are aware
of the benefits of AI in healthcare; thus, each gives enough time to discuss AI issues and
solve them based on consensus through regular department meetings. Moreover, each
department designates specific groups that target specific clinical demands to create AI
projects to be submitted to the AI Center. After confirmation and revision, the department
can apply the proposed project into practice. In this way, departments are able to carry out
subsequent launches of AI systems smoothly and reduce resistance from other healthcare
workers. To promote AI, Chi Mei considers it as an assistive tool rather than a substitute
for humans’ skills and intellect. The hospital also believes that healthcare workers have the
right to choose whether they will or will not use AI and shall not suffer any punishment
or salary deduction for not using it. Various departments welcomed such policies, which
brought out more projects for practical application.

Whether preparing big data or integrating models with HIS, the support of the infor-
mation department is very much critical. However, the daily workload of the IS department
is quite heavy, and understandably, it cannot provide much support on AI development.
Therefore, Chi Mei has allotted a data-processing fee in the budget of the in-hospital projects
of AI Development every year to encourage IS engineers to support AI development in
their free time (off-work time), which has been a feasible and effective approach.

2.3. Emerging Benefits of AI Adoption

AI benefit evaluation is critical but not easy to measure. However, the benefits of Chi
Mei’s deployment and scaling of AI have gradually emerged. For example, on the basis of
no significant differences in gender, age, and disease severity among patients, the periods
before and after adopting AI timing prediction for weaning mechanical ventilation in ICU
(2019/7–11 vs. 2020/7–11) were compared. It was found that the average time of using a
ventilator was reduced by about 22 h while having the same medical quality. This proves
that not all the benefits of using AI applications are obvious and may not be recognized in
a single AI factor. Therefore, it requires continuous in-depth observation and evaluation.

3. Viewpoint of Stakeholders

The most fundamental consideration for every transaction is the cost-benefit, even
for the purchase of information communication technology (ICT) devices. Therefore, the
first step to promote healthcare AI is to have careful considerations of the benefits that
consumers could obtain by adopting it. These consumers are the most important stake-
holders in the development of AI, comprising of the government, healthcare institutions
(hospitals), end-users (healthcare workers), and AI providers. Based on the hospital’s
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experience, literature review, and actual observations, this study discussed the viewpoint
of AI stakeholders.

3.1. The Government

Using smart technologies to improve healthcare quality has long been one of the gov-
ernment’s scientific and technological policies. In the National Healthcare Quality Award
(NHQA), an annual competition held by the Joint Commission of Taiwan for hospital
accreditation, smart healthcare is always an item of focus. Every year nearly 200 groups
attend this competition, and most are from hospitals. Moreover, the truth is, the overall
healthcare spending and healthcare insurance expenditure has become increasingly un-
balanced. Since technologies could improve public health by both early prevention and
intermediary and tertiary care, hospitals could apply AI to different healthcare services on
the premise of accurate trend prediction and risk of individual disease outcome change.
Thus, through AI, the government could reduce the previously undifferentiated healthcare
policies (e.g., nationwide disease screening) and further control the overall healthcare
expenditure with guaranteed healthcare quality. After all, national health insurance and
healthcare occupy large proportions of the national budget. If AI technologies could ac-
curately predict the public healthcare trend and the epidemiological pattern of diseases
and help hospitals plan corresponding strategies with precision, it may create concrete
benefits by promoting the government’s healthcare and welfare policies. Additionally, from
the perspective of detail-oriented healthcare resource management, AI could help avoid
healthcare wastes (such as lower examination and medication), meeting the expectations
of the government towards smart technology. Therefore, in the short term, the government
should be committed to formulating and revising regulations, such as insurance reimburse-
ment policy or specific subsidy programs, to encourage the development and adoption of
AI in healthcare institutions.

Another important role of the government is as an industrial promoter. The Taiwan
government may pledge AI funding schemes, such as the strategies used in the US and
Germany [10,11], for promoting joint efforts in creating breakthroughs in AI. As Taiwan
embraces complete big data in national health insurance, it is essential for the govern-
ment to formulate regulations of data governance [12] and release authorization for the
development of the AI industry.

3.2. Healthcare Institutions

Different from other industries, healthcare institutions (e.g., hospitals) are under the
strict supervision of various policies and rules regarding their environment, workforce,
and medical device deployment. For instance, in Taiwan, the Establishment Standards for
Medical Institutions has stipulated the human resource arrangement in hospitals providing
minimum requirements on the type and the number of medical professionals in a hospital
(to be more specific, a minimum of two physicians for every 10 beds; a minimum of two
nurses for every three beds for hospitals over 50 beds; a minimum of one pharmacist for
every 40 beds; a minimum of three clinical laboratory technologist for every 50 beds; a
minimum of two radiologists for every 35 beds). Even though the introduction of AI into
healthcare institutions may bring out promising benefits (e.g., the AI-assisted medical
image interpretation), it cannot significantly reduce the actual cost of manpower due to the
restrictions of laws and regulations. In fact, the scope of payment under the NHI system is
based on the total amount and the Diagnosis Related Groups (DRG), aside from calculating
the relative declarations of each healthcare institution and reasonable load for outpatient
services in recent years (referring to the Standard Reimbursements for Medical Services
and Treatment for the National Health Insurance in Taiwan). As a result, hospitals can
barely accumulate surpluses from the NHI system, and some treatments may even operate
at a loss, which AI’s introduction cannot simply change.

Compared with the control of manpower allocation, the government has relatively no
explicit regulations on medical equipment. However, the “arms race” is used as a major
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promotion topic for the healthcare industry, at least in Taiwan. As can be seen from the
popularity of the costly “da Vinci Surgical System” in large hospitals in Taiwan, those
hospitals are not reserved in investing in medical equipment. The added value of AI in
medical equipment (e.g., the ventilator may be equipped with AI patient risk prediction)
could increase the attractiveness of the equipment. AI providers have proposed many
innovative diagnostic methods, but hospitals need to confirm first whether these could
replace the original ones, especially in terms of practical use. For example, AI could help
identify the risk of Obstructive Sleep Apnea Syndrome (OSAS) based on patients’ neck
CT scans. However, healthcare professionals need to rigorously determine if they could
use AI as a reference for diagnosis (traditional diagnosis of OSAS includes nocturnal
polysomnography).

The manufacturing industry can establish unmanned factories thanks to smart tech-
nologies, but hospitals are different; they cannot run without medical professionals. After
the introduction of smart technologies, the manufacturing industry can easily calculate
quantitative benefits by measuring production increase, manpower reduction, and yield
(healthcare quality) improvement. However, it is difficult for hospitals to reflect the same
quantitative benefits because there is lesser variation in production capacity (e.g., the out-
patient visit is regulated by Reasonable Load for Outpatient Services Policy), manpower
(the healthcare staffing quota is limited by the Establishment Standards for Medical Insti-
tutions), and yield (the healthcare quality is in line with hospital accreditation standard).
Hence, hospital operators are suspicious about the necessity to invest huge capital in AI
development. At present, most hospitals initially use AI for education and research and
not for clinical purposes because they believe that AI can be helpful in academic research
(research publication is required in teaching hospitals). As for the clinical benefits of AI,
hospitals need more time to observe and assess the results.

Other organizational and managerial challenges such as organizational resistance
to data sharing and lack of strategy for AI development were pointed out in previous
research [13], which could also appear in healthcare institutions and need to be overcome
as well.

3.3. End Users (Healthcare Workers)

Based on the user-centered perspectives, understanding the clinical needs of healthcare
workers and the difficulties they face in clinical decision-making is the basic principle for
the development of healthcare AI. The “coolness” of technology should not be given too
much attention as it may generate unnecessary AI, which could neglect the real purpose of
AI development, that is, to improve clinical practice.

Furthermore, the cultivation of healthcare workers requires rigorous education and
high cost. If technology such as AI could partly replace manpower, it would be called
an epoch-making healthcare revolution. However, medical education based on evidence
usually emphasizes the accumulation of clinical experience and related skills aside from
formal school education. Moreover, practical training is highly significant in medical
professionals’ practice; this is why many professional units hold regular discussions for
clinical cases. In addition, the Objective Structured Clinical Examination (OSCE) provides
strict testing of professional skills for healthcare workers. If healthcare professionals rely
too much on AI’s assistance, they may not develop appropriate professional skills and
experience. Therefore, although Chi Mei has introduced AI medical image interpretation,
they have discouraged (and even prohibited) medical interns or resident physicians from
using it. Nevertheless, the influential factors for medical decisions may be too many;
using AI as a tool to assist decision-making and provide an additional layer of gatekeepers
may reduce the chance of negligence or even misjudgment, and AI will have its value.
However, there is no denying that in the long run, healthcare workers may worry about
being replaced by AI, and this still requires careful attention [13].

The black-box problem of AI is another major reason that affects healthcare workers’
acceptance of AI. Even though AI is highly accurate, healthcare workers cannot completely
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trust its suggestions if the reference or logic is unclear. After all, life is above all, and
healthcare workers would be to blame if anything untoward happens. Hence, it is very
important to guarantee and improve healthcare AI’s explainability [14,15].

Since hospitals are always busy and healthcare workers are under great pressure,
hospital management should introduce AI gradually without increasing the complexity
of the care process. To achieve this goal, the AI functions should be integrated seamlessly
with the existing HIS or operate automatically as much as possible (while retaining the
final decision to the workers) with utmost convenience. Finally, instead of forcing health-
care workers to follow, they should have the right to choose whether they will use AI’s
suggestions. As long as the AI can perform well consistently in a long time, healthcare
workers would gradually accept and routinely use it.

3.4. AI Providers

“To create an AI physician” is the most dreamlike goal of AI development in health
care. Many technology providers such as IBM, Google, Microsoft, and other start-ups have
all invested in healthcare AI, creating highly innovative products. However, as the profits
seem to be unapparent, many AI providers keep losing money, which prompted them
to reduce their investment. The sharp cut-down of personnel in the IBM Watson Health
Department is an obvious example [16]. As mentioned previously, the medical industry
is very different from other industries, and its development and operation are subject to
many strict regulations. It may be far from reality to replace healthcare workers with AI.
In other words, the development of healthcare AI shall not follow the same way as that
of general industries. According to surveys, even though AI and real physicians have the
same diagnostic quality, the public would still prefer real physicians. Moreover, even if the
AI provides the judgment result, the patient hopes that a real physician can make the final
confirmation [17].

The choice of the user-centered target [18] is key in determining the success or failure
of AI. If AI products are innovative but difficult or non-critical to use in the hospitals,
the investment of providers will just go to waste. Thus, the providers must design AI
products based on actual demands or requirements of the healthcare industry rather than
technological innovation. AI providers should assign someone (preferably a healthcare
professional) who will be tasked to comprehensively understand the needs of the medical
field and propose convenient and flexible AI solutions. Particularly, in recent years, several
studies proposed precision and personalized medicine that emphasized the complexity of
medical factors requiring personalized care and not a “one-size-fits-all” protocol [19,20].
For instance, although the diagnosis of malignant lesions through X-ray may be the same
all over the world, the outcome prediction and treatment may vary with the nationality,
race, sex, age, eating habits, and social status of the patient. Therefore, before development,
providers must determine whether the AI product is for general or special use. Aside from
this, AI development requires thorough considerations in terms of user number, obvious
effectiveness, and explainability of results.

High-quality big data is an important prerequisite for AI development, which usually
comes from the cooperation between healthcare institutions and providers (developers)
rather than from providers alone. Therefore, providers need to select qualified healthcare
institutions for long-term cooperation and carefully store big data. Additionally, to avoid
interference in healthcare operations, AI products should provide convenient interfaces to
combine with the existing HIS of healthcare institutions. Further, an AI with a total solution
is more competitive than a single function AI. For example, for patients diagnosed with di-
abetes mellitus, AI should suggest an ophthalmoscopy test and extract images by IoT. Next,
it should evaluate the risk for diabetic retinopathy and provide suggestions (combined
with other laboratory data of patients) to confirm the diagnosis (could be sent to mobile
phones of attending physicians). Moreover, an AI that integrates Business Intelligence
(BI, e.g., digital dashboard), Internet of things (IoT), wearable devices, mobile, and remote
technologies in the early and late stages of health care would be great added features.
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It is an interesting issue to explore whether AI plays a “leading role” or “supporting
role” in the healthcare industry; that is, it is essential to determine whether it is worthwhile
to create AI products to attract investments from healthcare institutions. For instance, it
would be good to know if hospitals would prefer to purchase an X-ray AI interpretation
system alone and integrate it with their existing X-ray machines to assist radiologists or
purchase built-in AI interpretation X-ray machines at a higher price. According to our
observations, AI providing assistance or supporting role in healthcare equipment and
devices may be a promising idea due to a lower obstacle of compatibility and connectivity.

In addition, AI providers could act as an assistant to help hospitals establish their own
AI models and application systems using the accumulated healthcare big data. Since the
healthcare industry has a geographical distribution, the AI model built on the hospital’s
data would serve its patient group best. The model quality (e.g., the accuracy of prediction)
could be good provided there is enough data in the electronic medical records (EMR).

It is necessary for providers to seize the opportunity to apply for patent protection
and verification of equipment concerning healthcare AI products since too many R&D
manufacturers, and relevant AI technologies are becoming increasingly simple without dif-
ferences and advantages. The international community is aware of the rapid development
of healthcare AI and has put forward relevant regulations and guidelines for reference,
such as “The Software as Medical Device: Clinical Evaluation, Proposed Regulatory Frame-
work for Modifications to Artificial Intelligence/Machine Learning-Based Software as a
Medical Device” published by the US Food and Drug Administration (FDA) [21,22] and
“The Medical Device of Artificial Intelligence/Machine Learning Technology: Technical
Guidelines for Software Inspection and Registration” [23].

As for the target market, AI providers could sell their AI products to healthcare
institutions with poor medical service quality (if the use of AI will improve the service
quality), to countries with limited healthcare resources (if the domestic government will
allow AI to partly replace healthcare workers and medical equipment), or to those with
low medical insurance coverage (the cost of medical treatment is high, so people can use
AI to properly assist in self-care management).

4. Critical Affecting Factors

Based on the above discussion, the critical factors affecting the deployment and scaling
of healthcare AI are summarized below:

4.1. Policies and Regulations Amendment

The government should amend related policies and regulations to encourage the
introduction of AI in health care, which could reduce or partially replace manpower. More-
over, the government has to subsidize substantively the development of AI in healthcare
institutions to improve the overall healthcare quality and efficiency nationwide.

4.2. Top Executive Support

The introduction of AI into hospitals may require resource expenditure and continuous
capital investment. Hence, hospital institutions should exert extra efforts to improve the
knowledge of medical professionals on AI and its application even when short-term
economic benefits may not seem apparent.

4.3. Clinical Actual Demand

Healthcare institutions should adopt/purchase AI products based on the actual de-
mand of healthcare workers. Furthermore, AI needs to be integrated with existing processes
and should not create an additional workload for medical workers.

4.4. User Department Consensus

Since AI is costly, it should not be used by only a few people. A consensus within the
entire department should be established, putting forward the needs and expected benefits
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of AI for it to gain wide recognition and encourage healthcare workers’ participation in
planning and introducing AI, and eventually, into using it regularly.

4.5. Dedicated AI Analysts

AI development is a complex process across all fields. It is necessary to set up special
departments or units and prepare specific AI analysts to effectively and extensively promote
the development of AI systems in various medical fields. If the AI analysts are only
working part-time, or their work is designated to employees with other existing jobs and
responsibilities (maybe statisticians or physicians), the progress may become slow, the
subject may be limited, and their AI knowledge may be insufficient.

4.6. IS Department Supports

Whether it is the preparation of big data or the subsequent implementation of integra-
tion with HIS, it must be strongly supported by the IS department; otherwise, it will be
difficult to complete. However, the IS department may already have a heavy routine and
may only provide limited support on AI projects. Providing the IS department additional
bonuses to encourage it to assist with AI projects during off-hours is a feasible approach.

4.7. Obvious Concrete Benefits

Since AI users and scientific studies have exaggerated AI’s functions, the introduction
of AI should target clear aims and measurable benefits such as income increase, cost
reduction, and improvement in quality and efficiency. Perceptive benefits such as user
satisfaction and acceptance can be considered as well.

4.8. Improve AI’s Explainability

Studies have proven that AI performs excellently in prediction and is even better than
that of healthcare workers. However, if AI cannot clearly explain the rules or basis of its
prediction, the issue of AI being just a “black-box” will remain and continue to doubt the
public, resulting in lower acceptance and use.

4.9. Continuous Optimization of Products

Along with environmental changes and technological progress, AI products require
continuous optimization and improvement, such as model retraining, self-learning, and
federated learning [24].

4.10. Easy to Install and Use

Since clinical work is already complex on its own, AI products should be easy to install
and use and should work automatically as much as possible, but the final decision-making
should ultimately remain within the healthcare workers. In addition, the AI should not
interrupt or impede the clinical care process unnecessarily; otherwise, healthcare workers
will avert from it.

4.11. Assistance rather than Replacement

The current AI still needs a lot of improvement. Although it can perform well in
healthcare projects, it cannot match the overall judgment of an experienced medical pro-
fessional. Medical decisions are based on numerous factors, including the emotional
level of the patient, the stance of family members, and the socio-economic environment.
Hence, hospitals should employ AI as an assistant rather than a replacement for healthcare
workers.

4.12. Spontaneous rather than Compulsory

Regarding laws, practice, or even public perception, the use of AI still has a lot
of problems, including ownership, accuracy, explainability, reliability, stability, morale
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affection, etc. Therefore, healthcare workers should have the right to choose whether or
not to use AI rather than being imposed to do so.

5. Conclusions

The soft power of healthcare services and the hard power of the ICT industry in
Taiwan have laid a strong foundation for developing healthcare AI. Although hospitals,
technological manufacturers, and start-ups have launched enormous AI products, the ma-
ture economic scale and profit model remain unclear because large-scale cases of successful
implementation of healthcare AI in medical institutions are still rare.

Based on the experience of the Chi Mei Hospital group that has deployed multiple AI
applications, this research summarized the key influencing factors and possible responses
that affected the development and diffusion of AI in medical institutions. This type of
research is very important but less reported. We believe that relevant stakeholders or the
so-called AI consumers, which include the government, medical institutions, end-users,
and AI providers, should openly and fully cooperate to understand each other’s niches
in AI development and jointly solve the problems in its development. Ideally, machines
could be utilized to assist humans in generating higher quality predictions, with the final
decisions and optimal actions being left to the latter [25]. This could realize AI-enabled
hospitals with confidence.

Since this research is only based on Chi Mei Hospital’s view on the development of
healthcare AI, it may not be enough to represent all hospitals. Chi Mei Hospital mainly
develops AI applications based on its structured big data, which may not represent the
experience of other types of healthcare AI (such as medical imaging). In addition, this
study suggests that future researchers can explore the attitudes and expectations of more
stakeholders thoroughly. Additionally, the differences between the development and
introduction of AI in hospitals in different countries are worthy of comparative analysis.
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1. Introduction

This report explores the lessons learnt from a German–Polish telemedicine network
funded by the European Union (EU) in Pomerania.

Pomerania is a historic region on the southern shore of the Baltic sea, with a western
part located in Germany and an eastern part located in Poland. The area of historic Pomera-
nia was used to create a co-operation structure between Germany and Poland in 1995
(“Euroregion Pomerania”). Ten German cities and districts and 98 Polish municipalities are
members of the Euroregion. The purpose of all Euroregions is the promotion of common
interests. Euroregions are eligible for funding in the Interreg programs of the European
Union. Interreg I started in 1989. The present phase of the program, Interreg V, funded
projects until 2020. Interreg was created to promote cross-border cooperation in the EU,
thus diminishing the influence of national borders.

The council of the Pomeranian Euroregion is located in (Polish) Szczecin, the historic
capital of ancient Pomerania. The council is constituted in equal parts by German and
Polish members. Polish members of the Euroregion are members of a Polish association,
while German members belong to a “Kommunalgemeinschaft”—an association according
to German law.

Eligible projects may apply for funding from current Interreg programs. Only groups
that are constituted by both German and Polish members are suitable for application. A
lead partner may be either from Germany or Poland. The agency in the lead partner’s
country of origin will then process the request, aiming to achieve harmonisation between
the Polish and the German side.

A complete review of Interreg is beyond the scope of this paper. Perkmann [1] gives
an overview of the concept and existing cross-border regions, following Schmitt-Egner’s [2]
definition of ‘cross-border cooperation’ as ‘cross-border interaction between neighbouring
regions for the preservation, governance and development of their common living space,
without the involvement of their central authorities” (Perkmann’s translation).
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The rationale for implementing telemedicine in the Euroregion of Pomerania was
twofold: (1) The regions on both sides of the German/Polish border are very thinly popu-
lated. The German federal state of “Vorpommern” (Western Pomerania) has a population
density of 69 inhabitants/square kilometre, while the Polish voivodeship’s (province)
“województwo zachodniopomorskie”(Voivodeship Western Pomerania) has 75 inhabi-
tants/square kilometre (mean population density: Germany, 137 inhabitants/square kilo-
metre; Poland, 132 inhabitants/square kilometre). (2) The border in the Pomerania region
between Poland and Germany leaves several German and Polish hospitals with small
catchment areas (Figure 1). Telemedicine is an accepted means of delivering medical
services to people in such areas by enlarging catchment areas [3,4].

 

Figure 1. Influence of the boundary between Germany and Poland on the catchment areas of hospitals in the cities of
Szczecin, Pasewalk, Prenzlau and Schwedt. It is apparent that the hospitals close to the border have small catchment areas
and that there are areas without easily accessible hospitals.

Accordingly, people living in these regions may have reduced access to hospitals. To
improve access to specialised medicine, a joint telemedicine project was initiated starting
in 2002. With Interreg IVA funding, the most recent phase of this project was initiated
with 11 German and 11 Polish hospitals. Specialities taking part were radiology, pathology,
ophthalmology, urology and otorhinolaryngology (ear–nose–throat medicine, ENT) as well
as radiation therapy, oncology and thoracic surgery in tumour boards. On the German side,
an extensive videoconferencing network was laid out, which allowed for the simultaneous
transport of x-ray studies, pathology slides, endoscopy images and documents.
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As medicine is generally organised nationally, telemedicine tends also to be national.
The project described here originated in radiology and pathology, with both of them
dealing with physician-to-physician interaction; another focus was videoconferencing. On
the German side, an expensive infrastructure had to be bought and installed to support
these applications. Management, facilitators and barriers for these parts of the project are
described below. We report here on the lessons learned from the implementation of this
Interreg IV project.

2. Materials and Methods

2.1. Previous Phases of the Project

The project described here was implemented over the course of four funding periods
since 2002. The first author (a university radiologist, chairman of the project’s board)
has been involved from the beginning; the other two authors (in-house counsel and
pathologist) have been involved since 2010. Documentation from the different project
phases was used for analysis. Because public funds were used, the written documentation
was comprehensive. The work presented here aims to describe facilitators and barriers
and thus to provide guidance for colleagues wishing to implement similar international
projects. The paper focuses on the last phase of the project which started in 2010. There
were three previous project phases, each with six-digit funding (all figures in Euros):

1. A digitisation project focusing on radiology and pathology in Pomerania (“Pommern”,
Germany) and Poznań.

2. A regional expansion of the digitisation project to North Brandenburg and Poland.
3. Another digitisation phase between Pomerania, northern Brandenburg and Poznań.
4. Beginning in 2010, the current project between Pomerania, northern Brandenburg

and the voivodeship of Western Pomerania and Poznań (a fifth phase of the project
with cross-border patient treatment has been approved; it is mentioned here as it aims
at the cross-border treatment of patients (children with neuroblastoma). Grounded in
the first three phases, the project was required to develop a structure that allowed for
the implementation of a telemedicine network in a larger state.

The following documents from project phases 1 to 4 were available for analysis:

• From business plans, grant approvals and project applications, we extracted and
evaluated objectives and the amount of funding (a low eight-digit amount of funding
in the phase described here).

• Accountability reports were available for the project phases between 2002 and 2010.
They were evaluated for an overview of newly installed devices.

• Presentation slides.
• For the fourth phase of the project, the following documents were additionally available:

a. The association’s statutes, with descriptions of the organisational structure
(Figure 2); protocols of the yearly assembly between 2010 and 2020.

b. The protocols of the meetings of the Board of Directors between 2010 and 2016.
c. The business plan for the association from 2010.
d. The protocols of the technical advisory board’s meetings, which had to approve

purchases.
e. Medico-legal and medico-economic analyses as published by the project in

specialist journals on the projects: the tele-tumour conference, teleradiology,
telepathology, tele-ENT (overview lecture, published), Tele-Glaucoma (technical
description) and Tele-Stroke.

f. Final reports to the sponsor.
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Figure 2. Organigram of the association “Telemedicine Euroregion Pomerania”. The German project participants organised
themselves in an association under German law; three Polish members were co-opted. Their assembly (one representative
with voting rights from each of the participating hospitals) approved key decisions and the budget once a year. The assembly
elected the association’s board. Additional Polish members took part in German–Polish working groups. The German side
was the lead partner of the project. It organised the settlement of the funds. The board of directors had several employees
for legal, financial and secretarial tasks. A technical advisory board staffed with independent technical experts met twice a
year for three years to review the investments.

2.2. Problems Identified in Ihe Scientific Literature on Telemedicine That Were Evaluated

The following text focuses on lessons learned from the Pomerania telemedicine
cross-border project. Facilitators and barriers encountered during the implementation
of telemedicine in rural regions have been covered in the literature [3–7]. There is, how-
ever, hardly any mention of management and organisation matters in such projects. The
following barriers are named, among others (they also turned out to be central to our
project): high capital expenditure overheads, a lack of motivation and financial benefits for
application developers and telehealth service providers, a lack of a strategy to transform
telehealth trials into sustainable real-world services, insufficient financial support through
government reimbursement (e.g., to buy telehealth equipment) and unmet requirements to
train people to deal with cultural differences.

2.3. Participating Hospitals Whose Projects Were Analysed

The participating hospitals on the Polish side were SPSK2 PUM Szczecin, ZCO
Szczecin, ZOZ Zdunowo Szczecin, SP Barlinek, SR Kołobrzeg, SZGiChP Koszalin, SW
Koszalin, ZOZ Stargard, ZOZ Gryfice, ZOZ Połczyn, and SP Białogard; on the German
side, the hospitals were Sana Bergen/Rügen, Asklepios Stralsund, Universitätsmedizin
Greifswald, Krankenhaus Wolgast, Asklepios Pasewalk, Dietrich-Bonhoeffer-Klinikum
Neubrandenburg, GLG Eberswalde, GLG Prenzlau, Asklepios Schwedt, Sana Templin, and
Herzzentrum Bernau (Figure 3).
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Figure 3. Geographical distribution of hospitals on both sides of the German–Polish border. Berlin, Warsaw and the Baltic
Sea are also indicated for the better visualisation of the project.

3. Results

3.1. Results Regarding Organisation of the Project

To develop a structure for a telemedicine network, the Telemedicine Association in
the Euroregion of Pomerania was founded in 2008. It was funded in the Interreg program
from 2010 onwards. According to German law, an association is not primarily dedicated
to generating profits; it receives public funding more easily than a limited company. The
association was registered with statutes, and hospitals were invited to a constituent meeting.
In the next step, a business plan was drawn up. This budgeted the establishment of an office
(see Figure 2) and the financing of staff beyond funding. The association was provided with
a low five-digit capital. An IT consultancy (DFC, Munich-Germany) was commissioned
to develop a concept for the German side of the funding area. Under the umbrella term
“telemedicine”, the concept planned the modalities listed in Table 1. They were underlaid
with digitised medical devices and equipment for storage, network connection, etc. After
several rounds of negotiations with the relevant Ministry of Economics, the concept was
accepted and the project was funded.

The EU’s outcome parameters differ from the clinical/medical parameters discussed
below. Parameters and eligibility requirements for the Interreg program are summarised in
manuals. In addition to the basic requirement (beneficiaries from at least two participating
countries, at least one of which is a member state of the EU), the following methods of
cooperation are also required:

1. Joint conceptualisation, which may for example be achieved by holding regular project
development meetings, establishing institutionalised long-term contacts, joint project
preparation and/or scheduling.

2. Joint implementation, which may for example be achieved by joint management or
partial responsibilities for each of the project partners.

3. Joint staffing.
4. Joint funding.
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Table 1. Subprojects. Note, different goals for the German and Polish sides. Outcomes and outcome indicators are given and facilitators and barriers are listed. See details in text.

Subproject
Goal

Germany
Goal

Poland
Main Outcome

Indicator
Outcome Facilitators Barriers

Soft
Facilitators/Barriers

Tele-tumor
conferencing.

To establish a
twice-weekly

online-only video
conference with

multiple hospitals
and multiple specialties.

-
Economic analysis of
working conference.

Established
successfully, in

permanent full use,
economically sound.

Only way to establish
tumor conferences in

areas with low
population density.

-

Implemented by
chairman of large
hospital in project,
prestige project.

Patient’s informed
consent.

Scientific evaluation. - Feasibility. Feasible.
Obvious advantage

of avoiding time and
expenses for travel.

Interoperability
problems.

Patients remembered
content better.

Tele-conference for
board meetings.

To avoid travelling to
board meetings.

To avoid travelling to
board meetings.

-
Established

successfully, used
when necessary.

Obvious advantage
of avoiding time and
expenses for monthly

travel to
board meetings.

Binational meetings
too sterile, bonding
an important factor

for the success of the
whole project.

-

Tele-radiology.

To establish
24/7 computed

tomography (CT)
reporting coverage in

German area.
Scientific evaluation

To provide digital
X-ray equipment.

Establishment of
service, equipment

delivered,
assessment of

cost-effectiveness.

Teleradiology
established

successfully in
Germany.

Digital X-ray
equipment provided

to hospitals in
Poland. In use.

Teleradiology in
off-hours without

alternative: no
emergency

department without
computed

tomography
access (!).

Legal restriction in
Germany at time of

implementation.

Radiologists in area
known to each other

from training.

Tele-pathology.
To establish 24/7

pathology coverage
in the German area.

To provide digital
pathology

equipment; tele
pathology service.

Establishment of
service, equipment

delivered.

Telepathology
established

successfully in
Germany and Poland.

Also used
for teaching.

High cost of
digitisation of

pathology; funding
from project was a

very strong incentive.

Low acceptance of
telepathology in one

provider.
Abandoned by one

providing hospital as
management did not

want to
support competitors.

Little alternative for
providing hospitals,

as pathology
departments not

economically feasible
for smaller hospitals.
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Table 1. Cont.

Subproject
Goal

Germany
Goal

Poland
Main Outcome

Indicator
Outcome Facilitators Barriers

Soft
Facilitators/Barriers

Tele-earnose throat
(ENT).

To establish 24/7
ENT specialty

coverage in the
German area.

-
Establishment of

service,
equipment delivered.

Project was
technically

implemented,
later discontinued.

Technology available,
was installed
successfully;

not enough patients
for a university

department in this
area of

low-population density.

Doctors at receiving
hospitals not familiar

with placement of
endoscopic device

via nose: legal
problems expected.

Smaller hospitals not
willing to accept
specialty support,

prefered to provide
for their patients

without outside help.

Teleophthalmology.

To establish early
diagnoses from retina
scans by screening in

one hospital.

-
Establishment of

service,
equipment delivered.

Establishment of
tele-screening in

hospital, evaluated in
university clinic,

later discontinued.

Technology was
available, was

installed successfully.

Program established
technically, but no
access to financial
re-imbursement.

Screening.

Started by personally
acquainted

department heads,
stopped when one of

them left.

Tele-stroke.
To establish a

tele-stroke network.
- - -

Pomerania perceived
as competitor by
neurology. Very

strong incentive for
neurology to
implement

own project.

Low-cost of
technology

employed. No
funding necessary.

Aspects of organizing
services prevailed.

Clinical specialty
joined Berlin project,

established
successful program

with minimal
funding by
Pomerania.
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It is important that cross-border cooperation in the specific program context does not
have to consist of cross-border patient treatment—a criterion often expected, in particular
by the press. The relative freedom in designing the project with the total amount capped
at a low eight-digit amount led to the establishment of a technical advisory board on
the German side. This independent, national committee of experts had to approve all
investments in advance. The State Court of Auditors then reviewed and accepted the entire
project financing.

The commitment to fund the office and staff beyond the funding phase was the
decisive factor in the project’s eligibility. An annual budget was adopted at each of the
annual general meetings.

The typical EU outcome parameters are the numbers of persons reached and the
amount and quality of the publicity. The facilitator for fulfilling expectations by the EU was
the German–Polish structure. This was a definitive advantage for the public perception of
the project in Germany. The project was, e.g., visited by the then Federal President Gauck.
This generated much publicity. For the organizing IT company, the project was important
beyond the level of income due to national visibility. As with the medical community, the
IT industry has its own communication channels; the project received also received good
press in this context. At the major German trade fairs (Medica, Düsseldorf; conhIT Berlin)
there were opportunities to present the project that are not readily available to single-site
telemedicine projects. A barrier was the perception of the association as a parallel structure
by hospital administrations; the expansion of competencies by physicians was suspected.

3.2. Results by Telemedical Specialty

An overview of subprojects, outcome indicators, outcomes and facilitators/barriers is
given in Table 1.

3.2.1. Videoconferencing Network

Telemedical interactions between people benefit from an image transmission that
provides facial expressions as well as the other person’s spoken language. Naturally, this
also applies to interactions between physicians. Common videoconferencing systems,
which in the meantime have become widely available to all, can be used for these image
transmissions. Data safety has to be ensured when using these devices. Various studies
have shown that patients are willing to communicate with their doctors via videoconfer-
encing [8,9]. The prerequisite, however, is that the advantages outweigh the disadvantages.
Perhaps the most relevant advantage in particular is saving time due to the elimination of
physical transportation from the communication process. In the planning process of the
project, we assumed that this would also be the point of view of doctors communicating
with colleagues.

Within the project, a videoconferencing system was installed that could connect par-
ticipants via a “video-bridge” (Figure 4). This system that consisted of 15 sites (14 German
and 1 Polish; not all hospitals participated, but some hospitals had more than one site) was
the backbone of the entire project. The following situations were covered:

• A tele-tumour conference connected several hospitals and allowed tumour conferences
to be held with several specialists.

• Various tumour conferences within a hospital allowed the involvement of specialists
(e.g., pathologists) who had only a few points to make for one or two minutes per hour.

• The videoconferencing system could be used experimentally for a doctor–patient
project; patient education was simulated here by a two-way-connection.

• Board meetings were organised by videoconferencing.
• In parallel to the videoconferencing, medical image files were transferred. In the

projects discussed below, endoscopic images (Tele-ENT), images of the ocular fundus
(early diagnosis of diseases), X-ray images (teleradiology) and pathological slides
(telepathology) were transmitted.
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Figure 4. A videoconferencing network was the backbone of the telemedicine project. On the German side, there was
a northern (Greifswald), a central (Neubrandenburg) and a southern rail (Eberswalde) with videoconferencing links; in
Poland, only Szczecin took part. A “bridge”, actually a switch allowing multi-point videoconferencing to be initiated,
was located in the south rail. This limited use of the network required three bridges to be installed. The system also
allowed for the simultaneous viewing of medical images (x-ray, real-time endoscopy and pathology slides) and various
documents on additional monitors. Please note that not all hospitals that participated in the program also participated in
the videoconferencing network, explaining the difference in numbers.

In the following, the individual sub-projects are discussed with a focus on facilitators
and barriers.

Tele-Tumour Conferencing

Every week, a tumour conference with a regional focus on Eberswalde took place,
which connects several hospitals and several modalities (Figure 5). On average, 16.4 patient
treatments were discussed in each session. The conferences were attended by an average
of 7.9 doctors from various disciplines within the hospital, and 1.4 external specialists from
other hospitals were consulted for consultations. The project was scientifically evaluated
with business economists. As an example of an objective outcome parameter, the break-
even-point for a regional tumour board was calculated at 272 patients discussed per year
(main outcome indicator, details in [10]).

The videoconferencing tumour project has been operating without interruption and
without external funding since 2012. Facilitators were economic benefits (travelling costs
saved) and convenience (travel time saved by doctors). Videoconferencing allows for one
physician to be “present“ at multiple sites nearly simultaneously. Interoperability was not
fully achieved during the installation of the videoconferencing-network: the acquisition
of only one “bridge” unnecessarily restricted the initiation of videoconferences to the
Eberswalde site and made it difficult to further expand the technology. The acquisition
of two additional bridges, costing a middle five-digit amount, would have been easily
possible from the generous funding. This was missed by the site planning this subproject
(Eberswalde) and resulted in the domination of the network by Eberswalde.
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Figure 5. Tele-Tumour Conferencing. A sophisticated subproject included the tumour board of Eberswalde hospital, where
smaller hospitals presented their cancer patients to specialists. Seated at the conference table are oncologists, a radiation
oncologist and a radiologist. A pathologist in Pasewalk is discussing cases with a referring physician from the Templin hospital,
approximately 65 km away. Documents, X-rays and pathology slides can be viewed by all participants simultaneously.

Tumour Videoconferencing within a Hospital

The videoconferencing network on the German side was built around three larger hos-
pitals. Greifswald (videoconferencing units in five clinics and institutes), Neubrandenburg
(videoconferencing units in two clinics) and Eberswalde (videoconferencing units in seven
affiliated hospitals/locations). Tumour conferences within one hospital are characterised by
varying degrees of contribution to the discussion from the participating disciplines. While
oncologists and radiotherapists usually provide information on all patients discussed, this
is not the case for the diagnostic specialties. Pathologists often have only brief verbal
contributions, with short demonstrations of sections. Tumour conferences at Greifswald
only call the pathologists’ video stream into the conference when they are actually required
to make a contribution. This scenario also applied to Eberswalde.

A facilitating factor here is the time saved by the pathologist. This advantage was so
obvious that the project was immediately accepted by all involved. One barrier was the
need to link different videoconferencing-systems (in-house and inter-hospital). The causes
for this were differences in the design of hospitals’ in-house meeting-room systems by
the hospital administrations and also the inter-hospital purchasing of videoconferencing
systems connecting different hospitals from project funds.
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Patient Education for Informed Consent via Videoconferencing

In populated regions, patients have to come to a treatment site twice: once to give
informed consent and then again for the implementation of the procedure. The reason
for this is the often legally required period of consideration of 24 h that must be granted
to patients. The acceptance and effectiveness of getting patients’ informed consent via
videoconferencing was investigated in a prospective study [11].

A facilitating factor was saving patients from a second trip to the hospital by creating
the possibility of giving informed consent via a virtual meeting. The benefits—for example,
saving sick or vacation days—were so important for patients that they agreed to see
their doctor only on-screen. Unexpectedly, a second facilitating factor was the improved
concentration of patients on screen, which led to a better memory of the educational
contents. Barriers to widespread use were the lack of a uniform technological solution
(hospital and at home for patients), difficulties for older patients who were inexperienced
with the technology and doubts regarding the security of the video connection.

Board Meetings on Videoconference

The sponsored area has a north–south diameter of about 250 km. In the east–west
direction, the diameter is marginally larger, at 280 km. The meetings of the various boards
(Figure 6), which took place monthly for years, previously required considerable travel
activity. Even short conferences resulted in a significant loss of working days due to
travel times (about 20 days per year). In the course of the project, the meetings were
converted to a presence-to-videoconferencing-ratio of 1:3. Facilitators and barriers were
the same as in the other applications: As might be expected, this changeover was easy
due to the installed videoconferencing-network; acceptance was high among all parties
involved. However, the acquisition of only one “bridge” unnecessarily restricted the
initiation of videoconferences.

 

Figure 6. Cross-border meeting (Szczecin/Pasewalk). A working group of the project (in the front of the picture, three
participants) and the German members (with modality pictures). From [12].
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3.2.2. Teleradiology

In sparsely populated regions, patient care is usually provided by a hospital structure
with houses of different sizes. Even in smaller houses, the larger disciplines such as in-
ternal medicine and general surgery are often staffed with enough doctors to make 24/7
coverage possible. This does not apply to medical specialties such as radiology, and is
even less applicable to pathology. In the studied region, only the hospitals in Greifswald
and Neubrandenburg could offer radiological services 24/7. There are two difficulties: if
there is a 24/7 radiology service in a sparsely populated region, it is often underutilised;
however, in order to operate a German hospital with an emergency department or an
intensive care unit, computed tomography diagnostics (CT) must be available 24/7. Telera-
diology can compensate for these two situations. This increases the area in which on-call
radiologists can provide their medical expertise in the night and on weekends. They are
therefore utilised more efficiently by the teleradiological services and the hospitals that use
teleradiological services can provide 24/7 CT diagnostics for emergencies. On the German
side, the aim in the field of teleradiology was to establish a teleradiological 24/7 network,
the development of contracts between supplier and customer and the economic evaluation
of the costs that must be reimbursed in order to enable an economic operation, as well
as a quality evaluation of the services. A cooperation between the University Radiology
Greifswald and seven hospitals was established (Figure 7). On the German side, equipment
had been installed in previous phases of the project. On the Polish side, radiological depart-
ments were newly equipped with scanners that allowed the digitisation of X-ray images.
Several radiology departments in the sponsored houses were given radiological digital
workstations consisting of high-resolution monitors and computers. Medical equipment
(intraoperative MRI and X-ray workstations) was financed at two hospitals. Computer
networks were added to all houses to enable the creation of a digital workflow.

In summary, teleradiology was permanently translated into a sustainable network,
and its actual costs were scientifically assessed (main outcome indicator, details in [13,14]).
The following figures may give an idea of the scope of services offered permanently;
currently, there are approximately 1000 radiological exams per year reported during night
and weekend shifts by one institution. A cost analysis of teleradiology from a provider’s
perspective was performed using Monte Carlo analysis. Costs of reporting head and
abdominal CT were calculated in a cooperation with academic economists (with €61.35 as
the minimal charge for a head CT report to avoid losses). An increase in the catchment
area for radiologists result in the better use of this profession’s services during night and
weekend shifts.

The facilitating factors for teleradiology were the indispensability of the 24/7 service;
the interdisciplinary setup of the project team; the presence of a chair in economics with
a focus on medicine, who took over the economic evaluation, as well as the presence of
an in-house counsel with a special focus on the legal aspects of teleradiology; and the
digitisation of the participating clinics in previous phases with the establishment of a
network. Another facilitator was the close cooperation between radiologists all over the
area, since a large proportion of the radiologists working in peripheral institutions had
been trained in the bigger centres.

There was a chance missed by not supporting the system with weekly videoconfer-
encing between the radiologists in the centres and the surgeons and internists in the area’s
peripheral regions. This probably will be a barrier to further expanding the service.
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Figure 7. Geographical distribution of the German teleradiology network. The network has been running for more than
15 years. In Greifswald, there is a 24/7 radiological service in the university hospital. The surrounding city names represent
the locations of connected houses that are also supplied in the network. According to German law, the backup method
for downtime in teleradiology is a radiologist going to the relevant hospital and performing the examination there. Due
to this restriction in German law, teleradiology was limited to hospitals that could be reached within an hour (Demmin
and Karlsburg were not financed by the project). Conclusion: The loss of catchment areas of the hospitals due to a new
territorial delimitation can be increased by the telemedical expansion of catchment areas. Telemedicine thus leads to
better access to doctors in territorial states and to the better utilisation of medical services in the same regions (black circle,
unbroken: catchment area of Greifswald University Hospital’s pathology department with telepathology. Red arrows:
pathology connections.).

3.2.3. Telepathology

In sparsely populated regions, most hospitals do not have their own pathologist. The
conditions here are even clearer than in radiology. Of the three centres on the German
side of our project, only two have a pathology department; none of the smaller houses
do. The pathologists provide surgical departments with rapidly processed slides during
operations and the reprocessing of surgical material after the operation. The slides are time-
critical, as patients remain in anaesthesia until the results are communicated to the surgeon.
Telepathological projects create slides cooperatively, using sophisticated technology during
surgery (for example, pathologists directing the surgeons regarding from which part of
the resectate specimens should be taken). Referring centres can digitally transmit scanned
slides and have them evaluated in a pathology department. In our project, providing
pathological services for all houses that required them through telepathology was the goal
(outcome indicator). Two different approaches (Figure 8) were chosen for this purpose:
firstly, Neubrandenburg Hospital’s pathology institute permanently provided a pathologist
in a branch office in Eberswalde Hospital. Since this pathologist could not work at full
capacity due to low case numbers, he was additionally providing telepathology services for
the mother institution in Neubrandenburg; secondly, pathologists in Greifswald evaluated
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rapidly processed slides via telepathology for the hospitals in Bergen, Wolgast, Schwedt
and Stralsund (the establishment of the service was the main outcome indicator; for details
of the analysis, see [15]).

 

ń

Figure 8. Enlargement of the catchment area of medical facilities through telemedicine. The inner, broken circle shows the
direct catchment area of the pathology department at Greifswald University Hospital. Outside working hours, it is limited
to the immediate area. Telepathologically, the catchment area is basically unlimited from a purely technical standpoint. The
red arrows show telepathology connections in the pathology network.

Equipment on the German side was financed by the project. On the Polish side, the
main focus was on funding pathological (and radiological) equipment. In Szczecin, Gryfice
and Poznań, scanners for digitising pathological sections were procured and connected for
remote consultations.

The Greifswald project has been scientifically evaluated. Retrospectively, the diagnos-
tic accuracy of intraoperative frozen section telepathology was evaluated. It was highly
acceptable at 98.95%. The average time for the preparation of virtual slides ranged from
10.58 ± 8.19 min. Investment costs were lower than those of robotic microscopy [15].

A facilitating factor was the fact that a functioning system was already available from
the beginning of the project phase. This is not to be taken for granted, because pathology
has a very high volume of data; i.e., it requires connections with high bandwidth and a
high storage capacity. This barrier is caused by the high number of very thin cuts required
for pathological evaluation and the bigger file size (compared to radiology) of the coloured
sections (Figure 9).
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Figure 9. Telepathology. The telepathology workstation of this pathologist shows the pathologist’s desk during a tumour
conference. He can work on his microscope while following the conference on his monitor. During the few minutes that
the pathologist is needed in a typical teleconference, he may be seen and heard and show slides (see Figure 5). The higher
productivity that is achieved in this way is particularly important given the few pathologists commonly available.

3.2.4. Tele-Ear-Nose-Throat (ENT)

In the sparsely populated state of Western Pomerania, the economic efficiency be-
fore the funding period was poor for the few existing ENT departments. The Tele-ENT
subproject consisted of videoconferencing and video endoscopy (Figure 10) between the
patient and on-site doctor at the presentation site of the patient in the periphery and the
ENT doctor in the centre (Greifswald). Videoconferencing was used to improve communi-
cation. The actual tele-ENT diagnostics were carried out with the help of a tele-endoscope.
According to the plan [16], the on-site service doctor was able to insert the endoscope into
the patient’s throat or into the outer ear canal. The endoscopic image was transmitted
over the network to the university’s ENT department, where the doctor on duty verbally
directed the endoscope and used the transmitted images for diagnostics. Specialist medi-
cal expertise could therefore be provided to any external location with a primary doctor
and appropriate equipment on-site. The outcome indicator was the number of patients
assisted with tele-endoscopy for ENT disease, assuming improved quality as a result (the
establishment of the service was the main outcome indicator; for details, see [16]).

A facilitating factor was the high quality of the endoscopy devices and the videocon-
ferencing images. Barriers were experienced in two ways: the physicians working on-site
used endoscopies—for example, for gastric examinations—and were accustomed to intro-
ducing the endoscope through the patient’s open mouth, while ENT physicians usually
insert the endoscope through the patient’s nose. This difference, which seems trivial to the
outsider, could not be surmounted in practice. Medical staff feared malpractice claims; the
retraining of medical staff in peripheral sites should have been considered. This barrier has
been reported in other studies as well [17]. Contractual solutions with external funding
should have been worked towards. Another especially crucial barrier was the fact that the
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treating doctors in the periphery reported feeling devalued by the specialist support. The
procedure was evaluated through interviews. A commonly mentioned argument was “We
can care for our patients on our own!”.

 

Figure 10. Video endoscopy during an ENT consultation. A non-specialised physician inserted the endoscope and images
were automatically transferred to the specialist in a university hospital—in our project, between Templin and Greifswald.
The distance between the two cities was roughly 150 km, and the driving time would be nearly 2 h. Specialised diagnosis
was thus possible despite the distance, and therapy recommendations could be given. The Greifswald ENT specialist in the
image is seen from the back, the general physician in Templin is shown on the monitor of the videoconferencing unit, and
the image generated by the endoscope is shown on a smaller monitor to the right.

The difficulties could possibly have been eliminated with help from the medical centre,
given sufficient will. The technology appears to be useful, especially in even more sparsely
populated locations than our region.

3.2.5. Teleophthalmology Screening

Teleophthalmology screening made apparent another difficulty of telemedical projects.
The project planned to use an existing Optical Coherence Tomograph (OTC [18,19])
/telefundoscopy system. The system visualises the different retinal layers including blood
vessels and the optic nerve head. Images are transferred in automated form to a center,
where an experienced clinician can then evaluate the study. Screening for diseases such as
increased arterial blood pressure or glaucoma is thus possible. The system was installed
for Greifswald University Hospital and a hospital 50 km away without an ophthalmology
clinic. The peripheral clinic thus provided its patients with a screening service. The out-
come indicator was the statistical recording of a sufficient number of early diagnoses. The
reduced number of necessary treatments and follow-up costs should be offset against the
costs of maintaining the service. The outcome was not reached.
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A facilitating factor was the pre-existing, technically evaluated system that was suc-
cessfully installed. There was a barrier, however, which could not be overcome: the lack of
funding of the prevention project—for example, as a pilot by health insurance companies.
The necessary cooperation between the various professional groups (administration, the
medical profession and health insurance providers) was not a given, and no contractual
arrangement was reached. This should have been required and the possibility to purchase
the equipment should have been used as an incentive.

3.2.6. Tele-Stroke Diagnostics

Tele-stroke diagnostics consist of the transmission of clinical findings or a neurological
examination of a patient. For the neurological examination, an assistant must be available
on-site with the patient. The neurologist communicates and directs necessary examinations
and observes the result via the videoconferencing device.

Tele-stroke is a good application of telemedicine. However, it was less suitable in the
project presented here, which was based on (and took its influence from) the financing of
cost-intensive infrastructure/technology. The cost of equipment for tele-stroke is limited.
However, tele-stroke projects must achieve a very well-functioning division of labour
between doctors on duty (internists/surgeons), neuroradiologists, neurologists and inter-
ventional neuroradiologists. Independent from the project presented here, a Berlin-based
tele-stroke project was established and permanently financed in a German innovation
project [20]. Greifswald as a location is part of that independent project; the Pomerania
telemedicine project only provided equipment in one of the hospitals.

A facilitating factor of this and similar projects is the high treatment pressure: patients
who are diagnosed and treated early often have a very good outcome, while not being
treated within hours may result in death. The barrier for Pomerania was that, while the
initial investment needs are relatively low, telestroke projects have high requirements
concerning organisation and long-term-financing. However, Pomerania’s interest in tele-
stroke possibly motivated neurologists to agree on a project realised by their own profession
instead of a radiology-based project. This competition between specialists turned out to be
a very potent facilitator.

3.3. Results Regarding Management Issues

3.3.1. Special aspects of a Cross-Border, Binational Project

At the start of the project in 2001, different specialties and regions were unevenly devel-
oped with regard to medical services. The project originated between two pathologists lo-
cated in Pasewalk, Germany (10,000 inhabitants) and Poznań/Poland (536,000 inhabitants);
the latter is not even located in an area in which the EU usually funds Interreg projects.
Digitisation is a prerequisite of telemedicine in order to provide medical services over
a distance. That each side of the project was allowed to start from their own point of
development, rather than implementing identical infrastructure in both countries, was
an important facilitating factor. Great efforts were made to secure data privacy at this
stage. However, the solutions developed later turned out to be unfeasible. Nevertheless, in
retrospect, it was crucial to simply start with what was possible.

Facilitating factors were a personal relationship between the founders of the project,
the small scope of the initial project and the right timing, with digitisation only beginning
in pathology and radiology when the project began. Board meetings by physicians and
administrators from different German and Polish hospitals were considered the most
rewarding aspect of the project, and this was a facilitator in its own right.

An important barrier at a later stage was binational communication. While German
was a common language between the founders of the project, this was not the case for
all participants. Law offices, retired diplomats, translators and other organisations exist,
which give professional help in cooperation between different countries. However, the
leaders of the project, with its public funding, were reluctant to assign the very high fees
that specialised law offices commanded. In retrospect, this was incorrect, and a solution
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should and could have been found by negotiation. For a time, a law office that specialised
in German and Polish law provided this service by pointing out basic mistakes which
are all but incomprehensible in retrospect; the lack of a Polish translation for the German
association’s statutes was one such mistake. This probably made it impossible to co-opt
Polish members into the association. A translator was present at board meetings, but this
was no substitute for a more comprehensive service.

An academic position in psychology, anthropology, etc. financed by the project could
have been an important addition to ease integration. Two full-time positions (one in-house
counsel, one geographer) were financed for five years by EU project funding, and one, for
three more years by the participating hospitals (in-house counsel).

3.3.2. Participation of Multiple Hospitals

An “association” is easily established in Germany, with no capital necessary. It may
be tax-exempt, as was the case here. It had serious drawbacks, as associates were not
always aware of the financial risks. This led to the telemedicine project being perceived
as “not-for-profit” or “pro bono”, at least by the participating physicians, while in effect
it was a company with considerable financial risk and statutory liability (ranging into
an eight-digit sum). It was obviously vital for the project to responsibly handle financial
matters and to communicate this to the public. All investments had to be pre-financed
by the participating hospitals, with the association later receiving 90% of the funds. The
hospitals paid a percentage of the overhead according to the percentage of the EU funding
they received. One problem with the accounting was that all of the reimbursements were
via the German side and in Euros. Therefore, as this then had to be converted into Polish
Złoty, this was a considerable financial risk.

In summary, the formation of an association with a large number of participating
hospitals was itself deemed a barrier. While the association is preserved as a mantle under
a new board for possible use in the future, the project described here was developed differ-
ently. An attending clinician at Greifswald University Hospital (Holger Lode, paediatrician,
specialised in neuroblastoma treatment) with a highly specialised area of work and existing
referrals from Poland was chosen. His approach received Interreg funding.

3.3.3. Project’s Legal Issues

The experiences in telemedicine obtained in the project were partially transferred into
the national law of both countries. In the beginning of the project, the legal situation of
telemedicine as an innovative medical discipline was—with a few exceptions—unregulated
in both Germany and Poland and therefore unclear for the acting hospitals, hospital
administrators and physicians. The undefined legal situation was a barrier for all project
actors. Legal expertise in the project was a facilitating and essential factor. In connection
with the project, telemedical questions that arose were legally processed [21]. During the
project´s duration, first regulations for telemedicine were created in Germany and Poland.
This circumstance shows that the EU is able to influence, through its projects, national
framework and even national health systems, for which the EU has no real legitimisation.
Furthermore, the undisputed phrase that law follows the reality of life was confirmed.

Another legal aspect of the project was transporting pilot projects into routine care.
Physicians tend to cooperate based on personal trust, and this may help with starting pilot
projects. To integrate telemedicine into everyday use, contracts have to be drawn between
hospitals (teleradiology, telepathology) or between healthcare providers and hospitals.
This last aspect was neglected in the ophthalmology and otorhinolaryngology projects,
and these two projects faltered after funding ran out [16,19,20]. In the same way, it does
not make sense to give public funding to modalities that are ultimately privately owned.
Mammography screening is a multi-million Euro program owned by private practices in
Germany, and an attempt to create a comprehensive storage structure for the program was
futile [22].
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Calling for bids was organised by a specialised law office. Law students were em-
ployed to prepare and handle the calls. This worked very well. Procedures were established
in this manner, as well as the documentation of bids and contracts awarded.

Associations according to German law were registered. The structures providing this
service correspond to parts of local courts. As they were alien to Eastern Germany when
the project was first conceived (similar structures did not exist in the German Democratic
Republic), they did not function well and were a permanent nuisance to the project. The
influence of the project, however, was large enough to achieve improvements with support
from local politicians.

Problems arising during the implementation of the project were voiced at binational
government meetings by the project’s chairman.

4. Discussion

A review of telemedical literature in NIH PubMed does not reveal many multinational,
cross-border medical projects. The reasons for this may be the close connection between
medical care and a common language between doctor and patient (large price differences
between medical services in the border area for lifestyle interventions such as dental care,
cosmetic surgery and hair transplants are certainly an exception). The EU considers the
goal of cross-border medical care as a building block for the creation of a data network. To
this end, it supports projects from neighbouring regional states—in the presented example,
Germany and Poland. The prerequisite is the existence of a large city in the development
area—in the example, Szczecin, as the historical centre of the region.

Some working groups have named facilitators and barriers for the implementation of
telemedicine projects. However, these reports often concern doctor-to-patient telemedicine.
A more general recommendation is found in a manual [3] that identified facilitators for the
introduction of telemedicine:

1. Existence of a master plan at state level that is well coordinated and financially
resourced.

2. Infrastructure data security.
3. The presence of an electronic patient record with interoperability.
4. Adapted legislation.
5. Reimbursement.

Standardised procedures, on the other hand, were not considered necessary.
Brady et al. [4] described in 2021 how publicly available data can be used to prioritize

ophthalmic telemedicine. Their work can be understood as the identification of a facilitator.
Zanaboni et al. [5] described the early status of Norwegian telemedicine projects and above
all identified sparsely populated states as facilitators for the use of telemedicine. This
observation can be applied to our project. The same authors [6] later described facilitators
for the routine use of telemedicine in Norwegian hospitals. They identified an economy of
scale with greater benefits derived from very large telemedicine projects. To this end, the
authors reviewed different networks with figures for numbers of per capita consultations.
A lack of resources and political guidelines, especially those relating to reimbursement,
were described as barriers. A paper from Hawaii [7] proposed three recommendations for
improving medical care in unevenly populated areas that suffer from a lack of doctors. As
a facilitator, the establishment of a business model to reduce complexity is suggested. A
second point concerns the retention of doctors. The approach of the authors is in line with
our experience of coaching and training doctors who have remained in the region through
telemedical access to specialists on neighbouring islands. This was the rationale of our
Tele-ENT project.

The underlying principle of telemedicine is, in short, to expand the catchment areas
of medical services. In the Interreg phase described here, which lasted until 2020, this
was partially achieved separately on both sides of the border. In Germany, this mainly
concerned radiology and pathology as well as tumour conferences, while on the Polish
side, pathology and radiology structures were established.
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An expansion of the catchment areas of medical offers in the international area makes
sense in the case of highly specialised therapy for rare diseases. Accordingly, a paediatric-
led, cross-border project for the care of children with neuroblastoma was designed and
financed for the next project phase. The EU goal of cross-border care might thus be achieved
in a highly specialised and very small, but nevertheless important, field of medicine. A
legal framework for cross-border medical services remains desirable.

5. Conclusions

The following recommendations can be given for doctor-to-doctor telemedicine
projects with high investments in telemedical infrastructure:

• The establishment of telemedical infrastructure must often be asynchronous in large
areas, but always in cross-border projects. The causes are the different stages of
development at the beginning of the project.

• Before investing, the financing of future ongoing operations should be secured. An
interdisciplinary setup of the project team in EU funded projects is essential.

• Market power in the purchase of expensive technology is an important argument for
large infrastructure projects.

• Publicly funded infrastructure projects often require a financial commitment from
beneficiaries in the project; in the case shown here, this was 15%. This is ineffective, as
15% of projects that have already been planned by applicants can always be added
to applications. Thus, no additional funds in fact have to be raised for the funded
projects. It would make more sense to demand from beneficiaries that they add 15%
to 25% of the total costs for manpower, supporting the transition into daily practice.

• Cross-border telemedicine projects should have professional counselling from aca-
demic institutions or specialised law offices. A law office may also prepare binding
contracts, which should be signed before the rolling-out of equipment.

• Projects involving competing hospitals tend to suffer from being labelled as “altruistic”,
which is not a strategically beneficial term in societies founded on economic success.
Input into government decision-making and into regional government authority was
a way to resolve this “flaw”.
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Abstract: (1) Background: We aimed to compare the accuracy of after-hours CT reports created in a

traditional in-house setting versus a teleradiology setting by assessing the discrepancy rates between

preliminary and final reports. (2) Methods: We conducted a prospective study to determine the

number and severity of discrepancies between preliminary and final reports for 7761 consecutive

after-hours CT scans collected over a 21-month period. CT exams were performed during on-call

hours and were proofread by an attending the next day. Discrepancies between preliminary and gold-

standard reports were evaluated by two senior attending radiologists, and differences in rates were

assessed for statistical significance. (3) Results: A total of 7209 reports were included in the analysis.

Discrepancies occurred in 1215/7209 cases (17%). Among these, 433/7209 reports (6%) showed

clinically important differences between the preliminary and final reports. A total of 335/5509 of

them were in-house reports (6.1%), and 98/1700 were teleradiology reports (5.8%). The relative

frequencies of report changes were not significantly higher in teleradiology. (4) Conclusions: The

accuracy of teleradiology reports was not inferior to that of in-house reports, with very similar

clinically important differences rates found in both reporting situations.

Keywords: telemedicine; reporting; quality control; resident; diagnostic error

1. Introduction

With the rise of teleradiology, it has become possible to physically separate the sites of
image acquisition and interpretation of the resulting scans. Today, radiology reports are not
necessarily created at the same facility in which the images are acquired; instead, scans may
be read and reported on remotely by physicians in teleradiology networks. Teleradiology
networks typically consist of institutions providing 24/7 readings of imaging studies
and corresponding requesting institutions, such as smaller hospitals that do not have the
financial or personnel means to ensure the around-the-clock presence of radiologists in
their imaging departments [1]. The European Society of Radiology (ESR) conducted a
survey to obtain the current status of teleradiology [2]. In total, 70.8% out of 25 National
societies that responded to the survey answered that in their country, the outsourcing of
worklists to teleradiology companies is practiced, i.e., without direct contact between the
radiologist and the patient.

In comparison to in-house reporting, “teleradiologists typically do not have access
to additional information, including prior studies, plain films, or clinical data, which may
assist in-house radiologists in image interpretation” (quoted verbatim from [3]; also [4]). In
the teleradiology setting, the reader has to rely on the often-scarce information provided
by the referring physician. To protect medical data, prior films and medical files cannot
always be accessed remotely when reporting by teleradiology. Direct communication
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between the radiologist and the patient, which is considered a valuable source of clinical
information [5], is rarely possible in this setting. Even if it is not always feasible in the
daily routine of in-house diagnostics, it represents another source of information that is
lost in teleradiology.

According to German law, teleradiology is intended as an exception to close gaps in
care. It is authorized for reporting at night, on weekends, and on bank holidays (24/7 tel-
eradiology as another exception may be approved upon request under certain conditions
that must be met). Another requirement based on quality assurance (QA) aspects in the
German teleradiology setting is the so-called “regional principle”. According to this, the
teleradiologist may only work for locations that can be reached within a period of time
necessary for emergency care (approx. 45–60 min). In addition, there are strict require-
ments for the professional experience and qualifications of the radiologists participating in
teleradiological reporting [6–10].

A considerable number of existing quality control studies have been conducted in
North America. They identified a variety of items which might influence the quality of
after-hours reporting. Possible influencing factors were evaluated, such as whether reports
were done on a weekend versus a week day, whether reports were done during the hours
of a shift or not, and the complexity of a case [11]. There are some studies that reported
statistics of a QA program tracking reported disagreements that occurred in observing CT
examinations [3,12,13]. In these studies, residents were not involved in the reporting. To
the authors’ knowledge, no work comparable to the available studies has been reported
from Germany to date.

As such, this study was conducted to evaluate the relationship between the imaging
setting (teleradiology/network reporting vs. in-house reporting) and the frequency of
discrepancies between teleradiology and in-house reports. We evaluated the distribution of
neuroradiological examinations, as these are often evaluated separately in quality control
studies. We hypothesized that teleradiology reporting would produce more discrepancies—
caused, for example, by the lack of contact between the radiologist and the patient, possibly
missing preliminary examinations or insufficient clinical information.

2. Materials and Methods

The present study was conducted prospectively. It was reviewed and approved by
the local ethics committee and the staff council representing the affected doctors. The
teleradiology operation was approved by the local authorities in 2014. In accordance with
national laws and regulations, all participating radiologists were informed of the use of
their reports in the study. Consent for the necessary diagnostic measure was obtained from
all patients involved in the study as far as they were able to give their consent. There was no
additional or special risk for the patients from the study. All patient data in the reports were
anonymized for evaluation in consideration of the relevant data protection regulations.

CT imaging was chosen as the imaging modality of study since it represents the most
frequently requested imaging modality outside core working hours, for the interpretation
of which the radiologist is in demand.

2.1. Reporting Process during On-Call Shifts

During nighttime hours (10 p.m. to 7 a.m.) and during the daytime hours on week-
ends and bank holidays (7 a.m. to 10 p.m.), in accordance with the German teleradiology
law rules, on-call radiologists created preliminary reports for CT studies that were ei-
ther acquired in-house, on our own scanners, or received via the teleradiology network
(8 smaller hospitals). The files were sent with point-to-point encryption via a virtual private
network (VPN). As is common practice in radiology departments, the on-call radiologist
was able to involve an attending radiologist if they decided that the case required a higher
level of expertise (for details on the roles of the different readers, see Table 1). During the
next regular daytime shift, all of these reports were reviewed by an attending radiologist
and corrected if necessary. The resulting proofread final reports were considered to be
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gold-standard. A correlation of the gold-standard findings with the clinical outcome of
patients was not possible, as all data including the patient data and reporting radiologist
were required to be deleted in accordance with data protection regulations.

Table 1. Role of the different members of the Department of Radiology involved in the present study.
The upper and middle boxes refer to reporting, while the lower box refers to the acquisition of the
study data used for assessing discrepancies.

Radiologist on call First-line reporting.

Attending

Could be consulted by the radiologist taking
call; proofread reports the next
morning/workday; the resulting final report
was considered “gold-standard” for this study.

Senior radiologist

Two attendings specializing in radiology and
neuroradiology, respectively; independently,
they graded differences as either “clinically
unimportant” or “clinically important” and
differences as either “in detection” or “in
interpretation”.

2.2. Availability of Supplementary Information

With in-house imaging, radiologists had full access to all information available on
the patient within the Picture Archiving and Communication System (PACS), as well as
the hospital and radiological information systems (RIS). This includes prior studies and
clinical data such as secondary diagnoses and operative reports. Further information could
be acquired by communicating with the referring physician and patients themselves.

For reporting in the teleradiology network, the on-call radiologist could communicate
with the referring physician on site and, more importantly, communicate with the technician
on site performing the exam, usually focusing on the proposed examination protocol. There
was no direct patient–radiologist communication. The written request from the referring
colleague communicated clinical information. Prior studies could not be accessed since the
requesting and receiving hospitals did not share a PACS or RIS.

2.3. Exclusion Criteria

CT studies which fulfilled one or more of the following criteria were excluded: scans
that were not reported the next weekday; scans where the initial report was edited before
the next weekday (the initial findings were then overwritten and could no longer be
reviewed; any changes made to the report could no longer be traced); scans aborted mid-
examination; scans related to an intervention, report created by attending; no verification
(in this case, the preliminary report could not be released and a comparison with the
gold-standard was impossible at the time of the study).

The contact to an attending was not seen as an exclusion criterion, as it is common
practice in both in-house reporting and teleradiology.

2.4. Data Processing

The preliminary on-call reports and the proofread versions were retrieved from our
PACS and anonymized by a member of the study group. All data containing the identity
of the patient, the reporting radiologist, or the hospital in which the scans were acquired
were deleted.

The blinded reports were compiled side-by-side into a single document in order to
allow for direct comparisons. In order to evaluate the report quality, both versions (on-
call and proofread by a senior attending) were compared, and any apparent differences
were highlighted.
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2.5. Assessing the Discrepancy Level

If any discrepancies between the on-call report and the proofread final report were
identified, the compiled documents were presented to two senior radiologists (>20 years
work experience each), who assessed the changes in terms of their clinical and therapeutic
consequences. The two readers made their decisions independently. Discrepancies were
assigned to five severity levels and subsequently categorized to groups already used in
previous publications in the context of studies on second-opinion consultations in radiology
(see Table 2) [14,15] (Score 2: addition of a secondary diagnosis such as “maxillary sinus
mucocele” when asked about acute ischemia; Score 3: clinically unimportant change in
interpretation such as “radiopaque foreign material” to “DD clips”; Score 4: e.g., addition
of a missed fracture; Score 5: clinically important change in interpretation such as the age
of an ischemic infarction). In case of disagreement, the two readers would discuss this and
reach a final consensual decision. One of the readers was also involved in the finalization
of on-call reports. There was an interval of several months between the two activities
so that no recollection of the circumstances of individual examinations or findings could
be assumed.

Table 2. Consensus score [14,15] of final interpretation versus preliminary interpretation in in-house
and teleradiology reports. In-house and teleradiology reports were subject to clinically unimportant
and clinically important differences at similar rates.

Discrepancies

Setting

In-House
[n (%)]

Teleradiology
[n (%)]

Sum
[n (%)]

1 No difference 4633 (84.1) 1452 (85.4) 6085 (84.4)

2
Clinically unimportant
difference in detection

168 (3) 31 (1.8) 199 (2.8)

3
Clinically unimportant
difference in interpretation

373 (6.8) 119 (7) 492 (6.8)

4
Clinically important
difference in detection

193 (3.5) 51 (3) 244 (3.4)

5
Clinically important
difference in interpretation

142 (2.6) 47 (2.8) 189 (2.6)

sum 5509 (100) 1700 (100) 7209 (100)

2.6. Statistical Analysis

2.6.1. Sample Size

Our aim was to minimize changes in the reporting patterns which might occur if radi-
ologists were aware of an ongoing monitoring process. This is why, instead of determining
a certain case number, we instead assigned a period (21 months) over the course of which
all CT reports would be evaluated. As a result, because a study duration was assigned
rather than a required number of cases, there was a larger number of cases than a pure
power calculation would warrant. This was done with the aim of minimizing the on-call
radiologists’ required attention over time.

2.6.2. Testing

We calculated the absolute and relative frequencies of different severities of report
changes and considered the acquisition locations as a risk factor for report changes. Sta-
tistical significance of differences in the examined frequencies of discrepancies between
comparison groups was tested using the chi-square test. In addition, the chi-square test
was used to evaluate the distribution of neuroradiological cases. This aimed at making
comparison with other studies easier: Neuroradiological examinations are often evaluated
separately in quality control studies. In this study, we intended to investigate emergency
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imaging of all body regions. Statistical analysis was performed using SPSS for Mac OS
(Version 25; IBM, Chicago, IL, USA).

3. Results

3.1. Number of Cases

Within the planned study period, a total of 6037 in-house CT reports and 1724 tel-
eradiology reports were requested outside our hospital’s core working hours (nighttime
hours: 10 p.m. to 7 a.m.; weekends and bank holidays: 7 a.m. to 10 p.m.) (Figure 1). For
136/6037 (2.3%) and 1/1724 (0.1%) cases, no digital report was created, 234/6037 (3.9%)
and 21/1724 (1.2%) reports were edited under unclear circumstances, 5/6037 (0.1%) and
2/1724 (0.1%) scans were aborted mid-procedure, 140/6037 (2.3%) scans were directly
related to an intervention (performed by an attending), 6/6037 (0.1%) reports were created
by an attending, and in 7/6037 (0.1%) cases, no “gold-standard” report was available at the
end of the study period. After excluding these cases, 5509 in-house reports and 1700 telera-
diology reports remained for analysis. There were 24 cases excluded from the teleradiology
arm (1.4%) and 528 from the in-house arm (8.7%). The higher percentage of in-house cases
that were excluded had several reasons: interventional CT, whose reports were excluded
because it is performed by attendings, was only performed in-house (without intervention
388 cases were excluded, 6.6%). Immediate clinical feedback led to more reports being
changed in-house during the night. Teleradiology reports were reported without additional
consultation and therefore more promptly delivered. Unlike in-house reports, they had to
be reported; the report could not be delayed till the next morning, e.g., in agreement with
the referring physician.

Figure 1. Flowchart of study. During the study period, 7761 consecutive after-hours CT scans were performed. After
applying the exclusion criteria, a total of 7209 reports were included in the study.

3.2. Frequency of Report Changes in In-House/Teleradiology Reporting

To investigate the influence of the examination setting on report discrepancies, we
calculated error rates and risks in both groups. In the 7209 CT reports which were included
in the analysis, discrepancies occurred in 1215 cases (16.9%). A total of 433 clinically
important differences between the preliminary report and gold-standard report were
identified (6%) (see Table 2).

In the in-house setting, clinically important differences occurred in 335 of 5509 reports
(6.1%). Among the 1700 teleradiology reports that were included, 98 underwent clinically
important differences (5.8%) (see Figure 2, Table 2).
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Figure 2. Relative frequencies of no differences, clinically unimportant differences, and clinically
important differences for the teleradiology (black bars) versus in-house setting (grey bars). The
relative frequencies of reports to which no changes were made; clinically unimportant and clinically
important differences did not differ significantly between the teleradiology and the in-house setting
(X2(2) = 1.828, p = 0.401, n = 7209). Found in 5.8% vs. 6.1% of cases, respectively, clinically important
differences to CT reports were similarly rare in both teleradiology reporting and in-house.

Overall, the frequency of any kind of report changes was neither significantly higher
nor lower for the teleradiology reports compared to in-house imaging (p > 0.05). This
suggests that in-house reporting and reporting of CT exams transmitted via teleradiology
did not differ significantly with regard to reporting errors.

3.3. Scanned Body Regions

To exclude the possible influence of different compositions of the CT reports evaluated
in teleradiology and in-house studies, we compared the anatomical regions examined in
each arm (see Table 3 for details on the different types of examination). For both in-house
imaging and teleradiology, cranial CTs were the most frequently requested examinations,
followed by head/neck and abdominal studies. The absolute number of CT images of
each body region and their relative frequency in relation to the total number of CT studies
in the respective setting type are provided in Table 3 and Figure 3. Results suggest the
two types of reporting (network/teleradiology vs. in-house) did not differ in terms of the
composition of the exam types.

3.4. Distribution of Reader Groups

Reports were created by 20 different radiologists. All radiologists were equally in-
volved in both in-house and teleradiology reporting. Residents created 5005/7209 (69%)
reports. The remaining 2204/7209 cases (31%) were read by board-certified radiologists.
The distributions did not differ significantly between in-house and teleradiology reports
(residents 69% vs. 71%; board-certified radiologists 31% vs. 29%).

This suggests that the work experience of the reporting radiologists did not differ
significantly between in-house reporting and teleradiology.
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Table 3. Type of CT examinations included in this study for both settings. The three most frequently
examined body regions are highlighted. The proportion of exams from the neuroradiological field,
which is often evaluated separately in quality control studies, did not differ between the two groups,
as indicated by a low effect size, Cramers V. However, there was a statistical difference due to the large
number of cases included. (65.4% vs. 69.2%; X2(1) = 8.127, p = 0.004, n = 7209, Cramers V = 0.034).

Scanned Region
Teleradiology In-House

n [%] n [%]

Cranium 1057 62.2 2777 50.4
Head/Neck
(incl. Cervical Spine)

119 7.0 828 15.0

Neck 4 0.2 35 0.6
Chest 83 4.9 239 4.3
Abdomen 248 14.6 714 13.0
Chest/Abdomen 48 2.8 124 2.3
Pelvis 11 0.6 23 0.4
Limbs/Joints 35 2.1 266 4.8
Spine (excl. C-Spine) 24 1.4 108 2.0
Multiple Trauma 41 2.4 241 4.4
Other 30 1.8 154 2.8
sum 1700 100.0 5509 100.0

Figure 3. Proportion of examined body regions in the total number of examinations for both settings. A total of 83.8%
(teleradiology) and 78.4% (in-house) of all examinations consisted of a cranial CT, a head and neck CT or an abdominal CT.
The portions were comparable in both study arms.
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4. Discussion

In the present study, report changes did not occur more frequently in the teleradiology
setting than in the in-house comparison group. Teleradiology provides affordable full-time
access to diagnostic imaging for smaller hospitals [16] by capitalizing on the 24/7 presence
of radiologists in larger hospitals. Thrall [17] pointed out that emergency teleradiology has
a limited range of indications and does not need results of prior examinations or clinical
history; it therefore works well. Nevertheless, adequate report quality should be a top
priority in teleradiology: today’s teleradiology reporting of emergencies may extend into
daytime network reporting [1] and become the new standard. In-house and teleradiology
reports did not differ with regard to reporting errors (Figure 2). Clinically important
differences to the preliminary reports were made in 6.1% (in-house, n = 335) and 5.8%
(teleradiology, n = 98) of cases, respectively.

4.1. Frequency of Report Changes in In-House and Teleradiology Reports

The accuracy of reports generated by teleradiologists is a recurrent concern. According
to the authors’ knowledge, there is a lack of published QA data from German teleradiology
networks. Due to the special legal regulations in Germany, comparability with international
studies is limited. Additionally, the QA studies available for teleradiology were conducted
without the participation of residents.

The clinically important difference rates observed in this study’s teleradiology arm
are similar to the 2010 findings by Platt-Mills et al. [3]. Their study, which included
head and body CT, revealed that major changes occurred in 6% of reports, while 73%
remained entirely unchanged. Teleradiologists there also did not have access to any
preliminary images. A study by Hohmann et al. [12] also reported 79% examinations
without discrepancies. Previous examinations were provided to the teleradiologists. For
both of these studies, teleradiology reports were audited at the department in which the
images were acquired rather than at the teleradiology facility itself.

In a 2003 publication by Erly et al. [13], only emergency cranial CT reports were
examined. Major discrepancies were found to be less common. In total, 2.0% of the
reports created by board-certified general radiologists via teleradiology were subject to
significant disagreement. Complete agreement was observed in 95% of cases. However,
the examinations were sent as an image file. In this way, only the brightness and contrast
of the images could be edited by the radiologists.

4.2. Frequency of Report Changes Depending on Other Factors

Several studies have found that in the context of in-house reporting, the discrepancy
rate correlates inversely with work experience [18–21]. Meanwhile, Cooper et al. [22] and
Mellnick et al. [23] propose that a positive correlation between work experience and report
discrepancies stems from the increasing responsibility that comes with increased work
experience [23]. They found that the risk for report changes was significantly higher
when the reader had less than four years of work experience. Lam et al. [24] found that
discrepancies were much more likely to occur during the night shift. Developing a protocol
for communicating discrepancies between on-call and final reports is essential. The most
dreaded consequence of a discrepancy—a change in patient outcome—rarely occurs and
only takes place in less than one percent of cases [19,25] but may be necessary and must
be addressed. In our institution, difficult cases which gave rise to discrepancies (such as
appendicitis, urinary calculus, small-bowel obstruction, diverticulitis) [25] are discussed in
the daily morning rounds. Residents may thus familiarize themselves with typical off-hour
problems before they start taking calls.

4.3. Does a Lack of Clinical Information and Access to Prior Studies Affect Report Quality?

If it is too costly and time-consuming for the teleradiologist to obtain clinical infor-
mation, there is a risk that examinations will be interpreted with incomplete preliminary
information [17]. So far, there are few data on whether a relative lack of clinical information
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affects the quality of teleradiology reports. Millet et al. [26] found that the absence of
clinical information did not negatively influence diagnostic accuracy in abdominal CT.
Mullins et al. [27] saw reports for stroke CTs improve when clinical data were available;
MR results did not change, however. A review by Loy and Irwig [28] cited several papers
focused on the bias inherent to clinical information, which may inadvertently direct the
radiologist’s attention toward evidence of the clinically suspected diagnosis. Interestingly,
in light of this, sufficient clinical information was found to help to establish a rational
examination protocol in a study by Dang et al. [29].

The limitations of this study result from the strict requirements regarding the anonymiza-
tion of the collected data. It was not possible to calculate the influence of individual
radiologists on the group performance. In addition, it was not possible to follow up on
patients whose examination underwent a change. Thus, only the final report could be
used as a gold standard. The influence of changes on the outcome of patients could not
be determined.

5. Conclusions

In conclusion, teleradiologists need to work with the lack of personal contact with
patients, technical staff, and referring physicians. This did not compromise the accuracy of
CT reports compared to a traditional in-house setting. The frequency of reports to which
changes were made did not differ significantly between the teleradiology and the in-house
setting. Clinically important differences to CT reports were similarly rare in both settings.
Our study, as such, establishes teleradiology as a realizable way of providing after-hours
radiology services.
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Abstract: The field of social sciences has become increasingly important in eHealth. Patients currently

engage more proactively with health services. This means that eHealth is linked to many different

areas of Social Sciences. The main purpose of this research is to analyze the state-of-the-art research

on eHealth from the perspective of social sciences. To this end, a bibliometric analysis was conducted

using the Web of Science database. The main findings show the evolution of publications, the most

influential countries, the most relevant journals and papers, and the importance of the different areas

of knowledge. Although there are some studies on eHealth within social sciences, most of them

focus on very specific aspects and do not develop a holistic analysis. Thus, this paper contributes

to academia by analyzing the state-of-the-art of research, as well as identifying the most relevant

trends and proposing future lines of research such as the potential of eHealth as a professional

training instrument, development of predictive models in eHealth, analysis of the eHealth technology

acceptance model (TAM), efficient integration of eHealth within public systems, efficient budget

management, or improvement in the quality of service for patients.

Keywords: eHealth; mHealth; telemedicine; telehealth; social sciences; bibliometrics

1. Introduction

The Internet is a phenomenon that no one could have predicted [1]. It has changed the
way we access and use the information [2]. A few years ago, textbooks were the only source
of medical information. Nowadays, anyone can find medical information by accessing the
Internet from almost anywhere in the world [3]. As a consequence, people have changed
the way they search for information and make decisions about their health [4]. The interest
of people in the Internet as a tool for searching for health information is rising rapidly and
online searches about health have increased in recent years [5]. Therefore, the way people
deal with health issues is changing [1]. For example, it has been found that for pediatric
consultations, mothers tend to use Internet resources frequently [6,7].

The delivery of health services using information and communication technologies
(ICT), particularly the Internet, has been named eHealth, a concept that first appeared in
2000 [8]. Gunther Eysenbach published one of the most used definitions in 2001. This author
defined eHealth as an emerging field at the intersection of medical informatics, public
health, and business referring to the health services and information delivered or enhanced
through the Internet and related technologies [9].

While Eysenbach’s eHealth definition seems to be the most accepted one, universal
consensus does not exist [10]. There are essential eHealth aspects such as ICT [1], delivery
of healthcare services [11], the Internet [10], and that it is user-centered [12], so eHealth can
be understood to be the delivery of user-centered healthcare services through ICT, mainly
the Internet.

Some distinctly important advantages are offered by eHealth. Numerous authors
highlight its accessibility as one of its most relevant features [13,14]. It is important for users
to access health information quickly and easily so they can resolve their queries [2,15,16].
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A high degree of accessibility helps to overcome social and geographical barriers, allowing
people with fewer resources to access health information and healthcare services [15,17,18].
Another important advantage is the possibility of tailoring interventions via eHealth [19],
as personalized medical treatment can be more effective [20,21].

Users can be empowered by eHealth with regard to health issues [22]. This could help
them make better informed health decisions [14,18] and aid in improving communication
between people and healthcare providers [1], as eHealth is often used to supplement physi-
cians’ recommendations [14,15]. Another advantage mentioned in the scientific literature
is that eHealth allows people to access community support by facilitating participation in
online support forums or in peer-support forums on social media [15,23].

The above notwithstanding, there are also some disadvantages to eHealth. For ex-
ample, there are some serious concerns within the scientific community about the quality
of the health information available online [24,25] as health-related web contents are not
always trustworthy or validated [26–28]. Furthermore, information is not always easily
understandable or suited to the needs of people [15,24,29]. Some authors have also de-
scribed differences concerning the access to electronic health information as it relates to the
digital divide, a concept that implies that socioeconomically disadvantaged subpopulations
are less likely to have access to technologies, including eHealth interventions or health
information available on the Internet [30,31]. Socioeconomically disadvantaged families
also experience difficulty accessing technology or the Internet [32]. Some authors have
described that the appearance of new medical technologies has often increased health
disparities [33]. Technical issues could also become a barrier that can contribute to the
digital divide [34].

The lack of education or training in the use of eHealth interventions could also generate
personal barriers that can limit the access to health information [25]. Some authors state
that eHealth can generate distrust among ordinary people. Numerous users are fearful
of eHealth interventions and are reluctant to perform online health searches [24]. Parents
in particular can feel unsafe and wary when searching health information [35]. Another
disadvantage mentioned in the literature are the risk of adverse effects [2,27], especially
in children [16]; concerns about privacy and security [34,36]; stress or anxiety of the users
when performing health searches [37]; interference in the doctor–patient relationship [30];
or ethical and legal concerns [36].

Numerous authors propose some guiding principles for the future of eHealth. The prin-
ciples most frequently mentioned in the literature are user empowerment and the improve-
ment of their health and eHealth literacy [34,38]. In addition, healthcare providers should
get involved in eHealth development and delivery [28]. It is also important to search for
ways to minimize the digital divide [39] such as improving the usability of the eHealth
interventions [25] and to investigate methods to ensure eHealth quality [10] and to develop
ethical aspects [32].

The world of medicine and health cannot be understood without taking into account
the social sciences. Social sciences cover such disciplines as psychology, education, man-
agement, public administration, communication, biomedical social sciences, social work,
sociology, demography, information and documentation, legislation, etc. The strong focus
on the detection and treatment of diseases has given way to a more holistic understanding
of the patient, considering both purely medical and social aspects and placing the patient
at the center of everything. Patienthood is a social state rather than simply a biological
one. Thus, “psychosocial variables influence, not only the social and personal meanings
of illness, but also the risk of becoming ill, the nature of the response to illness and its
prognosis” [40].

The joint analysis of the social sciences and health allows professionals to understand
not only medicine, but also the socioeconomic and political approach to disease and
health. This interdisciplinary research facilitates different levels of analysis in the health
sciences between social, psychological, behavioral, and biomedical scientists [41]. Thus,
interdisciplinary efforts provide researchers new opportunities to refine theories and
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methods. Specifically, social scientists play different roles in health services, such as framing
the issues, intelligence, monitoring, evaluation and assessment, and implementation,
contributing to a better understanding of complex organizational arrangements, structures,
cultures, management approaches, financial arrangements, and regulatory processes [42].

Social sciences have become an important approach in eHealth studies in the 21st
century, and even more significantly in the last decade, a period in which the number
of publications and citations has increased notably, as well as the number of areas of
knowledge involved in these topics. The rapid and continuous development of new ICT
has substantially changed the way in which people interact with healthcare systems [43].
Scholars have moved from debating what eHealth is to examining the technical, human,
organizational, and social factors that influence eHealth practices [44–46]. Nowadays,
eHealth research is an interdisciplinary field where information science and technology,
biomedical science, and social sciences collaborate and create synergies [47].

To all of the above, the abrupt appearance of the coronavirus (COVID-19) pandemic
during 2020 must also be added. As this pandemic requires quarantine and isolation,
face-to-face visits in medical care have been considerably reduced. This situation calls for
rapid and creative changes to the way healthcare is delivered and the development and
adoption of new approaches to eHealth resources [48], which should be developed from a
global vision, a vision which obviously must include the social sciences.

Despite the importance of this issue, there is a scarcity of systematic literature on
what aspects of eHealth have been investigated from the perspective of social sciences.
Although the existing bibliometric research addresses specific issues, it does not offer
a holistic analysis of eHealth from the perspective of the social sciences. Along these
lines there are some interesting papers to be found on topics such as health information
systems [49]; Internet studies as a field of social science research around four primary
research themes, including eHealth [50]; health informatics competences [51]; physical
activity, sedentary behavior, and diet-related eHealth and mHealth [52]; international
mobile health research [53]; or the most cited authors in a specific journal [54]. The two
papers that carry out a more general analysis of these topics were written by Jiang et al. [41]
who performed a systematic review of eHealth literature in the mainstream social science
journals by testing the applicability of the 5A categorization (i.e., access, availability,
appropriateness, acceptability, and applicability) and Son et al. [55] who reviewed the main
research topics and trends of international eHealth through social network analysis.

The main objective of this research was to analyze the research on eHealth from the
perspective of the social science areas of knowledge. To contextualize analysis of the
relevant areas of knowledge of the documents analyzed, essential aspects like the number
of publications per year, the most influential countries, and the most influential journals
and papers are studied.

Therefore, this research contributes to academia by analyzing the state-of-the-art
research on eHealth from the perspective of various social science areas of knowledge.
It also identifies the main trends and proposes future lines of research and topics. To achieve
this objective, a bibliometric analysis was developed. This paper has the following structure.
First, the methodology is explained. Second, findings are presented to know the annual
evolution of publications and citations, the most influential countries on these topics,
the most relevant journals and papers, the most important areas of knowledge involved
in this field, and significant trends. Finally, in conclusion, future lines of research are
proposed.

2. Materials and Methods

For this study, a bibliometric analysis of the scientific literature in the Web of Science
(WoS) Core Collection and a cluster analysis of the co-citation and keyword variables were
carried out. The bibliometric analysis was based on the qualification and parameterization
of scientific production as well as the influence of authors, publications, and institutions on
a certain topic. The origin of this type of analysis is found in the article by Garfield [56]
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and his attempts to evaluate and quantify the importance of scientific articles. In 1960,
he created the Institute for Scientific Information, which later became the WoS database.

Bibliometry, as defined by Pritchard [57], is the application of mathematical and
statistical methods to books and other communication methods. Therefore, and from this
perspective, bibliometric analysis is a meta-analytic systematic review. The success of this
methodology lies in the possibility of measuring scientific activity to quickly and concisely
study the antecedents, evolution, trends, and future lines of research of a topic, measuring
scientific activity around a given topic.

The impact or influence is measured by the number of citations an article receives.
In an attempt to unify both positions, Hirsch [58] created an index that provides a balance
between the number of articles and citations (h-index).

The procedure used for data collection and subsequent information analysis has been
described by Moed [59] or Brereton et al. [60], although there are multiple variants to
these procedures. The first stage consisted of selecting the WoS Core Collection database,
a source that has been commonly used in bibliometric analysis. It was the first compiler of
indexes and a precursor in measuring the impact of journals and covers more research fields
compared to other databases. In addition, WoS allows filtering the indicators, prioritization
by number of citations, and its journal impact index guarantees the quality of articles.

Five search terms were chosen based on the prevailing literature on the topic: eHealth;
mHealth; Telemedicine; Mobile Health; and Telehealth. The documents published in
2020 were eliminated, as the year had not finished at the time of this study and their
inclusion could distort the analysis. Furthermore, other documents such as grey literature,
books, or proceedings were excluded, limiting the search to the articles published in
indexed journals.

The documents in the WoS database are classified into five broad categories: Arts and
Humanities; Life Sciences and Biomedicine; Physical Sciences; Social Sciences; and Technol-
ogy, with all the journals assigned to at least one research area. The final research criterion
used was to refine the search by the research related to social sciences (Figure 1).

 

Refine: Social Sciences research area*

n = 1867

Exclude: book chapters and proceedings papers
n = 18,529

Refine search: articles only
n = 20,166

Exclude: publications from 2020
n = 34,964

Search terms: mHealth; Telemedicine; Mobile Health; Telehealth
n = 37,741

Selection of Database: WoS Core Collection

Figure 1. Methodology wtages used in the bibliometric analysis. * Archaeology; Area Studies; Biomedical Social Sciences;
Business & Economics; Communication; Criminology & Penology; Cultural Studies; Demography; Development Studies;
Education & Educational Research; Ethnic Studies; Family Studies; Geography; Government & Law; International Relations;
Linguistics; Mathematical Methods In Social Sciences; Psychology; Public Administration; Social Issues; Social Sciences—
Other Topics; Social Work; Sociology; Urban Studies; Women’s Studies.
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Once the data had been cleaned, the results were exported to files compatible with
statistical analysis tools, performing a cluster analysis through the VOSviewer [61]. The text
mining functionality of this tool supports the generation of keyword term maps based
on a corpus of documents [62]. A term map is a two-dimensional map in which words
are located in such a way that the distance between them can be taken as an indication of
the affinity of the terms. The relatedness of terms is determined by their cooccurrence in
documents [63].

The analysis was limited to the terms that were repeated a minimum of 25 times
(111 keywords) with the keywords used for the search eliminated from the count. In this
analysis, keywords from authors, journals, as well as the most repeated words in titles and
abstracts were selected.

This study also used fractional counting at the network level since it can normalize
the relative weights of links and thereby clarify structures in the network [64].

3. Results and Discussion

3.1. Publications Per Year

The first article to focus on the eHealth topic included in the WoS database in the Social
Sciences research area is “Some implications of Telemedicine” by Ben Park and Rashid
Bashshur published in 1975 in Journal of Communication [65]. This paper, published before
the existence of the Internet, prophesied that healthcare delivery by two-way television
might change roles, authority, and distribution of healthcare professionals.

The number of scientific publications on eHealth during the 20th century is small,
even in the late 1990s when mobile phones and the Internet were in common use. It was
not until the decade of 2010 when there was an important increase with the number of
publications doubling from 199 to 433 (Table 1). Since 2005, there has been a continuous
annual growing of manuscripts, with 2019 having the largest number of publications (317).

Table 1. Number of articles per year.

Years Articles Citations h-Index Mean ≥100 ≥50 ≥25 ≥10

2015–19 1103 8475 35 7.68 6 19 70 256
2010–14 433 11,096 53 25.63 15 60 140 279
2005–09 199 5962 44 29.96 7 39 85 125
2000–04 109 4735 33 43.44 6 20 45 72
1995–99 29 1575 16 54.31 3 6 11 16
1990–94 0 0 0 0.00 0 0 0 0
1985–89 1 10 1 10.00 0 0 0 1
1980–84 1 6 1 6.00 0 0 0 0
1975–79 6 59 4 9.83 0 0 1 2

Total 1881 31,918 73 16.97 37 144 352 751

The comparison between articles including all research areas and those limited to the
Social Sciences (Figure 2) shows a similar evolution. The lack of differences confirm that the
topic is developing in the same way across the whole scientific community. This parallel
evolution does not happen when the field does not generate significant scientific interest.
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Figure 2. Evolution in the number of articles (Social Sciences (SS) and all areas).

3.2. Most Influential Countries

The ten countries with the largest number of articles published related to eHealth
in Social Sciences are shown in Table 2. The USA is the country with the largest number
of articles published and citations, with 7.38 times more articles than the second-ranking
country, Australia. Among the rest of the countries shown in the table, two groups can be
distinguished: Australia, the UK, and Canada have a similar number or articles, between
104 and 150, while the remaining countries (Netherlands, Germany, Spain, China, Italy,
South Africa) have a smaller number of publications, between 36 and 71.

Table 2. Number of articles and citations by country.

Country A C h Mean ≥250 C ≥100 C ≥50 C ≥25 C ≥10 C ≥5 C ≥1 C

USA 1107 20,229 59 18.27 6 22 92 228 485 687 1026
Australia 150 2913 29 19.42 0 5 17 35 65 87 136

UK 148 3038 30 20.53 1 5 16 36 64 82 132
Canada 104 1475 20 14.18 0 1 4 17 44 61 91

Netherlands 71 1347 22 18.97 0 1 7 20 34 45 61
Germany 50 557 11 11.14 0 1 2 6 13 23 42

Spain 41 448 10 10.93 0 1 3 5 11 15 30
China 37 2636 14 71.24 4 6 7 10 16 21 32
Italy 36 370 10 10,28 0 0 1 5 10 20 32

South
Africa

36 186 8 5,17 0 0 0 1 5 12 28

A: articles; C: citations; h: h-index.

When analyzing the number of citations, the USA is once again the highest-ranking
country, 6.65 times higher than the second country, the UK. Nevertheless, the h-index of
the USA is only 1.96 times higher than that of the UK. If we consider mean citations per
article, the largest number corresponds to China, with a mean of 71.24 citations per article.
This figure seems very high, as it is 3.47 times higher than mean citations of the second
most cited country, the UK, considering that China has only 37 articles compared to the
3038 articles published in the UK.

Only three of the ten countries (USA, China, and UK) have eleven articles with more
than 250 citations. It is important to highlight that although the USA and China have a
similar number of articles in this category, the number of articles published in the USA
(1107) far outnumbers the 37 articles published in China. In addition, when considering
the categories with more than 100, 50, and 25 citations, China has larger figures than
expected when considering the number of articles published and the h-index of each
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country. Perhaps, this particular finding could benefit from a more detailed analysis of the
Chinese articles to find how they are cited and interconnected. If Chinese articles are not
taken in account, the rest of the figures of these rankings are in the same order as the list of
countries with more published articles.

Another aspect to consider when analyzing the most influential countries is the
number of citations in relation to the population of each country (Table 3). In this case,
the country with the largest number of citations per population is Australia, followed by
the Netherlands, the USA, the UK, and Canada. Despite the large number of absolute
citations and the large number of citations per article, China is in the last place due to its
large population.

Table 3. Mean citations per population.

Country Population * Citations Mean

Australia 25,499,884 2913 0.114236
Netherlands 17,134,872 1347 0.000079

USA 331,002,651 20,229 0.000061
UK 56,286,961 3038 0.000054

Canada 37,742,154 1475 0.000039
Spain 46,754,778 448 0.000010

Germany 83,783,942 557 0.000007
Italy 60,461,826 370 0.000006

South Africa 59,308,690 186 0.000003
China 1,439,323,776 2636 0.000002

* Source of population data: United Nations 2020 [66].

It seems understandable that a country like the USA has the largest number of publi-
cations due to its large population, but surprisingly this is not the case for China, perhaps
because their literature production about eHealth is less focused on social sciences. Analyz-
ing the rest of the list, we can find countries like Australia, the UK, Canada, the Netherlands,
or Germany, which seem to be more concerned with the development of the social sci-
ences literature.

3.3. Most Influential Journals and Papers

When analyzing the most influential journals related to eHealth in the social sciences,
the number of articles published on these topics and the number of citations have been taken
into account. The results of the said analysis can be seen in Table 4 in the ranking of the
most influential journals. The ranking is led by the journal Professional Psychology Research
and Practice with 54 articles and 1768 citations in addition to having the highest h-index (23).
This journal is followed by Patient Education and Counseling (a medical journal covering
patient education and health communication) with 44 articles and 880 citations and by
Journal of Health Communication (focused on information and library science), 42 articles
and 1026 citations. However, the high impact of the journal Social Science & Medicine is very
striking since, with 24 articles on this topic, it has received 1043 citations, which makes it
the journal with the largest number of citations per article (43.46).

When focusing the analysis on the articles published in the 21st century, which
represent 96.52% of the total articles on these topics, it can be observed (Figure 3) that the
most relevant journals are Social Science & Medicine (43.26), Professional Psychology Research
and Practice (28.53), Journal of Health Communication (24.43), Patient Education and Counseling
(19.33), and AIDS and Behavior (13.71).
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Table 4. Most relevant journals on the eHealth and Social Sciences.

Journal Articles Citations h-Index Cit/Paper IF-5 Years Q

Professional Psychology Research and Practice 54 1768 23 32.74 2.077 Q2
Patient Education and Counseling 44 880 18 20 3.408 Q1
Journal of Health Communication 42 1026 17 24.26 2.358 Q2

Digital Health 39 106 5 2.72 - -
AIDS and Behavior 38 520 14 13.68 3.298 Q1

Psychological Services 33 335 10 10.15 2.201 Q2
Psycho-Oncology 31 215 7 6.94 3.581 Q1

Frontiers in Psychology 24 147 7 5.92 2.723 Q2
Social Science & Medicine 24 1043 15 43.46 4.241 Q1

Journal of Pediatric Psychology 23 384 11 16.7 3.505 Q3

Cit/paper: citations per paper; IF-5 years: impact factor in the last five years; Q: quartile in WoS.
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Figure 3. Citations per article of journals in the 21st century.

It is noteworthy that, of the top ten journals that publish articles about eHealth in the
field of Social Sciences, 50% of them have psychology applied to various fields as their
main field of research. This is the case for Professional Psychology Research and Practice (psy-
chology, multidisciplinary), Psychological Services (psychology, clinical), Psycho-Oncology
(psychological aspects of oncology), Frontiers in Psychology (psychology, multidisciplinary),
and Journal of Pediatric Psychology (child psychology).

Figure 4 shows a cluster analysis of co-citations among the most relevant journals
in this field of research. This analysis is based on the existence of thematic similarity
between two or more documents that are co-cited in a third and subsequent work. Thus,
the higher the frequency of co-citation, the greater the affinity between them. Three main
clusters were identified. Two of them are directly related to aspects of psychology led by
Professional Psychology Research and Practice and Journal of Pediatric Psychology. The other
cluster is more focused on health and medicine, with a central axis in the journal Social
Science & Medicine, which has close relationships with Journal of Health Communication and
with Patient Education and Counseling among others.

With regard to the articles with the largest number of citations (Table 5), three of
the top ten were published in Information & Management, a journal mainly focused on the
field of information systems and applications which, in this case, are focused on eHealth.
The four articles with the most citations have a common central element, the analysis of
the technology acceptance model (TAM). The first article, “Why do people play on-line
games? An extended TAM with social influences and flow experience” [67] analyzes the
reasons why people play online games using the TAM model, connecting social influ-
ence, psychology, and telemedicine technology (778 citations). The second article (with
756 citations), “Examining the technology acceptance model using physician acceptance
of telemedicine technology” [68], studies the applicability of the TAM model for explain-
ing physicians’ decisions for accepting telemedicine technology in the healthcare context,
providing some implications for user technology acceptance research and telemedicine
management. The third article, with 548 citations, “Information technology acceptance
by individual professionals: A model comparison approach” [69] represents a conceptual
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replication of several model comparison studies, TAM, theory of planned behavior (TPB),
and a deconstructed TPB model, by analyzing the responses to a survey on telemedicine
technology acceptance. The fourth article, “Investigating healthcare professionals’ deci-
sions to accept telemedicine technology: an empirical test of competing theories” [70],
has 425 citations and evaluates the extent to which prevailing intention-based models,
including TAM, TPB, and an integrated model, could explain physicians’ acceptance of
telemedicine technology.

Figure 4. Cluster analysis of co-citations among the most relevant journals.

Table 5. Articles with the largest number of citations on eHealth and social sciences.

R Article C Journal Reference C/Y

1

Why do people play on-line
games? An extended TAM
with social influences and

flow experience

778
Information &
Management

Hsu, C.L.; Lu, H.P.
(2004) [67]

51.87

2

Examining the technology
acceptance model using
physician acceptance of
telemedicine technology

756
Journal of

Management
Information Systems

Hu, P.J.; Chau, P.Y.K.; Sheng,
O.R.L.; Tam, K.Y. (1999) [68]

37.80

3

Information technology
acceptance by individual
professionals: A model
comparison approach

548 Decision Sciences
Chau, P.Y.K.; Hu, P.J.H.

(2001) [69]
30.44

4

Investigating healthcare
professionals’ decisions to

accept telemedicine
technology: an empirical test

of competing theories

425
Information &
Management

Chau, P.Y.K.; Hu, P.J.H.
(2002) [70]

25.00
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Table 5. Cont.

R Article C Journal Reference C/Y

5

mHealth for Mental Health:
Integrating Smartphone

Technology in Behavioral
Healthcare

375
Professional

Psychology-Research
and Practice

Luxton, D.D.; McCann, R.A.;
Bush, N.E.; Mishkind, M.C.;

Reger, G.M. (2011) [71]
46.88

6

Zooming In and Out:
Studying Practices by

Switching Theoretical Lenses
and Trailing Connections

273 Organization Studies Nicolini, D. (2009) [73] 27.30

7
A Behavior Change Model for

Internet Interventions
266

Annals of Behavioral
Medicine

Ritterband, L.M.; Thorndike,
F.P.; Cox, D.J.; Kovatchev,

B.P.; Gonder-Frederick, L.A.
(2009) [74]

26.60

8

Examining a model of
information technology

acceptance by individual
professionals: An
exploratory study

259
Journal of

Management
Information Systems

Chau, P.Y.K.; Hu, P.J.
(2002) [75]

15.24

9
Interdisciplinary Chronic Pain

Management Past, Present,
and Future

215 American Psychologist
Gatchel, R.J.; McGeary, D.D.;

McGeary, C.A.; Lippe, B.
(2014) [72]

43.00

10
Technology acceptance model

for internet banking: an
invariance analysis

208
Information &
Management

Lai, V.S.; Li, H.L. (2005) [76] 14.86

R: rank; C: total citations; C/Y: citations per year.

Another featured article is “mHealth for Mental Health: Integrating Smartphone
Technology in Behavioral Healthcare” [71], which provides an overview of smartphone
use in behavioral healthcare and discusses options for integrating mobile technology
into clinical practice (375 citations; 4688 citations per year). The article “Interdisciplinary
Chronic Pain Management Past, Present, and Future” [72], with 215 citations, is the third
document with a large number of citations per year (43). This research discussed the
major components of a true interdisciplinary pain management program, providing future
directions in this field, including telehealth.

3.4. Relevant Areas of Knowledge

Given that eHealth is an issue that cuts across many disciplines, it is not surprising
that research on this issue is of interest to researchers in numerous fields and involves many
areas of knowledge within the social sciences. Among these knowledge areas, Psychology
is the most relevant, with 778 articles published on this topic and 14,158 citations, having an
h-index of 54 (Table 6). This corresponds to the findings on the most relevant journals since,
as previously stated, half of those in the top ten have psychology as applied to various
fields as their main field of research. Thus, psychology becomes the human dimension
of digital health. The future of psychology should be conducted through technology and
patient empowerment. Patient social networks are becoming an important instrument
for empowering patients and their families in managing their disease. Thus, one of the
challenges faced by eHealth with online interventions is for people to change their attitude
and/or their behavior. Among the many articles of Psychology on this topic, there are 19
that have more than 100 citations, two of which even exceed 250 citations: “mHealth for
Mental Health: Integrating Smartphone Technology in Behavioral Healthcare” [69] and “A
Behavior Change Model for Internet Interventions” [74].
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Table 6. Relevance of areas of knowledge on eHealth and social sciences.

Area of Knowledge Articles Citations h-Index Average

Psychology 778 14,158 54 18.20
Education & Educational Research 248 2513 25 10.13

Biomedical Social Sciences 234 3878 34 16.57
Business & Economics 189 5911 32 31.28

Social Sciences—Other Topics 170 2010 25 11.82
Communication 135 2207 26 16.35

Social Work 59 482 13 8.17
Government & Law 57 364 9 6.39

Linguistics 52 888 18 17.08
Family Studies 40 431 13 10.78

Social Issues 31 486 11 15.68
Sociology 25 756 12 30.24

Public Administration 19 195 7 10.26
Women’s Studies 16 161 6 10.06

Development Studies 15 68 5 4.53
Criminology & Penology 12 71 5 5.92

Geography 10 110 5 11.00
International Relations 4 16 2 4.00

Urban Studies 4 6 1 1.50
Area Studies 3 6 2 2.00

Ethnic Studies 3 51 2 17.00
Demography 1 3 1 3.00

Other areas which play a prominent role in research on this topic are Education &
Educational Research (248 articles); Biomedical Social Sciences (234); Business & Economics
(189); Social Sciences—Other Topics (170); and Communication (135). In relation to Education &
Educational Research, it is observed that medical care has evolved from more disease-focused
care to patient-directed care, including in the field of health education. The works published
in this area mainly investigate aspects related to the design, implementation and evaluation
of eHealth education. The aim is to empower health professionals and the general public in
terms of health education and digital skills, to promote healthy lifestyle habits and achieve
a more active and participatory role in relation to individual and community health and
well-being. The article with the most citations (168) in this field is entitled “Internet use for
health information among college students” [77].

Of import within the field of Biomedical Social Sciences is the development of methods of
analysis and processing of biomedical signals and images to aid the diagnosis of different
pathologies, as well as the generation of predictive models based on bio-signals and
symptoms with applications in the field of eHealth. “Quantifying the body: monitoring
and measuring health in the age of mHealth technologies” [78] is the paper with the largest
number of citations in this area (189).

While the Business & Economics area ranks fourth in terms of the number of articles
published, this field has the largest average number of citations per paper (31.28), which
shows the interest of academia in this topic. In fact, the paper with the largest number of
citations on this topic is precisely from the Business & Economics area, the aforementioned
work by Hsu and Lu [67] “Why do people play on-line games? An extended TAM with
social influences and flow experience”. Another of the great challenges of research in this
field is an efficient integration of eHealth within public systems, with special focus on the
reduction of costs and, at the same time, of patient waiting times.

Another aspect to consider is the interrelation between the areas of knowledge, that is,
papers related to social sciences and medicine that are framed in more than one area at
the same time. For this, a Venn diagram was used, considering the six research areas with
more than 100 papers published in this field (Figure 5). Once again, it can be seen that
Psychology plays the central role as it is linked with the other five areas, highlighting its
close relationship with Biomedical Social Sciences, sharing 51 papers, and with Education

194



Healthcare 2021, 9, 108

& Educational Research (20). Psychology shares other papers with Social Sciences—Other
Topics (10), Communication (10), and Business (1).

 

Figure 5. Venn diagram of the interrelations between areas of knowledge. P: Psychology; E: Education
& Educational Research; M: Biomedical Social Sciences; B: Business & Economics; S: Social Sciences—
Other Topics; C: Communication.

Furthermore, the Social Sciences—Other Topics area, given its transversal nature,
shares research with other fields, such as Biomedical Social Sciences (26), and Business &
Economics (4). Specifically, there is a paper by Fraser [79] published in International Journal
of Transgenderism, which is framed within three different research areas: Psychology,
Biomedical Social Sciences, and Social Sciences—Other Topics.

3.5. Keywords and Trends

The analysis found 105 keyword terms that appeared a minimum of 25 times. It seems
logical that the most used terms are “care”, “technology”, “Internet”, and “health”. It is
noteworthy that the fifth most used term is “depression”, a finding that seems consistent
with the fact that Psychology was the most relevant area of knowledge found in the
analysis. On the other hand, despite Education & Educational Research being the second
most relevant area, the first term related with this area, “education”, was ranked 15th.

The analysis of the terms showed five clearly identified clusters (Figure 6). The cluster
in red color is focused on the nuclear terms related to eHealth, with keywords that define
the concept, like “information”, “communication”, “management”, “technology”, “online”,
or “digital health”. The technology and innovation features of eHealth are also represented
by keywords like “implementation”, “innovation”, “services”, “system”, or “technology”,
as these are essential aspects of the very concept of eHealth. Other important keywords
found were “challenges”, “barriers”, or “ethics”, which reflect some of the problems that
the eHealth can deliver. Finally, one of the most important aspects of eHealth, the users,
is featured in this cluster with terms like “patient” or “people”, but also with “attitude”,
“perceptions”, “satisfaction”, or “user acceptance”.

The cluster in green is focused on three aspects related with the social features of the
use of eHealth. Keywords like “adolescents”, “adults”, “behavior”, “behavior-change”,
“engagement”, “smartphone”, or “self-efficacy” are related with aspects of the users that
use eHealth interventions. Keywords like “alcohol”, “health”, “HIV”, “obesity”, “physical
activity”, or “prevention” reflect the medical aspects that concern people. Finally, keywords
like “smartphone”, “social support”, or “text messaging” reflect how eHealth has the
potential to allow people to access community support.
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Figure 6. Cluster visualization of co-occurrence of keywords.

The cluster in blue highlights the importance of psychological and mental health
aspects in this field, grouping keywords like “anxiety”, “depression”, “mental health”,
“psychotherapy”, or “telepsychiatry”. This seems logical as Psychology is the most relevant
area of knowledge found in the analysis, reflecting that this field is an important part of
the eHealth literature when analyzed from the point of view of the social sciences.

The cluster in yellow reflects two related aspects, women and health literacy, as women
use more eHealth and have more health and eHealth literacy. Finally, the fifth cluster
(purple color) is related to children, with keywords like “autism”, “children”, “students”,
and “young children”.

A trend analysis showed that some of these terms currently being used most frequently
are “acceptance”, “acceptability”, “engagement”, “eHealth literacy”, or “barriers”. As has
been found in the literature, this seems to confirm that the main guidelines for future
research concern acceptance, increasing eHealth literacy of users, and overcoming barriers.

4. Conclusions

Social sciences play an increasingly important role in eHealth. From the information
obtained, the time-based progression of the number of articles published is particularly
significant, showing the interest of the scientific community in this topic and a constant
increase in research works. The USA is the country with the largest number of published
articles and citations. China has the largest mean number of citations per article, although
the highest h-index belongs to the USA. Only three of the ten countries (USA, China,
and UK) have 11 articles with more than 250 citations. Finally, Australia is the country with
most citations considering the population of the country.

With regard to the number of articles and the h-index, Professional Psychology Re-
search and Practice is the most influential journal on eHealth in Social Sciences, followed
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by Patient Education and Counseling and Journal of Health Communication. However,
Social Science & Medicine has the largest number of citations per article. A cluster analysis
of co-citations in the most relevant journals identified three main clusters. Two of them are
focused on different aspects of Psychology, which is very significant since 50% of the most
relevant journals in this field are closely related to this area of knowledge. The other cluster
is directly related to Health and Medicine. Most (96.52%) of the articles on these topics
have been published in the 21st century. The analysis of the TAM is the central axis of some
of the most cited articles. Nevertheless, there are other subjects of great interest, such as
the information systems field oriented to eHealth, the use of smartphones in behavioral
healthcare, the applications for integrating mobile technology into clinical practice, or an
interdisciplinary pain management program in eHealth.

It is notable that the relationship of patients with the health system has changed.
The concept of the passive patient has fallen by the wayside in favor of people who are
more active and involved in all processes. As a result, eHealth is a very transversal field
for the different areas of social sciences. Although there are many areas of knowledge and
different fields of Social Sciences related to research on eHealth, Psychology stands out
above all others. One of the important research trends in this field will continue to be the
empowerment of patients (and people in general) through technology, as well as helping
change people’s attitudes and behaviors, based on psychological theories and principles.
This will offer new opportunities for both theoretical and applied research.

Other relevant areas in this field are Education & Educational Research; Biomedical
Social Sciences; Business & Economics; Social Sciences—Other Topics; and Communication.
Education & Educational Research is focused on the design, implementation, and evalu-
ation of eHealth education. Based on the findings of this research, it appears that in the
future, there will be a growing interest in the acquisition of knowledge at different levels
related to both health education and digital skills addressed to different groups, both medi-
cal professionals and people in general (particularly, in certain targeted population groups,
such as elderly or ethnic groups).

The potential of eHealth as a professional training instrument will improve the quality
of care provided to the population, as well as develop new sources of knowledge and
research. In Biomedical Social Sciences, there are still good opportunities for research with
regard to the methods of processing biomedical signals and the development of predictive
models in eHealth. Business & Economics is the area with the largest average number
of citations per paper. One of the challenges of research in this field is the analysis of
the eHealth TAM (as well as the extended version), including cultural and social factors,
to empirically assess the validity of its constructs, mainly its level of helpfulness, usability,
and intention to use eHealth services. Other important research lines are the efficient
integration of eHealth within public systems, efficient budget management, or the improve-
ment in the quality of service for patients, and improved perception by all stakeholders.
In addition, social sciences have tools to measure different types of outcomes.

Furthermore, it is important to highlight the interaction between the different areas of
knowledge. Once again, Psychology plays a central role, sharing research with the other
most relevant areas, mainly with Biomedical Social Sciences and Education & Educational
Research. For future research, it would be necessary to promote even more synergy between
different disciplines.

The most used terms were grouped into five main clusters focused on nuclear terms
related to eHealth are “care”, “technology”, “Internet”, and “health”; aspects related to
social features and the use of eHealth; and psychological and mental health aspects in this
field. The main trends found are studying acceptability, increasing eHealth literacy of users,
and overcoming barriers.

This work is not exempt from some limitations, some of which could be the basis for
future research. Thus, in addition to the use of WoS, other quantitative and/or qualitative
tools could also be utilized. Finally, other terms related to eHealth, including broader
concepts, could be analyzed.
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Abstract: This study aimed to evaluate the intaglio surface trueness of interim dental crowns fabri-

cated with three 3-dimensional (3D) printing and milling technologies. Dental crown was designated

and assigned as a computer-aided design (CAD) reference model (CRM). Interim dental crowns were

fabricated based on CRM using two types of 3D printer technologies (stereolithography apparatus

and digital light processing) and one type of milling machine (n = 15 per technology). The fabricated

interim dental crowns were obtained via 3D modeling of the intaglio surface using a laboratory

scanner and designated as CAD test models (CTMs). The alignment and 3D comparison of CRM

and CTM were performed based on the intaglio surface using a 3D inspection software program

(Geomagic Control X). Statistical analysis was validated using one-way analysis of variance and

Tukey HSD test (α = 0.05). There were significant differences in intaglio surface trueness between the

three different fabrication technologies, and high trueness values were observed in the milling group

(p < 0.05). In the milling group, there was a significant difference in trueness according to the location

of the intaglio surface (p < 0.001). In the manufacturing process of interim dental crowns, 3D printing

technologies showed superior and uniform manufacturing accuracy than milling technology.

Keywords: trueness; 3D printing; milling; interim dental crown; digital dentistry; dental device

1. Introduction

The introduction of dental computer-aided design and computer-aided manufacturing
(CAD/CAM) systems in dental clinics is rapidly increasing [1–3]. Errors in operator expe-
rience and materials have been reduced due to the dental CAD/CAM system compared
with the conventional methods [4,5]. Moreover, the CAD/CAM method is superior to the
conventional method in terms of production time efficiency [6]. The CAD/CAM process
manufactures dental prostheses in the order of scanning, CAD, and CAM processes [7,8].
The steps of CAD/CAM workflow are as follows: acquire a virtual work model using
a 3-dimensional (3D) scanner and produce a working cast using a 3D printer, milling
machine, or design a prosthesis in CAD software without a model and then use 3D printing
and milling technologies to fabricate dental prostheses [9,10].

The manufacturing industry verifies that manufactured products are accurately manu-
factured [11–13]. Compared with visual inspection, this can save time, and the use of a 3D
scanner makes accurate and quantitative analysis possible [14]. Because of the spread of
dental CAD/CAM technology, several studies have evaluated the 3D data [15–18]. The ac-
curacy was evaluated by measuring the distance from any reference point or shape [19,20].
Furthermore, in many previous studies, 3D analysis was performed by an overlapping
CAD reference model (CRM), which is the basis of evaluation, and CAD test model (CTM),
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which is the subject of evaluation, and calculating the distances of the corresponding 3D
modeling points [21–23]. The alignment process, overlapping with CRM on software, is an
important point in the 3D analysis, and the overlapping process is generally studied via
best fit alignment [24].

In the dental CAD/CAM system, CAM can be largely divided into milling and addi-
tive technologies, and 3D printing, an additive technology, is widely used for manufacture
of dental interim prosthesis [25–28]. Srinivasan et al. [29] and Kalberer et al. [30] evaluated
the 3D trueness to verify the volume change of the intaglio surface of the fabricated dental
prosthesis. Jang et al. [31] has reported that the intaglio surface trueness of dental prosthe-
ses can affect marginal and internal fit [31]. Additionally, previous studies reported that,
considering the cement space of dental prostheses, intaglio surface trueness of <100 µm
was considered as a clinically applicable range [32,33]. Therefore, evaluation of the intaglio
surface trueness according to various CAM technologies is still necessary for application to
dental clinical practice.

Various 3D printer technologies are being applied for the fabrication of dental prosthe-
ses [25–28]. In the fabrication of dental prostheses using 3D printing with photosensitive
resin, stereolithography apparatus (SLA), and digital light processing (DLP) technologies
are popularly used [25–28]. The DLP 3D printer is a technology that uses a light projector
to project an image to polymerize photosensitive resin [28]. The SLA 3D printer is a tech-
nology that performs layer-by-layer polymerization using ultraviolet laser to polymerize
photosensitive resin [27]. Previous studies evaluated the trueness of dental prostheses
using SLA and DLP techniques [25–28], but studies evaluating both SLA and DLP tech-
nologies are still lacking. Also, studies evaluating trueness according to specific areas of
intaglio surface of interim crowns are still lacking, except for the present study.

Thus, this study aimed to evaluate the intaglio surface trueness of interim dental
crowns manufactured with two types of 3D printer technologies (SLA and DLP) and one
type of milling machine. The null hypothesis of this study was that there is no difference in
the intaglio surface trueness of interim dental crowns manufactured with three types of
CAM technologies.

2. Materials and Methods

A maxillary typodont model (D85DP-500B.1; Nissin dental, Kyoto, Japan) was used
for the fabrication of resin abutment. The abutment of maxillary right first molar was
prepared with an occlusal reduction of 1.5 mm, an axial reduction of 1.2 mm, a finish line
design of the chamfer, and a convergence angle of 6◦. The abutment was prepared using
diamond bur (852.FG.014; Jota AG, Rüthi, SG, Switzerland) with a diameter of 1.4 mm
round end taper shape, and medium roughness. A dental CAD software program (3Shape
Dental System, version 17.3.0, 3Shape, Copenhagen, Denmark) was used to design a virtual
crown with cement space of 80 µm based on the abutment scanned using a desktop scanner
(E1, 3Shape, Copenhagen, Denmark) and acquired virtual model was designated as CRM
(Figure 1).

Based on CRM, interim crowns were fabricated through the three manufacturing
technologies (n = 15 per technology). For 3D printing technology, SLA (ZENITH U, Dentis,
Daegu, Korea) with photopolymer resin for interim crown (ZMD-1000B; Dentis, Daegu,
Korea) and DLP (RAYDENT Studio, Ray, Seoul, Korea) with photopolymer resin for
interim crown (RAYDENT C&B; Ray, Seoul, Korea) were used (Figure 1). The 3D printing
conditions were the same for both SLA and DLP, and CRM was printed under the condition
of a 180◦ building angle with the occlusal surface facing the platform and a layer thickness of
25 µm. The manufacturer did not provide any information about the value or compensation
for shrinkage that occurs during polymerization of the photopolymer resin. The interim
crowns were fabricated with milling technology using a milling machine (CORITEC 250i,
imes-icore GmbH, Eiterfeld, Germany). The milling rotary instruments were set to the
smallest size of 0.6 mm, and wet processing was performed with prefabricated resin block
(PMMA DISK; Yamahachi dental mpg, Aichi Pref, Japan). The tool path was automatically
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set using standard CAM software programs (iCAM V4.6; imes-icore GmbH, Eiterfeld,
Germany), and the milling process was performed under the following conditions (machine
configuration: five axis; milling strategy: one spindle using different instruments in z-level;
diameters rotary instruments (mm): 2.5, 1.0, 0.6). The fabricated interim crowns were
washed to remove all residual resin following the manufacturer’s recommendations. After
interim crowns were fabricated, each interim crown was rinsed with 95% isopropyl alcohol
for 5 min using an ultrasonic cleaner, followed by post-polymerization using a curing unit
(CUREDEN; Kwang Myung DAICOM, Seoul, Korea) for 15 min [28]. A desktop scanner
(E1, 3Shape, Copenhagen, Denmark) was used to scan the fabricated interim crowns under
high-precision scan mode by designating the intaglio surface using, and the scanned virtual
crowns were designated as CTMs (Figure 1). The desktop scanner used in this study was
calibrated before the scanning process, and according to the manufacturer, it has a scanning
accuracy of less than 10 µm. The acquisition of CTMs was completed within 2 h after the
second curing in consideration of the volume change according to the passage of time.

Figure 1. Procedure for intaglio surface trueness of interim crowns fabricated with SLA 3D printing, DLP 3D printing, and
milling technologies.

The 3D trueness analysis was performed using 3D inspection software (Geomagic
Control X v2018.0.0, 3D Systems Inc., Rock Hill, SC, USA). The CRM was loaded in the
3D inspection software, and three regions were segmented to compare the 3D trueness
according to the location of the intaglio surface (Figure 1). The marginal region was the
region from the crown margin to 1 mm, the axial region was the region from the end of the
margin region through the axial to the point where the flat surface of the occlusal region
began, and the occlusal region was the region remaining from the end of the axial region
(Figure 1).

After preparing CRM, CTMs were imported and initial alignment was performed.
Based on the segmented intaglio surface, best fit alignment was performed, and the sam-
pling rate was set to all point clouds (100%) of the intaglio surface (Figure 1). Analysis
of 3D trueness was performed by calculating all point cloud points of the segmented
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intaglio surface of CRM. At this time, each corresponding data point in CRM and CTM
was calculated as the root mean square (RMS) value as shown in Formula (1):

RMS =
1√
n
·
√

n

∑
i=1

(X1,i − X2,i)
2 (1)

For all data points, X1,i is the CRM, X2,i is the coordinate at i time in the CTM, and n
is the number of all data points measured in each analysis. The RMS value shows how the
shapes of different virtual models are different in 3D, and a low RMS value means a high
degree of matching of the superimposed virtual models. The 3D comparison was shown as
a color difference map, and a range of ±100 µm (20 color segments) and a tolerance range
of ±10 µm (green) were specified (Figure 1).

To determine the sample size, an appropriate sample size was calculated as 15 using
power analysis (G*Power v3.1.9.4, Heinrich-Heine-Universität, Dusseldorf, Germany)
based on the results of five pilot experiments (SLA group: 24.7 ± 6.0 µm; DLP group:
30.8 ± 2.8 µm; milling group: 49.0 ± 2.1 µm; effect size [f] = 0.86; actual power = 99.94%;
power = 99.9%; α = 0.05). All data analyses were performed using statistical software
(IBM SPSS Statistics v23.0, IBM Corp, Armonk, NY, USA). First, the normal distribution of
the data was investigated using the Shapiro–Wilk test, and the normal distribution of the
obtained data was confirmed. Therefore, the differences between groups were confirmed
using one-way analysis of variance (ANOVA) and analyzed using the Tukey HSD test
as a post hoc test (α = 0.05). The interaction effect between the evaluated region and the
manufacturing technology was verified using two-way ANOVA (α = 0.05).

3. Results

There were significant differences in intaglio surface trueness in all regions among
SLA, DLP, and milling groups (Table 1; p < 0.001). Except for the occlusal region, there
was no significant difference between SLA and DLP in the whole, marginal, and axial
regions (Table 1; p > 0.05), but there was a significant difference between the milling and 3D
printing group (Table 1; p < 0.05). SLA (23.6 ± 5.3 µm), DLP (29.0 ± 3.6 µm), and milling
groups (36.9 ± 4.4 µm) showed significantly higher intaglio surface trueness in the order in
the occlusal region (Table 1; p < 0.05). According to the results of two-way ANOVA, there
was a significant interaction effect between the evaluated region and the manufacturing
technology (F = 3.699; p = 0.002).

Table 1. Comparison of intaglio surface trueness (µm) of interim crowns fabricated with SLA 3D printing, DLP 3D printing,
and milling technologies.

Evaluated
Region

Manufacturing Mean SD
95% Confidence Interval (CI)

Minimum Maximum F p

Lower Upper

Whole
region

SLA 25.7 A 5.1 22.8 28.6 18 34.2

66.684 <0.001 *DLP 29.5 A 3.3 27.6 31.3 24.4 36.8

Milling 44.8 B 5.5 41.7 47.9 33 53.2

Marginal
region

SLA 26.7 A 4.4 24.2 29.2 20.2 34

45.267 <0.001 *DLP 27.0 A 4.7 24.3 29.6 20.4 37.3

Milling 45.2 B 8.2 40.6 49.8 35.8 59.4

Axial
region

SLA 27.6 A 6.5 24 31.3 17.6 40.9

47.674 <0.001 *DLP 30.9 A 5.6 27.8 34 23.6 40.6

Milling 50.5 B 8.3 45.9 55.2 34 63.1
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Table 1. Cont.

Evaluated
Region

Manufacturing Mean SD
95% Confidence Interval (CI)

Minimum Maximum F p

Lower Upper

Occlusal
region

SLA 23.6 A 5.3 20.6 26.5 17 33.4

32.288 <0.001 *DLP 29.0 B 3.6 26.9 31 24.3 35.5

Milling 36.9 C 4.4 34.4 39.3 29.1 45.5

* Significant difference by one-way ANOVA; p < 0.05. Different letters indicate significant differences among the three methods by the
Tukey HSD test (p < 0.05).

There was no significant difference between SLA (p = 0.219) and DLP groups according
to the locations of the intaglio surface (p = 0.122) (Table 2). However, the milling group
showed a significant difference according to the locations of the intaglio surface and showed
lower intaglio surface trueness in the occlusal region than that in the marginal and axial
regions (Table 2; p < 0.001).

Table 2. Comparison of intaglio surface trueness (µm) of interim crowns according to the evalu-
ated regions.

Evaluated Region SLA DLP Milling

Whole region 25.7 ± 5.1 29.5 ± 3.3 44.8 ± 5.5 A

Marginal region 26.7 ± 4.4 27.0 ± 4.4 45.2 ± 8.2 A

Axial region 27.6 ± 6.5 30.9 ± 5.6 50.5 ± 8.3 A

Occlusal region 23.6 ± 5.3 29.0 ± 3.6 36.9 ± 4.4 B

F 1.52 2.016 10.025

p 0.219 0.122 <0.001 *
* Significant difference by one-way ANOVA; p < 0.05. Different letters (A and B) indicate significant differences
among the evaluated regions by the Tukey HSD test (p < 0.05).

In the color difference map, SLA and DLP did not have a specific color distribution in
any region, but in the milling group, there was a high amount of trueness (red color) in the
axial and angular regions of the intaglio surface (Figure 2).

 

Figure 2. Schematic of color difference map of intaglio surface trueness of interim crowns. (A) SLA. (B) DLP. (C) Milling.

4. Discussion

In this study, three types of fabrication technologies were used to fabricate interim
dental crowns and the intaglio surface trueness was evaluated. The null hypothesis of this
study was rejected because there was a significant difference in the intaglio surface trueness
of interim dental crowns manufactured with the three types of CAM technologies (p < 0.05).
Previous studies have evaluated the intaglio surface trueness of dental crowns [29,30]. In
a previous study, the 3D trueness of zirconia crowns fabricated using 3D printing was
evaluated to investigate the potential application of 3D printing technology in a study
on dental ceramic restorations [34]. In another study, the 3D printing group (38 ± 12 µm)
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showed significantly better intaglio surface trueness than the milling group (43 ± 12 µm)
(p < 0.001), and the 3D printing group showed the same results as those reported in this
study that showed superior results in the 3D printing group (Table 1) [25]. Another
previous study evaluated the trueness of zirconia crowns fabricated by printing with
3D gel deposition technology [26]. The results of this study (Table 1) and the study by
Wang et al. [25] showed that the 3D printing group showed significantly better intaglio
surface trueness than the milling group. In light of the results of previous studies and this
study, 3D printing technology is considered to have sufficient manufacturing accuracy for
clinical application.

The intaglio surface trueness of dental prostheses fabricated with various materials
and methods have been reported in many previous studies [25–30,34]. A previous study
has reported the intaglio surface trueness (28.5 ± 6.0 µm) of interim crowns fabricated by
printing with SLA technology [27]. These results showed similar trueness to that of this
study (SLA: 25.7 ± 5.1 µm) (Table 1). Another previous study has reported the intaglio
surface trueness (24.91 ± 3.62 µm) of interim crowns fabricated by printing with DLP
technology [28]. These results showed trueness similar to that observed in this study (DLP:
29.5 ± 3.3 µm) (Table 1). Furthermore, another previous study has reported the intaglio
surface trueness (42.9 ± 4.4 µm) of crowns fabricated with milling technology [7]. These
results showed trueness similar to that observed in this study (milling: 44.8 ± 5.5 µm)
(Table 1). Therefore, despite the differences in in vitro experimental conditions, the results
of previous studies and this study showed similar trends. Additionally, previous clinical
studies evaluated the intaglio surface trueness (43.8 ± 11.7 µm) of ceramic crowns fabri-
cated with milling technology [8] and showed trueness similar to that observed in this
study (milling: 44.8 ± 5.5 µm). In previous studies, the intaglio surface trueness of <100 µm
was recommended based on the cement space of the fixed dental prosthesis as an error
may occur in the manufacturing process [32,33]. Therefore, in terms of intaglio surface
trueness, interim crowns evaluated in this study can be considered appropriate for clinical
use, and 3D printing can be considered to have superior intaglio surface trueness than
milling technology.

The trueness evaluation of interim crowns performed in previous studies compared
the results of milling technology and 3D printing technology [27,28]. The present study
compared the results of SLA and DLP of 3D printing technology, including the comparison
of milling technology and 3D printing technology, and reported the similar trueness of
interim crowns between SLA and DLP (Table 1). The results of this study showed that the
interim crowns fabricated with 3D printing technology showed the same results regardless
of the evaluated region, but the milling technology showed different results of trueness
according to the locations of the intaglio surface (Table 2). Furthermore, a previous study
reported that milling technology could have different trueness according to the region of
the intaglio surface of the crown [7]. In this study, Figure 2C shows an error in the angle
region between the axial and occlusal regions, and these results are similar to those reported
in previous studies [6,7]. During the milling process, this machining error was reported as
a machining limitation due to the size of the diameter of the burr used and may appear
when machining angle region of the intaglio surface [6,7]. Milling technology reported that
the number of burrs affects the accuracy, and trueness is better when using many burs [6].
Using a smaller diameter bur increases manufacturing time due to increased tool path, but
may yield better trueness results because a wider range of bur diameters is created [6]. For
this reason, using a smaller diameter burr allows for more accurate milling of the angle
region of the intaglio surface [7]. Therefore, the error in the angle region between the axial
and occlusal regions in crowns must be considered during milling. Additional studies
through trueness evaluation using burs of various diameters are needed.

SLA and DLP technologies are one of the most used additive manufacturing processes
in dentistry, offering the highest accuracy and resolution of any printing technology,
superior detail and smooth surface finish [35]. It is then built through the deposition of
successive layers of a photosensitive material that polymerizes easily [35]. SLA is the first
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rapid prototyping technology with a reliable printing process [27]. So far, SLA is the only
photocurable 3D printing technology that can print large-format models, but SLA has a low
printing rate due to the curing rate caused by the movement of the laser beam, so the larger
the model, the slower the printing speed [36]. However, DLP 3D printing uses a digital
projector screen to flash an image in layers across the entire platform, curing all points at
the same time, so it has the advantages of high precision and fast manufacturing times [37].
However, only small sized objects can be printed because the projection size is limited to
ensure high precision. Volume shrinkage is also reported as a disadvantage of photocurable
3D printing [28]. Milling technology, a subtractive manufacturing process, reproduces
shapes by cutting using milling equipment and burs [30]. Therefore, the material loss is
relatively large, and the reproducibility is limited by the diameter of the burr [30].

This study has some limitations. First, the effect of intaglio surface trueness on the
actual clinical environment should be investigated via additional clinical studies. Second,
3D printers and milling equipment from more diverse manufacturers should be used
to confirm additional results. Third, the trueness of external surfaces including intaglio
surfaces should be evaluated via additional studies.

5. Conclusions

Based on the findings of this in vitro study, the following conclusions were drawn.
The 3D printing and milling technologies used in this study showed clinically acceptable
intaglio surface trueness (<100 µm) of interim crowns. The milling technology showed
inferior trueness in the reproduction of angle region than occlusal region. However, interim
crowns fabricated with 3D printing technologies (SLA and DLP) can reproduce more
uniform and superior intaglio surface trueness than milling technology.
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Abstract: With the development of mobile and wearable devices with biosensors, various healthcare

services in our life have been recently introduced. A significant issue that arises supports the smart

interface among bio-signals developed by different vendors and different languages. Despite its

importance for convenient and effective development, however, it has been nearly unexplored. This

paper focuses on the smart interface format among bio-signal data processing and mining algorithms

implemented by different languages. We designed and implemented an advanced software structure

where analysis algorithms implemented by different languages and tools would seem to work in one

common environment, overcoming different developing language barriers. By presenting our design

in this paper, we hope there will be much more chances for higher service-oriented developments

utilizing bio-signals in the future.

Keywords: data mining; bio-signal analysis; bio-signal repository; execution engine; bio-signal

monitoring

1. Introduction

With the incoming of the fourth industrial revolution, the technological development
of the Internet of Things (IoT) and smart infrastructure makes us pay more attention to the
technology in order to collect and analyze a huge amount of information [1,2]. Particularly
in medical and healthcare fields, there has been a paradigm shift from cure-oriented to
prevention-oriented medical practices, partly due to the emergence of wearable devices
that can measure and acquire vital signs wherever and whenever the users are [3–6].
Wearables are now part of every individual since these devices provide more concrete
analytics decisions about the individuals using the individual data, which could help in
better decision making connection with the bio-signals [7]. Naturally, it enables better and
high-quality medical and healthcare services utilizing the vital signs acquired.

Recently, such data have been accumulated exponentially with the help of the de-
vices [8]. It is not that difficult to imagine the potential knowledge and information inferred
by the analysis of the big data for disease prevention, health management, diagnosis,
therapies, etc. [9–12]. Artificial intelligence has created a lot of positive impacts in clinical
decision making, diagnosis, predictive medicine, etc., which is a good sign for developing
personalized systems [13].

Personalized and customized healthcare services are expected to be common sooner or
later. Since smartphones and wearable healthcare devices are already employed, the tech-
nology for collection and analysis of health information gathering is easier and advanced
enough [14,15]. This situation promotes more research on various healthcare services
utilizing and analyzing vital signs [16,17]. Global IT giants including Apple, Google, and
Samsung are carrying out huge projects where healthcare platforms and services as well as
wearable devices with biosensors are designed and developed [18,19].

The development of a bio-signal analysis algorithm is of prime importance to provide
a seamless healthcare service. All bio-signal data have no meaning on their own. For
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example, electrocardiogram (ECG) signals and pulse wave data are time-series data, and
health status cannot be analyzed using data alone. In this case, to analyze the health
status, it is necessary to extract feature values by applying an analysis algorithm suitable
for the data, since these services can be provided to the healthcare system using these
characteristic values. Moreover, due to the fact that the development of bio-signal analysis
algorithms is performed in multiple languages such as MATLAB and R, the source code
conversion technology is a requirement to make the system development independent of
the programming language. However, source code conversion techniques are primarily a
very complex and redundant process and also depend heavily on the development tool
which is used for deployment. Furthermore, due to the complexity, the management of the
source codes of algorithms and the reusability of the source codes becomes very difficult.
Therefore, to overcome the complex manual conversion process, this work implemented an
algorithm specification for developing bio-signal analysis algorithms in different languages
and a common execution engine that will be able to execute the algorithms written in
different languages. The proposed architecture provides software architecture, by which
one can reuse the bio-signal analysis algorithms developed by other developers in different
languages such as MATLAB and R, without building a transformation process between
multiple development environments.

The primary objective of the study is to develop a smart interface to run bio-signal
analysis algorithms developed in different languages. An execution engine is developed to
apply the smart interface. The execution engine can easily apply the bio-signal analysis
technology developed in various algorithm development languages to the system using the
source code conversion technology. This technology is expected to increase the reusability
of analysis algorithms and the efficiency of system development.

When such a smart interface is provided, healthcare system developers can have more
room to go further to higher service-oriented development using bio-signals. In addition,
it is judged that the execution engine proposed in this paper can be used in various fields
that require signal processing other than the healthcare field.

The remainder of this paper is organized as follows. First, we present the related works
and backgrounds. Second, we describe the design of bio-signal storage where bio-signals
with big sizes are stored and managed. Third, we discuss an architecture to support a smart
interface among heterogeneous mining algorithms implemented in different languages.
Fourth, the results and discussion of this paper are presented. Finally, we conclude with a
description of the results.

2. Related Works

The conversion technique of the analysis of the vital sign algorithm source code is the
task of changing the algorithm source code to match the system that provides healthcare
services. Typically, the algorithms developed by MATLAB and Python are converted to
C/C++ and applied to the system [20,21]. However, applying the source code converted
to C/C++ to the system requires additional work by the developer to accommodate the
system environment. We developed a system that can execute the source code of algorithms
from multiple programming languages in the Java environment. The interface developed
in the work is a Java-based interface, that can execute various bio-signal analysis algorithms
from a single service definition. The work proposed in the paper allows the execution of
bio-signal analysis source codes developed in the MATLAB and R programming using
Java-based libraries running on Java Runtime Environment.

R programming was conducted to secure the interoperability between Java and R
programming using rJava [22]. An interoperability study using rJava uses Java’s graphical
user interface (GUI) to overcome the delicate graphic task, which is a disadvantage of
R programming. This is a graphical representation of the data analyzed using JavaFX
by R programming [23]. The study also analyzes the disease data of patients using R
programming and shows the analyzed data using the GUI in Java [24].
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The MATLAB control library can connect to the MATLAB engine in Java and exe-
cute the MATLAB source code [25]. A typical remote connection to a server installed
with MATLAB was made to execute the MATLAB command using Java and MATLAB
control [26].

The technology of executing the algorithm source code itself has been studied to
perform more sophisticated graphical tasks or to use development tools remotely. As
such, most studies have been conducted by choosing the development tool for the system
environment being developed. So far, research into applying development tools developed
in different languages is insufficient. Therefore, research needs to be done by applying
the source code developed with various development tools to the system and executing
the desired algorithms. This study will be the basic research to apply various algorithm
managements to the system.

This paper proposes an architecture for executing the source code itself, which is
developed by MATLAB and R programming in the system, as shown in Figure 1. The
proposed architecture is divided into an execution engine that executes the vital signs
algorithm and a repository that stores the bio-signals.

Figure 1. Architecture for analyzing bio-signal data by MATLAB and R programming. 

 

Figure 1. Architecture for analyzing bio-signal data by MATLAB and R programming.

3. Materials and Methods

The bio-signal analysis system proposed in this paper has two services, as shown in
Figure 1. First, the bio-signal storage service collects bio-signals and stores the collected
bio-signals in big bata-based NoSQL. Second, the algorithm execution service develops
an execution engine for executing the bio-signal analysis algorithms developed in various
development languages.

3.1. Bio-Signal Storage Design

The data accumulated by wearable health devices typically form big data. For in-
stance, when the ECG sampling rate is 500 Hz, the system collects 500 pieces of data per
second from an individual. Suppose it can gather them for a day. Then, the amount is
43,200,000 pieces of data. If it gathers them from more than 1000 people for a year or
so, the amount of ECG data increases exponentially. The database storing such big data
must secure scalability. As we know it, however, the relational database management
system (RDBMS) has difficult aspects of processing such explosive vital sign data. Since
RDBMS stores structured data, it uses data consistency and normalization and provides
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high performance. However, we face a huge problem to process unstructured data and big
data beyond zettabytes [27]. There is a need for a new way of storing and processing big
unstructured or semi-structured data, which we call NoSQL. NoSQL is a non-relational
database where its table schema is not fixed, join operation is not supported, and its hori-
zontal expansion is easy. Therefore, NoSQL is more suitable for processing a vast number
of data [28].

NoSQL can be divided into three ways of storing: Key-value store, document store,
and column store. The key-value store database stores, retrieves, and manages data as
a key/value pair. A document store NoSQL database retrieves data by more complex
conditions than key/value types, and its typical examples are MongoDB and CouchDB.
Column store databases have a more powerful scalability in, for example, Cassandra
and HBase.

In this paper, according to the bio-signal characteristics of Figure 2, the bio-signal raw
data and feature data are stored in a storage. Bio-signal raw data is stored in NoSQL based
on big data, and feature data is stored in Datawarehouse for big data analysis. Since recent
bio-signals reflect various bio-signals such as electrocardiogram, respiration, respiration,
SpO2, etc. to analyze disease or health conditions. To facilitate the search and analysis
of bio-signals, raw data and feature data should be stored separately. In addition, this
bio-signal classification method is easy to further expand feature data according to various
bio-signal analysis techniques.

Figure 2. Characteristics of data according to the ECG signal analysis.
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3.1.1. Design of Bio-Signal Raw Data Storage

In this paper, we designed a wide column database based on big data to store raw bio-
signal data. This is due to the fact that the wide column database has excellent compression,
distributed processing, aggregation processing (sum, count, avg, etc.), and query operation
speed and scalability of large amounts of data. In addition, it is important to analyze bio-
signals in units of year/month/week/day. Therefore, the column-oriented wide column
database is easy to retrieve only the information of raw bio-signal data. In addition, this
paper designed a bio-signal raw data storage using HBase, which is mainly used in the
wide column database.

Raw data on their own have no meaning. They must have more meaningful attributes
together such as the time when raw data are measured, whose data are, sampling rates,
types of bio-signals, etc., as well as the raw bio-signals such as ECG, respiration, and
acceleration data. Table 1 shows an example of the data table that we have designed,
using HBase. HBase stores data in a key-value format. Therefore, ‘Row-Key’ specifies the
measurement date and ID. The ‘Data’ column is the bio-signal information. The ‘User’
column is the user information that measured the bio-signals. We need information about
the types of bio-signals such as electrocardiogram, acceleration, respiration, etc., and the
hertz (Hz) which is the sampling frequency of the signal to analyze bio-signals. Moreover,
‘User’ information includes age and gender, since the analysis techniques of bio-signal
analysis algorithms vary according to age and gender.

Table 1. HBase table structure.

Row-Key
(Measurement Time ID)

Data User

Raw Data Hz Type Overall Time (s) Age Gender

2021.03.06.17.420.07_JOO 100 110 112 200 ECG 125 38 Man
2021.03.06.19.01.07_JOO 120 131 110 200 ECG 100 38 Man
2021.03.06.21.28.07_JOO 121 111 120 200 ECG 111 38 Man

3.1.2. Design of Data Warehouse for Feature Data

Our approach uses HBase to store the vast amount of bio-signal data, depending on
the column family. The extracted data (e.g., heart rate variability (HRV)) from raw data (e.g.,
ECG) are sometimes large as well, and they are stored in the data warehouse. Moreover,
we use SQL-On-Hadoop [29] to search and analyze the mined data, which processes the
data in a familiar way of interfacing SQL, working with data warehouse-based Hive. Hive
uses a similar interface to SQL called HiveQL, and it can be used for statistical analysis.

Since Hive is Hadoop-based, its processing speed is much slower if it searches and
accesses all the data. Therefore, we use the partitioning method to improve the speed.
There is also a need to connect three heterogeneous information types to store the mined
and analyzed data in Figure 3. First, the information about the given algorithm to analyze
bio-signals in the algorithm information table of MySQL. Second, the information about
bio-signals used to analyze in HBase. Third, the extracted feature data in Hive.

Table 2 shows the table structure of Hive. The data are expressed by algorithm ID,
algorithm name, the mined data value, and date. In addition, since it is partitioned by
bio-signal ID, the acquired year, and month, the search time can be shorter.
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Figure 3. Design of data warehouse structure.

Table 2. The table structure of Hive.

Partition Column Name Data Type Explanation

X algorithm_id String Algorithm ID
X algorithm_filename String Algorithm file name
X output array<String> Output value
X day int Day
X hour int Hour
X minute int Minute
X second int Second
O id String User ID
O year int Year
O month int Month

3.2. Architecture of Bio-Signal Data Mining

Many researchers employ MATLAB to analyze bio-signals, and there is also a recent
tendency to use an open-source programming R for big data analysis. Some develop
signal processing and mining techniques with MATLAB, others with R programming or
with other languages or tools. Data mining techniques are developed in various environ-
ments. However, when developers try to use components developed in another language
environment than the current development environment, the process of transforming
sources in one language to the ones in another is needed, which demands a substantial
amount of time for implementing its processor for coding the components working in the
development language.

For this reason, it is of great meaning to provide an execution engine enabling to
skip the source transforming process, which supports interoperability between different
sources. It is particularly important and desirable when one wants to develop systems
using vital sign data mining techniques developed in various languages and environments
previously. We describe a flow to support interoperability between different (bio-signal)
data mining techniques. The execution engine that we designed requires data mining
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technique specifications where input/output parameters and tool (or language) types
are specified to interact with the engine. With such specifications, the execution engine
makes the data mining algorithms implemented in different languages work as if they
operated in one common environment, resulting in features and other values after executing
the sources.

Among the many development languages, we concentrated on two popular languages,
MATLAB and R, which are most frequently used to implement data mining algorithms, as
well as Java which is our development language. Both MATLAB and R programming have
the advantage in that they support many libraries, GUI, and various ways of expressing
the analyzed data and enable the bio-signal analysis with the usage of function-based
source files, simultaneously. In our approach, the execution engine helps execute *.m files
of MATLAB and *.R of R programming and get feature values from the given bio-signals.

The proposed architecture is based on a web service model based on a service oriented
architecture (SOA) in Figure 4. SOA can be integrated and used without a redundant
development of applications that provide various bio-signal services. Therefore, SOA can
minimize development costs, and users can easily receive biometric information monitoring
services in an integrated environment. In this paper, an SOA-based bio-signal analysis
system was developed. The architecture for interoperating among the components consists
of the following four processes:

1. Service request for executing the bio-signal analysis algorithm through the simple
object access protocol (SOAP) message.

2. Input value, output value, and algorithm explanation for supporting the mining
specification of the bio-signal analysis algorithm.

3. Execution engine to run the bio-signal analysis algorithm.
4. Design a data warehouse that stores and classifies the results from the execution engine.

 

 

 
 

Figure 4. SOA-based bio-signal analysis system architecture.
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The web-based simple object access protocol (SOAP) message offers the service for
executing the bio-signal analysis algorithm. It includes a request to search for raw bio-
signals data, a request that uploads the bio-signal algorithm source file developed by using
MATLAB or R programming, and a request that extracts the bio-signal feature value by
executing the bio-signal analysis algorithm.

To run the bio-signal analysis algorithm in the system, the parameters and variables
of the bio-signal analysis algorithm should be defined. Hence, the algorithm specification
describes the information on types of bio-signals to be analyzed (such as ECG, respiration,
and acceleration signals), an input value of the bio-signals, result value after the execution
of the algorithm, clear explanation of the algorithm, and the developer.

The data warehouse stores the results from the execution engine. The data extracted
by applying the bio-signal analysis algorithm may be a great amount in a single column.
Therefore, the data is needed to save into the data warehouse for big data analysis.

3.2.1. Data Modeling Specification

To execute data mining modules, an accurate specification of the mining techniques
is necessary, since the execution engine works according to the specification in which a
type of language (or tool), input/output values, and explanation of the mining algorithms
are described. Our study focuses on two well-known languages, MATLAB and R. To
understand the execution of source files in these languages, we need to be aware of
‘function’ in MATLAB and R. They help analyze the bio-signal data by providing the
functions where various input values are represented, stored, and visualized.

Figure 5 shows an example of MATLAB source code to extract HRV from ECG raw
data. In the source, two input values appear such as data (ECG data) and FS (sampling
rate). The output values are maxIdx (R-R interval index), maxVal (value of R-R interval),
and endIdx (last R-R interval index). MATLAB has a vector data structure so that it can
process different types of both input and output variables. For example, it supports several
variables to handle ECG such as int, int array, double, and double array.

In general, software specification is a summary of the requirements and functions
demanded in the design phase. The mining technique specifications proposed in our
work are needed to define and execute the mining techniques in the system. In addition,
the mining technique specifications are used to insert, delete, and update input/output
parameters, as well as describe the techniques themselves.

Our approach uses the relational database management system (RDBMS) for specifica-
tion concerning functions in MATLAB and R programming, so that various input/output
values can be defined, inserted, and updated systematically. Figure 6 presents the related
database modeling. Table ‘algorithm_details’ represents basic information about a data
mining algorithm including ‘id’ (who uploads it), file name, explanation, type of bio-signal,
type of analysis tool, and registration date. Here, ‘vitalsign_type’ is a column needed to
process various bio-signals, whose values are ECG, respiration, acceleration data, etc. In
addition, the tool_type’s values are MATLAB or R to express which bio-signal analysis tool
is employed. The table ‘algorithm_inp_out’ is the table where definitions of input/output
values are, and one registers what algorithm is applied, the order of parameters (if it is an
input value or output value), parameter type, and parameter explanation.

3.2.2. Source File Strategy for the Mining Technique

Hadoop’s Hadoop distributed file system (HDFS) plays a role in storing mining
algorithm source files developed in MATLAB and R, which is suitable for the safe storage
of sources. Figure 7 illustrates how source files are stored in Hadoop. It shows that mining
algorithm source files are stored under the Hadoop’s folder ‘/AlgorithmDB/’ in Linux to
execute algorithm source files (‘joo@wellness.com/AlgorithmFile’). Here, it is necessary
to copy the source files in HDFS to Linux or Windows OS by downloading the files in a
browser used in HDFS or writing a command.
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Figure 5. Example of MATLAB source to extract HRV from ECG. 
Figure 5. Example of MATLAB source to extract HRV from ECG.

Figure 6. Database modeling for a mining algorithm.
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Figure 7. Example of the list of algorithm source files.

3.2.3. Bio-Signal Analysis Algorithm Execution Engine

The bio-signal analysis algorithm source execution technology is a technology that
executes a bio-signal analysis algorithm developed by a user, utilizing a bio-signal analysis
tool developed in different languages in the system. By omitting the source conversion
technology according to the system environment, the environment and interface to execute
the source file itself in the system are provided.

In this paper, we design an architecture that performs the functions developed in
MATLAB and R programming using Java, as shown in Figure 8.

Figure 8. The architecture of functions developed in MATLAB and R programming 
Figure 8. The architecture of functions developed in MATLAB and R programming through Java.

The execution technology of the bio-signal analysis algorithm runs the source code
developed by MATLAB and R programming in Java. The bio-signal analysis algorithm
developed by MATLAB is executed using the MATLAB control library. In addition, the
bio-signal analysis algorithm developed by R programming is executed using the Rengine
library. Each library is the application programming interface between Java and the
development tools.

To run MATLAB in Java, use the MATLAB control library. The MATLAB control can
use MATLAB commands in Java using the eval and f eval methods. The MATLAB control
eval and f eval methods can be passed to the MATLAB workspace to execute MATLAB
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commands. In addition, the result value executed in MATLAB can be returned to Java.
The result value returned from MATLAB is returned using the returning eval method of
MATLAB controls. This paper accesses MATLAB using Java to execute MATLAB functions.
Since the input value to execute the function is inputted through Java, it is inputted in a
text format. Therefore, as shown in Figure 9, the input value needs to be converted to a
number format through str2 num, a MATLAB method. If the entered value is a text, it can
be used as it is. After inputting the input value, execute the MATLAB function, and return
the result value to Java for processing.

Figure 9. MATLAB function execution command.

To execute R programming, we use a method similar to MATLAB. Java uses the
Rengine library to access R programming. Rengine can use R programming commands in
Java using eval. The R programming eval method can be passed to the R programming
workspace to execute R programming instructions. In addition, the result value executed
in R programming can be returned to Java. The result value returned from R programming
is returned using the eval method. In this paper, we access R programming using Java
to execute the R programming function. The input value for executing the function is
converted into an R programming input instruction through Java and inputted immediately.
Therefore, as shown in Figure 10, since the input value is converted to the c format, there is
no need to use a separate conversion function. After entering the input value, execute the
R programming function, and return the result value to Java for processing.

Figure 10. R function execution command.

Since R programming is an open-source type of development tool, various R packages
exist. This is important since developers can freely install and use the R packages they need.
Therefore, this paper developed a service that can install the R package. However, the R
package installation cannot use the Java JRI, since JRI is a Java and R programming interface
that allows you to run R in Java applications with a single thread. Here, JRI operates as
a single thread, thus installing the R package is physically impossible. Therefore, in this
paper, we created the R function in Figure 11 and installed the R package using the Rscirpt
of R programming.
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Figure 11. R packages install function.

4. Results

Table 3 measures the execution time of the algorithm source code. It was measured
using an electrocardiogram signal among the biological signals. Using data from 60,000 to
150,000 ECG data, one source code was executed a hundred times to obtain an average. The
algorithm source code used a lowpass filter developed by MATLAB and R programming
to secure universality. As shown in Table 3, the source code is executed directly in R
programming and MATLAB runs faster than the source code executed in conjunction with
the development tool in Java. The difference in execution speed is to create an input value
and pass it to the development tool to execute it in Java. This is due to the fact that it takes
time to generate the input value. In addition, it is judged that there is no time difference
felt when the bio-signal analysis system is executed.

Table 3. Comparison of execution time using MATLAB, R programming, and Java interface.

ECG Data
Amount

R Running
Time (s)

JRI Running
Time (s)

MATLAB
Running Time (s)

MATLAB Control
Running Time (s)

60,000 0.01129 0.07554 0.001117402 0.018959
70,000 0.012122 0.07925 0.002032382 0.020659
80,000 0.015542 0.08802 0.002297501 0.021919
90,000 0.014942 0.09725 0.002646774 0.023969

100,000 0.018541 0.12115 0.002932099 0.026389
110,000 0.020813 0.14253 0.003061065 0.029939
120,000 0.022766 0.14519 0.003414657 0.032159
130,000 0.023421 0.15199 0.003779691 0.034149
140,000 0.023759 0.16123 0.004370618 0.036269
150,000 0.025931 0.17423 0.004643073 0.038039

5. Discussion

We can check the results of the feature values through analysis and visualization using
the ECG signal. Currently, bio-signals can be measured using various sensors. For example,
there are data such as electrocardiogram, brain wave, pulse wave, and acceleration signal.
These data have a process of making feature values from raw data and servicing them
using feature values. Therefore, the system proposed in this paper can apply various
bio-signal data. However, since the algorithm is analyzed using only electrocardiogram
data, it is necessary to analyze various bio-signal data such as brain waves and pulse
waves. Bio-signal analysis processing can be used in all the versions using a basic analysis
module. However, while doing an analysis the version compatibility such as licenses have
to be checked, which is a necessary condition. Our framework can be used for all kinds of
bio-signals with little customization and also different kinds of analyses can be performed
with little or no modification.

In addition, this paper was developed with an emphasis on analyzing feature values
through signal processing. However, recently, artificial intelligence technology using train
sets and test sets have been widely used. It is necessary to develop a technology that
automatically converts the train set and test set to match the bio-signal development
language through further research.
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6. Implementation

We have implemented a bio-signal analysis system that can execute SOA-based MAT-
LAB and R programming source codes. The bio-signal analysis system consists of a service
that transmits the algorithm developed by MATLAB and R programming to a server and a
service that executes the algorithm. In this paper, we have implemented the evalQRSDetec-
tion function in Figure 5. Figure 12a is a request SOAP message to execute a function, which
includes the function name, input data, and development language. The input values are
electrocardiogram data and sampling frequency. The input value can be inputted as the
input value of the bio-signal data stored in the bio-signal storage. Moreover, you can input
the direct input value. Furthermore, Figure 12b is the response SOAP message. This SOAP
message contains the result of executing the function.

Figure 12. SOAP message of vital sign analysis algorithm execution; (a) SOAP message to request
the algorithm execution; (b) response SOAP message with the algorithm executed.

Figure 13 shows the UI for executing the evalQRSDetection function developed in
MATLAB and the result UI. Figure 13a is the request UI for executing the evalQRSDetection
function. Figure 13b is the response UI showing the result of executing the evalQRSDetec-
tion function. The evalQRSDetection function displays three result values. Therefore, we
show three UIs for the result values, which show the result data and chart in data format.
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Figure 13. Implementation of vital sign system user interfaces; (a) UI for requesting the algorithm
execution; (b) response UI where the algorithm was executed.

7. Conclusions

This paper presented an architecture that manages and executes bio-signal analysis
algorithms more effectively, with a special focus on interoperability between data mining
algorithms developed in heterogeneous environments. While bio-signal analysis compo-
nents are implemented in different languages such as MATLAB, R, and Java, the proposed
platform helps the design teams develop such components and systems as if they were
developed in one common language.

Until now, bio-signal analysts have paid little attention to bio-signals as big data. How-
ever, as IoT and wearable technology are rapidly developing, the issue of bio-signals has
high potentiality as a research theme for big data processing. Therefore, we need a reposi-
tory for bio-signals as big data. Secondly, we designed mining algorithm specifications to
share algorithms implemented in heterogeneous environments among developers. When
design teams implement systems according to such specifications, they are expected to have
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many benefits, e.g., acquisition of many open algorithms, the overcoming of development
restrictions caused by different environments, effective management of bio-signals, and
application of the mining algorithms to various and wider environments and languages.
In particular, it is expected that healthcare and medical system developers will be able to
shorten the system development time using the algorithm execution engine technology. In
addition, the real-time execution of various algorithms on the system will be very helpful
for system maintenance and management. Thirdly, we developed the execution engine,
naturally leading to an advantage that one can execute so many heterogeneous mining
techniques with one common system. It also brings about a reduction of the development
time and would make people and bio-signal analysts developing in different languages
work together. We also hope that communication and competition between algorithms
developers are enhanced, and thus higher quality mining technology will be eventually
promoted. However, the system presented in this paper has limitations in applying artificial
intelligence based on supervised learning. Supervised learning-based artificial intelligence
needs to collect and transform a large amount of train set data. The difficulty of transferring
large amounts of image files and the study on the application of the conversion technology
to train set data are still insufficient. It is judged that such data transmission and conversion
technology will be able to find a solution through future research.

Finally, we hope that this research will be fundamental, in which we can go one more
step to high-quality, service-oriented research beyond simple signal processing for biodata,
by utilizing and developing mining algorithms easily regardless of whatever environments
are available.
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Abstract: Background: From one year to another, dentists have access to more procedures using

modern techniques. Many of them can improve the effectiveness of dental procedures and frequently

facilitate and accelerate them. Objectives: Technically advanced devices are an important part of

modern dentistry. Over the years, there were developed technologies like ultrasounds, lasers, air

abrasion, ozonotherapy, caries diagnostic methods, chemomechanical caries removal (CMCR), pulp

vitality tests, computer-controlled local anesthetic delivery (CCLAD). The aim of this study was

to investigate the requirement of Polish dentists for such technologies. Methods: An anonymous

questionnaire was posted on a social media group of dentists from Poland. 187 responses were

obtained. Results: It turned out that almost every respondent uses ultrasounds, but other technologies

are not as popular. 43% use CCLAD, 33% use diagnostic methods, 28% use air abrasion, 25% use

dental lasers, 21% use CMCR, 18% use pulp vitality tests and 6% use ozonotherapy. The most

common reason for not using the aforementioned technologies were their high cost and the sufficient

effectiveness of raditional methods. There was a correlation between use of a dental laser and CCLAD

and size of office, CMCR use and dentists’ work time and air abrasion use and gender. Many dentists

claim that they will try one of the modern technologies in the future. Conclusions: It can be concluded

that Polish dentists tend to use ultrasounds and CCLAD more than any other technology. In the

future this may change, so more studies in this topic are needed.

Keywords: dentistry; computer-controlled local anesthetic delivery; ultrasounds; chemomechanical

caries removal; modern technologies; laser; ozone

1. Introduction

Dentistry is a branch of medicine which dynamically develops new technologies. From
one year to another, dentists have access to more procedures using modern techniques.
Many of them can improve and the effectiveness of dental procedures. And accelerate the
related procedures. Some of the technologies were introduced to dentistry years ago. For
example, ozone in the form of ozonated water was used in dentistry for the first time by
Dr. E.A. Fisch and in surgery by Dr Erwin Payr. They reported their results in 1935 [1].
Another technology that was also developed years ago is lasers, which were introduced in
the 1960s by Miaman [2].

On the other hand, some technologies are quite new. Lussi et al., in 1999, validated
the use of the DIAGNOdent system (KaVo, Biberach, Germany) for the detection and
quantification of caries on occlusal surfaces [3]. The pulse oximetry was invented by
Takuo Aoyagi in the early 1970s and in 2007 V. Gopikrishna et al. constructed a pulse
oximeter dental probe for assessment of pulp vitality [4]. A computer-controlled local
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anesthetic delivery system (CCLAD) was introduced in 1997 by Milestone Scientific Inc. as
the Wand [5].

This shows that dentists need to constantly keep up on their knowledge about new
technologies. In times where the Internet is a great source of knowledge, practitioners have
a great opportunity to learn about newly developed technologies and adapt them to their
work. The aim of this study was to investigate modern technique use by Polish dentists by
posting an online survey in a social-media group for Polish dentists. Another purpose of
study is to give information, which can be utilized to streamline the usage of technologies
in Polish dental practices. The authors tried to identify factors which correlate with new
technology use patterns (like sex, years in practice, size of office). The authors assume that
there will not be statistically important difference in terms of sex and expect a difference in
terms of years in practice and size of office. We also identified reasons which might lead
dentistry practitioners to stop using new technologies.

2. Materials and Methods

An anonymous questionnaire was posted in a social media group of Polish dentists in
January 2019. Before publication, the aspects of privacy and data security were addressed.
The survey was planned to be anonymous. The survey only concerned opinions and the
expression of thoughts of respondents and not clinical trials on humans. Due to this, it was
considered unnecessary to proceed with the formal approval procedures. The generation
of the questionnaire and collection of responses were done through Google Forms (Google
LLC, Mountain View, CA, USA). Members were given four weeks to respond.

The survey had 10 sections. The first section included questions about the biometric
data of the respondents. In this section, the authors asked about gender, years in practice,
type of employment and size of their offices. Respondents with more than one year in
practice were considered in this study. Sections 2 to 9 had five questions each, investigating
the use of each technology, including laser, ultrasounds, air abrasion, ozone, diagnostic
methods, chemo-mechanical caries removal, pulp vitality tests, and computer-controlled
local anesthetic delivery. The tenth section included general questions about reasons for not
using the mentioned technologies, patients attitudes about new technologies, and sources
of knowledge about new technologies (Table 1). The online form is visible in [6].

Collected data were tabulated using Microsoft Excel (Microsoft, Redmond, WA, USA).
Only the authors had access to data collected from the survey.

All analyses were performed with the help of Statistica for Windows (version 13.3,
TIBCO Software, Palo Alto, CA, USA). A chi-squared test was used to assess the statistical
significance. Probabilities less than 0.05 were accepted as statistically significant.

Table 1. Questions included in the survey.

Questions in Survey Responds

Biometric questions

1. Gender (choice question) Male/Female
2. Years in practice (graded question) <5/5–10/10–20/>20

3. specialization (multiple choice question)

- restorative dentistry
- dental surgery
- periodontology
- orthodontics
- pedodontics
- prosthetics
- no specialization

4. Form of employment (choice question) - own office
- hired in office

5. Size of office (graded question) one unit/two to five units/>five units
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Table 1. Cont.

Questions in Survey Responds

Questions in each technology section

1. Have you access to this technology in your
practice? (graded question)

Yes/No

2. How often do you use this technology?
(graded question)

- don’t use
- less often than conventional method
- as often as conventional method
- more often than conventional method
- use only modern method

3. How do you rate efficiency of this
technology? (graded question)

- More efficient
- as efficient as conventional method
- less efficient
- don’t know

4. How do you rate difficulty of this
technology? (graded question)

- More difficult
- as difficult as conventional method
- less difficult
- don’t know

5. Will you use this technology in the future?
(choice question)

Yes/No/Maybe

General questions

1. About how many methods you didn’t know?
(graded question)

1–5/6–10/>10

2. Why don’t you use mentioned technologies?
(multiple choice question)

- high cost
- more complicated method
- less efficient method
- sufficient effectiveness of conventional

method
- lack of knowledge

3. What is the attitude of patients to innovative
technologies? (choice question)

- They are interested
- They are inert
- They refuse treatment with these

technologies

4. Which sources of knowledge do you use to
acquire competency about mentioned
technologies? (multiple choice question)

- journals/research
- courses
- college/ specialization courses
- internet
- books
- other (open question)

3. Results

187 responses were acquired over January and February 2019. The biometrics of the
respondents are shown in Figure 1. A significant portion of the respondents were women
(82.9%), which reflects gender proportion of dentists in Poland. There were roughly equal
responses in terms of years in practice groups, with fewer dentists in the >20 years in
practice group. Most of the respondents worked in an office with two to five units. A major
portion of the respondents (79.5%) had their own office. 82.9% of respondents did not
have any specialization. There were 10 dentists with prosthetic specialization, 10 dentists
with restorative specialization, seven with surgery, three with orthodontics, two with
pedodontics, and two with periodontics.
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Figure 1. Respondents biometrics. (a) Years In practice distribution, (b) gender of responding dentists,
(c) dentist’s form of employment, (d) size of practice.

The percentage use of each investigated technology is shown in Table 2.

Table 2. Percentage of respondents who declare use of each technology.

Technology Percentage of Use

Laser 25
Ultrasounds 97
Air abrasion 28

Ozone 6
CDM 33

CMCR 21
PVT 18

CCLAD 43

The ratings of effectiveness and difficulty of each technology are shown in Figures 2–9.
Most dentists rate ultrasounds as less difficult (59%) and more effective (76%) in comparison
with manual methods. Air abrasion was rated by the most dentists as comparatively
difficult in comparison with the traditional method. In case of other methods, the most
respondents didn’t know how difficult and effective they are.

Procedures in which dentists use ultrasounds are shown in Figure 3b. The most
popular ultrasonic procedure is scaling (96%). Endodontic treatment (canals irrigation)
(85%) and prosthetic procedures (teeth preparation for crowns, inlays etc., post-and-cores
removal) (80%) are popular fields to use ultrasounds. This technology is used by fewer
respondents in surgery (piezosurgery) (24%) and in caries removal (32%).

The most respondents use lasers in surgery (18%) and teeth whitening. The least
popular laser procedure is caries removal (4%) (Figure 2b).

Respondents use ozone for the following procedures: surgery (wounds disinfection,
dry socket, abscesses)–5.36%, periodontology (gingivitis, periodontitis)–3.57%, endodontic
treatment (canals disinfection)–3.57%, prosthetic (disinfection of prepared teeth)–1.79%
(Figure 5b).

The most popular caries diagnostic method (CDM) is FOTI/Di-FOTI (27%) (Figure 6a).
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Figure 2. Laser use pattern of responding dentists. (a) difficulty of laser procedures, (b) type of laser
procedures, (c) effectiveness of laser procedures.

 

Figure 3. Ultrasounds use pattern of responding dentists; (a) difficulty of ultrasonic procedures,
(b) type of ultrasonic procedures, (c) effectiveness of ultrasonic procedures.
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Figure 4. Air abrasion use pattern of responding dentists; (a) difficulty of air abrasion procedures,
(b) effectiveness of air abrasion procedures.

 

Figure 5. Ozone use pattern of responding dentists; (a) effectiveness of ozone procedures, (b) type of
ozone procedures, (c) difficulty of ozone procedures.

232



Healthcare 2022, 10, 225

 
Figure 6. Caries diagnostics methods use pat tern of responding dentists; (a) use of each method,
(b) difficulty of caries diagnostics methods, (c) effectiveness of caries diagnostics methods.

Figure 7. Chemo-mechanical caries removal use pattern of responding dentists; (a) effectiveness of
CMCR, (b) difficulty of CMCR.
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Figure 8. Pulp vitality tests use pattern of responding dentists; (a) effectiveness of pulp vitality tests,
(b) difficulty of pulp vitality tests.

 

Figure 9. Computer controlled local anesthetic delivery use pattern of responding dentists; (a) effec-
tiveness of CCLAD, (b) difficulty of CCLAD.

In our survey, we also asked dentists if they would use each technology in the future.
Almost every respondent claimed that they may use ultrasounds (99%). Also, many dentists
show interest in using other technologies in the future: CDM (91%), laser (86%), pulp vitality
tests (PVT) (86%), air abrasion (85%), CCLAD (82%), ozone (80%), chemo-mechanical caries
removal (CMCR) (64%).

A dental laser was present in the offices of only 30% of respondents. All dentists had
an ultrasonic device in their offices.

An air abrasion unit was present in 35% of offices. Only 7% of dentists has access to a
device for ozonotherapy.

85.7% of respondents didn’t know about one to five of the methods mentioned in the
questionnaire, 9% didn’t know about six to ten of the techniques, and six percent didn’t
know about more than ten of them. There wasn’t a statically relevant difference between
groups of dentists with different work schedules.

In our study we also investigated the reasons for not using modern technologies in
dental practices. The most dentists (51%) don’t use a dental laser because of the high cost.
High cost was also reason for not using ozone (41%), caries diagnostic methods (30%),
pulp vitality tests (30%) and computer-controlled local anesthetic delivery (29%). Lack of
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knowledge was a reason for not using a dental laser for 9% of respondents, ozonoterapy
for 12%, caries diagnostic methods for 10%, and chemo-mechanical caries removal for 14%.

The sufficient effectiveness of traditional methods was a reason to not use air abrasion
(22%), caries diagnostic methods (CDM) (21%), CMCR (28%), PVT (29%) and CCLAD (24%).

Because of higher complexity in use in comparison with traditional methods, respondents
do not use CDM (20%), PVT (16%), CMCR (14%), air abrasion (11%) and ozonoterapy (8%).

For respondents, the most popular source of knowledge were: courses (89%), the
Internet (75%), science magazines and research (69%), knowledge earned during college,
specialized courses (42%), and books (41%).

A majority of respondents (57%) say that their patients show interest in innovative
methods of dental treatment. 39% claim that method of treatment is inert for their patients
and only 4.5% respondents claim that their patients refuse treatment with these methods.

A chi-squared test showed statistical differences in the use of CMCR in different years
in practice groups. Dentists that have worked for more than 20 years seems to not use
CMCR. Differences in laser use in groups of office sizes was also statistically important. In
smaller offices with only one dental unit, lasers were less popular than in bigger offices. The
same situation was observed with regard to CCLAD use patterns. A statistical assessment
showed that female dentists use air abrasion more often than male dentists–Table 3.

Table 3. The number of respondents (percentage) who use each technology.

CCLAD PVT CMCR CDM Ozone
Air

Abrasion
Ultrasounds Laser Technology

33 (43) 11 (16) 20 (29) 18 (26) 2 (3) 20 (29) 65 (94) 13 (19)
<5

(n = 69)

Years in
practice

23 (43) 7 (13) 8 (15) 18 (33) 6 (11) 15 (28) 54 (100) 17 (31)
5–10

(n = 54)

11 (27) 8 (20) 12 (29) 15 (37) 2 (5) 13 (32) 41 (100) 12 (29)
10–20

(n = 41)

13 (57) 7 (30) 0 (0) 11 (48) 2 (9) 5 (22) 22 (96) 12 (29)
>20

(n = 23)

0.08 0.03 0.009 * 0.261 0.288 0.862 0.142 0.373 P

8 (20) 7 (18) 7 (18) 15 (38) 2 (5) 8 (20) 37 (93) 2 (5)
1 unit

(n = 40)

Size of
office

64 (49) 23 (18) 28 (22) 42 (32) 8 (6) 41 (32) 128 (98) 41 (32)
2–5 u.

(n = 130)

8 (47) 3 (18) 5 (29) 5 (29) 2 (12) 3 (18) 17 (100) 4 (24)
>5 u.

(n = 17)

0.004 * 0.999 0.603 0.782 0.619 0.224 0.096 0.003 * P

67 (43) 28 (18) 33 (21) 55 (35) 12 (8) 50 (32) 152 (97) 37 (24)
F

(n = 157)

Gender13 (43) 5 (17) 7 (23) 7 (23) 0 (0) 3 (10) 30 (100) 10 (33)
M

(n = 30)

0.947 0.878 0.777 0.212 0.118 0.015 * 0.322 0.259 P

CDM–caries diagnostic methods, CMCR–chemo-mechanical caries removal, PVT–pulp vitality tests, CCLAD–
computer-controlled local anesthetic delivery. P–based on chi squared test, * p < 0.05.

4. Discussion

In 2012, Verma, S. et al. predicted that specific laser procedures would become
essential components of contemporary dental practice over the next decade [7]. In 2019,
the dental laser was present in only 30% of Polish offices and 75% dentists did not use
the laser in their practice. Mentioned authors in research review showed that laser can be
used in many dental procedures, for example: cavity preparation, caries and restorative
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removal, treatment of dentinal hypersensitivity, and surgical procedures. Cozean et al.
concluded that using the Er:YAG laser is both safe and effective for caries removal and
cavity preparation [8]. Valenti et al. evaluated the ability of the Er:YAG laser in reducing the
microbial population in carious lesions. The authors showed that the use of lasers resulted
in greater reduction of bacterial CFU than traditional preparations [9]. These conclusions
don’t affect the use of lasers by Polish dentists for the mentioned procedures, as only 3.75%
of respondents use it.

Verma, S. et al. mentioned surgical procedures which can be performed with the use
of a laser, which include aesthetic gingival re-contouring, crown lengthening, exposure
of unerupted teeth, removal of inflamed, hypertrophic tissue, and frenectomies [7]. Laser
dental surgery was used by 17.85% dentists.

The authors claim that these procedures, with the help of a laser, can be performed
without bleeding, sutures and with no need for special postoperative care. This correlates
with the opinion of Polish dentists: 40.2% of them think that laser procedures are less or as
difficult as classical ones and 37.4% dentists claim that this procedure has better or equal
effectiveness.

Schwarz et al. investigated the ability of lasers to treat dentinal hypersensitivity. He
proved that the Er:YAG laser is effective in this procedure, and that the results lasted
longer than when the traditional procedure was used [10]. For this procedure, 14.28% of
respondents use a laser. In conclusion, the research reveals that a laser can be a valuable
method in modern dentistry and can enhance the effectiveness of many procedures, but it
is not a popular method among Polish dentists.

In a review of the literature, Walmsley et al. pointed out that research showed that
both methods, manual and ultrasonic, are effective in calculus removal on a clinical level,
but scanning microscopy studies have suggested that ultrasonic methods are more effective.
Ultrasonic scalers are also more effective in the more inaccessible areas of the oral cavity
such as the posterior molars [11]. Polish dentists agree with that opinion, as 95.54% of them
use ultrasounds for scaling and 75.9% rate it as more effective.

In the opinion of Plotino et al., in endodontic treatment, ultrasounds can be used for
access refinement, finding calcified canals, removal of intracanal obstructions, activation
of irrigating solutions, and root canal preparation. The authors mention many benefits of
ultrasonic procedures, such as improved visualization combined with a more conservative
approach when selectively removing tooth structure, specific angulation or tip design [12].
In 2020, Abu Hasna A et al. showed that passive ultrasonic irrigation decreased levels
of Enterococcus faecalis, Esherichia coli and endotoxins in combination with NaOCl [13].
Verma et al. provided a randomized controlled trail of endodontic treatment with the
help of ultrasonic and laser-activated irrigation. They observed a 100% success rate of
periapical periodontitis healing after endodontic treatment with the addition of additional
activation [14]. Thanks to their effectiveness, ultrasonic procedures are very popular in
Polish dentistry. 84.82% of respondents use it for endodontic treatment.

Another field of dentistry where ultrasounds can be used is surgery. Thomas M. et al.
mention oral and maxillofacial surgery procedures, which can be done with the help of
piezosurgery. These are: sinus lift, bone graft harvesting, periodontal surgery, cyst removal,
ridge expansion, osteogenic distraction, unilateral condylar hyperplasia, dental extraction
and impacted tooth removal [15]. Agarwal et al. show advantages of piezosurgery as being
precise and selective bone cutting, faster healing, less invasive, reduced post-operative
pain, and better tactile sensitivity [16]. As the largest disadvantage, the authors consider
increased operating time [15,16]. These observations were also confirmed by Otake Y et al.
In an experimental study, the authors determined a difference in the time of osteotomy
done with piezosurgery and rotary instruments. Piezosurgery required three times longer
to cut the bone, but did not cut soft tissues [17]. In Poland, piezosurgery is not as widely
used. Only 24.11% of respondents use it.

Hegde VS and Khatavkar RA mention indications for air abrasion: removal of super-
ficial enamel defects, detection of pit and fissure caries suspect, preparation of cavities
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restricted only to small section of the tooth, surface preparation of abfractions and abrasions,
the removal of existing restorations, and the avoidance of local anesthesia [18]. Air abrasion
is used by only 28% of questioned Polish dentists. In our study, 60.9% of dentists rate air
abrasion as effective as traditional techniques. Similar conclusions were drawn by Bhushan
and Goswami. In their study, air abrasion pretreatment did not result in a statistically
significant difference in sealant retention in both primary and permanent molars after three
and six months follow-up [19].

Ozonotherapy was an area of research for William C. Domb. He gathered indications
for using ozone in dentistry. These were: treating caries, periodontal disease, endodontics
treatment, perioral viral and fungal infections, sinusitis and even temporomandibular
joint dysfunctions. He also takes ozone as proper treatment in osteonecrotic lesions after
bisphosphonate medications [20]. Gupta and Mansi had reviewed many cases where ozone
was successfully used in periodontal disease. They confirm the disinfecting ability of ozone
and suggest using it in daily dental practice [21]. In Polish dentistry, ozone seems not to be
popular, as only 6.25% of respondents use it, (3.57% in periodontology). This may change,
as 80% claim that they will or may use ozone in the future.

Gomez J. discusses the current available methods to detect early caries lesions. She
mention methods like quantitative light-inducted fluorescence (QLF), DIAGNOdent, fibre-
optic transillumination (FOTI) and its digital version–Di-FOTI, and electrical conductance
measurement (ECM). In the opinion of the authors, these methods should be used as
an adjunct to well-established and evidence-based methods such as visual assessment
and radiographs [22]. In our study, 32.14% respondents use one of the caries diagnostic
methods. Cho KH et al. showed that quantitative light-induced fluorescence (QLF) has
the ability to detect caries of occlusal surfaces in primary teeth [23]. In the opinion of 52%
of our respondents, new caries diagnostic methods are more or comparatively effective in
comparison with visual or radiographic methods.

Chemomechanical caries removal (CMCR) seems to be the optimal method in treating
caries, especially in children who are anxious about dental procedures. In Venkataraghavan
and Karthik et al.’s study, the use of CMCR resulted in decreasing pain complaints and
the reduced need for anesthesia. The only disadvantage of CMCR was an increase in
cleaning duration [24]. Similar conclusions was drawn by Sontakke, Priyanka et al. in 2019.
The authors report an overall absence of bad smell/taste in CMCR [25]. A CMCR was
compared to Er:YAG and carbid burs in terms of the ability to remove microorgams from
cavities. CMCR showed the lowest ability and the Er:YAG laser was the most capable of
decreasing the size of the cavital biome [26]. In a systemic review, Cardoso et al. compared
efficacy and patient acceptance of caries removal with alternative methods. Traditional
preparation showed faster caries removal and resulted in larger cavities, which can lead to
the unnecessary removal of healthy tissues. Rotary instrumentation often was related with
a need for anesthesia. Patients were experiencing less negative emotions (pain, fear) when
alternative methods were used [27]. 78.6% of our respondents do not use chemomechanical
methods in their dental practice. Efficiency of CMCR was rated as “less effective” by 24.5%
of questioned dentists and 56.6% of them did not know how effective this method is. The
low popularity of CMCR may be a result of the lack of knowledge or experience about it
among respondents.

Pulp vitality testing is an important step in endodontic treatment. It determinates the
best option for treatment. In 2017, Salgar, AR et al. rated electrical tests in comparison
with thermal tests. He has shown that thermal tests are a better option in pulp vitality
diagnosis than electrical tests [28]. Mainkar A. et al., compared five dental pulp tests:
cold pulp testing (CPT), heat pulp testing (HPT), electric pulp testing (EPT), laser Doppler
flowmetry (LDF), and pulse oximetry (PO). In their study, LDF and PO were the most
accurate diagnostic methods and should be used by clinicians if possible. HPT was the
least accurate diagnostic method [29]. In Poland, most of our respondents use traditional
cold or heat tests. Only 17.86% use one of the newer tests (EPT, LDF or PO). From these,
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EPT is used predominately. 26% of surveyed dentists say that these tests are more reliable
than the traditional cold test.

Aggarwal, K et al. compared anxiety and pain levels during local anesthesia using
traditional syringe and computer-controlled local anesthetic delivery (CCLAD). In their
study, patients reported lower anxiety levels during CCLAD anesthesia. 64.4% of patients
preferred CCLAD [30]. Mittal M. et al. have shown, in their study, that intraligamentary
anesthesia can be more effective and less painful for children with the help of CCLADS
devices [31]. Flisfisch S et al. evaluated patients opinions after local anesthesia with CCLAD
and a conventional syringe. Most of the patients rated CCLAD as more acceptable [32].
Pozos-Guillén et al. delivered a meta-analysis about children’s pain and fear levels during
dental local anesthesia with the use of a standard syringe and CCLAD. The analysis shows
that lower levels of negative emotions occurred when CCLAD was used [33]. In our study,
42.86% of respondents use CCLAD, but only 10.8% of them think that it is more effective
than local anesthesia with the conventional syringe. Most of Polish dentists (73%) say
CCLADS systems are as effective as the syringe.

One of the limitations to the study is that almost 65% of respondents fell into the
category of having <5 or 5–10 years of practice, so they could have founding limitations.
This can be the reason why more costly technologies are not used as frequently. Practitioners
with more years in practice do not use social media as often as their younger colleagues,
which could explain the low number of respondents in the category of >20 years of practice.
The low numbers of obtained responses is a major limitation in this study. Further studies
need to include other options of survey dissemination.

Publications Which Compare Use of Other Modern Technologies by Dentists in Europe

Nassar HM et al. conducted a survey about novel caries diagnostic technologies
among restorative dentists. In their study, most dentists chose optical translumination
(FOTI/DIFOTI) as the preferred method, saying that it has the widest clinical usage (i.e., for
detecting enamel cracks) and is easy to use. The main reason for rejecting other methods
was their high cost [34]. These findings greatly complement the results of our survey.

D. Tran et al. formed 1031 online surveys that were sent to a sample of UK dentists.
385 practitioners responded. Most users did not use any CAD/CAM technology and the
main barriers to use this technology were, according to them, the lack of perceived benefit
and initial costs as disadvantages. CAD/CAM technology was mainly used by dentists
delivering private work. Most users of CAD/CAM technology were trained either by
themselves or by companies, but on the other hand, a significant number of CAD/CAM
users felt that their training was insufficient. 89% of respondents think that CAD/CAM
has an important role in the future of dentistry [35].

Van der Zande et al. investigated the degree of digital technology use among general
dental practitioners. A questionnaire was created that has reached 1000 practitioners in the
Netherlands. The response rate was 31.3%. Dentists have adopted an average number of
6.3 ± 2.3 technologies. 22.5% were low technology users (0–4 technologies), 46.2% were
intermediate technology users (5–7 technologies) and 31.3 were high technology users
(8–12 technologies). What was interesting was that high technology users were younger on
average (p = 0.024), had invested more hours per year in professional activities (p = 0.026),
were more likely to have a specialization (p < 0.001), and also worked for more hours per
week (p = 0.003) than low technology users. Among technologies that were asked about
in a questionnaire were digital intraoral radiography, digital orthopantomogram, digital
3D radiography CBCT, intraoral camera and scanner, CAD/CAM systems, and others.
According to the questionnaire, out of the nonclinical technologies, digital registration of
patient information is the most frequently used technology (93.2%).

When it comes to clinical and diagnostic technologies, digital intraoral radiography
(90%) and digital orthopantomograms (57.2%) are used most often.

The authors of the questionnaire confirm the importance of such a study, saying
“Understanding where dentistry is going in terms of digital developments begins with
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knowing where dentistry stands now, and how digital technologies are incorporated at
present.” [36].

5. Conclusions

In Poland, dentists tend to use ultrasounds the most. Other technologies are not as
popular. This may change in the future, as many dentists say that they will try some of the
new technologies. In most cases, the usage of each technology did not depended on the size
of office, work experience or sex. The most common reason for not using modern technologies
was their high cost. This study showed that even if reports say some technologies are a
better option, dentists prefer using conventional ones.

From the above data, it follows that the use of new technologies reduces dental
procedure duration and makes treatment more effective. They allow for the detection of
diseases in earlier stages, which directly relate to the reduction of therapy costs for patients
and for the health care system (insurance system).

The authors are convinced that this research is an important addition in understanding
the current state of technologies in dentistry.
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Abstract: Telemedicine is defined as the delivery of healthcare services at a distance using electronic

means. The incorporation of 3D printing in the telemedicine cycle could result in pharmacists

designing and manufacturing personalised medicines based on the electronic prescription received.

Even with the advantages of telemedicine, numerous barriers to the uptake hinder the wider uptake.

Of particular concern is the cyber risk associated with the remote digital transfer of the computer-

aided design (CAD) file (acting as the electronic prescription) to the 3D printer and the reproducibility

of the resultant printed medicinal products. This proof-of-concept study aimed to explore the

application of secure remote 3D printing of model solid dosage forms using the patented technology,

DEFEND3D, which is designed to enhance cybersecurity and intellectual property (IP) protection.

The size, shape, and colour of the remote 3D-printed model medicinal products were also evaluated to

ensure the end-product quality was user-focused. Thermoplastic polyurethane (TPU) and poly(lactic)

acid (PLA) were chosen as model polymers due to their flexibility in preventing breakage printing

and ease of printing with fused deposition modelling (FDM). Our work confirmed the potential

of secure remote 3D (FDM) printing of prototype solid dosage forms resulting in products with

good reproducibility, resolution, and quality towards advancements in telemedicine and digital

pharmacies. The limitation of the work presented here was the use of model polymers and not

pharmaceutically relevant polymers. Further work could be conducted using the same designs

chosen in this study with pharmaceutically relevant polymers used in hot-melt extrusion (HME) with

shown suitability for FDM 3D printing. However, it should be noted that any challenges that may

occur with pharmaceutically relevant polymers are likely to be related to the polymer’s printability

and printer choice as opposed to the ability of the CAD file to be transferred to the printer remotely.

Keywords: 3D printing; additive manufacturing; telemedicine; patient-centric dosage form

1. Introduction

Telemedicine is defined as the delivery of healthcare services at a distance using
electronic means [1]. As a result, telemedicine makes it easier for patients to receive health-
care services remotely, expanding the potential delivery of healthcare to patients across
the world [2]. The telemedicine care cycle starts with healthcare providers conducting
virtual medical consultations and remote diagnoses with patients using electronic means;
electronic prescriptions are then produced and sent remotely to the pharmacies. It is
thought that the introduction of three-dimensional (3D) printing (i.e., additive manufac-
turing method, where the object to be printed is developed through a computer-aided
design (CAD)) in the telemedicine care cycle will transform compounding pharmacies
into digital pharmacies [2,3] Moreover, 3D printing in pharmaceutical sciences allows
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for greater flexibility of fabrication capability in manufacturing patient-centric person-
alised medicines [1,4]. The incorporation of 3D printing in telemedicine could result in
pharmacists designing and manufacturing personalised medicines based on the electronic
prescriptions received [2]. The customised medicine would then be 3D-printed on-demand
in a pharmacy setting [4]. Of concern in this area is the risk to the intellectual property (IP)
during the storage, transmission, and execution of 3D printing through digital networks
and systems [5,6]. Currently, in 3D printing, the entire digital file is transferred to the
manufacturing device, making the digital IP vulnerable to cyberattacks, manipulation,
and even theft [7]. Various solutions have been proposed to try and solve the issue of IP
exposure, including blockchain, encryption, and licensing business models [8]. However,
these solutions still require the complete transfer of the digital file.

The COVID-19 pandemic globally has overwhelmed health systems [9] and telemedicine
has been thrust into the spotlight in the fight against COVID-19. The telemedicine approach
has been employed in many different ways to better tackle the healthcare challenges that
have arisen [10]. Telemedicine will likely have a more permanent place in traditional
healthcare delivery long after the COVID-19 pandemic as users and providers recognise its
advantages in improving global access to healthcare [9–11]. Even with the advantages of
telemedicine, numerous barriers to uptake, such as education, cost, internet access, and
patient digital literature, hinder its wider uptake [10]. Of particular concern is the cyber risk
associated with the remote digital transfer of the CAD acting as the electronic prescription
to the 3D printer and the reproducibility of the resultant printed medicinal products [7].
Additionally, as the shift toward telemedicine increases over time, new issues and risks as
they relate to information security and privacy will need to be addressed and sufficiently
managed [7].

The work presented in this proof-of-concept study aimed to explore the application of
secure remote 3D printing of model solid dosage forms using the patented technology, DE-
FEND3D. The DEFEND3D platform is a patented secure streaming transfer protocol (SSTP),
virtual inventory communications interface (VICI) designed to enhance cybersecurity and
intellectual property (IP) protection. The VICI removes the need for file transfer and allows
for secure digital resupply of reproduction parts remotely. An additional advantage of this
technology means manufacturing and printing on demand can occur without the need for
a specialist at the manufacturing or printing site [12]. The resultant remotely 3D-printed
products are guaranteed to come out as designed [13].

Here, we focused on the secure remote printability of simple and complex pharma-
ceutically relevant designs, with a focus on evaluating their properties as they related to
the patient experience when taking and accepting medication [14], i.e., visual and physical
perception and optimisation of the CAD file and printing parameters (namely layer height
and infill density). The size, shape, and colour of the remotely-3D-printed model medicinal
products were also evaluated to ensure the end-product quality was user-focused [15]. Ther-
moplastic polyurethane (TPU) and poly(lactic) acid (PLA) were chosen as model polymers
due to their flexibility in preventing breakage printing [16–18] and ease of printing with
fused deposition modelling (FDM) [17,19] This proof-of-concept study seeks to explore the
considerations in secure remote 3D printing towards optimisation for pharmaceutical use
in the advancement of telemedicine and digital pharmacies.

2. Materials and Methods

2.1. Materials

Pink-, blue-, yellow-, and white-coloured 1.75 mm diameter thermoplastic polyurethane
(TPU) filaments were purchased from Prima Creator (Malmo, Sweden) and neon pink,
blue, and white 1.75 mm diameter poly(lactic) acid (PLA) filaments were purchased from
Prima Creator.
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2.2. Methods

2.2.1. Computer-Aided Design(s) (CAD)

The geometry of the 3D models to be remotely printed was designed using CAD
drawing software, Blender v. 2.80 (Blender Foundation, Amsterdam, The Netherlands). The
designs were developed by inserting default shapes and modifying them as required. The
four designs (shown in Figure 1) were selected based on work by Goyanes et al. [20] where
they investigated patient acceptability of 3D-printed medicines. Their findings showed
that disc (design 1), torus (design 2), ring (design 3), and gummy-bear shapes (design 4)
were among the most acceptable dosage forms by patients. In our work, designs 2 and 3
represented fixed-dose combination(s) (FDC), defined as two or more drugs combined in a
fixed ratio into a single dosage form [21,22]. Innovative geometries [23,24] (i.e., design 4)
were also included due to their potential to improve patient compliance. Designs were also
chosen for their increasing design and printing complexities to challenge the capacity of
the DEFEND3d platform in ensuring the integrity of the CAD design, file, and resultant
remote printability.
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Figure 1. CAD of (A) design 1—disc shape (12 × 5 × 4 mm) (B) design 2—torus shape
(12 × 6 × 3 mm) (C) design 3—ring shape (9 × 5 × 5 mm) (D) design 4—gummy-bear shape
(11 × 20 × 3 mm), all rendered in Blender v. 2.8.

2.2.2. Remote-Fused Deposition Modelling (FDM) 3D Printing

All designs were remotely 3D-printed using the DEFEND3D platform. Due to the
secure nature of the software, the in-depth workings of the algorithm are not able to be
published. However, an overview of the workings of the platform can be provided. In
brief, the DEFEND3D cybersecurity and transmission protocol allows for a safe remote
method for controlled reproduction of an item that is represented by a digital asset stored
in a trusted computing environment using a reproduction device (i.e., a 3D printer) in an
untrusted computing environment. In practical terms, this is achieved by a continuous
secure stream of production instructions to the machine with the use of Microsoft Azure
Cloud services. The reproduction instructions are secured by six levels of security with
encryption being only one of them. Variables, such as machine type, settings, and the
material used, can be preset to enforce high manufacturing standards in the production
process. The DEFEND3D platform allows for CAD files to be sliced using pre-defined
gcode file pre-printing [14] and, therefore, eliminating the need for complex slicing software
for the final CAD file and poor quality of the resultant printed product [25,26].

This study used FDM 3D printing. FDM 3D printing is an extrusion and thermo-based
3D printing technique where thermoplastic polymers are melted at a high temperature and
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solidified immediately onto the previous layer on the build plate [1,3,22]. Five different
printing phases were required, which showed optimisation (namely printing quality and
reproducibility to original CAD design) of the model dosage forms. Model solid dosage
forms were remoted and printed using a Flashforge Creator Pro Dual Extruder via the
DEFEND3D platform. The polymers used, the printer extruder type and the printing
parameters are provided in Table 1.

Table 1. Summary of printing phases, polymers used, printer type (i.e., single or dual extruder), and
printing parameters.

Polymer
Printer Type i.e.,

Single/Dual
Extruder

Printing Parameters

Nozzle Extrusion
Temperature ◦C

Base Speed
mm/s

Layer Height
mm

Infill Density
%

Phase 1

TPU Single extruder

220 40 0.2
60

60

Phase 2

210

35 30

Phase 3 20

0.1

0, 15, 50, 100

Phase 4
PLA Dual extruder 50 15

Phase 5

2.2.3. Determination of Physical Properties

Visual observation, the physical properties, namely weight, diameter (d), length (l),
and thickness (t) surface area (two dimensional (2D) and theoretical), and volume of the
model solid dosage forms were recorded. A computerised surface analysis using ImageJ
software (Bethesda, Maryland, USA) to calculate the two-dimensional (2D) surface area of
printed products was carried out. The scale was calibrated to 300 distance in pixels of a
known distance of 1, where the scale was set as 300 pixels/mm. The theoretical surface
area (SA) and volume (Vol) were calculated using the equations listed in Table 2.

Table 2. Equations used to calculate the theoretical surface area (SA) and volume (Vol).

Equation Equation Number

SA of design 1 = 2πr2 + 2πrt (1)

SA of design 2 = 2πr2 + 2πrt (2)

SA of design 3 =
[

2πr2
1 + 2πr1t

]

−
[

2πr2
2 + 2πr2t

]

(3)

SA of design 4 = 2dt + 2dl + 2tl (4)

Vol of design 1 = πr2t (5)

Vol of design 2 = πr2t (6)

Vol of design 3 =
[

πr2
1t
]

−
[

πr2
2t
]

(7)

Vol of design 4 = d × l × t (8)

3. Results

The design 1 to 5 prototypes were successfully remotely 3D-printed via the DE-
FEND3D platform using TPU and PLA printing filaments. Evaluations of the resultant
remotely-printed products (general printability, visual appearance, and physical properties)
are shown per design (Figures 2–4 and Tables 3–5).
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Figure 2. The 2D images of remotely-3D-printed model designs (A) 1, (B) 2, (C) 3—top view and
(D) 3—side view phases 1 to 5.
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Figure 3. The 2D images of remotely 3D-printed design 4, phases 1 to 5.
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Figure 4. Design 4 (i.e., gummy bear shape) remotely 3D-printed at 0%, 15%, 50%, and 100% infill
densities, showing different degrees that the prototypes could be bent manually (as an indication
of flexibility).

Table 3. Physical properties of remotely-3D-printed model designs 1 to 3. Data for diameter, length,
and thickness represent the mean ± standard deviation.

Diameter ± SD
(mm)

Length ± SD
(mm)

Thickness ±
SD (mm)

Weight (g)
2D

Surface Area
(mm2)

Theoretical
Surface Area

(mm2)

Theoretical
Volume (mm3)

Design 1

Phase 1 10.00 ± 0.71 10.00 ± 0.71 4.50 ± 0.00 0.28 1.38 298.45 353.43

Phase 2 10.00 ± 0.00 10.00 ± 0.00 4.50 ± 0.07 0.26 1.35 298.45 353.43
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Table 3. Cont.

Diameter ± SD
(mm)

Length ± SD
(mm)

Thickness ±
SD (mm)

Weight (g)
2D

Surface Area
(mm2)

Theoretical
Surface Area

(mm2)

Theoretical
Volume (mm3)

Phase 3 16.00 ± 0.00 16.00 ± 0.71 6.00 ± 0.71 0.67 5.53 703.72 1206.37

Phase 4 15.00 ± 0.00 15.00 ± 0.00 6.00 ± 0.00 0.85 4.11 636.17 1060.29

Phase 5 6.00 ± 0.00 6.00 ± 0.00 3.00 ± 0.00 0.09 0.68 113.10 84.82

Design 2

Phase 1 12.00 ± 0.71 12.00 ± 0.71 3.00 ± 1.41 0.37 1.33 339.29 339.29

Phase 2 12.00 ± 0.71 12.00 ± 0.71 3.00 ± 1.41 0.43 2.27 339.39 339.39

Phase 3 15.00 ± 0.71 15.00 ± 0.71 6.00 ± 1.41 0.89 4.37 636.17 1060.29

Phase 4 14.00 ± 0.00 14.00 ± 0.00 5.00 ± 0.71 0.81 4.49 527.79 769.69

Phase 5 8.00 ± 2.12 8.00 ± 2.12 3.00 ± 0.71 0.11 0.77 175.93 150.80

Design 3

Phase 1 11.00 ± 0.00 11.00 ± 0.00 6.00 ± 0.71 0.26 2.21 1.40 146.08

Phase 2 11.00 ± 0.00 11.00 ± 0.00 5.00 ± 0.00 0.33 1.62 1.37 175.93

Phase 3 13.00 ± 1.41 16.00 ± 0.71 6.00 ± 0.71 0.49 3.31 2.56 164.93

Phase 4 13.00 ± 0.71 16.00 ± 0.00 5.00 ± 0.71 0.43 3.52 2.19 155.50

Phase 5 8.00 ± 0.00 10.00 ± 0.00 5.00 ± 0.71 0.14 1.61 1.41 75.40

Table 4. Physical properties of 3D-printed gummy bear shape tablet (design 4). Data for diameter,
length, and thickness represent the mean ± standard deviation (SD), where n = 2.

DESIGN 4
Diameter

(mm)
Length (mm)

Thickness
(mm)

Weight (g)
2D Surface
Area (mm2)

Theoretical
Surface Area

(mm2)

Theoretical
Volume
(mm3)

Phase 1 15.00 ± 0.00 25.00 ± 0.71 2.00 ± 0.71 0.67 3.16 910.00 750.00

Phase 2 15.00 ± 0.00 26.00 ± 0.00 4.00 ± 0.00 0.60 4.27 1168.00 1664.00

Phase 3 14.00 ± 0.71 24.00 ± 0.00 3.00 ± 0.35 0.58 3.92 900.00 1008.00

Phase 4 15.00 ± 0.71 24.00 ± 0.00 3.00 ± 0.35 0.97 4.25 954.00 1080.00

Phase 5 10.00 ± 0.35 15.00 ± 0.00 3.00 ± 0.71 0.21 1.84 450.00 450.00

Table 5. Different infill densities of 3D-printed gummy bear shape tablets (design 4). Data for
diameter, length, and thickness represent the mean ± standard deviation (SD), where n = 2.

Infill
Densities

Diameter
(mm)

Length (mm)
Thickness

(mm)
Weight (g)

2D Surface
Area (mm2)

Theoretical
Surface Area

(mm2)

Theoretical
Volume
(mm3)

0% 14.00 ± 0.71 24.00 ± 0.00 3.00 ± 0.35 0.58 3.92 900.00 1008.00

15% 14.00 ± 0.71 24.00 ± 0.71 3.00 ± 0.00 0.62 2.69 900.00 1008.00

50% 13.00 ± 0.00 24.00 ± 0.00 3.00 ± 0.00 0.67 3.20 846.00 936.00

100% 14.00 ± 0.00 25.00 ± 0.71 3.00 ± 0.35 1.16 3.65 934.00 1050.00

3.1. Remote Printability

All designs were remotely printable with varied resolutions, which were optimised
with changes in the printing parameters (namely base speed, layer height, infill density,
and extrusion temperature) and are shown in Figure 2A–D. Prototypes remotely printed in
printing phases 1 to 3 were modified to optimise geometry. The phase 1 model solid dosage
form prototypes were of clinical relevance; they were designed to be within the range of
size 2 (18 × 6.35 mm) and size 3 capsules (15.9 × 5.82 mm) [14,15,20,27]. Printing phases 4
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and 5 involved modifications to optimise the resolution and quality of the remotely-printed
model solid dosage forms.

3.2. Visual Observations and Physical Properties of Remotely-Printed Products for Designs 1 to 3

The remotely-3D-printed design 1 (disc shape), shown in Figure 2A, was the simplest
design to be printed in this study. Overall, phase 5 models of this design, which involved
modifications to optimise the resolution and quality, were found to have the best quality,
with the smoothest surfaces, good filament colour distributions, and improved resolutions
compared to phases 1–4. Phase 1 remotely-3D-printed model dosage forms had the roughest
surfaces to touch compared to phases 2–5 remotely-3D-printed model dosage forms. The
remotely-3D-printed model design 2 (phases 1–5), which had an outer torus shape with
a flat disc shape inserted into the hollow area achieved by dual extruder FDM printing,
is shown in Figure 2B. The phase 1 remotely-printed design 2 model tablets did not have
optimal resolutions and well-separated colour distributions. Phases 1 and 2 remotely-
printed prototypes had the roughest surfaces upon touching, whereas phase 5 had the
smoothest surface among all. Phase 3 to 5 remotely-printed models showed a uniform
colour distribution and overall visual appearance.

In general, design 1, 2, and 3 remotely-printed prototypes showed great reproducibil-
ity; the mean diameter, length, and thickness had small variations (with a standard devi-
ation of less than 0.8 mm) with the exceptions of design 2–phase 5 and design 3–phase 3
remotely-printed solid dosage form prototypes, which saw larger standard deviation
variations at 2.12 and 1.41 mm, respectively. As expected, the overall weight and theo-
retical volume (mm3) increased with an increase in prototype dimensions. Images from
Figure 2A–D were used to measure the 2D surface areas of the remotely-printed solid
dosage form prototypes. The 2D surface area was expected to have a much smaller surface
area compared to the theoretical surface area. Results shown in Table 3 support this state-
ment; for example, the design 1–phase 1 remotely-printed tablet 2D surface area (using
Figure 2A) was 1.38 mm2, and 298.45 mm2 when calculated theoretically.

3.3. Design 4—Gummy Bear Shape

Images of remotely-printed prototypes for design 4 (i.e., 3D-printed gummy bear
shape prototype solid dosage forms) phases 1 to 5, and the physical properties, are shown
in Figure 3 and Table 4, respectively. The “belly” of the remotely printed design (in
phases 1 and 2) showed evidence of the “staircase effect” where layering or layered marks
were visible on 3D-printed parts, resulting in a rougher feel of the prototype. The “face”
features of the designs were not distinguishable in remotely-printed prototypes from phases
1 and 2. The staircase effect was reduced in remotely-printed phase 2 to 5 designs with an
increase in appearance, smoothness to touch, and overall improved quality. The feel of
a solid dosage form greatly influences patient acceptability [19]. The theoretical surface
area and volume were calculated using the formula for calculating a rectangular because
the CAD was developed from a rectangular shape before further modifying into a gummy
bear shape; therefore, the values were expected to be slightly greater. As a result of this, the
values will be overestimated in the facial parts of the gummy bears as they were made up
of irregular shapes.

3.4. Design 4—Different Infill Densities

Overall, the focus of the work detailed in this study was to explore the remote printabil-
ity of simple and complex pharmaceutically relevant designs. Considerations of 3D printing
in pharmaceutical sciences include varying the percentage infill density (also referred to
as the infill percentage) as a strategy to generate chewable and more flexible solid dosage
forms. Such formulations are ideal for patients with swallowing difficulties. To push the
potential of remote 3D printing of solid dosage forms (prototypes) in this study using the
DEFEND3D platform, the infill densities of design 4, as well as the phase 3 prototypes, were
remotely 3D-printed at 0, 15, 50, and 100% infill densities (Figure 4). The flexibility (from a
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patient perspective) was explored by bending each resultant remotely-printed product by
hand, with flexibility increasing with decreased infill densities, as shown in Figure 4. The
infill density influenced the overall weight of the remotely-printed prototype (as expected),
where 100% infill density had the greatest weight (i.e., 1.16 g) compared to the tablet with
0% infill density (0.58 g) (Table 5). This is because the greater the infill percentage, the more
polymer is deposited inside the object, resulting in a lesser deformation [28,29]

4. Discussion

The proof-of-concept study detailed here addressed the potential of secure (using
the SSTP, VICI-patented DEFEND3D platform) remote 3D (FDM) printing of simple and
complex pharmaceutically relevant designs as it related to patient experiences when taking
and accepting their medications, CAD, and printing optimisation. Solid dosage form
prototypes were generated using model polymers, TPU and PLA. All simple and complex
designs were successfully remotely and securely 3D-printed (FDM) using the DEFEND3D
platform. For all designs, phase 5 models through the DEFEND3D profile (which involved
modifications to optimise resolution and quality) were found to have the best quality,
smoothest surfaces, good filament colour distributions, and improved resolutions compared
to phases 1–4 of all designs. Physical properties (i.e., diameter, length, thickness, weight,
surface area, and volume (both theoretical and experimental)) increased with increased
prototype dimensions, as expected. Further work was explored with design 4 with remote
3D printing of prototypes with varied infill densities. Varying the infill density in the
development of 3D-printed solid dosage forms expands the application of the resultant
products as chewable and more flexible dosage forms. Design 4–phase 3 prototypes at 0,
15, 50, and 100% infill densities were successfully remotely 3D-printed. Flexibility (from a
patient perspective) was greatest at the lowest infill density (i.e., 0% infill density %).

This work highlights the potential of secure remote 3D (FDM) printing of prototype
solid dosage forms resulting in products with good reproducibility, resolution, and quality
towards advancement in telemedicine and digital pharmacies. The ability to provide a
healthcare service that would start with a consultation, diagnosis, a prescription, and
ideally dispensing of the appropriate medicinal product remotely [2], will advance the
potential of telemedicine to wider populations and regions globally. This has the potential
to reduce global medicine access issues. The uptake of this emerging healthcare process
requires barriers to be addressed to facilitate its advancement.

Medication manufacturing and dispensing as it relates to telemedicine and digital
pharmacies can be supported by the implementation of 3D printing in the telemedicine care
cycle. However, barriers to uptake need to be addressed. The cybersecurity risk associated
with the remote digital transfer of a CAD file (acting as the electronic prescription to the
printer) has been explored in this study with the use of the DEFEND3D platform, a patented
SSTP, VICI designed to enhance the cybersecurity of remote 3D-printed products. The
DEFEND3D pre-defines each printer’s profile by selecting the appropriate print speed
at various points, layer height, and infill percentage to ensure the optimised quality of
prints to be produced [12]. DEFEND3D’s commercial application allows the functionality
to drag and drop CAD files into an application within a trusted environment without any
knowledge of slicing software and with no 3D printing experience. These files are then
sliced for use in several integrated FDM-type desktop machines that have been pre-defined
by a DEFEND3D CAD engineer to allow an optimised print performance. This could
be advantageous in digital pharmacies to ensure consistency across all prints, making
sure that accurate doses are present in each formulation, as well as reducing the labour
burden. Various regulatory concerns are circulating regarding the introduction of 3D
printing into pharmacies. Copyright issues are often encountered in 3D printing. The
CAD designed using dedicated 3D software by pharmacists undoubtedly involves human
intellect, which is considered an intellectual property that needs to be protected against
proliferation use [30]. DEFEND3D allows the secure transmission of virtual inventory to be
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delivered instantly without revealing intellectual property. The 3D file will always remain
on the source computer, meaning the file cannot be stolen or manipulated by someone else.

5. Conclusions

Our work has confirmed the ability of the platform to successfully remotely 3D-
print simple and complex pharmaceutically relevant designs at various infill densities.
The limitation of the work presented here involves the use of model polymers and not
pharmaceutically relevant polymers. This study focused on remote printability as it related
to the shape complexity of pharmaceutical relevance and not the materials used. TPU
and PLA were chosen due to their flexibility, ease of printing via FDM 3D printing, and
to prevent breakage printing. This study has confirmed the possibility of secure remote
printing of pharmaceutically relevant-shaped solid dosage forms.

Further work could be conducted using the same designs chosen in this study but with
pharmaceutically relevant polymers used in hot-melt extrusion (HME) with demonstrated
suitability for FDM 3D printing [31], such as poly(vinyl alcohol) [32]. However, it should
be noted that any challenges that may occur with pharmaceutically relevant polymers are
likely to be related to the polymer’s printability and printer choice as opposed to the ability
of the CAD file to be transferred to the printer remotely.
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