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Preface to ”Bioinformatics and Machine Learning for
Cancer Biology”

Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer

biology is an essential research field to understand how cancer develops, evolves, and responds to

therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and

epigenomics), computational methods in bioinformatics and machine learning can help scientists

and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer

drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis

of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular

behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation

sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such

as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC),

machine learning has a uniquely advantageous role in boosting data-driven cancer research and

unraveling novel methods for the prognosis, prediction, and treatment of cancer.

This book presents some of the latest progresses on leveraging bioinformatics and machine

learning for cancer biology, which is particularly useful and attractive for cancer biologists,

bioinformaticians, machine learning experts, computational biologists and other scientists or

researchers in life sciences and biology. We would like to thank all the authors contributing to this

book who made significant contributions to the better understanding of various cancers as well as

cancer-related analysis method improvements. We are eager to see more exciting discoveries in cancer

biology with the help of bioinformatics analysis and machine learning in the near future.

Shibiao Wan, Yiping Fan, Chunjie Jiang, and Shengli Li

Editors
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Editorial

Special Issue on Bioinformatics and Machine Learning for
Cancer Biology
Shibiao Wan 1,* , Chunjie Jiang 2 , Shengli Li 3 and Yiping Fan 1

1 Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
yiping.fan@stjude.org

2 Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine,
Houston, TX 77030, USA; chunjie.jiang917@outlook.com

3 School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China; shengli.li@shsmu.edu.cn
* Correspondence: shibiao.wan@stjude.org; Tel.: +1-901-595-1905

Cancer is a leading cause of death worldwide, claiming millions of lives each year.
Cancer biology is an essential research field to understand how cancer develops, evolves,
and responds to therapy. By taking advantage of a series of “omics” technologies (e.g.,
genomics, transcriptomics, and epigenomics), computational methods in bioinformatics
and machine learning can help scientists and researchers decipher the complexity of cancer
heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics
enables the systematic interrogation and analysis of cancer from various perspectives,
including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation,
and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data
in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer
Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC),
machine learning has a uniquely advantageous role in boosting data-driven cancer research
and unraveling novel methods for the prognosis, prediction, and treatment of cancer.

This special issue aims to leverage bioinformatics analysis and machine learning to
further our understanding of cancer biology in different perspectives. Specifically, Yao
et al. [1] identified and validated an Annexin-related prognostic signature and therapeutic
targets for bladder cancer. Furthermore, for bladder cancer, Wei et al. [2] demonstrated
CPA4 to be a poor prognostic biomarker correlated with immune cells infiltration, and
for ovarian cancer, Li et al. [3] identified the RNA modification gene PUS7 as a potential
biomarker. Another interesting development is that Serna-Blasco et al. [4] proposed a new
measurement called R-score to assess the quality of variants’ calls using liquid biopsies
for non-small cell lung cancer. Additionally, for breast cancer, Zainab et al. [5] used a
drug–drug interaction network approach to identify estrogen receptor alpha inhibitors, and
simultaneously, they revealed the role of persistent organic pollutants in the progression
of the breast cancer. Furthermore, Chiu et al. [6] identified a DNA damage repair gene
set as a potential biomarker to stratifying patients with high tumor mutational burden.
Methodically, Rehman et al. [7] proposed a depth-wise convolutional neural network for
architecture distortion-based digital mammograms classification. Obermayer et al. [8]
proposed a web-based framework called DRPPM-EASY for integrative analysis of multi-
omics cancer datasets.

It is exciting to know that, with the help of integrative bioinformatics analyses, our
understanding of multiple cancers such as bladder cancer, ovarian cancer, breast cancer,
and non-small cell lung cancer has been remarkably enhanced. Additionally, with the
application of machine learning approaches (especially deep learning) and webtool devel-
opment, our capabilities of extending the analysis and understanding of other less-studied
cancers are expected to be consolidated. On the other hand, we are also aware that with
heterogeneity and complexity properties, even the internal mechanisms of tumorigenesis
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for those well-studied cancers [9,10] remain to be further unraveled, let alone the discovery
of anticancer drugs and treatment. More integrative, genome-wide, and global-scale studies
are required to further shed light on the driving forces behind the tumorigenesis and the
development of anticancer drugs and treatments.

In summary, we would like to thank all the authors for the articles published within
this special issue who made significant contributions to this special issue, and more im-
portantly, to the better understanding of various cancers as well as cancer-related analysis
method improvements. We are eager to see more exciting discoveries in cancer biology
with the help of bioinformatics analysis and machine learning in the near future.

Author Contributions: S.W. wrote the main manuscript. S.W., C.J., S.L. and Y.F. participated in
revising the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by in part by the National Cancer Institute grant P30 CA021765.
The content is solely the responsibility of the authors and does not necessarily represent the of-
ficial views of the National Institutes of Health. This work was in part supported by National
Natural Science Foundation of China (32100517) and Shanghai General Hospital Startup Funding
(02.06.01.20.06).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.
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Machine Learning-Based Identification of Colon Cancer
Candidate Diagnostics Genes
Saraswati Koppad 1 , Annappa Basava 1, Katrina Nash 2 , Georgios V. Gkoutos 3,4,5,6,7,8

and Animesh Acharjee 3,4,5,*

1 Department of Computer Science and Engineering, National Institute of Technology Karnataka,
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Simple Summary: We developed a predictive approach using different machine learning methods to
identify a number of genes that can potentially serve as novel diagnostic colon cancer biomarkers.

Abstract: Background: Colorectal cancer (CRC) is the third leading cause of cancer-related death and
the fourth most commonly diagnosed cancer worldwide. Due to a lack of diagnostic biomarkers
and understanding of the underlying molecular mechanisms, CRC’s mortality rate continues to
grow. CRC occurrence and progression are dynamic processes. The expression levels of specific
molecules vary at various stages of CRC, rendering its early detection and diagnosis challenging
and the need for identifying accurate and meaningful CRC biomarkers more pressing. The advances
in high-throughput sequencing technologies have been used to explore novel gene expression,
targeted treatments, and colon cancer pathogenesis. Such approaches are routinely being applied
and result in large datasets whose analysis is increasingly becoming dependent on machine learning
(ML) algorithms that have been demonstrated to be computationally efficient platforms for the
identification of variables across such high-dimensional datasets. Methods: We developed a novel
ML-based experimental design to study CRC gene associations. Six different machine learning
methods were employed as classifiers to identify genes that can be used as diagnostics for CRC using
gene expression and clinical datasets. The accuracy, sensitivity, specificity, F1 score, and area under
receiver operating characteristic (AUROC) curve were derived to explore the differentially expressed
genes (DEGs) for CRC diagnosis. Gene ontology enrichment analyses of these DEGs were performed
and predicted gene signatures were linked with miRNAs. Results: We evaluated six machine learning
classification methods (Adaboost, ExtraTrees, logistic regression, naïve Bayes classifier, random forest,
and XGBoost) across different combinations of training and test datasets over GEO datasets. The
accuracy and the AUROC of each combination of training and test data with different algorithms
were used as comparison metrics. Random forest (RF) models consistently performed better than
other models. In total, 34 genes were identified and used for pathway and gene set enrichment
analysis. Further mapping of the 34 genes with miRNA identified interesting miRNA hubs genes.
Conclusions: We identified 34 genes with high accuracy that can be used as a diagnostics panel
for CRC.

Keywords: biomarker identification; transcriptomics; machine learning; prediction; variable selection
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1. Introduction

Colorectal cancer (CRC) is the third most common cause of death due to cancer and
the fourth most commonly diagnosed cancer worldwide [1,2]. Considering demographic
estimates, nearly 2.2 million new cases and about 1.1 million deaths are expected by 2030,
and the global burden of CRC is estimated to increase by 60% [3]. CRC cancer is a genotype
and phenotype heterogeneous disease, characterized by a display of distinct molecular
signatures [4]. Around 1.4 million new cases and nearly 700,000 deaths were recorded in
2012 due to colorectal cancer [5].

Advancements in omics technologies, such as microarrays, RNAseq [6], next-generation
sequencing (NGS) [7], and mass spectrometry [8], have enabled employing molecular mark-
ers for the diagnosis of CRC [9]. For example, recent studies have used gene microarrays, as
well as high-throughput sequencing technologies, to explore differential expressing novel
genes in colon cancer [10]. Fang-Ze et al. [11] reported that CLCA1 may be a candidate
diagnostic and prognostic differentially expressed gene or biomarker for colon cancer.
Li et al. [12] identified CDK1 and CDC20 genes as candidate targets for diagnosis of CRC.
Most studies reported individual markers such as the CEA, CK19, and CK20 genes [13].
However, the resulting specificity (89%) and sensitivity (78%) of those biomarkers have
rendered them unsuitable for the development of a noninvasive diagnostic method for the
detection of colon cancer [14]. Dasi et al. [15] and Schiedeck et al. [16] investigated TERT,
GCC, MAGEA, TS, CGM2, and L6 as biomarkers for detecting colon cancer, reporting a sen-
sitivity and specificity of around 85% and 95%. Furthermore, Liu et al. [17] identified seven
prognostic genes, namely, TIMP1, LZTS3, AXIN2, CXCL1, ITLN1, CPT2, and CLDN23,
for the application of novel diagnostic and prognostic biomarkers for the treatment of
colon cancer.

Torres et al. [18] investigated the proteome profiling of human and mouse tissue
which revealed a novel association of cancer-associated fibroblasts with cancer progression.
This study further unveiled the role of the LTBP2, CDH11, OLFML3, CALU, CDH11, and
FSTL1 proteins in migration and invasion of CRC and, hence, their use as a biomarker.
Moreover, Kim et al. (2019) [19] identified abnormal concentrations of the taurine, alanine,
3-aminoisobutyrate, and citrate metabolites from urine samples in CRC patients.

Although the various molecular characteristics, biological markers, and therapeutic tar-
gets of colon cancer previously discovered have contributed significantly to its diagnosis and
treatment, the biological complexity, outcome severity, and high metastasis of this complex
disease necessitate further predictive and prognostic biomarker identification [20,21]. Cur-
rently, CRC prognosis is based on a classification of clinicopathological features, including,
tumor, node, metastasis (TNM) stage, cancer numbers, histologic type (mucinous carci-
noma or signet ring-cell carcinoma), histology type, tumor grade, tumor size, number of
lymph nodes, and tumor location [22]. Furthermore, the right and left localization and the
excision of lymph nodes are included in the histological type and grading in the prognosis
of colorectal cancer [23].

This study aimed to design and develop novel ML-based, computationally efficient
platforms to study CRC gene associations and identify signature genes used as diagnostics
markers across transcriptomics datasets.

2. Methods

In this study, we used three gene expression datasets (GSE44861, GSE20916, GSE113513),
available from the GEO database [24], and applied six different machine learning methods
(Adaboost, ExtraTrees, logistic regression, naïve Bayes, random forest, and XGBoost) to
identify genes that can be used as diagnostics markers. We used different combinations
of the GSE44861, GSE20916, and GSE113513 datasets for training and validation. We
then performed an enrichment analysis and associated the resulting gene signatures with
miRNA. Lastly, we estimated the number of samples required for the markers selected for
the future validation experiments.

4



Biology 2022, 11, 365

2.1. Data

The gene expression matrixes and clinical data were downloaded from the GEO
database repository (https://www.ncbi.nlm.nih.gov/geo/) accessed on 1 October 2020.
The details of the datasets used in this study are summarized in Table 1. The detailed
workflow of the methods and process used in this study is presented in Figure 1.

Table 1. List of the datasets and platforms used in this study.

GEO Dataset
No. of Samples

Platform ID References
Normal CRC Total

GSE44861 55 56 111 GPL3921 [25]

GSE20916 44 46 90 GPL570 [26]

GSE113513 14 14 28 GPL15207 [27]
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Differentially Expressed Genes (DEGs) Identified by GEO2R

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r, accessed on 5 January 2021), an
online data analysis tool, was used to identify differentially expressed genes (DEGs) be-
tween colon cancer patients and healthy controls. We used three GEO series, namely
GSE20916, GSE44861, and GSE113513, and identified differential expressed genes. Genes
without a corresponding gene symbol and genes with more than one probe set were re-
moved. Adjusted p-values ≤ 0.0001 were considered statistically significant. Subsequently,
the top 500 most statistically significant DEG genes from each dataset were selected for
further analysis.

5



Biology 2022, 11, 365

2.2. Machine Learning Algorithms and Predictive Analytics

Six different machine learning algorithms, namely, Adaboost [28], ExtraTrees [29],
logistic regression [30,31], naïve Bayes (NB) classifier [32], random forest [33], and XG-
Boost [34], were employed to develop models using the selected GEO datasets (GSE44861,
GSE20916, and GSE113513). These datasets were employed to generate different combina-
tions of training and test data to assess the derived models’ performance.

The python Scikit-learn libraries [35] were employed for the implementation of the
different classifiers and feature selection methods.

2.2.1. Hyperparameter Optimization

We used the GridSearchCV [35] function to find the optimal values for each model
hyperparameter. GridSearchCV is a function, available as part of the Scikit-learn’s library,
that caters the looping through predefined hyperparameters and the fitting of the model
on the training set. GridSearchCV uses all the combinations of the predefined parameter
values and evaluates a model’s performance for each combination using cross-validation.
The accuracy results obtained for every hyperparameter combination can then be used to
identify the best-performing model.

2.2.2. Machine Learning Model Evaluation

The analysis was carried out using three different GEO datasets (GSE44861, GSE20916,
and GSE113513) as training and testing data for performance comparison in a combina-
torial way with six different machine learning models including logistic regression [36],
naïve Bayes [37], random forest [38], ExtraTrees [39], Adaboost [40], and XGBoost [41].
Each model was evaluated with different evaluation metrics such as precision, recall [42],
specificity, sensitivity [43], F1 score, AUROC [44], and accuracy.

We also included multiple validation strategies to validate the performance of the
model. The most commonly used k-fold cross-validation technique was applied in our
experimental work. In the k-fold (here, k = 5) cross-validation technique, the dataset
is randomly split into k subsets, whereby k − 1 subsets are used for training, and the
remaining subset is used for testing; the is process repeated k times. In addition to this, we
used resampling with the bootstrap method and leave-one-out cross-validation (LOOCV)
in our experimental work for validation of the model performance. The model performance
was evaluated for the mean value of performance metrics over 100 iterations. In the LOOCV
method, the dataset is split into training data considering all data samples, excluding one
data sample used as the test dataset. The model developed with training data finally
measures the mean performance value for the repeated process. The experimental results
in this method for different models are also provided in Supplementary Table S1.

2.2.3. Feature Selection

We performed feature selection using two methods, mean decrease in impurity
(MDI) [45] and Boruta [46], for the selection of important genes. MDI or Gini impor-
tance [47] computes the total reduction in loss or impurity contributed by all splits for a
given feature. This method evaluates the importance of a variable Xm for predicting Y by
adding up the weighted impurity decreases p(t) ∆i(st,t) for all nodes t where Xm is used,
averaged over all NT trees in the forest as shown in the equation below.

Imp(Xm) =
1

NT
∑
T

∑
t∈Tiv(st)=Xm

p(t)∆i(st, t),

where p(t) is the proportion Nt/N of samples reaching t, and v(st) is the variable used in
split st. When using the Gini index as an impurity function, this measure is known as the
Gini importance or mean decrease Gini. MDI is computationally very efficient and has
been widely used in a variety of applications. Gini importance represents the total decrease
in node impurity, i.e., how much the model fit or accuracy decreases when dropping a
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variable. A larger decrease in node impurity results in a more significant variable. The top
15 genes across 10 iterations were selected with the MDI technique.

In addition to MDI, we also used Boruta which is a feature selection algorithm and
works as a wrapper algorithm around random forest [48]. It attempts to capture all the
important, interesting features from a dataset with respect to an outcome variable and can
be used in combination with tree-based ensemble learning algorithms.

2.3. Gene Enrichment Analysis

Gene ontology (GO) enrichment analysis of DEGs was carried out using the FunRich
(functional enrichment analysis tool) (http://www.funrich.org/, accessed on 25 January 2021).
DEGs were classified according to the biological process and cellular component GO
collections. Biological terms with an FDR p-value lower than 0.05 were considered sig-
nificantly enriched. Correction for multiple hypothesis testing was carried out by the
Benjamini–Hochberg method.

2.3.1. Association of the Gene Markers with miRNA

We used the NetworkAnalyst (www.networkanalyst.ca, accessed on 28 January 2021) [49]
tool and more specifically the gene–miRNA module that employs the miRTarBase v8 database
to calculate the number of the connections or links for each gene, also termed degrees.

2.3.2. Sample Size Estimates for Future Validation Experiments

We then used PowerTools (https://joelarkman.shinyapps.io/PowerTools/, accessed on
10 February 2021) [50] to estimate the number of samples required for future experiments.

3. Results
3.1. Differential Expressed Genes (DEGs)

We identified the top 500 DEGS across each of the GEO datasets examined. For the
GSE44861 dataset, 324 genes were found to be upregulated and 176 genes were down-
regulated, while, for the GSE20916 and the GSE113513 datasets, 171 and 223 genes were
upregulated and 329 and 277 genes were downregulated, respectively. The identified
differentially expressed genes and their respective p-values, as well as the fold changes, are
listed in Supplementary Table S2.

Performance Evaluation

For each of the three GEO datasets examined, their respective DEGs were used as
features across six different classification models, namely, Adaboost, ExtraTrees, logistic
regression, naïve Bayes classifier, random forest, and XGBoost. The performance of these
models was evaluated against different combination of training and test datasets.

The results of the different performance metrics for each classifier are presented in
Supplementary Table S1. With GSE44861 as training data and GSE20916 as test data, the
random forest model achieved better performance with an accuracy of 98.2% and 90%
using the bootstrap and LOOCV methods, respectively. With GSE44861 as training and
GSE113513 as testing data, the logistic regression model achieved an accuracy of 96.4%
and 84% using bootstrap and LOOCV, respectively. When we used GSE20916 as training
data and GSE44861 as testing data, the naïve Bayes classifier achieved an accuracy of
90.1% and 96% using bootstrap and LOOCV, respectively. With GSE20916 as training
data and GSE113513 as testing data, logistic regression resulted in better performance.
With GSE113513 as training and GSE44861 as testing data, the ExtraTree classifier model
achieved better performance. With GSE113513 as training data and GSE20916 as testing
data, none of the models achieved good performance.

A comparison of the accuracy and AUROC results for each model evaluations is
presented in Figure 2. When using GSE44861 as training data and GSE20916 as test data,
the random forest classifier achieved the best performance across all classifiers with an
accuracy of 98.2% and an AUROC of 99.9% (Figure 2A). With GSE44861 as training data
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and GSE113513 as test data, a logistic regression model achieved an accuracy of 96.4% and
an AUROC of 99% (Figure 2B). When using GSE20916 as training data and GSE44861 as
test data, the naïve Bayes classifier exhibited the best performance with an accuracy of
90.1% and AUROC of 90%, as shown in Figure 2C. Using GSE20916 as the training data and
GSE113513 as the test data, the logistic regression model achieved the best performance
(Figure 2D). Lastly, with GSE113513 as the training data and GSE44861 as the test data, as
well as with GSE113513 as the training data and GSE20916 as the test data, all classifiers
achieved an accuracy of 50% to 51% and an AUROC of 50% to 51%, apart from logistic
regression, which resulted in an AUROC of 99% (Figure 2E,F).
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The AUROC plots for the models that had the best performance across the different
training and test data combinations are presented in Figure 3. Across the three datasets
tested, random forest and logistic regression achieved the best performance when we
combined GSE44861 and GSE20916 datasets as training and test data. However, none of
the classifiers assessed achieved a good performance using the GSE113513 dataset. The
best performances of each classification model are represented as AUROC plots. Overall,
the random forest models exhibited consistently better performance across all classification
models tested.

Biology 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. ROC curves for the different classifiers. (A) Performance of logistic regression model 
with GSE44861 as training and GSE20916, GSE113513 as test data; (B) performance of random 
forest model with GSE20916 as training and GSE44861, GSE113513 as test data; (C) performance of 
ExtraTrees model with GSE20916 as training and GSE44861, GSE113513 as test data; (D) perfor-
mance of naïve Bayes model with GSE20916 as training and GSE44861, GSE113513 as test data; (E) 
performance of XGBoost model with GSE44861 as training and GSE20916, GSE113513 as test data; 
(F) performance of Adaboost model with GSE44861 as training and GSE20916, GSE113513 as test 
data. 

3.2. Gene Selection 
Random forest classification, on the basis of the performance previously reported, 

was applied in combination with MDI to select the top 15 genes with the highest im-
portance score in 10 different iterations. We then identified the union of all the genes se-
lected from all 10 iterations. Figure 4 shows the important genes selected using the mean 
decrease in impurity (MDI) technique in combination with the random forest classifier. 
Figure 4A depicts the important genes selected using the GSE44861 dataset, while Figure 
4B presents the important genes selected using the GSE20916 dataset. 

  

Figure 3. ROC curves for the different classifiers. (A) Performance of logistic regression model with
GSE44861 as training and GSE20916, GSE113513 as test data; (B) performance of random forest model
with GSE20916 as training and GSE44861, GSE113513 as test data; (C) performance of ExtraTrees
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3.2. Gene Selection

Random forest classification, on the basis of the performance previously reported, was
applied in combination with MDI to select the top 15 genes with the highest importance
score in 10 different iterations. We then identified the union of all the genes selected from
all 10 iterations. Figure 4 shows the important genes selected using the mean decrease
in impurity (MDI) technique in combination with the random forest classifier. Figure 4A
depicts the important genes selected using the GSE44861 dataset, while Figure 4B presents
the important genes selected using the GSE20916 dataset.
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Gene Ontology (GO) Enrichment Analysis

MDI in combination with the random forest classifier for feature selection resulted
in the selection of 34 genes that were used for the pathway and gene set enrichment
analysis. These genes were found to be associated with a number of molecular functions
including cell adhesion molecule activity (CDH3 and CLDN), transporter activity (ABCG2,
SLC22A18AS, and SLC26A2), catalytic activity (CA7, DHRS9, and HSD11B2) and oxidore-
ductase activity (ACADS and DHRS11). The pathways for which 34 genes were found to
be enriched are presented in Figure 5A.
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3.3. Associating Selected Genes with miRNA Using NetworkAnalyst

We mapped the 34 identified genes using the NetworkAnalyst tool and found that
19 genes out of 34 genes formed hub genes (Figure 5B). For example, IL6R had the highest
number of miRNA interactions (degree, 94). A list of the identified genes and their miRNA
associations is provided in the Supplementary Table S3.

Lastly, we also performed a power analysis over the GSE44861 dataset. For this
purpose, we used the 34 genes that were identified and ranked by the random forest
algorithm. We then applied hierarchical clustering over these 34 genes and identified two
clusters. We selected the genes that presented the highest correlation across normal vs.
cancer samples.

CA7 and TEAD4 were selected as representative genes across the two clusters as they
had the highest correlation with the normal vs. CRC samples (i.e., lowest p-values). For
both clusters of genes including CA7 and TEAD4, we estimated N = 5 samples, required for
both control and CRC samples. Figure 5C represents the number of the estimated samples
required for genes from each cluster.

4. Discussion

The three GEO datasets used in our experimental work with six different machine
learning methods were validated across different combinations of training and test datasets.
The performance of each model was reported and compared using a number of performance
metrics, such as accuracy, sensitivity, specificity, AUC, etc. The random forest method
showed the best performance against the GSE44861 and GSE20916 datasets when used as a
combination of training and test data. It was less prone to overfitting when compared to
the other methods used. This method has also been applied successfully in other diseases
such as NAFLD [51], obesity [52], and IBD [53]; therefore, we applied the random forest
method to select the important features from these two datasets.

The GSE113513 dataset had a lower number of samples or observations compared to
the GSE44861 and GSE20916 datasets, which resulted in lower performance compared to
the other datasets, thus indicating an overfitting problem. We used multiple approaches to
protect against the overfitting problem, such as the widely used fivefold cross-validation,
LOOCV, and bootstrapping. Compared with k-fold cross validation and LOOCV, the
bootstrap method could use the entire sample in model development and validation, thus
helping to estimate optimism and measure overfitting. The optimism-corrected estimated
performance by the bootstrap method is relatively stable because it uses the full sample size
and the bootstrap samples vary in composition [54]. We incorporated 100 iterations with
the bootstrap method for the experimental work, and each of these evaluation metrics were
averaged over these 100 iterations. Datasets GSE44861 and GSE20961 were observed to
perform better, and the random forest method was chosen for the feature selection process.

The gene ontology enrichment analysis identified several genes and their associated
pathways, most notably, cell adhesion molecule activity, transporter activity, catalytic activity,
and oxidoreductase activity. CDH3, a gene encoding P-cadherin that forms a major component
of the adherens junctions that are essential for cell adhesion, has been identified as being
upregulated in CRC in multiple studies and as a diagnostic or prognostic marker [55,56]. Con-
versely, CLDN, encoding for the claudin protein forming tight junctions, has been found to
be a potential diagnostic marker with downregulation in CRC patients [56,57]. Furthermore,
previous research has postulated that the HDS11B2 gene, involved in catalytic activity
pathways, plays a vital role in migration, invasion, and metastasis of CRC [58]. Other
genes identified to be involved in catalytic activity (CA7 and DHRS9) have been found to
be downregulated in CRC cells, and have been proposed as promising diagnostic and/or
prognostic markers [59,60]. Genes associated with transporter activity have also been iden-
tified in existing studies. Of particular note is the upregulation of the ABCG2 gene, which
has been postulated to play a protective role against oxidative stress through cell signaling
pathways, which may explain why it has been found to be upregulated in CRC [61–63]. Sim-
ilarly, genes involved in oxidoreductase activity (ACADS and DHRS11) have been found
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to be downregulated in previous studies [64,65]. These genes are involved in fatty-acid
metabolism and energy production within mitochondria; thus, their downregulation may
partially explain the changes in metabolism often observed in cancer cells [66]. Many of the
identified genes have been previously associated with colon cancer via miRNA interactions.
Multiple studies, including Bian et al., Hua et al., and Xu et al., have reported that serum
IL-6 may be a potential biomarker for CRC diagnosis and a miR-34a target [67]. IL6R has
also been implicated in other cancer types, including prostate cancer [68]. Another gene,
SLC4A4, was found to be significantly correlated with shorter survival of CRC patients and
a marker of poorer progression for patients with breast cancer, lung cancer, gastric cancer,
and ovarian cancer. This suggests a potential role of SLC4A4 in tumor suppression, as well
as in prognostic prediction in multiple malignancies, including CRC, thus representing
a potential novel therapeutic CRC target [69]. Yang et al. (2019) [70] identified a similar
SLC4A4 expression association and proposed the expression of six further genes, namely,
SGCG, CLDN23, CCDC78, SLC17A7, OTOP3, and SMPDL3A, as novel colon cancer prog-
nostic biomarkers. Zhang et al. (2020) [71] reported that hsa_circRNA_001587 upregulates
SLC4A4 expression to inhibit migration, invasion, and angiogenesis of pancreatic cancer
cells via binding to microRNA-223. Furthermore, Mencia et al. (2011) reported miR-224 to
be one of the most differentially expressed miRNAs associated with SLC4A4 [72]. Andersen
et al. (2015) [73] reported changes in gene expression levels (high ABCC2 and low ABCG2)
as early events in the colon adenoma–carcinoma sequence. Moreover, miR-132 has been
reported to regulate the SIRT1/CREB/ABCG2 signaling pathway, contributing to cisplatin
resistance and serving as a novel therapeutic target against gastric cancer [74]. Cherradi
et al. found CLDN1 to be significantly overexpressed (p < 0.001) in CRC samples, and
they proposed it as a new potential therapeutic target of miR-7-2 [75]. Lastly, Miwa et al.
(2011) [76] reported CLDN1 as a target of TCF/LEF signaling, while Singh et al. (2011) [77]
suggested the involvement of CLDN1 in the regulation of the WNT signaling pathway.

Our approach utilized a limited number of public datasets, and the potential causal re-
lationships identified necessitate experimental validation. We did not consider the effect of
multiple factors, such as age, gender, ethnicity, and tumor grade and stage, on gene expres-
sion patterns since we focused only on genes that have been previously reported as having
significant variation between control and cancer samples. In the context of translational
medicine [78], further research is required to investigate the selected prognostic/diagnostic
signature’s clinical utility in predicting clinical outcomes in various tumor types.

In CRC diagnostics, colonoscopy is the current gold-standard screening method.
However, this approach has some limitations that include internal hemorrhage, colonic
perforation, and cardiorespiratory problems [79].

Another approach is the guaiac fecal occult blood test (gFOBT) [80], which detects
hemoglobin peroxidase activity in the feces, and it is the most often used noninvasive
screening procedure. Although FOBT is a simple and inexpensive way to screen for CRC,
it has a high percentage of false positives and false negatives.

As a result, alternative CRC screening approaches that are cost-effective, noninvasive,
easily quantifiable, and accurate are urgently needed. Thus, gene signature-based biomark-
ers in the clinical applications in CRC are required for early cancer detection, prognostic
stratification, and surveillance [80]. Genes identified in this study will need to go through
targeted validation experiments using qPCR. A new trial needs to be set up to replicate the
gene signature’s effect. This step will ensure the clinical efficacy of those markers identified
and will allow a better clinical decision on CRC [81].

5. Conclusions

This study aimed to identify novel genes associations with CRC that can potentially
be used as diagnostic markers in translational research. To achieve this, we applied a
predictive analytics approach that employed a variety of machine learning methods. In
addition, we estimated the required number of samples for future validation experiments.

13



Biology 2022, 11, 365

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology11030365/s1: Table S1. The experimental results from
different models and performance comparison of all methods across training and test datasets;
Table S2. List of identified differentially expressed genes and their respective p-values, and the fold
changes; Table S3. A list of the identified genes and their miRNA associations.

Author Contributions: S.K. and A.A. performed the machine learning analysis; A.A. conceptualized
and designed the data analytics strategy; S.K., A.B., K.N., G.V.G. and A.A. wrote the first draft;
A.B., G.V.G. and A.A. supervised the project; K.N. provided clinical interpretation of the results. All
authors co-wrote, edited, and reviewed the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors acknowledge support from the Ministry of Electronics and Information
Technology (MeitY), Government of India, as well as from the NIHR Birmingham ECMC, NIHR
Birmingham SRMRC, Nanocommons H2020-EU (731032), NIHR Birmingham Biomedical Research
Center, MRC Health Data Research UK (HDRUK/CFC/01), an initiative funded by UK Research
and Innovation, Department of Health and Social Care (England) and the devolved administrations,
and leading medical research charities. The views expressed in this publication are those of the
authors and not necessarily those of the NHS, the National Institute for Health Research, the Medical
Research Council, or the Department of Health.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: This study did not involve an animal and/or human tissue/individual
data/participants; thus, there were no ethics-related issues. No permission was required to use any
repository data involved in the present study.

Data Availability Statement: Availability of data and materials: GEO datasets used in this study can
be obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 5 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AUROC Area under the receiver operating characteristic curve
CRC Colon cancer
DEGs Differential expressed genes
GEO Gene Expression Omnibus
GO Gene ontology
miRNA microRNA
MDI Mean decrease in impurity
RF Random forest

References
1. Siegel, R.; DeSantis, C.; Jemal, A. Colorectal cancer statistics, 2014. CA A Cancer J. Clin. 2014, 64, 104–117. [CrossRef] [PubMed]
2. Worldwide incidence and mortality of colorectal cancer and human development index (HDI): An ecological study. WCRJ 2019,

6, 1433.
3. Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz.

Gastroenterol. 2019, 14, 89–103. [CrossRef] [PubMed]
4. Bogaert, J.; Prenen, H. Molecular genetics of colorectal cancer. Ann. Gastroenterol. 2014, 27, 9–14.
5. Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer

Epidemiol. Biomark. Prev. 2016, 25, 16–27. [CrossRef]
6. Stefano, G.B.; Mantione, K.J.; Kream, R.M.; Kuzelova, H.; Ptacek, R.; Raboch, J.; Samuel, J.M. Comparing Bioinformatic Gene

Expression Profiling Methods: Microarray and RNA-Seq. Med. Sci. Monit. Basic Res. 2014, 20, 138–142. [CrossRef]
7. Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [CrossRef]
8. Kim, H.-Y.; Lee, S.-G.; Oh, T.-J.; Lim, S.R.; Kim, S.-H.; Lee, H.J.; Kim, Y.-S.; Choi, H.-K. Antiproliferative and Apoptotic Activity of

Chamaecyparis obtusa Leaf Extract against the HCT116 Human Colorectal Cancer Cell Line and Investigation of the Bioactive
Compound by Gas Chromatography-Mass Spectrometry-Based Metabolomics. Molecules 2015, 20, 18066–18082. [CrossRef]

9. Dalal, N.; Jalandra, R.; Sharma, M.; Prakash, H.; Makharia, G.K.; Solanki, P.R.; Singh, R.; Kumar, A. Omics technologies for
improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomed. Pharmacother.
2020, 131, 110648. [CrossRef]

14



Biology 2022, 11, 365

10. Chen, M.; Yang, X.; Yang, M.; Zhang, W.; Li, L.; Sun, Q. Identification of a novel biomarker-CCL5 using antibody microarray for
colorectal cancer. Pathol. Res. Pract. 2019, 215, 1033–1037. [CrossRef]

11. Wei, F.-Z.; Mei, S.-W.; Wang, Z.-J.; Chen, J.-N.; Shen, H.-Y.; Zhao, F.-Q.; Li, J.; Liu, Z.; Liu, Q. Differential Expression Analysis
Revealing CLCA1 to Be a Prognostic and Diagnostic Biomarker for Colorectal Cancer. Front. Oncol. 2020, 10, 573295. [CrossRef]
[PubMed]

12. Li, J.; Wang, Y.; Wang, X.; Yang, Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor
prognosis: Evidence from integrated bioinformatics analysis. World J. Surg. Oncol. 2020, 18, 1–11. [CrossRef] [PubMed]

13. Gonzalez-Pons, M.; Cruz-Correa, M. Colorectal Cancer Biomarkers: Where Are We Now? BioMed. Res. Int. 2015, 2015, 1–14.
[CrossRef] [PubMed]

14. Lin, S.-R.; Huang, M.-Y.; Chang, H.-J. Molecular Detection of Circulating Tumor Cells With Multiple mRNA Markers by Genechip
for Colorectal Cancer Early Diagnosis and Prognosis Prediction. Genom. Med. Biomark. Health Sci. 2011, 3, 9–16. [CrossRef]

15. Dasí, F.; Lledó, S.; García-Granero, E.; Ripoll, R.; Marugán, M.; Tormo, M.; García-Conde, J.; Aliño, S.F. Real-time quantification in
plasma of human telomerase reverse transcriptase (hTERT) mRNA: A simple blood test to monitor disease in cancer patients. Lab.
Investig. 2001, 81, 767–769. [CrossRef] [PubMed]

16. Schiedeck, T.H.K.; Wellm, C.; Roblick, U.J.; Broll, R.; Bruch, H.-P. Diagnosis and Monitoring of Colorectal Cancer by L6 Blood
Serum Polymerase Chain Reaction Is Superior to Carcinoembryonic Antigen-Enzyme-Linked Immunosorbent Assay. Dis. Colon
Rectum 2003, 46, 818–825. [CrossRef]

17. Liu, X.; Bing, Z.; Wu, J.; Zhang, J.; Zhou, W.; Ni, M.; Meng, Z.; Liu, S.; Tian, J.; Zhang, X.; et al. Integrative Gene Expression
Profiling Analysis to Investigate Potential Prognostic Biomarkers for Colorectal Cancer. Med. Sci. Monit. 2020, 26, e918906.
[CrossRef]

18. Torres, S.; Bartolome, R.A.; Mendes, M.; Barderas, R.; Fernández-Aceñerp, M.J.; Peláez-García, A.; Peña, C.; Lopez-Lucendo, M.;
Villar-Vázquez, R.; De Herreros, A.G.; et al. Proteome Profiling of Cancer-Associated Fibroblasts Identifies Novel Proinflammatory
Signatures and Prognostic Markers for Colorectal Cancer. Clin. Cancer Res. 2013, 19, 6006–6019. [CrossRef]

19. Kim, E.R.; Kwon, H.N.; Nam, H.; Kim, J.J.; Park, S.; Kim, Y.-H. Urine-NMR metabolomics for screening of advanced colorectal
adenoma and early stage colorectal cancer. Sci. Rep. 2019, 9, 1–10. [CrossRef]

20. Schirripa, M.; Lenz, H.-J. Biomarker in Colorectal Cancer. Cancer J. 2016, 22, 156–164. [CrossRef]
21. Shi, K.; Lin, W.; Zhao, X.-M. Identifying Molecular Biomarkers for Diseases with Machine Learning Based on Integrative Omics.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 2514–2525. [CrossRef] [PubMed]
22. Wang, R.; Wang, M.-J.; Ping, J. Clinicopathological Features and Survival Outcomes of Colorectal Cancer in Young Versus Elderly:

A Population-Based Cohort Study of SEER 9 Registries Data (1988–2011). Medicine 2015, 94, e1402. [CrossRef] [PubMed]
23. Mangone, L.; Pinto, C.; Mancuso, P.; Ottone, M.; Bisceglia, I.; Chiaranda, G.; Michiara, M.; Vicentini, M.; Carrozzi, G.;

Ferretti, S.; et al. Colon cancer survival differs from right side to left side and lymph node harvest number matter. BMC
Public Health 2021, 21, 1–10. [CrossRef]

24. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 2002, 30, 207–210. [CrossRef] [PubMed]

25. Ryan, B.M.; Zanetti, K.A.; Robles, A.; Schetter, A.J.; Goodman, J.; Hayes, R.; Huang, W.-Y.; Gunter, M.J.; Yeager, M.; Burdette, L.; et al.
Germline variation inNCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer. Int. J. Cancer 2014,
134, 1399–1407. [CrossRef]

26. Skrzypczak, M.; Goryca, K.; Rubel, T.; Paziewska, A.; Mikula, M.; Jarosz, D.; Pachlewski, J.; Oledzki, J.; Ostrowsk, J. Modeling
oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical
reliability. PLoS ONE 2010, 5, e13091. [CrossRef]

27. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.;
Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D9955.
[CrossRef]

28. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting. Ann. Stat. 2000, 28, 337–407.
[CrossRef]

29. Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring Regulatory Networks from Expression Data Using Tree-Based
Methods. PLoS ONE 2010, 5, e12776. [CrossRef]

30. Yuan, Z.; Ghosh, D. Combining Multiple Biomarker Models in Logistic Regression. Biometrics 2008, 64, 431–439. [CrossRef]
31. Tolles, J.; Meurer, W.J. Logistic Regression: Relating Patient Characteristics to Outcomes. JAMA 2016, 316, 533–534. [CrossRef]

[PubMed]
32. Sambo, F.; Trifoglio, E.; Di Camillo, B.; Toffolo, G.M.; Cobelli, C. Bag of Naïve Bayes: Biomarker selection and classification from

genome-wide SNP data. BMC Bioinform. 2012, 13, S2. [CrossRef] [PubMed]
33. Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics 2012, 99, 323–329. [CrossRef] [PubMed]
34. Li, W.; Yin, Y.; Quan, X.; Zhang, H. Gene Expression Value Prediction Based on XGBoost Algorithm. Front. Genet. 2019, 10, 1077.

[CrossRef] [PubMed]
35. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.

Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

15



Biology 2022, 11, 365

36. Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J.
Biomed. Inform. 2002, 35, 352–359. [CrossRef]

37. Bauer, E.; Kohavi, R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach.
Learn. 1999, 36, 105–139. [CrossRef]

38. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
39. Geurts, P.; Maree, R.; Wehenkel, L. Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation,

and Retrieval. Mach. Learn. 2013, 63, 3–42. [CrossRef]
40. Schapire, R.E. Explaining AdaBoost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52.
41. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining; KDD ’16, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
42. Davis, J.; Goadrich, M. The Relationship Between Precision-Recall and ROC Curves. In Proceedings of the 23rd International

Conference on Machine Learning; Association for Computing Machinery: New York, NY, USA, 2006; pp. 233–240.
43. Hand, D.J. Assessing the Performance of Classification Methods. Int. Stat. Rev. 2012, 80, 400–414. [CrossRef]
44. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance

Evaluation. In AI 2006: Advances in Artificial Intelligence; Lecture Notes in Computer Science; Sattar, A., Kang, B., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4304, pp. 1015–1021, ISBN 978-3-540-49787-5.

45. Gilles, L.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. In Proceedings of
the Twenty-Seventh Conference on Neural Information Processing Systems—NIPS, Lake Tahoe, CA, USA, 5–10 December 2013.

46. Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta—A System for Feature Selection. Fundam. Inform. 2010, 101, 271–285.
[CrossRef]

47. Sandri, M.; Zuccolotto, P. A Bias Correction Algorithm for the Gini Variable Importance Measure in Classification Trees. J. Comput.
Graph. Stat. 2008, 17, 611–628. [CrossRef]

48. Chen, R.-C.; Dewi, C.; Huang, S.-W.; Caraka, R.E. Selecting critical features for data classification based on machine learning
methods. J. Big Data 2020, 7, 1–26. [CrossRef]

49. Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for
comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019, 47, W234–W241. [CrossRef]

50. Acharjee, A.; Larkman, J.; Xu, Y.; Cardoso, V.R.; Gkoutos, G.V. A random forest based biomarker discovery and power analysis
framework for diagnostics research. BMC Med. Genom. 2020, 13, 1–14. [CrossRef]

51. Shafiha, R.; Bahcivanci, B.; Gkoutos, G.V.; Acharjee, A. Machine Learning-Based Identification of Potentially Novel Non-Alcoholic
Fatty Liver Disease Biomarkers. Biomedicines 2021, 9, 1636. [CrossRef]

52. Acharjee, A.; Ament, Z.; West, J.A.; Stanley, E.; Griffin, J.L. Integration of metabolomics, lipidomics and clinical data using a
machine learning method. BMC Bioinform. 2016, 17 (Suppl. S15), 440. [CrossRef]

53. Quraishi, M.N.; Acharjee, A.; Beggs, A.D.; Horniblow, R.; Tselepis, C.; Gkoutos, G.; Ghosh, S.; Rossiter, A.E.; Loman, N.; van
Schaik, W.; et al. A Pilot Integrative Analysis of Colonic Gene Expression, Gut Microbiota, and Immune Infiltration in Primary
Sclerosing Cholangitis-Inflammatory Bowel Disease: Association of Disease With Bile Acid Pathways. J. Crohn’s Colitis 2020, 14,
935–947. [CrossRef]

54. Frank, H. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis, 2nd ed.;
Springer: New York, NY, USA, 2015.

55. Kumara, H.S.; Bellini, G.A.; Caballero, O.L.; Herath, S.A.; Su, T.; Ahmed, A.; Njoh, L.; Cekic, V.; Whelan, R.L. P-Cadherin (CDH3)
is overexpressed in colorectal tumors and has potential as a serum marker for colorectal cancer monitoring. Oncoscience 2017, 4,
139–147. [CrossRef]

56. Xu, Y.; Zhao, J.; Dai, X.; Xie, Y.; Dong, M. High expression of CDH3 predicts a good prognosis for colon adenocarcinoma patients.
Exp. Ther. Med. 2019, 18, 841–847. [CrossRef]

57. Hahn-Strömberg, V.; Askari, S.; Ahmad, A.; Befekadu, R.; Nilsson, T.K. Expression of claudin 1, claudin 4, and claudin 7 in
colorectal cancer and its relation with CLDN DNA methylation patterns. Tumor Biol. 2017, 39, 1010428317697569. [CrossRef]
[PubMed]

58. Chen, J.; Liu, Q.-M.; Du, P.-C.; Ning, D.; Mo, J.; Zhu, H.-D.; Wang, C.; Ge, Q.-Y.; Cheng, Q.; Zhang, X.-W.; et al. Type-2
11β-hydroxysteroid dehydrogenase promotes the metastasis of colorectal cancer via the Fgfbp1-AKT pathway. Am. J. Cancer Res.
2020, 10, 662–673. [PubMed]

59. Yang, G.-Z.; Hu, L.; Cai, J.; Chen, H.-Y.; Zhang, Y.; Feng, D.; Qi, C.-Y.; Zhai, Y.-X.; Gong, H.; Fu, H.; et al. Prognostic value of
carbonic anhydrase VII expression in colorectal carcinoma. BMC Cancer 2015, 15, 209. [CrossRef] [PubMed]

60. Hu, L.; Chen, H.-Y.; Han, T.; Yang, G.-Z.; Feng, D.; Qi, C.-Y.; Gong, H.; Zhai, Y.-X.; Cai, Q.-P.; Gao, C.-F. Downregulation of DHRS9
expression in colorectal cancer tissues and its prognostic significance. Tumor Biol. 2015, 37, 837–845. [CrossRef] [PubMed]

61. Nie, S.; Huang, Y.; Shi, M.; Qian, X.; Li, H.; Peng, C.; Kong, B.; Zou, X.; Shen, S. Protective role of ABCG2 against oxidative stress
in colorectal cancer and its potential underlying mechanism. Oncol. Rep. 2018, 40, 2137–2146. [CrossRef] [PubMed]

62. Expression of ABCG2 and its Significance in Colorectal Cancer. Asian Pac. J. Cancer Prev. 2010, 11, 845–848.
63. Tuy, H.D.; Shiomi, H.; Mukaisho, K.I.; Naka, S.; Shimizu, T.; Sonoda, H.; Mekata, E.; Endo, Y.; Kurumi, Y.; Sugihara, H.; et al.

ABCG2 expression in colorectal adenocarcinomas may predict resistance to irinotecan. Oncol. Lett. 2016, 12, 2752–2760. [CrossRef]

16



Biology 2022, 11, 365

64. Yang, W.; Ma, J.; Zhou, W.; Li, Z.; Zhou, X.; Cao, B.; Zhang, Y.; Liu, J.; Yang, Z.; Zhang, H.; et al. Identification of hub genes and
outcome in colon cancer based on bioinformatics analysis. Cancer Manag. Res. 2018, 11, 323–338. [CrossRef]

65. Pira, G.; Uva, P.; Scanu, A.M.; Rocca, P.C.; Murgia, L.; Uleri, E.; Piu, C.; Porcu, A.; Carru, C.; Manca, A.; et al. Landscape of
transcriptome variations uncovering known and novel driver events in colorectal carcinoma. Sci. Rep. 2020, 10, 1–12. [CrossRef]

66. Coller, H.A. Is Cancer a Metabolic Disease? Am. J. Pathol. 2014, 184, 4–17. [CrossRef]
67. Li, H.; Rokavec, M.; Hermeking, H. Soluble IL6R represents a miR-34a target: Potential implications for the recently identified

IL-6R/STAT3/miR-34a feed-back loop. Oncotarget 2015, 6, 14026–14032. [CrossRef] [PubMed]
68. Vainer, N.; Dehlendorff, C.; Johansen, J.S. Systematic literature review of IL-6 as a biomarker or treatment target in patients with

gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018, 9, 29820–29841. [CrossRef] [PubMed]
69. Dai, G.; Wang, L.; Wen, Y.; Ren, X.; Zuo, S. Identification of key genes for predicting colorectal cancer prognosis by integrated

bioinformatics analysis. Oncol. Lett. 2019, 19, 388–398. [CrossRef]
70. Yang, H.; Liu, H.; Lin, H.-C.; Gan, D.; Jin, W.; Cui, C.; Yan, Y.; Qian, Y.; Han, C.; Wang, Z. Association of a novel seven-gene

expression signature with the disease prognosis in colon cancer patients. Aging 2019, 11, 8710–8727. [CrossRef] [PubMed]
71. Zhang, X.; Tan, P.; Zhuang, Y.; Du, L. hsa_circRNA_001587 upregulates SLC4A4 expression to inhibit migration, invasion,

and angiogenesis of pancreatic cancer cells via binding to microRNA-223. Am. J. Physiol. Liver Physiol. 2020, 319, G703–G717.
[CrossRef] [PubMed]

72. Mencia, N.; Selga, E.; Noe, V.; Ciudad, C.J. Underexpression of miR-224 in methotrexate resistant human colon cancer cells.
Biochem. Pharmacol. 2011, 82, 1572–1582. [CrossRef]

73. Andersen, V.; Vogel, L.K.; Kopp, T.I.; Sæbø, M.; Nonboe, A.W.; Hamfjord, J.; Kure, E.H.; Vogel, U. High ABCC2 and Low ABCG2
Gene Expression Are Early Events in the Colorectal Adenoma-Carcinoma Sequence. PLoS ONE 2015, 10, e0119255. [CrossRef]

74. Zhang, L.; Guo, X.; Zhang, D.; Fan, Y.; Qin, L.; Dong, S. Upregulated miR-132 in Lgr5+gastric cancer stem cell-like cells contributes
to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol. Carcinog. 2017, 56, 2022–2034. [CrossRef]

75. Cherradi, S.; Ayrolles-Torro, A.; Vezzo-Vié, N.; Gueguinou, N.; Denis, V.; Combes, E.; Boissière, F.; Busson, M.; Canterel-
Thouennon, L.; Mollevi, C.; et al. Antibody targeting of claudin-1 as a potential colorectal cancer therapy. J. Exp. Clin. Cancer Res.
2017, 36, 89. [CrossRef]

76. Miwa, N.; Furuse, M.; Tsukita, S.; Niikawa, N.; Nakamura, Y.; Furukawa, Y. Involvement of claudin-1 in the beta-catenin/Tcf
signaling pathway and its frequent upregulation in human colorectal cancers. Oncol. Res. 2001, 12, 469–476. [CrossRef]

77. Singh, A.B.; Sharma, A.; Smith, J.J.; Krishnan, M.; Chen, X.; Eschrich, S.; Washington, M.K.; Yeatman, T.J.; Beauchamp, R.D.;
Dhawan, P. Claudin-1 Up-regulates the Repressor ZEB-1 to Inhibit E-Cadherin Expression in Colon Cancer Cells. Gastroenterology
2011, 141, 2140–2153. [CrossRef]

78. Bravo-Merodio, L.; Acharjee, A.; Russ, D.; Bisht, V.; Williams, J.A.; Tsaprouni, L.G.; Gkoutos, G.V. Translational biomarkers in the
era of precision medicine. Int. Rev. Cytol. 2021, 102, 191–232. [CrossRef]

79. Bailey, J.R.; Aggarwal, A.; Imperiale, T.F. Colorectal Cancer Screening: Stool DNA and Other Noninvasive Modalities. Gut Liver
2016, 10, 204–211. [CrossRef] [PubMed]

80. de Wit, M.; Fijneman, R.J.; Verheul, H.M.; Meijer, G.A.; Jimenez, C.R. Proteomics in colorectal cancer translational research:
Biomarker discovery for clinical applications. Clin. Biochem. 2013, 46, 466–479. [CrossRef] [PubMed]

81. Alvarez-Chaver, P.; Otero-Estévez, O.; Páez de la Cadena, M.; Rodríguez-Berrocal, F.J.; Martínez-Zorzano, V.S. Proteomics for
discovery of candidate colorectal cancer biomarkers. World J. Gastroenterol. 2014, 20, 3804–3824. [CrossRef]

17





Citation: Tudor, C. A Novel

Approach to Modeling and

Forecasting Cancer Incidence and

Mortality Rates through Web Queries

and Automated Forecasting

Algorithms: Evidence from Romania.

Biology 2022, 11, 857. https://

doi.org/10.3390/biology11060857

Academic Editors: Shibiao Wan,

Yiping Fan, Chunjie Jiang

and Shengli Li

Received: 9 April 2022

Accepted: 30 May 2022

Published: 3 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

A Novel Approach to Modeling and Forecasting Cancer
Incidence and Mortality Rates through Web Queries and
Automated Forecasting Algorithms: Evidence from Romania
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010374 Bucharest, Romania; cristiana.tudor@net.ase.ro

Simple Summary: Cancer remains a global burden, currently causing nearly one in six deaths
worldwide. Accurate projections of cancer incidence and mortality are needed for effective and
efficient policymaking, accurate resource allocation, and to assess the impact of newly introduced
policies and measures. However, the COVID-19 pandemic disrupted public health systems and
caused a significant number of cancers to remain undiagnosed, thus affecting the quality of official
statistics and their usefulness for health studies. This paper addresses this issue by proposing novel
cancer incidence/cancer mortality models based on population web-search habits and historical
links with official health variables. The models are empirically estimated using data from one of the
most vulnerable European Union (EU) members, Romania, a country that consistently reports lower
survival rates than the EU average, and are further used to forecast cancer incidence and mortality
rates in the country. Research findings have important policy implications, and the novel framework,
owing to its generalizability, can be applied to the same task in other countries. Overall, the results
indicate a continuation of the increasing trends in cancer incidence and mortality in Romania and
thus underline the urgency to change the status quo in the Romanian public-health system.

Abstract: Cancer remains a leading cause of worldwide mortality and is a growing, multifaceted
global burden. As a result, cancer prevention and cancer mortality reduction are counted among
the most pressing public health issues of the twenty-first century. In turn, accurate projections of
cancer incidence and mortality rates are paramount for robust policymaking, aimed at creating
efficient and inclusive public health systems and also for establishing a baseline to assess the impact
of newly introduced public health measures. Within the European Union (EU), Romania consistently
reports higher mortality from all types of cancer than the EU average, caused by an inefficient and
underfinanced public health system and lower economic development that in turn have created the
phenomenon of “oncotourism”. This paper aims to develop novel cancer incidence/cancer mortality
models based on historical links between incidence and mortality occurrence as reflected in official
statistics and population web-search habits. Subsequently, it employs estimates of the web query
index to produce forecasts of cancer incidence and mortality rates in Romania. Various statistical
and machine-learning models—the autoregressive integrated moving average model (ARIMA), the
Exponential Smoothing State Space Model with Box-Cox Transformation, ARMA Errors, Trend, and
Seasonal Components (TBATS), and a feed-forward neural network nonlinear autoregression model,
or NNAR—are estimated through automated algorithms to assess in-sample fit and out-of-sample
forecasting accuracy for web-query volume data. Forecasts are produced with the overperforming
model in the out-of-sample context (i.e., NNAR) and fed into the novel incidence/mortality models.
Results indicate a continuation of the increasing trends in cancer incidence and mortality in Romania
by 2026, with projected levels for the age-standardized total cancer incidence of 313.8 and the age-
standardized mortality rate of 233.8 representing an increase of 2%, and, respectively, 3% relative to
the 2019 levels. Research findings thus indicate that, under the no-change hypothesis, cancer will
remain a significant burden in Romania and highlight the need and urgency to improve the status
quo in the Romanian public health system.
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1. Introduction

Cancer remains a primary cause of death worldwide [1] and acknowledged as a
growing global burden [2]. Moreover, many healthcare systems in less developed countries
are ill-equipped to adequately deal with this burden, and a huge percentage of cancer
patients worldwide lack access to timely, high-quality diagnosis and treatment [3]. As of
2020, cancer accounted for approximately 10 million deaths worldwide, or nearly one in
six deaths. Furthermore, cancer maintains its place as the second leading cause of death
in many nations, trailing only cardiovascular disease [3–6]. Additionally, the number of
cancer diagnoses and fatalities is expected to significantly increase over the next decade,
with projections for 2030 indicating 26 million new cancer cases and 17 million cancer
deaths per year [7].

Concurrently, cancer is one of the most critical economic and financial burdens that
the globe faces today [8]. In the United States alone, national costs of cancer totaled USD
183 billion as of 2015, with projections that include only population growth indicating an
increase of 34% by 2030, reaching USD 246 billion [9].

Consequently, with this escalating global burden, cancer prevention and cancer mortal-
ity reduction are counted among the most serious public health concerns of the twenty-first
century [10]. In particular, the term “primary prevention” refers to measures to reduce
the incidence of the disease, whereas “secondary prevention” refers to efforts to diagnose
cancer early or to reduce second cancers among cancer survivors [11]. Accurate cancer
projections for future time points are paramount for both primary and secondary preven-
tion and are additionally critical for planning future services and resource allocation, as
well as establishing and evaluating cancer control programs [12]. However, time series
forecasting is a challenging task [13], whereas producing accurate estimates for the future
rates of cancer incidence and mortality is additionally complicated due to the short time
series available. For example, at the time of the study the Eurostat (i.e., the statistical
office of the European Union) database provides statistics for cancer deaths at a European
level spanning the period 2011–2018, whereas the World Development Indicators (WDI)
database of the World Bank offers data on the mortality rate from cardiovascular disease,
cancer, diabetes, or chronic respiratory disease, and thus does not individualize cancer.
Additionally, with short series, out-of-sample forecasting accuracy is hard to assess, and
time series cross-validation can be difficult to implement [14].

To solve such research obstacles, monitoring health-seeking behavior in the form of
public interest indicated by online search queries has emerged as an essential technique
for early identification of health problem occurrences throughout certain periods and
geographies [15]. This in turn is based on the fact that the internet has grown in importance
as a source of health information accessed by the world population [16,17]. As a direct
result, Google Trends has become increasingly popular in health and medical research over
the past decade [15,18].

Our data confirm the relevance of web searches for highlighting real occurrences of
health problems. Thus, [1] indicates that the three most common types of cancer in 2020, in
terms of new cases, were breast cancer with 2.26 million cases, lung cancer with 2.21 million
cases, and colon and rectum cancer with 1.93 million cases. Concurrently, as reflected in
Figure 1, these were the exact web queries related to the term “cancer” over recent years
at the world level, confirming that Internet searches are an accurate reflection of health
issue incidences.
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Figure 1. Most common queries related to the search term “cancer”: worldwide (April 2017–
March 2022). Source of data: Google Trends. Estimation results using the “gtrendsR” package [19]
in R software.

Moreover, a visualization of the global web-search interest reveals that most nor-
malized searches emerged in countries that also reported the highest age-standardized
cancer rates. Of note, to accurately comprehend the geography of search interest for a
given keyword, the term should be searched across all the world’s languages. However,
Google Trends provides a specific tool capable of dealing with this issue, i.e., “Topics,”
which collects all related words, variant spellings, and names in other languages under
a single label to help with comprehending topics in a multilingual setting. Topics can
thus be particularly effective in combining translations into multiple languages under a
single subject [20]. As such, we specified the topic “cancer” when sourcing Google Trends
data. Thus, Figure 2 reflects the normalized number of internet searches over the most
recent five years, confirming that the highest population interest in the topic “cancer” was
encountered in countries including Australia, the US, and Ireland. On the other hand,
WHO data confirm that Australia registered the world’s highest age-standardized cancer
rate at 452.4 cases per 100,000 people in 2020, followed by New Zealand (422.9), Ireland
(372.8), and the United States (362.2).
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Figure 2. Internet search interest for “cancer” at the world level: (April 2017–March 2022). Source of
data: Google Trends. Map is based on estimation results and uses the packages “gtrendsR” [19] and
“tmap” [21] in R software.

Additionally, studies increasingly confirm that many cancers remained undiagnosed
as a result of healthcare system disruptions caused by the COVID-19 outbreak [22–24]. In
this context, with official statistics failing to accurately capture the variation in incidence,
people’s search interest for specific symptomatology emerges as the most relevant indication
of the health problem’s occurrence.

In light of the above considerations, this study sourced Google Trends data to extract
information on internet searches for the word “cancer” and employed it as a proxy to
forecast cancer incidence rates. Google Trends (www.trends.google.com, accessed on
30 March 2022) is a web-based tool that shows the popularity of a search phrase in a
certain location over time. It provides a time series index of the number of Google queries
submitted in a given location. The query weight or share is calculated by dividing the
overall query volume for a specific search term within a geographic region by the total
number of searches in that region throughout the period in question. Following that, the
result is scaled from 0 to 100. As a result, the maximum query share of a search phrase for
a given period is normalized to 100, reflecting the point when the search was at its most
popular. In conclusion, on a scale of 0–100, Google Trends calculates relative search interest
(RSI), with 100 reflecting peak interest [25]. Ref. [26] explore the utility of Google Trends
data to examine population web searches for cancer screening and conclude that web
queries can capture awareness and interest in cancer screening. Thus, Google Trends data
may complement traditional data collection and analysis about cancer screening and related
interests, providing important scientific possibilities. However, given the aforementioned
disruption of public health systems caused by COVID-19 that altered official statistics, we
argue that Google Trends data can now be used as a substitute for traditional statistics,
which further expands its scientific value.

Of note, among European countries, cancer survival is significantly lower in newer
and less developed EU members from Central and Eastern Europe [27]. Higher death rates
at the CEE level are caused by two main factors: delayed diagnosis and suboptimal treat-
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ment [28], which are in turn related to inefficient and underfinanced public health systems
and lower overall economic development [29].The situation is particularly challenging in
Romania, which continues to register a divergent trend in mortality rates relative to its EU
counterparts, including in the CEE area [30]. Figure 3 shows that the age-standardized
mortality rate from all cancers follows an increasing trend in Romania from 2011 to 2018,
reflecting the inefficiency of the public healthcare system in the country, whereas most
other CEE countries have managed to reverse the trend.

Figure 3. Trends in cancer mortality rates in selected CEE countries (2011–2018). Estimation results.
Plot created in R software (“ggplots” function). Source of data: Eurostat.

Moreover, the excess mortality from the main types of cancer registered in Romania
relative to the EU average is reflected by the difference in the five-year survival rates
presented in Table 1. For example, whereas recent statistics show that the survival rate
of breast cancer patients has rapidly increased over recent years, due to the availability
of early diagnostic tools and treatment [31], Romania still reports significant health gaps,
which is heavily influenced by the fact that there is no organized population screening for
breast cancer in the country [30].

Table 1. The five-year survival rates from main types of cancer (Romania versus EU26).

Type of Cancer 5-Year Survival Rate

Romania EU26
Lung 11% 15%
Breast 75% 83%

Prostate 77% 87%
Source of data: Romanian Ministry of Health (2021) [32].
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A worrisome disaggregation also occurs between cancer incidence and mortality rates
registered in Romania, which has not managed to reduce cancer mortality despite periods
of decreased incidence and which further highlights the necessity and urgency of better poli-
cies aimed at providing an efficient and inclusive public health system (Figure 4, Panel a).
Moreover, the implementation of join-point regression analysis, also known as change-
point regression or segmented regression analysis [33] to detect changing trends in cancer
incidence (see for example [34–39]) further confirms that the incidence rate in Romania
presents two join points in 2014 and 2017, leading to three periods with a different trend
over the analysis period, as follows: a positive trend with a slope coefficient of 14.68 until
2014, a negative trend with a slope coefficient of −8.83 during 2014–2017, and a slightly
increasing trend with a slope of 2.05 after 2017 (Figure 4, Panel b). Hence, whereas the
incidence follows an increasing trend until the first join-point (i.e., 2014), a reversal is
detected thereafter, and a decreasing trend is confirmed over the second segment (i.e.,
2014–2017). However, the decreasing trend is reversed thereafter, as the incidence rate
presents a subsequent rise. On the other hand, the join-point regression analysis found no
join-point in the mortality rate, confirming the disaggregation between the two series.

Patient migration from CEE countries has grown with the implementation of a Euro-
pean Union Directive issued in 2011. According to this directive, European nationals are
eligible to use European healthcare services in any of the European member states, and
their treatments are covered (at least partially) by their home country’s health insurance
system [40]. As a result, a phenomenon called “oncotourism” or “cancer tourism” has
emerged, whereas diagnosed patients move away from inefficient Eastern and Central
European public healthcare systems, particularly from Romania, toward the private system
or the healthcare systems of more developed EU countries [41].

Figure 4. Cont.
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Figure 4. Trends in age-standardized cancer incidence and mortality rates in Romania (2010–2019)
(panel a); join-points in cancer incidence rate (panel b). Source of data: Romanian Ministry of Health
(2021) [32]. Chart in panel (a) is produced in Datawrapper. Chart in panel (b) is produced with the
“ggplot” function in R software; join-point regression analysis is performed with the “segmented”
package within R software.

Consequently, accurate predictions for cancer incidences are paramount for early
detection and for issuing effective and more inclusive public health policies, especially
in the most vulnerable EU members in the CEE area. Additionally, cancer incidence
projections are also useful for planning health services and establishing a baseline for
evaluating the impact of public health measures [42]. Thus, the main goal of this study is to
develop cancer incidence/cancer mortality models, and subsequently to make use of web-
search data extracted from Google Trends and its point estimates issued through an array of
statistical and machine-learning models to ultimately produce accurate forecasts of cancer
incidence and mortality rates, while taking a special focus on a vulnerable CEE country
significantly plagued by this disease, i.e., Romania. From a methodological perspective,
the robustness of results is assured through various approaches, such as: (i) the estimation
of alternative predictive models (statistical and machine-learning); (ii) the assessment of
the relative out-of-sample forecasting accuracy through the hold-out forecasting technique;
(iii) the estimation of the Diebold-Mariano test for superior forecasting accuracy, and
(iv) resampling Google Trends data and employing the sampling average for the web-
query index.

25



Biology 2022, 11, 857

Of note, the vast majority of previous research either employs one forecasting method
or assesses the predictive ability of concurrent methods by estimating forecasting accuracy
metrics. This study implements alternative predictive models, both statistical and machine
learning, through automated forecasting algorithms. Moreover, the random sampling
issue that arises from using Google Trends data is mitigated through resampling and
averaging. Additionally, the forecasting results are defended against the Diebold-Mariano
(DM) predictive accuracy test. Hence, various robustness checks confirm the reliability of
current findings. Furthermore, the strand of literature on cancer research, particularly with
a focus on Central and Eastern Europe, remains thin. Hence, whereas most related studies
focus on developed countries, the current research contributes to filling the literature
void and is thus concerned with a rather under-investigated EU member, Romania, a
country that constitutes an interesting playing field for cancer research due to divergent
trends relative to its EU counterparts and plagued by the worrisome phenomenon of
“oncotourism”. The proposed method is novel and carries the generalizability advantage,
being suitable to further investigate other countries for which official statistics have been
heavily affected by the coronavirus pandemic.

Thus, compared to previous studies, the contributions of the current research are
threefold: (i) we develop two novel models to explain cancer incidence and cancer mortality
rates that embed both official statistics and data on population health-seeking behavior as
reflected in internet search habits, whereas most previous studies employ some version
of the age-period-cohort model (APC) for the same task; (ii) we propose a robust and
integrated approach for web query volume forecasting that includes statistical and machine-
learning forecasting methods and assures the robustness of results through multiple model
calibration on training and test datasets and estimation of multiple accuracy metrics; and
(iii) we apply this novel framework to data from one of the most vulnerable EU members,
Romania, a country increasingly defined by the phenomenon of “oncotourism”, whereby
diagnosed patients avoid the inefficient national public health system. We additionally
provide evidence on the link between internet-seeking behavior and the incidence and
mortality of the disease in Romania, thus contributing to the extent of infodemiological
literature. Research findings have important policy implications, and the framework, owing
to its generalizability, can be applied to the same task in other countries. The novel approach
is particularly relevant in the aftermath of the COVID-19 pandemic, which has disrupted
public health systems and caused a significant number of cancers to remain undiagnosed,
thus affecting the quality of official statistics and their usefulness for health studies.

Results overall indicate a continuation of the increasing trends in cancer incidence and
mortality in Romania, with a standardized cancer incidence rate of 313.8 by 2026 and a
standardized cancer mortality rate of 233.8 by the same horizon, and thus underline the
urgency to change the status quo in the Romanian public health system.

The paper continues as follows. Section 2 presents the data used in model development
and explains the integrated method. Section 3 describes the empirical findings that emerge
from implementing the novel-forecasting framework on the Romanian data. Section 4
discusses the main findings and, finally, Section 5 concludes the study.

2. Materials and Methods

In this study, we sourced annual data on Romanian cancer incidence and mortality
rates spanning 2010–2019 from the Romanian Ministry of Health. Next, to develop a model
capable of explaining and forecasting these relevant health indicators in the absence of
reliable official statistics (which is a worldwide issue caused by the significant number of
undetected cancer cases after the onset of the COVID-19 pandemic), we relied on previous
infodemiological studies that acknowledge the population’s internet search habits as a
reliable proxy for the incidence of a health problem.

The Google Trends platform is a handy tool for determining the popularity of a specific
search keyword among a particular demographic. In this study, we extracted the monthly
volume of Google queries issued from Romania for “cancer” for the period spanning
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January 2005–March 2022. It should be acknowledged that Google Trends implements
random sampling and uses only a fraction of the entire search data to construct a search
index [43] Thus, to overcome the sample instability issue, multiple samples (i.e., 12) were
sourced and the average of samples was used to construct the web-query index, instead
of only one sample (see [44] for relevant details on the sample bias and its correction).
However, it has also been recognized that the Google Trends sampling procedure produces
reasonably precise estimates, and consequently, there is often no need to employ more than
a single sample [45]. The web query time series contained 207 monthly observations.

The relationship between web searches and the health indicators of interest for Roma-
nia was assessed through the linear model given by Equation (1).

ŷ = bX + a (1)

where ŷ is alternatively the cancer incidence rate, and subsequently the cancer mortality
rate, and the independent variable is the web-query index.

Additionally, we used both linear and nonlinear statistical and machine-learning
techniques, which allowed us to capture most of the properties of the web-query time
series and further contributed to avoiding unreliable forecasts. Predictive models can be
delineated into two main categories [46–48]: statistical and machine learning methods
(self-learning systems that can learn from data and continuously increase performance),
respectively. Thus, in this study, the autoregressive integrated moving average (ARIMA)
model (Equation (2)), the Exponential Smoothing State Space Model with Box-Cox Trans-
formation, ARMA Errors, Trend, and Seasonal Components (TBATS) given by Equation
(3), and the neural network autoregression (NNAR) model reflected in Equation (4) were
alternatively fitted.

An ARIMA(p,d,q)(P,D,Q)s model, first developed by [49], is given by:

(1− ϕ1B− . . .− ϕpBp)(1−Φ1Bs − . . .−ΦPBsP)(1− B)d(1− Bs)DYt =
(1− θ1B− . . .− θqBq)(1−Θ1Bs − . . .−ΘPBsQ)εt

(2)

where s is the seasonal period, the lowercase and the capital letters represent nonseasonal
and seasonal parameters, and εt is a random variable with mean zero and the standard
deviation σ.

A TBATS model [50] can accommodate complex seasonal behaviors of data [51] and is
written as:

TBATS(ω, p, q, ϕ, {m1, k1}, {m2, k2}, . . . , {mT, kT}), (3)

where ω is the Box-Cox transformation, k is the number of harmonics used for the seasonal
trait, and ϕ is the dampening parameter.

Artificial neural networks (ANNs) are capable of simulating complicated real-world
systems while properly accounting for nonlinearities [52]. Lagged values of time series
are frequently utilized as inputs in an ANN structure when fitting time series data, which
is then known as neural network autoregression (NNAR) [53] (Munim et al., 2019). As
in [29,54], the NNAR model is written as:

Y = f (H) = f (W ∗ X + B), X = [y(t− 1), y(t− 2), . . . , y(t− p)] (4)

where Y stands for the output vector, f is the activation function, H is the vector of n nodes
in the hidden layer, W is the weight matrix between the input and hidden layers, X is the
vector of inputs (i.e., the lagged values of the actual observations), and B is a bias vector.

All estimations are automated and performed in R software via dedicated algorithms
included in the “forecast” package [55]. To implement the method robustly, the series
of length N = 207 was first split into a training set (containing 187 observations) for in-
sample fit purposes and a testing set (containing the last 20 observations) on which the
models that reported the best fit on the training set were further estimated and their out-of-
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sample forecasting ability assessed. Lastly, we assessed the forecast accuracy of alternative
predictive models by estimating both scale and scale-free accuracy metrics.

First, let us define the forecast error of a candidate model as:

eT+h = yT+h − ŷT+h|T (5)

where {y1, . . . ,yT} is the training set data and {yT+1,yT+2, . . . } is the test-set data.
Then, the following forecasting accuracy metrics are computed as:
Mean absolute error:

MAE =

√√√√ 1
N

N

∑
i=1
|yi − ŷl | (6)

Root mean squared error:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷl)
2 (7)

Mean absolute percentage error:

MAPE = mean(|pt|) (8)

where: pt =
100et

yt
Mean absolute percentage error:

MASE = mean(
∣∣qj
∣∣) (9)

where qj is given by as: qj = et

1
N−1

N
∑

i=2
|yt−yt−1|

f when the series is non-seasonal and by:

qj =
et

1
N−m

N
∑

i=m+1
|yt−yt−m |

when the time series is seasonal.

Lastly, all predictive models were fitted to the entire series of length N and point
forecasts for the web query index for the following 4 years (i.e., a 48-month forecasting
horizon) were produced by the overperforming method in the out-of-sample setting. Fore-
casted values were then fitted into the incidence/mortality models developed by estimating
Equation (1), which then issued the expected values for standardized cancer incidence and
mortality rates corresponding to the forecasting horizon. Figure 5 reflects the integrated
method employed in this study and implemented in R software.
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Figure 5. The integrated framework for modeling and forecasting cancer incidence and
mortality rates.

3. Results
3.1. Relationship between Related Web Queries and the Age-Standardized Cancer Incidence/Cancer
Mortality Rate in Romania

The best-fit linear model between the vector of web-query volume and the cancer
incidence/cancer mortality rate is reflected in Figure 6, panels (a) and (b), respectively. Both
representations highlight a positive link between the web-search interest and the variables
reflecting the incidence and mortality of the disease. Additionally, both equations show a
similar slope coefficient, equal to 0.47 in the incidence rate model, and equal to 0.46 in the
mortality rate model.

29



Biology 2022, 11, 857

Figure 6. The relationship (linear—blue line, polynomial—orange line) between related web queries
and the age-standardized cancer incidence rate in Romania (panel a). The relationship (linear—
blue line, polynomial—orange line) between related web queries and the age-standardized cancer
mortality rate in Romania (panel b). Source of data: Romanian Ministry of Health [32]. All estimations
were performed in R software; plots were created in R software (i.e.,“ggplot” function).

3.2. Results from Modeling and Forecasting the Web-Query Index

Table 2 reports the estimated accuracy measures for the test-set data containing topic
searches for “cancer” submitted in Romania that were issued through the statistical and
machine-learning predictive models. Results indicate that NNAR has been able to accu-
rately capture variations in data and thus provide the best forecast for the web query index
over the testing window.

Table 2. Accuracy measures for the out-of-sample (test-set) forecasting performance.

Predictive Model MAE RMSE MAPE MASE

ARIMA 4.21 5.16 5.76 0.61

NNAR 3.96 4.71 5.32 0.57

TBATS 4.60 5.73 6.54 0.74

To assess the forecasting superiority of the feed-forward neural network autoregression
model, we estimated the Diebold-Mariano (DM) test [56,57] to examine any significant
differences between forecasts produced by NNAR and the second best-performing model
(ARIMA). The DM test result (estimated with the “dm.test” function within the “forecast”
package in R software) confirmed that there was a significant difference between the
distribution of errors from ARIMA and NNAR, thus ensuring the forecasting superiority
of the machine-learning method.

We next employed the best-performing model in terms of out-of-sample forecasting
accuracy (i.e., NNAR) to produce the expected web-query volume in Romania for the
next 48 months (4 years), corresponding to the period spanning April 2022 to March 2026.
Figure 7 reflects the estimation results, showing (in blue color) the point estimates produced
by NNAR for April 2022–March 2026. Of note, estimations corresponding to the 48-month
forecasting horizon indicated a continuation of the increasing trend in web searches related
to “cancer” issued from Romania.
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Figure 7. Forecasted trend over April 2022–March 2026 (48 months) for web queries for the term
“cancer” in Romania issued with NNAR (12,6). Source: estimation results. Model information:
average of 20 networks, each of which is a 12-6-1 network with 85 weight options.

3.3. Forecasts of Cancer Incidence and Cancer Mortality Rates in Romania over 2022–2026

Lastly, we put together the linear relationship model estimated before and the point
estimates produced by the neural network autoregression model (NNAR) to estimate
the cancer incidence and cancer mortality rate for the next four years. It is important to
underline that all estimations are based on the status quo hypothesis, implying that these
projections are expected if no changes in public health policy are implemented. Projected
values for the two health indicators are centralized in Table 3.

Table 3. Forecasted values for cancer incidence and cancer mortality rates.

Year Incidence Rate (Projected,
Standardized)

Mortality Rate (Projected,
Standardized)

2023 308.7 228.8
2024 313.0 233.0
2025 313.6 233.6
2026 313.8 233.8

We notice that estimations issued through the incidence and mortality models and
based on NNAR projections of the related web-search index reflect a continuation of the
increasing trends in cancer incidence and mortality in Romania, underlining the urgency
to change the status quo in the Romanian public health system. Estimates thus indicate a
standardized cancer incidence rate of 313.8 by 2026 and a standardized cancer mortality
rate of 233.8 by the same horizon, increasing from levels of 307.7 and 227.1, respectively,
registered in 2019.

4. Discussion

Approximately 10 million deaths have been attributed to cancer in 2020, or nearly one
in six deaths. Concurrently, many cancer patients worldwide still lack access to timely,
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high-quality diagnosis and treatment. Within the EU, CEE countries consistently report
higher mortality rates, mainly as a result of delayed diagnosis and suboptimal treatment.
For Romania, statistics are particularly worrisome, with the country reporting significantly
lower survival rates for all main types of cancer and also a divergent trend in mortality
rates relative to its EU counterparts that have managed to reverse the increasing trend.
Consequently, “oncotourism” is especially characteristic of Romania, as diagnosed patients
move away from the inefficient public healthcare system toward the private system or the
healthcare systems of more developed EU countries.

Consequently, accurate predictions of cancer incidence and mortality rates are keys to
informing policymakers and assisting in the policymaking process. The main goal of this
study is to develop a robust model capable of capturing the evolution of cancer incidence
and mortality rates and forecasting their evolution. Concurrently, we build on [58] and
acknowledge that over the past decade, the use of internet data has become an important
aspect of health informatics, with online sources becoming more accessible and offering
data that can be used to analyze and forecast human behavior. As a result, we also agree
with [59] that data from tracking online information seekers’ behavior is useful in public
health surveillance and research.

Thus, in model development, the study made use of web-search data extracted from
Google Trends, which was introduced as an independent variable in light of previous
studies that acknowledge the population’s internet search habits as a reliable proxy for
health problem occurrence. Moreover, this approach overcomes the current issue of the
unreliability of official statistics, caused on one hand by the numerous undiagnosed cases
after the COVID-19 outbreak and, on the other hand, by the unavailability or tardiness of
treatment for diagnosed patients, directly affecting the rate of incidence and mortality. Con-
currently, point estimates for the web-query index were issued through the best performing
predictive model over the test-set (i.e., out-of-sample), after an assessment of the in-sample
fit and out-of-sample forecasting accuracy of various statistical and machine-learning mod-
els (ARIMA, TBATS, and NNAR) had been performed via several accuracy metrics (MAE,
RMSE, MAPE, and MASE). Estimations indicated that NNAR was the most capable of
capturing the time series characteristics and of producing the most accurate estimates.
Consequently, estimations for the web-query index were automatically produced with the
NNAR model and sourced into the incidence/mortality models that have been previously
developed. Ultimately, forecasts of cancer incidence and mortality rates in Romania by 2026
were issued, indicating a continuation of the increasing trend for both variables. Our results
are in line with projections of [32] the Romanian Ministry of Health (2021), confirming the
ascendant trend, although our point estimates fall below the public ministry’s predictions,
indicating more conservative increasing rates.

Future predictions depend on multiple assumptions, most importantly on the status
quo (i.e., no-change) hypothesis of the Romanian public health system. Similarly, fore-
casts do not consider the impact of relevant changes in impact factors, such as potential
changes in smoking prevalence at the national level, changes in obesity, changes in alcohol
consumption, changes in nutrition habits, increased funding of the public health system,
increased screening, HPV vaccination, etc. As a result, we agree with [60] that it is critical
to review predictions at regular intervals to incorporate the most recent trends in the data.
However, similar to [42], we reason that current estimates do provide a useful baseline for
the planning of cancer resources and for evaluating the impact of any changes produced
in impact factors as a result of newly introduced public health policies and measures.
Furthermore, as with most research, this study suffers from other limitations. Mostly, the
use of Google Trends data does carry some vulnerabilities that should be acknowledged,
including the construction of the search index itself [61]. As a consequence, the long-run
stability of the time series is heavily dependent on the data’s time frame and frequency.
As per [61], this study used monthly data that was best able to accurately capture the
long-term trend. Moreover, random sampling is an inherent bias in Google Trends data [44].
However, this issue is particularly troublesome in forecasting when dealing with topics that
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are less frequently searched for, which is not the case in the current study. Additionally, the
performed resampling further mitigated the bias. Nonetheless, it should be acknowledged
that this approach merely minimizes the bias and does not eliminate it. Finally, it should
be mentioned that results should be interpreted with care, considering that data reflect
the search habits of the population that has Internet access, which in turn depends on
income level and other socioeconomic factors. Overall, I argue that the popularity of the
search topic, together with the resampling strategy and previous studies that reinforce
the usefulness of web search data as a powerful predictive instrument [44] does allow for
confidence in the current research findings.

In addition, it should also be mentioned that the link between cancer variables and
the web-query index has been assessed through the classical regression model. However,
it has been increasingly acknowledged that the neutrosophic regression model [62–65],
which issues the parameters in the indeterminacy interval rage, can be more efficient in the
uncertainty environment than the classical regression model [66]. Thus, the assessment of
the historical link between cancer incidence/cancer mortality rates and the web search index
through the neutrosophic regression model constitutes a good avenue for future research.
The implementation of the proposed method on data specific to different gender and age
groups, as well as to geographic regions of the country, could also reveal particularly
vulnerable groups and/or areas and offer relevant information to policymakers.

From a policy perspective, the findings highlight that cancer will continue to be a
significant burden for Romania, which should be carefully planned for. Complementarily,
results indicate the need for better policies aimed at mitigating main risk factors such
as smoking, alcohol consumption, obesity and overweight, unhealthy nutrition, lack of
physical exercise, etc., and at increasing the financing and efficiency of the public health
system by allocating future resources for cancer research, treatment, and prevention.

5. Conclusions

In conclusion, this study developed two novel cancer incidence/cancer mortality
models based on population web-search habits and historical links with official health
variables. The models were empirically estimated using data from one of the most vul-
nerable European Union (EU) members, Romania, and further used to forecast cancer
incidence and mortality rates in the country by employing estimates for the web-search
query index issued through the best performing out-of-sample forecasting method (NNAR).
Research findings have important policy implications, and the novel framework, owing
to its generalizability, can be applied to the same task in other countries. It provides the
important advantage of overcoming a current issue related to the quality of official statistics
in the aftermath of the COVID-19 pandemic that disrupted public health systems and
caused a significant number of cancers to remain undiagnosed. Overall, the results indicate
a continuation of the increasing trends in cancer incidence and mortality in Romania and
thus underline the urgency to change the status quo in the Romanian public health system.
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Simple Summary: Major histocompatibility complex molecules are of significant biological and
clinical importance due to their utility in immunotherapy. The prediction of potential MHC binding
peptides can estimate a T-cell immune response. The variable length of existing MHC binding
peptides creates difficulty for MHC binding prediction algorithms. Thus, we utilized a bilateral and
variable long-short term memory neural network to address this specific problem and developed a
novel MHC binding prediction tool.

Abstract: As an important part of immune surveillance, major histocompatibility complex (MHC)
is a set of proteins that recognize foreign molecules. Computational prediction methods for MHC
binding peptides have been developed. However, existing methods share the limitation of fixed
peptide sequence length, which necessitates the training of models by peptide length or prediction
with a length reduction technique. Using a bidirectional long short-term memory neural network, we
constructed BVMHC, an MHC class I and II binding prediction tool that is independent of peptide
length. The performance of BVMHC was compared to seven MHC class I prediction tools and three
MHC class II prediction tools using eight performance criteria independently. BVMHC attained the
best performance in three of the eight criteria for MHC class I, and the best performance in four
of the eight criteria for MHC class II, including accuracy and AUC. Furthermore, models for non-
human species were also trained using the same strategy and made available for applications in mice,
chimpanzees, macaques, and rats. BVMHC is composed of a series of peptide length independent
MHC class I and II binding predictors. Models from this study have been implemented in an online
web portal for easy access and use.

Keywords: major histocompatibility complex; bidirectional long short-term memory neural network;
deep learning

1. Introduction

Major Histocompatibility Complex (MHC) genes code for proteins that recognize
foreign molecules and play an important part in immune surveillance. Due to variation
in molecular structure, function, and distribution, MHC molecules are divided into three
subsets: MHC class I, II, and III. A MHC class I molecule may constitute the MHC heavy
chain (alpha chain), which encompasses three alpha domains (alpha1, alpha2, and al-
pha3) [1]. Alpha1 and alpha2 form the recognition region, with an interval deep groove
capturing the peptide antigen [2]. Alpha3 is adjacent to the transmembrane domain in
the heavy chain and it interacts with antigen transporters to load and express antigens.
A specific type of MHC class I molecules are encoded by the β2-microglobulin gene, and
in MHC they constitute the MHC light chain (beta chain). MHC class I molecules are
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located at the surface of cells to present antigens, which trigger immune responses by
attracting cytotoxic lymphocytes immune cells (TC cells) including CD8+, the cytotoxic
T cells which express CD8+ receptors. These receptors recognize related MHC complexes
at the cell surface: when an antigen peptide of foreign origin is bound, CD8+ immune cells
are activated to trigger programmed apoptosis [1]. An MHC class II molecule encodes two
membrane-spanning chains that are of similar size. While MHC I molecules are located on
the surface of nearly all nucleated cells, MHC II glycoproteins are expressed on the surface
of specialized immune cells (such as B cells, macrophages, and dendritic cells), where they
present processed antigenic peptides to TH cells. MHC class III genes encode various
secreted proteins that have immune functions, including components of the complement
system and molecules involved in inflammation [3].

Of the three MHC classes, class I has attracted great attention in medical research. For
example, reduced abundance in MCH class I is associated with poor prognosis in Hodgkin
lymphoma [4]. Another study [5] demonstrated that cancer cells escape T-cell responses
via losing MHC class I molecules. MHC molecules are highly polymorphic proteins. As
one MHC protein can have many variants, and such variants are commonly referred to
as “MHC alleles” [6], MHC alleles are organized into multiple categories for each MHC
class. For instance, MHC class I proteins in humans are encoded as human leukocyte
antigen (HLA) groups A, B, C, etc. by the gene name, and each HLA group is composed of
many alleles by the variants. From the view of molecular structure, MHC molecules have
pockets, and the antigenic peptides have anchors of which some are determined residues,
and anchors have special properties to lead peptides to enter the pockets [7]. An antigenic
peptide’s MHC binding affinity can be measured experimentally by a variety of assays,
including a competitive binding assay [8].

The accumulated experimentally verified MHC binding peptides have been curated
into various databases during the last three decades. Around 13 MHC binding databases
are currently available [9]. With more than 900,000 entries, the Epitope Database (IEDB) [10]
contains the largest collection of MHC binding peptides, followed by MHCBN [11] curating
25,860 peptides. In addition to the experimental methods, a peptide’s binding potential
with regard to a particular MHC molecule can be estimated through computational al-
gorithms. Computational methods can systematically prioritize credible candidates for
a more favorable study design, thus helping reduce both financial cost and human labor
of the wet-lab assay-based validation experiments. The experimentally verified MHC
binding peptide sequences offer an understructure for the development of computational
approaches to predict the binding affinity between an MHC allele and a novel peptide.
More than 30 MHC binding prediction tools were developed based on the accumulated
MHC binding databases over the years. The majority of these tools [12–24] were developed
for MHC class I and II binding prediction.

A common limitation of the existing MHC binding prediction tools is the necessity
to align all peptides to one fixed length. Specifically, to meet the requirement, developers
must either train different models to tackle peptides of different lengths, or they must
arbitrarily adjust the original peptide. There are two sequence selection strategies in
the model training/predicting process, one of which is to select peptides with a fixed
length, such as selecting 9-mer peptides to train a model for class I [25–27]. The other is
to adjust the peptides sequence to a specific length, such as adjusting the peptide length
of class I to 9-mer/15 mer by inserting “X” symbols (elongating) or deleting amino acids
(shortening) [28–31]. For the first strategy, there are two disadvantages: (1) It is tedious
to train multiple models out of the initial single allele set; (2) When dividing the whole
training set into multiple length-specific training sets, some models of certain lengths
may have insufficient training data and therefore result in undertraining and suboptimal
performance. For the second strategy, one obvious disadvantage is that inserting or deleting
amino acids inevitably leads to a loss of information; specifically, the neighbor amino acids
at a perturbed position will not be the same post the elongating/shortening operation.
To overcome this constraint, we developed BVMHC, a novel MHC binding prediction
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tool based on Bidirectional Long Short-Term Memory (biLSTM) neural network [32,33], a
type of recurrent neural network (RNN), which has the major novelty of offering variable
length MHC binding prediction. BVMHC is designed to make predictions for both MHC
class I and class II alleles in humans, and models for non-human species were also trained
using the same strategy. The performance of BVMHC has been thoroughly compared with
popular MHC class I/II binding prediction tools.

2. Materials and Methods
2.1. Training and Validation Datasets

To establish a sizeable training dataset, we obtained from the IEDB database 122,129
and 45,440 human binding peptide sequences for 48 MHC class I alleles and 27 MHC
class II alleles, respectively. Additionally, 15,740 MHC class I peptide sequences of four
non-human species (mouse, rat, macaque, and chimpanzee) and 1041 MHC class II pep-
tide sequences of mouse were also extracted from the IEDB database. Each peptide was
associated with a binding affinity measured as IC50 in nM. A dichotomization of these
binding affinity values was conducted as follows: peptides with IC50 ≥ 500 nM were
considered as negative binding and peptides with IC50 < 500 nM were considered as
positive binding. All binding affinity values (aff ) were standardized to the interval [0,1]
through a function, i.e., 1 − log (a f f )/ log(50, 000). The initial sequences underwent the
following three aspects of filtration: (1) For sequences that are repeated and have the
same IC50 value, we kept only one instance of the sequences and removed all duplicate
instances. (2) For sequences that are repeated and have different IC50 values, we deleted
all items. (3) For sequences that are repeated and have different allele information, we
kept all items because we would train different predictors for different allele sequences.
Five-fold cross-validation procedures were used on the training datasets to train models.
An independent validation dataset consisting of 320 class I and 131 class II human peptide
sequences was constructed from the databases MHCBN [34] and SYFPEITHI [35], where
we made sure that items co-existing in the IEDB were removed.

2.2. Feature Representation at Evolutionary Level

The BVMHC model involves two major components: feature representation and the
computation model (Figure 1). For a numerical representation of training/testing data,
each peptide sequence was first encoded as a 20 × L matrix through one-hot encoding [36],
where L is the length of the peptide. The dynamic convolutional neural network with
twenty 1 × 20 convolution kernels was used to process one-hot coding matrices. BLOSUM
is a 20 × 20 matrix that represents evolutionary conservation information between amino
acids [37], and we used it to initialize the twenty convolution kernels. The overall method
can be represented with Equation (1), where X denotes the One-hot encoding matrix, i the
index of amino acid in peptide, k the index of kernel, M = 1 the window size, and n = 20 the
number of kernels. Of note, the two indices, i and j, start from an initial value of 0.

Evo(X)i,k = ∑M−1
m=0 ∑m=0

m=0 Wk
m,nXi+m,n (1)

As the kernels were updated in the training process, an updated presentment matrix
in the evolutionary level was obtained and was input into a biLSTM model. After training,
a novel BLOSUM matrix can be obtained by using the twenty trained convolution kernels.

39



Biology 2022, 11, 848Biology 2022, 11, x  4 of 11 
 

 

 
Figure 1. Overview of BVMHC. One-hot encoding was used to convert a peptide sequence to a 
matrix. BLOSUM was applied to initialize kernels in the convolutional neural network that was 
used to extract the peptide sequence feature at the evolutionary level. The biLSTMmodel was then 
applied to process the merged matrix at the sequential level. 

2.3. Feature Representation at Sequential Level 
The advantage of biLSTM (Figure 1) is the ability to handle peptides with variable 

lengths. Long short-term memory (LSTM) [33] is a type of recurrent neural network and 
all connections between units in LSTM form a directed cycle. This cycle is conducive to 
modeling dynamic temporal or spatial behavior. LSTM block is dynamically changed 
with the sequence length. An LSTM unit includes input, forget, and output gates. The 
calculation process is defined as Equations (2)–(6), where, 𝑥  denotes the input vector, 𝑓  
the forget gate’s activation vector, 𝑜  the output gate’s activation vector, ℎ  a 
128-dimenstion hidden state vector, and 𝐶  the cell state vector. In these equations, the 
common notations W and U refer to parameter matrices and b designates a bias vector. 𝑓 = 𝜎 𝑊 𝑥 + 𝑈 ℎ + 𝑏  (2)𝑖 = 𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏 ) (3)𝑜 = 𝜎(𝑊 𝑥 + 𝑈 ℎ + 𝑏 ) (4)𝐶 = 𝑖 ⸰ tanh(𝑊 𝑥 + 𝑈 ℎ + 𝑏 ) + 𝑓 ⸰𝐶  (5)ℎ = 𝑜  ⸰ tanh(𝐶 ) (6)

In our biLSTM model, one set of LSTMs merged the feature matrix from left to right, 
and another set of LSTMs merged the feature matrix from right to left. A dropout layer 
was applied to avoid over-fitting. A vector with 128 dimensions from biLSTM was ob-
tained first. Afterward, a regression output value was obtained from two fully-connected 
layers and converted into a probability through the sigmoid function. In the process of 
training, we chose binary cross-entropy as the loss function and set the learning rate at 
0.0001, and the dropout rate at 0.8. 

2.4. Evaluation Criteria 
Eight evaluation criteria, including Accuracy, Sensitivity, Specificity, F1, Matthew’s 

correlation coefficient (MCC), Precision, Area Under the receiver-operating-characteristic 
Curve (AUC), and Area Under the Precision-Recall curve (AUPR), were used to evaluate 
the performance of the models. The calculation of the first six criteria is illustrated in 
Equations (7)–(12), where TP represents the number of true positive MHC binders, false 

Figure 1. Overview of BVMHC. One-hot encoding was used to convert a peptide sequence to a
matrix. BLOSUM was applied to initialize kernels in the convolutional neural network that was used
to extract the peptide sequence feature at the evolutionary level. The biLSTMmodel was then applied
to process the merged matrix at the sequential level.

2.3. Feature Representation at Sequential Level

The advantage of biLSTM (Figure 1) is the ability to handle peptides with variable
lengths. Long short-term memory (LSTM) [33] is a type of recurrent neural network and
all connections between units in LSTM form a directed cycle. This cycle is conducive to
modeling dynamic temporal or spatial behavior. LSTM block is dynamically changed
with the sequence length. An LSTM unit includes input, forget, and output gates. The
calculation process is defined as Equations (2)–(6), where, xt denotes the input vector, ft the
forget gate’s activation vector, ot the output gate’s activation vector, ht a 128-dimenstion
hidden state vector, and Ct the cell state vector. In these equations, the common notations
W and U refer to parameter matrices and b designates a bias vector.

ft = σ
(

W f xt + U f ht−1 + b f

)
(2)

it = σ(Wixt + Uiht−1 + bi) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

Ct = it
◦tanh(Wcxt + Ucht−1 + bc) + ft

◦Ct−1 (5)

ht = ot
◦tanh(Ct) (6)

In our biLSTM model, one set of LSTMs merged the feature matrix from left to right,
and another set of LSTMs merged the feature matrix from right to left. A dropout layer was
applied to avoid over-fitting. A vector with 128 dimensions from biLSTM was obtained
first. Afterward, a regression output value was obtained from two fully-connected layers
and converted into a probability through the sigmoid function. In the process of training,
we chose binary cross-entropy as the loss function and set the learning rate at 0.0001, and
the dropout rate at 0.8.

2.4. Evaluation Criteria

Eight evaluation criteria, including Accuracy, Sensitivity, Specificity, F1, Matthew’s
correlation coefficient (MCC), Precision, Area Under the receiver-operating-characteristic
Curve (AUC), and Area Under the Precision-Recall curve (AUPR), were used to evaluate
the performance of the models. The calculation of the first six criteria is illustrated in
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Equations (7)–(12), where TP represents the number of true positive MHC binders, false
negative represents the number of true negative MHC binders, FP represents the num-
ber of false positive binders, and false negative represents the number of false negative
MHC binders.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

F1 =
2 × (Precision × Sensitivity)
(Precision + Sensitivity)

(10)

MCC =
TP × TN − FP × FN√

(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)
(11)

Precision =
TP

TP + FP
(12)

3. Results
3.1. Human Dataset Description

The numbers of binding (positive examples) and non-binding (negative examples)
peptides for MHC class I and II alleles making up the training and independent validation
datasets are available in Supplementary Table S1. Overall, the human training dataset
consisted of 75 alleles and entailed multiple (n) distinct peptide sequence lengths. For
each of the 75 alleles, traditional approaches would have trained n length-dependent
models to tackle different peptide lengths, or trained one fixed-length model which would
necessitate a pre-procedure of length adjustment. Using the length-independent approach
biLSTM, we trained 75 length-independent models and validated them with five-fold
cross-validation. All 48 models for MHC class I binding and 12 of 27 models for MHC
class II binding achieved over 0.8 accuracy and AUC values (Figure 2A,B). Overall, there
exists a considerable difference in the performance levels between MHC Class I and Class
II models, with the latter exceeding the former. Performances of MHC Class I models are
generally acceptable except for a few outliers, such as HLA-B*15:02.

We identified a few models of extremity performances and went on to characterize the
sequence motifs. Specifically, the performance values of HLA-DQB1*05:01 in Figure 2B and
HLA-A*02:50 in Figure 2A are nearly one. By contrast, the MCC and Specificity associated
with HLA-B*15:02 in Figure 2A are merely 0.25. We analyzed the difference between
motifs of Binders and Non-Binders for HLA-A*02:50, HLA-B*15:02, and HLA-DQB1*05:01
(Figure 2C–E), respectively. Figure 2C,E describe the motifs for the well-performing models
HLA-A*02:50 and HLA-DQB1*05:01, and we can see that the amino acid motifs are distinct
between Binders and Non-Binders. Figure 2D describes the bad-performing model HLA-
B*15:02, which shows non-differential motifs between Binders and Non-Binders. Therefore,
the unsatisfactory prediction performance might be due to the weak distinction in motif
patterns between positive and negative examples, which may hint at the contamination
of binders by many false positives (non-binders). The good performance of BVMHC is
attributed to the exploitation of the positional conservation and the preservation of intact
peptide sequences. The detailed performance evaluation results by peptide length can be
found in Table 1.
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Table 1. Five-fold cross-validation results stratified by peptide length.

Length Accuracy AUC F1 MCC Specificity Sensitivity Precision AUPR Positive 1 Negative 2

Class I

8 mer 0.891 0.924 0.783 0.531 0.887 0.677 0.525 0.785 229 1879
9 mer 0.883 0.915 0.745 0.650 0.902 0.735 0.760 0.800 23,000 72,963
10 mer 0.813 0.850 0.693 0.527 0.842 0.690 0.661 0.725 7263 14,024
11 mer 0.879 0.905 0.768 0.608 0.881 0.756 0.651 0.755 310 1604
Others 0.986 1.000 0.992 0.564 0.750 1.000 0.985 1.000 54 803

Class II

13 mer 0.857 0.879 0.883 0.700 0.833 0.872 0.895 0.923 232 205
14 mer 0.898 0.907 0.880 0.792 0.912 0.880 0.880 0.873 131 239
15 mer 0.868 0.906 0.781 0.687 0.912 0.769 0.794 0.840 16,743 25,683
16 mer 0.776 0.846 0.802 0.545 0.718 0.823 0.782 0.878 563 569
17 mer 0.680 0.673 0.429 0.312 0.933 0.300 0.750 0.643 106 257
18 mer 0.643 0.939 0.706 0.452 1.000 0.545 1.000 0.986 71 40
19 mer 0.875 0.938 0.857 0.775 1.000 0.750 1.000 0.950 55 75
20 mer 0.750 0.900 0.500 0.488 1.000 0.333 1.000 0.886 65 66
Other 0.690 0.640 0.381 0.183 0.758 0.444 0.333 0.566 81 259

1 Number of positives; 2 Number of negatives

3.2. Independent Validation and Comparison with Other MHC Binding Predictors

An independent dataset extracted from MHCBN and SYFPEITHIwas used for vali-
dation and comparison with other MHC binding predictors. Seven popular MHC class
I binding predictors (comblib_sidney2008 [21], ANN [19], SMM [17], NetMHCcons [16],
NetMHCpan [18], PickPocket [20] and NetMHCpan EL [24]) for class I and three well-
accepted MHC class II binding predictors (NETMHCIIPan [23], NN-align [15] and SMM-
align [22]) were selected for the comparison. A common limitation of these existing tools is
that the established model is bounded by a fixed peptide sequence length, which means
that investigators have to distort the sequence structure when they take special actions
(insertion or deletion) to ensure that the peptide length meets the model requirement. More-
over, in the above section, we have demonstrated that a model’s prediction performance
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benefits from the positional conservation, the phenomenon of which is generally neglected
in existing methods. The performance of BVMHC and the other MHC class I/II tools
was measured with the eight aforementioned criteria (Table 2), and the complete results
are displayed in Table S2. Models of HLA-DRB1*03:01 trained to predict MHC class II
binding peptide achieved accuracy and AUC over 0.8 on the five-fold cross-validation;
we downloaded the HLA-DRB1*03:01 peptide data from MHCBN. Of all eight evaluation
indices, BVMHC achieved the best performance in three of the eight criteria for MHC class
I prediction and the best performance in four criteria for MHC class II prediction. For
example, BVMHC obtained the best overall AUC of 0.887 (Figure 3A), and the best average
AUC for 9-mer models in MHC class I prediction (Figure 3B).

Table 2. The comparison results of the BVMHC model against seven other prediction tools on the
independent validation dataset. The best performance value in each comparison track is highlighted
in bold text.

Methods Accuracy Sensitivity Specificity AUC AUPR F1 MCC Precision Positive 1 Negative 2

Class I

BVMHC 0.597 0.371 0.959 0.887 0.866 0.531 0.374 0.936 197 123
NetMHCcons [16] 0.600 0.386 0.943 0.865 0.890 0.543 0.365 0.916 197 123
SMM [17] 0.584 0.350 0.959 0.859 0.891 0.509 0.357 0.932 197 123
NetMHCpan [18] 0.566 0.330 0.943 0.867 0.886 0.483 0.318 0.903 197 123
ANN [19] 0.563 0.325 0.943 0.867 0.880 0.478 0.314 0.901 197 123
PickPocket [20] 0.563 0.345 0.911 0.813 0.833 0.493 0.289 0.861 197 123
NetMHCpan EL [24] 0.553 0.335 0.902 0.816 0.856 0.480 0.269 0.846 197 123
comblib_sidney2008 [21] NAN § NAN § NAN § 0.744 NAN § NAN § NAN § NAN § 68 46

Class II

BVMHC 0.878 0.333 0.965 0.718 0.417 0.429 0.386 0.600 18 113
NN-align [15] 0.863 0.278 0.956 0.866 0.484 0.357 0.303 0.500 18 113
NETMHCIIPan [23] 0.870 0.111 0.991 0.795 0.423 0.190 0.235 0.667 18 113
SMM-align [22] 0.840 0.000 0.973 0.787 0.319 NA § −0.061 0.000 18 113

1 Number of positives 2 Number of negatives § NA: the sum of Sensitivity and Precision is zero, thus F1 is NA.
§ NAN: the evaluation indices cannot be obtained because the original score threshold is not available. The value
in bold are the best for each column.
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Figure 3. Receiver-Operating-Characteristic (ROC) curves of the eight tools for predicting MHC class
I binders on the independent validation dataset. (A–D). BVMHC and seven existing prediction tools
for overall (A), 9-mer (B), 10-mer (C), and 11-mer (D) MHC class I binders, respectively.

3.3. Performance of Non-Human Species

Using the same strategy as in humans, BVMHC models were also trained for MHC
class I prediction for three mouse alleles, eight macaque alleles, five chimpanzee alleles,
and one rat allele; in addition, two mouse MHC class II alleles were also covered. Results
of five-fold cross-validation of these non-human MHC prediction models are available in
Table 3. All 17 MHC class I models achieved greater than 0.8 accuracy and AUC. Both MHC
class II models obtained greater than 0.80 accuracy. Due to the limitations of non-human
data availability, independent validation was not performed.
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Table 3. Performance evaluation results of BVMHC model on non-human species.

Alleles Accuracy AUC F1 MCC Specificity Sensitivity Precision AUPR

Class I

H-2-Db 0.829 0.855 0.573 0.466 0.897 0.564 0.583 0.602
H-2-Dd 0.924 0.870 0.696 0.660 0.975 0.615 0.800 0.751
H-2-Ld 0.814 0.852 0.698 0.564 0.875 0.682 0.714 0.779
Mamu-A07 0.905 0.949 0.854 0.783 0.929 0.854 0.854 0.902
Mamu-A11 0.822 0.899 0.726 0.595 0.880 0.707 0.747 0.805
Mamu-A2201 0.908 0.957 0.854 0.789 0.955 0.814 0.897 0.943
Mamu-B01 0.942 0.865 0.667 0.654 0.988 0.550 0.846 0.767
Mamu-B03 0.857 0.921 0.769 0.666 0.903 0.758 0.781 0.843
Mamu-B08 0.852 0.911 0.690 0.600 0.875 0.769 0.625 0.776
Mamu-B17 0.822 0.882 0.717 0.592 0.838 0.782 0.662 0.710
Mamu-B52 0.827 0.870 0.870 0.617 0.677 0.912 0.832 0.884
Patr-A0101 0.816 0.838 0.619 0.520 0.935 0.520 0.765 0.688
Patr-A0401 0.881 0.904 0.636 0.565 0.929 0.636 0.636 0.616
Patr-A0701 0.825 0.820 0.545 0.438 0.901 0.522 0.571 0.682
Patr-B0101 0.911 0.947 0.794 0.759 0.991 0.675 0.964 0.894
Patr-B1301 0.875 0.917 0.903 0.727 0.824 0.903 0.903 0.951
RT1A 0.893 0.923 0.400 0.352 0.923 0.500 0.333 0.667

Class II H-2-IAb 0.826 0.797 0.489 0.394 0.925 0.423 0.579 0.627
H-2-IAd 0.810 0.810 0.571 0.452 0.896 0.533 0.615 0.632

3.4. Web Server Implementation

A web server for the BVMHC models was developed using the combination of R, PHP,
and Python, which is freely accessible at http://www.innovebioinfo.com/Proteomics/
MHC/home.php. The website can conduct predictions for MHC class I and II binding
peptides of multiple species. For MHC class I prediction, BVMHC covers 48 human alleles,
three mouse alleles, eight macaque alleles, five chimpanzee alleles, and one rat allele; for
MHC class II prediction, BVMHC covers 12 human alleles and two mouse alleles.

4. Discussion

MHC binding prediction is a crucial step toward identifying potential novel thera-
peutic strategies. For example, MHC class I molecules were found to be tumor suppressor
genes [38] and can served as targets for immunotherapy [39]. Similar to MHC class I, the
class II antigens can also serve as targets in cancer immunotherapy [40]. The prediction
of MHC binding peptides is biologically and clinically important because it predicts the
binding affinity of a T-cell immune response. Factors such as the polymorphic nature of
MHC molecules, the variable length of peptides, etc. make it difficult to accurately predict
MHC binding. However, advances in machine learning, especially those based on neural
networks, have propelled substantial advancement in MHC binding prediction research.
In this study, we proposed an approach using the Bilateral and Variable Long-Short Term
Memory Networks to tackle the variable length issue in MHC binding prediction. By
thoroughly comparing to other fixed-length-constrained MHC binding prediction tools, we
show that BVMHC has the advantage in several performance measurements. However,
In this paper, we just use the peptide sequences information to construct predictors. In-
spired by NetMHCpan [18] and NetMHCIIpan [23], in the future we will incorporate the
MHC protein sequence information to augment the feature representation of binders. As
AlphaFold [41] becomes the focus of research about protein structure, we look to discern
the differences between different MHC allele proteins at the protein structure level, which
may hold promises for an even improved prediction of MHC protein binders. Additionally,
a BVMHC predictor can be used to quickly screen potential binders—an effective strategy
is to dissect a complete protein sequence into equal-sized segments and run the predictor
over these segments across the whole span of the protein sequence. Considering the com-
putational time complexity, such screening workflows must be optimized to reduce the
running time to the minimum.
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5. Conclusions

BVMHC is an MHC binding prediction tool that supports five species (human, chim-
panzee, macaque, mouse, and rat). Compared to existing MHC prediction tools, BVMHC
can use peptides of variable lengths to train a predictor, which allows for the reservation of
the innate primary structure of the sequence. The combination of analyses at the conser-
vatory level and the sequential level is vital for the superior performance of the resultant
BVMHC model. In independent validation and comparison, BVMHC showed the best
overall performance compared to seven other popular MHC class I predictors and three
well-accepted MHC class II predictors. BVMHC was developed into a web server and can
be accessed freely online.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11060848/s1, Table S1: Summary of datasets; Table S2: The
detailed results based on independent dataset.
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Simple Summary: In recent years, the incidence of thyroid cancer has been increasing globally, with
papillary thyroid cancer (PTCa) being the most prevalent pathological type. Although PTCa has been
regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and
progress despite surgery and radioactive iodine treatment. Therefore, searching for new targets and
therapies is required. We utilized bioinformatics analyses to identify critical theranostic markers
for PTCa. We found that DPP4/CTNNB1/MET is an oncogenic signature that is overexpressed in
PTCa and associated with disease progression, distant metastasis, treatment resistance, immuno-
evasive phenotypes, and poor clinical outcomes. Interestingly, our in silico molecular docking
results revealed that sitagliptin, an antidiabetic drug, has strong affinities and potential for targeting
DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. Collectively,
our findings suggest that sitagliptin could be repurposed for treating PTCa.

Abstract: In recent years, the incidence of thyroid cancer has been increasing globally, with papillary
thyroid cancer (PTCa) being the most prevalent pathological type, accounting for approximately 80%
of all cases. Although PTCa has been regarded to be slow growing and has a good prognosis, in
some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment.
In addition, most cancer treatment drugs have been shown to be cytotoxic and nonspecific to cancer
cells, as they also affect normal cells and consequently cause harm to the body. Therefore, searching
for new targets and therapies is required. Herein, we explored a bioinformatics analysis to identify
important theranostic markers for THCA. Interestingly, we identified that the DPP4/CTNNB1/MET
gene signature was overexpressed in PTCa, which, according to our analysis, is associated with
immuno-invasive phenotypes, cancer progression, metastasis, resistance, and unfavorable clinical
outcomes of thyroid cancer cohorts. Since most cancer drugs were shown to exhibit cytotoxicity
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and to be nonspecific, herein, we evaluated the anticancer effects of the antidiabetic drug sitagliptin,
which was recently shown to possess anticancer activities, and is well tolerated and effective. Interest-
ingly, our in silico molecular docking results exhibited putative binding affinities of sitagliptin with
DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. This suggests
that sitagliptin is a potential THCA therapeutic, worthy of further investigation both in vitro and
in vivo and in clinical settings.

Keywords: sitagliptin; thyroid cancer (THCA); papillary thyroid cancer (PTCa); thyroidectomy;
metastasis; drug resistance

1. Introduction

Thyroid cancer (THCA) is the most prevalent malignancy of the endocrine system,
and the 9th most common cancer in the world [1,2], accounting for approximately 600,000
newly diagnosed cases annually on a global scale [3], with high rates of morbidity reported
in recent years [4]. THCA is divided into various subtypes, including anaplastic thyroid
cancer (ATC), papillary thyroid carcinoma (PTCa), and follicular thyroid carcinoma (FTC),
with PTCa being the most prevalent, as it accounts for approximately 85% of THCA [5,6].
PTC and FTC are well-differentiated thyroid cancers with an optimal prognosis of about
10 years disease-specific survival [7]. However, the ATC is poorly differentiated with
proliferative stem-cell-like properties, resistance to therapies, and accounts for the majority
of thyroid-cancer-related deaths [8,9]. The rapid increase in thyroid cancer, particularly
PTCa, has been accredited to the availability and sensitive use of ultrasonography and
other diagnostic imaging modalities [10,11], which have likely led to a massive detection
and diagnosis of a large reservoir of subclinical, indolent lesions of the thyroid [12,13].
Studies have also implicated obesity, hormonal imbalance, metabolic syndromes, and
environmental pollutants in the development of PTCa [14].

Patients with PTCa usually show good clinical outcomes compared with other cancers;
however, there is also a very high rate of relapse post-treatment, leading to distant metasta-
sis [15,16]. About 11% of patients with PTC present with distant metastases outside the
neck and mediastinum [17]. Moreover, long-term survival outcomes for aggressive PTC
subgroups exhibit heterogeneous clinical behavior and a wide range of mortality risks, sug-
gesting that treatment should be tailored to specific histologic subtypes [18]. The diagnostic
criteria for PTC allow it to demonstrate various histological features and growth patterns;
different variants of PTCa are recognized, including classic, microcarcinoma, encapsulated,
follicular, diffuse sclerosing, tall cell, columnar cell, cribriform-morular, hobnail, solid,
oncocytic, spindle cell, clear cell, and Warthin-like variants [19]. However, among these
variants, tall cell, columnar cells, and hobnail variants are of undoubted clinical significance,
since they are aggressive variants associated with aggressive clinicopathological features
and worse prognosis than for classic and encapsulated PTC [20–22].

Surgery, endocrine therapy, and radioiodine therapy are well-known therapy regimens
for PTCa, offering a good prognosis; however, the aggressive variants of PTCa progress de-
spite surgery and radioactive iodine treatment [23]. In addition, tumor recurrence in PTCa
is associated with therapeutic resistance which increases the death toll in patients [24–26].
Unfortunately, an upsurge in the incidence of aggressive PTCs was observed at a rate
higher than that seen in well-differentiated PTCs or anaplastic thyroid carcinomas (ATCs)
in the past two decades in a study of a large cohort of thyroid cancers [22]; therefore, there
is an urgent need to identify novel diagnostic and prognostic molecular biomarkers that
could also be used as molecular targets for the development of new drugs or in repurposing
existing drugs for the treatment of PTCa.

Increasing evidence shows that dipeptidyl aminopeptidase IV (DPP IV) is associated
with cancer development and progression [27,28]; DPP4 is an adenosine deaminase com-
plex protein, and was demonstrated to be upregulated in THCA, particularly in PTCa,
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and is associated with tumor aggression and poor prognoses [29–31]. Moreover, high
expression of DPP4 was shown to promote distance metastasis and stemness in esophageal
adenocarcinoma and colorectal cancer [32,33]. However, the prognostic role of DPP4 ex-
pression and its role in THCA metastasis remains elusive [7,29,31]. Studies have shown
that DPP4 and b-catenin crosstalk to regulate critical cellular processes, including motility
and invasion [34]. A study involving lung cancer patients has revealed that the expres-
sion levels of β-catenin correlate with DPP4 expression [35] and contributed to tumor
metastasis [34,36]. An experimental study has also reported that activating mutation of
Ctnnb1 induced DPP4 overexpression in epidermal keratinocytes of LRIG1+ stem cells [37].
Research has illuminated that inhibitors of DPP4 exert their therapeutic effect via mod-
ulation of the Wnt/β-catenin signaling pathway [38]. Sitagliptin, an inhibitor of DPP4,
has also been reported to provide renal protection via inhibition of the tubulointerstitial
Wnt/β-catenin signaling pathway in diabetic nephropathy [39].

Accumulating studies demonstrated a pivotal correlation between distant metastasis
in PTCa and MET (MET proto-oncogenic receptor tyrosine kinase) [40]. Approximately
70% of PTCas were reported to overexpress the MET gene, and it is associated with poor
prognoses [41]. In addition, Rossana et al. also demonstrated that higher expression
levels of MET in PTCa promoted cancer growth and distance metastasis [42,43]. MET is a
transmembrane tyrosine kinase identified as a high-affinity receptor for hepatocyte growth
factor (HGF), and both MET and HGF were demonstrated to be expressed in PTCa [42],
and consequently promote progression and secondary metastasis [44]. Additionally, MET
was shown to activate β-catenin (CTNNB1), an important component of the canonical Wnt
pathway [45,46]. CTNNB1 was recently reported to be mutated in PTCa, and to ultimately
promote cancer development and stemness [47,48]. Moreover, upregulated MET was also
demonstrated to regulate the expression of mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinase (PI3K)/AKT, signal transducer and activator of transcription
3 (STAT3), and nuclear factor (NF)-κB pathways in THCA [40,49]. This suggests that MET
is a crucial target gene in THCA, and worthy of further investigation. To date, most
drugs used for cancer treatment are cytotoxic and usually not specific to cancer cells,
but also affect normal cells; therefore, there is still a huge gap in finding more sensitive
and specific drugs for cancer. Recent studies suggested an association between cancer
occurrence and antidiabetic medicaments. Sitagliptin is a standard inhibitor of DPP4,
widely used for treating diabetes, and was shown to possess anticancer activities, as well
as being efficacious and well tolerated [50]. In the present study, we predicted the potential
anticancer activities of sitagliptin as a target for DPP4/CTNNB1/MET oncogenic signatures,
which are overexpressed in THCA.

2. Materials and Methods
2.1. Microarray Data Acquisition and Identification of Differentially Expressed Genes (DEGs)

Gene expressions of four THCA datasets (GEO3467, GEO36787, GEO6004, and GEO33630)
were extracted from the NCBI gene expression omnibus. The acquired datasets were further
analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/ accessed on 5 September
2021), and results contained DEG profiles from THCA patients compared to normal samples.
To control the false discovery rate (FDR), the Benjamini–Hochberg adjustment was applied to
p values (adjusted (adj.) p values), to moderate the balance between detection of significant
genes and possible false-positive values. The fold-change (FC) threshold was set to 1.5, and
adj. p < 0.05 was considered statistically significant. Venn diagrams were constructed using
the Bioinformatics and Evolutionary Genomics (BEG) online tool (http://bioinformatics.psb.
ugent.be/webtools/Venn/ accessed on 6 September 2021).

2.2. Differential Expression of the THCA Gene Hub

Differential expressions of THCA gene profiles between tumor tissues and normal adja-
cent tissues of the Cancer Genome Atlas (TCGA) database were analyzed using UALCAN
(http://ualcan.path.uab.edu accessed on 12 September 2021), an online web portal used to
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identify gene expression levels between primary tumors compared to normal tissue sam-
ples [51]. Moreover, we explored the cBioPortal online web tool (https://www.cbioportal.org
accessed on 19 September 2021), which categorizes gene alterations based on percentages
of individual genes due to amplification [52]. For further analysis, we used the cBioPortal
correlation sub-tool to determine gene expression correlations with positive Spearman and
Pearson correlation coefficients with p < 0.05 as statistically significant.

2.3. Comparisons of DPP4/CTNNB1/MET Expressions in Normal, Primary, and Metastatic
Tumor of Thyroid Cancer Cohorts

To compare expression levels of the DPP4/CTNNB1/MET oncogenes among normal, tu-
mor, and metastatic tissues, we explored the tumor, normal, and metastatic plot (TNMplot),
(https://tnmplot.com/analysis/ accessed on 21 September 2021), an RNA-sequence-based
rapid analysis, which is used to compare data of selected genes [53]. Data were compared
using the Kruskal–Wallis test, which is a method used to test samples originally from
the same distribution of specimens, followed by Dunn’s test, which assesses the signifi-
cance of gene expressions in promoting THCA tumor metastasis, with p < 0.05 considered
statistically significant.

2.4. Interaction Network and Gene Enrichment Analysis

An interaction network analysis was constructed using the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING, https://string-db.org/ accessed on 25 September
2021) database [54], and GeneMANIA [55] (http://genemania.org/data accessed on 28
September 2021), which are online web tools developed to analyze interaction networks.
The STRING database was used under a high confidence of 0.700, and protein enrichment
of p < 6.0 × 10−03 was obtained. Interactions among genes were analyzed according to
correlations based on experimental data (pink), gene neighborhoods (green), gene fusion
(red), gene co-occurrences (blue), and gene co-expression (black). Moreover, we explored
the Network Analyst user-friendly online tool (https://www.networkanalyst.ca/ accessed
on 5 October 2021) to analyze co-expressed gene enrichment from the biological processes
databases; herein we applied the Igraph R package visualization tool for analysis [56].
Furthermore, gene ontology (GO), biological processes (BPs), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were analyzed using FunRich soft-
ware (http://www.funrich.org accessed on 9 October 2021), an open access, stand-alone
functional enrichment and network analytical tool [57].

2.5. Analysis of Genomic Alterations and Mutations of the DPP4/CTNNB1/MET Oncogenes
in THCA

Mutations of DPP4/CTNNB1/MET oncogenic expressions in THCA were analyzed
using cBioPortal software. Herein, we analyzed altered frequencies of these oncogenes in
THCA. Furthermore, we explored the muTarget platform (https://www.mutarget.com/
accessed on 11 October 2021), a platform linking changes in gene expressions and the
mutation status of solid tumors, based on a genotype analysis, to determine associations
between DPP4/CTNNB1/MET and alterations in gene expressions in THCA. Differences
in expressions between the mutant group and wild-type (WT) group were considered
statistically significant at p < 0.05.

2.6. Correlations of DPP4/CTNNB1/MET Expressions and Tumor Infiltration Levels of Immune
and Immunosuppressive Cells in THCA

The Tumor Immune Estimation Resource (TIMER) (https://cistrome.shinyapps.io/
timer/ accessed on 18 October 2021) is an online computational tool used to analyze
the nature of tumor immune interactions across different cancer types [58]. Herein, we
determined correlations of DPP4/CTNNB1/MET expressions and tumor infiltration levels
of tumor associated macrophages (M2 TAM), regulatory T cell (Treg), cancer-associated
fibroblast (CAF), and cluster of differentiation 8-positive (CD8+ T cell), using a set of
gene markers of immune infiltration model, as described previously [59,60]. The strength
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of correlations between the genes and immune cells is reflected by the purity-adjusted
partial Spearman’s rho value, where a value of r ≥ 1 means a perfect positive correlation
and a value of r ≤ −1 means a perfect negative correlation, with p < 0.05 considered
statistically significant.

2.7. In Silico Molecular Docking of the DPP4/CTNNB1/MET Oncogenes with Sitagliptin

The potential inhibitory effects of sitagliptin on THCA hub genes of DPP4, CTNNB1,
and MET were analyzed by molecular docking simulations, compared to the standard
inhibitors of CTNNB1 and MET of PNU-74654 and crizotinib, respectively. The 3D struc-
tures of sitagliptin (CID: 4369359), PNU-74654 (CID:9836739), and crizotinib (CID:116250)
were retrieved from the pubchem database (https://pubchem.ncbi.nlm.nih.gov/ accessed
on 22 October 2021), in the spatial data file (SDF) format, and consequently converted
to PDB file format using the PyMOL visualization tool [61] (https://pymol.org/2/ ac-
cessed on 22 October 2021), while the crystal structures of DPP4 (PDB:2ONC), CTNNB1
(PDB:1JDH), and MET (PDB:3DKF) were downloaded from the protein database (PDB),
(https://www.rcsb.org/ accessed on 22 October 2021), in PDF file format. File prepara-
tion for molecular docking was as described in previous studies [62–64]. Using autodock
software, an in silico molecular docking tool [65], all PDB files were converted to PDBQT
file formats, and docking was accordingly performed using autodock, as described previ-
ously [66,67]. For further analysis, we used PyMol to analyze ligand–receptor interactions
in 3D view, and finally used the discovery studio web tool [68] for data interpretation.

3. Results
3.1. Identification of Common Oncogenes in THCA

Microarray datasets were downloaded from the NCBI-GEO database to identify DEGs
in THCA. Commonly expressed oncogenes were identified from THCA tissues compared
to adjacent normal tissues obtained from different studies. Volcano plots were used to
show all DEGs from all selected datasets, and accordingly, the GSE3467, GSE3678, GSE6004,
and GSE33630 datasets, respectively, displayed 691, 449, 1455, and 789 upregulated genes
and 1088, 1232, 2890, and 1568 downregulated genes (Figure 1A–D). The relatedness of all
samples in each dataset to each other was analyzed by uniform manifold approximation
and projection (UMAP), in which the number of nearest neighbors was used for calculations
as indicated in each plot (Figure 1E–H). In total, 123 overlapping genes were obtained using
Venn diagrams, as observed from THCA tissues compared with normal tissues (Figure 1I,J).
We further used these genes for further analysis of THCA in this study.

3.2. DPP4/CTNNB1/MET Expressions Are Associated with THCA Progression, Metastasis, and
Worse Prognosis of THCA Cohorts

Our differential expression analysis revealed that the (m)RNA expression levels of
DPP4/CTNNB1/MET were higher in THCA tumor tissues compared with adjacent normal
tissues (Figure 2A). We further analyzed the role of DPP4, CTNNB1, and MET expressions
in promoting THCA progression and tumor metastasis. Interestingly, our analysis revealed
that the mRNA expressions levels of DPP4/CTNNB1/MET were more elevated in stage IV
of THCA cancer (Figure 2B), and were significantly elevated in metastasis tumor compared
with the primary tumor (Figure 2C). In addition, we found expression correlation among
the DPP4/CTNNB1/MET signature in THCA cohorts (Figure 2D). Furthermore, we con-
structed a Kaplan–Meier (KM) plot of patients’ survival and found that higher expression
levels of the DPP4/CTNNB1/MET genes were associated with shorter survival duration
of the cohorts (Figure 2E). Although the KM plot revealed no significant (p > 0.05) differ-
ence in the overall survival between cohorts with high and cohorts with low expression
levels of DPP4, our analysis revealed that the disease-free survival of the cohorts was
significantly (p < 0.048) higher in the low-DPP4-expression group when compared with the
high-expression group. Collectively, our findings strongly suggested that the expression
levels of DPP4/CTNNB1/MET signature are associated with THCA progression, metas-
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tasis, and worse prognosis of THCA cohorts, hence serving as important biomarker for
diagnosis, prognosis, and therapeutic exploration in THCA.
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Figure 1. Differentially expressed genes (DEGs) in thyroid cancer (THCA). (A–D) Volcano plots showing
DEGs extracted from the GSE3467, GSE3678, GSE6004, and GSE33630 microarray datasets, between
cancer tissues compared with normal adjacent tissues, with upregulated genes (red), downregulated
genes (blue), and non-significant genes (black). (E–H) Two-dimensional (2D) visualization of UMAP
dimensionality reduction in THCA tumor tissues (green) compared with normal tissues (purple). (I,J)
Venn diagram of 123 overlapping DEGs between normal colon tissues and tumor tissues.

3.3. DPP4/CTNNB1/MET Genes Are Frequently Altered and Their Mutations Are Linked to
Genetic Expressions in THCA

Mutations of DPP4/CTNNB1/MET oncogenes in THCA were analyzed using the
cBioPortal tool, and altered frequencies were based on percentages of individual genes due
to amplification. Analytical results showed respective amplification of DPP4, CTNNB1, and
MET occur in 3%, 6%, and 6% of THCA cohorts respectively. These included deep deletions
(blue), mRNAs (red), proteins (red), mutations (green), and structural variants (purple)
(Figure 3A–D). For further analysis, we compared associations between alterations in DPP4
and MET oncogenic expressions with mutations of the top genes expressed in THCA at the
target level, and according to our findings, BRAF mutations promoted increased expression
levels of DPP4 and MET compared with the WT. Patients with high expression levels of
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DPP4 and MET signatures exhibited worse clinical outcomes compared with patients with
low expression levels (Figure 3E,F).
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Figure 2. Overexpression of DPP4/CTNNB1/MET mRNAs, associated with thyroid cancer (THCA)
progression. Differential expression levels of DPP4/CTNNB1/MET between (A) THCA tumor and
adjacent normal tissue, (B) tumor stages, and (C) between primary and metastatic tumor of TCGA
cohort. (D) Correlations of DPP4 with MET, CTNNB1 with DPP4, and MET with CTNNB1 oncogenic
expressions in THCA. (E) KPM plots of survival ratio between THCA cohorts with high and those
with low expression levels of DPP4/CTNNB1/MET.
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Figure 3. Genetic mutations based on percentages due to amplification of (A) DPP4 (3%),
(B) CTNNB1 (6%), and (C) MET (6%), including deep deletions (blue), mRNAs (red), proteins
(red), mutations (green), and structural variants (purple). (D) Individual genetic alteration profile of
DPP4/CTNNB1/MET in THCA. (E,F) BRAF mutations promoted overexpression of DPP4 and MET
compared with the wild type, with p < 0.05 considered statistically significant.

3.4. DPP4/CTNNB1/MET Genes Potentially Promote Tumor Growth by Interacting with Different
Oncogenic Targets/Pathways

We applied the STRING database and GeneMANIA online web tools developed to
analyze interaction networks among four selected oncogenes. Herein, we considered ex-
perimental data (pink), gene neighborhoods (green), gene fusion (red), gene co-occurrences
(blue), and gene co-expressions (black) when analyzing interactions. As expected, interaction
networks were identified between DPP4 and CTNNB1, MET and DPP4, CTNNB1 and MET,
HFG and MET, DPP4 and CTNND1, and GSK3B and CTNND1 within the network clustering.
An average local clustering coefficient of 0.787 was obtained, with an expected number of
edges of 21 and interaction p value of 0.006 (Figure 4A,B). For further analysis, we conducted
a gene enrichment analysis and predicted GO processes using network analytical software,
which showed co-expressions of CTNNB1, GSK3B, AXIN1, and MET to be enriched in the BP
databases. Herein, we applied the Igraph R package visualization tool for analysis (Figure 4C).
For more analysis, we used FunRich software to validate GO including BPs and KEGG en-
richment analyses. The top five enriched BPs included chromosomal segregation, signaling
transduction, cell communication, regulation of the cell cycle, and protein metabolism, while
pathways involved in interactions included E-cadherin signaling in the nascent cadherin
junction, stabilization and expression of adherens junctions, E-cadherin signaling events,
posttranscriptional regulation of adherens junction stability, and N-cadherin signaling events
(Figure 4D,E), with p < 0.05 considered significant.
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3.5. High Expression Levels of DPP4/CTNNB1/MET Are Associated with Immunosuppressive 

Phenotypes of THCA Tissues 

We  queried  the  association  between  the  mRNA  expression  levels  of 

DPP4/CTNNB1/MET and tumor infiltrations of immunosuppressive cells using the TCGA 
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Figure 4. DPP4/CTNNB1/MET gene interactions co-expressed in the same clustering network.
(A,B) Interaction networks showing co-expression between DPP4 and CTNNB1, MET and DPP4,
CTNNB1 and MET, HFG and MET, DPP4 and CTNND1, and GSK3B and CTNND1 within the network
clustering. An average local clustering coefficient of 0.787 was obtained, with an expected number
of edges of 21 and an interaction p value of 0.006. (C) Gene enrichment analysis gene ontology
(GO) showed enrichment in co-expressions of CTNNB1, GSK3B, AXIN1, and MET in biological
processes. (D,E) Validation of GO, involving enrichment of the top five pathways involved, with
p < 0.05 considered significant.

3.5. High Expression Levels of DPP4/CTNNB1/MET Are Associated with Immunosuppressive
Phenotypes of THCA Tissues

We queried the association between the mRNA expression levels of DPP4/CTNNB1/MET
and tumor infiltrations of immunosuppressive cells using the TCGA cohorts. Interestingly, we
found that the mRNA expression levels of DPP4/CTNNB1/MET are inversely associated with
tumor purity (Figure 5A). In addition, the high expression levels of the DPP4/CTNNB1/MET
correlate positively (all p < 0.001, cor > 0.3) with the infiltration levels of tumor-associated
macrophages (M2 TAM Figure 5B), regulatory T cell (Treg, Figure 5C), and cancer-associated
fibroblast (CAF, Figure 5D) in thyroid cancer cohorts (Figure 5). In contrast, a strong negative
association (all p < 0.001, cor < 0) was observed between the mRNA expression levels of
DPP4/CTNNB1/MET and the immune infiltration level of CD8+ T cell (Figure 5E), an anti-
tumor T cell subtype. Collectively, these findings strongly suggested that high expression
levels of DPP4/CTNNB1/MET are associated with immunosuppressive phenotypes via a
mechanism involving T cell exclusion in THCA tissues.
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Figure 5. High expression levels of DPP4/CTNNB1/MET are associated with immunosuppressive
phenotypes of THCA tissues. Scatterplots of DPP4/CTNNB1/MET expression correlations with
t(A) tumor purity, and infiltration levels of (B) tumor-associated macrophages (M2 TAM), (C) reg-
ulatory T cell (Treg), (D) cancer-associated fibroblast (CAF), and (E) CD8+ T cell. The strength of
correlations between the genes and immune cells is reflected by the purity-adjusted partial Spear-
man’s rho value, where a value of r ≥ 1 means a perfect positive correlation and a value of r ≤ −1
means a perfect negative correlation, with p < 0.05 considered statistically significant.

3.6. Molecular Docking Reveals Higher Inhibitory Effects of Sitagliptin on the DPP4 Oncogene

Our in silico molecular docking analysis revealed that sitagliptin exhibited higher
binding energy of −8.6 kcal/mol with the DPP4 oncogene. Further analysis of the docking
results showed that sitagliptin bound to the binding pocket of the DPP4 gene by hydrogen
bonds with shorter binding distances at TRY631 (2.07 Å) and ARG125 (2.71 Å), and was
further stabilized by a salt bridge, van der Waals forces, carbon–hydrogen bonds, Pi-Pi
stacked, Pi-Pi T-shaped, amide Pi-stacked, and Pi-alkyl around the sitagliptin backbone
(Figure 6).

3.7. Molecular Docking Revealed Potential Inhibitory Effects of Sitagliptin on the
CTNNB1 Oncogene

Our docking analysis revealed that sitagliptin exhibited high binding energy of
−7.3 kcal/mol with the CTNNB1 oncogene, compared with its Food and Drug Adminis-
tration (FDA)-approved inhibitor, PNU-74654, which showed a lower binding affinity of
−6.7 kcal/mol. Further analysis of the docking results showed that sitagliptin bound to the
binding pocket of the CTNNB1 oncogene by 4 conventional hydrogen bonds and shorter
binding distances with CYS466 (2.03 Å), LYS508 (2.51 Å), SER20 (1.87 Å), and ARG469
(1.03 Å). The interactions were further stabilized by van der Waals forces with ALA463,
PRO463, PHE21, ASP459, and LEU18, halogen (fluorine) with GLU17, PRO505, GLU462,
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and GLU24, and Pi-alkyl with VAL564 and ILE17 around the sitagliptin backbone. The
results were further compared with the PNU-74654/CTNNB1 complex, which is bound to
the binding pocket of the CTNNB1 oncogene by only two conventional hydrogen bonds and
longer binding distances compared with the sitagliptin/CTNNB1 complex. The interactions
were further stabilized by van der Waals forces with SER32, TYR306, and SER335, amide
Pi-stacked with GLU375, and Pi-cation with GLU28, LYS345, and ARG342 around the
PNU-74654 backbone. This suggests that sitagliptin has a high potential to target β-catenin
(CTNNB1), compared with its standard inhibitor, PNU-74654 (Figure 7).
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Figure 6. Ligand–receptor interaction results of sitagliptin with DPP4. (A) Three-dimensional (3D)
representation of sitagliptin in complex with DPP4 with the highest binding energy of −8.6 kcal/mol.
(B) Two-dimensional (2D) representation of sitagliptin in complex with DPP4, showing interactions
with two conventional H-bonds, with interactions further stabilized by different amino acids around
the sitagliptin backbone. The accompanying table shows summary results of the analysis.

3.8. Molecular Docking Revealed Potential Inhibitory Effects of Sitagliptin on the MET Oncogene

Our docking analysis revealed that sitagliptin exhibited a high binding energy of
−7.6 kcal/mol with the MET oncogene, the same as its FDA-approved inhibitor, crizotinib,
which showed a binding affinity of −7.6 kcal/mol. Further analysis of the docking results
showed that sitagliptin bound to the binding pocket of the MET oncogene by 4 conven-
tional hydrogen bonds with shorter binding distances with TRY631 (2.07 Å) and ARG125
(2.71 Å). Interactions were further stabilized by a salt bridge (GLU205 and GLU206), van
der Waals forces (TRP629, VAL656, VAL711, HIS740, and ASN710), carbon–hydrogen bond
(SER630), Pi-Pi stacked (TYR547), Pi-Pi T-shaped (TYR666), amide Pi-stacked (TYR662),
and Pi-alkyl (PHE357) around the sitagliptin backbone. However, results displayed of
the crizotinib/MET complex did not exhibit conventional hydrogen bonds in the binding
pocket of the MET oncogene. This suggests that sitagliptin has high potential to target
MET, compared with its standard inhibitor, crizotinib (Figure 8).
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Figure 7. In silico molecular docking analysis of ligand–protein interactions. (A) Three-dimensional
(3D) representation of sitagliptin in complex with CTNNB1 with a binding energy of −7.3 kcal/mol.
(B) Two-dimensional (2D) representation of sitagliptin in complex with CTNNB1, showing interactions
with four conventional H-bonds and shorter binding distances, with interactions further stabilized
by different amino acids around the sitagliptin backbone. (C) Two-dimensional (2D) representation
of PNU-74654 in complex with CTNNB1, displaying lower binding energy of −6.7 kcal/mol, and
interactions with (2) conventional hydrogen bonds with longer binding distances compared with
that of sitagliptin, in the binding pockets of CTNNB1. The accompanying table shows a summary
of the results.
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Figure 8. In silico molecular docking analysis of ligand–protein interactions. (A) Three-dimensional
(3D) representation of sitagliptin in complex with MET with a binding energy of −7.6 kcal/mol.
(B) Two-dimensional (2D) representation of sitagliptin in complex with MET, showing interactions
with conventional H-bonds and different amino acids. (C) Two-dimensional (2D) representation of
crizotinib in complex with MET, exhibiting the same binding energy as sitagliptin, but no interaction
with conventional hydrogen bonds. The accompanying table shows a summary of the results.

4. Discussion

PTCa is the most prevalent type of THCA, which accounts for approximately 80%
of all THCAs, consequently promoting cancer invasion, metastasis, and mortality in pa-
tients [69,70]. PTCa has recently been managed with a thyroidectomy; however, due to dis-
tant metastasis, THCA tends to be extremely aggressive, and resistant to treatment leading
to poor prognoses [71–73]. Treatment modalities for THCA include the use of doxorubicin,
but this has proven not to be very effective due to the development of resistance [1,74–76].
As a result, there is an urgent need to understand the molecular mechanisms associated
with THCA metastasis, which will help in developing more effective treatments [15,77].
Identification of reliable biomarkers which can be used as diagnostic measures is urgently
needed in PTCa. Most cancer therapeutic drugs have been shown to be cytotoxic and
nonspecific to cancer cells, as they also affect normal cells and consequently cause harm to
the body.
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In the present study, we evaluated the anticancer effects of the antidiabetic drug
sitagliptin, which was recently shown to possess anticancer activities, and is well tolerated
and effective. Sitagliptin is an FDA-approved DPP4 oncogene [78]. To further analyze
sitagliptin, we explored computer-based simulations to identify and predict target genes,
which are commonly overexpressed and associated with THCA invasion, progression,
metastasis, poor prognosis, and resistance to therapeutics. We utilized microarray datasets
from the NCBI-GEO, and identified DEGs in THCA compared to normal tissues. Among
the top upregulated genes, were the DPP4, CTNNB1, and MET oncogenes. To validate
their expressions, we used the UALCAN online bioinformatics tool with default settings,
which showed that mRNA levels of DPP4/CTNNB1/MET were higher in THCA tumor
tissues compared with adjacent normal tissues. Moreover, after exploring the TNMplot
software, for further analysis, we identified that overexpression of DPP4/CTNNB1/MET
gene signatures promoted THCA metastasis, and were associated with poor disease-free
survival and poor prognoses.

The complex and dynamic interactions of immune cells, stoma, and cancer cells
within the tumor microenvironment (TME) play a pivotal role in tumor invasion, cancer
progression, and host immune response [62,79]. Consequently, our analysis of tumor
immune infiltrating cells within the TME of THCA tumor revealed that the high expression
levels of the DPP4/CTNNB1/MET signature correlate positively with the infiltration levels
of tumor-associated macrophages, regulatory T cell, and cancer-associated fibroblast. These
immunosuppressive cells are known to exert an inhibitory role on cytotoxic lymphocytes’
function leading to T cell exclusion and tumor invasive phenotype [59,80]. In contrast, we
found a strong negative association was observed between the mRNA expression levels
of DPP4/CTNNB1/MET and immune infiltration level of CD8+ T cell, suggesting that
high expression levels of DPP4/CTNNB1/MET are associated with immunosuppressive
phenotypes via a mechanism involving T cell exclusion in THCA tissues

Molecular docking has become an increasingly important tool commonly used to
understand drug bimolecular interactions with the target proteins for rational drug design
and development [62,81,82]. It is useful in estimating binding affinities of the ligand to
the proteins and in providing preliminary mechanistic insight into the behavior of a small
molecule drug in the binding cavity of target proteins [83,84], as well as elucidating the
potential drug-regulated biochemical processes [79,85]. Consequently, we conducted a
molecular docking analysis of interactions of DPP4/CTNNB1/MET gene signatures with
sitagliptin. As expected, sitagliptin exhibited a higher binding energy of −8.6 kcal/mol
with the DPP4 oncogene. Furthermore, our docking analysis revealed that sitagliptin
exhibited a higher binding energy of −7.3 kcal/mol with the CTNNB1 oncogene compared
with its FDA-approved inhibitor, PNU-74654, which showed a lower binding affinity of
−6.7 kcal/mol. Our analysis showed that sitagliptin bound to the binding pocket of the
CTNNB1 oncogene by 4 conventional hydrogen bonds and had shorter binding distances
with CYS466 (2.03 Å), LYS508 (2.51 Å), SER20 (1.87 Å), and ARG469 (1.03 Å) compared
with PNU-74654, which bound to the binding pocket of the CTNNB1 oncogene by only
2 conventional hydrogen bonds, and had longer binding distances compared with sitagliptin.
In addition, analytical results of sitagliptin in complex with MET exhibited the same bind-
ing energy of −7.6 kcal/mol as the MET FDA-approved inhibitor, crizotinib. Sitagliptin
bound to the binding pocket of the MET oncogene by 4 conventional hydrogen bonds and
shorter binding distances with TRY631 (2.07 Å) and ARG125 (2.71 Å). However, results
displayed from the crizotinib/MET complex did not exhibit conventional hydrogen bonds
in the binding pocket of the MET oncogene.

In summary, these docking results suggest that sitagliptin has high potential to tar-
get DPP4/CTNNB1/MET signaling pathways in THCA compared with their standard
inhibitors. Since recent studies have shown the efficacy and tolerance of sitagliptin as
cancer therapeutic, it would be interesting to further investigate its activities as a tar-
get for DPP4/CTNNB1/MET signaling pathways in THCA, both in vitro and in vitro in
tumor-bearing mice.
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5. Conclusions

In summary, we revealed that DPP4, CTNNB1, and MET oncogenic signatures are
overexpressed in THCA, and are associated with cancer progression, metastasis, resis-
tance, poor disease-free survival, and unfavorable clinical outcomes. Moreover, an in
silico molecular docking study exhibited putative binding affinities of sitagliptin with the
abovementioned oncogenes, which were higher than the standard inhibitors of these genes.
This suggests that sitagliptin could be a potential THCA therapeutic, since it has been
shown to be more tolerable and effective in different cancers.
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Simple Summary: With the influx of multi-omics profiling, effective integration of these data re-
mains the bottleneck for omics-driven discovery. Thus, we developed DRPPM-EASY, an R Shiny
framework for integrative multi-omics analysis of cancer datasets. Our tool enables the exploration
of multi-omics data by providing a simple user interface that minimizes the need for computational
experience. Furthermore, the interface can be deployed locally or on a webserver to facilitate scientific
collaboration and discovery.

Abstract: High-throughput transcriptomic and proteomic analyses are now routinely applied to
study cancer biology. However, complex omics integration remains challenging and often time-
consuming. Here, we developed DRPPM-EASY, an R Shiny framework for integrative multi-omics
analysis. We applied our application to analyze RNA-seq data generated from a USP7 knockdown in
T-cell acute lymphoblastic leukemia (T-ALL) cell line, which identified upregulated expression of a
TAL1-associated proliferative signature in T-cell acute lymphoblastic leukemia cell lines. Next, we
performed proteomic profiling of the USP7 knockdown samples. Through DRPPM-EASY-Integration,
we performed a concurrent analysis of the transcriptome and proteome and identified consistent
disruption of the protein degradation machinery and spliceosome in samples with USP7 silencing. To
further illustrate the utility of the R Shiny framework, we developed DRPPM-EASY-CCLE, a Shiny
extension preloaded with the Cancer Cell Line Encyclopedia (CCLE) data. The DRPPM-EASY-CCLE
app facilitates the sample querying and phenotype assignment by incorporating meta information,
such as genetic mutation, metastasis status, sex, and collection site. As proof of concept, we verified
the expression of TP53 associated DNA damage signature in TP53 mutated ovary cancer cells.
Altogether, our open-source application provides an easy-to-use framework for omics exploration
and discovery.

Keywords: R Shiny application; RNA-seq; proteomics; multi-omics analysis; T-cell acute lymphoblastic
leukemia; CCLE

1. Introduction

Multi-omics profiling of cancer patient samples and cell lines is becoming a staple of
cancer research [1]. These technologies have a high potential for advancing our understand-
ing of tumor biology and, in turn, reveal novel targets for treatment and diagnosis [2,3]. To
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date, a brief survey of the existing database reveals more than 500K cancer samples from
GEO [4,5] and 90K pre-computed cancer expression data from recount3 [6]. Additionally,
there are close to 4K mass spectrometry profiling of cancer patient samples from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) data [7]. Large consortium projects, such
as the Cancer Cell Line Encyclopedia (CCLE), have also generated many high-throughput
datasets, such as transcript expression, RNA splicing, proteome profiling, drug response,
and genetic screening data [8].

With the influx of multi-omics profiling, effective integration of these data remains the
bottleneck for omics-driven discovery. The development of a simple user interface that min-
imizes the need for computational experience is of high interest to the community [9]. Sev-
eral web-based tools are now available to perform general expression analysis of proteomics
(e.g., POMAShiny [10]) and transcriptome data (e.g., TCC-GUI [11], START App [12], and
GENAVi [13]). Multi-omics approaches for network analysis (e.g., MiBiOmics [14] and
JUMPn [15]) are also available as a Shiny app. Web tools also exist for analyzing large
datasets from the Gene Expression Omnibus (GEO) data (e.g., shinyGEO [16], ImaGEO [17])
and the cancer dependency map (e.g., shinyDepMap [18]). However, these applications
tend to have limited features for analyzing complex heterogeneous phenotypes in cell
lines and patients, such as mutation of genomic drivers, cell line characteristics, sex, or
metastasis status. Additionally, none of these tools provides a streamlined pipeline to assess
similarities and differences between omics datasets, such as transcriptome and proteome
comparisons, or comparisons between mouse and human cancer models.

To address these challenges, we have developed DRPPM-EASY, a Shiny app built with
an open-source R programming language that can be run as a local instance or deployed
online. Here, our app is divided into two major modules: (1) a one-stop expression analysis
for gene expression analysis and (2) an integrative framework for comparing omics data. As
a proof of concept, we further implemented an app for querying and automating extraction
of sample groupings of CCLE data for downstream analysis. The source code of our
application can be downloaded from https://github.com/shawlab-moffitt/DRPPM-EASY-
ExprAnalysisShinY (accessed on 1 February 2022).

2. Materials and Methods
2.1. Module 1. DRPPM-EASY APP Implementation

The DRPPM-EASY app is a Shiny web app built with an open-source R programming
language (V.4.1.0). The Shiny framework leverages existing RNA-seq analysis packages to
put together a one-stop analysis framework (Figure 1A) for data exploration (Table 1), dif-
ferential expression analysis (Table 2), and gene set enrichment analysis (Table 3). The data
exploration section allows the user to perform unsupervised and supervised hierarchical
clustering. Clustering can be further evaluated by different types of distance calculations
(i.e., ward, average, complete, centroid) or variable gene ranking strategy (mean absolute
deviation or variance). The relative gene expression can be examined across sample groups
by a boxplot or scatter plot to examine the gene expression of the positive control associated
with the experimental design. Differential gene expression is performed by LIMMA [19]
and can be visualized as a volcano plot and MA-plot. The list of differentially expressed
genes can be further examined by pathway enrichment analysis (Figure 1A). Finally, the
user can perform gene set enrichment analysis (GSEA), which ranks the genes based on
signal-to-noise between the user-selected phenotype to examine enriched genes associated
with a gene set signature (Figure 1A). A complementary strategy to estimate enrichment
scores for individual samples can be performed by single-sample GSEA (ssGSEA) imple-
mented in the GSVA library [20]. Finally, these single-sample enrichment scores can be
downloaded as a tab-delimited table or visualized as a boxplot.
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preprocessing step, which is used as input to the R Shiny app. The app generates two modes of 
exploring the data: (1) general differential gene expression analysis and (2) gene set enrichment 
analysis. The result from the analysis can be downloaded as output tables. (B) Schematic of the 
integrative analysis with three major features for pathway signature comparison. The app has three 
modes of integrative analysis: (1) scatter plot mode, (2) correlation plot mode, and (3) paired multi-
omics analysis. 

Table 1. Data Exploration Module. 

 App Function Description 

E1 Unsupervised Heatmap 

• Top variable gene selection 
• Expression data is log2 transformed then z-

normalized  
• User-specified clustering method 

E2 Scatter Plot 
• User selects two genes of interest 
• Expression values compared via interactive 

scatter plot (log2 transformation is optional) 

E3  Custom Heatmap 

• Visualize user-selected genes and samples 
• Expression data is log2 transformed and z-

normalized 
• User-specified clustering method 

E4 Box Plot 
• Gene expression in each group are shown 
• Expression values are log2 transformed 
• Comparing groups for statistical differences 

Table 2. Differential Expression Analysis Module. 

 App Function Description 

DEA1 Volcano Plot • User selects comparison groups 

Figure 1. DRPPM-EASY expression analysis pipeline. (A) Schematic workflow of DRPPM-EASY. The
pipeline takes in input files of an expression matrix, a sample meta-file specifying sample grouping,
and a gene set database for GSEA. A GSEA enriched signature table is generated as a preprocessing
step, which is used as input to the R Shiny app. The app generates two modes of exploring the data:
(1) general differential gene expression analysis and (2) gene set enrichment analysis. The result from
the analysis can be downloaded as output tables. (B) Schematic of the integrative analysis with three
major features for pathway signature comparison. The app has three modes of integrative analysis:
(1) scatter plot mode, (2) correlation plot mode, and (3) paired multi-omics analysis.

Table 1. Data Exploration Module.

App Function Description

E1 Unsupervised Heatmap
• Top variable gene selection
• Expression data is log2 transformed then z-normalized
• User-specified clustering method

E2 Scatter Plot
• User selects two genes of interest
• Expression values compared via interactive scatter plot

(log2 transformation is optional)

E3 Custom Heatmap
• Visualize user-selected genes and samples
• Expression data is log2 transformed and z-normalized
• User-specified clustering method

E4 Box Plot
• Gene expression in each group are shown
• Expression values are log2 transformed
• Comparing groups for statistical differences
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Table 2. Differential Expression Analysis Module.

App Function Description

DEA1 Volcano Plot

• User selects comparison groups
• Differential gene expression analysis with LIMMA
• Up- and downregulated differentially expressed genes

determined with user input

DEA2 MA Plot

• User selects comparison groups
• Differential gene expression analysis with LIMMA
• Up- and downregulated differentially expressed genes

determined with user input

DEA4 Pathway Enrichment Analysis
• User selects comparison groups and gene set/pathway
• Differential gene expression analysis with LIMMA
• Pathway enrichment analysis using enrichR

Table 3. Gene Set Enrichment Analysis Module.

App Function Description

GA1 Enrichment Plot
• User selects comparison groups
• Signal-to-noise ranking performed on expression data
• GSEA function performed with chosen gene set

GA2 Gene Expression Heatmap

• User selects comparison groups
• Signal-to-noise ranking performed on expression data
• GSEA function performed with chosen gene set
• Expression data log2 transformed and scaled
• Genes from chosen gene set displayed in the heatmap

GA3 GSEA Summary Table • Displays user pre-generated enriched signatures table

GA4 Generate Summary Table
• GSEA function performed on expression data with

user input GMT file
• Enriched signatures table produced is displayed

GA5 ssGSEA Boxplots
• User-selects gene set and single-sample GSEA method
• Comparing groups for statistical differences

2.2. Module 2. The DRPPM-EASY-Integration App Implementation

The DRPPM-EASY-Integration provides an explorer for the user to upload normalized
RNA expression, proteomic quantification, or ssGSEA scores to evaluate the potential
relationship between these features (Figure 1B). These can be evaluated by either a 1:1
scatter plot or 1:n rank of Spearman correlation rho values (Table 4). The integrative app
also allows the user to perform concurrent differential expression analysis and integration
of two expression matrices, for example, to compare RNA and protein expression matrices.
The fold change can be compared between the two datasets (Table 4), and differentially ex-
pressed genes can be compared by reciprocal GSEA or ssGSEA. Direct overlap between the
differentially expressed genes is shown as a Venn diagram and further compared to existing
gene set databases by Fisher’s exact test, Cohen’s kappa score, and the Jaccard index.
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Table 4. Integrative Analysis.

App Function Description

IA1 Scatter Plot Comparison
• User input features are merged and plotted
• Samples are colored based on metadata type

IA2 Correlation Rank Plot

• Assessing the relationship between ssGSEA score and gene
expression performed

• Correlation can be performed as Spearman, Pearson, or
Kendall

• Correlation values plotted by rank from lowest to highest

IA3 Matrix Comparison File Upload • Upload two expression matrices and two metadata files

IA4 Log2FC Comparison Scatter Plot

• Differential gene expression analysis with LIMMA
performed on both matrices

• Log2 fold change values subset and difference between
matrices calculated

• Expression data displayed as scatter plot

IA5 Reciprocal GSEA

• Differential gene expression analysis with LIMMA
• Four gene sets derived differentially expressed genes (two

upregulated, and two downregulated gene set)
• GSEA performed on the reciprocal data

IA6 Reciprocal ssGSEA

• Differential gene expression analysis with LIMMA
• Four gene sets derived differentially expressed genes (two

upregulated, and two downregulated gene set)
• ssGSEA performed on the reciprocal data

IA7 Venn Diagram

• Differential gene expression analysis with LIMMA
• Overlapping differentially expressed genes
• Perform Fisher’s exact test. Calculate Cohen’s kappa, and

Jaccard index to compare between the two matrix and across
user selected pathways.

2.3. Installation and User Guide

The source code and user guide are available for download on the project’s GitHub
page. The GitHub page includes the list of individual R packages and their version along
with an installation script for all package dependencies.

2.4. RNA Sequencing Analysis

USP7 samples were prepared as described in Shaw et al. [21]. Briefly, human T-ALL
cell lines Jurkat (ATCC) cells were transduced with USP7 shRNA lentivirus and sorted for
GFP positive cells or selected by puromycin. RNA samples were isolated using RNeasy
Mini Kit (QIAGEN) and subjected to paired-end 2 × 151 base-pair RNA-seq sequencing
(Illumina), 10 Jurkat samples—of which 6 were treated with shRNA and 4 were treated with
a scramble RNA—were profiled by RNA-seq. RNA-seq data were processed by a custom
pipeline (WRAP, https://github.com/gatechatl/DRPPM_Example_Input_Output/tree/
master/WRAP:Wrapper-for-my-RNAseq-Analysis-Pipeline (accessed on 1 August 2021.
RNA-seq reads were aligned using the STAR 2.7.1a aligner [22] in the two-pass mode to
the human hg38 genome build using gene annotations provided by the Gencode v31 gene
models. Read count for each gene was obtained with HT-seq [23]. Reads were normalized
to fragments per kilobase million (FPKM) for each gene.

2.5. Whole Proteomics Mass Spectrometry and Data Analysis

The 10-plex TMT labeled mass spectrometry experiment was performed with a pre-
viously published protocol with slight modification [24,25] (See Supplementary Method,
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Supplementary Figure S3 for the experimental design). Protein for each sample was di-
gested by trypsin (Promega). The TMT labeled samples were mixed equally, desalted, and
fractionated on an offline HPLC (Agilent 1220) using basic pH reverse-phase liquid chro-
matography (pH 8.0, XBridge C18 column, 4.6 mm × 25 cm, 3.5 µm particle size, Waters).
In total, 20 fractions were derived, and the eluted peptides were ionized by electrospray
ionization and detected by an inline Orbitrap Fusion mass spectrometer (Thermo Scientific.
Waltham, MA, USA). The MS/MS raw files were processed by a tag-based hybrid search
engine JUMP [26]. The data were searched against the UniProt human concatenated with a
reversed decoy database for evaluating false discovery rate. Searches were performed using
a 25 ppm mass tolerance for precursor ions and 25 ppm mass tolerance for fragment ions,
fully tryptic restriction with two maximal missed cleavages, three maximal modification
sites, and the assignment of a, b, and y ions. TMT tags on lysine residues and N-termini
(+229.162932 Da) were used for static modifications, and Met oxidation (+15.99492 Da) was
considered as a dynamic modification. MS/MS spectra were filtered by mass accuracy and
matching scores to reduce the protein false discovery rate to approximately 1%. Proteins
were quantified by summing up reporter ion counts across all matched PSMs using the
JUMP software suite [25,26].

2.6. Pre-Processing of the GSEA Analysis

To optimize the user experience, we provided a script to pre-generate a GSEA result
table (Supplementary Figure S1). The GitHub page contains “Getting Started Scripts”,
which allows the user to pre-process GSEA results for downstream table visualization.
Enriched signature tables can take a long time to process depending on the number of
samples or the size of the GMT file provided by the user. At the top of the script, there are
key input parameters, such as file path and name to the expression matrix, metadata, and
gene set file, as well as the preferred output file path of the output table(s). Additionally,
the getting started scripts include a script to generate an R Data list of the ssGSEA analysis.
Large gene sets may require several minutes, so pre-computing can facilitate a better
user experience.

3. Results
3.1. DRPPM-EASY Analysis of RNA-seq and Proteomics Data Use Case 1

We previously identified that USP7 knockdown in T-ALL reduces the activity of
E-proteins in a TAL1 dependent manner [21]. To highlight the functions of the DRPPM-
EASY application, we re-examined the RNA sequencing profiling data of Jurkat cells
after USP7 shRNA silencing. RNA-seq sample grouping was assessed by unsupervised
hierarchical clustering (Figure 2A). Notably, altering the clustering methods and the number
of (selected) top variables did not change the clustering result, suggesting robust grouping
of our data (Supplementary Figure S2). Differential gene expression was then performed by
LIMMA and visualized as a Volcano and MA plot. As expected, differential gene expression
analysis found downregulated USP7 expression after silencing (Figure 2B,C). Notably, MYC,
NOTCH1, TRIB2, and EOMES were upregulated after USP7 knockdown (Figure 2B). In the
pathway analysis view, enriched pathways can be examined with preloaded gene sets from
MsigDB, cell marker, and L1000 drug response. By GSEA and single-sample GSEA, we
found USP7 knockdown upregulated with MYC and TAL1 associated targets (Figure 2D,E)
and found downregulated apoptotic gene signature from the Hallmark database (Figure 2F).
Overall, the RNA-seq analysis supports our previous finding that USP7 is implicated in the
negative regulation of TAL1-dependent leukemia growth [21].

70



Biology 2022, 11, 260
Biology 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. Expression analysis example of RNA-seq data USP7 silenced Jurkat cells. (A) Unsuper-
vised clustering of the RNA sequencing data using the top 100 genes ranked based on mean absolute 
deviation (MAD). (B) Differential gene expression analysis comparing USP7 knockdown and scram-
ble. Genes upregulated after USP7 knockdown are shown in red and genes downregulated after 
USP7 knockdown are shown in blue (USP7-associated targets). (C) Boxplot showing the USP7 ex-
pression in log2 FPKM. (D) Gene set enrichment analysis of MYC targets. (E) Boxplot showing the 
single sample GSVA analysis of the TAL1 gene set. (F) Boxplot showing the single sample GSVA 
analysis of the Hallmark Apoptosis gene set. 

Next, tandem-mass-tagged proteomics profiling was performed on the same set of 
samples with RNA-seq profiling (Figure 3A; Supplementary Figure S3). A joint analysis 
of the transcriptome and proteome data was carried out by the DRPPM-EASY-Integration 
pipeline, identifying genes with altered protein abundance and unaltered mRNA levels, 
such as TRIM27, NOTCH2, UBR3, and USP22 (Figure 3B). Consistent with our previous 
observation, TRIM27, a known target of USP7 [27], observed decreased protein abundance 
in T-ALL cell lines with a haploinsufficient USP7 [21]. The altered abundance of UBR3 
and USP22 suggests an altered ubiquitin ligase network. Furthermore, our result suggests 
that USP7 loss-of-function alters NOTCH2 protein abundance. Of note, NOTCH1 [28] pro-

Figure 2. Expression analysis example of RNA-seq data USP7 silenced Jurkat cells. (A) Unsupervised
clustering of the RNA sequencing data using the top 100 genes ranked based on mean absolute
deviation (MAD). (B) Differential gene expression analysis comparing USP7 knockdown and scramble.
Genes upregulated after USP7 knockdown are shown in red and genes downregulated after USP7
knockdown are shown in blue (USP7-associated targets). (C) Boxplot showing the USP7 expression
in log2 FPKM. (D) Gene set enrichment analysis of MYC targets. (E) Boxplot showing the single
sample GSVA analysis of the TAL1 gene set. (F) Boxplot showing the single sample GSVA analysis of
the Hallmark Apoptosis gene set.

Next, tandem-mass-tagged proteomics profiling was performed on the same set of
samples with RNA-seq profiling (Figure 3A; Supplementary Figure S3). A joint analysis of
the transcriptome and proteome data was carried out by the DRPPM-EASY-Integration
pipeline, identifying genes with altered protein abundance and unaltered mRNA levels,
such as TRIM27, NOTCH2, UBR3, and USP22 (Figure 3B). Consistent with our previous
observation, TRIM27, a known target of USP7 [27], observed decreased protein abundance
in T-ALL cell lines with a haploinsufficient USP7 [21]. The altered abundance of UBR3
and USP22 suggests an altered ubiquitin ligase network. Furthermore, our result suggests
that USP7 loss-of-function alters NOTCH2 protein abundance. Of note, NOTCH1 [28]
protein abundance was unaltered after USP7 knockdown (Figure 3B). Thus, the precise
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mechanism of USP7 to drive the NOTCH association leukemia signature will need to be
carefully examined in future studies.
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Figure 3. Integrated analysis example of proteomics and transcriptomics USP7 silenced Jurkat cells.
(A) Jurkat samples treated with USP7 shRNA and scramble were profiled by RNA sequencing and
TMT mass spectrometry. (B) The log2 fold change from the differential expression analyses is plotted.
Positive log2FC indicates upregulated expression after USP7 silencing. Negative log2FC indicates
downregulated expression after USP7 knockdown. Dotted line indicates the −1 and 1 log2FC cutoff.
(C) Upregulated and downregulated gene signatures derived from differentially expressed mRNAs.
(D) Venn diagram of genes differentially upregulated (top panel) and downregulated (bottom panel)
in the transcriptome (left) and proteome (right). (E) Up-regulated and downregulated gene signatures
derived from differentially expressed proteins. (F,G) Reciprocal GSEA of differentially expressed
genes derived from the transcriptome and examined in the proteomics data (F). Similarly, differentially
expressed proteins were first derived then examined in the transcriptome data by GSEA (G).
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The DRPPM-EASY-Integration includes features assessing the consistency between
two datasets. Using the RNA-seq and proteomic data as proof of concept, DRPPM-EASY-
Integration found 987 genes consistently upregulated, and 622 genes consistently down-
regulated in both datasets (Figure 3C–E). A connectivity map-inspired strategy [29,30]
was applied to compare the consistency between the two datasets using reciprocal en-
richment. Specifically, differential expressed genes in one dataset was used to derive a
gene signature for GSEA to test in the other dataset. For example, differentially expressed
proteins (Figure 3F) were applied as a GSEA gene set and tested for enrichment in the
transcriptome data (Figure 3G). Similarly, gene sets derived from differentially expressed
transcripts (Figure 3C) were tested for enrichment in the proteome data (Figure 3H). We
then compared the significance of the overlapping differentially expressed genes against
other pathway databases, such as Hallmark and KEGG. The overlap was evaluated by
Fisher’s exact test, Cohen’s kappa, and Jaccard index. Consistently, the RNA and protein
were most significantly overlapped compared to other gene sets. Moreover, the spliceo-
some and ubiquitin-mediated proteolysis pathways from KEGG and the unfolded protein
response and MYC pathway from Hallmark were consistently enriched in both datasets
(Supplementary Figure S3B,C; Supplementary Tables S1 and S2).

3.2. DRPPM-EASY-CCLE Use Case 2

To further illustrate the DRPPM-EASY functionality, we developed DRRPM-EASY-
CCLE, an extended app with features to select samples from the Cancer Cell Line Encyclo-
pedia (CCLE) data. The app is preloaded with 1379 CCLE samples spanning 37 lineages,
96 lineage sub-types, and 33 diseases. For the genetic characterization, 299 cancer drivers [31]
were selected and further divided based on the damaging and non-damaging variant status
from DepMap [32] (see Supplementary Table S3 for the complete phenotype categories).
As an example, we extracted ovary cancer cell lines and performed expression analysis
comparing TP53 mutation status to its wild-type counterpart (Figure 4A). In TP53 mutated
ovary cancer cells, we found a decreased DNA damage response gene signature (Figure 4B),
thereby solidifying the role of TP53 loss-of-function for regulating DNA damage in these
ovarian cancer cells.

Previously, KRAS was found to be frequently mutated in non-small cell lung cancer
(NSCLC) and is associated with drug resistance [33]. Thus, we analyzed NSCLC cell lines
and compared KRAS mutation status to its wild-type counterpart (Figure 4C). By pathway
analysis, the MsigDB defined KRAS signature was consistently upregulated in our KRAS
mutated samples (Supplementary Figure S4A). Interestingly, top pathways enriched in the
KRAS mutated samples are associated with an anti-apoptosis signature (Supplementary
Figure S4B). By ssGSEA, amplified expression in KRAS mutated NSCLC cells were enriched
with genes that negatively regulate apoptosis (Figure 4D) and upregulating genes that
associated with stress granule assembly and disassembly (Figure 4E), which is a dynamic
process fundamental to surviving under stress [34]. Interestingly, oncogenic KRAS-driven
stress granules were previously identified in pancreatic and colorectal adenocarcinoma [35];
thus, our result suggests a similar stress response in NSCLC cells.

To further expand our functionality for exploring these large project data, we have
also implemented features that enable users to upload their own expression matrix to
perform an integrative analysis in CCLE and lung squamous cell carcinoma CPTAC datasets
https://github.com/shawlab-moffitt/DRPPM-EASY-LargeProject-Integration (accessed
on 1 February 2022) (Supplementary Figures S5A–C). Altogether, our framework provides
a user-friendly environment to categorize the samples for downstream analysis with a high
potential for novel discovery.
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Figure 4. Use case analysis example of CCLE Expression data. (A) Drop-down menu selection
of sample cohort and sample phenotype characteristic. CCLE ovary samples and TP53 mutation
status were selected from the drop-down menu option. (B) Single-sample GSEA analysis of genes
defining the DNA damage response by Amundson et al. Analyzed samples were selected from the
drop-down menu from (A). (C) Drop-down menu selection of sample cohort and sample phenotype
characteristic. CCLE non-small cell lung cancer samples and phenotype associated with the KRAS
mutation status were selected from the drop-down menu option. (D) Single sample GSEA analysis of
genes negatively regulating the DNA damage response. (E) Single sample GSEA of genes defining
the stress granule assembly and disassembly. Gene sets were compiled from Biological Pathways
from the Gene Ontology database (GOBP). Analyzed samples were selected from the drop-down
menu from (C).

4. Discussion

An effective method for visualization and data analysis is key to the analysis of multi-
omics data that captures the molecular processes of cancer initiation and progression.
Several Shiny apps have been published to date and can be categorized into the following
three categories: (1) tools that focus on pairwise differential expression and biomarker
discovery (e.g., POMAShiny 10], TCC-GUI [11], and START App [12]), (2) tools that
perform pathway and network analysis (e.g., iOmics [14] and JUMPn [15]), and (3) tools
that facilitate the query of large datasets, such as from public repositories or consortium
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deposited datasets and deposited expression data (e.g., shinyGEO [16], ImaGEO [17], and
GENAVi [13]). While numerous web tools have been developed thus far, there is a lack
of tools that directly address challenges associated with multi-data integration, such as
evaluating the consistency between omics datasets.

Here, we developed an interactive software tool, DRPPM-EASY, that allows users to
perform complex omics data integration in both small (pairwise comparison) and large
(consortium) projects. DRPPM-EASY puts together an interactive flexible interface that
enables the exploration of biomarkers and enriched pathways across multiple datasets.
DRPPM-EASY can perform routine gene analysis, such as hierarchical clustering, differen-
tial gene expression, pathway analysis, GSEA, and ssGSEA. Additionally, DRPPM-EASY
can perform a joint analysis of two expression datasets. As an example, we have highlighted
the application’s ability to evaluate the consistency between transcriptome and protein
datasets. This is made possible by deriving a gene set feature in one dataset (i.e., tran-
scriptomics), which is applied in the GSEA analysis of the other dataset (i.e., proteomics).
DRPPM-EASY can be easily adapted for large consortium data, which we highlight as an
example in CCLE cancer cell lines and lung squamous cell carcinoma CPTAC proteome
data. Finally, to further expand the utility of our tool, the user can upload their own expres-
sion data and use it to compare against CCLE cell lines and lung squamous cell carcinoma
proteome data. One major limitation of our application requires the user to normalize their
gene expression matrix prior to using our application. Existing pipelines are available to
streamline the normalization procedure, such as Shiny-Seq [36]. A normalization procedure
will be included in future updates of our application.

Finally, the ability to run the application with a user interface on a local desktop reduces
the need for computational domain knowledge of expression analysis. The DRPPM-EASY
application can be set up on the server in real-time, enabling collaborative discussion
on potential hypotheses derived from the high-throughput data. Our tool also ensures
reproducibility of the data analysis, which is one of the most significant issues in omics re-
search [37]. While the current application is highlighted to work in RNA-seq and proteomics
data, our framework could easily be adapted to incorporate drug response, genetic screen-
ing, or splicing associated features in future versions of our application. Thus, we believe
DRPPM-EASY will be a useful and valuable tool for the biomedical research community.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology11020260/s1, Supplementary Method. Supplementary Table S1.
KEGG Pathways Jointly Enriched in the Transcriptome and Proteome. Supplementary Table S2.
Hallmark Pathways Jointly Enriched in the Transcriptome and Proteome. Supplementary Table S3.
CCLE Sample Meta-Information. Supplementary Figure S1. Schematic of the GSEA pre-processing.
Supplementary Figure S2. Unsupervised hierarchical clustering of Jurkat samples after USP7 knock-
down. Supplementary Figure S3. Experimental design of the total proteome profiling of the USP7
knockdown experiment. Supplementary Figure S4. Pathway enrichment analysis of genes differentially
upregulated in KRAS mutated samples in NSCLC. Supplementary Figure S5. Screen shot showing the
user option to upload user data in the DRPPM-Large Project Integration.
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Simple Summary: Identification of new prognostic biomarkers and therapeutic targets could be
essential ways to improve the outcome of bladder cancer (BC) patients. In this study, we compre-
hensively analyzed the mRNA expression and prognosis of Annexin family members (ANXA1-11,
13) in BC through public analysis tools, including Oncomine, GEPIA2 and our in-house OSblca web
server, and found that several Annexins were aberrantly expressed and associated with prognosis
in BC. Then, we constructed and validated an Annexin-related prognostic signature (ARPS) in four
individual BC cohorts through LASSO and COX regression, indicating that ARPS was an independent
prognostic factor for BC. Briefly, our study was to determine the clinical significance of Annexins and
provided a potential prognostic model and potential therapeutic targets for BC.

Abstract: Abnormal expression and dysfunction of Annexins (ANXA1-11, 13) have been widely
found in several types of cancer. However, the expression pattern and prognostic value of An-
nexins in bladder cancer (BC) are currently still unknown. In this study, survival analysis by our
in-house OSblca web server revealed that high ANXA1/2/3/5/6 expression was significantly asso-
ciated with poor overall survival (OS) in BC patients, while higher ANXA11 was associated with
increased OS. Through Oncomine and GEPIA2 database analysis, we found that ANXA2/3/4/13
were up-regulated, whereas ANXA1/5/6 were down-regulated in BC compared with normal bladder
tissues. Further LASSO analysis built an Annexin-Related Prognostic Signature (ARPS, including
four members ANXA1/5/6/10) in the TCGA BC cohort and validated it in three independent GEO BC
cohorts (GSE31684, GSE32548, GSE48075). Multivariate COX analysis demonstrated that ARPS is
an independent prognostic signature for BC. Moreover, GSEA results showed that immune-related
pathways, such as epithelial–mesenchymal transition and IL6/JAK/STAT3 signaling were enriched
in the high ARPS risk groups, while the low ARPS risk group mainly regulated metabolism-related
processes, such as adipogenesis and bile acid metabolism. In conclusion, our study comprehensively
analyzed the mRNA expression and prognosis of Annexin family members in BC, constructed an
Annexin-related prognostic signature using LASSO and COX regression, and validated it in four
independent BC cohorts, which might help to improve clinical outcomes of BC patients, offer insights
into the underlying molecular mechanisms of BC development and suggest potential therapeutic
targets for BC.
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1. Introduction

Bladder cancer (BC) is one of the most common malignancies with high risk of tumor
recurrence and fatality in the urinary system. According to Global Cancer Statistics 2020,
there were about 573,000 new cases and 212,000 deaths of BC around the world [1]. Al-
though the significant advances in understanding of the underlying biology of BC have
improved the accuracy and effect of diagnosing and treating this disease in recent years,
BC still represents a spectra of diseases from recurrent noninvasive tumors to aggressive
or advanced-stage disease that requires multimodal and invasive treatment [2,3]. Fre-
quent postoperative recurrence and distant metastasis lead to the poor prognosis in BC
patients [4,5]. Identification of efficient therapeutic targets, as well as new prognostic
biomarkers are needed to improve the outcomes of BC patients.

Annexins belongs to a superfamily of calcium-dependent phospholipid-binding pro-
teins and contains 12 members (ANXA1-11, 13) [6]. In eukaryotic cells, Annexins are
involved in membrane trafficking and organization, such as vesicle transport, signal trans-
duction, cell proliferation, cell differentiation and apoptosis [7,8]. Recent studies found that
abnormal expression and dysfunction of Annexin proteins commonly occurred in tumor
tissue and indicated that the disordered Annexin proteins may play important roles in
tumorigenesis and progression, as well as chemoresistance in several types of cancer [9,10].
However, few studies reported the roles of Annexins in the carcinogenesis and prognosis in
BC. Yu et al. found that the expression of ANXA1 was related to disease-free survival in BC
patients and can be used as a recurrence biomarker for BC [11]. In addition, ANXA2 has
also been found to play a key role in the formation, progression and recurrence of BC [12],
and high expression of ANXA10 is significantly correlated with poor progression-free
survival in BC patients [13]. However, the roles and mechanisms of most Annexins in BC
remain unclear.

In this study, we comprehensively analyzed the mRNA expression and prognosis
of Annexin family members in BC through public analysis tools, including Oncomine,
GEPIA2 and our in-house OSblca web server, and found that several Annexins were
aberrantly expressed and associated with prognosis in BC. Then, we collected four BC
datasets, including 703 BC samples with survival information from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO), and constructed and validated an
Annexin-related prognostic signature (ARPS) in four individual BC cohorts through LASSO
and COX regression, indicating that ARPS was an independent prognostic factor for BC.
In addition, we further explored the biological functions and relevant pathways of ARPS
through gene set enrichment analysis (GSEA), and analyzed the correlation between ARPS
and the infiltrating immune cells using ssGSEA. Briefly, our study was to determine the
clinical significance of Annexins and provided a potential prognostic model and potential
therapeutic targets for BC.

2. Materials and Methods
2.1. Survival Analysis of Annexin Family Members in OSblca

OSblca (http://bioinfo.henu.edu.cn/BLCA/BLCAList.jsp, accessed on 2 December
2020) [14] is our in-house online survival analysis tool providing 1075 BC gene expression
profiles and accompanied patient clinical follow-up information from TCGA and GEO
databases. In OSblca, four types of survival endpoints, including overall survival (OS),
disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval
(PFI) were provided for prognosis analysis. Each member of the Annexin family was
analyzed for the relationship between their mRNA expression and BC outcomes in OSblca
prognostic values of these genes were evaluated in all cohorts and survival terms, and, all
cutoff values in ‘splitting the patients’ were tested in each cohort to get the best cutoff value.
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2.2. Differential Expression Analysis of Annexin Family Members between BC and Adjacent Tissue
by Oncomine and GEPIA2

Oncomine (www.oncomine.org, accessed on 2 December 2020) [15] and GEPIA2
(http://gepia2.cancer-pku.cn/#index, accessed on 2 December 2020) [16] databases were
used to analyze the differential expression of Annexins between cancer and adjacent normal
tissues. Oncomine is an online database that provides differentially expressed gene analysis
using public microarray datasets. In Oncomine, mRNA expression of Annexin members
between cancer tissue and adjacent normal tissue were compared with the thresholds of
p-value < 0.05, |log2 (fold-change)| > 1, and the gene rank percentage < 10%. GEPIA2
provided the gene expression analysis based on TCGA and GTEx data. In GEPIA2, the
expression of Annexins were compared between 404 bladder cancer samples and 28 normal
samples with the threshold for p-value < 0.05 and |log2(fold-change) | > 1. In addition,
differential expression of Annexins members in distinct clinical stages was also analyzed
in TCGA bladder cancer samples using TISIDB database (http://cis.hku.hk/TISIDB/,
accessed on 3 December 2020) [17].

2.3. Construction and Validation of the Annexin-Related Prognostic Signature through LASSO

Four individual BC cohorts with both gene expression data and related clinical
follow-up information were downloaded from TCGA and GEO databases, including
one TCGA BC dataset [18] (Discovery cohort) and three GEO BC datasets (Validation
cohorts, GSE31684 [19], GSE32548 [20], GSE48075 [21]). Detailed information of each BC
cohort was summarized in Supplementary Table S1. The work-flow was illustrated in
Supplementary Figure S1. The ARPS was constructed using least absolute shrinkage and
selection operator (LASSO) Cox regression through R package “glmnet”. The optimal
parameter was determined through 10-fold cross validation with “family = cox, alpha = 1”,
and with all other parameters set to default. Ultimately, ARPS is developed according to
the following risk score formula:

risk score = ∑n
i (Coefi ∗ Expri)

where Coefi is the coefficient of gene i in LASSO and Expri is the FPKM value of the
included gene i.

Best cut-off risk score was calculated by using the “surv_cutpoint” function of R
package “survminer” (https://CRAN.R-project.org/package=survminer, accessed on
24 December 2020). According to the best cut-off risk score, TCGA BC patients were
divided into high- and low-risk groups and the prognosis between the two groups was
evaluated through Kaplan-Meier survival analysis with the log-rank test. In addition, the
expression heatmap of each Annexin member in ARPS and the risk score distribution and
survival of patients were visualized through “pheatmap” package. Similar analyses were
performed in three individual BC cohorts (GSE31684, GSE32548, GSE48075) to validate the
prognosis performance of ARPS in BC.

2.4. Independent Prognostic Performance Analysis of ARPS in BC Cohorts

In the TCGA BC cohort, univariate Cox regression models were used to identify the
prognostic clinical characteristics related to prognosis, and subsequently these significantly
prognostic factors were further tested their independent prognostic performance through
multivariate Cox regression models. Similar analyses were performed in other three indi-
vidual BC cohorts (GSE31684, GSE32548, GSE48075) to validate the independent prognostic
performance of ARPS in BC.

2.5. Association between ARPS and Clinicopathology

The chi-squared test was performed to determine the association of clinical features
between and ARPS in BC patients, where a p-value less than 0.05 indicates statistical signif-
icance. In addition, to verify the predictive effectiveness of ARPS in different subgroups,
Kaplan-Meier survival analysis was used to compare the prognostic capability between
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subgroups in certain clinical features including age, gender, grade, lymph invasion status,
T status, M status, and N status, TNM stage, and race.

2.6. Gene Interaction and Biological Functions of ARPS

GeneMANIA was used to analyze the protein interactions between Annexin members
in ARPS. To evaluate the biological functions of ARPS, differentially expressed genes
(DEGs) between the two ARPS risk groups were identified through limma R package, and
then were analyzed in the DAVID database to predict the gene ontology (GO) function and
KEGG pathway. Furthermore, GSEA was implemented to reveal the potential mechanism
that ARPS was involved in.

2.7. Correlation between ARPS Risk Score and Imune Cell Infiltration and Immune
Checkpoint Genes

In order to characterize the immune cell infiltration in the tumor microenvironment
of two ARPS risk groups, the immune cell abundance of the TCGA BC cohort was cal-
culated by estimate, timer, MCPcounter and xCell algorithm, and visualized through the
“pheatmap” package of R software. Correlations between ARPS risk score and different
immune cell abundances and immune checkpoint genes were analyzed through Pearson
coefficient analysis. Then, the levels of immune cell infiltration and immune checkpoint
gene expression between high- and low-risk groups were compared using the ‘limma’
package, which revealed the effect of ARPS risk score on BC immune microenvironment.

2.8. Statistical Analysis

Statistical analysis was performed using SPSS 16.0 and GraphPad Prism 5.0 software.
Differences were compared by the Student’s t test or one-way analysis of variance (ANOVA)
where appropriate. Statistical significance was determined by p-value less than 0.05.

3. Results
3.1. Survival and Differential Analysis of Annexins in Bladder Cancer

Survival analysis results revealed that the mRNA expression of more than half of
Annexin members were related to the prognosis of BC patients. As shown in Figure 1,
BC patients with high expression of ANXA1/2/3/5/6 had a shorter OS time in comparison
to those with low expression of ANXA1/2/3/5/6, while BC patients with high expressed
ANXA11 had a longer OS time. In particular, upregulated ANXA1/2/5 were significantly
associated with poor prognosis of BC in three or more datasets. In addition, the mRNA
expressions of Annexins were also related to DSS in BC patients (Figure 2). The results
indicated that BC patients with high expression of ANXA1/2/5/6/7/13 showed a shorter DSS
time than those with low expression, as opposed to the patients with high expression of
ANXA11. Moreover, high expression of ANXA5 and ANXA13 were found to be associated
with poor DFI and PFI in the BC cohort (Figure 3), indicating that these two genes might be
involved in recurrence and progression of BC.

Using the Oncomine database (Table 1), we found that most Annexins were sig-
nificantly differentially expressed between BC and adjacent normal tissues. Markedly
lower expressions of ANXA1/5/6 were found in BC tissues consistently, while the expres-
sion levels of ANXA2/3/4/13 were significantly increased in multiple BC cohorts. In the
GEPIA2 database, ANXA6 was significantly downregulated in TCGA BC samples com-
pared to normal samples (p-value < 0.05), while ANXA8 was significantly upregulated in
TCGA BC samples, and no significant differences were found for other Annexins in BC
(Supplementary Figure S1).
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Figure 1. The hot map of prognostic value of Annexin family members regarding overall survival 
(OS) in BC patients by OSblca web server. Where * p < 0.05, ** p < 0.01 and *** p < 0.001, NA means 
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Figure 2. Forest plots displayed prognostic value of Annexin family members regarding dis-
ease-specific survival (DSS) in BC patients using OSblca web server. 
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Figure 3. Survival analysis of ANXA5 and ANXA13 in disease-free interval (DFI) and progression-free
interval (PFI) in BC patients using OSblca web server. Kaplan-Meier plotter of ANXA5 with DFI (A)
and PFI (B); Kaplan-Meier plotter of ANXA13 with DFI (C) and PFI (D) in OSblca.

Correlation between Annexin expression and clinical stage of BC are shown in Figure 4A.
The results showed that the expression levels of ANXA1/2/5/6 were positively correlated
with clinical stage, and ANXA10 showed negative correlation with clinical stage, while
no significant correlation was found in other Annexins. Additionally, high expression of
ANXA1/2/5/6 were found in BC patients with stage III/IV compared to those in BC patients
with stage I/II (Figure 4B–E), whereas low expression of ANXA10 were found in stage
III/IV BC patients (Figure 4F).

3.2. Construction and Validation of the Annexin-Related Prognostic Signature

Through LASSO Cox regression, four Annexin members including ANXA1/5/6/10 were
identified and used to construct Annexin-related prognostic signature (ARPS) (Figure 5A–C).
Risk score of ARPS was calculated according to the formula, Risk score = 0.00083 × ExpANXA1
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+ 0.0017 × ExpANXA5 + 0.00016×ExpANXA6 − 0.00012 × ExpANXA10. Then, BC samples
were divided into high/low-risk groups by ARPS according to the best cut-off of risk score.

Table 1. Comparison of mRNA expression of Annexin family members between bladder cancer and
adjacent normal tissues (Oncomine database).

Gene Datasets Tumor (Cases Number) Normal (Cases Number) Fold Change p-Value

ANXA1 Lee et al. Superficial Bladder Cancer (126) Bladder Mucosa (68) −2.916 9.51 × 10−14

Infiltrating Bladder Urothelial
Carcinoma (62) Bladder Mucosa (68) −1.466 1.90 × 10−2

Sanchez et al. Superficial Bladder Cancer (28) Bladder (48) −2.131 7.07 × 10−4

ANXA2 Sanchez et al. Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) 1.493 6.23 × 10−5

Superficial Bladder Cancer (28) Bladder (48) 1.371 2.00 × 10−3

Dyrskjot et al. Infiltrating Bladder Urothelial
Carcinoma (13) Bladder (9) Bladder Mucosa (5) 2.085 4.41 × 10−4

ANXA3 Sanche et al. Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) 2.323 5.55 × 10−8

Dyrskjot et al. Infiltrating Bladder Urothelial
Carcinoma (13) Bladder (9) Bladder Mucosa (5) 2.607 2.00 × 10−3

ANXA4 Sanchez et al. Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) 1.731 3.28 × 10−8

Superficial Bladder Cancer (28) Bladder (48) 2.506 2.28 × 10−13

Dyrskjot et al. Superficial Bladder Cancer (28) Bladder (9) Bladder Mucosa (5) 2.770 2.84 × 10−5

Infiltrating Bladder Urothelial
Carcinoma (13) Bladder (9) Bladder Mucosa (5) 1.915 2.00 × 10−3

ANXA5 Lee et al. Superficial Bladder Cancer (126) Bladder Mucosa (68) −2.392 1.01 × 10−13

Infiltrating Bladder Urothelial
Carcinoma (62) Bladder Mucosa (68) −1.417 4.00 × 10−3

Sanchez et al. Superficial Bladder Cancer (28) Bladder (48) −2.428 4.70 × 10−10

Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) −1.473 6.43 × 10−7

Blaveri et al. Superficial Bladder Cancer (26) Bladder (3) −4.211 3.00 × 10−3

ANXA6 Sanchez et al. Superficial Bladder Cancer (28) Bladder (48) −8.011 5.24 × 10−25

Infiltrating Bladder Urothelial
Carcinoma (81) Bladder (48) −2.846 3.69 × 10−14

Dyrskjot et al. Stage 0is Bladder Urothelial
Carcinoma (5) Bladder (9) Bladder Mucosa (5) −1.295 4.60 × 10−2

Superficial Bladder Cancer (28) Bladder (9) Bladder Mucosa (5) −1.558 1.00 × 10−3

ANXA13 Lee et al. Infiltrating Bladder Urothelial
Carcinoma (62) Bladder Mucosa (68) 1.033 2.70 × 10−2

Blaveri et al. Infiltrating Bladder Urothelial
Carcinoma (41) Bladder (2) 2.374 8.64 × 10−4

Superficial Bladder Cancer (21) Bladder (2) 2.239 1.00 × 10−3

The prognostic performance of ARPS in the BC cohort was evaluated in the TCGA
dataset (Discovery cohort) and validated in three independent GEO datasets (Valida-
tion cohorts, GSE31684, GSE32548, GSE48075). As shown in Figure 5D, Kaplan-Meier
plot showed that BC patients in the high ARPS risk group had shorter OS time than
those in the low ARPS risk group (p < 0.0001, HR = 2.232). The gene expression heat
map indicated that high expression of ANXA1, ANXA5, and ANXA6 but low expres-
sion of ANXA10 were shown in the high-risk group in comparison to the low-risk group.
In addition, high ARPS risk score were consistently related to short OS in GSE31684
(p = 0.0079, HR = 1.987, Figure 5E), GSE32548 (p = 0.0005, HR = 4.255, Figure 5F) and
GSE48075 (p = 0.0296, HR = 1.999, Figure 5G). In addition, the high ARPS risk group had a
shorter DSS and PFI than those with low ARPS risk in the TCGA BC cohort and GSE31684
BC cohort (Supplementary Figure S2).
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Univariate and multivariate COX regression were performed to explore whether
the ARPS was an independent prognostic predictor for BC. In the univariate analysis
of the TCGA dataset (Discovery cohort), risk score, grade and age were all correlated
with OS, and then included in subsequently multivariate analysis. Multivariate analysis
showed that high ARPS risk score was associated with poor prognosis in both discovery
BC cohort [(p < 0.0001, HR= 2.045 (1.485–2.817), Table 2] and three independent validated
BC cohorts GSE31684 [p = 0.0010, HR= 2.259 (1.375–3.711), Table 3], GSE3254 [(p = 0.0060,
HR = 3.591(1.453–8.872)] and GSE48075 [(p = 0.0100, HR = 2.291 (1.224–4.286)]. Overall,
these results all confirmed that the ARPS risk score is an independent survival predictor
for BC patients.
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Figure 4. Correlation analysis of Annexin family members and clinical stages of bladder cancer in
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Different expression of ANXA1 (B), ANXA2 (C), ANXA5 (D), ANXA6 (E), ANXA10 (F) between
clinical stages.

3.3. Associations of ARPS with Clinicopathological Features of BC

In order to better understand the role of ARPS in clinical outcomes of BC, we further
investigated the relationships between ARPS and the pathological features of BC, including
age, gender, grade, lymph invasion status, pT stage, pN stage, pM stage, TNM stage and
race. Chi-squared test (Table 4) demonstrated that the clinicopathological features including
gender, grade, pT stage, pN stage, TNM stage and race showed significant association with
ARPS risk score. Further subgroup analyses were performed to determine whether ARPS
could predict prognosis of BC patients under certain clinicopathological circumstances.
Kaplan-Meier survival analysis (Figure 6) revealed that worse OS was noted in the high-risk
ARPS groups regardless of age (Figure 6A), gender (Figure 6B), and pT stage (Figure 6D).

86



Biology 2022, 11, 259

However, ARPS is more potent to predict the outcome for higher TNM stages (Figure 6C),
pN0 stage (Figure 6E), pM0 stage (Figure 6F), high grade (Figure 6G), and white (Figure 6H)
than lower TNM stages, pN 1/2/3, pM 1, low grade and non-white, respectively.
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Figure 5. Construction and validation of Annexin-Related Prognostic Signature (ARPS). LASSO
algorithm was used to construct a prognosis model (A–C); Kaplan-Meier curve, distribution diagram
of risk score and survival status in TCGA BC patients (discovery cohort) between high/low-risk
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validation cohorts GSE31684 (E), GSE32548 (F) and GSE48075 (G).
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Table 4. Association of ARPS risk score with clinicopathological features in TCGA BC cohort.

Characteristics Sample (n = 406)
Risk Score

χ2 p ValueHigh Risk Score
(n = 173)

Low Risk Score
(n = 233)

Age 2.173 0.1410
>65 years 246 112 134
≤65 years 160 61 99
Gender 4.592 0.0320 *

Male 299 118 181
Female 107 55 52
Grade 12.360 0.0004 ***
High 383 172 211
Low 20 1 19

Lymph invasion 0.582 0.4450
Yes 149 62 87
No 130 60 70

TNM Stage 6.403 0.0110 *
I-II 273 128 145

III-IV 131 44 87
pT Stage 9.258 0.0020 **

T0-T2 122 49 73
T3-T4 251 143 108

pN Stage 4.166 0.0410 *
N0 236 110 126

N1-N3 128 74 54
pM Stage 0.155 0.6940

M0 195 77 118
M1 11 5 6

Race 6.265 0.0120 *
White 323 147 176

Non-White 66 19 47

Note: Where *, p < 0.05, **, p < 0.01, and ***, p < 0.001.

3.4. Gene-Gene Interaction Network and Function Analysis of ARPS in BC

A gene-gene interaction network of ARPS was constructed using the GeneMANIA
database. As shown in Figure 7A, the top five genes displaying the greatest correlations with
ARPS included U2AF2, RASA1, ANXA4, COL10A1 and DYSF. Functional analysis revealed
that these genes showed the greatest correlation with calcium-dependent phospholipid
binding, lipase inhibitor activity, phospholipid binding S100 protein binding and enzyme-
inhibitor activity. The predictive power of ARPS in predicting recurrence risk of BC
patients could be attributed to their crucial roles in tumor development or metastases.
Therefore, we further explored the underlying biological functions of ARPS through GO,
KEGG, and GSEA pathway enrichment analyses. Gene differential analysis identified that
there were 2439 differentially expressed genes (DEGs) between these two groups with
high/low ARPS risk, including 1604 upregulated genes and 1710 downregulated genes.
GO analysis (Figure 7B) showed that DEGs were mainly involved in cell-cell signaling
(GO:0007267), immune response (GO:0006955) and chemokine-mediated signaling pathway
(GO:0070098), and KEGG pathway enrichment (Figure 7C) revealed that the DEGs were
mainly enriched in cytokine-cytokine receptor interaction (hsa04060), chemokine signaling
pathway (hsa04062), and drug metabolism (hsa00982). Moreover, GSEA enrichment results
(Figure 8A–C, Supplementary Figure S4) showed that immune related pathways such as
epithelial–mesenchymal transition, IL6/JAK/STAT3 signaling, inflammatory response and
TNFA signaling via NFKB were enriched in the high-risk groups (Figure 8B), while the
low-risk group mainly regulated metabolism-related processes, such as adipogenesis, bile
acid metabolism, oxidative phosphorylation and peroxisome (Figure 8C).
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3.5. Relation between ARPS and the Degree of Immune Cell Infiltration

Immune cell infiltration of BC cases with high/low ARPS risk were estimated and
compared by estimate algorithm (Figure 9A–D). The result showed that the risk score
of ARPS was significantly positively correlated with immune infiltration level, and BC
cases with high ARPS risk score had greater ESTIMATE score (Figure 9A), immune score
(Figure 9B) and stromal score (Figure 9C), but unsurprisingly lower purity than those in the
low ARPS risk group (Figure 9D). Through Timer, MCPcounter and xCell algorithm, we
compared the immune cell abundance between the high- and low-risk groups and found
that several types of immune cells, including CD8+ T cells, neutrophils, macrophages,
myeloid dendritic cell, Tregs, and cancer-associated fibroblasts were significantly more
abundant in the high-risk group than those in the low-risk group (Figure 9E). Moreover,
we compared the different expression of several immune check genes between the high-
and low-risk groups. The results revealed that elevated expression of most immune check
genes, including CD274, CD276, CD28, CD80, CD86, ICOS, ICOSLG, LAG3, PDCD1 and
PDCDLG2, were found in the high-risk group compared to those in the low-risk group
(Figure 9F).
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4. Discussion

Although the advance of surgical methods and medical therapies have improved the
treatment of bladder cancer, high rate of recurrence after operation and frequent metastasis
lead to poor prognosis of BC patients. Identification of new prognostic biomarkers and
therapeutic targets could be essential ways to improve the outcome of BC patients. In this
study, we comprehensively analyzed the gene expression and prognosis of Annexin family
members in BC, and constructed and validated an ARPS, which could be an independent
prognostic biomarker in four individual BC cohorts.
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During our evaluation of the gene expression and prognostic value of Annexins in BC,
we found that several Annexins were aberrantly expressed and associated to prognosis in
BC. For example, high expression of ANXA2/3/13 were found in BC compared to normal
tissue (Table 1) and related to poor prognosis in BC patients (Figures 2–4). ANXA2 is mainly
distributed in the nucleus and cytoplasm, and important role in cancer progression and
invasion has been reported [22]. Previous studies reported that ANXA2 was significantly
elevated in tumor issues and related to poor prognosis in breast cancer [23], glioma [24],
gastric cancer [25] and liver cancer [26]. ANXA3 was also reported as an important role in a
variety of tumor development processes [27]. Overexpressed ANXA3 could promote tumor
proliferation and metastasis in breast, lung, liver, and ovarian cancer, and was associated
with chemotherapy resistance [28,29]. In addition, increased expression of ANXA13 could
promote the proliferation and migration of lung cancer cells in vitro and was associated
with poor survival in lung adenocarcinoma patients [30]. Moreover, Wu et al. (2021)
recently reported that the expression of Annexins were related to the molecular subtypes of
MIBC [31]. They found that ANXA1/2/3/5/6/7/8 were highly expressed in basal-subtype
MIBC, while ANXA4/9/10/11 were mainly expressed in luminal-subtype MIBC, which
might be used as potential markers for subtype classification of BC. Their results could
show that the abnormal expression of Annexin members were common in several types of
cancer and might play key roles in carcinogenesis and cancer progression, including BC.

We then constructed an ARPS using the machine learning algorithm LASSO and
demonstrated that BC patients in the high ARPS risk group had a shorter OS/DSS/PFI in
BC cohorts than those with low risk through KM-survival analysis (Figure 5). Additionally,
Cox regression analysis showed that ARPS was an independent prognostic predictor in both
the discovery BC cohort and three independent validation cohorts, respectively. Moreover,
ARPS can even predict the prognosis of BC patients within different subgroups stratified
by clinical characteristics, including age, gender and T stage. Overall, these results all
confirmed that the risk score derived from ARPS could accurately and stably predict the
survival outcome of BC patients independently.

KEGG pathway and GSEA analysis revealed that EMT and its regulators pathways
(TGF-β signaling pathway, TNF-alpha/NF-kappaB, PI3K/AKT/mTOR) were found to
be differentially enriched between the high- and low-risk groups. EMT is a process by
which epithelial cells lose their epithelial properties and obtain a mesenchymal phenotype,
and could transform tumor cells from inactive cancer to malignant phenotypes [27,28].
Previous studies have indicated that EMT was a key controller in tumor progression and
metastasis of BC [32–34]. Upregulation of EMT transcription factors, such as TWIST1,
ZEB1/2 and SNAI1/2 have been reported to promote migration and invasion of tumor
cells in many types of tumors [35–38]. In addition, several EMT regulatory pathways, such
as TNF-alpha/NF-kappaB and TGF-β were significantly highly enriched in the high-risk
ARPS group. Li et al. revealed that activation of TNF-alpha/NF-kappaB could induce
EMT through upregulation of EMT transcription factor Twist1 and contribute to metastatic
BC [39]. Upregulation of TGF-β can activate Wnt signaling pathways and play a synergistic
role to start the EMT process [40]. Moreover, the PI3K/AKT/mTOR pathway participated
in numerous cell biological processes. Activated AKT and mTOR can increase E-cadherin
expression and promote EMT activation [41]. Therefore, the cross-talk of these signaling
pathways may contribute to the poor prognosis of the high ARPS risk group through
promoting tumor recurrence and metastasis by the EMT process.

In order to escape the anti-tumor immune response, tumor cells could secrete immuno-
suppressive and anti-apoptotic factors or recruit suppressive immune cells to generate
a highly immunosuppressive microenvironment through different mechanisms [42,43].
In BC TME, accumulated immunosuppressive cells (e.g., myeloid-derived suppressor
cells (MDSCs), tumor-associated macrophages (TAMs) and regulatory T cells (T regs) and
evaluated expression of immune checkpoints (e.g., CTLA-4 and PD-1) were reported to
induce immune evasion of tumor cells [44,45]. Therefore, we evaluated the landscape
of immune cell infiltration for the high and low ARPS risk groups by ESTIMATE, Timer,
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MCPcounter and xCell algorithm, which revealed that a higher degree of immune cell
infiltration and greater abundance of immunosuppressive cells including Tregs, TAMs and
MDSCs were found in the high ARPS risk group than these in the low ARPS risk group.
Previous studies have proved that increased infiltration of Tregs, TAMs and MDSCs were
found in BC tissue and were associated with poor prognosis of BC patients [46–48]. As key
cellular components of TME, Tregs could facilitate immune evasion of cancer cells through
secreting inhibitory cytokines [49], and TAMs could greatly contribute to form a tolerogenic
TME by directly exhausting CD8 T cells, and supporting to traffic Tregs [50]. Additionally,
MDSCs can also inhibit the immune response by suppressing CD4 T-cells, CD8 T-cells,
and NK cells, inducing Tregs and facilitating TAMs polarizing into M2 phenotype [46].
Notably, MDSC-induced immunosuppression has been demonstrated to accelerate the
tumor progression and enhance the formation of metastatic lesions through promoting
the EMT process [51,52]. Moreover, our study suggested that the high-risk ARPS prog-
nostic group showed high expression of CD274, CD276, CD28, CD86, LAG3, PDCD1 and
PDCDLG2, and may be more sensitive to anti-PD1 treatment. Based on above findings, we
deliberate that the high-risk group might be related to a high degree of immunosuppression
and low immunoreactivity in TME, thereby promoting tumor recurrence and metastasis
through EMT-related pathways. As a result, the high-risk group might get more benefits
from immunotherapy.

5. Conclusions

In conclusion, we found that several Annexins were aberrantly expressed and asso-
ciated with prognosis in BC through public tools and identified and validated an ARPS
comprised of four members, ANXA1/5/6/10, proving that ARPS was an independent
prognostic factor in four individual BC cohorts. This model might be helpful for clinicians
to guide the treatment strategy and eventually benefit BC patients. These results could
also provide insights into the underlying molecular mechanisms of development and
progression of BC and offer potential therapeutic targets for BC.
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Simple Summary: Breast cancer is leading cancer increases the death rate in women. Early diagnosis
of breast cancer in women can save their lives. The current study proposed a novel scheme to detect
architectural distortion from mammogram images to predict breast cancer using a deep learning
approach. Results are evaluated on a public and a private dataset which may help to improve the
diagnostic ability of breast cancer of radiologists and doctors in daily clinical routines. Furthermore,
the proposed method achieved maximum accuracy as compared with previous approaches. This
study can be interesting and valuable in the healthcare predictive modeling domain and will add a
real contribution to society.

Abstract: Architectural distortion is the third most suspicious appearance on a mammogram repre-
senting abnormal regions. Architectural distortion (AD) detection from mammograms is challenging
due to its subtle and varying asymmetry on breast mass and small size. Automatic detection of
abnormal ADs regions in mammograms using computer algorithms at initial stages could help radiol-
ogists and doctors. The architectural distortion star shapes ROIs detection, noise removal, and object
location, affecting the classification performance, reducing accuracy. The computer vision-based
technique automatically removes the noise and detects the location of objects from varying patterns.
The current study investigated the gap to detect architectural distortion ROIs (region of interest)
from mammograms using computer vision techniques. Proposed an automated computer-aided
diagnostic system based on architectural distortion using computer vision and deep learning to pre-
dict breast cancer from digital mammograms. The proposed mammogram classification framework
pertains to four steps such as image preprocessing, augmentation and image pixel-wise segmentation.
Architectural distortion ROI‘s detection, training deep learning, and machine learning networks to
classify AD‘s ROIs into malignant and benign classes. The proposed method has been evaluated on
three databases, the PINUM, the CBIS-DDSM, and the DDSM mammogram images, using computer
vision and depth-wise 2D V-net 64 convolutional neural networks and achieved 0.95, 0.97, and
0.98 accuracies, respectively. Experimental results reveal that our proposed method outperforms as
compared with the ShuffelNet, MobileNet, SVM, K-NN, RF, and previous studies.

Keywords: architectural distortion; image processing; depth-wise convolutional neural network;
breast cancer; mammography

1. Introduction

Breast cancer is leading cancer worldwide in 2020, with 11.7% overall reported cases
per world health organization [1] and one of the major causes of death in women. The
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mortality rate was increased from 6.6% to 6.9% this year due to breast cancer. Initially, these
breast cancer tumors are screened on an X-ray machine for breast cancer diagnosis and
manually interpreted by the radiologist to predict benign and malignant tumors. Screening
methods such as ultrasound, and mammography are used to diagnose breast cancer, while
the standard screening method is mammography at the early stage. Computer-aided
diagnostic systems automatically detected abnormal regions in mammograms to help
radiologists and doctors detect disease in less time to avoid unnecessary biopsies [2].

Breast composition containing attenuating tissue is an essential element for evaluating
mammogram reports to predict malignant and benign cases. Architectural distortion (AD)
is the third most suspicious appearance on a mammogram representing abnormal regions
that can be found visible on mammography projection [3]. The main parameters such as
global asymmetry, focal asymmetry, and developing asymmetry of tissue can be calculated
using machine and deep learning algorithms to track AD in mammograms. Asymmetries
are the isodense tissues obscured by adjacent fibro glandular mass, representing true
malignancy in mammograms. Architectural distortion tracking from mammograms is very
difficult due to its subtle and varying asymmetry on breast mass and small size. Therefore,
the manual interpretation of architectural distortion is a challenging task for radiologists
to figure out abnormalities during the examination of mammograms. The leading types
of cancer that can present architectural distortion on mammography are invasive lobular
carcinoma (ILC) and invasive ductal carcinoma (IDC). The ILC and IDC on mammography
having a star-shaped pattern are likely to be malignant, while the complex and radial
sclerosing lesions architectural distortion having larger than 1 cm is probably benign [4].

Several studies reported hand-crafted feature extraction techniques on mammogram
images for AD ROI classification using machine learning and deep learning [5]. These
methods successfully achieved remarkable accuracy in the diagnosis of breast cancer. How-
ever, many factors are involved in detecting architectural distortion, such as tinny size,
subtle appearance inside mass, shape, noise, imaging artefact from digital mammograms.
Due to a limited number of studies that reported AD ROI’s classification in the literature,
this primarily discusses the most relevant studies in the first phase. The second phase
discusses deep learning, machine learning, and mass segmentation, to determine the limi-
tations of predicting breast cancer. There are many limitations in these studies for detecting
architectural distortion ROIs and classification. For example, Murali S. et al. [6] proposed
a model-based approach to detect architectural distortion from mammograms and clas-
sify with a support vector machine to achieve 89.6 accuracy. A total of 150 ROI‘s were
selected from the DDSM dataset to evaluate the performance. Banik et al. [7] employed
the gobar filter and phase portrait analysis method to detect architectural distortion in
prior mammograms by evaluating 4224 ROI‘s from a private dataset and achieved 90%
sensitivity at 5.7 FP/image. J. et al. [8] presented a two-step method such as detecting ROIs
with potential AD on analyzing the Gabor filter and recognizing AD‘s using a 2D Fourier
transform. Experimental results were evaluated on 33 mammograms containing AD‘s from
DDSM and obtained 83.50 accuracy. All three authors employed Gabor filter to the texture
feature analysis of images while locating the boundary of ADs ROIs was still a limitation.
As a result, these hand-crafted feature extraction methods decrease the computational time
and affect the model’s classification accuracy.

The classification of AD ROIs based on texture analysis model using support vector
machine was implemented on mammogram images by Kamra A. et al. [9]. The texture
analysis ROIs were selected from the digital database for screening mammography (DDSM)
dataset to evaluate the model’s performance and reported 92.94% accuracy. Liu et al. [10]
employed a new method for architectural distortion ROIs recognition based on texture
features from gray-level co-occurrence matrix (GLCM) matrix, spiculated and entropy
features from mammogram images, and the sparse representation classifier was used for
the classification of ROIs. The performance of the model was evaluated on the DDSM
dataset by obtaining 91.79 accuracy. Ioana B. et al. [11] proposed radiomic analysis of
contrast-enhanced spectral mammography approach for breast cancer prediction and clas-
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sification using k-nearest neighbors (K-NN). Another radiomic feature reduction approach
was proposed by Raffaella M. et al. [12] for mammogram classification to predict breast
cancer. D. H. et al. [13] proposed a micro-pattern texture descriptor for the detection
of architectural distortion from mammogram images using a local binary pattern, local
map pattern, and haralick‘s descriptors. A total of 400 ROIs from the full-field digital
mammography (FFDM) dataset were selected for the evaluation of the model and achieved
83% accuracy. Casti P. et al. [14] was introduced a new paradigm to detect AD track in
digital breast tomosynthesis (DBT) exam by using a cross-cutting approach exploiting
3D imaging modality. The proposed approach achieves 0.9 sensitivity after evaluating
the model on 37 sets of DBT from the FFDM dataset. Palma et al. [15] presented a fuzzy
contrary-based approach for detecting masses and architectural distortion from digital
breast tomosynthesis.

Another essential factor is noise removal from ADs ROIs which was still a limitation
with these traditional methods. Moreover, all of the studies were employed traditional
machine learning algorithms, which were limited to the lower classification accuracy. The
architectural distortion star shapes heterogeneous pattern detection inside the denser mass
using the texture analysis was still a limitation. Cai et al. [16] employed a method for
identifying architectural distortion in mammogram images using a dense net deep neural
network to train the image net model for breast mass dataset to classify the breast masses.
Bahl et al. [17] was presented a retrospective review for the presence of architectural
distortion on mammogram images and concluded that the presence of architectural diction
on mammography has the chance of malignancy in approximately three fourth of the cases.
Shu et al. [18] proposed a region-based pooling structure using a deep convolutional neural
network to classify mammogram images. The whole region of images as an input to a deep
neural network is limited to identifying the subtle location of ADs inside denser breast
masses. Conventional deep neural networks only use a single channel for image feature
maps which is not limited to neural networks but decreases the overall modal accuracy.

The current study investigated the gap to detect architectural distortion ROIs from
mammograms using computer vision techniques. This study employed a depth-wise
2D V-net 64 convolutional neural network to classify these architectural distortion ROIs
into benign and malignant ADs. With this approach, the above limitation is no longer.
Computer vision is a powerful technology for removing the noise and detecting the object
from hidden star-shape patterns. The Depth-wise neural network uses each input channel
for creating a feature map that increases the modal efficiency and accuracy. Therefore, this
study aim to develop a computer-aided diagnostic system using computer vision and a
deep learning model to classify architectural distortions ROIs from digital mammograms
at early stages.

The principal outcome of our study is reported as follows:

• Proposed an automated computer-aided diagnostic system based on architectural
distortion using computer vision and depth-wise deep learning techniques to predict
breast cancer from digital mammograms. Applied the image pixel-wise segmentation
using a computer vision algorithm to extract architectural distortion ROIs from the
digital mammogram image in the first phase.

• In the second phase, employed a depth-wise V-Net 64 convolutional neural network
to extract automatic features from ADs ROIs and classify them into malignant and
benign ROIs. Moreover, use machine learning and deep learning algorithms, such as
shuffelnet, mobilenet, support vector machine, k-nearest neighbor, and random forest,
to classify these ROIs.

• Proposed method obtained higher accuracy than machine learning and with the
previous studies. Furthermore, evaluated proposed model with other metrics to
enhance the diagnostic ability of the model.

• Evaluated the proposed method on three datasets, the local private PINUM and
publicly available CBIS-DDSM and DDSM dataset that makes a fair comparison of
the proposed model with others.
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2. Related Works and Techniques
2.1. Conventional Deep Learning Mammogram Classification

The researchers presented several computer-aided diagnostic systems using deep
convolutional neural networks to predict breast cancer from digital mammograms. Studied
that reported deep learning algorithms for the classification of mammogram images herein
briefly reported. Feature fusion bases-deep CNN was applied using extreme learning
machines to predict breast cancer from mammograms by wang et al. [19]. An improved
ResNet-based convolutional neural network was employed to the classification of mam-
mogram images and significantly improve the area under the curve by Wu et al. [20].
Khan et al. [21] developed multi-view feature fusion-based CAD to detect abnormal and
normal patterns from mammograms using a deep neural network to increase the accuracy
in breast classification. On segmentation of the pectoral muscle-based approach using
a deep convolutional neural network was developed by Soleiman et al. [22] to classify
mammogram images. Hao et al. [23] presented an automated framework for identify-
ing mislabeled data using cross-entropy and metric function, and the model was trained
using a deep convolutional neural network to improve the classification performance.
Sun et al. [24] was presented with an automated computer-aided diagnostic system based
on a multimodal deep neural network for the integration of multi-dimensional data to
prognosis prediction of breast cancer.

A region of interest-based approach was employed by Guan et al. [25] using u-net
deep convolution neural network for locating asymmetric patterns to the diagnosis of breast
cancer in digital mammograms. The generative adversarial neural network employed for
tumor segmentation from digital mammogram by Singh et al. [26]. Song R. et al. [27]
developed a combined feature-based model using a deep convolutional neural network for
the classification of breast masses into normal, benign, and malignant classes. To overcome
the drawbacks of pixel-wise segmentation of mammogram images, Shen et el. [28] was
presented a hierarchical model using a deep convolutional neural network and fuzzy
learning for breast cancer diagnosis. Guan et al. [29] applied a generative adversarial
network for ROIs cropping from digital mammograms, and then the deep convolutional
neural network was implemented for the classification of normal and abnormal ROIs. An
improved dense net deep learning model was proposed by Li et al. [30] to classify benign
and malignant mammograms. A whole image classification based-method was built using
a deep neural network using by Iones et al. [31]. Falcon et al. [32] was employed transfer
learning techniques to predict abnormalities in digital mammograms with a deep mobile
net neural network.

Gnana S. et al. [33] developed a computer-aided diagnostic system using a deep
convolutional neural network to classify malignant and benign masses. A deep active
and self-paced learning-based framework was emphasized for detecting breast mass from
digital mammograms by Shen et al. [34] to reduce the annotation effort for radiologists.
Shen et al. [35] presented a method for lesion segmentation and disease classification using
a mixed-supervision-guided residual u-net deep learning modal. Shayma A.H et al. [36]
propose a novel method for cancer detection from breast mass using feature matching of
different regions by applying maximally stable extremal regions. A hybrid deep learning-
based framework was employed by Wang et al. [37] for the classification of breast mass
for multi-view data. Wang et al. [38] employed a multi-level nested pyramid deep neural
network to segment breast mass to classify malignant and benign classes using a public
dataset. Birhanu et al. [39] proposed a breast density classification method to predict
cancer from digital mammograms using a deep convolutional neural network. Rehman
et al. Proposed a computer vision based deep learning method for the classification of
microcalcification ROIs into malignant and benign classes.

2.2. Conventional Machine Learning Mammogram Classification

Machine learning modalities such as SVM, KNN, and random forest were adopted
to classify digital mammograms to diagnose breast cancer. Machine learning-based clas-
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sification CAD systems used hand-crafted feature extraction techniques, which are com-
putationally slow and reduce the performance model. Fan et al. [40] proposed a novel
method based on single-nucleotide polymorphism to predict breast cancer risk by extract-
ing architectural distortion features from mammograms. Loizidou et al. [41] presented
subtraction of temporally sequential mammogram technique to detect microcalcification
clusters and classification performed using a support vector machine. The breast bound-
ary is eliminated with the thresholding technique, and a machine learning-based hybrid
model is proposed to classify breast mammograms into malignant and benign classes by
Zebari et al. [42]. A computer-aided diagnostic system was built to generate an image
feature map using fast Fourier transforms on digital mammograms by Heidar et al. [5].
Chakaraborty et al. [43] presented a machine learning-based hybrid approach for auto-
matic detection of mammographic masses using low-to-high level intensity thresholding
and performed classification using FLDA, Bayesian, and ANN. Beham et al. [44] applied
wavelet transforms for feature extraction from the digital mammogram, and the K-nearest
neighbor algorithm was employed for classification into benign and malignant classes. Liu
et al. [45] was proposed a novel approach for breast cancer prediction, which employed
information gain simulated annealing genetic algorithm for feature selection and const
sensitive support vector machine for classification. Another support vector machine-based
approach was employed by Yang et al. [46] to diagnose breast tumors using textual features
from mammogram images. Obaidullah et al. [47] presented an image descriptor-based
approach for mammogram mass classification using a random forest algorithm. Saqib et al.
presented the comparison of machine learning techniques for the prediction of multi-organ
cancers.

3. Materials
Databases

This study validated the proposed method on three databases, the PINUM (Punjab in-
stitute of nuclear medicine) [48], the CBIS-DDSM (curated breast imaging digital database
for screening mammography) [49] and DDSM (digital database for screening mammog-
raphy) [50]. The PINUM private dataset was collected from a local hospital in Pakistan
with the approval of diagnostic imaging nuclear medicine and radiology. A total of 289
patient data in the form of DICOM (Digital Imaging and Communications in Medicine)
images were collected ranging age between 32-73 with a mean age of 48.5 years. The
dataset includes 577 original images containing 425 benign and 152 malignant images with
MLO (mediolateral-oblique) and CC (craniocaudal) views at the resolution of 4096× 2047
are shown in Figure 1. The proposed study is based on architectural distortion, so that
the validation set of mammogram images is labeled by the radiologist for benign and
malignant architectural distortion ROIs. A total of 150 AD ROIs are cropped from full
mammograms for validating the training set with the proposed algorithm. The radiologist
team consisted of two members, one being a senior radiologist and physicist holding a
Ph.D. degree in nuclear medicine with 10 years of experience and the second being a junior
radiologist with a Master’s degree in radiology. The mammography exam of the PINUM
dataset was acquired with Hologic 2D, 3D mammography. The PINUM dataset images
have MLO and CC views. The size of the PINUM dataset was artificially inflated using
augmentation techniques up to 3462 images.

The CBIS-DDSM (digital database for screening mammography) was a public dataset
and enhanced version of the DDSM dataset provided by the University of Florida. The
mammogram images are in DICOM files at the complete mammography and abnormality
levels. Both MLO and CC views of the mammograms are included in the full mammog-
raphy pictures. Abnormalities are represented as binary mask images that are the same
size as the mammograms they are connected with. The ROI of each anomaly is defined
by these mask images. Within each mammogram’s abnormality mask, users may make
an element-by-element selection of pixels. Due to the unavailability of AD ROIs in the
CBIS-DDSM dataset, our radiologist team labeled ADs ROIs manually on full mammogram
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images. A total of 200 AD ROIs are cropped from full mammograms for validation. We
included 3568 mammogram images, including 1740 benign and 1828 malignant images
with MLO and CC views, as shown in Figure 2. The DDSM is a public dataset provided by
Massachusetts General Hospital, Wake Forest University School of Medicine, and Sacred
Heart Hospital and maintained by the University of Florida. The DDSM datasets contain
2500 studies including normal, benign, and malignant cases. Each study comprises two
images of the breast as well as some patient data such as age at the time of the study,
ACR breast density rating, and subtlety rating for abnormalities. Suspicious lesions in
images are correlated with pixel-level ground truth information about their positions and
kinds. The DDSM datasets contain 200 ADs ROIs of benign and malignant images. In this
study, the predefined ADs are considered validation test datasets. A total of 5500 images
(2500 benign, 3000 malignant) were included for training and testing the neural networks
from the DDSM dataset. Figure 3 shows benign and malignant mammogram images from
DDSM dataset. A detailed description of the datasets is in Table 1.

(a) Benign (b) Malignant

Figure 1. An example of breast mammogram images from PINUM dataset. (a) The Benign image (b)
The Malignant image verified by the Expert radiologist.

(a) Benign (b) Malignant

Figure 2. An example of breast mammogram images from CBIS-DDSM dataset. (a) The Benign image
(b) The Malignant image with verified pathology information.

(a) Benign (b) Malignant

Figure 3. An example of breast mammogram images from DDSM dataset. (a) The Benign image (b)
The Malignant image with verified ground truth information.
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Table 1. Data Set Description and Detail.

Mammogram Label Category Images Dataset

Benign (0) Original 425 PINUM

Malignant (1) Original 152 PINUM

Benign (0) Augmented 2550 PINUM

Malignant (1) Augmented 912 PINUM

Benign (0) AD ROIs 75 PINUM

Malignant (1) AD ROIs 75 PINUM

Benign (0) Original 1740 CBIS-DDSM

Malignant (1) Original 1828 CBIS-DDSM

Benign (0) AD ROIs 100 CBIS-DDSM

Malignant (1) AD ROIs 100 CBIS-DDSM

Benign (0) Original 2500 DDSM

Malignant (1) Original 3000 DDSM

Benign (0) AD ROIs 100 DDSM

Malignant (1) AD ROIs 100 DDSM

4. Methods
4.1. Proposed Method

In this study, proposed a novel approach for the classification of architectural distortion
using a depth-wise 2D V-net 64 convolutional neural network. The proposed method
pertains to two steps: in the first step, a computer vision algorithm is used for AD ROIs
extraction from digital mammogram images. In the second step, the extracted AD ROIs
are classified using a depth-wise convolutional neural network. The proposed method
can achieve higher accuracy than the deep machine learning methods such as shuffelnet,
mobilenet, support vector machine, k-nearest neighbor, and random forest and previous
studies. Furthermore, evaluate the performance of the proposed method with other
evaluation metrics such as f1_score, precision, recall, sensitivity, specificity, and area
under the curve (AUC). The proposed framework of proposed method for mammogram
classification based on architectural distortion is presented in Figure 4. The details about
the proposed methodology are determined in subsequent sections.
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Figure 4. The proposed mammogram classification framework pertains to four steps: image prepro-
cessing and augmentation, pixel wise segmentation and image pixel array labeling, architectural
distortion ROI‘s detection, training deep learning, and machine learning networks to classify AD‘s
ROIs into malignant and benign classes.

4.2. Image Preprocessing

Image conversion and resizing are employed in the preprocessing step to remove
noise, artifacts, and irrelevant information. The original mammograms were acquired
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from three databases such as the PINUM [48] local database and the public database CBIS-
DDSM [49], and DDSM [50]. The original databases PINUM and CBIS-DDSM were in the
DICOM (digital imaging and communications in medicine) format containing images and
patient data. In the first step, the DICOM images are converted into PNG format using an
automated OpenCV conversion method, and the patient data is stored in a CSV file. The
image preprocessing Algorithm 1 is reported below the complete steps. The converted PNG
breast mammogram images are very high-resolution images with a 4096× 2047 width and
height. We employed the automatic image resizing method with a two-integer argument
width and height by downsizing resolution up to 320 × 240 pixels to make fixed-size
images before training a deep convolutional neural network. The DDSM database images
are in gif format and converted into PNG format using the automated conversion method.

Algorithm 1 Image preprocessing algorithm 1.

Step 1: Select the DICOM file using read method.;

Step 2: Read DICOM Description values.;

Step 3: Create input vector of DICOM file;

Step 4: Write image description;

Step 5: Read patient data;

Step 6: Read image pixel values;

Step 7: Apply image function zoom in/out;

Step 8: Apply Linear Interpolation function;

Step 9: Create new input vector for new format;

Step 10: Replace Pixels DICOM format to PNG;

Step 11: Write patient data;

Step 12: Save converted image and patient data;

Step 13: Display PNG image;

4.3. Image Augmentation

Deep learning is a data-driven method so that the small size of data and non- standard-
ization are the main challenges for the generalization of the model. However, to handle
the generalization, overfitting, and improving the robustness of the deep learning model,
we artificially inflate the PINUM database five times from the original images to increase
the dataset size. The data augmentation techniques such as rotating, flipping, sharpening,
d-skew, brightness, and contrast are employed to increase the dataset’s size, as shown in
Table 2. In addition, the overfitting and generalization of the deep learning model can be
improved by applying augmentation [51]. The mammogram images are rotated at 45, 90,
135, 180, and 360 degrees and return a new object of the rotated images within a described
resolution to increase dataset size up to 3462. Moreover, we rotated a single mammogram
at five angles that produce five rotated images and one original image and employed
augmentation methods, as shown in Figure 5. The volume of the CBIS-DDSM and the
DDSM dataset is 3568, 5500 images; therefore, the data augmentation was not employed
on both datasets as the modal overfitting and generalization was not a challenging issue.
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Figure 5. The augmented images of PINUM dataset starting from original to augmented images.

Table 2. Data augmentation techniques with performance value.

Sr Augmentation Techniques Performance Values

1 Rotation 45◦, 90◦, 135◦, 180◦, 360◦

2 Flipping Left, Right, Top, Bottom

3 Sharpen (lightness value) 0.5–1.5

4 D-skew (angle) 15◦, 40◦

5 Contrast (intensity value) 20–60%

6 Brightness (darkness values) 15–55%

4.4. Pixel Wise Segmentation

The image pixel-wise segmentation method maps each pixel of the image that belongs
to the image’s object or shape and gives a label. M. Wang et al. [52] employed image
path-based pixel segmentation using a label fusion algorithm. The image pixel-wise
segmentation method maps each pixel of the image that belongs to the image’s object or
shape and gives a label. Pixels have the same attribute locating an object of the image.
Computer vision is a powerful technology for detecting objects as compared with other
object detection techniques. Employed a computer vision-based object detection technique
and create an image pixel array. Each pixel array has labeled with a class label0 and label1.
The detailed process is as follow:

1. The image is to be segmented as a targeted image P = (x, y, N)w×h, where P rep-
resenting a pixel array vector having N elements that has belongs to the specific
category as:

∑
p

P ∈ (x, y)w×h = L ∈ [0, 1] (1)

2. The pixel x ∈ (x1, x2, . . . w)and y ∈ (y1, y2, . . . h) represents the vertical w and hori-
zontal h pixels, where x1 and y1 are the elements of pixel vector. The dot product has
performed as:

P(x, y) = P(x, y).L (2)
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3. L ∈ [0, 1] represents each object in a pixel array belonging to classes 0 and 1. The
pixel-wise prediction can be improved on which we can generate the segmentation
results.

4.5. Architectural Distortion ROI‘s Detection

Architectural distortion is the third most suspicious appearance on a mammogram
that represents abnormal regions. Architectural distortion tracking from mammograms
is challenging due to its subtle and varying asymmetry on breast mass and small size.
The architectural distortion associated with ILC or IDC on mammography represents the
abnormality, and having a star-shaped pattern is likely to be malignant, while the complex
and radial sclerosing lesions architectural distortion having larger than 1 cm is probably
benign [4]. Employed computer vision-based pixel-wise segmentation for the detection of
AD ROIs from digital mammograms. In the first step, the computer vision object detection
algorithm was applied to create a segmented pixel array. In the second step, the area
having a star shape pattern and larger radios than 1 cm was considered as ADs ROIs.
The segmented architectural distortion ROIs input to the dept-wise convolutional neural
network for classification. Figures 6–8 presented segmented benign and malignant ROIs
from the PINUM, CBIS-DDSM datasets and DDSM. Moreover, we pertain to the same
procedure for the segmentation of AD ROIs from the CBIS-DDSM dataset. The automated
segmented ROIs are validated with manually marked ADs ROIs by the radiologist team.
The DDSM dataset has predefined ground truth ADs ROIs and is included in the validation
dataset. Samreen et al. [53] presented an imaging evaluation management algorithm on
architectural distortion detection from digital breast tomosynthesis.

(a)

(b)

Figure 6. An example of the architectural distortion ROI‘s from PINUM dataset by the experts team
of radiologists. (a) Radial shape (b) Star shape.
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(a)

(b)

Figure 7. An example of the architectural distortion ROI‘s segmentation of CBIS-DDSM dataset by
the radiologists. (a) Radial shape (b) Star shape.

(a)

(b)

Figure 8. An example of the architectural distortion ROI‘s segmentation of DDSM dataset. (a) Radial
shape (b) Star shape.
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4.6. Depth-Wise-CNN Architecture

A deep convolutional neural network using a computer vision-based method has
improved pattern recognition and architectural distortion classification. The standard
convolutional neural network uses input and output with only width and height parame-
ters. For input with only width and height, the neural network increases the parameters
and can be overfitting. Employed a depth-wise 2D convolutional neural network us-
ing V-net 64 architecture with three convolutional layers, three max-pooling layers, one
fully connected flatten layer, and one dense layer followed by the sigmoid classifier. The
depth-wise convolution only uses one input channel for each depth level of input and
then performs convolution. The depth-wise convolutional neural network architecture
is presented in Figure 9. In the convolutional layer, use a 3× 3 kernel using the Relu
activation function and the input vector mapping the features to the convolutional layer
as dim(image) = (nh, nw, nc) Where nh is the size of height, nw size of width and nc is the
number of channels. The input image of the lth layer we use a[l−1] filters with the size of
(n[l−1]

h , n[l−1]
w , n[l−1]

c ), a[0]. The stride parameter is: s[l] and the number of filters denoted as

n[l]
c where for each Kn is size of ( f [l], f [l], n[l−1]

c ). The activation function ReLu is: ϕ[l] and
the output image is a[l] with the size of (n[l]

h , n[l]
w , n[l]

c) . Equations (3) and (4) shows the input

and output of convolutional layer. For all n belongs to [1, 2, ..., n[l]
c ].

Conv(a[l−1], Kn)x,y = ϕ[l](
n[l−1]

h

∑
i=1

n[l−1]
w

∑
j=1

n[l−1]
c

∑
k=1

Kn
i,j,kal−1

x+i−1,y+j−1,k + bl
n)

dim(conv(a[l−1], Kn)) = (n[l]
h , n[l]

w )

(3)

[ϕ[l](Conv(a[l−1], K1)), ϕ[l](Conv(a[l−1], K2)), ...

ϕ[l](Conv(a[l−1], K(n[l]
c )))

dim(a[l] = (n[l]
h , n[l]

w , n[l]
c )

n[l]
c = numbero f f ilters

(4)

where f is activation, x and y the actual pixels location on height and width dimension of
input image. The learning parameters of convolutional layer at lth layers are ( f [l] × f [l] ×
f [l−1]
c )× n[l]

c filters. In the max-pooling layer, uses a 2× 2 kernel size to down-sampling
the features and the input size is a[l−1] with the size of (n[l−1]

h , n[l−1]
w , n[l−1]

c ), a[0]. The filter
size of pooling layer is denoted as f [l] and the pooling function φ[l]. The Equations (5) and
(6) performs the pooling function.

a[l]x,y,z = pool(a[l−1])x,y,z = φ[l]

((a[l−1]
x+i−1,y+j−1,z)(i,j)∈[1,2,... f [l] ]2)

dim(a[l]) = (n[l]
h , n[l]

w , n[l]
c )

n[l]
c = n[l−1]

c

(5)
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where (i, j) belongs to [1, 2, ..., φ[l]], x, y are the pixels location and z is the input channel.
The last fully-connected layer a fine number of neurons as input vector considering the jth

nodes of the ith layer can be calculated with Equation (6).

Z[j]
j =

ni−1

∑
l=1

w[i]
j,l a

[i−1]
l + b[i]j

→ a[i]j = ϕ[i](z[i]j )

(6)

The input a[i−1]the result of the convolutional and pooling layer with the dimensions
(n[i−1]

h , n[i−1]
w , n[i−1]

c ). Finally the 1D flatten layer has the dimensions (n[i−1]
h × n[i−1]

w ×
n[i−1]

c , 1). and the nodes are:
ni−1 = n[i−1]

h × n[i−1]
w × n[i−1]

c
where wj,l are weights with learned parameters n[l−1] × nl parameters at lth layer. The
proposed depth-wise convolutional neural network significantly outperformed without
overfitting and achieved the highest accuracy.

Figure 9. The proposed depth-wise CNN architecture for the classification of benign and malignant
architectural distortion ROIs.

4.7. Depth-Wise-V-Net64 Training

The depth-wise 2D convolutional neural network is evaluated on three databases,
the local PINUM, the public CBIS-DDSM, and the DDSM dataset. Split the data into the
training, testing, and validation data for the proposed deep neural modal. The dataset was
randomly divided into 60% for training, 20% for testing, and 20% for cross-validation. For
the deep learning model’s regularization and adequate robustness, the data augmentation
object is used in our deep learning network for both datasets. Build a depth-wise 2D V-net
64 architecture with three convolutions, three max-pooling, and two fully connected layers
for the training of our dataset. The sigmoid classifier has pertained to the classification
of malignant and benign ADs ROIs. The epochs size was set 20 to reduce the learning
rate by 0.1 factor after every 2.5 epochs, the batch size was 16, and the class weight and
”binary_crossentropyloss” function were used to deal with training data imbalance. The
proposed deep learning models learning ability was increased as the training ephods
increases. Figures 10–12 shows that the noise around the data is higher at first layer
of network. As well as the modal learns more the noise around the data decreases till
the last layer. The training loss continues decreases after the 10th epochs and training
accuracy increases and reached up to 100. The training graphs shows that modals learning
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ability is better and well regularized. The network structure considered in experiments is
summarized in Table 3.

Table 3. The proposed network layers architecture.

Network Layers Filters Filter Size Padding Stride Output Shape

Input Image - - - - 240× 320× 3

DW_Conv2D 64 3× 3× 64 same 1× 1 100× 100× 64

Activataion_Relu - - - - 98× 98× 64

Max_Pooling 1 2× 2 - 0 49× 49× 64

DW_Conv2D 64 3× 3× 64 same 1× 1 47× 47× 64

Activataion_Relu - - - - 47× 47× 64

Max_Pooling 1 2× 2 - 0 23× 23× 64

DW_Conv2D 64 3× 3× 64 same 1× 1 21× 21× 64

Activataion_Relu - - - - 21× 21× 64

Max_Pooling 1 2× 2 - 0 10× 10× 64

Dropout (0.5) - - - - 10× 10× 64

FC1_Flatten_4 - - - - (6400)

FC2_Dense_5 64 - - - (6400)

Sigmoid - - - - [0/1]

4.8. Standard Classifiers

ShuffleNet, developed by Magvi Inc, is a highly efficient convolutional neural network
architecture optimized for mobile devices with low processing capacity. The new design
makes use of two procedures to decrease computing costs while maintaining or improv-
ing accuracy and perform groups convolutions pointwise and the Channel Shuffle. The
Channel Shuffle is a novel procedure performed to create additional feature map channels,
which aids in the encoding of more information and improves the robustness of feature
recognition. Group Convolution, introduced in AlexNet, is a form of convolution in which
the channels are divided into groups and then the kernel is convolved individually on each
group and then re concatenated. This procedure contributes to the retention of existing
connections and reduces the connection count

MonileNet is a deep convolutional neural network that uses a depth-wise separable
convolutional neural network. Compared to a network with normal convolutions of the
same depth in the nets, it substantially reduces the number of parameters. MobileNet is
an open-source neural network provided by Google. The actual difference between the
MobileNet design and a conventional CNN is that instead of a single 3× 3 convolutional
layer followed by the batch norm and ReLU, the MobileNet architecture uses several 3× 3
convolutional layers. The mobile nets divide the convolution into a 3 × 3 depth-wise
convolution and a 1× 1 point-wise convolution.

Loi et al. [41] presented subtraction of temporally sequential mammogram technique
to predict breast cancer using a support vector machine algorithm. To validate the pro-
posed method, perform a classification task using a support vector machine algorithm.
A computer vision-based object detection method was employed for architectural distor-
tion ROIs detection in the preprocessing phase. we extracted pixel-wise features using
a computer-vision algorithm for creating input to SVM and for other machine learning
algorithms. We use the non-linear kernel function in the support vector machine algorithm
to classify ADs ROIs. It has been observed that the support vector machine algorithm
provides more general results where the number of samples is relatively low [54]. In our
SVM model, we employed a 5-fold cross-validation function for the validation of SVM.
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K-NN is a supervised machine learning algorithm for binary class, multiclass, and
regression problems. Beham et al. [44] applied wavelet transforms for feature extraction
from the digital mammogram, and the K-nearest neighbor algorithm was employed for
classification into benign and malignant classes. We employed K-NN for binary classifi-
cation to evaluate and compare the performance of our deep neural network. The image
segmentation and ROIs detection method were the same as we use for the SVM algorithm.
We set the maximum value for K as 40 and the optimal error rate is 0.17 which shows the
K-NN classifier was not overfitted.

Random forest is a supervised machine learning algorithm that ensembles a tree.
Obaidullah et al. [47] presented an image descriptor-based approach for mammogram
mass classification using a random forest algorithm. In each node of a tree gets a vote
for predicting the output. We use a computer vision-based feature selection method for a
random forest classifier. We trained a multiple-time random forest classifier to classify ADs’
ROIs, compare it with our proposed method, and observe that random forest performance
was low.

4.9. Evaluation Metrics

The proposed method was able to classify detected architectural distortion ROIs into
malignant and benign classes and significantly improve model accuracy. The performance
of the proposed method is evaluated on the local PINUM, the public CBIS-DDSM, and the
DDSM database. The evaluation metrics such as accuracy, sensitivity, f1-score, precision,
recall, and area under the curve (AUC) are used to assess the performance of the proposed
method. The following equations are employed to calculate the accuracy, sensitivity, f1-
score, and area under the curve. Accuracy measures the corrected classified sample of the
binary class. Sensitivity measures the corrected true-positive cases from false-positive. The
area under the curve calculates the ratio between true-positive and false-positive. F1-score
can be calculated to compute precision and recall.

Accuracy =
TP + TN

FP + FN + TP + TN
(7)

Sensitivity =
TP

TP + FN
(8)

F1− Score = 2 ∗ ( TP
TP+FP ) ∗ ( TP

TP+FN )

( TP
TP+FP ) + ( TP

TP+FN )
(9)

AUC =
1
2
∗
(

TP
TP + FN

+
TN

TN + FP

)
(10)

where TP: true positive, TN: True negative, FP: False positive, FN: False Negative.

5. Results Analysis

The proposed method was designed on scientific fundamentals to predict breast cancer
from digital mammograms. The computer vision-based image preprocessing method has
pertained to detecting the architectural distortion ROIs from digital mammograms for all
models. The experiments were carried out on six pre-trained models (Proposed-CNN,
ShuffelNEt, MobileNet, SVM, K-NN, RF) to evaluate the two databases. The experimental
results reveal that our proposed method outperforms as compared with other and previous
studies.

5.1. Experimental Configuration

In the current study, experimental work was performed on google collab GPU, 12 GB
RAM, and Windows 10 operating system. All experimental algorithms are implemented
in python 3.6 using TensorFlow/Keras library. The computation time was 30 min for
training and testing on PINUM datasets, 40 min on the CBIS-DDSM dataset, and 50 min on
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the DDSM for all neural networks. Furthermore, image preprocessing and augmentation
are performed in Python. Pertained to the best hyperparameters, such as batch size, loss
function, learning rate, target size, and optimization function, as presented in Table 4.

Table 4. Hyper parameter configuration detail.

Configuration Values

Batch Size 16

Learning Rate 0.001

Epochs 20

Optimization function Adam

Loss Function binary_crossentropy

Target Size [320, 240]

histogram_freq 1

Tarin Split 0.6

Validation Split 0.2

5.2. Comparison between Proposed Method, ShuffelNet, MobileNet and SVM, KNN, RF

The results of the proposed method were compared with well-known three machine
learning and two deep learning algorithms. It could be observed that in Tables 5–7 the
performance of the proposed method was much better than the ShuffelNet, MobileNet,
SVM, K-NN, and random forest. The performance of experimental results was evaluated
using a five-fold cross-validation test on the PINUM, the CBIS-DDSM, and DDSM datasets.
The deep learning models training accuracy and training loss for all datasets has shown in
Figures 10–12. In Figure 10, after the 7th epochs, the training loss continuously decreases
while the training accuracy remains constant over the iterations, while the loss and accuracy
of shuffelnet and mobilenet are lower which shows our model perfectly fitted on the
PINUM dataset. Figures 11 and 12 for the CBIS-DDSM and DDSM datasets after the 10th
epoch, the training loss steadily decreases while the training accuracy remains higher until
the last epochs as compared to shuffelnet and mobilenet. The training accuracy on all
datasets reaches 99% after the 17th epochs, which indicates that our model was regularized
and perfectly fitted.

Figure 10. All Deep Networks Training Loss and Accuracy on PINUM Dataset.
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Figure 11. All Deep Networks Training Loss and Accuracy on CBIS-DDSM Dataset.

Figure 12. All Deep Networks Training Loss and Accuracy on DDSM Dataset.

Figures 13–15 show that the proposed method yielded the best performance and
achieved 0.95, 0.97 and 0.98 accuracies on the PINUM, CBIS-DDSM and DDSM datasets,
respectively. Shuffelnet,MobileNet, SVM, K-NN, and RF accuracies were 0.91, 0.89, 0.87,
0.83, and 0.90 on the PINUM dataset, 0.93, 0.90, 0.73, 0.80, and 0.95 on the CBIS-DDSM
dataset and 0.87, 0.90, 0.80, 0.81 and 0.91 on DDSM dataset. The proposed method achieves
4%, 6%, 8%, 12%, and 5% higher accuracy than ShuffelNet, MobileNet, SVM, K-NN, and
RF on the PINUM dataset, 4%, 7%, 24%, 17%, and 2% on the CBIS-DDSM dataset and 11%,
8%, 18%, 17% and 7% on DDSM dataset.

Figure 13. Accuracy Comparison on PINUM Dataset.
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Figure 14. Accuracy Comparison on CBIS-DDSM Dataset.

Figure 15. Accuracy Comparison on DDSM Dataset.

Figures 16–18 reveals that the proposed method was achieved 0.87, 0.90, 0.89 f1-
score, precision, and recall on the PINUM dataset, 0.96, 0.94, and 0.98 on the CBIS-DDSM
dataset, and 0.90, 0.96 and 0.86 on DDSM dataset which was higher as compared with
ShuffelNet,MobileNEt, SVM, K-NN, and RF, respectively. In addition, the performance
of the f1-score of the proposed method was 6%, 10%, 15%, 24%, and 6% higher than
ShuffelNet, MobileNet, SVM, K-NN, and RF on the PINUM dataset. Furthermore, f1-score
was 27%, 3%, 27%, 18%, and 1% higher than ShuffelNet, MobileNet, SVM, K-NN, and RF
on the CBIS-DDSM dataset and 16%, 6%, 14% 12% and 2% on the DDSM dataset. Moreover,
the precision and recall of the PINUM dataset of the proposed model was 4%, 29%5, 2%,
6%, 1%, and 13%, 16%, 28%, 38%, 14%, respectively, higher than the ShuffelNet, MobileNet,
SVM, K-NN, and random forest. For the CBIS-DDSM and DDSM data set, the proposed
method precision and recall performance was 19%, 12%, 21%, 15%, 1% and 25%, 15%, 32%,
20%, 1% and 13%, 11%, 24%, 21%, 1% and 10%, 2%, 9%, 4%, 4% better than the ShuffelNet,
MobileNet, SVM, K-NN, and RF.
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Figure 16. Comparison of Accuracy, F1-Score, Precision and Recall on PINUM Dataset.

Figure 17. Comparison of Accuracy, F1-Score, Precision and Recall on CBIS-DDSM Dataset.
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Figure 18. Comparison of Accuracy, F1-Score, Precision and Recall on DDSM Dataset.

On the other hand, when comparing the sensitivity of the proposed model with
ShuffelNet, MobileNet, SVM, K-NN, and RF on the PINUM and CBIS-DDSM is 3% 13%,
11%, 8%, 2%, 1%, 1%, and 16%, 13%, 1% higher, respectively as shown in Figures 19 and 20.
Figure 21 reveals that the sensitivity of the proposed method on the DDSM dataset was 7%,
8%, 15%, 15%, and 6% higher than ShuffelNet, MobileNet, SVM, K-NN, and RF. The area
under the curve (AUC) was calculated of our proposed model, as shown in Figures 22–24.
The AUC curve of our model was higher than the ShuffelNet, MobileNet, SVM, K-NN,
and random forest. The above aforementioned deep analysis of all datasets stated that
the proposed method significantly outperforms rather than the ShuffelNet, MobileNet,
SVM, K-NN, and RF. The experimental results demonstrated the effectiveness of a deep
convolutional neural network to classify architectural distortion ROIs that can help doctors
and radiologists to predict breast cancer at initial stages.

Figure 19. Sensitivity Comparison on PINUM Dataset.

117



Biology 2022, 11, 15

Figure 20. Sensitivity Comparison on CBIS-DDSM Dataset.

Figure 21. Sensitivity Comparison on DDSM Dataset.

Table 5. Performance Evaluation compression of proposed method and with ShuffelNet, MobileNet,
SVM, K-NN and RF on PINUM dataset.

Algorithms Accuracy F1-Score Precision Recall Sensitivity AUC

Proposed 0.95 0.87 0.90 0.89 0.99 0.91

ShuffelNet 0.91 0.81 0.86 0.76 0.95 0.79

MobileNet 0.89 0.77 0.61 0.73 0.85 0.79

SVM 0.87 0.72 0.88 0.61 0.97 0.69

KNN 0.83 0.63 0.84 0.51 0.96 0.59

RF 0.90 0.81 0.89 0.75 0.96 0.75

Table 6. Performance Evaluation compression of proposed method and with ShuffelNet, MobileNet,
SVM, K-NN and RF on CBIS-DDSM dataset.

Algorithms Accuracy F1-Score Precision Recall Sensitivity AUC

Proposed 0.97 0.96 0.94 0.98 0.95 0.98

ShuffelNet 0.93 0.69 0.75 0.73 0.84 0.69

MobileNet 0.90 0.93 0.82 0.83 0.87 0.61

SVM 0.73 0.69 0.73 0.66 0.79 0.67
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Table 6. Cont.

Algorithms Accuracy F1-Score Precision Recall Sensitivity AUC

KNN 0.80 0.78 0.79 0.78 0.82 0.81

RF 0.95 0.95 0.93 0.97 0.94 0.89

Table 7. Performance Evaluation compression of proposed method and with ShuffelNet, MobileNet,
SVM, K-NN and RF on DDSM dataset.

Algorithms Accuracy F1-Score Precision Recall Sensitivity AUC

Proposed 0.98 0.90 0.96 0.86 0.96 0.85

ShuffelNet 0.87 0.74 0.83 0.76 0.89 0.69

MobileNet 0.90 0.84 0.85 0.84 0.88 0.81

SVM 0.80 0.76 0.74 0.77 0.81 0.79

KNN 0.81 0.78 0.75 0.82 0.81 0.81

RF 0.91 0.88 0.95 0.82 0.90 0.78

Figure 22. The AUC curves of algorithms on PINUM Dataset.

Figure 23. The AUC curves of algorithms on CBIS-DDSM Dataset.
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Figure 24. The AUC curves of algorithms on DDSM Dataset.

5.3. Results Comparison between Proposed Method and Previous Studies

The proposed method is validated by comparing it with previous studies using the
same dataset and the private dataset. The experimental results reveal that the performance
of the proposed method was much better than the previous studies. Table 8 summarized
that the proposed method was achieved 0.95, 0.97, and 0.98 accuracies on the PINUM,
CBIS-DDSM, and DDSM datasets, respectively, which were higher comparatively from
previous studies. Murali. et al. [6] pertain SVM and MLP for classifying architectural
distortion ROIs and achieved 89.6% accuracy on the DDSM dataset. [7] implemented the
Gober filter-based method to detect architectural distortion and achieve 90% sensitivity.
The authors [8–10] employed a machine learning-based classification algorithm to detect
architectural distortion from the DDSM data set and reporting 83.50%, 92.94%, and 91.79%
accuracies, respectively. Another study by [13] applied a multilayer-perception network
to detect architectural distortion evaluating 300 images and reported 83% accuracy. The
authors [14] used the LDA classifier to detect architectural distortion tracking from digital
breast tomosynthesis and achieved 0.90 sensitivity.

Table 8. Comparison of results with previous studies and proposed method.

Authors Problem Method Database Images Accuracy

[6] Architectural Distortion Detection SVM, MLP DDSM 190 0.89

[7] Architectural Distortion Detection Bayesian, SELF ANN Private 1745 N/A

[8] Architectural Distortion Detection Differential direction method DDSM 33 0.83

[9] Architectural Distortion Detection SVM DDSM 147 0.92

[10] Architectural Distortion Detection Sparse classifier DDSM 69 0.91

[13] Architectural Distortion Detection MLP FFDM 300 0.83

[14] Architectural Distortion tracking LDA FFDM 37 N/A

[55] Architectural Distortion tracking CNN CBIS-DDSM 334 0.92

Proposed Architectural Distortion Detection Depth-wise 2DCNN Private (PINUM) 3462 0.95

Proposed Architectural Distortion Detection Depth-wise 2DCNN CBIS-DDSM 3568 0.97

Proposed Architectural Distortion Detection Depth-wise 2DCNN DDSM 5500 0.98

The proposed method depth-wise 2D convolutional neural network achieved 0.95,
0.97, and 0.98 accuracies on the 3264 PINUM, 3568 CBIS-DDSM, and 5500 DDSM datasets
images, respectively, which were better than previous studies. The proposed model has
achieved 0.98 accuracy which was 6% and 15% higher than the previous studies on the
DDSM dataset which indicates that the performance of the proposed modal was much
better. The performance of the proposed method on a private dataset was also better than
the previous studies.
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6. Discussion

In the current study, proposed a state-of-the-art computer-aided diagnostic system
using a computer vision and depth-wise 2D convolutional neural network to detect and clas-
sify architectural distortion ROIs from digital mammograms. The proposed mammogram
classification framework pertains to four steps: image preprocessing and augmentation,
image pixel-wise segmentation, architectural distortion ROI‘s detection, training deep
learning, and machine learning networks to classify AD‘s ROIs into malignant and benign
classes. Image classification using the deep convolutional neural network, a minimum
number of images is approximately 1000 required, and it can be increased for pre-trained
models to regularize the neural network. [56]. Deep learning is a data-driven method so
that the small size of data and non-standardization are the main challenges for the general-
ization of the model. However, to handle the generalization, overfitting, and improving
the robustness of the deep learning model, we artificially inflate the PINUM database up
to 3462 using data augmentation techniques as discussed above. The CBIS-DDSM dataset
consists of 3568 mammogram images, including 1740 benign and 1828 malignant images
with MLO and CC views. The 5500 images were included from the DDSM dataset. Split
the data into the training, testing, and validation data for the proposed deep neural modal.
The dataset was randomly divided into 60% for training, 20% for testing, and 20% for
cross-validation.

In the context of comparing results with the ShuffleNet, MobileNet, SVM, K-NN, and
RF the obtained results of the proposed method are comparable, encouraging, and better
in many aspects. The proposed method yielded better accuracy, f1-score, precision, recall,
sensitivity, and area under the curve. When we are seeing the training accuracy of the
proposed method on both datasets it reaches 100% as compared with the ShuffelNet and
MobileNet. On the other hand, the training loss of our proposed method is consistently
decreasing after the 7th epochs which shows the noise around the proposed method is much
lower than the ShuffleNet and MobileNet on the PINUM, CBIS-DDSM, and DDSM datasets.
In comparison to the findings of previous research on architectural distortion, the current
study’s findings for malignant and benign ADs are promising, better, and outperforms. The
authors [6,8–10] achieved 89.6%, 83.50%, 92.94%, and 91.79% accuracies, respectively. The
experimental results demonstrated that the proposed approach significantly outperforms
the ShuffelNet, MobileNet, SVM, K-NN, RF, and previous studies. The proposed approach
achieved 0.95%, 0.97%, 0.98% accuracies on the PINUM, CBIS-DDSM, and DDSM dataset,
while the maximum accuracy in previous studies was 92.94% [9] on the DDSM dataset,
which healed our model. On the other hand, the highest accuracy was achieved by the
random forest algorithm are 0.90, 0.95 on the PINUM and CBIS-DDSAM dataset, which
is still lower than our proposed model. Furthermore, to enhance the effectiveness of the
proposed model, compared it with other evaluation metrics such as f1-score, precision,
recall, and sensitivity; the model achieved better results, as seen in Tables 5–7.

Fully automatic identification of architectural distortion in mammograms of interval-
cancer cases is more challenging because extensive comparative analysis, which was not
investigated in our study, is still a limitation. The diagnostic mammograms were not
accessible in the current investigation on interval-cancer patients, including benign control
cases, because of localizing the areas of architectural distortion on mammograms.

The current study observed that the classification approach using depth-wise 2D
convolutional neural networks was much better than the machine learning algorithms such
as SguffelNet, MobileNet, SVM, K-NN, and RF. Moreover, computer-vision technology is
more potent for image segmentation and ROIs detection than the traditional and hand-
crafted approaches. The proposed fully automated CAD system could predict breast cancer
more accurately than the older one and help the clinical staff with disease diagnostic.
To enhance the validity of the model, employed it on the three databases, the public
and the private. The proposed approach with a computer vision and depth-wise 2D
convolutional neural network is a novel approach for architectural distortion ROIs detection
and classification into benign and malignant ROIs.
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7. Conclusions

Mammogram screening is an effective and initial screening method for the diagnosis
of breast cancer in women. Architectural distortion is the third most suspicious appearance
on a mammogram that represents abnormal regions. Architectural distortion detection
from mammograms is challenging due to its subtle and varying asymmetry on breast
mass and small size. Therefore, the manual interpretation of Architectural Distortion is
a challenging task for radiologists to figure out abnormalities during the examination of
mammograms due to its subtle appearance on fatty denser mass. In the current study,
proposed an automated computer-aided diagnostic system based on computer vision
and deep learning to predict breast cancer from the digital mammogram. Proposed a
state-of-the-art- method for breast cancer detection from architectural distortion ROIs.
The proposed method consists of two major phases, in the first phases the architectural
distortion ROIs are extracted using a computer vision algorithm and verified by the expert
radiologists, in the 2nd phase these ROIs are classified with the proposed deep learning
method to classify into malignant and benign ROIs. Experimental results reveal that our
proposed method outperforms as compared with the ShuffelNet, MobileNet, SVM, K-NN,
RF, and previous studies. Although the results are very promising and better, further
investigate new techniques for localizing the patterns for detecting architectural distortion
ROIs that are not limited to spiculated patterns. Furthermore, will investigate other deep
learning models to detect architectural distortion from other public and larger private
datasets. In addition, we will also analyze our modal to improve the true-positive rate and
detect ADs tracks from DBT slices. Another, limitation to this study is the use of transfer
learning for handling small label datasets which will be further considered in future studies.
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Simple Summary: The overexpression of Carboxypeptidase A4 (CPA4) has been observed in plenty
of types of cancer and has been elucidated to promote tumor growth and invasion; however, its role in
bladder urothelial carcinoma (BLCA) is still unclear. Therefore, we aimed to show the prognostic role
of CPA4 and its relationship with immune infiltrates in BLCA. We confirmed that the overexpression
of CPA4 is associated with shorter overall survival, disease-specific survival, progress-free intervals,
and higher dead events. Moreover, we found that several infiltrating immune cells (Th1cell, Th2
cell, T cell exhaustion, and Tumor-associated macrophage) were correlated with the expression of
CPA4 in bladder cancer using TIMER2 and GEPIA2. In conclusion, CPA4 may be a novel and great
prognostic biomarker based on bioinformation analysis in BLCA.

Abstract: Carboxypeptidase A4 (CPA4) has shown the potential to be a biomarker in the early diag-
nosis of certain cancers. However, no previous research has linked CPA4 to therapeutic or prognostic
significance in bladder cancer. Using data from The Cancer Genome Atlas (TCGA) database, we
set out to determine the full extent of the link between CPA4 and BLCA. We further analyzed the
interacting proteins of CPA4 and infiltrated immune cells via the TIMER2, STRING, and GEPIA2
databases. The expression of CPA4 in tumor and normal tissues was compared using the TCGA
+ GETx database. The connection between CPA4 expression and clinicopathologic characteristics
and overall survival (OS) was investigated using multivariate methods and Kaplan–Meier survival
curves. The potential functions and pathways were investigated via gene set enrichment analysis.
Furthermore, we analyze the associations between CPA4 expression and infiltrated immune cells
with their respective gene marker sets using the ssGSEA, TIMER2, and GEPIA2 databases. Com-
pared with matching normal tissues, human CPA4 was found to be substantially expressed. We
confirmed that the overexpression of CPA4 is linked with shorter OS, DSF(Disease-specific survival),
PFI(Progression-free interval), and increased diagnostic potential using Kaplan–Meier and ROC
analysis. The expression of CPA4 is related to T-bet, IL12RB2, CTLA4, and LAG3, among which
T-bet and IL12RB2 are Th1 marker genes while CTLA4 and LAG3 are related to T cell exhaustion,
which may be used to guide the application of checkpoint blockade and the adoption of T cell
transfer therapy.

Keywords: CPA4; bladder urothelial carcinoma; immune cells; T cell exhaustion; checkpoint

1. Introduction

Bladder Urothelial Carcinoma (BLCA) is the eighth most prevalent cancer worldwide,
with 549,393 new cases reported worldwide in 2018 [1]. Additionally, in the USA alone,
there are estimated to be more than 80,000 new cases and 17,000 deaths each year [2].
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This disease is particularly heterogeneous [3]. They are classified as high-grade and low-
grade diseases based on standardized histomorphological features, as described by the
World Health Organization. The depth of an invasion in the bladder wall determines the
tumor stage. Approximately 80% of BLCA patients present non-muscle-invasive bladder
cancer (NMIBC) at the time of diagnosis, while the remainder present muscle-invasive
bladder cancer (MIBC) or even distant metastases [4]. NMIBCs do not normally pose a
threat to patient survival and have a much better prognosis due to effective therapeutic
options [5]. However, they almost always relapse, and patients need to repeat intravesical
treatments, endoscopic evaluations, and biopsies, which may take an extended period of
time, resulting in expensive surgical and surveillance management [6–8]. MIBCs, on the
other hand, are clinically aggressive and can progress rapidly to lymph nodes, brain, lungs,
liver, and bone metastases, which are often fatal [3]. However, over the past three decades,
clinical management and five-year survival rates have seen few substantial advances [9].
Therefore, it is significant to identify novel biomarkers and molecular targets for advancing
the prognosis of BLCA.

Carboxypeptidase A4 (CPA4) is a member of the zinc-containing metallocarboxypep-
tidase family [10], which could specifically catalyze the peptide bonds released from
carboxy-terminal amino acids [11,12]. CPA4 was first discovered when screening for up-
regulated mRNA during cancer cell differentiation induced by sodium butyrate [13]. From
the cellular and biochemical characteristics, CPA4 is secreted from cells in the form of
soluble proenzyme (pro-CPA4), which might play a role in creating a tumor microenviron-
ment [10]. Previous studies have demonstrated that CPA4 is closely associated with the
aggressiveness, growth, and differentiation in cancer cells [14,15]. However, the underlying
mechanism of CPA4 in BLCA remains unclear.

Recently, CPA4 has shown the potential to be a biomarker in the early diagnosis for cer-
tain cancers. Sun et al. have reported that the higher expression level of CPA4 in pancreatic
cancer tissues and serum is related to poor prognosis and higher aggressiveness [13]. Pre-
viously studied showed that upregulated mRNA levels of CPA4 in androgen-independent
prostate cancer cells is associated with the Histone Hyperacetylation signaling pathway [16].
In liver cancer and lung cancer, studies have also shown that the higher expression of
CPA4 was closely associated with early diagnosis and poor prognosis [13,17]. Despite the
potential significance of CPA4 expression in plenty types of cancer, no previous studies
have ever shown the expression levels of CPA4 in bladder cancer, especially with regard to
its potential therapeautic and prognostic values. Additionally, the correlation with immune
infiltrates of CPA4 in BLCA remains to be investigated. Shao et al. demonstrated that CPA4
overexpression promotes the progression of aggressive clinical stage in pancreatic cancer
and that the downregulation of CPA4 inhibits non-small-cell lung cancer growth [15,18].
Therefore, we hypothesized that the level of CPA4 is associated with the prognosis and
immune cell infiltration in BLCA.

To test this hypothesis, our study evaluated the role of CPA4 on tumorigenesis and
clinical significance based on The Cancer Genome Atlas (TCGA). We compared the different
expression level of BLCA in age; gender; pathologic T, N, and M stage; pathology; subtype;
and OS. In this study, we found that CPA4 is upregulated in BLCA. Significantly, the
risk factors of CPA4 upregulation are correlated with poor prognosis. Additionally, the
correlation with immune infiltrates of CPA4 for BLCA is also evaluated. Eventually, we
link high CPA4 levels and poor prognosis in BLCA.

2. Materials and Methods
2.1. Data Source

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/, accessed on
7 September 2021) provides 33 types of clinical and pathological information on cancer for
scholars and researchers for free [19]. The expression profiles of CPA4 and clinical informa-
tion of TCGA cancer data were downloaded from the UCSC Xena
(https://xenabrowser.net/datapages/, accessed on 7 September 2021) database. The
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TCGA database is available publicly in open access format and is available where ethical
approval and informed consent of the patients were not necessary [20].

2.2. CPA4 Methylation Level Analysis

UALCAN (http://ualcan.path.uab.edu/, accessed on 6 September 2021) is a compre-
hensive, user-friendly, and interactive web resource for analyzing cancer OMICS data and
provides graphs and plots depicting expression profiles and patient survival information
for protein-coding, miRNA-coding, and lincRNA-coding genes [21]. The UALCAN online
tool was utilized to analyze the CPA4 methylation level in BLCA (TCGA data).

2.3. Analysis of Differentially Expressed Genes (DEGs)

Through the limma Package by R, patients with different CPA4 expression profiles
in the high and low expression groups (HTSeq-TPM) were compared using unpaired
Student’s t-test to identify the DEGs [22]. A |log2Fold Change| > 2 and BH-adjusted
p-values < 0.05 were considered the threshold for the DEGs in a Gene Ontology (GO)
Enrichment Analysis. Metascape (https://metascape.org, accessed on 7 September 2021) is
a tool used for gene annotation and pathway analysis [23]. In this study, Metascape was
utilized to analyze the enrichment of CPA4-related DEGs in processes and pathways. A
p-value < 0.01, a minimum count of 3, and an enrichment factor of > 1.5 were regarded as
significant [24].

2.4. Gene Set Enrichment Analysis (GSEA)

GSEA was used as a statistical method in order to seek out whether gene exhibits are
statistically significant and concordant between two biological states [25]. We used the R
package Cluster Profiler to evaluate excessive function and pathway differences between
groups with different expression of CPA4 expression [26]. Each analysis of the processes
was repeated 1000 times. Adjusted p-value < 0.05 and false discovery rate (FDR) < 0.25
were considered statistically significant enrichments [27]. We chose the potential pathway
in which FDR < 0.05 with higher NES after analysis.

2.5. Comprehensive Analysis of Protein–Protein Interaction

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website
(https://string-db.org/, accessed on 7 September 2021) is a database of known and pre-
dicted protein–protein interactions that hosts a collection of integrated and consolidated
protein–protein interaction data including direct (physical) and indirect (functional) as-
sociations [28]. By importing CPA4 into the online tool STRING, protein–protein interac-
tion (PPI) network information was compiled. Confidence scores > 0.4 were considered
median significant.

2.6. Analysis of the Tumor Immune Estimation Resource (TIMER2)

The Tumor Immune Estimation Resource (TIMER2) is a comprehensive resource
including 32 cancer types and incorporates 10,897 samples from the TCGA database for
systematically analysis of immune infiltrates across diverse cancer types (http://cistrome.
org/TIMER/, accessed on 7 September 2021) [29]. The TIMER2 database is used to evaluate
the correlation of the expression of CPA4 in BLCA patients with the six types of infiltrating
immune cells (B cells, dendritic cells, CD4 + T cells, CD8 + T cells, macrophages, and
neutrophils) and displays the relationship between the expression of the CPA4 gene and
the tumor purity.

2.7. Univariate and Multivariate Logistic Regression Analysis

Univariate Cox regression used to calculate the association between OS and patients’
CPA4 expression in two cohorts aims at further researching the effect of CPA4 expression.
A multivariate analysis was used to assess if CPA4 is an independent prognostic factor for
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BLCA patient survival. CPA4 is statistically significant in the Cox regression analysis when
the p-value is less than 0.05 [30].

2.8. Identification of CPA4 Coexpression Genes and Construction of a Prognostic Nomogram

cBiopor tal (https://www.cbioportal.org/, accessed on 7 September 2021) (an online tool
based on the TCGA database) was used to identify sets of coexpression genes. According to
the p-value, we select the most relevant genes about CPA4. Then, the clinical factors (T, M, and
N stages; radiation therapy; and primary therapy outcome) and the gene expression levels
were used to construct a prognostic nomogram to evaluate the probability of 1-, 2-, and 3-year
OS for BLCA patients via the R package (https://cran.r-project.org/web/packages/rms/,
accessed on 7 September 2021) [31].

2.9. Immune Infiltration Analysis by ssGSEA

Single sample GSEA (ssGSEA) was performed to analyze the state of immune in-
filtration of BLCA from R package GSVA (version3.6) (http://www.bioconductor.org/
packages/release/bioc/html/GSVA.Html, accessed on 8 September 2021), and we quan-
tified the infiltration levels of 24 immune cell types from gene expression profiles in the
literature [32]. In order to discover the correlation between CPA4 and the infiltration levels
of 24 immune cells, adjusted p-values were established by the Spearman and Wilcoxon
rank-sum tests.

2.10. Analysis of the Gene Expression Profiling Interactive Analysis 2

The Gene Expression Profiling Interactive Analysis2 (GEPIA2) (http://gepia.cancer-
pku.cn/index.html, accessed on 7 September 2021) is an updated database used for analyz-
ing the RNA sequencing expression data of 9736 tumors and 8587 normal samples from
the TCGA and the GTEx projects, which include 60,498 genes and 198,619 isoforms [33].
GEPIA2 database investigated the expression level of CPA4 with various immune cells’
markers. TIMER2 was used to identify the gene with a significant correlation with CPA4
expression in the GEPIA2 web.

2.11. Statistical Analysis

The expression of CPA4 for non-paired and paired samples was analyzed by the
Wilcoxon rank-sum test and Wilcoxon signed-rank test, respectively. By using the pROC
package, the ROC curve was generated to evaluate the CPA4 expression with diagnostic
performance. The relations between the CPA expression and the clinical features were
analyzed by the Kruskal–Wallis test, Chi-Squared test, and Wilcoxon signed rank test.
The survival curves were generated via the long-rank test for the Kaplan–Meier analysis.
p < 0.05 was considered statistically significant: * p < 0.05, ** p < 0.01, and *** p < 0.001; R
software was used to process all kinds of statistical analyses (Version 4.0.2). In R, we use
padj = p.adjust (p, method = “BH”, n = length(p)) to correct the p-value.

3. Results
3.1. Characteristics of BLCA Patients

In total, the information for 414 BLCA tumor tissues and 19 normal tissues were
collected from the TCGA database including RNA-seq and relative clinical prognostic
information in 414 patients. We grouped the BLCA patients into two sets: low (n = 207)
and high expressions (n = 207) of CPA4. The clinical information of BLCA patients in-
cludes age, race, gender, pathologic stage, pathologic stage (T, N, or M), pathologic stage,
primary therapy outcome, histologic grade, radiation therapy, subtype, smoking status,
lymphovascular invasion, and OS event (Table 1).
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Table 1. Clinical characteristics of two sets of patients with different expressions of CPA4 from the TCGA dataset.

Characteristic Low Expression of CPA4 High Expression of CPA4 p

n 207 207
Age, n (%) 0.921

≤70 116 (28%) 118 (28.5%)
>70 91 (22%) 89 (21.5%)

Race, n (%) 0.003
Asian 32 (8.1%) 12 (3%)

Black or African American 8 (2%) 15 (3.8%)
White 159 (40.1%) 171 (43.1%)

Gender, n (%) 0.372
Female 50 (12.1%) 59 (14.3%)
Male 157 (37.9%) 148 (35.7%)

T stage, n (%) 0.004
T1 4 (1.1%) 1 (0.3%)
T2 73 (19.2%) 46 (12.1%)
T3 89 (23.4%) 107 (28.2%)
T4 23 (6.1%) 37 (9.7%)

N stage, n (%) 0.494
N0 120 (32.4%) 119 (32.2%)
N1 18 (4.9%) 28 (7.6%)
N2 39 (10.5%) 38 (10.3%)
N3 3 (0.8%) 5 (1.4%)

M stage, n (%) 0.810
M0 109 (51.2%) 93 (43.7%)
M1 5 (2.3%) 6 (2.8%)

Pathologic stage, n (%) 0.014
Stage I 4 (1%) 0 (0%)
Stage II 76 (18.4%) 54 (13.1%)
Stage III 63 (15.3%) 79 (19.2%)
Stage IV 63 (15.3%) 73 (17.7%)

Radiation therapy, n (%) 0.369
No 181 (46.6%) 186 (47.9%)
Yes 13 (3.4%) 8 (2.1%)

Primary therapy outcome, n (%) <0.001
PD 18 (5%) 52 (14.6%)
SD 14 (3.9%) 17 (4.8%)
PR 12 (3.4%) 10 (2.8%)
CR 136 (38.1%) 98 (27.5%)

Histologic grade, n (%) <0.001
High Grade 186 (45.3%) 204 (49.6%)
Low Grade 19 (4.6%) 2 (0.5%)

Lymphovascular invasion, n (%) 0.666
No 62 (21.9%) 68 (24%)
Yes 78 (27.6%) 75 (26.5%)

Subtype, n (%) 0.003
Non-Papillary 124 (30.3%) 151 (36.9%)

Papillary 82 (20%) 52 (12.7%)
OS event, n (%) <0.001

Alive 139 (33.6%) 92 (22.2%)
Dead 68 (16.4%) 115 (27.8%)

Age, meidan (IQR) 69 (60, 76) 68 (61, 76) 0.990

3.2. Tumor Tissues Express Higher CPA4 Than Normal Tissue

The expression of CPA4 in pan-cancer was analyzed between tumor and normal
tissues. From the TCGA + GETx database, the expression level of CPA4 in non-matched
patients (p = 1.6 × 10−5) was significantly higher than that in normal people (Figure 1). The
analysis of the correlation between CPA4 expression in BLCA patients and relative clinical
information shows that a higher DLEU1 expression level is correlated with OS events
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and the subtype papillary. No statistically significant differences were found between the
expression levels of CPA4 in BLCA and age; gender; pathological T, N, or M stages; and
pathologic stage.
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Figure 1. CPA4 expression and clinicopathological features in BLCA. (a) human CPA4 expression levels in different cancer
tissues and corresponding normal tissues. (b) The expression level of CPA4 in BLCA tissue was significantly higher
compared with the normal tissues from the TCGA + GTEx database. (c–g) No statistically significant differences were found
between the expression levels of CPA4 in BLCA and age; gender; and pathological T, N, or M stage. (h–j) High pathologic
stage, higher dead event, and nonpapillary were associated with higher expressions of CPA4 in BLCA. * p < 0.05; ** p < 0.01;
*** p < 0.001; ns: no significance.

3.3. Impact of High CPA4 Expression on the Detection and Prognosis of BLCA Patients

The expression of CPA4 indicated a significant discriminative power in identifying
tumors from normal cells with an AUC value of 0.798 (Figure 2d). The Kaplan–Meier
survival analysis showed that BLCA patients with higher CPA4 expressions have shorter
overall survival, disease-specific survival, and progress-free intervals (Figure 2a–c). The
KM plots show that a higher expression of CPA4 had a worse prognosis than a lower
expression. Promoter methylation of CPA4 in the TCGA-BLCA data was significantly
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lower than that of normal tissues adjacent to cancer in the UALCAN webpage (p < 0.001;
Figure 2e).
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Figure 2. (a–c) Kaplan–Meier survival curves comparing high and low expressions of CPA4 in BLCA patients.
(a) overall survival; (b) disease-specific survival; (c) progression-free interval; (d) ROC analysis of CPA4 indicates promising
discrimination power between tumor and normal tissues; (e) the promoter methylation of CPA4 in tumor tissues (n = 418)
and normal tissues (n = 21) from TCGA-BLCA data.

3.4. Differentially Expressed Genes and GO Enrichment Analysis in High- and Low-CPA4
Expression Samples

We analyzed the DEGs in altered expressions of CPA4 including in low and high
samples to explore the potential mechanisms of CPA4 that promote tumor progression.
There were 529 DEGs identified, of which 349 genes were upregulated and 180 were down-
regulated (|log2(FC)| > 2 and p.adj < 0.05). The DEGs’s expression is shown in a heat
map and volcano plot (Figure 3) using GO enrichment analysis to predict the co-expression
functions in patients with BLCA. The top GO enrichment items in the biological process
(BP), molecular function (MF), and cellular component (CC) groups were epidermal cell
differentiation, keratinocyte differentiation, keratinization, intermediate filament cytoskele-
ton, intermediate filament, cornified envelope, endopeptidase inhibitor activity, peptidase
inhibitor activity, peptidase inhibitor activity, serine-type endopeptidase inhibitor activity,
metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450, and
retinol metabolism (Figure 4a).
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Figure 3. (a) Volcano plot of differentially expressed genes (DEGs) connected with the expression of CPA4; (b) heatmap of
differentially expressed genes (DEGs) connected with the expression of CPA4. *** p < 0.001.

3.5. Gene Set Enrichment Analysis for CPA4-Related Signaling Pathways

By the enrichment of MSigDB Collection (c2.all.v7.0.symbols.gmt (curated)), we
used the GSEA to identify signaling pathways associated with CPA4 between the dif-
ferent expression levels of CPA4 with significant differences (adjusted p-value < 0.05 and
FDR < 0.25). The eight pathways included the formation of the cornified envelope, ker-
atinization, immunoregulatory interactions between a lymphoid and a non-lymphoid
cell, wp hair follicle development cytodifferentiation part 3 of 3, antigen processing and
presentation, assembly of collagen fibrils and other multimeric structures, graft versus host
disease, and cytokine–cytokine receptor interaction (Figure 4).

3.6. CPA4 Expression Predicts Poor Prognosis in Different Cancer Stages

Univariate cox proportional-hazards model analysis showed that high CPA4 expres-
sion, high pathologic grade and stage (T, N, and M), and subtype papillary were negative
predictors for OS in BLCA patients. Meanwhile, in the multivariate regression analysis,
CPA4 expression was an independent factor correlated with OS both in the low-expression
set and high-expression set (p = 0.003) (Figure 5).
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Figure 4. (a) GO enrichment analysis of differentially expressed genes (DEGs) in high- and low-CPA4 expression samples;
(b,c) enrichment plots from GSEA. Several pathways were differentially enriched in BLCA patients according to different
CPA4 expressions; (b) formation of the cornified envelope; (c) keratinization; (d) immunoregulatory interactions between a
lymphoid and a non-lymphoid cell; (e) WP hair follicle development cytodifferentiation part 3 of 3; (f) antigen processing
and presentation; (g) assembly of collagen fibrils and other multimeric structures; (h) graft versus host disease; (i) cytokine–
cytokine receptor interaction. ES, enrichment score; NES, normalized enrichment score; ADJ p-Val, adjusted p-value; FDR,
false discovery rate.
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Figure 5. Univariate (a) and multivariate (b) regression analyses of CPA4 and other clinicopathologic parameters with OS
in BLCA patients.

3.7. Construction of Nomogram for Predicting OS and Validation by Calibration

We constructed a nomogram for predicting the prognosis of BLCA with relative
clinical situation, which integrates the clinical characteristics associated with the survival
of BLCA. Based on the multivariate Cox analysis, a nomogram was assigned to the clinical
characteristics of a point and the sum of points awarded to each characteristic is a point
from 0 to 100. All of the points are accumulated and recorded as the total points. Using
the absolute point axis down to the outcome axis, the probability of BLCA survival at 1, 3
and 5 years can be determined (Figure 6a). From the nomogram, the expression of CPA4
contributes many points compared with other relative clinical situations including the T, N,
and M stages; radiation therapy; and primary therapy outcome. Meanwhile, the calibration
plot indicates great agreement between the predicted and observed values, which are close
to the 45-degree line, which is the ideal curve (Figure 6b).
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Figure 6. The relationship of CPA4 expression with other clinical factors and overall survival (OS). (a) Nomogram for
predicting the probability of 1-, 3-, and 5-year OS for BLCA patients; (b) calibration plot of the nomogram for predicting the
OS likelihood.

3.8. CPA4-Interaction Protein Networks in BLCA Tissue

CPA4-interaction protein networks were constructed to further explore the necessary
proteins for metabolism and the molecular mechanism used by STRING. The PPI network
of the CPA4 protein showed the relationship of the CPA4 protein in the progression of
BLCA. Ten proteins and corresponding gene names were listed with their annotation scores
(Figure 7). The top 10 genes included LXN, CMA1, SGCE, TPSAB1, AGBL2, TPSB2, PEG10,
GRB10, TSGA13, and MEST, and LXN had the highest score.
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3.9. Correlation Analysis between CPA4 Expression and Infiltrating Immune Cells

The survival of patients with different cancers including BLCA is associated with
the tumor-infiltrating immune cells. From the result, the expression level of CPA4 had
significant correlations with CD8+ T cells (r = 0.287, p = 2.29 × 10−8), B cells (r = 0.218,
p = 8.65 × 10−10), neutrophils (r = 0.196, p = 1.76 × 10−4), and dendritic cells (r = 0.356,
p = 2.5 × 10−12). p < 0.05 was considered significant (Figure 8a). Furthermore, we analyzed
24 immune cells including pDC, NK CD56bright cells, DC, cytotoxic cells, TFH, B cells,
CD8 T cells, Th17 cells, Treg, T cells, mast cells, iDC, NK cells, Tem, aDC, neutrophils, Th1
cells, NK CD56dim cells, macrophages, eosinophils, Tgd T helper cells, Th2 cells, and Tcm.
We analyzed the correlation between the expression of CPA4 and immune infiltration by
ssGSEA using Spearman’s R. From the result, the expression level of CPA4 was negatively
correlated with the infiltration levels of NK CD56bright cells (p < 0.001) and positively
correlated with cytotoxic cells, T cells, NK cells, idc, Tem, Treg, aDC, Neutrophils, NK
CD56dim cells, macrophages, Th2 cells, and Th1 cells (Figure 8).
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Figure 8. The expression level of CPA4 was related to immune infiltration in the tumor microenvironment. (a) Correlation
of CPA4 expression with infiltrating immune infiltration in BLCA (b) The forest plot shows the correlation between CPA4
expression level and 24 immune cells. The size of the dots indicates the absolute value of Spearman’s R. (c,d) The Wilcoxon rank
sum test was used to analyze the difference in the macrophage cell infiltration levels between the CPA4 high- and low-expression
groups; (e,f) the correlation between CPA4 expression and NK CD56 bright cell infiltration levels. *** p < 0.001.
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3.10. Possible Role of the Expression of CPA4 in Various Infiltrating Immune Cells

We used the TIMER2 and GEPIA2 databases to further identify the possible role of
the expression of CPA4 in various infiltrating immune cells including T cells (general),
M1/M2 macrophages, tumor-associated macrophages, B cells, neutrophils, monocytes,
NK, CD8+ T cells, and functional DCs as well as T cells such as Th1, Th2, Th9, Th17, Th22,
Tfh, exhausted T cells, and Treg. From the results, Th1, T cell exhaustion, and TAM sets
marking were greatly connected with the expression of CPA4 in BLCA (Table 2).

Table 2. Correlation analysis between CPA4 and markers of immune cells in BLCA patients found in the TIMER2
and GEPIA2.

Cell Type Gene Marker None
Cor p Purity

Cor p Tumor
R p Normal

R p

B cell CD19 −0.042 0.397 −0.138 ** −0.032 0.52 −0.033 0.89
CD20(KRT20) −0.314 *** −0.226 *** −0.13 * −0.18 0.47

CD38 0.301 *** 0.148 ** 0.1 * −0.032 0.9
CD8+ T cell CD8A 0.267 *** 0.12 * −0.032 0.9 −0.074 0.76

CD8B 0.15 ** 0.018 0.727 0.0031 0.95 −0.096 0.69
Tfh BCL6 −0.247 *** −0.214 *** −0.14 ** −0.28 0.25

ICOS −0.307 *** 0.154 ** 0.13 ** −0.095 0.7
CXCR5 0.109 * −0.095 0.0677 0.075 0.13 0.039 0.87

Th1 T-bet(TBX21) 0.227 *** 0.046 0.375 0.2 *** 0.041 0.87
STAT4 0.37 *** 0.223 *** 0.16 ** 0.0068 0.98

IL12RB2 0.403 *** 0.327 *** 0.24 *** −0.22 0.37
WSX1(IL27RA) 0.39 *** 0.291 *** 0.18 *** 0.027 0.91

STAT1 0.386 *** 0.282 *** 0.24 *** −0.14 0.56
IFN-γ(IFNG) 0.278 *** 0.161 ** 0.13 ** −0.085 0.73
TNF-α(TNF) 0.287 *** 0.194 *** 0.098 * 0.27 0.26

Th2 GATA3 −0.484 *** −0.402 *** −0.26 *** −0.26 0.28
CCR3 0.188 *** 0.131 * 0.67 * −0.14 0.58
STAT6 −0.228 *** −0.209 *** −0.13 ** −0.32 0.18

STAT5A 0.004 0.936 −0.158 ** −0.015 0.76 −0.53 *
Th9 TGFBR2 0.087 0.079 −0.014 0.792 0.038 0.45 −0.45 0.056

IRF4 0.188 *** −0.03 0.571 0.043 0.39 −0.12 0.63
PU.1(SPI1) 0.356 *** 0.181 *** 0.15 ** −0.17 0.49

Th17 STAT3 0.325 *** 0.232 *** 0.15 ** −0.11 0.64
IL-21R 0.318 *** 0.132 * 0.073 0.14 −0.1 0.68
IL-23R −0.003 0.945 −0.076 0.143 −0.0048 0.92 −0.019 0.94
IL-17A −0.019 0.705 −0.057 0.274 −0.051 0.31 −0.18 0.47

Th22 CCR10 −0.025 0.626 −0.068 0.195 0.029 0.57 −0.34 0.16
AHR −0.271 *** −0.195 *** −0.11 * −0.29 0.23

Treg FOXP3 0.287 *** 0.15 ** 0.16 ** 0.037 0.88
CD25(IL2RA) 0.369 *** 0.22 *** 0.037 0.88 −0.066 0.79

CCR8 0.218 *** 0.083 0.113 0.083 0.094 −0.0059 0.98
T cell exhaustion PD-1(PDCD1) 0.255 *** 0.089 * 0.089 0.073 −0.099 0.69

CTLA4 0.311 *** 0.16 ** 0.23 *** −0.11 0.64
LAG3 0.362 *** 0.227 *** 0.22 *** −0.19 0.45

TIM-3(HAVCR2) 0.375 *** 0.218 *** 0.21 *** −0.097 0.69
Macrophage CD68 0.316 *** 0.193 *** 0.14 ** 0.49 *

CD11b(ITGAM) 0.303 *** 0.119 * 0.72 * −0.29 0.23
M1 INOS(NOS2) −0.033 0.511 −0.092 0.0774 −0.0068 0.89 −0.14 0.57

IRF5 −0.123 * −0.116 * −0.063 0.2 −0.026 0.92
COX2(PTGS2) 0.209 *** 0.164 ** 0.057 0.25 −0.24 0.32

M2 CD16 0.408 *** 0.273 *** 0.17 *** −0.2 0.42
ARG1 −0.049 0.322 −0.007 0.894 0.076 0.13 0.68 **
MRC1 0.334 *** 0.164 ** 0.042 0.4 −0.23 0.34

MS4A4A 0.353 *** 0.199 *** 0.12 ** −0.23 0.34
TAM CCL2 0.26 *** 0.113 * 0.022 0.66 −0.12 0.62

CD80 0.413 *** 0.285 *** 0.17 *** −0.18 0.46
CD86 0.396 *** 0.244 *** 0.17 *** −0.074 0.76
CCR5 0.29 *** 0.101 0.0522 0.13 * −0.08 0.75

Monocyte CD14 0.406 *** 0.253 *** 0.11 * −0.21 0.38
CD16(FCGR3B) 0.316 *** 0.22 *** 0.15 ** −0.073 0.77
CD115(CSF1R) 0.353 *** 0.178 *** 0.14 ** −0.28 0.24
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Table 2. Cont.

Cell Type Gene Marker None
Cor p Purity

Cor p Tumor
R p Normal

R p

Neutrophil CD66b(CEACAM8) 0.089 0.0721 0.098 0.0609 −0.031 0.53 −0.084 0.73
CD15(FUT4) 0.141 ** 0.047 0.369 0.0041 0.93 −0.33 0.17

CD11b(ITGAM) 0.303 *** 0.119 * 0.018 0.72 −0.29 0.23
Natural killer cell XCL1 −0.01 0.844 −0.005 0.93 −0.06 0.23 0.13 0.59

CD7 0.304 *** 0.131 * 0.15 ** −0.029 0.91
KIR3DL1 0.136 ** 0.049 0.346 0.075 0.13 0.19 0.44

Dendritic cell CD1C(BDCA-1) 0.086 0.0823 −0.054 0.305 −0.023 0.65 −0.02 0.93
CD141(THBD) 0.356 *** 0.322 *** 0.055 0.27 0.37 0.12
CD11c(ITGAX) 0.35 *** 0.181 *** 0.099 * −0.2 0.41

BLCA, Bladder Urothelial Carcinoma; Tfh, Follicular helper T cell; Th, T helper cell; Treg, Regulatory T cell; TAM, tumor-associated
macrophage;.None, correlation without adjustment correlation; Purity, correlation adjusted by purity; Tumor, correlation analysis in the
tumor tissue of TCGA; Normal, correlation analysis in normal tissue of TCGA; Cor, R value of Spearman’s correlation * p < 0.05; ** p < 0.01;
*** p < 0.001.

4. Discussion

CPA4 (carboxypeptidase A4) is a member of the metallocarboxypeptidase family and
is a zinc-containing exopeptidase that catalyzes the release of carboxy-terminal amino
acids [34]. In recent years, CPA4 has shown the potential to be a biomarker in the early
diagnosis with clinical benefit for certain cancers. Some studies revealed that CPA4 is
connected with various cancer cells in its differentiation and growth, including non-small-
cell lung cancer and gastric cancer [35,36]. Furthermore, it is reported that CPA4 is located
on chromosome 7q32 in a region linked to prostate cancer aggressiveness [11], and Sun
suggested that CPA4 is closely associated with colorectal cancer liver metastasis [37].
Although CPA4 expression has been confirmed to have potential significance in multiple
types of cancer, no studies have shown the expression level and clinical significance of CPA4
in BLCA. In this study, based on a pan-cancer analysis, we demonstrated that human CPA4
expression levels were highly expressed in 11 types of cancer with corresponding normal
tissues (Figure 1), which are consistent with the findings in the previous study reported by
Sun and Handa et al. [17,35,38]. We also confirmed that CPA4 is significantly upregulated
in BLCA (Figure 1b). Moreover, a previous study has shown that CPA4 expression was
detected specifically in the cytoplasm of cancer tissue cells, and in the CPA4-suppressed
triple-negative breast cancer (TNBC), viability, and migration were decreased [38]. It can
act as a potential biomarker of poor prognosis in TNBC. It is reported that CPA4 might be
used as an independent poor prognostic factor in esophageal squamous cell carcinoma [39].
In our study, the results in BLCA are consistent. However, one trial showed that CPA4 is a
protective factor in muscle-invasive bladder cancer, contrary to the role of CPA4 in most
cancers [40]. A potential reason for the difference is due to updates in the TCGA database
and different objects. We studied BLCA, while that study investigated muscle-invasive
bladder cancer. We compared the different expression levels of BLCA with age; gender;
T, N, and M stage; pathologic stage; subtype; and OS. Surprisingly, we found that higher
dead events, higher pathologic stages, and the subtype non-papillary were associated with
higher expressions of CPA4 in BLCA, with statistical differences (Figure 2). These findings
suggest that CPA4 may be a potential biomarker of poor prognosis in identifying BLCA
with poor clinical outcome.

Currently, the function of CPA4 in tumors had not been fully reported. Previous trials
suggested that the inhibition of CPA4 could reduce the number of breast cancer cells with
stemness properties and may be a potential target for TNBC therapy [41]. The CircCPA4
sponge let-7 regulates the expression of CPA4 and glioma progression [42]. All of these
results suggest that CPA4 could be regarded as an emerging target or promising biomarker
for cancer therapy. Since the mRNA expression of CPA4 in BLCA was significantly higher
than that in normal bladder tissue, we speculated that CPA4 can be regarded as a biomarker
to detect BLCA from normal controls. To verify the clinical value of CPA4, an ROC curve
analysis was performed to verify the clinical value of CPA4 in the diagnosis of BLCA; our
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results showed that CPA4 may be a potential diagnostic biomarker between bladder cancer
and normal tissues, with an AUC of 0.798 (Figure 2d).

Many studies have shown that CPA4 is a significant biomarker of poor prognosis in
lots of cancers and is associated with the upregulation of CPA4 with poor overall survival.
In hepatocellular carcinoma, AC10364 inhibited cell proliferation and viability through the
abnormal expression of genes including CPA4 associated with tumorigenesis or growth [43].
A paper from Yan suggested that the inhibition of CPA4 might be of great significance for
improving early stage non-small cell lung cancer survival after ablation [43]. However,
the prognostic value in BLCA of CPA4 has not been investigated. With the increased
level of CPA4 related to a higher number of dead events and higher pathologic stages, we
speculated that CPA4 is involved in the development of BLCA. In light of the Kaplan–Meier
curves, we confirmed that the overexpression of CPA4 is associated with shorter overall
survival (OS), disease-specific survival (DSF), and progress-free intervals (PFIs) (Figure 2).
Moreover, by univariate and multivariate regression analysis, we found that high CPA4
expression; high pathologic stage; T, N, and M stage; and the subtype papillary were
negative predictors for OS in BLCA patients and that CPA4 can be an independent factor
correlated with OS (Figure 5). The nomogram more accurately predicted 1-, 3-, and 5-year
OS in BLCA patients and could help to screen and determine those high-risk patients
(Figure 6).

Through GSEA, CPA4 was found to be involved in epidermal cell differentiation,
keratinocyte differentiation, keratinization, etc., indicating CPA4 potentially playing a role
in cell metabolism and protein synthesis (Figure 4).

The PPI network of CPA4 protein, which were constructed by STRING, showed the
relationship of CPA4 in the progression of BLCA such as LXN, CMA1, SGCE, TPSAB1,
etc. (Figure 7). It has been reported that latexin (LXN) can inhibit human CPA4, in
which the expression is induced in prostate cancer cells after treatment with histone
deacetylase inhibitors [44]. The level of CMA1, a key gene, is significantly correlated with
gastric cancer prognosis and infiltration level [45]. SGCE promotes breast cancer stem
cell self-renewal, chemoresistance, and metastasis both in vitro and in vivo by stabilizing
EGFR [45]. Thus, it is speculated that a high expression of CPA4 may increase the degree
of malignancy of tumors through CPA4 interacting proteins, leading to the deterioration of
patients’ conditions.

Moreover, CPA4 plays a specific role in immune infiltration in bladder cancer. Com-
pellingly, we unraveled that several infiltrating immune cells (Th1cell, Th2 cell, T cell
exhaustion, and TAM) were correlated with the expression of CPA4 in bladder cancer
using TIMER2 and GEPIA2. Type 1 T helper (Th1) cells produce interferon-gamma [46]
(Figure 8, Table 2). The dual inhibition of STAT1 and STAT3 activation downregulates the
expression of PD-L1 in cancer cells [47]. T-cell exhaustion is a state of T-cell dysfunction that
occurs in many chronic infections and cancers [48]. Scholars have observed that CTLA4
was identified as a crucial negative regulator of the immune system, which transmits an
inhibitory signal [49].

There are some limitations in our study. First, basic experiments are needed to verify
the results, which were conducted with online public databases. Second, in vivo/vitro
experiments are needed to further investigate the potential mechanism of the effect of
CPA4 on immune invasion in BLCA.

5. Conclusions

In conclusion, our study first demonstrated that CPA4 expression increased in BLCA,
and univariate and multivariate regression analyses and a nomogram were used to prove
that increased CPA4 is correlated with shorter overall survival, which means high risk
factors in BLCA patients. Moreover, we illustrated that a high level of CPA4 was positively
related to a high pathologic grade; high T, N, and M stages; and the subtype papillary. The
immune infiltration in the tumor microenvironment has also been shown to be associated
with CPA4. Collectively, this study partially unveiled that CPA4 in BLCA could be regarded
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as a potential biomarker for diagnosis and prognosis and may play a special role in
immune infiltration.
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Simple Summary: RNA modifications are involved in a variety of diseases, including cancers. Given
the lack of efficient and reliable biomarkers for early diagnosis of ovarian cancer (OV), this study
was designed to explore the role of RNA modification genes (RMGs) in the diagnosis of OV. The
study first selected PUS7 (Pseudouridine Synthase 7) as a diagnostic biomarker candidate through
the analysis of differentially expressed genes using TCGA and GEO data. Then, we evaluated its
specificity and sensitivity using Receiver Operating Characteristic (ROC) analysis in TCGA and
GEO data. The protein expression, mutation, protein interaction networks, correlated genes, related
pathways, biological processes, cell components, and molecular functions were analyzed for PUS7 as
well. The upregulation of PUS7 protein in OV was confirmed by the staining images in HPA and
tissue arrays. In conclusion, the findings of the present study point towards the potential of PUS7 as
the diagnostic marker and therapeutic target for ovarian cancer.

Abstract: RNA modifications are reversible, dynamically regulated, and involved in a variety of
diseases such as cancers. Given the lack of efficient and reliable biomarkers for early diagnosis of
ovarian cancer (OV), this study was designed to explore the role of RNA modification genes (RMGs)
in the diagnosis of OV. Herein, 132 RMGs were retrieved in PubMed, 638 OV and 18 normal ovary
samples were retrieved in The Cancer Genome Atlas (TCGA), and GSE18520 cohorts were collected
for differential analysis. Finally, PUS7 (Pseudouridine Synthase 7) as differentially expressed RMGs
(DEGs-RMGs) was identified as a diagnostic biomarker candidate and evaluated for its specificity
and sensitivity using Receiver Operating Characteristic (ROC) analysis in TCGA and GEO data.
The protein expression, mutation, protein interaction networks, correlated genes, related pathways,
biological processes, cell components, and molecular functions of PUS7 were analyzed as well. The
upregulation of PUS7 protein in OV was confirmed by the staining images in HPA and tissue arrays.
Collectively, the findings of the present study point towards the potential of PUS7 as a diagnostic
marker and therapeutic target for ovarian cancer.
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1. Introduction

Ovarian cancer (OV) is the leading cause of death among gynecologic malignancies
in most developed countries [1,2]. It accounts for an estimated 239,000 new cases and
152,000 deaths worldwide annually [3]. The risk of having ovarian cancer during the
lifetime of a woman is approximately 1 in 78, and the lifetime chance of dying of ovarian
cancer is approximately 1 in 108 [4]. Four out of five OV patients are diagnosed with
advanced stage [5], and out of these, only 30% of patients survive more than 5 years [4].

145



Biology 2021, 10, 1130

The lack of a practical screening strategy and the asymptomatic characteristic of OV
contribute to the late presentation of the disease. Hence, the efficient and early detection of
OV is pivotal to improving the survival of ovarian cancer patients.

Post-transcriptional modifications affect RNA stability, localization, structure, splicing,
or function [6]. Different RNAs have been detected to contain numerous types of mod-
ifications [7,8]. For example, mRNA modifications include N6-methyladenosine (m6A),
inosine (I), 5-methylcytosine (m5C), and 5-hydroxymethylcytosine (hm5C). Deregulated
RNA modifications are reported to be associated with several pathological processes such
as tumorigenesis, cardiovascular diseases, and neurological disorders [9]. RNA modifica-
tion enzymes have been generally considered important decorations for RNAs [10], and
dysregulation and mutation in RNA modification genes are involved in the development
of numerous cancers including lung cancer, bladder cancer, leukemia, prostate cancer,
breast cancer, etc. [11]. For example, Alpha-Ketoglutarate Dependent Dioxygenase (FTO)
was deciphered as a prognosticator for lung squamous cell carcinoma and promoted cell
proliferation and invasion [12]. Methyltransferase Like 3 (METTL3), acting as an oncogene
in lung cancer, upregulated EGFR and TAZ expression and promoted growth, survival, and
invasion of human lung cancer cells [13]. NOP2/Sun RNA Methyltransferase 2 (NSUN2)
was reported to be overexpressed in breast cancer and to be associated with cancer pro-
gression [14]. Elongator Acetyltransferase Complex Subunit 3 (ELP3), responsible for
mcm5s2 modification, has been found to be upregulated in breast cancer and to facili-
tate cancer cell metastasis [15]. tRNA methyltransferase 9B (TRM9L/TRMT9B) has been
shown to be downregulated in breast cancer [16]. Similarly, in renal cell carcinomas, G3BP
Stress Granule Assembly Factor 1 (G3BP1) has been shown to promote tumor progres-
sion and metastasis [17]. Taken together, RNA modification genes play pivotal roles in
human cancers.

Pseudouridine synthases (PUS) are divided into six families (TruA, TruB, TruD, RsuA,
RluA, and Pus10) [18]. PUS7 is the only member of the TruD family that is involved in
the modification of tRNAs, at position Tyr35 in pre-tRNA, at position 13 in cytoplasmic
tRNA, and at numerous nucleotides in mRNAs. PUS7 is the only pseudouridine synthase
to possess a consensus sequence (UGUAR) for substrate recognition [19]. PUS7 was also
reported to be associated with human myeloid malignancies in embryonic stem cells [20].
However, no reports have expounded the role of PUS7 in OV, so far.

In this study, PUS7 was identified as a novel and potential biomarker for early di-
agnosis, using transcriptional profiles in the GEO and TCGA databases, ROC, HPA, and
Oncomine analyses. Protein–protein interaction (PPI); GSEA pathway; and GO analyses,
including the biological process (BP), cell component (CC), and molecular function (MF)
terms, were also performed to provide in-depth insights into PUS7.

2. Materials and Methods
2.1. Data Collection

The RMGs were collected from PubMed according to the keywords “RNA modifica-
tion”. The transcriptome profiles, including datasets GSE18520 and TCGA, were obtained
from GEO (https://www.ncbi.nlm.nih.gov/gds, accessed on 15 October 2019) [21] and
UCSC Xena (https://xena.ucsc.edu/, accessed on 16 October 2019) [22], respectively. A
total of 53 OV and 10 normal cases were enrolled in GSE18520 (platform: GPL570), and 585
OV and 8 normal cases in TCGA (Affymetrix Human Genome U133 Plus 2.0 Array) were
adopted to carry out the following analyses.

2.2. Differential Expression Analysis

The GEO2R, an interactive web tool that facilitates users to compare the gene ex-
pression between different groups of samples in a GEO dataset, was used to identify the
differentially expressed genes (DEGs). The SangerBox was adopted to analyze the TCGA
expression profile of ovarian cancer. A p value < 0.05 and |log2FC| > 1 were used as the
cut-off criteria to screen out DEGs. The DEGs of the two datasets were listed in Supple-
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mentary Table S1. Subsequently, the RMGs and DEGs that overlapped between GSE18520
and TCGA were selected using Venny 2.1 and were used for further analysis. The analysis
of the volcano plot of DEGs in GSE18520 and TCGA, and the heatmaps of DEGs-RMGs in
GSE18520 and TCGA were obtained through the SangerBox web tool.

2.3. PUS7 Protein Level Analysis of OV Tissues in HPA and Tissue Array

The protein expression of PUS7 was analyzed using HPA data [23]. A tissue chip
(HOvaC070PT01) was purchased from SHANGHAI OUTDO BIOTECH CO., LTD. A total
of 12 OV samples and 2 healthy ovary samples, and 65 OV samples and 5 healthy ovary
samples were retrieved from HPA and tissue array, respectively. The one case with an
equivocal staining result was excluded, and the baseline characteristics of the remaining
64 cases of OV tissues in tissue array are described in Supplementary Table S2. The
immunohistochemistry (IHC) staining intensity was graded from 0 to 3 (0, negative; 1,
weak; 2, moderate; and 3, strong). The staining quantity was graded from 0 to 3 (0, none;
1, <25%; 2, 25–75%; and 3, >75%) according to the percentage of positive cells in the HPA
database. The staining quantity was graded from 0 to 4 (0, none; 1, <25%; 2, 25–50%; 3, 50–
75%; and 4, >75%) in the tissue assay. The staining scores were calculated by multiplying
the staining intensity with the staining quantity.

2.4. PUS7 Gene Expression Analysis Using TCGA and GEO Datasets

The PUS7 expression analysis was carried out using TCGA and GSE119056 expression
profiling data. An ROC analysis (the method frequently used for binary assessment) was
subsequently performed to evaluate the effectiveness of the expression level of any gene
of interest in discriminating between OV and healthy samples. The area under the curve
(AUC) value ranged from 0.5 to 1.0, which indicates 50 to 100% discrimination ability.

2.5. PUS7 Gene Expression Analysis Using Oncomine Database

The gene expression of PUS7 was explored using the Oncomine database (https://
www.oncomine.org/resource/main.html, accessed on 25 October 2019) [24]. The Oncomine
database applies a combination of threshold values (p-value) and fold change (FC, tumors
vs. controls) with p ≤ 0.05 and fold change >1.

2.6. Protein–Protein Interaction (PPI) Network Analyses

STRING (https://stringdb.org/, accessed on 22 October 2019) [25] is a database
used to predict and analyze functional interactions between proteins and was used to
identify the functional protein–protein interactions (PPIs) of PUS7. GeneMANIA (http:
//genemania.org/, accessed on 24 October 2019) [26] was used to identify gene networks
embracing PUS7.

2.7. The Mutation and Correlation Analyses of PUS7

The PUS7 mutation was performed through cBioPortal (https://www.cbioportal.org/,
27 October 2019) [27]. The Gene Expression Profiling Interactive Analysis (GEPIA) database
(http://gepia.cancer-pku.cn/, accessed on 27 October 2020) [28] was employed to analyze
the PUS7 correlated genes based on TCGA data.

2.8. Pathways and BP, CC, and MF Analyses

Gene set enrichment analysis (GSEA) was carried out to identify potential cellular
pathways involved with PUS7. The TCGA-OV dataset was divided into a high (25%)
and a low group (75%) based on the PUS7 mRNA expression. Nominal p-value < 0.01
and false discovery rate (FDR) q-value < 0.05 were considered significant for enriched
gene set analysis. Using 312 genes positively correlated (R > 0.3, p < 0.05) with PUS7
derived from the cBioPortal analysis, the BP, CC, and MF analyses were carried out through
the Database for Annotation, Visualization, and Integrated Discovery (DAVID, https:
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//david.ncifcrf.gov/, 19 November 2020) [29] and visualized with bubble diagrams based
on p values < 0.05.

2.9. Statistical Analysis

The statistical analyses were performed using SPSS ver. 26.0. The Student’s t-test and
the rank-sum test were used to evaluate the difference in PUS7 expression between the OV
and normal samples. The ROC curve was constructed using PUS7 expression profiles in
the OV and normal samples by GraphPad Prism 8.0. A p value at < 0.05 was taken as a
measure of statistically significant difference.

3. Results
3.1. The Identification of DEGs-RMGs of OV Data in TCGA and GEO

A total of 132 RMGs (Supplementary Table S3) were retrieved from PubMed. TCGA
AffyU133a expression profiles and GSE18520 cohorts of ovarian cancer were downloaded
from UCSC Xena and the GEO databases, respectively. A total of 1142 and 5215 DEGs
(Supplementary Table S1) were obtained in the TCGA dataset and GSE18520 dataset
between the OV and normal samples through DEO2R and SangerBox-limma analysis,
respectively, and the volcano plots of DEGs are presented in Figure 1A,B. The RMGs and
DEGs from the two cohorts were intersected to screen out the overlapping RMGs and
DEGs for diagnostic biomarker analysis. As a result, two genes named WDR77 and PUS7
were identified as differentially expressed RMGs (Figure 1B). WDR77 was excluded since it
exhibited a contrary expression trend between OV and normal in TCGA and GSE18520
(Figure 2A,B). However, PUS7 showed a consistent high expression in OV rather than
normal cases; thus, PUS7 could be a potential diagnostic biomarker and is subject to
further analyses.

3.2. Expression Validation and Mutation Analysis for PUS7 in Ovarian Cancer

To validate the overexpression of PUS7 in OV rather than normal samples, an On-
comine analysis was performed on ovarian cancer with different pathological types, and
found that the PUS7 expression is highly elevated in OV samples with fold change >1 and
p < 0.05 (as presented in Figure 3A,B and Table 1). Moreover, Figure 3C,D displays the
corresponding ROC curve of PUS7 in the TCGA and GSE18520 datasets, indicating the
remarkable potential of PUS7 to discriminate OVs from normal tissue. The IHC analytic
results showed the overexpression of PUS7 at the protein level (Figure 4A,B). To further
explore the overexpression of PUS7 at the protein level in OV samples, a tissue array
was performed. Typical staining images in the tissue array are exhibited in Figure 4C,
confirming the protein upregulation of PUS7 in OV tissues (Figure 4D). Since mutations in
RNA modification genes have been reported to be associated with several types of human
cancers, the mutation analysis of PUS7 was performed in cBioPortal, demonstrating the
fusion of PUS7 with SRSF Protein Kinase 2 (SRPK2) in serous ovarian cancer (Table 2).
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Figure 1. The identification of DEGs-RMGs using OV data in TCGA and GEO. (A,B) The volcano plot of DEGs between OV
and normal samples in GSE18520 and TCGA data. (C) WDR77 and PUS7 were identified as the overlapping genes of DEGs
in both datasets.

Figure 2. The heatmaps of differentially expressed RMGs. (A) The heatmap of the expression profile of overlapping genes
of RMGs and DEGs in normal tissues and OV tissues in the TCGA dataset. (B) The heatmaps of the expression profile for
overlapping genes of RMGs and DEGs in normal tissues and OV tissues in the GSE18520 dataset.
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Figure 3. The differential expression analysis and ROC analysis of PUS7 in OV and normal tissues.
(A,B) The expression analysis of PUS7 in TCGA and GSE18520 cohorts, respectively. (C,D) The ROC
analysis of PUS7 between OV and normal samples in TCGA and GSE18520 cohorts. AUC is plotted
as sensitivity% vs. 100-specificity%. A p < 0.05 was considered a significant difference.

Table 1. The comparison analysis of PUS7 in ovarian cancer and normal tissue in different cohorts (Oncomine).

Dataset Tumor (Cases) Normal (Cases) Fold Change t-Test p-Value

Lu Ovarian Ovarian Serous
Adenocarcinoma (20)

Ovarian Surface
Epithelium (5) 1.913 9.134 2.28 × 10−9

Lu Ovarian Ovarian Endometrioid
Adenocarcinoma (9)

Ovarian Surface
Epithelium (5) 1.808 5.846 0.0000904

Lu Ovarian Ovarian Mucinous
Adenocarcinoma (9)

Ovarian Surface
Epithelium (5) 1.405 4.275 0.000692

Lu Ovarian Ovarian Clear Cell
Adenocarcinoma (7)

Ovarian Surface
Epithelium (5) 1.457 2.64 0.017

Hendrix Ovarian Ovarian Mucinous
Adenocarcinoma (13) Ovary (4) 1.216 4.26 0.003

Hendrix Ovarian Ovarian Clear Cell
Adenocarcinoma (8) Ovary (4) 1.275 4.44 0.000934

Hendrix Ovarian Ovarian Endometrioid
Adenocarcinoma (37) Ovary (4) 1.299 6.012 0.00098

Hendrix Ovarian Ovarian Serous
Adenocarcinoma (37) Ovary (4) 1.301 6.304 0.001

Yoshihara Ovarian Ovarian Serous
Adenocarcinoma (43) Peritoneum (10) 1.537 3.171 0.003
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Figure 4. PUS7 protein expression was significantly higher in OV tissues than normal tissues. (A) Representative IHC
images of PUS7 in normal (left) and OV (right) tissues in HPA. (B) Statistical analysis of the protein expression of PUS7
according to the staining scores of OV and normal tissues. (C) Representative IHC images of PUS7 in normal (left) and OV
(right) tissues according to tissue microarray. (D) Statistical analysis of the protein expression of PUS7 according to the
staining scores of OV and normal tissues. p < 0.05 was considered significant.

Table 2. The mutation distribution of PUS7 in ovarian cancer according to cBioPortal.

Cancer Type Sample ID Fusion Partner Copy Mutation in Sample

Serious Ovarian Cancer TCGA-24-1469-01 Fusion, SRPK2-PUS7 ShallowDel 223
Serious Ovarian Cancer TCGA-31-1953-01 Fusion, SRPK2-PUS7 Gain 56
Serious Ovarian Cancer TCGA-61-1740-01 Fusion, SRPK2-PUS7 Gain 183

SRPK 2. SRSF Protein Kinase 2; PUS7: Pseudouridine Synthase 7.

3.3. The Interaction Network of PUS7

To explore the PPI and gene networks of PUS7 and its partner, an analysis using the
String and GeneMANIA tools was performed. The PPI analysis results showed that a total
of 10 proteins including NSUN2, NOP2, NOC3L, RBM28, BRIX1, TRUB1, WDR12, PUS1,
DKC1, and NMD3 have interactions with PUS7 (Figure 5A). In the GeneMANIA analysis,
a total of 20 genes named ETFDH, WDR74, THUMPD1, NOC3L, CXXC4, DPYSL2, HSPA4L,
RAD21, STAT3, MRPS2, HMBS, IDE, UBC, HSPH1, HDDC2, CMTR2, ATP6V0A1, and
DRG1 were demonstrated to have physical interactions or genetic interactions or to share
protein domains with PUS7 or were co-expressed or co-located with PUS7 (Figure 5B). The
shared genes of the above two analyses are PUS1 and NOC3L (Figure 5C), where PUS1
was co-expressed with PUS7 [30,31] and NOC3L physically interacted with PUS7 [31–33]
in GeneMANIA, both of which were known to interact with PUS7, according to the String
results. In addition, GEPIA analysis showed that the expression of PUS7 is significantly
correlated with PUS1 (R = 0.57, p-value = 0) and NOC3L (R = 0.61, p-value = 0) (Figure 5D).
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Figure 5. The interaction network and correlation of PUS7. (A) The protein interaction network of PUS7. Ten proteins
including NSUN2, NOP2, NOC3L, RBM28, BRIX1, TRUB1, WDR12, PUS1, DKC1, and NMD3 physically/functionally
interact with PUS7. (B) Twenty genes named ETFDH, WDR74, THUMPD1, NOC3L, CXXC4, DPYSL2, HSPA4L, RAD21,
STAT3, MRPS2, HMBS, IDE, UBC, HSPH1, HDDC2, CMTR2, ATP6V0A1, and DRG1 have physical interactions or genetic
interactions, share protein domains with PUS7, or co-express or co-localize with PUS7. (C) Two genes were shared by
the two networks. (D) The correlation analysis of PUS7 with PUS1 and NOC3L. R > 0.5 plus p < 0.05 was regarded as a
significant correlation.

3.4. The Pathway Enrichment Analysis of PUS7 in Ovarian Cancer

To investigate the pathways that PUS7 may be involved in or may regulate in ovarian
cancer, a GSEA pathway analysis was performed using TCGA data, which was separated
into a high (top 25%) PUS7 group and a low (down 75%) PUS7 group. The top eight
pathways in which PUS7 participates are DNA replication, the cell cycle, mismatch repair,
spliceosomes, homologous recombination, RNA polymerase, aminoacyl tRNA biosynthesis,
and one carbon pool by folate in ovarian cancer (Figure 6). Among the eight pathways,
the top two pathways are DNA replication and the cell cycle, both of which are linked
to ovarian cancer cell proliferation. These results may imply that the overexpression of
PUS7 in ovarian cancer might promote ovarian cancer proliferation via regulation of DNA
replication and the cell cycle.
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Figure 6. The pathway enrichment analysis of PUS7 in ovarian cancer. GSEA pathway analysis using TCGA ovarian cancer
data, which was separated to a high (top25%) PUS7 group and a low (down75%) PUS7 group. Eight top pathways in which
PUS7 participates were DNA replication, the cell cycle, mismatch repair, spliceosomes, homologous recombination, RNA
polymerase, aminoacyl, tRNA biosynthesis, and one carbon pool by folate in ovarian cancer.

3.5. Gene Ontology (GO) Analyses of PUS7 in Ovarian Cancer

To further clarify the GO terms of BP (biological processes), CC (cellular components)
and MF (molecular functions) of PUS7, a total of 312 genes (Supplementary Table S4)
positively related to PUS7 (R > 0.3, p < 0.0001) according to the TCGA ovarian cancer
data through the cBioPortal database were subjected to DAVID analysis. The results
showed that biological processes in which PUS7 mainly participates include the regulation
of DNA templates and transcription, rRNA processing, tRNA export from nuclei, the
regulation of glucose transport, the intracellular transport of viruses, mitotic nuclear
envelope disassembly, viral processes, RNA processing, the regulation of cellular response
to heat, gene silencing by RNA, and the positive regulation of gene expression (Figure 7A).
The cellular components affected by PUS7 include the nucleoplasm, nucleolus, nucleus,
small subunit processomes, nuclear envelope, and nuclear membrane (Figure 7B). The
molecular functions of PUS7 include poly(A) RNA binding, nucleic acid binding, helicase
activity, ATP binding, ATP-dependent RNA helicase activity, structural constituents of a
nuclear pore, DNA binding, RNA binding, protein binding, single-stranded DNA binding,
nucleocytoplasmic transporter activity, DNA replication origin binding, ATP-dependent
helicase activity, and nucleotide binding (Figure 7C).
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Figure 7. The GO analyses of PUS7 in ovarian cancer. The bubble diagrams were analyzed using PUS7-related genes and
exhibited the biological processes (A), cellular components, (B) and molecular functions (C) of PUS7.

4. Discussion

It was estimated that there were 22,530 new cases and 13,980 deaths due to ovarian
cancer in the United States in 2019 [34]. Ovarian cancers are often diagnosed late, when
the disease has progressed to advanced stages. Hence, an efficient and reliable diagnostic
marker is very necessary to facilitate clinical diagnosis and to prolong the survival time for
OV. RNA modifications are reported to play vital roles in human diseases, including cancer.
For example, m6A, a new star of RNA modifications, is associated with tumorigenesis,
tumor proliferation and differentiation and functions as oncogenes or anti-oncogenes in
malignant tumors [35]. For example, m6A plays a pivotal role in ovarian cancer progres-
sion [36]. Recent advances in human Mendelian diseases have brought focus to human
PUS genes as a type of RMG in clinical medicine [37]. PUS7-mediated pseudouridylation
could “activate” a class of tRNA-derived small RNAs to regulate protein synthesis and
stem cell fate [20]. Additionally, PUS7 is also reported to be a potential biomarker for
glioma [38].

In this study, we investigated dysregulated RMGs in ovarian cancer and identified
PUS7 as a novel potential biomarker for the diagnosis of OV. ROC analysis acting as an
efficient method has been commonly used to determine the accuracy and specificity of
medical imaging techniques and non-imaging diagnostic tests in various settings involving
disease screening, prognosis, diagnosis, staging, and treatment [39]. Herein, ROC analysis
aimed at discriminating cancer from normal tissue was performed to evaluate the sensitivity
and specificity of PUS7 in GEO and TCGA data. AUC is a global measure of the ability of a
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test to discriminate whether a specific condition is present [40]. In this study, an AUC score
over 0.9 in an ROC analysis was obtained, suggesting the potent discriminating potency
of PUS7 (AUC = 0.9404, p < 0.0001) in ovarian cancer. In addition to PUS7 upregulation
in the TCGA and GEO datasets, the Oncomine database analysis and IHC results further
validated the promising diagnostic role of PUS7 in OV.

PUS7 has never been reported in ovarian cancer. To rationalize the vital role of
PUS7 in OV, we explored the proteins interacting with PUS7, which may partially help
explain PUS7 function in tumor diagnosis, tumorigenesis, and development. The PPI and
gene network analyses identified PUS7 interacting partners, including NOC3L and PUS1,
which are also not reported in ovarian cancer, although several reports have revealed that
NOC3L regulates the proliferation and tumorigenesis of gastric cancer [41], and NOC3L
is associated with an increased risk of gastric cancer in the Chinese Han population [42].
For PUS1, previous reports demonstrated that it is related to sideroblastic anemia [43], and
no association of PUS1 with cancer was ever shown, suggesting the novelty of the protein
interaction. To further explore the signaling pathway of PUS7 in ovarian cancer, the GSEA
pathways analysis demonstrated that DNA replication and the cell cycle are the top two
pathways that PUS7 regulated. These results point towards the role of PUS7 in ovarian
cancer proliferation via regulation of DNA replication and the cell cycle. However, this
hypothesis needs further experiments to be validated.

5. Conclusions

In conclusion, the findings of the present study revealed PUS7 as a novel and prospec-
tive biomarker at the RNA and protein levels for ovarian cancer. Further analysis indicated
that PUS7 may interact with NOC3L and PUS1 to regulate ovarian cancer proliferation via
modulation of DNA replication and the cell cycle.
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Simple Summary: Circulating tumor DNA profiling by next-generation sequencing (NGS) is be-
coming essential for guiding targeted therapies. However, it remains challenging. Here, we show
that variant allele fraction and the median of absolute values of all pairwise differences impact the
agreement between digital PCR and NGS calls. Therefore, we propose a new parameter, named
R-score, which integrates both variables, and we evaluate its usefulness for optimizing NGS variant
calling.

Abstract: Next-generation sequencing (NGS) has enabled a deeper knowledge of the molecular
landscape in non-small cell lung cancer (NSCLC), identifying a growing number of targetable
molecular alterations in key genes. However, NGS profiling of liquid biopsies risk for false positive
and false negative calls and parameters assessing the quality of NGS calls remains lacking. In this
study, we have evaluated the positive percent agreement (PPA) between NGS and digital PCR calls
when assessing EGFR mutation status using 85 plasma samples from 82 EGFR-positive NSCLC
patients. According to our data, variant allele fraction (VAF) was significantly lower in discordant
calls and the median of the absolute values of all pairwise differences (MAPD) was significantly
higher in discordant calls (p < 0.001 in both cases). Based on these results, we propose a new
parameter that integrates both variables, named R-score. Next, we sought to evaluate the PPA for
EGFR mutation calls between two independent NGS platforms using a subset of 40 samples from the
same cohort. Remarkably, there was a significant linear correlation between the PPA and the R-score
(r = 0.97; p < 0.001). Specifically, the PPA of samples with an R-score ≤ −1.25 was 95.83%, whereas
PPA falls to 81.63% in samples with R-score ≤ 0.25. In conclusion, R-score significantly correlates
with PPA and can assist laboratory medicine specialists and data scientists to select reliable variants
detected by NGS.

Keywords: NGS; ctDNA; VAF; liquid biopsy; filtering; variant calling

1. Introduction

The analysis of circulating tumor DNA (ctDNA) has become an attractive approach
for non-invasive biomarker testing as well as for real-time monitoring of cancer patients;
its usefulness is especially remarkable in lung cancer patients [1–4]. These tumors are

159



Biology 2021, 10, 954

mostly diagnosed at advanced stages, in elderly patients with a median age at diagnosis
of approximately 65 years [5], and they are difficult to access owing to their anatomical
location, which makes it sometimes difficult to obtain sufficient material for molecular
analysis [6]. Moreover, in the last decades, there has been a major paradigm shift in the
management of metastatic non-small cell lung cancer (NSCLC), with the advent of targeted
therapies for patients harbouring druggable alterations such as EGFR or BRAF mutations,
as well as ALK, ROS, and RET rearrangements, and so on [7]. Furthermore, novel KRAS
inhibitors constitute a promising therapeutic approach for advanced NSCLC patients [8,9].
Specifically, 30% of NSCLC tumours harbour activating mutations in the EGFR gene, which
identify patient candidates to receive tyrosine kinase inhibitors (TKIs) [10]. For this subset
of patients, liquid biopsy has been proven to be extremely useful, saving time in the process
of diagnosis. In this way, guidelines recommend testing for the T790M EGFR mutation in
the blood after progression to an EGFR TKI as a first choice, and re-biopsies are suggested
in the case of a negative result in order to identify patients that can benefit from osimertinib
(a third-generation TKI) [11]. Moreover, ctDNA plasma levels have been shown to be of
prognostic significance for these patients, and monitoring EGFR mutation levels in the
plasmas has been proven useful for response to treatment monitoring [5,12,13].

Next-generation sequencing (NGS) enables simultaneous detection of multiple al-
terations in a single test. Incorporation of unique molecular identifiers (UMIs), random
nucleotide sequences assigned to each DNA fragment prior to PCR amplification dur-
ing library preparation, enables the detection, quantification, and sequencing of unique
DNA fragments with high-resolution, allowing the identification and removal of amplifica-
tion artifacts arising from library preparation and the reduction of the limit of detection
(LOD) [14,15]. Nonetheless, ctDNA is present at very low levels in the plasma and its
profiling is still challenging with working conditions sometimes close to the edge of this
technology. Therefore, there is a need to develop new parameters assessing the quality of
the reads in order to avoid false positive and false negative calls.

Here, we assess the impact of two parameters, namely, variant allele fraction (VAF) and
median of the absolute values of all pairwise differences (MAPD), separately and together
on variant calls when using the Oncomine Pan-Cancer Cell-Free Assay™ (ThermoFisher
Scientific®, Palo Alto, CA, USA) by evaluating the agreement between digital PCR (dPCR)
and NGS for the assessment of EGFR mutation status. Based on our data, we propose a new
parameter named R-score and, finally, we evaluate the agreement in NGS calls between
two independent NGS methods according to R-score.

2. Materials and Methods
2.1. Patients and Samples

A total of 85 samples from advanced EGFR-positive NSCLC patients were recruited
upon disease progression to a first-line with a TKI, between February 2016 and March
2019. The study was approved by the Hospital Puerta de Hierro Ethics Committee. All
patients provided the appropriate written informed consent to participate in the study
prior to enrolment. Briefly, eligible patients were both male and female, age >18 years, with
a pathologically confirmed diagnosis of stage IV NSCLC harbouring an EGFR mutation.
Blood samples were collected in 8.5 mL PPTTM tubes (Becton Dickinson, Franklin Lakes,
NJ, USA).

2.2. Laboratory Procedures

Two independent laboratories were involved in this study: laboratory 1 (L1) and
laboratory 2 (L2). Samples for which we did not have available at least 8 mL of plasma
(N = 45) were processed only by L1 exclusively, and they were used to test the agreement
between dPCR and NGS exclusively. For 40 plasma samples, we had available at least 8 mL
of plasma, and samples were divided into two aliquots, which were then distributed to L1
and L2. L1 carried out dPCR assays and NGS analysis using the Oncomine Pan-Cancer
Cell-Free Assay and an Ion S5 sequencer (ThermoFisher Scientific®, Palo Alto, CA, USA),
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whereas L2 carried out NGS with QIAact Lung DNA UMI Panel using the GeneRead
Platform (QIAgen, Valencia, CA, USA).

Isolation of plasma was achieved by two consecutive centrifugations at room temper-
ature, the first one at 1500× g for 10 min and the second at 5000× g for 20 min. cfDNA
was extracted with the QIAamp Circulating Nucleic Acid Kit (QIAgen, Valencia, CA, USA)
according to the manufacturer’s protocol (QIAamp Circulating Nucelic Acid Handbook
10/2013). DNA concentration was measured by Qubit 2.0 Fluorometer with Qubit 1X
dsDNA HS Assay Kit (ThermoFisher Scientific®, Palo Alto, CA, USA) and fragment length
and sample quality were evaluated using the Agilent High Sensitivity DNA Kit using
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Supplementary
Figure S1 shows the observed size of the cfDNA fragments, which was approximately
180 bp. cfDNA was stored at −80 ◦C until further analysis.

In order to detect somatic mutation in the EGFR gene, dPCRs were performed us-
ing predesigned TaqMan® dPCR assays in a QuantStudio® 3D Digital PCR (Applied
Biosystems®, South San Francisco, CA, USA). dPCR reaction was carried out in a final vol-
ume of 18 µL; this reaction included 8.55 µL of template cfDNA, 9 µL of 20X QuantStudio®

Master Mix, and 0.45 µL 40X TaqMan assay. Subsequently, 14.5 µL of final reaction volume
was loaded to QuantStudio® 3D digital PCR 20K chip. The thermal cycler conditions
were as follows: initial denaturalization at 96 ◦C for 10 min, 40 cycles at 56 ◦C for 2 min,
98 ◦C for 30 s, 72 ◦C for 10 min, and finally samples were maintained at 22 ◦C for at least
30 min. Chips were read using QuantStudio® 3D Digital PCR instrument. The results
were analysed with QuantStudio® 3D AnalysisSuite™ Cloud. Default call assignments
for each data cluster were manually adjusted when needed. A positive and a negative
control were included in every run. The LOD and limit of quantitation of the dPCR
TaqMan® assays were estimated based on the standard deviation of the response and the
slope according to the recommendations of The International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human Use; ICH Q2 (R1) guidelines
(validation of analytical procedures: text and methodology), and they have been published
elsewhere [13]. The sensitivity and specificity of the assays, considering tissue genotyping
to be the gold standard, have also been reported [16].

The presence of EGFR mutations was evaluated in parallel by two independent
NGS platforms, Ion S5™ XL and GeneReader™, and using two different gene panels,
Oncomine™ Pan-Cancer Cell-Free Assay (ThermoFisher Scientific®, Palo Alto, CA, USA)
and the QIAact Lung DNA UMI Panel (QIAgen, Valencia, CA, USA), respectively. The
comparison was performed using 40 samples.

For NGS analysis using the Oncomine Pan-Cancer Cell-Free Assay (NGS-Oncomine),
library preparation was performed with a minimum input of 10 ng of cfDNA according
to manufacturer’s instructions. The final pool was loaded in an Ion 550™ Chip using Ion
Chef™ Instrument (ThermoFisher Scientific®, Palo Alto, CA, USA). Finally, loaded chips
were sequenced on an Ion GeneStudio™ S5 Sequencer (ThermoFisher Scientific®, Palo Alto,
CA, USA). Torrent Suite Software (v5.12) was used to perform raw sequencing data analysis.
The CoverageAnalysis (v. 5.12.0.0) plugin was used for sequencing coverage analysis
(ThermoFisher Scientific®, Palo Alto, CA, USA). As recommended by the manufacturer,
a median read coverage >25,000 and median molecular coverage >2500 were required
to detect a variant with a VAF of 0.1%. Raw reads were aligned to the human reference
genome hg19. Variant calling, annotation, and filtering were performed on the Ion Reporter
(v5.10) platform using the OncomineTagSeq Pan-Cancer Liquid Biopsy workflow (v2.1).
Briefly, sequencing reads were mapped to defined target regions (Oncomine Pan-Cancer
DNA Regions v1.0 (5.10)) and subjected to variant calling using Oncomine Pan-Cancer
Annotations v1r.0.

For NGS analysis using the QIAact Lung DNA UMI Panel (NGS-GeneReader), li-
braries were performed with an input of 16.75 µL and ~10–70 ng of purified cfDNA,
according to manufacturer’s instructions. Then, libraries were quantified using a QIAxcel
Advanced System and Qubit dsDNA HS Assay kit in order to pool in batches of six samples.
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GeneRead Clonal Amp Q Kit was used to clonal amplification of pooled libraries. After
bead enrichment, pooled libraries were sequenced using the GeneRead UMI Advanced Se-
quencing Q kit in a GeneReader instrument. Finally, FASTQ files alignment was performed
using hg19 as reference genome, and variant calling and report generation of sequencing
results were performed by QIAGEN Clinical Insight Analyze software.

2.3. Parameters

VAF was defined as the number of mutant molecules at a specific nucleotide location
relative to the sum of total DNA molecules (mutant + wild type). VAF was provided
for each detected mutation after dPCR and NGS analysis. In dPCR analysis, VAF was
calculated, following the next equation, by QuantStudio® 3D AnalysisSuite™ Cloud:

VAF = (FAMcopies/µL)/(FAMcopies/µL + VICcopies/µL) × 100 (1)

where FAM copies = number of reads of mutated sequences and VIC copies = number of
reads of wild-type sequences.

In the case of NGS-Oncomine, VAF was calculated, using the CoverageAnalysis (v.
5.12.0.0) plugin. Likewise, using NGS-GeneReader, VAF was calculated with QIAGEN
Clinical Insight Analyze software in the same way as NGS-Oncomine.

NGS-Oncomine platform also provides a quality sequencing parameter, MAPD, as
a pair is defined as adjacent amplicons in terms of genomic distances. Assuming that
adjacent amplicons in the genome most likely have the same underlying copy number in
a sample, the difference between the log2c(read count ratio) values against the reference
baseline for all adjacent amplicons contains information for the noise level of the data. The
MAPD is an estimation of coverage variability between adjacent amplicons. The default
threshold is 0.5 [17]. As a result, sample results with an MAPD above this value should be
reviewed with caution

MAPD = median(|xi+1−xi|) (2)

where xi = log2 ratio for marker i.

2.4. Statistical Analysis

The primary objective was to evaluate the impact of VAF and MAPD parameters,
separately and together, firstly on the positive percent agreement (PPA) between dPCR and
NGS (NGS-Oncomine) and secondly on the PPA between two independent NGS platforms
(NGS-Oncomine and NGS-GeneReader).

Each mutation was treated as a separate measurement for statistical analysis; therefore,
137 measurements were used in this study.

The correlation between VAFs measured by dPCR and NGS was assessed with simple
linear regression analysis, using the concordance correlation coefficient (p) and Spearman’s
coefficient (r). For comparisons between numerical variables, Mann–Whitney U test was
used. Comparisons between categorical variables were made using Fisher’s exact test or
chi-squared test, whichever was most appropriate.

To describe how often NGS and dPCR methods agreed on EGFR calls, as well as
concordance between the two different NGS platforms, we calculated the PPA.

The threshold of p < 0.05 was considered as statistically significant. Statistical software
used was Stata v16.0 (StataCorp 2019. Stata Statistical Software Release 16. College station,
TX: StataCorp LLC) and R version 3.6.3. (R core team 2020. The R Foundation for Statistical
Computing Platform, Vienna, Austria) URL https://www.R-project.org/ (last accessed on
26 July 2021).

3. Results
3.1. EGFR Mutation Detection by dPCR and NGS-Oncomine

EGFR mutation status was evaluated in 85 plasma samples from 82 EGFR-positive
NSCLC patients in parallel by dPCR and NGS-Oncomine. All samples used in this study
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had detectable EGFR driver mutations by dPCR. The mutation detected by dPCR was
always concordant with the EGFR mutation detected on the pre-treatment tissue sample as
reported by pathologists. Among the total number of detected EGFR mutations (N = 137),
62% were activating mutations, among which the most common mutations were exon 19
deletions (55.3%) or L858R (36.5%). The rest of the EGFR driver mutations were L861Q
(3.5%), G719A (2.3%), S768I (1.2%), and exon 20 insertions (1.2%). Regarding T790M
resistance mutation, 61.2% of samples were identified as T790M positive by dPCR. Data for
T790M status in tissue samples were not available. Of note, 42 (30.6%) mutations detected
by dPCR were not found using NGS-Oncomine. When analysing mutations separately,
a lower PPA was measured in L858R mutation (67.74%; 95%CI 50.31–85.17) compared
with exon 19 deletion (76.60%; 95%CI 64.03–89.16). Less common EGFR mutations such as
L861Q, S768I, and G719A were detected by both methods. It should be noted that the exon
20 insertion (c.2310_2311insGGT; p.D770_N771insG) was not found by NGS-Oncomine.

Finally, regarding T790M resistance mutation, 52 (61.2%) samples were identified
as T790M positive by dPCR, whereas only 28 (33%) samples were T790M positive using
NGS-Oncomine (53.85% of agreement; 95% CI 39.83–67.86).

3.2. VAF and MAPD Involvement in the Agreement between dPCR and NGS-Oncomine Calls

Overall, there were 91 concordant calls by both technologies and 46 discordant calls
with a PPA of 66.42% (95% CI 58.42–74.43).

First, we evaluated the overall correlation between VAF values assessed by dPCR
and NGS-Oncomine when the mutation was detected by both methods. According to our
data, VAFs measured by NGS-Oncomine were significantly correlated to VAFs assessed by
dPCR (r = 0.89; p < 0.001) (Figure S2). Next, VAFs values and MAPD scores were compared
between discordant and concordant calls. Overall, dPCR VAFs values were significantly
lower in discordant calls compared with concordant calls (p < 0.001) (Figure 1A). Specifically,
1.1% and 10.9% of concordant calls have VAF ≤ 0.1% and ≤ 0.5%, respectively, compared
with 8.9% and 46.7% in discordant calls. Likewise, MAPD score was significantly higher in
discordant samples compared with concordant samples (p < 0.001) (Figure 1B).
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 Figure 1. Boxplot. (A) VAF values in concordant and discordant calls (dPCR-NGS-Oncomine) in
logarithmic scale. (B) MAPD values in concordant and discordant calls (dPCR-NGS-Oncomine) in
logarithmic scale.

Next, we sought to evaluate the combined effect of VAF and MAPD parameters. Dot
plots in Figure 2 show the concordance between dPCR and NGS-Oncomine on variant
calls according to VAF and MAPD parameters. Discordant calls are coloured in red and
concordant calls are coloured in blue. Figure 2A is divided into four quadrants using
as cut-offs the logarithmic median values of VAF and MAPD according to our data set.
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As shown, the highest PPA (96.9%; 95%CI: 83.8–99.9%) was observed in the lower-right
quadrant. Conversely, the PPA descended as much as 27.6% (95%CI: 12.7–47.2%) for calls
clustered in the upper-left quadrant, meaning that, the higher the VAF and the lower the
MAPD, the higher the PPA. Similar results were obtained when quadrants were divided
using thresholds according to technical specifications for each parameter (Figure 2B). As
illustrated, PPA between NGS and dPCR calls was 0% (95% CI: 0–60.2%) when using a cut
off of ≤−0.301 for VAF and >−0.301 for MAPD, whereas in the opposite conditions, the
PPA increased to 84.9% (95% CI: 74.5–90.9%).
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Figure 2. Dot plot showing the agreement in variant calls between dPCR—NGS-Oncomine, according to VAF and MAPD.
VAF and MAPD values, both in logarithmic scale, are represented in the x and y-axis, respectively. Concordant calls are
coloured in blue, while discordant calls are coloured in red. PPA for calls clustered in each quadrant is shown. (A) Dot plot
divided into four quadrants using as cut-off the logarithmic median values of VAF and MAPD. In this way, the median
VAF in our data set was 1.87, which is 0.272 on logarithmic scale, and the median MAPD was 0.28, which corresponds to
−0.553 on logarithmic scale. (B) Dot plot divided into four quadrants according to technical specifications. MAPD threshold
was selected following Ion Reporter recommendations [17]. According to the manufacturer, a value of MAPD above 0.5
is considered too high. Samples with high MAPD values have low coverage uniformity, which can result in missed or
erroneous variant calls. The VAF threshold was chosen based on results from previous studies [18]. Therefore, both axes
were divided using −0.301 value for VAF and MAPD (log(0.5)).

3.3. R-Score Is a Useful Parameter to Select Reliable Variant Calls

Based on previous observations, we proposed a new parameter, named R-score, which
is defined as follows:

R-score = log(MAPD/VAF) (3)

In order to evaluate the utility of R-score for assessing the quality of an EGFR variant
call, we evaluated the PPA between NGS-Oncomine and dPCR and NGS-Oncomine and
NGS-GeneReader according to R-score.

First, we assessed the correlation between VAF values from NGS-Oncomine and
NGS-GeneReader when the mutation was detected by both methods. According to our
data, VAFs values from NGS-Oncomine significantly correlated with VAFs from NGS-
GeneReader (r = 0.80; p < 0.001).

R-score was then calculated for each variant detected by NGS-Oncomine using the VAF
and MAPD provided by the corresponding analysis software. MAPD and R-score values
were significantly higher in discordant calls between dPCR and NGS-Oncomine compared
with concordant calls (p < 0.001) (Figure 3A and Table S1). Conversely, VAF values were
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significantly lower in discordant calls between dPCR and NGS-Oncomine (Table S1).
Subsequently, the PPA for EGFR variant calling between both NGS platforms was evaluated
using different arbitrary R-score cut-offs (−1.25, −1, −0.75, −0.5, −0.25, 0, and 0.25). As
shown in Figure 3C, there was a clear linear correlation between the PPA and the R-score
(r = 0.97; p < 0.001). Of note, the PPA of samples with an R-score ≤ −1.25 was 95.83%,
whereas PPA falls to 81.63% in samples with an R-score ≤ 0.25 (Figure 3B). A complete list
of all mutations detected according to the NGS platform is available in Table S2.
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analysis software. (B) Positive percent agreement (PPA) with corresponding 95% confidence interval (95%CI) between NGS-
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−1.25, −1, −0.75, −0.5, −0.25, 0, and 0.25, and PPA between both NGS platforms was estimated. (C) Correlation between
PPA values and R-score cut-off values. As shown, there was a linear correlation between PPA and the R-score cut-off values;
the lower the R-score, the greater the PPA. Abbreviations: R = Spearman correlation coefficient.

4. Discussion

Biomarker testing in NSCLC has been demonstrated to improve survival
outcomes [19–21]. Of note, the number of biomarkers that need to be tested is constantly in-
creasing in NSCLC as new targeted therapies are becoming available [7]. Unlike PCR-based
platforms, which only allow a few mutations to be analyzed, NGS enables for interrogating
multiple genomic alterations simultaneously in a single test. Indeed, National Comprehen-
sive Cancer Network guidelines recommend that, when feasible, biomarker testing should
be performed via a broad, panel-based approach by NGS [2]. However, NGS profiling of
liquid biopsies, although feasible [22,23], remains challenging. On one hand, the sensitivity
of the assays remains a major limitation [24], and approaches aimed to increase sensitivity
might risk false positive calls. Moreover, it has been reported that tumor mutational burden
(TMB) analysis, which has been proposed as a predictive biomarker for the identification of
patients most likely to respond to immune checkpoint inhibitors, through liquid biopsies,
is feasible [25]. TMB is optimally assessed by whole-exome sequencing (WES) [26], but
targeted panels provide a time-effective and cost-effective alternative [27]. Nevertheless,
TMB analysis requires sequencing over 0.5 Mb [28,29]. In this scenario, it is of particular
interest to reduce as much as possible the risk of false-positive and false-negative calls.
Thus, new parameters evaluating the quality of NGS calls are needed. A recent compre-
hensive study, in which several methodologies for the analysis of circulating tumor DNA
were compared, revealed that the agreement between platforms significantly improved
when discarding samples with VAF ≤ 0.5% [16]. Likewise, a study comparing BEAM-
ing and droplet dPCR for ctDNA analysis using plasma samples from advanced breast
cancer patients enrolled in the PALOMA-3 trial showed that discordant calls occurred
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at VAFs < 1% [30]. In the view of our findings, we hypothesized that the combination of
VAF with MAPD could further improve the assessment of the reliability of a variant call.
According to our data, MAPD was significantly higher in discordant samples compared
with concordant calls (p < 0.001), while VAF values were significantly lower in discordant
calls compared with concordant samples (p < 0.001). Remarkably, as shown in Figure 2,
the highest PPA (96.9%; 95%CI: 83.8–99.9%) was observed in the lower-right quadrant.
Conversely, the PPA descended as much as 27.6% (95%CI: 12.7–47.2%) for calls clustered in
the upper-left quadrant.

Our results are limited to EGFR locus as the cohort included exclusively EGFR-positive
NSCLC patients. Nonetheless, mutations in other key genes were found. Specifically, in
our data set, there were two samples testing positive for KRAS mutations by both NGS
platforms (data not shown). Larger cohorts assessing the utility R-score for assessing the
reliability of variant calls in other loci different may be of particular interest.

Taken together, we propose the R-score defined as the log(MAPD/VAF). According to
our results, EGFR variants with positive R-score are particularly sensitive to genotyping
errors. As presented in Figure 3, a significant correlation was found between PPA and the
R-score cut-off values, indicating that R-sore can be useful to discriminate between true
and false calls in the EGFR locus.

5. Conclusions

VAF and MAPD have an impact on EGFR variant calling. Combining this information
in a score (R-score) can further improve the assessment of the reliability of a variant call.
Using a dataset of 85 EGFR-positive NSCLC patients, we find that EGFR variants with
positive R-score are particularly sensitive to erroneous variant calls in the EGFR gene.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10100954/s1, Figure S1: Two samples electropherogram showing a 180 bp peak
corresponding to low fragment cfDNA and peaks corresponding to mono-, di-, and tri-nucleosomes.
(B) Gel-like image of cfDNA samples an-alysed with Bioanalyzer 2100; Figure S2: Correlation between
variant allele fraction assessed by dPCR and Oncomine-NGS. Linear regression line is shown in black
and the 95% confidence interval is shaded in grey. Pearson’s correlation coefficient and p-value are
shown in the graph; Table S1: Effect size and p-values for VAF, MAPD, and R-score parameters when
assessing significant differences between concordant and discordant calls; Table S2: Table with all
EGFR mutations detected by dPCR, NGS-Oncomine, and NGS-GeneReader with VAF values for each
assay and cfDNA concentration.
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M.; García-Girón, C.; Dómine, M.; et al. Analysis of circulating tumour DNA to identify patients with epidermal growth factor
receptor–positive non-small cell lung cancer who might benefit from sequential tyrosine kinase inhibitor treatment. Eur. J. Cancer
2021, 149, 61–72. [CrossRef] [PubMed]

6. McLean, A.; Barnes, D.; Troy, L. Diagnosing Lung Cancer: The Complexities of Obtaining a Tissue Diagnosis in the Era of
Minimally Invasive and Personalised Medicine. J. Clin. Med. 2018, 7, 163. [CrossRef]

7. Schrank, Z.; Chhabra, G.; Lin, L.; Iderzorig, T.; Osude, C.; Khan, N.; Kuckovic, A.; Singh, S.; Miller, R.J.; Puri, N. Current
molecular-targeted therapies in NSCLC and their mechanism of resistance. Cancers 2018, 10, 224. [CrossRef] [PubMed]

8. Hallin, J.; Engstrom, L.D.; Hargi, L.; Calinisan, A.; Aranda, R.; Briere, D.M.; Sudhakar, N.; Bowcut, V.; Baer, B.R.; Ballard, J.A.;
et al. The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse
models and patients. Cancer Discov. 2020, 10, 54–71. [CrossRef] [PubMed]

9. Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger,
C.S.; et al. KRAS G12C Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [CrossRef]
[PubMed]

10. Stewart, E.L.; Tan, S.Z.; Liu, G.; Tsao, M.S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC
patients with EGFR mutations-a review. Transl. Lung Cancer Res. 2015, 4, 67–81. [PubMed]

11. Dal Maso, A.; Lorenzi, M.; Roca, E.; Pilotto, S.; Macerelli, M.; Polo, V.; Cecere, F.L.; Del Conte, A.; Nardo, G.; Buoro, V.; et al.
Clinical Features and Progression Pattern of Acquired T790M-positive Compared With T790M-negative EGFR Mutant Non–
small-cell Lung Cancer: Catching Tumor and Clinical Heterogeneity Over Time Through Liquid Biopsy. Clin. Lung Cancer 2020,
21, 1–14.e3. [CrossRef]

12. Romero, A.; Serna-Blasco, R.; Alfaro, C.; Sánchez-Herrero, E.; Barquín, M.; Turpin, M.C.; Chico, S.; Sanz-Moreno, S.; Rodrigez-
Festa, A.; Laza-Briviesca, R.; et al. ctDNA analysis reveals different molecular patterns upon disease progression in patients
treated with osimertinib. Transl. Lung Cancer Res. 2020, 9, 532–540. [CrossRef]

13. Provencio, M.; Torrente, M.; Calvo, V.; Pérez-Callejo, D.; Gutiérrez, L.; Franco, F.; Pérez-Barrios, C.; Barquín, M.; Royuela, A.;
García-García, F.; et al. Prognostic value of quantitative ctDNA levels in non small cell lung cancer patients. Oncotarget 2018, 9,
488–494. [CrossRef] [PubMed]

14. Salk, J.J.; Schmitt, M.W.; Loeb, L.A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal
mutations. Nat. Rev. Genet. 2018, 19, 269–285. [CrossRef]

15. Kivioja, T.; Vähärautio, A.; Karlsson, K.; Bonke, M.; Enge, M.; Linnarsson, S.; Taipale, J. Counting absolute numbers of molecules
using unique molecular identifiers. Nat. Methods 2012, 9, 72–74. [CrossRef] [PubMed]

16. Romero, A.; Jantus-Lewintre, E.; García-Peláez, B.; Royuela, A.; Insa, A.; Cruz, P.; Collazo, A.; Pérez Altozano, J.; Vidal, O.J.; Diz,
P.; et al. Comprehensive cross-platform comparison of methods for non-invasive EGFR mutation testing: Results of the RING
observational trial. Mol. Oncol. 2021, 15, 43–56. [CrossRef] [PubMed]

17. Ion Reporter™ Software 5.12 USER GUIDE. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/
MAN0018032_IonReporterSoftware_5_12_UG.pdf (accessed on 5 July 2021).

18. Deveson, I.W.; Gong, B.; Lai, K.; LoCoco, J.S.; Richmond, T.A.; Schageman, J.; Zhang, Z.; Novoradovskaya, N.; Willey, J.C.; Jones,
W.; et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat. Biotechnol.
2021, 1–14. [CrossRef]

19. Le Tourneau, C.; Delord, J.P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.A.;
Mauborgne, C.; et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for
advanced cancer (SHIVA): A multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015,
16, 1324–1334. [CrossRef]

167



Biology 2021, 10, 954

20. Fisher, K.E.; Zhang, L.; Wang, J.; Smith, G.H.; Newman, S.; Schneider, T.M.; Pillai, R.N.; Kudchadkar, R.R.; Owonikoko, T.K.;
Ramalingam, S.S.; et al. Clinical Validation and Implementation of a Targeted Next-Generation Sequencing Assay to Detect
Somatic Variants in Non-Small Cell Lung, Melanoma, and Gastrointestinal Malignancies. J. Mol. Diagn. 2016, 18, 299–315.
[CrossRef]

21. Cottrell, C.E.; Al-Kateb, H.; Bredemeyer, A.J.; Duncavage, E.J.; Spencer, D.H.; Abel, H.J.; Lockwood, C.M.; Hagemann, I.S.;
O’Guin, S.M.; Burcea, L.C.; et al. Validation of a next-generation sequencing assay for clinical molecular oncology. J. Mol. Diagn.
2014, 16, 89–105. [CrossRef]

22. Provencio, M.; Pérez-Barrios, C.; Barquin, M.; Calvo, V.; Franco, F.; Sánchez, E.; Sánchez, R.; Marsden, D.; Cristóbal Sánchez, J.;
Martin Acosta, P.; et al. Next-generation sequencing for tumor mutation quantification using liquid biopsies. Clin. Chem. Lab.
Med. 2019, 58, 306–313. [CrossRef]

23. Sánchez-Herrero, E.; Serna-Blasco, R.; Ivanchuk, V.; García-Campelo, R.; Dómine Gómez, M.; Sánchez, J.M.; Massutí, B.; Reguart,
N.; Camps, C.; Sanz-Moreno, S.; et al. NGS-based liquid biopsy profiling identifies mechanisms of resistance to ALK inhibitors: A
step toward personalized NSCLC treatment. Mol. Oncol. 2021, 15, 2363–2376. [CrossRef]

24. Merker, J.D.; Oxnard, G.R.; Compton, C.; Diehn, M.; Hurley, P.; Lazar, A.J.; Lindeman, N.; Lockwood, C.M.; Rai, A.J.; Schilsky,
R.L.; et al. Circulating tumor DNA analysis in patients with cancer: American society of clinical oncology and college of American
pathologists joint review. J. Clin. Oncol. 2018, 142, 1242–1253.

25. Gandara, D.R.; Paul, S.M.; Kowanetz, M.; Schleifman, E.; Zou, W.; Li, Y.; Rittmeyer, A.; Fehrenbacher, L.; Otto, G.; Malboeuf, C.;
et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with
atezolizumab. Nat. Med. 2018, 24, 1441–1448. [CrossRef]

26. Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al.
Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [CrossRef]

27. Kowanetz, M.; Zou, W.; Shames, D.S.; Cummings, C.; Rizvi, N.; Spira, A.I.; Frampton, G.M.; Leveque, V.; Flynn, S.; Mocci, S.; et al.
Tumor mutation load assessed by FoundationOne (FM1) is associated with improved efficacy of atezolizumab (atezo) in patients
with advanced NSCLC. Ann. Oncol. 2016, 27, vi23. [CrossRef]

28. Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.;
et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34.
[CrossRef] [PubMed]

29. Merino, D.M.; McShane, L.M.; Fabrizio, D.; Funari, V.; Chen, S.J.; White, J.R.; Wenz, P.; Baden, J.; Barrett, J.C.; Chaudhary, R.; et al.
Establishing guidelines to harmonize tumor mutational burden (TMB): In silico assessment of variation in TMB quantification
across diagnostic platforms: Phase I of the Friends of Cancer Research TMB Harmonization Project. J. Immunother. Cancer 2020, 8,
e000147. [CrossRef] [PubMed]

30. O’Leary, B.; Hrebien, S.; Beaney, M.; Fribbens, C.; Garcia-Murillas, I.; Jiang, J.; Li, Y.; Bartlett, C.H.; André, F.; Loibl, S.; et al.
Comparison of beaming and droplet digital PCR for circulating tumor DNA analysis. Clin. Chem. 2019, 65, 1405–1413. [CrossRef]

168



biology

Article

Role of Persistent Organic Pollutants in Breast Cancer
Progression and Identification of Estrogen Receptor Alpha
Inhibitors Using In-Silico Mining and Drug-Drug Interaction
Network Approaches

Bibi Zainab 1, Zainab Ayaz 1, Umer Rashid 2, Dunia A. Al Farraj 3, Roua M. Alkufeidy 3 , Fatmah S. AlQahtany 4,
Reem M. Aljowaie 3 and Arshad Mehmood Abbasi 1,5,*

Citation: Zainab, B.; Ayaz, Z.;

Rashid, U.; Al Farraj, D.A.; Alkufeidy,

R.M.; AlQahtany, F.S.; Aljowaie, R.M.;

Abbasi, A.M. Role of Persistent

Organic Pollutants in Breast Cancer

Progression and Identification of

Estrogen Receptor Alpha Inhibitors

Using In-Silico Mining and

Drug-Drug Interaction Network

Approaches. Biology 2021, 10, 681.

https://doi.org/10.3390/

biology10070681

Academic Editors: Shibiao Wan,

Yiping Fan, Chunjie Jiang, Shengli Li

and Lucia Mangone

Received: 2 June 2021

Accepted: 8 July 2021

Published: 19 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Environmental Sciences, Abbottabad Campus, COMSATS University Islamabad,
Abbottabad 22060, Pakistan; abbasizainab2@gmail.com (B.Z.); zainabayaz321@gmail.com (Z.A.)

2 Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad,
Abbottabad 22060, Pakistan; umerrashid@cuiatd.edu.pk

3 Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452,
Riyadh 11495, Saudi Arabia; dfarraj@ksu.edu.sa (D.A.A.F.); ralqufaidi@ksu.edu.sa (R.M.A.);
raljowaie@ksu.edu.sa (R.M.A.)

4 Department of Pathology, College of Medicine, King Saud University, Medical City,
Riyadh 11495, Saudi Arabia; fatma@ksu.edu.sa

5 University of Gastronomic Sciences, 12042 Pollenzo, Italy
* Correspondence: arshad799@yahoo.com or amabbasi@cuiatd.edu.pk

Simple Summary: The role of persistent organic pollutants (POPs) in breast cancer progression and
their bioaccumulation in adipose tissue has been reported. We used a computational approach to
study molecular interactions of POPs with breast cancer proteins and identified natural and synthetic
compounds to inhibit these interactions. Moreover, for comparative analysis, standard drugs and
screened compounds were also docked against estrogen receptor alpha (ERα) and identification of
the finest inhibitor was performed using in-silico mining and drug-drug interaction (DDI) network
approaches. Based on scoring values, short-chained chlorinated paraffins demonstrated strong
interactions with ERα compared to organo-chlorines and PCBs. Synthetic and natural compounds
demonstrating strong associations with the active site of the ERα protein could be potential candidates
to treat breast cancer specifically caused by POPs and other organic toxins and can be used as an
alternative to standard drugs.

Abstract: The strong association between POPs and breast cancer in humans has been suggested in
various epidemiological studies. However, the interaction of POPs with the ERα protein of breast
cancer, and identification of natural and synthetic compounds to inhibit this interaction, is mysterious
yet. Consequently, the present study aimed to explore the interaction between POPs and ERα using
the molecular operating environment (MOE) tool and to identify natural and synthetic compounds
to inhibit this association through a cluster-based approach. To validate whether our approach could
distinguish between active and inactive compounds, a virtual screen (VS) was performed using
actives (627 compounds) as positive control and decoys (20,818 compounds) as a negative dataset
obtained from DUD-E. Comparatively, short-chain chlorinated paraffins (SCCPs), hexabromocy-
clododecane (HBCD), and perfluorooctanesulfonyl fluoride (PFOSF) depicted strong interactions
with the ERα protein based on the lowest-scoring values of −31.946, −18.916, −17.581 kcal/mol,
respectively. Out of 7856 retrieved natural and synthetic compounds, sixty were selected on modular-
ity bases and subsequently docked with ERα. Based on the lowest-scoring values, ZINC08441573,
ZINC00664754, ZINC00702695, ZINC00627464, and ZINC08440501 (synthetic compounds), and
capsaicin, flavopiridol tectorgenin, and ellagic acid (natural compounds) showed incredible interac-
tions with the active sites of ERα, even more convening and resilient than standard breast cancer
drugs Tamoxifen, Arimidex and Letrozole. Our findings confirm the role of POPs in breast cancer
progression and suggest that natural and synthetic compounds with high binding affinity could be
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more efficient and appropriate candidates to treat breast cancer after validation through in vitro and
in vivo studies.

Keywords: breast cancer; estrogen receptor alpha; persistent organic pollutants; drug-drug interac-
tion networks; molecular docking

1. Introduction

POPs are the most common synthetic, lipophilic, toxic, bio-accumulative, and per-
sistent pollutants in the environment. Most POPs are of anthropogenic origin, but some
substances, i.e., dioxins and furans, are also produced naturally during volcanism. POPs
are also used intentionally in pesticides and other industrial products and may be released
accidentally as a by-product from industrial processes or fuel combustion, such as diox-
ins and furans [1]. POPs release in the environment through industrial and agricultural
effluents, drainage systems, urban effluents and landfill leachate [2,3]. Contaminated
soil, water, air, dust and processed goods like textiles and packaging materials contain
considerable amounts of POPs. Importantly, at ambient temperatures, POPs have a ten-
dency to enter the gas phase; as a result they may volatilize from soils, plants, and water
bodies into the atmosphere. They preferentially partition to solids, particularly organic
materials in aquatic systems and soils, avoiding the aqueous phase. Being hydrophobic
in nature [4], rather than entering the aqueous milieu of cells, some major types of POPs,
such as polychlorinated dibenzo-p-dioxins and furans (PCDD/PCFs), polychlorinated
biphenyl (PCBs), organo-chlorinated pesticides (OCPs), perfluorooctane sulfonate (PFOS)
and pentadecafluorooctanoic acid (PFOAs) are hydrophobic and accumulate in the fatty
tissues of the living host. POPs may accumulate in food chains [5] and, from contaminated
food such as fruits, vegetables, chicken, meat, milk and fish etc., may enter humans and
other living organisms [6,7]. As a result, predatory species like humans often have the
highest concentration of POPs, and their presence in humans, i.e., in adipose tissue and
human milk, is associated with the up-regulation of hormone-dependent breast cancers [2].

The prevalence of breast cancer, one of the most common types of cancers, specifically
in females, is increasing worldwide, which cannot be explained solely by the emergence
of mammography screening [8]. In 2018, about two million cases of breast cancer were
reported in women globally [9]. The survival rate was up to 26% in cases where distant
metastases were present. About 25% of breast cancers have been reported in developed
countries; furthermore, it is one of the leading causes of death in Western countries.
Deregulation of estrogen balance is known to promote breast cancer, and in Asia, over
60% of breast cancer cases have been diagnosed as estrogen receptor alpha-positive (ERα)
cancers [10]. The estrogen receptor 1 (ESR1) gene encodes the ERα protein, a ligand
regulated transcription factor, which plays a central role in the proliferation of breast
cancer. Production of testosterone enhances the synthesis of progesterone and estrogen
receptors in breast glands. Particularly, ERα expressed in the mammary glands and
uterus of women has binding ability with DNA and contributes significantly to apoptosis,
homeostasis, metabolism, and in breast cancer. An estimated 60% pre- and 75% post-
menopausal women are suffering from estrogen-dependent breast cancer [11]. Through
disturbing the functioning of adipose tissue, POPs affect the production of estrogens by
stimulating genotoxic enzymes and leading to cross-generational epigenetic modifications
by modifying the epigenome [12]. Many in vitro studies have shown that certain POPs
promote the development of estrogen-positive breast cancer cells by receptor (ER). Exposure
to certain POPs, particularly in perinatal studies, can enhance the development of breast
cancer and sensitivity to carcinogens and cancerous breast tumors in animal studies.
Chemotherapy, hormone therapy, immunotherapy, radiotherapy, and surgery are among
the common methods for breast cancer treatment [13], which eventually have multiple

170



Biology 2021, 10, 681

side effects. Therefore, it is necessary to find better natural and synthetic compounds
for treatment.

In this context, extensive use of anticancer drugs and potential inhibitors with in-
creasing resistance together with numerous side effects highlights an urgent need for
novel cancer treatment methods. Therefore, VS methods including negative image-based
screening, molecular docking and the pharmacophore hypothesis could be effective tools
for identification and screening of the ligands against ER-α receptor. Recent studies have
demonstrated that VS methods have the ability to provide structural insights into complex
interactions for repositioning and remediation [14], specifically using natural and synthetic
compounds [15]. At present, in-silico methods for drug designing, receptor mapping,
molecular modeling, and homology modulation etc. are gaining tremendous popularity
in drug development, molecular biology, nanotechnology and biochemistry domains. In
addition, these methods are used to complement in vitro and in vivo toxicity assessments,
particularly to reduce the need for animal monitoring, costs, and time [16]. Furthermore,
in-silico cancer modelling opens up new avenues for research into oncogenesis in differ-
ent biological dimensions and systems. These approaches can assist in expediting the
development of diagnostic and therapeutic technologies for clinical care. With reliable
digital representations of cancer, the consequences of therapeutic treatments at both the
molecular and surgical scales may be anticipated in silico without exposing patients to
danger. Previously, an in-silico drug discovery technique exposed that a potential ligand,
1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose, which is a naturally occurring tannin, can
inhibit the activity of Ror1 (protein) that contributes significantly to cancer growth and
proliferation [17].

Many complementary resources, including microarray, protein-protein interaction,
and protein complexes, are being used to discover enriched biological processes and path-
ways. One example of this is graph theory, which is being used to analyze the lung cancer
protein-protein interaction network (PPIN), and to discover highly dense modules which
are potential cancer-associated protein complexes [18]. Previously, flavonoids have been
proven as potential anticancer agents by virtue of molecular binding to some key targets
such as aromatase, fatty acid synthase, xanthine oxidase, cyclooxygenase, lipoxygenase,
ornithine decarboxylase, protein tyrosine kinase, phosphoinositide 3-kinase, protein ki-
nase C, topoisomerase II (ATP binding site), ATP binding cassette (ABC) transporter, and
phospholipase A2 [19]. The present study was conducted with the aim of determining
the molecular interactions between ERα (target) and POPs which were considered as key
factors in breast cancer progression. Moreover, for comparative analysis, standard drugs
and screened compounds were docked against ERα and the finest inhibitors (natural and
synthetic compounds) were identified using in-silico mining and DDI network approaches.

2. Materials and Methods
2.1. Disease Selection

Breast cancer (BC) was the target disease because of its prevalence around the globe.
Currently, more than two million cases of breast cancer have been diagnosed in women [9],
while in Pakistan BC is diagnosed in over 90,000 women annually, out of which 40,000 will
not survive [20].

2.2. Identification of the Mutated Gene

Gene identification was completely disease specific. The GeneCard (www.genecards.
org/ (accessed on 20 November 2020)) was used along with a literature review to determine
a list of mutated genes involved in breast cancer as reported earlier [21]. Based on GeneCard,
the estrogen receptor gene (ERg) was identified as a mutated gene of breast cancer.

2.3. Selection and Preparation of Targeted Protein

The Protein Data Bank (PDB), a global database providing the 3-D structure of biologi-
cal molecules like proteins, DNA, and RNA, was used to select and prepare the targeted
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protein following the method of Rose et al. [22]. Protein Bank RCSB (https://www.rcsb.org/
(accessed on 21 November 2020)). was used to get the 3-D structure of the ERα (ERα/pdb
id: 5W9D) protein of breast cancer (Figure S1). The protein selection was entirely based
on mutated genes and the MOE tool was used to prepare the protein file while removing
water molecules and attached ligands while hydrogen atoms were added. Afterward, a
discovery studio was used to visualize the protein structure.

2.4. Validation of Virtual Screening (VS) Protocol

To validate whether our approach can distinguish between active and inactive com-
pounds, we have performed a virtual screen (VS) experiment using actives (627 ERα
inhibitors, i.e. binders) as positive control and decoys (20,818 compounds, i.e. non-binders)
as a negative dataset obtained from the database of Useful Decoys: Enhanced (DUD-E).
All the dataset compounds were docked into the binding site of ERα (PDB ID: 5W9D).
The ligand enzyme complexes with the lowest binding energy were analyzed by the MOE
ligand interaction module. Finally, Discovery Studio Visualizer was used for the 3-D
interaction plot.

2.5. Screening and Toxicity Detection of Pollutants

POPs, whose emissions and/or output can be eliminated, or at least reduced substan-
tially, were screened from the list as demonstrated in the Stockholm Convention in 2001.
The online server ‘admetSAR’ containing 27 predictive models [23] was used to check the
toxicity of screened POPs, and all were lying under toxic classes I, II, and III.

2.6. Preparation of Ligand and Molecular Docking

PubChem offers free access to information and biological functions about chemical
substances. The database contains chemical information from individual PubChem data
providers and the integrated database contains a distinction between chemical structures
and the database of substances [24]. PubChem (https://pubchem.ncbi.nlm.nih.gov/ (ac-
cessed on 12 June 2021)) was used to extract 3-D structures of screened ligands (POPs)
while adopting the previously reported procedure [24]. Afterward, ligands were prepared
using the molecular operating environment (MOE) tool.

The molecular docking (MD) technique for the identification and optimization of
drug candidates was used to analyze and simulate molecular interactions between the
ligand and targeted macromolecules as reported formerly [25]. The MOE tool was used
to evaluate the mechanism of molecular interactions between ligands including POPs,
approved drugs (positive control), progesterone and testosterone (negative control), and
drug candidates (natural and synthetic compounds) with an ERα receptor protein, while
Discovery Studio software (DS 4.1) was used to visualize the 3-D interactions following the
method as reported earlier [26].

2.7. Collection and Mining of Natural and Synthetic Compounds

The ZINC database (zinc.docking.org/ (accessed on 12 July 2021)) was used for
the collection of natural and synthetic compounds along with their chemical properties,
including Zinc ID, molecular weight, hydrogen bond donors log p, polar dissociation,
rotatable bonds, a-polar dissociation, and hydrogen bond acceptors. Lipinski’s rule of five
was applied to the collected drug dataset for mining the natural and synthetic compounds
as described earlier [15].

2.8. Cluster Formation

Weka, a platform for clustering, association, pre-processing, regression, classification,
and screening of data [27], was used for clustering of the drug dataset based on a k-means
algorithm (k-mean) clustering system. According to the properties of drugs, this method
tracks a modest and quick way to categorize a particular record “x1, x2, x3 ... xn” to numbers
of k clusters (k ≤ n), where k represents clusters and the row is denoted by n.
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2.9. Drug-Drug Interaction (DDI) Network

Gephi, a primary platform for data analysis and the fastest graphical visualization
of large networks [28], was used to create DDI networks from k-means clustering to find
a strong connection between drug networks within each cluster. DDI networks were
generated based on statistical parameters such as modularity (Ml), path lengths (PL),
average degree (AD), average weighted degree (AWD), degree distribution (DD), and
graph density (GD). Each network has borders E, vertical V, average path length L and
node D, as well as network density and modularity classes. Most strongly-associated
natural and synthetic compounds were docked against the targeted ERα protein to identify
scoring values/binding energies. Standard breast cancer drugs i.e., Tamoxifen, Arimidex,
Letrozole were used as a control to compare the scoring value of screened drugs.

3. Results and Discussion
3.1. Validation of VS and Reliability of MD

To validate whether our approach can distinguish between active and inactive com-
pounds, a virtual screen (VS) experiment was performed using actives (627 ERα inhibitors
i.e. binders) as positive control and decoys (20,818 compounds i.e. non-binders) as negative
dataset obtained from the database of Useful Decoys: Enhanced (DUD-E) [29]. All the
dataset compounds were docked into the binding site of ERα (PDB ID: 5W9D). Computed
binding energy values of the active compound dataset were in the range of 28.6573 to
−355.9801 kcal/mol and chemical structures of the most active binders are given in
Figure S2. The binding energy values of the decoy set were in the range of −1.0988 to
−3.0371 kcal/mol. Therefore, these findings suggest that our VS protocol can distinguish
between active and inactive compounds.

The reliability of docking accuracy was assessed in two steps. In the first step, redock-
ing of the native ligand was performed (Table S1). In the second step, a cross-docking
experiment was carried out (Table S2). Three-dimensional structures of five estrogen
receptor-alpha (PDB accession codes = 1A52, 3ERT, 1GWQ, 1UOM and 5W9D) were re-
trieved from PDB. In self-docking experiments, all the native ligands were extracted from
receptors and root means square deviation (RMSD) was calculated for each re-docked
and experimental native ligand [30]. Docking was carried out using the Triangle matcher
algorithm (placement stage) and scored by the London dG scoring function [31]. Subse-
quently, best-scored poses were submitted to a rigid receptor protocol (refinement stage).
Throughout the validation of docking protocol, the best performance in terms of computed
RMSD value, conformation, binding energy, position, and pose (orientation) was obtained
with the Triangle matcher London dG scoring function. The final score was calculated
with the ASE scoring function. The whole validation process is presented in Supporting
Information (Tables S1 and S2).

3.2. Interactions between POPs and ERα

Carcinogenesis is not a simple process; it involves initiation, promotion, and progres-
sion [32] of malignancy. The ERα gene is more likely to be involved in cell proliferation and
is considered the most popular target to treat breast cancer. As per previous reports, POPs
may not directly cause cancer, but act as co-carcinogenic agents [33]. It has been reported
that organo-chlorines such as dichlorodiphenyltrichloroethane (DDT), hexachlorocyclo-
hexane (HCH), aldrin, dieldrin, and polychlorinated biphenyls (PCBs) have the potential
to stimulate breast cancer cell proliferation through the estrogenic pathway [34]. The
association between organochlorine and PCBs exposure and risk of breast cancer has
been reported. In the present study, substantial data retrieved from the molecular op-
erating environment (MOE) tool, including scoring values, root-mean-square distance,
and (RMSD) values, are given in Table 1. As reported earlier [35], the more negative the
free binding affinity/scoring values are, the better the bond stability it forms between
the ligand and the receptor protein [35]. In this context, strong relations between POPs
and ERα protein of breast cancer were assessed based on scoring values ranging from
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−31.94 to −8.650 kcal/mol. Out of 27 POPs, short-chained chlorinated paraffins (SCCPs),
hexabromocyclododecane (HBCD), and perfluorooctanesulfonyl fluoride (PFOSF) showed
the strongest molecular interactions with the ERα protein based on their lowest-scoring
values of −31.94, −18.91, −17.58 kcal/mol, respectively (Table 1). These findings revealed
that SCCPs, HBCD, and PFOSF could be potentially involved in breast cancer prevailing
compared to PCBs and organochlorine as reported in previous studies [34]. These POPs
are more suspected to cause breast cancer and are widely used pesticides in developing
countries of Asia due to their low cost and utility against various pests. The key non-
occupational exposure routes of these high-potency contaminants include ingestion, both
directly and by tainted food, and dermal interaction with the substance [36].

Table 1. Docking of POPs with ERα protein.

S. # Chemical Name Structures B.E. (kcal/mol) RMSD (Å)

1. Short-chained chlorinated paraffin’s
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disruption. In this context, the aforementioned results revealed the strong association of 
SCCPs with the ERα protein of breast cancer based on least binding energy or scoring 
value (−31.946 kcal/mol). This indicates that the strong binding capacity of SCCPs with 
ERα protein may be involved in the spread of breast cancer in women. Hexabromocy-
clododecane (HBCD) has also demonstrated strong interactions with the ERα protein (Fig-
ure 1B). Therefore, HBCD could also be one of the main contributors to breast cancer. 

Table 1. Docking of POPs with ERα protein. 

S. # Chemical Name Structures B.E. (kcal/mol)  RMSD (Å) 

1. Short-chained chlorinated paraffin’s  −31.95 1.975 

2. HBCD (Hexabromocyclododecane) 
 

−18.92 0.831 

3. PFOSF (Perfluorooctanesulfonyl fluoride)  −17.58 1.920 

4. Dieldrin  −17.22 0.635 

5. DDT (dichloro-diphenyl-trichloroethane) 
 

−17.15 1.123 

6. PFOS (perfluorooctanesulfonic acid)  −17.13 0.884 

7. Endrin 
 

−17.01 0.979 

−17.58 1.920

4. Dieldrin
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been reported. In the present study, substantial data retrieved from the molecular operat-
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vious reports have provided convincing evidence on the disruptive effect of SCCPs on 
thyroid hormones and glucocorticoids [40], as well as their role in the regulation of differ-
ent signaling pathways and physiological mechanisms [41]. However, there are few stud-
ies on the health effects of SCCPs in humans, especially their contribution to endocrine 
disruption. In this context, the aforementioned results revealed the strong association of 
SCCPs with the ERα protein of breast cancer based on least binding energy or scoring 
value (−31.946 kcal/mol). This indicates that the strong binding capacity of SCCPs with 
ERα protein may be involved in the spread of breast cancer in women. Hexabromocy-
clododecane (HBCD) has also demonstrated strong interactions with the ERα protein (Fig-
ure 1B). Therefore, HBCD could also be one of the main contributors to breast cancer. 
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potential to stimulate breast cancer cell proliferation through the estrogenic pathway [34]. 
The association between organochlorine and PCBs exposure and risk of breast cancer has 
been reported. In the present study, substantial data retrieved from the molecular operat-
ing environment (MOE) tool, including scoring values, root-mean-square distance, and 
(RMSD) values, are given in Table 1. As reported earlier [35], the more negative the free 
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thyroid hormones and glucocorticoids [40], as well as their role in the regulation of differ-
ent signaling pathways and physiological mechanisms [41]. However, there are few stud-
ies on the health effects of SCCPs in humans, especially their contribution to endocrine 
disruption. In this context, the aforementioned results revealed the strong association of 
SCCPs with the ERα protein of breast cancer based on least binding energy or scoring 
value (−31.946 kcal/mol). This indicates that the strong binding capacity of SCCPs with 
ERα protein may be involved in the spread of breast cancer in women. Hexabromocy-
clododecane (HBCD) has also demonstrated strong interactions with the ERα protein (Fig-
ure 1B). Therefore, HBCD could also be one of the main contributors to breast cancer. 
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potential to stimulate breast cancer cell proliferation through the estrogenic pathway [34]. 
The association between organochlorine and PCBs exposure and risk of breast cancer has 
been reported. In the present study, substantial data retrieved from the molecular operat-
ing environment (MOE) tool, including scoring values, root-mean-square distance, and 
(RMSD) values, are given in Table 1. As reported earlier [35], the more negative the free 
binding affinity/scoring values are, the better the bond stability it forms between the lig-
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pared to PCBs and organochlorine as reported in previous studies [34]. These POPs are 
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Above mentioned results revealed that based on scoring values, short-chain chlorin-
ated paraffin (SCCPs) have the strongest interactions with the ERα protein (Figure 1A). 
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manufacturing chemicals, plastics, rubber, and as a plastic agent and flame retardant [37]. 
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thyroid hormones and glucocorticoids [40], as well as their role in the regulation of differ-
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ies on the health effects of SCCPs in humans, especially their contribution to endocrine 
disruption. In this context, the aforementioned results revealed the strong association of 
SCCPs with the ERα protein of breast cancer based on least binding energy or scoring 
value (−31.946 kcal/mol). This indicates that the strong binding capacity of SCCPs with 
ERα protein may be involved in the spread of breast cancer in women. Hexabromocy-
clododecane (HBCD) has also demonstrated strong interactions with the ERα protein (Fig-
ure 1B). Therefore, HBCD could also be one of the main contributors to breast cancer. 
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potential to stimulate breast cancer cell proliferation through the estrogenic pathway [34]. 
The association between organochlorine and PCBs exposure and risk of breast cancer has 
been reported. In the present study, substantial data retrieved from the molecular operat-
ing environment (MOE) tool, including scoring values, root-mean-square distance, and 
(RMSD) values, are given in Table 1. As reported earlier [35], the more negative the free 
binding affinity/scoring values are, the better the bond stability it forms between the lig-
and and the receptor protein [35]. In this context, strong relations between POPs and ERα 
protein of breast cancer were assessed based on scoring values ranging from −31.94 to 
−8.650 kcal/mol. Out of 27 POPs, short-chained chlorinated paraffins (SCCPs), hexabro-
mocyclododecane (HBCD), and perfluorooctanesulfonyl fluoride (PFOSF) showed the 
strongest molecular interactions with the ERα protein based on their lowest-scoring val-
ues of −31.94, −18.91, −17.58 kcal/mol, respectively (Table 1). These findings revealed that 
SCCPs, HBCD, and PFOSF could be potentially involved in breast cancer prevailing com-
pared to PCBs and organochlorine as reported in previous studies [34]. These POPs are 
more suspected to cause breast cancer and are widely used pesticides in developing coun-
tries of Asia due to their low cost and utility against various pests. The key non-occupa-
tional exposure routes of these high-potency contaminants include ingestion, both directly 
and by tainted food, and dermal interaction with the substance [36]. 

Above mentioned results revealed that based on scoring values, short-chain chlorin-
ated paraffin (SCCPs) have the strongest interactions with the ERα protein (Figure 1A). 
SCCPs are commonly used in metalworking fluids, paints, sealants, adhesives, leather 
manufacturing chemicals, plastics, rubber, and as a plastic agent and flame retardant [37]. 
In addition, these pollutants have also been isolated from kidneys, adipose tissue, and 
breast milk of Inuit women [38]. As previously reported, SCCPs (C10–C13) belong to the 
third class of carcinogens and are highly toxic to aquatic organisms [39]. Moreover, pre-
vious reports have provided convincing evidence on the disruptive effect of SCCPs on 
thyroid hormones and glucocorticoids [40], as well as their role in the regulation of differ-
ent signaling pathways and physiological mechanisms [41]. However, there are few stud-
ies on the health effects of SCCPs in humans, especially their contribution to endocrine 
disruption. In this context, the aforementioned results revealed the strong association of 
SCCPs with the ERα protein of breast cancer based on least binding energy or scoring 
value (−31.946 kcal/mol). This indicates that the strong binding capacity of SCCPs with 
ERα protein may be involved in the spread of breast cancer in women. Hexabromocy-
clododecane (HBCD) has also demonstrated strong interactions with the ERα protein (Fig-
ure 1B). Therefore, HBCD could also be one of the main contributors to breast cancer. 

Table 1. Docking of POPs with ERα protein. 
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8. Aldrin 
 

−16.19 1.312 

9. Hexa bromodiphenyl ethers 
 

−15.72 1.099 

10. Hexabromobiphenyl  −15.67 1.541 

11. Penta-bromodiphenyl ethers  −15.39 1.261 

12. PCDDs (Polychlorinated dibenzodioxins)  −15.01 1.345 

13. Chlordane 
 

−14.85 0.937 

14. Toxaphene 
 

−14.55 0.818 

15. PCDFs(polychlorinated dibenzofurans)  −14.39 1.885 

16. Beta endosulfans 
 

−14.26 1.791 

17. PCBs (Polychlorinated biphenyls)  −14.16 1.233 

18. α-endosulfans 
 

−14.09 0.978 

19. Heptachlor, 
 

−13.70 0.999 

20. Lindane  −12.91 0.631 

21. Chlorinated_naphthalenes 
 

−12.58 0.903 

22. Mirex 
 

−12.39 1.508 

23. Chlordecone  −11.87 1.207 

24. Pentachlorophenol 
 

−9.566 1.215 

25. Hexachlorobenzene 
 

−9.501 1.212 

26. Pentachlorobenzen  −9.500 1.596 

27. Hexachlorobutadiene  −8.650 1.090 

B.E. Binding energy, RMSD. Root-mean-square distance, S. #. Serial number 

These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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15. PCDFs (polychlorinated dibenzofurans)
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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16. Beta endosulfans
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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17. PCBs (Polychlorinated biphenyls)
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-

−14.09 0.978
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Table 1. Cont.

S. # Chemical Name Structures B.E. (kcal/mol) RMSD (Å)
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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20. Lindane
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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21. Chlorinated_naphthalenes
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobi-
otic chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endo-
crine disruptor that induces developmental neurotoxicity in animals [42]. HBCD concen-
tration in human breast milk, blood serum, and the umbilical cord has already been in-
vestigated. The concentrations in human breast milk raise questions about possible lacta-
tion and prenatal uptake during important developmental stages of the fetus [43]. Like-
wise, several fluorinated compounds, specifically perfluorooctanesulfonyl fluoride 
(PFOSF), also showed strong interactions with the ERα protein, based on a low scoring 
value (−17.58 kcal/mol), which allows it to easily form a stable complex (Figure 1C). These 
compounds are used as impregnating and grading agents and corrosion inhibitors, like 
insecticides and flame retardants, in cosmetics, paper coatings, and surfactants. The pos-
sible association of PFOSF with hormone disorders, genotoxic potential, and tumor for-
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Above mentioned results revealed that based on scoring values, short-chain chlori-
nated paraffin (SCCPs) have the strongest interactions with the ERα protein (Figure 1A).
SCCPs are commonly used in metalworking fluids, paints, sealants, adhesives, leather
manufacturing chemicals, plastics, rubber, and as a plastic agent and flame retardant [37].
In addition, these pollutants have also been isolated from kidneys, adipose tissue, and
breast milk of Inuit women [38]. As previously reported, SCCPs (C10–C13) belong to
the third class of carcinogens and are highly toxic to aquatic organisms [39]. Moreover,
previous reports have provided convincing evidence on the disruptive effect of SCCPs
on thyroid hormones and glucocorticoids [40], as well as their role in the regulation of
different signaling pathways and physiological mechanisms [41]. However, there are few
studies on the health effects of SCCPs in humans, especially their contribution to endocrine
disruption. In this context, the aforementioned results revealed the strong association of
SCCPs with the ERα protein of breast cancer based on least binding energy or scoring value
(−31.946 kcal/mol). This indicates that the strong binding capacity of SCCPs with ERα
protein may be involved in the spread of breast cancer in women. Hexabromocyclodode-
cane (HBCD) has also demonstrated strong interactions with the ERα protein (Figure 1B).
Therefore, HBCD could also be one of the main contributors to breast cancer.

These POPs are extensively used in flame retardants, as a neurotoxin, and in xenobiotic
chemicals. HBCD acts as a nuclear receptor agonist, is hepatotoxic, and is an endocrine
disruptor that induces developmental neurotoxicity in animals [42]. HBCD concentration
in human breast milk, blood serum, and the umbilical cord has already been investigated.
The concentrations in human breast milk raise questions about possible lactation and
prenatal uptake during important developmental stages of the fetus [43]. Likewise, several
fluorinated compounds, specifically perfluorooctanesulfonyl fluoride (PFOSF), also showed
strong interactions with the ERα protein, based on a low scoring value (−17.58 kcal/mol),
which allows it to easily form a stable complex (Figure 1C). These compounds are used
as impregnating and grading agents and corrosion inhibitors, like insecticides and flame
retardants, in cosmetics, paper coatings, and surfactants. The possible association of PFOSF
with hormone disorders, genotoxic potential, and tumor formation in rodents has been
suggested previously [44]. Hormones can be indirectly imitated by endocrine disorders
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or hormone disorders. Strong associations of SCCPs, HBCD, and PFOSF with the ERα
protein revealed their possible role in breast cancer; therefore the role of these POPs should
be further investigated in detail.
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3.3. Natural and Synthetic Compounds Collection, Mining, and Clustering

Approximately 7856 natural and synthetic compounds were collected with their
structures and properties using the ZINC database (zinc.docking.org/ (accessed on 12 July
2020)). While applying the Lipinski rule of five on the drug dataset, 2390 compounds
were chosen for further processing and the rest were discarded after mining. Afterward,
12 clusters were generated for natural and synthetic compounds based on the k-means
clustering system using the Weka tool. The use of k-means clustering avoids the repetition
of compounds, so natural and synthetic compounds exhibiting similar properties were
placed in one group. Clusters possessing similar properties, including molecular weight,
hydrogen bond donors log P, polar dissociation, rotatable bonds, a-polar dissociation, and
hydrogen bond acceptors (HBA) are shown in a plot matrix with their attributes utilizing
different color representations (Figure S3).

3.4. DDI Network

In total, 12 networks were generated using the k-means clustering algorithm and
Gephi tool (Figure S4) based on statistical parameters as mentioned in Table 2. A strongly
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interacted network as illustrated in Figure 2 was generated from 457 compounds having
higher modularity class in 12 networks based on the aforementioned parameters. Repulsion
strength was set to 10,000, and Force Atlas and Fruchterman rein gold layouts were used
to display and visualize the networks.

Table 2. Statistical parameters used to predict network interactions of various natural and synthetic compounds.

Networks AD AWD ND GD Ml APL N E

1. 2.306 2.860 1.000 0.005 0.518 1.000 507.0 1169
2. 2.120 2.519 1.000 0.008 0.524 1.000 266.0 564.0
3. 2.070 2.649 1.000 0.011 0.538 1.000 185.0 383.0
4. 1.531 2.266 1.000 0.024 0.613 1.000 64.00 98.00
5. 2.325 2.476 1.000 0.003 0.509 1.000 923.0 2146
6. 2.101 3.005 1.000 0.011 0.571 1.000 188.0 395.0
7. 2.275 3.028 1.000 0.005 0.525 1.000 469.0 1067
8. 1.629 2.056 1.000 0.001 0.552 1.000 107.0 181.0
9. 2.371 2.792 1.000 0.006 0.500 1.000 367.0 870.0

10. 2.155 2.662 1.000 0.004 0.501 1.000 541.0 1166
11. 1.518 1.789 1.000 0.007 0.528 1.000 218.0 331.0
12. 2.220 2.967 1.000 0.007 0.500 1.000 300.0 666.0

FSIN 2.325 2.476 1.000 0.003 0.503 1.000 923.0 2146

AD. Average degree, AWD. Average weighted degree, ND. Network diameter, GD. Graph density, Ml. modularity, APL. Average path
length, N. nodes, E. edges, FSIN. Final strongly interacted network.
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Figure 2. Final strongly drug-drug interaction network.

Nodes and edges in each network represent compounds and interactions between
them, respectively. Darker color and larger size nodes show the strength of drug IDs/ZINC
IDs. As shown in Table 2, network 1 comprises of 507.0 nodes and 1169 edges with modular-
ity of 0.518; the second network consists of 266 nodes and 564 edges with 0.524 modularity.
Network 3 showed 185.0 nodes and 383.0 edges with 0.538 modularity. Network 4 com-
prises 64.00 nodes and 98.00 edges with 0.613 modularity. Network 5 contains 923.0 nodes
and 2146 edges with a modularity of 0.509. Network 6 consists of 188 nodes and 395.0 edges
with a modularity of 0.571. Network 7 comprises 469.0 nodes and 1067 edges and possesses
a modularity of 0.525. Network 8 consists of 107.0 nodes and 181.0 edges, and 0.001 graph
density with a modularity of 0.552. Network 9 comprises 369.0 nodes and 870.0 edges
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with modularity of 0.500. Network 10 consists of 541.0 nodes and 1166 edges with a
0.501 modularity. Network 11 comprises 218.0 nodes and 331.0 edges and 0.528 modularity,
while network 12 contains 300.0 nodes, 666.0 edges, and 0.500 modularity. Likewise, the
finally generated strong network contains 923.0 nodes and 2166 edges with 0.503 modular-
ity (Table 2).

3.5. Validation of Natural and Synthetic Compounds

ERα, the most common and effective target for breast cancer treatment, was docked
against the screened natural and synthetic compounds [35]. For docking, the active site
of the ERα protein was identified using standard drugs used to treat breast cancer i.e.,
Tamoxifen, Arimidex, and Letrozole as a positive control group, while progesterone and
testosterone were utilized as a negative control group. As shown in Table 3, scoring
values of Tamoxifen, Arimidex and Letrozole ranged from −31.26 to −20.97 kcal/mol.
Tamoxifen showed pi-sulfur and pi-alkyl interactions; Arimidex also showed pi-sulfur and
pi-alkyl interactions, while Letrozole showed conventional hydrogen bond and pi-sulfur
interactions with the active site of ERα, as shown in Figure 3a–c.

Table 3. Docking results of positive control, negative control, synthetic and natural compounds with ERα protein.

S. # Names Structures B.E. (kcal/mol) RMSD (Å)

Positive control

1 Tamoxifen
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S. # Names Structures B.E. (kcal/mol) RMSD (Å)

4
(1R,6S)-6-[[2-[4-(4-methylphenyl) piperazine-1-
carbonyl]phenyl]carbamoyl]cyclohex-3-ene-1-carboxylic
acid [ZINC00627464]
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the process. However, according to our studies, both progesterone and testosterone have
shown interactions with ER alpha protein. Furthermore, this study reveals that these
hormones may up-regulate breast cancer development, as they interacted at the active
site of ER-alpha with binding energies of −23.53 (progesterone) and −23.95 (testosterone).
Up-regulation of breast cancer due to an imbalance of these hormones has already been
reported. It has been reported that the effects of sex hormones on breast cancer development
are clear from the advantages of hormone withdrawal treatment, with particular evidence
of a relationship between completion of hormone withdrawal and clinical benefit [46].

The majority of clinical investigations that have utilized total testosterone as a measure
of androgen exposure have found that greater total testosterone levels are related to an
increased risk of breast cancer [47]. Progesterone metabolites may consequently be involved
in the regulation of the generation of estradiol in the normal breast cell and so may be a
multifaceted component in breast carcinogenesis [48]. Progesterone triggers normal human
breast epithelial through paracrine mechanisms and is a risk factor for breast cancer because
it promotes pre-neoplastic progression by stimulating cyclic proliferation of mammary
stem cell pools or cell-initiating tumors in maturing breast epithelium. The development of
cancer is therefore further promoted by progesterone signaling and a transition to autocrine
proliferation regulation [49].

Natural and synthetic compounds possessing the highest binding affinity, RMSD less
than 2 Å, and accurate binding sites were considered to form the most stable complexes.
Data of 61 natural and synthetic compounds were collected from strong DDI networks
and the top five synthetic (ZINC08441573, ZINC00664754, ZINC00702695, ZINC00627464,
ZINC08440501) and four nature compounds (capsaicin, flavopiridol, tectorigenin, and
ellagic acid) were docked with ERα (Table 3). Based on their scoring values and RMCD,
both synthetic and natural compounds depicted strong binding capacity with the active
site of the ERα protein.

Predicted scoring values of the top five synthetic compounds, ZINC08441573, ZINC00664754,
ZINC00702695, ZINC00627464, and ZINC08440501, were −32.47, −31.38, −30.35, −30.31,
and −29.350 kcal/mol, respectively. These findings were further confirmed by 3-D interac-
tions with the active site of the ERα protein as shown in Figure 4a–e. The ZINC08441573
drug compound showed pi-pi, T shaped and pi-sigma interactions; ZINC00664754 exhibited
conventional hydrogen bonding, pi-sigma, pi-sulphur and pi-alkyl bonding; ZINC00702695 had
pi-sulfur, pi-lone pair and pi-alkyl associations; ZINC00627464 showed conventional hy-
drogen bonding, pi-pi T shaped, pi-lone pair and pi-alkyl associations; and ZINC08440501
had conventional hydrogen bond, Sulfur-X, pi-sulfur, and pi-alkyl interactions with the
active sites of the ERα protein. Our findings suggest that, relatively, most of the synthetic
compounds have scoring values even less than the standard breast cancer drugs, therefore
showing strong interactions with the ERα protein. These compounds could be potential
candidates to treat breast cancer. The inhibition potential of all synthetic compounds was
greater than two standard breast cancer drugs i.e., Arimidex and letrozole. Two synthetic
compounds including ZINC08441573 and ZINC00664754 exhibited a highly significant
strong binding capacity (based on lowest scoring value) with the ERα protein. These
two compounds possess the strong potential to inhibit interactions of all types of POPs
(Table 1) with ERα protein and could be the best alternative to standard breast cancer drugs
used currently.

Likewise, the binding capacity of the top four natural compounds from our dataset,
namely capsaicin, flavopiridol, tectorigenin, and ellagic acid, with the ERα protein is
demonstrated in Table 3. The scoring value of these compounds ranged from −25.30 to
−16.36 kcal/mol, while their RMSD was between 0.905–1.875 Å. The association between
these natural compounds and the ERα protein was further confirmed by 3-D networks
as mentioned in Figure 5a–d. Capsaicin showed conventional hydrogen bonds and pi-
lone pair interactions with ERα protein; flavopiridol had pi-sulfur, pi-sigma, and pi-
alkylinteractions; tectorigenin exhibited conventional hydrogen bonding and pi-sulfur
interactions; and ellagic acid showed conventional hydrogen bonding, pi-sulfur, and
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pi-alkyl interactions. Based on scoring values, it can be predicted that capsaicin and
flavopiridol have a strong association with ERα protein, which is even stronger than
standard drugs (Arimidex and letrozole). These natural compounds also have the potential
to inhibit the binding of almost all POPs with ERα protein except short-chained chlorinated
paraffins (Table 1). Based on scoring values and RMSD, the majority of the synthetic and
natural compounds have the potential to inhibit various interactions between POPs and
active sites of the ERα breast cancer protein. Such compounds could also be potential
candidates for breast cancer drugs, and can also be useful as an alternative to standard
drugs to treat breast cancer caused by POPs and other organic toxins.
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4. Conclusions

The bioaccumulation of POPs in adipose tissue and their role in breast cancer develop-
ment and/or progression was evaluated using the molecular interaction approach. Based
on scoring values, short-chained chlorinated paraffins demonstrated strong interactions
with the ERα breast cancer protein compared to organo-chlorines and PCBs. Both synthetic
and natural compounds which demonstrated strong associations with the active site of
the ERα protein could be potential candidates to treat breast cancer specifically caused
by POPs and other organic toxins, and can be used as an alternative to standard drugs.
Furthermore, our findings could be validated using in vitro and in vivo approaches.
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