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Preface to ”Non-communicable Diseases, Big Data

and Artificial Intelligence”

The 2030 Agenda for Sustainable Development adopted by the United Nations in 2015

recognized non-communicable diseases (NCDs) as a major public health challenge. NCDs are usually

multifactorial diseases influenced by both genetic and environmental factors, which makes them

difficult to prevent and treat effectively. Medical and health big data, consisting of lifestyle, clinical,

and biological data, provide an almost unlimited amount of information about diseases, far exceeding

the human ability to make sense of it. Artificial intelligence (AI) offers the potential to analyze large

and complex datasets in order to improve predictive, preventive, and personalized medicine (3P

medicine).

This reprint included 15 articles, which overview the most recent advances in the field of AI and

their application potential in 3P medicine.

Youxin Wang and Ming Feng

Editors
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Abstract: Multiple sclerosis (MS) is a relatively common neurodegenerative illness that frequently

causes a large level of disability in patients. While its cause is not fully understood, it is likely due to

a combination of genetic and environmental factors. Diagnosis of multiple sclerosis through a simple

clinical examination might be challenging as the evolution of the illness varies significantly from

patient to patient, with some patients experiencing long periods of remission. In this regard, having

a quick and inexpensive tool to help identify the illness, such as DNA CpG (cytosine-phosphate-

guanine) methylation, might be useful. In this paper, a technique is presented, based on the concept

of Shannon Entropy, to select CpGs as inputs for non-linear classification algorithms. It will be shown

that this approach generates accurate classifications that are a statistically significant improvement

over using all the data available or randomly selecting the same number of CpGs. The analysis

controlled for factors such as age, gender and smoking status of the patient. This approach managed

to reduce the number of CpGs used while at the same time significantly increasing the accuracy.

Keywords: multiple sclerosis; DNA methylation; entropy

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune illness affecting the brain and spinal
cord associated with various degrees of disability. In MS, the immune system of the
patient attacks the axons, more specifically, the myelin cover; see Figure 1 for a graphical
illustration [1]. Inflammation is highlighted by some researchers as one of the drivers of
neurodegeneration in MS [2–4]. The evolution of the illness varies greatly from patient to
patient, with some individuals experiencing long periods of remissions due to mechanisms
that are not yet well understood. The usual manifestation age of the illness is from 20
to 45 years old, but it can occasionally manifest at younger ages, even in children [5].
The causes of MS remain unclear, with a complex underlying combination of genetic and
environmental factors the most likely cause [6–10].

Control 

Multiple sclerosis 

Figure 1. Graphical illustration of neurological damage in MS.

There are some gender considerations to take into account, as the illness is more
common in women than men in a 3:1 ratio (and in some countries like Sweden even 5:1).
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Some of the common symptoms of the illness include fatigue and numbness, typically in one
side of the body [11,12]. Behavioral and cognition abnormalities are also common [13–15].
Currently there are many therapeutic approaches to control or stop the progression of the
disease, but no curative treatment is available. However, a large amount of research has
been generated regarding this disease. MS has a particularly high prevalence in some areas
of Europe and the United States, particularly in northern regions [16].

CpG DNA methylation data has been used to analyze neurodegenerative diseases
such as Alzheimer’s [17–20] and Parkinson [21–23]. As can be seen in Figure 2, in the
context of DNA methylation, CpG dinucleotide (or CpG) refers to cytosine followed by a
guanine in the same DNA strand (typically 5′ to 3′), not to be confused with cytosine and
guanine pared in two complementary strands.

5’

3’

C C C

C C C

G G G

G G G

A

A A

T T

T

3’

5’

5’

3’

C C C

C C C

G G G

G G G

A

A A

T T

T

3’

5’

CpG Island

Not a 

CpG Island

Figure 2. Illustration of CpG islands.

Methylation is simply the addition of a methyl group at the 5-carbon (see Figure 3).
DNA methylation has been extensively studied in the context of aging, with several
biological clocks built using such types of data. Technological advances in recent years
have made possible the analysis of DNA methylation levels on thousands of CpGs in a fast
and reliable way. In practice, what is obtained is the percentage level of methylation with
a value ranging from 0 to 1 (100% methylated). DNA methylation for cancer diagnostics
has made significant progress in the last decades, including many seminal papers [24–27].
There is also a significant body of research covering diabetes [28–32].

DNA methylation has also been used in the context of multiple sclerosis [33,34]. Most
of the existing literature on the topic tends to use linear approaches. In this paper, we have
followed a non-linear approach, which is in principle more generic and encompassing than
a linear approach. Machine learning techniques have been successfully used in multiple
applications of different types of diseases [35–38]. More specifically, neural networks have
been used as an algorithm for the identification of neurodegenerative illnesses, such as
Alzheimer’s, using DNA methylation data as the input [39–41].
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We applied the concept of Shannon Entropy in the context of DNA methylation ap-
plied to multiple sclerosis identification. As far as we are aware, this approach has not
been followed before. Shannon Entropy is a concept initially developed in information
theory, which attempts to quantify the amount of information contained in a certain set
of data [42]. The precise mathematical definition of this concept will be introduced in the
materials and methods section. It will be shown that using the concept of Shannon Entropy
for CpG selection can generate accurate results.

Methylated

Not Methylated

CpG island (0.66)

C C C

C

C

CCC

G G G

G

G

G G G

T

T
A

A

5’

3’

3’

5’

Figure 3. DNA methylation illustration.

Motivation and Aims

Biomarkers are an increasingly important field, particularly when they can be ana-
lyzed using non or minimally invasive techniques. In this regard, blood is a particularly
interesting tissue as it can be cheaply and quickly obtained from a patient causing only
minimal discomfort. Blood has a significant advantage over other tissues such as brain
matter, which is much harder to obtain. DNA methylation data can be accurately and
rapidly analyzed using technologies such as the Illumina machines. Shannon Entropy is
a concept frequently used in machine learning. The motivation to use this approach for
data selection is in trying to find techniques that might reduce the dimensionality of the
data. Shannon Entropy is one of the few concepts in the existing literature directly related
to the amount of information contained in the data, which seems to be a reasonable starting
point when trying to reduce the dimensionality of the data while maintaining as much
information as possible.

The aim of this article is to develop techniques to identify DNA methylation signatures
applicable for the identification of multiple sclerosis patients.

2. Materials and Methods

The DNA methylation data for each individual was stored in a vector Xi.

Xi =



































Xi
1

Xi
2

...
Xi

m



































(1)

where m is the number of CpGs analyzed per patient. A numerical example would be:
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X2 =































0.211

0.723

...
0.983































(2)

Which represents all the CpG information available for patient number 2. In this ex-
ample, the methylation level in the first and second CpGs are 21.1% and 72.3%, respectively.
As there is a large number of cases analyzed it is more convenient to group the data in a
matrix form.

X =

















X1
1 X2

1 . . . Xn
1

X1
2 X2

2 . . . Xn
2

...
...

...
X1

m X2
m . . . Xn

m

















(3)

In this notation, there are n cases (including both patients and controls) with m CpGs
associated with each case. The status of the individual analyzed (multiple sclerosis or
control) was defined with a binary variable {0, 1} stored in a target vector T, with the
value 0 indicating a healthy control case and the value 1 indicating a patient with multiple
sclerosis.

T = {0, 1, 0, . . . , 1} (4)

As there are n cases, there will be n entries for this vector. In this example, the first
and third cases are control cases, and the second one a patient with MS. As a preliminary
step, each CpG was individually linearly modeled against the classification vector T and
only those with a p-value below 5% were included. The rest of the CpGs were discarded.
The dimension of X was reduced from (n · m) to (n · l), where l is the number of CpGs
with a p-value below 5%. p-value prefiltering was carried out in all the data. The Shannon
Entropy (H) concept was then used to further filter the number of CpGs used. The Shannon
Entropy approach step was carried out only for the training dataset. Shannon Entropy can
be intuitively understood as the amount of information contained in some data and it is
a concept borrowed from information theory. The mathematical expression for Shannon
Entropy is as follows:

H = −∑
i

Pilog2(Pi) (5)

This concept is typically applied in discrete mathematics. The probabilities can be
estimated empirically. In simple terms, more entropy translates into more information
contained. After the initial filtering, the absolute value of the Shannon Entropy was
estimated for each CpG.

H =















































H1

H2
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.

.
Hl















































(6)
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Only CpGs with an entropy value (Hi) bigger than certain predefined value (H
f
i )

were considered. All the other CpGs were excluded from the analysis. In this way we
obtained H∗.

H∗ =















































H∗
1

H∗
2

.

.

.
H∗

q















































(7)

In this notation q ≤ l. After selecting the CpGs, it is necessary to choose the clas-
sification algorithm that is used. A neural network with a hidden layer and an output
layer was used. The hidden layer contained 50 artificial neurons, while the output layer
contained a single artificial neuron. The 50 neurons in the hidden layer are of the sigmoid
symmetric transfer function type. The neuron in the output layer is of the type sigmoid
positive transfer function (both of these transfer functions are built-in in Matlab). All the
neurons include a bias factor. The neural network was trained with the scaled conjugate
backpropagation algorithm. Another four learning algorithms were tested (Levenberg–
Marquardt, resilient backpropagation, one-step secant and gradient descent). As in the
case of the transfer functions in the artificial neural networks, the learning algorithms are
also built-in options in Matlab. Among all the learning algorithms, the best results were
obtained using the scaled conjugate backpropagation approach. The data was divided
into a training and a testing dataset. The testing dataset accounted for approximately
15% of the data. All the calculations were carried out in Matlab. Neural networks have
been extensively used for modeling purposes and can accurately describe many complex
underlying dynamics. An important step is to check that the classification error obtained
using the above mentioned Shannon Entropy approach for CpG selection is more accurate
than the one obtained when using the same number of randomly selected CpGs; in other
words, controlling that the improvement in accuracy is not simply due to the reduction in
the dimensionality of the data.

All the calculations were done in Matlab, the Shannon Entropy value was calculated
using an existing Matlab function. The methylation data was analyzed using two decimals
of precision in percentage terms. The analysis did not appear to be very sensitive to an
increase to the third decimal place, but it started to have more impact thereafter (four or
five decimal places in percentage terms). We believe that using two decimal places is a
reasonable precision considering the likely accuracy of the experimental data.

A sensitivity analysis was also carried out. The underlying assumption was that CpGs
with very little data variation would be less useful for classification purposes. In an extreme
case, if the DNA methylation level for a given CpG was the same for all patients, then this
information would not be useful for classification purposes. We did not assume that the
CpGs with the most data variation (measured as the standard deviation) were necessarily
the best choices, as other factors such as experimental noise (and potentially many others)
can increase the variation of the data. However, it seemed reasonable to carry out a
sensitivity analysis over reasonable values of the volatility of the DNA methylation data.

Data

DNA methylation data for 279 individuals were obtained from the GEO database
(publicly available data) with the accession code GSE 106648 [43]. The database contained
both individuals with multiple sclerosis (140) as well as control individuals (139). The
age range was from 16 to 66 years old, and there were 77 male individuals. There were
more females than male patients. This is consistent with the observation that MS tends to
be more common among females than males; 138 of the individuals in the dataset were

5
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smokers. Age, gender and smoking status (Table 1) were used as inputs in the model. As in
the case of DNA methylation, these factors were allocated to their corresponding training
or testing dataset.

Table 1. Basic descriptive information of the patients.

Description Amount

Male 77
Female 202

Smokers 138
Non-smokers 141

Age 16, 77

The DNA methylation data [43] was obtained from peripheral blood tissue using the
Illumina Human Methylation 450 Beach Chip. There were 485,512 CpG DNA methylation
data per patient.

3. Results

As can be seen in Figure 4, the average classification error using all the available
data with a p-value below 5% was 55.4%, while the error obtained when using only the
CpGs with the top 10% Shannon Entropy values (9499 CpGs) was 19.93%, which is a
statistically significant improvement. Equivalently, the proposed approach (using Shannon
Entropy as a filter) generated a successful classification rate of approximately 80.07%,
while the direct approach (using all the data) generated a successful classification rate
of approximately 44.6%. The direct approach likely generates poor classifications due to
the issue of local minima, which is likely improved by the introduced Shannon Entropy
filtering. The model accuracy was substantially improved while at the same time reducing
the amount of input data required in the mode. After the two steps (p-value filtering
and Shannon Entropy filtering), the amount of CpGs was reduced by approximately 98%
compared to the total initial data available. These results were obtained by dividing the
data into training and testing datasets, with the testing dataset not used during the training
phase. The testing dataset contained approximately 15% of the total data. Unless explicitly
mentioned, all the results shown below refer to the testing dataset results. All the models
controlled for age, gender and smoking status of the patients. As it can be seen in Table 2,
the average sensitivity and specificity obtained were 78.3% and 81.8%, respectively. An
example showing a confusion matrix and ROC can be seen in Figures 5 and 6.

Figure 4. Error rate comparison between direct approach and Shannon Entropy filtered approach.

6
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Table 2. Average classification forecasting accuracy.

Accuracy Measure Percentage

Average successful classification 80.1%
Sensitivity 78.3%
Specificity 81.8%

Figure 5. A sample confusion matrix (after p-value prefiltering and Shannon Entropy filtering).

Figure 6. ROC (after p-value prefiltering and Shannon Entropy filtering).

7
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In order to compare the results, two baseline values were obtained using the volatility
(standard deviation) as an indicator. In the first baseline case, the top 2% most volatile
CpGs were selected without any prefiltering (such as p-value). This was done in order to
have a dimensionality comparable to the results obtained using the proposed approach
(p-value prefiltering plus Shannon Entropy filtering). The classification success ratio using
this technique was approximately 51.6%. A second base line level was obtained. In this
case, p-value prefiltering was carried out followed by a selection of the most volatile CpGs.
The threshold value for the volatility was selected in order to make the final dimension
of the data, i.e., number of CpGs selected, approximately the same as the one obtained in
the proposed approach (p-value plus Shannon filtering). The successful classification rate
was 56.1%.

An important test to carry out is comparing the performance of the obtained CpGs
by the Shannon Entropy approach (as inputs for the classification algorithm) to the results
using a matrix of randomly selected CpGs. In this way, we account for the reduction in
dimensionality of the data. Ten randomly selected sets of CpGs of the same size as the one
obtained using the Shannon Entropy approach (9499) were selected. All the included CpGs
in this random approach had p-values of less than 5%, i.e., this analysis was carried out
after the initial linear filtering. Ten simulations were carried out for each of the ten different
randomly selected sets of CpGs. The average value and the confidence interval can be seen
in Figure 7. The Shannon Entropy approach generates classifications that are statistically
significantly more accurate than a random selection of the same size.

As mentioned in the methods and materials section, a sensitivity analysis using the
standard deviation of the DNA methylation data for each CpG was also carried out. In
Figure 8, the results of selecting the CpGs with the highest volatility are shown. The range
selected encompassed the top 5% to the top 50%, in 5% increments. For example, the first
column shows the error rate (misclassifications) when using the top 5% of CpGs according
to their standard deviation from the initial pool containing 9499 CpGs (after the initial
filtering using Shannon Entropy filtering).

Figure 7. Error rate comparison between the Shannon Entropy filtered approach and random selection
of the same size.

The intuition behind this approach is selecting CpGs with variation in the methylation
values. As an extreme example, completely flat data (with standard deviation equal to zero)
will arguably contain no value from a classification point of view. It is also acknowledged
that some of that volatility might be caused by experimental and other sources of noise.
The best results were obtained when using the top 15% most volatile CpGs with an average

8
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correct classification rate of 81.42%. However, the results were not statistically different
(at a 5% significance) when compared with the results obtained by filtering for Shannon
Entropy only (no filtering according to the standard deviation of the CpGs).

Figure 8. Sensitivity analysis according to the standard deviation of the value of the CpGs. Error rate
as a function of the amount of CpGs selected according to their standard deviation.

4. Discussion

An innovative approach is shown for the selection of DNA methylation CpGs to be
used in non-linear classification models. This approach is based on the concept of Shannon
Entropy, which it is an idea borrowed from the information theory field. Shannon Entropy,
in simple terms, can be understood as a measure of the amount of information contained in
a set of data. The overall data was first filtered, discarding the CpG with p-values above
5%. A quality pre-check of the data was also carried out, excluding CpGs with missing
data. The analyzed dataset appeared to be of good quality with no major data issues.
Using the two steps approach of p-value prefiltering followed by the proposed Shannon
Entropy filtering, the dataset was reduced from an original size of approximately 485,512
to a final size of 9499 CpGs, which represents a 98% reduction. The classification analysis,
distinguishing between control and multiple sclerosis patients, using the entire dataset, did
not generate accurate results. The error rate when using the Shannon Entropy approach
was 19.93% (80.07% correct classification), which is a statistically significant improvement
over the base case. These error rates were obtained using artificial neural networks as the
classification algorithm. All the analyses were carried out controlling for age, gender and
smoking status of the patients. It was also tested if the increase in accuracy was due simply
to the reduction in the dimensionality of the data. In order to do this, several random
CpG configurations of the same size (9499 CpGs) as the one obtained using the Shannon
Entropy approach were tested. Their average error rate was 52.66%, which is statistically
significantly higher than the results obtained using the Shannon Entropy. This suggests
that the Shannon Entropy approach might be a reasonable approach to select potential
CpGs relevant for the classification analysis. This type of tool might become rather useful
in the future, as the amount of CpGs analyzed per person increases and the computational
costs increase accordingly. Another interesting analysis is controlling for the volatility, i.e.,
the standard deviation, of the CpGs. A sensitivity analysis was carried out in this regard by
selecting CpGs according to their standard deviation (in buckets of 5%), i.e., top 5%, top
10%, and so on. When carrying out this type of analysis, there were some improvements in
the average accuracy, but these improvements were not statistically significant.

9
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These results were consistent with other articles that found a relationship between
DNA methylation in other tissues such as the hippocampus [44]. Using blood as the
selected tissue [43] is better suited for clinical purposes. Having a simple test, such as
one based on DNA methylation data, which can be applied to many different diseases
in a rapid and inexpensive way, can be useful. Multiple sclerosis is a relatively difficult
illness to diagnose. Using only clinical symptoms and imaging, such as MRI, is frequently
requested when the presence of illness is suspected. From a clinical point of view, it might
be practical to have techniques, such as DNA methylation levels in the blood, which can
be identified, with a reasonable level of accuracy, the presence of MS with a simple blood
test. The physician can use the results from the blood-based biomarker combined with the
clinical assessment to decide if it is necessary to carry out further tests, such as imaging.

A very interesting area of future research is the temporal evolution of the DNA
methylation in multiple sclerosis, given the diverse evolution of the illness, particularly
the long periods of remission experienced by some patients. Further research is necessary
to determine feasibility, but it might be possible to use this type of approach for early
detection. As more data becomes available, it might be possible to distinguish between
different types of illness progression using DNA methylation data. It is possible that
differentiating between the different types of evolution might help in targeting therapies in
a more precise way.

5. Conclusions

Technical improvements are making possible the generation of large amounts of
epigenetic data, such as DNA CpG methylation data, that can be used for the detection
of several different types of illnesses, such as multiple sclerosis (MS). Multiple sclerosis is
a complex illness with genetic and environmental factors, and importantly, an uncertain
evolution with some patients experiencing long periods of remission. In this paper, we
present a technique based on the Shannon Entropy concept for the selection of CpGs as
inputs for MS identification using non-linear techniques such as artificial neural networks.
It was shown that using the proposed approach, the number of CpGs used decreased
while the accuracy of the classifications significantly improved. As more DNA methylation
data becomes available, it is important to have techniques to efficiently filter these large
amounts of information. In this regard, borrowing concepts like Shannon Entropy from
other disciplines, such as information theory, might be an interesting approach. Having
more data is likely beneficial but not all the new data will be helpful for analysis with a
large percentage potentially adding noise. Therefore, it is important to develop techniques
to further facilitate quantitative data analysis.

In the future, as more DNA CpG methylation data becomes available, it might be
possible to extend this type of analysis in order to identify patients with different types
of MS evolution. Currently, MS has no cure, but it is a field of intense research. It is
possible that differentiating between the different types of evolution might help in targeting
therapies in a more precise way, and this is a very appealing area of future research.
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Abstract: Background: Although the genetic susceptibility to diabetes and ischemic heart disease

(IHD) has been well demonstrated, studies aimed at exploring gene variations associated with

diabetic IHD are still limited; Methods: Our study included 204 IHD cases who had been diagnosed

with diabetes before the diagnosis of IHD and 882 healthy controls. Logistic regression was used

to find the association of candidate SNPs and polygenic risk score (PRS) with diabetic IHD. The

diagnostic accuracy was represented with AUC. Generalized multifactor dimensionality reduction

(GMDR) was used to illustrate gene-gene interactions; Results: For IL6R rs4845625, the CT and TT

genotypes were associated with a lower risk of diabetic IHD than the CC genotype (OR = 0.619,

p = 0.033; OR = 0.542, p = 0.025, respectively). Haplotypes in the AGER gene (rs184003-rs1035798-

rs2070600-rs1800624) and IL6R gene (rs7529229-rs4845625-rs4129267-rs7514452-rs4072391) were both

significantly associated with diabetic IHD. PRS was associated with the disease (OR = 1.100, p = 0.005)

after adjusting for covariates, and the AUC were 0.763 (p < 0.001). The GMDR analysis suggested that

rs184003 and rs4845625 were the best interaction model after permutation testing (p = 0.001) with

a cross-validation consistency of 10/10; Conclusions: SNPs and haplotypes in the AGER and IL6R

genes and the interaction of rs184003 and rs4845625 were significantly associated with diabetic IHD.

Keywords: diabetic complication; gene-gene interaction; AGER; IL6R

1. Introduction

Ischemic heart disease (IHD) remains the leading global cause of death and lost
life years in adults, and it is also the leading cause of mortality in people with type
2 diabetes mellitus (T2DM). Approximately 68% of deaths in type 2 diabetic patients
are caused by cardiac complications [1,2]. It has been demonstrated that the advanced
glycation end products (AGER)/interleukin-6 (IL-6) pathway plays an important role
in the physiological mechanism of diabetic cardiovascular complications [3–5]; however,
whether gene polymorphisms in this pathway can influence the disease susceptibility are
still unknown.

Several single nucleotide polymorphisms (SNPs) in the AGER gene have been reported
to be associated with diabetes or its complications [6–8]. A meta-analysis including 27
original articles showed that AGER genetic polymorphisms with CAD were potentiated
in patients with diabetes mellitus disease, but the association was not consistently signifi-
cant [9–11]. A Mendelian randomization study also showed that the C allele in rs2228145
was associated with a lower risk of coronary heart disease [12], but a meta-analysis of
three GWA scans with 4107 type 2 diabetes cases and 5187 controls in Caucasians found no
evidence that IL6R variants were associated with type 2 diabetes [13]. Due to the different ef-
fects of the IL6R gene on diabetes and coronary heart disease, further research is still needed
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to demonstrate the association between IL6R variants and diabetic macrovascular com-
plications. Gene-gene interactions can explain the missing heritability of cardiometabolic
disease and better reflect the complex pathophysiological process of disease [14]. However,
few studies have focused on the influence of the gene-gene interactions among several
SNPs on CVD susceptibility until now [15–17]. Machine learning methods may effectively
reduce Type I and II errors and increase robustness, of which the generalized multifactor di-
mensionality reduction (GMDR) method has remained popular in detecting the interaction
effect since its appearance [18,19].

The current study aimed to illustrate the association of AGER and IL6R gene polymor-
phisms with the risk for diabetic ischemic heart disease (IHD) and to assess the modulatory
effect of gene-gene interactions between these variants on disease risk. SNPs that were
previously reported to be associated with cardiometabolic disease, inflammatory disease, or
located in miRNA binding sites were selected for the analysis (see Supplementary Materials
Table S1).

2. Materials and Methods

2.1. Study Design and Population

A total of 204 diabetic ischemic heart disease cases and 882 healthy controls were
enrolled from communities in Beijing. All subjects gave written informed consent. This
study was approved by the Ethics Committee of Capital Medical University (No: 2016SY24).

The inclusion criteria for the cases were as follows: (1) Self-reported or physician-
diagnosed diabetes according to the American Diabetes Association Criteria [20]; (2) Is-
chemic heart disease defined by clinical history, including acute myocardial infarction,
angina pectoris, non-ST-elevation acute coronary syndromes, and/or ischemic electrocar-
diographic alterations; (3) T2DM was diagnosed earlier than ischemic heart disease for at
least one year; and (4) Medical records or copies should be provided to verify the diagnosis
of diseases.

The exclusion criteria for the cases were as follows: (1) Other diabetic complications:
including diabetic nephropathy, diabetic foot, diabetic retinopathy, and diabetic neuropathy;
(2) Ischemic cerebrovascular disease or cerebral hemorrhage; (3) Pregnant or lactating
women; and (4) Critical physical disability or mental disorder and could not cooperate
with the survey.

The inclusion criteria for the controls were as follows: (1) Subjects had not been
diagnosed with T2DM before, and fasting blood glucose was less than 5.6 mmol/L in the
current survey; (2) Subjects did not have ischemic heart disease, ischemic stroke, or cerebral
hemorrhage; (3) Subjects did not have chronic kidney disease; and (4) Subjects were not in
the acute phase of infection.

The exclusion criteria for the controls were as follows: (1) Pregnant or lactating
women; and (2) Critical physical disability or mental disorder and could not cooperate
with the survey.

2.2. Measurements

Lifestyle risk factors were obtained from a structured questionnaire. Smoking status
was categorized as “currently smoking” and “past/never smoking”. Current smoking
was defined as at least 1 cigarette per day, lasting for more than 1 year. Those who had
never smoked before or had not smoked for at least 3 months were defined as past/never
smoking. Alcohol drinking was categorized as “current alcohol drinking” and “past/never
alcohol drinking”. Current drinking was defined as drinking at least once per week and still
drinking at that frequency in the previous month. Those who never drank alcohol or had
not consumed alcohol for at least one month were defined as never/past alcohol drinking.

Blood pressure (BP) was measured in the morning before participants used anti-
hypertensive medication. Participants were asked to rest for at least 30 min before BP
measurement if they had just smoked or had caffeinated products. BP (mmHg) was mea-
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sured three times at sitting positions by a mercury sphygmomanometer. The average of the
last two measurements was used for data analysis.

2.3. Serum Markers

After overnight fasting, all participants underwent fasting blood sampling. Fasting
blood samples were collected and restored in a 2% EDTA vacutainer for each participant.
After centrifugation, the plasma and blood cell samples were separated into two cry-
ovials. Fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), high-density
lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDLC) were
tested using the Beckman Coulter chemistry analyzer AU5800 in the clinical laboratory of
Beijing Hepingli Hospital.

Venous blood samples were obtained and stored in a 4 ◦C refrigerator. All biochemical
analyses were performed within 8 h. Serum glucose and biochemical determinations were
measured by an enzymatic method using a chemistry analyzer (Beckman LX20, Beckman,
Brea, CA, USA) at the central laboratory of the hospital. Highly sensitive C-reactive protein
was assessed using a Beckman Coulter chemistry analyzer AU5800 and white blood cell
counts were obtained using an AcT5diff cell counter (Beckman Coulter®).

2.4. Genotyping

Important functional SNPs and previously reported susceptible SNPs were selected
as candidate SNPs. Five SNPs (rs1035798, rs1800624, rs1800625, rs184003, and rs2070600)
in the AGER gene and seven SNPs (rs2228144, rs4072391, rs4129267, rs4537545, rs4845625,
rs7514452, and rs7529229) in the IL6R gene were selected in the current study.

Genomic DNA was extracted from 1 mL of peripheral blood cells using a TIANGEN
DNA kit (TIANGEN Biotech, China, DP319-01) according to the manufacturer’s protocol.
The primers were designed by AssayDesigner3.1 software and they were synthesized by
Shanghai Thermo Fisher Scientific Co., Ltd., in China. Detailed information on the primers
is shown in Supplementary Materials Table S1. A Sequenom MassARRAY® matrix-assisted
laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) platform
(Sequenom Inc., San Diego, CA, USA) was used to genotype SNPs.

2.5. Definition of Diseases and Recommendation Level of Their Risk Factors

T2DM was defined as FPG ≥ 7.0 mmol/L or self-reported physician-diagnosed di-
abetes and/or the use of antidiabetic agents, according to the American Diabetes Asso-
ciation Criteria [21]. Ischemic heart disease (IHD) includes non-fatal acute myocardial
infarction [22], angina pectoris [23], acute coronary syndromes [24], and/or ischemic elec-
trocardiographic alterations. Ischemic heart disease in T2DM patients was defined as
diabetic ischemic heart disease. Hypertension was defined as systolic blood pressure
(SBP) ≥ 140 mmHg and/or diastolic blood pressure (DBP) ≥ 90 mmHg and/or on current
antihypertensive medication. Participants with TG ≥ 2.3 mmol/L, TC ≥ 6.2 mmol/L,
LDLC ≥ 4.1 mmol/L, or HDLC ≤ 1.0 mmol/L were defined as having dyslipidemia ac-
cording to the criteria of the 2016 Chinese guidelines for the management of dyslipidemia
in adult [25]. The acute phase of infection was defined by hsCRP > 10 mg/L or white blood
cell counts > 10.0 × 109. Kidney disease was defined as self-report of diagnosed chronic
kidney disease or GFR ≤ 90 mL/min over 3 months. The CKD-EPI equations were used to
estimate the glomerular filtration rate [26].

2.6. Statistical Analysis

Each continuous variable was tested for normality by the Shapiro-Wilk test. The
continuous variables with a normal distribution are expressed as the means ± standard
deviations (SD), and the mean difference between groups was tested by Student’s t-test.
The continuous variables that were non-normally distributed are displayed as the median
(interquartile range), and the difference between groups was tested by the Mann-Whitney
U test. The categorical variables are expressed as numbers (percentages). The polygenic
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risk score (PRS) was calculated by summing the number of risk alleles of all candidate
SNPs. Logistic regression was used to evaluate the association of diabetic ischemic heart
disease with candidate SNPs and PRS, and the diagnostic accuracy was quantified with the
area under the ROC curve (AUC). SPSS 25.0 software (SPSS Inc., Chicago, IL, USA) was
used for all abovementioned statistical analyses. The generalized multifactor dimensional-
ity reduction (GMDR) method was used to estimate the gene-gene interactions. For the
adjustment for multiple testing, a permutation test with 1000 replications was performed.
Haplotypes were identified and visualized by Haploview software. The association be-
tween haplotypes and diabetic ischemic heart disease and Hardy-Weinberg equilibrium
(HWE) was demonstrated by using Plink software (version 1.07). All the SNPs were in
HWE (p > 0.05). We also performed subgroup analysis by considering FPG and ICVD
risk scores. The “10-year ICVD Risk Assessment Form” applicable to the “Cardiovascular
Disease Prevention Guidelines in China” was used to estimate ICVD risk score [27]. A
two-sided p ≤ 0.05 was considered statistically significant.

3. Results

3.1. General Characteristics of the Studied Participants

A total of 882 healthy controls and 204 diabetic ischemic heart disease cases were
included in the current study. The levels of AGEs, TG, FPG, and DBP were significantly
higher in the ischemic heart disease cases than in the controls (p < 0.001). Serum IL-6 was
also higher in the case group, but the difference was not statistically significant. The levels
of TC, LDLC, HDLC, and SBP were significantly higher in the controls than in the cases
(p < 0.001). According to the recommendation of the “2017 Guidelines for the prevention
and treatment of type 2 diabetes in China”, the percentages of SBP, DBP, HDLC, LDLC, TG,
and TC in the ideal range were significantly higher in the control group than in the case
group (p < 0.001), see Supplementary Materials Table S2. In people with diabetic ischemic
heart disease, the proportion of current smokers or alcohol drinkers was significantly lower
than in the controls (p < 0.001). The details are shown in Table 1.

Table 1. Demographic and biochemical characteristics of the participants.

Controls T2DM + IHD p Value

Age (years) 1 64.00 ± 11.25 65 ± 11.00 0.126
Male (n, %) 488 (55.3) 119 (58.3) 0.436
SBP (mmHg) 1 136.00 (24.00) 130.00 (19.50) <0.001 **
DBP (mmHg) 1 79.00 (14.00) 80 (12.00) 0.001 **
BMI (kg/m2) 1 25.64 (4.46) 25.36 (3.53) 0.578
TC (mmol/L) 1 5.12 (1.41) 4.68 (1.53) <0.001 **
HDLC (mmol/L) 1 1.34 (0.48) 1.22 (0.45) <0.001 **
LDLC (mmol/L) 1 3.02 (1.17) 2.68 (1.04) <0.001 **
TG (mmol/L) 1 1.40 (0.90) 2.35 (1.57) <0.001 **
FPG (mmol/L) 1 5.60 (0.93) 7.07 (3.53) <0.001 **
Current smoking (n, %) 194 (22.0) 18 (8.8) <0.001 **
Current drinking (n, %) 295 (33.5) 32 (15.7) <0.001 **
AGEs (mmol/L) 1 31.05 (15.94) 38.07 (16.82) <0.001 **
IL-6 (mmol/L) 1 133.08 (49.32) 136.83 (40.18) 0.353

1 Variables, which have non-normal distribution, were displayed as median (interquartile range), and were tested
by Mann-Whitney U test. T2DM: type 2 diabetes, IHD: ischemic heart disease, BMI: body mass index, SBP:
systolic blood pressure, DBP: diastolic blood pressure, FPG: fasting plasma glucose, TG: triglyceride, TC: total
cholesterol, LDL-C: low density lipoprotein cholesterol, HDL-C: high density lipoprotein cholesterol, AGEs:
advanced glycation end products, IL-6: interleukin 6. ** p < 0.01.

3.2. Association of AGER and IL6R Polymorphisms with Diabetic Ischemic Heart Disease

All polymorphisms were in Hardy-Weinberg equilibrium (all p-values were greater
than 0.05). For AGER rs184003, participants with the GT and TT genotypes had a signif-
icantly higher risk of diabetic ischemic heart disease than those with the CC genotype
(OR = 1.435, p = 0.039; OR = 2.525, p = 0.030, respectively). The T allele was associated
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with an increased risk of diabetic ischemic heart disease by 50% in additive and dominant
models (p = 0.005; p = 0.012, respectively). For AGER rs2070600, the T allele was associ-
ated with about a 30% lower risk of diabetic ischemic heart disease in the additive and
dominant models (p = 0.025; p = 0.030, respectively). However, after adjusting for potential
confounders, the association between the above two SNPs and disease was null. The details
are shown in Table 2.
Table 2. Associations of rs184003, rs2070600, and rs4845625 with the risk of diabetic cardiovascular disease.

Genotype Crude OR 1 (95%CI) Crude p Value Adjusted OR¤ (95%CI) Adjusted p Value

rs184003 GG Ref Ref Ref Ref
GT 1.435 (1.019, 2.020) 0.039 * 1.223 (0.797, 1.878) 0.357
TT 2.525 (1.092, 5.837) 0.030 * 1.651 (0.580, 4.702) 0.348
additive 1.491 (1.125, 1.976) 0.005 ** 1.247 (0.880, 1.767) 0.215
dominant 1.518 (1.093, 2.017) 0.012 * 1.265 (0.839, 1.905) 0.261
recessive 2.282 (0.993, 5.241) 0.046 1.571 (0.555, 4.449) 0.395

rs2070600 CC Ref Ref Ref Ref
CT 0.713 (0.496, 1.024) 0.067 0.843 (0.550, 1.294) 0.435
TT 0.536 (0.237, 1.211) 0.134 0.611 (0.206, 1.807) 0.373
additive 0.721 (0.542, 0.960) 0.025 * 0.819 (0.578, 1.162) 0.264
dominant 0.684 (0.485, 0.964) 0.030 * 1.399 (0.914, 2.140) 0.122
recessive 0.587 (0.261, 1.320) 0.198 2.204 (0.493, 9.851) 0.301

rs4845625 CC Ref Ref Ref Ref
CT 0.692 (0.483, 0.991) 0.045 * 0.619 (0.398, 0.961) 0.033
TT 0.503 (0.318, 0.795) 0.003 ** 0.542 (0.318, 0.924) 0.025
additive 0.707 (0.563, 0.888) 0.003 ** 0.732 (0.557, 0.961) 0.025
dominant 0.632 (0.448, 0.889) 0.008 ** 0.594 (0.392, 0.902) 0.014
recessive 0.644 (0.434, 0.955) 0.028 0.757 (0.481, 1.191) 0.229

1 No variables were adjusted in logistic regression model ¤ Dyslipidemia, hypertension, smoking, and drinking
were adjusted in the logistic regression model. Adjusted p-values shown in the table are adjusted only by
covariates. * p < 0.05, ** p < 0.01.

For IL6R rs4845625, participants with the CT and TT genotypes had a significantly
lower risk of diabetic ischemic heart disease than those with the CC genotype (OR = 0.692,
p = 0.045; OR = 0.503, p = 0.003, respectively). The T allele significantly decreased the risk
of diabetic ischemic heart disease in additive and dominant models (OR = 0.707, p = 0.003;
OR = 0.632, p = 0.008, respectively). The association between rs4845625 and disease was still
significant after adjusting for potential confounders. The details are shown in Table 2. The
association between other SNPs and disease were shown in Supplementary Materials Table
S3. The polygenic risk score was also associated with an increased risk of diabetic ischemic
heart disease by 10% (OR = 1.101, 95% CI: 1.042–1.162, p = 0.001). After adjusting for
dyslipidemia, hypertension, smoking, and drinking status, PRS was consistently associated
with the disease (OR = 1.100, 95% CI: 1.029–1.176, p = 0.005).

Compared with models containing only traditional risk factors (AUC = 0.756; 95% CI:
0.714–0.798; p < 0.001), the diagnostic accuracy of models containing traditional risk factors
together with IL6R and AGER polymorphisms (AUC = 0.759; 95% CI: 0.716–0.801; p < 0.001)
and traditional risk factors together with PRS (AUC = 0.763; 95% CI: 0.72–0.80; p < 0.001)
had slightly higher diagnostic accuracies. However, models containing genetic markers
did not improve the diagnostic accuracy significantly (p > 0.05). The details were shown
in Figure 1.

3.3. Association between Haplotypes and Diabetic Ischemic Heart Disease

Four out of five SNPs in the AGER gene (Block 1: rs184003-rs1035798-rs2070600-
rs1800624) and five out of seven SNPs in the IL6R gene (Block 2: rs7529229-rs4845625-
rs4129267-rs7514452-rs4072391) showed linkage disequilibrium (see Figure 2). These two
blocks were both significantly associated with diabetic ischemic heart disease (Block 1:
p = 0.008; Block 2: p = 0.007). Four haplotypes were constructed in block 1, and two of
them were associated with diabetic ischemic heart disease (C-G-T-A: p = 0.018; A-G-C-A:
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p = 0.004). Four haplotypes were constructed in block 2, and two of them were associated
with diabetic ischemic heart disease (T-C-C-T-C: p = 0.033; T-T-C-T-C: p = 0.001). The details
of the haplotype analysis are shown in Table 3.

Figure 1. ROC curve of different statistical models. Models were built by logistic regression, variables
contained in each model were as follows: Model 1: Age, sex, hyperlipidaemia, hypertension, smoking,
and alcohol drinking behavior. Model 2: Variables in model 1 and rs184003 and rs4845625. Model 3:
Variables in model 1 and PRS.

 

Figure 2. Haplotypes in AGER gene and IL6R gene. Two haplotypes were identified by haploview
software. AGER gene: rs184003-rs1035798-rs2070600-rs180062; IL6R gene: rs7529229-rs4845625-
rs4129267-rs7514452-rs4072391.
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Table 3. Haplotype analysis for blocks in AGER and IL6R genes.

Haplotypes F_U 1 F_A¤ Chi-Square OR (95%CI) p Value

Block 1 2 Omnibus test - - 11.750 0.008 **
C-A-C-T 0.162 0.170 0.162 1.049 (0.830, 1.327) 0.687
C-G-T-A 0.202 0.150 5.575 0.743 (0.580, 0.951) 0.018 *
A-G-C-A 0.140 0.197 8.229 1.407 (1.114, 1.777) 0.004 **
C-G-C-A 0.497 0.482 0.247 0.970 (0.859, 1.094) 0.620

Block 2 3 Omnibus test - - 11.99 0.007 **
T-T-C-C-T 0.093 0.100 0.227 1.075 (0.798, 1.449) 0.634
C-C-T-T-C 0.387 0.431 2.639 1.114 (0.978, 1.268) 0.104
T-C-C-T-C 0.095 0.131 4.551 1.379 (1.026, 1.853) 0.033 *
T-T-C-T-C 0.426 0.338 10.32 0.793 (0.689, 0.914) 0.001 **

1 F_U: minor allele frequency in controls; ¤ F_A: minor allele frequency in cases; 2 Block1: rs184003-rs1035798-
rs2070600-rs1800624; 3 Block2: rs7529229-rs4845625-rs4129267-rs7514452-rs4072391; * p < 0.05; ** p < 0.01.

3.4. The Effect of Gene-Gene Interactions on Diabetic Ischemic Heart Disease

GMDR analysis was performed to assess the effect of gene-gene interactions on diabetic
ischemic heart disease risk after adjustment for dyslipidemia, hypertension, smoking, and
drinking. The GMDR analysis suggested that rs184003 in the AGER gene and rs4845625 in
the IL6R gene were the best models in terms of statistical significance after permutation
testing (p = 0.001). The two-locus models had a cross-validation consistency of 10/10
and a testing accuracy of 0.597. Logistic regression was subsequently used to obtain the
odds ratios (ORs) and 95% confidence intervals (CIs) for the interaction between rs184003
and rs4845625. In the additive model, the joint effect of rs184003 and rs4845625 was
associated with an increased risk of diabetic ischemic heart disease by 38% (OR = 1.38,
95% CI: 1.13–1.69, p = 0.002). The GeneMANIA was subsequently used to construct a gene
network and predict gene function. As shown in Figure 3, IL6R and AGER have physical
interactions with each other.

 

Figure 3. The gene network between AGER and IL6R. According to the gene network constructed by
GeneMANIA, IL6R and AGER have physical interactions with each other.
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3.5. Sensitivity Analysis and Subgroup Analysis

The results of sensitivity analysis showed that both AGER and IL6R polymorphisms
were still significantly associated with disease after the adjustment of blood glucose or other
potential confounding factors. The interaction between rs4845625 and rs184003 turned to
be null after the adjustment of FPG (OR = 1.166, 95% CI: 0.893–1.521, p = 0.259). Details
were shown in Supplementary Materials Table S4.

Subgroup analysis was performed by considering FPG and ICVD risk scores. The
results of subgroup analysis showed that rs184003 was significantly associated with disease
in higher FPG subgroup (OR = 0.496, 95% CI: 0.288–0.856, p = 0.012), and rs4845625 was
significantly associated with diabetic IHD in normal ICVD risk score group (OR = 0.389,
95% CI: 0.197–0.768, p = 0.007). Details were shown in Supplementary Materials Table S5.
Subsequently, we found that AGER and IL6R polymorphisms were not associated with
FPG and ICVD risk score, see Supplementary Materials Table S6.

4. Discussion

Individuals with T2DM have an increased risk of CVD, which cannot be fully explained
by elevated glucose [28]. Genetic risk factors contribute greatly to the pathogenesis of
diabetic macrovascular complications, but their role has not yet been fully illustrated. In the
present community-based case-control study, rs4845625 in the IL6R gene and the interaction
of rs184003 in the AGER gene and rs4845625 in IL6R were significantly associated with
diabetic ischemic heart disease. The polygenic risk score calculated by summing the
number of risk alleles of the SNPs located in the above two genes was also associated with
an elevated risk of diabetic ischemic heart disease.

AGER is a multiligand cell surface receptor. Advanced glycation end products (AGEs),
which are produced after high glucose exposure, can bind to AGER. Their interaction
has been implicated in the pathogenesis of atherosclerosis. In addition, HMGB1 (high-
mobility group protein 1) and neutrophil-derived S100 calcium-binding family mem-
bers (S100A8/A9/A11/A12 and S100B) are ligands of AGER. After ligand binding, pro-
inflammatory and pro-coagulant pathways are activated. Rs2070600 was found to be
significantly associated with diabetic ischemic heart disease in the current study. How-
ever, after adjustments for covariates, the associations became null. Rs2070600 is located
in the ligand-binding V domain of the AGER gene, often referred to as Gly82Ser [29].
Genome-wide association studies (GWAS) showed that rs2070600 was strongly and dose-
dependently correlated with sRAGE levels in whites and blacks from the Atherosclerosis
Risk in Communities Study and a Chinese population [30,31]. Interestingly, although
soluble RAGE levels were found to be associated with diabetic complications in many
studies, the association between rs2070600 and ischemic heart disease or other diabetic com-
plications was not consistent. In the Atherosclerosis Risk in Communities Study, rs2070600
was not significantly associated with incident coronary heart disease or diabetes in either
whites or blacks with a median follow-up of 20 years [30]. Chinese researchers [32] found a
significant association between rs2070600 and coronary arterial disease in 175 cases and
170 controls. A meta-analysis found that the discrepancy may be attributable to ethnicity,
and subjects with the rs2070600 risk allele were at higher risk of coronary arterial disease
(CAD) in the Chinese population than in the non-Chinese population [11]. However, our
study found that the association between rs2070600 and diabetic ischemic heart disease
was null. Another study also found that rs2070600 was associated with the circulating
levels of esRAGE but not with CAD in Chinese patients with T2DM [33]. These results
might indicate that the association between rs2070600 and CAD may also be different in
the general population and T2DM patients.

Only a few studies have demonstrated the association between rs184003 and ischemic
heart disease. In the current study, we also found that the haplotypes C-G-T-A and A-G-C-A
in the AGER gene (rs184003-rs1035798-rs2070600-rs1800624) were significantly associated
with diabetic ischemic heart disease. Additionally, the association between haplotypes and
potential confounders were null (Supplementary Materials Table S7). A hospital-based case-
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control study involving 1142 patients diagnosed with CAD and 1106 age- and sex-matched
controls in a Chinese population was better powered and designed. In this study, the T allele
in rs184003 and haplotypes in the AGER gene (rs1800625-rs1800624-rs2070600-rs184003, C-
T-G-G and T-A-G-T) were also found to be associated with an increased risk of CAD [34]. In
addition to the significant association with CAD, the result of a meta-analysis also showed
that the homogeneity of the rs184003 polymorphism with the T allele conferred an increased
risk of diabetes mellitus in East Asians (OR = 1.21; 95% CI: 1.04–1.40; I2 = 0) [35]. A previous
study conducted in a Chinese population involving 200 gastric cancer patients and 207
cancer-free controls showed that subjects carrying the rs184003 T variant allele had an
increased ability to produce soluble RAGE (sRAGE) [36]. Given that the T allele in rs184003
was associated with a higher risk of both diabetes and CAD, sRAGE might act on the
common pathogenetic pathways of cardiovascular and metabolic diseases. Soluble RAGE
levels were found to be significantly associated with CAD and diabetes [37–39] in many
studies, and the association between haplotypes in the AGER gene and diabetic ischemic
heart disease in the current study indicated that sRAGE levels could serve as a marker of
diabetic ischemic disease. A recent review demonstrated that RAGE signaling contributed
to vascular calcification in diabetic and nondiabetic subjects, presumably on account of
the generation of RAGE ligands such as AGEs and other proinflammatory/pro-oxidative
ligands [40]. The current study also found that the level of AGEs was elevated in the
diabetic ischemic disease group, which supports the above hypothesis. To our knowledge,
few studies have illustrated the relationship between rs184003 and diabetic macrovascular
complications. Although the findings suggest potential benefits with RAGE antagonism
both in the causes and consequences of diabetes and its macrovascular complications, more
research is still needed to validate our results.

Mendelian randomization analysis illustrated that IL6R signaling might have a causal
role in the development of coronary heart disease [12]. A previous meta-analysis demon-
strated that the C allele in rs7529229 IL6R was associated with a lower risk of coronary
heart disease [12,41]. Although the meta-analysis included a large sample size and better
designed original studies, the populations of the studies were all Caucasian, so the evi-
dence from Asian populations was still insufficient. In the current study, the association
between rs7529229 and diabetic ischemic heart disease was null in the Chinese population.
Chen et al. also did not find a significant effect of rs7529229 on coronary stenosis or acute
myocardial infarction in the Chinese Han population with a sample size of 187 patients and
231 controls [42]. However, according to the sample size, allele frequency, and OR reported
in the above study, the statistical power was relatively low and might lead to false negative
results. Thus, studies with larger sample sizes are still needed to replicate the above find-
ings. Likewise, He et al. conducted a hospital-based case-only study in 402 patients with
left main coronary artery disease (LMCAD) and 804 patients with more peripheral coronary
artery disease (MPCAD) in a Chinese population, and the results showed that rs7529229
CC or TC/CC genotypes were associated with an increased risk of LMCAD compared
with MPCAD [43]. The haplotype T-T-C-T-C (rs7529229-rs4845625-rs4129267-rs7514452-
rs4072391) in the IL6R gene and rs4845625 were associated with diabetic ischemic heart
disease in our study, and the association held after adjusting for potential confounders.
In addition, haplotypes T-T-C-C-T were significantly associated with TC (Supplementary
Materials Table S8). Rs4845625 was found to be significantly associated with hypertriglyc-
eridemia in the Japanese population [44], and the T allele was associated with a lower
serum concentration of creatinine and increased EGFR [45]. Hypertriglyceridemia and
chronic kidney disease (CKD) have common pathways, such as endothelial dysfunction,
dyslipidemia, and inflammation, leading to metabolic cardiovascular disease [20]. Al-
though few studies have focused on the association between rs4845625 and diabetic heart
disease, its association with triglycerides and kidney function might indicate the potential
mechanisms of rs4645625 in diabetic ischemic heart disease.

In response to hyperglycemia, AGER is activated by S100A8/A9 on hepatic Kupf-
fer cells, leading to the secretion of IL-6. IL-6 subsequently binds to its receptor (IL6R)
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on hepatocytes to enhance the production of thrombopoietin, thereby regulating platelet
production and resulting in diabetes-induced thrombocytosis [46]. In the current study,
we found that the gene-gene interactions between AGER and IL6R increased the risk of
diabetic ischemic heart disease. We subsequently used GeneMANIA to construct a gene
network and predict gene function. IL6R and AGER have physical interactions with each
other, and several pathways, including NF-kB/RelA and JAK/STAT, are involved in these
interactions (Figure 3). The function of AGER and IL6R polymorphisms were listed in Sup-
plementary Materials Table S9. These interactions illustrated that the interaction of SNPs in
IL6R and AGER was not only a statistical interaction but also a biological interaction. To our
knowledge, this is the first study aimed at identifying the interaction of the AGER and IL6R
genes, and our results provide genetic evidence on the physiological mechanism of diabetic
macrovascular complications. Whether the main effect and gene-gene interactions in these
two genes could be used to predict the risk of diabetic macrovascular complications still
needs to be validated by cohort studies in the future. Although we found a significant
interaction between the AGER gene and the IL6R gene, the association between circulating
IL-6 and diabetic ischemic heart disease was null. This result indicated that IL6R polymor-
phisms still need to be further demonstrated. The most common hypothesis is that IL-6 in
hematopoietic cells, but not circulating IL-6, were more likely to affect TPO production and
macrovascular complications [46,47].

The results of the sensitivity analysis showed that both AGER and IL6R polymor-
phisms were still significantly associated with disease after the adjustment of different risk
factors, respectively. In the current study, SBP, TC, and LDLC levels and the proportion
of people with smoking and drinking habits were significantly lower in the cases than in
the controls, which is not consistent with other studies. According to the “2017 Guidelines
for the prevention and treatment of type 2 diabetes in China”, diabetes patients have more
stringent standards on blood pressure (BP) and blood lipids than the healthy population,
and diabetes patients with ischemic heart disease should quit smoking and drinking [48].
Diabetes patients might change their lifestyles and medication to maintain their BP or
blood lipids at a lower level. Due to the case-control study design of the current study,
we were not able to collect lifestyle risk factors and blood samples before the incidence of
diabetic ischemic heart disease. However, the percentages of SBP, DBP, HDLC, LDLC, TG,
and TC in the ideal range were significantly higher in the control group than in the case
group (p < 0.001, Supplementary Materials Table S2). Due to the above limitation of our
study, more longitudinal studies are still needed to demonstrate whether genetic variants
will increase the incidence of diabetic macrovascular complications. In addition, we did
not collect any information about diabetic ketoacidosis in the current study. Since diabetic
ketoacidosis predisposes individuals to ischemic heart disease, our study might induce bias
to a certain extent. Moreover, medication information was not included in the investigation.
Given that some antidiabetic medications, such as SGLT-2 inhibitors [49], will reduce the
risk of ischemic heart disease in diabetes patients, future studies considering antidiabetic
medication are still needed to validate the genetic effect on diabetic macrovascular compli-
cations. Since we did not recruit participants who only have diabetes or only have ICH, we
performed subgroup analysis by considering FPG and ICVD risk scores. The ICVD risk
scores were simple used as a tool to reflect the cumulative risk factors of ICVD in order to
rule out the possibility of candidate SNPs that affect IHD. The subgroup analysis helps to
rule out the possibility that diabetes or the ICVD risk score are confounders of the current
study. Future research, including T2DM group without complications and ischemic heart
disease (IHD) group without diabetes, would provide additional information in clarifying
the roles of the AGER gene and IL6R gene.

5. Conclusions

Haplotypes in the AGER gene (C-G-T-A and A-G-C-A) were risk factors for diabetic
ischemic disease, and rs4845625 and haplotypes in the IL6R gene (T allele and T-T-C-T-
C) were associated with a lower risk of diabetic ischemic heart disease. The gene-gene
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interactions between rs184003 in AGER and rs4845625 in IL6R were associated with a higher
risk of diabetic ischemic heart disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12030392/s1, Table S1: General information of the candidate
SNPs and their primer sequences; Table S2: Recommendation cutoffs and proportions according to
cutoffs in healthy people and ischemic heart disease patients with diabetes; Table S3: Associations of
gene polymorphisms with the risk of diabetic cardiovascular disease; Table S4: Sensitivity analysis
for the association between AGER and IL6R gene polymorphisms and diabetic ischemic heart
disease; Table S5: Subgroup analysis for the association between candidate SNPs and diabetic IHD;
Table S6: The association between candidate SNPs and FPG or ICVD risk scores; Table S7: The
association of traits and haplotypes constituted by rs184003-rs1035798-rs2070600-rs1800624; Table S8:
The association of traits and haplotypes constituted by rs7529229-rs4845625-rs4129267-rs7514452-
rs4072391; Table S9: The function of AGER and IL6R polymorphisms. References [50–66] are cited in
the supplementary materials.

Author Contributions: K.L. designed the study and wrote the manuscript, Y.X. analyzed data and
visualized the interaction diagram. Q.Z. provided the statistical plan and helped to revise the
manuscript. W.P. contributed to the verification of diabetic ischemic heart diseases in case group. C.G.
and J.Z. contributed to the management of blood sample and DNA extraction. L.Z. contributed to the
collection of controls and participated in the study design. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by National Science Foundation of China, grant number 81602908,
and National key research and development program of China, grant number 2016YFC0900600/
2016YFC0900603.

Institutional Review Board Statement: This study was approved by the Ethics Committee of Capital
Medical University (No:2016SY24).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Research could contact communication author to access data.

Acknowledgments: The authors thank all the participants and community health workers for their
participation in this research effort.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.;
Timmis, A.; Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1.9 million people.
Lancet Diabetes Endocrinol. 2015, 3, 105–113. [CrossRef]

2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and
cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015.
Lancet 2016, 388, 1459–1544. [CrossRef]

3. Maugeri, N.; Malato, S.; Femia, E.A.; Pugliano, M.; Campana, L.; Lunghi, F.; Rovere-Querini, P.; Lussana, F.; Podda, G.; Cattaneo,
M.; et al. Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia. Blood 2011, 118,
3359–3366. [CrossRef] [PubMed]

4. Zegeye, M.M.; Lindkvist, M.; Falker, K.; Kumawat, A.K.; Paramel, G.; Grenegard, M.; Sirsjö, A.; Ljungberg, L.U. Activation of
the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human
vascular endothelial cells. Cell Commun. Signal. 2018, 16, 55. [CrossRef]

5. Grozovsky, R.; Giannini, S.; Falet, H.; Hoffmeister, K.M. Novel mechanisms of platelet clearance and thrombopoietin regulation.
Curr. Opin. Hematol. 2015, 22, 445–451. [CrossRef]

6. Serveaux-Dancer, M.; Jabaudon, M.; Creveaux, I.; Belville, C.; Blondonnet, R.; Gross, C. Pathological Implications of Receptor for
Advanced Glycation End-Product (AGER) Gene Polymorphism. Dis. Markers 2019, 2019, 2067353. [CrossRef]

7. Li, J.; Cai, W.; Zhang, W.; Zhu, W.F.; Liu, Y.; Yue, L.X.; Zhu, L.Y.; Xiao, J.R.; Liu, J.Y.; Xu, J.X. Polymorphism 2184A/G in the AGER
gene is not associated with diabetic retinopathy in Han Chinese patients with type 2 diabetes. J. Int. Med. Res. 2016, 44, 520–528.
[CrossRef]

8. Fan, W.Y.; Gu, H.; Yang, X.F.; She, C.Y.; Liu, X.P.; Liu, N.P. Association of candidate gene polymorphisms with diabetic retinopathy
in Chinese patients with type 2 diabetes. Int. J. Ophthalmol. 2020, 13, 301–308. [CrossRef]

23



J. Pers. Med. 2022, 12, 392

9. Peng, F.; Hu, D.; Jia, N.; Li, X.; Li, Y.; Chu, S.; Zhu, D.; Shen, W.; Lin, J.; Niu, W. Association of four genetic polymorphisms of
AGER and its circulating forms with coronary artery disease: A meta-analysis. PLoS ONE 2013, 8, e70834. [CrossRef]

10. Lu, W.; Feng, B. The -374A allele of the RAGE gene as a potential protective factor for vascular complications in type 2 diabetes:
A meta-analysis. Tohoku J. Exp. Med. 2010, 220, 291–297. [CrossRef]

11. Ma, W.Q.; Qu, Q.R.; Zhao, Y.; Liu, N.F. Association of RAGE gene Gly82Ser polymorphism with coronary artery disease and
ischemic stroke: A systematic review and meta-analysis. Medicine 2016, 95, e5593. [CrossRef] [PubMed]

12. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium; Swerdlow, D.I.; Holmes, M.V.; Kuchenbaecker,
K.B.; Engmann, J.E.; Shah, T.; Sofat, R.; Guo, Y.; Chung, C.; Peasey, A.; et al. The interleukin-6 receptor as a target for prevention
of coronary heart disease: A mendelian randomisation analysis. Lancet 2012, 379, 1214–1224. [PubMed]

13. Rafiq, S.; Melzer, D.; Weedon, M.N.; Lango, H.; Saxena, R.; Scott, L.J.; DIAGRAM Consortium; Palmer, C.N.; Morris, A.D.;
McCarthy, M.I.; et al. Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory
diseases are not associated with the risk of type 2 diabetes. Diabetologia 2008, 51, 2205–2213. [CrossRef] [PubMed]

14. Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.;
Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [CrossRef]

15. Peng, D.Q.; Zhao, S.P.; Nie, S.; Li, J. Gene-gene interaction of PPARgamma and ApoE affects coronary heart disease risk.
Int. J. Cardiol. 2003, 92, 257–263. [CrossRef]

16. Carty, C.L.; Heagerty, P.; Heckbert, S.R.; Enquobahrie, D.A.; Jarvik, G.P.; Davis, S.; Tracy, R.P.; Reiner, A.P. Association of genetic
variation in serum amyloid-A with cardiovascular disease and interactions with IL6, IL1RN, IL1beta and TNF genes in the
Cardiovascular Health Study. J. Atheroscler. Thromb. 2009, 16, 419–430. [CrossRef]

17. Carty, C.L.; Heagerty, P.; Heckbert, S.R.; Jarvik, G.P.; Lange, L.A.; Cushman, M.; Tracy, R.P.; Reiner, A.P. Interaction between
fibrinogen and IL-6 genetic variants and associations with cardiovascular disease risk in the Cardiovascular Health Study.
Ann. Hum. Genet. 2010, 74, 1–10. [CrossRef]

18. Zhu, Z.; Tong, X.; Zhu, Z.; Liang, M.; Cui, W.; Su, K.; Li, M.D.; Zhu, J. Development of GMDR-GPU for gene-gene interaction
analysis and its application to WTCCC GWAS data for type 2 diabetes. PLoS ONE 2013, 8, e61943. [CrossRef]

19. Xu, H.M.; Xu, L.F.; Hou, T.T.; Luo, L.F.; Chen, G.B.; Sun, X.W.; Lou, X.Y. GMDR: Versatile Software for Detecting Gene-Gene and
Gene-Environment Interactions Underlying Complex Traits. Curr. Genom. 2016, 17, 396–402. [CrossRef]

20. Gajjala, P.R.; Sanati, M.; Jankowski, J. Cellular and Molecular Mechanisms of Chronic Kidney Disease with Diabetes Mellitus and
Cardiovascular Diseases as Its Comorbidities. Front. Immunol. 2015, 6, 340. [CrossRef]

21. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [CrossRef]
[PubMed]

22. Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint
European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart
Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial
Infarction. J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [CrossRef]

23. Luepker, R.V.; Apple, F.S.; Christenson, R.H.; Crow, R.S.; Fortmann, S.P.; Goff, D.; Goldberg, R.J.; Hand, M.M.; Jaffe, A.S.;
Julian, D.G.; et al. Case definitions for acute coronary heart disease in epidemiology and clinical research studies: A statement
from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on
Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for
Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 2003, 108, 2543–2549.

24. Amsterdam, E.A.; Wenger, N.K.; Brindis, R.G.; Casey, D.E., Jr.; Ganiats, T.G.; Holmes, D.R., Jr.; Jaffe, A.S.; Jneid, H.; Kelly, R.F.;
Kontos, M.C.; et al. 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary
Syndromes: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
J. Am. Coll. Cardiol. 2014, 64, e139–e228. [CrossRef] [PubMed]

25. Liu, L.S. Joint committee for guideline revision. 2016 Chinese guidelines for the management of dyslipidemia in adults.
J. Geriatr. Cardiol. 2018, 15, 1–29.

26. Stevens, L.A.; Schmid, C.H.; Greene, T.; Zhang, Y.L.; Beck, G.J.; Froissart, M.; Hamm, L.L.; Lewis, J.B.; Mauer, M.; Navis, G.J.; et al.
Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease
(MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am. J. Kidney Dis. 2010, 56, 486–495. [CrossRef]
[PubMed]

27. Zhang, M.; Huang, Z.J.; Li, Y.C.; Wang, L.M.; Jiang, Y.; Zhao, W.H. Prediction of 10-year risk for ischemic cardiovascular disease
in adults aged ≥35 years in China. Zhonghua Liu Xing Bing Xue Za Zhi 2016, 37, 689–693. [PubMed]

28. Kirkman, M.S.; Mahmud, H.; Korytkowski, M.T. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2
Diabetes Mellitus. Endocrinol. Metab. Clin. N. Am. 2018, 47, 81–96. [CrossRef] [PubMed]

29. Lu, W.; Feng, B.; Xie, G.; Liu, F. Association of AGER gene G82S polymorphism with the severity of coronary artery disease in
Chinese Han population. Clin. Endocrinol. 2011, 75, 470–474. [CrossRef]

30. Maruthur, N.M.; Li, M.; Halushka, M.K.; Astor, B.C.; Pankow, J.S.; Boerwinkle, E.; Coresh, J.; Selvin, E.; Kao, W.H. Genetics of
Plasma Soluble Receptor for Advanced Glycation End-Products and Cardiovascular Outcomes in a Community-based Population:
Results from the Atherosclerosis Risk in Communities Study. PLoS ONE 2015, 10, e0128452.

24



J. Pers. Med. 2022, 12, 392

31. Lim, S.C.; Dorajoo, R.; Zhang, X.; Wang, L.; Ang, S.F.; Tan, C.S.H.; Yeoh, L.Y.; Ng, X.W.; Li, N.; Su, C.; et al. Genetic variants in the
receptor for advanced glycation end products (RAGE) gene were associated with circulating soluble RAGE level but not with
renal function among Asians with type 2 diabetes: A genome-wide association study. Nephrol. Dial. Transpl. 2017, 32, 1697–1704.
[CrossRef] [PubMed]

32. Gao, J.; Shao, Y.; Lai, W.; Ren, H.; Xu, D. Association of polymorphisms in the RAGE gene with serum CRP levels and coronary
artery disease in the Chinese Han population. J. Hum. Genet. 2010, 55, 668–675. [CrossRef] [PubMed]

33. Peng, W.H.; Lu, L.; Wang, L.J.; Yan, X.X.; Chen, Q.J.; Zhang, Q.; Zhang, R.Y.; Shen, W.F. RAGE gene polymorphisms are associated
with circulating levels of endogenous secretory RAGE but not with coronary artery disease in Chinese patients with type 2
diabetes mellitus. Arch. Med. Res. 2009, 40, 393–398. [CrossRef] [PubMed]

34. Yu, X.; Liu, J.; Zhu, H.; Xia, Y.; Gao, L.; Li, Z.; Jia, N.; Shen, W.; Yang, Y.; Niu, W. An interactive association of advanced glycation
end-product receptor gene four common polymorphisms with coronary artery disease in northeastern Han Chinese. PLoS ONE

2013, 8, e76966.
35. Niu, W.; Qi, Y.; Wu, Z.; Liu, Y.; Zhu, D.; Jin, W. A meta-analysis of receptor for advanced glycation end products gene: Four

well-evaluated polymorphisms with diabetes mellitus. Mol. Cell Endocrinol. 2012, 358, 9–17. [CrossRef]
36. Li, T.; Qin, W.; Liu, Y.; Li, S.; Qin, X.; Liu, Z. Effect of RAGE gene polymorphisms and circulating sRAGE levels on susceptibility

to gastric cancer: A case-control study. Cancer Cell Int. 2017, 17, 19. [CrossRef]
37. Ligthart, S.; Sedaghat, S.; Ikram, M.A.; Hofman, A.; Franco, O.H.; Dehghan, A. EN-RAGE: A novel inflammatory marker for

incident coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2695–2699. [CrossRef]
38. Reichert, S.; Triebert, U.; Santos, A.N.; Hofmann, B.; Schaller, H.G.; Schlitt, A.; Schulz, S. Soluble form of receptor for advanced

glycation end products and incidence of new cardiovascular events among patients with cardiovascular disease. Atherosclerosis

2017, 266, 234–239. [CrossRef]
39. Heier, M.; Margeirsdottir, H.D.; Gaarder, M.; Stensæth, K.H.; Brunborg, C.; Torjesen, P.A.; Seljeflot, I.; Hanssen, K.F.;

Dahl-Jørgensen, K. Soluble RAGE and atherosclerosis in youth with type 1 diabetes: A 5-year follow-up study. Cardiovasc.

Diabetol. 2015, 14, 126. [CrossRef]
40. Egaña-Gorroño, L.; López-Díez, R.; Yepuri, G.; Ramirez, L.S.; Reverdatto, S.; Gugger, P.F.; Shekhtman, A.; Ramasamy, R.;

Schmidt, A.M. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in
Diabetes and Cardiovascular Disease: Insights from Human Subjects and Animal Models. Front. Cardiovasc. Med. 2020, 7, 37.
[CrossRef]

41. IL6R Genetics Consortium Emerging Risk Factors Collaboration; Sarwar, N.; Butterworth, A.S.; Freitag, D.F.; Gregson, J.; Willeit, P.;
Gorman, D.N.; Gao, P.; Saleheen, D.; Rendon, A.; et al. Interleukin-6 receptor pathways in coronary heart disease: A collaborative
meta-analysis of 82 studies. Lancet 2012, 379, 1205–1213.

42. Chen, Z.; Qian, Q.; Tang, C.; Ding, J.; Feng, Y.; Ma, G. Association of two variants in the interleukin-6 receptor gene and premature
coronary heart disease in a Chinese Han population. Mol. Biol. Rep. 2013, 40, 1021–1026. [CrossRef] [PubMed]

43. He, F.; Teng, X.; Gu, H.; Liu, H.; Zhou, Z.; Zhao, Y.; Hu, S.; Zheng, Z. Interleukin-6 receptor rs7529229 T/C polymorphism
is associated with left main coronary artery disease phenotype in a Chinese population. Int. J. Mol. Sci. 2014, 15, 5623–5633.
[CrossRef] [PubMed]

44. Abe, S.; Tokoro, F.; Matsuoka, R.; Arai, M.; Noda, T.; Watanabe, S.; Horibe, H.; Fujimaki, T.; Oguri, M.; Kato, K.; et al. Association
of genetic variants with dyslipidemia. Mol. Med. Rep. 2015, 12, 5429–5436. [CrossRef]

45. Horibe, H.; Fujimaki, T.; Oguri, M.; Kato, K.; Matsuoka, R.; Abe, S.; Tokoro, F.; Arai, M.; Noda, T.; Watanabe, S.; et al. Association
of a polymorphism of the interleukin 6 receptor gene with chronic kidney disease in Japanese individuals. Nephrology 2015, 20,
273–278. [CrossRef] [PubMed]

46. Kraakman, M.J.; Lee, M.K.; Al-Sharea, A.; Dragoljevic, D.; Barrett, T.J.; Montenont, E.; Basu, D.; Heywood, S.; Kammoun, H.L.;
Flynn, M.; et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis
in diabetes. J. Clin. Investig. 2017, 127, 2133–2147. [CrossRef] [PubMed]

47. Qu, D.; Liu, J.; Lau, C.W.; Huang, Y. IL-6 in diabetes and cardiovascular complications. Br. J. Pharmacol. 2014, 171, 3595–3603.
[CrossRef]

48. Society, C.D. Guidelines for the prevention and control of type 2 diabetes in China (2017 Edition). Chin. J. Pract. Int. Med. 2018, 38,
292–344.

49. Scheen, A.J. Cardiovascular Effects of New Oral Glucose-Lowering Agents: DPP-4 and SGLT-2 Inhibitors. Circ. Res. 2018, 122,
1439–1459. [CrossRef]

50. Olsson, S.; Jood, K. Genetic variation in the receptor for advanced glycation end-products (RAGE) gene and ischaemic stroke.
Eur. J. Neurol. 2013, 20, 991–993. [CrossRef]

51. Wang, Z.T.; Wang, L.Y.; Wang, L.; Cheng, S.; Fan, R.; Zhou, J.; Zhong, J. Association between RAGE gene polymorphisms and
ulcerative colitis susceptibility: A case-control study in a Chinese Han population. Genet. Mol. Res. 2015, 14, 19242. [CrossRef]

52. Kang, P.; Tian, C.; Jia, C. Association of RAGE gene polymorphisms with type 2 diabetes mellitus, diabetic retinopathy and
diabetic nephropathy. Gene 2012, 500, 1–9. [CrossRef] [PubMed]

53. Niu, H.; Niu, W.; Yu, T.; Dong, F.; Huang, K.; Duan, R.; Qumu, S.; Lu, M.; Li, Y.; Yang, T.; et al. Association of RAGE gene multiple
variants with the risk for COPD and asthma in northern Han Chinese. Aging 2019, 11, 3220–3237. [CrossRef] [PubMed]

25



J. Pers. Med. 2022, 12, 392

54. Wadén, J.M.; Dahlström, E.H.; Elonen, N.; Thorn, L.M.; Wadén, J.; Sandholm, N.; Forsblom, C.; Groop, P.H.; FinnDiane Study
Group. Soluble receptor for AGE in diabetic nephropathy and its progression in Finnish individuals with type 1 diabetes.
Diabetologia 2019, 62, 1268–1274. [CrossRef] [PubMed]

55. Kim, D.H.; Yoo, S.D.; Chon, J.; Yun, D.H.; Kim, H.S.; Park, H.J.; Kim, S.K.; Chung, J.H.; Kang, J.K.; Lee, S.A. Interleukin-6 Receptor
Polymorphisms Contribute to the Neurological Status of Korean Patients with Ischemic Stroke. J. Korean Med. Sci. 2016, 31,
430–434. [CrossRef] [PubMed]

56. He, F.; Yang, R.; Li, X.Y.; Ye, C.; He, B.C.; Lin, T.; Xu, X.Q.; Zheng, L.L.; Luo, W.T.; Cai, L. Single nucleotide polymorphisms of the
NF-κB and STAT3 signaling pathway genes predict lung cancer prognosis in a Chinese Han population. Cancer Genet. 2015, 208,
310–318. [CrossRef]

57. Key, K.V.; Mudd-Martin, G.; Moser, D.K.; Rayens, M.K.; Morford, L.A. Inflammatory Genotype Moderates the Association
Between Anxiety and Systemic Inflammation in Adults at Risk for Cardiovascular Disease. J. Cardiovasc. Nurs. 2022, 37, 64–72.
[CrossRef]

58. Arguinano, A.A.; Naderi, E.; Ndiaye, N.C.; Stathopoulou, M.; Dadé, S.; Alizadeh, B.; Visvikis-Siest, S. IL6R haplotype
rs4845625*T/rs4537545*C is a risk factor for simultaneously high CRP, LDL and ApoB levels. Genes Immun. 2017, 18, 163–169.
[CrossRef]

59. Tabassum, R.; Mahendran, Y.; Dwivedi, O.P.; Chauhan, G.; Ghosh, S.; Marwaha, R.K.; Tandon, N.; Bharadwaj, D. Common
variants of IL6, LEPR, and PBEF1 are associated with obesity in Indian children. Diabetes 2012, 61, 626–631. [CrossRef]

60. Van Dongen, J.; Jansen, R.; Smit, D.; Hottenga, J.J.; Mbarek, H.; Willemsen, G.; Kluft, C.; Penninx, B.W.; Ferreira, M.A.;
Boomsma, D.I.; et al. The contribution of the functional IL6R polymorphism rs2228145, eQTLs and other genome-wide SNPs to
the heritability of plasma sIL-6R levels. Behav. Genet. 2014, 44, 368–382. [CrossRef]

61. Walston, J.D.; Matteini, A.M.; Nievergelt, C.; Lange, L.A.; Fallin, D.M.; Barzilai, N.; Ziv, E.; Pawlikowska, L.; Kwok, P.;
Cummings, S.R.; et al. Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older
adults. Exp. Gerontol. 2009, 44, 350–355. [CrossRef] [PubMed]

62. Naitza, S.; Porcu, E.; Steri, M.; Taub, D.D.; Mulas, A.; Xiao, X.; Strait, J.; Dei, M.; Lai, S.; Busonero, F.; et al. A genome-wide
association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation.
PLoS Genet. 2012, 8, e1002480. [CrossRef] [PubMed]

63. Rafiq, S.; Frayling, T.M.; Murray, A.; Hurst, A.; Stevens, K.; Weedon, M.N.; Henley, W.; Ferrucci, L.; Bandinelli, S.; Corsi, A.M.;
et al. A common variant of the interleukin 6 receptor (IL-6r) gene increases IL-6r and IL-6 levels, without other inflammatory
effects. Genes Immun. 2007, 8, 552–559. [CrossRef] [PubMed]

64. Webb, T.R.; Erdmann, J.; Stirrups, K.E.; Stitziel, N.O.; Masca, N.G.; Jansen, H.; Kanoni, S.; Nelson, C.P.; Ferrario, P.G.; König, I.R.;
et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated with Coronary Artery Disease. J. Am. Coll. Cardiol.

2017, 69, 823–836. [CrossRef]
65. Christiansen, M.K.; Larsen, S.B.; Nyegaard, M.; Neergaard-Petersen, S.; Ajjan, R.; Würtz, M.; Grove, E.L.; Hvas, A.M.; Jensen, H.K.;

Kristensen, S.D. Coronary artery disease-associated genetic variants and biomarkers of inflammation. PLoS ONE 2017, 12,
e0180365.

66. Gigante, B.; Strawbridge, R.J.; Velasquez, I.M.; Golabkesh, Z.; Silveira, A.; Goel, A.; Baldassarre, D.; Veglia, F.; Tremoli, E.;
Clarke, R.; et al. Analysis of the role of interleukin 6 receptor haplotypes in the regulation of circulating levels of inflammatory
biomarkers and risk of coronary heart disease. PLoS ONE 2015, 10, e0119980.

26



Citation: Zhang, J.; Han, R.; Shao, G.;

Lv, B.; Sun, K. Artificial Intelligence

in Cardiovascular Atherosclerosis

Imaging. J. Pers. Med. 2022, 12, 420.

https://doi.org/10.3390/

jpm12030420

Academic Editors: Sabina Tangaro,

Youxin Wang and Ming Feng

Received: 1 December 2021

Accepted: 4 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Review

Artificial Intelligence in Cardiovascular
Atherosclerosis Imaging

Jia Zhang 1,†, Ruijuan Han 2,†, Guo Shao 3 , Bin Lv 4 and Kai Sun 3,*

1 Hohhot Health Committee, Hohhot 010000, China; zhangjia4717@163.com
2 The People’s Hospital of Longgang District, Shenzhen 518172, China; ruijuanhan@163.com
3 The Third People’s Hospital of Longgang District, Shenzhen 518100, China; shao.guo.china@gmail.com
4 Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing 100037, China; blu@vip.sina.com
* Correspondence: henrysk@163.com
† These authors contributed equally to this work.

Abstract: At present, artificial intelligence (AI) has already been applied in cardiovascular imaging

(e.g., image segmentation, automated measurements, and eventually, automated diagnosis) and it

has been propelled to the forefront of cardiovascular medical imaging research. In this review, we

presented the current status of artificial intelligence applied to image analysis of coronary atheroscle-

rotic plaques, covering multiple areas from plaque component analysis (e.g., identification of plaque

properties, identification of vulnerable plaque, detection of myocardial function, and risk prediction)

to risk prediction. Additionally, we discuss the current evidence, strengths, limitations, and future

directions for AI in cardiac imaging of atherosclerotic plaques, as well as lessons that can be learned

from other areas. The continuous development of computer science and technology may further

promote the development of this field.

Keywords: artificial intelligence; atherosclerosis; plaque characterization

1. Introduction

Although modern medical care has increasingly advanced, cardiovascular disease
(CVDs) that has an increasing incidence worldwide still poses a serious threat to the quality
of human life and health. According to the latest report, CVDs remains the main cause of
premature death in most countries, especially low- and middle-income countries [1], which
suggests that treatment and prevention of CVDs still need to be improved [2]. Coronary
atherosclerosis underlies CAD and major adverse cardiac events (MACEs). Detection of
these atherosclerotic plaques, identification of components, and assessment of their risk
are essential for the management of patients with cardiovascular disease. Over the past
two decades, various medical imaging techniques, including the invasive measurements
such as optical coherence tomography (OCT), intravascular ultrasound (IVUS), and nonin-
vasive measurements, such as computed tomography (CT), magnetic resonance imaging
(MRI), and ultrasonography (US) have been developed for the assessment of coronary
atherosclerosis [3].

With the continuous development of imaging technology and the popularization of
imaging examination, massive image datasets have been generated. Meanwhile, big data
are a major driver in the development of precision medicine clinicians and researchers alike
have more opportunities than ever before to engage in the development and evaluation of
novel image analysis algorithms, with the ultimate goal of creating new tools to optimize
patient care [4,5]. Artificial intelligence (AI) is regarded as an exciting research topic
in multifarious fields, as major advances in AI have occurred in recent years [6]. The
application of artificial intelligence to the medical imaging field allows the identification of
the information that improve clinical work efficiency. Additionally, AI has recently been
propelled to the forefront of cardiovascular medical imaging research [7,8].

27



J. Pers. Med. 2022, 12, 420

The aim of this paper was to focus on research that applied AI for coronary atheroscle-
rotic plaques so as to summarize imaging methods (e.g., OCT, IVUS, CT) and different fields
of coronary atherosclerotic plaques (e.g., identification of plaque properties, identification
of vulnerable plaque, detection of myocardial function and risk prediction). Finally, we
pointed out some current existing problems and future directions.

2. Application of AI in Coronary Atherosclerotic Plaque

2.1. Overview of Artificial Intelligence

Previous articles have described in detail AI algorithms for cardiovascular
imaging [5,9–11]. To facilitate understanding of this review, this section provides a short
introduction to some terminology. The concept of AI, which instructed machines to have in-
telligence similar to humans through learning so as to perform specific intelligent tasks [12],
discover patterns, and make decisions based on data, was born in the 1950s. Machine
learning (ML) is a branch of AI, in which machines or algorithms extract information
independently from big data to make predictions without explicit programming [13]. The
predictive pattern of ML is similar to traditional regression statistical methods. Still, ML
makes predictions based on information obtained from a broad range of big data rather
than a limited set of risk factors. Deep learning (DL) is the most advanced branch of ML
that most commonly uses a multilayer artificial neural network and a multilayer machine
learning model. The distribution characteristics of data are extracted by combining the
low-level local image features and converting them to high-level features, and thus devel-
oping a model simulating the human brain through a neural network. Nowadays, DL is
being used more and more for dealing with large and complex datasets [14]. ML and DL
can be classified into two varieties according to whether the labels are clear or not; these
two varieties are namely supervised and unsupervised learning. When the label of input
data is clear, the supervised learning mode can be selected. When the label of input data is
not clear or is lost, the unsupervised mode can be selected to capture and classify the data
automatically [15].

2.2. Coronary Atherosclerotic Plaque

Coronary atherosclerosis is a common physiological disorder characterized by the
formation of fatty streaks proliferation of intimal smooth muscle cells, which eventually
leads to coronary artery stenosis [16]. Atherosclerosis (AS) is a complex process that in-
volves interactions between monocyte-derived macrophages, endothelial cells, lymphocyte,
and smooth muscle cells [17,18]. The vast majority of CVDs and MACEs usually occurs
following the buildup of plaque inside the coronary arteries that supply oxygen-rich blood
to the heart muscle. Atherosclerotic lesions start with adaptive thickening of intima char-
acterized by aggregation of intimal smooth muscle cells, which can gradually develop
into pathological intima thickening, and are characterized by the presence of cell-free lipid
pools. The presence of a necrotic core is the characteristic manifestation of the fibrous
aneurysm, where fibrocalcific plaque tends to form following the further development of
necrotic core [19]. With complex pathological environmental components, there are notable
differences among different evolution stages and compositions of coronary atherosclerotic
plaques with regard to outcome [20]. Detection of these atherosclerotic plaques, identifi-
cation of components, and assessment of their risk are essential for the management of
patients with cardiovascular disease.

2.3. Characterization of Coronary Atherosclerotic Plaques

Different components of coronary atherosclerotic plaques correspond to different
mechanisms, leading to different outcomes [21]. Therefore, accurate identification of
plaque components is essential for follow-up treatment. Several previous studies have
automatically identified plaque components.

In the field of noninvasive examinations, Zreik [22] and Rajendra [23] have developed
training models to identify plaque calcification in the CCTA automatically. The former uses
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a multi-task recurrent convolutional neural network (RCNN) to develop an ML model to
characterize atherosclerotic plaque properties and coronary stenosis automatically. CCTA
images of 81, 17, and 65 patients were used for model training, validation, and testing. The
accuracy of this model for plaque characterization (calcification, no calcification, mixing,
no plaque) was 0.77 [22]. The latter achieved higher accuracy. He compared the efficacy
of different ML algorithms and probabilistic neural networks (PNN), obtaining the best
accuracy of 0.89 [23].

Masuda and colleagues proposed a model combining ML with a histogram to detect
the characteristics of coronary atherosclerotic plaques (fibrous plaques, fatty plaques) in
CCTA. The model shows a significantly higher area under the curve than the traditional
method (area under curve 0.92 and 95%, confidence interval 0.86–0.92 vs. 0.83 and 0.75–0.92,
p = 0.001) [24]. Yamak et al. trained a supervised model using organic phantom plaques
fabricated from low-density polyethylene (LDPE) and high-density polyethylene (HDPE).
Plaque images from a dual-energy CT scan were used as training data, and the model has
shown the ability to identify lipid and calcified plaque by validation analysis in coronary
scan images of three patients [25].

In the field of invasive examinations, Kim [26] and Sheet [27] attempted to identify
plaque components in IVUS images automatically. Kim extracted six image texture features
from IVUS images, after which a three-level network classification model was used to
classify the coronary plaque into fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic cor
(NC), and dense calcium (DC) based on the image texture. The method achieved relatively
high sensitivity (82.0%) and specificity (87.1%) in distinguishing between FT/FFT and
NC/DC groups [26]. Sheet et al. developed a novel machine-learning-based technique
called Stochastic Driven Histology (SDH), which can automatically characterize image
components in IVUS images. Validation analysis revealed that SDH is highly consistent
with traditional histology in characterizing calcification, fibrotic tissues, and lipids, with
99%, 97%, and 99% accuracy, respectively [27].

There were many studies directed at OCT. Shalev [28] and Xu [29] used a support
vector machine (SVM) to identify plaque components in OCT. Shalev trained and validated
the model using frozen microscopic data, and the accuracy of calcified plaque recognition
achieved 0.97. Xu used a linear SVM classifier to detect unhealthy objects. On this basis,
Zhou [30] used more data and improved models to identify lipid plaques and mixed
plaques, reaching an accuracy of 91.5% and 78.1%, respectively. Kolluru’s [31] model
also trained on frozen images to classify plaques in OCT into four categories, fiber, lipid,
calcium, and others. OCT images were paired with frozen images to extract features, after
which five-fold cross-validation was performed on the training dataset to optimize classifier
parameters. The model achieved an accuracy value that exceeded 90% in all categories. Rico-
Jimenez [32] proposed an A-line modeling method to characterize plaques in OCT, which
can automatically identify fibrotic plaques and lipid-containing plaques with 85% accuracy.
Wilson et al. [33] developed a of convolutional neural network (CNN) in identifying plaque
properties in OCT images using line-based modeling methods, learning that CNN can
significantly outperform in this task. After that, they proposed a method based on the
SegNet deep learning network, proving that the performance of the model was significantly
improved compared with the previous method [34]. Athanasiou [35] and Ughi [36] used
random forest (RF) classifier to classify atherosclerotic plaques (calcium, lipid pools, fibrous
tissue, and mixed plaques) with an accuracy of 80.41% and 81.5%, respectively.

2.4. Detection of Coronary Atherosclerotic Plaque

After years of research, a variety of medical imaging techniques have now been
used to analyze atherosclerotic plaques. These techniques can detect anatomical and
functional abnormalities caused by atherosclerosis, provide detailed information about
plaque composition, and even evaluate the risk of atherosclerotic plaques. These methods
provide a reference for measuring the severity of coronary atherosclerosis in daily clinical
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practice and cardiovascular research and have an important role in the diagnosis and
treatment of related patients [37].

Mainstream noninvasive measurements of coronary atherosclerotic plaques include
CT and MRI. The CT can be used to characterize luminal stenosis, assess the component
load of plaques and vascular remodeling. As a noninvasive test, it can detect asymptomatic
patients with high-risk plaques and stratify the risk of cardiovascular disease [34]. At
the same time, CCTA detection of high-risk plaque can identify high-risk patients with
MACE events and can be used as an independent predictor of the acute coronary syndrome
(ACS) [38]. However, due to the constraints of spatial resolution and radiation dose, CT
cannot identify subtle lesions [39]. MRI provides good contrast resolution of soft tissues. In
addition to showing the vascular cavity and vascular wall structure, it can also clearly show
the plaque load and the progress of plaque bleeding. However, its low spatial resolution
and long imaging time make it unsuitable for the diagnosis of active vascular such as
coronary arteries. Additionally, there are contraindications in the examination of patients
with pacemakers or metals [40], so it is less used for clinical diagnosis of coronary plaque.

Mainstream invasive measurements of coronary atherosclerotic plaques include OCT
and IVUS, which are intravascular techniques that provide a cross-sectional view of the
coronary artery. IVUS has special advantages in detecting vulnerable plaques as it can
clearly distinguish the properties and composition of different plaques [41]. Yet, IVUS is
invasive and expensive, so it is not suitable for a wide population-based screening. OCT
provides a greater resolution than IVUS, which clearly shows thin fiber caps; however,
some large lipid cores and extravascular elastic layers cannot be observed due to weak
tissue penetration [42].

Existing imaging tools can analyze coronary atherosclerotic plaques based on their
morphology and structure, but modern precision medicine requires a more detailed analysis
of plaque. A large amount of data in the image is inevitably overlooked due to the
limitations of the naked eye. Additionally, the methods mentioned above produce large
amounts of image data. Working long hours increases the possibility of missed diagnosis
or misdiagnosis risks made by radiologist due to the subtle variations in the image that can
be easily ignored. Therefore, new imaging diagnosis approaches are urgently required to
improve diagnosis efficiency and accuracy by using existing medical imaging data with the
ultimate goal of Precision Medicine.

3. Application of AI in Coronary Atherosclerotic Plaque Analysis

3.1. Identification of Vulnerable Plaques

Vulnerable plaque rupture is the most common cause of acute coronary syndrome
(ACS), which is the most dangerous type of CAD [43]. Pathological features of most
vulnerable plaques are characterized by a large necrotic core covered with a thin fibrous
cap, as well as abundant inflammatory cells and small amounts of smooth muscle cells [44].
The identification of vulnerable plaques is important for predicting acute cardiovascular
events [45].

Numerous studies have focused on the field of CCTA. Kolossvary et al. extracted
4400 radiological features from CCTA images of 60 patients by using radiomics and found
that 916 features (20.6%) were associated with napkin-ring sign (NRS), of which 440 (9.9%)
multiple radiographic features (short-run low-gray-level emphasis, long-run low-gray-level
emphasis, the surface ratio of component 2 to the total surface) were more sensitive to
high-risk plaques than plaque volume and other conventional quantitative parameters [36].
Then, they performed coronary CT angiography on 21 vitro coronary arteries in the hearts
of 7 male donors (average age, 52.3 ± 5.3). Training radiomics-based ML models were used
for the diagnosis of advanced atherosclerotic lesions on 333 cross-sections of 95 plaques and
evaluation of an additional 112 cross-sections. The results showed that the model was supe-
rior to several traditional methods (plaque attenuation pattern scheme in CT angiography
cross-sections, histogram-based measurements area of low attenuation (<30 HU), average
Hounsfield units of the plaque cross sections) [46]. Recently, they conducted research on
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44 plaques of 25 patients. CTA, OCT, IVUS, and NaF 18-PET examinations were performed
in all patients. The study found that radiomics outperformed traditional CTA parameters
in detecting IVUS low-attenuating plaques, OCT validated thin-cap fibroatheroma (TVFA),
and naf18-pet positive lesions (AUC: 0.59 vs. 0.72, 0.66 vs. 0.80, 0.65 vs. 0.87) [43]. They
conducted a series of studies, which confirmed the feasibility of using radiomics to detect
vulnerable plaques in CCTA, but with similar problems: the studies were based on a single
center, using the same scanning and reconstruction parameters, with the small sample size,
which may limit the extensive use.

Madani formulated the training model to predict the maximum von Mises stress,
which could indicate the risk of plaque rupture, and provide new ideas for the detection of
high-risk plaques in the clinical field [44].

Bae [47] and Jun [48] used ML to predict OCT-TCFA in IVUS and compare the accuracy
of several different algorithms (SVM, ANN, RF, CNN, etc.). The overall prediction accuracy
of the OCT-TFCA exceeds 80%. Sheet et al. collected 13 isolated hearts, using a machine
learning framework to identify real necrotic areas of plaques in the IVUS, which is a marker
of vulnerable plaques. The speckled appearance of these regions is similar to that of
real shaded or severe signal loss regions. Compared with a traditional method such as
histological, the sensitivity and specificity of the method were 96.15% and 77.78% [26].

Concerning OCT, Wang et al. [49] proposed a computer-aided method for quantifi-
cation of fibrous cap (FC) thickness to indicate vulnerable plaques. Liu [50] proposed
an automatic detection system of vulnerable plaque for IVOCT images based on a deep
convolutional neural network (DCNN). The system is mainly composed of four modules:
pre-processing, deep convolutional neural networks (DCNNs), post-processing, and en-
semble. The method was intensively evaluated in 300 IVOCT images. The accuracy of
the system reached 88.84%, which was a great improvement compared with the previous
detection methods.

Fractional flow reserve (FFR) derived from coronary CTA(CT-FFR) is a promising
noninvasive maker of coronary physiology and identification of high-risk plaques. Lee,
J.M. [51] investigated the utility of noninvasive hemodynamic assessment in the identi-
fication of high-risk plaques that caused subsequent acute coronary syndrome (ACS). In
this study, the process of deep learning-based CT-FFR is as follows: (1) coronary models,
including all epicardial coronary arteries, were constructed by the extraction of vessel
centerlines, identification of coronary plaques, and segmentation of lumen boundary along
the coronary trees. (2) The flow and pressure in the coronary model were computed by
solving the Navier–Stokes equations, using computational fluid dynamics (CFD) methods
with assumptions of a rigid wall and a Newtonian fluid [52]. (3) Boundary conditions
for hyperemia were derived from myocardial mass, vessel sizes at each outlet, and the
response of the microcirculation to adenosine. (4) Combine physiological parameters
and fluid mechanics principles with anatomical models to calculate the blood flow and
blood pressure of the coronary arteries in the state of maximum hyperemia, and then
computed the CT-FFR, change in CT-FFR across the lesion (∆CT-FFR), wall shear stress
(WSS) [53]. Additionally, axial plaque stress [54]. The results showed lower CT-FFR and
higher ∆CT-FFR, WSS, and axial plaque stress in culprit lesions compared with non-culprit
lesions (all p values < 0.01), indicating noninvasive hemodynamic assessment enhanced the
identification of high-risk plaques that subsequently caused ACS. This study suggests that
the integration of noninvasive hemodynamic assessment would enhance the prediction
ability for ACS risk and may help provide optimal treatment for those high-risk patients.

Since the recent machine learning algorithm with pixel-level coarse coronary segmen-
tation was insufficient for surface model reconstruction, a new CT-FFR technique with
a “Coarse-to-Fine Subpixel” algorithm for lumen contour was proposed to achieve more
precise reconstructions. This technique computed subpixel level lumen contour generating
the artery centerline after the first coarse coronary segmentation on a pixel level. The new
technology would lead to more precise lumen boundary and vessel reconstructions and
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provide a high diagnostic performance in identifying hemodynamically significant stenosis,
“gray zone” lesions, high-risk plaques, and severely calcified lesions.

3.2. Assessment of Myocardium

At present, the gold standard for the diagnosis of myocardial specific ischemia is the
fractional flow reserve (FFR), which can guide interventional therapy and improve the
prognosis of patients with CAD [55]. The study showed that the characteristics of coronary
plaque can also characterize myocardial ischemia [56]. Dey et al. [57] combined quantitative
stenosis, plaque burden, and myocardial quality into a comprehensive risk score to predict
the impairment of MFR through enhanced integrated machine learning algorithms. The
experiment demonstrated that arterial non-calcified plaque (NCP) load and the approach
combined CTA quantitative stenosis and the above comprehensive score significantly
improved the identification of vascular dysfunction in the downstream compared with
stenosis. Next, they explored the possibility of effectively combining CTA clinical data,
quantitative stenosis, and plaque indicators with AI to predict specific ischemia. A total
of 254 patients were enrolled, and quantitative plaque analysis was used to predict lesion-
specific ischemia, with a final AUC of 0.84 [58]. Other experts tried to combine AI-based
plaque analysis tools with CT-FFR to improve the prediction of myocardial ischemia. Teams
of Gaur [59], von Knebel Doeberitz [60], and Kawasaki [61] used FFR as the gold standard
and proposed machine-learning-based approaches combining CCTA plaque analysis and
CT-FFR. Their results showed that the predictive ability of local ischemia was 0.90, 0.93 and
0.835, respectively, which was superior to that of traditional CCTA narrow grading.

3.3. Risk Prediction

The risk assessment of cardiovascular disease depends on a variety of factors, such as
sex, age, weight, smoking, drinking, and so on [62]. Moreover, the risk level of patients
with diabetes [63], elevated cholesterol, or blood pressure [64] also tend to differ. Different
morphologies of plaques in medical imaging are significant for cardiovascular risk stratifi-
cation [65,66]. Therefore, another important application of AI algorithms in the medical
field is the prediction of cardiovascular disease risk.

In the field of IVUS, Araki presented a model to assess the risk of coronary heart dis-
ease by combining the IVUS grayscale plaque morphology and carotid B-mode ultrasound
carotid intima-media thickness (cIMT) based on SMV, which is a marker of subclinical
atherosclerosis [67]. The team then added plaque major component analysis to the model,
proposed an SVM framework based on plaque morphology and major component (PAC)
to assess coronary plaque risk, AUC = 0.98 [64]. The same team established an ML model
by merging the plaques texture-based with the wall-based measurement features (coro-
nary calcium area, coronary vessel area, coronary lumen area, coronary atheroma area,
coronary wall thickness, and coronary wall thickness variability), which improved the
accuracy of risk assessment by about 6% compared with the plaques texture-based informa-
tion [68]. Cao [69] proposed a neural network-based method to determine the critical point
of a vulnerability index, which distinguishes the fragile plaque from the stable plaque,
AUC = 0.7143. Zhang [70] reported a machine learning approach for predicting the location
and type of high-risk coronary plaque in patients treated with statins therapy.

Considering the studies of risk predicting focuses on CCTA in the field of noninvasive
examination, van Assen [71] used ML to automatically extract plaque information so as to
predict MACEs, AUC = 0.924. Van Rosendael [72] trained the ML model using coronary
artery stenosis and plaque component information to predict mortality in patients with
CAD, AUC = 0.771, beyond other conventional risk scores. Johnson [73] evaluated the
prognosis of 6892 CCTA patients by ML, reporting that the AUC for all-cause death, CAD
death, coronary heart disease death, and nonfatal myocardial infarction was 0.77, 0.72,
0.85, and 0.79, respectively. Motwani et al. [74] further added clinical risk factors to predict
5-year all-cause mortality in patients with CAD. They evaluated 25 clinical and 44 CCTA
parameters, and ML showed higher AUC than other models (segment stenosis score,
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segment involvement score, modified Duke Index, Framingham risk score). Han [75]
and Kigka [76] used ML to predict the rapid development of coronary plaque, which
was thought to be associated with cardiovascular events [77,78], revealing the prediction
accuracy of 0.81 and 0.84, respectively. Table 1 displays the application of AI in coronary
atherosclerotic plaque analysis.

Table 1. Application of AI in coronary atherosclerotic plaque analysis.

Authors
Vascular

Segments
Year The Method Applied Outcomes Advantages Disadvantages

Athanasiou Plaques 2011 OCT
Random forest (RF),
accuracy of 80.41%

Random forest (RF)
classifier to classify

atherosclerotic plaques
(calcium, lipid pools,

fibrous tissue, and mixed
plaques)

Invasive

Wang
Vulnerable

plaques
2012 Fibrous cap (FC)

Proposed a
computer-aided method

for quantification of
fibrous cap (FC)

thickness to indicate
vulnerable plaques

A method for
quantification of fibrous

cap (FC) thickness
Invasive

Sheet D Coronary plaque 2013 IVUS

Validation analysis
revealed that SDH is

highly consistent with
traditional histology in

characterizing
calcification, fibrotic

tissues, and lipids, with
99%, 97%, 99% accuracy,

respectively

Developed a novel
machine-learning-based

technique called
Stochastic Driven

Histology (SDH), which
can automatically

characterize image
components in IVUS

images

Invasive, the small
number of

observation

Ughi Plaques 2013 OCT
Random forest (RF),
accuracy of 81.5%%

Random forest (RF)
classifier to classify

atherosclerotic plaques
(calcium, lipid pools,

fibrous tissue, and mixed
plaques)

Invasive

Yamak D Coronary plaque 2014

Non-calcified
coronary

atherosclerotic plaque.
Characterization by

Dual Energy
Computed

Tomography

Learning approaches
were explored as a more
advanced mathematical

analysis to use
additional information

provided by DECT

Three models (ANN, RF
and SVM)

The small number
of observations is

the other limitation
of this study

Xu M
Atherosclerotic
heart disease

2014 OCT
A linear SVM classifier

to detect unhealthy
objects

The system classifies the
image from healthy and

unhealthy subjects
automatically by utilizing

texture features

Invasive

Gaur Coronary 2016

Coronary CTA
stenosis, plaque

volumes, FFRCT, and
FFR were assessed

Redictive ability of local
ischemia was 0.90

Coronary atherosclerotic
plaque and FFRCT

assessment improve the
discrimination of

ischaemia

Did not confirm
plaque findings by

intravascular
ultrasound

Shalev R Coronary plaque 2016 OCT

Rained and validated
the model using frozen
microscopic data, and

the accuracy of calcified
plaque recognition

achieved 0.97

Regions for extraction of
sub-images (SI’s) were
selected by experts to

include calcium, fibrous,
or lipid tissues

Invasive
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Table 1. Cont.

Authors
Vascular

Segments
Year The Method Applied Outcomes Advantages Disadvantages

Rico-
Jimenez

Aining plaques 2016 OCT

An A-line modeling
method to characterize
plaques in OCT, which

can automatically
identify fibrotic plaques

and lipid-containing
plaques with 85%

accuracy

Automatically identify
fibrotic plaques and

lipid-containing plaques
Invasive

Kolossváry
M

Coronary
vulnerable

plaques
2017

Features are superior
to conventional

quantitative
computed

tomographic metrics
to identify coronary

plaques with
napkin-ring sign

Radiomics and found
that 916 features (20.6%)

were associated with
napkin-ring sign (NRS),

of which 440 (9.9%)
multiple radiographic

features (short-run
low-gray-level

emphasis, long-run
low-gray-level

emphasis

High-risk plaques,
napkin-ring sign

The true prevalence
of the NRS is
considerably

smaller compared
with non-NRS

plaques in a real
population

Kim G Coronary plaque 2018

Plaque components
were classifed into FT,
FFT, NC, or DC using

an intensity-based
multi-level

classifcation model

The classifers had
classifcation accuracies

of 85.1%, 71.9%, and
77.2%, respectively

Three diferent nets. Net 1
diferentiated

low-intensity components
into FT/FFT and NC/DC

groups. Then, net 2
subsequently divided

FT/FFT into FT or FFT,
NC or DC via net 3

Invasive, it did not
acquire signifcant

classifcation results
compared with VH

Kolluru
Classify plaques

in OCT
2018 OCT

The model achieved an
accuracy value that
exceeded 90% in all

categories.

Model also trained on
frozen images to classify
plaques in OCT into four

categories, fiber, lipid,
calcium, and others

Invasive

Wilson Plaques 2018 OCT

Convolutional neural
network (CNN) in
identifying plaque
properties in OCT

images using line-based
modeling methods,

learning that CNN can
significantly outperform

in this task

A method based on the
SegNet deep learning

network
Invasive

Zreik M
Coronary artery

plaque
2019

A recurrent CNN for
automatic detection
and classification of

coronary crtery
plaque and stenosis in

coronary CT
angiography

For detection and
characterization of

coronary plaque, the
method was achieved

an accuracy of 0.77

Three-dimensional
convolutional neural
network and neural
networkautomatic

detection and
classification of coronary

artery plaque and stenosis
are feasible

Coronary artery
bifurcations were

not manually
annotated and the
network was not
trained to detect

these as a separate
class

Rajendra
Coronary artery

plaque
2019

Seven features are
extracted from the
Gabor coefficients:
energy, and Kapur,

Max, Rényi, Shannon,
Vajda, and Yager

entropies

The features acquired
were also ranked

according to F-value
and input to several

classifiers, an accuracy,
positive predictive

value, sensitivity, and
specificity of 89.09%,
91.70%, 91.83% and

83.70% were obtained

Automated plaque
classification using

computed tomography
angiography and Gabor
transformationscan be

helpful in the automated
classification of plaques
present in CTA images

The database was
limited to only

73 patients.
Furthermore, no

quantitative
calcium score was

calculated
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Table 1. Cont.

Authors
Vascular

Segments
Year The Method Applied Outcomes Advantages Disadvantages

Masuda
T

Coronary artery
plaque

2019

Recorded the
coronary CT number

and 7 histogram
parameters

(minimum and mean
value, standard
deviation (SD),

maximum value,
skewness, kurtosis,
and entropy) of the
plaque CT number

Coronary CT number
(0.19) followed by the
minimum value (0.17),
kurtosis (0.17), entropy
(0.14), skewness (0.11),
the mean value (0.11),
the standard deviation

(0.06), and the
maximum value (0.05),

and energy (0.00)

The machine learning was
superior the conventional

cut-off method for
coronary plaque

characterization using the
plaque CT number on

CCTA images

A small
single-protocol

study and only the
performance of the
machine learning

algorithm was
evaluated

Kolossváry
M.

Coronary
vulnerable

plaques
2019

Diagnosis of
advanced

atherosclerotic lesions
on 333 cross-sections

of 95 plaques and
evaluation of an
additional 112
cross-sections

The results showed that
the model was superior

to several traditional
methods.

Radiomics-based ML
models outperformed

expert visual assessment
and histogram-based

methods in the
identification of advanced

atheroscle
radiomics-based machine

learning rotic lesion

Limited spatial
resolution of
coronary CT
angiography

Kolossváry
M.

Coronaryvuinerable
plaques

2019

Radiomics
outperformed

traditional CTA
parameters in

detecting IVUS
low-attenuating

plaques, OCT
validated thin-cap

fibroatheroma (TVFA)
and naf18-pet

CTA, IVUS, OCT,
positive lesions (AUC:
0.59 vs. 0.72, 0.66 vs.
0.80, 0.65 vs. 0.87)

Coronary CTA radiomics
showed a good diagnostic

accuracy to identify
IVUS-attenuated plaques
and excellent diagnostic

accuracy to identify
OCT-TCFA

Our results of the
general populations

are limited,
multicenter

longitudinal studies
are warranted

von
Knebel

Coronary 2019 ICA, CT-FFR
Redictive ability of local

ischemia was 0.93

CCTA-derived plaque
markers and CT-FFR have
discriminatory power to

differentiate between
hemodynamically

significant and
non-significant coronary

lesions

Did not
systematically
correlate our

findings on CCTA
with an invasive

reference standard

Kawasaki Coronary 2019 CT-FFR
rRdictive ability of local

ischemia was 0.835

CCTA features and
functional CT-FFR was

helpful for detecting
lesion-specific ischemia

Did not evaluate
the influence of CT
image quality on

the CT-FFR
measurements

Liu
Vulnerable

plaques
2019

IVOCT images based
on a deep

convolutional neural
network (DCNN)

Automatic detection
system of vulnerable

plaque for IVOCT
images based on a deep

convolutional neural
network (DCNN). The
accuracy of the system

reached 88.84%

Intravascular optical
coherence tomography

(IVOCT)
Invasive

4. Limitations

There are still limitations in this field. In the research of ML used in coronary atheroscle-
rotic plaques analysis, more prominent problems are the following two points: first, in
almost all studies, data derived from a single research center or an old public dataset make
it difficult to cover patients with different conditions and scanning parameters, making
the training model difficult to satisfy the complex scenarios of clinical. Larger, rich public
datasets should be established in the future for higher-quality research. Second, most of
the research in this field takes the diagnostic opinion of artificial experts as the standard,
lacking validation of the gold standard of pathology; therefore, the individual bias of
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experts may affect the accuracy of the final model. Future research on artificial intelligence
for coronary atherosclerotic plaque analysis should be based on more big data; additionally,
multicenter research is necessary to provide better algorithmic models.

5. Conclusions

In summary, artificial intelligence has the potential to expand and improve medical
technologies for better patient care, by reducing the analysis time and provide automated
recommendations to physicians regarding diagnosis and downstream treatment decision
making. A proposed workflow for the incorporation of machine learning and deep learning
analysis of imaging modalities in clinical practice. The workflow brings in a promising
algorithm, based on a recurrent convolutional neural network, for automatic detection and
characterization of coronary artery plaque, as well as detection and characterization of the
anatomical significance of coronary artery stenosis. The areas of AI-based cardiovascu-
lar imaging covered range from imaging analysis (e.g., image segmentation, automated
measurements, and eventually, automated diagnosis) to diagnostic imaging, including iden-
tifying plaques, assessing plaque vulnerability, myocardial hemodynamic evaluation, such
as deep learning-based CT-FFR, and carrying out risk prognosis assessments. Specifically,
the ability of the AI algorithms to make more accurate diagnoses is useful for physicians
to detect diseases earlier in their course to plan for the right treatment action (Figure 1).
With the development of computer technology, bioengineering, and medical imaging tech-
nology, the future of AI in cardiovascular imaging is bright as the collaboration between
investigators and clinicians will have great benefits.

 

Figure 1. AI in cardiovascular atherosclerosis imaging. A proposed workflow for the incorporation of
machine learning and deep learning analysis of imaging modalities in clinical practice. AI analysis can
reduce the analysis time and provide automated recommendations to physicians regarding diagnosis
and downstream treatment decision making. The workflow brings in a promising algorithm, based
on a recurrent convolutional neural network, for the automatic detection and characterization of
coronary artery plaque, as well as the detection and characterization of the anatomical significance of
coronary artery stenosis.
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OCT Optical coherence tomography
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ACS Acute coronary syndrome
ML Machine learning
DL Deep learning
ROI Region of interest
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Abstract: Identifying people with a high risk of developing diabetes among those with prediabetes

may facilitate the implementation of a targeted lifestyle and pharmacological interventions. We

aimed to establish machine learning models based on demographic and clinical characteristics to

predict the risk of incident diabetes. We used data from the free medical examination service project

for elderly people who were 65 years or older to develop logistic regression (LR), decision tree

(DT), random forest (RF), and extreme gradient boosting (XGBoost) machine learning models for

the follow-up results of 2019 and 2020 and performed internal validation. The receiver operating

characteristic (ROC), sensitivity, specificity, accuracy, and F1 score were used to select the model

with better performance. The average annual progression rate to diabetes in prediabetic elderly

people was 14.21%. Each model was trained using eight features and one outcome variable from

9607 prediabetic individuals, and the performance of the models was assessed in 2402 prediabetes

patients. The predictive ability of four models in the first year was better than in the second year.

The XGBoost model performed relatively efficiently (ROC: 0.6742 for 2019 and 0.6707 for 2020). We

established and compared four machine learning models to predict the risk of progression from

prediabetes to diabetes. Although there was little difference in the performance of the four models,

the XGBoost model had a relatively good ROC value, which might perform well in future exploration

in this field.

Keywords: machine learning; prediabetes; incident diabetes; predictive models

1. Introduction

Diabetes is one of the significant public problems worldwide, resulting in 536.6 million
adults with diabetes, 541.0 million adults with impaired glucose tolerance (IGT), and
319.0 million adults with impaired fasting glucose (IFG) [1]. Prediabetes is often used to
refer to the latter two states and is more commonly observed in the elderly [2]. Due to the
growing economic burden and mortality caused by diabetes, the prevention of diabetes
is imminent. Unlike incurable diabetes, the majority of prediabetes patients, especially
the elderly, may revert to normoglycaemia or remain stable. Only a fraction of patients
with prediabetes progress to diabetes [3], and this proportion can be further reduced by
lifestyle and pharmacological interventions [4]. So, identifying people with a high risk
of developing diabetes among prediabetic patients may facilitate the implementation of
targeted interventions and avoid the burden of prevention for people at low risk.

Machine learning has been identified as a powerful tool for application in the medical
field [5]. According to electronic health records, Neves et al. [6] predicted the outcome
of diabetes by applying Bayesian Networks. Lama et al. [7] used a random forest (RF)
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classifier to train a model for predicting whether an individual develops prediabetes or
type 2 diabetes. Meng et al. [8] developed three multiple prediction models with logistic
regression (LR), artificial neural networks, and decision tree (DT) for predicting diabetes or
prediabetes. However, most machine learning models in the field of diabetes research are
aimed at the onset and complications. Prediction models of progression from prediabetes
to diabetes are limited, and they may not be reliable to generalize to Chinese people due to
ethnicity differences [9].

Thus, the purpose of this study is to train machine learning models for predicting
patients with prediabetes progress to diabetes based on demographic information and
laboratory results. We select LR, DT, RF, and extreme gradient boosting (XGBoost) to
build predictive models and optimize their hyperparameters by 10-fold cross-validation.
Accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) are also used
to estimate the performance of these predictive models.

2. Materials and Methods

2.1. Study Design and Participants

We conducted a retrospective cohort study of participants who attended free health
screening service in Wuhan, China, between 2018 and 2020. This project has provided
annual physical examinations to adults older than 65 years, which covered 31.3% of the
elderly population in Wuhan (388,420/1,242,470, in 2018).

We restricted our study to 26705 participants with prediabetes at baseline whose
fasting plasma glucose (FPG) ≥ 6.1 mmol/L [10] and did not meet the criteria of diabetes as
defined below. Those who had missing outcomes or were lost to follow-up were excluded
(Figure 1). Available data included demographics, lifestyle, medical history, anthropometric
indices, and laboratory results. Ethical approval was obtained from the Ethics Committee
of Wuhan Center for Disease Control and Prevention (#WHCDCIRB-K-2018023).

2.2. Data Collection

Demographic characteristics included age, gender, marital status, and education level.
Lifestyle included smoking, drinking, and exercise. An anthropometric examination was
conducted by well-trained community physicians. Height and weight were measured with
subjects wearing light clothes without shoes. The body mass index (BMI) was calculated as
the individual’s body weight (kg) divided by the square of height (m). Waist circumference
(WC) was measured at the midpoint between the last rib and iliac crest. Blood pressure
was measured three times by an electronic sphygmomanometer when participants were in
a sitting position after 5 minutes of rest. Blood samples were drawn from individuals after
at least 8 hours of fasting for laboratory tests. Exercise was defined as those who had more
than three times of physical activity for 30 min per week. Smoking was defined as those
who reported smoking at least once per month. Drinking was defined as those who drink
alcohol more than once a month.

2.3. Definition of Outcome

An individual was regarded to reach the outcome of diabetes when FPG ≥ 7.0 mmol/L
according to the American Diabetes Association diagnostic criteria [11] or a self-reported
diagnosis by health care professionals during the follow-up.

2.4. Feature Selection

To reduce the computational complexity and generalization error of the model, it was
important to determine which variables were most relevant. We selected the least abso-
lute shrinkage and selection operator (LASSO) regression analysis to screen the candidate
features. Finally, 8 features that included education, BMI, WC, FPG, total cholesterol (TC),
triglyceride (TG), high density lipoprotein cholesterol (HDL-C), and Alanine aminotrans-
ferase (ALT) were selected to develop a machine learning model.
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Figure 1. Flowchart of study participants.

2.5. Machine Learning Model Development and Evaluation

The processed data were randomly divided into a training set and a test set in a
4:1 ratio. In order to explore the differences in predictive ability and risk factors between
1-year and 2-year risk of diabetes onset, we constructed machine learning models for two
forecast periods. Four machine learning algorithms, including LR, DT, RF, and XGBoost
were used to develop models on the training set. LR is a linear model for classification,
which predicts a probability value of occurrence of the objective using a sigmoid function
and is widely used in biomedicine [12]. A decision tree is a flowchart-like tree structure,
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where each attribute can represent one internal node in a generated decision tree and has
as many branches as its number of different value classes. Moreover, the final leaves of a
decision tree represent the decision attribute [13]. Random forest is a supervised learning
algorithm that randomly extracts multiple samples from the training set using a bootstrap
algorithm and then generates multiple decision trees [14]. The classification results of new
instances are determined by taking a majority vote over all the decision trees. XGBoost is
an ensemble machine learning algorithm based on decision tree, which was first proposed
by Chen and Guestrin [15]. As an optimized implementation of gradient boosting [16],
XGBoost shows excellent performance in regression and classification tasks.

Hyperparameters of each model are important for model performance. We performed
a 10-fold cross-validation for automated Bayesian optimization with 500 iterations to obtain
optimized hyperparameters of each model.

All the machine learning models were assessed for their risk discrimination perfor-
mance ROC curves on the test set. Multiple indicators containing sensitivity, specificity,
accuracy, and F1 score were used to evaluate the predictive ability of four models. We
further applied the Shapley Additive exPlanation (SHAP) algorithm to the training set for
the model explanation.

2.6. Statistical Analysis

Analysis of statistical description was performed by SAS (version 9.4). Data were
expressed as means ± standard deviation (normally distributed) or median (interquartile
range) (non-normally distributed). Categorical variables were shown as frequency and
percentages. A comparison among groups was conducted by one-way ANOVA, Wilcoxon
rank-sum test, or Chi-square test according to the data types. P values were two-tailed
and were considered to be significant when they were < 0.05. All model development and
optimization were achieved by Python (version 3.11).

3. Results

3.1. Baseline Characteristics of Data Sets Used for the Analysis

The baseline characteristics between the groups of participants with incident diabetes
at different time points are presented in Table 1. Within the free health screening project,
12009 elderly prediabetic subjects who met the inclusion criteria were included in our
study. All the participants had complete information on demographics, lifestyles, medical
history, and laboratory tests. During the two-year follow-up, a total of 3414 individuals pro-
gressed to diabetes from prediabetes, and their average annual rate of diabetes progression
was 14.21%.

At baseline, the majority of the study population had primary school and lower educa-
tion levels. The distribution of education was shown in the following categories: primary
school and lower: 7456 (62.09%); middle school: 2424 (20.18%); high school:1134 (9.44%);
and university and higher: 995 (8.29%). The mean BMI was 24.69 ± 3.42 kg/m2. The
mean WC was 86.02 ± 9.72 cm. The mean FPG was 6.44 ± 0.25 mmol/L. The mean
TC was 5.04 ± 1.05 mmol/L. The median TG was 1.34 (0.97). The mean HDL-C was
1.38 ± 0.42 mmol/L, and the median ALT was 18.20 (11.00).

3.2. Performance Comparison between Different Machine Learning Models

Four different machine learning models using LR, DT, RF, and XGBoost were con-
structed for two forecast periods: 1 and 2 years.
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Table 1. Baseline characteristics between the groups of participants with incident diabetes at different
time points.

Variables

2019

p Value

2020

p ValueWithout DM
(n = 10,231)

DM
(n = 1778)

Without DM
(n = 8595)

DM
(n = 3414)

Age (years) 72.06 ± 5.10 72.17 ± 5.22 0.393 72.08 ± 5.13 72.06 ± 5.10 0.813
Gender, n (%) <0.001 0.018

Male 4536 (83.36) 873 (26.14) 3813 (70.49) 1596 (29.51)
Female 5695 (86.29) 905 (13.71) 4782 (72.45) 1818 (27.55)

Education, n (%) <0.001 <0.001
≤Primary school 6485 (86.98) 971 (13.02) 5529 (74.16) 1927 (25.84)

Middle school 1990 (82.10) 434 (17.90) 1615 (66.63) 809 (33.37)
High school 931 (82.10) 203 (17.90) 764 (67.37) 370 (32.63)
≥University 825 (82.91) 170 (17.09) 687 (69.05) 308 (9.02)

Marital status, n (%) 0.383 0.897
Married 7762 (84.96) 1374 (15.04) 6541 (71.60) 2595 (28.40)
Divorced 57 (87.69) 8 (12.31) 44 (67.69) 21 (32.31)
Widowed 2331 (85.76) 387 (14.24) 1947 (71.63) 771 (28.37)

Unmarried 81 (90.00) 9 (10.00) 63 (70.00) 27 (30.00)
Hypertension, n (%) <0.001 <0.001

No 4893 (87.02) 730 (12.98) 4153 (73.86) 1470 (26.14)
Yes 5338 (85.39) 1048 (16.41) 4442 (69.56) 1944 (30.44)

Myocardial infarction, n (%) 0.463 0.298
No 10,177 (85.18) 1771 (14.82) 8555 (71.60) 3393 (28.40)
Yes 54 (88.52) 7 (11.48) 40 (65.57) 21 (34.43)

Coronary heart disease, n (%) 0.841 0.144
No 9632 (85.22) 1670 (14.78) 8106 (71.72) 3196 (28.28)
Yes 599 (84.72) 108 (15.28) 489 (69.17) 218 (30.83)

Angina pectoris, n (%) 0.828 0.437
No 10,187 (85.19) 1771 (14.81) 8556 (71.55) 3402 (28.45)
Yes 44 (86.27) 7 (13.73) 39 (76.47) 12 (23.53)

Fatty liver, n (%) 0.315 0.055
No 9979 (85.25) 1727 (14.75) 8393 (71.70) 3313 (28.30)
Yes 252 (83.17) 51 (16.83) 202 (66.67) 101 (33.33)

Exercise, n (%) 0.587 0.455
No 3942 (85.42) 673 (14.58) 3321 (71.96) 1294 (28.04)
Yes 6289 (85.06) 1105 (14.94) 5274 (71.33) 2120 (28.67)

Smoking, n (%) 0.705 0.883
No 8804 (85.15) 1536 (14.85) 7403 (71.60) 2937 (28.40)
Yes 1427 (85.50) 242 (14.50) 1192 (71.42) 477 (28.58)

Drinking, n (%) 0.295 0.212
No 8544 (85.35) 1467 (14.65) 7188 (71.80) 2823 (28.20)
Yes 1687 (84.43) 311 (15.57) 1407 (70.42) 591 (29.58)

BMI (kg/m2) 24.56 ± 3.41 25.48 ± 3.31 <0.001 24.44 ± 3.42 25.34 ± 3.33 <0.001
WC (cm) 85.57 ± 9.73 88.65 ± 9.23 <0.001 85.20 ± 9.68 88.10 ± 9.52 <0.001
SBP (mmHg) 139.17 ± 19.48 140.30 ± 18.70 0.023 138.96 ± 19.52 140.28 ± 18.96 <0.001
DBP (mmHg) 80.99 ± 11.09 81.57 ± 10.64 0.041 80.86 ± 11.11 81.60 ± 10.79 0.001
FPG (mmol/L) 6.42 ± 0.24 6.54 ± 0.26 <0.001 6.40 ± 0.24 6.52 ± 0.26 <0.001
TC (mmol/L) 5.05 ± 1.05 4.99 ± 1.03 0.021 5.06 ± 1.05 5.00 ± 1.03 0.007
TG (mmol/L) 1.32 (0.96) 1.50 (1.06) <0.001 1.30 (0.93) 1.48 (1.05) <0.001
HDL-C (mmol/L) 1.39 ± 0.40 1.34 ± 0.51 <0.001 1.40 ± 0.40 1.33 ± 0.44 <0.001
LDL-C (mmol/L) 2.80 ± 0.92 2.76 ± 1.02 0.147 2.78 ± 0.93 2.81 ± 0.95 0.231
ALT (U/L) 18.00 (11.00) 19.10 (12.00) <0.001 18.00 (10.90) 19.00 (12.00) <0.001
AST (U/L) 22.00 (8.30) 22.00 (9.90) 0.797 22.00 (8.30) 22.30 (9.50) 0.034
TBil (µmol/L) 12.80 (6.80) 13.10 (6.20) 0.131 12.80 (6.90) 12.90 (6.50) 0.931
Scr (µmol/L) 77.50 (29.00) 76.90 (29.00) 0.107 78.00 (28.00) 76.00 (29.00) <0.001
BUN (mmol/L) 5.80 (2.26) 5.70 (2.05) 0.002 5.83 (2.29) 5.67 (2.07) <0.001
SUA (µmol/L) 332.93 ± 99.46 347.54 ± 95.61 <0.001 333.43 ± 99.44 344.32 ± 97.40 <0.001

Data are shown as means ± standard deviation for normally distributed variables, median (interquartile range)
for non-normally distributed variables, and percentages for categorical variables. DM: Diabetes mellitus; BMI:
Body mass index; WC: Waist circumference; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; FPG:
Fasting plasma glucose; TC: Total cholesterol; TG: Triglyceride; HDL-C: High density lipoprotein cholesterol;
LDL-C: Low density lipoprotein cholesterol; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase;
TBil: Total bilirubin; Scr: Serum creatinine; BUN: Blood urea nitrogen; SUA: Serum uric acid.
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3.2.1. 1-Year Forecast Period

Among these 12009 participants, 1778 (14.81%) had developed diabetes within 1 year
after baseline. The performance of the four machine learning models is displayed in
Figure 2a and Table 2. All the models obtained the optimal hyperparameters using Bayesian
optimization except LR (with default hyperparameters). The XGBoost model performed
relatively well (ROC: 0.6742), followed by the RF model (ROC: 0.6697), and the DT model
ranked last (ROC: 0.6530). Due to the imbalance ratio reaching 5.75, we identified the
optimal threshold using an ROC curve. The XGBoost model showed good sensitivity
(0.6569) but relatively poor specificity (0.5972) and accuracy (0.6066). The F1 score of
XGBoost ranked second among these models. The confusion matrix of XGBoost is presented
in Figure 3a.

Figure 2. Receiver operating characteristic (ROC) curves derived for prediction horizon of 1 and
2 years using the four models based logistic regression (LR), decision tree (DT), random forest (RF),
and extreme gradient boosting (XGBoost): (a) 1-year forecast period; (b) 2-year forecast period.

Table 2. Performance of four machine learning models for two forecast periods.

Metrics
Machine Learning Models

LR DT RF XGBoost

1-year forecast period

Sensitivity 0.5559 0.5213 0.5824 0.6569
Specificity 0.6876 0.7004 0.6807 0.5972
Accuracy 0.6669 0.6724 0.6653 0.6066
F1 score 0.3432 0.3325 0.3527 0.3433

2-year forecast period

Sensitivity 0.6232 0.5580 0.5754 0.6130
Specificity 0.6016 0.6612 0.6647 0.6443
Accuracy 0.6078 0.6316 0.6391 0.6353
F1 score 0.4772 0.4653 0.4780 0.4913

LR: Logistic regression; DT: Decision tree; RF: Random forest; XGBoost: Extreme gradient boosting.
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Figure 3. Confusion matrices derived for prediction horizons of 1 and 2 years based on the extreme
gradient boosting (XGBoost): (a) 1-year forecast period; (b) 2-year forecast period.

3.2.2. 2-Year Forecast Period

The number of incident diabetes reached 3414 (28.43%) during the 2-year follow-
up. The performance of the four machine learning models is presented in Figure 2b and
Table 2. The ROC value of all models for the 2-year forecast period was lower than for
the 1-year forecast period. The XGBoost model still performed relatively efficiently, with
a comparatively higher ROC value of 0.6707. The threshold was adjusted again because
of an increased number of positive cases. The imbalance ratio decreased to 2.52, and the
model for predicting 2-year risk changed accordingly. The optimal threshold was inferred
by the ROC curve and increased from 0.14 (1-year forecast period) to 0.30 (2-year forecast
period). Compared to the 1-year forecast period, the sensitivity of the XGBoost model
decreased, and the specificity and accuracy of XGBoost increased. The F1 score rose to first.
The confusion metrix of XGBoost was presented in Figure 3b.

3.3. Analysis of Feature Importance

Taking the XGBoost model with a little higher ROC value (in both forecast periods)
and F1 score (in 2-year period) into account, we decided to explain the results of our work
based on this machine learning model. To interpret the importance of each feature in the
XGBoost model, the ranking of the input features’ importance is shown in Figure 4, and the
SHAP summary plot is presented in Figure 5. For two different prediction horizons, FPG,
TG, and WC ranked consistently among the top three (Figure 4). The SHAP values of most
features decreased to some extent during the 2-year forecast period. In view of the fact that
Figure 4 can only show the correlation but not the direction of features, Figure 5 could be a
good supplement. The red dots in the SHAP summary plot indicated higher feature values,
and the blue dots indicated lower feature values. When the SHAP value of features was
greater than zero, such as FPG, TG, WC, BMI, and ALT, that suggested that they were risk
factors for diabetes onset.
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Figure 4. Feature importance in predicting incident diabetes according to the XGBoost model.
The Shapley additive explanation (SHAP) algorithm is used to calculate the SHAP value which
approximates how much each feature contributes to the average prediction for the dataset. (a) 1-year
forecast period. (b) 2-year forecast period.

Figure 5. SHAP summary plot of the XGBoost model. (a) 1-year forecast period. (b) 2-year
forecast period.

4. Discussion

In this retrospective cohort study, we established and evaluated prediction models
for identifying individuals at high risk of progression from prediabetes to diabetes within
1–2 years. The XGBoost model incorporated education, BMI, WC, FPG, TC, TG, HDL-C,
and ALT and provided a relatively good classification of risk among all the models overall.
However, the discriminatory ability of all models decreased as the forecast period increased.
In addition, it was found that there was not much difference in performance among the
four models.

In both forecast periods, the XGBoost model performed relatively well. This was
not unexpected; the predictive ability of XGBoost has manifested in previous studies of
diabetes onset [17] and complications [18]. As an ensemble machine learning algorithm,
XGBoost was not affected by the correlation of independent variables, which was exactly
the problem that the LR model needed to solve. So, it might be a good choice to use the
XGBoost algorithm for modeling in future studies.

Unsurprisingly, consistent with other studies [19–21], FPG was the strongest contribu-
tor to the models. We also found that the contribution of WC was higher than that of BMI in
both forecast periods, which modestly supports the view that the reliability of BMI for de-
termining obesity, a well-known major risk factor for diabetes, was questioned [22] because
BMI did not distinguish fat mass from lean mass [23] and WC represented central obesity.

Notably, the proportion of biomarkers reached 62.5% (5/8) among the features in-
cluded in the models. This confirmed the finding that risk evaluation constructed based on
biomarkers was superior to that based on non-laboratory indicators [24]. The inclusion of
biomarkers as input in the machine learning modeling will be a trend in the future.
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We acknowledge that the performance of our models was not competitive with results
presented in the literature for other relative machine learning research [25–27]. This may,
in part, be attributed to the fact that all of the participants were elderly, who generally
had several comorbid diseases. The well-known risk factors and biomarkers in elderly
individuals were less sensitive to diabetes onset than in younger adults.

The insufficiency of features might also be one of the reasons why our XGBoost model
did not perform as well as in other research [28], whose model included 300 features. After
all, in addition to demographic and lifestyle, nutrition intake has also been found to be an
important predictor of incident diabetes [29]. However, high-dimensional features generally
bring about information redundancy and overfitting problem. Considering that our model
included only eight features, we thought this level of performance was acceptable.

Even so, to the best of our knowledge, this was the first study to establish models
designed for the prediabetes population in mainland China. The majority of previous
studies [30–32] focused on the diabetes onset of the general population, ignoring the
transitional and high-risk state for the development of diabetes. Given that the proportion
of regression to normal glucose levels was much higher than progression towards diabetes
among prediabetes [33], changing the screening objects to prediabetes seemed to be more
conducive to allocating health resources.

China faces significant disease and economic burdens due to diabetes and its compli-
cations [34]. Identifying high-risk groups among prediabetic patients using the predictive
machine learning model we proposed could reduce the economic burden of diabetes
through the implementation of targeted lifestyle and pharmacological interventions, even
more so given the fact that our model was applicable to China’s national conditions. Aim-
ing to provide free charge essential health services for all citizens, the central government
launched the National Basic Public Health Service Program (BPHS), containing 14 items, of
which a vital part was geriatric health services [35]. This implied that under the current
health policy, no additional data collection would be needed.

Nevertheless, the present study has some limitations worth noting. The major lim-
itation of the present study is the models’ limited performance, which might be related
to suboptimal sample sizes and the fewer features. Considering the particularity of our
target population, further research should be undertaken to expand the sample size and
explore features that are more sensitive to the geriatric population. Second, the number of
incident diabetes might be underestimated, for OGTT was not included in the definition
of diabetes. However, it is infeasible to use OGTT during a mass free health screening
project due to its relatively expensive cost. Moreover, the data used in the study lacked
the features known to be diabetes risk factors such as glycosylated hemoglobin and family
history of diabetes. In addition, only participants who can be followed up were included in
our study. Meanwhile, because developing models could only be based on the participants
who reached the follow-up endpoint, we cannot rule out that death could have led to
some selection bias. Therefore, the generalization of the research to the whole geriatric
population should be cautious. Furthermore, the lack of information on lifestyle changes
during follow-up might confound the predictive ability of baseline features. Finally, all
the participants included in our study were Chinese, so the predictive model may not be
generalizable to other ethnicities.

5. Conclusions

In conclusion, we evaluated the performance of several prediction models using four
machine learning algorithms based on the demographic, anthropometric indices, and
laboratory results. The XGBoost model might be an effective prediction model, which
might perform well in future exploration in this field.
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Abstract: Early identification of individuals at high risk of diabetes is crucial for implementing early

intervention strategies. However, algorithms specific to elderly Chinese adults are lacking. The aim of

this study is to build effective prediction models based on machine learning (ML) for the risk of type

2 diabetes mellitus (T2DM) in Chinese elderly. A retrospective cohort study was conducted using the

health screening data of adults older than 65 years in Wuhan, China from 2018 to 2020. With a strict

data filtration, 127,031 records from the eligible participants were utilized. Overall, 8298 participants

were diagnosed with incident T2DM during the 2-year follow-up (2019–2020). The dataset was ran-

domly split into training set (n = 101,625) and test set (n = 25,406). We developed prediction models

based on four ML algorithms: logistic regression (LR), decision tree (DT), random forest (RF), and

extreme gradient boosting (XGBoost). Using LASSO regression, 21 prediction features were selected.

The Random under-sampling (RUS) was applied to address the class imbalance, and the Shapley

Additive Explanations (SHAP) was used to calculate and visualize feature importance. Model perfor-

mance was evaluated by the area under the receiver operating characteristic curve (AUC), sensitivity,

specificity, and accuracy. The XGBoost model achieved the best performance (AUC = 0.7805, sen-

sitivity = 0.6452, specificity = 0.7577, accuracy = 0.7503). Fasting plasma glucose (FPG), education,

exercise, gender, and waist circumference (WC) were the top five important predictors. This study

showed that XGBoost model can be applied to screen individuals at high risk of T2DM in the early

phrase, which has the strong potential for intelligent prevention and control of diabetes. The key

features could also be useful for developing targeted diabetes prevention interventions.
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1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia,
which can lead to serious complications such as chronic kidney disease, acute kidney injury,
cardiovascular disease, ischemic heart disease, stroke, or even death [1]. Type 2 diabetes
mellitus (T2DM) is the most common type of diabetes, accounting for around 90% of all
diabetes cases. According to the report of the International Diabetes Federation (IDF)
in 2021, about 537 million people worldwide are suffering from diabetes and the figure
is projected to rise to 643 million by 2030 and 783 million by 2045 [2]. In China, it was
estimated that there were 140.9 million adults living with diabetes, accounting for 25% of
patients with diabetes worldwide [3]. The rising incidence of diabetes imposes a heavy
burden on individual, health system, and the whole society [4,5].

T2DM is an irreversible but preventable disease [6]. Early diagnosis and effective
screening of high-risk populations can prevent or delay the occurrence or development of
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T2DM and related complications [7]. Therefore, it is critical to establish an effective predic-
tion model to assess individuals’ risk of T2DM, which would help the early identification
of individuals at high risk of T2DM.

Machine learning (ML) is a subfield of artificial intelligence (AI) in computer science,
which uses data-driven techniques to reveal patterns and predict behavior [8,9]. In recent
years, machine learning techniques have been widely applied in the medical and health
field, which have proven to be accurate and efficient in disease diagnosis, treatment, and
prognosis [10,11]. There are many barriers to predict the risk of diabetes, because most
of the medical data are nonlinear, nonnormal, correlation structured, and complex in
nature [12]. Compared with traditional statistical methods, machine learning algorithms
could learn the complex non-linear interactions between risk factors by minimizing errors
between predicted and observed outcomes [13]. Predictive models based on machine
learning algorithms can be useful in the identification of patients with diabetes and help
discover hidden patterns in risk factors of diabetes that might be missed [14]. Numerous
machine learning algorithms have been utilized for the prediction of T2DM, such as
logistic regression (LR) [15], support vector machines (SVM) [16], artificial neural network
(ANN) [17], k-nearest neighbors (KNN) [18], decision tree (DT) [19], random forest (RF) [20],
and extreme gradient boosting (XGBoost) [21]. A recent meta-analysis confirmed the good
discrimination ability of machine learning models to predict T2DM in community settings,
suggesting that artificial neural network performed best, followed by logistic regression,
decision trees, and random forests [22]. Xie et al. constructed several machine learning
models for T2DM prediction using cross-sectional data of 138,146 participants in the United
States, and the experimental results showed the neural network model gave the best model
performance with the highest area under the receiver operating characteristic (AUC) value
of 0.7949 [23]. The study of Katarya et al. based on Pima Indian diabetes dataset found
that random forest performed the best with 0.84 accuracy and 0.83 AUC [24]. Adua et al.
developed four machine learning classification algorithms (Naïve-Bayes (NB), KNN, SVM,
and DT) to screen for T2DM in an African population, in Ghana, and concluded that NB
algorithm performed best with the AUC of 0.87 [25]. A study in Luzhou, China utilized four
ML algorithms to build prediction models of diabetes mellitus by using hospital physical
examination data, and it revealed that random forest was the best performing model with
the highest accuracy of 0.8084 [26]. A cross-sectional study in Urumqi, China based on the
national physical examination data reported that XGBoost was the best classifier with AUC
of 0.9680 [27]. Obviously, prior studies demonstrated different results in T2DM prediction
even using the same machine learning algorithms [28]. Despite the extensive research
on T2DM prediction, there were existing obstacles to applying prior prediction models,
due to the disparity of study population, the difference of data sources, as well as the
unsatisfactory power of those predictive models [29]. Thus, further studies including larger
samples and elderly adults are still required to facilitate the research in this area.

This study aimed to build effective prediction models for the risk of incident T2DM
among Chinese elderly adults based on four machine learning algorithms: logistic regres-
sion (LR), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost).
The purpose of this study was to provide evidence supporting the prevention and control
of diabetes.

2. Materials and Methods

2.1. Study Design and Participants

A retrospective cohort study was conducted using the health screening data of adults
older than 65 years from 17 districts in Wuhan, China. The Wuhan Municipal Government
would provide free physical examinations for the elderly aged 65 and above, which was
regarded as a normalized and standardized project to benefit people. A total of 388,420 el-
derly people participated in the health screening in 2018. The protocol was approved by
the Ethics Committee of Wuhan Center for Disease Control and Prevention (protocol code
WHCDCIRB-K-2018023), and written informed consent was obtained from each partic-
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ipant. Baseline data were collected in 2018, and follow-up data were collected in 2019
and 2020. For longitudinal analysis of incident T2DM, excluding criteria of participants
were: (1) Participants with prevalent T2DM at baseline (participants diagnosed by a fasting
plasma glucose ≥7.0 mmol/L or with a self-reported previous diagnosis by health care
professionals at baseline); (2) those who lost to follow-up; (3) those with duplicate data;
(4) those with missing laboratory values; (5) those with outliers. After applying the exclu-
sion criteria, a total of 127,031 participants were included in this study. The study flow
chart is depicted in Figure 1.
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Figure 1. The study flow chart. LR, logistic regression; DT, decision tree; RF, random forest; XGBoost,
extreme gradient boosting; LASSO, least absolute shrinkage and selection operator.

2.2. Candidate Predictors

The health screening data were collected and recorded at the local community health
service centers in Wuhan by well-trained research staff. It included three parts: a health sta-
tus questionnaire, anthropometric measures, and laboratory measures. The questionnaire
included age, gender, education, marital status, medical history (hypertension, myocardial
infarction, coronary heart disease, angina pectoris, fatty liver), exercise, current smoking,
current drinking. Anthropometric measures were conducted by trained medical staff using
standardized procedures, including weight, height, waist circumference (WC), systolic
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blood pressure (SBP), and diastolic blood pressure (DBP). Body mass index (BMI) was
calculated as weight (kg) divided by height squared (m2). Laboratory measures were per-
formed at the central laboratory, including fasting plasma glucose (FPG), total cholesterol
(TC), triglyceride (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C),
alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), serum
creatinine (Scr), blood urea nitrogen (BUN), serum uric acid (SUA). The 27 candidate pre-
dictors from the health screening baseline data (Table 1) have been carefully selected based
on the available variables in our dataset, clinical expertise, and prior literature evidence of
their associations with T2DM [30–32].

Table 1. Baseline characteristics of the participants.

Characteristics
Total

(n = 127,031)

Incident T2DM

p-ValueYes
(n = 8298)

No
(n = 118,733)

Age, mean (SD), years 71.94 (5.10) 72.39 (5.31) 71.91 (5.08) <0.001

Gender, n (%) <0.001
Men 56,774 (44.69) 4114 (7.25) 52,660 (92.75)

Women 70,257 (55.31) 4184 (5.96) 66,073 (94.04)

Education, n (%) <0.001
Elementary school and below 75,828 (59.69) 5597 (7.38) 70,231 (92.62)

Junior high school 28,298 (22.28) 1522 (5.38) 26,776 (94.62)
Technical secondary school or high school 13,742 (10.82) 695 (5.06) 13,047 (94.94)

Junior college and above 9163 (7.21) 484 (5.28) 8679 (94.72)

Marital status, n (%) <0.001
Married 98,131 (77.25) 6046 (6.16) 92,085 (93.84)
Divorced 656 (0.52) 48 (7.32) 608 (92.68)
Widowed 27,350 (21.53) 2082 (7.61) 25,268 (92.39)

Single 894 (0.70) 122 (13.65) 772 (86.35)

Hypertension, n (%) <0.001
Yes 56,847 (44.75) 4347 (7.65) 52,500 (92.35)
No 70,184 (55.25) 3951 (5.63) 66,233 (94.37)

Myocardial infarction, n (%) 0.621
Yes 686 (0.54) 48 (7.00) 638 (93.00)
No 126,345 (99.46) 8250 (6.53) 118,095 (93.47)

Coronary heart disease, n (%) 0.413
Yes 7471 (5.88) 505 (6.76) 6966 (93.24)
No 119,560 (94.12) 7793 (6.52) 111,767 (93.48)

Angina pectoris, n (%) 0.711
Yes 506 (0.40) 31 (6.13) 475 (93.87)
No 126,525 (99.60) 8267 (6.53) 118,258 (93.47)

Fatty liver, n (%) 0.020
Yes 2279 (1.79) 176 (7.72) 2103 (92.28)
No 124,752 (98.21) 8122 (6.51) 116,630 (93.49)

Exercise, n (%) <0.001
Yes 74,741 (58.84) 4323 (5.78) 70,418 (94.22)
No 52,290 (41.16) 3975 (7.60) 48,315 (92.40)

Current smoking, n (%) <0.001
Yes 20,498 (16.14) 1515 (7.39) 18,983 (92.61)
No 106,533 (83.86) 6783 (6.37) 99,750 (93.63)
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Table 1. Cont.

Characteristics
Total

(n = 127,031)

Incident T2DM

p-ValueYes
(n = 8298)

No
(n = 118,733)

Current drinking, n (%) 0.908
Yes 21,429 (16.87) 1396 (6.51) 20,033 (93.49)
No 105,602 (83.13) 6902 (6.54) 98,700 (93.46)

BMI, mean (SD), kg/m2 23.70 (3.26) 24.47 (3.51) 23.65 (3.24) <0.001

WC, mean (SD), cm 84.12 (9.16) 86.30 (9.62) 83.97 (9.10) <0.001

SBP, mean (SD), mm Hg 137.12 (20.00) 140.63 (20.38) 136.87 (19.95) <0.001

DBP, mean (SD), mm Hg 80.09 (11.20) 81.63 (11.42) 79.99 (11.18) <0.001

FPG, mean (SD), mmol/L 5.12 (0.69) 5.71 (0.79) 5.08 (0.66) <0.001

TC, median (IQR), mmol/L 4.81 (4.20–5.45) 4.84 (4.20–5.49) 4.81 (4.20–5.44) 0.034

TG, median (IQR), mmol/L 1.17 (0.85–1.63) 1.28 (0.90–1.79) 1.16 (0.85–1.62) <0.001

HDL-C, median (IQR), mmol/L 1.36 (1.15–1.62) 1.32 (1.11–1.58) 1.37 (1.15–1.62) <0.001

LDL-C, median (IQR), mmol/L 2.60 (2.08–3.17) 2.64 (2.11–3.24) 2.60 (2.07–3.16) <0.001

ALT, median (IQR), U/L 16.00 (12.00–21.00) 17.00 (13.00–23.00) 16.00 (12.00–20.90) <0.001

AST, median (IQR), U/L 21.50 (18.00–26.00) 22.00 (18.00–26.00) 21.50 (18.00–26.00) 0.004

TBIL, median (IQR), µmol/L 11.90 (9.17–15.30) 12.40 (9.50–15.90) 11.90 (9.10–15.30) <0.001

Scr, mean (SD), µmol/L 76.82 (19.93) 79.21 (20.94) 76.66 (19.85) <0.001

BUN, median (IQR), mmol/L 5.71 (4.76–6.82) 5.67 (4.70–6.80) 5.71 (4.77–6.83) 0.037

SUA, mean (SD), µmol/L 323.80 (91.90) 333.01 (94.31) 323.15 (91.70) <0.001

SD, standard deviation; IQR: Q1–Q3 values; T2DM, type 2 diabetes mellitus; BMI, body mass index; WC, waist
circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting plasma glucose; TC,
total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; ALT, alanine aminotransferase; AST, aspartate transaminase; TBIL, total bilirubin; Scr, serum creatinine;
BUN, blood urea nitrogen; SUA, serum uric acid.

2.3. Outcome

Incident type 2 diabetes mellitus (T2DM) was diagnosed if at least one of the following
two criteria were satisfied according to the American Diabetes Association (ADA): (1) a
self-reported diagnosis that was determined previously by a health care professional, or
(2) fasting plasma glucose (FPG) ≥ 126 mg/dL (7.0 mmol/L) [33]. In this study, self-
reported T2DM was defined by asking participants whether a health care professional had
ever told that he/she was diagnosed with diabetes. Fasting blood samples were collected
after at least 8 h of overnight fasting and were analyzed by trained research staff at the
central laboratory. Fasting plasma glucose (FPG) levels were measured using the glucose
oxidase procedure.

2.4. Machine Learning Algorithms

2.4.1. Logistic Regression (LR)

LR is a classic classification algorithm that measures the relationship between a cate-
gorical dependent variable and one or more independent variables based on the sigmoid
function [34]. This algorithm is a simple method for prediction which provides baseline
accuracy scores to compare with other non-parametric machine learning models [14,35].

2.4.2. Decision Tree (DT)

DT is a supervised learning technique used for a classification task. A decision tree
is a class discrimination tree structure, with each internal node representing an attribute
(or independent variable), each branch reflecting an outcome of the test, and each leaf
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node corresponding to a class label (or dependent variable) [11]. The purpose of DT is to
generate a decision tree with strong generalization capability [36].

2.4.3. Random Forest (RF)

RF is a typical ensemble learning algorithm that consists of multiple decision trees [37].
It can be applied to deal with regression and classification tasks. The algorithm is based on
the idea of incorporating multiple decision tree classifiers to obtain the final classification
result by majority voting and make accurate predictions [38]. RF can analyze complex
interactions between characteristics, and is extremely adept at handling noisy and missing
data [29].

2.4.4. Extreme Gradient Boosting (XGBoost)

XGBoost is an advanced ensemble algorithm, which was proposed by Chen and
Guestrin in 2016 [39]. It is a scalable machine learning technique for tree boosting that
can combine a series of weak classifiers to construct a stronger classifier. This classifier
is an optimized implementation of the gradient boosting decision tree (GBDT) and has
the advantages of high training speed, excellent performance, and can deal with large-
scale data.

2.5. Model Development

The dataset was randomly split into two parts: the training set accounted for 80%
(n = 101,625) and the test set accounted for 20% (n = 25,406). Since the categories of the
incident T2DM in the dataset were imbalanced, the Random under-sampling (RUS) was
applied to the training set to resolve the effect of class imbalance. In order to standardize
the input features, the data were normalized using the Python Sklearn library [40]. The
training set was standardized to mean 0 and variance 1 using the StandardScaler function
from the Sklearn preprocessing library in Python, and the test set was standardized using
the mean and standard deviation of the training dataset. Least Absolute Shrinkage and
Selection Operator (LASSO) regression was used for feature selection in the training set to
construct the prediction models. LASSO is a regression model that penalizes the absolute
sizes of the coefficients, resulting in the disappearance of some regression coefficients [41].
The candidates with non-zero coefficients are selected during the feature selection. We
used LASSO regression with all candidate variables to screen the final input features for
the prediction models.

We trained the logistic regression (LR), decision tree (DT), and random forest (RF)
models implemented using the Python Sklearn package [42]. The extreme gradient boost-
ing (XGBoost) was implemented using the Xgboost package [39]. The input variables
were the 21 features selected by LASSO regression (Table 2). For the DT, RF, and XGBoost
algorithms, Bayesian optimization with 10-fold cross-validation was performed on the
training set to tune the hyperparameters. Bayesian optimization was proposed by Snoek
et al. [43], which has demonstrated to outperform most global optimization algorithms
on benchmark functions. It has become extremely popular for tuning hyperparameters
in machine learning algorithms [44]. Bayesian optimization keeps track of the previous
evaluation results of the objective function and uses them to create a surrogate model such
as Gaussian process which was used to find out the most optimal hyperparameters [45].
After sufficient evaluations of the objective function until reaching maximum iterations, the
surrogate function becomes an accurate model for the actual objective function and the set
of hyperparameters selected is optimal [46]. After 500 iterations, we find the final optimal
hyperparameters of DT, RF, and XGBoost. The best hyperparameters for DT were as fol-
lowed: max_depth = 19, max_features = 7, min_samples_leaf = 55, min_samples_split = 10,
min_weight_fraction_ leaf = 0.031159281996108103. The best hyperparameters for RF were
as followed: max_depth = 68, max_features = 8, n_estimators = 80, min_samples_leaf = 5,
min_samples_split = 69, min_weight_ fraction_ leaf = 0.0009215045821160297. The best
hyperparameters for XGBoost were as followed: colsample_bytree = 0.6907621204231386,
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gamma = 0.6991315172625473, learning_rate = 0.093311071904797607, max_depth = 3,
min_child_weight = 30, reg_alpha = 0.9430563747862351, reg_lambda = 0.7001632991135449,
subsample = 0.5957497121054272.

Table 2. Least Absolute Shrinkage and Selection Operator (LASSO) regression coefficients.

Predictors Coefficient

Age 0.012
Gender −0.026

Education −0.027
Marital status 0.023
Hypertension 0.010

Exercise −0.035
Current smoking 0.017
Current drinking −0.010

WC 0.033
SBP 0.014
FPG 0.219
TC −0.022
TG 0.020

HDL-C 0.006
LDL-C 0.009

ALT 0.037
AST −0.026
TBIL 0.006
Scr 0.004

BUN −0.017
SUA −0.002

2.6. Model Evaluation

The performances of the prediction models were evaluated on the test set using tuned
hyperparameters. The area under receiver operating characteristic (AUC), sensitivity,
specificity, and accuracy were used to evaluate the classification performance. Sensitivity
indicates the proportion of positive sets being predicted correctly, and the specificity
represents the proportion of negative sets being predicted correctly. Accuracy illustrates
the correct prediction of both positive and negative sets. A receiver operating characteristic
(ROC) curve was drawn with the true positive rate (sensitivity) as the ordinate and the
false positive rate (1-specificity) as the abscissa, which indicates the overall performance
of a binary classifier system. AUC was calculated from the ROC curve. The performance
metrics were calculated as follows:

Sensitivity = TP/(TP + FN) (1)

Specificity = TN/(FP + TN) (2)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3)

Here, TP, FN, FP, and TN represent true positive, false negative, false positive, and
true negative, respectively.

2.7. Model Interpretation

For further model interpretation, the Shapley Additive Explanations (SHAP) was
used. SHAP is a method proposed by Lundberg and Lee in 2017, which is widely used
in the interpretation of various classification and regression models [47]. In this method,
the features are ranked by their contribution to the model, and the relationship between
features and the outcome can be visualized. The model would produce a predicted value
for each sample, and the SHAP value represented the value allocated to each feature in the
sample. Its absolute value reflects the influence of the feature, and its positive or negative
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reflects its positive or negative effect on the predicted risk of incident T2DM. When the
SHAP value > 0, it indicated that the feature contributed to a higher risk of incident T2DM;
On the contrary, when the SHAP value < 0, it indicated that the feature contributed to a
lower risk of incident T2DM [48].

2.8. Statistical Analysis

Data analyses were performed using SAS version 9.4 and Python version 3.10. Base-
line characteristics were summarized as means ± SD (standard deviation) for normally
distributed continuous variables, as median and interquartile range (IQR) for non-normally
distributed continuous variables, and as numbers and percentage for categorical variables.
Students’ t test and Wilcoxon test were used to compare normal and non-normal con-
tinuous variables respectively and Chi-square tests or Fisher’s exact test were used to
compare categorical variables between subgroups. The statistical significance level was
set at p-value < 0.05 (two-sided). To implement the ML algorithms, we used the Python
sklearn package [42] and the Xgboost package [39].

3. Results

3.1. Baseline Characteristics

Table 1 demonstrated the participants’ baseline characteristics. A total of 127,031 el-
igible participants were included in this study, which consisted of 8298 incident T2DM
and 118,733 non-T2DM. The mean age of study participants was 71.94 ± 5.10 years old.
The results showed that age, gender, education, marital status, hypertension, fatty liver,
exercise, current smoking, BMI, WC, SBP, DBP, FPG, TC, TG, HDL-C, LDL-C, ALT, AST,
TBIL, Scr, BUN, and SUA were all significantly associated with incident T2DM (p < 0.05).

3.2. Features Selected by LASSO Regression

Table 2 presented the results of the LASSO regression. Finally, 21 features were
significantly associated with incident T2DM, including age, gender, education, marital
status, hypertension, exercise, current smoking, current drinking, WC, SBP, FPG, TC, TG,
HDL-C, LDL-C, ALT, AST, TBIL, Scr, BUN, and SUA.

3.3. Comparison of the Model Performance

Table 3 presented the results of performance of four machine learning models. The
ROC curves on the training set and test set are shown in Figure 2. Overall, the XGBoost
model performed best with the highest AUC value of 0.7805 on the test set, and the
sensitivity, specificity, and accuracy were 0.6452, 0.7577, and 0.7503, respectively. The
confusion matrix of the four machine learning models is presented in Figure 3.

Table 3. Comparison of performance of the four machine learning models.

Model AUC Sensitivity Specificity Accuracy

LR 0.7601 0.6320 0.7636 0.7550
DT 0.7280 0.5821 0.7633 0.7514
RF 0.7772 0.6428 0.7524 0.7453

XGBoost 0.7805 0.6452 0.7577 0.7503
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Figure 2. The receiver operating characteristics (ROC) curves of the four machine learning models on
the training set (A) and test set (B).
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Figure 3. The confusion matrix of the four machine learning models.
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3.4. Feature Importance

In this study, XGBoost performed the best out of the four models. Figure 4 presented
the contributions of the 21 features on the XGBoost model output ranked by the average
absolute SHAP value. FPG, education, exercise, gender, and WC were the top five important
features. The SHAP values of FPG, WC, ALT, marital status, SBP, TG, hypertension, TBIL,
age, smoking, Scr, and LDL-C were greater than 0, which suggested that these features
were significant risk factors for incident T2DM.
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Figure 4. The interpretations for the XGBoost model. (A): The feature importance ranking by the
SHAP value; (B): SHAP summary plot of the XGBoost model. Each dot represents a sample, with
blue indicating a low feature value and red indicating a high feature value. The higher the SHAP
value of a feature, the higher the risk of incident T2DM. Smoking was defined as current smoking;
drinking was defined as current drinking.

4. Discussion

In this retrospective study, we applied four machine learning algorithms to build
prediction models for the risk of incident T2DM among Chinese elderly. It is found that the
XGBoost model with 21 features demonstrated the best performance for predicting T2DM.
This suggested that the prediction model derived in the present study could be applied
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to screen out individuals at high risk of T2DM, which could benefit the prevention and
control of diabetes.

To date, the research of diabetes prediction models tended to focus on white popu-
lations [49–52], and Asian populations especially for the elderly have received relatively
little attention. This study utilized a large longitudinal dataset obtained from Chinese
elderly to establish prediction models for T2DM. The prediction results confirmed that
the XGBoost model performed best with the highest AUC value of 0.7805 in predicting
the probability that an individual develops T2DM. It was a good example of success for
the XGBoost’s application in the research of diabetes risk prediction. This finding was
consistent with earlier studies [14,21,27,53], which identified the good prediction power of
the XGBoost model, with AUC values ranging from 0.8300 to 0.9680. Different from this
study, a previous Korean population-based cohort study demonstrated that the ensemble
models (e.g., stacking classifier) had better performance than the single models including
XGBoost [54]. A rural cohort study in Henan province of China showed good predictive
efficiency for the prediction models of T2DM, with AUC values ranging from 0.811 to
0.872 using laboratory data [55]. Compared with previous research, the AUC value in
this study was relatively not satisfactory enough. A potential reason could be due to
the differences of the study population and input features in the models, which could
impact the predictive performance to some extent. Different from our study, the study
population of prior studies [14,21,27,53] were middle-aged adults and fewer predictors
were applied in the prediction of diabetes. To our knowledge, this was the first study that
targeted the elderly population (≥65 years) in China to build predictive models for diabetes
using machine learning techniques, which would have great implications for designing
diabetes prevention focusing on the elderly. With the development of artificial intelligence,
machine learning techniques have been widely applied in the medical field, especially
for prediction models for diabetes [49,51,53,56–58]. It is worth noting that the advantages
of machine learning models are well-documented empirically compared with traditional
statistical methods, but its disadvantage is the lack of model interpretability [13]. XGBoost
was often considered as a black box model, because it tends to have better accuracy for
predictions compared with linear models while it loses the model interpretability at the
same time [39]. Thus, we applied the Shapley Additive Explanations (SHAP) method
developed by Lundberg and Lee [47] to better explain the contribution of each feature to
the model. This is crucial for healthcare workers to get over the model interpretability
barrier to apply predictive models in clinical practice.

Notably, the results of the feature importance analysis indicated the contribution of
different feature to the model. These features such as FPG, education, exercise, gender,
WC, etc., made substantial contributions to the prediction model. This was in accordance
with the results observed in prior similar research [14,53,59]. Early identification of key risk
factors had important implications for the risk assessment and prevention of diabetes. Our
model results identified that FPG was the most significant predictor of T2DM. Individuals
with higher blood glucose would have a greater likelihood of developing diabetes. An
explanation for this was that hyperglycemia was correlated with insulin resistance [60].
As mentioned in the literature review, blood glucose was the main traditionally diabetes
predictor and also widely used for diagnosis of diabetes [61]. This indicated that blood
glucose control plays a key role in the prevention of T2DM, especially for the elderly.

As is shown in the present study, education and exercise showed negative associations
with the risk of incident T2DM. Several studies have suggested that diabetes is associated
with a low level of education [62–66]. A cohort study among American adults has confirmed
that educational level was linked to the onset of diabetes [66]. Individuals with less than a
high school educational level (hazard rate [HR] 1.58; 95% CI, 1.26–1.97) were more likely to
develop diabetes. It is possible that people with higher education would have better health
literacy, so they paid more attention to health management to prevent diabetes [65]. Prior
studies have also noted the key role of exercise [67,68] and found that exercise intervention
could decrease the risk of developing diabetes by 46% [68]. The China Da Qing Diabetes
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Prevention Study has identified the long-term effects of exercise interventions in reducing
the incidence of T2DM [67]. It was shown that exercise intervention groups had a 49%
decreased incidence of T2DM (hazard rate ratio [HRR], 0.51; 95% CI, 0.31–0.83) over the past
two decades. There is need for implementing diabetes prevention programs, emphasizing
the importance of regular exercise, and focusing particularly on lower educated populations.
In our study, another interesting finding was that men were more likely to develop T2DM
compared to women, which agreed with results from earlier studies [69,70]. Previous
meta-analysis also demonstrated that gender was a dependent risk factor of T2DM in
mainland China [71]. It found that the female gender (odds ratio [OR], 0.87, 95% CI,
0.78–0.97) was significantly negatively associated with the risk of T2DM. This could be
explained by the fact that most risk factors (e.g., smoking and alcohol consumption, and
physical inactivity) were more prevalent in men than women [72]. Therefore, more attention
should be paid to men. As a measure of central/abdominal obesity, WC was also proved
to be a strong predictor of T2DM. The significance of WC has been illustrated in other
studies [17,73]. A 13-year prospective cohort study reported that a higher WC was linked
to an increased risk of diabetes and the age-adjusted relative risks (RRs) across quintiles
of WC were 1.0, 2.0, 2.7, 5.0, and 12.0, respectively [74]. Our findings further supported
that the routine measurement of waist circumference would help clinical workers make
preventive recommendations for individuals at high risk of diabetes.

Diabetes has become a major human health challenge and a global health burden
because of its high morbidity and mortality rates [75,76]. The XGBoost prediction model
established in this study showed promising performance. It had important public health
implications, which could help clinicians screen out populations with a high risk of diabetes.
The key features identified in this study not only captured each person’s socio-demographic
variables, but also medical history, anthropometric and clinical laboratory variables, which
could be effective for formulating and implementing targeted diabetes prevention strategies
to reduce the disease burden.

Despite of the above encouraging findings, the current study has several limitations.
First, only the participants who attended both the baseline survey and 2 -year follow-up
were included in this study, which might potentially introduce a selection bias and limit the
generalizability of the results. Second, some important risk factors of T2DM such as HbA1c,
and insulin were not accounted for in the prediction models due to lack of relevant data.
Third, some diabetes cases would be misclassified as non-T2DM because the oral glucose
tolerance test (OGTT) was not included for the diagnosis of T2DM. However, the high cost
and large sample size make it infeasible and difficult to perform oral glucose tolerance tests
for all participants. Fourth, we only performed internal validation, and these prediction
models need to be further validated in an external validation set in future work. Moreover,
further work is warranted to consider auto encoder, to extract the type 2 diabetes mellitus
(T2DM) features automatically, which can improve the classification efficiency of T2DM to
some extent.

5. Conclusions

The current study developed four predictive models based on ML algorithms for the
risk of incident T2DM in Chinese elderly. Our findings demonstrated that the XGBoost
model achieved the best predictive performance for T2DM. Additionally, FPG, education,
exercise, gender, and WC were the strongest predictors in the prediction model, which
would benefit clinical practice in developing targeted diabetes prevention and control
interventions.
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Abstract: Background: Current approaches to predicting intervention needs and mortality have

reached 65–85% accuracy, which falls below clinical decision-making requirements in patients with

acute pancreatitis (AP). We aimed to accurately predict therapeutic intervention needs and mortality

on admission, in AP patients, using machine learning (ML). Methods: Data were obtained from three

databases of patients admitted with AP: one retrospective (Chengdu) and two prospective (Liverpool

and Chengdu) databases. Intervention and mortality differences, as well as potential predictors, were

investigated. Univariate analysis was conducted, followed by a random forest ML algorithm used in

multivariate analysis, to identify predictors. The ML performance matrix was applied to evaluate

the model’s performance. Results: Three datasets of 2846 patients included 25 potential clinical

predictors in the univariate analysis. The top ten identified predictors were obtained by ML models,

for predicting interventions and mortality, from the training dataset. The prediction of interventions

includes death in non-intervention patients, validated with high accuracy (96%/98%), the area under

the receiver-operating-characteristic curve (0.90/0.98), and positive likelihood ratios (22.3/69.8),

respectively. The post-test probabilities in the test set were 55.4% and 71.6%, respectively, which

were considerably superior to existing prognostic scores. The ML model, for predicting mortality

in intervention patients, performed better or equally with prognostic scores. Conclusions: ML,

using admission clinical predictors, can accurately predict therapeutic interventions and mortality in

patients with AP.

Keywords: acute pancreatitis; machine learning; predictor; interventions; mortality

1. Introduction

Acute pancreatitis (AP) is one of the most common admission diagnoses relating to an
acute gastrointestinal pathology. Approximately 25% of patients with AP develop infected
pancreatic necrosis (IPN) and/or organ failure (OF), with mortality rates of 20–50% [1,2].
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While the outcome of patients with AP has improved over recent decades, AP incidence
and associated disability remain high [3], and specific drug therapies remain unavail-
able [4]. One of the challenges of therapeutic trials for AP is the inaccuracy in early severity
and complication prediction, resulting in heterogeneous treatment groups. A review of
current predictors of AP outcome [5] (including IPN, OF, and the need for intervention)
demonstrated that the accuracy of current systems ranges from 65% to 85%, implying a
misclassification error of 15–35%. This degree of inaccuracy in the prediction has clinical
and research practice consequences.

Improving the accuracy of early severity prediction is of paramount importance and
a matter of significant international effort. Various individual serum biomarkers have
been investigated. However, they have failed to improve the clinical utility of existing
simple and inexpensive scoring systems [6–10]. Combinations of markers and/or scoring
systems potentially add value but lack external and/or multicenter validation [11–14]. The
development and increasing accessibility of omics platforms have provided opportunities
for prognostication based on genetic [15], transcriptomic [16], proteomic [17–20], metabolic
profiling [21,22], and multi-platform omics analyses [23] Nevertheless, the application of
these platforms in AP remains in its infancy.

The premise of machine learning (ML) in disease prognostication is to incorporate
the wisdom embedded within decisions made by multiple clinicians, and the outcomes
of their patients, in order to inform the individualized patient treatment [24]. ML is a
broad field involving computer science and statistics, and broadly speaking, it involves
a machine-led selection of iterative computational models to progressively improve the
model’s performance in a specific task. The ability to handle vast datasets in an inherently
unbiased manner has led to the growing interest in, and use of, ML-based applications in
multiple areas of medicine [25–28]. This includes the use of ML in the diagnosis, prognosis,
and predicted treatment response in patients with gastrointestinal diseases, although the
lack of high-quality datasets continues to present a problem [29].

In AP, ML has been used to aid in the prediction of OF [30–32] and severity [33–35];
however, thus far, no study has accurately and timeously predicted the need for therapeutic
intervention [36]. The identification of high-risk patients who require specialist intervention
is critical, as these patients are, not only, at considerable risk of adverse disease outcomes
but timely management has considerable implications for the health-care system. This
includes the possible need to provide services that may not be available throughout the day,
or every day in the week, and the provision of services may mean a transfer to a different
hospital in some care settings.

Although there have been attempts to standardize the language surrounding indi-
cations for intervention in AP [37], there are numerous instances (e.g., ongoing OF or
other severe gastrointestinal symptoms, due to the mass effect of walled-off necrosis or
disconnected pancreatic duct syndrome) [38] that warrant intervention under the care of
an experienced pancreatologist. These can often be difficult to classify or use to provide
general guidance on the use of traditional methods.

Therefore, this study aimed to apply an ML algorithm to preoperatively predict the
need for intervention and mortality in patients admitted with AP.

2. Materials and Methods

2.1. Overview

Data on patients with AP were collected, retrospectively (single center, Chengdu) and
prospectively (two centers, Liverpool and Chengdu), and analyzed following the STROBE
guidelines for observational studies [39]. Confirmation that specific ethical approval was
not required was provided by the Institutional Review Board of West China Hospital of
Sichuan University (WCH/SCU), due to prior approval for the use of retrospective data.
Informed consent was obtained from patients admitted to Royal Liverpool University
Hospital (RLUH), and ethical approval was not required because anonymized data were
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used. Predictors and outcomes from both retrospective and prospective databases were
used to develop and test predictive models for intervention and mortality.

2.2. Cohorts and Data Collection

Eligible patients were identified from the Hospital Information System by using the
International Classification of Diseases, 10th edition, code K85. All patients were admitted
to WCH/SCU or RLUH, within 48 h of abdominal pain onset, with a diagnosis of AP,
as defined by the revised Atlanta classification [37]. Patients in the retrospective cohort
were admitted between 1 October 2009 and 30 September 2013. Patients in the prospective
cohorts were admitted between 1 September 2014 and 31 December 2015 (WCH/SCU) or
between 1 June 2010 and 30 June 2017 (RLUH). Data collection in both centers was based on
a predefined pro forma and coordinated by experienced researchers, with quality assurance
and control measures in place at every step of the study process.

2.3. Potential Predictors

Demographic variables (age, sex, comorbidities, abdominal pain onset time, and
etiology), available quantitative laboratory tests on admission common to all three cohorts
(white blood cell [WBC], neutrophils, lymphocytes, hematocrit, urea, creatinine, albumin,
and C-reactive protein [CRP]), and clinical severity scores on admission (sequential organ
failure assessment [SOFA] [40], systemic inflammatory response syndrome [SIRS] [41],
bedside index, for severity in acute pancreatitis [BISAP] [42], acute physiology, and chronic
health examination [APACHE] II [43], as well as modified computerized tomographic
severity index [MCTSI]) [44] were collected. Additional clinical variables, including pleural
effusion, local complications, OF, pancreatic, and extrapancreatic infection (bacteremia and
others) were also recorded (worst during hospitalization or before surgery), as were daily
assessments of type, onset, and duration of OF.

2.4. Definition of Groups

The patients were divided into conservative-treatment (no intervention) and invasive-
intervention (including pancreatic cyst percutaneous catheter drainage and necrosectomy)
groups for further analysis.

2.5. Statistical Analysis and Model Development

The chi-squared test was used to analyze categorical data, and the Kruskal–Wallis test
was used for ranked variables. The rank-sum test was used for skewed and continuous data.
Random forest (RF) ML [45] multivariate analysis was used to construct the algorithms and
resolve the impact of data imbalances on predictions (2714 cases in the non-intervention
group, more than 20 times of the 132 cases in the intervention group). RF can process
high-dimensional samples and does not require dimensionality reduction for datasets
with numerous variables. It is worth noting that RF is an ensemble method that utilizes
many classifiers to work together, and it has high accuracy and superiority on unbalanced
datasets. The mean decrease in the Gini value of each variable, indicating the importance of
the variable to the outcome, was obtained by the varImpPlot function using the R software.
We comprehensively evaluated the model’s performance, using the area under receiver-
operating-characteristic curve (AUC) analysis, and evaluated the post-test probabilities by
calculating the positive and negative likelihood ratios.

All the analytic processes were performed using R software (version 3.6.3).

2.5.1. Data Sources

Since there were three datasets in this study: (1) a retrospective cohort from WCH/SCU,
(2) a prospective cohort from WCH/SCU, (3) and a prospective cohort from RLUH, the
differences between various data collection times and populations might have had vary-
ing effects on outcomes. Therefore, the differences affecting the research outcomes were
analyzed. First, we used the three datasets, separately, to predict intervention needs and
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mortality. Thereafter, we aggregated the three datasets into a single dataset for the pre-
diction. We found that the results of modelling the three datasets separately, and those of
integrating them into one dataset, were similar. In addition, this study was a retrospec-
tive analysis of data collected in a previous period. Therefore, we consolidated the three
different data sources into a single dataset before analysis and modeling.

2.5.2. Univariate Analysis

The impact of each individual variable on “need for intervention” and “mortality” was
examined using univariate analysis. Where the resulting p-value was <0.10, the variable
was included in multivariable analysis.

2.5.3. Performance of the ML Algorithm

For multivariate analysis, an RF ML approach was used. Patients were divided into
three groups for modeling: (1) intervention and conservative management, (2) mortality
and survival among intervention patients, and (3) mortality and survival among conserva-
tively managed patients. The larger the mean decrease in the Gini value, the greater the
impact of the variable. We extracted the characteristics of the intervention and deceased
patients, compared with those of non-intervention and surviving patients, and evaluated
the model’s performance using evaluation indicators (accuracy, AUC, sensitivity, speci-
ficity, and likelihood ratio). Accuracy was evaluated based on the percentage of correct
predictions. To predict the performance of ML, accuracy was evaluated based on the
proportion of correct predictions in the total sample. As a rule of thumb, a test with a high
predictive value has a positive likelihood ratio >5, usually closer to 10, and occasionally
higher [46]. In all three groups, the total dataset was divided into training, validation, and
test datasets according to a specific ratio of 6:2:2. The training set was used to develop the
model, the validation set was used to adjust the parameters, and the test set was used to
obtain the final result, which was the average performance with 30 repetitions (Figure 1).
The hyperparameters of random forest include the number of trees (ntree), the number of
variables required to build a single tree (nvariable), and the minimum sample size of leaf
nodes (nodesize). Through parameter sensitivity analysis (Supplementary Table S1), the
final chosen hyperparameters were: ntree = 500, nvariable = 4, and nodesize = 1.

1 
 

     
Figure 1. The flow chart of this study.
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3. Results

3.1. Comparison of Characteristics between Intervention and Non-Intervention Patients with AP

A retrospective cohort of 2018 patients (WCH/SCU) and two prospective cohorts of
259 and 569 patients (WCH/SCU and RLUH, respectively) were included in the analysis.
The proportions of intervention and mortality (chi-squared test; p = 0.432 and p = 0.411,
respectively) were similar across all cohorts, indicating that any observed differences in the
number of interventions and/or mortality were unlikely to be due to inherent differences
in the source data.

The clinical characteristics of the 2846 patients are summarized in Table 1. The number
of patients requiring therapeutic intervention was 132 (4.6%), while 2714 (95.4%) were
managed conservatively. The most common etiologies (in order) were biliary, hypertriglyc-
eridemia, and alcohol consumption. The median age of all participants was 46 years
(interquartile range, 38–58 years), and 64.0% were men. There were no significant differ-
ences in age, sex, Charlson comorbidity index, or etiology between the two groups. The
time from pain to admission was 6 h longer in the intervention group (p < 0.05).

WBC, neutrophil, hematocrit, urea, creatinine, and CRP in the intervention group
were significantly higher than those in the non-intervention group, while albumin levels
were lower (all p < 0.05). The admission clinical scoring systems, including SOFA, BISAP,
SIRS, APACHE II, and worst MCTSI, were all higher among intervention patients, with the
ratio of severe cases being three times higher than that in the non-intervention group.

Patients requiring intervention exhibited significantly worse clinical outcomes: 98/132
(74.2%) developed acute peripancreatic fluid collection, and 84/132 (63.6%) developed
pancreatic and/or peripancreatic necrosis. Out of the 84 patients with necrosis, 81 were
confirmed to have infectious necrosis; 99/132 (75%), 42/132 (31.8%), and 29/132 (22%)
therapeutic-intervention patients developed persistent pulmonary, circulatory, and renal
failure, respectively, with the duration of all three types’ OF lasting longer than those
in the non-intervention group. Extrapancreatic infection was also more prevalent in the
intervention group, regardless of bacteremia or lung infection.

Table 1. Characteristics between intervention and non-intervention patients with AP.

Characteristic
Total

(n = 2846)
Intervention

(n = 132)
Non-Intervention

(n = 2714)
p

Demographics

Age, year (M[Q]) 46 (38–58) 48 (39–62) 46 (38–57) 0.125
Male (%) 1822 (64.0) 88 (66.7) 1734 (63.9) 0.578

CCI (M[Q]) 0 (0–1) 0 (0–1) 0 (0–1) 0.260
Modified CCI, (M[Q]) 0 (0–1) 0 (0–2) 0 (0–1) 0.176

ASA (%) 0.005
I 2120 (74.5) 108 (81.8) 2012 (74.1)
II 573 (20.1) 13 (9.8) 560 (20.6)
III 153 (5.4) 11 (9.3) 142 (5.2)

From onset to admission, h (M[Q]) 18 (10–27) 24 (10–33) 18 (10–27) 0.001
Aetiology (%) 0.063

Biliary 1069 (37.6) 65 (49.2) 1004 (37.0)
Hypertriglyceridemia 805 (28.3) 33 (25.0) 772 (28.4)

Alcoholics 216 (7.6) 8 (6.1) 208 (7.7)
ERCP 20 (0.7) 0 (0.0) 20 (0.7)

Drug-induced 8 (0.3) 1 (0.8) 7 (0.3)
Others 728 (25.6) 25 (18.9) 703 (25.9)

Laboratory tests

WBC, 109/L (M[Q]) 12.9 (10.01–16.30) 14.3 (10.43–17.35) 12.87 (10–16.26) 0.011
Neutrophils, 109/L (M[Q]) 11.00 (8.10–14.34) 12.66 (9.17–15.61) 10.95 (8.05–14.28) 0.001
Lymphocyte, 109/L (M[Q]) 1.01 (0.70–1.49) 0.96 (0.62–1.53) 1.02 (0.70–1.49) 0.352

Hematocrit, % (M[Q]) 43 (39–46) 45 (40–49) 43 (39.3–46) 0.003
Urea, mmol/L (M[Q]) 5.00 (3.72–6.60) 6.36 (4.79–8.61) 4.92 (3.70–6.47) <0.001 *

Creatinine, µmmol/L (M[Q]) 74 (62–89) 87 (68–134) 73 (62–88) <0.001 *
Albumin, g/L (M[Q]) 42.0 (38.2–45.3) 37.3 (32.3–43.2) 42.1 (38.6–45.4) <0.001 *

CRP, mg/L (M[Q]) 28.7 (3.31–142) 158 (20–22) 26 (2.7–136) <0.001 *
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Table 1. Cont.

Characteristic
Total

(n = 2846)
Intervention

(n = 132)
Non-Intervention

(n = 2714)
p

Clinical scoring systems

SOFA (M[Q]) 0 (0–2) 2 (0–3) 0 (0–1) <0.001 *
BISAP (M[Q]) 1 (0–2) 2 (1–2) 1 (0–2) <0.001 *
SIRS (M[Q]) 1 (1–2) 2 (1–3) 1 (1–2) <0.001 *

APACHE II (M[Q]) 4 (2–7) 7 (4–11) 4 (2–7) <0.001 *
RAC (%) <0.001 *

Mild 1373 (48.2) 4 (3.0) 1369 (50.4)
Moderately severe 888 (31.2) 29 (22.0) 859 (31.7)

Severe 585 (20.6) 99 (75.0) 486 (17.9)
Worst MCTSI (M[Q]) 2 (0–6) 8 (6–10) 2 (0–6) <0.001 *

From admission to worst MCTSI, day (M[Q]) 0 (0–2) 2 (1–9) 0 (0–1) <0.001 *

Clinical outcomes

Local complication
APFC (%) 1121 (39.4) 98 (74.2) 1023 (37.7) <0.001 *

Necrosis (%) 416 (14.6) 84 (63.6) 332 (12.2) <0.001 *
Single organ failure

Pulmonary failure (%) <0.001 *
TOF 417 (14.7) 8 (6.1) 409 (15.1)
POF 578 (20.3) 99 (75.0) 479 (17.6)

Onset of pulmonary failure, day (M[Q]) 0 (0–1) 1 (1–2) 0 (0–1) <0.001 *
Duration of pulmonary failure, day (M[Q]) 0 (0–1) 12.5 (1–24) 0 (0–1) <0.001 *

Circulatory failure (%) <0.001 *
TOF 42 (1.5) 9 (6.8) 33 (1.2)
POF 111 (3.9) 42 (31.8) 69 (2.5)

Onset of circulatory failure, day (M[Q]) 0 (0–0) 0 (0–3) 0 (0–0) <0.001 *
Duration of circulatory failure, day (M[Q]) 0 (0–0) 0 (0–3) 0 (0–0) <0.001 *

Renal failure (%) <0.001 *
TOF 57 (2.0) 15 (11.4) 42 (1.5)
POF 104 (3.7) 29 (22.0) 75 (2.8)

Onset of renal failure, day (M[Q]) 0 (0–0) 0 (0–1) 0 (0–0) <0.001 *
Duration of renal failure, day (M[Q]) 0 (0–0) 0 (0–1) 0 (0–0) <0.001 *

Pleural effusion (%) 268 (9.4) 15 (11.4) 253 (9.3) 0.528
IPN (%) 85 (3.0) 81 (61.4) 4 (0.1) <0.001 *

Extrapancreatic infection (%) <0.001 *
Bacteremia 75 (2.6) 24 (18.2) 51 (1.9)

Lung and others 147 (5.2) 31 (23.5) 116 (4.3)

AP, acute pancreatitis; CCI, Charlson comorbidity index; ASA, American society of anesthesiologists; ERCP,
endoscopic retrograde cholangiopancreatography; WBC, white blood cell count; CRP, C-reactive protein; SOFA,
sequential organ failure assessment; BISAP, bedside index of severity in acute pancreatitis; SIRS, systemic
inflammatory response syndrome; APACHE II, acute physiology and chronic health evaluation II; RAC, revised
Atlanta classification; MCTSI, modified computerized tomographic severity index; APFC, acute peripancreatic
fluid collection; IPN, infected pancreatic necrosis; TOF, transient organ failure; POF, persistent organ failure;
M[Q], median and inter-quartile range for quantitative data; (%), number and percentage for categorical variables;
* p < 0.05, indicates statistical significance.

The comparisons between death and survival among intervention patients, as well as
among non-intervention patients, are shown in Supplementary Table S2 and Supplementary
Table S3, respectively.

3.2. Important Features and Predictors for Intervention and Mortality

As shown in Table 2, important features (variables) associated with intervention
and death differed. Compared with that in non-intervention patients, the duration of
pulmonary failure was the most important factor in intervention patients. The remaining
nine important variables for intervention patients, ranging from heavy to light, were
neutrophils, albumin, lymphocytes, creatinine, age, hematocrit, onset of circulatory failure,
APACHE II, and duration of circulatory failure. OF characteristics were all important
variables for death among both intervention and non-intervention patients, especially for
the occurrence of circulatory and renal failure. Circulatory failure, onset of circulatory
failure, duration of circulatory failure, renal failure, duration of renal failure, duration
of pulmonary failure, and APACHE II were all important variables for death in both
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intervention and non-intervention groups. The difference was that urea and CRP were
important indicators of death in intervention patients, while creatine and WBC were
important indicators in non-intervention patients.

Table 2. Top 10 important features for intervention or mortality among the three groups.

Intervention Death in Intervention Death in Non-Intervention

Variable
Mean

Decrease
Gini

Variable
Mean

Decrease
Gini

Variable
Mean

Decrease
Gini

Duration of pulmonary failure 23.78 Duration of renal failure 2.54 Renal failure 10.99
Neutrophils 10.18 Duration of circulatory failure 2.52 Circulatory failure 10.00

Albumin 9.91 Onset of circulatory failure 2.35 Duration of circulatory failure 8.62
Lymphocytes 9.06 Circulatory failure 2.21 Onset of circulatory failure 7.70

Creatine 8.36 Renal failure 1.60 Duration of renal failure 6.37
Age 8.27 Creatinine 1.59 Onset of renal failure 5.46

Hematocrit 8.09 Duration of pulmonary failure 1.38 APACHE II 4.72
Onset of circulatory failure 7.95 Urea 1.19 Duration of pulmonary failure 4.45

APACHE II 6.70 APACHE II 1.19 Creatinine 4.09
Duration of circulatory failure 5.48 CRP 0.92 WBC 3.80

APACHE II, acute physiology and chronic health evaluation II; CRP, C-reactive protein; WBC, white blood
cell count.

Figure 2 shows the relationship between important variables (the top five) and the
outcome. The first column (a) displays the top features for intervention, the second column
(b) is for death in the intervention group, and the third column (c) is for death in the non-
intervention group. A scatter plot was used to show the relationship between categorical
variables and the outcome, and a box plot was used to show the relationship between
quantitative data and the outcome. Pulmonary failure persisted significantly longer in the
intervention groups than in the non-intervention groups, along with higher neutrophil and
creatinine levels and a lower albumin level, while the lymphocyte level was similar between
these two groups. The top five important features of death were all about circulatory and
renal failure. The difference between the intervention and non-intervention groups, among
deceased patients, was that the duration of renal and circulatory failure had an impact
on death in the intervention group, while the most important variables for death in the
non-intervention group were the rate of renal failure and circulatory failure.

3.3. Prediction and Diagnostic Performance for Intervention and Mortality

Regarding the prediction of intervention, the accuracy of ML-based intervention pre-
diction was 96%, thus indicating that predicting both the positive and negative categories
of the model was highly accurate. The model identified 74% (sensitivity) of patients requir-
ing intervention. Overall, the AUC was approximately 90%, and the positive likelihood
ratio was 22.3. The death in the intervention patients were 86% recognized (sensitivity),
the AUC reached 89%, and the positive likelihood ratio was 6.14. In terms of death in
non-intervention prediction, the ML-based model performed better, the AUC could reach
98%, and the positive likelihood ratio was 69.6 (Table 3). The performance of all three ML
models on the test dataset was consistent with the above-mentioned.
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Figure 2. The relationship between important variable (the top five) and outcome. The first column
(a1–a5) displays the top features for intervention, the second column (b1–b5) is for death in the
intervention group, and the third column (c1–c5) is for death in the non-intervention group.
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Table 3. Performance of prediction for the three groups.

Accuracy AUC Sensitivity Specificity
Likelihood

Ratio (+)
Likelihood
Ratio (−)

Predicting Intervention in AP (n = 2846)
Validation (n = 569) 0.96 0.90 0.74 0.97 22.3 0.27

Test (n = 569) 0.97 0.91 0.76 0.97 25.5 0.35

Predicting Death in Intervention (n = 132)
Validation (n = 26) 0.84 0.89 0.74 0.86 6.14 0.30

Test (n = 26) 0.82 0.89 0.82 0.82 4.80 0.28

Predicting Death in Non-Intervention
(n = 2714)

Validation (n = 543) 0.98 0.98 0.76 0.99 69.6 0.25
Test (n = 543) 0.98 0.99 0.77 0.99 71.9 0.31

3.4. Comparison of the Models with Prognostic Scores

Furthermore, the predictive performance for intervention and mortality, in patients
with AP, from the test set was compared among ML models, SOFA, BISAP, SIRS, APACHE
II, and worst MCTSI by calculating the positive likelihood ratios and post-test probabilities.
In the test set, 4.64% of patients with AP required intervention. The existing prognostic
scores on admission showed minimal to small changes, with an increase in the likelihood
of intervention in patients with AP with extremely low sensitivities, while only the ML
model moderately increased the rate, with a positive likelihood ratio of 25.5 and post-
test probability of 55.4%. On predicting mortality in all intervention patients, the ML
model performed better, or equally, with prognostic scores. Interestingly, the ML model
significantly improved the likelihood ratio (71.9) in predicting mortality in non-intervention
patients, increasing the 3.39% pre-test probability to 71.6% (post-test probability), while the
worst MCTSI showed nearly no change. The details are presented in Table 4.

Table 4. Performance of prediction with ML models and clinical scoring systems in the test set.

Sensitivity Specificity
Likelihood

Ratio (+)
Post-Test

Probability (%)

Intervention (4.64% pre-test probability)
ML model 0.76 0.97 25.5 55.4

SOFA 0.08 0.98 5.0 19.6
BISAP 0.08 0.98 4.3 17.3
SIRS 0.06 0.98 3.2 13.5

APACHE II 0.08 0.98 5.4 20.8
Worst MCTSI 0.13 0.99 12.7 38.2

Death in intervention (21.97% pre-test probability)
ML model 0.82 0.82 4.8 57.5

SOFA 0.69 0.78 3.7 51.0
BISAP 0.52 0.96 4.4 55.3
SIRS 0.44 0.84 2.3 39.3

APACHE II 0.69 0.92 6.4 64.3
Worst MCTSI 0.48 0.69 2.0 36.0

Death in non-intervention (3.39% pre-test probability)
ML model 0.77 0.99 71.9 71.6

SOFA 0.11 0.99 21.5 43.0
BISAP 0.14 0.99 32.5 53.3
SIRS 0.07 0.99 12.7 30.8

APACHE II 0.15 0.99 30.2 51.4
Worst MCTSI 0.03 0.96 1.0 3.4

ML, machine learning; SOFA, sequential organ failure assessment; BISAP, bedside index of severity in acute
pancreatitis; SIRS, systemic inflammatory response syndrome; APACHE II, acute physiology and chronic health
evaluation II; MCTSI, modified computerized tomographic severity index.
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4. Discussion

To the best of our knowledge, this is the first study to use ML to quantify AP in-
tervention indications and predictors of mortality on admission. Based on substantial
international AP data from two centers, we found the duration of pulmonary failure to
be an important indicator of intervention, followed by neutrophils and albumin, and OF
characteristics were important predictors of death, in patients with AP, by ML. Using our
models, we can predict whether patients with AP require intervention at an early stage of
hospitalization, thus providing an important reference for timely consideration of whether
to transfer to the intervention department or a higher-level hospital that can perform in-
tervention. Furthermore, a pre-judgment can also be made regarding death, especially in
those non-intervention patients with AP.

The use of big data to capture patient-level outcomes has increased exponentially over
the past 10 years, providing a strong foundation for continuing investigations on questions
more specific to surgery [47]. ML algorithms, based on big data from multiple sources,
are being developed to help deliver care, inform health policy, and reduce waste, since
various data sources can potentially yield a rich matched data set [48,49]. ML applications
can improve the accuracy of treatment protocols and health outcomes through algorithmic
processes [50]. While guidelines present evidence-based international consensus statements
on AP management, mainly through the collaboration of a panel of experts, new and more
instructive guidelines require more data to be implemented in this era of big data.

Clinicians worldwide seem to be following the same initial, guideline-based manage-
ment protocol to the greatest extent possible; nonetheless, surgeons hold different opinions
regarding multidisciplinary strategies for endoscopy, radiology, and interventions. Most
guidelines and related randomized controlled trials compared intervention methods [51–56]
or timing [57] of interventions but investigated indicators minimally. In addition, although
IPN is the intervention recommended by most AP treatment guides for necrotizing pan-
creatitis [38,58–60], it is often determined when the intervention approaches in clinical
practice. Clinical indicators for predicting interventions on admission, using real-world big
data, can balance clinical efficacy with cost effectiveness. To identify intervention patients
in the early stage of hospitalization, we intended to use the data obtained on admission, as
well as the worst preoperative imaging manifestations and OF characteristics, to identify
predictors of intervention.

A prediction model was ultimately established. The better the predictive performance,
the higher the accuracy of predicting whether a new patient with AP will be operated on
or die. There were no existing prognostic scores for intervention in patients with AP, as
our results demonstrated that the existing available AP-related prognostic systems showed
low predictive performance for intervention. Our results revealed that the AUC for the
prediction of intervention was not low, the intervention patient-recognition rate (sensitivity)
was 74%, and patients who did not require surgery had recognition rates (specificity)
exceeding 90%, suggesting that the model is useful for the initial screening of interventions
that do not require surgery. Patients with AP who do not require intervention are ruled out
first (because of high accuracy and specificity), and the remaining patients can be further
observed to determine whether intervention is warranted, thus saving medical resources.
Moreover, a positive likelihood ratio >5 indicated our model’s good predictive effect, while
other prognostic scores at the early stage of the disease almost lacked predictive value in
predicting interventions in patients with AP.

The predictive performance for mortality was better with an AUC > 95% and a
positive likelihood ratio > 10. This suggests that the model can be used to predict death
in both interventions, more so in non-intervention patients, and attention can be focused
on advancement. Regarding the top 10 variables important for death, whether the patient
is operated on or not, the important variable was organ function, differing greatly from
the variables important to intervention, and the other two studies predicted hospital
mortality in patients with AP (Supplementary Table S4). The Dutch Pancreatitis Study
Group concluded that infection, onset, and duration of OF were not associated with death
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in necrotizing pancreatitis [61], findings that are inconsistent with ours [62–64]. This may
be because of the single center and multicenter analyses differed in their results. Therefore,
we used a two-center study to further confirm that OF was more important than infection
as a predictor of death in AP, based extensive AP data.

Our study also has some limitations. Firstly, most of the data were collected on
admission; however, the condition of the patients with AP changed over time. To predict
surgery and death more accurately, more time-consuming variables or more frequent
data collection are required for predictive research. Secondly, if invasive intervention
was required, we usually performed selective percutaneous catheter drainage (pancreatic
necrosis less than 30%) or a retroperitoneal pancreatic necrosectomy approach (pancreatic
necrosis greater than 30%), but we did not perform percutaneous or endoscopic transgastric
drainage routinely [62]. Comparison between open and minimally invasive procedures
would modify the current model and require further analysis. Thirdly, the retrospective
collection of data may not contain all the features needed for current or future studies,
which makes it impossible to guarantee homogeneity between the local data and study
data in model reproduction. Therefore, more prospective data sources in multi-regional
and multi-center studies may strengthen the interpretation of model validation methods
and, consequently, establish general models that can be widely promoted.

5. Conclusions

ML models are potentially useful in predicting intervention and death, in patients
with AP, using clinical indicators on admission.
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Abstract: Conventional prognostic risk analysis in patients undergoing noninvasive imaging is

based upon a limited selection of clinical and imaging findings, whereas machine learning (ML)

algorithms include a greater number and complexity of variables. Therefore, this paper aimed to

explore the predictive value of integrating coronary plaque information from coronary computed

tomographic angiography (CCTA) with ML to predict major adverse cardiovascular events (MACEs)

in patients with suspected coronary artery disease (CAD). Patients who underwent CCTA due

to suspected coronary artery disease with a 30-month follow-up for MACEs were included. We

collected demographic characteristics, cardiovascular risk factors, and information on coronary

plaques by analyzing CCTA information (plaque length, plaque composition and coronary artery

stenosis of 18 coronary artery segments, coronary dominance, myocardial bridge (MB), and patients

with vulnerable plaque) and follow-up information (cardiac death, nonfatal myocardial infarction

and unstable angina requiring hospitalization). An ML algorithm was used for survival analysis

(CoxBoost). This analysis showed that chest symptoms, the stenosis severity of the proximal anterior

descending branch, and the stenosis severity of the middle right coronary artery were among the

top three variables in the ML model. After the 22nd month of follow-up, in the testing dataset,

ML showed the largest C-index and AUC compared with Cox regression, SIS, SIS score + clinical

factors, and clinical factors. The DCA of all the models showed that the net benefit of the ML model

was the highest when the treatment threshold probability was between 1% and 9%. Integrating

coronary plaque information from CCTA based on ML technology provides a feasible and superior

method to assess prognosis in patients with suspected coronary artery disease over an approximately

three-year period.

Keywords: coronary plaque; machine learning; major adverse cardiovascular events; coronary artery

disease; coronary computed tomographic angiography

1. Introduction

Coronary computed tomography angiography (CCTA) is increasingly accepted as a
first-line noninvasive imaging examination that has shown high accuracy for diagnosing
and excluding coronary artery disease (CAD) [1,2]. Furthermore, CCTA examination was
used to evaluate various stages of atherosclerosis ranging from plaque formation (length,
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composition, and morphology) to plaque progression, aiding in risk stratification for future
major adverse cardiovascular events (MACE) and medical decision-making for patients
with CAD [3–7].

Conventional CCTA risk scores were used to stratify the patients with CAD mainly
based on the presence, length, composition, and luminal stenosis of 16-segment coronary
plaque [8–10]. This plaque information was integrated into a single score, assuming a
linear relationship between the atherosclerosis extent and outcomes [8,11,12]. Machine
learning (ML) is a field of computer science that uses advanced algorithms including a
great number of variables to optimize prediction, and this methodology has the potential to
maximize the utilization of the coronary plaque information derived from CCTA without
prior assumptions for independent variables. Previous studies have demonstrated that
ML showed improves predictive values for death, myocardial ischemia and myocardial
infarction compared with conventional risk scores [13–15]. The aim of the present study
was to explore whether ML based on survival data with a time-dependent outcome inte-
grating plaque information from CCTA exhibits better predictive values for MACEs over
an approximately three-year follow-up period than the conventional CCTA risk score in
patients with suspected coronary artery disease.

2. Materials and Methods

2.1. Study Population

This is a single-center prospective observational study that was approved by the insti-
tutional review board of PLA General Hospital. All patients provided written informed
consent. A total of 5526 patients with suspected coronary artery disease who sequentially
underwent CCTA at the Department of Cardiology of PLA General Hospital were included
from January 2015 to December 2016. The inclusion criteria were complete CCTA and
clinical data. The exclusion criteria were prior known CAD (defined as prior myocardial
infarction or revascularization) or those with early revascularization after CCTA (defined as
within 3 months), incomplete CCTA, motion artifacts, poor-quality images, or severe coro-
nary artery calcification that was unable to be interpreted (Figure 1). In total, 4017 patients
were included.

 

Figure 1. A flowchart about the framework of this study. The data were randomly divided into a
training dataset and a testing dataset at a ratio of 7:3. The training dataset was used to build the
prediction model, whereas the testing dataset was independently used to verify the effectiveness
of the prediction model generated by the training dataset by computing C-index, AUC, Brier score
and DCA.
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2.2. Clinical Data

Demographic characteristics (age, male sex, and body mass index [BMI]) and conven-
tional cardiovascular risk factors (dyslipidemia, hypertension, diabetes, current smoking,
and family history of CAD) were collected by checking the medical record system. Hy-
pertension was defined as a history of blood pressure >140 mmHg or treatment with
antihypertensive medications. Diabetes mellitus was defined by a diagnosis made previ-
ously and/or use of insulin or oral hypoglycemic agents. Smoking was defined as current
smoking or cessation of smoking within the last 3 months. A family history of premature
CAD was defined as MI in a first-degree relative <55 years (male) or <65 years (female).
Dyslipidemia was defined as known but untreated dyslipidemia or current treatment with
lipid-lowering medications.

2.3. Image Acquisition and Analysis

A second-generation dual-source CT (Simens CT SOMATOM Definition Flash, SIEMENS
AG, Munich, Germany) was used for the CCTA scanning. The acquisition protocols
were performed in accordance with the Society of Cardiovascular Computed Tomography
guidelines [16]. A detailed methodology has been previously published [17].

All images were analyzed by three radiologists or cardiologists using the 16-segment
coronary artery tree model for the segment involvement score (SIS score) and the 18-segment
coronary artery tree model for ML [10,16]. Plaque was defined as a tissue structure > 1 mm2

within or adjacent to the coronary artery lumen that could be distinguished from surround-
ing pericardial tissue, epicardial fat, or the vessel lumen [8]. The presence of plaque was
evaluated with the corresponding stenosis severity in each segment. The coronary plaques
in each segment were classified as noncalcified, mixed, and calcified plaques. The corre-
sponding stenosis severity of the plaques was classified as 0%, 1–24%, 25–49%, 50–69%,
70–99%, and 100%. Lengths of coronary plaque were classified as 0 mm, <10 mm, 10–20 mm,
and >20 mm. Coronary dominance was divided into left dominant, right dominant, and
balanced types. Myocardial bridge was defined as a coronary artery segment that was
surrounded by myocardium and led to systolic compression of a part of the myocardium
covering the epicardial vessels [18]. Plaques with two or more characteristics (positive
remodeling, spotty calcification, low attenuation plaque, and napkin-ring sign) at the same
time were defined as vulnerable plaques [19]. Positive remodeling was assessed as the
cross-sectional area at the site of maximal stenosis divided by an average of the proximal
and distal reference segment cross-sectional areas [20]. Spotty calcification was defined by
calcium deposits (>130 HU) that were <3 mm within an atheroma [21]. A low attenuation
plaque was defined as a plaque with an average attenuation <30 HU, and the size of the
necrotic core was >1 mm2 [19]. The napkin-ring sign was defined as a ring of attenuation
of <130 HU that formed an arc of higher attenuation around a low attenuating plaque [22].

2.4. Outcome

The survival status of the patient was obtained by reviewing the electronic medical
record system or patient interviews at least 90 days after CCTA examination from 1 January
2015 to 31 August 2020. MACEs, including nonfatal myocardial infarction, unstable angina
requiring hospitalization, and cardiac death, were recorded as the outcome of the present
study. Two physicians judged each event independently. In the case of divergence, a third
physician was consulted.

2.5. Machine Learning Algorithm with Survival Times

Fifty-seven CCTA variables (including plaque length, plaque composition and stenosis
severity of 18 coronary artery segments, coronary artery dominance, myocardial bridge,
and vulnerable plaque) and nine clinical factors (including male, age, BMI, diabetes, hy-
pertension, dyslipidemia, family history of CAD, current smoking, and chest symptoms)
were available (Table 1). Machine learning involved automated feature selection, model
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building, and 10-fold stratified cross-validation for the entire process [23,24]. Machine
learning techniques were implemented using R version 4.0.2.

Table 1. Features Selected by Lasso-Cox.

Features Definition Category

Demographic characteristics

Age Age of the patient continuous variable
BMI Body mass index continuous variable
Male Are they male? 1/0 = yes/no
Cardiovascular risk factors
Symptom Types of chest pain 0/1/2 = no/atypical/typical
Hyperlipemia Is there hyperlipemia 1/0 = yes/no
Hypertension Is there hypertension 1/0 = yes/no
Diabetes Is there diabetes 1/0 = yes/no
Currently smoking Are they currently smoking 1/0 = yes/no
Family history of CAD Is there family history for CAD 1/0 = yes/no
CCTA Features
Coronary dominance Is there left/right/balanced dominance? 1/2/3 = left/right/balanced
Myocardial bridge Is there myocardial bridge? 1/0 = yes/no

Vulnerable plaque
Are there two or more characteristics of
vulnerable plaque?

1/0 = yes/no

RCAp_composition Composition of plaque in proximal RCA 0/1/2/3 = normal/calcified/non-calcified/mix
RCAm_composition Composition of plaque in middle RCA 0/1/2/3 = normal/calcified/non-calcified/mix
RCAd_composition Composition of plaque in distal RCA 0/1/2/3 = normal/calcified/non-calcified/mix
P-PDA_composition Composition of plaque in PDA of RCA origin 0/1/2/3 = normal/calcified/non-calcified/mix
LM_composition Composition of plaque in LM 0/1/2/3 = normal/calcified/non-calcified/mix
LADp_composition Composition of plaque in proximal LAD 0/1/2/3 = normal/calcified/non-calcified/mix
LADm_composition Composition of plaque in middle LAD 0/1/2/3 = normal/calcified/non-calcified/mix
LADd_composition Composition of plaque in distal LAD 0/1/2/3 = normal/calcified/non-calcified/mix
D1_composition Composition of plaque in D1 0/1/2/3 = normal/calcified/non-calcified/mix
D2_composition Composition of plaque in D2 0/1/2/3 = normal/calcified/non-calcified/mix
LCXp_composition Composition of plaque in proximal LCX 0/1/2/3 = normal/calcified/non-calcified/mix
OM1_composition Composition of plaque in OM1 0/1/2/3 = normal/calcified/non-calcified/mix
LCXd_composition Composition of plaque in distal LCX 0/1/2/3 = normal/calcified/non-calcified/mix
OM2_composition Composition of plaque in OM2 0/1/2/3 = normal/calcified/non-calcified/mix
L-PDA_composition Composition of plaque in PDA of LAD origin 0/1/2/3 = normal/calcified/non-calcified/mix
R-PLB_composition Composition of plaque in PLB of RCA origin 0/1/2/3 = normal/calcified/non-calcified/mix
RI_composition Composition of plaque in RI 0/1/2/3 = normal/calcified/non-calcified/mix
L-PLB_composition Composition of plaque in PLB of LAD origin 0/1/2/3 = normal/calcified/non-calcified/mix
RCAp_length Length of plaque in proximal RCA 0/1/2/3 = normal/localized/segmental/diffuse
RCAm_length Length of plaque in middle RCA 0/1/2/3 = normal/localized/segmental/diffuse
RCAd_length Length of plaque in distal RCA 0/1/2/3 = normal/localized/segmental/diffuse
P-PDA_length Length of plaque in PDA of RCA origin 0/1/2/3 = normal/localized/segmental/diffuse
LM_length Length of plaque in LM 0/1/2/3 = normal/localized/segmental/diffuse
LADp_length Length of plaque in proximal LAD 0/1/2/3 = normal/localized/segmental/diffuse
LADm_length Length of plaque in middle LAD 0/1/2/3 = normal/localized/segmental/diffuse
LADd_length Length of plaque in distal LAD 0/1/2/3 = normal/localized/segmental/diffuse
D1_length Length of plaque in D1 0/1/2/3 = normal/localized/segmental/diffuse
D2_length Length of plaque in D2 0/1/2/3 = normal/localized/segmental/diffuse
LCXp_length Length of plaque in proximal LCX 0/1/2/3 = normal/localized/segmental/diffuse
OM1_length Length of plaque in OM1 0/1/2/3 = normal/localized/segmental/diffuse
LCXd_length Length of plaque in distal LCX 0/1/2/3 = normal/localized/segmental/diffuse
OM2_length Length of plaque in OM2 0/1/2/3 = normal/localized/segmental/diffuse
L-PDA_length Length of plaque in PDA of LAD origin 0/1/2/3 = normal/localized/segmental/diffuse
R-PLB_length Length of plaque in PLB of RCA origin 0/1/2/3 = normal/localized/segmental/diffuse
RI_length Length of plaque in RI 0/1/2/3 = normal/localized/segmental/diffuse
L-PLB_length Length of plaque in PLB of LAD origin 0/1/2/3 = normal/localized/segmental/diffuse
RCAp_stenosis Stenosis of plaque in proximal RCA 0/1/2/3/4 = normal/mininal/mild/moderate/severe
RCAm_stenosis Stenosis of plaque in middle RCA 0/1/2/3/4 = normal/mininal/mild/moderate/severe
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Table 1. Cont.

Features Definition Category

Demographic characteristics

RCAd_stenosis Stenosis of plaque in distal RCA 0/1/2/3/4 = normal/mininal/mild/moderate/severe
P-PDA_stenosis Stenosis of plaque in PDA of RCA origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LM_stenosis Stenosis of plaque in LM 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LADp_stenosis Stenosis of plaque in proximal LAD 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LADm_stenosis Stenosis of plaque in middle LAD 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LADd_stenosis Stenosis of plaque in distal LAD 0/1/2/3/4 = normal/mininal/mild/moderate/severe
D1_stenosis Stenosis of plaque in D1 0/1/2/3/4 = normal/mininal/mild/moderate/severe
D2_stenosis Stenosis of plaque in D2 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LCXp_stenosis Stenosis of plaque in proximal LCX 0/1/2/3/4 = normal/mininal/mild/moderate/severe
OM1_stenosis Stenosis of plaque in OM1 0/1/2/3/4 = normal/mininal/mild/moderate/severe
LCXd_stenosis Stenosis of plaque in distal LCX 0/1/2/3/4 = normal/mininal/mild/moderate/severe
OM2_stenosis Stenosis of plaque in OM2 0/1/2/3/4 = normal/mininal/mild/moderate/severe
L-PDA_stenosis Stenosis of plaque in PDA of LCX origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe
R-PLB_stenosis Stenosis of plaque in PLB of RCA origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe
RI_stenosis Stenosis of plaque in RI 0/1/2/3/4 = normal/mininal/mild/moderate/severe
L-PLB_stenosis Stenosis of plaque in PLB of LCX origin 0/1/2/3/4 = normal/mininal/mild/moderate/severe

BMI, body mass index; CAD, coronary artery disease; CCTA, coronary computed tomography angiography;
RCA, right coronary artery; PDA, posterior descending artery; LM, left main coronary artery; LAD, left an-
terior descending branch; D1, first diagonal branches; D2, second diagonal branches; LCX, left circumflex
branch; OM1, first obtuse marginal branch; OM2, second obtuse marginal branch; PLB, posterior lateral branch;
RI, intermediate ramus.

First, the data were randomly divided into a training dataset and a testing dataset
at a 7:3 ratio. The training dataset was used to build the prediction model, and the
testing dataset was independently used to verify the effectiveness of the prediction model
generated by the training dataset.

Second, automated feature selection for fifty-seven CCTA variables and nine clinical
factors was performed in the training dataset using least absolute shrinkage and selection
operator regression for Cox regression (LASSO-COX), which minimizes the log partial
likelihood subject to the sum of the absolute values of the parameters being bounded by a
constant, shrinks coefficients, and produces some coefficients that are zero, allowing for
efficient variable selection (Table 1) [23].

Then, filtered CCTA variables were included for model generation. The model for
MACE prediction was constructed using ‘CoxBoost’, an algorithm used to fit a Cox pro-
portional hazards model by componentwise likelihood based on the offset-based boosting
approach. This algorithm is especially suited for models with a large number of variables
and allows for mandatory covariates with unpenalized parameter estimates [25–28].

The model building procedure using the training dataset included two steps, as
follows. First, the hyperparameters of CoxBoost (penalty, optimal step, and numbers of
estimators) were automatically calculated by the training dataset. The penalty value was
calculated using a coarse line search that lead to an optimal number of boosting steps for
CoxBoost, as determined by 10-fold cross-validation [29]. The optimal step of the model
was confirmed using a coarse line search considering the connections between parameters
to identify a potential combination of tuned hyperparameters (a penalty updating scheme
was helped by an optimum step-size modification for CoxBoost), which results in an
optimal model in terms of cross-validated partial log-likelihood [26]. Second, after tuning
the hyperparameters from 10-fold stratified cross validation, the model was refitted on the
entire training dataset for the training model. Then, the trained model was validated on
the independent testing dataset (30% of entire data) to show the prediction probabilities.
Compared with other models, the performance of the ML model was derived from the
testing dataset.
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2.6. The Reference Models

First, Cox proportional hazard regression (Cox regression), including the same vari-
ables as the ML model and the conventional CCTA risk score (SIS score) assessing overall
plaque burden, was used in this study. The SIS score was calculated as a measure of
overall coronary segments with plaque by summation of the absolute number of coro-
nary segments with plaques (0–16) [30]. Second, the clinical factors were added to the
SIS score (SIS score + clinical factors), and only clinical factors were used in this study as
reference models.

2.7. Statistical Analysis

Continuous variables are presented as the mean ± standard deviation, and categorical
variables are presented as counts (%). We assessed the performance of each prediction
model (including CoxBoost, Cox regression, SIS score, SIS score + clinical factors, and clini-
cal factors) to discriminate outcomes on the testing dataset using the C-index and AUC [31].
We evaluated the calibration of each prediction model using the Brier score [32]. The Cox
regression model included the variables used in the ML model. The Brier score calculates
the mean squared distance between the predicted probabilities and actual outcomes, and a
smaller value indicates better calibration (<0.25 indicates significant) [32]. Decision curve
analysis (DCA) of all models revealed the preferred model with the best net benefit at any
given threshold. The statistical analysis was implemented in R version 4.0.2. A two-sided
p value < 0.05 was considered statistically significant.

3. Results

3.1. Study Population

A total of 4017 patients were included in this study. The mean age was 57.76 ± 10.98 years,
and 54.29% were male (Table 2). Patients without CAD, patients with nonobstructive CAD,
and patients with obstructive CAD represented 37.27%, 33.06%, and 29.67% of the study
population, respectively. During a mean follow-up of 29 months, 176 events (14 cardiac
deaths (0.3%), 9 nonfatal myocardial infarctions (0.2%), and 190 cases of unstable angina
requiring hospitalization (4.7%)) were recorded.

Table 2. Demographic and Clinical Characteristics of Patients at Baseline.

Characteristics Total (n = 4017)
Training Dataset

(n = 2812)
Testing Dataset

(n = 1205)

Age (y) 57.76 ± 10.98 57.43 ± 10.94 57.71 ± 10.86
Male (n, %) 2181 (54.29) 1544 (54.91) 637 (52.86)

BMI (kg/m2) 25.47 ± 3.41 25.50 ± 3.43 25.40 ± 3.34
SIS score 1.80 ± 4.17 1.82 ± 2.05 1.74 ± 2.03

Follow-up time (months) 29.56 ± 5.94 29.51 ± 6.09 29.68 ± 5.57
Chest symptom

No chest pain (n, %) 1935 (48.17) 1338 (47.58) 597 (49.54)
Atypical chest pain (n, %) 1692 (42.12) 1192 (42.39) 500 (41.49)
Typical chest pain (n, %) 390 (9.71) 282 (10.03) 108 (8.96)

Cardiovascular risk factors
Hyperlipemia (n, %) 1311 (32.64) 912 (32.43) 399 (33.11)
Hypertension (n, %) 1916 (47.70) 1333 (47.40) 583 (48.38)

Diabetes (n, %) 660 (16.43) 451 (16.04) 209 (17.34)
Currently smoking (n, %) 1023 (25.47) 716 (25.46) 307 (25.48)

Family history of CAD (n, %) 845 (21.04) 593 (21.09) 252 (20.91)
CCTA Finding

No CAD (n, %) 1497 (37.27) 1029 (36.6) 468 (38.8)
Non-obstructive CAD (n, %) 1328 (33.06) 917 (32.6) 411 (34.1)

Obstructive CAD (n, %) 1192 (29.67) 866 (30.8) 326 (27.1)
Vulnerable plaque (n, %) 35 (0.87) 24 (0.85) 11 (0.91)
Myocardial bridge (n, %) 332 (8.26) 221 (7.86) 111 (9.21)
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Table 2. Cont.

Characteristics Total (n = 4017)
Training Dataset

(n = 2812)
Testing Dataset

(n = 1205)

Coronary dominance
Left dominant (n, %) 3736 (93.00) 2613 (92.92) 1123 (93.20)

Right dominant (n, %) 198 (4.93) 138 (4.91) 60 (4.98)
Balanced type (n, %) 83 (2.07) 61 (2.17) 22 (1.83)

Values are means ± SD or counts (%). BMI, body mass index; CAD, coronary artery disease; CCTA, coronary
computed tomography angiography.

3.2. Feature Selection and Model Generation

In this study, feature selection was performed by LASSO-COX (Figure 2). When the
hyperparameter of feature selection were determined (partial likelihood deviance is mini-
mum), the algorithm output filtered variables with non-zero coefficients (chest symptoms
(symptom); MB; plaque composition of the middle right coronary, the left main coro-
nary artery, the proximal, middle and distal anterior descending branch, the first obtuse
marginal branch, and the ramus intermedius artery (RCAm_composition, LM_composition,
LADp_composition, LADm_composition, LADd_composition, OM1_composition,
RI_composition); plaque length of the distal right coronary, the proximal anterior descend-
ing branch, and the proximal circumflex branch (RCAd_length, LADp_length, LCXp_length);
and stenosis of the proximal and middle right coronary, the left main coronary artery,
the proximal, middle and distal anterior descending branch, the first and second di-
agonal branch, and the proximal circumflex branch (RCAp_stenosis, RCAm_stenosis,
LM_stenosis, LADp_stenosis, LADm_stenosis, LADd_stenosis, D1_stenosis, D2_stenosis,
LCXp_stenosis)) (Figure 2).

Figure 2. Selecting process for features by Lasso-Cox. Automated feature selection for fifty-seven
CCTA variables and nine clinical factors was performed using LASSO-COX, which minimizes the log
partial likelihood subject to the sum of the absolute values of the parameters being bounded by a
constant, shrinks coefficients, and produces some coefficients that are zero, allowing efficient variable
selection (a). When the hyperparameters of feature selection were determined (partial likelihood
deviance is minimum) (b), the algorithm outputted 21 filtered variables with non-zero coefficients
(the filtered variables were included in model generation subsequently).

After feature selection, the filtered variables were included in model generation
(Figure 3). When the hyperparameters of the ML model were determined (the penalty
was 1116, and the step was 74), the optimal model (the logplik of the 10-fold stratified cross
validation was the largest) was identified in the training dataset (Figure 3a). In the ML
model, chest symptoms, stenosis of the proximal anterior descending branch, and stenosis
of the middle right coronary artery were among the top three variables (Figure 3b).
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Figure 3. The process of model construction and coefficients of the features in the ML model. Filtered
CCTA variables were included in model generation. The 21 filtered variables with non-zero coeffi-
cients in the results of LASSO-COX were included in ML model generation. The hyperparameters of
ML model were automatically calculated on the training dataset. After tuning the hyperparameters
(the penalty was 1116, and the step was 74) from 10-fold stratified cross validation, the model was
refitted on the entire training dataset for training model. When the logplik of the 10-fold stratified
cross validation was the largest (cv.res$mean.logplik = −103.723), it showed the optimal model in the
training dataset and the coefficients of features (a). In the ML model, chest symptoms (symptom),
the stenosis severity of the proximal anterior descending branch (LADp_stenosis), and the stenosis
severity of the middle right coronary artery (RCAm_stenosis) were among the top three variables
(coefficients: 0.251, 0.245, and 0.190, respectively) (b).

3.3. Assessment of the Performance of Each Prediction Model

After the 22nd month of follow-up, compared to other models (Cox regression, SIS
score, SIS score + clinical factors, and clinical factors), the C-index of the ML model for
prediction of the MACE in the testing dataset (30% of the data not used for model building)
was significantly increased (C-index: 0.770–0.782, 0.723–0.752, 0.706–0.742, 0.686–0.712,
0.639–0.653, p < 0.05) (Figure 4 and Table 3), whereas the AUC of the ML model for the
prediction of the MACE was also significantly increased in approximately three years
[AUC (CI): 0.780 (0.726, 0.834), 0.738 (0.667, 0.809), 0.725 (0.669, 0.782), 0.702 (0.643, 0.762),
0.656 (0.581, 0.730), p < 0.05] (Figure 5 and Table 4).

Figure 4. The concordance index for each model in testing dataset every month. After 22nd month
in follow-up, compared to other models (Cox regression, SIS score, SIS score + clinical factors,
and clinical factors), the C-index of ML model for prediction of the MACE in the testing dataset
was significantly increased (C-index: 0.770–0.782, 0.723–0.752, 0.706–0.742, 0.786–0.712, 0.639–0.653,
p < 0.05).
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Table 3. The performance (concordance-index) for each model validated at each half year
of follow-up.

Model
6th Month

C-Index
12th Month

C-Index
18th Month

C-Index
24th Month

C-Index
30th Month

C-Index

CoxBoost 83.0 79.5 81.5 77.0 78.2
Cox regression 86.3 79.3 80.5 72.8 75.2

SIS score 80.0 71.5 73.3 71.8 74.2
SIS score +

clinical factors
77.4 68.4 69.9 69.6 71.2

Clinical factors 67.6 67.4 67.0 63.9 65.3
Cox regression, Cox proportional hazard regression; SIS score, segment involvement score; SIS score + clinical
factors, clinical factors added to segment involvement score.

Figure 5. The AUC of each model in testing dataset over 30 months. Over an approximately three-
year period, compared to the AUC of other models (Cox regression, SIS score, SIS score + clinical
factors, and clinical factors), the AUC of ML model for prediction of MACE was significantly
increased [AUC(CI): 0.780 (0.726, 0.834), 0.738 (0.667, 0.809), 0.725 (0.669, 0.782), 0.702 (0.643, 0.762),
0.656 (0.581, 0.730), p < 0.05].

Table 4. Comparison of AUC for each model validated at 30 months of follow-up.

Model AUC 95%CI
p

(CoxBoost vs.)

CoxBoost 0.780 0.726, 0.834 \
Cox regression 0.738 0.667, 0.809 0.048

SIS score 0.725 0.669, 0.782 0.010
SIS score + clinical factors 0.702 0.643, 0.762 0.003

Clinical factors 0.656 0.581, 0.730 0.005
AUC, area under the receiver operator characteristic curve; Cox regression, Cox proportional hazard regression; SIS
score, segment involvement score; SIS score + clinical factors, clinical factors added to segment involvement score.

3.4. Model Evaluation Using Calibration and DCA

In this study, we evaluated each model through calibration and DCA. In the model
calibration, this study shows that the Brier score for each model to predict the MACE was
less than 0.040 in approximately three years (<0.25 means significant) (Table 5). The DCA of
all the models showed that the proportion of the benefit for the population each year was
the highest when the risk assessment of the ML model was used for treatment, while the
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treatment threshold probability was between 1% and 9% over a period of approximately
three years. (Figure 6).

Table 5. The calibration (Brier score) for each model validated at each half year of follow-up.

Model
6th Month

BS
12th Month

BS
18th Month

BS
24th Month

BS
30th Month

BS

CoxBoost 0.004 0.006 0.020 0.033 0.039
Cox regression 0.004 0.012 0.021 0.033 0.039

SIS score 0.006 0.012 0.021 0.033 0.039
SIS score +

clinical factors
0.004 0.011 0.020 0.033 0.039

Clinical factors 0.004 0.011 0.020 0.033 0.039
BS, Brier score; Cox regression, Cox proportional hazard regression; SIS score, segment involvement score; SIS
score + clinical factors, clinical factors added to segment involvement score.

Figure 6. The decision curve analysis of all models for patients over 30 months. The brown transverse
line = net benefit when all patients are considered as not having the outcome (MACEs); red oblique
line = net benefit when all patients are considered as having the outcome (MACEs). The decision
curve analysis of all models showed that the proportion of the benefit for the population each year was
the highest when the risk assessment of the ML model was used for treatment, while the treatment
threshold probability was between 1% and 9% over a period of approximately three years.

4. Discussion

In this study, we used ML integrating numerous coronary plaque factors (stenosis
severity, lesion length, plaque location and composition considering the 18 coronary seg-
ments, coronary dominance, myocardial bridge (MB), and patient with vulnerable plaque)
and clinical and demographic information to predict MACEs after an approximately three-
year period in a cohort study that accounts for time to event. The results of this study
suggest that a newly generated model based on ML, accounting for nonlinearities, provided
better event prediction. This study, integrating coronary plaque information from CCTA
and clinical factors based on ML technology, provides a feasible and superior method to
assess prognosis in patients with suspected coronary artery disease over an approximately
three-year period.

4.1. Risk Stratification with CCTA

Until recently, cardiac imaging studies were more inclined to use clinical and coronary
plaque features (presence, extent, location, and composition) of CCTA for risk stratification
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of future events [33,34]. Cheruvu C showed that the maximal severity of CAD is related
to major cardiovascular events [35]. The number of segments with plaque, location, and
composition also improve risk assessment [36,37]. Currently, the use of CCTA information
is far from insufficient, whereas the resolution of CCTA can provide massive information
for mining. The conventional CCTA risk score, linear assumptions, and conventional
statistical approaches may be insufficient to complete this study [38].

4.2. Machine Learning Algorithms Improve the Integration of Coronary Plaque Information for
Survival Analysis

ML, a subset of artificial intelligence accounting for nonlinearities, is able to integrate
a number of variables [11]. Cox regression is often limited for data mining purposes due to
the correlation between variables, nonlinearity of variables (including potential complex
interactions among them), and the possibility of overfitting.

The feasibility of ML has been demonstrated previously in CAD risk reclassification
analysis. Using 25 clinical and 44 CCTA features, Motwani et al. showed that ML sig-
nificantly improved the prediction of death compared with the Framinghan risk score,
SSS, SIS, and the Duke prognostic index [13]. Moreover, Dey et al. showed that an ML
model incorporating semiautomatically quantified measures of coronary plaque (plaque
volumes, stenosis severity, lesion length, and contrast density difference) identified vessels
with hemodynamically significant CAD (fractional flow reserve ≤ 0.80) with high accuracy
(AUC = 0.84) [14]. Specifically, the ML model showed greater diagnostic accuracy than
a conventional statistical model that utilized the exact same data. The findings above
suggest that ML improves the integration of the available data for the prediction of a
certain outcome.

However, these studies are similar to a cross-sectional study (as opposed to a cohort
study) because the follow-up outcomes of these studies do not include survival time and
only showed dichotomous outcomes (not time-dependent).

This study accounted for time to event to obtain a more appropriate risk estima-
tion. In the ML model, chest symptoms, stenosis of the proximal anterior descending
branch, and stenosis of the middle right coronary artery were among the top three fac-
tors (Figure 3), suggesting that we need to pay more attention to these characteristics
in patients with suspected coronary disease. In the assessment of the model’s perfor-
mance, this study shows that the ML model significantly improved the prediction of
MACEs compared with other models (Cox-Boost vs. SIS score, SIS score + clinical factors,
and clinical factors: C-index: 0.770–0.782, 0.706–0.742, 0.686–0.712, 0.639–0.653, p < 0.05;
AUC (CI): 0.780 (0.726, 0.834), 0.725 (0.669, 0.782), 0.702 (0.643, 0.762), 0.656 (0.581, 0.730),
p < 0.05) (Figures 4 and 5 and Tables 2 and 3). Specifically, the ML model showed bet-
ter predicted values than a conventional statistical model (Cox regression) that utilized
the exact same variables after the 22nd month of follow-up (Cox-Boost vs. Cox regres-
sion: C-index: 0.770–0.782, 0.723–0.752, p < 0.05; 30-month AUC (CI): 0.780 (0.726, 0.834),
0.738 (0.667, 0.809), p < 0.05) (Figures 4 and 5 and Tables 2 and 3).

In the model evaluation, the ML model showed great calibration for approximately
three years (Brier score < 0.040), demonstrating a low difference between the predicted risk
and the actual observed risk for events, and a good prediction performance (<0.25 indicates
significant) (Table 5). The decision curve analysis of all models showed that the ML model
was the preferred model, with the best net benefit when the treatment threshold probability
was between 1% and 9% in approximately three years (Figure 6).

This ML model can potentially translate the detailed 18-segment CCTA reads and
clinical factors into an individualized risk report that might help physicians tailor pre-
ventive medical therapy. The present study established an integrated machine-learning
model to predict clinical outcomes and compared it to currently available tools includ-
ing SIS score, SIS score with clinical factors, and clinical factors models. The results
demonstrated that the machine-learning model was feasible and easily-obtainable. Further-
more, the machine-learning model demonstrated the best performance in discrimination
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and calibration. The ML model could directly output MACE risk assessment within
three years based on 13 non-zero variables and their coefficients in Figure 3b (symp-
tom, LADp_stenosis, RCAm_stenosis, LCXp_length, LM_stenosis, LADm_composition,
RCAp_stenosis, RI_composition, LADd_composition, OM1_composition, LCXp_stenosis,
RCAd_length). For individualized preventive therapy, as is shown in present study, the
proportion of the benefit for the population each year was between 0% and 3% when the
risk assessment of the ML model was used for treatment, while the treatment threshold
probability was between 1% and 9% over a period of approximately three years (Figure 6).
Considering the incidence of MACE events (4.4%), the proportion of the benefit for the
population each year of 3% is relatively better.

4.3. Study Limitations

This study, which was designed as a respective single-center cohort study, was per-
formed in a middle-aged population with suspected coronary artery disease. Therefore,
the results of this study may not be generalizable to other study populations. This study
was lacking in medication history and only followed up after nearly three years. Further
research may follow up for longer, add follow-up medication history, include genetic data,
and identify the image feature-genome interaction, wihle combined prediction ability may
potentially improve the risk estimation.

5. Conclusions

Integrating coronary plaque information from CCTA based on machine learning
technology provides a feasible and superior method to assess prognosis in patients with
suspected coronary artery disease over an approximately three-year period.
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Abstract: Exposure to radiation has been associated with increased risk of delivering small-for-

gestational-age (SGA) newborns. There are no tools to predict SGA newborns in pregnant women

exposed to radiation before pregnancy. Here, we aimed to develop an array of machine learning (ML)

models to predict SGA newborns in women exposed to radiation before pregnancy. Patients’ data

was obtained from the National Free Preconception Health Examination Project from 2010 to 2012.

The data were randomly divided into a training dataset (n = 364) and a testing dataset (n = 91). Eight

various ML models were compared for solving the binary classification of SGA prediction, followed

by a post hoc explainability based on the SHAP model to identify and interpret the most important

features that contribute to the prediction outcome. A total of 455 newborns were included, with

the occurrence of 60 SGA births (13.2%). Overall, the model obtained by extreme gradient boosting

(XGBoost) achieved the highest area under the receiver-operating-characteristic curve (AUC) in the

testing set (0.844, 95% confidence interval (CI): 0.713–0.974). All models showed satisfied AUCs,

except for the logistic regression model (AUC: 0.561, 95% CI: 0.355–0.768). After feature selection by

recursive feature elimination (RFE), 15 features were included in the final prediction model using the

XGBoost algorithm, with an AUC of 0.821 (95% CI: 0.650–0.993). ML algorithms can generate robust

models to predict SGA newborns in pregnant women exposed to radiation before pregnancy, which

may thus be used as a prediction tool for SGA newborns in high-risk pregnant women.

Keywords: small for gestational age; exposure to radiation; machine learning; prediction

1. Introduction

Small-for-gestational-age (SGA) neonate is defined as a birth weight below a distribution-
based gestational age threshold, usually the 10th percentile [1]. SGA newborns are at
increased risk of perinatal morbidity and mortality [2,3]. The main risk factor related to
stillbirth is unrecognized SGA before birth [4]. However, if the condition is identified
before delivery, the risk can be substantially reduced, even a four-fold reduction, because
antenatal prediction of SGA allows for closer monitoring and timely delivery to reduce
adverse fetal outcomes [2].

Environmental pollutants have been associated with adverse pregnancy outcomes
and a reduction in birth weight [5–7]. Human and animal studies have shown that the
proportion of SGA increases with exposure to radiation [8,9]. High-level radiation exposure
produced SGA neonates in the offspring of pregnant atomic bomb survivors [10]. Addition-
ally, it has been reported that the radiation exposure rate in mothers with low-birth-weight
newborns was higher than those with normal weight newborns [11]. Even data from
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studies has demonstrated that each cGy radiation reduced the birth weight of newborns
by 37.6 g [12]. The causes have been reported to be the effects of radiation on the func-
tion of the ovary and uterus, as well as the effect on the hypothalamus–pituitary–thyroid
axis [13,14]. However, no study has established a predictive model for SGA newborns in
women exposed to radiation before pregnancy.

Risk predictive models relying on conventional statistical methods affect their ap-
plication and performance in large datasets with multiple variables due to the inherent
limitations of not considering the potential interactions between risk factors [15,16]. How-
ever, these limitations can be solved by machine learning (ML) approaches which can
model complex interactions and maximize prediction accuracy from complex data [17].
In terms of SGA risk prediction, ML algorithms have been introduced into a few studies
to obtain predictive models for SGA in the general population [18–20]. Unfortunately,
these models performed poorly, with the maximum area under the receiver operating
characteristic (ROC) curve (AUC) value as high as only 0.7+. In addition, paternal risk
factors and maternal PM2.5 exposure during pregnancy have been confirmed as risk factors
for SGA newborns [21–23]. Although these independent risk factors are identified, they
have not been included in previous predictive models.

In this report, we aimed to develop and validate models using different ML algorithms
to predict SGA newborns in pregnant women exposed to radiation in a living or working
environment before pregnancy, based on data from a nationwide, prospective cohort
study in China. In addition, paternal risk factors and pregnancy PM2.5 exposure were
innovatively included in the models as predictive features.

2. Materials and Methods

2.1. Data Source

Data were obtained from the National Free Preconception Health Examination Project
(NFPHEP), a 3-year project from 1 January 2010 to 31 December 2012, which was carried
out in 220 counties from 31 provinces or municipalities and initiated by the National Health
Commission of the People’s Republic of China [24–26]. In short, the NFPHEP aimed to
investigate risk factors for adverse pregnancy outcomes and improve the health of pregnant
women and newborns. All data were uploaded to the nationwide electronic data acquisition
system, and quality control was carried out by the National Quality Inspection Center
for Family Planning Techniques. This study was approved by the Institutional Review
Committee of the National Research Institute for Family Planning in Beijing, China, and
informed consent was obtained from all participants.

2.2. Study Participants and Features

All singleton live newborns with complete birth records and gestational age of more
than 24 weeks were included in the study, and then we selected newborns whose moth-
ers were exposed to radiation in their living or working environment before pregnancy,
involving 985 cases. After removing records with missing and extreme data of baseline
characteristics, 455 births were included in the final analysis.

A pre-pregnancy examination was conducted, and follow-up was performed during
pregnancy and postpartum. Information of 153 features regarding parents’ social demo-
graphic characteristics, lifestyle, family history, pre-existing medical conditions, laboratory
examinations and neonatal birth information were collected through face-to-face investi-
gation and examination performed by trained and qualified staff. PM2.5 concentrations
for all included counties were provided by the Chinese Center for Disease Control and
Prevention, using a hindcast model specific to historical PM2.5 estimation provided by
satellite-retrieved aerosol optical depth [27]. The definition of SGA was newborns with
a birth weight below the 10th percentile for the gestational age and sex according to the
Chinese Neonatal Network [28].
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2.3. Study Design

The data processing flow is shown in Figure 1. All analyses were developed in Python
(version 3.8.5). The dataset was divided randomly into the training set (80%, n = 364) and
the testing sets (20%, n = 91) for the development and validation of the ML algorithms,
respectively. Initially, 153 related features (Table S1) were included in ML as candidate
variables for predictors. In the current study, eight ML algorithms were applied to develop
the predictive models. The performances of the eight ML algorithms were evaluated by
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV)
and AUC. Another measure of the quality of binary classification, Matthew’s correlation
coefficient (MCC), was also evaluated, which is not affected by heavily imbalanced classes.
Its value ranges from −1 to 1, where the random classification has a value of 0, the perfect
classification has a value of 1, and the “completely wrong” classification has a value of −1.
Furthermore, Cohen’s kappa was evaluated, which is another metric estimating the overall
model performance. The AUC metric results were taken as the main index to measure the
performances of the ML algorithms.

−

−

 

Figure 1. A flow chart of the methods used for data extraction, training, and testing.
NFPHEP = National Free Preconception Health Examination Project, LR = logistic regression,
RF = random forest, GBDT = gradient boosting decision tree, LGBM = light gradient boosting ma-
chine, XGBoost = extreme gradient boosting, CatBoost = category boosting, SVM = support vector
machine, MLP = multi-layer perceptron, RFE = recursive feature elimination, SHAP = Shapley
Additive Explanation.

Being the best performing model, the extreme gradient boosting (XGBoost) algorithm
was chosen for the final prediction model. In order to reduce the computational cost
of modeling, 15 features which contributed greatly to the prediction were selected from
153 features by recursive feature elimination (RFE) to reduce the number of variables in the
prediction model, incorporating a XGBoost classifier as the estimator. The effectiveness of
RFE approach has been proven in various medical data [29–31]. A 5-fold cross-validation
was performed to select the 15 most important features. These 15 features were included
in the final prediction model using the ML algorithm which performed best among the
eight algorithms. Grid search was employed for the hyperparameter tunning, and the
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employed hyperparameters of the best performed ML algorithm (XGBoost) were max
depth = [(2, 3, 4, 5, 6, 7, 8), min child weight = (1, 2, 3, 4, 5, 6) and gamma = (0.5, 1, 1.5,
2, 5). The characteristics of the final model used in the hyperparameter tunning were
booster = gbtree, gamma = 1, importance type = gain, learning rate = 0.01, max depth = 6,
min child weight = 1, random state = 0, reg alpha = 0, reg lambda = 1.

Furthermore, in order to correctly interpret the ML prediction model, we applied post
hoc explainability on the final model using the XGBoost algorithm, based on the Shapley
Additive Explanation (SHAP) model, to explain the influence of all features included for
model prediction. SHAP is a game theory approach which can evaluate the importance of
individual input features to the prediction of a given model [32].

2.4. ML Algorithms

A conventional logistic regression (LR) method and seven popular ML classification
algorithms, including random forest (RF), gradient boosting decision tree (GBDT), XGBoost,
light gradient boosting machine (LGBM), category boosting (CatBoost), support vector
machine (SVM) and multi-layer perceptron (MLP), were applied in the current study to
model the data. All these algorithms are the most popular and up-to-date supervised ML
methods for the problem of classification. The LR model is used to predict the probability
of the binary dependent variable using a sigmoid function to determine the logistic trans-
formation of the probability [33]. RF is an ensemble classification algorithm that combines
multiple decision trees by majority voting [34,35]. GBDT is based on the ensembles of
decision trees, which is popular for its accuracy, efficiency and interpretability. A new
decision tree is trained at each step to fit the residual between ground truth and current
prediction [36]. Many improvements have been made on the basis of GBDT. LGBM aggre-
gates gradient information in the form of a histogram, which significantly improves the
training efficiency [37]. CatBoost proposes a new strategy to deal with categorical features,
which can solve the problems of gradient bias and prediction shift [38]. XGBoost is an
optimized distributed gradient boosting library designed for speed and performance. It
uses the second-order gradient, which is improved in the aspects of the approximate greedy
search, parallel learning and hyperparameters [39]. SVM is a supervised learning model
which targets to create a hyperplane. The hyperplane is a decision boundary between
two classes, enabling the prediction of labels from one or more feature vectors. The main
goal of SVM is to maximize the distance between the closest points of each class, called sup-
port vectors [40,41]. MLP is based on a supervised training process to generate a nonlinear
predictive model, which belongs to the category of artificial neural network (ANN) and is
the most common neural network. It consists of multiple layers such as input layer, output
layer and hidden layer. Therefore, MLP is a hierarchical feed-forward neural network,
where the information is unidirectionally passed from the input layer to the output layer
through the hidden layer [42].

2.5. Statistical Analyses

Categorical variables were described as number (%) and compared by Chi-square or
Fisher’s exact test where appropriate. Continuous variables that satisfy normal distribution
were described as mean (standard deviation [SD]) and compared by the 2-tailed Student’s
t-test; otherwise, median (interquartile range [IQR]) and Wilcoxon Mann–Whitney U test
were used. The sensitivity, specificity, PPV, NPV, MCC and kappa of the models were
calculated. The predictive power of the ML models was measured by AUC in the training
and testing datasets. A two-sided p value < 0.05 was considered statistically significant. All
statistical analyses were performed with Python (version 3.8.5).

3. Results

3.1. Baseline Characteristics

Of the 455 newborns whose mothers had been exposed to radiation in their living or
working environment before pregnancy from 1 January 2010 to 31 December 2012 in the

100



J. Pers. Med. 2022, 12, 550

NFPHEP database, a total of 60 SGA births occurred (13.2%). Demographic characteristics
of the study population are shown in Table 1. Supplementary Table S1 lists the results
comparing the 153 candidate variables for predictors in the study cohort. Overall, the
median gestational age of the newborns in the cohort was 40.0 weeks (IQR, 39.0–40.0).
The birth weight of SGA newborns (2.6 kg [2.2–2.8]) was significantly lower than that of
non-SGA newborns (3.4 kg [3.1–3.6]). Maternal height was significantly lower in the SGA
newborns compared to the non-SGA newborns (158.0 cm [155.0–160.0] versus 160.0 cm
[157.0–163.0]). The mothers of SGA newborns had a significantly higher incidence of ad-
nexitis before pregnancy (15.0% vs. 3.5%) compared to the mothers of non-SGA newborns.
In addition, the number of previous pregnancies in the mothers of SGA newborns was
significantly higher than those of non-SGA newborns. Furthermore, the fathers of SGA
newborns had a significantly higher incidence of anemia (8.3% vs. 1.3%) compared with
those of non-SGA newborns.

Table 1. Demographic characteristics of the subjects included in analysis.

Parameters
Overall
(n = 455)

Not SGA
(n = 395)

SGA
(n = 60)

p Value

Gestational at birth, week 40.0 (39.0–40.0) 40.0 (39.0–40.0) 40.0 (39.0–40.0) 0.013
Birth weight, kg 3.3 (3.0–3.6) 3.4 (3.1–3.6) 2.6 (2.2–2.8) <0.001

Maternal age, year 24.0 (23.0–27.0) 24.0 (23.0–27.0) 24.5 (22.0–26.0) 0.184
Maternal height, cm 160.0 (156.0–163.0) 160.0 (157.0–163.0) 158.0 (155.0–160.0) 0.014

Maternal BMI, kg/m2 20.2 (18.8–22.0) 20.2 (18.8–22.0) 20.0 (18.6–22.2) 0.332
Maternal education level
Below junior high school 168 (36.9%) 149 (37.7%) 19 (31.7%) 0.635

Senior high school 146 (32.1%) 126 (31.9%) 20 (33.3%)
Bachelor’s degrees and above 141 (31.0%) 120 (30.4%) 21 (35.0%)

Mother adnexitis before pregnancy 23 (5.1%) 14 (3.5%) 9 (15.0%) 0.001
Number of previous pregnancies 0.0 (0.0–1.0) 0.0 (0.0–1.0) 1.0 (0.0–1.0) 0.003

Paternal age, year 26.0 (24.0–29.0) 26.0 (24.0–28.0) 26.0 (24.0–29.0) 0.328
Paternal height, cm 171.4 ± 5.3 171.6 ± 5.2 170.2 ± 5.6 0.055

Paternal education level
Below junior high school 174 (38.2%) 153 (38.7%) 21 (35.0%) 0.810

Senior high school 151 (33.2%) 131 (33.2%) 20 (33.3%)
Bachelor’s degrees and above 130 (28.6%) 111 (28.1%) 19 (31.7%)

Father anemia before pregnancy 10 (2.2%) 5 (1.3%) 5 (8.3%) 0.003

SGA = small for gestational age, BMI = body mass index. Data are presented as median (interquartile range),
mean (standard deviation) or number (%). Categorical variables are compared by Chi-square or Fisher’s exact test
where appropriate. Continuous variables that satisfy normal distribution are compared by the 2-tailed Student’s
t-test; otherwise, Wilcoxon Mann–Whitney U test are used.

3.2. ML Algorithms’ Performance Comparison

LR, RF, GBDT, XGBoost, LGBM, CatBoost, SVM and MLP were developed in the
training dataset (n = 364), and their SGA prediction performance was compared in the
testing dataset (n = 91). Figure 2 shows the ROC curve comparison of the developed
models in the testing dataset for SGA prediction. Overall, the model obtained by XG-
Boost achieved the highest AUC value in the testing set, 0.844 [95% confidence interval
(CI): 0.713–0.974]. All models showed a good AUC for predicting SGA: XGBoost (AUC:
0.844, 95% CI: 0.713–0.974), RF (AUC: 0.835, 95% CI: 0.682–0.988), GBDT (AUC: 0.821, 95%
CI: 0.699–0.944), CatBoost (AUC: 0.801, 95% CI: 0.698–0.904), LGBM (AUC: 0.768, 95%
CI: 0.566–0.970), MLP (AUC: 0.723, 95% CI: 0.492–0.953) and SVM (AUC: 0.673, 95% CI:
0.474–0.873), except for LR (AUC: 0.561, 95% CI: 0.355–0.768). In addition, the AUC values
in the training set and testing set, sensitivity, specificity, PPV, NPV, MCC and kappa values
of each model are listed in Table 2. Model sensitivity, specificity, PPV, NPV, MCC and kappa
ranged from 0.714 to 1.000, 0.333 to 0.869, 0.111 to 0.312, 0.970 to 1.000, 0.161 to 0.408 and
0.071 to 0.367, respectively.
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Figure 2. Receiver operating characteristic (ROC) curves of the eight machine learning (ML) mod-
els in predicting small for gestational age (SGA) in the testing dataset. LR = logistic regression,
RF = random forest, GBDT = gradient boosting decision tree, LGBM = light gradient boosting ma-
chine, XGB = extreme gradient boosting, CB = category boosting, MLP = multi-layer perceptron,
SVM = support vector machine.

Table 2. Performance of models by different algorithms in predicting small for gestational age
(SGA) neonates.

Model
AUC

Training
AUC

Testing
Sensitivity Specificity PPV NPV MCC Kappa

LR 0.620 0.561 0.857 0.440 0.113 0.974 0.161 0.074
RF 0.897 0.835 0.714 0.845 0.278 0.973 0.374 0.325

GBDT 0.850 0.821 0.714 0.845 0.278 0.973 0.374 0.325
XGBoost 0.958 0.844 0.857 0.774 0.240 0.985 0.377 0.290
LGBM 0.844 0.768 0.714 0.869 0.312 0.973 0.408 0.367

CatBoost 0.853 0.801 0.857 0.774 0.240 0.985 0.377 0.290
SVM 0.836 0.673 1.000 0.333 0.111 1.000 0.192 0.071
MLP 0.902 0.723 0.714 0.774 0.208 0.970 0.295 0.231

AUC = area under the receiver-operating-characteristic curve, PPV = positive predictive value, NPV = nega-
tive predictive value, MCC = Matthews correlation coefficient, LR = logistic regression, RF = random forest,
GBDT = gradient boosting decision tree, XGBoost = extreme gradient boosting, LGBM = light gradient boosting
machine, CatBoost = category boosting, SVM = support vector machine, MLP = multi-layer perceptron.

3.3. Feature Selection and Final Prediction Model

In order to reduce the computational cost of modeling, 15 features which contributed
greatly to the prediction were selected from 153 features by the RFE method. These fea-
tures were maternal adnexitis before pregnancy, maternal body mass index (BMI) before
pregnancy, maternal systolic blood pressure before pregnancy, maternal education level,
maternal platelet count (PLT) before pregnancy, maternal blood glucose before pregnancy,
maternal alanine aminotransferase (ALT) before pregnancy, maternal creatinine before preg-
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nancy, paternal drinking before pregnancy, paternal economic pressure before pregnancy,
paternal systolic blood pressure before pregnancy, paternal diastolic blood pressure before
pregnancy, paternal ALT before pregnancy, maternal PM2.5 exposure in the first trimester
and maternal PM2.5 exposure in the last trimester. These 15 features were included in the
final prediction model using the XGBoost algorithm which exhibited the highest AUC value
in the previous model comparison. Figure 3 shows the ROC curve of the final prediction
model in the training and testing dataset for SGA prediction. The AUC values in the
training set and testing set, sensitivity, specificity, PPV, NPV, MCC and kappa values of
the final model were 0.953 (95% CI: 0.918–0.988), 0.821 (95% CI: 0.650–0.993), 0.714, 0.881,
0.333, 0.974, 0.427 and 0.391, respectively, proving the superiority of the feature selection
approach and the employed ML algorithm.

Figure 3. Receiver operating characteristic (ROC) curves of the final machine learning (ML) model
generated after recursive feature elimination (RFE) in predicting small for gestational age (SGA).

3.4. Assessment of Variable Importance

In order to identify the features that had the greatest impact on the final prediction
model (XGBoost), we drew the SHAP summary diagram of the final prediction model
(Figure 4). The feature names were plotted on the y-axis from top to bottom according to
their importance, while the x-axis represented the mean SHAP values. Each dot represented
a sample. Plot was colored red (blue) if the value of the feature was high (low). The
6 most important features for the SGA prediction were maternal ALT before pregnancy,
maternal PLT before pregnancy, maternal adnexitis before pregnancy, maternal blood
glucose before pregnancy, maternal PM2.5 exposure in the last trimester and maternal
BMI before pregnancy. In addition, Figure 5 shows two examples for newborns that were
classified correctly as non-SGA and SGA, respectively.
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Figure 4. The Shapley Additive Explanation (SHAP) values for most important predictors of small
for gestational age (SGA) in the final model. ALT = alanine aminotransferase, PLT = platelet count,
BMI = body mass index, Cr = creatinine. Each line represents a feature, and the abscissa is the SHAP
value, which represents the degree of influence on the outcome. Each dot represents a sample. Plot is
colored red (blue) if the value of the feature is high (low).

Figure 5. Newborns correctly classified as non-small-for-gestational-age (A) and small-for-gestational-
age (B).

4. Discussion

This study represents the first report using ML algorithms in the development and
validation of a risk prediction model for SGA newborns in pregnant women exposed
to radiation before pregnancy. Additionally, paternal risk factors and maternal PM2.5
exposure during pregnancy were innovatively included in our ML models as predictive
features. Our study demonstrates that ML algorithms can yield more effective prediction
models than the conventional logistic regression, and the XGBoost model exhibited the best
performance for SGA prediction (AUC: 0.844), suggesting that ML is a promising approach
in predicting SGA newborns. With our models, the antenatal prediction of SGA could be
made to monitor at-risk fetuses more closely and improve perinatal outcomes.
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Evidence indicated that the SGA proportions increased with the radiation exposure [8,9].
Females who have received abdominal or pelvic radiation, radiation for their childhood
cancer and diagnostic radiography for idiopathic scoliosis experienced an increased risk of
low birth weight among their offspring [12,43–45]. Low birth weight has been considered to
be an indicator of genetic damage caused by mutations in humans exposed to radiation [46].
However, to our knowledge, no study has established a prediction model for SGA newborns
in women exposed to radiation before pregnancy. In our study, eight ML models were
used for a comparative evaluation (Table 2). Among these models, XGBoost, RF, GBDT and
CatBoost showed similar performance based on the AUC value, with XGBoost having the
highest AUC value (0.844). However, the LR model had the lowest AUC value of 0.561.
This might be due to the fact that the LR algorithm is sensitive to outliers and requires a
large dataset to work well. Additionally, the imbalanced dataset may affect the performance
of the LR model. The results of our study indicated that the ML algorithm was a promising
approach to predict SGA newborns in women exposed to radiation before pregnancy, with
superior discrimination than the conventional LR (AUC: 0.844 versus 0.561).

Only based on 15 features including the demographic characteristics of parents, simple
and feasible clinical test indexes and regional PM2.5 exposure, an effective SGA prediction
model could be established (AUC: 0.821, Figure 3), indicating that the appropriate features
were selected from 153 features by RFE approach. The RFE algorithm is a wrapper-based
backward elimination process by recursively computing the learning function, perform-
ing a recursive ranking of a given feature set [47]. Its effectiveness has been extensively
proven in various medical data [29–31,48]. Recently, a new ensemble feature selection
methodology has been proposed, which aggregates the outcomes of several feature se-
lection algorithms (filter, wrapper and embedded ones) to avoid bias [49,50]. The robust
feature selection methodology can be applied in future work. Additionally, advanced ML
algorithms provided great potential for improving SGA prediction. The reason was that
the interactions between predictors might exist but were not detected by conventional
modeling methods. Such weakness could be remedied with the advanced ML algorithms
explored in our current study. The ability of ML algorithms to automatically process mul-
tidimensional and multivariate data could eventually reveal novel associations between
specific features and the SGA outcome and identify trends that would be unobvious to
researchers otherwise [51].

Paternal risk factors and maternal PM2.5 exposure during pregnancy were included in
the ML prediction models for SGA newborns for the first time. Mounting studies have been
devoted to identifying maternal risk factors for the adverse birth outcomes. Little attention
has been paid to the fact that paternal factors could also predict adverse birth outcomes.
Several paternal factors have been confirmed as risk factors for SGA newborns, such as
paternal age, height, ethnicity, education level and smoking during pregnancy [21,22,52–54].
Moreover, women exposed to excessive PM2.5 during pregnancy also had an increased
risk of delivering SGA offspring [23]. However, these factors have not been considered in
the previous SGA prediction models established in the general population. The results of
our study demonstrated that paternal drinking, economic pressure, blood pressure and
ALT, maternal PM2.5 exposure in the first trimester and last trimester were all included
in the top 15 most contributing features, suggesting that the paternal factor and maternal
PM2.5 exposure during pregnancy were involved in the risk prediction for SGA in the
study population.

Figure 4 showed the features’ impact on the output of the final model (XGBoost). The
SHAP values were used to represent the impact distribution of each feature on the model
output. For instance, a low maternal PLT level increased the predicted status of the subjects.
The features maternal blood glucose, creatinine and systolic blood pressure presented a
similar behavior. In contrast to that, maternal adnexitis, high education level and high
paternal blood pressure had a positive effect on the prediction outcome. The top 6 most
influential features in the SHAP summary plot of the final prediction model were maternal
ALT, PLT, adnexitis, blood glucose, PM2.5 exposure in the last trimester and BMI before
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pregnancy. In addition to the known risk factor maternal PM2.5 exposure, recent studies
showed that reduced fetal growth was associated with increased maternal ALT [55]. The
significant association between maternal PLT and adverse perinatal outcome has been
reported [56]. Additionally, pelvic inflammatory diseases have been linked to adverse
perinatal outcomes including SGA [57,58]. In addition, maternal blood glucose and pre-
pregnancy BMI have been reported to be associated with increased risk of delivering SGA
infants [59–61], which is consistent with our findings. Changes in these features caused by
radiation exposure also have been reported in previous studies [62–65]. In addition, using
SHAP force plots, two examples that were classified correctly as non-SGA and SGA were
selected to explain the effects of the features on the prediction outcome (Figure 5). The
contribution of each feature to the output result was represented by an arrow, the force of
which was related to the Shapley value. They showed how each feature contributed to push
the model output from the baseline prediction to the corresponding model output. The red
arrows represented features increasing the predicted results. The blue arrows represented
features decreasing the predicted results. It was observed that lower values of maternal
BMI, blood glucose, systolic blood pressure and higher values of maternal ALT pushed the
output prediction to the SGA class.

This study has several limitations. Firstly, although the data were collected nationally,
the sample size was small which may indicate bias. With a larger sample size in the
future work, a stratified k-fold cross validation can be used to improve the accuracy of the
results. Secondly, there was a lack of the type and average daily exposure of the radiation
in mothers’ living or working environment before pregnancy in the dataset. Moreover,
ultrasound biometrics measurements were lacking in the dataset, and their inclusion in the
prediction model may further improve the accuracy and applicability of the model. Further
validation and application of ML into the daily clinical practice is still necessary to better
understand its real value in predicting SGA newborns.

5. Conclusions

In this work, a comprehensive analysis of SGA newborns prediction in pregnant
women exposed to radiation in their living or working environment before pregnancy was
carried out, with the help of feature selection and optimization techniques. It is concluded
that ML algorithms show good performances on the classification of SGA newborns. The
final model using the XGBoost algorithm achieves effective SGA prediction (AUC: 0.821)
only based on 15 features, including the demographic characteristics of parents, simple
and feasible clinical test indexes and regional PM2.5 exposure. Furthermore, the post
hoc analysis complemented the prediction results by enhancing the understanding of the
contribution of the selected features to the classification of SGA newborns. ML models may
be a potential assistant approach for the early prediction of delivering SGA newborns in
high-risk populations. Future work aims to work with other ensemble feature selection
methodologies and apply the proposed methodology to other high-risk populations for
delivering SGA newborns.
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52. Miletić, T.; Stoini, E.; Mikulandra, F.; Tadin, I.; Roje, D.; Milić, N. Effect of parental anthropometric parameters on neonatal birth
weight and birth length. Coll. Antropol. 2007, 31, 993–997. [PubMed]

53. Myklestad, K.; Vatten, L.J.; Magnussen, E.B.; Salvesen, K.; Romundstad, P.R. Do parental heights influence pregnancy length?: A
population-based prospective study, HUNT 2. BMC Pregnancy Childbirth 2013, 13, 33. [CrossRef] [PubMed]

54. Meng, Y.; Groth, S.W. Fathers Count: The Impact of Paternal Risk Factors on Birth Outcomes. Matern. Child. Health J. 2018, 22,
401–408. [CrossRef] [PubMed]

55. Harville, E.W.; Chen, W.; Bazzano, L.; Oikonen, M.; Hutri-Kähönen, N.; Raitakari, O. Indicators of fetal growth and adult liver
enzymes: The Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. J. Dev. Orig. Health Dis. 2017, 8, 226–235.
[CrossRef] [PubMed]

56. Larroca, S.G.; Arevalo-Serrano, J.; Abad, V.O.; Recarte, P.P.; Carreras, A.G.; Pastor, G.N.; Hernandez, C.R.; Pacheco, R.P.; Luis, J.L.
Platelet Count in First Trimester of Pregnancy as a Predictor of Perinatal Outcome. Maced. J. Med. Sci. 2017, 5, 27–32. [CrossRef]

57. Heumann, C.L.; Quilter, L.A.; Eastment, M.C.; Heffron, R.; Hawes, S.E. Adverse Birth Outcomes and Maternal Neisseria
gonorrhoeae Infection: A Population-Based Cohort Study in Washington State. Sex. Transm. Dis. 2017, 44, 266–271. [CrossRef]

58. Johnson, H.L.; Ghanem, K.G.; Zenilman, J.M.; Erbelding, E.J. Sexually transmitted infections and adverse pregnancy outcomes
among women attending inner city public sexually transmitted diseases clinics. Sex. Transm. Dis. 2011, 38, 167–171. [CrossRef]

59. Leng, J.; Hay, J.; Liu, G.; Zhang, J.; Wang, J.; Liu, H.; Yang, X.; Liu, J. Small-for-gestational age and its association with maternal
blood glucose, body mass index and stature: A perinatal cohort study among Chinese women. BMJ Open 2016, 6, e010984.
[CrossRef]

60. Siega-Riz, A.M.; Viswanathan, M.; Moos, M.K.; Deierlein, A.; Mumford, S.; Knaack, J.; Thieda, P.; Lux, L.J.; Lohr, K.N. A systematic
review of outcomes of maternal weight gain according to the Institute of Medicine recommendations: Birthweight, fetal growth,
and postpartum weight retention. Am. J. Obstet. Gynecol. 2009, 201, 339.e1–339.e14. [CrossRef]

61. Lederman, S.A. Pregnancy weight gain and postpartum loss: Avoiding obesity while optimizing the growth and development of
the fetus. J. Am. Med. Women’s Assoc. 2001, 56, 53–58.

62. Nadi, S.; Elahi, M.; Moradi, S.; Banaei, A.; Ataei, G.; Abedi-Firouzjah, R. Radioprotective Effect of Arbutin in Megavoltage
Therapeutic X-irradiated Mice using Liver Enzymes Assessment. J. Biomed. Phys. Eng. 2019, 9, 533–540. [CrossRef] [PubMed]

63. Singh, V.K.; Seed, T.M. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval
status: Part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int. J. Radiat. Biol. 2017, 93, 851–869.
[CrossRef] [PubMed]

64. Fan, Z.B.; Zou, J.F.; Bai, J.; Yu, G.C.; Zhang, X.X.; Ma, H.H.; Cheng, Q.M.; Wang, S.P.; Ji, F.L.; Yu, W.L. The occupational and
procreation health of immigrant female workers in electron factory. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2011, 29,
661–664. [CrossRef] [PubMed]

65. Meo, S.A.; Alsubaie, Y.; Almubarak, Z.; Almutawa, H.; AlQasem, Y.; Hasanato, R.M. Association of Exposure to Radio-Frequency
Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and
Risk of Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2015, 12, 14519–14528. [CrossRef]

109





Citation: Min, C.-Y.; Lee, J.-W.; Kwon,

B.-C.; Kwon, M.-J.; Kim, J.-H.; Kim,

J.-H.; Bang, W.-J.; Choi, H.-G.

Physical Activity Is Associated with a

Lower Risk of Osteoporotic Fractures

in Osteoporosis: A Longitudinal

Study. J. Pers. Med. 2022, 12, 491.

https://doi.org/10.3390/

jpm12030491

Academic Editor: Youxin Wang

Received: 3 February 2022

Accepted: 16 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

Physical Activity Is Associated with a Lower Risk of
Osteoporotic Fractures in Osteoporosis: A Longitudinal Study

Chan-Yang Min 1 , Jung-Woo Lee 2 , Bong-Cheol Kwon 3, Mi-Jung Kwon 4, Ji-Hee Kim 5 , Joo-Hee Kim 6,

Woo-Jin Bang 7 and Hyo-Geun Choi 1,8,*

1 Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14066, Korea;
joicemin@naver.com

2 Department of Orthopaedic Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
berrybearlee@gmail.com

3 Department of Orthopaedic Surgery, Hallym University College of Medicine, Anyang 14068, Korea;
bckwon@hallym.or.kr

4 Department of Pathology, Hallym Sacred Heart Hospital, Hallym University College of Medicine,
Anyang 14068, Korea; mulank@hanmail.net

5 Department of Neurosurgery, Hallym University College of Medicine, Anyang 14068, Korea;
kimjihee.ns@gmail.com

6 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym Sacred Heart
Hospital, Hallym University College of Medicine, Anyang 14068, Korea; luxjhee@gmail.com

7 Department of Urology, Hallym Sacred Heart Hospital, Hallym University College of Medicine,
Anyang 14068, Korea; yybbang@gmail.com

8 Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine,
Anyang 14068, Korea

* Correspondence: pupen@naver.com

Abstract: The purpose of our study was to examine the occurrence of osteoporotic fractures (fxs)

according to the level of physical activity (PA) among osteoporosis using the Korean National Health

Insurance Service (NHIS) customized database. From NHIS data from 2009 to 2017, osteoporosis was

selected as requested. PA was classified into ‘high PA’ (n = 58,620), ‘moderate PA’ (n = 58,620), and

‘low PA’ (n = 58,620) and were matched in a 1:1:1 ratio by gender, age, income within the household

unit, and region of residence. A stratified Cox proportional hazard model was used to calculate

hazard ratios (HRs) for each type of fx comparing PA groups. The ‘low PA’ group was the reference

group. For vertebral fx, the adjusted HR (95% confidence intervals (CIs)) was 0.27 (0.26–0.28) for the

‘high PA’ group and 0.43 (0.42–0.44) for the ‘moderate PA’ group. For hip fx, the adjusted HR (95%

CIs) was 0.37 (0.34–0.40) for the ‘high PA’ group and 0.51 (0.47–0.55) for the ‘moderate PA’ group.

For distal radius fx, the adjusted HR (95% CIs) was 0.32 (0.30–0.33) for the ‘high PA’ group and 0.46

(0.45–0.48) for the ‘moderate PA’ group. The results of this study suggest that a higher intensity of PA

is associated with a lower risk of osteoporotic fxs, including vertebral fx, hip fx, and distal radius fx.

Keywords: physical activity; osteoporosis; osteoporotic fracture; vertebral fracture; hip fracture;

distal radius fracture

1. Introduction

The negative health effects of physical inactivity are already well known [1]. The
problem of physical inactivity is expected to worsen due to the novel coronavirus pandemic
(COVID-19) [2]. A study from the United States reported that among study subjects,
30% responded that they engaged in less physical activity (PA) during the pandemic [3].
Likewise, among the population of England, the rate of physical activity declined by 30%
in 2020 compared to that in the period from 2016 to 2019 [4]. In Korea, the time spent in
high-intensity PA decreased in all age and gender groups in 2020 compared to that of 2019
according to the Korean Community Health Survey data [5]. World Health Organization
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(WHO) reported that lack of physical activity (PA) is one of the risk factors for chronic
diseases such as cancers, cardiovascular disease burden, and even death [6]. In other words,
PA is crucial to maintain and improve one’s health.

One of the goals of PA is improving osteoporosis, one of the major musculoskeletal
diseases [7]. Osteoporosis is characterized by a decrease in bone mineral density (BMD) [8].
Although osteoporosis has no outward symptoms, osteoporotic patients are at critical risk
of osteoporotic fractures (fxs), including vertebral fx, hip fx, and distal radius fx [9]. Fxs
is a critical concern for older adults and can even lead to death. A previous study from
Ontario, Canada reported that the absolute mortality risk within 1 year among participants
≥ 66 years old was 19.5% and 12.5% for men and women with fx, respectively, whereas
it was 13.5% and 7.4% for men and women without fx, respectively [10]. Another study
from Korea reported that the standardized mortality ratios (SMRs) 2 years after vertebral
fracture were 2.53 in men and 1.86 in women compared to the general population [11].

Increasing evidence has demonstrated that PA can increase BMD and lower the risk
of osteoporosis, hence reducing the risk of some osteoporotic complications. Several
randomized controlled trials (RCTs) evaluated if PA could improve bone strength, including
BMD, in osteoporotic postmenopausal women [12]. Specifically, resistance training, impact
loading and balance exercise increased total hip BMD [13], maximal strength training,
including squat exercise showed higher femoral neck and lumbar spine bone mineral
contents (BMC) [14], and aerobic dance improved femoral neck BMD [15]. Moreover,
several previous cohort studies confirmed that PA could lower the risk of hip fx in each
cohort regardless of osteoporosis [16,17].

However, although several RCT studies demonstrated that PA could increase BMD
in osteoporotic patients, few RCT studies have included osteoporotic fx as the primary
endpoint because of the limited length of the typical study period. Moreover, in RCT studies,
few men were recruited as study participants due to the low frequency of osteoporosis
in men. In addition, although several cohort studies have demonstrated that PA could
prevent hip fx in the certain cohort, few cohort studies have selected osteoporotic patients
as a subject population because of insufficient data. In other words, we could not find a
study regarding the association between PA and osteoporotic fx in osteoporosis, although
osteoporosis increases the risk of osteoporotic fxs. Moreover, the association between PA
and vertebral/distal radius fx was not evident in previous studies.

The purpose of our study was to confirm whether a higher intensity of PA could lower
the rate of occurrence of osteoporotic fx at each specific site in osteoporotic men and women.
We used the Korean National Health Insurance Service (NHIS) customized database to
identify the osteoporotic patients.

2. Materials and Methods

2.1. Study Population and Participant Selection

Hallym University ethics committee (HALLYM 2019-08-029) approved this study
according to the Institutional Review Board (IRB) guidelines.

The Korean National Health Insurance Sharing Service (NHISS) provided the cus-
tomized database as requested. Among the Korean population who are holding the national
health insurance from 2009 to 2017, 948,390 were selected as having osteoporosis according
to our definition. Among them, we excluded participants who had insufficient socioeco-
nomic status information (n = 4329) or who were diagnosed with osteoporotic fx before
osteoporosis diagnosis (n = 145,039). Participants were also excluded who had no informa-
tion on PA after osteoporosis diagnosis and before osteoporotic fx onset (n = 286,865). In
addition, participants were removed if health-check information was insufficient (n = 58) or
if they were <50 years old (n = 1161). In total, 510,938 participants (n = 71,060 with ‘high PA’;
n = 262,136 with ‘moderate PA’; n = 177,742 with ‘low PA’) were included in the study. The
‘high PA’, ‘moderate PA’, and ‘low PA’ groups were matched at a 1:1:1 ratio for gender, age,
income within household unit, and region of residence using a random number. The index
date was assigned on the day that the PA was first collected before the first diagnosis of
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osteoporosis. After matching those PA groups, 335,078 participants were removed due to a
lack of availability of matched controls. Finally, 58,620 ‘high PA’ subjects, 58,620 ‘moderate
PA’ subjects, and 58,620 ‘low PA’ subjects were selected as study participants (Figure 1).

Figure 1. The participant selection flow. Out of a total of 948,390 participants with osteoporosis, ‘high
PA’ (n = 58,620), ‘moderate PA’ (n = 58,620), and ‘low PA’ (n = 58,620) were matched by a ratio of 1:1:1
by age, gender, income, and region of residence. Abbreviation: fxs, fractures; PA, physical activity;
SES, socioeconomic status.

2.2. Definition of Osteoporosis (Participants)

We used International Classification of Disease 10th edition (ICD-10) codes and ex-
amination insurance claim codes to identify cases of osteoporosis. The definition of os-
teoporosis cases included participants who were diagnosed or treated with osteoporosis
with pathological fx (M80), osteoporosis without pathological fx (M81), or osteoporosis in
diseases classified elsewhere (M82) ≥ 2 times and with BMD test using dual energy X-ray
absorptiometry (DXA), computed tomography (CT) scans or others [18].

2.3. Exposure (Physical Activity)

Information on PA was surveyed according to the International Physical Activity
Questionnaire (IPAQ) [19]. The first record of PA information after the first diagnosis of
osteoporosis was used. PA groups were defined based on the IPAQ classification. Partic-
ipants who did vigorous-intensity activity on ≥3 days with ≥1500 metabolic equivalent
task (MET)-minutes/week or any combination of moderate- or vigorous-intensity activi-
ties or walking ≥7 days with ≥3000 MET-minutes/week were classified in the ‘high PA’
group. Participants who performed moderate-intensity activity or walking ≥5 days with
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≥30 min/day, performed vigorous-intensity activity ≥3 days with ≥20 min/day, or any
combination of moderate- or vigorous-intensity activities or walking ≥600 MET-minutes/week
were classified in the ‘moderate PA’ group. The rest of the participants were classified into
the ‘low PA’ group.

2.4. Outcome (Time to Event (Osteoporotic Fractures))

The time to event (osteoporotic fxs) was calculated as the month from the date of PA
to the censored date or event date. The date of fxs was assigned as the first-time diagnosis
of each fx. Osteoporotic fxs were vertebral fx, hip fx, and distal radius fx. The vertebral
fx included participants who were diagnosed with fx of thoracic vertebra (S220) or fx of
lumbar vertebra (S320) using ICD-10 codes [20]. The hip fx group included participants
who were diagnosed with fx of the neck or the femur (S720), pertrochanteric fx (S721), or
subtrochanteric fx (S722) using ICD-10 codes [20]. The distal radius fx group included
participants who were diagnosed with fx of the lower end of the radius (S525) using ICD-10
codes [21].

2.5. Covariates

Age was categorized from 50 years old to ≥85 years old with 5-year intervals (a total
of 8 groups). Income within household units and regions of residence were classified based
on our previous studies [22,23]. Categories of smoking status, alcohol consumption, and
obesity based on body mass index (BMI) were defined as described in our previous stud-
ies [22,23]. Blood pressure (BP, including systolic BP (SBP) and diastolic BP (DBP)), fasting
blood glucose, and total cholesterol were also collected. The Charlson Comorbidity Index
(CCI) score was assigned to each participant to assess the burden of comorbidities [24].

2.6. Statistical Analyses

The Kruskal–Wallis test was used to compare the percentage of each characteristic
among the PA groups. To compare the cumulative occurrence of each osteoporotic fx among
the PA groups, Kaplan–Meier failure analysis and the log-rank test were performed. To
analyze the hazard ratios (HRs) with 95% CIs for each osteoporotic fx, including vertebral
fx, hip fx, and distal radius fx in the PA groups, a stratified Cox proportional hazard model
was used. In this analysis, the crude and adjusted models (adjusted for fasting blood
glucose, SBP, DBP, total cholesterol, alcohol consumption, smoking status, obesity, and
CCI scores) were fit. The analysis was stratified by gender, age, income within household
unit, and region of residence. For the subgroup analyses, age groups (<65 years old and
≥65 years old) and gender (men and women) were recategorized, and the crude and
adjusted models were implemented with a stratified Cox model. Other subgroup analyses
were performed (Tables S1–S3).

Two-tailed testing was performed, and significance was defined as a p value < 0.05. A
Bonferroni correction was used to control type 1 errors when calculating the p value for
three outcomes of osteoporotic fxs (α = 0.05/3). For statistical analyses, SAS Enterprise
Guide version 7.13 (SAS Institute Inc., Cary, NC, USA) was used.

3. Results

PA groups were exactly matched by a 1:1:1 ratio according to age, gender, income
within household unit, and region of residence (all p = 1.000). The percentage of obesity,
smoking status, alcohol consumption, and CCI score and mean of total cholesterol, BP,
and fasting blood glucose were significantly different among the PA groups (all p < 0.005).
The percentage of subjects with vertebral fx (no. of subjects with vertebral fx/total par-
ticipants) in the ‘high PA’, ‘moderate PA’, and ‘low PA’ groups was 6.9% (4042/58,620),
10.6% (6233/58,620), and 21.8% (12,787/58,620), respectively (p < 0.001). The percentage
of subjects with hip fx (no. of subjects with hip fx/total participants) in the ‘high PA’,
‘moderate PA’, and ‘low PA’ groups was 1.2% (687/58,620), 1.7% (984/58,620), and 3.5%
(2048/58,620), respectively (p < 0.001). The percentage of subjects with distal radius fx
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(no. of subjects with distal radius fx/total participants) in the ‘high PA’, ‘moderate PA’,
and ‘low PA’ groups was 5.1% (2991/58,620), 7.2% (4229/58,620), and 13.9% (8119/58,620),
respectively (p < 0.001, Table 1).

Cumulative rate of each fx was higher in order of the ‘low PA’, ‘moderate PA’, and
‘high PA’ groups (log-rank test, each p < 0.001, Figure 2).

Figure 2. Kaplan–Meier failure analyses. (a) The cumulative proportion of vertebral fracture was low
in the order of ‘high PA’, ‘moderate PA’, and ‘low PA’. (b) The cumulative proportion of hip fracture
was low in the order of ‘high PA’, ‘moderate PA’, and ‘low PA’. (c) The cumulative proportion of
distal radius fracture was low in the order of ‘high PA’, ‘moderate PA’, and ‘low PA’.
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Table 1. General characteristics of participants.

Characteristics Total Participants

Low PA
(n = 58,620)

Moderate PA
(n = 58,620)

High PA
(n = 58,620)

p-Value

Age (years old, n, %) 1.000
50–54 4370 (7.5) 4370 (7.5) 4370 (7.5)
55–59 8419 (14.4) 8419 (14.4) 8419 (14.4)
60–64 12,257 (20.9) 12,257 (20.9) 12,257 (20.9)
65–69 11,545 (19.7) 11,545 (19.7) 11,545 (19.7)
70–74 14,223 (24.3) 14,223 (24.3) 14,223 (24.3)
75–79 5241 (8.9) 5241 (8.9) 5241 (8.9)
80–84 2275 (3.9) 2275 (3.9) 2275 (3.9)
85+ 290 (0.5) 290 (0.5) 290 (0.5)

Gender (n, %) 1.000
Men 7046 (12.0) 7046 (12.0) 7046 (12.0)

Women 51,574 (88.0) 51,574 (88.0) 51,574 (88.0)

Income within household unit (n, %) 1.000
1 (lowest) 11,563 (19.7) 11,563 (19.7) 11,563 (19.7)

2 10,873 (18.6) 10,873 (18.6) 10,873 (18.6)
3 13,467 (23.0) 13,467 (23.0) 13,467 (23.0)
4 12,522 (21.4) 12,522 (21.4) 12,522 (21.4)

5 (highest) 10,195 (17.4) 10,195 (17.4) 10,195 (17.4)

Region of residence (n, %) 1.000
Urban 25,523 (43.5) 25,523 (43.5) 25,523 (43.5)
Rural 33,097 (56.5) 33,097 (56.5) 33,097 (56.5)

Total cholesterol level (mg/dL, mean, SD) 197.9 (44.1) 197.2 (40.1) 196.8 (39.0) 0.002 *
SBP (mmHg, mean, SD) 126.5 (16.0) 125.7 (15.3) 125.6 (15.1) <0.001 *
DBP (mmHg, mean, SD) 76.5 (9.9) 76.1 (9.6) 75.9 (9.5) <0.001 *

Fasting blood glucose level (mg/dL, mean, SD) 102.4 (27.3) 100.7 (22.8) 100.6 (22.4) <0.001 *

Obesity 1 (n, %) <0.001 *
Underweight 2433 (4.2) 2022 (3.5) 1526 (2.6)

Normal 21,127 (36.0) 22,246 (38.0) 22,883 (39.0)
Overweight 13,857 (23.6) 15,003 (25.6) 15,651 (26.7)

Obese I 18,274 (31.2) 17,275 (29.5) 16,898 (28.8)
Obese II 2929 (5.0) 2074 (3.5) 1662 (2.8)

Smoking status (n, %) <0.001 *
Nonsmoker 52,333 (89.3) 52,950 (90.3) 53,580 (91.4)
Past smoker 3000 (5.1) 3372 (5.8) 3327 (5.7)

Current smoker 3287 (5.6) 2298 (3.9) 1713 (2.9)

Alcohol consumption (n, %) <0.001 *
<1 time a week 51,745 (88.3) 51,022 (87.0) 50,725 (86.5)
≥1 time a week 6875 (11.7) 7598 (13.0) 7895 (13.5)

CCI score (n, %) <0.001 *
0 35,109 (59.9) 38,616 (65.9) 39,930 (68.1)
1 9807 (16.7) 9107 (15.5) 8552 (14.6)
≥2 13,704 (23.4) 10,897 (18.6) 10,138 (17.3)

Osteoporotic fxs (n, %)
Vertebral fx 12,787 (21.8) 6233 (10.6) 4042 (6.9) <0.001 *

Hip fx 2048 (3.5) 984 (1.7) 687 (1.2) <0.001 *
Distal radius fx 8119 (13.9) 4229 (7.2) 2991 (5.1) <0.001 *

CCI, Charlson comorbidity index; DBP, diastolic blood pressure; fx, fracture; PA, physical activity; SBP, systolic
blood pressure. * Kruskal–Wallis test. Significance at <0.05 with Bonferroni correction (α = 0.05/3). 1 Obesity
(BMI, body mass index, kg/m2) was categorized as <18.5 (underweight), ≥18.5 to <23 (normal), ≥23 to <25
(overweight), ≥25 to <30 (obese I), and ≥30 (obese II).
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The adjusted HR (95% CIs) for vertebral fx in the ‘high PA’ group was 0.27 (0.26–0.28)
and in the ‘moderate PA’ group was 0.43 (0.42–0.44) as compared to the ‘low PA’ group. In
analyses of subgroups defined by age and gender, the findings were consistent with the
above findings (Table 2).

Table 2. HR (95% CIs) for vertebral fx in the PA groups with subgroup analyses according to age
and gender.

Characteristics
No. of Vertebral fx/
No. of Participants

Follow-Up
Duration,

PY

Incidence
Rate,

per 100 PY

Hazard Ratios for Vertebral fx p for
Interaction

Crude 1 p-Value Adjusted 1,2 p-Value

Total participants (n = 175,860)
Low PA 12,787/58,620 (21.8) 108,317 11.8 1 1

Moderate PA 6233/58,620 (10.6) 129,073 4.8
0.43

(0.41–0.44)
<0.001 *

0.43
(0.42–0.44)

<0.001 *

High PA 4042/58,620 (6.9) 136,100 3.0
0.27

(0.26–0.28)
<0.001 *

0.27
(0.26–0.28)

<0.001 *

Age group

<0.001 *

Age < 65 years old (n = 38,367)
Low PA 1962/12,789 (15.3) 26,400 7.4 1 1

Moderate PA 779/12,789 (6.1) 30,351 2.6
0.35

(0.33–0.37)
<0.001 *

0.36
(0.34–0.38)

<0.001 *

High PA 450/12,789 (3.5) 31,412 1.4
0.19

(0.18–0.20)
<0.001 *

0.20
(0.18–0.21)

<0.001 *

Age ≥ 65 years old (n = 137,493)
Low PA 10,825/45,831 (23.6) 81,917 13.2 1 1

Moderate PA 5454/45,831 (11.9) 98,722 5.5
0.47

(0.45–0.48)
<0.001 *

0.47
(0.45–0.49)

<0.001 *

High PA 3592/45,831 (7.8) 104,688 3.4
0.31

(0.30–0.32)
<0.001 *

0.31
(0.30–0.32)

<0.001 *

Gender

0.093

Men (n = 21,138)
Low PA 1917/7046 (27.2) 12,757 15.0 1 1

Moderate PA 1112/7046 (15.8) 15,246 7.3
0.51

(0.47–0.55)
<0.001 *

0.51
(0.47–0.55)

<0.001 *

High PA 754/7046 (10.7) 16,382 4.6
0.33

(0.30–0.36)
<0.001 *

0.33
(0.31–0.36)

<0.001 *

Women (n = 154,722)
Low PA 10,870/51,574 (21.1) 95,560 11.4 1 1

Moderate PA 5121/51,574 (9.9) 113,827 4.5
0.41

(0.40–0.43)
<0.001 *

0.42
(0.40–0.43)

<0.001 *

High PA 3288/51,574 (6.4) 119,718 2.7
0.26

(0.25–0.27)
<0.001 *

0.26
(0.25–0.27)

<0.001 *

CCI, Charlson comorbidity index; CIs, confidence intervals; DBP, diastolic blood pressure; fx, fracture; HR, hazard
ratio; PA, physical activity; PY, person–year; SBP, systolic blood pressure. * Stratified Cox proportional hazard
model, significance at <0.05 with Bonferroni correction (α = 0.05/3). 1 Stratified by gender, age, income within
household unit, and region of residence. 2 Adjusted for total cholesterol, SBP, DBP, fasting blood glucose, obesity,
smoking, alcohol consumption, and CCI score.

The adjusted HR (95% CIs) for hip fx in the ‘high PA’ group was 0.37 (0.34–0.40)
and in the ‘moderate PA’ group was 0.51 (0.47–0.55) compared to ‘low PA’. In analyses of
subgroups defined by age and gender, the findings were consistent with the above findings
in all subgroups (Table 3).

The adjusted HR (95% CIs) for distal radius fx in the ‘high PA’ group was 0.32
(0.30–0.33) and in the ‘moderate PA’ group was 0.46 (0.45–0.48) compared to the ‘low PA’
group. In analyses of subgroups defined by age and gender, the findings were consistent
with the above findings in all subgroups (Table 4).
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Table 3. HR (95% CIs) for hip fx in the PA groups with subgroup analyses according to age
and gender.

Characteristics
No. of Hip fx/

No. of
Participants

Follow-up
Duration,

PY

Incidence
Rate,

per 100 PY

Hazard Ratios for Hip fx p for
Interac-

tionCrude 1 p-Value Adjusted 1,2 p-Value

Total participants (n = 175,860)
Low PA 2048/58,620 (3.5) 139,819 1.5 1 1

Moderate PA 984/58,620 (1.7) 142,750 0.7 0.47 (0.44–0.51) <0.001 *
0.51

(0.47–0.55)
<0.001 *

High PA 687/58,620 (1.2) 143,707 0.5 0.33 (0.30–0.36) <0.001 *
0.37

(0.34–0.40)
<0.001 *

Age group

<0.001 *

Age < 65 years old (n = 38,367)
Low PA 230/12,789 (1.8) 31,829 0.7 1 1

Moderate PA 81/12,789 (0.6) 32,213 0.3 0.33 (0.28–0.39) <0.001 *
0.35

(0.30–0.42)
<0.001 *

High PA 53/12,789 (0.4) 32,338 0.2 0.20 (0.17–0.25) <0.001 *
0.23

(0.18–0.28)
<0.001 *

Age ≥ 65 years old (n = 137,493)
Low PA 1818/45,831 (4.0) 107,990 1.7 1 1

Moderate PA 903/45,831 (2.0) 110,537 0.8 0.52 (0.47–0.56) <0.001 *
0.56

(0.51–0.61)
<0.001 *

High PA 634/45,831 (1.4) 111,369 0.6 0.37 (0.34–0.41) <0.001 *
0.42

(0.38–0.46)
<0.001 *

Gender

0.009 *

Men (n = 21,138)
Low PA 554/7046 (7.9) 16,666 3.3 1 1

Moderate PA 311/7046 (4.4) 17,311 1.8 0.54 (0.47–0.63) <0.001 *
0.59

(0.51–0.68)
<0.001 *

High PA 199/7046 (2.8) 17,630 1.1 0.35 (0.30–0.41) <0.001 *
0.40

(0.34–0.47)
<0.001 *

Women (n = 154,722)
Low PA 1494/51,574 (2.9) 123,153 1.2 1 1

Moderate PA 673/51,574 (1.3) 125,439 0.5 0.44 (0.40–0.48) <0.001 *
0.48

(0.43–0.52)
<0.001 *

High PA 488/51,574 (1.0) 126,077 0.4 0.32 (0.29–0.35) <0.001 *
0.35

(0.32–0.39)
<0.001 *

CCI, Charlson comorbidity index; CIs, confidence intervals; DBP, diastolic blood pressure; fx, fracture; HR, hazard
ratio; PA, physical activity; PY, person–year; SBP, systolic blood pressure. * Stratified Cox proportional hazard
model, significance at <0.05 with Bonferroni correction (α = 0.05/3). 1 Stratified by gender, age, income within
household unit, and region of residence. 2 Adjusted for total cholesterol, SBP, DBP, fasting blood glucose, obesity,
smoking, alcohol consumption, and CCI score.

In other subgroup analyses, the findings were also consistent with the above findings
in all subgroups for each fx (Supplementary Tables S1–S3).
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Table 4. HR (95% CIs) for distal radius fx in the PA groups with subgroup analyses according to age
and gender.

Characteristics

No. of
Distal Radius fx/

No. of
Participants

Follow-Up
Duration,

PY

Incidence
Rate,

per 100 PY

Hazard Ratios for Distal Radius fx p for
Interac-

tionCrude 1 p-Value Adjusted 1,2 p-Value

Total participants (n = 175,860)
Low PA 8119/58,620 (13.9) 119,633 6.8 1 1

Moderate PA 4229/58,620 (7.2) 132,804 3.2 0.48 (0.46–0.50) <0.001 *
0.46

(0.45–0.48)
<0.001 *

High PA 2991/58,620 (5.1) 137,923 2.2 0.33 (0.32–0.34) <0.001 *
0.32

(0.30–0.33)
<0.001 *

Age group

<0.001 *

Age < 65 years old (n = 38,367)
Low PA 2812/12,789 (22.0) 23,162 12.1 1 1

Moderate PA 1332/12,789 (10.4) 28,389 4.7 0.42 (0.40–0.44) <0.001 *
0.41

(0.39–0.43)
<0.001 *

High PA 898/12,789 (7.0) 30,308 3.0 0.27 (0.26–0.29) <0.001 *
0.26

(0.25–0.28)
<0.001 *

Age ≥ 65 years old (n = 137,493)
Low PA 5307/45,831 (11.6) 96,471 5.5 1 1

Moderate PA 2897/45,831 (6.3) 104,415 2.8 0.57 (0.54–0.60) <0.001 *
0.55

(0.52–0.58)
<0.001 *

High PA 2093/45,831 (4.6) 107,615 1.9 0.42 (0.39–0.45) <0.001 *
0.40

(0.38–0.43)
<0.001 *

Gender

0.008 *

Men (n = 21,138)
Low PA 403/7046 (5.7) 16,895 2.4 1 1

Moderate PA 282/7046 (4.0) 17,269 1.6 0.69 (0.59–0.81) <0.001 *
0.66

(0.57–0.77)
<0.001 *

High PA 212/7046 (3.0) 17,539 1.2 0.52 (0.44–0.61) <0.001 *
0.49

(0.41–0.58)
<0.001 *

Women (n = 154,722)
Low PA 7716/51,574 (15.0) 102,738 7.5 1 1

Moderate PA 3947/51,574 (7.7) 115,535 3.4 0.47 (0.45–0.49) <0.001 *
0.45

(0.44–0.47)
<0.001 *

High PA 2779/51,574 (5.4) 120,384 2.3 0.32 (0.31–0.33) <0.001 *
0.31

(0.29–0.32)
<0.001 *

CCI, Charlson comorbidity index; CIs, confidence intervals; DBP, diastolic blood pressure; fx, fracture; HR, hazard
ratio; PA, physical activity; PY, person–year; SBP, systolic blood pressure. * Stratified Cox proportional hazard
model, significance at <0.05 with Bonferroni correction (α = 0.05/3). 1 Stratified by gender, age, income within
household unit, and region of residence. 2 Adjusted for total cholesterol, SBP, DBP, fasting blood glucose, obesity,
smoking, alcohol consumption, and CCI score.

4. Discussion

We confirmed the association between the intensity of PA and the occurrence of each
osteoporotic fx in subjects with osteoporosis using the NHIS customized data. Based
on our results, the higher the intensity of PA is, the lower the rate of occurrence of each
osteoporotic fx. The findings were consistent across all subgroup analyses.

According to previous studies, PA is likely to influence the fx risk. One such study
that reviewed randomized controlled trials (RCTs) reported that exercise improved BMD
or decreased fall risk to prevent fx risks in postmenopausal women with osteoporo-
sis [12]. Among the RCT studies, one study with 52-week intervention in postmenopausal
women with osteoporosis reported that the adjusted mean difference in hip total BMD
in the exercise group compared to the control group was 0.012 (95% CI = 0.002 to 0.022,
p < 0.05) [13]. In another study with a 24-week intervention in postmenopausal women
with osteopenia, the change in femoral neck BMD was −1.3 ± 2.7% and 3.1 ± 4.6% in the
control group and in the exercise group, respectively (p = 0.001) [15]. However, few studies
for an association between PA and vertebral fx or distal radius fx in osteoporosis in the
RCT study have been performed. Instead, some studies have demonstrated that the type of
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exercise differently affects BMD in the spine [25,26]. Furthermore, no RCT studies were
found with fx as the endpoint.

On the other hand, a meta-analysis study using prospective cohort studies suggested
that PA could prevent hip fx (relative risk = 0.62, 95% CI = 0.56–0.69 for women; relative
risk = 0.55, 95% CI = 0.44–0.69 for men) [16]. Another meta-analysis of cohort studies also
suggested that leisure PA could reduce the risk of hip fx in older women (relative risk =
0.93, 95% CI = 0.91–0.96) [17]. However, no association was found between PA and the risk
of distal radius fx or vertebral fx in previous studies. Furthermore, no observational study
has used osteoporotic patients as their target study population.

In our study, using the NHIS customized database, we selected osteoporotic men
and women who were at risk of osteoporotic fxs, and we examined osteoporotic fxs as
the primary endpoint. Due to the large sample size and high statistical power of our
study, we found an inverse association between PA intensity and all types of osteoporotic
fxs in patients with osteoporosis. Moreover, we found associations according to specific
characteristics, such as age and gender due to the large sample size.

Although a high intensity of PA might be considered to be a risk factor for falls and fxs
in osteoporosis patients, increasing evidence has demonstrated that increasing PA could
prevent fxs, actually reducing falls by resistance and balance training and increased BMD.
One review study found that exercise reduced the incidence of one or more fall-related
fxs in 10 RCTs (risk ratio = 0.73, 95% CIs = 0.56–0.95). Specifically, the best exercises for
reducing falls were balance and functional exercises, such as Tai Chi, and multiple other
types of exercise [27]. One of the recommendations of an international panel was that
individuals with osteoporosis or osteoporotic vertebral fxs should not perform aerobic PA
without resistance and balance PA to prevent falls [28]. Exercises that use body weight or
other forms of weight, including resistance training and cycling, are the major reasons why
increased PA could lead to higher BMD [29].

We hypothesized that participants might have a higher fx risk if they first started
moderate- to high-intensity PA after the onset of osteoporosis. Therefore, additional
subgroup analyses were performed for subgroups defined by previous PA intensity before
the onset of osteoporosis in subjects for whom previous PA information was available.
Surprisingly, the findings were all consistent with the main findings (Supplementary
Table S4). Hence, a higher intensity of PA does not seem to be a risk factor for osteoporotic
diseases, regardless of whether the participants were not active in PAs prior to the diagnosis
of osteoporosis.

Although our study findings show that a higher intensity of PA lowered each osteo-
porotic fx in osteoporosis, the findings should be cautiously interpreted on the basis of
previous studies. Obviously, falls are one of the major risk factors for fxs [9]. In addi-
tion, functional impairment is likely to be associated with a high risk of fx [30]. Because
data regarding falls or functional impairment was not available in the NHIS customized
database, we could not assess the contribution of those factors in our study. Based on the
results of previous studies and practical knowledge, the intensity and type of PA should be
accounted for depending on the level of functional impairment or risk of falls.

Several limitations of our study mainly regarding using the secondary data should
be noted. Some variables were not available, including the history of falls, functional
impairment, and dietary intake with supplement intake, including vitamin D and calcium
intake. Moreover, in defining the PA groups, the METs were limited because the variable
related to time of walking and moderate activity was collected as binary (≥30 min or not),
and the variable for vigorous activity was also binary (≥20 min or not). In addition, the
association between specific types of PA and fxs in osteoporosis could not be determined
from the data. In addition, not only were specific BMD values not available for each
participant, but BMD measurements also differed according to the type of instrument in
the hospital. We could not confirm whether the actual osteoporotic fx is or not because we
defined osteoporotic fxs using only ICD-10 codes. Specific medication regarding protective
or affecting bone was not available to adjust in the analysis. Due to the observational study
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design and based on the above limitations, determination of causality between PA and
osteoporotic fxs in osteoporosis should be carefully considered.

The major strength of our study was the use of a national customized database
including data from osteoporotic men and women. Because of the large number of subjects,
matching by gender, age, income within household unit, and region of residence in a
1:1:1 ratio for each PA group was feasible. Moreover, various lifestyle factors and health
indicators, such as alcohol consumption, smoking status, obesity, and CCI scores, were used
as covariates. Therefore, the study was uniquely positioned to demonstrate an association
between PA and osteoporotic fxs in osteoporosis. In addition, 9 years’ worth of follow-up
data were available. Therefore, we had sufficient data to use osteoporotic fxs as endpoints
in our study.

5. Conclusions

The results suggested that a higher intensity of PA was negatively associated with
osteoporotic fxs, including vertebral fx, hip fx, and distal radius fx. In addition, we found
that a higher intensity of PA was negatively associated with each osteoporotic fx under
various conditions.
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region of residence, obesity, smoking, alcohol consumption, total cholesterol, blood pressure, and
fasting blood glucose, Table S3: Subgroup analyses of hazard ratio (95% confidence interval) for
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Abstract: This study aimed to develop a deep learning-based model to simultaneously perform

the objective response (OR) and tumor segmentation for hepatocellular carcinoma (HCC) patients

who underwent transarterial chemoembolization (TACE) treatment. A total of 248 patients from

two hospitals were retrospectively included and divided into the training, internal validation, and

external testing cohort. A network consisting of an encoder pathway, a prediction pathway, and

a segmentation pathway was developed, and named multi-DL (multi-task deep learning), using

contrast-enhanced CT images as input. We compared multi-DL with other deep learning-based

OR prediction and tumor segmentation methods to explore the incremental value of introducing

the interconnected task into a unified network. Additionally, the clinical model was developed

using multivariate logistic regression to predict OR. Results showed that multi-DL could achieve the

highest AUC of 0.871 in OR prediction and the highest dice coefficient of 73.6% in tumor segmentation.

Furthermore, multi-DL can successfully perform the risk stratification that the low-risk and high-risk

patients showed a significant difference in survival (p = 0.006). In conclusion, the proposed method

may provide a useful tool for therapeutic regime selection in clinical practice.

Keywords: treatment outcome; liver neoplasms; deep learning

1. Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality
worldwide, with more than 800,000 deaths reported annually [1–4]. HCC patients at an early
stage are encouraged to perform curative therapies, such as liver resection, transplantation,
and local ablation, observing the prolongation of overall survival (OS) [5,6]. However,
more than half of patients with HCC are already in the intermediate and advanced stage
for the initial diagnosis, and palliative treatment is the first choice [7]. According to the
Barcelona Clinical Liver Cancer (BCLC) staging system, transarterial chemoembolization
(TACE) is used as first-line therapy for patients at stage B. Patients with an objective
response (OR) after the first session of TACE can obtain the survival benefit [8]. However,
some patients still suffer a poor prognosis due to the complex heterogeneity of the tumor
microenvironment [9,10]. Therefore, developing a prediction model for OR and OS of HCC
patients who underwent TACE may have huge clinically significant for managing patients
in this precision medicine era.

At present, several scoring systems have been proposed to predict the outcome of
TACE for HCC patients. For example, Sieghart et al. developed the Assessment for
Retreatment with transarterial chemoembolization (ART) score [11], which integrated
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radiologic tumor response, Child–Pugh increase, and aspartate aminotransferase increase
to perform the staging. Hucke et al. proposed the selection for TACE treatment (STATE)
score [12], measuring the serum-albumin level, tumor load, and C-reactive protein level
to identify patients who were suitable or unsuitable for the first TACE. Furthermore,
Granito et al. recently demonstrated that the post-TACE increase in transaminases could
represent an independent factor for a complete response to TACE in patients with early
and intermediate stage HCC [13]. This study may suggest a simple clinical tool associated
with TACE’s efficacy to improve management and treatment planning. However, these
scores are not widely used in clinical and are limited by the unsatisfied predictive accuracy.
Moreover, researchers introduced quantitative imaging-based methods, such as radiomics
approaches, to predict the OR of the TACE using high-throughput features extracted from
computed tomography (CT) or magnetic resonance imaging (MRI) data [14–16]. Though
these methods achieved considerable predictive ability, they rely on hand-crafted feature
extractors and manual tumor segmentation, where the performance and efficiency can be
further improved.

Machine learning, as a big data-driven approach, is widely used in the medical
field [17], including liver tumor segmentation [18–23] and outcome prediction after TACE
treatment [24–29]. For the former, researchers developed multi-layer convolutional net-
works, fully convolutional networks, and encoder–decoder structures, with which more
and more information contained in images was utilized. For the latter, deeper and deeper
neural networks were applied to extract features from the tumor region, aiming to provide
more accurate outcome prediction. However, existing methods only utilized the deep
neural network to perform a single task, ignoring the combination of these two intercon-
nected tasks: tumor segmentation and outcome prediction. Here, we aimed to develop a
tumor-aware deep neural network for multi-task learning towards both the TACE outcome
prediction and tumor segmentation. We hypothesized that combining these two intercon-
nected tasks in a unified model could behave better than only doing any single one of them.
The network was constructed on a large cohort of HCC patients with TACE treatment and
backed by external testing to demonstrate the effeteness and robustness of the proposed
method.

2. Materials and Methods

2.1. Study Population

This study retrospectively enrolled patients with HCC who underwent TACE between
May 2014 and December 2019 at two hospitals. The whole protocol was approved by
the institutional ethics board, and the written informed consent was waived because of
the retrospective nature of this study. All procedures involving human participants were
performed following the 1975 Helsinki declaration and its later amendments.

In this study, HCC was confirmed by the European Association for the Study of
the Liver (EASL) or the American Association for the Study of Liver Disease (AASLD).
Specifically, the presence of arterial enhancement on contrast-enhanced CT (CECT) or
contrast-enhanced MRI (CEMRI) of a nodule 2 cm or larger with subsequent washout on
the portal or delayed phases was considered the HCC. CEMRI was recommended due to
its high sensitivity [30]. Biopsy was performed if the nodule did not show typical features
in images.

A total of 248 patients have analyzed in this study according to the following inclusion
criteria: (1) age of the patient was equal to or older than 18; (2) BCLC stage A or B;
(3) the CECT was performed within one month before the first session of the TACE; and
(4) follow-up CECT or CEMRI was obtained two months after the treatment to determine
the tumor response to TACE. The exclusion criteria were as follows: (1) other treatments
such as resection, ablation, or transplantation were conducted before TACE; (2) presence
of macrovascular invasion or extrahepatic metastasis; and (3) Child–Pugh C. Patients in
hospital 1 were randomly divided into training and internal validation cohorts, and patients
in hospital 2 were used as the external testing cohort (Figure 1).
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Figure 1. The diagram of the patient inclusion, model construction, and performance evaluation.

Clinical variables for each patient were collected from the medical records, including
4 groups of data: demographics and clinical characteristics variables (sex, age, hepatitis B);
laboratory findings (alpha-fetoprotein (AFP), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), albumin (ALB), prothrombin time (PT), total bilirubin (TBil),
platelet (PLT), Child–Pugh class and BCLC grade); tumor characteristics (tumor number
and tumor size); and treatment and follow-up information.

2.2. TACE Procedure and Follow Up

TACE treatment was decided by two experienced interventional radiologists with more
than 10 years of TACE experience and approved by the patients. The TACE procedure was
guided using digital subtraction angiography (Philips, type FD 20 1250 mA, Amsterdam,
Netherlands). A 5-Fr micro-catheter (Terumo, Tokyo, Japan) was used to assess the feeding
artery. Superselective embolization of the artery directly supplying the tumor was carried
out with a microcatheter whenever necessary. Emulsion, which consisted of 10–20 mL
lipiodol, 30–50 mg lobaplatin, and 20–40 mg epirubicin was injected slowly until the
offending vessel occluded [31,32].

To determine the subsequent treatment, the CECT or CEMRI were conducted 4–8 weeks
after TACE to evaluate the effectiveness and the tumor status. TACE can be discontinued
when the residual tumor or new lesions are not found. In comparison, the patient can choose
the “on-demand” TACE procedure with the presence of the vital tumor or recurrence.

The OR of TACE was determined by two interventional radiologists with more than
6 years of TACE operation experience according to the post-operative CECT with modi-
fied Response Evaluation Criteria in Solid Tumors (mRECIST) criteria, as recommended
in [33]. Four categories of outcome were defined, including complete response (CR), partial
response (PR), stable disease (SD), and progression disease (PD). CR and PR can be further
classified into objective response (OR) group, while SD and PD were classified into non-
response (Non-OR) group [34,35]. OS was defined as the period between the initial TACE
treatment and all-cause death.

2.3. Image Acquisition and Pre-Processing

The detailed CECT imaging protocol can be found in Supplementary Materials Note S1. The
arterial phase (AP) and portal venous phase (PP) of CECT images were used in this study.
The normalization of the image was performed using the nearest interpolation method [36]
to obtain 1 × 1 × 1 mm3 spatial resolution and using the Z-score method on the image
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intensity to 0–1 value. Then, the image was processed by the nnUNet [37] to obtain the
initial tumor segmentation. One primary radiologist with 6 years of experience in liver
imaging corrected the segmentation faults, while a secondary radiologist with 10 years of
experience in liver imaging reviewed and adjusted the delineation. All adjustment was
performed on in-house software coded by Python.

2.4. Deep-Learning Model Construction

Here, a tumor-aware deep neural network for multi-task learning was developed to
perform the OR prediction and tumor segmentation. The network was named multi-DL
(multi-task deep learning) and its structure is shown in Figure 2 and Table 1. Inspired by
the previous studies [38,39], we constructed the multi-DL model based on the encoder–
decoder network where the encoder part (encoder pathway in the multi-DL) extracted the
multi-scale information from the inputted images by down-sampling the resolution with
pooling layer. In contrast, the decoder part (segmentation pathway) restored the resolution
of feature maps layer by layer and integrated the multi-scale information through the skip
connection. This encoder–decoder architecture was widely applied in liver tumor segmen-
tation and showed promising results [18–22]. However, to the best of our knowledge, there
is no relevant work to segment the liver tumor and predict the OR after TACE treatment
simultaneously, which leaves a technique gap to fill. Therefore, we added the prediction
pathway after the encoder pathway in multi-DL to realize the OR prediction in this study.
There were two advantages of combining tumor segmentation and OR prediction into a
unified network: first, existing OR prediction methods had to delineate the tumor region
manually and then ran the algorithm on the image patch, which was time-consuming, while
our multi-DL model can automatically locate the tumor area and generate OR prediction
at the same time; and second, optimizing the tumor segmentation and OR prediction in
the same network can obtain better performance than doing the single task, because these
two tasks were interconnected and shared common characteristics which can be learned
by the deep neural network. Additionally, the network output of the prediction pathway
was a 0–1 value, indicating the probability of OR. The risk score was calculated by 1-OR
probability and then used in the survival analysis to perform the risk stratification.

Figure 2. The structure of the proposed multi-DL (multi-task deep learning) model.
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Table 1. The detailed network structure of multi-DL (multi-task deep learning).

Block Name Layer Parameter

Encoder-1 2 × (Conv2D + BN + LReLU) + Max-pooling
Conv: 3 × 3 × 32 filter, stride 1, same padding;

Pooling: stride 2

Encoder-2 2 × (Conv2D + BN + LReLU) + Max-pooling
Conv: 3 × 3 × 64 filter, stride 1, same padding;

Pooling: stride 2

Encoder-3 2 × (Conv2D + BN + LReLU) + Max-pooling
Conv: 3 × 3 × 128 filter, stride 1, same padding;

Pooling: stride 2

Encoder-4 2 × (Conv2D + BN + LReLU) + Max-pooling
Conv: 3 × 3 × 256 filter, stride 1, same padding;

Pooling: stride 2
Encoder-5 Conv2D + BN + LReLU Conv: 3 × 3 × 128 filter, stride 1, same padding;
Encoder-6 Conv2D + BN + LReLU Conv: 3 × 3 × 64 filter, stride 1, same padding;
Encoder-7 Conv2D + BN + LReLU Conv: 3 × 3 × 32 filter, stride 1, same padding;

Decoder-1 (Conv2D + BN + LReLU) + (DeConv2D + BN + LReLU)
Conv: 3 × 3 × 32 filter, stride 1, same padding;

DeConv: 3 × 3 × 32 filter, stride 2, same padding

Decoder-2 (Conv2D + BN + LReLU) + (DeConv2D + BN + LReLU)
Conv: 3 × 3 × 64 filter, stride 1, same padding;

DeConv: 3 × 3 × 64 filter, stride 2, same padding

Decoder-3 (Conv2D + BN + LReLU) + (DeConv2D + BN + LReLU)
Conv: 3 × 3 × 128 filter, stride 1, same padding;

DeConv: 3 × 3 × 128 filter, stride 2, same padding

Decoder-4 (Conv2D + BN + LReLU) + (DeConv2D + BN + LReLU)
Conv: 3 × 3 × 256 filter, stride 1, same padding;

DeConv: 3 × 3 × 256 filter, stride 2, same padding

To verify the effectiveness of the multi-DL model, we compared the proposed method
with other deep learning methods. For OR prediction, we compared ResNet50 applied in
the study [26] and the single-DL-Pre model constructed of encoder pathway and prediction
pathway. For tumor segmentation, we used the CNN model applied in the study [23] and
encoder–decoder network in the study [18] as the comparison methods.

The loss function of the network was the combination of the cross-entropy loss and
the dice loss [40]. The former was used for OR prediction, and the latter was for tumor
segmentation. Dice similarity coefficient can be defined as follows:

Dice (pre, gt) = 2 × (pre
⋂

gt)/(pre + gt)

where pre denotes the predicted tumor region, gt denotes the ground truth tumor region
and

⋂

denotes the intersection operation.
The model was trained for 200 epochs (the number of passes of the entire training

dataset the deep-learning algorithm has completed) using the Adam optimizer (a widely
used algorithm that modifies the attributes of the neural network, such as weights and
learning rate) [41] with the learning rate of 1 × 103. The implementation of the network was
using the PyTorch framework (version 1.3.0) and Python (version 3.6) on a server equipped
with a 6-core Intel CPU I7-6850K, a GPU TitanXp, and 32 GB memory.

2.5. Clinical Model Construction

The univariate analysis using logistic regression was firstly applied on all clinical
variables, and those with significant differences between OR and non-OR (p < 0.05) were
selected. Then, these variables were included in the multivariate logistic regression analysis
to identify the independent risk factors associated with objective response (p < 0.05). Odds
ratio and 95% confidence interval (CI) were calculated for each risk factor. The clinical
model was constructed using the above independent risk factors using multivariate logistic
regression algorithm [42].

2.6. Efficiency of Automatic Tumor Segmentation

We evaluated the efficiency of introducing automatic tumor segmentation into the
model. Twenty patients were randomly selected from the training cohort and delineated by
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the radiologist, network processing, and network processing plus the manual adjustment.
The averaged processing time was recorded and compared.

2.7. Statistical Analysis

The clinical variable distribution of the patients in the training, internal validation, and
external validation cohorts were compared using Student’s t-test or chi-squared test. For
the OR prediction, performance was evaluated using the receiver operating characteristic
curve (ROC) analysis and the area under the curve (AUC). Quantitative indices including
accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and
negative predictive value (NPV) were also computed with the confusion matrix. Youden’s
J statistic [43] was applied to determine the optimal operating points in ROC analysis.

The DeLong test was used to compare AUCs between different models. Survival
curves were generated using the Kaplan–Meier method, and OS was compared between
low- and high-risk patients with the log-rank test. For the tumor segmentation, the Dice
coefficient and tumor segmentation time were compared using paired Student’s t-test.
All statistical analyses were performed using R (version 4.0.4, Foundation for Statistical
Computing, Vienna, Austria). A two-tailed p-value of less than 0.05 was considered as
statistical significance.

3. Results

Table 2 shows the demographic of HCC patients in training (n = 136), internal val-
idation (n = 50), and external testing cohorts (n = 62) with the mean age of 56.9, 57.9,
and 57.7, respectively. 166 patients (66.9%) were in the BCLC stage B, and most of the
patients (n = 217, 87.5%) were infected with hepatitis B. According to the mRECIST criteria,
patients in OR and Non-OR groups were 82 and 166, respectively. The median follow up
was 22.3 months (IQR: 10.9–28.5 months). There was no difference in distribution among
training, internal validation, and external testing cohorts among all variables. For clinical
variables, BCLC stage, tumor number, and tumor size were significantly associated with
the OR status in the univariate analysis. Then, these three clinical factors were processed
by the multivariate analysis to build the clinical model using the logistic regression model.
Results showed that the BCLC stage, tumor number, and tumor size were independent risk
factors (Table 3).

Figure 3 shows the cross-entropy loss was close to 0.5 and accuracy was close to 0.85
after training of 200 epochs. Performances of different models in differentiation OR and
Non-OR are shown in Figure 4A and Table 4. In the external testing cohort, the AUC of the
multi-DL model was higher than both single-DL-Pre and ResNet50 which only performed
the OR prediction (0.871 vs. 0.858 for single-DL-Pre, p = 0.073 and 0.871 vs. 0.859 for
ResNet50, p = 0.065). Additionally, AUC of multi-DL was higher than the clinical model
(0.871 vs. 0.739) with a significant difference (p < 0.01). Figure 5 shows the confusion
matrices and quantitative indices that multi-DL obtained the highest ACC of 0.839, SEN of
0.857, SPE of 0.829, PPV of 0.720 and NPV of 0.919 among single-DL-Pre (ACC of 0.790,
SEN of 0.762, SPE of 0.805, PPV of 0.667 and NPV of 0.868), ResNet50 (ACC of 0.806, SEN
of 0.810, SPE of 0.805, PPV of 0.680 and NPV of 0.892), and the clinical model (ACC of 0.710,
SEN of 0.714, SPE of 0.707, PPV of 0.556 and NPV of 0.829) in the external testing cohort.
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Table 2. Patient characteristics in the training, internal validation, and external testing cohorts.

Training
(n = 136)

Internal Validation
(n = 50)

External Testing
(n = 62)

p

Mean age (years) 56.9 ± 11.9 57.9 ± 10.9 57.7 ± 13.3 0.831
F/M ratio 14:122 1:49 4:58 0.221

Child–Pugh
class

0.397

A 116 (85.3) 41 (82.0) 48 (77.4)
B 22 (14.7) 9 (18.0) 14 (22.6)

BCLC stage 0.129

A 50 (36.8) 18 (36.0) 14 (22.6)
B 86 (63.2) 32 (64.0) 48 (77.4)

HBV 0.730

Presence 117 (86.0) 45 (90.0) 55 (88.7)
Absence 19 (14.0) 5 (10.0) 7 (11.3)

ALB (g/L) 38.8 ± 4.1 38.2 ± 5.1 38.1 ± 5.8 0.589
ALT (U/mL) 65.7 ± 58.5 77.1 ± 93.8 68.8 ± 76.6 0.630
AST (U/mL) 111.4 ± 235.4 110.8 ± 89.2 125.0 ± 112.7 0.882
PT, seconds 12.2 ± 1.7 12.0 ± 1.0 12.5 ± 1.5 0.188

PLT × 109/L 195.1 ± 78.1 203.8 ± 90.3 205.5 ± 120.0 0.715
TBil (umol/L) 18.6 ± 24.3 16.9 ± 8.1 17.9 ± 13.5 0.869

AFP (ng/mL) 0.202

≤400 71 (52.2) 31 (62.0) 40 (64.5)
>400 65 (47.8) 19 (38.0) 22 (35.5)

Tumor
maximum

diameter (cm)
9.0 ± 3.6 9.3 ± 3.9 9.5 ± 4.4 0.652

Multiple tumors 0.098

Single 54 (39.7) 19 (40.0) 15 (24.2)
Multiple 82 (60.3) 31 (60.0) 47 (75.8)

Tumor response 0.773

OR 44 (32.4) 17 (34.0) 21 (33.9)
Non-OR 92 (67.6) 33 (66.0) 41 (66.1)

Abbreviations: HBV, hepatitis B virus; AFP, alpha fetoprotein; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; ALB, albumin; PT, pro-thrombin time; TBil, total bilirubin; PLT, platelet; OR, objection response.

Figure 3. Training curve of multi-DL. (A) Cross-entropy vs. training epochs. (B) Accuracy vs.
training epochs.
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Table 3. Uni- and multivariable regression analysis of predictors of OR in the training cohort.

Clinical Variables β Odds Ratio (95% CI) p Value β Odds Ratio (95% CI) p Value

Mean age (years) −0.014 0.986 (0.950–1.024) 0.470
Sex (Female/Male) 0.142 1.152 (0.306–4.342) 0.834
Child–Pugh class 0.139 1.150 (0.424–3.120) 0.784

BCLC Stage (B/A) −1.697 0.183 (0.062–0.542) 0.002 * −1.556 0.211 (0.079–0.562) 0.002 *
HBV (Presence/Absence) −0.587 0.556 (0.172–1.792) 0.325

ALB (g/L) −0.033 0.967 (0.864–1.084) 0.567
ALT (U/mL) −0.004 0.996 (0.987–1.004) 0.303
AST (U/mL) 0.000 1.000 (0.996–1.003) 0.759
PT, seconds 0.188 1.206 (0.835–1.743) 0.318

PLT × 109/L 0.004 1.003 (0.997–1.008) 0.371
TBil (umol/L) 0.011 1.011 (0.981–1.041) 0.470

AFP (>400 ng/mL/
≤400 ng/mL)

−0.361 0.697 (0.297–1.634) 0.406

Tumor maximum diameter
(>5 cm/≤5 cm)

−1.399 0.247 (0.073–0.835) 0.024 * −1.654 0.191 (0.065–0.562) 0.003 *

Multiple tumor
(Single/Multiple)

1.298 3.664 (1.222–10.983) 0.020 * 1.059 2.884 (1.071–7.764) 0.036 *

* indicated p < 0.05.

Figure 4. ROCs of OR prediction and risk stratification. (A) ROCs and AUCs of multi-DL, single-DL-
Pre, ResNet50 and clinical model. (B) Survival curve of high- and low-risk patients stratified by the
multi-DL model.
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Table 4. Performance for multi-DL and compared methods.

Method AUC ACC (%) Dice (%)

OR Prediction

Clinical model 0.739 71.0 N/A
ResNet50 [26] 0.859 80.6 N/A
Single-DL-Pre 0.858 70.9 N/A

Tumor Segmentation

CNN [23] N/A N/A 63.2
Encoder–decoder [18] N/A N/A 66.7

Ours

Multi-DL 0.871 83.9 73.6
N/A: Not applicable.

Figure 5. The confusion matrix for the clinical model, ResNet50, single-DL and multi-DL models.
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The predicted OR and Non-OR patients were classified into low- and high-risk groups
with the risk score threshold of 0.5. The survival curves are shown in Figure 4B. The
proposed multi-DL can successfully perform the risk stratification where the low-risk and
high-risk patients showed significantly different survival probability not only in training
(p = 0.005) but also in the internal validation (p = 0.003) and the external testing cohort
(p = 0.006).

Reference tumor segmentation results are shown in Figure 6. Visually, the multi-DL
method can generate a more accurate lesion boundary than CNN and encoder–decoder
methods. For example, in case#1, multi-DL can successfully segment the tiny hollow of
the tumor while other methods failed to restore this detail. In the quantitative analysis
(Table 4), the dice coefficient of the multi-DL method was significantly higher than that
of encoder–decoder (73.6% vs. 66.7%, p = 0.001) and CNN (73.6% vs. 63.2%, p < 0.001),
which was in accordance with the observation result. For the tumor delineation time
comparison, the manual segmentation was much slower than the deep neural network
processing (1.0 s/slice vs. 30.5 s/slice, p < 0.001) and network processing plus manual
adjustment (1.0 s/slice vs. 5.2 s/slice, p < 0.001), which demonstrated the high efficiency of
the proposed method.

Figure 6. Tumor segmentation for three cases with reference manual segmentation, results of multi-
DL, CNN, and encoder–decoder methods.

4. Discussion

In this study, a deep learning-based approach was proposed to simultaneously perform
the accurate OR prediction in HCC patients with TACE treatment and automatically
segment the tumor. The high performance of the proposed multi-DL method demonstrated
combing two interconnected tasks (OR prediction and tumor segmentation) in a unified
model could behave better than the single task.

TACE was a recommended initial treatment for HCC patients who could not receive
the resection or ablation [44]. However, if patients were not appropriately selected, they
could not benefit from the TACE procession, and the OS was not conferred. A previous
study [45] reported that more than half of the patients had no OR to TACE. This ratio was
66.9% in our study, demonstrating the vital importance of the pre-operative prediction
of OR. However, a recent study [46] reported that a restricted mean duration of response
(DOR) might be a better end-point for decision-making. Still, the study only focused on two
real trials with randomized phase 2 screening design, which needed further validations.
Therefore, we chose OR as the end point to perform the prediction, considering the value
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of OR has already been demonstrated for clinical decision-making in routine practice and
clinical trials [47].

Researchers have conducted relevant studies which adopted machine learning to
predict OR after TACE. Abajian et al. used a supervised machine-learning method to
predict the response to TACE and achieved an accuracy of 78%. Mähringer-Kunz et al.
applied the CNN model to perform the survival prediction after TACE, and an accuracy of
77% was obtained. We extended the existing OR prediction framework based on previous
studies by adding the tumor segmentation to form a unified model. In the proposed
network, the encoder extracted and fused the inputted information to generate the latent
feature, which was shared by the prediction and segmentation pathway. Therefore, the
network may focus more on the tumor region and extract more cancer-related information
when the network performed the OR prediction. Thus, multi-DL obtained higher accuracy
in OR prediction (0.839) than ResNet50 (0.806) and the clinical model (0.710). Peng et al.
recently used ResNet50 to predict OR after TACE on a large dataset including 789 patients
and obtained a higher AUC of 0.97, which was higher than ResNet50 in our study (0.86).
We inferred there were two reasons. Firstly, 562 patients’ data were used for training in
Peng’s work, while only 136 patients’ data were used in our study. Large-scale training
data can help the neural network learn more different features, so better results were
obtained. Secondly, all CT images were reconstructed using a medium sharp reconstruction
algorithm with a thickness of 1 mm in Peng’s study. However, in our research, CT images
were collected from picture archiving and communication system (PACS) with DICOM
format. They were reconstructed using different algorithms provided by different CT
vendors and had different resolutions and thicknesses. Though the image pre-processing
was performed in our study, CT images also had variations. Therefore, the neural network
in Peng’s work may learn a relatively simple task while our model had to face a more
complex condition, in which the performance of the model was degraded.

The multi-task learning brought another advantage: the automatic segmentation
of the tumor. The dice of tumor segmentation of the multi-DL model was higher than
compared methods (73.6% vs. 63.2% for CNN and 66.7% for encoder–decoder model) and
showed comparable results to those of other studies. Budak et al. adopted a cascaded
convolutional encoder–decoder neural network for tumor segmentation, which achieved
the dice coefficient of 64.3% [18]. Adding the attention mechanism to U-Net, AHCNet
obtained the dice of 0.734 for liver tumor segmentation on CT images [48]. Chlebus et al.
proposed a fully convolutional neural network with object-based postprocessing for tumor
segmentation and had dice value of 0.72 [20]. In this study, the multi-DL model encoder
was used to extract and fuse the inputted information to generate the latent feature, which
was shared by the prediction and segmentation pathway. Then, when the segmentation
pathway processed the latent feature, the OR-related tumor characteristics such as tumor
size, shape, and location may also benefit tumor segmentation, thus leading to higher
performance than other compared methods. However, some works were reporting higher
dice values for tumor segmentation. For example, Duc et al. proposed a 3D full resolution
U-Net model for liver tumor detection and segmentation, which achieved dice of 0.81 in
the test set. Due to the limitation of computation resources and training data, we adopted
a 2D network in our study. Therefore, the spatial context information cannot be utilized,
leading to degraded performance. In the future, we will explore the 2.5D network to use
the inter-slice information but with less memory assumption [49].

Another point worth discussing was the efficiency of the proposed model. Since one
HCC patient may have dozens of slices containing the tumor, radiologists had to man-
ually delineate many CT images to perform the disease evaluation or surgery planning.
Therefore, 6× or 30× of time reduction (30 s to 5 s or 30 s to 1 s) may significantly im-
prove the efficiency in practice. With this deep-learning algorithm or intelligent software,
interventional radiotherapy procedures can be optimized to reduce the radiation exposure
of patients and interventional radiologists [50]. Additionally, multi-DL had few network
parameters (~1.7 M) compared with ResNet50 (~27 M). Training the neural model with
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many parameters was expensive, requiring more computation resources and training data.
From this perspective, our method had better ease of use because it can be transferred to
other medical centers where the researchers can build their own clinical solutions using
data of a regular size.

There remained some limitations in this study. First, the nature of the retrospective
study may bring bias into the model construction, and a large prospective study with a
longer follow-up period should be conducted. Second, only 2D images were processed
by the neural network, while the spatial context information was not well utilized in
our study [51]. Last but not least, the doxorubicin-loaded drug-eluting beads TACE
(DEB-TACE) was widely used, and it was more cost-effective than the traditional TACE
treatment [52]. Though we have already applied DEB-TACE in these two medical centers,
the number of patients under this treatment was relatively small. In the future, we will
include more patients with DEB-TACE to validate further the robustness and effectiveness
of our proposed multi-DL method.

In conclusion, we developed and validated a multi-task deep learning approach for
OR prediction and tumor segmentation in HCC patients with TACE treatment, backed by
internal and external testing from multiple-center datasets. The high performance of the
proposed method demonstrated that combing these two interconnected tasks in a unified
model could behave better than other compared methods. Furthermore, the proposed
model can successfully stratify the survival risk of HCC patients and may provide a useful
tool of therapeutic regime selection in clinical practice.
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Abstract: Introduction: This study aims to develop a machine learning-based model integrating

clinical and ophthalmic features to predict visual outcomes after transsphenoidal resection of sellar

region tumors. Methods: Adult patients with optic chiasm compression by a sellar region tumor were

examined to develop a model, and an independent retrospective cohort and a prospective cohort

were used to validate our model. Predictors included demographic information, and ophthalmic

and laboratory test results. We defined “recovery” as more than 5% for a p-value in mean deviation

compared with the general population in the follow-up. Seven machine learning classifiers were

employed, and the best-performing algorithm was selected. A decision curve analysis was used to

assess the clinical usefulness of our model by estimating net benefit. We developed a nomogram

based on essential features ranked by the SHAP score. Results: We included 159 patients (57.2%

male), and the mean age was 42.3 years old. Among them, 96 patients were craniopharyngiomas

and 63 patients were pituitary adenomas. Larger tumors (3.3 cm vs. 2.8 cm in tumor height) and

craniopharyngiomas (73.6%) were associated with a worse prognosis (p < 0.001). Eyes with better

outcomes were those with better visual field and thicker ganglion cell layer before operation. The

ensemble model yielded the highest AUC of 0.911 [95% CI, 0.885–0.938], and the corresponding

accuracy was 84.3%, with 0.863 in sensitivity and 0.820 in specificity. The model yielded AUCs

of 0.861 and 0.843 in the two validation cohorts. Our model provided greater net benefit than the

competing extremes of intervening in all or no patients in the decision curve analysis. A model

explanation using SHAP score demonstrated that visual field, ganglion cell layer, tumor height, total

thyroxine, and diagnosis were the most important features in predicting visual outcome. Conclusion:

SHAP score can be a valuable resource for healthcare professionals in identifying patients with a

higher risk of persistent visual deficit. The large-scale and prospective application of the proposed

model would strengthen its clinical utility and universal applicability in practice.

Keywords: pituitary adenoma; craniopharyngioma; optic chiasm; multicenter
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1. Introduction

Pituitary adenomas (PAs) and craniopharyngiomas (CPs) are the most common brain
tumors in the sellar region [1,2]. Patients complain of blurred vision when the tumor grows
beyond the sella and compresses the optic chiasm. Optic nerve decompression by surgical
removal of the lesion may result in visual function normalization in some patients but not
in others [3–6].

The risks associated with persistent visual dysfunction include severe visual field
defects, thin retinal nerve fiber layers, and pituitary macroadenomas. Careful evaluation
of these risks plays a fundamental role in the clinical management of these patients. The
identification of patients at high risk for persistent visual loss may be helpful as patients
could be referred to further visual rehabilitation [7,8] as soon as possible after surgery.
Moreover, it might serve as a cost-effective and straightforward means for preoperative
patient–doctor communication.

Small sample sizes, unquantified outcomes, and partial predictors constitute the
limitations of previous attempts to search for risk factors that predict for visual recovery
after surgery [9–19]. However, the overall accuracy of these scores, along with their
generalizability to external cohorts, remains modest, representing an unmet need for
individualized patient management strategies.

From a clinical standpoint, the poor performance of existing risk scores might be
related to insufficient predictive factors. Machine learning methods might overcome some
of the limitations of current analytical approaches to risk prediction by applying computer
algorithms to large datasets with numerous, multidimensional variables, capturing high-
dimensional, non-linear relationships among clinical features to make data-driven outcome
predictions. The effectiveness of this approach has been shown in several applications of
sellar region tumors, where machine learning was superior in validating traditional risk
stratification tools, including prediction endocrine remission after surgical or radio surgical
treatment of acromegaly [20,21]. Thus, we sought to develop a machine learning-based
model (Prediction of Visual Outcome in Sellar Tumors, PREVOST) integrating clinical and
ophthalmic features to predict visual outcomes after transsphenoidal resection of sellar
region tumors.

2. Methods

2.1. Data Sources

To develop our machine learning models, we used a derivation cohort of 159 adult
patients (≥18 years) with optic chiasm compression by a sellar region tumor with at least
one year of follow-up. All of the patients suffered a visual field defect before surgery
and were treated by transsphenoidal tumor resection and optic decompression in the
Gold Pituitary Joint Unit (GPJU) between January 2019 to January 2021. The GPJU is a
newly established unit that started in 2019 where patients with sellar region tumors are
co-managed by a multidisciplinary team, including neurosurgeons, endocrinologists, and
ophthalmologists. We excluded patients who were subtotally resected or patients who
suffered a post-operation hemorrhage and needed an early emergent surgery. To test the
generatability of our model, we used another retrospective cohort from Neurosurgical
Institute of Fudan University (FNI), where surgeries and ophthalmic assessments were
performed by different groups, to independently validate our model. We further validated
our model in a prospective cohort admitted to GPJU from January 2021 to June 2021.
Informed consent was obtained from patients at the time the data were collected. Predictors
were assessed before surgery, and the outcome was assessed at follow-up. Institutional
Review Board from both centers provided ethical approval. The overall study design is
depicted in Figure 1.
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Figure 1. Overall study design.

2.2. Ophthalmic Examinations

Patients underwent a thorough ophthalmic examination by experienced ophthal-
mologists, including pupil, anterior, and posterior segment examination. Patients with
other ocular diseases were excluded. Static automated perimetry was performed using
the Humphrey 750 Visual Field Analyzer (Zeiss-Humphrey Systems, Dublin, CA, USA)
and a central 30-2 threshold protocol. Fixation loss less than 20%, false-positive error less
than 20%, and false-negative error less than 20% were ensured for a validated visual field.
We documented the mean deviation (MD), pattern standard deviation (PSD), visual field
index (VFI) on the report. The retinal nerve fiber layer (RNFL) thickness and ganglion
cell layer (GCL) thickness were assessed by RTVue (Optovue, Fremont, CA, USA) using
three-dimensional disc and optic nerve head (ONH) protocols.

2.3. Predictor Variables

Predictors were included based on a balance of clinical knowledge, past research, and
likely clinical usefulness. The baseline model comprised visual acuity, MD (decibel, db),
PSD (db), VFI (%), RNFL (µm), and GCL (µm). The full model comprised age (years),
gender (female or male), BMI (kg/ m2), hypertension (yes or no), diabetes mellitus (yes
or no), tumor height on MRI (cm), diagnosis (pituitary adenoma or craniopharyngioma),
hemoglobin (g/L), red blood cell (1012/L), white blood cell (109/L), sodium (mmol/L),
albumin (g/L), creatinine (µmol/L), ACTH (pg/mL), cortisol (µg/dL), prolactin (ng/mL),
free thyroxine (pmol/L), and total thyroxine (nmol/L).

2.4. Outcome

Ophthalmic recovery after surgical decompression was categorized as a binary out-
come according to the 3 to 6 month follow-up (static automated perimetry). Mean deviation
in the follow-up visual field was compared with data from the general population (built-in
data in the Humphrey 750 Visual Field Analyzer), and a p-value was calculated automati-
cally. If the p-value was more than 0.05, we defined the outcome as “recovery”; otherwise,
we defined the outcome as “not recovery”.

2.5. Model Training

We used multiple imputations using chained equations for missing data. Seven
machine learning classifiers—linear absolute shrinkage and selection operator, support
vector machine, linear discriminant analysis, random forest, gradient boosting, neural
network, and ensemble model—were employed to generate seven models for the prediction.
The internal performance was assessed by fivefold cross-validation, by which the dataset
was randomly divided into five even groups and evaluation was performed on one group
at a time using the model built on the remaining 80% of the data. Model performance was
assessed by the mean area under the receiver operating characteristic curve (AUC), and
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the best-performing algorithm was selected. The final algorithm was validated on the two
validation cohorts.

2.6. Calibration

The calibration of the model was assessed graphically with calibration plots. We also
recorded the Brier score, an overall measure of algorithm calibration (scores > 0.25 generally
indicating a poor model).

2.7. Decision Curve Analysis

A decision curve analysis was used to assess the clinical usefulness of our model
by estimating net benefit [22]. The net benefit is a metric of true positives minus false
positives at a given risk threshold. The risk threshold is the amount of tolerable risk before
an intervention is deemed necessary (0.5 in our case). In clinical practice, patients at high
risk of not recovering were likely refered to visual rehabilitation as soon as possible after
surgery. We drew a decision curve plot to visualize the net benefit of our model over
varying risk thresholds compared with intervening in all patients or intervening in no
patients. Classical decision theory proposes that the choice with the greatest net benefit at a
chosen risk threshold should be preferred.

2.8. Feature Importance

To determine the major predictors of outcome, the importance of each feature was
measured from the final model. We used the SHAP (Shapley additive explanations) score,
a game-theoretic approach to explain the output of any machine learning model [23]. It
measures features contributing to pushing the model output from the base value (the
average model output over the training dataset we passed) to the model output.

2.9. Visual Representation

We developed a nomogram, which allows for an interactive exploration of the effect
of risk factors and their combinations on the visual outcome according to their PREVOST
score. The choice of variables for nomograms was based on essential features ranked by
the SHAP score.

2.10. Statistical Analysis

Continuous variables with normal distribution were described as mean and standard
deviation. Continuous variables with non-normal distribution were described as a median
and a range. Categorical variables were described as counts and proportions. We used
the linear mixed-effect models for the comparison with the control to account for intra-
eye correlation. All statistical analyses were completed with R software version 3.4.2 (R
Foundation for Statistical Computing, Vienna, Austria).

3. Results

The training cohort included 159 patients (91 male, 57.2%, Table 1). The mean age was
42.3 years old, and tumor volume was 9.4 (5.0–15.3) cm3. We included 96 patients with
craniopharyngioma and 63 patients with pituitary adenoma in the analysis. Among the
patients with pituitary adenoma, their pathologies [24] consisted of 33 gonadotroph adeno-
mas, 13 corticotroph adenomas, 8 somatotroph adenomas, 6 lactotroph adenomas, 2 null
cell adenomas, and 1 plurihormonal PIT-1 positive adenoma. High-risk adenomas included
13 silent corticotroph adenomas, 4 lactotroph adenomas in men, 3 sparsely granulated
somatotroph adenomas, and 1 plurihormonal PIT-1-positive adenoma. In total, 318 eyes
were included, 172 (54.1%) eyes out of 318 eyes recovered during early follow-up. The
median change in mean deviation after surgery was 40.6% compared with pre-operation.
Larger tumors (3.3 cm vs. 2.8 cm in tumor height, p < 0.001) were associated with worse
prognosis than smaller tumors, and 73.6% of the eyes unrecovered were from patients
with craniopharyngiomas compared with only 26.4% of the eyes unrecovered being from
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patients with PAs (p < 0.001). The laboratory test results were similar between recovered
and unrecovered eyes. Eyes with better outcomes were those with shorter disease duration
(6.0 months vs. 12.0 months, p = 0.002), better MD (−5.0 db vs. −14.6 db, p < 0.001), better
PSD (4.3 db vs. 11.2 db, p < 0.001), and thicker GCL (60.5 µm vs. 56.6 µm, p < 0.001) before
operation. Figure 2 shows the correlation between visual severity, duration of symptoms,
and size of the tumor.

Table 1. Overall characteristics of the cohort.

Overall
N = 159

Unrecovered Eyes
N = 146

Recovered Eyes
N = 172

p

Gender (male) 91 (57.2%) 93 (63.7%) 89 (51.7%) 0.103
Age (years old) 42.3 (16.2) 45.2 (16.5) 39.8 (15.4) 0.023
Body mass index (kg/m2) 24.1 (3.6) 24.3 (3.2) 24.2 (4.3) 0.850
Comorbidities

Hypertension 12 (7.5%) 9 (6.2%) 15 (8.7%) 0.518
Diabetes Mellitus 7 (4.4%) 12 (8.2%) 2 (1.2%) 0.020

Disease duration (months) 8.0 [1.0, 100.0] 12.0 [1.0, 100.0] 6.0 [1.0, 72.0] 0.002
Tumor height (cm) 3.0 (1.0) 3.3 (1.0) 2.8 (0.9) <0.001
Diagnosis <0.001

Pituitary adenomas 63 (39.6%) 40 (27.4%) 86 (50.0%)
Craniopharyngiomas 96 (60.4%) 126 (73.6%) 86 (50.0%)

Laboratory test
Hemoglobin (g/L) 129.4 (15.9) 128.2 (17.3) 130.4 (14.5) 0.349
Red Blood Cell (1012/L) 4.3 (0.5) 4.3 (0.5) 4.3 (0.5) 0.185
White Blood Cell (109/L) 6.6 (2.1) 6.9 (2.2) 6.4 (2.1) 0.117
Sodium (mmol/L) 140.5 (4.7) 140.4 (4.7) 140.7 (4.7) 0.670
Albumin (g/L) 43.2 (5.15) 42.8 (5.9) 43.7 (4.4) 0.239
Creatinine (µmol/L) 68.1 (15.3) 68.9 (16.7) 67.4 (14.1) 0.386
ACTH (pg/mL) 25.1 [1.1, 197.8] 23.9 [1.1, 197.8] 28.1 [3.5, 92.5] 0.936
Cortisol (µg/dL) 7.6 [0.05, 21.4] 6.6 [0.05, 48.8] 8.4 [0.1, 104.6] 0.099
Prolactin (ng/mL) 24.7 [0.4, 470.0] 21.7 [0.5, 470.0] 26.6 [0.4, 470.0] 0.052
Free Thyroxine (pmol/L) 13.8 (4.5) 13.4 (4.8) 14.2 (4.2) 0.252
Total Thyroxine (nmol/L) 80.3 (22.1) 78.9 (23.8) 81.5 (20.6) 0.429

Ophthalmology
Visual acuity 0.6 [0.1, 1.0] 0.6 [0.1, 1.0] 0.8 [0.1, 1.0] 0.784
Visual field

Mean deviation (db) −8.0 [−34.2, 1.3] −14.6 [−34.2, −0.1] −5.0 [−32.5, 1.3] <0.001
Pattern standard deviation (db) 7.4 [1.1, 17.7] 11.2 [1.1, 17.7] 4.3 [1.1, 17.3] <0.001
Visual field index 70.8 (28.3) 58.7 (29.6) 81.0 (22.5) <0.001

Retinal Nerve Fiber Layer (µm) 96.2 (33.2) 91.9 (44.5) 99.8 (18.2) 0.163
Ganglion Cell Layer (µm) 58.7 (7.1) 56.6 (7.6) 60.5 (6.1) <0.001

Furthermore, we looked at the difference between craniopharyngiomas and pituitary
adenomas (Table 2). For the ophthalmological tests, the baseline mean deviation was −8.8
[−17.2–−4.0] db in the left eye and −7.8 [−15.9–−3.3] db in the right eye. Overall, though
baseline ophthalmic examinations were similar for patients with CPs and PAs, PAs were
associated with better prognoses.

Among all of the algorithms trained (Table 3), the ensemble model integrating all algo-
rithms yielded the highest AUC: 0.911 [95%CI, 0.885–0.938]. The corresponding accuracy
was 84.3%, with 0.863 in sensitivity and 0.820 in specificity. The random forest model and
gradient boost model ranked second and third best regarding model performance.
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Figure 2. The correlation between visual severity, duration of symptoms, and size of the tumor.
H: tumor height; L: tumor length; W: tumor width; VA: visual acuity; GCL: ganglion cell layer;
VFI: visual field index; MD: mean deviation; PSD: pattern standard deviation.

Table 2. Ophthalmic examinations in patients with different diagnoses and different eyes.

Overall
N = 159

Craniopharyngioma
N = 96

Pituitary Adenoma
N = 63

p

Visual acuity
Left 0.6 [0.1, 1.0] 0.7 [0.1, 1.0] 0.2 [0.1, 1.0] 0.017
Right 0.6 [0.1, 1.0] 0.8 [0.1, 1.0] 0.5 [0.1, 1.0] 0.189

Visual field
Left

Mean Deviation (db) −8.8 [−34.2, 1.1] −9.1 [−32.5, 0.1] −7.8 [−34.2, 1.1] 0.503
Pattern Standard Deviation (db) 7.4 [1.1, 17.3] 6.0 [1.2, 16.9] 9.1 [1.1, 17.3] 0.477
Visual Field Index 69.5 (29.0) 67.5 (31.2) 72.5 (25.3) 0.288

Right
Mean Deviation (db) −7.8 [−32.0, 1.3] −8.6 [−32.0, 0.0] −6.7 [−29.7, 1.3] 0.129
Pattern Standard Deviation (db) 7.5 [1.1, 17.7] 7.6 [1.1, 16.8] 6.5 [1.1, 17.7] 0.586
Visual Field Index 72.1 (27.6) 69.9 (28.8) 75.4 (25.6) 0.222

Ganglion cell layer (µm)
Left 58.5 (7.0) 58.9 (7.5) 57.7 (6.3) 0.290
Right 58.9 (7.1) 58.9 (7.5) 59.1 (6.4) 0.874

Retinal nerve fiber layer (µm)
Left 99.4 (33.2) 98.3 (40.9) 101.1 (15.6) 0.609
Right 93.0 (33.0) 96.1 (38.1) 88.2 (22.5) 0.139

Recovered eyes
Left 84 (52.8%) 42 (43.8%) 42 (66.7%) 0.008
Right 88 (55.3%) 44 (45.8%) 44 (69.8%) 0.005

We tested the model performance in two independent cohorts (Table 4). The cohorts
include retrospectively collected data from FNI and prospectively collected data from GPJU.
Patients in the FNI cohort had larger tumor and worse visual function than those in our
training cohort. However, patients in the prospective GPJU cohort had smaller tumors and
better visual function than those in our training cohort. The trained ensemble model yielded
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AUCs of 0.861 and 0.843 in the retrospective FNI and prospective GPJU validation cohorts,
respectively. The corresponding accuracies, sensitivities, and specificities were 86.4%,
0.842, and 0.880 and 85.0%, 0.875, and 0.833 for the two validation cohorts, respectively
(Table 3). The true-positive, true-negative, false-positive, and false-negative predictions in
the training and independent validation cohorts are listed in Figure 3. Most cases can be
correctly classified.

Table 3. Model performance using different algorithms.

AUC Accuracy Sensitivity Specificity

Training cohort (fivefold cross validation)
GPJU retrospective cohort

LASSO
0.854

[95% CI, 0.807–0.901]
0.777 0.759 0.792

Support Vector Machine
0.875

[95% CI, 0.824–0.927]
0.786 0.764 0.806

Linear Discriminant Analysis
0.846

[95% CI, 0.794–0.897]
0.774 0.761 0.784

Random Forest
0.901

[95% CI, 0.880–0.921]
0.837 0.809 0.861

Gradient Boosting
0.889

[95% CI, 0.862–0.901]
0.799 0.789 0.807

Neural Network
0.858

[95% CI, 0.816–0.900]
0.780 0.757 0.800

Ensemble Model
0.911

[95% CI, 0.885–0.938]
0.843 0.863 0.820

Independent cohort
FNI retrospective cohort 0.861 0.864 0.842 0.880
GPJU prospective cohort 0.843 0.850 0.875 0.833

FNI: Fudan Neurosurgical Institute. GPJU: Gold Pituitary Joint Unit.

Table 4. Comparison among three cohorts.

Retrospective GPJU
N = 159

Retrospective
FNI

N = 22

Prospective
GPJU
N = 20

Gender (male) 91 (57.2%) 17 (%) 8 (51.7%)
Age (years old) 42.3 (16.2) 41.4 (16.5) 39.0 (14.5)
Tumor height (cm) 3.0 [1.0–6.0] 3.5 [1.0–5.5] 2.4 [1.0–5.8]
Diagnosis

Pituitary adenomas 63 (39.6%) 22 (100.0%) 15 (75.0%)
Craniopharyngiomas 96 (60.4%) 0 (0.0%) 5 (25.0%)

Ophthalmology
Visual acuity 0.6 [0.1, 1.0] 0.4 [0.1, 1.0] 0.6 [0.1, 1.0]
Visual field

Mean deviation (db) −8.0 [−34.2, 1.3] −14.3 [−29.0, 0.0] −5.4 [−30.7, 0.4]
Pattern standard deviation (db) 7.4 [1.1, 17.7] 12.0 [1.0, 18.8] 3.8 [1.4, 16.6]
Visual field index (%) 70.8 (28.3) 56.0 (27.0) 90.0 (27.0)
Retinal Nerve Fiber Layer (µm) 96.2 (33.2) 95.8 (16.3) 103.5 (53.0)

Ganglion Cell Layer (µm) 58.7 (7.1) 87.7 (10.3) 60.2 (8.5)
Outcome: recovered 54.1% 56.8% 60.0%

FNI: Fudan Neurosurgical Institute. GPJU: Gold Pituitary Joint Unit.
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Figure 3. Confusion matrix in the training and validation cohorts.

We investigated the utility of our model by plotting a decision support curve. The
curve presented that the net benefit of our full model was higher than the non-model or
model only using the visual field as the predictor (baseline model). PREVOST provided
greater net benefit than the competing extremes of intervening in all patients or none
(Figure 4A). At most risk thresholds greater than 0.1, the full model provided significant
improvement in net benefit compared with the baseline model. Moreover, the model
showed good calibration with low Brier scores (0.055; Figure 4B).

Figure 4. Decision support curve and calibration plot. (A) The curve presented that the net benefit of
our full model was higher than the non-model or model only using the visual field as the predictor
(baseline model). Standardized net benefit is a measure of utility that calculates a weighted sum of
true positives and false positives, weighted according to the threshold. (B) The model showed good
calibration with an intercept close to 0 and a slope close to 1. The width of the grey area represents
the number of patients at each level of “predicted probability of recovery”.

A model explanation using the SHAP score demonstrated that visual field, GCL, tumor
height, total thyroxine, and diagnosis were the most important features in predicting visual
outcome. We illustrate two cases in Figure 5, one recovered and the other unrecovered.
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Figure 5. SHAP score-based model explanation. Every dot in the figure represents a patient. The X-
axis represents the contribution to prediction (SHAP score). The variables were ordered by importance
(width). Red (high) and blue (low) represent the values of the variables, e.g., for Ganglion cell layer,
red means high and blue means low. Two representative cases: a severe visual field and pituitary
macroadenoma contribute to the low probability of recovery (negative output) in Case 1, while a mild
visual field defect, normal ganglion cell layer, and small tumor contribute to the high probability of
recovery (positive output) in Case 2.

We simplified the model using these important features to construct a simple version
during clinical usage. The AUC of the simple model was 0.874 [95%CI, 0.838–0.910], which
was not significantly inferior to that of the original model. We constructed a nomogram
based on the simple model (Figure 6). Physicians can add up corresponding scores using
the graph and can obtain the recovery probability.
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Figure 6. Nomogram for predicting visual outcome after transsphenoidal optic decompression.
Physicians can add up corresponding scores using the graph and can obtain the recovery probability.

4. Discussion

We developed and independently validated PREVOST, which is, to our knowledge, the
first risk-prediction algorithm specifically for visual outcomes in patients with sellar tumors.
PREVOST can predict the risk of persistent visual deterioration from commonly recorded
clinical information and available ophthalmic testing. The internal and external validations
of PREVOST were good, with C statistics greater than 0.80. PREVOST displayed greater
net benefit than alternative strategies across a range of feasible risk thresholds, although
our results show that the full model should be used preferentially at most risk thresholds.

Previous studies have discussed various prognostic factors [9–19] about visual defects
caused by compressive sellar region tumors. Age [5,14,25], duration of visual symptoms
prior to surgery [9,12], whether the adenoma is secreting or non-secreting [25,26], tumor
volume [10,27–29], pre-operative visual field deficit [9,15,19,25,27], retinal nerve fiber layer
thickness [11,17–19,30], optic disc pallor [31–33], and functional MRI [13,16] were possible
predictors discussed in one or several studies. However, these studies used small sample
sizes, unquantified outcomes, or only a few possible predictors. In this study, however, the
predictive model was developed by analyzing risk factors based on multiple factors.

Visual fields are among the most commonly included predictors in existing algorithms
and are well-known contributors to visual risk, so we included them in PREVOST. Gnanal-
ingham et al. [9] studied 41 patients with visual disturbance caused by pituitary adenomas
and found that the extent of the visual recovery was mainly dependent on the preoperative
visual field deficit. Yu et al. concluded that low preoperative mean deviation was one of
the independent influencing factors for improving the visual field after pituitary adenomas
resection [25]. Tuomas et al. also concluded that severe preoperative visual impairment
resulted in poorer postoperative visual outcomes [27]. In accordance with past results, our
study also established the prognostic value of preoperative visual fields. The duration of
visual symptoms was another risk factor in previous studies [9,12], but it was not correlated
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with pre-operative visual function and was also excluded in the simplified model due to
possible recall bias.

The prognostic value of GCL has been previously assessed by several researchers [11,17–19,30].
Maud Jacob et al. [11] evaluated 37 eyes of 19 patients suffering from pituitary adenomas
and found that a lower RNFL thickness was a potent prognostic factor. The findings on
RNFL thickness in our study were similar to the recently published research by Danesh-
Meyer et al. [18], who studied 205 eyes from 107 patients and found that patients with
normal preoperative RNFL thickness showed an increased propensity for visual recovery.

Tumor height was associated with visual recovery in several studies [10,27–29], and
we included it in PREVOST. Blood-based predictors, such as cortisol and ACTH, were
relatively infrequently included in visual risk-prediction algorithms. We found that the
inclusion of blood-based predictors improved all predictive performance metrics. However,
blood-based monitoring might not always be possible, and we found that the simple model
still provided reliable performance estimates.

Patients and clinicians might prefer to tolerate a slightly higher risk threshold when
the proposed intervention could be deemed more burdensome or might increase the risk
of other adverse effects. The risk threshold for our PREVOST model was set to be 0.5.
However, trials of treatments such as visual rehabilitation are scarce in these patients, but
evidence suggests that such treatments might benefit visual outcomes [7,8].

The limitations of the study include non-universal representation and a lack of external
prospective validation. We only included patients with craniopharyngiomas and pituitary
adenomas in our study because these were the two major lesions that produce visual
disturbance. Other cases, such as meningioma, could potentially be added to update the
algorithm in future studies. Though the model was validated in an external cohort, with
the two centers being similar in surgical volume and experience, the generalization of our
model in other institutions is unknown. An external validation of PREVOST on prospective
samples is required since simulation studies have suggested a minimum of 100 outcome
events for an accurate validation analysis.

5. Conclusions

A new prognostic model for visual recovery after trans-sphenoidal sellar region tumor
resection was developed based on an ensemble machine learning analytical approach. The
score can become a valuable resource for healthcare professionals by identifying patients
with a higher risk of persistent visual deficit. The large-scale and prospective application
of the proposed model would strengthen its clinical utility and universal applicability
in practice.
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Abstract: Osteoarthritis (OA) is the most common joint disease associated with pain and disability.

OA patients are at a high risk for venous thrombosis (VTE). Here, we developed an interpretable

machine learning (ML)-based model to predict VTE risk in patients with OA. To establish a predic-

tion model, we used six ML algorithms, of which 35 variables were employed. Recursive feature

elimination (RFE) was used to screen the most related clinical variables associated with VTE. SHapley

additive exPlanations (SHAP) were applied to interpret the ML mode and determine the importance

of the selected features. Overall, 3169 patients with OA (average age: 66.52 ± 7.28 years) were

recruited from Xi’an Honghui Hospital. Of these, 352 and 2817 patients were diagnosed with and

without VTE, respectively. The XGBoost algorithm showed the best performance. According to the

RFE algorithms, 15 variables were retained for further modeling with the XGBoost algorithm. The

top three predictors were Kellgren–Lawrence grade, age, and hypertension. Our study showed that

the XGBoost model with 15 variables has a high potential to predict VTE risk in patients with OA.

Keywords: osteoarthritis; venous thrombosis; VTE risk prediction; machine learning algorithm;

population-based cohort study

1. Introduction

Osteoarthritis (OA) is the most common joint disease worldwide, with an age-associated
increase in both incidence and prevalence [1,2]. It is estimated that approximately
302 million people globally suffer from this disease, and the associated healthcare resources
and financial burden can be substantial [3,4]. OA, a primary cause of pain, disability, and
joint replacement, is characterized by disease affecting the whole joint, including articular
cartilage degradation, synovium and ligament inflammation, and changes to the subchon-
dral bone [5–7]. Despite the symptomatic treatment of pain, stiffness, and swelling, there
are no FDA-approved disease-modifying drugs [8]. As a complex disease, a multitude
of possible etiologies contribute to the development of OA, including obesity, sedentary
lifestyle, trauma, and aging [9–11]. Early prevention and elimination of risk factors are criti-
cal in delaying disease progression [12]. Nevertheless, despite these identifiable underlying
causes, OA still cannot be effectively prevented.

Venous thrombosis is a relatively common and potentially fatal condition in patients,
and an increased risk of VTE has been reported in arthritis, particularly in rheumatic
arthritis (RA) [13–16]. Li et al. reported that RA patients have an increased risk of VTE,
pulmonary embolism, and deep vein thrombosis after diagnosis in comparison with the
general population [17]. This suggests that VTE may play a vital role in chronic and
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systemic inflammatory autoimmune disease. However, the relationship between OA
and VTE has not been elucidated. A recent study in a large population-based cohort
revealed that knee or hip osteoarthritis might increase incident VTE risk to 40% and 80%,
respectively, when compared to those without OA, which may be partly mediated through
joint replacement [18].

Thus, predicting the VTE risk among OA patients is critical to reduce morbidity and
mortality from VTE in OA patients. Machine learning (ML) is a computer-based method of
data analysis that is often used to construct predictive models based on large datasets [19].
In this study, we aimed to develop a model using the ML algorithm to identify those at
high risk of VTE in OA patients

2. Materials and Methods

We performed a single-center cross-sectional study of OA patients in Xi’an Honghui
Hospital between January 2018 and December 2020. Patients were consecutively recruited
from joint surgery department and were examined by venous ultrasound of the legs
to assess VTE risk. The inclusion criteria were as follows: (1) diagnosed with knee os-
teoarthritis (guidelines for the diagnosis and treatment of osteoarthritis (2018 edition)) [20];
(2) radiographically evaluated by X-ray at Kellgren–Lawrence grade stages 3–4. Those with
heart stent, ischemic stroke, cancers, or incomplete laboratory data were excluded from the
study. The study was approved by the Ethics Committee of Xi’an Honghui Hospital and
conducted in accordance with the Declaration of Helsinki. Written informed consent was
waived owing to the retrospective nature of the study. All confidential patient information
was deleted from the entire dataset prior to the analysis.

All patient demographics and laboratory data at admission were extracted manually
from electronic medical records using a standardized case report form.

2.1. Machine Learning Algorithms

To develop machine learning models, 35 parameters were used for the analysis. Before
developing the ML models, laboratory indices, which were continuous variables, were
converted into categorical variables based on their normal range values. In addition, the
patient’s age was treated as a continuous variable, with missing values replaced by median
values. All patients were randomly divided into a training set and test set at a ratio of 8:2.

Six ML algorithms, namely logistic regression (LR), random forest (RF), extreme
gradient boosting (XGBoost), adaptive boosting (AdaBoost), gradient boosting decision
tree (GBDT), and light gradient boosting machine (LGBM), were used to predict the VTE
risk. We used the receiver operating characteristic (ROC) curve as the evaluation metric
to compare the performance of the ML algorithm between the training and testing sets.
The best performance model was chosen, and recursive feature elimination (RFE) was
employed to screen the optimized variable combinations. For model interpretation, the
Shapley additive exPlanations (SHAP) algorithm was used to calculate the Shapley value
of each variable based on game theory to further explain the best performance model.

2.2. Statistical Analysis

All statistical analyses were conducted using Python software (version 3.8). A Fisher’s
exact test or an x2 test was conducted for binary variables, and Student’s t-test was used
for continuous variables. Owing to the imbalance of the dataset, the synthetic minority
oversampling technique (SMOTE) was used to deal with the training set. Six ML algorithms
were used to screen for the best performance prediction model. Using the RFE algorithm,
all variables were filtered one by one to obtain the best combination, which was then
established in a selected ML prediction model. We also used the SHAP algorithm to
interpret and evaluate the optimized model. Statistical significance was set at p ≤ 0.05.
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3. Results

We excluded subjects with missing data and subsequently enrolled 3169 patients
with an average age of 66.52 ± 7.28 years in the study (Figure 1). Of them, 2400 patients
were male and 769 patients were female, accounting for 75.73% and 24.27% of all patients,
respectively. All patients were divided into the VTE and non-VTE groups. There were 352
patients with VTE, with an average age of 68.05 ± 6.84 and 2817 patients without VTE,
with an average age of 66.33 ± 7.31. In the VTE group, 281 patients were male (79.83%) and
71 patients were female (20.17%). In the non-VTE group, 2119 patients were male (75.22%)
and 698 were female (24.78%). The baseline characteristics of patients stratified by VTE are
summarized in Table 1.

≤ 0.05.

 

 

–

Figure 1. Flow chart of patients for enrollment.

Table 1. Characteristics of the patients stratified by VTE or not.

Class a Total
None-Venous
Thrombosis

Venous
Thrombosis

p b

N 3169 2817 352
Age (year) b 66.52 ± 7.28 66.33 ± 7.31 68.05 ± 6.84 <0.001
Gender

Male 2400 (75.73%) 2119 (75.22%) 281 (79.83%) 0.066
Female 769 (24.27%) 698 (24.78%) 71 (20.17%)

Hypertension
No 1730 (54.59%) 1543 (54.77%) 187 (53.12%) 0.597
Yes 1439 (45.41%) 1274 (45.23%) 165 (46.88%)

Diabetes
No 2751 (86.81%) 2437 (86.51%) 314 (89.20%) 0.185
Yes 418 (13.19%) 380 (13.49%) 38 (10.80%)

Coronary
heart disease

No 2207 (69.64%) 1974 (70.07%) 233 (66.19%) 0.152
Yes 962 (30.36%) 843 (29.93%) 119 (33.81%)
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Table 1. Cont.

Class a Total
None-Venous
Thrombosis

Venous
Thrombosis

p b

Kellgren–
Lawrence
grade

0 2269 (71.60%) 1943 (68.97%) 326 (92.61%) <0.001
III 181 (5.71%) 178 (6.32%) 3 (0.85%)
IV 719 (22.69%) 696 (24.71%) 23 (6.54%)

Eosinophil
ratio

Normal Range 2746 (86.65%) 2431 (86.30%) 315 (89.49%) 0.115
Abnormal 423 (13.35%) 386 (13.70%) 37 (10.51%)

Hematocrit
Normal Range 2535 (79.99%) 2254 (80.01%) 281 (79.83%) 0.991
Abnormal 634 (20.01%) 563 (19.99%) 71 (20.17%)

Mean platelet
volume

Normal Range 2782 (87.79%) 2462 (87.40%) 320 (90.91%) 0.070
Abnormal 387 (12.21%) 355 (12.60%) 32 (9.09%)

Thrombocytocrit
Normal Range 2858 (90.19%) 2527 (89.71%) 331 (94.03%) 0.013
Abnormal 311 (9.81%) 290 (10.29%) 21 (5.97%)

platelet-larger
cell ratio

Normal Range 2390 (75.42%) 2112 (74.97%) 278 (78.98%) 0.114
Abnormal 779 (24.58%) 705 (25.03%) 74 (21.02%)

Uric acid
Normal Range 2554 (80.59%) 2261 (80.26%) 293 (83.24%) 0.208
Abnormal 615 (19.41%) 556 (19.74%) 59 (16.76%)

Glucose
Normal Range 2665 (84.10%) 2369 (84.10%) 296 (84.09%) 0.941
Abnormal 504 (15.90%) 448 (15.90%) 56 (15.91%)

Antistreptococcal
hemolysin
“O”

Normal Range 3074 (97.00%) 2726 (96.77%) 348 (98.86%) 0.045
Abnormal 95 (3.00%) 91 (3.23%) 4 (1.14%)

Anti-CCP
antibody

Normal Range 2549 (80.44%) 2255 (80.05%) 294 (83.52%) 0.140
Abnormal 620 (19.56%) 562 (19.95%) 58 (16.48%)

Rheumatoid
factors

Normal Range 2902 (91.57%) 2577 (91.48%) 325 (92.33%) 0.661
Abnormal 267 (8.43%) 240 (8.52%) 27 (7.67%)

a Continuous variable are transformed to dichotomous variables according to their normal range. b Values are
presented as mean ± SD.

The patients were randomly stratified (8:2) into training and testing sets to evaluate
the model performance. Finally, a total of 35 characteristics were enrolled in the six ML
algorithms, including LR, RF, XGBoost, AdaBoost, GBDT, and LGBM, to identify the
model with the best predictive performance. Our results showed that the XGBoost model
demonstrated the best performance, with an area under the curve (AUC) of 0.741 (95%
CI: 0.676, 0.806) (Figure 2A,B). The AUC values of the other models are shown in Table 2.
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hemolysin “O”

 
 

(A) 

 
(B) 

Figure 2. The receiver operating characteristic (ROC) curves of the machine learning models on the
training set (A) and testing set (B).

Table 2. The area under the curve (AUC) of training set and testing set.

Training Set (AUC, 95% CI) Testing Set (AUC, 95% CI)

LR 0.843 (0.832, 0.855) 0.690 (0.620, 0.760)
RF 0.872 (0.862, 0.882) 0.685 (0.618, 0.753)

XGBoost 0.980 (0.977, 0.983) 0.741 (0.676, 0.806)
AdaBoost 0.858 (0.847, 0.868) 0.687 (0.619, 0.755)

GBDT 0.965 (0.960, 0.970) 0.720 (0.656, 0.784)
CatBoost 0.973 (0.969, 0.977) 0.724 (0.657, 0.790)

To further optimize the XGBoost model, the RFE method was used to screen the most
important variables that can predict the VTE risk. Finally, 15 variables were employed to
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establish the final prediction model, and the new XGBoost model showed that the AUC of
the testing dataset was 0.727 (95% CI = 0.662, 0.792) (Figure 3A,B).

 

(A) 

 
 

(B) 

“ ”
–

–
–

Figure 3. Using the RFE method to screen the optimal variables. (A) The most import variables,
screened by the RFE method; (B) The receiver operating characteristic (ROC) curves of XGBoost
model on the training set and testing set.

Interpretation and Evaluation of Machine Learning Model

The SHAP method was also used to interpret the relative importance of each variable
in the XGBoost model. Our results showed that age, eosinophil ratio (EOSR), hemat-
ocrit (HCT), mean platelet volume (MPV), thrombocytocrit (PCT), platelet-larger cell ratio
(P-LCR), uric acid (UA), glucose, antistreptococcal hemolysin “O” (ASO), anti-cyclic cit-
rullinated peptide antibody (ACPA), rheumatoid factor (RF), Kellgren–Lawrence grade
(K–L grade), history of hypertension, diabetes, and coronary artery disease (CAD) were as-
sociated with the risk of VTE in OA patients. Particularly, K–L grade, age, and hypertension
were the three vital variables (Figure 4A,B).
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Ranking of the features’ importance indicated by SHAP analysis

–

used in medical practice, the predictive value is limited due to the “black box” 

Figure 4. Interpretation and Evaluation of Machine Learning Model. (A) SHAP analysis on the
dataset, which shows the 15 most important features and their impact on the model output. Each dot
represents one patient, with blue color meaning the lowest range and red color meaning the highest
range of the feature; (B) Ranking of the features’ importance indicated by SHAP analysis.

4. Discussion

Extensive efforts have been made to delay OA patients progress to the end stage.
In this hospital-based cross-sectional study, we used the ML algorithm to predict VTE
risk in patients with OA. We found that using the XGBoost model with 15 variables can
predict VTE risk in OA patients, and this may have a growing prevalence due to the global
ageing population.

OA is not simply a matter of mechanical damage to the joint but involves several
additional risk factors [21]. Nevertheless, some patients still inevitably rapidly progress to
the end stages [22]. The 11th leading cause of disability worldwide has resulted in a rapid
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increase in orthopedic surgeries over the last few decades [4]. Rather than medication,
lifestyle modification is the most promising avenue for the prevention of OA [3,23]. Many
risk factors, including VTE, have been identified, and these may be partly mediated through
knee or hip replacement. In a large population-based cohort study, Zeng et al. reported
that VTE increased by approximately 40% among individuals with knee OA and by 80%
among individuals with hip OA compared to those without OA [18].

Machine learning is a crucial branch of artificial intelligence that utilizes historical
data to predict the likelihood of a future outcome [24,25]. As a multidisciplinary approach,
ML algorithms are increasingly being utilized to predict outcomes in lower-extremity
total joint arthroplasty [26]. Lu et al. used ML to establish a model to predict surgical
outcomes after non-compartmental knee arthroplasty [27]. Kunze et al. developed machine
learning algorithms based on partially modifiable risk factors for predicting dissatisfaction
after arthroplasty [28]. In this study, we found that the XGBoost algorithm was the best
performing algorithm. In this prediction model, 15 variables were found to be associated
with VTE risk. In addition to the conventional risk factors such as age, hypertension, and
diabetes, our study found that CAD, EOSR, HCT, MPV, PCT, P-LCR, UA, ASO, ACPA,
RF, and Kellgren–Lawrence grade were also correlated with VTE. These have not been
reported elsewhere.

The present study has certain limitations. First, although ML algorithms are widely
used in medical practice, the predictive value is limited due to the “black box” characteristic.
Thus, rather than being used as a clinical judgment tool, an ML algorithm model should be
used as a reference for physicians. Second, all the data analyzed in the present study were
from a single institution, and the imbalance of gender ratio has limited the generalization
of our results. Additionally, because of the nature of an observational study, some unmea-
sured confounding effects may persist; thus, additional validation and assessment of the
relationship between the variables and VTE in OA patients should be performed in a large
population. Nevertheless, despite such limitations, to our knowledge, this is the first study
to use a machine learning method to predict VTE risk in OA patients.

5. Conclusions

In conclusion, we developed a XGBoost model with a high accuracy in the prediction of
VTE risk in patients with OA, which might supply a complementary tool for the screening
of populations at high risk of VTE.
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Abstract: Spontaneous intracerebral hemorrhage (SICH) has been common in China with high

morbidity and mortality rates. This study aims to develop a machine learning (ML)-based predictive

model for the 90-day evaluation after SICH. We retrospectively reviewed 751 patients with SICH

diagnosis and analyzed clinical, radiographic, and laboratory data. A modified Rankin scale (mRS)

of 0–2 was defined as a favorable functional outcome, while an mRS of 3–6 was defined as an

unfavorable functional outcome. We evaluated 90-day functional outcome and mortality to develop

six ML-based predictive models and compared their efficacy with a traditional risk stratification scale,

the intracerebral hemorrhage (ICH) score. The predictive performance was evaluated by the areas

under the receiver operating characteristic curves (AUC). A total of 553 patients (73.6%) reached the

functional outcome at the 3rd month, with the 90-day mortality rate of 10.2%. Logistic regression

(LR) and logistic regression CV (LRCV) showed the best predictive performance for functional

outcome (AUC = 0.890 and 0.887, respectively), and category boosting presented the best predictive

performance for the mortality (AUC = 0.841). Therefore, ML might be of potential assistance in the

prediction of the prognosis of SICH.

Keywords: spontaneous intracerebral hemorrhage (SICH); machine learning; 90-day function out-

come; mortality

1. Introduction

Spontaneous intracerebral hemorrhage (SICH), which accounts for 10–30% of all
strokes, is the most fatal and disabling type of hemorrhage [1–3]. China has one of the high-
est disease burdens of SICH in the world [1,4]. Because of the high disability and mortality
rates of SICH, outcome-prediction models combining clinical presentations, laboratory data
and imaging findings are of great significance and can ensure the optimal care [5]. Several
prognostic tools have been proposed for outcome prediction in intracerebral hemorrhage
(ICH) such as ICH score [6]. These tools are potentially useful for predicting prognosis,
facilitating communication between clinicians, and selecting patients for interventions [7–9].
However, the predictive performance of the 90-day functional outcome and mortality of
these tools remains unknown. Besides, the ICH score only consists of the Glasgow Coma
Scale (GCS), ICH volume, age, location, and intraventricular extension of the hematoma [6].
Recent studies showed that some laboratory results, such as levels of monocytes and lym-
phocytes [10–14], offered potential predictive benefits to the outcome of SICH, suggesting
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that a more accurate model could be made including more variables. Moreover, there is
still no widely recognized tool for predicting the prognosis of Chinese SICH patients [15].

As a type of artificial intelligence, machine learning (ML) has several advantages in
detecting the possible interactions among attributes and may be useful in the identification
of prognostic markers. The key feature of ML is to allow computers to detect underlying
patterns by iteratively learning from data, based on which a new model can be created,
which prevents the influence from the researchers’ intervention. In recent years, ML have
been widely applied to the outcome prediction models for cerebrovascular diseases such
as ischemic stroke [16,17], aneurysmal subarachnoid hemorrhage [18], and arteriovenous
malformations [19]. However, ML-based outcome-prediction models for the SICH in
Chinese patients are still rare. The aim of this study was to develop a prognostic model
with ML methods to predict the functional outcome and mortality in Chinese patients with
SICH according to the initial information on admission to hospital and to compare them
with ICH score, the traditional risk stratification scale.

2. Materials and Methods

2.1. Study Population

We retrospectively reviewed SICH patients admitted to West China Hospital during
a 2-year period, from 1 January 2018, to 31 December 2019. The diagnosis of SICH was
confirmed by head computed tomography (CT) within the first 24 h after admission.

All continuous patients who were diagnosed with SICH during this period and were
followed up for more than 3 months were included for further analysis. Extremely severe
cases whose families refused any therapy after diagnosis were excluded in this study.

2.2. Data Collection

The study was conducted according to the guidelines of the Declaration of Helsinki
and was approved by the Ethics Committee of West China Hospital (protocol code 1.1; 1
July 2017). The data used to develop the ML models were collected from the electronic med-
ical records, including clinical, radiographic, and laboratory variables at the first evaluation.
The demographic information, vital signs, radiographic findings, laboratory results, previ-
ous medical history, and treatments were collected. The first vital signs (body temperature
[BT], heart rate [HR], and blood pressure) after hospital arrival were used. Length of time in
the emergency room (ER) meant the period from when the patient first arrived ER to when
the patients were transferred to the neurosurgery department or the operating room. The
level of consciousness was assessed with GCS. Location of the hematoma (supratentorial,
infratentorial, and both supra- and infratentorial), intraventricular hemorrhage (IVH), and
the initial hematoma volume were evaluated by CT scan independently by two experienced
doctors. The hematoma volume was measured using the ABC/2 method [20], in which A
is the greatest diameter on the largest hemorrhage slice, B is the diameter perpendicular
to A, and C is the approximate number of axial slices with hemorrhage multiplied by the
slice thickness. Levels of complete blood count, blood glucose (BG), triglyceride, total
cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, creati-
nine, uric acid, sodium, chlorine, fibrinogen, and D-dimer were evaluated in the laboratory
of our hospital. Estimated glomerular filtration rate (eGFR) was calculated based on the
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. The previous
medical history, including hypertension, diabetes mellitus (DM), coronary heart disease,
kidney diseases, and pulmonary diseases, was obtained by the patients’ self-reports or the
medical treatment they received.

2.3. In-Hospital Treatments and Outcomes

In-hospital treatments included conservative treatment or surgery (surgical hematoma
evacuation). Generally, patients who had a supratentorial hematoma of ≥30 mL or infraten-
torial hematoma of ≥10 mL were recommended for surgery.
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All patients were followed up for at least 3 months. The primary outcome was the
functional disability at the 3rd month evaluated by the modified Rankin Scale ([mRS] from
0, no functional deficit, to 6, death). An mRS of 0–2 was defined as a favorable functional
outcome, while an mRS of 3–6 was defined as an unfavorable functional outcome in this
study. Survival at the 3rd month was evaluated as the secondary outcome.

2.4. Machine Learning ML Algorithms

Firstly, all candidate variables were tested with univariate analysis.
Subsequently, recursive feature elimination with cross-validation (RFECV) was used to

obtain the best feature combination for each model. RFECV included two parts: recursive
features elimination (RFE) and cross-validation. Given an external estimator, RFE was
used to select features by recursively considering increasingly small sets of features. For
each ML algorithm, firstly, the estimator was trained on the initial set of features which
contained all 41 variables, and the importance of each feature was obtained. Then, the
least important feature was pruned from the current set of features. This procedure was
recursively repeated on the pruned set until the optimal combination of features was got.

Six ML algorithms, which are efficient and widely used methods for the binary clas-
sification, were used in this study. Logistic regression (LR) and LRCV are most wildly
used statistical models which in their basic form use a logistic function to model a binary
dependent variable [21]. LR and LRCV are of high efficiency, especially for analogously
linear datasets, and they are much faster in training models than other ML-based algo-
rithms like support vector machine (SVM) and random forest (RF). SVM is one of the
most robust prediction methods, being based on statistical learning frameworks or the
Vapnik–Chervonenkis theory. It can efficiently perform not only a linear classification but
also a non-linear classification using the kernel trick [22]. RF operates by constructing a
multitude of decision trees at training time. For classification tasks, the output of the RF
is the class selected by most trees [23]. RF is usually flexible and easy to use in various
conditions. Extreme gradient boosting (XGBoost) and category boosting (CatBoost) are
typical and widely used ensemble learning algorithms. Ensemble methods use multiple
learning algorithms to obtain a better predictive performance than that which could be
obtained from any of the constituent learning algorithms alone [24].

In the current study, a five-fold cross-validation was used to build and assess the
LR, LRCV, SVM, RF, XGBoost, and CatBoost models. All samples were divided into five
approximately equally sized subsamples. Four subsamples were used as training data and
the remaining one subsample was retained as the validation set for testing the models. The
process was then repeated five times, with each of the five sub-samples used exactly once
for validation. The five results from the repetition were then averaged to produce a final
estimation. The area under the receiver operator characteristic curve (AUC) was used to
evaluate the predictive performance of each model.

2.5. Comparison to the Intracerebral Hemorrhage (ICH) Score

The ICH score was calculated as described previously [6] based on GCS, ICH volume,
IVH, location of the hematoma, and age. Its performance (AUC) was compared with the
developed ML-based models using a pairwise t-test which was commonly used in the
previous studies to assess the performance [25–27].

2.6. Statistical Analysis

All statistical analyses were performed in Python programming language, version
3.7 (Python Software Foundation). Qualitative data are described as the frequency and
percentage. Fisher’s exact test or Chi-square test were used to compare the categorical
variables in subgroups. Quantitative data were first tested for normality by the D’Agostino–
Pearson test. Normal data are expressed as the mean ± standard deviation (SD), while
non-normal data are displayed as the median and interquartile range (IQR). Student’s t-test
was used for the comparison of normal variables, while the Wilcoxon test was used for the
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comparison of non-normal variables. The performance (AUC) of the different models was
compared using the pairwise t-test. For all the statistical hypothesis, p values < 0.05 were
considered significant.

3. Results

3.1. Patient Characteristics

As shown in Figure 1, a total of 829 patients admitted with the diagnosis of SICH
in our hospital during the 2-year period (from 1 January 2018, to 31 December 2019)
were retrospectively reviewed. Seventy-eight patients were excluded because their family
refused any further therapy after the diagnosis. The remaining 751 patients were further
analyzed. The overall 90-day mortality was 10.2% (n = 76), while 553 patients (73.6%)
presented favorable functional outcome at 90-day follow up. The cohort characteristics
were presented in Table 1. The raw data supporting the conclusions of this article will
be made available by the authors through contacting the corresponding author, without
undue reservation.

Table 1. Clinical characteristics of the patients with spontaneous intracerebral hemorrhage (SICH).

Variables

Functional Outcome Mortality

Favorable
(n = 553)

Unfavorable
(n = 198)

p-Value
Survival
(n = 675)

Death
(n = 76)

p-Value

Demographics

Age, years 54.0 (46.0–66.0) 58.9 (43.7–74.0) 0.004 ** 54.0 (46.0–66.0) 65.5 (52.5–77.0) <0.001 ***

Gender, n (%) 0.70 0.20

Female 189 (74.70%) 64 (25.30%) 232 (92.06%) 20 (7.94%)

Male 364 (73.09%) 134 (26.91%) 443 (88.78%) 56 (11.22%)

Clinical features

Location, n (%) <0.001 *** <0.001 ***

Supratentorial 475 (78.51%) 130 (21.49%) 556 (91.90%) 49 (8.10%)

Infratentorial 72 (58.06%) 52 (41.94%) 106 (85.48%) 18 (14.52%)

Supra and Infra 6 (27.27%) 16 (72.73%) 13 (59.09%) 9 (40.91%)

Initial volume, mL 25.0 (15.0–35.0) 34.9 (19.3–50.5) <0.001 *** 25.0 (15.0–35.0) 35.0 (20.0–46.2) <0.001 ***

IVH, n (%) <0.001 *** 0.001 **

Yes 253 (63.73%) 144 (36.27%) 342 (86.15%) 55 (13.85%)

No 300 (84.75%) 54 (15.25%) 333 (94.07%) 21 (5.93%)

GCS 13 (9–15) 8 (6–8) <0.001 *** 13 (8–15) 7 (4–10) <0.001 ***

Length of time in ER, h 1.08 (0.57–2.35) 1.13 (0.65–2.35) 0.48 1.03 (0.57–2.35) 1.47 (0.85–2.35) 0.02 *

BT, ◦C 36.6 (36.5–36.8) 36.8 (36.5–37.0) <0.001 *** 36.6 (36.5–36.9) 36.8 (36.5–37.0) 0.02 *

HR, bpm 82 (72–92) 86 (75 -102) 0.001 ** 82 (72–93) 94 (80–112) <0.001 ***

Systolic BP, mmHg 165 (144–183) 164 (130–199) 0.48 165 (144–182) 168 (128 -208) 0.18

Diastolic BP, mmHg 96 (82–107) 92 (81–109) 0.10 96 (82–108) 93.5 (78–107) 0.12

Medical history

Hypertension, n (%) 0.48 0.24

Yes 429 (72.96%) 159 (27.04%) 524 (77.63%) 64 (82.89%)

No 124 (76.07%) 39 (23.93%) 151 (22.37%) 12 (15.79%)

DM, n (%) 0.09 0.007 **

Yes 50 (64.94%) 27 (35.06%) 62 (80.52%) 15 (19.48%)

No 503 (74.63%) 171 (25.37%) 613 (90.95%) 61 (9.05%)

Coronary heart disease, n (%) 0.21 0.29

Yes 34 (65.38%) 18 (34.62%) 44 (84.62%) 8 (15.38%)

No 519 (74.25%) 180 (25.75%) 631 (90.27%) 68 (9.73%)

Kidney diseases, n (%) 0.16 0.15

Yes 30 (63.83%) 167 (36.17%) 38 (82.61%) 8 (17.39%)

No 523 (74.29%) 181 (25.71%) 637 (90.35%) 68 (9.65%)
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Table 1. Cont.

Variables

Functional Outcome Mortality

Favorable
(n = 553)

Unfavorable
(n = 198)

p-Value
Survival
(n = 675)

Death
(n = 76)

p-Value

Pulmonary diseases, n (%) 0.07 0.15

Yes 68 (66.02%) 35 (33.98%) 88 (85.44%) 15 (14.56%)

No 485 (74.85%) 163 (25.15%) 587 (90.59%) 61 (9.41%)

Cigarette smoking, n (%) 0.43 0.31

Yes 175 (75.76%) 56 (24.24%) 212 (91.77%) 19 (8.23%)

No 378 (75.76%) 142 (27.31%) 463 (89.04%) 57 (10.96%)

Alcohol consumption, n (%) 0.41 0.76

Yes 170 (75.89%) 54 (24.11%) 203 (90.62%) 21 (9.38%)

No 383 (72.68%) 144 (27.32%) 472 (89.56%) 54 (10.44%)

Family history of stroke, n (%) 0.19 0.74

Yes 11 (57.89%) 8 (42.11%) 18 (94.74%) 1 (5.26%)

No 542 (74.04%) 190 (25.96%) 657 (89.75%) 75 (10.25%)

Coagulative disorders, n (%) 0.05 0.86

Yes 6 (46.15%) 7 (53.85%) 11 (84.62%) 2 (15.38%)

No 547 (74.12%) 191 (25.88%) 664 (89.97%) 74 (10.03%)

Anticoagulation therapy, n (%) 0.19 0.66

Yes 11 (57.89%) 8 (42.11%) 16 (84.21%) 3 (15.79%)

No 542 (74.04%) 190 (25.96%) 659 (90.03%) 73 (9.97%)

Antiplatelet therapy, n (%) 0.61 0.07

Yes 2 (50.00%) 2 (50.00%) 2 (50.00%) 2 (50.00%)

No 551 (73.76%) 196 (26.24%) 673 (90.09%) 74 (9.91%)

Laboratory studies

BG, mmol/L 7.16 (6.07–8.85) 9.25 (7.35–11.64) <0.001 *** 7.38 (6.24–9.41) 9.37 (7.35–12.45) <0.001 ***

Creatinine, µmol/L 69 (56–84) 72 (60–96) 0.004 ** 69 (56–85) 79 (64–116) <0.001 ***

Uric acid, µmol/L 324 (250–407) 338 (257–419) 0.26 321 (250–407) 348 (288–439) 0.03 *

TG, mmol/L 1.14 (0.80–1.72) 1.21 (0.87–1.73) 0.09 1.13 (0.81–1.69) 1.38 (0.88–1.99) 0.03 *

Cholesterol, mmol/L 4.42 (3.78–5.06) 4.34 (3.68–5.06) 0.36 4.40 (3.76–5.06) 4.36 (3.66–5.12) 0.50

HDLC, mmol/L 1.29 (1.03–1.61) 1.33 (1.03–1.66) 0.19 1.30 (1.04–1.63) 1.31 (1.02–1.61) 0.33

LDLC, mmol/L 2.60 (2.08–3.21) 2.51 (1.91–3.24) 0.11 2.60 (2.05–3.21) 2.40 (1.83–3.3) 0.07

Sodium, mmol/L 138.4 (136.1–140.3) 138.3 (134.0–142.6) 0.29 138.4 (136.1–140.4) 137.9 (133.6–142.3) 0.45

Chlorine, mmol/L 101.4 (98.8–104.3) 100.5 (95.5–105.4) 0.002 ** 101.3 (98.6–104.3) 99.6 (94.8–104.4) 0.001 **

eGFR, mL/min 91.0 (87.7–103.5) 91.0 (77.2–100.9) <0.001 *** 91.0 (87.0–103.6) 86.0 (63.6–91.0) <0.001 ***

Platelet, 109 cells/L 170 (129–217) 184 (136–222) 0.12 175 (131–218) 175 (98–252) 0.35

WBC, 109 cells/L 10.11 (7.58–12.99) 11.91 (9.22–15.43) <0.001 *** 10.54 (7.76–13.22) 11.62 (8.24–16.45) 0.006 **

ANC, 109 cells/L 8.43 (5.67–11.25) 10.33 (7.09–13.26) <0.001 *** 8.81 (5.91–11.51) 9.64 (6.17–13.57) 0.03 *

ALC, 109 cells/L 1.09 (0.76–1.48) 1.17 (0.72–1.82) 0.08 1.09 (0.75–1.51) 1.19 (0.73–1.99) 0.06

AMC, 109 cells/L 0.39 (0.26–0.53) 0.42 (0.28–0.62) 0.006 ** 0.4 (0.26–0.54) 0.47 (0.30–0.62) 0.02 *

Hematocrit 0.41 (0.38–0.44) 0.41 (0.37–0.44) 0.29 0.41 (0.38–0.44) 0.42 (0.37–0.44) 0.23

Fibrinogen, g/L 2.77 (2.26–3.41) 2.74 (2.16–3.57) 0.44 2.75 (2.24–3.42) 2.77 (2.28–3.61) 0.27

D-dimer, mg/L FEU 0.64 (0.31–1.94) 1.43 (0.63–2.84) <0.001 *** 0.72 (0.32–2.16) 2.37 (0.80–5.24) <0.001 ***

Treatment, n (%) 0.92 0.74

Surgery 172 (73.19%) 63 (26.81%) 213 (90.64%) 22 (9.36%)

Conservative 381 (73.84%) 135 (26.16%) 462 (89.53%) 54 (10.47%)

* p < 0.05; ** p < 0.01; *** p < 0.001. ANC, absolute neutrophil count; ALC, absolute lymphocyte count; AMC,
absolute monocyte count; BG, blood glucose; BT, body temperature; DM, diabetes mellitus; eGFR, estimated
glomerular filtration rate; ER, emergency room; GCS, Glasgow Coma Scale; HR, heart rate; IVH, intraventricular
hemorrhage; TG, triglyceride; WBC, white blood cell; HDLC, high-density lipoprotein cholesterol; LDLC, low-
density lipoprotein cholesterol.
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Figure 1. Flowchart of SICH patient inclusion and exclusion.

3.2. Predictive Performance of the ML-Based Models

The intact algorithms for all the models with the optimal parameters were shown in
the Supplementary Materials.

Among all the ML-based models, LR and LRCV showed the best predictive perfor-
mance for the functional outcome at the 3rd month (AUC = 0.890 and 0.887, respectively,
Table 2 and Figure 2), followed by CatBoost, XGBoost, RF, and SVM (AUC = 0.871, 0.864,
0.862, 0.849, respectively). In both LR and LRCV models, location of the hematoma, coagu-
lation disorders, AMC, GCS, and intraventricular hemorrhage contributed materially to
the models (Table 3).

The predictive performance for the 90-day mortality was assessed by the similar
method. As shown in Table 2 and Figure 3, CatBoost and LRCV provided the best predictive
performance for the mortality outcome (AUC = 0.841 and 0.844, respectively). The AUCs
of the other four models were as follows: LR, 0.837; XGBoost, 0.820; RF, 0.818; SVM, 0.777.
As shown in Table 3, GCS, Age, D-dimer, and HR contributed largely to CatBoost, while
AMC, location of the hematoma, and history of diabetes mellitus contributed significantly
to LRCV.

Table 2. Predictive performance for the 90-day functional outcome and mortality after spontaneous
intracerebral hemorrhage.

Algorithm
Functional Outcome Mortality

AUC, Mean AUC, 95%CI AUC, Mean AUC, 95% CI

ICH score 0.856 0.827–0.884 0.790 0.712–0.867
LR 0.890 0.858–0.922 0.837 0.780–0.894

LRCV 0.887 0.855–0.920 0.844 0.807–0.881
SVM 0.849 0.804–0.894 0.777 0.720–0.833
RF 0.862 0.813–0.912 0.818 0.718–0.917

XGBoost 0.863 0.815–0.911 0.820 0.741–0.899
CatBoost 0.871 0.829–0.913 0.841 0.774–0.907

AUC, area under the receiver operator characteristic curve; CatBoost, Category Boosting; CI, confidence interval;
ICH, intracerebral hemorrhage; LR, logistic regression; SD, standard deviation; SVM; support vector machine; RF,
random forest; XGBoost, extreme gradient boosting.
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Figure 2. The receiver operating characteristic (ROC) curve of all the six machine learning (ML)-based
models compared with the traditional ICH Score, with respect to predictive performance for the
functional outcome at the third month.

Table 3. List of variables used in the final model.

Algorithm Variables for Functional Outcome a Variables for Mortality a

LR
Coagulation disorders, Location of the
hematoma, GCS, IVH, AMC, BG, BT, D-dimer,
Age, ANC, Chlorine

Location of the hematoma, AMC, GCS, DM, WBC, D-Dimer,
ANC, BG, Age, Chlorine, IVH, HR, Time in ER, BT

LRCV
Coagulation disorders, Location of the
hematoma, AMC, GCS, IVH, BG, ANC, WBC,
D-dimer, Age, BT

AMC, Location of the hematoma, DM, GCS, WBC, ANC, IVH,
D-Dimer, Age, Chlorine, BG, TG, HR, Hematoma volume, BT

SVM b - -

RF
GCS, BG, Hematoma volume, Location of the
hematoma, D-Dimer, IVH

GCS, D-dimer, Age, BG, HR, eGFR, Time in ER, Hematoma
volume, Chlorine, ANC, WBC, Location of the hematoma,
Creatine, Uric acid, TG, BT, IVH, DM

XGBoost
GCS, BG, D-dimer, Location of the hematoma,
eGFR, Hematoma volume, Age, WBC,
Creatine, Chlorine

GCS, D-dimer, Age, WBC, Location of the hematoma, Hematoma
volume, eGFR, HR, Chlorine, Time in ER, Creatine, ANC, TG

CatBoost GCS, BG, D-dimer
GCS, Age, D-dimer, HR, Time in ER, Chlorine, eGFR, Location of
the hematoma, Hematoma volume

a Variables are listed according to the importance. b Because of the mechanism of SVM, the importance of variables
cannot be accessed. AMC, absolute monocyte count; ANC, absolute neutrophil count; BG, blood glucose; BT,
body temperature; CatBoost, Category Boosting; DM, diabetes mellitus; eGFR, estimated glomerular filtration
rate; ER, emergency room; GCS, Glasgow Coma Scale; HR, heart rate; IVH, intraventricular hemorrhage; LR,
logistic regression; RF, random forest; SVM; support vector machine; TG, triglyceride; WBC, white blood cell;
XGBoost, extreme gradient boosting.
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Figure 3. The ROC curve of all the six ML-based models compared with the traditional ICH Score,
with respect to predictive performance for the 90-day mortality at the third month.

3.3. Comparison to ICH Score

As shown in Supplementary Table S1, predictive performance for the functional out-
come of LR (AUC = 0.890, p < 0.001) and LRCV (AUC = 0.887, p = 0.001) were significantly
better than that of ICH score (AUC = 0.856). Besides, CatBoost (AUC = 0.841, p = 0.03) and
XGBoost (AUC = 0.820, p = 0.05) showed significantly better performance to predict the
90-day mortality than ICH score (AUC = 0.790).

4. Discussion

The prognosis prediction of SICH has long been dependent on the ICH score. Recent
studies revealed the promising role of some laboratory results (such as levels of monocytes
and lymphocytes) in the SICH outcome prediction. However, the ICH score, a traditional
and widely-used prognostic predictive method, consists of the GCS, ICH volume, age,
location, and intraventricular extension of the hematoma [6], without involvement of any
laboratory results. In this study, we built distinctive ML-based models to develop a more
accurate model involving multiple variables, in order to predict the 90-day functional
outcome and mortality with better efficacy.

In this study, we developed 6 ML-based models for predicting the outcome of SICH. We
analyzed the clinical characteristics, radiographic results, laboratory results, and previous
medical history of 751 consecutive SICH patients by reviewing their medical records. The
results showed that LR and LRCV were the most accurate models to predict the functional
outcome with an AUC of 0.890 and 0.887, respectively, both of which were significantly
better than that of ICH score. Besides, CatBoost and LRCV showed the best performance in
the prediction of the 90-day mortality (AUC = 0.841 and 0.844, respectively), and they were
also significantly more accurate than ICH score.

Patients with the favorable functional outcome were significantly different from those
with the unfavorable functional outcome in 15 variables, including age (younger), location
of the hematoma (supratentorial), initial hematoma volume (smaller), IVH (without), GCS
(greater), BT (lower), HR (lower), BG (lower), creatinine (lower), chlorine (higher), eGFR
(higher), WBC (lower), absolute neutrophil count (ANC, lower), absolute monocyte count
(AMC, lower), and D-dimer (lower, p = 0.004, <0.001, <0.001, <0.001, <0.001, <0.001, 0.001,
<0.001, 0.004, 0.002, <0.001, <0.001, <0.001, 0.006, <0.001, respectively).

Similar results were shown when considering 90-day mortality (Table 1). Patients who
survived 90 days after SICH were significantly different from the others in age (younger),
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location of the hematoma (supratentorial), hematoma volume (smaller), GCS (higher), time
in ER (shorter), BT (lower), HR (lower), DM (without), BG (lower), creatine (lower), uric
acid (lower), triglyceride (lower), chlorine (higher), eGFR (higher), WBC (lower), ANC
(lower), AMC (lower), and D-dimer (lower).

Both the univariate analysis and the feature importance analysis of the ML-based
models illuminated that the level of the absolute monocyte cells provided a significant
contribution to the prediction of both 90-day mortality and functional outcome. Higher
levels of monocytes indicated a poor outcome of SICH. The recruitment of monocytes is
a key feature of inflammation [28]. In 2016, Morotti et al. [10] illuminated that a higher
level of monocyte on admission was directly associated with a higher risk of hematoma
expansion, which might suggest a more unfavorable outcome. Indeed, many previous
studies concluded that an elevated level of the monocyte was an independent risk factor
for 30-day mortality in SICH patients, suggesting that monocyte level on admission might
help predict the outcome of SICH [11–14], which was consistent with our study. Using
ML technology, the monocyte level was proved to have significant predictive benefit of
the 90-day outcome of SICH, which also suggested that additional knowledge could be
obtained, benefiting from ML algorithms.

In clinical practice, the most widely used risk stratification scale for ICH, the ICH
score, consists of GCS, ICH volume, age, location, and intraventricular extension of the
hematoma [6]. The ICH score predicts the 30-day mortality after ICH. As our results
displayed, some ML-based models performed significantly better than the ICH score in
predicting both 90-day functional outcome and 90-day mortality. Overall, our results
demonstrate how the data mining approach can be used as an alternative to the conven-
tional approach, achieving comparable performance to well accepted prognostic models.

In this study, RFE was used to select the optimal combination of features by recursively
considering smaller and smaller sets of features according to the importance, which enumer-
ated almost all the combinations. Although this method is not so efficient, it is the best way
to improve the performance of the model. Besides RFE, minimum redundancy maximum
relevance (MrMr) and the Boruta algorithm are also efficient and widely-used methods
for feature selection. According to Peng et al., MrMr can use either mutual information,
correlation, or distance/similarity scores to select features. However, this algorithm may
underestimate the importance of each of the seemingly insignificant variables with poor
performance, which may turn significant when organized into ML-based models. Thus,
MrMr is mostly used when variables are categorical. However, there are many quantitative
variables in our datasets. Similar to MrMr, the Boruta algorithm optimizes the combination
of variables by reducing the relevancy between the selected variables and increasing the
relevancy between the variables and outcomes. Although these methods are more efficient
in feature selection, RFE can provide a better performing model by enumeration.

This study has several clinical and methodological implications. Firstly, the factors
which were previously neglected could be discovered. Together with these factors, the
predictive performance could be improved using machine learning approaches. Secondly,
the best model in the present study only contained a small number of variables. Thus, these
models can be used easily in clinical practice to provide an accessible prediction of the
outcome in SICH patients, which helps both the doctors and patients’ families to choose
the optimal management. Based on our studies, online websites were developed [http://
114.251.235.51:1226/ich_recover_predict (accessed on 2 January 2022) for 90-day functional
outcome; http://114.251.235.51:1226/ich_death_predict (accessed on 2 January 2022) for
90-day mortality]. Furthermore, our results eliminated that the predictive performance of
the ML-based models remained high even when plenty of variables were input. Nowadays,
since the electronic medical records are widely used, much larger datasets are needed to
be manipulated in the future. ML algorithms are much more suitable to deal with the
increasing number of variables than the traditional statistical methods.

However, our study had several limitations. First, some patients in critical conditions
were not included in the study because of early withdrawal of care. Second, the sample size
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of our retrospective study may limit the improvement of the model performance. Third,
the primary aim of this study was to predict the 90-day outcome of ICH patients based
on the initial information on admission to hospital, thus serial changes of variables after
admission were not considered. Moreover, external validation is lacking in the present
study, which may restrict the generalizability of our results. Future studies with larger
samples may help provide a higher predictive power.

5. Conclusions

In conclusion, the prediction of functional outcome and mortality after SICH is a
challenge. Our findings suggested that the ML-based model is of high potential. The
CatBoost and LRCV models are of good predictive performance for 90-day mortality
with considerable accuracy, while the LRCV and LR models are of reliable predictive
performance for 90-day functional outcome, all of which were better than ICH score, the
traditional and widely-used risk stratification scale. These models might provide additional
assistance in the prediction of functional outcome or mortality for SICH patients.
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Abstract: Background: Mini-Mental State Examination (MMSE) is the most widely used tool in cog-

nitive screening. Some individuals with normal MMSE scores have extensive cognitive impairment.

Systematic neuropsychological assessment should be performed in these patients. This study aimed

to optimize the systematic neuropsychological test battery (NTB) by machine learning and develop

new classification models for distinguishing mild cognitive impairment (MCI) and dementia among

individuals with MMSE ≥ 26. Methods: 375 participants with MMSE ≥ 26 were assigned a diagnosis

of cognitively unimpaired (CU) (n = 67), MCI (n = 174), or dementia (n = 134). We compared the

performance of five machine learning algorithms, including logistic regression, decision tree, SVM,

XGBoost, and random forest (RF), in identifying MCI and dementia. Results: RF performed best

in identifying MCI and dementia. Six neuropsychological subtests with high-importance features

were selected to form a simplified NTB, and the test time was cut in half. The AUC of the RF model

was 0.89 for distinguishing MCI from CU, and 0.84 for distinguishing dementia from nondementia.

Conclusions: This simplified cognitive assessment model can be useful for the diagnosis of MCI and

dementia in patients with normal MMSE. It not only optimizes the content of cognitive evaluation,

but also improves diagnosis and reduces missed diagnosis.

Keywords: machine learning; dementia; cognitive dysfunction; neuropsychological tests; mental

status and dementia tests

1. Introduction

The prevalence of dementia is rising with the aging of the population, affecting the
quality of life and increasing the burden on society and the family [1]. Mild cognitive
impairment (MCI) is considered a transitional stage between normal aging and dementia,
with a higher risk of developing dementia. The diagnosis of MCI and dementia early has
prognostic value [2,3].

The most widely used screening tool for dementia is the Mini-Mental State Examina-
tion (MMSE) [4], a 30-point instrument that assesses several domains including orientation,
attention, language, memory, and executive function. MMSE has good sensitivity and
specificity for detecting dementia. Creavin et al. reported that in the community, a pooled
sensitivity of 0.85 and specificity of 0.90 at a cut point of 24, and sensitivity of 0.87 and
specificity of 0.82 at a cut point of 25 [5]. Pooled estimates of 15 studies showed a sensi-
tivity of 0.89 and specificity of 0.89 at a cut point of 23 or less or 24 or less [6]. However,
the sensitivity (0.20–0.93) and specificity (0.48–0.93) to detect MCI vary significantly in
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different studies, meaning less consistent estimates for test accuracy [6]. Thus, its ability to
distinguish between cognitively impaired subjects and cognitively unimpaired (CU) adults
is limited [7–9], leading to the possibility that some patients with normal MMSE scores but
cognitive impairment may be missed.

For these individuals with normal MMSE scores, a more comprehensive cognitive
assessment is needed. The systematic neuropsychological test battery (NTB) designed by
the Peking Union Medical College Hospital (PUMCH) consists of more than 20 subtests
to evaluate five cognitive domains: executive function, visuospatial ability, language,
memory, and abstract reasoning and calculation [10]. It takes into account Chinese culture
and language and is suitable for the Chinese elderly to detect MCI and dementia. All
these subtests have been used and validated in the Chinese population, and normative
population data were available. However, administering such a comprehensive battery is
time-consuming.

Recent studies had shown that machine learning (ML) exhibited excellent performance
in identifying MCI and dementia [11–17], but these mostly used biomarker data such as
neuroimaging and CSF components that were expensive technologies [12,13,16]. ML diag-
nostic models based on cognitive data were gradually being applied [11,15,18,19]. Random
forest (RF), an ensemble ML method based on a set of decision trees, has positive signifi-
cance in processing complex neuropsychological data and excellent predictive performance
for the diagnosis of cognitive impairment [15]. Using the feature selection method in RF, we
can determine the importance of features and delete insignificant ones, thereby reducing
the complexity of the NTB.

Therefore, the purpose of this study was to use RF to simplify the NTB and shorten
evaluation time. Several important neuropsychological subtests were selected, and new
RF models were developed to classify CU, MCI, and dementia for people with normal
MMSE scores.

2. Materials and Methods

2.1. Participants

375 (67 CU adults, 174 MCI patients and 134 dementia patients) participants were
enrolled consecutively from the PUMCH dementia cohort, the Dementia Clinic of the
Department of Neurology of PUMCH between May 2009 to April 2021. They received a
detailed clinical evaluation that included medical history taking, physical and neurological
examinations, a systemic of neuropsychological tests, laboratory testing, and neuroimaging
studies (head CT or MRI). The inclusion criteria included MMSE score ≥ 26, with normal
function in motor, sensory, balance, reflex, and ability to complete all neuropsychological
tests. Patients with significant functional disabilities, a history of major psychiatric illness, or
any other central nervous system disorders other than cognitive impairment were excluded.

2.2. Neuropsychological Examinations

Cognitive tests included the Chinese version of the MMSE [20] and the PUMCH
version of Montreal cognitive assessment (MoCA-P) [10]. Previous studies had shown
that MMSE scores were influenced by age, gender, and particularly years of education [9].
Several studies that investigated the normative data of the MMSE in the Chinese population
got different optimal cut-off points ranging from 19 to 26 for dementia screening [9,21,22].
In this study, we defined ≥26 points as normal MMSE scores. A Chinese version of
ADL was used to determine impairment in everyday functioning [23], which was revised
and supplemented according to the scale of Lawton and Brody [24], consisting of eight
activities focused on instrumental ADL (IADL) (including using telephone, shopping, food
preparation, housekeeping, laundry, transportation, managing medications, and handling
finances) and 12 activities focused on the basic ADL (BADL) (e.g., dressing, bathing, eating,
getting in or out of bed, using the toilet and so on). Each item of ADL range from 1 to 4
(1 = can do it myself, 2 = have some difficulty doing but can still do it by myself, 3 = need
help to do it, 4 = cannot do it at all). The lowest ADL score was 20 points, indicating that
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the patient’s ability was completely normal, and the highest was 80 points. The Hospital
Anxiety and Depression (HAD) scale was used to screen for anxiety and depression among
patients [25]. Participants were administered the above assessments as the diagnostic
neuropsychological measures.

All subjects underwent the systemic NTB to evaluate five cognitive domains. These
were: (1) Executive function: category verbal fluency [26], the digit symbol test (DST) [27],
the trail making test A (TMT A) [28], the clock drawing test [8], paired-associate learning
(PAL) of The Clinical Memory Test [29], the block design test of the Aphasia Battery of Chi-
nese [30], and modified Luria three-step task [31]; (2) Visuospatial ability: the block design
test and figure copying of the Aphasia Battery of Chinese [30], the copy of a modified Rey-
Osterrieth figure [32], and gestures imitation; (3) Language: several subtests of the Aphasia
Battery of Chinese including spontaneous speech, auditory comprehension, repetition, and
naming [30]; (4) Memory: PAL, the logical memory test (LMT) of the modified Wechsler
Memory Scale [33], and the auditory verbal learning test-Huashan version (AVLT-H) [34]
were used to assess verbal memory. Nonverbal memory was measured by the modified
Rey-Osterreith with a 10-min free recall; and (5) Abstract reasoning and calculation: sub-
tests of the Wechsler Adult Intelligence Scale including similarities and calculations [27].
All subtests of NTB were not used to assist in making the clinical diagnosis of MCI or
dementia, but as screening tests for machine learning.

2.3. Diagnostic Criteria

A clinical diagnosis of CU, MCI, or dementia was made based on all available informa-
tion including clinical history and neuropsychological measures. MCI and dementia were
diagnosed based on clinical judgment and/or on cognitive test performance according to
the clinical criteria of the National Institute on Aging and the Alzheimer’s Association (NIA-
AA) guidelines [35–37]. Dementia diagnostic criteria included the following: evidence of
decline from a previous level of cognitive performance; cognitive impairment diagnosed
through history-taking and/or cognitive assessment; evidence of impairment in activities
in daily living (ADL score > 23, IADL score > 11). MCI diagnostic criteria included the
following: evidence of decline from a previous level of cognitive performance; no evidence
of impairment in activities in daily living (ADL score ≤ 23, IADL score ≤ 11); not meeting
the criteria for dementia. Subjects in the CU group had no or only mild cognitive decline,
and neuropsychological tests were in the normal range.

2.4. Statistical Analysis

Continuous variables were described as mean ± standard deviation (M ± SD) and
categorical variables as numbers and percentages (n, %). ANOVA with Bonferroni post-
hoc tests or chi-square analysis was applied to detect significant differences between the
different subgroups. A p-value of <0.05 was considered statistically significant. Statistical
analysis was performed by SPSS version 24.0 software (Chicago, IL, USA).

2.5. Machine Learning

We manually extracted 64 features, including basic demographic information (sex,
age, education years, etc.) and neuropsychological scores of NTB. All features were listed
in Supplementary Table S1. At first, we used RF to calculate the importance of all features
and perform feature selection. We tested all features with five-fold cross-validation and
used mean area under the curves (AUC) as the performance metric. Different features
had different importance in diagnosing dementia. Selecting the top-ranked features and
filtering out the bottom-ranked features can simplify the classification process.

Next, other classification models, including logistic regression, decision tree, SVM,
and XGBoost were trained and compared with RF. The performance of various models was
evaluated by accuracy, precision, recall, F1 score, and AUC.

After selecting the features with high importance or the features we were interested in,
5-fold cross-validation was employed to train classification models, and the corresponding
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receiver operating characteristic (ROC) curves were also plotted. For each model, we got
three ROC curves to distinguish CU, MCI, and dementia. The performance of each model
effectiveness was evaluated using the mean ROC of the 5-fold cross-validation, the mean
AUC, sensitivity, and specificity. AUC takes a value between 0 and 1, where AUC = 1
represents perfect diagnostic accuracy. Sensitivity is the true positive rate and specificity is
the true negative rate. Sensitivity and specificity were calculated according to the maximal
Youden’s Index (sensitivity + specificity−1).

Classification models were built by using Python 3.7.9 with the package scikit-learn
0.23.2.

3. Results

3.1. Participants’ Characteristics

375 participants, 161 men and 214 women, aged 65.51 ± 11.46 years, were recruited.
Of these, 67 (17.9%) were CU, 174 (46.4%) had MCI, and 134 (35.7%) had dementia. Table 1
shows the baseline demographic and cognitive profiles of the three groups. The dementia
group was significantly older than the MCI group, and years of education were significantly
higher in the CUs than in the subjects with MCI and dementia. There was no significant
gender difference between the three groups. For MMSE and MoCA-P scores, CU > MCI >
dementia (p < 0.001); for ADL, IADL and BADL, CU = MCI < dementia.

Table 1. Comparison of demographic details and cognitive data among the groups.

Total n = 375 CU n = 67 MCI n = 174
Dementia

n = 134
χ2/F a Post Hoc Tests b,c

Age (years) 65.51 ± 11.46 63.24 ± 12.00 64.16 ± 11.61 68.41 ± 10.44 7.05 ** 1 = 2 < 3
Gender (% female) 214 (57.1%) 43 (64.2%) 99 (56.9%) 72 (53.7%) 1.99 -

Education years 12.28 ± 3.91 13.88 ± 3.34 11.93 ± 3.98 11.96 ± 3.92 6.63 ** 1 > 2 = 3
MMSE 27.80 ± 1.31 28.70 ± 1.17 27.95 ± 1.22 27.15 ± 1.17 40.42 ** 1 > 2 > 3

MoCA-P 24.35 ± 3.08 27.18 ± 1.65 24.64 ± 2.77 22.54 ± 2.82 71.52 ** 1 > 2 > 3
ADL 24.34 ± 4.57 21.78 ± 2.05 22.26 ± 2.53 28.31 ± 4.85 136.32 ** 1 = 2 < 3
IADL 11.39 ± 3.30 9.45 ± 1.82 9.82 ± 1.99 14.39 ± 3.11 160.18 ** 1 = 2 < 3
BADL 12.95 ± 1.92 12.33 ± 0.73 12.45 ± 1.01 13.93 ± 2.69 31.29 ** 1 = 2 < 3

HAD-anxiety 4.66 ± 3.38 4.45 ± 3.15 4.48 ± 3.52 5.01 ± 3.29 1.06 -
HAD-depression 4.88 ± 3.48 4.50 ± 3.50 4.46 ± 3.44 5.64 ± 3.41 4.86 * 1 = 2 < 3

Data were shown as mean ± standard deviation (SD) or frequency (percentage, %). a Test statistic: F = one-way
ANOVA value; χ2 = chi-square test value. b 1: CU group; 2: MCI group; and 3: Dementia group. c Pair-
wise comparisons among the three groups of subjects were conducted using the Bonferroni post hoc tests.
* p < 0.05; ** p < 0.001. Abbreviations: ADL = Activities of Daily Living; BADL = Basic ADL; CU = Cognitively
Unimpaired; HAD = Hospital Anxiety and Depression; IADL = Instrumental ADL; MCI = Mild Cognitive Impair-
ment; MMSE = Mini-Mental State Examination; MoCA-P = PUMCH version of Montreal Cognitive Assessment;
PUMCH = Peking Union Medical College Hospital.

3.2. Assessment of Feature Importance

We extracted all features (64 features) into the RF classification model and calculated
feature importance. ROC analysis for the detection of MCI and dementia and the top
20 features were shown in Figure 1. ROC-AUC of all features for distinguishing MCI from
CU was 0.90 ± 0.04, sensitivity and specificity were 0.89 and 0.77 (Figure 1A), and the most
important feature was PAL-T (total score of the three learning trials of PAL) (Figure 1B).
ROC-AUC of all features for distinguishing dementia from MCI was 0.81 ± 0.07, sensitivity
and specificity were 0.75 and 0.74 (Figure 1C), and the most important feature was AVLT
N5 (the fifth long-delayed free recall trial of AVLT-H) (Figure 1D). ROC-AUC of all features
for distinguishing dementia from non-dementia was 0.87 ± 0.04, sensitivity and specificity
were 0.90 and 0.73 (Figure 1E), and the most important feature was AVLT N5 (Figure 1F).
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Figure 1. Receiver operating characteristic (ROC) curve analysis for the detection of MCI and
dementia and the optimal 20 features. (A) ROC curve of all features for the detection of MCI from
CU. (B) 20 top-ranked features for the detection of MCI from CU. (C) ROC curve of all features for
the detection of dementia from MCI. (D) 20 top-ranked features for the detection of dementia from
MCI. (E) ROC curve of all features for the detection of dementia from non-dementia. (F) 20 top-
ranked features for the detection of dementia from non-dementia. Abbreviations: AVLT N1 = the
first learning trial of AVLT-H (auditory verbal learning test-Huashan version); AVLT N3 = the third
learning trial of AVLT-H; AVLT N4 = the fourth short delayed free recall trial of AVLT-H; AVLT N5 =
the fifth long delayed free recall trial of AVLT-H; AVLT N6 = the sixth delayed category cue recall
trial of AVLT-H; AVLT-L = total score of AVLT N1, N2,and N3; AVLT-T = total score of AVLT N1, N2,
N3, N4 and N5; BDT-T = total score of the block design test; CVF = category verbal fluency; DST =
Digit Symbol Test; HAD = hospital anxiety and depression; LMT N2 = the second story of logical
memory test (LMT); LMT N3 = the third story of LMT; LMT-T = total score of LMT; PAL N1 = The
first learning trial of PAL (paired-associate learning); PAL N1-Simple part = simple word pairs of PAL
N1; PAL N2 = The second learning trial of PAL; PAL N2-Difficult part = difficult word pairs of PAL
N2; PAL N3 = The third learning trial of PAL; PAL N3-Difficult part = difficult word pairs of PAL N3;
PAL-T = total score of PAL N1, N2, and N3; TMT A = trail making test A; TMT B = trail making test B.
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3.3. Performance of Various Classification Models

Table 2 shows the performance of various classification models. The accuracies of
the logistic regression, decision tree, SVM, XGBoost, and RF models were 0.605, 0.597,
0.624, 0.664, and 0.680, while the AUCs were 0.796, 0.696, 0.809, 0.816, and 0.852. Among
these methods, The RF classifier achieved the most stable performance with high accuracy
compared with other classifiers.

Table 2. Performance of models trained by various methods.

Accuracy Precision Recall F1 Score ROC-AUC

Logistic Regression 60.53 60.80 60.08 60.12 79.62
Decision Tree 59.73 60.48 60.86 60.21 69.55

SVM 62.40 65.37 59.29 61.17 80.87
XGBoost 66.40 67.78 66.15 66.70 81.61

Random Forest 68.00 71.09 66.73 68.02 85.17

3.4. Selecting the Optimal Neuropsychological Tests to Establish Diagnostic Models

Finally, we selected six interested neuropsychological subtests with 22 high impor-
tance features (including AVLT-H, PAL, modified Rey figure, LMT, DST, and TMT A). The
selected features contained in each neuropsychological subtest were listed in Supplemen-
tary Table S2. These features trained four new RF diagnosis models. The Performance
(ROC AUC, sensitivity, and specificity) of these four models were shown in Table 3. If we
selected three selected subtests (AVLT-H, PAL, and modified Rey figure) with 19 features to
establish the diagnosis model, AUC to detect CU from MCI, MCI from dementia, dementia
from nondementia was 0.86, 0.77, 0.84, respectively. If we selected four subtests (AVLT-H,
PAL, modified Rey figure, and LMT) with 20 features, AUC to discriminate CU from MCI,
MCI from dementia, dementia from non-dementia was 0.87, 0.79, 0.83. If we selected five
subtests (AVLT-H, PAL, modified Rey figure, LMT, and DST) with 21 features, AUC to
detect CU from MCI, MCI from dementia, dementia from nondementia was 0.86, 0.77, 0.84,
respectively. When we chose all six important subtests with 22 selected features to establish
the RF classification model, AUC to detect CU from MCI was 0.89 (sensitivity = 0.87 and
specificity = 0.85), AUC to detect MCI from dementia was 0.79 (sensitivity = 0.84 and speci-
ficity = 0.63), and AUC to detect dementia from nondementia was 0.84 (sensitivity = 0.72
and specificity = 0.81). RF Model based on 22 neuropsychological features was almost
equivalent to the model established using all 64 features. At the same time, the cognitive
tests time was reduced from more than an hour to 30 min.

Table 3. Performance of the four new RF diagnosis models on the classification of CU, MCI, and Dementia.

New Diagnosis
Models

Subtests of Interest
Number

of
Features

ROC AUC for CU
vs. MCI

(Sensitivity,
Specificity)

ROC AUC for
MCI vs. Dementia

(Sensitivity,
Specificity)

ROC AUC for
Dementia vs.
Nondementia
(Sensitivity,
Specificity)

Model-1
PAL, AVLT-H,
Modified-Rey

19 0.86 (0.79, 0.84) 0.77 (0.68, 0.76) 0.84 (0.72, 0.81)

Model-2
PAL, AVLT-H,

Modified-Rey, LMT
20 0.87 (0.78, 0.84) 0.79 (0.76, 0.66) 0.83 (0.70, 0.83)

Model-3
PAL, AVLT-H,

Modified-Rey, LMT, DST
21 0.87 (0.83, 0.84) 0.79 (0.81, 0.65) 0.84 (0.84, 0.71)

Model-4
PAL, AVLT-H,

Modified-Rey, LMT, DST,
TMT A

22 0.89 (0.92, 0.74) 0.79 (0.84, 0.63) 0.84 (0.85, 0.73)

Abbreviations: AVLT-H = Auditory Verbal Learning Test-Huashan version; CU = Cognitively Unimpaired; DST =
Digit Symbol Test; LMT = Logical Memory Test; MCI = Mild Cognitive Impairment; Modified-Rey = Modified
Rey-Osterreith figure; PAL = Paired-Associate Learning.
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4. Discussion

The present study found that 35.7 percent of subjects with MMSE scores ≥ 26 had
evidence of dementia. Similar results have been obtained from previous studies [38,39].
This suggests that MMSE, as the only cognitive testing tool, is not sufficient to diagnose
cognitive impairment. According to the 2011 NIA-AA criteria of “dementia”, when clinical
history and bedside cognitive tests cannot provide evidence of cognitive impairment,
neuropsychological tests should be performed [36]. In this study, we applied the RF
algorithm to determine the contribution of different cognitive tests and to screen out
efficient neuropsychological features for better diagnosis of cognitive impairment. Our
results showed that the RF algorithm has satisfactory performance in the task of diagnosing
MCI (AUC = 0.89) and dementia (AUC = 0.84). The ML method helped develop a simplified
version of NTB for CU, MCI, and dementia classification in patients with MMSE scores
≥ 26. The diagnostic model finally included six neuropsychological tests with highly
important features, and other low-importance tests were deleted, thus greatly shortening
the evaluation time.

The NTB is suitable for the Chinese cultural background and language habits, but the
normative data of its subtests have not been updated for a long time. As the education level
and living conditions of the Chinese have improved significantly in recent decades, the
clinical value of the norms has been limited. Reestablishing the norms for large samples is
time-consuming and requires organization and resources to conduct. In addition, the norms
are influenced by many factors such as age, gender, education level, and residence (rural or
urban). ML has the potential to solve the above problems by allowing multi-dimensional
interactions between variables [15]. It also can rank variables that are critical to assessing
cognitive impairment, which can be used to optimize neuropsychological testing [40,41].
RF can handle both linear and non-linear data and offers an advanced method to deal
with outliers or missing values [42]. It has been used to solve classification and regression
problems and can serve as a powerful tool to distinguish MCI and dementia [43]. Studies
have found that the RF algorithm has excellent efficiency in diagnosing dementia based
on neuropsychological testing [15]. Kleiman et al. reported that RF two-class classification
showed greater clinical utility compared to the three-class approach in classifying cogni-
tive impairment [44]. Therefore, our two-class models for distinguishing MCI from CU,
dementia from MCI, or dementia from nondementia.

One review [45] that included 59 studies indicated that MMSE, as a global cognitive
screening tool, showed the highest discrimination coefficient in the ML automatic clas-
sification of cognitive impairment. However, previous studies did not focus on people
with normal MMSE scores when developing diagnostic models or optimizing neuropsy-
chological tests using ML methods [45]. In these studies, subjects with MCI and mild
dementia had significantly lower baseline scores on the bedside cognitive tests than our
sample [11,41,44,46,47]. For example, Quintana et al. [47] reported that the mean MMSE
score of the MCI group and dementia group was 25.77 ± 2.22, 20.37 ± 3.98, respectively. In
the Chiu et al. [11] study, the mean MMSE and MoCA scores in the very mild dementia
group were 19.7 ± 4.7, 12.4 ± 6.0, respectively. Lower MMSE scores indicate more severe
impairment of cognition, and the diagnostic accuracy of the ML model developed based
on this situation will be higher, which means that it is more difficult to detect dementia in
people with normal MMSE. Classification models using ML on demographical and neu-
ropsychological data in the literature showed wide heterogeneity in performance metrics.
Weakley et al. [48] reported a sensitivity and specificity of 0.84 and 0.89 for differentiating
MCI from CU, and 0.95 and 0.97 for dementia and CU, and Battista et al. [41] with 0.98
and 0.81 for MCI, and 1.00 and 0.96 for dementia. In this work, the selected sample were
subjects whose MMSE was higher than the cut-off value. This is the first time to address
the question that classifies people with normal MMSE. Our results showed that the RF
model has good sensitivity (0.87) and specificity (0.85) for differentiating MCI from CU, as
well as good sensitivity (0.85) and specificity (0.73) for dementia from nondementia.
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RF had also been proven to be more effective in feature selection. Previous studies
that focused on ML and cognitive measures had the disadvantage of having fewer neu-
ropsychological features [47,49], or they just focused on the comparison between MCI
and CU or CU and dementia [50,51]. Our study included 20 neuropsychological tests and
compared CU, MCI, and dementia groups. The most frequent optimal neuropsychological
tests reported in the literature were episodic memory [41,47,49] (like AVLT, logical mem-
ory test) and semantic fluency [46,47,52]. However, these neuropsychological measures
mainly focus on Alzheimer’s disease and dementia and cannot examine the damage of
multiple cognitive domains. In our research, the combination of six tests is sufficient to
cover multiple cognitive domains including executive function, visual perception function,
language, memory, and attention, which can help diagnose all-cause dementia. AVLT-H
and LMT, which assess both immediate and delayed recall, are popular methods for detect-
ing episodic memory impairment [53,54]. PAL measures the strength of memory binding
of twelve word-pairs [29]. The word pairs are presented verbally, one pair at a time. Then
the participant hears the first word of each word-pair and is asked to answer the last word.
PAL assesses episodic memory and executive function and could successfully detect MCI
and dementia [55,56]. Modified Rey includes copy and delayed recall of the complex figure,
assessing visuospatial ability and nonverbal memory. Good performance of DST and TMT
A requires intact motor speed, attention, and visual perception functions, which is an
important executive domain involved in semantic information processing [57]. The 2011
NIA-AA staging criteria also suggests some neuropsychological tests that are considered to
be predictors of conversion from MCI to dementia [33]. These tests are generally consistent
with those selected in our study.

In addition, the RF algorithm could be used not only to optimize the NTB but also
to simplify individual subtests. For example, AVLT-H begins with three learning trials,
followed by the fourth short delayed free recall trial, the fifth long-delayed free recall trial,
the sixth category cue recall trial, and the recognition trial [53]. When ranking variables’
importance, we found that AVLT N5 was the most important feature. Therefore, we choose
to administer the first five trials of AVLT-H in the future practical application and delete
the sixth category cue recall trial and the recognition trial. The second story of LMT was
the best predictor among the three stories, so only the second story needs to be completed
when performing this neuropsychological test.

There were two main limitations to this study. First, this study was a retrospective,
single-center, observational study with inherent selection bias. Prospective, multi-centered,
large-scale studies are therefore warranted. A second limitation is that we did not sub-
classify dementia. Subjects in the dementia group were patients with all-cause dementia,
most of which is Alzheimer’s disease and vascular dementia, and other dementia sub-
types such as frontotemporal dementia and dementia with Lewy body were rare. This
might cause some features to become less important. For example, language-related fea-
tures such as repetition and naming were removed. Future research needs to consider
dementia subtypes.

5. Conclusions

The present study showed that the RF algorithm can be a useful tool to classify
CU, MCI, and dementia among a population with normal MMSE. We found that the
optimized NTB, consisting of six neuropsychological tests (AVLT-H, PAL, modified Rey
figure, LMT, DST, and TMT A), enables detection of MCI and dementia with good sensitivity
and specificity. As cognitive markers, neuropsychological assessments have the excellent
performance to identify cognitive disorders. For low- and middle-income countries, this has
advantages over using classifiers based on more invasive, expensive, and time-consuming
methods such as cerebrospinal fluid markers.
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Abstract: Artificial intelligence (AI) technology is widely applied in different medical fields, including

the diagnosis of various diseases on the basis of facial phenotypes, but there is no evaluation or

quantitative synthesis regarding the performance of artificial intelligence. Here, for the first time, we

summarized and quantitatively analyzed studies on the diagnosis of heterogeneous diseases on the

basis on facial features. In pooled data from 20 systematically identified studies involving 7 single

diseases and 12,557 subjects, quantitative random-effects models revealed a pooled sensitivity of 89%

(95% CI 82% to 93%) and a pooled specificity of 92% (95% CI 87% to 95%). A new index, the facial

recognition intensity (FRI), was established to describe the complexity of the association of diseases

with facial phenotypes. Meta-regression revealed the important contribution of FRI to heterogeneous

diagnostic accuracy (p = 0.021), and a similar result was found in subgroup analyses (p = 0.003). An

appropriate increase in the training size and the use of deep learning models helped to improve the

diagnostic accuracy for diseases with low FRI, although no statistically significant association was

found between accuracy and photographic resolution, training size, AI architecture, and number of

diseases. In addition, a novel hypothesis is proposed for universal rules in AI performance, providing

a new idea that could be explored in other AI applications.

Keywords: artificial intelligence; computer-aided diagnosis; facial phenotypes; machine learning;

complexity theory

1. Introduction

Many diseases display distinctive facial manifestations, especially endocrine diseases
and genetic diseases, including monogenic disorders, chromosomal diseases, and thou-
sands of rare diseases [1]. Recognition by the human eye often causes misjudgment and
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delays diagnosis due to inconspicuous early facial symptoms associated with these dis-
eases, large individual facial differences, and lack of physicians’ knowledge of rare diseases.
With the development of artificial intelligence (AI) technology, AI methods have been
widely applied in different fields [2–6]. Automatic image recognition based on AI could
identify image features for the diagnosis and screening of various diseases, with satisfac-
tory performance for the diagnosis of pulmonary nodules, tumors, fundus diseases, even
COVID-19 [7–10]. Among these AI techniques, facial recognition based on artificial intelli-
gence enables computers to detect underlying facial patterns and has played an important
role in the diagnosis and screening of diseases with facial phenotypes or changes in recent
years [11,12]. It is assumed that artificial intelligence could help to improve diagnostic
accuracy and to avoid delayed diagnosis, leading to earlier intervention, conservation of
social healthcare resources, and implementation of health policies in the future [12–14].
Different models and systems have been developed to provide possible improvement for
diagnostic accuracy [15].

However, there remains a lack of exploration of the factors influencing AI performance
or of universal rules to reduce heterogeneity [14]. As has been shown before, diagnostic
accuracy of facial recognition for Turner syndrome tended to be lower than that of Down
syndrome, although a larger sample size helped to improve it [16,17]. However, the
heterogeneity of diseases and AI methods studied and the limited number of works on rare
diseases makes it difficult to review and summarize individual studies in a unified manner.
Since the complexity theory could be applied to quantitatively describe facial features, this
theory needs to be developed to explore the universal rules determining the diagnostic
performance of AI based on facial features for heterogeneous diseases.

This is the first study that conducted a systematic review and meta-analysis to sum-
marize the data regarding the diagnosis of heterogeneous diseases on the basis of facial
features and explored the universal rules governing the application of facial recognition
based on AI in the field of medical diagnosis. We aimed to quantitatively analyze the
diagnostic accuracy of facial recognition based on AI, as well as the factors influencing
the diagnostic performance and to provide a potential reference for clinical practice. In
addition, our study proposes a potential hypothesis for evaluating the performance of AI
in other fields, such as image recognition based on AI, and provides a new idea for dealing
with heterogeneity when reviewing and analyzing the performance of AI applications.

2. Materials and Methods

2.1. Study Identification and Selection

We searched Medline, PubMed, IEEE, Cochrane Library, EMBASE to identify po-
tential eligible studies published from 1 January 2010 to 15 August 2021. The references
of relevant publications were also checked manually. The detailed search strategy con-
taining the index test (facial recognition) and the target condition (diagnosis) is shown in
Supplementary Table S1.

Studies were included if they evaluated facial recognition by algorithms of artificial
intelligence for the diagnosis of diseases based on facial phenotypes or deformities using
photographs and provided sufficient information for quantitative data synthesis. Studies
were excluded of they were reviews, lacked a control group, or identified more than one
possible disease as a diagnostic result by facial recognition. The titles and the abstracts were
screened by two reviewers independently (DW and SC), and the full texts of potentially
eligible studies were further screened.

2.2. Data Extraction and Quality Assessment

The data obtained from each study included publication characteristics (authors and
year of publication); characteristics of the targeted disease (number of diseases and specific
facial features); characteristics of the sample set (data sources, age, sex, and resolution of
photographs); characteristics of the index test (algorithms, and number of images used in
model training); characteristics of the reference standard (diagnostic criteria); accuracy data
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(number of true positives, true negatives, false positives, and false negatives). Supplements
in each study were also reviewed if available.

Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess
the risk of bias in patient selection, index test, reference standard, and flow and timing of
the included studies. Publication bias was not assessed in our study because there is not a
universally accepted method for the review of diagnostic studies to detect publication bias
according to the Cochrane Handbook for Diagnostic Tests Review.

2.3. Definition and Calculation of FRI

We defined facial recognition intensity (FRI) as an index to describe the difference of
facial features between a studied disease and healthy controls. FRI is calculated as shown
in Equation (1) by multiplying the number of independent facial phenotypes of a disease
and the maximum penetrance among these facial features.

FRI = Nf × Pmax (1)

In Equation (1), Nf represents the number of facial phenotypes relevant to a disease,
and Pmax is the maximum penetrance among these facial features, representing the per-
centage of individuals in a group of patients who exhibited a specific facial phenotype. The
facial features and the penetrance of facial phenotypes were collected from the original
articles and relevant reviews. If a facial phenotype was associated with a specific group
of patients, penetrance was defined to be 100%. Since some of the facial phenotypes were
correlated, such as small jaws and crowded teeth, associated phenotypes were counted
only once to calculate FRI. For example, Down syndrome displayed nine independent
facial phenotypes, and the maximum penetrance of these facial phenotypes was 100% [18];
hence, FRI of Down syndrome was calculated by multiplying 9 by 100%, resulting in 9. FRI
was defined to summarize the common characteristics of objects, e.g., facial phenotypes in
the presence of different diseases, and to minimize heterogeneity among objects analyzed
by AI methods so to make them comparable in the subsequent analysis of performance of
facial recognition based on AI for disease diagnosis.

2.4. Statistical Methods

Extracted two-by-two data are graphically shown in a forest plot with the point
estimate of sensitivity and specificity and their 95% CIs. Considering the unclear and
heterogeneous thresholds for diagnosing different disease with facial phenotypes by facial
recognition methods, we used a quantitative random-effects model with bivariate mixed-
effects binary regression to combine the sensitivity and specificity and to estimate the
summary receiver operating characteristic (SROC) curve. The combined SROC curve and
the optimum diagnostic threshold with 95% confidence region and 95% prediction region
were plotted. Subgroup analyses and meta-regression were used to explore the heterogene-
ity between studies. Facial recognition intensity (FRI) and sample size of the training set
were analyzed as covariates in meta-regression to explore quantitative relationships with
diagnostic accuracy of facial recognition. The result of the meta-regression is shown in a
bubble chart and demonstrates a fitting straight line. In addition to FRI and sample size of
the training set, we also estimated the following covariates in subgroup analysis: resource
of the control group, photo resolution, number of included diseases, and model of facial
recognition. Covariates with statistically significant coefficients were regarded as a source
of heterogeneity. The robustness of the main results was evaluated by sensitivity analyses.
We explored the effect of excluding studies not reporting the model of facial recognition
or gold standard of targeted conditions and those using internal validation to evaluate
the models.

Data analysis for this paper was performed using Stata Statistical Software 16 (Stat-
aCorp., College Station, TX, USA) with two-tailed probability of Type I error of 0.05
(α = 0.05).
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3. Results

3.1. Systematic Review

Figure 1 shows the flow diagram for filtering articles. We identified 2534 records by
electronic search and 29 by hand search. In total, 141 full-text articles were assessed for eligi-
bility, and 20 studies in 14 publications met our criteria for inclusion.
Ozdemir et al. [19] included three studies, and Basel-Vanagaite et al. [20], Gurovich et al. [2],
Zhao et al. [17], and Saraydemir et al. [16] included two studies using different sample sets
in one publication.

(α

 

– on Cushing’s syndrome

–

Figure 1. Flow chart for study inclusion and exclusion. The titles and the abstracts were screened by
two reviewers independently, and the full texts of potentially eligible studies were further screened.

The detailed characteristics of the eligible studies are shown in Supplementary Table S2.
The total number of subjects tested in the included studies was 12,557. A single disease
was targeted in 16 studies, including 3 studies on Cornelia de Lange syndrome [2,20], 2 on
Turner syndrome [21,22], 3 on Down syndrome [16,17], 1 on Angelman syndrome [2], 4 on
acromegaly [23–26], 2 on Cushing’s syndrome [27,28], and 1 study on fetal alcohol spectrum
disorders (FASD) [29], as multiple diseases were detected in 4 studies [17,19]. Nine studies
used photographs from public databases and web pages [2,25,27], and 11 studies obtained
their photographs in local hospitals [20–24]. Ten studies described the demographic char-
acteristics of their study population, reporting a percentage of males ranging from 0 to
66.2% [16,17,21,22,24–26]. The diagnostic criteria of the targeted diseases were reported
in 12 studies and included analysis of gene mutation [2,20] and karyotype [16,17,21,22],
success of previous treatment [23], experts’ opinions [26], diagnostic tests [24,27,29]. An in-
ternal validation set was used for evaluation of the model in 12 studies [16,17,19,21,26–29],
and an external validation set was reported in 8 studies [2,20,22–25]. Nine studies in-
cluded a healthy control group [2,17,19,20,22], and patients with other diseases were
included in 11 studies as a control group [16,17,21,23–29]. Apart from 5 studies not re-
porting the used AI architecture [17,19,20,26,27], several types of machine learning mod-

190



J. Pers. Med. 2021, 11, 1172

els were applied in 15 studies, including 7 studies using algorithms of deep learning
and neural network [2,20,22,28,29] or a combination of neural network and other mod-
els [24]. The following models were also reported: SVM [16,21,23], Haar cascade classi-
fier [25], hierarchical decision tree [19], k-NN [16,19] and combination of conventional mod-
els [11]. Fourteen studies reported a resolution of photographs ranging from 100 × 100 to
1500 × 1000 pixels [2,16,17,19,21,22,24–26,28]. The number of photographs used to train
the model was reported in 20 studies and ranged from 30 to 3465, whereas the number of
photographs in the testing set ranged from 17 to 242 [2,16,17,19–29].

3.2. Risk of Bias Assessment of the Eligible Studies

Supplementary Tables S2 and S3 show the results of the risk of bias assessment of
the included studies. Regarding patient selection, risk of bias was unclear in 4 studies
due to the insufficient information describing the sampling method [2,20] and high in
16 studies with a case–control design [16,17,19,21–29]. With respect to the index test,
facial recognition was based on artificial intelligence algorithms without knowledge of
the clinical diagnosis in all studies. As for the reference standard, risk of bias was low in
15 studies [2,16,17,20–22,24,26–29] and unclear in 5 studies that did not report the reference
standard or an interpretation [19,23,25]. In the domain of flow and timing, risk of bias
was low in 16 studies [2,16,17,20–23,25–29], unclear in 3 studies that did not report the
reception of the reference standard [19], and high in 1 study because not all patients were
subjected to the two tests assessed in the study [24].

3.3. Meta-Analysis

Figure 2 shows the paired forest plot for sensitivity and specificity with the corre-
sponding 95% CIs for each study. Eligible studies were further combined, and the summary
receiver operating characteristic (SROC) curve is shown in Figure 3 with the 95% confidence
region and 95% prediction region. We calculated the following summarized estimates
using random-effects models with 95% confidence interval (CI): sensitivity 89% (95% CI
82% to 93%), specificity 92% (95% CI 87% to 95%), positive likelihood ratio 11.1 (95% CI 6.5
to 18.8), negative likelihood ratio 0.12 (95% CI 0.08 to 0.20), and diagnostic odds ratio (OR)
90 (95% CI 35 to 230).

Figure 2. Forest plots of sensitivity and specificity in automatic diagnosis by facial recognition.
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Figure 3. Summary receiver operating characteristics (SROC) curves of eligible studies. The dashed
line indicates the 95% confidence region, and the dotted line indicates the 95% prediction region.

3.4. Sensitivity Analysis

After excluding eight studies that evaluated the models with an external validation
set [2,20,22–25], pooled sensitivity was 86% (95% CI 75% to 93%), and specificity was 90%
(95% CI 82% to 95%). After excluding studies with unclear models [17,19,20,26,27], pooled
sensitivity was 90% (95% CI 83% to 94%), and specificity was 91% (95% CI 84% to 96%).
After excluding studies with an unclear reference standard [17,20,25,28], pooled sensitivity
was 89.0% (95% CI 82.0% to 94.0%), and specificity was 93.0% (95% CI 88.0% to 96.0%).
Since these estimates were similar to the main results for the whole dataset, we did not
find evidence that the overall combined estimates were influenced by external validation
sets, unclear models, or unclear reference standards.

3.5. Evaluation of Facial Recognition Intensity (FRI)

Table 1 shows the prevalence, facial phenotypes of disease, and maximum penetrance
of the phenotypes in the eligible studies. Among 16 studies targeting a single disease,
Down syndrome showed 9 specific facial phenotypes, and the maximum penetrance of
the facial phenotypes was 100% [18]; hence, the calculated FRI of Down syndrome was 9.
As for Cornelia de Lange syndrome [2,20], it showed nine facial phenotypes, and the
maximum penetrance was 82.7% according to the international consensus statement [30].
After calculation, FRI of Cornelia de Lange syndrome was 7.443. Angelman syndrome
showed six facial features, with maximum penetrance of facial phenotypes of 100% and
FRI of 8. Turner syndrome showed six facial phenotypes and the maximum penetrance of
facial phenotypes was 56% [31]; therefore, FRI of Turner syndrome was 3.36. Fetal alcohol
spectrum disorders (FASD) were associated with four facial phenotypes with maximum
penetrance of 100% [29], resulting in FRI of 4.
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Table 1. Assessment of facial recognition intensity (FRI) of diseases in the eligible studies.

Disease Prevalence
Maximum
Penetrance

(Pmax)

Facial Phenotypes Facial
Recognition

Intensity (FRI)
Independent Facial

Phenotypes
Number of Facial
Phenotypes (Nf)

Down syndrome
[16,17]

1/300~1000 100%

Short face
Upward slanting eyes

Epicanthus
Brushfield spots (white

spots on the colored part of
the eyes)

Low-set ears
Small ears

Flattened nose
Small mouth

Protruding tongue

9 9

Acromegaly
[23–26]

7/1000 100%

Forehead bulge
Prominent jaw

Prominent zygomatic arch
Deep nasolabial folds

Enlarged nose
Enlarged brow
Enlarged ear
Enlarged lip

8 8

Cornelia de Lange
Syndrome [2,20]

1/10,000~1/30,000 82.7%

Short face
Small jaw

Arched eyebrows
Joined eyebrows

Short nose
Forward nostril
Long philtrum
Thin upper lip

Upturned corners of the
mouth

9 7.443

Angelman
syndrome [2]

1/20,000~1/12,000 100%

Narrow bifrontal diameter
Huge jaw

Almond-shaped palpebral
fissures

Narrow nasal bridge
Thin upper lip

Protruding tongue

6 6

Cushing’s
syndrome [27,28]

4/100,000 100%

Red face
Full moon face

Acne
Excessive hair

Chemosis conjunctiva

5 5

Fetal alcohol
spectrum disorders

(FASDs) [29]
7.7/1000 100%

Small head
Short palpebral fissures

Smooth philtrum
Thin vermilion border of the

upper lip

4 4

Turner syndrome
[21,22]

1/2500 56%

Small jaw
Epicanthus

Ptosis
Ocular hypertelorism

Low-set ears
Multiple facial nevi

6 3.36
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Among endocrine diseases, acromegaly showed eight facial phenotypes [28]. Since the
maximum penetrance was 100%, FRI of acromegaly was 8. Cushing’s syndrome showed
five facial phenotypes and maximum penetrance of facial phenotypes of 100% [27,28],
resulting in FRI of 5.

3.6. Effect of FRI on the Accuracy of Facial Recognition

Table 2 shows the results of random-effects model meta-regression analysis exploring
the relationship between facial recognition intensity (FRI), sample size of the training set,
and diagnostic accuracy of facial recognition. The coefficient of FRI in the model was
0.4868 (95% CI 0.0935 to 0.8800, p = 0.015), revealing a significant association with natural
logarithms of OR of automatic diagnosis by facial recognition. Meanwhile, the sample
size of the training set was not associated with diagnostic accuracy of facial recognition,
indicating no significant contribution to the heterogeneity between studies.

Table 2. Meta-regression between FRI, sample size of the training set, and ln(OR) of automatic
diagnosis by facial recognition. FRI = facial recognition intensity, OR = diagnostic odds ratio. FRI
and sample size of the training set were analyzed as covariates in a meta-regression model to explore
the heterogeneity between studies. Their coefficient and 95% confidence interval in the model are
shown with two-tailed probability of type I error of 0.05 (α = 0.05).

Covariate Coefficient [95 Cl] p Value

Facial recognition intensity (FRI) 0.4939 [0.0710,0.9169] 0.022
Sample size of the training set 0.0004 [−0.0006,0.0014] 0.467

Therefore, after excluding the sample size of the training set from the model, the rela-
tionship between facial recognition intensity and diagnostic accuracy of facial recognition
was determined as shown in Figure 4. The model with FRI as a variable showed significant
association with natural logarithms of OR of automatic diagnosis, with the coefficient of
FRI corresponding to 0.4960 (95% CI 0. 0748 to 0.9171, p = 0.021), indicating that a larger FRI
value of a disease was significantly associated with a higher diagnostic accuracy by facial
recognition. The relationship between FRI value for a disease and diagnostic accuracy is
shown in Equation (2):

ln (OR) = ln [Se Sp/((1 − Se) × (1 − Sp))] = 0.4960 × FRI + 1.459 (2)

−

− − 

− − 

Figure 4. Bubble plots of meta-regression between FRI and ln(OR) of automatic diagnosis by facial
recognition. FRI = facial recognition intensity, OR = diagnostic odds ratio. The straight line indicates
linear prediction in the meta-regression model between FRI and diagnostic accuracy. The gray zone
indicates the 95% confidence region, and the round bubbles represent the eligible studies. The size of
the bubbles indicates the impact on the model.
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According to Equation (2), Table 3 shows the quantitative association between FRI and
accuracy of automatic diagnosis by facial recognition. When both sensitivity and specificity
reached 85%, it was required that the FRI value of a disease reached 4.05. When sensitivity
and specificity rose to 90%, FRI should correspondingly increase to 5.92. FRI needed to
reach 8.93 to ensure that the sensitivity and specificity reached 95%.

Table 3. Association between FRI and accuracy of automatic diagnosis by facial recognition.
FRI = facial recognition intensity, OR = diagnostic odds ratio. Quantitative relationship between FRI
and diagnostic accuracy (including Figure 2. in meta-analysis. ln (OR) = ln [Se Sp/(1 − Se) (1 − Sp)]
= 0.4951 × FRI + 1.46.

Sensitivity Specificity OR ln(OR) FRI

85% 85% 32.11 3.47 4.05
90% 85% 51.00 3.93 4.98
90% 90% 81.00 4.39 5.92
95% 90% 171.00 5.14 7.42
95% 95% 361.00 5.89 8.93

3.7. Effect of Sample Size of the Training Set and AI Model on the Accuracy of Facial Recognition

Table 4 lists the range of FRI, sample sizes of the training set, AI models, as well as
relative median and range of diagnostic accuracy by facial recognition. As for the sample
size of the training set, which ranged from 30 to 3465 in the eligible studies, it was shown
that the diagnostic accuracy of diseases with FRI higher than 8 was greater than 0.95, even
if the sample size of the training set was lower than 100, with the minimum sample size
being 30. Diseases with FRI ranging from 6 to 8 showed relatively low diagnostic accuracy
when the sample size of the training set was lower than 100, with the minimum sample
size being 49, and the accuracy increased with the sample size. The minimum training size
for diseases with FRI lower than 6 was 60, and a sample size greater than 1000 significantly
improved the diagnostic accuracy of facial recognition, indicating that a modest increase in
the sample size of the training set played an important role in improving the diagnostic
accuracy of diseases with low FRI.

Table 4. Association between FRI, sample size of the training set, AI models, and accuracy of automatic diagnosis by facial
recognition. FRI = facial recognition intensity, DL = deep learning. The diagnostic accuracy is shown as median (minimum,
maximum).

FRI

Minimum
Sample Size
of Training

Set

Range of
Sample Size
of Training

Set

Range of Accuracies

AI Models

Range of Accuracies

Sensitivities Specificities Sensitivities Specificities

>8 30
<100 0.967 (0.960~0.973) 0.967 (0.960~0.973)

Non-DL 0.973 (0.960~0.977) 0.962 (0.960~0.973)
100~200 0.977 0.962

6~8 49
<100 0.710 1.000

Non-DL
DL

0.810 (0.719~0.901)
0.860 (0.800~0.960)

0.972 (0.944~1.000)
1.000 (0.890~1.000)

100~1000 0.790 (0.719~0.860) 0.903 (0.890~0.915)
>1000 0.901 (0.800~0.960) 1.000 (0.944~1.000)

<6 60
<100 0.769 (0.688~0.850) 0.913 (0.875~0.950) Non-DL 0.688 0.875

100~1000 0.714 (0.537~0.890) 0.697 (0.690~0.704)
DL 0.929 (0.890~0.967) 0.830 (0.690~0.970)

>1000 0.967 0.970

AI methods also showed a similar trend. Diagnostic accuracy of AI reached more than
0.95 with non-deep learning models for diseases with FRI higher than 8, and the application
of deep learning models contributed to a higher sensitivity for diseases with lower FRI.
Especially for diseases with FRI lower than 6, the median sensitivity improved from 0.688
to 0.929 by using deep learning models. However, the specificity was not influenced by the
use of deep learning models.
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3.8. Sources of Heterogeneity

Table 5 shows the detailed results of subgroup analyses exploring the potential source
of between-study heterogeneity. Facial feature strength was significantly associated with
diagnostic accuracy by facial recognition (p = 0.003). However, we found no association
between facial recognition’s accuracy and photographic resolution, sample size of train-
ing sets, model of machine learning, number of targeted diseases, and selection of the
control group.

Table 5. Subgroup analyses for the accuracy of automatic diagnosis by facial recognition. Image resolution was calculated by
multiplying column pixels by row pixels. If images of different resolution were used, the average resolution was calculated.
The two-tailed probability of type I error was 0.05 (α = 0.05).

Subgroup Variables
Numbers of

Eligible Studies
Sensitivity, % [95 Cl] Specificity, % [95 Cl] p for Interaction

Image resolution 0.415
<30,000 pixels 7 0.85 [0.73–0.97] 0.90 [0.82–0.98]
≥30,000 pixels 7 0.90 [0.82–0.98] 0.94 [0.89–0.98]

Sample size of training set 0.145
<1000 14 0.87 [0.80–0.93] 0.89 [0.84–0.95]
≥1000 6 0.92 [0.86–0.99] 0.97 [0.93–1.00]

Model/system of AI 0.802
Neural network 7 0.91 [0.83–0.99] 0.93 [0.85–1.00]

Non-neural network 8 0.92 [0.86–0.97] 0.92 [0.86–0.98]

Number of diseases 0.930
1 16 0.90 [0.86–0.95] 0.78 [0.60–0.97]

>1 4 0.93 [0.89–0.97] 0.88 [0.74–1.00]

Selection of control group 0.573
Healthy 9 0.85 [0.75–0.95] 0.94 [0.89–0.99]

Other diseases 11 0.90 [0.84–0.96] 0.91 [0.86–0.97]

Facial recognition intensity (FRI) 0.003
≤6 7 0.81 [0.71–0.90] 0.90 [0.83–0.96]
>6 9 0.95 [0.92–0.98] 0.95 [0.91–0.98]

4. Discussion

At present, artificial intelligence methods have been widely applied in different fields.
However, studies exploring factors influencing the diagnostic accuracy of these methods, as
well as systematic reviews and meta-analyses summarizing AI application in the diagnosis
of heterogeneous diseases are still lacking. To our knowledge, this is the first study that
fills this gap by summarizing heterogeneous studies on the automatic diagnosis of diseases
on the basis of facial features and quantitatively analyzes the diagnostic capability of
facial recognition based on AI. The review and meta-analysis were conducted strictly
following the guidelines for diagnostic reviews [32]. Comprehensive and large-scale
studies published so far were included, searched in both medical databases and engineering
and technology databases. Representative and high-quality studies focused on different
diseases using various known AI methods and were conducted in different countries. Our
study summarized and quantitatively analyzed heterogeneous studies on the automatic
diagnosis of different diseases based on facial features, showing a pooled sensitivity of
89% (95% CI 82% to 93%) and a specificity of 92% (95% CI 87% to 95%), similar to the
results of previous meta-analyses on automatic image recognition for diabetic retinopathy
screening [8,33,34], colorectal neoplasia, and breast cancer [35–38], indicating a promising
diagnostic performance of facial recognition based on AI for heterogeneous diseases. A
sensitivity analysis was conducted to evaluate the robustness of the results. The results
were interpreted logically and adapted to clinical applications.
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We propose a new index, facial feature intensity (FRI), to reflect the complexity
of facial features associated with a targeted object. FRI was defined to minimize the
heterogeneity across objects in AI applications and is calculated by multiplying the number
of independent facial phenotypes by the maximum penetrance of these facial phenotypes.
The number of details in facial features determines the complexity that distinguishes
facial features of the targeted object from those of other objects, and the penetrance is
the proportion of patients showing a certain complexity of facial features. Since FRI was
revealed as the most important influencing factor for the diagnostic accuracy of facial
recognition based on AI, the complexity of a targeted object plays the most important
role in AI performance, rather than AI technology itself. According to Equation (2) in the
meta-regression analysis, the expected accuracy of facial recognition for detecting a disease
with the known FRI value could be predicted by calculation, which is of great clinical value.

The interactions between AI parameters and FRI were also taken into consideration,
including sample size of the training set and AI architecture. The results revealed that,
although larger training size and selection of deep-learning models did not contribute
significantly to the heterogeneity between studies in either meta-regression or subgroup
analysis, they showed a trend indicating improved diagnostic accuracy for diseases with
lower FRI. An appropriate increase in the size of the training samples and the use of
deep-learning models improved the accuracy of facial recognition, revealing that the
improvement of AI parameters contributed to a better performance of AI for objects with
low complexity. This finding is also supported by results on the detection of breast cancer,
showing that increasing the training set size would not increase the diagnostic accuracy
continuously [38]. Since the number of patients with rare diseases is limited, this finding is
clinically significant as it indicates that the sample size of the training set can be within
reasonable limits in AI applications. Moreover, the existing AI models have still to be
improved to increase the diagnostic accuracy by facial recognition. Therefore, technology
innovation is needed, and new AI methods might show better diagnostic accuracy by
facial recognition.

Moreover, according to our findings, we propose a new hypothesis regarding AI
application, that we named object’s complexity theory (OCT) and that could be expanded
to the application of AI technology in other fields. According to OCT, within the limits
of a reasonable research design, the complexity of the targeted objects determines the
complexity of AI processing and plays the most important role in AI performance, while
improvement of AI parameters contributes to a better performance of AI for objects with
low complexity. The hypothesis is consistent with existing evidence and is supported by
previous theorems. According to the complexity theory proposed by J. Hartmanis and
R. E. Stearns in 1965, the deep commonalities typical of complex systems determine the
process of solving problems, which is relevant in diverse fields [39]. OCT represents the
development and extension of the complexity theory regarding the performance of AI
applications. According to the No Free Lunch Theorem (NFLT) for artificial intelligence
proposed by David Wolpert and William Macready in 1996 [40] and optimized in 1997 [41],
an algorithm performing well on a certain object paid with degraded performance on all
remaining objects. If we use i to index the examined objects arbitrarily and Oi to represent
an object, the NFLT is represented by Equation (3)

∑
k

f (Ok, ai) = ∑
k

f
(

Ok, aj

)

, ∀i, j (3)

where ai and aj are algorithms, and f (Ok, ai) is the performance of ai on the object Ok. The
equation shows that the overall performances of all the algorithms were the same. The
only way a strategy could outperform another is to specialize the structure of the specific
object under consideration [42]. As for our hypothesis, OCT, based on the application in
facial recognition, we can establish Equation (4), on the basis of NFLT:

f (Ok, ai) = g(Ok, FRIk), ∀i, if FRIk ≥ 6 (4)

197



J. Pers. Med. 2021, 11, 1172

where g(Ok, FRIk) is the performance of the algorithm ai on the k-th object. The equation
revealed that the structure of the object is reflected in the FRI. For objects with a large
enough FRI, independently of the parameters of AI technology, the performances are more
or less the same. The theory provides a new idea, suggesting that more indices for the
evaluation of the complexity of targeted objects should be explored and developed in
further studies to better determine AI performance in other fields.

Moreover, OCT and its application in facial recognition provide a new idea to deal
with heterogeneity in studies and to evaluate the complexity of targeted objects. OCT
should be applied and developed in further studies to determine AI performance in other
fields. For image recognition based on AI, facial feature intensity (FRI) could also be
converted into image feature intensity (IRI) to describe the characteristics of images related
to more diseases. IRI might be the most important factor for AI performance within
the limits of a reasonable sample size and of the study design. Previous studies have
demonstrated that the image characteristics of diseases play an important role in the
performance of image recognition by AI methods [43], including the automatic screening
of pulmonary nodules [7,44,45], referable glaucomatous optic neuropathy (GON) [46],
colorectal adenoma and polyps [47,48], which also indicates that IRI describes image
characteristics of diseases and is critical for AI performance in automatic image recognition.
As has been shown before for diabetic retinopathy screening, no statistically significant
contribution to heterogeneous diagnostic accuracy has been demonstrated for sample size
of the training sets and architecture of convolutional neural networks [34]. Therefore,
the complexity theory explains the relationship between complexity of a disease and AI
performance and should be extended to other AI applications.

There are some limitations in our study. First, the photographs overlapped in several
studies using the same data sources, and it was difficult to eliminate this and evaluate its
influence. Second, the risk of bias for the domain of patient selection was high or unclear
in several studies. More than half of the studies had a case–control design, due to the
limited number of patients with rare diseases. In addition, no traditional thresholds were
mentioned in these studies, and we could only compare the sensitivity and specificity by
finding the best cut-off point.

5. Conclusions

We quantitatively analyzed studies on the association of heterogeneous diseases with
facial features and revealed the promising diagnostic performance of facial recognition
based on AI in detecting diseases on the basis of facial features. A new index, facial feature
intensity (FRI), was proposed to describe the complexity with facial features associated with
different diseases, which was proved to be the most important factor influencing diagnostic
accuracy by facial recognition. In addition, we explored the universal rules governing facial
recognition based on AI in the field of medical diagnosis and provide a potential reference
to solve practical problems in AI applications. An appropriate increase in training sample
size and the use of deep learning models might play a role in improving the diagnostic
accuracy for diseases with lower FRI. Our study firstly proposes a new hypothesis, the
object’s complexity theory (OCT), on the performance of AI and provides a new idea for
dealing with heterogeneity when evaluating AI performance in other applications.
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19. Özdemir, M.E.; Telatar, Z.; Eroğul, O.; Tunca, Y. Classifying dysmorphic syndromes by using artificial neural network based

hierarchical decision tree. Australas. Phys. Eng. Sci. Med. 2018, 41, 451–461. [CrossRef]
20. Basel-Vanagaite, L.; Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.D.; Deardoff, M.A. Recognition of the Cornelia de

Lange syndrome phenotype with facial dysmorphology novel analysis. Clin. Genet. 2016, 89, 557–563. [CrossRef]
21. Chen, S.; Pan, Z.X.; Zhu, H.J.; Wang, Q.; Yang, J.J.; Lei, Y.; Li, J.Q.; Pan, H. Development of a computer-aided tool for the pattern

recognition of facial features in diagnosing Turner syndrome: Comparison of diagnostic accuracy with clinical workers. Sci. Rep.

2018, 8, 9317. [CrossRef] [PubMed]
22. Pan, Z.; Shen, Z.; Zhu, H.; Bao, Y.; Liang, S.; Wang, S.; Li, X.; Niu, L.; Dong, X.; Shang, X.; et al. Clinical application of an automatic

facial recognition system based on deep learning for diagnosis of Turner syndrome. Endocrine 2020, 72, 865–873. [CrossRef]
[PubMed]

199



J. Pers. Med. 2021, 11, 1172

23. Miller, R.E.; Learned-Miller, E.G.; Trainer, P.; Paisley, A.; Blanz, V. Early diagnosis of acromegaly: Computers vs clinicians. Clin.

Endocrinol. 2011, 75, 226–231. [CrossRef]
24. Kong, X.; Gong, S.; Su, L.; Howard, N.; Kong, Y. Automatic Detection of Acromegaly from Facial Photographs Using Machine

Learning Methods. EBioMedicine 2018, 27, 94–102. [CrossRef]
25. Kong, Y.; Kong, X.; He, C.; Liu, C.; Wang, L.; Su, L.; Gao, J.; Guo, Q.; Cheng, R. Constructing an automatic diagnosis and

severity-classification model for acromegaly using facial photographs by deep learning. J. Hematol. Oncol. 2020, 13, 88. [CrossRef]
[PubMed]

26. Schneider, H.J.; Kosilek, R.P.; Günther, M.; Roemmler, J.; Stalla, G.K.; Sievers, C.; Reincke, M.; Schopohl, J.; Würtz, R.P. A novel
approach to the detection of acromegaly: Accuracy of diagnosis by automatic face classification. J. Clin. Endocrinol. Metab. 2011,
96, 2074–2080. [CrossRef]

27. Kosilek, R.P.; Schopohl, J.; Grunke, M.; Reincke, M.; Dimopoulou, C.; Stalla, G.K.; Würtz, R.P.; Lammert, A.; Günther, M.;
Schneider, H.J. Automatic face classification of Cushing’s syndrome in women—A novel screening approach. Exp. Clin.

Endocrinol. Diabetes 2013, 121, 561–564. [CrossRef]
28. Popp, K.H.; Kosilek, R.P.; Frohner, R.; Stalla, G.K.; Athanasoulia-Kaspar, A.; Berr, C.; Zopp, S.; Reincke, M.; Witt, M.; Würtz, R.P.;

et al. Computer Vision Technology in the Differential Diagnosis of Cushing’s Syndrome. Exp. Clin. Endocrinol. Diabetes 2019, 127,
685–690. [CrossRef]

29. Valentine, M.; Bihm, D.C.J.; Wolf, L.; Hoyme, H.E.; May, P.A.; Buckley, D.; Kalberg, W.; Abdul-Rahman, O.A. Computer-Aided
Recognition of Facial Attributes for Fetal Alcohol Spectrum Disorders. Pediatrics 2017, 140, e20162028. [CrossRef]

30. Kline, A.D.; Moss, J.F.; Selicorni, A.; Bisgaard, A.M.; Deardorff, M.A.; Gillett, P.M.; Ishman, S.L.; Kerr, L.M.; Levin, A.V.; Mulder,
P.A.; et al. Diagnosis and management of Cornelia de Lange syndrome: First international consensus statement. Nat. Rev. Genet.

2018, 19, 649–666. [CrossRef]
31. Kruszka, P.; Addissie, Y.A.; Tekendo-Ngongang, C.; Jones, K.L.; Savage, S.K.; Gupta, N.; Sirisena, N.D.; Dissanayake, V.H.W.;

Paththinige, C.S.; Aravena, T.; et al. Turner syndrome in diverse populations. Am. J. Med. Genet. Part A 2020, 182, 303–313.
[CrossRef] [PubMed]

32. Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of

Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019.
33. Wu, H.Q.; Shan, Y.X.; Wu, H.; Zhu, D.R.; Tao, H.M.; Wei, H.G.; Shen, X.Y.; Sang, A.M.; Dong, J.C. Computer aided diabetic

retinopathy detection based on ophthalmic photography: A systematic review and Meta-analysis. Int. J. Ophthal. 2019, 12,
1908–1916. [CrossRef] [PubMed]

34. Wang, S.; Zhang, Y.; Lei, S.; Zhu, H.; Li, J.; Wang, Q.; Yang, J.; Chen, S.; Pan, H. Performance of deep neural network-based
artificial intelligence method in diabetic retinopathy screening: A systematic review and meta-analysis of diagnostic test accuracy.
Eur. J. Endocrinol. 2020, 183, 41–49. [CrossRef] [PubMed]

35. Posso, M.; Puig, T.; Carles, M.; Rué, M.; Canelo-Aybar, C.; Bonfill, X. Effectiveness and cost-effectiveness of double reading in
digital mammography screening: A systematic review and meta-analysis. Eur. J. Radiol. 2017, 96, 40–49. [CrossRef]

36. Dorrius, M.D.; Jansen-van der Weide, M.C.; van Ooijen, P.M.; Pijnappel, R.M.; Oudkerk, M. Computer-aided detection in breast
MRI: A systematic review and meta-analysis. Eur. Radiol. 2011, 21, 1600–1608. [CrossRef]

37. Hassan, C.; Spadaccini, M.; Iannone, A.; Maselli, R.; Jovani, M.; Chandrasekar, V.T.; Antonelli, G.; Yu, H.; Areia, M.; Dinis-Ribeiro,
M.; et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: A systematic review and
meta-analysis. Gastrointest. Endosc. 2021, 93, 77–85.e76. [CrossRef]

38. Hughes, K.S.; Zhou, J.; Bao, Y.; Singh, P.; Wang, J.; Yin, K. Natural language processing to facilitate breast cancer research and
management. Breast J. 2020, 26, 92–99. [CrossRef]

39. Hartmanis, J.; Stearns, R.E. On the computational complexity of algorithms. Trans. Am. Math. Soc. 1965, 117, 285–306. [CrossRef]
40. Wolpert, D.H. The Lack of a Priori Distinctions between Learning Algorithms. Neural Comput. 1996, 8, 1341–1390. [CrossRef]
41. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
42. Ho, Y.C.; Pepyne, D.L. Simple explanation of the no-free-lunch theorem and its implications. J. Optim. Theory Appl. 2002, 115,

549–570. [CrossRef]
43. Tagliafico, A.S.; Piana, M.; Schenone, D.; Lai, R.; Massone, A.M.; Houssami, N. Overview of radiomics in breast cancer diagnosis

and prognostication. Breast 2020, 49, 74–80. [CrossRef] [PubMed]
44. Gong, J.; Liu, J.; Hao, W.; Nie, S.; Wang, S.; Peng, W. Computer-aided diagnosis of ground-glass opacity pulmonary nodules

using radiomic features analysis. Phys. Med. Biol. 2019, 64, 135015. [CrossRef]
45. Beig, N.; Khorrami, M.; Alilou, M.; Prasanna, P.; Braman, N.; Orooji, M.; Rakshit, S.; Bera, K.; Rajiah, P.; Ginsberg, J.; et al.

Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology

2019, 290, 783–792. [CrossRef]
46. Phene, S.; Dunn, R.C.; Hammel, N.; Liu, Y.; Krause, J.; Kitade, N.; Schaekermann, M.; Sayres, R.; Wu, D.J.; Bora, A.; et al. Deep

Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus
Photographs. Ophthalmology 2019, 126, 1627–1639. [CrossRef]

200



J. Pers. Med. 2021, 11, 1172

47. Aziz, M.; Fatima, R.; Dong, C.; Lee-Smith, W.; Nawras, A. The impact of deep convolutional neural network-based artificial
intelligence on colonoscopy outcomes: A systematic review with meta-analysis. J. Gastroenterol. Hepatol. 2020, 35, 1676–1683.
[CrossRef]

48. Wang, P.; Berzin, T.M.; Glissen Brown, J.R.; Bharadwaj, S.; Becq, A.; Xiao, X.; Liu, P.; Li, L.; Song, Y.; Zhang, D.; et al. Real-time
automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled
study. Gut 2019, 68, 1813–1819. [CrossRef]

201





MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel. +41 61 683 77 34

Fax +41 61 302 89 18

www.mdpi.com

Journal of Personalized Medicine Editorial Office

E-mail: jpm@mdpi.com

www.mdpi.com/journal/jpm





ISBN 978-3-0365-4847-0 

MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com


	Final_Book.pdf
	Book.pdf
	Final_Book

