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Abstract: Agriculture is one of the fundamental economic activities in most countries; however,

this sector suffers from various natural hazards including flood and drought. The determination

of drought-prone areas is essential to select drought-tolerant crops in climate sensitive vulnerable

areas. This study aims to enhance the detection of agricultural areas with vulnerability to drought

conditions in a heterogeneous environment, taking Bangladesh as a case study. The normalized

difference vegetation index (NDVI) and land cover products from the Moderate Resolution Imaging

Spectroradiometer (MODIS) satellite images have been incorporated to compute the vegetation index.

In this study, a modified vegetation condition index (mVCI) is proposed to enhance the estimation

of agricultural drought. The NDVI values ranging between 0.44 to 0.66 for croplands are utilized

for the mVCI. The outcomes of the mVCI are compared with the traditional vegetation condition

index (VCI). Precipitation and crop yield data are used for the evaluation. The mVCI maps from

multiple years (2006–2018) have been produced to compute the drought hazard index (DHI) using a

weighted sum overlay method. The results show that the proposed mVCI enhances the detection of

agricultural drought compared to the traditional VCI in a heterogeneous environment. The “Aus”

rice-growing season (sown in mid-March to mid-April and harvested in mid-July to early August)

receives the highest average precipitation (>400 mm), and thereby this season is less vulnerable to

drought. A comparison of crop yields reveals the lowest productivity in the drought year (2006)

compared to the non-drought year (2018), and the DHI map presents that the north-west region of

Bangladesh is highly vulnerable to agricultural drought. This study has undertaken a large-scale

analysis that is important to prioritize agricultural zones and initiate development projects based on

the associated level of vulnerability.

Keywords: agriculture; drought; NDVI; MODIS; remote sensing; Bangladesh

1. Introduction

Drought is one of the natural hazards characterized by a prolonged water shortage. The impacts of

drought are multifaceted, ranging from the environment of a country to its economy and society [1–6].

Various components including agriculture, vegetation, ecosystem, and water resources can be affected

by drought [7,8]. Agriculture is the backbone of the economy in many countries; however, this sector

suffers from drought in many parts of the world [1,9]. Sound knowledge of the spatial variations in

agricultural water stress is important for effective management of drought risk in agrarian countries.
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Moreover, the determination of areas with agricultural vulnerability to drought is important to drought

dynamic planning [7].

Various approaches have been developed and used to monitor different types of drought [5,10–15].

The traditional approach of drought monitoring has been based on meteorological observations,

which lack continuous spatial data to monitor the detailed drought conditions [16]. Over the past

decades, meteorological data have been used to improve the understanding of drought. Precipitation

based drought indices e.g., the standardized precipitation index (SPI), rainfall anomaly index (RAI),

palmer drought severity index (PDSI), standard precipitation and evapotranspiration index (SPEI),

national rainfall index (NRI) have been commonly used to monitor drought in various regions [17–22].

The meteorological drought indices have their own strengths and popularity; however, they are limited

by the distribution of weather stations and provide only point data. In contrast, remote sensing

(RS)-based drought indices have gained attention for drought monitoring as they provide repeatable

information for broad regions [5,23,24].

The techniques used to monitor drought can be categorized as RS and empirical modelling.

The use of RS based approaches to monitor vegetation and agricultural water stress in a large area

is promising compared to other approaches [25]. Over the past decades, various RS based drought

indices have been developed [9,13,14,26–29]. For example, the normalized difference vegetation index

(NDVI) developed by Rouse et al. [30], has been used for vegetation classification and vegetation

phenology study. The NDVI has also been used for the assessment of agricultural and vegetative

drought [4,15]. Kogan [26] developed the vegetation condition index (VCI) for improving the analysis

of vegetation conditions in non-homogeneous areas. The VCI has proved to be effective to provide

accurate drought information and, therefore, this index has been applied to monitor vegetation water

stress in various regions [1,31–33]. The temperature condition index (TCI), developed by Kogan [27],

provided additional information on vegetation stress and facilitated the detection of stress whether

it is caused by dryness or excessive wetness. Li et al. [28] developed the normalized temperature

anomaly index (NTAI) and the normalized vegetation anomaly index (NVAI). These indices were

applied to monitor drought and found a better measure of anomalies and evolution compared to

the VCI and TCI. Sandholt et al. [29] developed the temperature vegetation dryness index (TVDI)

using an empirical parameterization of the relationship between NDVI and land surface temperature

(LST). The TVDI proved to be a potential indicator of understanding of the variations in soil moisture.

Ghulam et al. [14] developed the perpendicular drought index (PDI) based on the spatial characteristics

of moisture distribution in near infrared (NIR)–Red space. Their study concluded that PDI has potential

in RS-based drought phenomenon analysis. The normalized multi-band drought index (NMDI) was

proposed by Wang and Qu [13] for monitoring the moisture condition of soil and vegetation using RS

data. Amri et al. [8] developed the vegetation anomaly index (VAI) and used it to assess the presence of

vegetation stress. They found a satisfactory performance of the index; however, the VAI may be affected

by the pattern of irrigation in agricultural areas, and evolutions of land use and its heterogeneity.

The vegetation index has been widely used as one of the important parameters for understanding

drought conditions, crop yield, and mapping of agricultural areas [34]. Gouveia et al. [35] applied

correlation analysis between NDVI and SPEI to analyze the drought impacts on vegetation, and to

determine the most sensitive vegetation types. Dutta et al. [36] used NDVI based VCI for monitoring

agricultural drought and compared it with SPI, RAI and the yield anomaly index (YAI). They found a

good agreement between the VCI and meteorological drought indices.

Although a great effort has been made to develop various drought indices [3,9,13,27,37],

the previous studies rarely evaluated their performances to monitor and understand agricultural

drought in a large heterogeneous environment. Various land cover types including cropland, wetland,

waterbody, forest, urban built-up area, and tree cover can exist when analyzing a large territory. Land

cover variability might influence the accurate detection of agricultural areas with vulnerability to

drought. The purpose of this research is to improve the understanding of how the variations in land

cover types affect the estimation of agricultural drought, and to identify the agricultural areas facing
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high drought risk by combining multiyear RS-based drought indices. This study proposes a modified

vegetation condition index (mVCI) suitable for the determination of agricultural drought in the areas

of varied landscapes. This research uses the principle of NDVI based VCI [27], because it has been

proven to be useful means for the detection of drought conditions around the world [2,33,38].

In this paper, Section 2 includes the study area profile and the experimental data. Section 3

elaborates in detail the approach of assessing the heterogeneity of landscape and improving the

separation of agricultural drought from water-stressed vegetation. Section 4 demonstrates the results

and discussion and, finally, concluding remarks are provided in Section 5.

2. Study Area and Experimental Data

This study selects Bangladesh as a research area. It is a South Asian country, which is situated

between latitudes 20◦34′ and 26◦38′ N and longitudes 88◦01′ and 92◦41′ E. India borders Bangladesh

along the north, west and northeast borders. It shares borders with West Bengal of India in the

west, Meghalaya in the north and Tripura in the east. It also shares borders with Myanmar in the

southeast, and the Bay of Bengal demarcates its southern border (Figure 1). Bangladesh consists of

64 administrative districts. Its topography is relatively flat, the great plain lies almost at sea level

along the southern coast and rises gradually towards the north. Agriculture is the backbone of the

country; it grows a wide variety of crops which are broadly classified as Kharif Crops (grown in the

summer and harvested in early winter), and Rabi Crops (sown in winter and harvested in the spring

or early summer). Rice and wheat are the major cereals of the country. The rice-growing seasons

have been commonly classified into three categories e.g., Aus (sown in mid-March to mid-April and

harvested in mid-July to early August), Aman (sown in early September and harvested in December

to early January) and Boro (sown in mid-November to mid-January and harvested in April to May).

Moreover, wheat is one of the most important winter crops, which is sown in November to December

and harvested in March to mid-April [12,39,40].

 

 
 

 
(a)   

(b) 
Figure 1. Location of the study area. (a) Geographic location; (b) Bangladesh.
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The country is characterized by a subtropical monsoon climate. The mean annual precipitation

is nearly 2400 mm, with 70% occurring during the monsoon season. Figure S1 shows monthly and

seasonal variations in the precipitation over a period of 13 years (2006–2018). The highest precipitation

occurs between May and September. Note that the Aus rice-growing season receives the highest

precipitation (72%), and the Boro rice-growing season is the driest season that receives only 7% of total

precipitation. Bangladesh consists of four recognized seasons e.g., a hot, humid summer between

March and May; a wet, monsoon season between June and September; autumn between October and

November; and a dry winter between December and February [41]. Bangladesh regularly experiences

natural hazards including droughts, floods and cyclones. In the past, Bangladesh experienced severe

drought in the years 1951, 1961, 1975, 1989, 1997, 2006 and 2010. Most of these droughts occurred in

pre- and post-monsoon seasons. It should be noted that drought is a periodic occurrence in many

regions of Bangladesh; however, the northwest region is more vulnerable to drought compared to

the other parts of the country. The mean annual precipitation in this dry zone ranges from 1250 to

1750 mm [41,42].

Over the past decades, RS data e.g., National Oceanic and Atmospheric Administration-Advanced

Very High Resolution Radiometer (NOAA-AVHRR), Landsat, SPOT VGT NDVI, and Moderate

Resolution Imaging Spectroradiometer (MODIS) satellite imageries have been commonly used to

monitor drought conditions. This study uses NDVI products of MODIS (MOD13A3). For comparative

analysis, and to evaluate the performance of the drought indices, this study uses data for both the

drought and non-drought years. Moreover, precipitation and crop yield are used for evaluating the

results. Precipitation data is collected from the Bangladesh Meteorological Department and crop yield

from the yearbook of agricultural statistics of the Bangladesh Bureau of Statistics. This study uses the

principle of VCI to assess agricultural drought, which requires long-term maximum and minimum

NDVI values for each pixel, thereby a total of 156 NDVI images were collected from 2006 to 2018.

This study reviewed related research on Bangladesh [41,42] and selected the typical years for assessing

the agricultural drought. To understand the heterogeneity of the environment, this study also uses

the MODIS land cover yearly product (MCD12Q1). It should be noted that MODIS land cover data

consist of 17 land cover classes; however, the study area characterizes six major land cover types e.g.,

cropland, urban, tree cover, forest, wetland, and permanent waterbody. In contrast, other land cover

classes are small in proportion. Note that small-scale changes in land cover would not affect drought

monitoring [6], thus the six major land cover classes are considered in the analysis of the heterogeneity

of the environment.

3. Improving Agricultural Drought Assessment in Heterogeneous Areas

In this research, first, the heterogeneity of the landscape is investigated. Second, land cover

variability is considered in delineating the mVCI for separating the water-stressed croplands areas

from other land covers and vegetation. Third, a comparative analysis is done between the mVCI

and the traditional VCI, the result is evaluated using precipitation and crop yield. Lastly, multiyear

mVCI maps are input to compute a composite map of areas indicating the levels of vulnerability to

agricultural droughts. The composite map is important to the decision-makers to detect and prioritize

the most vulnerable zones for initiating development projects and allocating funds to cope with

drought in future.

3.1. Evaluation of Heterogeneity of the Landscape and Segregation of Agricultural Areas

A heterogeneous environment consists of various land covers including vegetation, which largely

encompasses agricultural/cropland, rangeland, tree cover, and forest [43]. Various land cover

classification approaches have been used to detect geographic features [44,45]. The NDVI has

also been used as a good indicator for the classification of vegetation [30], and has been used to detect

stressed or damaged crops [15,32,34]. This study evaluates the utility of NDVI in the segregation of

agricultural land from other vegetation and land cover types. In this section, first, the influence of

4
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seasonality and temporal variation on NDVI is evaluated. Second, yearly composite NDVI maps are

computed, and then representative sample patches of six major land cover types are collected from the

MODIS land cover maps. Third, the NDVI values are extracted by the sample patches, and the basic

statistics of NDVI for six land cover types are graphically presented to understand the heterogeneity of

the landscape. Fourth, to segregate agricultural land from other land cover types, a maximum and

minimum threshold value is defined. Faridatul and Wu [46] developed an approach of threshold

optimization and it proved to be efficient in the separation of land covers. Thus, this research used their

approach to determine threshold values of NDVI for the croplands. To avoid the influence of an outlier

or extreme values, this study uses the maximum and minimum threshold for the agricultural land

rather than using the maximum and minimum NDVI of the agricultural land. Finally, for evaluation

and comparison analysis overlay intersect is performed between NDVI-based agricultural land and

cropland as defined in the MODIS land cover map.

3.2. Assessment of Agricultural Drought using the Vegetation Condition Index

The NDVI based VCI as Equation (1) has been used as an indicator of the status of vegetation

cover. The conditions of vegetation are usually measured in percent. The VCI values close to 0% (zero)

indicate an extreme dry condition, whereas the VCI values between 50% and 100% indicate normal

vegetation conditions [32]. A VCI of less than 50% indicates drought conditions, and VCI ranges

between 0% and 35% indicate the severe drought condition [27].

VCI = 100 ∗ (NDVIi −NDVImin)/(NDVImax −NDVImin) (1)

where NDVIi is the NDVI value for a specific pixel in the month of i, NDVImax and NDVImin are the

highest and lowest NDVI values of the same pixel for the period of 2006–2018.

It should be noted that the VCI has been used for assessing the spatial characteristics of

drought [7,33]; however, previous studies [32,47,48] rarely evaluated its performance in the detection

and separation of water stressed cropland from other vegetation. This study computes the VCI for

both the drought and non-drought years. The VCI values are extracted by sample patches of six major

land cover types as defined earlier, and the results are evaluated to understand the utility of this index

in the detection of agricultural drought in the areas of varied landscape.

3.3. Enhanced Estimation of Agricultural Drought and Comparison Analysis

For evaluating drought conditions in the heterogeneous environment, a land cover map could

be used to mask out non-agricultural lands. For example, Rulinda et al. [4] used a land cover map

to mask out non-vegetated areas and forest to separate vegetative areas. Note that this study uses

the threshold of NDVI to segregate cropland from other land cover types and applies Equation (2) to

measure and highlight agricultural drought conditions.

This study proposes an approach to make the VCI suitable for accurate assessment of agricultural

drought in a heterogeneous environment. First, yearly composite NDVI maps are computed and

analyzed for their spatial distribution in relation to land cover types. Secondly, the graphical and

statistical analysis is performed to compute the range of maximum and a minimum threshold of NDVI

values for the cropland. Finally, this research uses the principle of VCI and develops the modified

vegetation condition index (mVCI) as Equation (2).

mVCI =



100 ∗NDVIimax, where NDVIYcom > measured maximum threshold o f the cropland

100, f or NDVIYcom < measured minimum threshold o f the cropland

100
(NDVIi−NDVImin)

(NDVImax−NDVImin)
, otherwise

, (2)

5
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where NDVIYcom is the yearly composite NDVI, NDVIimax is the maximum NDVI in the month of i,

NDVIi is the NDVI value for a specific pixel in the month of i, NDVImax and NDVImin are the highest

and lowest NDVI values of the same pixel for the period of 2006–2018.

After deriving the traditional VCI and the proposed mVCI, this research performs a comparison

analysis between them to improve the understanding of how the existence of heterogeneous land covers

affect the estimation of agricultural drought using the traditional vegetation index. To demonstrate the

competence of the modified drought index, the comparison is shown in maps. Moreover, the spatial

distribution of the mVCI and VCI values are derived and shown by land cover types.

3.4. Detection of Agricultural Drought Vulnerable Regions

This study computes the agricultural drought hazard index to facilitate the investigation of

the spatial distribution of drought-vulnerable regions. For each year, the seasonal mVCI maps are

produced and reclassified. Then, the equally weighted sum overlay analysis is performed and a new

drought vulnerable map is generated. This study applies an approach to detect drought hazard zones

as used by Daneshvar et al. [49] and Yu et al. [6]. It should be noted that Daneshvar et al. [49] used the

SPI and Yu et al. [6] both the SPI and VCI drought thematic maps to produce the drought hazard index

(DHI). However, this study assigns weights to mVCI values (Table 1) and uses the drought thematic

maps as in Equation (3). Finally, the drought vulnerable regions are defined as high, medium and

low. Note that in this study, the highest and lowest DHI values indicate, respectively, high and low

vulnerability of regions to agricultural drought. In contrast, the intermediate DHI values indicate

medium-vulnerable regions.

DHI =
n∑

i j=1

mVCIi j (3)

where DHI is the drought hazard index produced by the sum overlaying of the mVCI drought thematic

map of the ith year and jth season for a time of n = 13 years (2006–2018).

Table 1. Classification of the conditions of cropland based on the modified vegetation condition index

(mVCI) values.

mVCI Value Cropland Condition DHI Weight

0–25% Extreme dry 3
26–35% Severe dry 2
36–50% Moderate dry 1
>50% Fair 0

4. Results and Discussion

In this section, first, the heterogeneity of the environment is investigated. Second, the drought

indices that are derived using the VCI and mVCI and presented for visual interpretation and comparison

analysis. Then, the DHI maps are computed for the investigation of the agricultural vulnerability to

drought conditions.

4.1. Spatial Distribution of Land Cover Types and Detection of Agricultural Areas

This study assesses the heterogeneity of the landscape using the NDVI. It should be noted that

the temporal and seasonal variations influence the characteristics of the land cover types [50]. Thus,

the influence of their variations in the detection of land cover types is evaluated. Figure S2 shows that

the NDVI values for the different land cover types including cropland, forest, tree cover, and other

geographic features. The result confirms the variations in the NDVI values. To understand the

spatial distribution of land cover types and detect cropland, this study uses yearly composite NDVI

(Figure 2). The typical statistics of the NDVI show the lowest values for the non-vegetation land covers

e.g., water, wetland, and urban. Forest and tree cover show the highest NDVI values. This study

6
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computes and uses the threshold of NDVI to segregate cropland from other land cover types. Table 2

shows representative threshold values of the NDVI. To evaluate its performance an overlay analysis

is performed between the cropland as defined in MODIS land cover product and threshold-based

classified map. This study finds 91–95% agreement in the detection of cropland using the threshold

of NDVI.

 

Land Cover  NDVI Typical Statistics 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 

 
(f) 

 

≤

Figure 2. Spatial distribution of land cover types, yearly composite NDVI and its typical statistics in

(a–c) 2006, and (d–f) 2018.

Table 2. Measured maximum and minimum threshold of normalized difference vegetation index

(NDVI) for the agricultural land.

Statistics 2006 2010 2014 2018

Max 0.64 0.64 0.65 0.66
Min 0.44 0.42 0.46 0.48

4.2. Evaluating Drought Conditions Using the VCI and mVCI

This study computes the vegetation conditions and investigates the seasonal and temporal

variations in agricultural drought for 13 years. To be concise, this study presents the results from a

representative drought year of 2006 [41] and a non-drought year of 2018. In contrast, the drought maps

of other years are provided as supplementary material (Figures S3 and S4). Figure 3a–f shows the maps

of the VCI and mVCI for the drought year. The index values range between 0 and 100. The drought

conditions are highlighted, dividing the index values into four scales. The VCI and mVCI values of

7
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≤50% indicate the drought-prone areas and the values of greater than 50% indicate normal condition.

Rice is one of the major cereals in Bangladesh, which grows in the three seasons. Moreover, based on

broad crop growing season e.g., Kharif (May–October) and Rabi (November–April) the drought maps

are produced and shown in Figures S5 and S6. The highest precipitation falls in Bangladesh in the

Kharif/Aus rice-growing season and supports rain-fed agriculture [12] thus the highest index values

are observed in these seasons. In contrast, the Boro and Rabi cropping seasons show the lowest

index values.

 

 Aus Aman Boro 

2006 

VCI 

 
(a) 

 
(b) 

 
(c) 

mVCI 

 
(d) 

 
(e) 

 
(f) 

2018 

VCI 

 
(g) 

 
(h) 

 
(i) 

mVCI 

 

 
Drought 

Index Values 

  
(j) 

 
(k) 

 
(l) 

Figure 3. Major cropping seasons and spatial distribution of vegetation conditions based on the VCI

and mVCI in: (a–f) 2006, and (g–l) 2018.
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Figure 3g–l presents the maps of the VCI and mVCI for the non-drought year of 2018. The results

show overall higher index values than the drought year. Note that small areas contain the lowest values

indicating drought conditions, and the influence of seasonal variations in the vegetation conditions is

not significant in the normal year. The low index values indicate the development of vegetation with

unfavorable weather. The vegetation phenology phases e.g., leaf coloring and unfolding, are driven

by dry weather, which reduces the greenness in vegetation and enables the realization of drought

conditions [32,51]. The lowest precipitation falls in the Rabi/Boro rice-growing season, and it is

relatively dryer than the Kharif season, thus the highest drought condition is observed in this season.

4.3. Comparison Analysis

This study improves the VCI to estimate accurate drought conditions of cropland in a heterogeneous

environment using the mVCI. Figure 4 presents a visual comparison between the maps of VCI and

mVCI. It should be noted that both the VCI and mVCI require long-term maximum and minimum

NDVI values for each pixel; thus, monthly NDVI images of 13 years, a total 156 images are used for

estimating agricultural drought. However, to be concise, the comparative analysis is presented in

detail for two representative years. The results reported in this study show that, without considering

land cover types, the VCI yields the low index values for many non-vegetative areas that seem to be

classified as drought-affected areas (Figure 4a,d) because the non-vegetative areas e.g., waterbodies,

wetlands, and urban areas consist of low NDVI values compared to the cropland (Figure 2c,f).

In contrast, consideration of land cover types in the mVCI minimizes the overestimation of drought

areas (Figure 4c,f), thus improving the demarcation of actual agricultural drought areas. A large

territory or an entire country consists of heterogeneous land covers, thus this study suggests considering

land cover types in the mVCI.

Figure 5a–d show the differences in basic statistics of predicted drought conditions derived from

the VCI and mVCI. The comparison analysis indicates the differences between the VCI and mVCI for

cropland and other land cover types. The croplands show similar statistics in both models. It is worth

noting that, without consideration of land cover types, the VCI yields very similar values of many land

cover types (Figure 5a,c). Thus, it is challenging to estimate accurately the drought conditions of the

cropland. In contrast, the consideration of land cover types in the mVCI facilitates the distinguishing

of the actual conditions of cropland from other land cover types (Figure 5b,d).

Figure 5e,f presents the local spatial difference between vegetation conditions derived from

the VCI and mVCI. The areas of water body, wetland, forest, tree cover and urban show strong

deviations between the results of the VCI and mVCI in the prediction of drought conditions of 2006

(Figure 5e). In contrast, cropland shows low deviations between the models. The deviations in the

estimation of drought condition in 2018 (Figure 5f) show similar findings to those for the dataset

of 2006. Figure 6 also presents the differences in the mean temporal variations between the VCI

and mVCI. The results demonstrate that the croplands yield relatively high index values in the wet

months. The mVCI performs better that the VCI in separating agricultural drought conditions in the

heterogeneous environment.

Monthly NDVI and its long-term maximum and minimum values are input into the computation

of the indices and thus the variations in NDVI highly influence their values. Figure 2 confirms that the

waterbody, wetland and urban areas have the lowest NDVI, thus resulting in the lowest VCI for these

land covers. In contrast, the forest and tree covers may also suffer from water stress and result in low

VCI. In a heterogeneous environment, the accurate estimation of the agricultural drought condition

can be affected if these land covers are not considered in the estimation of VCI. Table 3 shows the

differences in the estimation of drought conditions using the VCI and mVCI. The VCI overestimates the

areas of extreme and moderate drought conditions. In contrast, the mVCI shows a lower proportion of

areas of drought conditions than the VCI. In the estimation of mVCI, land cover types are considered,

thus excluding the water-stressed vegetation and non-vegetation land covers in the calculation of

agricultural drought.
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Figure 4. Spatial distribution of land cover types and vegetation conditions derived from the VCI and

mVCI in (a–c) 2006, and (d–f) 2018.
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Figure 5. Comparison of typical statistics of the VCI and mVCI (a–d), and local spatial difference in the

estimation of vegetation conditions (e,f).
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Figure 6. Mean vegetation conditions as derived from the (a) VCI, and (b) mVCI.

Table 3. Area (%) indicating different drought conditions.

Yr2006
Index Range

Cropping Seasons
Yearly

Aman Boro Aus

VCI mVCI VCI mVCI VCI mVCI VCI mVCI

0–30 32.1 25.0 43.0 31.5 12.0 6.8 16.2 10.8
30–50 32.2 24.7 30.9 22.9 28.5 21.6 47.6 37.9
50–70 21.9 17.8 16.5 15.8 37.7 28.0 27.9 17.9
70–100 13.7 32.5 9.6 29.8 21.9 43.7 8.2 33.4

Yr2018

0–30 3.6 1.5 3.8 1.6 3.7 1.3 1.4 0.1
30–50 17.8 13.1 15.6 10.4 17.9 11.4 10.8 6.0
50–70 41.3 36.9 40.3 34.3 42.6 30.4 59.3 43.7
70–100 37.3 48.5 40.3 53.7 35.8 56.9 28.5 50.1

4.4. Assessing Drought Hazard and its Impact on the Yield of Major Cereals

Figure S7 shows the cropping area of the major cereals, and Figure 7 shows the drought-vulnerable

croplands. The results demonstrate that the regions located in the north-west are highly vulnerable to

agricultural drought. In Bangladesh severe drought primarily occurred in the pre- and post-monsoon

periods [42]. The results of this study also indicate a high drought occurrence in the pre-monsoon

rice-growing season of Boro and post-monsoon rice-growing season of Aman (Figure 7b,c). In contrast,

the rain-fed agriculture, Aus rice-growing season shows mild drought conditions (Figure 7a).
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Figure 7. Spatial and temporal variations in the vulnerability to drought.

An evaluation of the drought impact on the yield of major cereals is shown in Figure 8. The results

show the lowest yield in the drought year compared to the non-drought year. It is worthy of note

that the Boro rice-growing season shows the lowest mean mVCI; however, the yield of Boro rice is

highest (Figure 8a). It seems to be inconsistent because the low index value indicates higher drought

conditions, thus it should have a high impact on the yield of Boro rice. The sown and harvesting

times of Boro rice are between mid-November and April, which is the driest season in Bangladesh

(Figure S1). Various factors including low precipitation, leaf unfolding, and coloring seem to have an

impact on the vegetation conditions. In this study, the yield–mVCI relationship is shown graphically

in Figure 8a. It shows a comparison between two representative years that limits the application of

regression analysis to evaluate the impacts of drought on the crop yield. This study underlines the

importance of using the long-term crop yield and mVCI for quantitative analysis in future work.
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Figure 8. Temporal variations in the mean mVCI of the cropland and seasonal crop yield.

The NDVI-based VCI has been widely used to evaluate drought conditions [2,33,38], and this

study proposes the mVCI for the accurate estimation of agricultural drought. In the proposed approach,

the thresholds of NDVI are used to segregate croplands from other land cover types, and Equation (2)

is developed for the estimation of agricultural drought in the heterogeneous environment. This study

finds 91–95% agreement in the detection of cropland using the threshold of NDVI. It is worthy of note

that the heterogeneous environment consists of various land cover types, and non-vegetation land

covers e.g., waterbody, wetland, and the built environment have low NDVI values compared to the

cropland and other vegetation (Figure S2). Therefore, the use of the traditional vegetation index in the

heterogeneous environment yields low VCI values in many areas of non-vegetation land covers and

seems to include them as drought-affected areas (Figure 4). In contrast, the use of the NDVI threshold

13



Remote Sens. 2020, 12, 3363

and the consideration of separating croplands from other land cover types reduces the inclusion of

misclassified drought areas thus improving the estimation of agricultural drought.

In this study, precipitation and crop yield have been used to verify the ability to detect drought

conditions [32]. This study also uses these data to evaluate the performance of the drought hazard

index. Figure S8 shows the temporal variations in the average precipitation and mVCI of the croplands

between two representative years. The investigation indicates that the drought year yields low mVCI

values compared to the non-drought year. It should also be noted that the mean mVCI values fall

with a decrease in precipitation in 2006. In contrast, the influence of precipitation on the vegetation

conditions is not noticeable in 2018. Temporal variations in precipitation present the dry and wet

seasons, and can be used as an important indicator of meteorological drought.

Dutta et al. [36] used a yield-based drought index for comparison with the VCI and found a

moderate coefficient of determination between VCI and yield of major rainfed crops (Sorghum). In this

study, a comparison is shown between the yield of major cereals and the corresponding mean mVCI

(Figure 8). The results demonstrate that mVCI is lowest in the rice-growing season of Boro but the

yield rate is highest. In contrast, the mVCI is largest in the rice-growing season of Aus but the yield

rate is lowest. The investigation of this research indicates that the vegetation condition is one of the

important indicators of drought. However, several other influencing factors should be considered to

find out the correlation between crop yield and the occurrence of drought.

It should be noted that this study selects a large territory for the assessment of agricultural

drought. A large-scale analysis facilitates the detection and comparison of the levels of drought

vulnerability (Figure 7) on a regional scale that are important to prioritize vulnerable croplands for

initiating development projects and allocating funds accordingly. A large-scale analysis is also of

importance for country-level decision making to withstand drought vulnerability.

5. Conclusions

Agricultural drought is one of the natural hazards occurring in many parts of the world. Various

factors including reduction in precipitation and soil moisture, climate change, and the changes in water

supply and demand cause drought. It is important to understand the factors of drought conditions

and detect the vulnerable areas for effective planning and minimizing of the drought risk. Various

indices are available to monitor drought conditions. For example, meteorological drought indices

e.g., SPI, RAI, and SPEI have been commonly used but are limited by the distribution of weather

stations and provide only point data. In contrast, RS based indices facilitate multi-temporal drought

vulnerability mapping on a regional scale. The VCI is one of the popular RS-based indices that has been

applied for drought analysis; however, existing studies rarely evaluate drought in a heterogeneous

large territory. This study improves the traditional VCI and proposes the mVCI to make it suitable for

investigating agricultural drought in a heterogeneous environment. The proposed mVCI uses MODIS

earth observation data of NDVI and land cover. Note that the traditional VCI has been mostly used for

small-scale analysis, and thereby land cover types have not been considered for evaluating drought.

This study evaluates agricultural drought in an entire country and computes the mVCI considering the

variations in land cover types.

In this study, the basic statistics of the NDVI for six major land cover types are enumerated.

The results show the lowest NDVI values for the non-vegetation land cover types and the highest

for the forest and tree cover. In contrast, the intermediate NDVI values indicate the cropland areas.

This study computes a threshold of NDVI to segregate cropland from other land cover types and

uses the threshold values in the algorithm of the mVCI. The proposed approach is compared with

the VCI. The results reported in this study show that the use of the traditional vegetation index in the

heterogeneous environment yields low VCI values in many areas of non-vegetation land covers thus

overestimating the areas of agricultural drought conditions. In contrast, the use of the NDVI threshold

and the consideration of separating croplands from other land cover types reduces the inclusion

of misclassified drought areas thus improves the estimation of agricultural drought. The results
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of seasonal variations in the drought conditions indicate that the Aus rice-growing season is less

vulnerable to drought as the highest precipitation falls in this season. This study uses mVCI maps from

multiple years and seasons to develop the DHI map. The result indicates the local spatial variations

in the vulnerability to agricultural drought. The highly vulnerable agricultural areas are located in

the north-west of Bangladesh. In contrast, the southeast hilly region consists of forest indicates less

vulnerable to drought conditions.

It should be noted that most of the major cereals are cultivated in the north and north-west districts

of Bangladesh. However, the north-west districts are highly vulnerable to drought conditions and

thus care should be taken with dynamic drought planning for this region. The crops that withstand

drought conditions could be selected for cultivation in the highly vulnerable regions. Note that

this study assesses agricultural drought using s vegetation index. However, some other factors

including hydrogeological characteristics, soil types and moisture conditions, air and land surface

temperature, irrigation water demand and supply should be considered while estimating agricultural

drought in future work. Climate change has varying impacts on global and local weather [42].

This study suggests climate change-induced drought assessment in future work. In this study, both the

VCI and mVCI are generated by inputting the NDVI. However, NDVI-based vegetation indices

commonly indicate the condition of vegetation in terms of greenness. High greenness indicates healthy

vegetation, and low greenness indicates poor vegetation conditions. NDVI-based vegetation indices

limit differentiation of the inherent causes (e.g., lack of water or nitrogen) of poor vegetation conditions,

thus this research suggests considering the investigation of soil conditions in future work along with

the vegetation condition.
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Abstract: This paper aims to scrutinize in what way peri-urbanization triggers climate change

vulnerabilities. By using spatial analysis techniques, the study undertakes the following tasks. First,

the study demarcates Dhaka’s—the capital of Bangladesh—peri-urban growth pattern that took

place over the last 24-year period (1992–2016). Afterwards, it determines the conformity of ongoing

peri-urban practices with Dhaka’s stipulated planning documents. Then, it identifies Dhaka’s specific

vulnerabilities to climate change impacts—i.e., flood, and groundwater table depletion. Lastly, it maps

out the socioeconomic profile of the climate change victim groups from Dhaka. The findings of

the study reveal that: (a) Dhaka lacks adequate development planning, monitoring, and control

mechanisms that lead to an increased and uncontrolled peri-urbanization; (b) Dhaka’s explicitly

undefined peri-urban growth boundary is the primary factor in misguiding the growth pockets—that

are the most vulnerable locations to climate change impacts, and; (c) Dhaka’s most vulnerable

group to the increasing climate change impacts are the climate migrants, who have been repeatedly

exposed to the climate change-triggered natural hazards. These study findings generate insights into

peri-urbanization-triggered climate change vulnerabilities that aid urban policymakers, managers,

and planners in their development policy, planning, monitoring and control practices.

Keywords: peri-urbanization; urban growth boundary demarcation; climate change; climate migrants;

natural hazards; flooding; land use and land cover; night-time light data; Dhaka; Bangladesh

1. Introduction

Due to the global urbanization drives, major metropolitan cities and regions across countries are

gradually expanded by continuously encroaching their physical growth boundaries into adjoining

peri-urban areas [1–4]. Hence, urban growth at present predominantly is occurring in the form

of peri-urbanization globally [5]. Thus, rapid peri-urbanization has already become an issue of

increasing global concern [6]. In addition, peri-urban areas are also vulnerable to climate change

impacts [7,8]. Consequently, these peri-urban growth pockets provoke considerable growth challenges

to policymakers [9–11].

Although the rapidly occurring peri-urbanization is commonly a global phenomenon, peri-urban

growth factors vary across countries. Such variations in growth factors are deeply ingrained in a

country’s unique socio-economic settings, legal systems, institutional arrangements, and environmental

conditions [12,13]. For instance, the in-migration—which is considered as a major determinant of

peri-urbanization—varies across countries. Peri-urban in-migrants for the context of developed nations

are predominantly amenity-led migrants [14,15]. Contrariwise, such in-migration in developing

countries context is largely attributed by forced factors such as poverty, lack of employment, and climate

change impacts—e.g., sea-level-rise, river erosion, flooding, salinity intrusion, and drought [16,17].

19



Remote Sens. 2020, 12, 3938

In addition, biased national policies—e.g., excessive capital city-oriented development

tendencies—also accelerate this forced migration [18]. In this way, metropolitan cities in the developing

countries context are overwhelmed with unanticipated population growth. Hence, policymakers and

planners are greatly hindered in maintaining a balance between economic development and social

change [19], resulting in a gross failure in estimating the projected population and corresponding

growth demands. While the cities of developing countries are frequently struggling to cope with

the growing demand, the influx of added migrants makes the development control tasks extremely

challenging [20]. Subsequently, the unprecedented growth of informal economies occurs in their

peripheries [21].

While some cities are gradually expanding in response to this growing need, cities with

geographical limitations are greatly obstructed to provide further avenues for expansion. For example,

the expansion of Dhaka city—the capital of Bangladesh—is severely constrained by the lack of sufficient

flood-free landscapes. The elevation of Dhaka city lies up to a maximum of 13 m above the mean

sea-level [22]. Hence, Dhaka city is even more low-lying than its contemporaries—e.g., Mumbai (India),

Kolkata (India), and Karachi (Pakistan).

Moreover, Dhaka’s annual average rainfall is 2148 mm, out of which the monsoon rainfall that lasts

from May to September accounts for nearly 78% [23]. Thus, Dhaka encounters frequent annual flooding

in the monsoon due to heavy rainfall. While the portion of the city’s annual flooding contributed by

climate change impacts is as yet unknown, such frequently occurring flood events are widely claimed

to be climate change-induced [24,25].

Furthermore, Bangladesh also tops the list of climate change impacts and such impacts are

already evident throughout the country. Due to climate change impacts—e.g., sea-level rise, salinity

intrusion, riverbank erosion, flooding, and drought, many people lose their livelihoods and properties,

and eventually migrate to the major cities of Bangladesh [26]. Such internal migrants are globally

defined as ‘climate migrants’ [27]. So far, Bangladesh has two million climate migrants and the capital

city Dhaka individually hosts 68% of them [28]. These climate migrants predominantly represent

the poorest portion of the city. With an annual poverty growth rate of 4%, about 40% of Dhaka’s

urban population are poor [29], and are predominantly deprived of any sort of urban facilities [30].

These poor people generally live in the peripheral areas of the Dhaka city, which are highly flood-prone.

A boom in the ready-made garments (RMG) industries has further made the population influx to these

flood-prone areas unstoppable [31]. Consequently, Dhaka’s population is increasing at a rate of 0.4

million/year [32].

Thus, a more densified peri-urban growth occurs in their peri-peripheries, resulting in an

intensified vulnerability of climate change’s impact. These climate change impacts appear to be

perpetual. As Bangladesh is one of the most vulnerable countries to climate change’s impacts, incidents

such as sea-level-rise, flooding, salinity intrusion, and their subsequent impacts on livelihoods and

properties seem to persist. Thus, Dhaka will continue to absorb the direct and indirect impacts of

climate change. While climate change has already become an issue of increasing concern for the

government, policymakers are as yet unequipped to deal with the direct and indirect impacts of climate

change at the metropolitan level.

Peri-urban areas—which are neither urban nor rural—are a distinct geographic space and have

clear implications in urban governance [33,34]. While the idea of independently operating peri-urban

areas is globally gaining increasing concern [35,36], no study, to date, is reported in the literature

investigating peri-urbanization-driven climate change vulnerabilities based on an explicitly demarcated

peri-urban growth boundary.

This study provides a remote sensing approach in demarcating peri-urban growth pockets which

are vulnerable to climate change impacts. In order to demarcate these peri-urban growth pockets, this

paper uses Mortoja’s et al. [20] research findings apropos of ‘what the most suitable methodological

approach to demarcate peri-urban areas is’. The modus operandi of this investigation comprises

carrying out change analyses with Landsat data, and identifying peri-urban growth pockets with
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night-time light data. By adapting the Greater Dhaka Area (Bangladesh)—or the Dhaka Megacity—as a

testbed, the study undertakes the following four analyses. First, it maps out the changes in peri-urban

growth boundaries that occurred in the peripheral areas of Dhaka over the last 24-year period

(1992–2016). Second, it points out the consistencies of prevailing peri-urban growth with Dhaka’s

designated plan documents. Third, it spells out Dhaka’s particular vulnerabilities to climate change

impacts—i.e., flooding and groundwater table depletion. Lastly, it identifies the socioeconomic profile

of the climate change victim groups from Dhaka. The insights generated from this study provide

an evidence base in identifying the peri-urban growth pockets, and thereby enable policy makers

to formulate area-specific growth policies and mitigating circumstances in dealing with increasing

climate change vulnerabilities.

2. Materials and Methods

2.1. Study Area

In order to reveal peri-urbanization-related climate change vulnerabilities, this study chose

one of the most vulnerable cities of global climate change impacts—i.e., Dhaka, the capital of

Bangladesh. In terms of physical growth, Dhaka has become overwhelmingly saturated within its city

corporation areas since the 2000s. Hence, further expansions of Dhaka city are protruding towards

the adjoining peri-urban landscapes. The Capital Development Authority (a.k.a. Rajdhani Unnayan

Kotripakhkha—RAJUK)—that is entitled as the prime organization for guiding and monitoring Dhaka

city’s growth—projects the city’s growth to nine adjoining sub-districts (a.k.a. upazilas), including

Savar, Gazipur Sadar, Kaliganj, Rupganj, Sonargaon, Bandar, Narayanganj Sadar, and Keraniganj

(Figure 1). These RAJUK-designated sub-districts are altogether declared as the Dhaka Metropolitan

Development Plan (DMDP) boundary. The study considered this DMDP boundary, comprising

an aggregate area of 1530 km2, as the testbed to demonstrate the peri-urbanization driven climate

change vulnerabilities.

Figure 1. Location of the study area: (a) the Dhaka Metropolitan Development Plan (DMDP) area

within the national context; (b) the Dhaka Metropolitan Development Plan (DMDP) area and its

corresponding sub-districts’ location.
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The compelling reasons for investigating the DMDP’s peri-urban growth under this microscope

entail: (a) the capital-city-centered biased national polices of agglomerating all major economic and

infrastructural facilities around Dhaka city [37]; (b) unprecedented flow of in-migrants to Dhaka

city [38]; (c) rampant unsustainable development practices around Dhaka city [39]; (d) both in terms

of the world least livable city index and global population density, Dhaka ranks third [40–42], and;

(e) Dhaka is already facing climate change-induced frequent flooding [25].

2.2. Datasets

The datasets used for this study primarily comprise two types: (a) level-one terrain-corrected

(L1T) and cloud-free multispectral Landsat data for the years 1989, 1999, 2009, and 2019 collected from

USGS [43] (https://earthexplorer.usgs.gov) (Table 1), and; (b) night-time light (NTL) data for the years

1992 and 2016 collected from NCEI [44] (http://ngdc.noaa.gov/eog/download.html).

Table 1. Characteristics of Landsat data for the DMDP area [43].

Date Path/Row Sensor Satellite Resolution

20 November 1989 137/44 TM Landsat 5 30 m
9 March 1989 137/44 TM Landsat 5 30 m

1 February 1999 137/44 TM Landsat 5 30 m
1 February 1999 137/43 TM Landsat 5 30 m
30 January 2010 137/44 TM Landsat 5 30 m

28 February 2009 137/43 TM Landsat 5 30 m
23 January 2019 137/44 OLI Landsat 8 30 m
23 January 2019 137/43 OLI Landsat 8 30 m

The downloaded NTL Defense Meteorological Satellite Program’s Operational Linescan

System (DMSP-OLS) data of 1992 and NTL Visible Infrared Imaging Radiometer Suite

(VIIRS) data of 2016 were ‘F101992.v4b_web.stable_lights.avg_vis.tif’ and ‘SVDNB_npp_20160101-

20161231_75N060E_v10_c201807311200’, respectively.

While classified images of Landsat data over time were taken to derive the spatio-temporal

dynamics of DMDP’s growth, NTL data were used to detect the shifts in peri-urban growth boundaries

corresponding to those spatial changes in DMDP’s growth. As peri-urban areas take around 20 to

30 years to become completely urbanized, this study selected the NTL DMSP-OLS dataset of 1992

and NTL VIIRS Day-Night Band (DNB) dataset of 2016 in order to investigate the changes in the

peri-urbanization pattern over a period of 24 years. This study selected the NTL dataset of 1992 and

2016, as the NTL data are available from 1992 onwards and the latest year of NTL data which provides

annual composite is 2016.

In order to reveal the socioeconomic aspects of peri-urban growth, the UN-adjusted grid-level

raster data on demography of the year 2001, 2016, and 2020, the average likelihood of poverty (ALP)

(i.e., the average probability of living on less than $2.50/day), and standard deviation of the average

likelihood of poverty (ALP) of the year 2013 for the context of Bangladesh were collected from WorldPop

and CIESIN [45] (https://www.worldpop.org/geodata/country?iso3=BGD). In addition, a continuous

surface elevation map was generated for the DMDP area by using Shuttle Radar Topography Mission

(SRTM) datasets of 2014 collected from USGS [43].

Other relevant documents including administrative boundaries, data on flood plain areas,

proposed land use zone data, major river boundary, and reports of the City Region Development Plan

(CRDP) 2015–2035 were collected from the RAJUK. The data on daily rainfall for the DMDP context

from 2000 to 2018 were collected from the Bangladesh Water Development Board (BWDB).
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2.3. Methods

The collected raster datasets and shapefiles were all projected to the universal coordinate system:

‘WGS_1984_UTM_Zone_46N’. Figure 2 illustrates the overall methodology of this study, while the

methodological steps are spelled out in the following sub-sections.

2.3.1. Pre-Processing of Satellite Images

Preprocessing of Landsat Data

The collected Landsat images were carefully cross-checked to ensure that all collected images

were geometrically corrected. Thus, no image-to-image spatial adjustments were performed thereafter.

Nevertheless, two accompanying Landsat scenes altogether cover the entire boundary of the

DMDP area. However, due to the differences in sun angle as well as in the timing and date of image

acquisition, the spectral signatures of each scene were notably different than to its counterpart for

each corresponding year. Thus, this study avoided image mosaicking before image classification.

The radiometric calibration and atmospheric correction of these collected images were performed

thereafter in the ENVI platform.

Preprocessing of NTL Data

The NTL DMSP-OLS data inherently have two main problems [46]: (a) saturation and blooming

effects, and; (b) inter-annual inconsistency, whereas such problems with the NTL VIIRS data are

assumed to be minimal [47]. Hence, in order to perform the spatio-temporal analysis using NTL data,

producing a temporarily consistent DMSP-OLS data became necessary.

Reducing saturation and blooming effects of NTL DMSP-OLS 1992 data: In order to reduce the

saturation and blooming effects of the NTL DMDP-OLS data of 1992, this study adapted Cao et al.’s [48]

self-adjusting model (SEAM).

The SEAM model was first applied in Beijing, China. Considering the compact land use

development pattern and high-density sprawl development that are predominantly prevalent both in

Dhaka and Beijing [49,50], Dhaka’s urban growth pattern and subsequent night-time light illumination

appears to be similar with the corresponding illuminations of Beijing. Thus, the paper utilized this

SEAM model for the DMDP area context by using the SEAM’s script coded in MATLAB. In addition,

this study chose the SEAM model because it can alleviate the saturation and blooming effects of the

NTL DMSP-OLS images without the help of other auxiliary data.

According to the SEAM model, the saturation and blooming effects are estimated by pixel-based

regression using pseudo light pixels (PLPs) and their neighboring light sources. These PLPs are selected

from the urban edges. The PLPs shown in Figure 3 represent weak brightness (i.e., Digital Number

(DN) > 0), but one or more of its eight neighbors are dark (i.e., DN = 0). For each DMSP pixel with DN

larger than 0, PLPs are selected within a radius of 150 km.
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Figure 2. Methodological steps of this study.
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Figure 3. The selection of pseudo light pixels (PLPs) and their adjacent pixels within the frame of a 7 X

7 moving window [48] (p. 404).

Interannual Calibration of NTL 1992 data: The SEAM-corrected NTL DMSP-OLS data of 1992

(Figure 4b) were further intercalibrated by using Wu et al.’s [51] study approach. The following

equation was applied:

DNc = a X (DNm + 1)b − 1 (1)

where DNc = intercalibrated NTL DMSP-OLS image of 1992; DNm = SEAM-corrected NTL DMSP-OLS

image of 1992; a = model coefficient = 0.8959; and b = model coefficient = 1.0310. The negative

value of the NTL data of 1992 was later set to zero. This way, the NTL DMDP-OLS data of 1992

were made compatible with the NTL VIIRS data of 2016 to carry out spatio-temporal dynamics of

peri-urban growth.

Figure 4. (a) The original DMSP-OLS image of 1992 for the DMDP area; (b) self-adjusting model

(SEAM)-corrected image of 1992 for the DMDP area; (c) resampled night-time light (NTL) VIIRS image

of 2016 for the DMDP area.

Resampling and harmonizing NTL datasets: In the case of selecting the NTL dataset of 2016, this study

chose the VIIRS annual average radiance composite vcm-orm-ntl data of 2016, which are cloud-free,

outlier removed, stray-light corrected, ephemeral-lights eliminated, and geometrically corrected.

Hence, no pre-processing on NTL VIIRS data was performed. These NTL data of 2016 were projected

to the WGS_1984_UTM_Zone_46N reference system. The spatial resolution of the projected NTL

VIIRS data was 451.52m and radiance values (a.k.a. DN values) within the selected DMDP area were
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between 0 and 69.86 nanowatts/cm2/sr. In order to bring harmony with the spatial resolution of the

NTL DMSP-OLS data of 1992, the NTL data of 2016 were then resampled to 903.04 m spatial resolution

by using the ‘bilinear’ resampling technique in the ArcGIS platform (Figure 4c).

2.3.2. Classifying Landsat Data

This study applied the most commonly used maximum likelihood supervised classification (MLSC)

technique in the ENVI Platform to classify each selected Landsat image into five land cover categories:

(a) bare soil; (b) built-up; (c) vegetation; (d) water body, and; (e) low-land. Other classification

techniques—e.g., random forest algorithms, support vector machines, decision tree algorithm—are also

popular for classifying remotely-sensed data. However, for classifying Landsat data, in particular,

taking appropriate training samples produces more accurate classification outcomes than adapting

any specific classification technique itself [52,53]. Given that the MLSC technique is robust and

available with any remote sensing software package [54], this study selected this MLSC technique.

While applying the MLSC technique, the training samples were repeatedly modified in order to

ensure the selection of the most representative fraction for each land cover class for yielding the most

accurate classification outcome. Later on, post-classification mosaic for each selected year’s image

was performed in order to accommodate the entire boundary of DMDP area within a single classified

image frame.

2.3.3. Post-Processing of Classified Images

All classified images were found with ‘salt-and-pepper’ effects and some degree of localized

misclassifications—e.g., ‘bare soil’ was misclassified as ‘built-up areas’, and ‘built-up areas’ was

misclassified as ‘bare soil’. In addition, in some places, low-density scattered settlements were

misclassified as ‘vegetation’ due to the shade of vegetation coverage. Nonetheless, due to the lower

resolution of Landsat images, such perceived misclassifications are common with Landsat image

classification [53].

Hence, post-processing of classified images became necessary, which was subsequently carried

out in the ArcGIS platform. First, in order to remove the ‘salt-and-pepper’ effects—i.e., removing

the presence of isolated pixels from classified images, this study employed ‘Majority Filter’ by

using the three by three window. Second, the ‘Boundary Clean’ tool was used for smoothening the

boundary of land cover classes. Third, for removing the small isolated regions, the study further

generalized classified images by sequentially using the ‘Region Group’, ‘Set Null’, and ‘Nibble’ tools.

Fourth, the classified raster images were further vectorized in order to manually rectify the localized

misclassifications. After manual rectification of localized misclassification, these images were again

rasterized to make those images fit for accuracy assessment.

2.3.4. Accuracy Assessment of Classified Images and Change Analysis

The accuracy assessment of classified images was performed in the Google Earth platform. In the

case of selecting the number of sampling points for accuracy assessment, if the study area’s coverage is

less than 1 million acres and the classified land cover categories are fewer than 12 land cover classes,

a minimum of 50 sampling points for each land cover category is recommended [55]. In this regard,

the size of the study area was 377,842.53 acres, and the number of classified land cover categories

was 5. Thus, the threshold sampling points for this accuracy assessment task were 250. However,

the number of sampling points under the stratified random sampling technique is proportional to

the area coverage of each land cover class. As some land cover classes (e.g., water body) were too

rare, formulation of a minimum of 50 stratified random sampling points for each land cover class

was not possible. Finally, a total of 351 random sampling points was generated through stratified

random sampling technique in the ArcGIS spatial analyst platform. The image classification process

and the corresponding post-processing tasks of classified images as mentioned above were repeatedly

done until all classified images were found with a minimum classification accuracy of 85% [56].
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Overall classification accuracies of the classified images for 1989, 1999, 2009, and 2019 were 90.00%,

84.90%, 84.90%, and 85.47% with Kappa coefficients of 0.849, 0.778, 0.775, and 0.769, respectively.

Finally, post-classification change detection was carried out by using Land Change Modeler (LCM) in

the TerrSet Geospatial Monitoring and Modelling platform.

2.3.5. Peri-Urban Mapping Using NTL Data

Recognizing the Fuzzy Characters of Peri-Urban Areas

Peri-urban areas generally start from location proximity to an urban core and continue until

a predominantly rural landscape is found. Thus, peri-urban areas, in general, comprise both the

characteristics of urban and rural land uses, where some portions of peri-urban areas are more

urban, and the remaining factions are more rural. Hence, peri-urban areas significantly possess the

characteristics of the fuzzy-set theory—which limits peri-urban areas within a fuzzy membership

value of 0 and 1, where ‘0 = predominantly rural’, and ‘1 = predominantly urban’. Consequently,

the values between 0 and 1 imply peri-urban areas, where higher membership values (e.g., 0.75)

indicate more peri-urban—i.e., inclined to more urban—and lower values (e.g., 0.15) indicates less

peri-urban—i.e., inclined to more rural. Henceforth, this study applied the fuzzy membership function

to reveal these perceived fuzzy characteristics of peri-urban areas.

Identifying the Suitable Fuzzy Membership Function

This study primarily centered around selecting a suitable fuzzy membership function to reveal the

fuzzy characterizes of peri-urban areas. Initially, fuzzy ‘Gaussian’ and ‘Linear’ membership functions

on NTL data in the ArcGIS platform were run. By using multiple combinations as input values, it is

observed that the fuzzy Linear membership function is more interpretive than the Gaussian one while

using NTL data. Thus, this paper chose the fuzzy Linear membership function to map the fuzzy

characteristics of peri-urbanization and named this as the ‘fuzzy linear urban membership function’.

Selecting the Membership Value for the Fuzzy Linear Urban Membership Function

In order to determine the minimum and maximum membership values of the fuzzy linear

urban membership function, this study first extracted the persistent and dynamic built-up areas.

The persistent built-up areas are those which remained unchanged between 1989 and 2019, while

the dynamic built-up areas are the landscapes which were converted into built-up surfaces between

1989 and 2019. As peri-urban areas become urbanized over a 20- to 30-year period, the built-up areas

showing persistence between 1989 and 2019 were hypothesized to be predominantly urban. Thus, this

study assumes that the characteristics of peri-urban areas lie within the dynamic built-up surfaces.

Henceforth, this study extracted the areas which were converted into built-up surfaces between 1989

and 2019.

Later on, this study carried out zonal statistics on the NTL datasets of 1992 and 2016 for the

areas comprising persistent and dynamic built-up areas individually (Table 2). It is observed that the

mean value between these two separate built-up zones is significantly different, while the differences

in the maximum values between these two separate zones are not so conspicuous. Thus, the mean

value of dynamic built-up areas appears to have significant potential to interpret the peri-urbanization

pattern of the DMDP area. Consequently, this study took the ‘minimum value’ and ‘mean value’ as

the ‘minimum value’ and ‘maximum value’, respectively, to form the fuzzy linear urban membership

function set images in the ArcGIS platform. Any values more than the mean estimate (which was

subsequently considered as the ‘maximum value’) indicated predominantly urban areas in the fuzzy

linear urban membership function set images.
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Table 2. The radiance values of NTL data between dynamic and persistent built-up areas.

Year
Persistent Built-up Areas Dynamic Built-up Areas

Minimum Maximum Mean Minimum Maximum Mean

1992 0 64.22 29.22 0 64.22 9.0
2016 0 33.37 12.82 0 46.4 6.33

It is important to mention that this study only used the boundary of dynamic built-up areas in

order to derive the membership values for the fuzzy linear urban membership function set images

using NTL data. No pixel-to-pixel comparison was performed between 30 m resolution classified

Landsat data and 903.04 m resolution NTL data. This way, the difficulty of handling the variations in

spatial resolution of these two different image datasets was avoided.

Identification of Peri-Urban Areas within the Fuzzy Linear Urban Membership Function Set Images

The urban core areas were predominantly found within the values of 0.80 to 1.0, while the rural

areas were predominantly found within the value range of 0 to 0.10 in the fuzzy linear urban membership

function set images. Consequently, peri-urban areas are delimited within the value range of 0.11 to

0.79. Hence, by using these perceived value ranges, the fuzzy linear urban membership function set

images of the years 1992 and 2016 are reclassified into three categories (Figure 5): (a) predominantly

urban (PURBAN); (b) predominantly rural (PRURAL), and; (c) peri-urban (PU).

Figure 5. The level of urbanization under the microscope of fuzzy linear urban membership function set.

Derivation of Fuzzy Set Statistics for the Study Area

This study derived the overall level of urbanization and the degree of fuzziness for the DMDP

context. The level of urbanization denotes the mean gross level of membership in the fuzzy linear

urban membership function set. The following equation was used to calculate the level of urbanization.

LoUyear =

∑n
i Fyear∑

n
(2)

where LoU is the the level of urbanization of each corresponding year, and n is the total number of

cells in the corresponding fuzzy linear urban membership function set image.

In order to determine the degree of fuzziness, the following equation was used:

DoFyear =
(

Fyear−FPredominantly Urban

Fyear
)

∑
n

(3)
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where DoFyear = the degree of fuzziness for each corresponding year, and FPredominantly Urban = fuzzy

linear membership function set for predominantly urban areas of each corresponding year, where the

minimum and maximum values for the predominantly urban set image were assigned to 0.80 and

1.0 respectively.

2.3.6. Validation of Peri-Urban Mapping

Ground Truthing of Peri-Urban Mapping

In order to determine the accuracy of the peri-urban mapping approach, this study carried

out ground-truthing by using 300 stratified random sampling points. Considering the availability

of data for the purpose of ground-truthing using the Google Earth platform, the study chose NTL

VIIRS data mapping of 2016 for this ground-truthing purpose. Nevertheless, as peri-urbanization is

local context-specific, a set of criteria was primarily formulated to distinguish the areas which are

predominantly urban, peri-urban, or predominantly rural for the context of the DMDP area (Table 3).

Later on, a ground-truthing exercise was performed in the Google Earth platform and a confusion

matrix was formed thereafter to derive the accuracy of the peri-urban mapping exercise of 2016.

Table 3. Criteria to ground-truth the NTL VIIRS data mapping of 2016.

Category Criteria

Predominantly urban

The ground-truthing point falls in places where the areas maintain a high-density
(i.e., apparently, there is no distance between two settlements) continuous
built-up development and surrounding areas are built-up.

If the point does not fall within continuous built-up areas, point falls in places
from where high-density continuous built-up areas are within 300 m.

Predominantly rural

The point falls in places where vegetation is more dominant, and a number of
scattered rural homesteads are located within 200 m radius

The point falls within the proximity of 300 m radius from the nearby road

Settlements are located proximity to paddy lands, wetlands, or low-lying areas

Peri-urban

Located within 400 m of low-density continuous built-up development

Located within 50 m from the nearby roads

The point falls in places where vegetation is less dominant (i.e., built-up areas are
not shaded by the vegetation) than the presence of built-up areas

Point falls in a location where settlements are dispersed but follows a linear
development alongside the road

Checking the Consistency of Peri-Urban Expansions with the Proposed Plan Documents

In order to determine the changes in peri-urban growth corresponding to the proposed changes as

stipulated in the DMDP’s City Region Development Project (CRDP) 2015–2035, this study compared

the NTL VIIRS data mapping of 2016 with the proposed land use zones of CRDP 2015–2035.

2.3.7. Identifying Factors Affecting the Spatial Distribution of Peri-Urbanization

Pre-Processing of Ancillary Datasets

The collected raster datasets on demography, the average likelihood of poverty (ALP) and standard

deviation of the average likelihood of poverty (ALP), and the continuous surface elevation dataset

generated for the DMDP context were all resampled to 903.04 m spatial resolution (by using ‘bilinear’

resampling technique in the ArcGIS platform) in order to obtain consistency with the NTL data-driven

peri-urban mapping for comparative analysis. This study considers the standard deviation of the

average likelihood of poverty (ALP) as a proxy variable of social stratification.
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Identification of Statistically Significant Hot Spots for Interpreting Peri-Urbanization

In order to reveal whether the spatial distribution of population growth, the standard deviation

of the average likelihood of poverty (ALP), elevation, and corresponding changes in the spatial

distribution of peri-urbanization is clustered, random, or dispersed, the spatial autocorrelation was

carried out to derive the Global Moran’s I statistic. The positive Moran’s Index implies a tendency

towards spatial clustering, while the negative value of Moran’s Index insinuates a tendency towards

spatial dispersion. Based on the outcome of the spatial autocorrelation against each parameter as

mentioned above, the null hypothesis ‘spatial distribution of a given parameter is normally distributed’

was tested.

Afterwards, hotspot analysis was carried out to compute the Getis-Ord Gi* in order to measure the

intensity of such perceived clustering. While identifying the Getis-Ord Gi* statistic, a False Discovery

Rate (FDR) correction was applied in order to resolve the issues of spatial dependency and multiple

testing. Regardless of whether the z-score is positive or negative, a higher z-score value implies

more spatial clustering. A positive z-score value indicates clustering of hot spots, while a z-score

with a negative value indicates clustering of cold spots, and a z-score near zero implies clustering is

‘not significant’, meaning that no apparent spatial clustering is evident.

Performing Geographically Weighted Regression

The Geographically Weighted Regression (GWR) was carried out in order to reveal how

peri-urbanization is interpreted as a response variable to the spatial distribution of population

growth, the standard deviation of the average likelihood of poverty (ALP), and elevation pattern for

the DMDP context.

2.3.8. Identifying Peri-Urbanization Triggered Climate Change Vulnerabilities

Identifying Rainfall Pattern of the Study Area

The daily rainfall data from 2000 to 2018 (collected from the Bangladesh Water Development

Board) were used to derive the statistics on total annual rainfall, annual monsoon rainfall, and annual

non-monsoon rainfall. Each year’s rainfall from May to September was considered as the ‘annual

monsoon rainfall’, and the rainfall of the remaining months for each year was considered as the ‘annual

non-monsoon rainfall’.

Identification of Peri-Urban Growth Pockets Vulnerable to Flooding

The data on DMDP’s flood plain area (collected from the RAJUK) were superimposed on NTL

VIIRS data mapping of 2016 in order to find out the peri-urban growth pockets vulnerable to flooding.

Mapping the Socioeconomic Impacts of Peri-Urban Growth

The demographic data for the years 2001, 2016, and 2020, the average likelihood of poverty

(ALP) and the standard deviation of the average likelihood of poverty (ALP) for the year 2013 for the

DMDP context were all analyzed and compared with the NTL VIIRS data mapping of 2016 in order to

illustrate how the changes in the spatial distribution of demography and the standard deviation of

ALP correspond to the changes in peri-urban growth.

3. Results

3.1. Changes in Land Cover

The classified images are presented in Figure 6, while the aerial statistics of those classified images

are presented in Table 4.
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Figure 6. (a) Classified DMDP image from 1989; (b) classified DMDP image from 1999; (c) classified

DMDP image from 2009; (d) classified DMDP image from 2019.
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Table 4. Aerial statistics of classified images for the DMDP area.

Land
Cover/Year

1989 1999 2009 2019 R2

(Exponential)Area (Km2) % Area (Km2) % Area (Km2) % Area (Km2) %

Bare soil 274 18 247 16 152 10 125 8 0.94
Built-up 199 13 329 22 632 41 790 52 0.97

Vegetation 659 43 636 42 435 28 320 21 0.92
Water body 38 3 40 3 47 3 42 3 0.00
Low land 359 23 277 18 262 17 252 16 0.83

Total 1529 100 1529 100 1529 100 1529 100

The results find that except for built-up areas, the remaining land cover categories declined over

time. While the highest decline of 22.18% is observed in the vegetation category, the ‘bare soil’ and

‘low-land’ categories also demonstrate a significant decline over this 30-year period. Thus, the losses in

bare soil, vegetation, and lowlands contributed altogether to the development of built-up areas over

time. Consequently, built-up areas quadrupled over time and constituted more than half (i.e., 52%) of

the DMDP area in 2019, whereas bare soil and vegetation were more than halved within this 30-year

period. Earlier studies also found a similar growth trend for bare soil, built-up, vegetation, and lowland

areas (e.g., [57–59]).

In addition, all land cover categories (except water body) demonstrate an exponential

growth/decline trend with strong coefficient of determination values of R2.

In the case of sub-district-wise net changes in bare soil, Gazipur Sadar encountered the highest

decline (i.e., 26%) in bare soil, followed by the Dhaka Metropolitan Area (DMA), and Narayanganj Sadar

by 13% and 8%, respectively, between 1989 and 2019 (Figure 7). While sub-districts predominantly lost

bare soil over time, Kaliganj presented an increase of 7% for bare soil within this 30-year period. On the

contrary, all sub-districts encountered significant losses in vegetation. As for the case of built-up areas,

all sub-districts except for Kaliganj demonstrated significant increases over time, while built-up areas

of Kaliganj declined by 4% between 1989 and 2019.

3.2. Changes in Peri-Urban Boundary

The aerial statistics of peri-urban growth has been presented in Table 5, while the peri-urban

mapping has been depicted in Figure 8. The analysis reveals that for the DMDP context, predominantly

urban areas remained nearly unchanged over time, while the major changes occurred in transitioning

predominantly rural areas into peri-urban areas (Table 5). Thus, major development within the DMDP

context predominantly took place in the form of peri-urbanization.

Table 5. Aerial statistics of peri-urban growth between 1992 and 2016.

Category
Year 1992 Year 2016

% of Changes
(1992–2016)

Area (in km2) % LoU DoF Area (in km2) % LoU DoF LoU DoF

Predominantly rural 365 24 0.03 1 167 11 0.04 1 33.33% 0.00%
Peri-urban 715 47 0.3 0.98 874 58 0.4 0.94 33.33% (−)4.08%

Predominantly urban 452 29 0.94 0.07 478 31 0.96 0.12 2.13% 71.43%
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Figure 7. (a) % of net changes in bare soil; (b) % of net changes in built-up areas; (c) % of net changes in

vegetation; (d) % of net changes in low-land areas.
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Figure 8. (a) Peri-urban mapping of 1992; (b) peri-urban mapping of 2016.

The level of urbanization within the predominantly urban areas category was 0.94 and 0.96 in

1992 and 2016, respectively. Thus, predominantly urban areas had undergone the highest level of

urbanization within these 24 years (1992–2016), followed by peri-urban areas and predominantly rural

areas. Nevertheless, in terms of the level of urbanization, predominantly urban areas demonstrated an

increase of 2.13% only, which resulted in an increase of 71.43% in the degree of fuzziness in 2016 from

the base year estimate of 1992. Such a finding reveals that along with the pace of urbanization, a less

articulated pattern of urban land use practices becomes more evident.

In addition, the level of urbanization within the predominantly rural areas category demonstrates

the same thing, while the degree of fuzziness within this zone is 1.00 in 1992 and 2016, meaning the

land use practices embraced an unclear pattern in distinguishing whether the areas are predominantly

rural or urban.

Furthermore, predominantly rural areas and peri-urban areas both demonstrated an increase of

33.33% in the level of urbanization in 2016. However, while unquestionably rural areas demonstrated

persistence in encountering the highest degree of fuzziness in 1992 and 2016, peri-urban areas showed

a slight decline of 4.08% in 2016, implying a nominal improvement in embracing articulated land use

practices within peri-urban areas.

In the case of the sub-district-wise level of urbanization and degree of fuzziness, with the

correlation coefficients of (-)0.97 and (-)0.95, respectively, for the years 1992 and 2016, the result reveals

that the degree of fuzziness is inversely correlated to the level of urbanization, with Bandar being an

exception (Figure 9). The Bandar sub-district encountered the highest increase in the rate of the level of

urbanization (i.e., 277%) and experienced a reduction in the degree of fuzziness, from 0.93 to 0.65 in

2016. Such a finding implies that scattered urban development in Bandar has been further consolidated

through increased urbanization, resulting in a decrease in the degree of fuzziness thereafter. The Dhaka

Metropolitan Area (DMA), and Narayanganj Sadar continued the higher level of urbanization both in

1992 and 2016, and hence scored the lowest in terms of the degree of fuzziness.
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Figure 9. (a) Sub-district-wise level of urbanization (LoU) and degree of fuzziness (DoF) statistics for

1992; (b) sub-district-wise level of urbanization (LoU) and degree of fuzziness (DoF) statistics for 2016.

The remaining sub-districts underwent less urbanization and encountered more fuzziness,

meaning that an intensified unarticulated peri-urbanization predominantly took place within these

(remaining) sub-districts.

3.3. Validation of Peri-Urban Mapping

3.3.1. Ground-Truthing of Peri-Urban Mapping

The spatial distribution of the ground-truthing points generated through the stratified random

sampling technique is presented in Figure 10, while the confusion matrix of this ground-truthing

exercise is given in Table 6. With a Kappa coefficient of 0.75, the ground-truthing exercise yields an

overall accuracy of 86%.
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Figure 10. Spatial distribution of ground-truthing points on NTL VIIRS data mapping of 2016 for:

(a) predominantly rural areas; (b) peri-urban areas; (c) predominantly urban areas.

Table 6. Confusion matrix of NTL VIIRS data mapping of 2016.

Category
Predominantly

Rural
Peri-Urban

Predominantly
Urban

Total
Producer’s
Accuracy

User’s
Accuracy

Predominantly rural 30 4 0 34 55.56% 88.24%
Peri-Urban 24 147 1 172 89.09% 85.47%

Predominantly urban 0 14 80 94 98.77% 85.11%
Total 54 165 81 300

Overall Accuracy 86%
Kappa Coefficient 0.75

3.3.2. Consistency of Peri-urban Expansions with the Proposed Plan Documents

The City Region Development Plan (CRDP) proposed land use zone of 2015–2035 was

superimposed over the NTL VIIRS data mapping of 2016 in order to cross-check how the adapted

peri-urban mapping approach fits with the proposed land use zoning for the DMDP area.

The CRDP’s 2015–2035 proposed land use zones comprise eight broad land use categories

(Figure 11). The analysis reveals that the mixed-use zone (55%) and agricultural zone (29%) are the

two most dominant proposed land use zones in the DMDP area, which altogether account for 84% of

the DMDP’s area coverage (Table 7).

Table 7. Aerial statistics of the proposed land use zone (derived from the CRDP 2015–2035 [60]).

Proposed Land
Use Zoning

Predominantly Rural Peri-Urban Predominantly Urban
Total Area
(in km2)

Total
%Area

(in Km2)
%

Area
(in Km2)

%
Area

(in Km2)
%

Agricultural Zone 86.36 5.81 325.23 21.87 19.46 1.31 431.05 29
Forest Area 4.71 0.32 14.42 0.97 0.08 0.01 19.21 1

Heavy Industrial Zone 0.21 0.01 6.60 0.44 23.11 1.55 29.93 2
Institutional Zone 0.41 0.03 19.81 1.33 38.88 2.61 59.10 4
Mixed Use Zone 58.66 3.94 417.93 28.10 335.67 22.57 812.26 55

Open Space 1.46 0.10 4.72 0.32 7.00 0.47 13.18 1
Transport and

Communication
0.94 0.06 7.47 0.50 14.77 0.99 23.18 2

Waterbody 7.40 0.50 56.17 3.78 35.60 2.39 99.16 7
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Figure 11. Spatial distribution of CRDP’s 2015–2035 proposed land use zones [60].
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According to the NTL VIIRS data mapping of 2016, predominantly rural areas comprise 11% of the

DMDP area, out of which the CRDP’s 2015–2035 proposed agricultural zone and mixed use (i.e., a blend

of residential, commercial, and general industrial areas) zone altogether comprise around 10%.

Similarly, in an aggregate, peri-urban areas comprise around 58% of the DMDP’s area, whereas

mixed use zones (28.10%) and agricultural zones (21.87%) altogether comprise around 50% of the

DMDP’s peri-urban area. Thus, peri-urban areas are proposed to accommodate around three fourths

of the DMDP’s proposed agricultural areas and more than half of the proposed mixed-use zone.

Predominantly urban areas are proposed to be dominated by mixed use zones which comprise around

two fifths of the proposed mixed-use zone areas.

Among the other proposed land use zones, institutional zones comprise around 4% of the DMDP’s

area, and comprise 2.61% and 1.33% of the predominantly urban and peri-urban areas, respectively.

In addition, more than three fourths of the DMDP’s proposed heavy industrial zone is located in

predominantly urban areas. Meanwhile, among the total proposed forest areas, nearly three fourths of

the proposed forest zones are located in peri-urban areas and the remaining portion was proposed to

be accommodated by predominantly rural areas.

The analysis reveals that the proposed forest areas are observed as having the lowest values

for LoU and the highest values for DoF (Figure 12). Contrariwise, the proposed heavy industrial

zone appeared to be the most urbanized in terms of LoU, and hence had the lowest values for DoF.

Apparently, heavy industrial zones are proposed based on strict policy control, and hence spontaneous

development of these areas are not possible, resulting in an articulated land use pattern of these areas.

Meanwhile, forested areas are spontaneous natural growth zones, and hence were observed as having

the highest DoF.

Figure 12. The level of urbanization (LoU) and degree of fuzziness (DoF) under the CRDP’s 2015–2035

prosed land use zones.

In addition, in the case of each subdistrict, the higher the LoU, lower the level of DoF in each

proposed land use zone is (Figure 13). The Kaliganj sub-district, with the lowest LoU and an absolute

DoF value of 1.0, provokes an immediate land use intervention by the city authorities (Figure 13d).

Other sub-districts with higher DoF include Gazipur, Keraniganj, Rupganj, Sonargaon, and Savar.

These areas are predominantly located in peri-urban areas, meaning that peri-urban growth appears to

be dominated by unarticulated land use patterns.
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Figure 13. Cont.
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Figure 13. The level of urbanization (LoU) and degree of fuzziness (DoF) for CRDP’s 2015–2035

proposed land use zones: (a) Bandar; (b) Dhaka Metropolitan Area (DMA); (c) Gazipur Sadar;

(d) Kaliganj; (e) Keraniganj; (f) Narayanganj Sadar; (g) Rupganj; (h) Savar; and (i) Sonargaon.

Such general findings are also evident in the sub-district-wise LoU and DoF calculations that were

derived from the NTL VIIRS data mapping of 2016 (Figure 9). Thus, it can be deduced that the proposed

NTL data mapping exercise of 2016 yields substantive outcomes in distinguishing predominantly rural,

peri-urban, and predominantly urban areas.
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3.4. Factors Affecting the Spatial Distribution of Peri-Urbanization

3.4.1. Identification of Statistically Significant Hot Spots for Interpreting Peri-Urbanization

Hotspots of Population Growth

In the DMDP area, a highly statistically significant (Moran’s Index: 0.69, p-value = 0, and hence

the null hypothesis ‘spatial distribution of the population is normally distributed’ was rejected) cluster

pattern of population growth is evident. The hot spots of population increase are found predominantly

in the Gazipur Sadar areas (Figure 14a), which bolsters the earlier findings on Gazipur Sadar’s

supremacy in attainting the highest rate of population growth. However, Savar areas are prevalent

with both hot spots and cold spots. Indeed, the northern part of Savar in proximity to the Gazipur

Sadar areas is observed as having hot spots, whereas the southern part of Savar in proximity to the

Dhaka Metropolitan area is found to have the cold spots for population growth. As Savar is found to

have both cold and hot spots of population growth, the aggregate growth rate of population in Savar

does not appear to be higher than its contemporaries, although the earlier findings claim that Savar is

the most peri-urbanized sub-district for this study.

Hotspots Mapping of the Standard Deviation of the Average Likelihood of Poverty

The hotspots mapping exercise on the standard deviation of the average likelihood of poverty

(ALP) demonstrates a highly statistically significant clustering pattern (Moran’s Index = 0.78 and

p-value = 0, and hence the null hypothesis ‘spatial distribution of poverty deviation is normally

distributed’ was rejected). However, in this regard, hot spots are predominantly confined within the

Dhaka Metropolitan Area while the cold spots are predominantly observed near the eastern periphery

of the Dhaka Metropolitan Area, which enjoins Rupganj, Sonargaon, and Kaliganj sub-districts

(Figure 14b). Thus, the spatial distribution of the standard deviation of ALP hot-spot mapping exercise

does not appear to be commensurate with the hot spot mapping of the population growth pattern.

Hotspots of Elevation Pattern

A statistically significant (Moran’s Index: 0.56, p-value = 0, and hence the null hypothesis ‘spatial

distribution of elevation pattern is normally distributed’ was rejected) clustering pattern is dominant in

the spatial distribution of elevation for the DMDP area. The hot spots (i.e., areas with higher elevation)

are predominantly concentrated in the Gazipur Sadar and Savar sub-districts—i.e., the areas which

underwent the highest peri-urbanization (Figure 14c).

Hotspots of Peri-Urbanization

This study used the NTL VIIRS data mapping of 2016 in determining the spatial distribution of

hotspots for peri-urbanization (Figure 14d). The Moran’s Index was computed as (+)0.90 with a z-score

value of 54.51 and p-value of 0. Thus, the null hypothesis ‘spatial distribution of peri-urbanization

pattern is normally distributed’ was rejected, implying that the spatial distribution of the fuzzy linear

urban membership function set image of 2016 (i.e., NTL VIIRS data mapping of 2016) demonstrates a

highly significant clustering pattern.

The analysis reveals that hot spots are predominantly urban, whereas the cold spots are

predominantly rural (Figure 14d). On the contrary, the areas which are not statistically significant in

the fuzzy linear urban membership function set image of 2016 are predominantly peri-urban. Indeed,

peri-urban areas which are neither urban or rural seem to possess more fuzzy characteristics, which in

turn lead to them to be statistically insignificant.
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Figure 14. (a) Hot spot analysis of the aggregate population growth rate (APGR) mapping; (b) hot spot

analysis of the standard deviation of the average likelihood of poverty (ALP); (c) hot spot analysis of

elevation pattern derived from the SRTM global DEM data [43]; (d) Hot spot analysis of the fuzzy

linear urban membership function set image of 2016.
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3.4.2. Carrying out Geographically Weighted Regression for Interpreting Peri-Urbanization

The findings from hot spot analysis reveal that the spatial distribution of peri-urban hot spots

mapping is more linked to the corresponding distribution pattern of elevation and the growth of

population. Thus, in order to illustrate how such perceived peri-urbanization of the DMDP area varies

across space corresponding to the changes in elevation and population growth pattern, Geographically

Weighted Regression (GWR) was carried out. The adjusted R2 value of the GWR model was 0.87,

indicating that peri-urbanization is predominantly linked to higher elevation and higher population

growth rate. Meanwhile, the R2 value of the GWR model was 0.63 when peri-urbanization was

interpreted as a response variable of elevation, population growth rate, and the standard deviation

of ALP. Thus, when the standard deviation of ALP is omitted, the GWR model interpreting DMDP’s

peri-urbanization produces a better outcome, meaning that peri-urbanization does not necessarily mean

an over concentration of poverty in the city’s outskirts. Instated, such concentration is predominantly

driven by the land scarcity in the city’s core and an unleased influx of population to the capital

city Dhaka.

3.5. Identifying Peri-Urbanization Triggered Climate Change Vulnerabilities

3.5.1. Identifying Rainfall Pattern of the Study Area

The annual rainfall pattern of the DMDP area is presented in Figure 15. The analysis reveals

that from 2000 to 2018, total annual rainfall in the DMDP area ranged from 818.1 (in 2010) to 2873

mm (in 2017), with an annual average rainfall of 1824.91 mm within this 18-year period. In addition,

it was calculated that the annual average rainfall in the monsoon—which lasts from September to

May—comprised exactly 80% of the total annual rainfall within this 18-year period.

Figure 15. Rainfall pattern of the DMDP area.

Surprisingly, in 2012, the DMDP area had the lowest annual monsoon rainfall percentage of

67.72%, whereas in the following year (i.e., in the year 2013), the percentage of annual monsoon rainfall

was the highest, at 91.30%. In addition, this rainfall pattern does not follow any significant growth

trend over time. For example, although the highest annual rainfall occurred in the year 2017, annual

monsoon rain within this year was 73.41%, which is below the annual average percentage of monsoon

rainfall (i.e., 80%), whereas the highest annual rainfall in the non-monsoon period was observed

in 2017.

However, this finding does not simplify with certainty that an occurrence of more rainfall events

in the monsoon is linked with less rainfall in the non-monsoon period and vice versa, as the correlation

coefficient of the rainfall pattern between the monsoon and non-monsoon period is 0.44 (which is
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not very strong), meaning that abrupt rainfall in the DMDP area has gradually become common.

Consequently, events of frequent flooding due to heavy rainfall often occur in the DMDP area.

3.5.2. Identification of Peri-Urban Growth Pockets Vulnerable to Flooding

In general, DMDP is a flood-prone area. However, the northern part of the DMDP is in higher

elevation, and is therefore comparatively less flood-prone (Figure 16). Thus, higher population

concentration and subsequent peri-urbanization is observed in the areas with higher elevation, which

are predominantly concentrated in the Gazipur Sadar and Savar areas. The analysis reveals that around

44% of total peri-urban areas are located within the flood plain area, while such percentage distribution

for predominantly rural and urban areas is 35% and 33%, respectively, meaning that peri-urban areas

are most vulnerable to frequent flooding. Such findings are relevant to Dewan et al.’s [61] study, who

claimed that the DMDP’s peri-urban areas are moderately to highly vulnerable to annual flooding.

Figure 16. DMDP’s flood plain area (FPA) (derived from CRDP [60]) superimposed on the VIIRTS NTL

data mapping of 2016.
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3.5.3. Mapping Socioeconomic Impacts of Peri-Urban Growth

Changes in Demography

The spatial distribution of population predominantly is concentrated within the Dhaka

Metropolitan Area (DMA), Narayanganj Sadar, and along the Dhaka-Mymensingh and

Tangail-Joydevpur Highways of the Gazipur Sadar area (Figure 17). Apparently, the spatial changes in

demography between 2001 and 2016 are quite conspicuous, whereas such changes between 2016 and

2020 appear to be quite similar.

Figure 17. (a) Spatial distribution of 2001 population; (b) spatial distribution of 2016 population; (c)

spatial distribution of 2020 population (derived from WorldPop and CIESIN [45]).

In addition, the percentage distribution of population between predominantly rural areas,

peri-urban areas, and predominantly urban areas remained almost equal over time, whereas the

density of population nearly doubled within this 19-year period (Table 8). Thus, this study finds a

perpetual increase in growth rate of population over time for the DMDP context. Although the density

of population in DMDP’s predominantly urban areas is unparalleled compared to the rest of the world,

the population density of even DMDP’s predominantly rural areas is much higher than some of the

urban areas’ population density of the developed world. For example, a country like Australia, which

comprises more than 50 times larger area coverage than Bangladesh, has an urban area population

density of 903 persons/km2 [41].

Table 8. Distribution of population between predominantly rural areas, peri-urban areas, and

predominantly urban areas based on NTL VIIRS 2016 data mapping.

Category
Area

(in km2)

Year 201 Year 2016 Year 2020

Population %
Density
(in Km2)

Population %
Density
(in Km2)

Population %
Density
(in Km2)

Predominantly
rural

167 148,583 1 890 246,185 1 1474 269,277 1 1612

Peri-urban 874 2,204,142 21 2522 3,512,173 20 4019 3,999,344 21 4576
Predominantly

urban
478 8,073,684 77 16,891 13,436,218 78 28,109 15,136,359 78 31,666

Total 1519 10,426,409 100 6864 17,194,576 100 11,320 19,404,979 100 12,775
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Nevertheless, the population density of the Dhaka City Corporation (DCC) area is 52,000

persons/km2 [40], whereas the estimated 2020 population density for predominantly urban areas is

31,666. Indeed, predominantly urban areas of 2016 cover an area of 478 km2, whereas the area coverage

of DCC is 134 km2. Thus, NTL VIIRS 2016 data estimated that predominantly urban areas are more

than 3.5 times larger than the DCC’s area coverage. Hence, such perceived lower population density in

predominantly urban areas is likely, as DMDP’s predominantly urban areas extend far beyond the

jurisdiction of the DCC boundary.

Population Densification and Peri-Urban Growth

In general, predominantly urban areas have a relatively lower growth of population, while

predominantly rural areas and peri-urban areas have higher growth rates of population.

Figure 18a illustrates the spatial changes in peri-urban mapping between 1992 and 2016, while

the aerial statistics of these changes are presented in Figure 18b. The analysis reveals that the highest

percentage distribution lies in the peri-urban areas category, which covers more than one-third of

the DMDP’s area. Surprisingly, in terms of spatial changes between the areas of predominantly

rural, peri-urban, and predominantly urban, around two thirds (i.e., 63%) of the DMDP area

demonstrated persistence over time. However, the third and fourth highest categories are the

transition of predominantly rural areas to peri-urban areas and the transition of peri-urban areas to

predominantly urban areas, constituting 18.25% and 7.08% of the area, respectively.

In terms of aggregate population growth rate that occurred between 2001 and 2020, the analyses

reveal that persistent predominantly rural areas encountered the highest pressure of population

growth by around 135%—i.e., 7.10% per year. Among the areas which remained persistent over time,

predominantly urban areas exhibited the lowest population growth rate. The second highest growth

rate of population was observed in the ‘peri-urban to predominantly urban’ areas category by 125.91%,

implying a sequential transition of ‘predominantly rural areas to peri-urban areas’ and the subsequent

transition of ‘peri-urban areas to predominantly urban’ areas.

Nevertheless, the areas demonstrating the transition of peri-urban to predominantly rural shows

the third highest concentration of population growth by 113.05%, which predominantly occurred near

the persistent predominantly rural areas of Kaliganj sub-district. Such a finding, in fact, is not unlikely

as these persistent predominantly rural areas conglomerate the highest percentage of population

growth between 2001 and 2020.

Surprisingly, an unusual transition titled ‘predominantly urban to predominantly rural’ is observed

in the Narayanganj Sadar area which accounted for a negative growth rate of population. These areas

of negative population growth are located in the highly flood prone area of the Dhaleshwari River’s

catchment, and hence frequent flooding displaces many people from this specific chunk of landscapes.

In terms of the sub-district-wise population growth rate, the Gazipur Sadar area encountered the

highest rate of population increase with a larger margin than its contemporaries (Figure 18c). The

areas—i.e., Kaliganj, Keraniganj, Rupganj, which are predominantly peri-urban or predominantly rural

in type—have nearly the same rate of population growth in dynamic and persistent areas. Meanwhile,

the two most urbanized areas—i.e., the Dhaka Metropolitan Area (DMA), and Narayanganj Sadar

area—are observed as having the lowest rate of population increase. In addition, the population

growth difference between persistent and dynamic areas is also found to be relatively higher in the

Narayanganj Sadar and Dhaka Metropolitan Areas. However, the population growth rate in dynamic

areas is relatively lower in each sub-district compared to the corresponding population growth rate of

persistent areas, with Savar being an exception. The Savar sub-district possesses the largest chunk of

landscapes which have been converted into peri-urban areas from predominantly rural, implying that

Savar is the most peri-urbanized sub-district of this study. Such findings reveal that peri-urbanization

is more linked to population increase in dynamic areas. Thus, while the Dhaka Metropolitan Area and

Narayanganj Sadar area have extremely limited scope for peri-urbanization, the nearby sub-districts

are potential areas for such peri-urban expansions.

46



Remote Sens. 2020, 12, 3938

Figure 18. (a) Map showing the spatial distribution of predominantly rural (PRURAL), peri-urban

(PU), and predominantly urban (PURBAN) areas; (b) table showing percentage distribution in the

changes of PRURAL, PU, and PURBAN areas and corresponding changes in the aggregate population

growth rate (APGR) between 2001 and 2020; (c) sub-district-wise aggregate population growth rate

(APGR) between 2001 and 2020.

Poverty and Peri-Urban Growth

The average likelihood of poverty (ALP) is more dominant in the Kaliganj sub-district and trickles

down to its nearby sub-districts of the Gazipur Sadar and Rupganj (Figure 19a), whereas such poverty

concentration is relatively lower in the Dhaka Metropolitan Area, Narayanganj Sadar, and Bandar

areas. The above-mentioned Dhaka Metropolitan Area, Narayanganj Sadar, and Bandar areas are also

observed as having higher population growth difference between dynamic areas and persistent areas,

meaning that the influx of poor migrants is predominantly confined to the dynamic land parcels of

Kaliganj and its nearby areas.
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Figure 19. (a) Spatial distribution of the average likelihood of poverty (ALP) (i.e., the average probability

of living on less than $2.50/day) of 2013 [62]; (b) slum settlement areas (derived from Gruebner et

al. [63]) superimposed on the standard deviation (Std. Dev.) of the average likelihood of poverty (ALP)

mapping of 2013 [62]; (c) sub-district-wise spatial distribution of the average likelihood of poverty

(ALP); (d) sub-district-wise spatial distribution of the standard deviation (Std. Dev.) of the average

likelihood of poverty (ALP).

However, the standard deviation mapping of the average likelihood of poverty (ALP) depicts

that the DMDP area is inflicted with higher variation in poverty concentration, that ranges from 2.8 to

6.5 (Figure 19b). Although a higher concentration of poverty is found in the Kaliganj, Rupganj and
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Gazipur Sadar areas, the Dhaka Metropolitan Area is observed with the highest deviation in the average

likelihood of poverty (ALP), meaning that inequalities in social stratification within predominantly

urban areas are comparatively higher.

Most parts of the Dhaka Metropolitan Area and Narayanganj Sadar area are already predominantly

urbanized, while, through increasing peri-urbanization, the Savar sub-district is in the queue to be

predominantly urbanized shortly. Consequently, the Dhaka Metropolitan Area, Narayanganj Sadar

area, and Savar are derived as the sub-districts of higher poverty deviation (Figure 19d). Thus,

the deviation in poverty concentration appears to be correlated with urbanization. For example, the

Dhaka Metropolitan Area, as the most urbanized, ended up with the highest poverty deviation. Such a

deviation in poverty intensification can further be illustrated by the abundance of slum settlements

which are scattered throughout the DMDP area (Figure 19b).

4. Discussion

4.1. Factors Affecting Peri-Urbanization

While the horizontal expansion of the DMDP area is remarkably constrained by the unavailability

of flood-free landscapes, the northern part of the DMDP area encountered the highest growth rate of

population and subsequent peri-urbanization pressure. The DMDP’s northern periphery, in general,

lies at a higher elevation and is therefore naturally free from seasonal flooding. Thus, the findings reveal

that peri-urbanization for the DMDP context is interpreted as an interaction space of elevation and

population growth rate. Consequently, in-migration of the population to the capital city Dhaka plays a

significant role for this perceived peri-urbanization. Yet, such an in-migration pattern is profoundly

interlinked to the unique socio-economic settings of this country.

For example, the Dhaka’s share of the national gross domestic product (GDP) is USD 162

billion (i.e., 40%) [64], implying a heavily inclined concentration of economic activities towards

the capital city Dhaka. Consequently, Dhaka is disproportionately equipped with nearly one third

(i.e., 31.8%) of the country’s total employment [21]. In general, Bangladesh’s economic base is

predominantly agricultural (i.e., 49%), and 45% of the country’s labor force primarily relies on

agriculture for employment [65]. In addition, 84% of the rural population directly or indirectly depends

on agriculture [66]. The disproportionate growth of agriculture-based industries coupled with the

adaption of more efficient farming technologies triggers an exodus of surplus agricultural laborers to

the capital city Dhaka [60]. Consequently, 63% of Dhaka’s population growth is due to the rural–urban

migration [67].

The majority of the migrants predominantly rely on the informal sector. Subsequently, the informal

sector accounts for 84.30% of Dhaka’s total employed population [21]. Thus, anticipating the social

changes with response to economic growth becomes more difficult. Consequently, the task of addressing

actual spatial growth pattern and accommodating informal economics become highly challenging.

In addition, Dhaka’s per capita GDP is around 3 times higher than the national average. If Dhaka

were an independent nation, Dhaka’s gross GDP individually would stand as the 50th largest economy

in the world. Consequently, excessive agglomeration of the capital city-centered development paradigm

makes the DMDP’s peri-urban growth highly unpredictable and challenging. Thus, DMDP’s physical

growth predominantly implies a more densified peri-urban growth which agglomerates overestimated

population with inadequate infrastructural supports. The scarcity of resources further hinders the timely

upgrading of supporting infrastructures and provisions—e.g., land use–transport integration [68,69],

utilities, and employment. This way, policymakers and planners are severely obstructed to enhance a

planned development in their peripheries.

4.2. Implications for Growth Management and Natural Hazards

Bangladesh is one of the most vulnerable countries to climate change’s impact. Such impacts

are already evident, as climate change-induced flooding—e.g., river flooding and storm water
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flooding—often strikes in the DMDP area [25]. Most parts of the predominantly urban areas

(i.e., around 67%) are considered to be free from river flooding because of the proposed protective

embankments, which surround them [60]. Nevertheless, the construction of the DMDP Urban Area

Plan (1995–2005) proposed an eastern embankment which as yet remains incomplete. In addition, the

portion of predominantly urban areas—that is considered to be flood-free—severely lack an efficient

drainage system [70]. The analysis reveals that the DMDP’s rainfall pattern from 2000 to 2018 is rather

abrupt. Thus, heavy rainfall often happens, resulting in frequent storm water flooding during each

year irrespective of the monsoon. Such a finding is also evident in other studies [25].

Nevertheless, due to the proximity to the nearby river, the remaining 23% of predominantly

urban areas seem to be highly vulnerable to river flooding. The low-income people predominantly

live in slums, and the spatial distribution of slums is scattered throughout predominantly urban

areas. In addition, 80% of these slums are built on privately owned land and hence pose considerable

institutional challenges in providing the basic urban facilities [30]—e.g., water supply, sanitation,

sewerage, drainage, and electricity—in these slum-inflicted areas. On that very point, Baker [30]

estimated that slum areas within a proximity of 50 m to nearby rivers accommodate around 76,000

households those are at high risk of being frequently river flooded. Such river flooding usually occurs

with a return period of every 10 to 40 years [71].

However, despite the geographical limitations to support further physical growth, Dhaka’s

unleased population growth is not hindered by geographical limitations at all. For example, the analysis

reveals that within these 19 years (2001–2020), the DMDP’s population has increased at a rate of

0.5 million/year. Although the urban population as yet comprises less than 37.41% of the nation’s

population [72], such a portion reaches nearly 80% for the DMDP context. Nevertheless, the reported

estimation of DMDP’s annual population growth rate is 0.10 million/year higher than the earlier

estimation by the World Bank [32]. Nonetheless, from 2001 to 2020, the DMDP’s population has

increased at an annual growth rate of 4.53%. Such perceived growth rate in the population is much

higher than the national average. For example, between 2000 and 2019, the national annual population

growth rate was derived as 1.5% [73].

In terms of population size, Dhaka has secured the 19th position globally among the top 20

megacities, but stands first with a large margin in terms of the urban population density of 33,878

persons/km2 [41]. Among the top 20 megacities, only six have constantly experienced a population

growth rate of more than 3% over the last 20 years [74]. Hence, the reported rate of DMDP’s population

growth is much higher than its contemporaries.

Consequently, due to an unabated growth in the DMDP’s population, higher population

concentration is also observed in the north-eastern periphery of the DMDP area (i.e., Rupganj

and Kaliganj), which are predominantly flood-prone. In addition, these two areas are the hot spots

of poverty with a lower standard deviation in the average likelihood of poverty index, meaning that

these two areas predominantly accommodate the poorest portion of the DMDP’s area. Thus, it can

be inferred that poverty is forcing the poor migrants to live in these flood-prone areas. This way, the

majority of the in-migrants, which also comprise climate migrants [75], are redundantly exposed to this

climate change-induced frequent flooding. Such a finding poses a grave concern and brings forth the

issue of climate justice for further consideration. On that very point, Ahsan [76] urged the adoption of

area-specific growth policies in securing the basic rights for climate migrants of Bangladesh. Similarly,

developing sound climate change mitigation policies is deemed critical to minimize climate migrant

numbers across the globe [77].

Furthermore, this unleashed population influx to the capital city Dhaka worsens the prevailing

water scarcity at large. For example, in 2005, the Dhaka Water Supply and Sanitation Authority

(DWASA) was able to manage 1.6 mm3/day groundwater extraction at maximum against the minimum

demand of 2.1 mm3/day [78]. In addition, since 1986, the DMDP’s groundwater table has been

depleted at a rate of 2 m/year [78]. While the DMDP area is suffering from evident water scarcity, the
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gradual groundwater depletion coupled with the unprecedented population growth further exacerbates

this shortfall.

Nonetheless, due to the prevalence of wetlands, small water bodies, canals, and rivers,

the groundwater level is relatively higher in the peripheral areas than the central part of the DMDP

area. Unfortunately, peri-urbanization is predominantly taking place in the northern and north-eastern

peripheries of the DMDP area, which are the hotspots of industrial clusters and agglomerate more

than 2000 ready-made garments (RMG) industries [79]. This RMG sector individually has contributed

to 11.17% of the total GDP and makes Bangladesh the second-largest global exporter in the RMG

sector [31]. The economic growth of this country is enormously linked to the development of this RMG

sector [80]. Hence, the country’s RMG sector possesses great potential to grow further.

Nevertheless, this RMG sector heavily relies on groundwater extraction, because surface water is

not available throughout the year. Thus, over-dependence on groundwater extraction coupled with

the increased peri-urbanization pose significant environmental threats to these peri-urban growth

pockets including land subsidence, increased earthquake vulnerability, and ecosystem degradation.

5. Conclusions

Although managing urban growth based on a demarcated peri-urban growth boundary as yet

remains rarely practiced, explicitly defined peri-urban growth pockets appear to be a facilitating tool

for promoting more rationalized land use practices in the periphery. Particularly in the context of

developing countries, where rampant peri-urbanization frequently occurs, quantifying the magnitude

and degree of fuzziness of peri-urban land parcels facilitates policymakers in identifying the areas

with more urbanities and higher transition potentials. This way, policymakers and planners will be

well equipped in dealing with the dual characteristics (i.e., urban or rural) of peri-urban areas and

resultant growth directions, and thereby to identify priority areas for immediate intervention.

Heikkila et al. [81] first recognized the fuzzy characteristics of peri-urban areas, and statistically

quantified the level of urbanization and degree of fuzziness in detecting the urban growth pattern of

Ningbo, China by using Landsat data. However, they did not map the spatial distribution of peri-urban

areas at all, whereas this paper demarcated the spatial distribution of peri-urban growth pockets by

unveiling the fuzzy characteristics of peri-urban areas. In doing so, this study developed fuzzy linear

urban membership function set images using NTL data.

According to the findings of Mortoja et al.’s [20] study, few studies used NTL data for peri-urban

demarcation (e.g., [82–85]). While all the studies as mentioned above used the crisp values of NTL data,

none of the studies, to date, investigated the potential of NTL data in unveiling the fuzzy characteristics

of peri-urban areas. In addition, the conventional methodological approaches—which utilized the crisp

values of NTL data for peri-urban demarcation—are claimed to be suitable to demarcate peri-urban

areas at the national/global level only. Meanwhile, the ground-truthing outcome on NTL VIIRS data

mapping of 2016 implies that the methodological approach reported in this study also appears to be

a good fit at the regional level. Thus, quantifying the fuzzy characteristics of peri-urban areas and

translating those findings into demarcating peri-urban growth pockets using NTL data provides a

strong theoretical basis for this study.

Nevertheless, this study did not test other peri-urban demarcation approaches. Hence, how the

methodological approach reported in this study prevails over others in terms of accuracy cannot be

determined. However, the adapted methodological approach provides an easy way of demarcating

peri-urban areas by using the readily available datasets at hand, which in turn facilitates prompt

executions of peri-urban growth decisions.

In addition, this study explores how peri-urbanization is interpreted as an interaction space of

population growth, poverty, and increased vulnerability to natural hazards, particularly flooding.

In this way, the research demonstrates the problem of rampant peri-urbanization and subsequent

fragilities—e.g., social and poverty problems, natural hazards, affecting large cities. Thus, the results

are of interest to a wide audience and are not limited to the remote sensing community.
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Abstract: Despite yielding considerable degrees of accuracy in landslide predictions, the outcomes of

different landslide susceptibility models are prone to spatial disagreement; and therefore, uncertainties.

Uncertainties in the results of various landslide susceptibility models create challenges in selecting

the most suitable method to manage this complex natural phenomenon. This study aimed to propose

an approach to reduce uncertainties in landslide prediction, diagnosing spatial agreement in machine

learning-based landslide susceptibility maps. It first developed landslide susceptibility maps of

Cox’s Bazar district of Bangladesh, applying four machine learning algorithms: K-Nearest Neighbor

(KNN), Multi-Layer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM),

featuring hyperparameter optimization of 12 landslide conditioning factors. The results of all the

four models yielded very high prediction accuracy, with the area under the curve (AUC) values range

between 0.93 to 0.96. The assessment of spatial agreement of landslide predictions showed that the

pixel-wise correlation coefficients of landslide probability between various models range from 0.69 to

0.85, indicating the uncertainty in predicted landslides by various models, despite their considerable

prediction accuracy. The uncertainty was addressed by establishing a Logistic Regression (LR) model,

incorporating the binary landslide inventory data as the dependent variable and the results of the four

landslide susceptibility models as independent variables. The outcomes indicated that the RF model

had the highest influence in predicting the observed landslide locations, followed by the MLP, SVM,

and KNN models. Finally, a combined landslide susceptibility map was developed by integrating

the results of the four machine learning-based landslide predictions. The combined map resulted in

better spatial agreement (correlation coefficients range between 0.88 and 0.92) and greater prediction

accuracy (0.97) compared to the individual models. The modelling approach followed in this study

would be useful in minimizing uncertainties of various methods and improving landslide predictions.

Keywords: landslides; remote sensing; uncertainty; K-Nearest Neighbor; Multi-Layer Perceptron;

Random Forest; Support Vector Machine
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1. Introduction

Due to the destructive potential of landslides, this natural phenomenon poses a serious threat

to human life, property, and the environment in the areas in which they occur [1,2]. Access to

continuous and accurate information on landslide occurrence is essential for managing the risk to

this unpredictable hazard [2,3]. Mapping landslide susceptibility is a widely conceived approach to

estimating the likelihood of occurrence of this complex natural phenomenon [1,3–5]. The development

of remote sensing technologies in the last few decades enables researchers to map landslide susceptibility

more efficiently, due to the availability of high spatial and temporal resolution data [3,4,6]. For instance,

high-resolution remote sensing (satellite imagery) data are used to develop various thematic layers

explaining the topography, land cover, geology, and hydrology, which are essential parameters for

predicting landslides [4,7]. Remote sensing techniques are also useful in developing accurate landslide

inventory maps [3,6].

Along with the quality of available data, the choice of appropriate methodology is essential for

developing reliable susceptibility maps [2]. During the last several decades, many landslide susceptibility

models have been developed based on the geographic information system (GIS) and remote sensing

technology [8]. Examples of such models include the weights-of-evidence [9,10], multivariate regression

analysis [10,11], analytical hierarchy process [12], and the evidential belief function [13]. Applications of

various machine learning algorithms in landslide susceptibility mapping (LSM) have evolved in recent

decades. As a widely applicable method in data mining, the K-Nearest Neighbor (KNN) algorithm made

early appearances in landslide prediction [14,15]. The Logistic Regression (LR) [2,12] and Support Vector

Machine (SVM) [8,16] models also gained much popularity as adaptive systems for LSM [15]. Artificial

neural networks in the form of a Multi-Layer Perceptron (MLP) were also used for this task [17]. More

recently, evidence from various studies indicates that ensembles such as the Random Forest (RF) model

can improve machine learning-based landslide prediction [1,18]. However, the outcomes of landslide

susceptibility mapping could be subject to considerable uncertainties due to errors and variability in

model choice, data used, system understanding, weighting factors, and human judgment [19,20].

Since the access to accurate landslide prediction maps is the prerequisite to decision-makers,

the results must be carefully analyzed and critically reviewed before disseminating to support the

end-users [9]. While developing landslide susceptibility maps, challenges may arise in (i) measuring the

accuracy of a susceptibility assessment [21], and (ii) selecting an “optimal” combination of methods for

susceptibility assessments [22]. Most of the validation processes of LSM consist of two steps: simulating

landslide susceptibility and comparing the predicted results with the observed landslide locations [1,9].

Validation techniques must possess qualities such as reliability, robustness, degree of fitting, and

prediction skill [21]. However, the performance evaluation of most of the LSMs was carried out based

on the testing datasets [9,23]. Thus, a similar performance of multiple models at the testing landslide

locations does not ascertain the same degree of agreement in terms of spatial predicted patterns [9].

Whilst many recent studies applied various combinations of machine learning algorithms to

map landslide susceptibility [23–26], pixel-wise agreement in landslide prediction between various

methods is inadequately understood. The resultant spatial heterogeneity in landslide prediction with

different techniques creates uncertainties in LSM [9,19,27]. To address this challenge, this study aimed

to propose a method to reduce uncertainties in landslide prediction. Therefore, it evaluated the extent

of agreement of landslide prediction maps generated by applying four different machine learning

algorithms. A combined landslide prediction map was developed by integrating the results of these

four models. The study was carried out in Cox’s Bazar district of Bangladesh (Figure 1).
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Figure 1. (a) Location map of Cox’s Bazar district in Bangladesh; and (b) the sub-districts of Cox’s

Bazar district. Digital Elevation Model (DEM) source: [28].

2. Materials and Methods

The study was conducted in three stages. First, landslide susceptibility maps (LSMs) of the study

area were developed using four machine learning algorithms: K-Nearest Neighbor (KNN), Multi-Layer

Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM). Second, the extent of

spatial agreement of predicted patterns in LSMs was assessed by estimating the pixel-wise correlation

of landslide probabilities obtained using various methods. Finally, an LSM was developed combining

results from the four machine learning models (Figure 2). This study also estimated population exposure

to landslide by overlaying gridded population layers of the year 2020, collected from WorldPop [29]

and UNHCR [30], on LSMs.

2.1. Study Area

This study addressed the Cox’s Bazar district, which is located in the south eastern region of

Bangladesh (Figure 1a). The study area lies between latitude 20◦53′46.7” N and 21◦14′29.8” N, and

longitude 92◦02′08.2” E and 92◦18′27.0” E. It is comprised of seven (out of eight) sub-districts (locally

termed as Upazilas) of Cox’s Bazar district (Figure 1b). The low-lying areas such as Kutubdia sub-district,

part of Maheshkhali sub-district, and Saint Martin’s island (Figure 1b) were not considered in this

study. The study area is diverse and unique, both in terms of ecosystem services and biodiversity, and

currently, an epitome of global geopolitics as it is accommodating over one million Rohingya refugees.

It is characterized by relatively high elevation land (mean elevation is 18 m), compared to the rest of

the country. At present, approximately a total of 3.4 million people inhabit 1869 km2 of land (estimated

using data from WorldPop [29] and UNHCR [30]).
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Figure 2. The process of evaluating spatial agreement among various machine learning technique-based

landslide susceptibility maps and optimizing the landslide prediction map. LSM= landslide susceptibility

maps; KNN = K-Nearest Neighbor; MLP = Multi-Layer Perceptron; RF = Random Forest; SVM =

Support Vector Machine.

The area receives the annual mean precipitation of 4288 mm [31]. The heavy rainfall triggers both

flash floods and landslides in this area [11,12]. The majority of the historical landslides in Bangladesh

occurred in this region [11]. For instance, a major landslide triggered by heavy rain in June 2017 killed

at least 156 people in the south eastern hilly region of Bangladesh where the study area is located [32].

Unplanned urbanization, rapid growth of population, hill cutting, and deforestation are associated

with the recent increase in landslide hazards [11,31]. Notably, Rohingya refugee camps, especially the

Kutupalong camp of Ukhia sub-district (Figure 3) is located in areas that are highly susceptible to

landslides. The Kutupalong camp is considered as the most densely populated refugee settlement area

in the world, where around 75,000 people live per km2 [31,33]. Any catastrophic landslide will cause

significant damage to human lives and assets. Hence, an accurate assessment of landslide susceptibility

is paramount for developing a plan for landslide risk management.

2.2. Landslide Inventory Mapping

Landslide inventory mapping is one of the essential steps for landslide prediction and susceptibility

mapping. This study utilized the landslide inventory map developed by Ahmed, Rahman, Sammonds,

Islam, and Uddin [11] (Figure 3). They developed the latest landslide inventory map of the Cox’s Bazar

district by retrieving the historical landslide information from newspapers and various organizations

and later verified those with global positioning system (GPS) and reconnaissance surveys. This

study also used information about landslide movement type, its distribution and style, rate of flow,

damage, the volume of displacement, material, and the reason for movement by preparing a landslide

investigation form collected from Ahmed, Rahman, Sammonds, Islam, and Uddin [11]. A total of 1262

sample locations were used, where the number of landslide and non-landslide locations was 670 and

592, respectively. To develop the models, it is necessary to obtain non-landslide cells (where landslides

did not occur). From the existing literature, Huang et al. [34] identified three methods for obtaining

non-landslide grid cells: (i) the seed cell procedure; (ii) randomly selecting non-landslide locations

from the landslide free areas; and (iii) non-landslide locations selected in areas with a slope lower

than 2◦. This study followed the second approach to select random locations within the study area,
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where landslides did not occur. These cells provided the models with the necessary data during the

training stage [35,36]. The sample locations were split into two classes: (i) 60% locations (52% landslide

and 48% non-landslide locations) were used to train the machine learning-based landslide prediction

models, and (ii) 40% testing locations (54% landslide and 46% non-landslide locations) were employed

to evaluate the performance of the machine learning models (Figure 2).

 

 

Figure 3. Landslide inventory map of this study. Data source: [11].

2.3. Landslide Conditioning Factor

The performance of LSMs depends on the choice of landslide conditioning factors. Numerous

studies on LSM have been conducted based on machine learning techniques [1,16,18,23,26,37,38],

with various combinations of landslide conditioning factors being used. However, the selection of

factors should be (i) based on their degree of affinity with landslide locations, (ii) measurable, (iii)

non-redundant, and (iv) based on the knowledge of geomorphological characteristics of the area under

study [2]. Based on the knowledge obtained from the literature, as well as, expert knowledge on the

study area, a total of 12 variables were selected in this current study (Table 1). Areas with an elevation

of less than 5 m, as well as, waterbodies and sandy sea beach areas (waterbody and restricted in

Figure 4) were excluded from the LSMs [39].

61



Remote Sens. 2020, 12, 3347

 

   

Figure 4. Cont.
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Figure 4. Landslide conditioning factors. SPI = Stream Power Index. NDVI = Normalized Difference

Vegetation Index.
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Topographical and hydrological parameters including aspect, elevation, slope, curvature, and Stream

Power Index (SPI) are important factors that limit the density and spatial extent of landslides [2,37,38,40].

Raster maps of aspect, elevation, curvature, slope, and SPI were derived at 30-m spatial resolution

from the Advanced Land Observing Satellite (ALOS) Digital Elevation Model (DEM) [28] (Figure 4a–e).

Elevation influences landslides primarily by affecting different biophysical parameters and anthropogenic

activities. Only a limited number of studies, conducted on a specific basin, found that landslides occur

at certain elevations [41]. Elevation can determine the spatial variability of landslides because it is

affected by geological tectonics [37]. It can also influence the occurrence of landslides by impacting other

causative factors such as slope, curvature, and SPI [42]. Aspect, indicating the direction of slope [43],

indirectly influences the distribution of landslide locations by affecting the general physiographic trend

of the area and/or the main precipitation direction [37,40]. Slope angle is considered as one of the most

influential factors for the occurrence of landslides, as it affects the concentration of moisture and the

level of pore pressure, as well as, controls regional hydraulic continuity [2,40]. All of these processes

influence slope instability [8]. Curvature is also considered as a landslide influencing factor that directly

controls the velocity of water flow, delimiting erosion [8,40]. SPI also determines the erosion potential of

the surface [43] and is considered as an essential predictor of landslides [37,38]. Areas with high SPI

values indicate a higher erosion potential, while negative values suggest no predicted erosion [44,45].

In this study, a layer of SPI was derived using the following equations in GIS:

SPI = As × tan β (1)

where As and β indicates the specific catchment area (m2/m) and slope gradient, respectively [43].

It is widely conceived that various geological factors significantly influence the occurrence of

landslides, as these factors often lead to a difference in strength and permeability of rocks and soils [2].

This study considered the three geological factors of surface geology, soil type, and soil texture (Figure 4i–k).

Digital geologic and geophysical data of Bangladesh were collected from the U.S. Geological Survey [46].

The surface geology map of the study area includes a total of 11 classes: water (H2O), Bhuban formation

(Miocene, Tb), Dupi Tila formations undivided (QTdd), valley alluvium and colluvium (ava), Girujan clay

(Pleistocene and Neogene, QTg), Tipam Sandstone (Neogene, Tt), Boka Bil formation (Neogene, Tbb),

beach and dune sand (csd), marsh clay and peat (ppc), Dupi Tila formation (Pleistocene and Pliocene,

QTdt), and Dihing formation (Pleistocene and Pliocene, QTdi) (Figure 4i). Primary-level parameters

such as soil type and soil texture are essential predictors of landslides. These parameters determine the

amount of moisture content indicating the degree of stability of the soil [25,37,47,48]. Soil type and soil

texture data were collected from the Bangladesh Agricultural Research Council [49].

Other anthropogenic, environmental, and locational factors considered in this study include distance

to stream, land cover, normalized difference vegetation index (NDVI), and distance to road (Figure 4f–h,l).

The land cover and NDVI maps of the year 2020 were prepared using Landsat satellite images based

on the Google Earth Engine Platform. The land cover map was developed applying a supervised

classification technique with the Random Forest algorithm. In the case of southern Bangladesh, a recent

study demonstrated that this method has a higher classification accuracy compared to other land cover

classification techniques [50]. The land cover map contains five classes: bare land, built-up area, crop

land, vegetation, and waterbody (Figure 4g). Proximity to roads explains the locations of landslides, as

the artificial and natural slopes adjacent to a road are sensitive to this hazard [51]. Road-cuts, excavation,

and additional load can induce anthropogenic instability of the soil, promoting landslides [2,5]. A layer

of distance to road network was developed using the Euclidian distance algorithm. Likewise, the location

of areas with respect to natural drainage channels can also demonstrate the locations of landslides [11],

as streams may change the stability of an area by eroding the slopes [5,51]. In this study, distance to

stream networks was derived from the ALOS DEM. Again, by applying the Euclidian distance algorithm,

a map of distance to stream was generated.
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Table 1. Landslide conditioning factors used in this study.

No. Conditioning Factor
Spatial

Resolution
Variable Type Data Source

Variance Inflation Factors
(VIF)

1 Aspect 30 m Continuous
Estimated from the Digital Elevation Model

(DEM)
1.02

2 Elevation ” ” DEM [28] 2.77
3 Curvature ” ” Estimated from the DEM 1.57
4 Slope ” ” ” 2.83
5 Stream Power Index (SPI) ” ” ” 1.60
6 Distance to stream ” ” ” 1.15

7 Land cover ” Discrete
Landsat Operational Land Imager (OLI)

(https://earthengine.google.com)
1.13

8
Normalized difference

vegetation index (NDVI)
” Continuous ” 1.24

9 Geology ” Discrete [46] 1.06
10 Soil type ” ” [49] 1.13
11 Soil texture ” ” ” 1.06
12 Distance to road ” Continuous [52] 1.1065
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2.4. Multi-Collinearity Analysis of Landslide Conditioning Factors

The selected landslide causative factors could be subject to multi-collinearity; hence, it is necessary

to estimate the correlation of independent variables before modelling landslide susceptibility [8].

To eliminate the factors susceptible to multi-collinearity, this study determined variance inflation

factors (VIF) [53] of 12 selected landslide conditioning factors using R [54]. VIF is a well-known method

to determine the multi-collinearity of landslide conditioning factors [8,55]. A VIF value of a variable

exceeding 5 indicates potential serious multicollinearity [53,55]. In this study, the selected landslide

conditioning factors yielded VIF values < 2.8, indicating the absence of potential multi-collinearity

(Table 1).

2.5. Landslide Susceptibility Modelling

2.5.1. Pre-Processing

Using the binary locations (landslide and non-landslide), values of the selected 12 conditioning

factors were extracted in a geographic information system (GIS) environment. As evident in Table 1,

eight were continuous variables, while the remaining four variables had discrete characteristics. In order

to represent discrete (categorical) variables semantically, they must be considered as a composite feature

(where the number of generated binary features and the number of categories are equal). These discrete

variables were encoded using a one-hot encoding scheme [31], implying that multiple binary features

were generated to represent a single discrete feature. The number of one-hot encoded features depends

on the number of variable classes. For instance, there are 11 categories in the geology variable. If a

landslide location was found in a geology class, a value 1 was encoded to the class, while the other 10

classes were encoded as 0. This data pre-processing method was applied for all other discrete variables.

For each variable, mean and standard deviation were calculated. The mean of each variable was then

subtracted from the corresponding value in a variable and divided by the standard deviation. This

reduces training time since optimization routines have a smaller parameter space to traverse.

2.5.2. Hyperparameter Optimization

Hyperparameter optimization can improve the accuracy of machine learning algorithm-based

models. The process aims to select the optimal hyperparameter values according to the evaluation

index [56]. Three approaches are frequently used for optimizing hyperparameters: grid search, random

search, and Bayesian optimization [57]. This current study applied the grid search technique along with

5-fold cross-validation on the training set to perform hyperparameter optimization. Hyperparameters

that provide the best performance were chosen for final training and testing samples of respective

machine learning models. For instance, the optimal number of neighbors of five in the KNN (Table 2)

indicates that values of landslide conditioning factors corresponding to a landslide location were

compared against the values of landslide predictors of five other sample locations, to obtain the most

reliable prediction. Table 2 summarizes the hyperparameters, their search range and optimal values of

the four models.
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Table 2. Hyperparameters, search range, and optimal values of the machine learning-based landslide susceptibility models.

Classifier Hyperparameter Remark Search Range Optimal Value

K-Nearest
Neighbor

Metric Distance metric to use Euclidean, Manhattan Manhattan
Number of neighbors Number of neighbors used for prediction 3, 5, 11, 19 5

Weights Weight function used in prediction Uniform, distance Distance

Support
Vector

Machine

C value Inverse regularization strength 10−3, 10−2, 10−1, 1, 101, 102, 103 103

Kernel Functions for transforming inputs Polynomial, radial basis function, sigmoid Radial basis function
Gamma Kernel coefficient 10−3, 10−2,10−1, 1 10−3

Multi-Layer
Perceptron

Hidden layer Size Number of hidden units 10, 15, 20, 25, 30, 35, 40, 45 20

Activation function Nonlinearity for squeezing output to desired range
Identity, logistic, hyperbolic tangent,

rectified linear unit
Rectified linear unit

Learning rate Specifies if learning rate is constant or variable Constant, adaptive Constant
Alpha L2 penalty/regularization term 10−4, 10−3, 10−2, 10−1 10−4

Random
Forest

Number of estimators Number of trees in the random forest 200, 300, 400, 500 500
Maximum features Maximum features to be considered Auto, square root, logarithm (base = 2) Auto
Maximum depth Maximum depth of internal trees 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 10

Criterion Function for measuring quality of split Gini, entropy Entropy
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2.5.3. Machine Learning Models

(1) K-Nearest Neighbor (KNN)

The KNN algorithm classifies an instance (landslide or non-landslide) that is mostly represented

within its (k) neighbors. The parameter k is often a small positive integer [58]. The proximity between

the samples is measured using a distance metric. The distance metric indicates how similar or different

are the profiles of conditioning factors for any given two samples. Data points with similar conditioning

factors will have a small feature distance between them. Though the model is simple in terms of

hyperparameters, it becomes computationally expensive as the number of samples becomes large.

The landslide susceptibility associated with a certain set of values of conditioning factors is determined

by calculating its distance to each training data point (in high-dimensional feature space). The k

nearest data points are used to determine the landslide susceptibility. The dominant susceptibility

class within those k nearest neighbors (i.e., the class with the highest number of members in the k

members) becomes the class membership of the new data point [14,59].

(2) Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) is a type of neural network with one or more hidden layers. Due to

the presence of a hidden layer, the internal representations (as higher-order intermediate features) can

be learned. Each layer consists of one or more neurons; the outputs (activations a) can be represented

by Equation 2 [31]. The output of the ith neuron in the jth layer was obtained by calculating the sum

of activations from the previous layer (i − 1) weighted by the parameters of layer i and then passing

into an activation function f. Considering that there are several types of activation functions (sigmoid,

hyperbolic tangent, rectified linear unit), the choice of activation functions is discussed in Section 2.5.3

(Hyperparameter Optimization). In this study, since a total of 23 features were derived by one-hot

encoding during the pre-processing step, the first input layer of the MLP had 23 neurons. The resultant

map was represented in terms of the probability of landslide occurrence.

a
j

i
= f (

n∑

k=0

ω
j

k
a

j−1

k
) (2)

where f is the activation function, ω
j

k
is the weight of kth neuron in layer j, a

j−1

k
is the activation of

neuron k in layer j − 1 (the previous layer), j is the layer index, i is the neuron index, and n is the

number of neurons in layer j.

(3) Random Forest (RF)

Random forest (RF) is considered as a powerful ensemble-learning method that can be applied for

classification, regression, and unsupervised learning [18]. This method has been widely applied in

landslide susceptibility mapping [18,56,60]. Ensemble models generally train several weak learners

and then take their aggregated outputs to obtain more reliable predictions. The RF algorithm builds

weak learners in the form of decision trees. It estimates the mean of outputs of the individual weak

learners, as shown in Equation (3). Each weak learner (b) corresponds to a function fb(x). The RF uses

bootstrap aggregating where the weak learners train parallelly [31].

F̂(x) =
1

B

B∑

b=1

fb(x) (3)

where F̂(x) is the ensembled prediction from weak learners, B is the total number of weak learners, b is

the weak learner index, and fb(x) is the function for bth weak learner.
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(4) Support Vector Machine (SVM)

Support Vector Machine (SVM) is also a widely used machine learning algorithm in landslide

susceptibility mapping [8,16,23,26]. This supervised learning method separates the classes with a

decision surface that maximizes the margin of class boundaries [8]. The training locations, closest to the

optimal hyperplane, are called support vectors [23]. Suppose each sample location has M number of

features, the objective of the SVM algorithm is to find a hyperplane in M dimensional feature space that

separates the samples of different classes. A hyperplane is R(M−1) dimensional in RM. A hyperplane in

R2 is a line, a hyperplane in R3 is a plane, and so on. This hyperplane functions as a decision boundary,

which determines the label of a sample (i.e. landslide or non-landslide). The margin around the hyper

lane indicates that value exceeding 1 denotes a positive sample (landslide), and a value equal to −1

denotes a negative sample (non-landslide). If X (X1, X2, . . . . . . . . . , Xn) is the vector of landslide

affecting factor and Yj (Y1, Y2) is the vector of landslide (1) or non-landslide (0) event, the optimal

hyperplane can be found by solving Equation (4) [26].

f (x) = sign




n∑

1=1

αiY jk(X, Xi) + k


 (4)

where k is the offset from the origin of the hyperplane, n is the total number of factors that affects

landslide, αi is the positive real constant, and k(X, Xi) is the Kernel function. To classify the binary

events (landslide or non-landslide), the condition to solve Equation (4) was assumed as below:

Y j

[
ωTϕ(xi) + c

]
≥ 1 ⇔


ωTϕ(xi) + c ≥ 1 if landslide events occur

(
Y j = 1

)

ωTϕ(xi) + c ≤ 0 if landslide events not occur
(
Y j = 0

) (5)

where w is the weight vector and ϕ(xi) is the total number of factors that affects landslide.

2.5.4. Performance Evaluation Methods

The performance of landslide susceptibility models was evaluated using a well-known method called

receiver operating characteristic (ROC) curve and subsequent area under the curve (AUC) [1,11,23,31,43].

The ROC curves were developed using the 40% sample testing data. The ROC curve indicates the

performance of a binary classifier system, representing sensitivity as a function of the false positive rate

(1-specificity).

The sensitivity of a model is the ratio of the number of true positives to the sum of the number of

true positives and false negatives. The specificity is the ratio of the number of true negatives to the

sum of the number of true negatives and false positives. The ROC curve can be developed by plotting

sensitivity in the y-axis against the cumulative distribution function of the false positive rate in the

x-axis. The estimated AUC value can be categorized as poor (0.5–0.6), average (0.6–0.7), good (0.7–0.8),

very good (0.8–0.9), and excellent (0.9–1) [1,43,60]. Besides, various statistical indices such as overall

accuracy, precision, recall, and F1-score were estimated by developing a confusion matrix [1,11,43].

2.6. Evaluation of Spatial Agreement and Optimizing Prediction Map

To evaluate the inter-model agreeability, a pixel-wise agreement between two machine learning

algorithms was estimated. Therefore, Pearson’s correlation coefficient was estimated for a total of

six possible combinations of machine learning model-based landslide susceptibility maps. Here,

Pearson’s correlation coefficient indicates the covariance of landslide predictions, obtained by using two

algorithms, divided by the product of their standard deviations. The correlation coefficient can range

from +1 to −1, where values zero as indicating no agreement and ±0.29 as low degree, ±0.30–±0.49 as

moderate degree, ±0.50 to <±1 as high degree, and ±1 as perfect agreement [60].

Following the evaluation of spatial agreement, an optimized landslide prediction map was

developed combining susceptibility maps generated by applying the four machine learning algorithms.
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The combined map was developed by following a methodology proposed by Rossi, Guzzetti,

Reichenbach, Mondini, and Peruccacci [22], where they established a logistic regression (LR) model.

The LR model included binary landslide and non-landslide locations as the dependent variable and

the results of the four landslide susceptibility models as the independent variables. The obtained

regression coefficients were incorporated in Equation (6) [43] in GIS to derive the probability (P) of

landslides in the study area.

P =
1

1 + e−z
(6)

where z is the linear combination of independent variables which was estimated using the following

equation:

z = θ0 + θ1x1 + θ2x2 + . . .+ θnxn (7)

where θ0 is the intercept of the model, θi (i = 1, 2, . . . , n) indicates the regression coefficient of

independent variables, and xi (i = 1, 2, . . . , n) represents the n number of independent variables.

Validation of the resultant combined model was performed by developing the ROC curve by using the

40% testing data.

3. Results

3.1. Landslide Susceptibility Modelling

3.1.1. Landslide Prediction

Figure 5 shows landslide susceptibility maps of Cox’s Bazar district developed by applying the

four machine learning algorithms. The generated landslide probability maps were classified into five

categories each by applying the Jenks natural breaks classification method in GIS: (i) very low (0–0.1),

(ii) low (0.11–0.3), (iii) medium (0.31–0.5), (iv) high (0.51–0.85), and (v) very high (0.86–1). As evident

in Figure 6, the proportion of landslide susceptible area varied from one model to another. Among

all methods, the SVM resulted in the highest proportion of area (38.7%) susceptible to the landslide

of ‘high’ and ‘very high’ severity, while the Random Forest (RF) algorithm yielded a relatively lower

proportion (23.1%) of landslide susceptible area. Likewise, the ratio of the population exposed to ‘high’

and ‘very high’ landslide susceptible zones varied for different algorithms. For all the four methods,

the percentage of landslide exposed population ranged between 34% to 48% (Figure 6).

 

Figure 5. Cont.
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Figure 5. Landslide susceptibility maps obtained by four machine learning algorithms: (a) K-Nearest

Neighbor (KNN), (b) Multi-Layer Perceptron (MLP), (c) Random Forest (RF), and (d) Support Vector

Machine (SVM).

 

  

Figure 6. Landslide susceptible area obtained using five models: K-Nearest Neighbor (KNN),

Multi-Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM), and combined

model. Blue dots indicate the proportion of people exposed to ‘high’ and ‘very high’ susceptible zones.

3.1.2. Evaluation of Models’ Performance

To evaluate the performance of various landslide susceptibility models, a performance matrix

was derived using the test samples (40% of the total data) (Table 3). The performance evaluation

indices indicated a very high prediction accuracy of all the models. In terms of overall accuracy, the

RF classifier resulted in the highest accuracy (96.63%), followed by the MLP (95.45%), SVM (94.06%),

and KNN (90.69%). However, the overall accuracy is a universal metric, hence, it does not indicate

which specific classes were being inaccurately classified. To obtain further insights into the agreement
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between the observed and modelled locations (landslide and non-landslide)—precision, F1-score,

and recall were estimated (Table 3). The RF classifier achieved the best accuracy with respect to all

performance indicators. The MLP followed closely and consistently in terms of all indicators. In relation

to the estimated AUC values, the RF classifier yielded the highest accuracy (0.962), followed by the

MLP (0.960), SVM (0.935), and KNN (0.927) (Figure 7). The relatively greater values of performance

indicators of RF and MLP can be attributed to their ability to learn complex relationships between

geospatial characteristics of an area and the occurrence of landslides [17,18,60].

Table 3. Performance evaluation indicators of the machine learning based landslide susceptibility models.

Model
Overall

Accuracy
Precision F1-score Recall

Non-Landslide Landslide Non-Landslide Landslide Non-Landslide Landslide

KNN 0.9069 0.9227 0.9227 0.9015 0.9015 0.8811 0.8811
MLP 0.9545 0.9547 0.9547 0.9528 0.9528 0.9508 0.9508
RF 0.9663 0.9633 0.9633 0.9652 0.9652 0.9672 0.9672

SVM 0.9406 0.9385 0.9385 0.9385 0.9385 0.9385 0.9385

 

 
Figure 7. Receiver operating characteristic (ROC) curves of the five models: K-Nearest Neighbor (KNN),

Multi-Layer Perceptron (MLP), Random Forest (RF), Support Vector Machine (SVM), and combined

model.

3.2. Spatial Agreement of Various Methods

This study developed a correlation matrix by comparing pixel-wise landslide probabilities between

various methods (Figure 8) to evaluate the extent of agreement of one landslide susceptibility model over

another. Although the values of AUC were very similar for various methods (Figure 7), a substantial

difference in the agreement was observed in LSMs obtained using the different techniques. Overall, the

correlation coefficient ranges from 0.69 to 0.85 (Figure 8). The combinations of SVM-RF resulted in the

highest degree of the agreement, while the KNN-SVM yielded the lowest agreement.
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Figure 8. Correlogram to show the agreement between the five landslide susceptibility models:

K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Random Forest (RF), Support Vector

Machine (SVM), and combined model.

3.3. Aggregated Landslide Susceptibility Mapping

Since spatial heterogeneity in landslide prediction exists between the different machine

learning-based approaches, an aggregated susceptibility map combining the outputs of all algorithms

would minimize the uncertainty of individual methods. In this study, a regression-based approach was

adopted. A multivariate logistic regression (LR) was established incorporating the binary landslide

inventory data as the dependent variable and the results of the four landslide susceptibility models as

independent variables. The outcome of the LR model is summarized in Table 4. Among the four models,

the MLP, RF, and SVM were statistically significant (p-value < 0.05). The coefficient of determinants (R2)

of 0.80 indicates a very good model performance. In relation to the estimated regression coefficients,

the RF model had the highest degree of agreement with the landslide inventory, followed by the MLP,

SVM, and KNN. The pattern of influence of various models in predicting landslides corresponds to

their level of accuracy in terms of their respective AUC values (Figure 7).

Table 4. Outcomes of the logistic regression model.

Variables
(Landslide Susceptibility Models)

Coefficient p-Value

Intercept −5.84 <2.2e−16 ***

KNN 0.64 0.34
MLP 3.52 2.67e−09 ***

RF 5.01 8.449e−09 ***

SVM 2.02 0.01205 *

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘■’ 0.1 ‘ ’ 1.
Coefficient of determination R2: 0.80

Log-Likelihood: −178.42
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The estimated LR coefficients of the four models and intercept were incorporated in Equation (6)

to derive the combined LSM. Again, the resultant aggregated map was categorized into five classes

applying the Jenks Natural Break algorithm (Figure 9). The combined susceptibility map yielded the

highest AUC value (0.965) compared to the single susceptibility forecasts (Figure 7). About 26.8% of the

total study area was within the ‘high’ and ‘very high’ landslide susceptible zones, where approximately

21.7% of total population inhabit (Figure 6). In respect to spatial agreement, the combined LSM resulted

in greater spatial agreement with the all four models, with the correlation coefficient ranging between

0.85 and 0.92 (Figure 8).

 

Figure 9. (a) Combined landslide susceptibility map of Cox’s Bazar district, (b) ratio of landslide

susceptible zones (high and very high) in various sub-districts (Upazila), and (c) landslide susceptibility

in the Rohingya refugee camps of Ukhia sub-district.

The extent of landslide susceptible areas varies in different sub-districts (Upazila) of Cox’s Bazar.

Teknaf Upazila is the most susceptible, where more than 8% of the total study area was susceptible to

landslides of ‘high and ‘very high’ severity (Figure 9b). A substantial proportion of area (7% of the

study area) in Ukhia sub-district was also susceptible. The Rohingya refugee camps in this area were

located within high and very high landslide susceptible zones. Various recent studies also found that

changes in the geomorphological, hydrological, and anthropogenic environments due to the Rohingya

influx caused their settlement areas vulnerable to landslides [11,31].
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4. Discussion

The spatial disagreement in prediction among various techniques creates challenges in selecting

the most suitable susceptibility map for managing landslide hazards [9,21,22]. The current study

seeks to address this challenge by estimating the extent of spatial agreement, as well as, proposing a

method to combine landslide susceptibility maps and thus incorporating the valid results of various

models. The study focused on the Cox’s Bazar district of Bangladesh, which is well known as being

vulnerable to landslide disasters [11,12,31]. First, LSMs were developed by applying four machine

learning algorithms—K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Random Forest (RF),

and Support Vector Machine (SVM)—featuring hyperparameter optimization. In comparison to the

existing studies on LSM of Cox’s Bazar district [11,12,31], this current study employed up-to-date

data of landslide conditioning factors. In addition, it restricted low-lying areas (waterbodies and

elevation < 5 m) in susceptibility mapping, otherwise, the resultant maps would have been prone to

overestimation of landslide susceptible zones, as was the case of some recent studies. While evaluating

the models’ performance, all of them yielded very high prediction accuracy, with the AUC values

ranging between 0.927 to 0.962. The results of various recent studies have also ascertained that different

machine learning-based models yielded high accuracy in predicting landslides [1,15,17,26,27,61].

This study hypothesized that different susceptibility models can result in different LSMs, despite

incorporating similar landslide inventory data. The assessment of spatial agreement between various

models revealed spatial heterogeneity in landslide predictions, with the estimated pixel-wise correlation

coefficients of landslide probability between various models ranging from 0.69 to 0.85. The spatial

distribution of landslide susceptibility obtained in this study was also different than that of a recent

study conducted in Cox’s Bazar district of Bangladesh [11]. This highlights the uncertainty in landslide

predictions of various models, despite their considerable prediction accuracy in terms of the AUC

values. Most of the existing studies on machine learning-based LSM had a major focus on identifying

the most suitable method for predicting this natural phenomenon [1,8,18,23,60], while little attention has

been given in analyzing uncertainties resulting from the spatial disagreement in landslide prediction [9].

The current study is the first case study-based contribution to investigate this major gap in the existing

literature.

This study further developed a combined LSM by integrating the results of the four machine

learning-based landslide predictions, adopting a method proposed by Rossi, Guzzetti, Reichenbach,

Mondini, and Peruccacci [22]. The result indicates an improvement in landslide prediction accuracy.

Existing studies, which applied multiple machine learning algorithms to map landslide susceptibility,

mainly evaluated different methods based on quantitative measures [8,16,18]. Whilst quantitative

measures of model fit are useful, they are not conclusive in determining the efficacy and reliability of

susceptibility assessment [22]. A combined landslide susceptibility map that this study developed

would help to minimize the uncertainties of individual methods.

5. Conclusions

Predicting a complex natural phenomenon such as a landslide is a challenging task and subject to

considerable uncertainties. An accurate prediction of landslides is the prerequisite for managing this

hazard. In this study, the spatial association in landslide prediction between various machine

learning-based models was analyzed to quantify the spatial agreement of predicted landslide

susceptibility. By addressing uncertainties in various models, this study also developed a landslide

susceptibility map combining the outcomes from various models. The results indicate an improvement

in landslide prediction compared to the individual models.

Despite achieving an improved result in landslide prediction, this study has some limitations

that could be addressed in future results. Landslide inventory data used in this study was developed

based on various secondary sources and validated through fieldwork [11]. Scarcity of data, including

detailed landslide inventory on the study area, made it difficult to model a landslide more accurately.

Accuracy of the LSM results depended on input parameters used, particularly the DEM. The ALOS
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DEM of 30-m resolution used in this study had a low root-mean-square error (1.78 m) in vertical

accuracy and was considered to be the most accurate freely available DEM [43,62]. However, for future

research, high-resolution DEM could be employed to improve the existing landslide susceptibility

modelling frameworks.

This study is an attempt to integrate results of multiple machine learning-based landslide

susceptibility models to minimize uncertainties and improve landslide predictions. The modelling

framework used in this study could be transferred to other landslide-susceptible regions. Landslide

susceptibility maps can enable urban planners in identifying suitable areas for urban development [63].

The combined landslide susceptibility map of Cox’s Bazar district could be useful to policymakers and

practitioners in sequencing and prioritizing interventions in managing landslides. The proposed model

is an advancement in the existing landslide susceptibility models that intends to predict landslides

more accurately. The results of this model could be utilized in improving the existing landslide early

warning system [11], to strengthen landslide disaster risk mitigation strategies to support for the

resilient future of inhabitants of the study area.
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Abstract: Digital elevation models (DEMs) are the most obvious data sources in landslide susceptibility

assessment. Many landslide casual factors are often generated from DEMs. Most studies on landslide

susceptibility assessments rely on freely available DEMs. However, very little is known about

the performance of different DEMs with varying spatial resolutions on the accurate assessment of

landslide susceptibility. This study compared the performance of four different DEMs including

30 m Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital

Elevation Model (GDEM), 30–90 m Shuttle Radar Topographic Mission (SRTM), 12.5 m Advanced

Land Observation Satellite (ALOS) Phased Array Type L band Synthetic Aperture Radar (PALSAR),

and 25 m Survey of Bangladesh (SOB) DEM in landslide susceptibility assessment in the Rangamati

district in Bangladesh. This study used three different landslide susceptibility assessment techniques:

modified frequency ratio (bivariate model), logistic regression (multivariate model), and random

forest (machine-learning model). This study explored two scenarios of landslide susceptibility

assessment: using only DEM-derived causal factors and using both DEM-derived factors as well

as other common factors. The success and prediction rate curves indicate that the SRTM DEM

provides the highest accuracies for the bivariate model in both scenarios. Results also reveal that

the ALOS PALSAR DEM shows the best performance in landslide susceptibility mapping using

the logistics regression and the random forest models. A relatively finer resolution DEM, the SOB

DEM, shows the lowest accuracies compared to other DEMs for all models and scenarios. It can

also be noted that the performance of all DEMs except the SOB DEM is close (72%–84%) considering

the success and prediction accuracies. Therefore, anyone of the three global DEMs: ASTER, SRTM,

and ALOS PALSAR can be used for landslide susceptibility mapping in the study area.

Keywords: landslide susceptibility; Bangladesh; digital elevation model; random forest; modified

frequency ratio; logistic regression

1. Introduction

Local terrain conditions, including terrain relief, hydrology, geology, and land use, are crucial for

the assessment of landslide susceptibility [1]. These local features are often termed as “causal factors” [2].

Identifying these causal factors is considered as the steppingstone of landslide susceptibility assessment.

Landslide susceptibility represents the likelihood of landslide occurrence in an area. It assumes

that future landslides may occur in previous landslide locations where the causal factors already

created conducive environments for triggering landslides [2–4]. Several natural and anthropogenic
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factors can trigger landslides, thus called ”triggering factors,” such as volcanic activity, groundwater

excavation, prolonged rainfall, rapid snow melting, hill cutting, deforestation, land-use change,

etc. [5–8]. Moreover, landslide susceptibility assessment relies on the characteristics of landslide

inventory—a detailed register of distribution and characteristics of past landslides [9,10]. Therefore,

the success of landslide susceptibility assessment largely depends on the selection of causal factors and

the quality of landslide inventories.

Landslide susceptibility can be assessed qualitatively or quantitatively [11]. Qualitative approaches

of landslide susceptibility assessment are based on experts’ judgments on causal factors. However,

the mathematical relationships between landslide locations and casual factors are utilized in quantitative

approaches [6]. Frequently, mixed methods and semi-quantitative methods are adopted to process

experts’ opinions in qualitative assessments. The widely-used methods in this domain are the analytical

hierarchy process (AHP) [12], fuzzy logic [13], and GIS-based AHP [14]. In bivariate techniques,

each causal factor is divided into a set of classes, and landslide locations are compared with each class.

Thus, the bivariate relationship is established between landslide occurrence and one factor-class at a

time [4]. The commonly used bivariate methods are frequency ratio, the weight of evidence, fuzzy logic,

evidential belief function, and statistical index [3,15]. In contrast, the multivariate statistical methods

determine the relationship between landslide occurrence and multiple causal factors. Examples of

multivariate methods are logistic regression, adaptive regression spline, general additive models,

and simple decision trees [16].

One of the limitations of bivariate and multivariate models is that they are constrained by

normality and collinearity assumptions. Compared to these models, machine learning-based models

are relatively less limited by these assumptions [17] and, therefore, can consider the nonlinear nature

of landslides [18]. Some argue that machine learning-based models such as the random forest, gradient

boosting, and support vector machines often outperform both bivariate and multivariate statistical

models [19,20]. While the selection of methods is essential, landslide susceptibility assessment also

depends on the types and quality of causal factors, mapping unit, and the scale of investigation [21].

Many causal factors are often derived from analyzing satellite imageries and topographic models,

including land cover, elevation, slope, aspect, and hill cut [7]. Thus, these derived causal factors are

often impacted by the spatial resolution of sources, geometric error, and instrument or sensor type.

In landslide susceptibility mapping, digital elevation models (DEMs) often replace topographic maps to

derive the most important causal factors (e.g., slope, topography, aspect). Moreover, many developing

countries may not have topographic maps. Thus, landslide studies from these countries usually rely

on the free of charge DEMs derived from remote sensors.

DEM is the digital representation of the earth’s surface. It is widely used in various research

areas in which topography plays an important role, such as hydrological modeling, geomorphological

analysis, and feature extraction, landslide susceptibility and hazard assessment, erosion susceptibility,

and glacier monitoring [22]. DEMs are often generated using data obtained from different remote

sensors, including optical imaging sensors, light detection, and ranging (LiDAR), and synthetic aperture

radar (SAR) [23]. The qualities of DEM-derived factors often depend on the spatial resolution of DEMs.

Therefore, the choice of DEM is important for the assessment of landslide susceptibility [1]. To this day,

a few attempts have been made to compare the performance of DEMs with different spatial resolutions

in landslide susceptibility assessment. For instance, Dietrich et al. [24] compared different DEMs and

found a similarity in performance irrespective of spatial resolution in identifying moderate landslide

class (see also [25]). They argued that the resolution of DEM might not be very important to represent

the slope failures. Similarly, Tian et al. [26] contended that finer resolution does not essentially lead to

higher accuracy in landslide susceptibility assessment (see also [1,27]).

These past studies further indicated that the performance of DEMs is context-dependent meaning

that the performance of a DEM in a region may not be assumed to be similar in another region [28–30].

They also argued that DEMs with fine spatial resolution may not necessarily have better performance

over coarse resolution DEMs. Therefore, it is an utmost need to have comparative assessments of DEMs
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in various contexts. We found that even though some parts of Bangladesh are vulnerable to landslides,

no study investigated the relative performance of different DEMs in landslide susceptibility assessments.

Against this backdrop, this study contextualized landslide susceptibility in Bangladesh and compared

the performance of different DEMs and modeling techniques. The study area is selected from

Bangladesh because the hilly southeastern parts of the country encounter landslides almost every year

that often claim tens of lives [31–34]. Because of unavailability of LiDAR, the majority of the landslide

susceptibility-related studies in Bangladesh used 30m Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), 30–90 m Shuttle Radar

Topographic Mission (SRTM), and 12.5 m Advanced Land Observation Satellite (ALOS) Phased Array

type L-band Synthetic Aperture Radar (PALSAR) to obtain various topographic factors [7,31,32,35].

Survey of Bangladesh (SOB) has developed a DEM (25 m) for the whole of Bangladesh and no study

has used this DEM in landslide susceptibility assessment. Therefore, the landslide susceptibility maps

in Bangladesh are influenced by the usage of different DEMs and which DEM provides the most

accurate susceptibility maps are largely unexplored [36]. As many causal factors are derived from DEM

datasets, the selection of appropriate DEM is crucial for landslide susceptibility assessment. This study

aims to compare the relative performance of four DEMs: ASTER GDEM (30 m), ALOS PALSAR

(12.5 m), SRTM (30 m), and Survey of Bangladesh (SOB) DEM (25 m). This study further aims to

compare three quantitative landslide susceptibility assessment techniques: modified frequency ratio

(bivariate method), logistic regression (multivariate method), and random forest (machine learning

method) [4,8,29,37].

2. Study Area

Rangamati, a hilly southeastern district of Bangladesh is selected as the study area because

of the regular landslide occurrences in this area. More than 100 people died, and 12,000 families

suffered losses due to landslides in this district [38]. Most landslides in Rangamati take place in three

upazilas (sub-districts): Rangamati Sadar, Kaptai, and Kawkhali [35]. As such, the study area is

narrowed down to these three Upazilas (Figure 1). The combined geographical area of these three

sub-districts is 1145 km2 and more than 40% of it is forested [39]. The geology of this area comprises

Dhihing, Dupi tila, Girujan clay, Bhuban, Bokabil, and Tipam sandstone (Figure A3f of Appendix C)).

The bedrock and soil structure of the areas are not stable, which makes the hills highly prone to

landslides [40]. Climatologically, this area falls under a tropical monsoon climate, and the annual

average temperature varies from a maximum of 36.5 degrees to a minimum of 12.5 degrees Celsius,

and annual rainfall is 2673 mm with mean humidity level 71.6% [39].
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Figure 1. Study area and landslide and non-landslide (pseudo-absence points) locations used

in modeling.

3. Synopsis on Data Utilization

3.1. Landslide Inventory

Landslide inventory records different information, including the exact location, size, type, time of

occurrence, causalities, trigger, and causes [2]. Rabby and Li [33] prepared and published [34] landslide

inventory of the Chittagong hilly area, Bangladesh. They used participatory field mapping to prepare

this inventory [41]. In our study, we selected 168 landslides from their inventory as it has been advised

to use more than one method in landslide inventory preparation [42], we analyzed available Google

Earth images on the Google Earth platform to map more landslides in the study area. We used the

method proposed by Rabby and Li [33] for Google Earth mapping and mapped 93 landslides that

occurred from January 2001 to January 2019. Therefore, in our study, we used a total of 261 (168 + 93)

landslide locations. The mean size of the landslide was 274.2 m2. The smallest and the largest

dimensions of the landslides were about 14.6 m2 and 3422.4 m2, respectively.

3.2. Landslide Causal Factors

In our study, we used a total of 15 causal factors (Table 1) to produce landslide susceptibility

maps (see Appendices A–C). Of these factors, seven factors were derived from DEM: elevation,
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slope, plan curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI),

and aspect. As we are comparing the performance of different DEMs, we derived each of these factors

from four different DEMs: ASTER, SRTM, ALOS PALSAR, and SOB. The rest of the eight factors

namely land use/land cover, land use/land cover change, geology, distance from the road networks,

distance from the fault lines, distance from the drainage networks, rainfall, and normalized difference

vegetation index (NDVI) were collected from different datasets. Maps of different causal factors

had different resolutions, but for the convenience of comparison, we kept the 30 m resolution as the

standard for landslide susceptibility maps. In the following sub-section, we provide a brief overview

of the causal factors that we used in this study. We classify these factors into several classes primarily

using Jenks Natural Break method in ArcGIS 10.7, unless otherwise mentioned.

Table 1. Data source of the causal factors and resolution.

Causal Factor Type Data Source and Resolution

Elevation DEM based
ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)

and SOB (25 m) DEMs

Slope DEM based
ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)

and SOB (25 m) DEMs

Aspect DEM based
ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)

and SOB (25 m) DEMs

Plan curvature DEM based
ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)

and SOB (25 m) DEMs

Profile curvature DEM based
ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)

and SOB (25 m) DEMs

Topographic wetness index (TWI) DEM based
ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)

and SOB (25m) DEMs

Stream power index (SPI) DEM based
ASTER (30 m), SRTM (30 m), ALOS PALSAR (12.5 m)

and SOB (25 m) DEMs

Rainfall Other Factors Bangladesh Meteorological Department (BMD) (1000 m)

Distance from the road networks Other Factors http://data.gov.bd/dataset/geodash (1000 m)

Distance from the drainage networks Other Factors http://data.gov.bd/dataset/geodash (1000 m)

Distance from the fault lines Other Factors Geological Survey of Bangladesh (GSB) (1000 m)

Normalized difference vegetation
index (NDVI)

Other Factors Landsat 8 level 2 imagery (30 m)

Geology Other Factors Geological Survey of Bangladesh (GSB) (1000 m)

Land use/land cover Other Factors Landsat 8 level 2 imagery (30 m)

Land use/land cover change Other Factors Landsat 8 level 2 imagery, Landsat 5 imagery (30 m)

3.2.1. Elevation

A change in elevation can bring changes in geomorphology, vegetation, and rate of erosion in

an area and thus alters the landslide susceptibility [8]. We derived elevation from ASTER, SRTM,

ALOS PALSAR, and SOB DEMs (Figure A1a–d of Appendix A) and divided them into five classes

(see Table A1 of Appendix D).

3.2.2. Slope

The slope is one of the most critical factors of landslides. Generally, with the increase of

slope, shear stress increases, and therefore landslide susceptibility increases [43,44]. Like elevation,

we derived slopes from four different DEMs using the slope tool in ArcGIS 10.7 (Figure A1e–h of

Appendix A) and divided them into five classes using the Jenks natural break method (see Table A1

of Appendix D). We found different maximum slope values for different DEMs-ASTER (51.89º),

SRTM (61.24º), ALOS PALSAR (65.36º), and SOB (46.4º). As these values were different for the same

study area, the five classes of slopes (see Table A1 of Appendix D) were different.
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3.2.3. Aspect

The direction of precipitation, sunlight, and wind depend on aspect, and therefore it has effects

on the growth of vegetation, rate of erosion, and thickness of soil [45]. From the DEMs, four aspect

maps (Figure A1i–l of Appendix A) were prepared and were divided into ten classes (see Table A1 of

Appendix D).

3.2.4. Plan Curvature and Profile Curvature

Curvature is the rate of change of slope over time in an area. We used the four different DEMs to

produce four plan and profile curvature maps (Plan: Figure A2a–d; Profile: A2e–h of Appendix B).

Profile and plan curvatures were divided into three classes: concave, convex, and flat. Among these

classes, concave slopes are more prone to landslides because water cannot disperse equally on these

slopes [5].

3.2.5. Topographic Wetness Index and Stream Power Index

Topographic wetness index (TWI) increases with the decrease of the slope; therefore, it is inversely

related to landslide susceptibility [4,43]. Stream power index (SPI) represents the erosion power of

streams. SPI is directly related to slopes; in a steeper slope, SPI will be higher, representing more

erosion power while in a flat alluvial plain, SPI is low [45]. TWI and SPI maps were derived from four

DEMs using Equation (1) and Equation (2) (TWI: Figure A2i–l of Appendix B; SPI: Figure A2m–p of

Appendix B)

TWI = Ln
(

A

tanα

)
(1)

SPI = A× tanα (2)

where, A = Area of a specific catchment and α = Slope gradient of the specific area. We divided TWI

and SPI into five classes (Table A1 of Appendix D)

3.3. Rainfall

The intensity and duration of rainfall controls the initiation of landslides [44]. We used the mean

annual rainfall of five weather stations of Bangladesh Meteorological Department (BMD) to prepare

the rainfall map using the Kriging interpolation method (Figure A3a of Appendix C). We later divided

it into five classes (Table A1 of Appendix D).

3.4. Distance-Based Causal Factors

Distance from the road networks, drainage networks, and fault lines were the three distance-based

causal factors in this study. We used the Euclidean distance tool in ArcGIS 10.7 to derive the distance of

landslides from the targeted features: road, drainage, and fault lines (Figure A3b–d of Appendix C) and

divided the distances into five classes (Table A1 of Appendix D). Distance from the road networks is

one of the most critical factors. The undercutting of slopes during road construction and the vibration

created by vehicles damage the slope stability [43]. Drainage network indicates the zone of erosion in

an area, and erosion is indirectly linked with the landslide susceptibility [4]. Fault lines indicate the

geomorphological discontinuity in an area. Near the fault lines, the shear strength of rock is minimum.

Therefore, areas near to the fault lines are prone to landslides [44].

3.5. Normalized Difference Vegetation Index (NDVI)

NDVI indicates the growth of vegetation and biomass of an area [46]. Generally, the probability

of the occurrence of the landslide on the naturally vegetated surface is lower than the bare lands [8].

We used Landsat 8 level 2 imagery of 11/10/2017 to prepare the NDVI map (Figure A3e) and divide it

into five classes (Table A1 of Appendix D).
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3.6. Geology

The strength of rock and soil permeability depends on the geology of an area. Therefore, geology

has an impact on landslide susceptibility [43]. In this study, we used the geological map (Figure A3f)

(1:100,000) of the Bangladesh Geological Survey (BGS). There are eight types of geologic formation

found here: Dihing and Dupi tila formation; Bokabil formation; Bhuban formation; Tipam Sandstone;

Valley alluvium and colluvium; Dihing formation, Girujan clay, and waterbodies.

3.7. Land Use land Cover

Land use/land cover and land use/land cover change are the two most crucial landslide causal

factors in the study area [35,47]. Ahmed [31] and Rabby and Li [33] found that the rate of change of land

use/land cover in our study area is high compared to other adjacent areas. In this study, we used two

Landsat imageries to analyze the land use/land cover change (Landsat 5: date of Acquisition: 24/12/1998;

Landsat 8: Acquisition Date: 29/11/2018). We used supervised maximum likelihood classifier to classify

the 1998 and 2018 images into four land use classes: bare land, vegetation, built-up, and water bodies

(Figure A3g of Appendix C). We later employed post-classification change detection techniques to

analyze the land use/land cover changes between 1998 and 2018 (Figure A3h of Appendix C).

4. Methodology

To compare the effects of four different DEMs: ASTER, SRTM, ALOS PALSAR, and SOB on landslide

susceptibility maps, we used a bivariate method: modified frequency ratio (MFR), a multivariate

method: logistic regression (LR) and a machine learning method: random forest (RF). We assessed two

scenarios: (a) considering only DEM-based seven causal factors in the models, and (b) considering all

15 causal factors, including the DEM-based factors, in the models. As we used three methods: MFR,

LR, and RF on four different DEMs under two scenarios, therefore, the outcome would be twenty-four

landslide susceptibility maps. For legibility, we used different acronyms in later sections (see Table 2).

Table 2. Acronyms used for different models.

Model Factors Considered DEM Acronym Used

Modified frequency ratio
DEM-based 7 factors

ASTER
SRTM

ALOS PALSAR
SOB

MFR_ASTER_DEM
MFR_SRTM_DEM
MFR_ALOS_DEM
MFR_SOB_DEM

All 15 factors

ASTER
SRTM

ALOS PALSAR
SOB

MFR_ASTER
MFR_SRTM
MFR_ALOS
MFR_SOB

Logistic regression
DEM-based 7 factors

ASTER
SRTM

ALOS PALSAR
SOB

LR_ASTER_DEM
LR_SRTM_DEM
LR_ALOS_DEM
LR_SOB_DEM

All 15 factors

ASTER
SRTM

ALOS PALSAR
SOB

LR_ASTER
LR_SRTM
LR_ALOS
LR_SOB

Random forest
DEM-based 7 factors

ASTER
SRTM

ALOS PALSAR
SOB

RF_ASTER_DEM
RF_SRTM_DEM
RF_ALOS_DEM
RF_SOB_DEM

All 15 factors

ASTER
SRTM

ALOS PALSAR
SOB

RF_ASTER
RF_SRTM
RF_ALOS
RF_SOB
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4.1. Training and Validation Dataset

We divided the 261 landslide locations randomly into training (75%) and validation (25%)

datasets. Bivariate MFR is a one-class classification method where non-landslide locations or absence

of landslides are not required [48]. On the other hand, for multivariate LR and machine learning-based

RF, the selection of non-landslide locations (pseudo-absence points) is essential [4]. Any place that

does not have landslide can be considered as non-landslide. We randomly selected 261 non-landslide

locations (Figure 1) (pseudo absence points) from the study area [49]. We split these non-landslide

locations into training (196) and validation (65) data sets. In total, we had 392 (196: landslide locations;

196: non-landslide locations) data points for training and 130 (65: landslide locations; 65: non-landslide

locations) data points for testing the LR and RF models.

4.2. Modified Frequency Ratio (MFR)

MFR is an improved version of the widely used frequency ratio (FR) method [35,50]. Lee and Talib [51]

proposed FR, which assesses the spatial relationship between the landslide locations and the landslide

causal factors [52]. In the FR method, each of the causal factors must be divided into subclasses or

categories; for example, in this study, we split slope into five categories using the Jenks natural break

method (Table A1 of Appendix D). We calculated the FR values using Equation (3), and later these FR

values of each of the subclasses of causal factors were used in the MFR model.

FRij =
Nij/N

Mij/M
(3)

where FRij = Frequency Ratio of jth Subclass of Factor i

Nij = Total area of the landslide pixels within the jth subclass of factor i

N = Total area of landslide pixels in the study area

Mi j = Total area of the pixels in the jth subclass of factor i

M = Total area of the study area

FR > 1 means association of landslides with that subclass. In other words, there is a probability of

occurrences of landslides in that subclass. FR < 1 means no association [53].

For calculating the MFR, then we normalized the FRs using Equation (4).

Rfij =
FRij∑

FRi
(4)

where Rfij = Relative frequency of jth subclass of factor i

FRij = Frequency ratio of the jth subclass of factor i∑
FRi = Sum of the frequency ratios of factor i

Later, we calculated the prediction rate (PR) using Equation (5). In the FR model, the overall

contribution of causal factors to the occurrence of landslides is not measured. Only the subclass wise

contribution is measured [6,50]. In MFR, we can measure the overall contribution because PR indicates

overall association of a causal factor. The lowest value of PR is 1 and the higher the PR value the

stronger is the association of causal factor with the landslides [6].

PRi =
(MaxRfi − MinRfi)

(MaxRfi − MinRfi)min
(5)

where PRi = Prediction rate of factor i

MaxRfi =Maximum relative frequency of factor i

MinRfi =Minimum relative frequency of factor i

(MaxRfi −MinRfi) min = Lowest difference between maximum and minimum relative frequency

of all the factors
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To calculate the landslide susceptibility ondex (LSI) and to produce the landslide susceptibility

maps Equation (6) was used

LSI =
∑n

i=1
Rfij × PRi (6)

where LSI = Landslide susceptibility index

Rfij = Relative frequency of jth subclass of factor i

PRi = Prediction rate of factor i

For landslide susceptibility mapping, we used the reclassify tool in ArcGIS 10.7 to reclassify the

categories of causal factors according to the Rf values. Later, we multiplied each of the reclassified raster

layers with the prediction rates and summed up to produce the final landslide susceptibility maps.

4.3. Logistic Regression (LR)

Logistic regression (LR) is one of the most widely-used multivariate statistical methods in

landslide susceptibility mapping [4,6,54–56]. An LR model predicts the presence of landslides using

the binary landslide data (presence and absence of landslides or landslides and non-landslides) and

their relationship with the landslide causal factors [56,57]. Here, landslide and non-landslide locations

are dependent variables, and causal factors are independent variables. These independent variables

can be numerical or categorical [4]. Equation (7) is used in LR model

Logit (Y) = ß1X1 + ß2X2 + ß3X3 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + ßiXi + e (7)

where Y = The presence of landslides

Xi = ith Causal factor

ßi = Regression coefficient of the ith causal factor

e = Error

We used Equation (8) to determine the probability.

P =
expY

1 + expY
(8)

We used the R software environment for the forward stepwise LR method. We multiplied the

raster layers of the statistically significant causal factors with the coefficients and summed up using

Equation (7) in the R software environment. Finally, we used Equation (8) to produce the landslide

susceptibility maps.

4.4. Random Forest Classification (RF)

The random forest method was developed by Breiman [58] and is an ensemble learning method [19].

Lately, the use of the RF method for landslide susceptibility mapping has increased due to its high

performance in predicting landslide locations [37,59].

This method uses bootstrapping techniques to generate a bunch of classification trees based

on subsets of observations [27]. There is high variance among the individual trees, and therefore

classification based on a single tree is unstable and prone to overfitting [37]. Random forest is improved

over commonly used tree-based methods, such as a decision tree or bagged tree because it decorrelates

the trees. RF uses ensembles of trees and lets each tree define the class membership, and finally,

the respective class is assigned based on the highest votes [27,37]. Since the bootstrapping method is

used, a set of data is not used in the model training stage and this set of data is known as out-of-bag

(OOB) [27]. These OOB data are used to calculate the mean decrease of accuracy and Gini coefficient [37].

The accuracy and Gini coefficient are used in variable selection and ranking [19]. They also provide

the statistical weights or variable importance of each of the predictors used in the model [27].

There are several advantages of using RF methods, such as rescaling and transformation of data

are not essential; missing data and outliers can be ignored [60]. Moreover, it can deal with both
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numerical and categorical data, and the use of a dummy variable is not required [37]. In this study,

we developed the Random Forest model in the R software environment using the “randomForest”

package [61].

4.5. Multicollinearity Diagnostics

In the LR model, multicollinearity can bring inaccuracies in variance and unsuitability in estimates.

On the other hand, in the RF model, it can affect the variable importance [62]. Therefore, multicollinearity

diagnostics: variance inflation factor (VIF) and tolerance were used before using the causal factors in LR

and RF models. Since VIF values were <10 and tolerance were <0.3, causal factors were independent

and were used in these two models [63]

4.6. Model Validation and Comparison

Success and prediction rate curves were used to test the performance of the susceptibility models.

The training data set was used for the success rate curve, and the validation data set was used for the

prediction rate curve [6]. “The area under the curve” (AUC) of success rate indicates how well the

model fits the training data while the AUC of prediction rate suggests how well the model will predict

future landslides [15,64]. AUC value ranges from 0–1 or 0%–100% and it can be grouped into the

following categories: 0.50–0.60 (fail); 0.60–0.70 (poor); 0.70–0.80 (fair); 0.80–0.90 (good), and 0.90–1.00

(excellent) [53]. We also used two non-parametric tests: Friedman and Wilcoxon Signed Rank test to

assess whether there are any significant differences in performances between the susceptibility [65–68].

Friedman’s test is used for multiple comparisons. This test determines whether there is any significant

difference in performance in multiple models [29], while the Wilcoxon Signed Rank test is used for

pairwise comparison of susceptibility models and, therefore, can indicate which models are significantly

different [68].

However, statistical performance assessments such as success and prediction rate curves cannot

show the level of agreement among the models. Therefore, we used convergent validation through the

coverage based cross-comparison [69,70]. The MFR gives landslide susceptibility index while LR and

RF provide the probability of landslides. We reclassified them into five susceptibility zones: very low,

low moderate, high, and very high using the Jenks natural break method. Later, we used the raster

calculator in the ArcGIS platform to subtract the reclassified model from one another. The outcome can

be any integer, but only “zero” will indicate the areas which were classified into the same susceptibility

zones by two compared models. We calculated the percentage of area under this “zero” class and this

percentage indicates the spatial convergence or agreement between two compared models [69].

5. Results

5.1. Susceptibility Assessment Using Modified Frequency Ratio (MFR)

We found that the prediction rates (PRs) of the slope, aspect, and elevation derived from three

DEMs (ASTER, SRTM, and ALOS PALSAR) are similar. The PRs for these three factors are around

2.25, 1.0, and 3.0, respectively (see Table A1 of Appendix D). Compared to these three DEMs, the SOB

DEM showed different PRs. Our analysis revealed that for slope, aspect, and elevation, the SOB

DEM-based PRs are 1.79, 2.37, and 2.41, respectively. We further found that with the increase of slope,

the probability of landslide increases. The relatively safer zones are in areas below 8º slope where

frequency ratio (FR) < 1. For ASTER, SRTM, and ALOS PALSAR DEMs, we found that the slope class

14–23º had the highest probability of landslides. However, for SOB DEM, the highest probability of

landslide is in the 8–14º slope class. In the case of TWI, we found that ALOS PALSAR DEM has the

highest PR (4.30) followed by ASTER DEM (PR = 3.19) and SOB DEM (PR = 1.61). For all the four

DEMs, the probability of landslides was higher in areas where TWI is less than 6. The SPIs derived

from four DEMs have lower PRs compared to other causal factors and the class-wise weight (FR values)
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showed the same sort of pattern. We further found that for plan curvature, ALOS PALSAR has the

highest PR (4.30), while for profile curvature, SRTM has the highest PR (4.68).

In general, we found no specific pattern of FR and PR values for these seven factors. We observed

that causal factors derived from either ALOS PALSAR or SRTM have higher PR values, and SOB has

the lowest PR among the four DEMs. The causal factors derived from different DEMs did not have a

significant impact on the FR and PR values of MFR. This finding is similar to the findings of Chang

et al. [29]. Most of the topographic factors are the first derivative of the DEMs other than the TWI

and SPI. Thus, for TWI, DEMs have more substantial impacts than other factors. It is because there

can be a small difference among the DEMs, and when the second derivative is used, these become

pronounced [29].

The class-wise FR values of the eight factors that are not derived from the DEMs are generally

similar; however, the PR values are different (see Table A1 of Appendix D). The causal factors derived

from the DEMs played a crucial role in determining the PR values for these eight factors. For ASTER

(0.141), SRTM (0.134), and ALOS PALSAR (0.139), the lowest difference was between the maximum

and minimum relative frequency of aspect. While for SOB (0.160), it was SPI. Since these values are

slightly different, it affected the PR values.

Landslide Susceptibility Maps (MFR)

We produced Landslide Susceptibility Indices (LSIs) of the four MFR models using Equation (6)

for DEM-based causal factors. The LSI of MFR_ASTER_DEM ranged from 994.6 to 8388.1. The LSIs for

MFR_SRTM_DEM LSIs for MFR_SRTM_DEM; MFR_ALOS_DEM and MFR_SOB_DEM ranged from

591.4 to 9458.8 and 527.8 to 10056.5 and 638.8 to 6130.0, respectively. LSI does not have a unit. It is the

product of relative frequency and prediction rate Equation (6), and both of these do not have units.

The greater the LSI, the greater is the landslide susceptibility, and the smaller the LSI value, the lower

is the susceptibility [35,44]. The ranges of LSIs indicate that MFR_SRTM_DEM and MFR_ALOS_DEM

models had a comparatively broader range than the rest of the two models. This happened because

of the variable FR and PR values. For ASTER DEM, the highest PR value was for plan curvature,

while for other DEMs it was for profile curvature (see Table A1 of Appendix D). For all DEM-based

factors, SOB had the lowest PRs among the four models and therefore it affected the LSIs. Later,

we used the same Equation (6) to produce four MFR models based on 15 causal factors. The LSI of

MFR_ASTER DEM ranged from 1613.00 to 20370.10. The LSIs for MFR_SRTM, MFR_ALOS, and SOB

DEMs ranged from 1314.40 to 22300.34 and 1234.95 to 22180.24 and 1995.7 to 17316.9, respectively.

The LSIs of MFR_SRTM and MFR_ALOS DEMs have a comparatively broader range than the rest

of the two models. The highest PR value for ASTER was 6.25 and for SOB, it was 5.64 (Table A1

of Appendix D) for distance to the road network, while for SRTM and ALOS PALSAR, it was 6.61

and 6.38, respectively. For other causal factors (Table A1 of Appendix D), SOB had the lowest PRs

among the four, and therefore LSI was the lowest. As mentioned earlier, the FR values varied for seven

topographic factors derived from four different DEMs, and these factors had impacts on the PR of

eight common factors. Ultimately these variations defined the LSI of the susceptibility maps.

Since different models had different LSIs, Rescale by Function tool in ArcGIS was used to normalize

the LSIs into a 0.0–1.0 scale. Later, we used the Jenks natural break method to classify the normalized

LSIs into five susceptibility zones: very low, low, moderate, high, and very high. Generally, the spatial

appearances of the landslide susceptibility maps have similarities with the map of causal factors that

have a higher contribution to landslides. In this study, this contribution is shown by PR and FR values

(see Appendices A–C). We found that the spatial appearance of seven causal factors derived from

SOB was different from the spatial appearance of seven causal factors derived from ASTER, SRTM,

and ALOS PALSAR. ASTER, SRTM and ALOS PALSAR based susceptibility maps (Figure 2a–c) show

a comparatively lesser percentage of area as very low or low susceptibility zones than the SOB-based

landslide susceptibility map (Figure 2d). However, the SRTM based map shows comparatively more

areas as high and very high susceptibility zones that the other maps. We found when all factors were
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considered, areas near to the road network are highly susceptible to landslides (Figure 3a–d), because

the PR values of the distance from the road networks were the highest.
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Figure 2. Landslide susceptibility maps produced using Modified Frequency Ratio (MFR), Logistic

Regression (LR) and Random Forest (RF) models (seven DEM-based factors).
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Figure 3. Landslide susceptibility maps produced using MFR, LR, and RF models (all 15 factors).

5.2. Susceptibility Assessment using Logistic Regression (LR)

For the DEM-based factors, the LR model detected two to five statistically significant factors

(see Table A2 of Appendix E). Elevation and slope were the two common statistically significant

causal factors for ASTER, SRTM, and ALOS PALSAR based models. Since the ALOS PALSAR based

model, the highest number of causal factors was chosen, DEM had the highest impact on the landslide

susceptibility map. Odds ratio (Table A2 of Appendix E) shows that slope was the most important

factor of landslides for ASTER and SRTM based models, while aspect came out as the most crucial

factor for ALOS PALSAR and SOB based models.

When all (15) causal factors were used, we found a total of four to eight statistically significant

causal factors (see Table A2 of Appendix E). Slope, elevation, SPI, and aspect were the significant

DEM-based causal factors for LR_SRTM and LR_ALOS based models. For LR_SOB, aspect was

the statistically significant DEM-based causal factor. When 15 causal factors were used, the model

assessed the interaction of DEM-based factors with the common eight factors. Therefore, when only

the DEM-based causal factors were used, some factors came out statistically significant (e.g., SPI for
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LR_ASTER_DEM). When all the factors were used in the LR_ASTER based model, SPI came out

insignificant. For LR_SRTM and LR_ALOS, three DEM-based causal factors were detected as statistically

significant; therefore, for these two landslide susceptibility maps, DEM would have more impact than

the LR_ASTER and LR_SOB susceptibility maps.

Landslide Susceptibility Maps (LR)

We used the Jenks natural break method to classify the probability of landslides into five zones:

very low, low, moderate, high, and very high. The spatial appearances of the LR_SOB_DEM model

(Figure 2h) have a different appearance than the other three maps. LR_SRTM_DEM (Figure 2f) and

LR_ALOS_DEM (Figure 2g) have an almost identical spatial appearance. While in LR_ASTER_DEM

models, the slope had a higher coefficient (ß = 0.26) (Table A2 of Appendix E) than the SRTM

(ß = 0.14) and ALOS PALSAR ((ß = 0.05). Therefore, in the LR_ASTER_DEM map, the areas with

steeper slopes, mainly in the mid-north and mid-south of the study area, were classified as high to

very highly susceptible. In LR_SRTM_DEM and LR_ALOS_DEM maps, these areas were classified

either as moderate or high susceptibility zones. In LR_SOB_DEM, only elevation and aspect were

two significant factors. Therefore, the susceptibility map took the shape of the map of these two factors

(see Appendix A).

When all (15) causal factors were used, the spatial appearance of LR_SOB (Figure 3h) was different

from the other three maps (Figure 3e–g). LR_SOB map was influenced by the distance from the fault

lines, distance from the road networks, and land use/land cover. Although aspect was a significant factor,

the coefficient value of aspect was similar to other significant factors, and distance from the fault lines

(ß = 1.07) (Table A2 of Appendix E) had a higher coefficient value than aspect. Therefore, most of the

study area was classified as low or very low susceptibility zones. In the LR_ASTER model (Figure 3e),

the slope had the highest coefficient (ß = 0.31) (Table A2 of Appendix E), and therefore, areas with

steeper slopes were classified as high or very high susceptibility zones. But in LR_SRTM and LR_ALOS

models, the slope had comparatively lower coefficient values than ASTER. As a result, some areas

were classified as moderate susceptibility zones in these two maps (Figure 3f–g). In LR_SRTM and

LR_ALOS susceptibility maps, common factors such as distance from the road networks and fault

lines, land use/land cover, and land use/land cover change did not have higher coefficient values than

the DEM-based causal factors. That is why, unlike LR_SOB, the spatial appearance of the susceptibility

maps did not follow the appearance of the maps of common factors.

5.3. Susceptibility Assessment using Random Forest (RF)

RF_ASTER_DEM, RF_SRTM_DEM, and RF_ALOS_DEM models detected (Figure 4a) slope and

RF_SOB_DEM model identified the aspect as the most critical factor. When all 15 factors were used

in the models, RF_ASTER and RF_SRTM (Figure 4b) detected slope and the rest of the two models

detected distance from the road network as the most important causal factor. For RF_ASTER, RF_SRTM,

and RF_ALOS, DEM-based factors such as elevation, TWI, and aspect had higher importance in the

models than the common factors. But in the RF_SOB model DEM-based factors had less importance

than the common factors. There is no similarity among the models in detecting the importance of

DEM-based causal factors. For example, In RF_SOB, the slope was ranked as one of the least important

factors, but for other models, it was ranked as the most important factor (Figure 4b).
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Figure 4. Variable importance plots of random forest model: (a) Digital Elevation Model (DEM)based

causal factor (7) used in the models. (b) All (15) factors used in the models. Pl=plan curvature;

Pr= profile curvature; LC= land use/land cover; LLC= land use/land cover change; DF= distance from

the fault lines; DD= distance from the drainage networks; DR= distance from the road networks.

Landslide Susceptibility Maps (RF)

Like MFR and LR, we used the same method to classify the probability of landslides into five

susceptibility zones. The spatial appearance of the RF_SOB_DEM susceptibility map (Figure 2l) was

different from the susceptibility maps of the other three models (Figure 2i–k). For, RF_ASTER_DEM

(Figure 2i) areas in the mid-north to mid-south were classified as high or very high susceptibility zones.

While in RF_SOB_DEM and RF_ALOS_DEM the same areas were classified as moderate susceptibility

zones. In RF_ASTER_DEM, slope was the most critical factor. Similarly, in RF_SRTM_DEM and

RF_ALOS_DEM slope was the most crucial factor, but in these two models, the contribution of the slope

(Figure 4a) to the model is lesser than the RF_ASTER_DEM model. In RF_ASTER_DEM, the difference

of variable importance between slope and other factors was comparatively higher than the other

models, the effect of slope on the susceptibility map was visible.

RF_ASTER; RF_SRTM, RF_ALOS; and RF_SOB models (Figure 3i–l), spatial appearances were

different from each other. Since in the RF_SOB model, distance from the road networks was the most

crucial factor, areas near to roads were classified as high or very high susceptibility zones. Distance from

the road network was not ranked as the most critical factor in the other three models.
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5.4. Validation and Comparison of Landslide Susceptibility Maps

5.4.1. Success and Prediction Rate Curves

DEM-Based Causal Factors

When only DEM-based seven causal factors were used for MFR models, among all DEMs the

MFR_SRTM_DEM model gave the superior performance for both success (AUC = 80.73%) and

prediction (AUC = 77.37%) rate curves (Figure 5a,b). The MFR_SOB_DEM model appears to perform

the weakest in assessing success and prediction. The AUCs of success rate curves (Figure 5a) showed

that MFR_SRTM_DEM falls under the good category while MFR_ASTER_DEM and MFR_ALOS_DEM

fall under the fair category. But MFR_SOB_DEM falls under the poor category. AUCs of prediction

rate curves (Figure 5b) show that all models other than the MFR_SOB_DEM gave fair performances.                     
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Figure 5. Success and prediction rate curves (seven DEM-based factors): (a) MFR (success); (b) MFR

(prediction); (c) LR (success); (d) LR (prediction); (e) RF (success); (f) RF (prediction).

For LR, LR_ALOS_DEM outperformed the other three models (Figure 5c,d). LR_SOB_DEM

presented the weakest performance among the four models and thus fell under the fail category.

The AUCs of success and prediction rates (Figure 5c,d) show that the other three models are under the fair

category. For RF models, we got similar results as the LR model. RF_ALOS_DEM outperformed other

models, and RF_SOB_DEM was the least accurate model. RF_SRTM_ALOS_DEM and RF_SRTM_DEM

gave an almost similar performance.

All Causal Factors

We found that when all 15 causal factors are used, different models showed variable performances.

For the MFR model, the use of 15 causal factors decreases the predictive performance on an average by

5% of landslide susceptibility maps based on ASTER, SRTM, and ALOS PALSAR (see Figure 6a,b).
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However, for the SOB based model, it increased the performance by 3%. It indicates that for bivariate

models, DEM-based causal factors can give better prediction performance and use of non-DEM-based

factors can reduce the accuracy. Inclusion of more DEM-based causal factors and more landslide

locations may increase the accuracy of the models in the study area.

                     

 

 
                ‐              

                         

 
                               

                     
Figure 6. Success and prediction rate curves (15 factors): (a) MFR (success); (b) MFR (prediction); (c) LR

(success); (d) LR (prediction); (e) RF (success); (f) RF (prediction).

For the LR model, the use of 15 factors increased the accuracy of the model. For three global

DEMs success rates increased by around 5.0% but for SOB it increased by 21.7%. On the other hand,

prediction rates showed the same trend as for three global DEMs the increase of performance was

around 3.5% but for SOB it was 17.0%. It proves that the use of common factors increased the accuracy

substantially for SOB DEM.

Like the LR model, for RF models, the use of 15 causal factors increased the accuracy of the model.

For ASTER and SRTM the increase of the success rate was around 7%. For ALOS PALSAR the success

rate increased by 12.4%. Here again, SOB had the highest increase (22.6%) in success rate. The increase

in prediction rate was not as high as the success rate. For three global DEMs prediction rates increased

by around 2%–3% and for SOB the prediction rate increased by 10.1%. Machine learning algorithms

such as the random forest learn the behavior or the training data. Therefore, the increase of success

rate due to inclusion of new variables was high. Since machine learning algorithms learn the behavior

of the training data it fails to predict the validation or unknown data [60]. Therefore, in our study,

the increase of prediction rate is around 50% lower than the increase of prediction rate for RF models.

5.4.2. Spatial Comparison of Landslide Susceptibility Maps

Spatial convergence indicates how much area is classified into same susceptibility zones.

When seven DEM-based factors were used in the MFR model, MFR_SOB_DEM had 30% of spatial

convergence while the remaining DEMs had around 40% (Table 3). As we discussed before, the landslide
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susceptibility maps of MFR_SOB_DEM has a different spatial appearance (Figure 2d) than the

rest of the three susceptibility maps and these results (Table 2) support the previous discussion

of our study. For the LR models, Table 3 shows a similar trend. Spatial convergences of the

LR_ASTER_DEM, LR_SRTM_DEM, and LR_ALOS_DEM were around 44%, while the LR_SOB_DEM

showed approximately 19% of spatial convergence. For the RF models, Table 3 shows the similarities

with the findings of MFR and LR.

Table 3. Spatial comparison and convergence analysis of landslide susceptibility maps.

Factors Used Method Mapping DEM ASTER (%) SRTM (%) ALOS PALSAR (%) SOB (%)

DEM-based
factors

MFR

ASTER (%) 100.00 41.18 46.54 29.37
SRTM (%) 41.18 100.00 42.54 31.26

ALOS PALSAR (%) 46.53 42.54 100.00 30.83
SOB (%) 29.37 31.26 30.83 100.00

LR

ASTER (%) 100.00 44.34 47.50 18.33
SRTM (%) 44.34 100.00 48.59 18.84

ALOS PALSAR (%) 47.50 48.59 100.00 19.06
SOB (%) 18.33 18.84 19.06 100.00

Random forest

ASTER (%) 100.00 47.73 47.07 28.24
SRTM (%) 47.73 100.00 54.46 31.43

ALOS PALSAR (%) 47.07 54.46 100.00 31.46
SOB (%) 28.24 31.43 31.46 100.00

All factors

MFR

ASTER (%) 100.00 71.44 68.89 55.71
SRTM (%) 71.44 100.00 77.41 54.07

ALOS PALSAR (%) 68.89 77.41 100.00 51.68
SOB (%) 55.71 54.07 51.68 100.00

LR

ASTER (%) 100.00 52.01 51.11 30.89
SRTM (%) 52.01 100.00 55.56 36.46

ALOS PALSAR (%) 51.11 55.56 100.00 36.07
SOB (%) 30.89 36.46 36.07 100.00

Random forest

ASTER (%) 100.00 51.55 49.28 42.21
SRTM (%) 51.55 100.00 62.63 44.36

ALOS PALSAR (%) 49.28 62.63 100.00 47.02
SOB (%) 42.21 44.36 47.02 100.00

When all factors were considered for modeling, spatial convergence between the DEMs (Table 3)

increased around 40% for MFR models. While for the LR and RF models, the spatial convergence was

approximately 25% and 12%, respectively. In the MFR model, all causal factors were used, while in the

LR model, significant causal factors were used and in the RF model, 2–3 causal factors, for example,

profile and plan curvatures had comparatively low or no variable importance in the model.

The results of Friedman tests (Table 4) show that in both the scenarios (a. seven DEM-based causal

factors used, and b. 15 causal factors used) for MFR and RF models P < 0.05. It means at least one

of the landslide susceptibilities models had significantly different performance than the rest of the

models. While for LR models, when seven DEM-based causal factors were used, at least one of the

models was statistically different in performance than the rest of the models. When all factors were

used in LR models, there was no statistically significant difference in performance between the models.

Wilcoxon signed-rank test conducted the pairwise comparison. The results (Table 4) show that in

scenario two, the performances of landslide susceptibility maps produced using SRTM and ALOS

PALSAR did not have a statistically significant difference. Other than that, all the performances of

the MFR based landslide susceptibility maps were statistically (α = 0.008 after Bonferroni correction)

different from each other. When seven causal factors were used for LR models, the performance of

SOB based models was significantly different (Table 5) from all other models. But when all factors are

used, these differences become insignificant. It indicates that eight common factors overshadow the

effect of SOB based causal factors. In the MFR model, it did not happen since it did not consider the

interaction of causal factors.
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Table 4. Result of the Friedman Test for landslide susceptibility maps.

Factors Used Methods DEM Mean Rank Chi-Square P-Value

DEM-based factors

MFR

ASTER 2.29

135.71 0.00 *SRTM 2.94

ALOS PALSAR 2.68

SOB 2.10

LR

ASTER 2.56

45.24 0.00 *SRTM 2.55

ALOS PALSAR 2.19

SOB 2.70

RF

ASTER 2.61

44.24 0.00 *SRTM 2.28

ALOS PALSAR 2.74

SOB 2.37

All factors

MFR

ASTER 2.61

208.54 0.00 *SRTM 2.28

ALOS PALSAR 2.74

SOB 2.37

LR

ASTER 2.37

8.63 0.05SRTM 2.90

ALOS PALSAR 2.84

SOB 1.89

RF

ASTER 2.76

33.79 0.00 *SRTM 2.43

ALOS PALSAR 2.49

SOB 2.32

In the case of RF models, RF_ALOS_DEM (Table 5) was statistically different from the other

models. But when all causal factors were used the difference of performance became insignificant

for RF_SRTM model. RF used a more complex algorithm than the LR and MFR models. Therefore,

the Wilcoxon Signed-Rank test gave different results for RF models than MFR and LR models.
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Table 5. Comparison of landslide susceptibility maps based on three different DEMs using Wilcoxon

signed-rank test.

Factors Used Methods Pairwise Comparison Z-Statistics P-Value

DEM-based factors

MFR

ASTER-SRTM −8.82 0.00 *

ASTER-ALOS PALSAR −4.81 0.00 *

ASTER-SOB −6.81 0.00 *

SRTM-ALOS PALSAR −5.26 0.00 *

SRTM-SOB −10.48 0.00 *

ALOS PALSAR-SOB −8.60 0.00 *

LR

ASTER-SRTM 1.11 0.27

ASTER-ALOS PALSAR −1.49 0.14

ASTER-SOB −3.62 0.00 *

SRTM-ALOS PALSAR −2.55 0.01

SRTM-SOB −3.04 0.00 *

ALOS PALSAR-SOB −3.71 0.00 *

RF

ASTER-SRTM −0.42 0.68

ASTER-ALOS PALSAR −3.37 0.00 *

ASTER-SOB −7.06 0.48

SRTM-ALOS PALSAR −7.37 0.00 *

SRTM-SOB −1.79 0.73

ALOS PALSAR-SOB −6.14 0.00 *

All factors

MFR

ASTER-SRTM −7.91 0.00 *

ASTER-ALOS PALSAR −6.11 0.00 *

ASTER-SOB −10.58 0.00 *

SRTM-ALOS PALSAR −2.11 0.04

SRTM-SOB −12.84 0.00 *

ALOS PALSAR-SOB −11.56 0.00 *

LR

ASTER-SRTM −2.37 0.02

ASTER-ALOS PALSAR −1.59 0.11

ASTER-SOB −0.49 0.63

SRTM-ALOS PALSAR −0.53 0.60

SRTM-SOB −0.24 0.81

ALOS PALSAR-SOB −0.08 0.94

RF

ASTER-SRTM −2.66 0.01

ASTER-ALOS PALSAR −0.38 0.71

ASTER-SOB −4.64 0.00 *

SRTM-ALOS PALSAR −1.85 0.07

SRTM-SOB −1.96 0.05

ALOS PALSAR-SOB −4.18 0.00 *

* = Significant after Bonferroni correction (P < 0.008).
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6. Discussion

This paper evaluates the suitability of three available global DEMs: ASTER, SRTM, and ALOS

PALSAR and a local DEM: SOB for landslide susceptibility mapping in Rangamati district, Bangladesh.

Causal factors derived from ASTER and ALOS PALSAR DEM have been used in landslide susceptibility

mapping in different parts of the Chittagong hilly areas, Bangladesh [7,9,31–35]. Since the study areas

of these studies were different, we could not compare them to find out which DEM gives the best

accuracy in the prediction of landslide susceptibility [36]. Our study showed that three global DEMs

outperformed the local DEM in all three landslide modeling scenarios.

In the first scenario, only DEM-based causal factors were used in modeling and for MFR models,

MFR_SRTM_DEM outperformed the other three models. The difference of AUCs of both the success

and prediction rate curves between _SRTM_DEM and ALOS_DEM was around 3%, indicating a

similarity in predictions. For the processing of ALOS PALSAR DEM, SRTM GL1 data is used for

radiometric correction [71]. Therefore, the quality of ALOS PALSAR DEM depends on the quality

of SRTM DEM. SOB DEM-based MFR did not show a good performance for the study area and the

prediction performance can be improved when a more representative landslide inventory with more

landslide locations is used. We found that the ASTER DEM-based MFR model showed a weaker

performance than the other two open-source global DEMs. Our result is consistent with other studies

that utilized ASTER DEM [29,72,73]. It may happen because ASTER DEM contains many artifacts such

as the presence of peaks in the flat terrain, and it ultimately affects the landslide susceptibility map [29].

The poor performance of the SOB DEM can be attributed to the interpolation methods that were used

to extrapolate elevations from the available spot heights in the hilly parts of Bangladesh [74]. It affected

the accuracy and quality of DEM in the hilly parts of Bangladesh. On the other hand, for LR and RF,

ALOS PALSAR based models outperformed the rest of the models. Here, again the difference between

LR_ALOS_DEM and LR_SRTM_DEM was low for success and prediction. In all cases, SOB based

models gave the worst performance and causal factors derived from SOB DEM cannot explain the

landslide susceptibility of the study area. For example: In LR_SOB_DEM, the LR model used two

significant causal factors: elevation and aspect (Table A2 of Appendix E). The low coefficient (ß) values

of these two factors indicate that these two causal factors cannot adequately explain the landslide

susceptibility of the study area.

In the second, scenario, for MFR models, the use of 15 causal factors increased the prediction

accuracy for MFR_SOB. But for the other three models, it reduced accuracy. It indicates that causal

factors derived from three global DEMs were capable enough to explain the landslide susceptibility

of the study area. MFR is a bivariate model, and it does not consider the interaction of the causal

factors. Moreover, unlike LR and RF models, it does not require non-landslide (pseudo absence point)

in modeling [44]. When all causal factors were used, PRs of some of the common causal factors were

comparatively higher than the PRs of the DEM-based causal factors. For example, PRs of distance from

the road networks were around 6.00 (Table A1 of Appendix D), while PRs of the DEM-based causal

factors ranged from 1.00–4.43. Therefore, the higher PRs of the common causal factors overshadowed

the DEM-based factors [6,35,44]. On the other hand, the quality of the SOB DEM was poor and was not

capable of explaining the landslide susceptibility of the study area. That is why, in the MFR_SOB model,

the prediction accuracy increased, but the increase was very low. For LR and RF models, in second

scenarios, the prediction accuracy increased by 2%–3% for global DEM-based models, while for SOB

based models, it exceeded 10%. Both LR and RF models consider the interaction of causal factors,

and therefore, in these two models, the effects of common factors on prediction performance were

revealed better than the MFR models.

The findings of this study have similarities with other research where the suitability of different

global and local DEMs was evaluated for landslide susceptibility mapping [26–28]. In most of the

studies, ASTER DEM-based landslide susceptibility maps were outperformed by the other global

DEM-based landslide susceptibility maps. On the other hand, local DEM-based landslide susceptibility

maps have better prediction accuracy than the global DEMs [1,29]. In these studies, local DEMs
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were mainly light detection and ranging (LiDAR)-based DEMs, which generally have very high

spatial resolution compared to global DEMs [29]. SOB DEM was prepared under the project titles

“Improvement of Digital Mapping System of Survey of Bangladesh”, where the main aim was to

prepare a 1:5000 scale DEM of major cities in Bangladesh. This SOB project prepared DEM for the

hilly areas of Bangladesh, including our study area using the local spot heights. Different interpolation

methods were used to prepare 25m DEM from these local spot heights [73]. Therefore, in hilly areas

of Bangladesh, the quality of SOB DEM is not good enough, and the application of this DEM in

geomorphological studies such as landslide susceptibility mapping can give questionable results

similar to what we got in our study. Our study also pointed out the importance of the preparation

of very high-resolution DEMs using LiDAR for the hilly areas of Bangladesh. It will help in various

geomorphological studies, including landslide susceptibility mapping. As we did not find a substantial

difference among global DEMs, any global DEM can be utilized for landslide susceptibility mapping in

Bangladesh in the absence of very high-resolution DEMs.

For an in-depth study, we utilized non-parametric tests. Chang et al. [30] used non-parametric

tests to detect a significant difference in performance in landslide susceptibility maps prepared using

different DEM-derived causal factors. Their study did not find any significant difference in performance

for two machine learning methods: RF and support vector machines. In our research, we did not

see any significant difference in performance for RF and LR based models. But for the MFR model,

we found a significant difference in performance. It indicates that the effect of DEM-based causal

factors on the performance of bivariate models is more than on the multivariate and machine learning

models. Thus, we suggest using multivariate and machine learning methods and any one of the global

DEMs for landslide susceptibility mapping in Bangladesh.

7. Conclusions

This paper assesses the effects of the DEM-derived causal factors on the landslide susceptibility

maps produced using the bivariate (e.g., MFR), multivariate (e.g., LR), and machine learning (e.g.,

RF) models. In this study, we tested two scenarios: a. susceptibility assessment with only seven

DEM-based causal factors; b. inclusion of other 8 causal factors along with DEM-derived factors.

The success and prediction rate curves showed SRTM DEM outperformed under an MFR model in

both scenarios. Our analysis revealed that ALOS PALSAR DEM provided the best prediction accuracy

while using both LR and RF models in landslide susceptibility mapping. For all models and scenarios,

the SOB DEM does not perform well compared to other DEMs.

The prediction accuracies of landslide susceptibility mapping using only DEM-derived factors is

low compared to the utilization of all casual factors. Although SOB DEM has a poor performance in

susceptibility assessment with only a DEM-derived factor, the accuracy is significantly improved when

other non-DEM-based factors are added. Therefore, we argue that causal factors derived from the

SOB DEM have limited influence in landslide susceptibility assessment for the study area. Besides,

for the LR and RF models, the use of all the causal factors increased the prediction performance.

Spatial convergence analysis showed that three global DEM-based models have similar accuracies and

performed far better than SOB DEM-based models. Therefore, we recommend that SOB DEM should

not be used for landslide susceptibility assessment in Bangladesh. Although ASTER DEM-based

models showed the weakest performance among three global DEMs, the difference of performance

was negligible. Therefore, we recommend any one of these three global DEMs can be utilized for

landslide susceptibility assessment in Bangladesh.

Our study also highlights that, for the MFR model, DEM had the highest impact on the accuracy of

landslide susceptibility assessment as Wilcoxon rank tests showed that the performance of susceptibility

maps was significantly different. For the LR and RF models, the effect of DEM was less significant.

We contend that while using the bivariate model, we must be careful about the quality of DEM.

Two scenarios in this study helped to understand the impact of DEMs in landslide susceptibility

assessment. Moreover, we used multiple metrics to evaluate the accuracies of susceptibility assessment
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including AUC, spatial convergence analysis, and non-parametric test. Although the use of one

performance measure is a common practice, the utilization of various measures helped this research to

understand the impacts of DEM and makes the conclusion robust.

The main limitation of our study is that we cannot ascertain if adding more DEM-derived factors

such as terrain roughness could improve the result. The impacts of DEM on landslide susceptibility

maps are not universal and may vary from place to place. Therefore, we cannot conclude that a specific

DEM can be better than others. Advanced machine learning and deep learning methods can be used

to check whether these algorithms can reduce the differences in prediction performance of landslide

susceptibility maps prepared using different DEM-derived causal factors.

Author Contributions: Conceptualization, Y.W.R; methodology, Y.W.R.; M.S.R.; analysis, Y.W.R.; writing, Y.W.R.
A.I.; M.S.R.; review and editing, A.I. and M.S.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding

Acknowledgments: The authors thank Bayes Ahmed (Lecturer, Institute for Risk and Disaster Reduction,
University College London) for his assistance in obtaining some datasets.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

                     

 

             

                           
                   

                   

   

 
                 

  

Figure A1. Landslide Causal Factors: (a) Elevation (ASTER); (b) Elevation (SRTM); (c) Elevation

(ALOS PALSAR); (d) Elevation (SOB); (e) Slope (ASTER); (f) Slope (SRTM); (g) Slope (ALOS PALSAR);

(h) Slope (SOB); (i) Aspect (ASTER); (j) Aspect (SRTM); (k) Aspect (ALOS PALSAR); (l) Aspect (SOB).
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Appendix B

                     

 

   

 
                             

                         
                           

                                     
       

  

Figure A2. Landslide Causal Factors: (a) Plan Curvature (ASTER); (b) Plan Curvature (SRTM); (c) Plan

Curvature (ALOS PALSAR); (d) Plane Curvature (SOB); (e) Profile Curvature (ASTER); (f) Profile

Curvature (SRTM); (g) Profile Curvature (ALOS PALSAR); (h) Profile Curvature (SOB); (i) TWI (ASTER);

(j) TWI (SRTM); (k) TWI (ALOS PALSAR); (l) TWI (SOB); (m) SPI (ASTER); (n) SPI (SRTM); (o) SPI

(ALOS PALSAR); (p) SPI (SOB).
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Appendix C

                     

 

   

 
                             

                                   
               

  

Figure A3. Landslide Causal Factors: (a) Rainfall; (b) Distance from the Road Networks; (c) Distance

from the Drainage Networks; (d) Distance from the Fault Lines; (e) NDVI; (f) Geology; (g) Land Use /

Land Cover; (h) Land Use/ Land Cover Change.

Appendix D

Table A1. Spatial relationship between Causal Factors and Landslides.ASTER DEM; B= SRTM DEM;

C= ALOS PALSAR DEM D= SOB DEM.

Causal Factors Classes

Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi

MinRF MaxRF
(MaxRF -
MinRF)

PR

Aspect
(ASTER)

Flat 0.00 0.00 0.00 0.00

0.03 0.17 0.14 1.00

North 16.7 4.17 0.25 0.03

Northeast 11.5 11.46 1.00 0.11

East 11.3 17.71 1.57 0.17

Southeast 10.2 13.54 1.33 0.14

South 10.4 13.02 1.25 0.13

Southwest 13.1 18.23 1.39 0.15

West 12.1 7.81 0.65 0.07

Northwest 10.1 9.90 0.98 0.11

North 4.6 4.17 0.91 0.10
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Table A1. Cont.

Causal Factors Classes

Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi

MinRF MaxRF
(MaxRF -
MinRF)

PR

Aspect
(SRTM)

Flat 0.00 0.00 0.00 0.00

0.03 0.16 0.13 1.00

North 17.40 4.69 0.27 0.03

Northeast 10.99 10.42 0.95 0.10

East 11.19 16.67 1.49 0.16

Southeast 10.31 10.94 1.06 0.11

South 10.45 13.02 1.25 0.13

Southwest 13.45 20.31 1.51 0.16

West 12.31 11.98 0.97 0.10

Northwest 9.65 7.81 0.81 0.09

North 4.26 4.17 0.98 0.11

Aspect
(ALOS PALSAR)

Flat 0.00 0.00 0.00 0.00

0.03 0.17 0.14 1.00

North 17.81 4.69 0.26 0.03

Northeast 10.98 10.42 0.95 0.10

East 10.71 16.67 1.56 0.17

Southeast 10.71 10.94 1.02 0.11

South 10.35 13.02 1.26 0.13

Southwest 13.39 20.31 1.52 0.16

West 11.84 11.98 1.01 0.11

Northwest 9.92 7.81 0.79 0.08

North 4.29 4.17 0.97 0.10

Aspect
(SOB)

Flat 22.99 13.76 0.60 0.05

0.03 0.40 0.37 2.37

North 8.59 3.17 0.37 0.03

Northeast 8.73 5.29 0.61 0.05

East 7.25 3.17 0.44 0.04

Southeast 6.14 29.10 4.74 0.40

South 7.73 6.35 0.82 0.07

Southwest 12.35 11.11 0.90 0.08

West 12.03 11.11 0.92 0.08

Northwest 8.10 10.58 1.31 0.11

North 6.08 6.35 1.04 0.09

Elevation (m)
(ASTER)

<47 43.64 22.92 0.53 0.11

0.00 0.50 0.50 3.57

47–89 33.46 40.10 1.20 0.26

89–156 14.33 33.33 2.33 0.50

156–264 6.52 3.65 0.56 0.12

264–577 2.06 0.00 0.00 0.00

Elevation (m)
(SRTM)

<60 52.93 26.56 0.50 0.11

0.00 0.41 0.41 3.05

60–108 30.88 53.65 1.74 0.38

108–178 9.16 17.19 1.88 0.41

178–282 5.29 2.60 0.49 0.11

282–577 1.75 0.00 0.00 0.00

Elevation
(m)

(ALOS PALSAR)

<5 51.07 26.04 0.51 0.11

0.00 0.44 0.44 3.15

5–54 32.46 52.08 1.60 0.35

54–126 9.52 19.27 2.03 0.44

126–229 5.22 2.60 0.50 0.11

229–526 1.74 0.00 0.00 0.00
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Table A1. Cont.

Causal Factors Classes

Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi

MinRF MaxRF
(MaxRF -
MinRF)

PR

Elevation (m)
(SOB)

<56 52.90 32.11 0.61 0.14

0.05 0.43 0.38 2.41

56–111 24.38 45.79 1.88 0.43

111–174 13.96 20.00 1.43 0.33

174–248 4.91 1.05 0.21 0.05

248–498 3.86 1.05 0.27 0.06

Slope (º)
(ASTER)

<4 33.20 12.50 0.38 0.06

0.06 0.31 0.31 2.22

4–8 28.17 23.96 0.85 0.13

8–14 21.88 30.73 1.40 0.22

14–22 12.64 25.52 2.02 0.31

22–52 4.10 7.29 1.78 0.28

Slope (º)
(SRTM)

<3 32.81 8.85 0.27 0.04

0.04 0.33 0.28 2.12

3–8 30.18 26.56 0.88 0.15

8–14 21.92 37.50 1.71 0.28

14–22 11.59 22.92 1.98 0.33

22–61 3.51 4.17 1.19 0.20

Slope (º)
(ALOS PALSAR)

<4 32.64 5.73 0.18 0.03

0.03 0.34 0.31 2.25

4–9 28.63 27.60 0.96 0.16

9–15 22.79 36.46 1.60 0.26

15–23 12.29 25.52 2.08 0.34

23–65 3.65 4.69 1.28 0.21

Slope (º)
(SOB)

<2 60.16 48.68 1.50 0.45

0.07 0.35 0.28 1.79

2–4 22.75 28.04 0.81 0.16

4–8 11.49 20.63 1.23 0.24

8–14 4.50 1.59 1.80 0.35

14–46 1.10 1.06 0.35 0.07

TWI (ASTER)

<6 40.58 60.94 1.50 0.45

0.00 0.45 0.45 3.19

6–8 29.20 29.17 1.00 0.30

8–11 12.33 6.77 0.55 0.16

11–14 10.90 3.12 0.29 0.09

>14 6.98 0.00 0.00 0.00

TWI
(SRTM)

<6 45.22 71.35 1.58 0.54

0.00 0.54 0.54 4.03

6–8 26.17 23.96 0.92 0.31

8–11 10.29 3.65 0.35 0.12

11–14 12.04 1.04 0.09 0.03

>14 6.28 0.00 0.00 0.00

TWI
(ALOS PALSAR)

<6 44.46 76.04 1.71 0.60

0.00 0.60 0.60 4.30

6–9 29.03 18.23 0.63 0.22

9–12 9.11 3.65 0.40 0.14

12–15 15.41 2.08 0.14 0.05

>15 1.99 0.00 0.00 0.00

TWI
(SOB)

<8 24.42 29.63 1.21 0.29

0.04 0.29 0.25 1.61

8–11 32.60 36.51 1.12 0.27

11–14 22.74 20.11 0.88 0.21

14–17 17.03 13.23 0.78 0.19

17–32 3.21 0.53 0.16 0.04
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Table A1. Cont.

Causal Factors Classes

Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi

MinRF MaxRF
(MaxRF -
MinRF)

PR

SPI (ASTER)

<−3 37.02 38.54 1.04 0.24

0.06 0.30 0.24 1.67

−3–0 9.55 2.60 0.27 0.06

0–4 23.11 30.21 1.31 0.30

4–6 23.56 23.44 0.99 0.23

>6 6.77 5.21 0.77 0.18

SPI
(SRTM)

<−7 32.38 38.54 1.19 0.27

0.05 0.27 0.21 1.67

−7–−3 11.23 2.60 0.23 0.05

−3–−1 29.73 30.21 1.02 0.23

−1–2 20.94 23.44 1.12 0.25

>2 5.72 5.21 0.91 0.20

SPI
(ALOS PALSAR)

<−5 21.13 17.19 0.81 0.27

0.05 0.27 0.21 1.55

−5–−1 21.11 15.63 0.74 0.05

−1–3 25.19 26.04 1.03 0.23

3–5 25.87 34.90 1.35 0.25

>5 6.70 6.25 0.93 0.20

SPI (SOB)

<−6 4.37 3.17 0.73 0.16

0.14 0.30 0.16 1.00

−6–−2 9.28 6.88 0.74 0.16

−2–1 27.88 18.52 0.66 0.14

1–3.1 33.70 37.04 1.10 0.24

>3.1 24.77 34.39 1.39 0.30

Plan curvature
(ASTER)

Convex 37.16 38.54 1.04 0.43

0.05 0.52 0.47 3.29Flat 15.76 2.08 0.13 0.05

Concave 47.09 59.37 1.26 0.52

Plan curvature
(SRTM)

Convex 37.79 45.31 1.20 0.50

0.01 0.50 0.49 3.64Flat 15.81 0.52 0.03 0.01

Concave 46.41 54.17 1.17 0.49

Plan curvature
(ALOS PALSAR)

Convex 37.38 50.00 1.34 0.54

0.00 0.60 0.60 4.30Flat 17.39 0.52 0.03 0.01

Concave 45.22 49.48 1.09 0.44

Plan curvature
(SOB)

Concave 33.42 41.05 1.23 0.43

0.20 0.43
0.23

1.44Flat 25.42 14.74 0.58 0.20

Complex 41.15 44.21 1.07 0.37

Profile curvature
(ASTER)

Convex 35.56 50.00 1.41 0.57

0.05 0.52 0.46 3.28Flat 12.81 1.56 0.12 0.05

Concave 51.63 48.44 0.94 0.38

Profile curvature
(SRTM)

Convex 36.20 54.69 1.51 0.62

0.00
0.62 0.62 4.68Flat 13.89 0.00 0.00 0.00

Concave 49.91 45.31 0.91 0.38

Profile curvature
(ALOS PALSAR)

Convex 36.80 54.69 1.49 0.61

0.00 0.61 0.61 4.43Flat 14.60 0.00 0.00 0.00

Concave 48.60 45.31 0.93 0.39

108



Remote Sens. 2020, 12, 2718

Table A1. Cont.

Causal Factors Classes

Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi

MinRF MaxRF
(MaxRF -
MinRF)

PR

Profile
curvature(SOB)

Convex 35.78 36.84 1.03 0.61

0.00 0.61 0.61 3.92Flat 23.17 12.11 0.52 0.00

Concave 41.05 51.05 1.24 0.39

Distance from the
drainage

Networks (m)

<1427 22.58 42.33 1.87 0.36
0.09

(A)

0.36

(A)

0.27

(A)

1.91

(A)

1427–2853 25.63 22.75 0.89 0.17
0.09

(B)

0.36

(B)

0.27

(B)

2.02

(B)

2853–4280 25.04 15.87 0.63 0.12
0.09

(C)

0.36

(C)

0.27

(C)

1.94

(C)

4280–5885 19.48 8.99 0.46 0.09 0.09

(D)

0.36

(D)

0.27

(D)

1.72

(D)>5885 7.26 10.05 1.38 0.26

Distance from the
fault lines (m)

<2358 24.62 30.16 1.23 0.30
0.00

(A)

0.33

(A)

0.33

(A)

2.33

(A)

2358–4715 26.28 35.45 1.35 0.33
0.00

(B)

0.33

(B)

0.33

(B)

2.46

(B)

4715–7191 23.73 27.51 1.16 0.28
0.00

(C)

0.33

(C)

0.33

(C)

2.37

(C)

7191–10197 18.72 6.88 0.37 0.09 0.00

(D)

0.33

(D)

0.33

(D)

2.09

(D)>10917 6.65 0.00 0.00 0.00

Rainfall (mm)

<2446 28.68 7.94 0.28 0.05
0.05

(A)

0.36

(A)

0.31

(A)

2.16

(A)

2446–2525 24.82 46.56 1.88 0.36
0.05

(B)

0.36

(B)

0.31

(B)

2.29

(B)

2525–2606 21.43 23.81 1.11 0.21
0.05

(C)

0.36

(C)

0.31

(C)

2.20

(C)

2606–2707 9.54 14.29 1.50 0.29 0.05

(D)

0.36

(D)

0.31

(D)

1.94

(D)2707–2864 15.53 7.41 0.48 0.09

Distance from the
road networks (m)

<1165 33.23 89.42 2.69 0.88
0.00

(A)

0.88

(A)

0.88

(A)

6.26

(A)

1165–2854 32.02 8.99 0.28 0.09
0.00

(B)

0.88

(B)

0.88

(B)

6.61

(B)

2854–4542 21.43 1.59 0.07 0.02
0.00

(C)

0.88

(C)

0.88

(C)

6.38

(C)

4542–6552 8.54 0.00 0.00 0.00 0.00

(D)

0.88

(D)

0.88

(D)

5.64

(D)6552–10250 4.78 0.00 0.00 0.00

NDVI

<0.1 0.06 0.00 0.00 0.00
0.02

(A)

0.36

(A)

0.34

(A)

2.41

(A)

0.1–0.2 73.55 70.26 0.96 0.10
0.02

(B)

0.36

(B)

0.34

(B)

2.54

(B)

0.2–0.3 18.40 0.00 0.00 0.00
0.02

(C)

0.36

(C)

0.34

(C)

2.45

(C)

0.3–0.4 5.37 14.87 2.77 0.29 0.02

(D)

0.36

(D)

0.34

(D)

2.17

(D)0.4–0.5 2.62 14.87 5.67 0.60
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Table A1. Cont.

Causal Factors Classes

Area
(%),
Aij

Atotal

Landslides
(%),
Nij

Ntotal

FR,
Nij/Ntotal
Aij/Atotal

RF,
FRij∑

FRi

MinRF MaxRF
(MaxRF -
MinRF)

PR

Land use/ land
cover

Vegetation 73.55 70.26 0.96 0.10
0.00

(A)

0.60

(A)

0.60

(A)

4.27

(A)

Water
bodies

18.40 0.00 0.00 0.00
0.00

(B)

0.60

(B)

0.60

(B)

4.52

(B)

Bare land 5.37 14.87 2.77 0.29
0.00

(C)

0.60

(C)

0.60

(C)

4.36

(C)

Built up 2.62 14.87 5.67 0.60
0.00

(D)

0.60

(D)

0.60

(D)

3.85

(D)

Land use /land
cover change

Water-vegetation5.31 2.05 0.39 0.01
0.00

(A)

0.23

(A)

0.23

(A)

1.60

(A)

Water-bare
Land

0.70 0.51 0.73 0.02
0.00

(B)

0.23

(B)

0.23

(B)

1.69

(B)

Water-built
up

0.25 0.51 2.02 0.05
0.00

(C)

0.23

(C)

0.23

(C)

1.63

(C)

Vegetation-bare
land

3.54 12.82 3.62 0.09

0.00

(D)

0.23

(D)

0.23

(D)

1.44

(D)

Vegetation-built
up

1.74 9.23 5.31 0.14

Built up-
vegetation

0.81 1.54 1.91 0.05

Built
up-bare

land
0.23 0.51 2.20 0.06

Bare
land-vegetation

2.09 7.18 8.65 0.23

Bare land-
built up

0.45 3.59 3.44 0.09

No change 84.88 62.06 0.73 0.02

Geology

Dihing and
Dupi Tila
formation

4.65 19.07 4.10 0.40
0.00

(A)

0.40

(A)

0.40

(A)

2.83

(A)

Boka Bil
formation

28.92 30.41 1.05 0.10
0.00

(B)

0.40

(B)

0.40

(B)

3.00

(B)

Bhuban
formation

8.97 16.49 1.84 0.18
0.00

(C)

0.40

(C)

0.40

(C)

2.89

(C)

Tipam
sandstone

12.41 27.84 2.24 0.22

0.00

(D)

0.40

(D)

0.40

(D)

2.56

(D)
Valley

alluvium
and

colluvium

0.46 0.00 0.00 0.00

Dupi tile
formation

14.73 3.61 0.25 0.02

Water
bodies

26.46 0.00 0.00 0.00

Girujan
clay

3.41 2.58 0.76 0.07
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Appendix E

Table A2. Coefficients of significant causal factors of DEM based: LR_ASTER_DEM; LR_SRTM_DEM;

LR_ALOS_DEM and LR_SOB_DEM and all factors based: LR_ASTER; LR_SRTM; LR_ALOS and

LR_SOB models.

Factors Used DEM Causal Factors ß Standard Error Wald Sig Exp(ß)

DEM based

ASTER

Elevation 0.06 0.01 29.72 0.00 1.06

Slope 0.26 0.03 78.02 0.00 1.30

SPI 0.08 0.04 5.28 0.02 1.09

Constant −6.99 1.06 43.10 0.00 0.00

SRTM

Slope 0.14 0.02 44.32 0.00 1.15

Elevation 0.04 0.01 15.93 0.00 1.04

TWI 0.04 0.01 12.09 0.00 1.04

Constant −4.70 0.50 86.89 0.00 0.01

ALOS PALSAR

Aspect 0.09 0.05 3.818 0.04 1.09

TWI 0.02 0.01 5.94 0.02 1.02

Slope 0.05 0.02 23.18 0.00 1.05

Elevation 0.05 0.01 18.17 0.00 1.05

Plan 0.05 0.03 3.33 0.07 1.05

Constant −6.77 1.40 23.35 0.00 0.00

SOB

Elevation 0.04 0.01 26.72 0.00 1.04

Aspect 0.05 0.01 23.21 0.00 1.05

Constant −1.68 0.25 47.05 0.00 0.19

All factors

ASTER

Elevation 0.08 0.02 26.61 0.00 1.087

Slope 0.31 0.04 58.81 0.00 1.37

Change 1 0.18 0.05 15.72 0.00 1.20

Drainage 2 0.07 0.02 11.96 0.00 1.07

Rainfall −0.04 0.02 4.24 0.04 0.96

Road 3 0.04 0.01 37.47 0.00 1.04

Constant −9.58 1.14 71.27 0.00 0.00

SRTM

Slope 0.16 0.03 42.52 0.00 1.175

Elevation 040 0.01 8.17 0.00 1.041

SPI 0.24 0.09 7.34 0.01 1.266

Land 4 0.08 0.02 20.74 0.000 1.080

Drainage 2 0.06 0.02 11.69 0.001 1.063

Rainfall −0.04 0.02 4.94 0.026 0.961

Road 3 0.03 0.01 27.71 0.000 1.025

Fault 5 0.08 0.03 9.82 0.002 1.082

Constant −14.59 2.58 31.91 0.000 0.000

ALOS PALSAR

Aspect 0.12 0.051 5.464 0.02 1.126

Slope 0.13 0.02 42.01 0.00 1.14

Elevation 0.06 0.01 16.97 0.00 1.06

Change 1 0.14 0.04 11.65 0.00 1.15

Drainage 2 0.06 0.02 13.48 0.00 1.06

Road 3 0.03 0.01 32.67 0.00 1.02

Constant −8.36 1.00 69.71 0.00 0.00

SOB

Aspect 0.05 0.01 12.13 0.00 1.05

Land 4 0.05 0.01 16.62 0.00 1.05

Fault 5 0.07 0.02 14.15 0.00 1.07

Road 3 0.03 0.04 80.38 0.00 1.04

Constant −5.05 0.64 61.70 0.00 0.01

1 = Land use/land cover change; 2 = distance from the drainage networks; 3 = distance from the road networks;
4 = land use/land cover; 5 = distance from the fault lines.

111



Remote Sens. 2020, 12, 2718

References

1. Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.P. Optimizing landslide

susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression

models. Geomorphology 2018, 301, 10–20. [CrossRef]

2. Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory

maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [CrossRef]

3. Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. on behalf of the JTC-1 Joint Technical

Committee on Landslides and Engineered Slopes (2008) Guidelines for landslide susceptibility, hazard and

risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [CrossRef]

4. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility

mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [CrossRef]

5. Arora, M.K.; Das Gupta, A.S.; Gupta, R.P. An artificial neural network approach for landslide hazard zonation

in the Bhagirathi (Ganga) Valley, Himalayas. Int. J. Remote Sens. 2004, 25, 559–572. [CrossRef]

6. Althuwaynee, O.F.; Pradhan, B.; Park, H.J.; Lee, J.H. A novel ensemble bivariate statistical evidential belief

function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression

for landslide susceptibility mapping. Catena 2014, 114, 21–36. [CrossRef]

7. Rahman, M.S.; Ahmed, B.; Di, L. Landslide initiation and runout susceptibility modeling in the context of

hill cutting and rapid urbanization: A combined approach of weights of evidence and spatial multi-criteria.

J. Mt. Sci. 2017, 14, 1919–1937. [CrossRef]

8. Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic

model tree, random forest, and classification and regression tree models for spatial prediction of landslide

susceptibility. Catena 2017, 151, 147–160. [CrossRef]

9. Rahman, M.S.; Ahmed, B.; Huq, F.F.; Rahman, S.; Al-Hussaini, T. Landslide inventory in an urban setting in

the context of Chittagong Metropolitan Area, Bangladesh. In Proceedings of the 3rd International Conference

on Advances in Civil Engineering, Cox’s Bazar Bangladesh, 21–23 December 2016; pp. 170–178.

10. Hervás, J.; Günther, A.; Reichenbach, P.; Chacón, J.; Pasuto, A.; Malet, J.P.; Trigila, A.; Hobbs, P.; Maquaire, O.;

Tagliavini, F.; et al. Recommendations on a common approach for mapping areas at risk of landslides in

Europe. Guidel. Mapp. Areas Risk Landslides Eur. JRC Rep. EUR 2007, 23093, 45–49.

11. Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng.

Geol. Environ. 1999, 58, 21–44. [CrossRef]

12. Komac, M. A landslide susceptibility model using the analytical hierarchy process method and multivariate

statistics in perialpine Slovenia. Geomorphology 2006, 74, 17–28. [CrossRef]

13. Amirahmadi, A.; Pourhashemi, S.; Karami, M.; Akbari, E. Modeling of landslide volume estimation.

Open Geosci. 2016, 8, 360–370. [CrossRef]

14. Yalcin, A. A geotechnical study on the landslides in the Trabzon Province, NE, Turkey. Appl. Clay Sci. 2011,

52, 11–19. [CrossRef]

15. Vakhshoori, V.; Zare, M. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic,

and frequency ratio methods. Geomat. Nat. Hazards Risk 2016, 7, 1731–1752. [CrossRef]

16. Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional

probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci.

2010, 61, 821–836. [CrossRef]

17. Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine

learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ.

Model. Softw. 2016, 84, 240–250. [CrossRef]

18. Ferentinou, M.; Chalkias, C. Mapping mass movement susceptibility across Greece with GIS, ANN and

statistical methods. In Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013; pp. 321–327.

19. Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.; Al-Katheeri, M.M. Landslide susceptibility mapping using

random forest, boosted regression tree, classification and regression tree, and general linear models and

comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13,

839–856. [CrossRef]

20. Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide

susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [CrossRef]

112



Remote Sens. 2020, 12, 2718

21. Erener, A.; Düzgün, H.S. A regional scale quantitative risk assessment for landslides: Case of Kumluca

watershed in Bartin, Turkey. Landslides 2013, 10, 55–73. [CrossRef]

22. San, B.T. An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping:

The Candir catchment area (western Antalya, Turkey). Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 399–412.

[CrossRef]

23. Wang, Q.; Guo, Y.; Li, W.; He, J.; Wu, Z. Predictive modeling of landslide hazards in Wen County, northwestern

China based on information value, weights-of-evidence, and certainty factor. Geomat. Nat. Hazards Risk 2019,

10, 820–835. [CrossRef]

24. Dietrich, W.E.; Bellugi, D.; De Asua, R.R. Validation of the shallow landslide model, SHALSTAB, for forest

management. Water Sci. Appl. 2001, 2, 195–227.

25. Claessens, L.; Heuvelink, G.B.M.; Schoorl, J.M.; Veldkamp, A. DEM resolution effects on shallow landslide

hazard and soil redistribution modelling. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2005, 30,

461–477. [CrossRef]

26. Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide

hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks,

kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378.

27. Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide susceptibility estimation by random forests

technique: Sensitivity and scaling issues. Nat. Hazards Earth Syst. Sci. 2013, 13, 2815. [CrossRef]

28. Yuan, R.M.; Deng, Q.H.; Cunningham, D.; Xu, C.; Xu, X.W.; Chang, C.P. Density distribution of landslides

triggered by the 2008 Wenchuan earthquake and their relationships to peak ground acceleration. Bull. Seismol.

Soc. Am. 2013, 103, 2344–2355. [CrossRef]

29. Chang, K.T.; Merghadi, A.; Yunus, A.P.; Pham, B.T.; Dou, J. Evaluating scale effects of topographic variables

in landslide susceptibility models using GIS-based machine learning techniques. Sci. Rep. 2019, 9, 1–21.

[CrossRef]

30. Li, Y.; Liu, X.; Han, Z.; Dou, J. Spatial Proximity-Based Geographically Weighted Regression Model for

Landslide Susceptibility Assessment: A Case Study of Qingchuan Area, China. Appl. Sci. 2020, 10, 1107.

[CrossRef]

31. Ahmed, B. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong

Metropolitan Area, Bangladesh. Landslides 2015, 12, 1077–1095. [CrossRef]

32. Ahmed, B.; Dewan, A. Application of bivariate and multivariate statistical techniques in landslide

susceptibility modeling in Chittagong City Corporation, Bangladesh. Remote Sens. 2017, 9, 304. [CrossRef]

33. Rabby, Y.W.; Li, Y. An integrated approach to map landslides in Chittagong Hilly Areas, Bangladesh, using

Google Earth and field mapping. Landslides 2019, 16, 633–645. [CrossRef]

34. Rabby, Y.W.; Li, Y. Landslide Inventory (2001–2017) of Chittagong Hilly Areas, Bangladesh. Data 2020, 5, 4.

[CrossRef]

35. Sifa, S.F.; Mahmud, T.; Tarin, M.A.; Haque, D.M.E. Event-based landslide susceptibility mapping using

weights of evidence (WoE) and modified frequency ratio (MFR) model: A case study of Rangamati district in

Bangladesh. Geol. Ecol. Landsc. 2019, 1–14. [CrossRef]

36. Ishtiaque, A.; Masrur, A.; Rabby, Y.W.; Jerin, T.; Dewan, A. Remote Sensing-Based Research for Monitoring

Progress towards SDG 15 in Bangladesh: A Review. Remote Sens. 2020, 12, 691. [CrossRef]

37. Hong, H.; Pradhan, B.; Sameen, M.I.; Chen, W.; Xu, C. Spatial prediction of rotational landslide using

geographically weighted regression, logistic regression, and support vector machine models in Xing Guo

area (China). Geomat. Nat. Hazards Risk 2017, 8, 1997–2022. [CrossRef]

38. UNPO. 2017, Chittagong Hill Tracts: Torrential Rainstorms and Wide-Scale Landslides Leave Thousands

Homeless. Available online: https://unpo.org/article/20199?id=20199 (accessed on 13 July 2020).

39. Bangladesh Bureau of Statistics (BBS). Population Census 2011; Rangamati: Ministry of Planning: Dhaka,

Bangladesh, 2011.

40. Islam, M.A.; Islam, M.S.; Islam, T. Landslides in Chittagong hill tracts and possible measures. In Proceedings

of the International Conference on Disaster Risk Mitigation, Dhaka, Bangladesh, 23 September 2017.

41. Samodra, G.; Chen, G.; Sartohadi, J.; Kasama, K. Generating landslide inventory by participatory mapping:

An example in Purwosari Area, Yogyakarta, Java. Geomorphology 2018, 306, 306–313. [CrossRef]

42. Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps.

Geomorphology 2008, 94, 268–289. [CrossRef]

113



Remote Sens. 2020, 12, 2718

43. Kanwal, S.; Atif, S.; Shafiq, M. GIS based landslide susceptibility mapping of northern areas of Pakistan, a

case study of Shigar and Shyok Basins. Geomat. Nat. Hazards Risk 2017, 8, 348–366. [CrossRef]

44. Abedini, M.; Tulabi, S. Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index:

A comparative study of Nojian watershed in Lorestan province, Iran. Environ. Earth Sci. 2018, 77, 405.

[CrossRef]

45. Zhang, S.; Li, R.; Wang, F.; Iio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi

earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [CrossRef]

46. Roy, J.; Saha, S. Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling

District, West Bengal, India. Geoenviron. Disasters 2019, 6, 11. [CrossRef]

47. Kafy, A.A.; Rahman, M.S.; Ferdous, L. Exploring the association of land cover change and landslides in the

Chittagong hill tracts (CHT): A remote sensing perspective. In Proceedings of the International Conference

on Disaster Risk Management, Dhaka, Bangladesh, 23 September 2017.

48. Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T.

Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide

susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [CrossRef]

[PubMed]

49. Regmi, N.R.; Giardino, J.R.; McDonald, E.V.; Vitek, J.D. A comparison of logistic regression-based models of

susceptibility to landslides in western Colorado, USA. Landslides 2014, 11, 247–262. [CrossRef]

50. Althuwaynee, O.F.; Pradhan, B.; Lee, S. A novel integrated model for assessing landslide susceptibility

mapping using CHAID and AHP pair-wise comparison. Int. J. Remote Sens. 2016, 37, 1190–1209. [CrossRef]

51. Lee, S.; Talib, J.A. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47,

982–990. [CrossRef]

52. Stanley, T.A.; Kirschbaum, D.B.; Sobieszczyk, S.; Jasinski, M.F.; Borak, J.S.; Slaughter, S.L. Building a landslide

hazard indicator with machine learning and land surface models. Environ. Model. Softw. 2020, 129, 104692.

[CrossRef]

53. Rasyid, A.R.; Bhandary, N.P.; Yatabe, R. Performance of frequency ratio and logistic regression model in

creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron. Disasters

2016, 3, 19. [CrossRef]

54. Nefeslioglu, H.A.; Gokceoglu, C.; Sonmez, H. An assessment on the use of logistic regression and artificial

neural networks with different sampling strategies for the preparation of landslide susceptibility maps.

Eng. Geol. 2008, 97, 171–191. [CrossRef]

55. Schicker, R.D.; Moon, V. Comparison of bivariate and multivariate statistical approaches in landslide

susceptibility mapping at a regional scale. Geomorphology 2012, 161, 40–57. [CrossRef]

56. Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using

logistic regression. Landslides 2015, 12, 419–436. [CrossRef]

57. Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural

networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35,

1125–1138. [CrossRef]

58. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

59. Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance evaluation of the GIS-based data mining techniques

of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling.

Sci. Total Environ. 2018, 644, 1006–1018. [CrossRef] [PubMed]

60. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY,

USA, 2013; Volume 112, p. 18.

61. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.

62. Midi, H.; Sarkar, S.K.; Rana, S. Collinearity diagnostics of binary logistic regression model. J. Interdiscip. Math.

2010, 13, 253–267. [CrossRef]

63. O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41,

673–690. [CrossRef]

64. Shirzadi, A.; Shahabi, H.; Chapi, K.; Bui, D.T.; Pham, B.T.; Shahedi, K.; Ahmad, B.B. A comparative study

between popular statistical and machine learning methods for simulating volume of landslides. Catena 2017,

157, 213–226. [CrossRef]

114



Remote Sens. 2020, 12, 2718

65. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance.

J. Am. Stat. Assoc. 1937, 32, 675–701. [CrossRef]

66. Wilcoxon, F. Individual comparisons of grouped data by ranking methods. J. Econ. Entomol. 1946, 39,

269–270. [CrossRef]

67. Davis, J.C.; Sampson, R.J. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 1986; Volume

646.

68. Wang, G.; Lei, X.; Chen, W.; Shahabi, H.; Shirzadi, A. Hybrid computational intelligence methods for

landslide susceptibility mapping. Symmetry 2020, 12, 325. [CrossRef]

69. Polykretis, C.; Chalkias, C. Comparison and evaluation of landslide susceptibility maps obtained from

weight of evidence, logistic regression, and artificial neural network models. Nat. Hazards 2018, 93, 249–274.

[CrossRef]

70. Rufat, S.; Tate, E.; Emrich, C.T.; Antolini, F. How valid are social vulnerability models? Ann. Am. Assoc.

Geogr. 2019, 109, 1131–1153. [CrossRef]

71. ASF. ALOS PALSAR—Radiometric Terrain Correction [online]. 2019. Available online: https://asf.alaska.

edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/ (accessed on 13

July 2020).

72. Elkhrachy, I. Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of

Najran city, Saudi Arabia. Ain Shams Eng. J. 2018, 9, 1807–1817. [CrossRef]

73. Racoviteanu, A.E.; Manley, W.F.; Arnaud, Y.; Williams, M.W. Evaluating digital elevation models for

glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Glob. Planet. Chang. 2007,

59, 110–125. [CrossRef]

74. SOB. Survey of Bangladesh [Online]. 2020. Available online: http://www.sob.gov.bd/site/page/76293334-

a621--4508-b49f-a1c26af7ea3a/Photogrammetric (accessed on 13 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

115





remote sensing  

Article

Landslide Characterization Applying Sentinel-1
Images and InSAR Technique: The Muyubao
Landslide in the Three Gorges Reservoir Area, China

Chao Zhou 1,2 , Ying Cao 3, Kunlong Yin 3,*, Yang Wang 3, Xuguo Shi 1 , Filippo Catani 4

and Bayes Ahmed 5

1 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China;

zhouchao@cug.edu.cn (C.Z.); shixg@cug.edu.cn (X.S.)
2 Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education,

Wuhan 430074, China
3 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; caoying@cug.edu.cn (Y.C.);

wangyang330@cug.edu.cn (Y.W.)
4 Earth Science Department, School of Sciences, University of Florence, 50121 Florence, Italy;

filippo.catani@unifi.it
5 Institute for Risk and Disaster Reduction (IRDR), University College London (UCL), Gower Street, London

WC1E 6BT, UK; bayes.ahmed@ucl.ac.uk

* Correspondence: yinkl@cug.edu.cn

Received: 21 August 2020; Accepted: 13 October 2020; Published: 16 October 2020

Abstract: Landslides are a common natural hazard that causes casualties and unprecedented

economic losses every year, especially in vulnerable developing countries. Considering the high cost

of in-situ monitoring equipment and the sparse coverage of monitoring points, the Sentinel-1 images

and Interferometric Synthetic Aperture Radar (InSAR) technique were used to conduct landslide

monitoring and analysis. The Muyubao landslide in the Three Gorges Reservoir area in China was

taken as a case study. A total of 37 images from March 2016 to September 2017 were collected,

and the displacement time series were extracted using the Stanford Method for Persistent Scatterer

(StaMPS) small baselines subset method. The comparison to global positioning system monitoring

results indicated that the InSAR processing of the Muyubao landslide was accurate and reliable.

Combined with the field investigation, the deformation evolution and its response to triggering

factors were analyzed. During this monitoring period, the creeping process of the Muyubao landslide

showed obvious spatiotemporal deformation differences. The changes in the reservoir water level

were the trigger of the Muyubao landslide, and its deformation mainly occurred during the fluctuation

period and high-water level period of the reservoir.

Keywords: landslide deformation; InSAR; reservoir water level; Sentinel-1; Three Gorges Reservoir

area (China)

1. Introduction

Landslides are one of the most common types of natural hazards that cause serious economic

losses, casualties, and damages to buildings, critical infrastructures and industrial settlements [1].

The impact of landslides is particularly high in rural mountainous areas, where land management

is difficult to achieve, and risk mitigation is scarce due to the large distances, difficult logistics and

harsh climatic conditions. As an example, on 2 May 2014, a large-scale landslide occurred in the

Badakhshan Province in Northeastern Afghanistan due to continuous heavy rainfall. It resulted in

nearly 2700 deaths and more than 300 houses were buried [2]. Again, a giant landslide occurred in
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the Himachal Pradesh region of Northern India on 13 August 2017 that killed 47 people and nearly

a 300-m highway was completely destroyed.

Monitoring and early warning systems are effective methods to reduce the risk of landslides [3],

but the application of them on each single, potentially unstable slope is often impossible in mountain

areas, due to the high spatial frequency of affected slopes. In such cases, remote sensing may help to

reduce the cost and time for the application of mitigation measures, because it can provide a preliminary

low-cost assessment of the severity of the slope instability and allow for the prioritization of critical

cases. The use of remote-sensing data is one of the hotspots of landslide research at present. Among all

the physical manifestations of a mass movement, the surface deformation is the most intuitive and

comprehensive to measure and use for hazard assessment. It is a critical indicator for developing

landslide early warning systems. Therefore, the implementation of deformation monitoring is of great

significance for landslide prevention and mitigation [4,5]. The majority of fatal landslide events occur

in less developed countries, such as China, India, Nepal, Bangladesh, etc. [1]. Traditional deformation

monitoring equipment, such as an inclinometer, global positioning system (GPS), etc., are well-suitable,

but their high costs limit their applications in underdeveloped areas.

Synthetic Aperture Radar Interferometry (InSAR) is an effective surface deformation monitoring

method with a wide range and high accuracy. Commercial radar imaging can be expensive and mainly

used for landslide hazard prevention in developed areas, including landslide identification [6,7],

monitoring and early warning [8–10] and risk assessment [11]. With the free distribution of Sentinel-1

satellite images, InSAR has become a low-cost landslide monitoring technique. Small Baselines Subset

(SBAS) InSAR is a time series analysis method of InSAR and can achieve effective monitoring in rural

and urban areas. It has been gradually applied in landslide-prone areas, which provides new technical

means for landslide monitoring and early warning [12–16].

The Three Gorges Reservoir area (TGRA) has been impounded since 2003. The periodical

scheduling of the reservoir water level from 145 m to 175 m has been carried out since 2009. Affected by

heavy rainfall and reservoir water level scheduling, a large number of new landslides and reactivation

of old landslides have occurred [17]. Until now, more than 500 landslides have undergone varying

degrees of deformation. However, due to the high cost of dedicated landslide monitoring, the latter

was carried out only in 254 landslides in the TGRA [18], which cannot meet the needs of disaster

prevention and mitigation.

The Muyubao landslide located in the TGRA was taken as a case study in this paper. Based on the

Sentinel-1 radar images, the SBAS InSAR analysis method was applied to extract the information of

landslide movement. The characterization of its temporal and spatial deformation was conducted as

well. Moreover, the evolution mechanism of the Muyubao landslide was analyzed with the combined

consideration of its engineering geological conditions and triggering factors, including rainfall and

fluctuation of reservoir water level. This study aims to explore the feasibility and effectiveness of

Sentinel-1 images and InSAR technique in landslide monitoring and analysis in the TGRA as a case

example from an underdeveloped landslide-prone region.

2. Case Study: Muyubao Landslide

2.1. Geological Conditions

The Muyubao landslide occurred in Shazhenxi Town, Zigui County of Hubei Province on the

bank of the Yangtze River and 56 km away from the Three Gorges Dam. The Muyubao landslide is

delimited laterally by N-S-oriented trenches, while the upper portion is straight and smooth. It is of

a chair-like shape, with smooth topography in the middle and lower parts and steeper terrain in the

upper part (Figure 1). The elevation of the Muyubao landslide ranges from 120 m.a.s.l to 425 m.a.s.l,

with an average slope angle of about 20◦. It has an average thickness of 50 m and an estimated

volume of 9 Hm3. The entire landslide involves an area of 180 × 104 m2, with a maximum longitudinal

dimension of 1200 m and an average width of 1500 m (Figure 2).
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Figure 1. (a) The location of the Three Gorges Reservoir area (TGRA), (b) location of the Muyubao

landslide, and (c) geomorphological delimitation of the Muyubao landslide.

                     

 

 
                                 

                 

 
               Figure 2. Topographical map of the Muyubao landslide.
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The Muyubao landslide developed within a flysch formation dipping in the same direction and

roughly parallel to the slope. The stratigraphy is made by the typical succession of quartz sandstone

and sand-mudstone layers of the Jurassic Xiangxi formation (Figure 3). The sliding body is mainly

composed of two parts. The surface layer is made up by loose deposits composed of alluvial sub-clay,

gravel layers with clay, colluvial and eluvial sub-clay and collapsed block stones. The lower part of the

sliding body is composed of highly disrupted layered Quartz sandstone, which is relatively intact in

the western upper portion and weathered and fractured in the upper and lower portions.
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Figure 3. Schematic geological cross-section I-I′ of the Muyubao landslide. Please see the location of

I-I′ in Figure 2.

The upper portion of the sliding body has a linear detachment surface in the profile map,

with an inclination of about 25◦ and a thickness of 60~90 m. The front part is an uplift platform formed

by shear sliding, with the thickness of 80~120 m, and the inclination angle of the rock layer is about

27◦ (Figure 3). The thickness values here refer to the central part of the landslide, as illustrated in

the profile of Figure 3, which may decrease towards the boundaries. The landslide is still active, as it

has experienced several reactivation events in the recent past [19,20]. This makes it a priority case for

monitoring, since, in case the movement would develop towards sudden failure, it will endanger the

lives and property of 140 households (500 people) in the landslide area and threaten the safety of the

road and shipping of the Yangtze River.

2.2. Field Investigation of Landslide Deformation

After the reservoir impounding to 175 m in the TGRA in September 2009, the deformation of the

Muyubao landslide began to accelerate. Macro-deformations appeared in the landslide mass. In 2011,

the road surface across both the boundaries of the landslide was damaged, and the roadbed on the west

boundary was broken in widths of 20 cm (Figure 4a). The cracks in the wall of the village buildings on

the eastern side of the landslide continued to be stretched (Figure 4b). In the investigation of 2014,

a local collapse was found on the west side of the landslide (Figure 4c). The road across the boundaries

was severely damaged, showing tensile cracks (Figure 4d). There was also a collapse under the road in

the middle of the west side of Muyubao landslide, with a length of 50~70 m, a width of 10~15 m and

a thickness of 5~10 m (Figure 4e). A tensile trench was formed by a partial collapse in the east side of

the landslide, which is about 60 m long and 15 m wide (Figure 4f).
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Figure 4. Deformations on the Muyubao landslide: (a) road damage on the west boundary,

(b) deformation of buildings, (c) a local collapse on the west side, (d) road damage on the east

side, (e) a collapse in the middle of the west side and (f) a tensile trench on the east side.

3. Methods

3.1. Small Baselines Subset InSAR Analysis

With the development of the InSAR technique and the increasing of synthetic aperture radar

(SAR) images, Ferretti et al. [21] proposed the method called Persistent Scatterer InSAR (PSInSAR)

based on the differential InSAR technique. The main idea of the PSInSAR is to use multiple SAR

images covering the same area to analyze the stability of the amplitude and phase and, then, to identify

the pixels that are less-affected by the spatiotemporal decorrelation. To obtain accurate deformation

information, the components of the phase need to be jointly analyzed and modeled to remove errors.

In the PSInSAR method, a unique master image is selected from all images to generate interferograms.

The strategy will result in the presence of long-space baseline interference pairs. It produces a low
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density of the target reflectors in case of nonurban areas. Hence, in rural areas with few artificial

buildings, the permanent scattering pixels may be very sparse [22].

The small baseline subset method was initially proposed to overcome the problem of decorrelation

by making full use of the interferograms with both small temporal baselines and short perpendicular

baselines [23,24]. In rural areas, plenty of pixels have no dominated scattering characteristics in the

SAR image. The pixels showing a slow decorrelating filtered phase (SDFP) are widely distributed in

natural terrain and maintained good coherence during a short time interval. The Stanford Method for

Persistent Scatterer (StaMPS) was proposed in 2004 [25]. In the StaMPS SABS method, these kinds

of pixels are identified and analyzed to monitor surface displacement. The SDFP pixels are selected

through their phase characteristics. In order to reduce the calculation burden, an initial subset of

pixels containing almost all SDFP pixels are firstly selected through amplitude analysis. The amplitude

dispersion value is calculated as the indicator of phase stability. The wrapped phase is composed of

spatially correlated phase and spatially uncorrelated look angle error. The spatially correlated phase,

including ground deformation, elevation error and orbit error, is estimated by the bandpass filtering

in the frequency domain. The spatially uncorrelated look angle error mainly consists of the spatially

uncorrelated elevation error. It is estimated through its correlation with the perpendicular baseline.

The residual, obtained by removing these two terms from the wrapped phase, gives an estimation of

the decorrelation noise γx (Equation (1)), which indicates the stability of the pixel phase:

γx =
1

N

∣∣∣∣∣∣∣

N∑

1

exp {
√
−1(ψx,i − ψ̃x,i − ∆φ̂u

θ,x,i)}

∣∣∣∣∣∣∣
(1)

where N is the number of interferograms, ψx,i is the wrapped phase, φ̂u
θ,x,i

is the spatially uncorrelated

look angle error and ψ̃x,i is the spatially correlated term. The final SDFP pixels are selected through

the threshold analysis of γx. Then, these SDFP pixels can be decomposed with the three-dimensional

phase unwrapping method [26]. The unwrapped phase on a given pixel can be expressed as:

ψx,i = W
{
φD,x,i + φA,x,i + φO,x,i + φT,x,i + φN,x,i

}
(2)

where ψx,i is the unwrapped phase, and φD,x,i, φT,x,i, φA,x,i, φO,x,i and φN,x,i are the phase components

due, respectively, to ground deformation, topographic error, atmospheric disturbance, inaccurate orbit

information and noise. In the StaMPS SBAS analysis, a theoretical framework for three-dimensional

phase unwrapping was proposed. These different phase components were estimated through iterative

filtering with consideration of their characteristics in spatial-temporal domains. The deformation

phase can be obtained by removing the other components from the unwrapped phase. Afterwards,

a time series of deformation can be obtained from the phase using singular value decomposition.

3.2. Time Series InSAR Processing of Muyubao Landslide

Sentinel-1 is a two-satellite constellation with the prime objective of land. It is the first satellite

developed by the European Commission and the European Space Agency (ESA) for the Copernicus

Programme. This satellite was launched in April 2014. After half a year of trial operation, it began to be

gradually used after October 2014. One goal of the mission is to provide C-Band SAR data continuity

following the retirement of ERS-2 and the end of the Envisat mission. In this study, 37 images acquired

by Sentinel-1a, in the period from 10 March 2016 to 13 September 2017 (Figure 5), were collected

from the ESA [27]. We collected the precise orbit parameters of the Sentinel-1 in the ESA as well [28].

The angle of the orbit with the north is 12.16◦, and the average incidence angle of three sub-swaths are

34.01◦, 39.39◦ and 40.02◦, respectively.
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Figure 5. The time distribution of sentinel-1 images.

Interferograms are generated applying the two-track differential method [29]. The SRTM (Shuttle Radar

Topography Mission) DEM (digital elevation model) covering the study area is utilized to generate single-look

differential interferograms. Temporal and perpendicular thresholds are, respectively, set to 90 days and

1000 m for generating interferograms. Considering that these thresholds will generate many interferograms

and result in a heavy computational burden, each image was mostly combined to three subsequent images

for interferometric processing. Data processing was carried out in COMET-LiCSAR [30]. As a result,

97 interferograms were produced as the input for the SBAS analysis (Figure 6). The amplitude difference

dispersion was applied to selected coherent targets, and it was set as 0.6. Subsequently, the time series

displacement was obtained by applying the StaMPS SBAS method. Moreover, in order to reduce the effects

of residual atmospheric artefacts, the obtained time series displacement within the Muyubao landslide has

been referenced to a stable neighbor point (31◦1′52.62”N, 110◦29′57.48”E) [15,31].
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Figure 6. Baseline network of the interferograms.

The direction of displacement acquired by the SBAS method is the line-of-sight (LOS) of radar

satellite. Before applying the measurement to the landslide analysis, the LOS displacements should be

projected along real slope components to get actual vectors. Hilley et al. [32,33] proposed a widely used

projection method; the LOS displacement can be projected into the direction of the steepest descent

slope. In this case study, a field investigation showed that the slip direction was 16◦. Hence, the LOS

displacement was projected onto the downward direction of along the sliding direction.
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4. Results

4.1. InSAR Results of Muyubao Landslide

As stated in Section 3.2, the displacement time series of the Muyubao landslide was extracted by

applying the time series InSAR technique and projected onto the direction of the downward sliding

direction. Figure 7 shows the average deformation speed of the Muyubao landslide. The strong

deformation mainly occurred at the eastern upper portion of the landslide, with deformation rates up

to 100 mm/year. In the direction perpendicular to the sliding direction, the deformation of the eastern

side was slightly stronger than the western side of the Muyubao landslide.
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Figure 7. The spatial distribution of the Interferometric Synthetic Aperture Radar (InSAR) monitoring

points, with deformation speed and the spatial distribution of the feature points. Note: Global Positioning

System is abbreviated to GPS, and Persistent Scatterer InSAR is abbreviated to PSI.

Some points in different parts of the Muyubao landslide were selected to further analyze the

spatial deformation characteristics. The locations and cumulative displacement time series curves are

shown in Figures 7 and 8, respectively. It can be seen that the cumulative displacements of PSI-04 and

PSI-05 show the active part of the landslide (Figure 7). The cumulative displacement of these two

points from March 2016 to September 2017 exceeded 250 mm (Figure 8d,e). The deformations of the

monitoring points in the middle part were smaller, with the cumulative displacement about 150 mm

(Figure 8f,h). The deformation rates were the smallest (about 50 mm/y) at the western front part of the

landslide (Figures 7 and 8i–k). Compared to the linear monitoring curves at the upper portion of the

landslide, the monitoring curves near the lower portion showed slight step-like characteristics (PSI-01,

PSI-02, PSI-06, PSI-09 and PSI-10), which were directly affected by periodic rainfall and reservoir

scheduling [34,35]. In summary, the deformation of the Muyubao landslide seems to show obvious
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differences in space. The deformation on the eastern upper portion of the landslide was the strongest,

followed by the middle part, and the western part showed the smallest deformation.                     

 

 
                   

             

                             
                                       
                                 
                               

                                 
                             
                                 

                             
                           

                           
                               

                           
                                     

                             
                             

             

Figure 8. Time series displacement of InSAR and triggering factors.

4.2. The Deformation Analysis of Muyubao Landslide

The Three Gorges Reservoir oscillates regularly between 145 m and 175 m, with annual cycles

(Figure 9). It can be seen from Figure 9 that, from January to February 2017, the TGRA remained at

a normal water storage level of 175 m. Under the uplift pressure of the reservoir water, the Muyubao

landslide was in a state of continuous deformation, the southeast edge of which showed a larger

displacement rate (Figures 10f and 11f). From March to April 2017, with the slow decline of the reservoir

level, the landslide gradually stabilized as a whole, and the displacement rates of the monitoring

points were less than 10 mm/month (Figures 10g and 11g). From May to June 2017, the TGRA was

experiencing its rainy season, while the reservoir level began to decline rapidly. The displacement rates

of all monitoring points of the landslide increased gradually, some of which reached 30 mm/month

(Figure 11h). Due to the hysteresis characteristics of rainfall infiltration, the displacement rates of the

upper potion were greater than the middle part, which grew gradually with the increase of rainfall

infiltration capacity and infiltration depth (Figure 10h). The landslide showed slow deformation when
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the reservoir water kept at the level of 145 m from July to August 2017. The infiltration lag effect of the

previous rainfall, combined with the large continuous rainfall in the reservoir area, triggered the strong

deformation period of the year 2017. Some of the monitoring displacement rates reached 40 mm/month

(Figure 11c,i).

The tensile cracks at the upper portion of the landslide provides a passage for the infiltration of

continuous heavy rainfall. Therefore, the monitoring points of the eastern upper portion showed the

largest cumulative displacements and displacement rates, which gradually decreased towards the

front part (Figure 10i).

                     

 

                                 
                           

                     
       

 
                       

  

Figure 9. The operation curve of the Three Gorges Reservoir area (2010–2018).
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Figure 10. Deformation velocity of the Muyubao landslide (time-yymmdd), the subfigures of (a–i)

are refer to the different time range of InSAR monitoring.
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Figure 11. Deformation velocity value distribution of the Muyubao landslide (time-yymmdd), the subfigures

of (a–i) are refer to the different time range of InSAR monitoring.

5. Discussion

5.1. The Reliability Analysis of InSAR Monitoring in the Muyubao Landslide

Interferometry techniques have a huge potential to monitor landslides, as demonstrated by

worldwide examples [12,15,32]. The monitoring accuracy of InSAR is affected by various factors,

such as the atmosphere and terrain. Therefore, it is necessary to evaluate the reliability of the time

series displacement before it is applied for landslide analysis. In the InSAR monitoring of the Muyubao

landslide, the reliability analysis of the results can be carried out from two aspects.

(a) Comparison of InSAR monitoring results at different locations. The monitoring point PSI-12

outside the Muyubao landslide was selected for comparative analysis. According to the InSAR

monitoring results (Figure 12), the monitoring location of PSI-12 did not deform during the monitoring

period, which is consistent with the results of the field investigation. While the monitoring points

(PSI-01~PSI-11) within the landslide were deforming during the same period (Figure 8). By comparing

the InSAR results of the monitoring points within and outside the landslide, it demonstrates that the

InSAR monitoring in this study can identify the deformation and nondeformation zones.
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Figure 12. The InSAR monitoring results of PSI-12.

(b) Comparison of monitoring results with different techniques. GPS is a reliable monitoring

technique of ground deformation, which has been widely used in various fields [36,37]. In order to

verify the accuracy of InSAR monitoring, the comparison was carried out between the monitoring

results of GPS and PSI points at similar locations of the Muyubao landslide (the locations are shown

in Figure 7). Considering that the automatic GPS monitoring equipment was installed in June 2016,

the monitoring results from June 2016 to September 2017 were used for comparison. The results

of GPS-01-PSI-08 and GPS-02-PSI-07 are shown in Figures 13 and 14, respectively. The cumulative

displacement of InSAR and GPS at similar locations are highly consistent in magnitude. It indicates

that the InSAR monitoring of this study is reliable and can be utilized for landslide analysis.
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Figure 13. Results comparison of GPS-01 and PSI-08.
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          ‐     ‐  Figure 14. Results comparison of GPS-02 and PSI-07.

5.2. The Formation Mechanism of the Muyubao Landslide

Based on the analysis of geological conditions and monitoring data (Figure 8), the deformation

of the Muyubao landslide showed a large spatial difference. Large deformation mainly occurred in

the middle and upper portions, while the deformation of the uplift at the front part was smaller

(Figures 7 and 10). The profile with the largest deformation is shown in Figure 15. It can be seen that

the deformation of the entire section is relatively small in the period of July-September 2016. It became

larger in the period of January–March 2017. At the front edge of the profile near the Yangtze River,

the Muyubao landslide deformed slightly in both periods. A field investigation was conducted for

further analysis of the landslide deformation mechanism.

By analyzing the results of the field investigation, it can be seen that the deformation and failure

mode is controlled by the lithology condition and the structure of the slope. Under the long-term

gravitational process, the slope was creeping down along the weak mudstone layer. The front stress

accumulated gradually, which resulted in the bending and uplifting in the middle and front stratum

of the slope. Once the potential slip surface of the bending part connects, the accumulated energy

may suddenly release, which may cause collapse and high-speed sliding. In conclusion, the evolution

process can be divided into four stages: slipping stage, bending and uplifting stage, local shear stage

and completely connecting stage of the shearing surface (Figure 16a) [19].

The bending and uplifting in the front stratum limited the deformation of the front part,

which occurred when the slope was creeping down along the lines of weakness. Due to the topography

and geomorphology conditions, the uplift in the front increases the sliding resistance effect of the

landslide. When rainfall occurs, the gullies distributed on the surface of the landslide provides

favorable channels for the rapid discharge of surface water, thus reducing the threat of water seepage

to the landslide stability. Meanwhile, in the front part, the sliding surface is of a gentle slope, and the

rock mass is bent and dips inside, which forms a sliding resistance for the landslide as well. In short,

under natural conditions, the geological characteristics are beneficial to the overall stability of the

landslide. However, due to the combined influence of factors in the TGRA, the Muyubao landslide has

been undergoing a continuous creep deformation.
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Figure 15. Spatiotemporal characteristics of the deformation of the Muyubao landslide: (a) the velocity

map of Muyubao landslide, and (b) the velocity of geological cross-section I-I′.
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Figure 16. (a) Conceptual model of the landslide evolution process (revised from Deng et al. [19]),

and (b) a photo of the front part of the Muyubao landslide.
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5.3. The Relationship between Landslide and Influencing Factors

For the landslide in the TGRA, most of their movements were influenced by the fluctuation of

the reservoir water level [38]. Seen from the InSAR results of the Muyubao landslide (Figure 17,

March 2016–September 2017), the deformation mainly occurred during the fluctuation period and

high-water level period of the reservoir (>170 m). From March to June 2016, when the reservoir water

level dropped from 167 m to 145 m, the landslide deformed by about 70 mm. The relationship between

the stability of the Muyubao landslide and the reservoir water level during this monitoring period

was similar to that of many other reservoir landslides [15,39,40]. Such as the Lorenzo-1 and Rules

Viaduct landslides of the Rules Reservoir in Southern Spain [15], the InSAR data shows that the three

acceleration periods of both landslides are related to drawdown periods of the water level. Many similar

cases are also studied in the TGRA [17,41]. When the reservoir level drops rapidly, the pore-water

pressure within the landslide begins to dissipate, and the dissipation speed lags greatly behind the

reservoir drawdown speed. This process will induce hydrodynamic pressures. High hydrodynamic

pressure is no more balanced by water lateral confining in the basin, which increases the sliding force

of the landslide, thus reducing its stability. From November 2016 to February 2017, when the reservoir

was at a water level of higher than 170 m, the Muyubao landslide deformed by 25 mm. Therefore,

it was still deforming during the period of high water level. The high water level increased the height

of the groundwater level inside the reservoir landslide, which changed the saturation state of the soil

and reduced the shear strength. At the same time, the uplift force formed by the reservoir water in the

submerged sliding mass reduced the sliding resistance force of the landslide, thereby reducing the

stability of the landslide. We also analyzed the relationship between the rainfall and acceleration of

movement within the Muyubao landslide. It showed a deceleration in movement related to the rainfall

peaks. Due to the large thickness and scale of the Muyubao landslide, it is difficult for rainfall to seep

into the slip surface to promote landslide movement. The decorrelation between reservoir landslides

and rainfall are also shown in the Lorenzo-1 and Rules Viaduct landslides and other landslides in the

TGRA [42]. Based on the long-term GPS monitoring data of the Muyubao landslide, Deng et al. [19]

and Wan et al. [20] analyzed the relationship between the landslide deformation and its inducing

factors (reservoir water level and rainfall). These papers showed how water level variation and rainfall

have influences on landslide displacement patterns, which is consistent with the conclusion of this

paper. Moreover, it indicates that the application of InSAR data is reliable for analyzing the deformation

mechanism of landslides.
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Figure 17. Displacement, rainfall and reservoir levels of the Muyubao landslide.
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5.4. The Future Development of InSAR in Landslide Application

The InSAR technique is suitable for observing slow-moving landslides at a large scale. There are

always spatial differences in the deformation of large-scale landslides [43,44]. The landslide deformation

characteristics (direction, intensity, etc.) in different positions and periods are not the same. The displacement

obtained by the InSAR technique was a one-dimensional LOS direction (East-West). Nowadays, the LOS

displacement is often projected into the steep slope direction to make it consistent with the main sliding

direction, which is convenient for deformation analyses. However, this method cannot meet the demands

of accurate landslide monitoring. Therefore, it is necessary to develop an extraction method for landslide

three-dimensional deformation based on the ascending and descending orbit images and the landslide

deformation evolution.

In the current early warning system, the monitoring methods of surface deformation are mostly

the global navigation satellite system (GPS, Beidou, etc.). The remote-sensing techniques, such as

InSAR, will be widely applied in landslide monitoring and early warning in the future. The monitoring

results of these techniques are not point data but a sort of areal deformation metrics that can provide

much more deformation information. Therefore, we need to develop data mining algorithms to obtain

more information from the massive motoring data of these novel techniques. It will significantly

improve the effectiveness of the landside early warning system.

6. Conclusions

In this study, Sentinel-1 images and the StaMPS SBAS method were utilized to extract the time series

displacement of the Muyubao landslide. During this monitoring period, the changes in the reservoir

water level were the main triggering factor of the Muyubao landslide, and its deformation mainly

occurred during the fluctuation period and high-water level period of the reservoir. This landslide also

showed a significant spatial difference, which was the strongest on the eastern upper portion of the

landslide, followed by the middle part, and the western front portion showed the slightest deformation.

The Muyubao landslide experienced a translational mode during its evolution process. The natural

geological characteristics (formation mechanism, slope structure, topography and geomorphology)

are beneficial to the overall stability of the landslide under natural conditions. However, when the

external environment changed, the combined effects of reservoir water and rainfall contributed to the

deformation of the Muyubao landslide.

The monitoring and characterization of the Muyubao landslide was carried out by applying

Sentinel-1 images and the time series InSAR technique. Through field investigation and verification

with GPS, we found that this method can effectively monitor slow-moving landslides and presents

the advantage of high-density coverage of monitoring points. The InSAR monitoring results can

provide us more information for comprehensive understanding of the target landslides. In short,

the application of Sentinel-1 images and InSAR techniques in carrying out landslide monitoring is

an effective and economical method.
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Abstract: In an arid region, flash floods (FF), as a response to climate changes, are the most hazardous

causing massive destruction and losses to farms, human lives and infrastructure. A first step towards

securing lives and infrastructure is the susceptibility mapping and predicting of occurrence sites of FF.

Several studies have been applied using an ensemble machine learning model (EMLM) but measuring

FF magnitude using a hybrid approach that integrates machine learning (MCL) and geohydrological

models have not been widely applied. This study aims to modify a hybrid approach by testing three

machine learning models. These are boosted regression tree (BRT), classification and regression trees

(CART), and naive Bayes tree (NBT) for FF susceptibility mapping at the northern part of the United

Arab Emirates (NUAE). This is followed by applying a group of accuracy metrics (precision, recall

and F1 score) and the receiving operating characteristics (ROC) curve. The result demonstrated

that the BRT has the highest performance for FF susceptibility mapping followed by the CART and

NBT. After that, the produced FF map using the BRT was then modified by dividing it into seven

basins, and a set of new FF conditioning parameters namely alluvial plain width, basin gradient and

mean slope for each basin was calculated for measuring FF magnitude. The results showed that the

mountainous and narrower basins (e.g., RAK, Masafi, Fujairah, and Rol Dadnah) have the highest

probability occurrence of FF and FF magnitude, while the wider alluvial plains (e.g., Al Dhaid) have

the lowest probability occurrence of FF and FF magnitude. The proposed approach is an effective

approach to improve the susceptibility mapping of FF, landslides, land subsidence, and groundwater

potentiality obtained using ensemble machine learning, which is used widely in the literature.

Keywords: NUAE; flash flood; BRT; CART; naive Bayes tree; geohydrological model

1. Introduction

Flash floods are a temporary overflow of rivers or valley plains as a natural response to unusually

heavy rains. They can cause damage to infrastructure and human life [1,2]. FF usually occur frequently

at narrow mountainous valleys (wadis), alluvial fans at the foot of mountainous and narrow coastal

areas as a response to climate change and intensive rainfall over an impermeable and an impervious

surface [3,4]. Globally, about one-third of the Earth’s surface (where more than 70% of the world

population reside), frequently experiences to flash flooding [5].

The UAE, including the study area, has not escaped this natural hazard since it experiences

several flash flooding on a regional scale. The northern part of the UAE recorded huge amounts of

rain between 9 January and 12 January 2020. The heaviest rainfall was 24 years ago in Khor Fakkan
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with 144 mm (5.66 inches) of accumulated rainfall (https://www.ncm.ae). In Ras Al Khaimah (RAK),

one woman was crushed to death after a wall collapsed during a violent storm.

In Ghalilah and Al Fahlain villages of the RAK, flash floods destroyed roads, farms and flooded

the village graveyard (Figure 1). Away from the mountainous areas, the cities of Sharjah and Dubai

have experienced monstrous floods consuming roads and vital areas such as Terminal 1 of Dubai

International Airport, shopping malls and Jabal Ali (https://www.ncm.ae). Flash flooding events solely

depend on several terrain and geohydrological parameters such as alluvial plain width, mountainous

valley width, altitude, topographic slopes, topographic curvature, steam density, topographic relief,

the angle of repose and, of course, the intensity of rainfall. The angle of repose or talus slope ranges

between 25 and 40 and depends upon the nature and type of the rocks and is directionally proportional

to the flash flood magnitude [6].
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Figure 1. Raster map of perception showing the heaviest rainfall was 24 years ago in Khor Fakkan

with 144 mm (5.66 inches) of accumulated rainfall (https://www.ncm.ae/). Photographs of flash flood

damages during January 2020 in the RAK area, NUAE. Yellow points highlight flash flood locations

across the study area.
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These consequences can be controlled or, at least, reduced by constructing a regional and precise

susceptibility mapping and analysis [7] and calculating the angle of repose or talus for each hydrological

basin. Thus, building an accurate geohazard model and measuring flash flood magnitude over a

regional scale is one of the researchers and decision-makers important task [8]. Susceptibility can

be defined as a prediction of where the future hazardous event is likely to occur [9,10]. The wide

availability of free of charge remote sensing data and machine learning algorithms allowed researchers

to susceptibility map and predict flash floods over a regional scale efficiently and economically [11–14].

Several hydrological models have been developed using hydrological parameters such as rainfall

and runoff [15–19]. However, these techniques have been built based on a single dimension and

changeable parameters due to climate change and soil erosion. Additionally, these models lack sensitive

analysis and field observation. Other studies have been applied for FF susceptible mapping using the

data-driven and K-nearest neighbors (K-NN) [20–23], analytic hierarchy process (AHP) [24], frequency

ratio (FR) [25], firefly algorithm (FA) [26,27], feature selection method (FSM) [26], support vector

machine (SVM) [27] artificial neural network (ANN) [28], and weight of evidence (WoE) [29], and

decision tree (DT) [30,31].

A novel approach has been employed for flood susceptibility mapping [29–33]. Recently,

a comparative assessment of decision tree algorithms for susceptibility modeling has been performed [34–36].

Most of these studies have been focused on susceptibility mapping of FF using ensemble machine

learning or a comparative assessment of machine learning algorithms. However, these studies have

not focused on FF conditioning parameters such as alluvial plain width, valley width and basin slope.

Additionally, the magnitudes of FF has not been taken into considerations. This study aims to modify

a hybrid integration approach for flash flood susceptibility mapping in an arid region. Here, we first

performed a comparison between BRT, CART, and NBT models for FF susceptibility mapping for the

first time. The best FF susceptibility map was chosen and then modified by dividing it into seven

basins. Each basin has its own FF magnitude. The FF magnitude was calculated using four new FFCPs

namely alluvial plain width, valley width, basin gradient and mean slope. The proposed approach

represents an advancement step to modify predicted maps of FF, landslides, land subsidence and

groundwater potential produced using machine learning models. The modified approach can be of

great help to risk management specialists and geohazard prevention scientists.

2. Study Area

The study area stretches from longitude 54◦58′21′′E to 56◦29′42′′E and latitude 24◦33′45′′N to

26◦5′24′′N and has an area of about 11,871 km2. It includes the Emirates of Dubai, Sharjah, Ajman,

Umm Al Quwain, Ras al Khaimah and Fujairah (Figure 2). Most of the built-up area is concentrated on

coastal strips and waterfronts such as creeks and artificial lakes, while the agricultural area is limited

to the alluvial plains, wherever rainfall and paleochannels (wadis) are found.

The area is characterized by narrow alluvial coastal plains in the north-western and the eastern

parts of the study area with a width ranging from 2 to 5 km, reaching its maximum width at Falahyeen

and Al Dhaid villages (No. 9 and 19 in Figure 2). Lithologically, the upper streams (mountainous areas)

are dominated by the igneous and metamorphic rocks in the east and carbonate rocks in the north and

alluvial deposits at the foot of the mountainous areas [13]. The area has weather varying from hot and

humid during the summer and being warm during the winter (Figure 3a). The annual rainfall varies

from 30 mm in the south-eastern desert near the city of Dubai to 180 mm in the mountainous areas in

the north and east [37,38]. The maximum number of rainfall days over the study is four to six days

per month during the period from December to March (Figure 3b). The maximum daily precipitation

value is 1.2 mm during March (Figure 3c) (Giri and Singh 2015). The estimated annual rainfall over the

mountainous and coastal areas was about 97% of total rainfall over the NUAE [38].
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Figure 2. Elevation map generated from a DEM showing the location of the study area (white polygon),

and main cities and towns of the study area (green stars).

Hydrologically, the area is comprised of three aquifers: a carbonate, ophiolite, coastal, and an

alluvial. The aquifers are drained by several surface wadi courses. Their trends are common in

the NW-SE, NNW-SSE, NE-SW and NNE-SSW directions [39,40]. These features play an important

role in flash floods by accumulating rainwater from upstream and crash houses and farms in the

downstream [39].

140



Remote Sens. 2020, 12, 2695
2020, , x FOR PEER REVIEW 5 of 31 

 5 

Figure 3. Monthly temperature and precipitation (a), number of days of rainfall (b), and daily

precipitation (c) over the NUAE including the study area.

3. Datasets and Methodology

The proposed approach can briefly be described as the following steps: (i) constructing a flash flood

inventory map (dependent variable), (ii) constructing flash floods conditioning parameters (independent

variables), (iii) spatially analyzing the relationship between each conditioning parameter and flash

flood events, (iv) optimal parameterization and flash flooding susceptibility mapping, (v) evaluating

the performance and assessing the accuracy of machine learning models, and (vi) dividing the area into

seven basins and calculating flash floods magnitude for each basin. A flowchart of the methodology

adopted in the current study is shown in Figure 4.
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Figure 4. Flowchart of the methodology applied to the study area.
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3.1. Construction of Flash Floods Inventory Map (FFIM)

FFIM is an excellent indicator for FF susceptibility mapping. Here we used several sources

including Google searches, the Google Earth application and local reports of newspapers and weather.

These reports were collected and downloaded via the webpage of the National Centre of Metrology

webpage (https://www.ncm.ae/Radar_UAE_Merge). Since 1990, 61 flash flood events were reported

across the study area, and the most severe event happened between 9 and 12 January 2020 with 144 mm

(5.66 inches).

Most of the FF locations were reported to be distributed in the mountainous valleys, narrow

alluvial coastal plains and alluvial fans at the foot of the mountainous areas (Figure 2). These FF

locations were used as training datasets to investigate the spatial relationship between flash floods

conditioning parameters and flash flooding occurrence, to learn the machine learning models, and to

evaluate the performance and assess the accuracy of the three machine learning models.

3.2. Spatial Analysis and Construction of Flash Flood Conditioning Parameters

3.2.1. Construction of FFCPs

This study aims to map the susceptibly of flash floods and measure their magnitudes in an arid

mountainous region with a minimum number of essential FFCPs to reduce errors and computational

time and enhance the performance of the BRT, CART and NBT models [41,42]. Three types of FFCPs

were chosen based on their degrees of influencing FF occurrences namely terrain and geohydrology.

The terrain parameters include altitude, topographic slope, relief, topographic minimum curvature,

while the geohydrology parameters include lithology, stream network (wadi courses), stream density,

and distance from stream courses (Figures 5 and 6). Thematic maps of FFCPs such as altitude,

topographic slope, topographic relief, topographic curvature, and stream networks (wadi courses)

were generated from ALOS DEM with a spatial resolution of 30 m using raster surface of 3D analysis

and a hydrology of spatial analysis tools implemented in ArcGIS v.10.2 software. First, maps of altitude,

slope, relief and topographic curvature were calculated by importing a 30 m DEM, converting a DEM

into raster grid and applying raster surface to the raster grid. The range of altitude and relief from

100 m to 1800 m (m.s.l), the slope map classified into five classes: (i) 0◦–5◦, (ii) 5◦–15◦, (iii) 15◦–30◦,
(iv) 30◦–60◦, and (v) >60◦ and the range of curvature from −200 to 50. Second, stream network was

derived from a DEM using D8 algorithm implemented in hydrology tool. The algorithm starts by fill

gaps (central pixel with no data) and determines into which neighboring pixel any water in a central

will flow. After that, the flow direction and downhill slope of a central pixel to one of eight neighbors

was calculated. Then, flow accumulation was calculated followed by deriving major stream networks

using a threshold value of 45 [14]. This value was optimal to reveal the major stream networks in the

study area. After that, drainage basins were calculated using the calculated flow direction theme. Third,

distance from stream networks and the density of stream network were constructed using distance and

density of spatial analyst tools implemented in the ArcGIS v. 10.2 software. Fourth, the lithological

map was constructed from the Operational Landsat Imager (OLI) Landsat 8 acquired on 9 December

2019 (Path 160, rows 42 and 43) using maximum likelihood classifier (MLC) implemented in the Envi.

v. 4.5 software. The MLC was trained using 200 training datasets collected from scanned geological

maps at a scale of 50,000 collected from the UAE ATLAS. The ALOS DEM and Landsat 8 images were

downloaded from the USGS Global Visualization Viewer (GloVis) (www.glovis.usgs.gov) portal.
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Figure 5. Maps of flash flood conditioning parameters used in flash flood susceptibility mapping: (a) altitude, (b) slope, (c) topographic minimum curvature, and

(d) topographic relief.
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Figure 6. Maps of flash flood conditioning parameters used in flash flood susceptibility mapping: (a) lithology, (b) distance from streams, and (c) stream density.
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3.2.2. Spatial Analysis

Altitude and topographic slope are the most important conditioning parameters for FF occurrences

as they control water flow, flow direction, surface runoff and infiltration rate [25,42]. Sites at a

lower altitude have a higher probability of FF where water flowing down from upper streams [43].

The topographic slope has a crucial influence on surface water flow, flow direction, runoff, infiltration

rate and FF occurrence. As topographic slope increases, runoff potential increases resulting in FF [44].

Topographic curvature has a similar influence on FF occurrence. Sites with negative values for

curvatures are zones of water accumulation and, thus, a higher probability of FF occurrence, while sites

with positive values for curvature are zones of water dispersion, and thus have a lower probability

occurrence of FF [25]. Lithology and its physical characteristics (e.g., porosity and permeability) strongly

influence infiltration rate, runoff potential, stream network distribution, and thus FF occurrence [29].

Other FF conditioning parameters such as stream density and distance from streams also play a

significant role in FF occurrence. As the distance from streams decreases, the probability of FF

occurrence increases [45]. Factors such as aspect, land use/land cover (LULC), NDVI, topographic

wetness index and index of the erosion power are secondary parameters and introduce bias and error

during the modeling process and can be ignored [12,46,47]. These various FFCPs were chosen based

on the geoenvironmental characteristics of the study area and used widely in this literature. These

parameters can help in detecting flash flood-affected areas from the surrounding areas since flash flood

occurrence is identified as varying greatly with the intensity of rainfall, altitude, slope and stream

network [48,49].

3.3. Background and Theories of Models

3.3.1. Boosted Regression Tree (BRT)

The BRT is an ensemble technique and differs statistically from traditional methods. The BRT

consists of machine learning and statistical techniques designed to improve the accuracy and the

performance of a single model by fitting a group of models before combining these models for

classification and prediction [50]. The BRT model merges regression from classification and regression

tree (CART) and boosting techniques to produce a combined modeling. Boosting is a technique

designed to enhance the performance of regression trees similar to model averaging [51]. However,

the BRT implements a stepwise process, where the models are fitted to a subset of the training dataset.

This subset used at every iteration of the model fit is stochastically chosen with no replacement.

The shrinkage parameter or learning rate determines the level of contribution for each tree to the

growing model, while the number of nodes in a tree (tree complexity) decides whether interactions are

fitted [52]. Then, these parameters determine the total number of trees required for prediction [53].

Elith et al. (2008) [53] described the model as the following steps:

1. Initialize weights to be equal wi = 1/n for m = 1 to iter classification Cm:

2. Fit classifier Cm to the weight data

3. Compute the weight or misclassification rate rm

4. Let the classifier weight

αm = log((1 − rm)/rm) (1)

5. Recalculate weights

wi = wiexp(αmI(yi , Cm)) (2)

6. Majority vote classification: sign [ΣM
m−1 αmCm(x)]

3.3.2. Classification and Regression Trees (CART)

The CART is one of the most common algorithms for the classification of data. It is resistant

to missing data, and its variables do not need to have a normal distribution [51,54]. It is a binary

recursive partitioning procedure capable of processing continuous and nominal attributes as targets
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and predictors and was developed by Friedman (1975) [55], Breiman (1984) [56], and Breiman and

Stone (1978) [57].

The algorithm has been successfully applied in medical applications to predict the value

of a dependent variable based on the different values of independent variables [58], economics

applications [59], photogrammetry [60], environmental protection [61], food science and chemistry [62,63],

landslide susceptibility mapping [64], and groundwater potential mapping [65]. Classification trees are

used when an independent variable is categorized, while regression trees are used when independent

is continues and to predict its value (Figures 5 and 6). The CART algorithm is designed as a sequence

of trees where the ends are terminal nodes. It consists of three elements: (i) rules of splitting data at a

node based on the value of one variable, (ii) stopping rules for deciding when a branch is terminal

and can be split no more, and (iii) a prediction for the target variable in each terminal node (Figure 7).

The major problem of building a valuable tree is finding the proper guidelines to prune the tree.
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worthy to note that there is no relationship between the size of the tree and the accuracy of classification.

The correct classification can be made by decreasing the overfiting of the training set.

The phase of cutting is created by generating the biggest possible trees and this process lies in

reducing the total number of leaves and tending to increase the accuracy of classification. The final

phase is the selection of a tree with a lower number of misclassifications and a higher accuracy. This

higher accuracy can be released with the application of cross-validation using Equation (3):

RE(d) = 1/(N
∑

(i=1) (yi − d(xi))2 (3)

where yi is the number of points in the testing set (real variable), xi is the number of points in the

testing set (variable classified with d model), N is the number of cases in a testing set. The results of

the predicted model were evaluated using a set of testing samples. The measure of the cross-validation

Rα(T) is a linear dependence between the complexity of the tree and the cost of misclassifications

Equation (4) [51].

Rα(T) = R(T) + αT⬄ α = Rα(T) − R(T)/|T| (4)

where Rα(T) is the cost-complexity measure, R(T) is the cost of misclassifications, |T| is the complexity

of tree measures as the number of terminal nodes in the tree, a parameter of tree complexity (assumes

values from 0 for a maximal tree to 1 for a minimal tree).

The produced regression rule set was then applied to all FFCPs to map flash flood susceptibility.

It is worthily of note that the dependence (complexity of the tree) and accuracy of classification

should be taken into consideration. The low complexity of the tree usually leads to the low accuracy

of classification.
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The output of CART is a hierarchical binary tree which subdivides the prediction space into

several regions (Rm) where the response factors have similar values (≡ am) based on Equation (5):

f � am; ∀x ∈ Rm (5)

3.3.3. Naive Bayes Tree (NBT)

Naive Bayes (NB) is a machine learning classifier that creates a probability-based model. It works

based on Bayes Theorem, which is known as Naive Bayes. The NB uses a decision tree (DT) for its

structure and organizes an NB model on every leaf node of the constructed DT [66]. The NBT exhibits

a significant classification performance and accuracy [67,68].

During the NB process, the impact of an attribute value on a specific class is independent of the

value of another attribute and known as class conditional independence. This conditional independence

of NB makes the datasets to train quicker and it considers all the vectors as independent and applies

the Bayes rule [69]. Bayes role can be explained as follows (Equation (6):

P(A|B) = P(B|A) P(A)/P(B) (6)

where:

P(A|B) = conditional probability of A given B

P(B|A) = conditional probability of A given B

P(A) = probability of event A

P(B) = probability of event B

The model starts by estimating the probability of each class in the model, calculating the covariance

and variance matrix, and building the discriminate function for each class [70–72].

3.4. Optimal Model Parameterisation and Flash Flood Susceptibility Mapping

As a first step, the CART, BRT and NB models were fitted in SATISTICA v. 7 [73], Salford

system [74,75], and in R (R Development Core Team 2006) v.3.0.2 [76], implementing gbm, dismo, rpart,

and random forest packages [77]. These tools have a stochastic gradient boosting tree which is widely

used for regression problems related to predicting and mapping continues dependent variables [73].

After that, the setting and optimizing of all parameters was performed. These parameters were;

learning rate, the number of additive trees, the proportion of sub-sampling, and so forth.

Here, the optimal value for the learning rate was set as 0.1, additive trees were 185, and the

maximum size of the tree was five. These values may lead to precise results accuracy [74]. In this

study, the random point’s values have been extracted from each variable of FFCPs for the presence

and absence condition of the FF. After that, all three machine learning models were then run based

on the mechanism of the open-source tools. Using these tools, FFSM was calculated for each pixel in

the thematic maps of FFCPs and then converted into text files. Finally, these text and dbase files were

imported into SPSS v.25 to evaluate the models’ performance and generate FFSM in GIS environment

of ArcGIS v.10.2 software.

During the prediction processing, the models used FFCPs and the regression tree separates the

FFCPs into two groups [78,79]. A group such as distance from streams, altitude, and slope in the

upper part of the regression tree indicates an approximate area with a higher probability occurrence

of FF. Another group, such as altitude, slope, and topographic curvature in the lower part of the

regression tree allowed recognition areas of a higher probability of FF occurrence. Among several

interval methods, the quantile method, which is used widely in the literature, was chosen to classify

FFSM [12,14,36]. The produced FFSM was then classified into four classes namely low, moderate, high,

and very high.
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3.5. Evaluation of the Models Performance

To evaluate the models’ performance, we used 61 FF locations. The datasets were divided into 43

(70%) for model training and 18 (30%) for the model validation. These datasets were classified and

selected randomly using the Hawth’s Tool implemented in the ArcGIS v. 10.2 Software. We calculated

the accuracy metrics for each model. Each metric includes accuracy, precision, recall and F1 score.

The F1 score was found to the best technique and used widely in literature [13,14,80]. The F1 score was

calculated based on four parameters, namely true positive (TP), true-negative (TN), false-positive (FP),

and false-negative (FN) using the following equations from 7–11:

Accuracy = TP + (TN/TP) + FP + FN + TN (7)

Kappa = po − pe/(1 − pe) (8)

where po is the observed agreement ratio, and pe is the expected agreement

Precision = TP/(TR + FP) (9)

Recall = TP/(TP + FN) (10)

F1 = 2 × precision recall/(precision + recall) (11)

where TP is the true-positive; FP is the false-positive and FN is the false-negative.

The performance of SVM and SAM were evaluated using the open-source R 4.0.0 software.

Further validation was performed using the receiver operating characteristics (ROC) curve, which is

used widely in the literature due to its simplicity, easiness and higher accuracy [81]. The curve has

been successfully used by several researchers in several applications such as groundwater potential

mapping [82], and land subsidence susceptibility mapping [12]. The obtained prediction FF maps

sometimes contain errors. These errors sometimes come from the deficiency of the FFCPs quality and

the structure of the models [46,83].

The accuracy of the produced prediction maps was measured using the area under the curve

(AUC) [84]. The AUC ranges from 0 to 1. AUC with a value of 1 indicating a good prediction, and

a value of 0 indicating the model is not efficient and cannot predict FF occurrence. Both the success

and prediction rates were created to assess the accuracy of the FFSM [85]. The value of AUC can be

estimated via the following equation [86]

AUC = Σ (TP + ΣTN/(P + N)) (12)

where TP (true positive) and TN (true negative) are the numbers of pixels that are correctly classified.

P is the total number of pixels with torrential phenomena, and N is the total number of pixels of no

flash floods.

3.6. Geohydrological Model for FFMI and Filling the Gaps in MLC Maps

Although ensemble-based machine learning models have been used widely in FFS mapping due

to their greater accuracy, these models still have some limitations regarding FFCPs. These include the

length of the basin, basin area, the gradient of each basin, alluvial plain width, and mean slope. These

new parameters are very important in measuring the FF magnitude. Here, we first delineated drainage

basins from a DEM using a hydrological tool implemented in the Arc GIS v. 10.2 Software. After that,

each basin was considered and treated as a separate FF zone and its magnitude was measured by

calculating the following parameters (Figure 8 and Table 1):
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Table 1. Flash flood index parameters used for calculating flash flood magnitude for each zone (basin).

Basin Lb Bh (m) G◦ A (km2) Aw MS FFM

RAK 2000 1100 33 1131 3 43.39 3.24
Falaheyn 15,000 1300 5.2 1136 9 27.63 0.57
Al Dhaid 28,000 600 1.28 1561 13 14.78 0.16

Masafi 5000 850 10.2 248.6 4 39.03 3
Rul Dadnah-Dibba 4200 950 13.5 406.6 3.5 35.31 2.96

Fujiarah-Kalba 5000 1000 12 649 3 32.52 2.71
Hatta-Houylate 6000 1200 12 761.2 2 32.16 1.11

Total 5893.4

(i) Calculating the length of each basin (Lb)

(ii) Calculating the relief for each basin (Bh)

relief = Bh = hmax − hmin (the difference between the maximum and minimum heights)

(iii) Calculating the gradient of each basin (G◦) using the following equation

Gradient = (Bh/Lb) × 60 (13)

(iv) Calculating the area for each basin (A)

A = basin area (km2) (14)

(v) Calculating the alluvial plain width (Aw) for each basin manually in a GIS

(vi) Calculating the mean slope (Ms) for each basin using a moment statistic

(vii) Calculating FF magnitude for each basin with the following equation;

Flash Flood magnitude =Ms/ln (A/G◦) (15)

4. Results and Discussion

4.1. Evaluation of the Models Performance and Validation

Visual inspection shows that there are some differences among the FFSM maps produced using

machine learning models. Thus, it is important to evaluate model performance and assess the prediction

accuracy. The results from the evaluation of the model performance show that the BRT model had the

highest accuracy, followed by the CART and the NB models. The BRT yields an F1 score value of more

than 0.91 for all FFS classes, followed by the CART with an F1 score value of more than 0.90 for high

and very high classes (Figure 9).

The NB had the lowest F1 score for all FF classes. Thus, the validation results confirmed a positive

agreement between the observed and predicted values for the BRT and CART models. Additionally,

the slight difference between the F1 score of the BRT and the CART models is due to the gap between the

two models and is not statistically different [87]. The BRT model offers reliable information regarding

the FF to be predicted [42]. The BRT has the boosting approach that can employ an existing AI method

and has the dual advantage of boosting and decision trees [87]. Further quantitative validation using

the ROC curve was performed to examine the reliability of the obtained FFSM [88]. Similar to the F1

score, the BRT model has the highest AUC value (0.92), followed by the CART model (0.90) and the

NB model (0.79). The high performance of the BRT is because it combines the CART with a boosting

algorithm (Figure 10).
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4.2. Spatial Analysis and Flash Floods Susceptibility Mapping

The results of the spatial analysis show that the extreme FF events had occurred at narrow alluvial

plains of the mountainous and coastal areas. These areas are characterized with steep slopes, high

relief, surface run-off and high density of streams. The higher density of streams reflects rocks with a

lower rate of permeability that has a higher probability of FF occurring. The most important FFCPs

affecting FF occurrence altitude and slope (Figure 5a,b). Both parameters strongly influence relief,

topographic curvature (Figure 5c,d), soil moisture and surface run-off. For topographic curvature,

convex classes (>0) have a very low influence on FF occurrence. Concave slopes (<0) had the strongest

impact on FF occurrence (Figure 5c). About 90% (40 FF events) of the past FF events had occurred at an

elevation from 300 m to 1400 m and slopes between 10◦ to 15◦ (Figure 5a). Another important FFP

affecting flood was lithology. For the lithology factor, the upper streams are dominant by igneous and

metamorphic rocks, while the lower streams are dominant by alluvial deposits. Most of the past FF

events had occurred in the alluvial plains and fans (flooded plains) at the foot of the mountainous

areas (igneous and metamorphic rocks) (Figure 6a). For distance from streams and streams density,

the highest number of the past FF events had occurred in areas within 1000 m from the major stream

networks (wadi courses) and characterized by a low density of streams (Figure 6b,c).

Parameters such as LULC and aspect and plan curvature have no significant contribution to

the modeling process and could affect the accuracy of the model’s predictions [13,44,89]. These

parameters should be ignored and not considered in the modeling process since the aspect is already

calculated during the extraction of stream networks, and the area is characterized by low urban

development [13,42].

Maps of FFSMs were constructed by dividing the study area into separated pixels. Each pixel

was categorized as a flood and non-flood class. Thus, the FFS index for each map was calculated for

all pixels and each pixel was assigned a unique susceptibility index [12,13,36]. The testing of several

classification methods such as equal interval, geometrical interval, natural break and quantile shows

that the quantile and interval methods were the most appropriate method to classify flooded and

non-flooded areas, respectively. This finding agrees well with similar studies applied by Khosravi et al.

(2016) [36] who tested several classification methods for different susceptibility mapping. Susceptibility

maps of FF produced using BRT, CART and NBT model are shown in Figure 11. These susceptibly

indices were categorized into four classes intervals using the quantile technique, which is used widely

in the literature [12,36,90]. The produced susceptibly classes were recognized namely very high, high,

moderate and low construct FFSMs (Figure 11).

The maps demonstrate that the high and very high susceptibility classes are commonly located in

wadi courses and alluvial plains of the mountainous areas in the east and north. Some portions of very

high and high classes are located at the foot of mountainous areas. About 54% (3196.4 km2) of the total

area was classified as high and very high classes of FF, 19.3% (1136 km2) was classified as moderate

susceptibility classes of FF, and 26.5% (1561 km2) as low class susceptibility of FF. The effectiveness

of the proposed MCL models was confirmed by the highest F1 and AUC values than the individual

MCL model.
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4.3. Geohydrological Model for FFMI and Filling the Gaps in MCL Maps

Although the BRT model yields the highest performance, the geographical and spatial variability

of the valley depth and alluvial plain width parameters have not been taken into consideration. In this

study, the FF magnitude index (FFMI) was calculated using a set of new terrain parameters for each

derived basin (Table 1). These parameters include basin area (A) (Figure 12a) the length of the basin (Lb)

(Figure 12b), relief (Bh) (Figure 12c), alluvial plain width (Aw) (Figure 13a), gradient (G◦) (Figure 13b),

and mean slope (Ms) (Figure 13c).

Figure 12a shows that the area is divided into seven basins (zones) of flash flood and can be

divided into two types. The first type is narrow coastal zones such as RAK in the northwest, Masafi,

Rul Dadanh-Dibba and Fujairah-Kalba in the east. The second type is wide inland basins (zones) such

as Falahyeen and Al Dhaid in the west and Hatta-Houylate in the south (Figures 1, 2 and 12a). Except

for Al Dhaid and Falaheen basins, all basins are small in area, short in length, drained by dendritic

streams in shape and narrow alluvial plains. These zones and their adjoining areas have high gradient

angles ranging from 10◦ to 33◦, high relief values of more than 900 m, mean slope of than 30◦, and

an alluvial plain width of less than 5 km (Figures 12 and 13). Lithologically, all upper streams are

dominated by the igneous, metamorphic, and carbonate rocks, while the lower streams are dominated

by alluvial deposits. These parameters directly influence the magnitude of the destruction of the FF

and have a greater impact on the occurrence of FF in an arid region. For example, a basin (zone)

with a higher relief and runoff potential indicates rocks with lower permeability, steeper slopes, relief,

and high runoff potential in a basin with a narrow alluvial plain, which can cause susceptibility to

floods [91].

Figure 14a shows the modified map of FF produced using the proposed hybrid approach. The map

shows different FF zones. Each zone has its own FF magnitude. The estimated FF magnitude values

for the basins of RAK and Massafi were 3.24 and 3, respectively (Table 1 and Figure 14a). Villages,

roads and farms in these basins were severely affected zones. They cover an area of about 1379 km2

(23.4%). Rol Dadnah and Fujairah-Kalba basins that cover an area of 1055.6 km2 (17.9%) and have high

FF magnitude values of 2.96 and 2.71, respectively. Hatta-Houylate has a moderate FF magnitude of

1.11, while Falahyeen and Al Dhaid have FF magnitude values of 0.57 and 0.16, respectively.

To validate the produced FFMI, the past FF events were draped over the FFMI and spatial analysis

was performed. The results showed that most of the past FF events (40 FF events) had occurred in

high and very high FF susceptibility zones. Further analysis was performed by draping the existing

infrastructures and agricultural area over the FFIM shows that most of the villages and farms in

mountainous areas and the RAK are located in areas at a higher risk. This fact is acceptable since all

settlements, farms and roads have been constructed in the high and very high susceptible zones.

The proposed approach permits that FFCPs be updated at any time, as new parameters

become available.
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Figure 12. Maps of flash flood conditioning factors used for measuring FF magnitude: (a) basin area, (b) basin length, (c) relief.
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Figure 14. Maps of FF susceptibility obtained using a hybrid approach and new FFCPs (a), and its

related infrastructures risk map (b).

5. Discussion

5.1. Evaluation of the Models Performance and Validation

In this study, a hybrid approach, which integrates machine learning and geohydrological models,

was modified to map FF susceptible areas and measure their FF magnitude in an arid mountainous

region. We first used three machine learning models to map the susceptibility of natural phenomena

with nonlinear relationships and without the need for prior elimination of statistical supposition and

data transformation [12,92,93]. These types of models can fit complex nonlinear relationships between

FF locations and conditioning parameters and their efficiency compared based on accuracy matrices

(precision, recall and F1 score) and AUC-ROC [14].

The results demonstrated that the BRT model had the highest performance, while NBT a higher

accuracy comparing with NBT [53]. This finding is consistent with Rahmati et al. (2020) [94] who used

a machine learning approach for spatial modeling of agricultural droughts. They concluded that the

BRT and CART models showed the best performance and prediction accuracy compared with NBT

and linear supervised classifiers. Our findings also agree well with Naghibi et al. (2016) [65], who

concluded that the BRT model produced the best prediction results followed by the CART and RF

models. These machine learning, used widely in the literature, were applied due to their simplicity in
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description, their accuracy, and straightforwardness of interpretation [7,8,13,14,22,23,29–31,33,53,94,95].

However, limited numbers have been applied to FF susceptibility mapping using a hybrid approach,

which integrates machine learning models and morphological and geohydrological parameters to map

FF susceptibly and measure its magnitude for each basin the FFSM.

5.2. Spatial Analysis and Flash Floods Susceptibility Mapping

FF is one of the main destructive phenomena that occur in mountainous areas and narrow

alluvial coastal areas, especially in the NUAE. FF susceptibility mapping using remote sensing and

MCL algorithms is considered as a crucial step to reduce the destructive impact of any future FF

event [36,80,96]. Spatial analysis showed that most of the built-up and agricultural areas of the Emirates

of RAK in the northwest and Fujiarah in the East (95%), and some parts of the Emirates of Ajman and

Sharjah (20%) are located in high and very high susceptible zones. Thus, most of roads, dams, farms,

and the human population are highly susceptible FF because they are located in wadi courses of the

mountainous areas and at the foot of the mountainous areas. These areas receive intensive rainfall due

to the impact of climate change [38]. In these zones, a proper urban planning scheme is very important

to reduce risk hazard of any future FF event (Bathrellos et al., 2017).

Tremendous numbers of previous studies proposed a combination of MCL models for FFS

mapping. They built susceptibility maps using several conditioning factors that are relatively

complex [28,36,38,86,96]. Other studies have shown that intensive precipitation, LULC and

geohydrology parameters are important factors controlling FF occurrence [28,36,96]. Further studies

have shown that factor such as human activities is a significant in FF occurrence [25,94]. These factors

such as LULC and human activities could not consider as significant factors in the study area due to

low population and intensive human activities. Additionally, the obtained FFSMs using MCL are,

in realty, altitude and/or slope map. Thus, it is important to modify geohydrological model and a

hybrid approach.

5.3. Geohydrological Model for FFM Indexing and Filling the Gaps in MLC Maps

To measure FF magnitude and fill the gaps in the MCL maps, it is important to a hydrological model.

Until now, there is no standard rule to choose FFCFs, flood and non-flood locations. Here, the result

obtained using the proposed approach and new FFCPs is consistent with the constructed FF inventory

map and demonstrated that the proposed approach was able to map susceptible FF and measure their

magnitudes in an arid region and much more accurately and reliably compared to ensemble machine

learning approaches that are widely used to susceptibility map groundwater potentiality [82], land

subsidence [12], landslides [3,42,85], and flash floods [3,23,26,29–31]. The obtained susceptibility maps

using MCL can be upgraded and re-categorized using the proposed approach and demonstrated that

the approach was able to create a satisfactory FFM. The result shows that the highest number of the past

FF events in the study area are commonly occurred in the major mountainous streams (wadi courses)

and the narrow coastal strip in the east and in the northwest. These areas are lowlands covered by

alluvial deposits, located at the foot of the Oman mountains and characterized by the gentle slope.

Based on the new map of FFMI and its related infrastructures map (Figure 14b), about 153.34 km

in length of mountainous roads and those at the foot of mountainous areas are dangerous and deadly

roads. Roads of residential areas are also dangerous and had a higher probability to destroy (Figure 14b).

In Ras Al Khaimah (RAK), one woman was crushed to death after a wall collapsed during a violent

storm (NCM, 2020). In Ghalilah and Al Fahlain villages of the RAK, flash floods destroyed roads,

farms and flooded the village graveyard (Figure 1). The risk of damage can be reduced by constructing

valley dams and a real-time alert system in the mountainous areas. The existing human settlements in

the valley mouth should be shifted to the terrain at a lower elevation with a very gentle slope. Here,

the produced FFSM and FFMI can be used as a reference for decision-makers and urban planners.

The results of the proposed approach permit a better understanding of the natural hazard

setting of the study area for the first time. The results also facilitate the detection of sites of a higher
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probability of FF occurrence help identification of infrastructures that are located at high risk. The use

of geohydrological approach can be used to fill the gaps in the FFSMs obtained using MCL models and

represents an effective approach for FFSM and measuring FF magnitude, particularly in the NUAE,

which has not been investigated previously. This finding agrees well Chen et al. (2019) [97] who

concluded that the superiority of hybrid models. However, some limitations have been reported during

the modeling process. These limitations include the spatial resolution and number of FF conditioning

parameters as well as the optimal parameterization of the machine learning algorithms [12,13,95].

Therefore, future work will focus on FF susceptibility mapping using new FFC parameters such as

alluvial plain width, the depth of the mountainous valley, and the gradient of the basin. Future work

will focus on constructing a real-time meteorological system that is needed to predict areas with a

higher FF occurrence. Plantation of Prosopis Cineraria forests and merging steel wedges and screens on

the wadi slopes are also needed to reduce runoff potential.

6. Conclusions

In this study, a hybrid approach that integrates machine learning (the BRT, CART and NBT)

and geohydrological models was applied for FF susceptibility mapping and constructing FFMI.

The proposed approach was applied, for the first time, to the NUAE. Eight FFCPs, namely; altitude,

topographic slope, topographic curvature, relief, streams density, lithology, and distance from streams,

were chosen for FFSM. The parameters were selected based on their level of influencing FF occurrence,

the geo-environmental characteristics of the study area, the geological background of the authors, and

those used widely in this literature. Parameters such as LULC, aspect, plan curvature, and NDVI were

ignored since the aspect (flow direction) already calculated during stream network extraction, and the

study area is characterized by low population, human activity, and large vegetation cover.

The performance of the machine learning models was evaluated by calculating accuracy metrics

using the F1 score for each model and ROC curve. The results showed that the BRT had the highest

performance followed by the NBT and CART models. The produced FFSM using the BRT was modified

by applying a geohydrological approach, and results showed that the area consists of seven FF zones.

Each FF zone has its geohydrological characteristics and FF magnitude. The highest FF magnitude was

found to be in the zones of the RAK and Masafi, Rul Dadna, and Fujairah-Kalaba, while the lowest FF

magnitude was found to be in the zones of Al Dhaid and Falahyeen in the west. These magnitudes can

be further enhanced by applying the proposed approach to sub-basins using remote sensing data with

a higher spatial resolution. New FFCPs such as alluvial plain width, stream depth, basin gradient and

mean slope can be considered in any future study, especially in an arid region. As a conclusion, the

proposed approach and new FFCPs from this study demonstrated the superiority of hybrid models,

and the obtained FFSMs can assist urban planners, geohazard specialists and decision-makers to

reduce the risk of the FF in an arid region.
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Abstract: Many automatic landslide detection algorithms are based on supervised classification of

various remote sensing (RS) data, particularly satellite images and digital elevation models (DEMs)

delivered by Light Detection and Ranging (LiDAR). Machine learning methods require the collection

of both training and testing data to produce and evaluate the classification results. The collection of

good quality landslide ground truths to train classifiers and detect landslides in other regions is a

challenge, with a significant impact on classification accuracy. Taking this into account, the following

research question arises: What is the appropriate training–testing dataset split ratio in supervised

classification to effectively detect landslides in a testing area based on DEMs? We investigated this

issue for both the pixel-based approach (PBA) and object-based image analysis (OBIA). In both

approaches, the random forest (RF) classification was implemented. The experiments were performed

in the most landslide-affected area in Poland in the Outer Carpathians-Rożnów Lake vicinity. Based

on the accuracy assessment, we found that the training area should be of a similar size to the testing

area. We also found that the OBIA approach performs slightly better than PBA when the quantity of

training samples is significantly lower than the testing samples. To increase detection performance,

the intersection of the OBIA and PBA results together with median filtering and the removal of

small elongated objects were performed. This allowed an overall accuracy (OA) = 80% and F1

Score = 0.50 to be achieved. The achieved results are compared and discussed with other landslide

detection-related studies.

Keywords: automatic landslide detection; OBIA; PBA; random forests; supervised classification

1. Introduction

The limitations of landslide field mapping are widely reported in the literature [1–8]. In certain

conditions, such as densely vegetated terrain, field-based investigation is ineffective or even

impossible [9]. Benefiting from an abundant collection of remote sensing (RS) data, automatic

approaches have been introduced to landslide studies by various scientists [1,3–8,10–28]. Among

the automatic methods, pixel-based (PBA) [4,5,14,16,19] and object-based (OBIA) [7,8,10–13,15,20]

classification methods can be distinguished. Different studies have compared the performance of OBIA

and PBA in various RS applications [29–31], including landslide detection [20,32,33].

Various supervised classification methods can be applied in PBA and OBIA to detect landslides.

Supervised classification requires the collection of both training and testing data to produce classification

results and assess the classification accuracy. The collection of good quality landslide ground truth data

to train the classifier is a challenge due to the time, access, and interpretability constraints, in addition to

the need for expert knowledge [34]. Many scientists emphasize that training samples have a significant
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impact on classification accuracy [35–37]. In particular, the number/quantity of training samples, which

can also be interpreted as the training–testing area ratio, has a crucial impact on classification results.

In the RS literature, many works present the problem of training samples in classification and

report that a reduction of the training sample quantity results in a decrease in accuracy [35–37].

However, there is a lack of studies that investigate the influence of the training–testing split ratio on

the accuracy of landslide detection.

Considering this research gap, the objective of this study was to assess the influence of the

training–testing split ratio of the study area on the accuracy of automatic landslide detection using

supervised classification and based on DEM-derived features.

Reading the literature related to automatic landslide detection can lead to confusion because there

is ambiguity in terms of basic concepts. For this reason, we adopted the predominant terminology

used in the machine learning (ML) community [38,39]. According to this, the initial dataset is split

into training and testing datasets. A small portion separated from the training samples is called the

validation dataset. Training and validation samples are used to construct and fine tune the classifier.

We used the so-called cross-validation approach for this purpose. The performance of the trained

classifier was than verified and assessed using the testing dataset.

We divided our study area into training and testing sites according to two strategies. In the

first strategy, testing areas were divided using the so-called region growing approach. In the second

strategy, we divided our study area into training and testing areas based on the boundary determined

by the water reservoirs of Rożnów Lake and Dunajec River. These various classification schemes

were implemented for PBA and OBIA. The classification was performed using the random forest (RF)

classification algorithm. Numerical investigations were carried out in the area highly prone to land

sliding located close to Rożnów Lake in Poland.

2. Related Studies

Automatic methods for landslide mapping include analyses of RS data, such as optical

images [8,10,40,41], synthetic aperture radar (SAR) data [42,43], and Light Detection and Ranging

(LiDAR) delivered digital elevation models (DEMs) [14,15,17,18,44,45]. The diversity of data and

their resolution provide opportunities for various types of investigations. Since SAR data processing

allows for estimating ground deformation, these data are usually applied for monitoring purposes and

indirectly for landslide detection [43,46–49]. Optical RS data and LiDAR data allow landslides to be

directly detected. Some researchers have attempted to utilize low-resolution optical images, such as

Landsat [50–53]. However, these data appear to be not detailed enough for the detection of some small

landslides [53]. The launch of SPOT as the first medium-resolution satellite captured significant attention

of the scientific community. The first applications of SPOT data for landslide detection were presented

by [54] and [55]. Subsequently, numerous other scientists have applied medium-resolution optical

images for landslide detection [56–58] also integrated with SAR data [59]. A completely new research

dimension has been provided by very-high-resolution optical images [41,60,61]. The application

of optical images is effective for the detection of recent landslide catastrophic events that generate

explicit and visible land cover changes (before and after the event), for example, the loss of vegetation,

presence of fresh soil, and exposure of debris [12]. For old and/or slow-moving landslides where

the changes in land cover/land use cannot be clearly observed, it is often impossible to distinguish

landslide-affected areas from the image background; however, this issue also depends on the image

resolution [8,12,15]. Thus, LiDAR is used due to its multi-return laser pulse, which has the ability to

penetrate through plant cover. This allows for the filtering of vegetation and other non-ground objects

and provides very detailed bare-earth terrain [62]. Therefore, LiDAR-delivered DEM is commonly used

solely [4,5,14,15,17,18,63] or integrated with other data [12,64] for landslide detection in such areas.

Among the automatic approaches related to this study that utilized DEM data, McKean and

Roering [4] were probably the first researchers who attempted automatic extraction of landslide features

from a 1-m LiDAR-DEM in a 0.5-km2 landslide complex near Christchurch, New Zealand. Surface
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roughness allowed for separating the landslide complex into four kinematic units. Subsequently,

Glenn et al. [63] carried out a numerical analysis of LiDAR elevation data collected for two canyon-rim

landslides covering an area of 17 km2 in southern Idaho, USA. They separated landslides into

various morphological domains based on morphometric data, topographic measurements, and field

observations. One year later, Sato et al. [65] captured topographic information from an airborne LiDAR

survey, such as the terrain gradient, topographic texture, and local convexity, and classified landform

types into 17 domains over a 3.8-km2 landslide area in the Shirakami Mountains, Japan. Noteworthy

research was presented by Booth et al. [5], who applied two-dimensional discrete Fourier transform

and continuous wavelet transform for two LiDAR-DEMs to characterize the spatial frequencies

of morphological features characteristic of deep-seated landslides in the Puget Sound lowlands,

Washington, and the Tualatin Mountains, Oregon, USA. In the same year, a similar work was presented

by Kasai et al. [66]. They applied a 1-m LiDAR DEM to identify geomorphic features within deep-seated

landslides in a 5-km2 mountainous terrain area in the Kii mountain range, Japan. Chen et al. [19]

used DEM-derived features and the RF algorithm for landslide mapping. Aspect, DEM, and slope

images and their texture and window moving standard deviation filtering were applied for landslide

detection in the region of Three Gorges, China. Pawluszek et al. [14] applied an extended set of

DEM derivatives to assess the sensitivity of automatic landslide mapping using various supervised

classification methods in the area of Carpathians in Poland. For semi-automatic extraction of landslide

features, Passalacqua et al. [67] and Tarolli et al. [44] proposed two different approaches. However,

both found a problem related to PBA, which does not consider or only marginally considers the local

geomorphological setting and “context”, such as the size, shape, and position in the landscape of the

extracted features. Therefore, new needs appeared for the exploration of contextual information.

Around the year 2000, the Geographic Information System (GIS) and image processing community

began to pay special attention to OBIA [68]. OBIA, in contrast to PBA, utilizes a full range of spectral,

spatial, textural, and contextual parameters to delineate regions of interest [7,10,11,68]. In OBIA,

individual landslides are considered an ensemble of pixels, rather than individual pixels that are

spatially unrelated [13,68,69]. In our study area, because landslides did not generate explicit and visible

land cover changes, the application of optical data solely would be ineffective; thus, we integrated

these data with a DEM. Nevertheless, previous research based on optical RS presented leading

developments in OBIA methodologies. For instance, Lahousse et al. [70] developed a multi-scale

OBIA to map shallow landslides in the Baichi watershed in Taiwan after the 2004 Typhoon Aere

event. Furthermore, the ML classification method has also been applied for landslide detection.

Sumpf and Kerle [10] took advantage of OBIA and ML and proposed a supervised workflow for

landslide detection to reduce manual labor and objectify the choice of significant object features and

classification thresholds. They utilized very-high-resolution RS images (Quickbird, IKONOS, Geoeye-1,

and aerial photographs). In addition, Stumpf et al. [8] introduced a semi-automatic approach based

on object-oriented change detection for landslide rapid mapping and the use of very-high-resolution

optical images. The algorithm was first developed in a training area of Altolia and subsequently tested

without modifications in an independent area of Italy.

Due to the limitation of optical RS, OBIA has also captured the interest of scientists utilizing DEM

for landslide detection [71]. The first example of an OBIA and DEM application for landslide detection

is the study of Van Den Eeckhaut et al. [7]. The authors utilized support vector machine classification

and DEM derivatives, such as the slope gradient, roughness, and curvature, in the Flemish Ardennes

in Belgium for mapping slow-moving landslides in densely vegetated terrain, in which optical and

spectral data could not be applied. Then, Li et al. [20] identified forested landslides using OBIA, DEM,

and RF algorithms in the area of Three Gorges, China. Pawluszek et al. [15] performed multi-aspect

analysis of OBIA for landslide detection in Polish Flysch Carpathians by utilizing only DEM data.

They found that OBIA is very sensitive to scale and DEM resolution, and texture-related variables

(grey level co-occurrence measures) were not helpful in landslide detection. Moreover, at present,

geomorphological mapping is also integrated with OBIA. Knevels et al. [13] implemented OBIA
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combined with geomorphological mapping to identify landslides in Oberpullendorf, Austria [7,13].

Prakash et al. [12] integrated DEM and Sentinel-2 images with ML and deep learning methods for

landslide detection in Daglas county, Oregon, USA.

Most of the aforementioned landslide approaches utilized supervised classification for landslide

detection, but none have investigated the effect of the train–test split ratio of the study area on the

accuracy of landslide detection. This problem is widely recognized and discussed in RS, for instance,

in the literature related to land cover mapping [35–37]. Thus, this motivated us to investigate this

research issue in applications for landslide detection.

In addition to supervised-based methods, other types of automatic algorithms exist that are based

on DEM analysis and are worth mentioning. For instance, Leshchinsky et al. [18] presented a new

approach for the automatic and consistent mapping of landslide deposits called the contour connection

method (CCN) based on DEM. In CCM, contours and nodes are applied to mapping and vectors are

used to connect the nodes to evaluate gradients and associated landslide features based on criteria

defined by the users. Another study that continued the application of this method was presented by

Gaidzik et al. [72]. The authors mapped landslides based on two approaches: (1) manual mapping

using satellite images and (2) automatic landslide morphology detection by employing the CCM.

The automated inventory provided by the CCM with LiDAR DEMs effectively minimizes the time and

subjectivity required. A continuation of this method was presented by Bunn et al. [17], who utilized

a semi-automated method called the scarp identification and contour connection method (SICCM),

which utilizes various geologic conditions automatically or semi-automatically introduced by simple

inputs and interpretation from an expert. The application of the presented approach was demonstrated

for three various study areas: the Oso landslide in Snohomish County, Washington, and Dixie and

Pittsburg in Oregon Coast Ranges.

3. Study Area and Data

3.1. Study Area and Geological Conditions

The study area is located in the vicinity of Rożnów Lake, in the central part of the Outer Carpathians,

in the Małopolskie municipality, Poland (Figure 1). The study area covers from 49◦40′N to 49◦46′N
latitude and from 20◦38′E to 20◦48′E longitude. Within the study area of 157 km2, around 21 km2 is

affected by landslides. This means that landslides occupy 13% of the entire study area. Within the study

area, there are translational, rotational, or combined rock-debris slides and typical debris slides [73–76].

Based on Vernes’ classification, updated by Hungr et al. [74], landslides within the study are slow- to

very slow-moving landslides. The landslide activity is significantly connected with hydro-geological

factors, such as rock stratification and precipitation. Activation of deep rockslides requires long

continuous precipitation of 100 to 500 mm per month while cumulative rainfall of 50–400 mm over the

course of 2–5 days can induce mudslides and debris slides [75]. Usually, north-facing landslides are

found to be complex, while south-facing landslides tend to be insequent or subsequent [75]. Figure 1c,d

presents the various landslide morphologies within the study area. Unfortunately, there are many

landslides with smoothed morphology (Figure 1d), which makes them difficult to detect.
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Figure 1. Location of the study area (a) with a false color image (spectral bands: 4-3-2) of a Sentinel-2A

image (b) acquired 3/10/2015. Examples of landslide shapefile from the national landslide database

(SOPO) for (c) landslide with visible terrain roughness and (d) landslide with smoothed terrain.

Appendix A Figure A1a presents the normalized difference vegetation index (NDVI), Corine Land

Cover (CLC), and NDVI index (A-b) for the study area. According to CLC, the study area is mostly

covered by non-irrigated arable land (26%), mixed forest (20%), and lands principally occupied by

agriculture with significant natural vegetation (18%). The remaining parts are covered by various

types of forest (coniferous forest, broad-leaved forest), plantations, pastures, and water bodies (8%).

Appendix A Figure A1b presents the NDVI index calculated for Sentinel-2A data acquired at 25/03/2020.

As can be observed, 53.7% and 31.8% of the whole area have values greater than 0.6 and 0.3, respectively.

This indicates that most of the study area is covered by vegetation (forest and agricultural areas), which

is in agreement with CLC.

The terrain of the Beskid Mountain Range area mainly has features of low- and medium-high

mountains and medium-high foothills [77]. The slope length ranges from 0.6 to 1 km [75]. Predominant

slope gradients are in the range of 0–68◦ and the relative elevations range from 266 to 613 m in the

montane area. In sub-montane areas, slope gradients are in the range of 0–72◦ and 0–82◦ for Wielickie

and Ciężkowickie Foothills, respectively. Correspondingly, the relative elevation within Wielickie and

Ciężkowickie Foothills is from 232 to 486 m and 234 to 581 m, respectively. In Ciężkowickie Foothills,

landslides range in size from 537 m2 to 92 ha. In Wielickie Foothills, landslides range from 584 m2 to

26 ha. In Beskid Mountains, landslides range from 925 m2 to 37 ha. The mean size of the landslides

within the study area is 3 ha. Large inactive landslides can be generally observed in Beskid Wyspowy

in woodland areas, on upper slope segments, and in cones of depression [73]. The most susceptible

area to land sliding is that directly adjacent to Rożnów Lake.
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In Appendix B, the geological map for the study area, with explanation, is presented. The study

site mainly comprises Eocene–Oligocene sandstones and shales and Upper Cretaceous sandstone and

conglomerate–Lower Stebna layers. Additionally, many different geological subunits are interconnected

with each other (see Appendix B). Based on Appendix B, it can be observed that the landslide bodies are

mainly located in the boundaries/contacts of the units and steep slope areas along Rożnów Lake, where

the slope stability is poor. These areas are mainly covered by sandstones and shales. For example, in the

boundaries of the Eocene sandstone and shale in the Śląska series, Oligocene-aged shale of the Krosno

layers is found in high slope areas along the lake and Paleocene–Eocene-aged spotted shale is found in

the Magura Series. In contrast, landslides are less observed in medium-thick Oligocene sandstones

and shales of the Śląska Series. Other geological units have a low susceptibility for landslides [73,75].

3.2. Data

Various data were utilized for this analysis. LiDAR data were acquired using a Riegl LiteMapper

6800i system based on the Q680i laser scanner. The point cloud planimetric density is equal

to 4–6 points/m2, and the estimated root mean square error for the height component is about

0.15 m [78]. The ability of LiDAR to capture topographic information is highly advantageous in

forested areas [7,19,20]. The landslide inventory database (SOPO) from the Polish National Geological

Institute was utilized to capture the training and testing datasets. The SOPO database consists of

geological data, in addition to information on landslide locations and their type, and on areas prone to

mass movements.

The location of existing landslides was collected in the SOPO database by the method approved

by Polish National Geological Institute [79]. This method included conventional techniques, mostly

comprising field reconnaissance, the visual interpretation of aerial photographs, the analysis of

historical data, and detailed geomorphological/geological analysis [75]. Landslides within the study

area stored in the SOPO database were mapped during field work in the years 2010, 2011, 2012, 2013,

2014, and 2015 [76,80,81]. Additional mapping work was also performed on the basis of topographic

maps at a 1:10,000 scale supported by stereoscopic analyses of aerial photographs and LiDAR data [82].

In addition to LiDAR and landslide inventory maps, geological maps over the study area were

acquired in raster format from the Polish National Geological Institute. Furthermore, Sentinel-2A

images acquired on 25/03/2020 and road network maps from Open Street Map were utilized. Table 1

summarizes the data used, and their types and sources.

Table 1. Data used, their types, and their sources.

Data Used Data Type Source

DEM Point cloud LiDAR [78,83]
Landslide inventory map Raster http://geoportal.pgi.gov.pl/portal/page/portal/SOPO

Geology map Raster Polish National Geological Institute
Sentinel-2A Raster https://scihub.copernicus.eu/

Road network Shapefile Open Street Map

4. Methods

An overview of the methodology applied is presented in Figure 2. The 2-m DEM generated

from the LiDAR point cloud was used for the extraction of topographic variables. Other data, such

as Open Street Map (OSM) or Sentinel-2A data, were used for additional non-topographical layer

extraction. Moreover, we utilized the DEM to extract the streams’ networks and Sentinel-2A to extract

the extent of Rożnów Lake. A detailed description of the extracted variables is presented in Section 4.1.

The extracted variables were used for supervised classification using pixel- (PBA) and object-based

(OBIA) approaches. Despite the various classification approaches used, we classified the study area

using the two training and testing strategies presented in Section 4.4. The accuracy parameters were

computed for each classification approach and for the various training and testing strategies.
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Figure 2. Overview of the entire methodology carried out in the present study.

Additionally, taking advantage of various processing approaches (pixels vs. object), the final

detection map was generated for overlapped results from PBA and OBIA. Then, additional refinement

was carried out (see Section 4.6). Furthermore, by utilizing the RF algorithm, we were able to indirectly

assess the feature relevance in automatic landslide mapping.

4.1. DEM Generation and Feature Extraction

The classified LiDAR point cloud was acquired within the IT System of the Country Protection

(ISOK) project [78,83]. LiDAR point cloud filtration within this project was performed using different

software, mainly TerraScan based on Axellson’s filtering method [84–86]. A filtered point cloud

was corrected manually based on a visual inspection of the point cloud and aerial photographs.

A classified LiDAR point cloud with a mean density of 4–6 /m2 was used to generate the base DEM.

The natural neighbor interpolation method was used to avoid smoothing of possible terrain breaklines

represented in the original point cloud. However, according to the recommendations provided in [14],

we resampled the base 0.5-m DEM into a 2-m resolution. This allowed us to preserve all landslide

surface features while significantly decreasing the data volume and removing the artifacts present

in the data at the original resolution. The issues connected with the suitable DEM resolution have

been investigated by various scientists, many of whom reported that the finest DEM resolution is

not the best choice [12,14,15,26,87]. Then, DEM derivatives (also called topographic variables or

land-surface variables and DEM variables) were calculated from the DEM. Based on a literature

review, the DEM variables presented in Table 2 were utilized. However, for OBIA, the mean pixels’

value of DEM variables inside the object was used. We applied 14 DEM variables, which are widely

used and recommended in the literature [7,10,13–15,19,20,87]. Roughness, curvature, mean slope,

topographic position index (TPI), and openness were calculated using various kernel sizes according to

the recommendations provided by Pawluszek et al. [14]. To take advantage of the hillshade, which is
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calculated by illuminating the DEM with sunlight coming from a specific direction, we calculated the

hillshade layers using eight sun angles (Figure 3) and then summed these layers into one hillshade

layer. This allowed us to simulate the sunlight coming from various directions [34].

Figure 3. Interrelationships of the used variables. The subscripts by the variable “hillshade” indicate

layers illuminated, in particular sun directions.

In contrast to PBA, OBIA takes advantage of various geometrical variables (compactness,

rectangularity, etc.). These variables were applied in the OBIA approach. In addition to the

topographical variables calculated from the DEM, the geology, normalized difference vegetation

index (NDVI), and proximity to roads, lake, and streams were also implemented in the classification.

A large amount of previous research [11,12] has utilized the NDVI for landslide identification. NDVI

application is only effective in the detection of recent catastrophic events that generate explicit and

visible land cover changes (before and after the event), including loss of vegetation, the presence of

fresh soil, and the exposure of debris. Nevertheless, we also utilized NDVI as an additional layer for

better segmentation and possible landslide boundary extraction. Landslide boundaries usually appear

along various land use classes (rivers, streams, forest boundaries, etc.). Additionally, the NDVI layer

was used for the Rożnów Lake extraction (NDVI < 0), which afterwards allowed for the extraction of

the lake proximity variable.

Geology is one of the most important aspects that influences the occurrence of landslide

identification and has been applied in many studies [30,88–96]. However, the proximity of roads

and water reservoirs (lake/streams) are also reported as critical factors that influence landslide

occurrence [89–92,94–96]. Information on the settings, methods, and software used are specified in

Table 2, while the interrelationships of data used, and the extraction of various landslide classification

variables are shown in Figure 3. Table 2 also provides the literature sources where particular variables

are explained in detail.
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Table 2. Variables used for landslide detection with the setting, software, and methods utilized to calculate them.

Variable Kernel Size/Setting Implementation
PBA

(ArcGIS)
OBIA

(eCognition)
Examples of Application

DEM-related variables
DEM - -

√ √
[7,12–15,19,20]

aspect - [97]
√ √

[12,19]
side exposure index (SEI) - [97]

√ √
[16]

flow direction - ArcGIS
√ √

[7,13]
roughness 7 × 7 [14,98]

√ √
[4,7,12,13]

slope 15 × 15 [97]
√ √

[7,12,13,19]
curvature 15 × 15 [97]

√ √
[7,12,13,27]

topographic position index (TPI) 15 × 15 [99]
√ √

[90]

openness 25 × 25 (interpolated DEM)
[14]

DEM25m −DEM2m

√ √
[7,13]

hillshade 8 various sun angles ArcGIS
√ √

[10,12,15,34,45]
compound topographic index (CTI) - [97]

√ √
[26,87,90]

elevation relief ration (ERR) 10 × 10 [87]
√ √

[87]
integral relief (IR) 10 × 10 [87]

√ √
[87]

integrated moisture index (IMI) - [97]
√ √

Other variables
geology - -

√ √
[90]

NDVI -
(NIR − RED)/
(NIR + RED)

√ √
[12]

roads proximity - Euclidean distance buffering
√ √

[90]
streams proximity - Euclidean distance buffering

√ √
[7,12]

lake proximity - Euclidean distance buffering
√ √

-

Geometry variables
count - eCognition

√
-

compactness - eCognition
√

[13]
rectangularity - eCognition

√
-

shape index - eCognition
√

[10,13]
roundness - eCognition

√
-

asymmetry - eCognition
√

-
length/width - eCognition

√
[13]

border length - eCognition
√

-

175



Remote Sens. 2020, 12, 3054

4.2. Pixel-Based and Object-Based Classification

An overview of the implemented PBA and OBIA classification is depicted in Figure 4. In the

pixel-based approach, all used features are treated as a raster that is co-registered and resampled into the

common resolution of 2 m. This makes a per-pixel analysis computationally effective [12]. As can be seen

in Table 2, PBA, unlike OBIA, does not consider geometrical and contextual information [12,19,33,68].

In object-based classification, also known as geographic object-based image analysis (GEOBIA) or an

object-oriented approach (OOA), the study area is segmented into groups of meaningful homogeneous

objects [12,68]. This approach assumes that the neighboring pixels likely belong to the same class

or object. A segmented object in OBIA can then be classified using spectral, geometric textural,

or spatial variables and relationships. Based on [7,8,10–13,15,68], landslides are better represented

by heterogeneous objects (collection of pixels) rather than single pixels. The first and the most

important step in OBIA is the segmentation of the study area into objects that are candidates for

landslides. Methods like multiresolution image segmentation and simple linear iterative clustering

are predominantly used for the segmentation of objects. Some segmentation algorithms require

scale parameters that influence the shapes and sizes of the resulting objects. These scale parameters

vary depending on the applied segmentation algorithm. Moreover, the selection of appropriate scale

parameters is not a straightforward task. In addition, landslides have a multiscale character. This means

that in the real world, landslides come in a wide range of shapes and sizes, thus tuning segmentation

scale is challenging. For this reason, various algorithms for scale tuning have been proposed in the

literature (e.g., plateau objective function), which combined with expert knowledge allows for more

effective landslide detection; however, the problem remains when landslides with significantly different

sizes exist [11,28]. Because our research goal was to investigate the influence of the ratio between the

training area and testing area, we utilized a trial-and-error procedure, which is also applied in the

literature, to estimate the scale value [100]. We set each of the shape and compactness parameters equal

to 0.5. This segmentation was performed for all extracted variables using multiresolution segmentation

in eCognition.

Figure 4. Steps performed in the pixel-based approach (PBA) and object-based image analysis

(OBIA) classification.

4.3. Random Forest Classifier and Variable Importance

For the numerical investigations within this research, a mature ML classifier, random forest, was

used in both approaches (PBA and OBIA). This is a nonparametric classifier developed by Breiman [101].

The RF classifier allows reliable classification results to be achieved using predictions derived from an
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ensemble of decision trees [101]. This is a crucial advantage that allows for a dimensionality reduction

of the RS data. In the literature, this classifier is widely applied to various RS applications, such as land

cover mapping [102,103] and landslide detection [12,19,20]. Detailed information on RF classification

can be found in [101,104]. Moreover, this classifier can be effectively applied to select and rank variables

with the greatest ability to discriminate between the target classes based on the impurity function of

the Gini index, which is known as the mean decrease or Gini importance [101,104,105]. In Section 4.2,

we provide an evaluation of the variable importance within PBA and OBIA classification. Additionally,

a large feature set can cause problems, such as: (1) A long time needed to train the algorithm, (2) a

long time and many resources needed to generate the variables, and (3) overfitting when too many

irrelevant features are utilized [19]. Hence, the feature relevance assessment is a highly important

aspect of the classification task. Nevertheless, we did not reduce our input variables because they did

not decrease the classification time. However, if a larger study area is analyzed and more input layers

are used, this variable reduction would be beneficial. During the training process, cross-validation was

performed (Figure 4). This means that 10% of the training samples was removed from the training

dataset and used to perform cross-validation. This allowed the evaluation of the accuracy of the

predictive model applied and to fine tune this model. After the training process, formal classification

was performed for the whole investigated area using various training and testing strategies, which are

presented in the next subsection. The RF classification for both approaches (PBA/OBIA) was performed

for 500 trees, with the tree depth equal to 30.

4.4. Training and Testing Strategies

Selection of the training samples is a critical step in supervised classification and the focal point

of our study. According to [36,106], the training sample size has a larger impact on the classification

accuracy than the algorithm itself. This conclusion was made based on an evaluation of the impact of

training data size on various classifiers in land cover mapping. This issue is especially important in

deep learning methods, where a large amount of well-labelled training samples is needed to prevent

the classifier from overfitting [107]. Using various training sample sizes, Huang et al. [24] achieved

an OA between 69% and 75%. However, OA is not the best estimator of the classification results,

particularly for imbalanced classes. Nevertheless, this result shows that the training sample quantity

influences the accuracy of the classification. Therefore, the acquisition of ground truth samples is a key

factor when planning feature detection based on supervised classification methods. In addition to the

quantity of training samples, the strategy for training sample selection is also important. Based on

the literature, there are generally two sample selection strategies: manual and random sampling

design [102,103,108]. Random sampling design is based on the identification and labeling of small

random patches of homogeneous pixels/objects in an image [108]. Chen et al. [19] reported that

random sampling design introduces the effect of spatial autocorrelation, which affects the classification

accuracy. In manual sampling design, the study area is split into two datasets (training and testing)

based on administrative or environmental boundaries. Training samples are spatially compact with

no autocorrelation effect, unlike random sampling design. Manual sampling design is thus more

reasonable from a practical point of view. Collecting landslide ground truth data is time-consuming.

Consequently, these ground truths come from landslide inventory maps generated for specific regions.

Landslide inventories are usually performed systematically on a part-by-part basis. Therefore, areas

that have already been investigated and mapped can be used for training the algorithm and predicting

landslide locations in areas where landslide inventory maps have not yet been generated (especially in

poorly accessible areas).

We used a manual sampling design in our study and utilized landslide polygons and corresponding

landslide pixels delivered from the SOPO inventory to train OBIA and PBA variants of classifiers,

respectively. However, we implemented the training–testing split ratio (TTR) (compare Figure 4)

according to two various strategies. In the first strategy, training samples were selected in the center of

the investigated area and covered 13% of the entire study area. The remaining portion of the study area

177



Remote Sens. 2020, 12, 3054

consisted of six testing areas (TAs), which were split using the region growing approach (Figure 5a).

These six various TAs (Table 3) were used for region growing testing. For instance, this means that the

training quantity for TA 1 covers 50% of the total investigated area and for TA 6 covers 13% of the total

investigated area (Figure 5a). This also corresponds to a training-split ratio of 1 and 0.15 for TA 1 and

TA 2, respectively. In the second strategy (natural boundary splitting design), the study area was split

into a testing and testing area along the boundary designated by Rożnów Lake and Dunajec River

(Figure 5b). In this variant, the training area covers 54% of the entire study area. The quantitative

values of the training samples in various testing strategies are presented in Tables 3 and 4 for the region

growing and the natural boundary splitting designs.

Figure 5. Various training and testing strategies used: (a) region growing testing design with various

testing areas abbreviated as TA 1–6 and (b) natural boundary splitting design (the right green area

used for training and red left area used for testing).

Table 3. Overview of the applied training sample size in the region growing testing design.

TSQ—training samples quantity of the entire study area; TTR—training-testing split ratio;

LTSQ—landslide training samples quantity of the entire classified area; and NLTSQ—non-landslide

training samples quantity of the entire classified area.

Areas
No.

Landslides
Domain

[km2]
Landslide

Areas [km2]
Non-Landslide

Areas [km2]
TSQ
[%]

TTR
LTSQ

[%]
NLTSQ

[%]

Training area 156 20 4.3 15.7 -
TA 1 149 20 5.4 14.6 50 1 10.7 39.3
TA 2 197 50 6.4 23.6 28.5 0.4 6.1 22.4
TA 3 335 56 9.8 46.2 26 0.35 5.6 20.4
TA 4 455 81 13.9 67.4 19.8 0.25 4.3 15.5
TA 5 563 106 17.2 88.8 15.9 0.19 3.4 12.5
TA 6 646 137 18.8 118.2 13 0.15 2.7 10.3
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Table 4. Overview of the used training sample size in the natural boundary splitting design. For the

explanation of the abbreviations, see Table 3.

Area
No.

Landslides
Total Area

[km2]
Landslide

Areas [km2]
Non-Landslide

Area [km2]
TSQ
[%]

TTR
LTSQ

[%]
NLTSQ

[%]

Training area 398 85 13.1 71.9 -
Testing area 404 72 8.3 63.7 54 1.2 8.3 45.7

4.5. Classification Accuracy Parameters

To directly compare the accuracy of OBIA and PBA for various testing areas, we carried out an

accuracy assessment at the pixel level. For this process, landslide shapefiles from the landslide inventory

database were rasterized with a 2-m resolution and overlaid with the achieved PBA classification

results. For OBIA, additional rasterization of the classification results was needed to overlay the OBIA

results with the reference data acquired in the framework of the SOPO database. To compare the

classification accuracy and evaluate the landslide detection skills of the tested variants, the confusion

matrix for a particular variant was calculated. This matrix includes the true positive (TP), true negative

(TN), false positive (FP), and false negative (FN) values. Based on these values, the overall accuracy

(OA) of the model is calculated as follows:

OA =
TP + TN

TP + FP + TN + FN
. (1)

When comparing the classification results, we followed the recommendation in [103] to investigate

more than just the OA. The F1 score, probability of detection (POD), and probability of false detection

(POFD) are additional measures for the accuracy parameter:

F1 Score =
2× recall× precision

recall + precision
=

2× TP

2× TP + FP + FN
, (2)

POD (recall) =
TP

TP + FN
, (3)

POFD (fallout) =
FP

FP + TN
. (4)

These parameters are especially important when imbalanced data are the subject of classification.

POD provides a view of correctly classified landslide data, while POFD portrays how many

non-landslide areas have been classified as landslides. The preferred value of the POD is 1, while that

of POFD is zero. The F1 score defines the harmonic average of precision and recall. These additional

accuracy assessment parameters are specifically important if the mapping focuses on small classes

(i.e., classes of a limited extent in the image data). Small classes will have little influence on the OA,

although they may be key in determining the usefulness of the classification [103]. This situation

appears when dealing with landslide mapping. It is relatively rare for landslides to cover 50% of the

whole study area; therefore, their influence on the OA is lower than that of the non-landslide class.

For our study area, the landslide density is 14.7% of the whole study area (23.1 km2 of landslide areas

and 157 km2 of non-landslide areas). Thus, the influence of the landslide class on the OA is small.

It thus makes sense to also investigate the F1 score, POD, and POFD indexes to obtain a better overview

of the classification accuracy and landslide detection skills.

4.6. Post-Processing and Final Landslide Map Generation

Because landslide extents detected by the OBIA approach are represented by multiple objects

or multiple pixels, we performed a post-processing refinement of the results. We determined the

most probable landslide extent by extracting the regions detected by PBA, as well as by OBIA.

The intersection of both results provided the most likely results. Additionally, when observing the final
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results, we noticed many small and elongated objects that do not represent landslide areas. Since the

minimum landslide size within our study area is equal to 537 m2 (estimated based on SOPO inventory),

we consequently removed objects smaller than 500 m2 from the intersected results. A shape/perimeter

index lower than 5 was another threshold parameter. Finally, filtering of the result using a median

filter with a 6 × 6 window size was performed to fill the small holes within the landslide bodies.

5. Results

5.1. Accuracy Assessment of Various Training and Testing Strategies

The cross-validation rate achieved during RF training was higher than 0.98, which means that

the models were correctly trained, and data could be classified using RF. As previously mentioned,

in the region growing sample design, we performed classification of the total study area using training

samples located in the center of the study area. Then, an evaluation of the results was performed

for the growing testing areas. Table 5 presents the accuracy assessment parameters (F1 score, POD,

POFD, and OA) for particular testing areas. These results could be refined using post-processing to

increase their accuracy. However, to directly compare PBA and OBIA and the influence of the TTR

on the detection results, refinement was not performed at this stage. Analyzing the achieved results,

we can notice that the F1 score of both approaches (PBA vs. OBIA) is comparable; however, OBIA

performed slightly better (completeness and precision) (Figure 6). This can be especially observed for

TA 3–6. Notably, the same algorithm and parameters were utilized in both classification approaches.

The classification accuracy changes only under various training sample sizes. This important finding

is shown in Table 5. The detection landslide skills decrease subsequently with a decrease in the

contribution of training samples in the total study area. Notably, the OA does not change significantly,

and the other accuracy parameters, such as the F1 score and POD, consequently decrease. This fact is

more obviously presented in Figure 6 for the F1 score accuracy measure. The region growing testing

shows that the landslide detection skills decrease proportionally to decreases in the TTR. However,

a substantial decrease is observed when the training sample quantity decreases from 50% to 26%.

After this, we can observe a small decrease in accuracy. This proves the previously discussed issue

when the OA index is used alone to evaluate landslide detection accuracy.

Table 5. Accuracy assessment for training and testing strategy 1 (region growing testing). Testing areas

1–6 abbreviated as TA 1–6.

Testing Area Method TTR F1 Score POD POFD OA [%]

TA 1
PBA-RF

1
0.57 0.83 0.29 74

OBIA-RF 0.58 0.88 0.31 73

TA 2
PBA-RF

0.4
0.53 0.85 0.31 72

OBIA-RF 0.53 0.88 0.33 71

TA 3
PBA-RF

0.35
0.44 0.83 0.34 69

OBIA-RF 0.46 0.87 0.34 69

TA 4
PBA-RF

0.25
0.42 0.80 0.34 68

OBIA-RF 0.46 0.86 0.33 70

TA 5
PBA-RF

0.19
0.42 0.79 0.33 68

OBIA-RF 0.45 0.85 0.32 70

TA 6
PBA-RF

0.15
0.40 0.78 0.33 68

OBIA-RF 0.43 0.84 0.32 70
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Figure 6. Decrease of the F1 score value for the region growing testing areas (compare with Figure 5).

Based on the achieved results, it can be concluded that the best result was achieved with 50%

of the training samples (F1 Score = 0.58). These results are limited, likely due to the imbalance in

landslide and non-landslides classes. In the tested scenario, only 10% were landslide areas, while 40%

were non-landslide areas.

To verify if accuracy above 70% and an F1 score at the level of 0.5 can truly be achieved when

the training and testing areas are similarly large, we performed training and testing according to

the natural boundary splitting design. The study area was split along the natural Rożnów Lake and

Dunajec River boundary. Although, in this variant, the testing and training areas were similarly large

(TTR = 1.2), we achieved slightly worse results. For instance, the OBIA approach provided an OA, F1

score, POD, and POFD equal to 72%, 0.48, 0.87, and 0.30, respectively (for comparison, for TTR = 1,

the OA, F1 score, POD, and POFD were equal to 73%, 0.58, 0.88, and 0.31, respectively, in the region

growing strategy). Table 6 presents the accuracy parameters for both classification approaches, while

Figure 7 shows a graphical representation of the classification results.
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Figure 7. Training and testing area were superimposed on the random forest (RF) classification results

for OBIA (a) and PBA (b) according to strategy 2.

Table 6. Accuracy assessment for training and testing strategy 2 (Rożnów Lake splitting).

Testing Area ML Method F1 Score POD PODF Accuracy [%]

Łososina-testing
area

PBA-RF 0.46 0.86 0.33 70
OBIA-RF 0.48 0.87 0.30 72

5.2. Feature Relevance

The feature relevance for classification can be assessed as an output from the RF algorithm training

according to the Gini impurity reduction [101]. Figure 8 presents the variable importance for both

classification approaches. As can be observed in both the PBA and OBIA classification approaches,

the geology, DEM, and roughness are the most important variables. The geometric variables were

found to be relatively unimportant in landslide detection using OBIA. The reason for this could be the

segmentation settings, which lead to objects that did not result in significant geometric values. In this

scenario, over-segmentation results in many small objects that represent the extent of one landslide

body. Thus, the geometric parameters of segmented objects do not correspond directly to the landslide

extent and therefore landslide object geometric parameters. Thus, to extract the boundary of one

landslide body, several segmented objects of this landslide should be merged together.
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(a)

(b)

Figure 8. Variable importance assessed based on the random forest algorithm for pixel-based (a) and

object-based approaches (b).
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5.3. Final Landside Map Generation

The common elements of the OBIA and PBA results from the second strategy (natural boundary

splitting design) were then refined. This refinement was performed via the post-processing step

described in Section 4.6. The final map of the detected landslides with TP, TN, and FN is presented in

Figure 9. The accuracy indexes after the subsequent post-processing steps are presented in Table 7.

Based on these, we can observe that the intersection of the PBA and OBIA approach, in addition

to the removal of small and elongated objects, helped to decrease the POFD index. This means the

minimization of over-classification or over-mapping (a high false positive rate). Medial filtering

slightly increased POFD but also increased POD, which is desirable. From another point of view,

these post-processing steps also decreased the POD, which reflects the probability of correctly detected

landslides. However, the OA and F1 scores subsequently increased in the following post-processing

steps. Increasing the F1 score indicates the performance of classification by taking into account true

positives (correctly classified landslides), as well as false positives (wrongly detected landslides).

Figure 9. Training and testing area superimposed on the results of the PBA and OBIA joint approach

for landslide detection.
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Table 7. Accuracy assessment for training and testing strategy 2 with the accuracies acquired after post

processing steps (Rożnów Lake splitting).

Classification Results Post-Processing Step F1 Score POD POFD OA [%]

PBA-RF - 0.46 0.86 0.33 70
OBIA-RF - 0.48 0.87 0.30 72

PBA&OBIA intersection of PBA and OBIA 0.48 0.73 0.23 76

PBA&OBIA refinement 1
small elongated objects

removed
0.50 0.62 0.15 81

PBA&OBIA refinement 2 median filtering 0.50 0.71 0.19 80

6. Discussion

6.1. Landslide Classification Accuracy with Respect to the Training Samples

Based on the results presented in Section 4.1, it can be observed that the F1 score and OA with

respect to the TTR decreases proportionally to the decreased training sample contributions in the whole

investigated study area. However, when comparing the OBIA and PBA results, OBIA performed

better for testing areas 3–6 when the TTR decreased. Thus, it can be concluded that OBIA performs

better than PBA when the quantity of training samples is smaller. Additionally, based on the region

growing testing design, it can be assessed that to achieve an F1 score at the level of 0.5, the training area

should be as large as the testing area. Therefore, this should be considered when performing landslide

detection using supervised classification.

Additionally, when comparing the results from the region growing design and natural neighbor

splitting design, it can be seen that the landslide detection skills are smaller in the second strategy.

The term “landslide detection skills” refers to how well the algorithm detected both classes: landslide

and non-landslide areas. This can be represented by the F1 score. Comparing results from the first and

second strategy where a TTR around 1 (training and testing area are similarly large) was applied, higher

landslide detection skills of the second strategy should be expected. The explanation for this could

be a smaller landslide class or landslide sample contribution in the training samples. In the region

growing design for similarly large areas for training and testing, landslide samples covered an area of

10.7 km2, while in the natural splitting design, they covered 8.3 km2. Another issue could be related to

the landslide morphology, because in both strategies, various landslides were used for classification.

The terrain roughness, value of curvature, and other variables can differ between landslides.

Furthermore, study area conditions could be the reason for slightly smaller landslide detection

skills in the second strategy. These could be geological changes, various elements of landslide training

samples due to the many types of land used (agricultural vs. forests), etc. Specifically, this relates

to how the classification accuracy changes under various geological and environmental conditions,

also taking into account the local morphometry of a particular landslide (e.g., training the algorithm on

a study area in a hilly or mountainous terrain covered by forest and evaluating it using a study area that

is extensively cultivated, and vice versa). In addition to this aspect, the training sample number and

training sample size are also noteworthy aspects to investigate. In this research, we investigated the

training–testing split ratio. However, the training sample number can also influence the classification

results. Thus, the topic of selecting training samples is not exhausted and various aspects were not

covered in this paper but should be investigated in future works.

It is worth mentioning that the achieved accuracy of landslide detection from the natural splitting

design is affected by the different characteristics of the training and testing areas. More specifically,

landslides located on the one side of Rożnów Lake (training area) can have other characteristics than

this located on the other side of the lake (testing area). In a perfect scenario, landslides used, or the

training, that are randomly and evenly distributed across the investigated study can better capture a

variety of the characteristics and can more effectively detect landslides. However, as was mentioned

before, the collection of ground truth data across the study area is very challenging and time-consuming
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from a practical point of view. Usually, such ground truth data (landslide inventory) is generated on

the part by part basis. In Poland, landslide inventory is performed commune after commune. In the

case of the study area, Rożnów Lake and Dunajec River are also the border between two communes,

namely Łososina Dolna commune (testing area) and Gródek nad Dunajcem (training area). Landslide

inventory for Łososina was created in 2011 while for Dunajec around 2015. Thus, from the practical

point of view, it is desirable to utilize existing landslide inventory for training and detecting landslides

in the area where such an inventory is not available.

6.2. Comparison with Other Related Studies

Our final results for landslide automatic detection were achieved via integration of the PBA and

OBIA results and the post processing refinement described in Section 4.6. Considering the classification

accuracy measures (Section 4.5), we achieved moderate agreement with the ground truth data (F1 score

= 0.5). Thus, there is still space for improvement in automatic landslide mapping. In addition to various

data, approaches, and classification accuracy measures, we attempted to compare our results to those

of other studies related to landslide detection based on DEM. However, it should be mentioned that

direct comparison is not possible due to the various study areas used in various works or also different

accuracy measures. Anyway, to somehow relate our study with some existing in the literature and to

summarize our achievement and limitations, we made this comparison. To compare these results with

those in [13] and those in our previous studies [14,15], we additionally calculated the Kappa index,

which is also a frequently used classification accuracy measure in the RS community. Some scientists

discussed the limitation connected with the Kappa index in accuracy evaluation [109,110]. Since some

papers present Kappa and OA and/or recall only [13–15], we decided to not omit the Kappa index due

to the limited number of presented accuracy measures, which can be used for comparison.

Comparing the accuracy measures of the other studies presented in Table 8, the results achieved

in this study are consistent with those of previous studies using similar methods [12,14,15,19,20],

especially ML-based or deep learning classification methods [12] (compare Table 8). Nevertheless,

these accuracy indexes still show only moderate landslide detection skills. The authors in [12] achieved

a smaller POFD, which indicates a smaller amount of false positives when using similar OBIA and

ML classification approaches. This is probably due to the specificity of the study area (Oregon, USA).

From Google Earth satellite images, it is apparent that the majority of Oregon is covered by dense

forest. There is only one city (Elkton), one main road (No. 38), and a lack of agricultural areas. Thus,

the explanation for the higher false positive rate could be the forest coverage, which maintains the

characteristic landslide topography. Additionally, when comparing our results with the work in [20]

conducted on the Three Georges in China, similar results were obtained. When comparing OA with the

work of [17], it can be stated that a similar accuracy was achieved; however, the POD (recall) presented

in [17] was significantly smaller, especially for the study area of Dixie Mountain. Based on the results

in Table 8, landslide detection in Dixie Mountain was the worst. This proved again that accuracy

measures other than OA are needed (e.g., F1 score, POD, POFD, K) to reliably compare classification

results between various areas with different landslide densities and different conditions. Additionally,

the authors in [17] observed that the scarp identification and contour connection method (SICCM)

mapped various study areas differently, either under-mapping or over-mapping in various study areas.

Thus, there is no clear indication that SICCM mapped one study area better than another.

Based on the Kappa and POD, slightly better results were provided by Knevels [13]. The reason

for the higher Kappa value could be the methodology applied in this study. Specifically, landslide

detection in the area of Oberpullendorf in Austria was performed by OBIA and support vector machine

(SVM) classification, but the authors in [13] integrated geomorphological mapping with the OBIA

approach. Specifically, the authors focused first on landslide scarp detection and then on the detection of

neighboring landslide bodies. The relationships between these features likely increase the algorithm’s

detection skills. This strategy would be beneficial for landslide detection but is computationally more

demanding and needs additional parameters to be tuned.
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Table 8. Comparison with other works and accuracy assessment indexes.

Authors Method Study Area F1 Score
POD

(Recall)
POFD

(Fallout)
K

Accuracy
(OA)

Presented
research

Łososina, Poland 0.50 0.71 0.19 0.4 0.80

[12] Deep learning Oregon, USA 0.56 0.72 0.13 - 0.85
[12] RF-PBA Oregon, USA 0.51 0.66 0.14 - 0.83
[12] ANN-OBIA Oregon, USA 0.55 0.48 0.06 0.86
[13] SVM-OBIA Oberpullendorf, Austria - 0.69 - 0.48 -
[17] SICCM Dixie Mountain - 0.39 - - 0.74
[17] SICCM Gales Creek - 0.43 - - 0.85
[17] SICCM Big Elk Creek - 0.65 - - 0.73
[19] RF-PBA Three Gorges, China - 0.65 0.64
[20] RF-OBIA Three Gorges, China - 0.71 - - 0.77
[15] SVM-OBIA Łososina, Poland - 0.71 - 0.6 0.85
[14] SVM-PBA Łososina, Poland - 0.65 - 0.55 0.81

Additionally, by comparing the accuracy measures with the works of Pawluszek et al. [14,15], it can

be concluded that previous approaches offer better detection skills. However, Pawluszek et al. [14,15]

utilized a significantly smaller study area (26.3 km2 compared to the 157 km2 analyzed in this paper). An

additional issue is the training sample designs that they utilized in their previous investigations. In [14],

they utilized stratified random sampling to train the algorithm, while in [15], the authors manually

selected random samples across the image. The authors of [19,111] also reported that random samples

taken across an area affected by landslides are more beneficial for landslide detection rather than small

coherent clusters used as training samples. However, this is the effect of a spatial auto-correlation,

which contributed to the final accuracy of landslide detection. There is no clear indication whether this

is an advantage or drawback of these specific training sample designs. Nevertheless, from a practical

point of view, when the landslide ground truth data need to be collected during field investigations, a

manual sample design is more pragmatic than a random sampling design. This is mostly due to the

time needed to collect samples across the investigated area during field work. Therefore, based on the

observations of our current and previous studies, the selection of the training samples is a significant

aspect that influences the final results and should be undeniably considered when planning ground

truth data collection during field work.

6.3. Opportunities and Limitations of the Presented Approach

A detailed analysis of the final landslide detection map reveals some opportunities and limitations

of the proposed approach. A section of the landslide detection map is presented in Figure 10a,b as

an example of these limitations and opportunities. For a better understanding of the classification

performance, the classification results were superimposed on the hillshade map (Figure 10a,b).

We selected these specific parts of the map to discuss various issues affecting landslide detection.

In Figure 10a, the presence of many false positive results can be observed. This means that the

landslides were over-mapped. In Figure 10b, we can observe very appropriate landslide mapping

in the middle part of the landslide in the areas with clear and fresh topographical characteristics

(rough surface, etc.). In the upper part of the landslide (Figure 10b), we can observe false negatives,

which means that this area was not properly mapped by the algorithm as a landslide but rather as

a non-landslide area. This is due to the smoothed morphology, which is changed by agricultural

treatments. However, in the lower part of the landslide, where the topography is again smoother,

we can observe significantly more false positives, similar to the situation in Figure 10a. To explain this

issue, we investigated our training samples used for training the RF algorithm.
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Figure 10. Landslide prediction in the testing area (a) with a large false positive rate, (b) with small

false positive rate and (c–f) examples of landslides used for training the RF algorithm superimposed

with the hillshade map.

Figure 10c–f presents the landslides located in the training area in the second classification

strategy. These landslides were mapped by geologists in the field and are included in the official

national landslide database. The morphology of the landslides used for training (Figure 10c–f) clearly

suggests that the characteristic landslide features were smoothed and altered. The reasons for this

are probably denudation and/or agricultural treatments. In such cases, it is highly challenging to

evaluate if a false positive is truly a false positive or if it is also a landslide body where the typical

landslide morphology has been smoothed. Based on visual interpretation, some areas with rough

terrain have been correctly classified by the algorithm and clearly show the landslide extent (green

color). Additionally, here we can observe the problem of landslide feature visibility, which makes

OBIA integration with geomorphological mapping (division into some characteristic landslide parts)

more challenging or impossible. The problems are mostly connected with an appropriate landslide

scarp definition, because in Figure 10c–f, these characteristic landslide features are invisible. Having

considered these aspects, it is our opinion that to minimize landslide over-mapping (reflected by a high

POFD index), altered and smoothed landslides should be removed from the training process. This will

probably help in more effective landslide boundary extraction and will minimize the false positive rate.

Additionally, another aspect is related to the quality of the reference data because the delineation of

landslide polygons can be too sparse and generalized. This would influence the accuracy of landslide

detection [106,112]. Therefore, the quality of landslide shapefiles located within the training site should

be investigated and discussed in future works.
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7. Conclusions

Training samples are essential for supervised classification. In the case of automatic landslide

mapping, it is especially important to determine how much representative data is required to achieve

the specified level of accuracy in landslide detection based on supervised classification methods.

The region growing testing performed in this study shows that landslide detection skills decrease

proportionally to a ratio decrease of the training–testing area. However, a substantial decrease is

observed when the training sample quantity decreases from 50% to 26%. The application of region

growing testing allowed us to assume that the training areas should be as large as the testing area.

To verify this assumption, training sample selection according to the natural splitting design, which

covers almost half of the entire study area, was used as the second strategy. In this strategy, the OA

and F1 score were 72% and 0.42, respectively, and proved our assumption that the appropriate ratio of

the training–testing area would be around 1. Slightly lower landslide detection skills when compared

to the region growing design (an OA and F1 score of 73% and 0.58, respectively) can be related to other

aspects of training sample selection (training sample number, quality of landslide inventory, etc.) or

the environmental condition of the study area, which should also be investigated in future works.

In addition to, the training–testing ratio, which was the main focus of this study, the final landslide

detection map was also generated by the intersection of the OBIA and PBA approaches and refinement

of the results. Refinement included median filtering and the removal of small elongated objects, which

allowed us to remove false positives from the final results. However, we inferred that the smoothed and

vanished morphology of the landslides used for training and/or the quality of the landslide inventory

have a direct influence on the rate of false positives. Nevertheless, the achieved results (OA = 80% and

F1 score = 0.5) are consistent with those presented in the literature.

The RF algorithm also allowed us to identify the most relevant variables for landslide detection.

In both cases (PBA and OBIA), the geology and terrain roughness were the most important variables

and should undeniably be used in landslide detection. Furthermore, geometry-related variables were

insignificant in the OBIA approach, probably due to the undersegmentation strategy used for the OBIA

classification in this study.

In summary, this study, supported by the comprehensive literature review, allows us to draw

a few conclusions for further research on landslide detection approaches. Firstly, from a practical

point of view, manual sampling design should be selected to evaluate the landslide detection skills

of algorithms based on supervised classifications. Secondly, the OA measure alone should not be

used to evaluate the classification results, especially for imbalanced classes. Further, the train–test

ratio should be around 1 (the training area should be as large as the testing area). The quality of

the landslide ground truth sample is also an important issue. Additionally, the removal of old and

denudated landslides whose characteristic topography is not visible in the terrain’s morphology should

be removed from the training samples. Moreover, the environmental conditions of various study areas

and the influence of landslide detection skills should be tested in the future to assess the transferability

of the algorithms. Finally, the landslide phenomenon, due to its complexity, is highly challenging to

detect; thus, the integration of the OBIA approach with geomorphological mapping, also taking into

account morphometry, would be preferable.
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Appendix A

Figure A1. Corine Land Cover Map of the study area superimposed on the slope image (a) and (b)

Normalized Difference Vegetation Index (NDVI) index.
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Appendix B

Figure A2. Geological map of the study area.
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Table A1. Explanation to geological units presented in Appendix B.

Unit Number Unit Type Additional Description

1 peat and ground soils

Quaternary

2 calcareous tumbles

3 gravel, sands and clays, ore dregs of the valley bottoms

4
clay, slıts with admixture pf sands and alluvial soils, river
sands and gasses of flooding and overflow terraces 1–5 m

on the riverbank

5 rock rubbles in situ

6 sands and weathering clays.

7
clays, sands, clays, sometimes with congregational and

diluvial rubble.

8 landslide colluviums

9 loess-like clays

10
gravel, sands and river clays, erosive and storage terraces.

6–13 m on the riverbank

11
gravel, sands and river clays, erosive and storage terraces.

15–30 m on the riverbank

12 boulders, gravel and water type sand

13
gravel, sands and river clays, erosive and storage terraces.

35–60 m on the riverbank

14
gravel, sands and river clays, erosive and storage terraces.

65–80 m on the riverbank

15
gravel, sands and river clays, erosive and storage terraces.

85–110 m on the riverbank

16
conglomerates and sandstones wıth clay

liner—formatıon Beli
Transgressive Miocene on the

Carpathian flysch (Tertiary
period-neocen)

17
clay, slits from inserts, lignite lenses—formation

from Iwkowej

18 spotted marl in coal
Under Silesian Nappe in the
coal facies (Tertiary period

Upper Cretaceous—Paleocene)

19 thick-bedded sandstone and shale sandstones from Rajbrot

20 gray marl from exotic frydeckie

21 marl from Żegociny

22 shale and sandstones

Silesian Nappe (Tertiary
period—Paleocene)

23 darkish limestone

24 medium-thick and semi-thin sandstone and shale

25
shale, sandstone, chert, marl, and

conglomerate-menilite layers

26 globigerina marl

27 sandstone and shale–hieroglyph layers

28 sandstone and shale—heavy type sandstone

29
shale with thick-bedded and medium-bedded

sandstone inserts

30 sandstone and conglomerate—upper Istebna sandstone

31 shale with thin-bedded sandstone inserts

32 Istebna shale with lower layers from upper Istebna
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Table A1. Cont.

Unit Number Unit Type Additional Description

33 sandstone and conglomerate—lower Istebna layers

Silesian Nappe
(Upper Cretaceous)

34
thin, thick and medium-bedded sandstone, seated

conglomerate—unseparated Godulskie layers

35
medium and thick-bedded sandstone, conglomerate and

shale—Godulskie layers

36
medıum and thin-bedded sandstone and

shale-Godulskie layers

37 Godulskie spotted shale

38 sandstone and shale-Igockie layers

Silesian Nappe
(Lower Cretaceous)

39 Rzewów shales

40 sandstone-Grodziskie layers

41
shale with thin-bedded sandstone inserts—upper

Cieszyn shales

42 thick-bedded sandstone—Cergowa sandstone
Under Magura Nappe

Dukielskie series (Tertiary
period—Palaeogene)

43 shales menilite and lower Cergowa mar

44
shales or shale and sandstone—hieroglyphs and

green shale

45 tylawskie limestone

Grybów and Michalczowej
Unit (Tertiary

period-Palaeogene)

46 Sandstone and shale

47 Shale, chert, sandstone—Grybowskie layers

48
Organodetic limestone and sandstone—Luzańskie

lımestone and Michalczowej sandstone

49 marn shale, sandstone, lower Grybowskıe marl

50 shale and sandstone–hieroglyph layers

51 spotted shale

52
thin and medium-bedded sandstones and shales—layers

of Jawoveret/inoceramic in biotite facies

53 sandstone and shale-Magura layers in glauconite faction

Magura Nappe (Tertiary
period—Palaeogene)

54 shales within the Magura sandstone in the muscovite facies

55
thick-bedded sandstones and shales—Magura sandstone

in the muscovite facies

56 chert, Pelic limestone

57 shale, marl, sandstone—Zembrzyckie submarine layers

58
low, medium and medium-bedded shales and

sandstone–hieroglyphic layers

59
Ciężkowice sandstones in the Magura sandstone form

of Wojakowa

60 spotted shale

61
thin and medium-bedded sandstones and shales—layers

of Jawoveret/inoceramic layers in the biotite facies

62
medium and thin-bedded sandstones and shales—layers

of Kanina

63 marl and spotted shale
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100. Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image

segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [CrossRef]

101. Breiman, L. Random forests. In Machine Learning; Springer: Berlin/Heidelberg, Germany, 2001; Volume 45,

pp. 5–32.

102. Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes

in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [CrossRef]

103. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing:

An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
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Abstract: Among all the natural hazards throughout the world, floods occur most frequently.

They occur in high latitude regions, such as: 82% of the area of North America; most of Russia;

Norway, Finland, and Sweden in North Europe; China and Japan in Asia. River flooding due to ice jams

may happen during the spring breakup season. The Northeast and North Central region, and some

areas of the western United States, are especially harmed by floods due to ice jams and snowmelt.

In this study, observations from operational satellites are used to map and monitor floods due to ice

jams and snowmelt. For a coarse-to-moderate resolution sensor on board the operational satellites,

like the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the National Polar-orbiting

Partnership (NPP) and the Joint Polar Satellite System (JPSS) series, and the Advanced Baseline

Imager (ABI) on board the GOES-R series, a pixel is usually composed of a mix of water and land.

Water fraction can provide more information and can be estimated through mixed-pixel decomposition.

The flood map can be derived from the water fraction difference after and before flooding. In high

latitude areas, while conventional observations are usually sparse, multiple observations can be

available from polar-orbiting satellites during a single day, and river forecasters can observe ice

movement, snowmelt status and flood water evolution from satellite-based flood maps, which is very

helpful in ice jam determination and flood prediction. The high temporal resolution of geostationary

satellite imagery, like that of the ABI, can provide the greatest extent of flood signals, and multi-day

composite flood products from higher spatial resolution imagery, such as VIIRS, can pinpoint areas of

interest to uncover more details. One unique feature of our JPSS and GOES-R flood products is that

they include not only normal flood type, but also a special flood type as the supra-snow/ice flood,

and moreover, snow and ice masks. Following the demonstrations in this study, it is expected that

the JPSS and GOES-R flood products, with ice and snow information, can allow dynamic monitoring

and prediction of floods due to ice jams and snowmelt for wide-end users.

Keywords: ice jam; snowmelt; flood mapping; monitoring and prediction; VIIRS; ABI

1. Introduction

Floods are the most frequent natural hazard throughout the world. The regions where river

flooding due to ice jams may happen, during the spring breakup season, include: 82% of the area of

North America, including the whole of Canada and 52% of the United States; most of Russia; Norway,

Finland, and Sweden in North Europe; China and Japan in Asia [1]; and other morphological areas,
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like in the alpine valleys [2]. In the United States, floods cause the highest amount of life and economic

loss among all the severe weather events [3]. Floods caused by snow/ice melting occur almost every

year in the United States, for example, severe floods occurred along the Red River in April 2020,

spring 2014, April 2013, March 2010 and April 2006. The Northeast and North Central United States

are especially effected by floods due to ice jam and snowmelt. Although most flood events caused by

ice jams and snowmelt are relatively minor and only affect local areas, a high number of significant

floods related to ice jam and snowmelt have caused severe property damage and deaths.

The National Weather Service can issue routine river flood outlooks and warnings in the United

States, but there is currently no widespread way to determine flood extent over land resulting from

snowmelt and ice jams. Due to the complexity of river ice processes and thermal rises, and the relative

predisposition to melts or instability effects in mountain areas, modeling floods due to ice jams

and snowmelt is more complicated than modeling open-water flood [4–7]. Although numerical models

have been developed for ice floods in several rivers all over the world [8–11], these were mainly

designed for simulation, and rarely for prediction [4,11]. Yu et al. [12] indicates that the uncertainties

in ice thermal and flow conditions inhibit the predictive capability of hydraulic/river ice models.

Satellite remote sensing provides a useful approach to detecting, determining and estimating

the flood extent, as well as damage and impact over rivers and land bodies [13–15]. Operational weather

satellites can provide ideal tools for flood detection, because of their large spatial coverage, frequent

observations, low cost, and ease in distinguishing between water and land. During the daytime,

flood maps can be derived from optical sensors onboard the operational weather satellites, such as visible

(VIS), near-infrared (NIR) [13–15] and shortwave-infrared (SWIR) [16] observations under clear sky

conditions. Due to their capacity to penetrate non-rainy clouds, microwave remote sensing instruments,

including active airborne synthetic aperture radar (SAR) imagery [17] and passive microwave (MW)

instruments [18–22], and especially SAR with high spatial resolution (10–30 m), if available, can provide

invaluable flood information under almost all weather conditions. Nevertheless, SAR usually has

a narrow swath and long revisit time (6–12 days) [17], while a flood is often a short-term event.

Meanwhile, passive MW sensors usually have very coarse spatial resolutions (10–25 km) [18–22].

Optical sensors can explain surface flood information straightforwardly, with simpler preprocessing.

Remote sensing demonstrates great potential for monitoring river ice conditions [23]. Moderate

Resolution Imaging Spectroradiometer (MODIS) and RADARSAT-2 were used to detect unbroken

ice cover, monitor ice cover conditions and estimate ice volume [24,25]. The large spatial coverage

and frequent observations of operational weather satellites, like the Suomi National Polar-Orbiting

Partnership (S-NPP) and the Joint Polar Satellite System (JPSS) series, have unique advantages for

flood monitoring. The S-NPP and JPSS constellation allows the Alaskan region to receive low latency

data from 28 daily overpasses [26]. For high latitude regions, the revisit time is about 50–90 min,

depending on latitudes and locations. Since in high latitude regions conventional observation is sparse,

the capacity for multiple observations from operational polar-orbiting satellites during the daytime

makes the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the S-NPP and JPSS series very

attractive for flood monitoring. These floods can be tracked dynamically by VIIRS in near-real time,

which can thus be used for early warning and loss assessment by users from river forecast centers.

Floods caused by snowmelt and ice jams occur almost every year in the United States, and notable

scenarios include the floods that happened along the Yukon River and Koyukuk River in Alaska

in May–June 2013 due to ice jams, and the significant flooding that occurred along the Red River,

recently, in April 2020. In order to meet the needs from end users, in this study, the S-NPP

VIIRS 375-m and GOES-R imager data are used to detect floods caused by ice jams and snowmelt.

Here we demonstrate an application of our flood algorithm in ice jam flood monitoring, and an

application for snowmelt flood detection.
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2. Data and Methods

2.1. Study Sites

The Yukon River is the third longest river in North America and the longest river in Yukon, Alaska.

The river originates from British Columbia, Canada, and flows west to Alaska in the United States.

Ice jams and flooding are very common on the Yukon River when warming temperatures in spring

melt the ice. In May 2013, a persistent ice jam on the Yukon River overtopped its banks and carried

flooding water to the town of Galena in Alaska. Since then, there has been no real big ice jam flood till

now. The location of the Yukon River is marked in Figure 1.

 

 

 ‒
‒

‒
 
 

 

Figure 1. The location map of the study sites in the United States. The thick blue lines mark the major

rivers in North America.

The Red River flows northward, along the border of North Dakota and Minnesota, in the United States,

through Manitoba, Canada. The Red River passes through several cities, including Fargo and Grand Forks

in the United States, and Manitoba’s capital, Winnipeg in Canada. Water draining northeast on a gentle

slope was dammed by the south edge of the continental ice sheet. In spring, the Red River thaws first from

the south in North Dakota, while still frozen farther north, causing widespread flooding. The location of

the Red River is showed in Figure 1.

2.2. Data Used

To estimate the flooding caused by ice jam and snowmelt, S-NPP VIIRS, GOES-R Advanced

Baseline Imager (ABI) and other types of ancillary data were used:

1. Calibrated VIIRS level 1b data at imagery channel 1 (red: 600–680 nm), channel 2 (near-infrared:

850–880 nm), channel 3 (shortwave infrared: 1610 nm), and thermal infrared channel 5

(1050–1240 nm) with 375-m spatial resolution.
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2. The calibrated level 1b GOES-16 ABI near real-time data

3. GOES-R and VIIRS geolocation data, including longitude, latitude, solar zenith angles,

solar azimuth angles, sensor zenith angles and sensor azimuth angles.

4. S-NPP/VIIRS cloud mask Intermediate Product at 750-m resolution

5. M-band terrain-corrected geolocation data (GMTCO).

6. The National Land Cover Database 2006 (NLCD) of the United States Geological Survey

(USGS) [27].

7. Linear hydrographic feature data, including major rivers, streams and canals, and area

hydrographic feature data, including major lakes and reservoirs.

8. MODIS 250-m global water mask (MOD44W) [28,29].

2.3. Methods

2.3.1. Flooding Water Detection

Because of different underlying surface conditions, there are two primary types of floods: the most

common flood occurs over vegetation or bare land, referred to as supra-vegetation/bare land flood;

another flood type mainly occurs on top of snow/ice surfaces, referred to as supra-snow/ice flood.

These two types of floods show different spectral characteristics in optical sensor observations,

in visible, near infrared, shortwave infrared and thermal infrared channels, and thus require different

methodologies for flood detection using optical sensor data, like the VIIRS imagery.

The supra-snow/ice flood is a special flood type because the underlying layer is still covered

with snow/ice. Because the reflectance of snow and ice is high, floodwater over a snow/ice surface

reflects much more in visible (VIS) and near infrared (NIR) channels than floodwater in normal

supra-vegetation/bare land floods, while the reflectance in the visible channel ( RVis) is still higher

than in the NIR channel (RNIR) [30–32]. The detection of supra-snow snow/ice flood also uses similar

variables: RVis, RNIR and NDVI (or Normalized Difference Vegetation Index). However, the melting

snow/ice surface and shadows cast on the snow/ice surface share similar spectral features in these

three variables, and thus may be confused with supra-snow/ice floodwater. We therefore introduce a

new variable, DNDVI, defined as the Difference in NDVI between a pixel and its snow/ice neighbors.

As demonstrated in Li et al. [33], shadows on snow and melting snow surfaces have similar RVis,

RNIR and NDVI values, while melting snow and shadows can be separated from supra-snow/ice

floodwater using the DNDVI value.

For supra-snow/ice floods, VIIRS snow/ice mask is applied before flood detection to determine

snow/ice cover. The decision-tree technique is used to distinguish supra-snow/ice floodwater from

snow/ice cover and shadows based on these variables: reflectance in the visible channel RVIS,

NDVI and DNDVI [28].

2.3.2. Cloud Shadow Removal

For flood detection, cloud shadow is always the biggest challenge because cloud shadows share

very similar spectral characteristic with flooding water in the visible, near infrared, short-wave

infrared and thermal infrared channels, meaning these cannot be separated from one another via

spectral characteristics. Thus, during water detection based on the decision-tree approach, most

cloud shadows are counted as water. To remove these cloud shadows from flooding water pixels,

we evaluated the cloud shadow results in cloud masks and applied them in cloud shadow removal first.

Then we adjust the geometric cloud shadow removal algorithm [34] for VIIRS imagery. This method

made an assumption that one cloud pixel casts, at most, one cloud shadow pixel. A spherical geometry

model between cloud shadows and clouds is developed, and cloud height is required. To avoid possible

errors in cloud height products, the geometry model is applied iteratively to build the cloud-to-shadow

relationship. By adjusting the geometric cloud shadow removal algorithm, further improvements can

be made to solve the remaining cirrus-cloud shadows [34].
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2.3.3. Terrain Shadow Removal

Terrain shadow is another big challenge in flood detection, because terrain shadows also show

similar reflectance properties to water, and may be misclassified as flooding water. To remove

terrain shadows, an object-based method is developed using the digital elevation model (DEM)

data, resampled to VIIRS or GOES-R resolution from the Shuttle Radar Topography Mission

(SRTM)-2 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [35].

Since terrain shadows usually form in mountainous areas while flooding water mainly accumulates

in low-lying areas, the surface roughness of terrain shadows is much greater than that of floodwater [36].

Instead of working on single pixels, this object-based method treats a group of adjacent pixels as one

object to calculate surface roughness.

The method was applied to identify terrain shadows in the VIIRS-derived flood maps.

The validation results show that more than 95% of the terrain shadows can be separated from

the flooding water, and some of the remaining cloud shadows can also be removed [35].

2.3.4. Flooding Water Fraction Derivation

Since a flood is the overflowing of water onto normally dry land area, for a coarse-to-moderate

resolution sensor like VIIRS and ABI, flooded pixels may be mixed with water and land.

Thus, the flooding water fraction can represent mixed pixel information, and contain more information

than just “yes/no” flood water mask [9], as in the most common satellite-based flood mapping.

Therefore, after water classification, if a pixel is classified as “Water”, we further calculate its water

fraction based on the linear mixture model [16]:

fw =
Rch_land −Rch_mix

Rch_land −Rch_water
(1)

where f w is the water fraction, Rch_mix is the reflectance for mixed pixels, Rch_land is the reflectance for

pure land pixels and Rch_water is the reflectance for pure water pixels. The reflectance in the visible (VIS)

channel (e.g., VIIRS Imagery Band 1 or I1: 0.64 µm), near IR (NIR) channel (e.g., VIIRS Imagery Band 2

or I2: 0.865 µm) and shortwave IR (SWIR) channel (e.g., VIIRS Imagery Band 3 or I3: 1.61 µm) are

used. As a land pixel may be any surface type (like vegetation, grass, bare land, etc.), Rch_land values

vary for different surface types. In order to find the exact threshold values, especially the Rch_land

for land end members, a dynamic nearest neighbor searching (DNNS) method was developed to

dynamically search the nearby land and water end members [16]:

Rvis_mix

RSWIR_mix
− Rvis_water

RSWIR_mix
<

Rvis_land

RSWIR_land
<

Rvis_mix

RSWIR_mix
RNIR_mix

RSWIR_mix
− RNIR_water

RSWIR_mix
<

RNIR_land

RSWIR_land
<

RNIR_mix

RSWIR_mix

(2)

Equations (2) provide the basis for finding the nearby pure land and water pixels, which are

searched in a dynamic window (100 × 100 pixels) around each mixed pixel. The nearest pure

land and water pixels that satisfy the relationship described in Equations (2) are located in the loop,

the average reflectance of all the identified land pixels is taken as Rch_land, and the average channel

reflectance of all the found water pixels is used as the reflectance of pure water (Rch_water). The water

fraction can then be calculated from Equation (1). Based on the difference in the water fraction after

and before flooding, a flood map can be derived. The algorithm process flowchart can be found in

Li et al. [33].

3. Results

High latitude areas in North America may suffer from floods due to ice jams, especially during

spring break up season. Here we show an example of a disastrous flood caused by an ice jam along

the Yukon River in Alaska from, 27 May to early June, 2013.
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The algorithms described above were applied to the Suomi-NPP/VIIRS data to map and monitor

the flooding process dynamically. The flood detection is performed with the water detection and fraction

products at the original 375-m resolution.

Figure 2 shows the VIIRS false color image and the corresponding flood detection map at 20:27

Coordinated Universal Time (UTC) on 27 May 2013. A long segment of the Yukon River near Galena

was still covered with ice. Ice in the eastern section was mostly melted. Water flowed out of the riverbed

to the east of Galena due to the ice jam. The flood could be identified from the VIIRS false color images.

With the flood detection algorithms developed in this study, flooding water was detected at water

fractions from 60% to 100%. At this time, the flooding water was confined to a small area, and city of

Galena was still safe.

 

 

Figure 2. VIIRS false color image (upper) and the corresponding flood detection map (lower) along

the Yukon River in Alaska on 27 May 2013.
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The largest flooding occurred at 21:29 UTC on May 29 (Figure 3). Most of the flooding water

fractions near Galena were close to 100%. Figure 3 shows VIIRS data with large areas of flooding water

near Galena. The largest area of the flood was estimated to be approximately 18 miles long. In addition

to the flooding along the Yukon River, flooding also occurred along the Koyukuk River because of an

ice jam. Afterwards, the downstream ice melted gradually, and the flood water then began to retreat.

Comparisons of visual analyses with the VIIRS false color images show a good consistency in the flood

detection results (Figures 2 and 3). VIIRS flood maps can be generated automatically at near-real time,

and are quantitative and more objective than using visual analysis in flood detection.

 

 

Figure 3. VIIRS false color image (upper) and the corresponding flood detection map (lower) along

the Yukon River near Galena in Alaska on 29 May 2013.
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One advantage of polar-orbiting satellites in high latitude regions is that multiple observations

can be made available during a single day, which can thus help dynamically monitor and predict

floods due to ice jams. Figure 4 further shows the formation regarding the ice jam flood near Galena,

Alaska. We can see how ice jams can be determined by observing ice movement and flooding water

evolution. In this figure, green arrows show the current ice location, yellow arrows mark the latest

ice location, and red arrows identify the ice jam locations. We can see over a high latitude region,

like Alaska, polar-orbiting satellite can provide multiple observations during a day. This is especially

very helpful for tracking ice movement. We can see that within two hours, from 20:45 UTC to 22:27

UTC, on May 26, ice moved 8.9 km downstream along the Yukon River. From 22:25 UTC on May 26 to

20:27 UTC on May 27, ice moved 62.4 km further downstream within one day. Meanwhile, ice melted

and became flooding water. The flooding progressed rapidly. Over less than 2 hours, from 20:27 UTC

to 22:04 UTC, on the same May 27, ice moved further downstream 11.2 km toward the city of Galena.

Late in the night of May 27, the flooding waters increased and the melting ice flowed downstream

along the Yukon River, and most of Galena was under water by the morning of May 28 (Figure 4).

The residents of Galena were forced to evacuate.

 

 

Figure 4. The flood detection maps at 20:45 UTC (a) and 22:27 UTC (b) on May 26; and at 20:27 UTC (c)

and 22:04 UTC (d) on May 27, 20:10 UTC on May 28 (e) and 21:29 UTC on May 29 (f), 2013. Yellow arrow

displays the latest ice location, green arrow indicates current ice location, and red arrow marks the ice

jam location.
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Figure 4e,f further shows the formation and retreat of the ice jam flood near Galena, AK, from 28

to 29 May 2013. With the multiple available observations, ice movement and flooding water evolution

can be tracked. We can see that from 22:04 UTC on May 27 to 20:10 UTC on May 28, ice moved

downstream another 1.9 km, along the Yukon River. Meanwhile, we can see the 36.5-km-long ice jam

section. At 21:29 UTC on May 29, the ice cover changed to mixed water and ice, or to overflow status,

and this means most of the river channel was open and the floodwater reached the maximum extent.

Later, flooding waters decreased substantially, and retreated by 1 June 2013 (not shown).

The VIIRS and GOES-R flood products with ice and snow information can also be used to detect

and monitor flood due to snowmelt, as shown in Figures 5 and 6. Figure 5 demonstrates how snow

gradually melted and became flooding waters. The Red River flows from south to north toward colder

latitudes, where ice jams tend to block the flow during the spring thaw season. Flooding within the Red

River is a yearly signal of the end of winter and coming of summer. Spring of 2020 is proving to be no

different; with major flooding occurring over much of the Red River and its tributaries due to seasonal

snowmelt, the flood-prone river overtopped its banks again.

 

 

Figure 5. GOES-R ABI Flood Extent Product on April 5 (a), 6 (b), 7 (c) and 8 (d), 2020.

Wondering if there were any areas experiencing impactful flooding outside of the current NOAA

(or National Oceanic and Atmospheric Administration) flood warnings, forecasters turned to GOES-R

and VIIRS flood products for help in highlighting areas of observed floodwater coverage. Although

GOES-R ABI is also an optical sensor, its high temporal resolution (5 min) enables it to capture some

clear sky observations, allowing the possibility of observing floods during the day [37]. Figure 5

demonstrates GOES-R ABI flood products from 5 to 8 April 2020, when moderate-to-major flooding

was occurring along the Red River and its tributaries within the central and northern basin, due to

gradual snowmelt. In this figure, snow is marked as white and ice is represented by the cyan color.
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Values higher than 60% (orange and red coloring) were of particular interest, and lower values into

the 30–50% range were believed to be non-impactful standing meltwater. On April 5, there was still

some snow along the Red River region. On April 6, snow started melting. On April 7, snow further

melted and resulted in flooding, and on the next day, on April 8, snow continued to melt, and the flood

extent area increased even more.

 

 

Figure 6. VIIRS 5-day (April 7–11) composite flood product in April 2020 (the color scale is the same as

Figures 4 and 5. Courtesy of Dave Jones at the Storm Center).

The Red River passes through some of North Dakota’s most populated areas. While the ABI flood

products are updated hourly, the ABI’s spatial resolution of 1 km may smooth out the spatial extent of

potentially impactful floodwaters. VIIRS offers the same imagery at the finer resolution of 375 m, but at

the expense of producing only one image during the daytime, which requires a clear sky to provide

useful information. The VIIRS 5-day composite flood map can remove cloud contamination, and is

shown in Figure 6. It confirmed higher percentage values of flooding water in the same areas of interest.

Although our algorithms have been intensively validated and evaluated [33], ground observations of

the I-29 road closure due to flooding in North Dakota can also validate our flood product.

High resolution satellite imagery, down to 10-m from Sentinel-2, can be obtained from

the Sentinel-Hub EO Browser [38]. A timely, cloud-free pass from the Sentinel-2 satellite over

the area of interest is available for comparison and evaluation (Figure 7). As shown in Figure 7,

compared to Figure 6, in the VIIRS flood map, a high percentage of floodwater fraction (>90% in red

color) corresponds to deep water, in the dark blue color in the Sentinel imagery, while lower percentage

values (60~80% in yellow color) correspond to shallow water, in the lighter blue color in the Sentinel

image. Sentinel-2 imagery hinted that the spatial distribution of these floodwaters was close to the ABI

[Figure 5c,d] and VIIRS (Figure 6) flood extent areas, confirming that impactful flooding would be

possible there.
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Figure 7. Sentinel-2 Short wave infrared composite (SWIR) imagery on 10 April 2020.

4. Discussion

The large spatial coverage and frequent revisits of coarse-to-moderate resolution operational

satellite imagery, such as the VIIRS onboard the SNPP and the current and future JPSS series, and the ABI

onboard the GOES-R series, have advantages in flood detection and monitoring over large areas.

In high latitude regions, multiple observations are available from polar-orbiting satellites during

the day, which can help dynamically monitor and predict floods due to ice jams. In the cases of this

study, floods were due to ice jams and snowmelt, but the procedures and algorithms can be applied to

warm season floods due to heavy rainfall as well. The VIIRS and GOES-R flood products are routinely

generated at the Space Science and Engineering Center (SSEC), University of Wisconsin, Madison,

and the Geographic Information Network of Alaska (GINA) at the University of Alaska, which have

access to directly broadcast VIIRS and GOES-R data. The VIIRS and GOES-R near-real time (NRT)

flood products can be accessed in Real Earth and Advanced Weather Interactive Processing System

(AWIPS)-II. The latest flood products are available in NRT from Real Earth [39]. The archived global

flood products can be available from the JPSS Proving Ground Global Flood Products Archive [40].

Relatively few studies have been undertaken that apply models in river ice forecasting. Currently,

numerical models for ice floods were developed for simulating ice jam flood for several specific

rivers, but they were seldom used for the prediction of ice jam locations and floods [8–11,41]. One big

advantage of the VIIRS and GOES-R flood products, including snow and ice information, is that they

can be generated automatically at near-real time, are not limited to specific rivers, and can be used

for the dynamic monitoring and prediction of floods due to ice jams and snowmelt all over the globe.

Thick ice can rapidly break up under the condition of warm temperature. Morales-Marín et al. [42]

found that ice breakup occurred when the simulated water temperature (Tw) was above 5 ◦C. In most

high latitude regions, if there is significant snow cover, warm temperatures will not only melt ice, but

also melt snow, and can cause ice jam flooding. By combination with temperature data, it is expected

that satellite-based flood products will allow more quantitative predictions regarding the breakup

timing and locations of floods due to ice jams and snowmelt.

5. Conclusions

In this study, satellite imagery from VIIRS and ABI flood products provided excellent details

of river and overland flooding. Even though the spatial resolution of GOES-R is relatively coarse
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(1 km), its highest temporal resolution imagery, such as the ABI, was a good starting point in searching

for floodwaters over a large area. In providing the highest flood extent signals, as well as multi-day

composite flood products from higher spatial resolution imagery, VIIRS has proven to be a good

approach in pinpointing areas of interest to target in more detail. In high latitude regions, conventional

observations are usually sparse, while polar-orbiting satellite observations are available at multiple

times in the day, and show the advantages of dynamic monitoring and prediction of floods due to ice

jam. Comparisons via visual inspection with the false color images, high resolution satellite imagery

and ground observations showed good agreement. With the efforts and demonstrations of this study,

the VIIRS and GOES-R flood products can provide dynamic monitoring and prediction of floods due

to ice jams and snowmelt for wide-end users.
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Abstract: Ice storms greatly affect the structure, dynamics, and functioning of forest ecosystems.

Studies on the impact of such disasters, as well as the post-disaster recovery of forests, are important

contents in forest biology, ecology, and geography. Remote-sensing technology provides data and

methods that can support the study of disasters at the large-to-medium scale and over long time

periods. This study took Chebaling National Nature Reserve in Guangdong Province, China, as the

study area. First, field-survey data and remote-sensing data were comprehensively analyzed to

demonstrate the feasibility of replacing the forest stock volume with the mean annual value of the

Enhanced Vegetation Index (EVI), to study forest growth and change. We then used the EVI from

2007 to 2017, together with a variety of other remote-sensing and forest sub-compartment data,

to analyze the impact of the 2008 ice storm and the subsequent post-disaster recovery of the forest.

Finally, we drew the following conclusions: (1) Topography had a considerable effect on disaster

impact and forest recovery in Chebaling. The forest at high altitudes (700–1000 m) and on steep

slopes (25–40◦) was seriously affected by this disaster but had a stronger post-disaster recovery

ability. Meanwhile, the hardest-hit area for coniferous forest was higher and steeper than that for

broad-leaved forest. (2) In the same terrain conditions, coniferous forests were less affected by

the disaster than broad-leaved forests and showed less variation during the post-disaster recovery

process. Nevertheless, broad-leaved forests had faster recovery rates and higher recovery degrees;

(3) Under the influence of human activities, the recovery and fluctuation degree for planted forest in

the post-disaster recovery process was significantly higher than that for natural forest. The study

suggests that forest has high disaster resistance and self-recovery ability after the ice storm, and this

ability has a strong correlation with the type of forest and the topographic factors such as elevation

and slope. At the same time, human intervention can speed up the recovery of forests after disasters.

Keywords: ice storm; forest ecosystems; disaster impact; post-disaster recovery; remote sensing
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1. Introduction

Natural disasters, such as snowstorms, ice storms, earthquakes, landslides, tornadoes, volcanoes,

hurricanes, and other types of disasters, affect natural ecosystems in complex and profound ways [1–4].

Forest ecosystems are particularly disturbed by such disasters, with the effects including the decline in

tree density, loss of forest cover, and the change of biodiversity [5,6]. However, forests demonstrate a

remarkable capacity to naturally recover from such disturbances over time [7–9]. The evaluation of the

impact of disasters on forest ecosystems and of post-disaster recovery have been important areas of

research in forestry and ecology [10–12].

Most areas of Southern China were severely affected by ice storm between 11 January and 5

February 2008. In total, 19 provinces, autonomous regions, or municipalities with a population

of over 100 million were affected [13]. The snow, ice, and sleet not only caused extensive social

disruption and economic losses but also severe environmental damage, destroying 1.98 × 107 ha,

or nearly 13%, of China’s forests [14]. Guangdong, Jiangxi, Hunan, Hubei, and Guizhou were

particularly badly affected. The freezing weather and sleet, which lasted more than 20 days, caused the

greatest disaster in one hundred years in Southern China. In most of the affected areas, parts of

the tree trunks and branches were broken, and this created gaps in the canopy. A few trees were

completely destroyed in some hardest-hit areas. After the disaster, many studies on ice-storm

assessment were published. Some of these studies used MODIS remote-sensing data, DEM data,

and forest-resource-distribution maps to analyze the impact of the disaster on different types of forests

on a large scale [14–16]. Comparative analysis of the degree of damage done to different kinds of forests

by using forest-resource-investigation data has also been a common research topic [17,18]. At present,

most relevant studies have focused on the destruction of forests caused by this ice storm; few have

looked at forest recovery.

Studies on disaster disturbance and recovery heterogeneity, spatial distribution, and causes can be

differentiated into two main types [19]: site-specific studies and regional remote-sensing approaches.

Site-specific studies use field assessments of either a limited number of sites or plots within an affected

area or of a random selection of trees covering the entire study area [20]. Sample-plot configurations

have included transects [21], as well as square [6,8] or circular plots [22,23]. These contain a variety of

forest species and complex terrain [17,24]. For example, Ge et al. [17] took advantage of the pre- and

post-ice storm surveys of a permanent plot in the Shennongjia region to make an assessment of the

recovery from the 2008 ice storm based on forest dynamics. Wang et al. [24] established four plots

in the Shierdushui Nature Reserve, to examine the degree of damage to dominant species and the

measured diameters at breast height (DBHs), as well as to examine the sprout response (indicated by

the number of sprouts per stem) of the evergreen broad-leaved forest to the severe winter storm.

Remote-sensing satellite images are used to examine impact and recovery on a regional scale.

Compared with site-specific field surveys, remote sensing is a more economical tool for monitoring

large-scale forest recovery after disasters [25]. Jiao et al. [10] used multitemporal Landsat images focused

on a mountainous region that had the most severe forest destruction caused by the Wenchuan earthquake

and selected the NDVI-SMA method (which couples the NDVI with spectral mixture analysis),

to extract forest cover information. They then quantitatively estimated spatiotemporal variations

in forest recovery for the entire mountainous disaster area after the earthquake. Hislop et al. [26]

examined the utility of eight spectral indices for characterizing fire disturbance to sclerophyll forests

and subsequent recovery in the eastern half of Victoria, Australia, in order to determine their relative

merits in the context of Landsat time-series. Wilson and Norman [27] analyzed spatial and temporal

trends in vegetation greenness and soil moisture by applying the normalized difference vegetation

index (NDVI) and normalized difference infrared index (NDII) to one Landsat path/row for the dry

summer season from 1984 to 2016 in the Cienega San Bernardino wetland.
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Both site-specific studies and remote-sensing regional approaches have their advantages and

disadvantages. Site-specific studies can obtain accurate and detailed data, which is conducive to

targeted research. However, it is difficult to obtain large-scale and spatiotemporally continuous data

using this method. Remote-sensing regional approaches can solve this problem; however, due to the

lack of long time-series of field survey data, the accuracy of most studies needs to be verified. In addition,

the inversion accuracy of remote-sensing parameters still needs to be improved. Therefore, this study

intends to verify the reliability of remote-sensing forest-assessment parameters, using field-survey

data, and to use field-survey data to supplement remote-sensing data for disaster research.

In this study, we sought to evaluate the impact of the ice storm, as well as the naturally occurring

post-disaster forest recovery. We focused on the Chebaling National Nature Reserve, an important

area of protected subtropical forest in China which supports numerous rare wild animals and plants.

Our main objective was to investigate spatial and temporal variations in forest damage and recovery

after the ice storm. First of all, spatial correction between the forest stock volume given by the

sub-compartment data and the remotely sensed EVI (Enhanced vegetation index) was carried out to

verify the feasibility of replacing the forest stock volume with remotely sensed EVI data. Then, in terms

of disaster impact and post-disaster recovery, we analyzed the impact of elevation, slope, and forest

types on EVI change from 2007 to 2017. Finally, in this paper, we summarized the characteristics of

the impact of the disaster on the forest in Chebaling, as well as the characteristics of the post-disaster

recovery, and preliminarily discussed the causes of the phenomenon. This study has important

implications for the evaluation of disaster impacts and for medium-scale studies of long-term natural

recovery processes following natural disasters.

2. Materials and Methods

2.1. Study Area

Our study area was located in the Chebaling National Nature Reserve (24◦40′–24◦46′N,

114◦07′–114◦16′E), Guangdong Province, China (Figure 1). Chebaling is considered important

for protecting typical subtropical evergreen broadleaf forests and rare flora and fauna [28,29]. It was

established in 1981 and upgraded to a national nature reserve in 1989. Chebaling encompasses an area

of 7545 ha, and there are 1928 plant species and 1558 animal species present within the reserve [28].

The climate of Chebaling is classed as moist, moderate subtropical monsoon; the topography in the

region is complex, with an elevation range of 318–1219 m above sea level. The landform is characterized

by mountainous areas that are typical of the South China fold system. The average annual temperature

is 19.6 ◦C, and annual precipitation is 1467 mm. Chebaling is located in the transition zone from

the southern subtropical area to the middle subtropical area and is dominated by primary evergreen

broad-leaved forest. Planted forest, cultivated land, and villages are limited to the flat central area.

The ice storm in 2008 had a serious impact on the forest in Chebaling. In the past ten years, the forest

has gradually been restored, and the natural forest has been largely unaffected by human disturbance

during the restoration period. The modest area and complex topography of Chebaling enable us to

analyze the characteristics of natural forest recovery and how these vary according to the vertical zone.
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Figure 1. The map above represents the location and high-resolution remote-sensing image of Chebaling

(the red star represents the central point of Chebaling; the GF-1 remote-sensing image had a resolution

of 2 m and was acquired on 15 February 2017); the map below shows the DEM of Chebaling.

2.2. Data

2.2.1. Remote-Sensing Data

The most important remote-sensing parameter used in this study was the Enhanced Vegetation

Index (EVI). Vegetation indices are often used to assess vegetation status and forest recovery. In the

various vegetation indices, the EVI and Normalized Difference Vegetation Index (NDVI) are the most

commonly used in forest ecology studies. The study area was located in the subtropical zone, so,

in order to avoid saturation of the vegetation index in this area of lush vegetation [30], we chose the EVI

as the main vegetation index to be used. The EVI is a common vegetation index that was developed

to improve sensitivity in high biomass regions and to improve vegetation monitoring through a

de-coupling of the canopy background signal and atmospheric influences [31,32]. In this study, we took

one calendar year as the basic time unit, and annual composites of the EVI data were made. We intended

to focus on the average and best state of the forest for each year, and so we calculated the annual mean

218



Remote Sens. 2020, 12, 164

EVI and annual maximum EVI for the forest in Chebaling. Annual EVI data were derived from Landsat

TM, ETM+, and OLI composites (path 122, row 43; UTM zone 49 N). We obtained data by using the

Climate Engine (https://clim-engine.appspot.com/). These remote-sensing data have been processed

in the Climate Engine, including radiometrically and atmospherically corrected. Then, the annual

EVI data were made by using all the available cloud-free Landsat data for the selected calendar years.

The years from 2007 to 2011 relied on Landsat 5 TM data, whereas 2012 relied on Landsat 7 ETM+ data;

more recent observations used Landsat 8 OLI data. A few pixels (<2% each year) were of poor quality

and were excluded from the analysis.

In addition, digital elevation model (DEM) data, GF-1 satellite data, and 9 cloud-free Landsat

scenes acquired at specific times were also used in this study. DEM data were used to extract elevation

and slope factors, while GF-1 and cloud-free Landsat images were used for classification. The DEM

data were derived from ASTER GDEM data provided by NASA and had a spatial resolution of

30 m. The GF-1 multispectral satellite images had a resolution of 2 m and were acquired on 15

February 2017. The cloud-free Landsat data were acquired from the United States Geological Survey

(https://espa.cr.usgs.gov) and the Landsat satellite program [33,34]. The data acquisition times were

concentrated in the dry season, i.e., from October to December of each year, from 2008 to 2017, with the

exception of 2010 (26 March), 2011 (20 August), and 2012 (no data). Further information about the

cloud-free Landsat data is shown in Table 1.

Table 1. Cloud-free Landsat data details.

Year Satellite Data Acquisition Time

2008 Landsat-5 17 December 2008
2009 Landsat-5 4 December 2009
2010 Landsat-5 26 March 2010
2011 Landsat-5 20 August 2011
2013 Landsat-8 29 November 2013
2014 Landsat-8 18 December 2014
2015 Landsat-8 18 October 2015
2016 Landsat-8 7 December 2016
2017 Landsat-8 26 December 2017

2.2.2. Forestry Sub-Compartment Data

The sub-compartment is the basic unit of forest resource statistics and management. The forestry

and biological characteristics of forests in the same sub-compartment are basically the same. After the

2008 ice storm, the management department of Chebaling conducted annual field surveys of the forest

in the reserve, using forestry sub-compartments as the basic unit. We acquired these data (covering

2009 to 2016) and used them to verify and supplement the satellite data. Chebaling is divided into

451 sub-compartments, among which 423 sub-compartments are covered by different tree species.

The forest stock volume and main forest types in each sub-compartment were the main parameters

used in this study: these are the most important factors for the investigation of forest stands [35] and

the main indicators used to evaluate forests. Figure 2a shows the spatial distribution of forest stock

volume for 2016. Forest stock volume is one of the best predictors of biomass at the stand level [36].

Moreover, as an important tool in the understanding of forest dynamics, it can be used to predict

whether a forest will act as a CO2 emission source or sink [37]. Therefore, the state of regional forests

can be reliably described by using the forest stock volume, and the forest stock volume can also be used

as the ground verification data for remote-sensing parameters. In the sub-compartment data, the forest

in Chebaling was divided into 10 main types (Figure 2b): tea (T), moso bamboo (MB), woody fruit

crops (WFC), Pinus massoniana (PM), Chinese fir (CF), coniferous and broad-leaved mixed forest

(CABM), coniferous mixed forest (CM), broad-leaved mixed forest (BM), other softwood broadleaved

forests (OSB), and other hardwood broadleaved forests (OHB). In addition, there was a NF (non-forest)
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class. The forest sub-compartment data thus included a large number of forest types and were highly

accurate; the data were used to supplement the remote-sensing data in the research.

  

(a) (b) 

–

Figure 2. (a) Spatial distribution of forest stock volume; (b) spatial distribution of forest types.

These maps were derived from forestry sub-compartment data in 2016.

2.3. Method

In this section, data analysis and data-processing methods were used to verify the feasibility of

replacing the actual state of forest with the remote-sensing vegetation index and to extract 3 important

factors (forest types, elevation zones, and slope zones) from multisource data for subsequent study.

2.3.1. Correlation Analysis

By studying the correlation between various remote-sensing vegetation indices and measured

forestry data, scholars have evaluated the feasibility of using remote-sensing data to study forest

changes, as well as the applicability of various remote-sensing indices [38–40]. Macedo et al. [41]

used forest inventory data (24 plots) and forest indices (NDVI, EVI, SR, and SAVI) derived from

high-spatial-resolution satellite images, to estimate and map the aboveground biomass of Mediterranean

Quercus rotundifolia in Southern Portugal. Correlation analysis, variance analysis, and linear regression

were used in their study; the simple ratio (SR) median value was considered to be the best predictor

(R2 = 75.3) of the aboveground biomass. Bolton et al. [42] used samples of ALS data and Landsat

time-series metrics to produce estimates of the top height, basal area, and net stem volume for

two timber-supply areas near Kamloops, British Columbia, Canada, using an imputation approach.

Their results showed that Landsat-imputed attributes correlated strongly with ALS-based estimates

in these blocks (R2 = 0.62 and relative RMSE = 13.1% for top height, R2 = 0.75 and relative RMSE =

17.8% for basal area, and R2 = 0.67 and relative RMSE = 26.5% for net stem volume) and that remote

sensing data could be used to produce wall-to-wall estimates of key inventory attributes. On the basis

of the results of previous studies, we analyzed the correlation between EVI (annual mean EVI and

annual maximum EVI) and forest stock volume in Chebaling in terms of both spatial correlation and

temporal correlation.

A linear regression analysis was conducted to identify the relationship between the forest

stock volume at the sub-compartment scale and the maximum and mean values of EVI within each

sub-compartment. The linear regression model used was as follows:

SV = a1 + a2 · EVI (1)

where SV is the forest stock volume, EVI is the maximum or mean value of the EVI within each

sub-compartment, and a1 and a2 are regression coefficients.
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1. Spatial Correlation

Figure 3a,b respectively show the relationship between the forest stock volume and the maximum value

of the EVI and the mean value of the EVI at the sub-compartment scale in 2016. R2, which represents

the goodness of the fit between the maximum EVI value and the forest stock volume, varies from

0.62 to 0.71. The mean value of R2 for these 8 years is 0.6721. R2 for the correlation between the mean

value of the EVI and the forest stock volume varies from 0.63 to 0.70, with a mean value of 0.6737.

These significant correlations indicate that the spatial relationship between the forest stock volume

and the mean value of the EVI is similar to that between the stock volume and the maximum value of

the EVI.
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Figure 3. Spatial correlation analysis. (a) Spatial correlation between maximum value of EVI and

forest stock volume in 2016; (b) spatial correlation between mean value of EVI and forest stock volume

in 2016.

2. Temporal Correlation

The mean and maximum values of the EVI in Chebaling for the years 2009–2016, combined with the

forest stock volume for each year, were used to analyze the temporal correlation between the variables.

Because of the low quality of the Landsat-7 data from 2012 and the fluctuations in EVI caused by there

being insufficient data after cloud removal in 2016, the correlation was recalculated after removing

these two years (Figure 4). R2 between the mean value of the EVI and the forest stock volume is 0.7613,

indicating a strong correlation between them. However, there is no correlation between the maximum

value of the EVI and the forest stock volume (R2 = 0.036).
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Figure 4. Temporal correlation analysis (2009–2015, excluding 2012). (a) Temporal correlation between

maximum value of EVI and forest stock volume; (b) temporal correlation between mean value of EVI

and forest stock volume.

Based on the above correlation analysis results, it can be seen that the mean EVI value has a strong

correlation with the forest stock volume, both temporally and spatially, and can, therefore, be used to

represent the forest stock volume. The mean value of the EVI was thus used for subsequent disaster

impact and post-disaster recovery analysis.

221



Remote Sens. 2020, 12, 164

2.3.2. Classification

The classification of forest types based on remote-sensing data is the key and also the most

difficult point in the application of remote-sensing technology to forestry. At present, there are

many studies on identifying vegetation and forest types by using medium- and low-resolution

remote-sensing data [43–45]; in contrast, there is a lack of forest-type classification based on

high-resolution remote-sensing data [46,47], and related theories and methods are still at the initial

stage because of unsatisfactory classification results. However, remote-sensing classification is able to

distinguish between forest and non-forest (NF) categories well.

Information about the main forest types in each sub-compartment can be obtained through field

surveys, which are more accurate and detailed than that obtained via the remote-sensing method.

However, the accuracy of forest boundary information derived from forestry sub-compartment data

is poor, and the update frequency cannot meet practical and research needs. By comprehensively

utilizing remote-sensing classification results and sub-compartment forest types information, it is

possible to refine the boundaries of different forest types; this is beneficial to studies of the difference in

recovery between different forest types after ice storm.

Using remote sensing image process software ENVI5.3, we preprocessed (atmospherically and

radiometrically corrected) 9 cloud-free Landsat scenes—one from each year from 2008 to 2017 with

the exception of 2012—and used the maximum likelihood classification method [48] to classify the

processed data. As these are medium-resolution remote-sensing data, only four classification categories

were used: forest, water, cultivated land and buildings, and bare land. The proportions of each category

are shown in Table 2. According to the classification results, the distribution and proportion of land-use

types in Chebaling varied little from 2009 to 2017. Therefore, it was possible to use the 2017 forest

boundary to represent the Chebaling forest boundary for the ten-year period studied.

Table 2. Landsat land-use classification results (2008–2017).

Year Bare Land Cultivated Land and Buildings Water Forest

2008 0.68% 1.84% 0% 97.48%
2009 0.68% 1.89% 0% 97.43%
2010 0.70% 2.01% 0.03% 97.26%
2011 0.58% 2.11% 0.03% 97.28%
2013 0.55% 2.07% 0.03% 97.35%
2014 0.46% 2.06% 0.03% 97.45%
2015 0.52% 2.13% 0.03% 97.32%
2016 0.81% 2.04% 0.03% 97.12%
2017 0.61% 2.18% 0.03% 97.18%

The image used for the 2017 classification was acquired by the GF-1 remote-sensing satellite.

Geometric registration, radiometric correction, orthophoto correction, and band fusion were carried

out by ENVI5.3, to obtain the standard image. The classification method we used was the object-based

random forest method, which is one of the most accurate and widely used algorithms [49–53] for

remote-sensing image classification. The classification software used was eCognition, a professional

remote-sensing image-classification software. Based on the results of several experiments, the final

classification parameter settings were determined. The parameters for the segmentation process

were (1) scale parameter: 50; (2) composition of homogeneity criterion: shape: 0.2, compactness:

0.5. The parameters for the classification characteristics included spectral characteristics (mean value

and standard deviation of each band, NDVI), geometric characteristics (border index, shape index),

and texture characteristics (GLCM Entropy, GLCM Mean, GLCM Standard Deviation, and GLCM

Correlation), giving a total of 15 parameters. The overall accuracy of the classification results obtained

was 96.5478%, and the kappa coefficient was 0.9544. The classification map is shown in Figure 5a.

Based on the classification results, and in combination with the forest types and boundary information
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derived from the forestry sub-compartment data, the final forest-types distribution map for Chebaling

was generated (Figure 5b), and the areas of different forest types were shown in Table 3.
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Figure 5. (a) Land-use classification map based on GF-1 data; (b) forest-types distribution map derived

from forestry sub-compartment data and the land-use classification map.

Table 3. Areas of different forest types in Chebaling.

Forest Types T MB WFC PM CF CABM CM BM OSB OHB

Area (ha) 5 61 5 892 445 2386 131 770 39 2243

2.3.3. Grading Methods for Elevation and Slope

Based on the DEM data and actual situation of terrain, Chebaling was divided into 9 elevation

zones with 100 m intervals and 9 slope zones with 5-degree intervals. The forest area and percentage

coverage in each elevation and slope zone are shown in Table 4. However, only changes in the forest

were considered in this study, so the non-forest area was not included in the subsequent analysis.

Figure 6 shows the spatial distribution of the elevation and slope zones.

Table 4. Details of the elevation and slope zones.

Elevation (m) Forest Area (ha) Land Area (ha) Forest Proportion Slope (◦) Forest Area (ha) Land Area (ha) Forest Proportion

300–400 93 116 79.99% 0–5 173 242 71.60%
400–500 993 1133 87.62% 5–10 686 788 87.04%
500–600 1654 1771 93.37% 10–15 1268 1346 94.24%
600–700 1711 1728 99.03% 15–20 1609 1658 97.05%
700–800 1317 1338 98.36% 20–25 1546 1581 97.80%
800–900 716 731 97.89% 25–30 1133 1159 97.81%

900–1000 414 432 95.74% 30–35 553 569 97.11%
1000–1100 223 240 92.91% 35–40 167 172 97.03%
1100–1200 58 68 84.46% >40 44 46 95.49%

– –
– –
– –
– –
– –
– –
– –
– –
–
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Figure 6. (a) Spatial distribution of different elevation zones in Chebaling; (b) spatial distribution of

different slope zones in Chebaling.
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3. Results

In the previous section, the feasibility of using the annual mean value of the EVI (referred to

simply as the EVI from now on) to represent the forest stock volume was demonstrated. Therefore,

the EVI was used to represent the status of the forest for the study of disaster impact and post-disaster

recovery from 2007 to 2017. EVI of 2012 and 2016 were not used in our study, and the reasons were

discussed in the analysis in Section 2.3.1. Therefore, we used the EVI of the remaining nine years of the

period 2007–2017 for disaster study. In this section, the difference of disaster impact and post-disaster

recovery in different elevation zones, slope zones, and for different forest types are analyzed from two

aspects of single factor and multiple factor respectively.

3.1. Single-Factor Analysis

3.1.1. Disaster Analysis in Different Elevation Zones

The broken-line graph (Figure 7) shows the change in EVI in different elevation zones from

2007 to 2017. First, in terms of the impact of disasters, the EVI of forests in all elevation zones

were greatly reduced due to the ice storm from 2007–2008. However, the EVI decreased more in

middle- and high-elevation zones (green, blue, and purple) than in low-elevation zones (red, orange,

and yellow). Second, in terms of post-disaster recovery, although in some years (2008–2011) the

EVI fluctuated slightly, the overall trend was that there was a rise in EVI in all zones, meaning that

the lowest value occurred in 2008 and the highest value in 2017. From 2008 to 2011, the EVI in the

400–600 m zones was the highest in Chebaling. However, after 2013, the EVI in the higher altitude

areas, particularly in 600–1000 m zones, gradually exceeded that in the 400–600 m zones. During this

period, there was a continuous gentle rise in EVI at elevations above 600 m. In contrast, below 600 m,

the EVI fluctuated greatly.

–

–

–

–

– –

 

Figure 7. Broken-line graph showing EVI changes from 2007 to 2017 in different elevation zones.

Table 5 gives the results of a comprehensive analysis of the disaster impact and the recovery after

the disaster. The first thing to explain here is the calculation method of fluctuation degree in Table 5

and following several tables, taking the fluctuation degree of elevation zones in Table 5 as an example.

First, the standard deviation of annual EVI growth value from 2008 to 2017 in each elevation zone

was calculated. Second, the initial classification of fluctuation degree was calculated. If there was

no significant difference between the standard deviation of EVI growth value in each elevation zone,

the fluctuation degree of all elevation zones would be set as L. If there was a significant difference

between the standard deviation in each elevation zone, the two or three highest values would be set as

H, the two or three lowest values would be set as L, and the others would be set as M. Third, the final

classification of fluctuation degree was calculated. According to the broken-line graph of EVI changes

from 2007 to 2017 in different elevation zones, if the EVI change trend of one elevation zone was

different from that of most other elevation zones, or the fluctuation amplitude of several years were
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significantly higher than that of other elevation zones, the fluctuation degree of this elevation zone

would increase by one level (L increases to M, M increases to H, H remains unchanged). Otherwise,

the fluctuation degree would remain unchanged.

Table 5. Details of the disaster impact and post-disaster recovery in different elevation zones. In the

property row of the table, disaster impact refers to the absolute value of EVI difference between 2008

and 2007; post-disaster recovery refers to the absolute value of EVI difference between 2017 and 2008;

fluctuation degree represents the fluctuation of EVI from 2008 to 2017; H, M, and L in fluctuation-degree

column represent high, medium, and low, respectively.

Elevation (m) EVI (2007) EVI (2008) EVI (2017) Disaster Impact Post-Disaster Recovery Fluctuation Degree

300–400 0.394 0.338 0.472 0.055 0.134 H
400–500 0.406 0.361 0.478 0.045 0.117 H
500–600 0.414 0.364 0.478 0.050 0.114 H
600–700 0.416 0.344 0.487 0.071 0.143 M
700–800 0.415 0.324 0.488 0.091 0.165 M
800–900 0.418 0.324 0.488 0.094 0.164 M

900–1000 0.422 0.329 0.485 0.093 0.156 L
1000–1100 0.414 0.327 0.472 0.087 0.144 L
1100–1200 0.394 0.306 0.446 0.088 0.141 L

As shown in Table 5, the forest in the 700–1000 m elevation zones (the three red rows) had a

high EVI value before the disaster. Although the impact of the disaster was relatively severe in these

zones, the post-disaster recovery rate and increase value of EVI were also the highest, and the recovery

process was quite smooth and without any big fluctuations. Conversely, the EVI in the 300–600 m

elevation zones (the three blue rows) was relatively low before the disaster and decreased little after

the disaster; however, the recovery rate was slow and the EVI fluctuated greatly. This indicates that

the forest in the high-altitude area of Chebaling was seriously affected by the disaster but also showed

a stronger post-disaster recovery ability.

3.1.2. Disaster Analysis in Different Slope Zones

The change trend of the EVI in each slope zone from 2007 to 2017 is shown in Figure 8. From 2007

to 2008, EVI in all slope zones decreased significantly, and the decrease value in high slope zones were

slightly higher than that in low slope zones. From 2008 to 2017, the change trends in EVI in different

slope zones are similar. Before 2011, the EVI increased or decreased by about the same amount in each

slope zone every year, and so the differences between the absolute values of the EVI remained constant.

However, the differences between the absolute values of the EVI in different slope zones decreased

significantly after 2011, especially from 2013 to 2015, as the degree of recovery in the different slope

zones started to vary. Overall, the forest recovery in the areas with steeper slopes was better than that

in the less-steep areas between 2008 and 2017.
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Figure 8. Broken-line graph showing EVI changes from 2007 to 2017 in different slope zones.
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The results of the analysis of the disaster impact and disaster recovery for all of the slope zones

are summarized in Table 6. Before the ice storm, the EVI values in the zones with slopes between 5◦

and 25◦ were the highest. However, the impact of the disaster on the forest in Chebaling increased

gradually as the slope increased. As a result, in 2008, areas of forest on steeper slopes had lower EVI

values. During the post-disaster recovery process from 2008 to 2017, the change trends in EVI in all of

the slope zones were basically the same, and the amount of fluctuation was small. There was a positive

correlation between the degree of disaster recovery and the degree of disaster impact. Therefore,

the ranking of slopes zones by EVI value in 2017 was same as that in 2007.

Table 6. Details of the disaster impact and post-disaster recovery in different slope zones.

Slope (◦) EVI (2007) EVI (2008) EVI (2017) Disaster Impact Post-Disaster Recovery Fluctuation Degree

0–5 0.412 0.357 0.480 0.055 0.122 L
5–10 0.415 0.357 0.482 0.058 0.125 L
10–15 0.419 0.354 0.488 0.064 0.134 L
15–20 0.416 0.351 0.488 0.066 0.137 L
20–25 0.413 0.341 0.482 0.072 0.141 L
25–30 0.412 0.331 0.480 0.081 0.148 L
30–35 0.406 0.322 0.473 0.084 0.152 L
35–40 0.398 0.317 0.469 0.081 0.152 L
>40 0.397 0.317 0.464 0.080 0.148 L

3.1.3. Disaster Analysis for Different Forest Types

Figure 9 shows the trends in EVI for different forest types from 2007 to 2018. Following the

disaster, EVI for BM and OHB decreased the most; however, EVI for WFC decreased the least. In terms

of post-disaster recovery, the EVI trends for the planted forest types (T and WFC) were significantly

different from those for the other eight forest types. The T and WFC EVI values fluctuated a lot,

with the EVI for T always being lower than that for WFC. The EVI for T and WFC reached the peak in

2015, showing that the planted forest can recover to a high EVI level faster. The EVI trends for PM,

CABM, and CF were basically the same, with the EVI rising steadily and showing little fluctuation.

Moreover, the EVI for these three forest types were higher than those for the other types (except CM

and BM) most of the time. The EVI trends for CM and BM were similar and CM had the highest EVI

value in most years. Although the EVI for BM was lower than EVI for the CM, CF, PM, and CABM in

2008, it increased rapidly after that and was one of the highest values in 2017. In contrast, the EVI for

CM and BM fluctuated slightly more than for the CF, PM, and CABM. The MB EVI was moderately

high in 2008, but its growth rate was low from 2008 to 2017, which lead to this value being low in 2017.

The EVI for OHB was low in 2008 and changed in a similar way to the BM and CM; however, it was

always 0.02 to 0.03 lower than the BM EVI. The EVI for OSB did not rise as quickly as the EVI for the

other forest types. This EVI was the lowest in most years; in addition, its value fluctuated more than

all the other EVI values, except those for the two planted forest types (T and WFC).

–
–
–
–
–
–
–
–

 

Figure 9. Broken-line graph showing EVI changes from 2007 to 2017 for different forest types.
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The results of the analysis of the disaster impact and post-disaster recovery for the different forest

types are shown in Table 7. The damage caused by the disaster was less in the areas covered by planted

forest (T and WFC) than in the areas of natural forest. In addition, the EVI for the planted forest

areas fluctuated greatly during the post-disaster recovery process. Before the disaster, the EVI for the

coniferous forest (CF, PM, and CM areas) and CABM were higher than for most of the other forest

types. These four forest types were less affected by the disaster than the broad-leaved forest, and the

EVI in these areas showed a relatively steady rise during the post-disaster recovery. BM and OHB

were seriously affected by the disaster but recovered quickly—the EVI here fluctuated slightly more

than for the coniferous forests. OSB had a low degree of disaster impact and post-disaster recovery,

which can be attributed to its low EVI value before the disaster. MB was moderately affected by the

disaster, and its EVI value increased the least after the disaster.

Table 7. Details of the disaster impact and post-disaster recovery for different forest types.

Forest Types EVI (2007) EVI (2008) EVI (2017) Disaster Impact Post-Disaster Recovery Fluctuation Degree

T 0.381 0.329 0.462 0.052 0.133 H
MB 0.411 0.356 0.460 0.055 0.105 M

WFC 0.386 0.350 0.508 0.036 0.158 H
PM 0.426 0.370 0.505 0.056 0.135 L
CF 0.423 0.379 0.486 0.043 0.107 L

CABM 0.425 0.356 0.496 0.068 0.139 L
CM 0.433 0.369 0.515 0.065 0.147 M
BM 0.424 0.331 0.489 0.093 0.158 M
OSB 0.361 0.321 0.440 0.040 0.119 M
OHB 0.392 0.314 0.458 0.078 0.144 M

3.2. Multifactor Comprehensive Analysis

We have analyzed the relationship between EVI change and single factor (elevation, slope,

and forest type) from 2007 to 2017. However, the spatial distribution of 10 forest types were different

from each other; for example, the forest-types distributed in the 400–500 m zone were different from

those in the 900–1000 m zone, and WFC and PM grew in regions with different elevation and slope.

Therefore, disaster analysis for different forest types needs to be further studied. Multifactor analysis

was carried out for this section. We combined forest types with elevation zones and slope zones,

respectively, for a comprehensive analysis and used control variable method to improve the accuracy

of analysis results.

We calculated the distribution proportion for 10 forest types in different elevation and slope zones

and found that the numbers for forest types distributed in the four elevation zones (400–800 m) and

four slope zones (10–30◦) were bigger than in other elevation and slope zones. Moreover, the area

of these elevation and slope zones was larger than that of other elevation and slope zones (Table 4).

Therefore, we selected these elevation and slope zones for multifactor analysis. Similarly, the areas

for six forest types (PM, CF, CM, CABM, BM, and OHB) were larger than other forest types (Table 3),

and these six forest types had wider ranges of elevations and slopes. As a result, these six forest types

were selected for multifactor analysis.

3.2.1. Disaster Analysis for Different Forest Types in Four Elevation Zones

According to the EVI trend for different forest types in the four elevation zones (Figure 10),

combined with the statistical table of disaster analysis (Tables 8 and 9), we comprehensively analyzed

the relationship between EVI change and elevation for 10 forest types from three aspects: disaster

impact, post-disaster recovery, and fluctuation degree in the recovery process. First, as shown in

Figure 10 and Table 8, EVI for all forest types decreased more in higher elevation zones than in lower

elevation zones from 2007 to 2008. EVI for OSB decreased the least, while EVI for BM and OHB

decreased the most among all forest types. Second, the EVI change trend for most forest types from

2008 to 2017 fluctuated larger in the 400–500 m elevation zone than in other elevation zones above 500 m
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(Figure 10). Moreover, as the elevation increased, the values in the post-disaster recovery columns

(Table 9) for most forest types increased, and the absolute value of EVI difference between coniferous

forests (PM, CF, and CM) and broad-leaved forests (BM, OHB, and OSB) increased significantly. Third,

T and WFC were only distributed in 400–500 m elevation zone. In the 400–500 m elevation zone,

EVI for T decreased more than it did for the eight other forest types (except OSB), which indicated that

T was highly affected by the disaster. In the post-disaster recovery process, the fluctuation degree and

increased value of EVI for T and WFC were the highest among 10 forest types. Finally, among the eight

forest types (not including WFC and T) distributed in the four elevation zones, the disaster impact and

post-disaster recovery degree for BM and OHB were both higher than other forest types in the same

elevation zone.
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Figure 10. Broken-line graph showing EVI changes for 10 forest types, from 2007 to 2017, in four

elevation zones: (a) 400–500 m; (b) 500–600 m; (c) 600–700 m; and (d) 700–800 m.

Table 8. Disaster-impact-analysis results for different forest types in four elevation zones.

Forest Types
Disaster Impact Average Value of

Disaster-Impact Ranking
400 m–500 m 500 m–600 m 600 m–700 m 700 m–800 m

T 0.052 - - - -
MB 0.041 0.060 0.045 0.068 5

WFC 0.036 - - - -
PM 0.030 0.038 0.048 0.068 6.25
CF 0.042 0.034 0.061 0.069 5

CABM 0.031 0.042 0.066 0.084 4.75
CM 0.020 0.029 0.076 0.099 5.75
BM 0.038 0.068 0.099 0.115 2
OSB 0.003 0.037 0.045 0.048 7.75
OHB 0.056 0.065 0.080 0.106 1.75
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Table 9. Post-disaster recovery and fluctuation degree analysis results for different forest types in four

elevation zones.

Forest Types
Post-Disaster Recovery/Fluctuation Degree Average Value of Post-Disaster

Recovery Ranking
400 m–500 m 500 m–600 m 600 m–700 m 700 m–800 m

T 0.132/H - - - -
MB 0.066/M 0.060/M 0.045/M 0.068/H 5

WFC 0.161/H - - - -
PM 0.116/M 0.038/M 0.048/L 0.068/L 6.25
CF 0.119/L 0.034/L 0.061/M 0.069/M 5

CABM 0.109/L 0.042/L 0.066/L 0.084/L 4.75
CM 0.091/M 0.029/M 0.076/L 0.099/M 5.75
BM 0.126/M 0.068/H 0.099/H 0.115/H 2
OSB 0.082/M 0.037/M 0.045/M 0.048/M 7.75
OHB 0.122/L 0.065/H 0.080/H 0.106/M 1.75

3.2.2. Disaster Analysis for Different Forest Types in Four Slope Zones

Statistics and an analysis were also conducted on four typical slope zones. Based on the information

in Figure 11 and Tables 10 and 11, we can draw the following conclusions. First, in the slope range of

10–30◦, with the increase of slope, the disaster-impact degree for most forest types gradually increased.

However, the increase of the disaster-impact degree caused by the rise of slope zones was obviously

slighter than that caused by the rise of elevation zones. This indicates that elevation is more decisive

than slope in disaster impact. Second, in the post-disaster recovery process, the fluctuation degree for

each forest type was similar in different slope zones. However, the absolute value of EVI difference for

different forest types gradually increased with the increase of slope. The EVI of coniferous forests (PM,

CF, and CM) were significantly higher than that of broad-leaved forests (BM, OHB, and OSB) in high

slope zones. Third, since T and WFC were only distributed in the 400–500 m elevation zone, compared

with other forest types in the same slope zone, they were less affected by the disaster and had the

highest fluctuation degree. Finally, in the comparison with different forest types in each slope zone,

BM was most vulnerable to the disaster but also had the highest post-disaster recovery and fluctuation

degree, followed by OHB.

–

–

  

(a) (b) 

  

(c) (d) 

– – – –
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Figure 11. Broken-line graph showing EVI changes for 10 forest types, from 2007 to 2017, in typical

slope zones: (a) 10–15◦; (b) 15–20◦; (c) 20–25◦; and (d) 25–30◦.
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Table 10. Disaster-impact-analysis results for different forest types in four slope zones.

Forest Types
Disaster Impact Average Value of

Disaster-Impact Ranking
10–15◦ 15–20◦ 20–25◦ 25–30◦

T 0.042 0.053 0.051 0.064 7.25
MB 0.057 0.057 0.060 0.049 5.25

WFC 0.043 0.030 0.052 - 8
PM 0.054 0.056 0.058 0.062 5.75
CF 0.038 0.046 0.052 0.067 7

CABM 0.066 0.062 0.065 0.076 3.25
CM 0.067 0.042 0.044 0.067 6.5
BM 0.091 0.094 0.096 0.097 1
OSB 0.046 0.048 0.049 0.038 8
OHB 0.073 0.073 0.079 0.087 2

Table 11. Post-disaster recovery and fluctuation-degree analysis results for different forest types in four

slope zones.

Forest Types
Post-Disaster Recovery/Fluctuation Degree Average Value of Post-Disaster

Recovery Ranking
10–15◦ 15–20◦ 20–25◦ 25–30◦

T 0.146/H 0.133/H 0.141/H 0.127/H 4.75
MB 0.113/L 0.111/M 0.097/M 0.112/H 9.25

WFC 0.136/H 0.119/H 0.145/H - 5
PM 0.132/M 0.138/L 0.134/L 0.141/M 5.75
CF 0.101/L 0.114/L 0.125/L 0.135/L 8.5

CABM 0.136/L 0.133/L 0.136/L 0.149/L 4.75
CM 0.147/M 0.119/M 0.130/M 0.142/M 5.25
BM 0.158/M 0.162/M 0.162/M 0.158/M 1
OSB 0.138/M 0.154/M 0.132/M 0.099/M 5.75
OHB 0.141/M 0.141/M 0.144/M 0.150/M 3

3.2.3. Disaster Analysis for Six Forest Types

After disaster analysis in typical elevation and slope zones, we then analyzed the disaster impact

and post-disaster recovery for six typical forest types. First, we studied the influence of elevation. In

terms of disaster impact, according to the statistics in Table 12, the areas that were least affected by the

disaster were distributed in lowest elevation zones for five forest types (not including CF); moreover,

as the elevation increased, the degree of disaster impact gradually increased, or first rose and then fell.

On the contrary, the degree of disaster impact first fell and then rose as the elevation increased for CF.

The hardest-hit area of CABM and coniferous forests (CM and PM) were in higher elevation zones

than that of broad-leaved forest (BM and OHB).

Table 12. Disaster-impact-analysis results for six forest types in different elevation zones.

Elevation (m)
Disaster Impact

BM OHB CABM CM CF PM

300–400 0.048 0.061 0.038 - 0.054 0.021
400–500 0.039 0.056 0.032 0.020 0.042 0.030
500–600 0.070 0.065 0.042 0.029 0.034 0.038
600–700 0.100 0.081 0.066 0.076 0.061 0.048
700–800 0.115 0.106 0.084 0.097 0.075 0.069
800–900 0.112 0.106 0.085 0.060 - 0.088

900–1000 0.112 0.100 0.083 0.134 - 0.073
1000–1100 0.086 0.095 0.091 0.082 - 0.059
1100–1200 0.077 0.077 0.101 - - 0.088
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During the 10 years after the disaster, as shown in Figure 12, EVI for coniferous forests (PM, CM,

and CF) in middle- and high-elevation zones were mostly higher than that in low-elevation zones.

On the contrary, EVI for CABM and broad-leaved forests (BM and OHB) in middle- and low-elevation

zones were higher than that in high-elevation zones. According to Table 13, the highest value in

post-disaster recovery columns for coniferous forests (PM and CM) were in higher elevation zones

than for broad-leaved forests (BM and OHB), but they were all in the 600–1000 m elevation zones.

The fluctuation degree for the six forest types in the low-elevation zones was the highest. However,

the fluctuation degree for broad-leaved forests (BM and OHB) decreased gradually with the elevation

increases, but the fluctuation degree for coniferous forests (PM and CM) in high-elevation zones was

higher than in middle-elevation zones. Overall, CABM fluctuated little in all elevation zones, and its

recovery process was relatively stable than the other five forest types.
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(c) (d) 

  

(e) (f) 
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Figure 12. Broken-line graph showing EVI changes from 2007 to 2017, in all elevation zones, for six

forest types: (a) CF; (b) PM; (c) CM; (d) CABM; (e) BM; and (f) OHB.
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Table 13. Post-disaster recovery and fluctuation degree analysis results for six forest types in different

elevation zones.

Elevation (m)
Post-Disaster Recovery/Fluctuation Degree

BM OHB CABM CM CF PM

300–400 0.175/H 0.126/M 0.178/H - 0.159/H 0.121/H
400–500 0.127/H 0.122/H 0.109/L 0.092/H 0.118/M 0.116/H
500–600 0.142/M 0.129/H 0.115/L 0.083/M 0.077/L 0.101/L
600–700 0.169/M 0.151/M 0.136/L 0.177/M 0.141/L 0.124/L
700–800 0.174/M 0.173/M 0.158/L 0.197/L 0.175/L 0.155/L
800–900 0.166/M 0.166/M 0.159/L 0.133/L - 0.173/L

900–1000 0.153/L 0.165/L 0.148/L 0.223/M - 0.166/L
1000–1100 0.145/L 0.141/L 0.147/L 0.190/H - 0.157/M
1100–1200 0.134/L 0.125/L 0.146/L - - 0.141/M

In terms of slope study, we made a comprehensive analysis according to Figure 13 and Tables 14

and 15, and compared it with the analysis of elevation. As shown in Figure 13, from 2007 to 2008,

the decreased value of EVI in different slope zones showed a significant difference for CF and CM,

but showed little difference for BM, OHB, PM, and CABM. Among six forest types (Table 14), as the

increase of slope, the values in the disaster impact columns for CM showed a trend of first decrease

and then increase, with the lowest value in 15–20◦ slope zone. These values for CF and CABM

kept increasing as the slope increased. However, these values for the other three forest types (BM,

OHB, and PM) showed a trend of first increase and then decrease as the slope increased. In general,

the slope zones above 20◦ were the hardest-hit areas for all forest types. By comparing the difference of

disaster-impact degree on different elevation and slope zones for six forest types, we can see that the

influence of slope was greater than that of elevation on CF; the influence of elevation was greater than

that of slope on PM, CABM, BM, and OHB; elevation and slope all had strong influence on CM.

Table 14. Disaster-impact-analysis results for six forest types in different slope zones.

Slope (◦)
Disaster Impact

BM OHB CABM CM CF PM

0–5 0.065 0.069 0.056 0.086 0.025 0.055
5–10 0.080 0.067 0.060 0.084 0.036 0.055
10–15 0.091 0.074 0.065 0.066 0.038 0.054
15–20 0.094 0.073 0.062 0.038 0.047 0.056
20–25 0.097 0.082 0.064 0.043 0.054 0.058
25–30 0.097 0.088 0.075 0.069 0.070 0.062
30–35 0.094 0.089 0.082 0.099 0.069 0.055
35–40 0.081 0.082 0.084 0.127 0.105 0.057
>40 0.062 0.070 0.090 0.118 0.088 0.052

Table 15. Post-disaster recovery and fluctuation-degree-analysis results for six forest types in different

slope zones.

Slope (◦)
Post-Disaster Recovery/Fluctuation Degree

BM OHB CABM CM CF PM

0–5 0.133/L 0.135/L 0.130/L 0.172/L 0.082/L 0.130/L
5–10 0.150/L 0.130/L 0.130/L 0.169/L 0.088/L 0.128/L
10–15 0.157/L 0.142/L 0.136/L 0.144/L 0.102/L 0.133/L
15–20 0.162/L 0.141/L 0.133/L 0.115/L 0.114/L 0.137/L
20–25 0.163/L 0.146/L 0.135/L 0.127/L 0.125/L 0.135/L
25–30 0.159/L 0.151/L 0.147/L 0.142/L 0.137/L 0.143/L
30–35 0.152/L 0.150/L 0.154/L 0.183/L 0.130/L 0.140/L
35–40 0.145/L 0.147/L 0.157/L 0.219/L 0.146/L 0.139/L
>40 0.131/L 0.134/L 0.159/L 0.204/L 0.164/L 0.121/L
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Figure 13. Broken-line graph showing EVI changes from 2007 to 2017, in all slope zones, for six forest

types: (a) CF; (b) PM; (c) CM; (d) CABM; (e) BM; and (f) OHB.

In the post-disaster recovery process from 2008 to 2017, as shown in Figure 13, for three coniferous

forests (PM, CF, and CM), EVI in middle- and high-slope zones were higher than that in low-slope

zones; for two broad-leaved forests (BM and OHB), EVI in middle- and low-slope zones were always

higher than that in high-slope zones. In addition, it can be seen from Tables 14 and 15 that the increased

value of EVI in the post-disaster recovery process for six forest types was positively correlated with the

decreased value of EVI after the disaster. The slope zones that were seriously affected by the disaster

also had higher recovery degree. Moreover, The EVI trend for six forest types were rising steadily in

all slope zones, without any significant fluctuation.

4. Discussion

The results of quantitative analysis by remote sensing showed the difference of forest EVI change

trend in a variety of topographic conditions after the ice storm. First, from the single-factor-analysis
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results, there were obvious differences in disaster impact and post-disaster recovery for different

elevation and slope zones in the forest. Areas at an altitude of 700–1000 m and a slope of 25–40 degrees

were most affected by the disaster but also had the highest post-disaster recovery degree. Next most

affected were the highest-altitude areas above 1000 m and with the steepest slopes greater than

40 degrees. While the areas below 700 m and with slopes of 25 degrees or less were least affected by

the disaster and had the lowest post-disaster recovery degree, but the fluctuation degree were high

during the recovery process. Except for areas below 500 m, EVI for forest in other elevation and slope

zones increased rapidly in the first three years (2009–2011) following the disaster, and the growth

rate gradually slowed down in the later period. In addition, from the results of multifactor analysis,

we find that the areas that were most affected by the disaster and had the highest recovery degree for

coniferous forests had a higher altitude and steeper slope than broad-leaved forest.

Based on the theoretical analysis and field investigation, we believe that the following were the

most important factors behind this result. (1) Freezing rain, strong winds, and ice have a greater impact

on regions at higher elevations and steeper slopes, which resulted in greater losses in these regions,

as has similarly been demonstrated by other studies [6,54,55]. (2) Villages, farmland, and planted

forests were distributed in the areas at a lower altitude and with a gentler slope. Therefore, these areas

were greatly affected by human activities, leading to the highest level of EVI fluctuation during the

disaster-recovery process. Areas with elevations of 700–1000 meters and slopes of 25–40 degrees

were mainly covered by natural forest. The EVI in these areas was higher than in other areas before

the disaster. Although these areas were seriously impacted by the disaster, and so the EVI here

decreased more, the biological characteristics of natural forests enable them to recover quickly after

disasters. Therefore, in the decade after the disaster, the EVI of the forest in this region increased

the most. The forest density, average height, and diameter at breast height (DBH) are all affected

by the topography, climate, and other factors, and so were lower in areas above 1000 m and slopes

above 40 degrees in Chebaling. As a result, the EVI in this region was lower than in other regions.

Although the disaster had a great impact on the forest in these areas, the EVI here decreased less in

2008, and the increase in value in the following 10 years was also less than in the middle-altitude and

moderate-slope areas. (3) In the areas above 700 m and above 25 degree, as the elevation and slope

increased, EVI for broad-leaved forest decreased significantly, while EVI for coniferous forest changed

little or increased slightly. Therefore, the hardest-hit areas for coniferous forest were higher and steeper

than for broad-leaved forest.

The study of the disaster impact and the post-disaster recovery for different forest types revealed

two interesting phenomena. (1) There was a great difference between natural and planted forests

in terms of the change in EVI from 2007 to 2017. Natural forests had a rich variety of species and

high level of biodiversity, while planted forests were more homogenous, thus planted forests had a

lower ability to withstand the disaster than natural forests [56–58]. Therefore, in the same elevation

zones, planted forests were more severely affected by the ice storm than natural forests. However,

human activities changed the natural recovery process. This resulted in the planted forests recovered

fast but also produced large fluctuations in the EVI during the process of post-disaster recovery.

(2) In the comparative analysis of different forest types in the same elevation zone and slope zone,

we found that coniferous forests suffered less EVI decline than broad-leaved forests. This suggests that

coniferous forests are more resilient to ice and snow than broad-leaved forests, which might result

from broad-leaved forests having broad, flat crowns that expose a large surface area of branches and,

therefore, make them more susceptible to extensive damage. In contrast, coniferous trees expose

a smaller proportion of their lateral branches to ice accumulation [59,60], resulting in less physical

damage than in broad-leaved forests. However, due to their characteristics and the hot, humid climate

in Chebaling, broad-leaved forests can photosynthesize faster and thus have a higher rate of recovery.
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5. Conclusions

In this study, we used multisource, long-time series remote-sensing data and field-survey data to

evaluate the spatial and temporal variations in forest damage and recovery after the 2008 ice storm in

Chebaling National Nature Reserve. Firstly, by analyzing the relationship between remotely sensed

EVI data and field survey data in Chebaling, we concluded that the annual mean EVI can be used to

represent the forest stock volume because of the strong correlation between them and can reflect the

status of regional forests and also changes in status. Secondly, the effects of topography and forest

types on disaster impact and post-disaster recovery were analyzed from two aspects of single factor

and multiple factor, respectively. Our results indicate that topography had a considerable effect on

disaster impact and forest recovery, and elevation was more decisive than slope in disaster impact.

The disaster impact and recovery degree for all forest types in high-altitude and steep-slope areas were

higher than those in low-altitude and gentle-slope areas, especially in the 700–1000 m elevation zones

and 25–40◦ slope zones. However, coniferous forests in the high-elevation zones and steep-slope zones

grew better than broad-leaved forests, so the hardest-hit areas for coniferous forests were higher and

steeper than that of broad-leaved forests. The disaster analysis for different forest types showed that

broad-leaved forests were more affected by the ice storm than coniferous forests but had faster recovery

rate and a higher degree of recovery. Although planted forests were more severely affected by the

ice storm than natural forests in the areas with similar topographical conditions, the recovery rate for

planted forests was faster than that for natural forests because of human intervention. But the recovery

process fluctuated greatly. Compared with the areas with monospecific tree species, the recovery

process of coniferous and broad-leaved mixed forest is more stable. This study focuses on analyzing

the characteristics and laws of disaster impact and post-disaster recovery. In the future, the driving

force of forest recovery will be further studied and more experiments will be conducted in bigger scale

and more regions to analyze the universality of the characteristics and laws summarized in the study.
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Abstract: Landslides are among the most harmful natural hazards for human beings. This study

aims to delineate landslide hazard zones in the Darjeeling and Kalimpong districts of West Bengal,

India using a novel ensemble approach combining the weight-of-evidence (WofE) and support

vector machine (SVM) techniques with remote sensing datasets and geographic information systems

(GIS). The study area currently faces severe landslide problems, causing fatalities and losses of

property. In the present study, the landslide inventory database was prepared using Google Earth

imagery, and a field investigation carried out with a global positioning system (GPS). Of the

326 landslides in the inventory, 98 landslides (30%) were used for validation, and 228 landslides (70%)

were used for modeling purposes. The landslide conditioning factors of elevation, rainfall, slope,

aspect, geomorphology, geology, soil texture, land use/land cover (LULC), normalized differential

vegetation index (NDVI), topographic wetness index (TWI), sediment transportation index (STI),

stream power index (SPI), and seismic zone maps were used as independent variables in the modeling

process. The weight-of-evidence and SVM techniques were ensembled and used to prepare landslide

susceptibility maps (LSMs) with the help of remote sensing (RS) data and geographical information

systems (GIS). The landslide susceptibility maps (LSMs) were then classified into four classes; namely,

low, medium, high, and very high susceptibility to landslide occurrence, using the natural breaks

classification methods in the GIS environment. The very high susceptibility zones produced by

these ensemble models cover an area of 630 km2 (WofE& RBF-SVM), 474 km2 (WofE& Linear-SVM),

501km2 (WofE& Polynomial-SVM), and 498 km2 (WofE& Sigmoid-SVM), respectively, of a total area

of 3914 km2. The results of our study were validated using the receiver operating characteristic (ROC)

curve and quality sum (Qs) methods. The area under the curve (AUC) values of the ensemble WofE&

RBF-SVM, WofE & Linear-SVM, WofE & Polynomial-SVM, and WofE & Sigmoid-SVM models are

87%, 90%, 88%, and 85%, respectively, which indicates they are very good models for identifying

landslide hazard zones. As per the results of both validation methods, the WofE & Linear-SVM model

is more accurate than the other ensemble models. The results obtained from this study using our new

ensemble methods can provide proper and significant information to decision-makers and policy

planners in the landslide-prone areas of these districts.

Keywords: landslide; machine learning models; remote sensing; ensemble models; validation
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1. Introduction

Mountainous regions are threatened by the common natural disaster of landslides. Like hurricanes,

floods, droughts, earthquakes, soil erosion, and tsunamis, landslides are important environmental

disasters which cause damage and destruction to residential areas, roads, agricultural fields, gardens,

and grasslands. Spatially predicting landslide-prone areas may play an important role in disaster

management, and it can be considered the standard tool for decision-making in different areas [1].

In geological engineering, landslides are defined as the downward movement of material mass on a

slope [2]. Worldwide, mountainous areas are profoundly affected by landslides due to the instability

of slopes and masses [3]. For example, the Indian Himalayan mountain regions such as Jammu

& Kasmir, Himachal Himalaya, Kumayun, Darjeeling, Sikkim, and north-eastern hilly regions are

severely affected by landslides [4]. In the Darjeeling Himalayan region, landslides have a severe

environmental impact on socio-economic development. Every year the Darjeeling and Kalimpong

districts are frequently heated by landslides due to heavy monsoon rainfall and seismic activity [5].

During July–August in 1993, May in 2009, and September in 2011, the Darjeeling and Kalimpong

districts were severely affected by extreme landslides [6]. Furthermore, some major towns in these

districts, such as Darjeeling, Mirik, Kurseong, and Kalimpong were hit by landslides during June–July

in 2015 due to heavy rainfall, causing fatalities and damage to properties. Therefore, it is necessary to

address the landslide risk faced by this particular region to reduce the impact of this environmental

disaster. Information regarding the magnitude, character, and probability of landslides can be used to

reduce the impact of landslide hazards and for sustainable environmental development and future

planning [7]. Therefore, landslide potentiality zoning is an important step for sustainable land

management, not only for this particular region but also for other mountainous regions all over the

world. The chance of landslide occurrence depends on various conditioning factors rather than a single

factor. For preparing the landslide susceptibility map, two things are important: Firstly, landslide

inventory data which is considered the dependent variable, and, secondly, landslide conditioning

factors which are considered independent variables. In this study, the landslide inventory map was

prepared using data collected from Google Earth imagery, a global positioning system (GPS), and

extensive field investigations. The landslide conditioning factors or environmental factors, such as

slope, aspect, altitude, curvature, geology, soil, land use, normalized differential vegetation index

(NDVI), distance from drainage, distance from fault, distance from road, topographic wetness index

(TWI), and stream power index (SPI) were selected based on the findings of previous literature

(Yilmaz [8], Abedini et al. [9], Regmi et al. [10], Chawla et al. [11], Shahabi and hasim [12], Roy and

Saha [13], Pradhan [14], Pourghasemi et al. [15], Pham et al. [16], and Goetz et al. [17]). The landslide

inventory data and aforementioned landslide conditioning factors were used to prepare the LSMs

with the help of the remote sensing data (RS) and geographical information systems (GIS). Nowadays,

most researchers argue that machine learning algorithms using remote sensing and geographical

information systems are reliable and appropriate methods for assessing landslide hazards. During

recent decades, many studies on landslide susceptibility mapping have been conducted in various parts

of the world. Researchers have applied different approaches to produce landslide susceptibility maps,

such as statistical models, probabilistic models, knowledge-driven models, and machine learning

models using geographical information systems and remote sensing techniques like the analytical

hierarchy process (AHP) and bivariate statistics [9,18], logistic regression (LR), artificial neural networks

(ANN), frequency ratio (FR), naive bayes classifier, auto logistic modeling, static methods, multivariate

adaptive regression, two-class kernel logistic regression, SVM, artificial neural network kernel, logistic

regression and logistic tree, random forest, and decision tree methods [19]. Ensemble techniques have

been shown to achieve better results than a single method. In this article, WofE was ensembled with

four kernels (radial basis function (RBF), linear kernel, polynomial kernel, and sigmoid kernel) of

SVM to predict probable landslide hazard areas and for a comparison of the results. The Darjeeling

and Kalimpong districts are parts of the eastern Himalayan region in India. Both districts are mostly

covered in hilly terrain. Every year, these districts are affected by landslides, which cause destruction

240



Remote Sens. 2019, 11, 2866

to the roads, residential areas, tea gardens, and forests, leading to numerous fatalities. Therefore,

these regions were selected as the study area to raise awareness among the public and government so

necessary steps can be taken to mitigate the landslide hazard.

2. Materials and Methods

2.1. Study Area

The Darjeeling and Kalimpong districts are situated in the eastern Himalaya region of India and

are mainly covered in hilly and rugged mountainous terrain. Combinedly, these districts cover an area

of 3914 square km. The research site is bounded within the 26◦27” to 27◦13”N latitudes and 87◦59”E to

88◦53”E longitudes (Figure 1). The altitude of the study area ranges from 15 m to 3602 m above the

mean sea level. Climatically, the region is influenced by the south-west and north-east Indian monsoon.

The summer season is very wet, and the winter season is dry and cold. The temperature of this

region can drop close to zero degrees. According to the Indian metrological department, the rainfall of

this region ranges from 1877 mm to 2333 mm. Geologically, the region is composed of Precambrian

(Darjeeling gneiss, Daling series), Permian (Damuda series), Miocene (Swaliks), and recent Pleistocene

(Alluvium) lithologies, as shown in Table 1 [20]. The Gorubathan and Rangamati surface are tectonic

landscape of these regions. The majority of the study area is covered in Triassic rock. Regarding

its geomorphology, the research site is composed of active flood plain, alluvial plain, folded ridge,

highly dissected hill slope, intermontane valley, and piedmont fan plain [11]. Pedologically, the region

is characterized by various soil texture classes; namely, gravelly-loamy, fine-loamy to coarse-loamy,

gravelly-loamy to loamy skeletal, and gravelly-loamy to coarse-loamy [21]. Several rivers—namely,

the Mahananda, Tista, Mechi, Balason, Jaldhaka, Rammam and Rangit—flow across these districts

originating in the mountainous areas. The Darjeeling and Kalimpong districts are famous for national

and international tourism. Some attractive tourist places in these regions are Tiger Hill, Rock Garden,

Mahakal Temple, Dhirdham Temple, Batasia Loop, Ghoom Monastery, and Happy Valley Tea Garden.

The major economic activities of these regions are tea plantation, horticulture, and tourism. The

healthy and tasty tea of this region is famous worldwide. Siliguri, Darjeeling, and Kalimpong are the

major towns and headquarters within our study area. the total population comprises 18,46,823 people,

of which 50.75 % are males, and 49.25% are females. The population density of the research site is

586 people/km2, which is comparatively higher than the mean Indian population density [22]. The

length of the national highway, state highway, and other main district highway has increased from 100

to 111 km, 80 to 191 km, and 37 to 79 km from 2001 to 2011. Different cultural communities are present

in the study area, such as Nepali, Lepcha, Bhutia, and Rai.

Table 1. Geological successions of Darjeeling Himalaya.

Age Series Lithological Characteristics

Recent
(Holocene)
Pleistocene

Sub-aerial formations
(soil, alluvia, colluvial)

Raised Terraces

Younger flood plain deposits of the rivers composed of sand, gravel,
pebble, etc. and soil covering the rocks sandy, clay, gravel, pebble,

boulders etc. representing older fluvial deposits

Miocene Siwalik
Micaceous sandstones with slaty bands, seams of graphitic coal, silts

and minor bands of limestone

Permian
Damuda Series (Lower

Gondwana)
Quartzitic sandstones with slaty bands, carbonaceous shales, seams
of graphitic coal, lamprophyre sills and minor bands of limestone

Precambrian
1) Darjeeling gneiss

2) Daling gneiss

Golden-silvery micaschists; Carbonaceousmicaschists;
Granatiferousmicaschists and coarse grained gneisses. Slates

(greenish to grey with perfect slaty cleavage). Phyllites surrounded
by pebbles of quartz, Chlorite-schists with bands of grilty schist’s
injected with gneiss (crinkled). Granites, pagmatites’s and quartz

veins, with tourmaline and iron as accessories

Source: Mallet (50); Gansser, (51); Pawde and Saha, (52).
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Figure 1. Study area and landslide location map.

2.2. Methodology

The methodology of the present study is depicted in Figure 2. The flowchart is divided into four

main steps, as follows. Step 1: Data used: here, the landslide inventory map (LIM) and landslide

conditioning factors (LCFs) data layers were prepared. Step 2: Multicollinearity analysis of landslide

conditioning factors was carried out. Step 3: New ensembles of weight-of-evidence (WofE) and SVM

models were applied to prepare the landslide susceptibility maps (LSMs). Step 4: LSMs were validated

using the receiver operating characteristics (ROC) and quality sum (Qs) methods to measure the

capability of the models and identify the best suitable model.
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Figure 2. Methodological flowchart of the present work.

2.3. Data Preparation

2.3.1. Landslide Inventory Dataset

It is vital to analyze the landslide distribution and landslide conditioning factors to determine

which areas are most at risk of landslide occurrence. The landslide inventory map (LIM) is an important

part of the evaluation and assessment of landslide hazards and risks. Some researchers have used

landslide inventory datasets for landslide susceptibility mapping [8–17,23]. In the present study, a total

of 326 landslides were identified through extensive field investigations using a global positing system

(GPS) and Google Earth imagery. Out of 326 landslides, 228 (70%) landslides were chosen randomly

for landslide modeling purposes, and 98 (30%) landslides were used to validate the prepared landslide

susceptibility maps. The landslide inventory map (LIM) was prepared in a GIS environment and is

shown in Figure 1. Field photographs of some landslides in the study area are shown in Figure 3.
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Figure 3. Field photographs of some landslides in the study area. (a) Sikkim-Kalimpong

road (27◦03′20”N, 88◦26′03”E) (b) Sevokekalimandir (26◦54′01”N, 88◦28′18”E). (c) Lish catchment

(26◦57′N, 88◦30′17”E). (d) Darjeeling road (26◦54′33”N, 88◦17′10”E). (e) Pagla Jhora (26◦52′47.70”N,

88◦18′11.24”E). (f) Sevoke Road (26◦54′33”N, 88◦28′04”E).

2.3.2. Preparing Effective Factors

Landslides are processes of mass movement under the influence of different effective factors.

Accordingly, it is essential to analyze the conditions of the selected factors to assess landslide

susceptibility. The topographic (altitude, slope, aspect), climatic (rainfall), lithological (geology,

distance from lineament), hydro-morphological (geomorphology, distance from river, sediment

transportation index, stream power index, topographic wetness index), land use, vegetation index,

soil texture physical properties, and earthquake intensity are the major effective factors responsible

for landslides in general. Previous studies, including Yilmaz [8], Abedini et al. [9], Regmi et al. [10],

Chawla et al. [11], Shahabi et al. [12], Roy and Saha [13], Pradhan [14], Pourghasemi et al. [15],

Pham et al. [16], and Goetz et al. [17] used these effective factors for landslide susceptibility mapping.

In the present study, rainfall (Figure 4d), elevation (Figure 4a), slope (Figure 4b), aspect (Figure 4c),
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geology (Figure 4e), soil texture (Figure 4f), distance from river (Figure 4 g) distance from lineament

(Figure 4h), distance from road (Figure 4k), geomorphology (Figure 4o), land use/land cover (Figure 4i),

normalized differential vegetation index (Figure 4j), topographic wetness index (Figure 4l), sediment

transportation index (Figure 4n), stream power index (Figure 4m), and seismic zone (Figure 4p) maps

were used to delineate the landslide susceptibility area. Different techniques, which are mentioned

in Table 2, were used to prepare the thematic layers of these effective factors. A DEM with a spatial

resolution of 30m* 30m was selected to prepare the landslide susceptibility maps, and all of the

parameters with scales greater or lesser than the DEM were resampled into 30m*30m resolution.

Slope is one of the main landslide conditioning factors. The spatial distribution of slope ranges

from 0 to 89 degrees (Figure 4b). The aspect (Figure 4c) was classified into ten categories, i.e. flat

(−1), north (0–22.5; 337.5–360), northeast (22.5–67.5), east (67.5–112.5), southeast (112.5–157.5), south

(157.5–202.5), southwest (202.5–247.5), west (247.5–292.5), north-west (292.25–337.5). The altitude of

the study area ranges from 15 m to 3602 m above mean sea level (Figure 4a). The spatial distribution

of average rainfall ranges from 1877 mm to 2333 mm (Figure 4d). The geological map was obtained

from the geological survey of India. The river buffer map was classified into five classes, based on

the distance from the river, using the natural breaks classification method. The maximum distance

from the river in this study area is 4.33 km (Figure 4g). Similarly, the maximum distances from the

road and lineament are 16.4 km (Figure 4k) and 10 km (Figure 4h), respectively. The land use of this

study area was classified into five categories; namely, water bodies, settlement, vegetation, tea gardens,

fallow land, and agricultural land (Figure 4i). The NDVI values range from −0.072 to 0.432 (Figure 4j).

The topographic wetness index (TWI) value of the study area ranges from 1.95 to 18.41 (Figure 4l).

Geomorphologically, the research area consists of active flood plain, alluvial plain, folded ridge, highly

dissected hill slope, inter mountain valley, and piedmont fan plain (Figure 4o). The seismic map of the

study area was classified into two categories; namely, moderate and high seismic zones. The values of

the moderate risk zone range from 3 to 5 on the Richter scale, while values above 5 on the Richter scale

characterize the high seismic prone areas (Figure 4p). The spatial value of STI ranges from 0 to 203

(Figure 4n). The value of SPI in the study area ranges from −11.0 to 7.81 (Figure 4m).

The elevation, slope, aspect, rainfall, normalized differential vegetation index (NDVI), topographic

wetness index (TWI), stream power index (SPI), and sediment transportation index (STI) factors were

classified into five sub-layers using the natural breaks classification method in a GIS environment

(Figure 4). The land use/land cover (LULC) was determined by the maximum likelihood classification

method (Figure 4). The geology, soil texture, geomorphology, and seismic zone maps were categorized

into different sub-layers using a general classification technique in a GIS environment (Figure 4).
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Figure 4. Cont.
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Figure 4. Landslide conditioning factors - a. elevation, b. slope, c. aspect, d. rainfall, e. geology, f. soil

texture, g. distance from river, h. distance from lineament, i. land use/land cover (LULC), j. normalized

differential vegetation index (NDVI), k. distance from road, l. topographic wetness index (TWI), m.

stream power index (SPI), n. sediment transportation index (STI), o. Geomorphology, p. Seismic map.
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Table 2. Production techniques used for the various thematic data layers.

Sl. No. Parameters Data Used & Scale Sources of Data Types Techniques References

1 Elevation
DEM

30 m × 30
U.S Geological Survey 30 m × 30 m digital elevation model [24]

2 Slope
DEM

30 m × 30
U.S Geological Survey

Tanθ = N×i
636.6 N=No. of Contour Cutting;

i=Contour Interval
[25]

3 Aspect
DEM

30 m × 30
U.S Geological Survey

Aspect = 57.29× αtan2(
[

dz
dy

]
− [dz/dx]

Where,
dz/dx= ((c+2f+i)−(a+2d+g))/8
dz/dy=((g+2h+i)−(a+2b+c))/8

Here, a to i indicates the cell value of 3*3
window.

[26]

4 Rainfall
Annual average rainfall data of

different stations in the last 5
years

Indian Metrological
Department (IMD)

Kriging Interpolation method [27]

5 Geology
Reference geological map

1: 50,000
Geological Survey of India Digitization process [28]

6 Soil
Reference district soil map

1: 50,000
National Bureau of Soil Survey

and Land Use Planning
Digitization process [28]

7 Distance from River
Reference
Topomap
1: 50,000

Survey of India Euclidian Distance Buffering [29]

8 Distance from Lineament
Reference sheet of Lineament

30 m × 30
“https://bhuvan-vec2.nrsc.gov.

in/bhuvan/wms”
Euclidian Distance Buffering [29]

9
Land use/land cover

(LULC)
Landsat 8 OLI/TIRS

30 m × 30
U.S Geological Survey Maximum likelihood Classification [30]
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Table 2. Cont.

Sl. No. Parameters Data Used & Scale Sources of Data Types Techniques References

10
Normalized differential

vegetation index (NDVI)
Landsat 8 OLI/TIRS

30 m × 30
U.S Geological Survey

NDVI = NIR−IR
NIR+IR

Where NIR is the near infrared band or band
4 and IR is the infrared band or band 3.

[31]

11 Distance from road
Reference Topomap

1: 50,000
Survey of India Euclidian Distance Buffering [29]

12
Topographic wetness

index (TWI)

DEM
30 m×30
1: 50,000

U.S Geological Survey

TWI = In(As/tanθ)
Where α is the cumulative upslope area

draining through a point (per unit contour
length), and β is the slope gradient (in

degree).

[32].

13 Stream power index (SPI)
DEM

30 m × 30
1: 50,000

U.S Geological Survey
SPI = As ∗ tanβ

Where AS is the upstream contributing area
and β is the slope gradient (in degrees)

[32].

14
Sediment transportation

index (STI)
DEM

30 m × 30
U.S Geological Survey

STI =
(m + 1) × (As/22.13)m × sin(B/0.0896)n

Where, As, is the specific catchment area; ‘B’
is the local slope gradient in degrees; m is

usually set to 0.4, ‘n’, is usually set to 0.0896

[33]

15 Geomorphology
Reference sheet

1: 50,000
“https://bhuvan-vec2.nrsc.gov.

in/bhuvan/wms”
Digitization process [27]

16 Seismic zone map
Last 200 years point data of

earthquake
30 m × 30

National Centre for Seismology,
New Delhi, India

Gridding and Interpolation (Inverse distance
weight method)

[11]
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2.4. Multicollinearity Analysis

Multicollinearity analysis is a vital way of identifying and selecting appropriate landslide

conditioning factors [13]. In this study, multicollinearity was evaluated through the tolerance value

and variance inflation factor (VIF). In normal conditions, tolerance values under 0.10 or VIF values

of 10 and above indicate multicollinearity [31–33]. In the present study, the multicollinearity test of

landslide conditioning factors was done using SPSS software.

2.5. Models

2.5.1. Weight-of-Evidence (WofE) Model

The present study demonstrates the application of the ensemble WofE and SVM model (a Bayesian

probability model) for the assessment of landslide susceptibility in the GIS environment. Two types of

data were incorporated in the weight-of-evidence model; namely, the landslide inventory data and

landslide conditioning factors. The weights were assigned to each landslide conditioning factor by

the weight-of-evidence (WofE) model. This model may be compared to the other statistical methods

such as the data-driven model that is generally used for the Bayesian probability model [29,34–40].

Mohammady et al. [38] and Regmi et al. [10] emphasized the value of using the weight-of-evidence

model for the evaluation of landslide hazard zones.

The positive weight (W+) and negative weight (W−) were calculated to complete the

weight-of-evidence function. This calculation was the basis for assigning the weights to the landslide

conditioning factors (B) based on the presence and absence of landslides within the area [35] using the

following equations (1, 2).

W+
i
= In

P{B/A}
P{B/A} (1)

W−i = In
P
{
B/A

}

P
{
B/A

} (2)

Here, P is the probability and ln is the natural log. Similarly, B and B indicate the presence and

absence of landslide predictive factors. A and A indicate the presence and absence of landslides.

A positive weight (W+) indicates the presence of landslides in a sub-category of landslide conditioning

factors and the magnitude of this weight is an indication of the positive correlation between landslide

conditioning factors and landslide occurrence. A negative weight (W−) indicates the absence of

landslides in a sub-category of landslide conditioning factors. A negative weight also indicates a

negative correlation between the landslide conditioning factors and the occurrence of landslides [36].

For modeling purposes, the weight contrast C (C=W+−W−) measures the spatial association between

landslide conditioning factors and landslide occurrences. A positive C value indicates a positive spatial

association and a negative C value indicates a negative spatial association [37].

The standard deviation of W is calculated using Equation (3):

S(C) =

√
S2W+ + S2W− (3)

where S(W+) indicates the variance of the positive weights and S (W−) indicates the variance of the

negative weights. The variance of the weights was calculated using the following equation:

S2W+ =
1

N{B∩A} +
1

B∩A
(4)

S2W− =
1

N
{
B∩A

} + 1

B∩A
(5)
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The studentized contrast is the final weight. It is a measure of confidence and is defined as the ratio

of the contrast divided by its standard deviation. The studentized contrast serves as an informal test of

whether C is significantly different from zero or if the contrast is likely to be “real” [35]. After applying

the WofE model, the factor weights calculated by this model were ensembled with the SVM model.

2.5.2. Support Vector Machine (SVM) Model

Among the different machine learning algorithms, SVM is an important supervised learning

binary classifier that is based on the structural risk minimization principle [41–44]. This method

separates the hyperplane formation from the training dataset. The separating hyperplane is prepared

in the original space of n coordinates (xi parameter in vector x) between the points of two distinct

classes [43]. The maximum margin of separation between the classes is discovered by SVM and,

therefore, builds a classification hyperplane in the center of the maximum margin [14,44]. If a point is

located over the hyperplane, it will be classified as +1 and, if not, will be classified as −1. The training

points adjoined to the optimal hyperplane are called support vectors. Once the decision surface is

acquired, new data can be classified [45] considering a training data set of instance label pairs (XiYi)

with Xi ∈ Rn, Yi ∈ {+1,−1} and i = 1......, m. To delineate the landslide susceptibility zones, X represents

the vector space that includes rainfall, slope, aspect, elevation, geology, soil texture, land use/land cover,

normalized differential vegetation index, distance from river, distance from lineament, distance from

road, topographic wetness index, sediment transportation index, stream power index, geomorphology,

and the seismic zone map. Meanwhile, the +1 class indicates landslide pixels, whereas the −1 class

indicates non-landslide pixels.

The aim of SVM is to find the optimal separating hyperplane that can separate the training dataset

into the two classes of landslides and non-landslides {+1, −1}. The separating hyperplane separates

data using the following equations:

Yi = (W.Xi + b) ≥ 1− ξi (6)

where w is a coefficient vector that defines the orientation of the hyperplane in the feature space, b is

the offset value of the hyperplane from the origin, and ξi represents the weak positive variables [46].

The problem of optimization will be solved through the determination of an optimal hyperplane using

Lagrangian multipliers [47].

Minimize

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiα jYiY j(XiX j) (7)

Subject to

n∑

i=1

αiYi = O, 0 ≤ αi ≤ C, (8)

where ai represents the Lagrange multipliers, C is the penalty value, and the slack variables ni allow

for penalized constraint violation. The decision function, which will be used for the classification of

new data, can then be written as:

g(X) = sign(
n∑

i=1

YiαiXi + b) (9)

If the hyperplane cannot be separated by the linear kernel function, the original input data

may be shifted into a high-dimensional feature space through some nonlinear kernel functions.

The classification decision function is presented in Equation (10):

g(X) = sign(
n∑

i=1

YiαiK(Xi,X j) + b) (10)
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where K(Xi, Xj) is the kernel function.

Linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid

kernel (SIG) are the most popular kernel types for SVM analysis [14]. PL and RBF are called Gaussian

kernels, and they are the most commonly used kernels in the literature [43]. To prepare the landslide

susceptibility map using SVM, we used the remote sensing (RS) software ENVI 4.7, which is an

environment for visualizing images. The ENVI 4.7 SVM classifier has four types of kernels; namely,

radial basis function (RBF), linear kernel, polynomial kernel, and sigmoid kernel. The mathematical

calculation was carried out as shown in Table 3.

Table 3. SVM kernel types and their equations.

Kernel Types Equations Kernel Parameters

Radial Basis Function (RBF) K(Xi,X j) = exp(−γXi −X2
j
) γ

Linear kernel K(XiX j) = XT
i

X j —

Polynomial kernel K(Xi,X j) = (−γXT
i

X + 1)d γ, d

Sigmoid kernel K(Xi,X j) = Tanh(−γXT
i

X + 1)d γ

(Source: Tien Bui et al. [46], Yao et al. [43]).

3. Results

3.1. Considering the Multicollinearity Analysis of the Effective Factors

The landslide conditioning factors were tested for multicollinearity. The results show that the

lowest tolerance value of landslide conditioning factors is 0.446 for rainfall and the highest tolerance

value is 0.824 for slope (Table 4). The highest variance inflation factor (VIF) value is 2.241, and the

lowest VIF value is 1.213 (Table 4). However, the tolerance values of landslide conditioning factors

are greater than 0.1, and VIF values are less than 0.1 and 10, suggesting that there are no collinearity

problems among these factors. Therefore, the selected 16 landslide conditioning factors are suitable

and accurate for modeling landslide susceptibility.

Table 4. Multicollinearity analysis of landslide conditioning factors.

Landslide Conditioning Factors
Collinearity Statistics

Tolerance VIF

Rainfall 0.446 2.241

Elevation 0.520 1.924

Slope 0.824 1.213

Aspect 0.672 1.488

Geology 0.688 1.453

Soil 0.756 1.323

Distance from River 0.570 1.753

Distance from lineament 0.773 1.294

Distance from Road 0.499 2.003

Land use/land cover (LULC) 0.754 1.326

Normalized differential vegetation index (NDVI) 0.757 1.320

Topographic wetness index (TWI) 0.677 1.477

Stream power index (SPI) 0.684 1.461

Sediment transportation index (STI) 0.768 1.302

Geomorphology 0.789 1.268

Seismic zone 0.618 1.618
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3.2. Relationship Between Landslide Location and Effective Factors

The WofE values of each class of explanatory variables stand for the degree of landslide occurrence

(Table 5). The topographic factors of elevation, slope, and aspect are vital factors which determine the

landslide susceptibility of an area. Areas in high elevations are more susceptible to landslides compared

to lower altitude areas. In the present study, the altitude level between 422 m to 985 m has the highest

WofE value, which indicates a high susceptibility to landslides. The other sub-layers of elevation are

comparatively less susceptible to landslides. Slope plays a vital role in landslide hazard assessment.

When slope stability becomes weak, the tendency of landslide occurrence is very high. Therefore, high

slope values indicate a high probability of landslide occurrence. In our study area, the slope sub-class

of 36 to 79 degrees is more prone to landslides compared to the other sub-layers of slope because this

sub-class of slope has attained the maximum value of the WofE model. Aspect is also correlated with

the probability of landslide occurrence. Aspect is the direction that a slope faces. In this study, south

facing slopes obtained the maximum WofE value, indicating a high susceptibility to landslides. Heavy

rainfall detaches the soil and rock easily, leading to an increased probability of landslide occurrence.

The study area is highly influenced by the monsoon rainfall from June to November, during which

the tendency of landslide occurrence is very high. The rainfall sub-layer of 2167 mm to 2239 mm

attained the highest WofE values and, therefore, has a higher risk of landslides compared to the other

sub-layers of rainfall. Regarding the geology, Darjeeling gneiss, daling series, and swaliks geological

segments attained the highest WofE values, suggesting the highest risk of landslides. The soil texture

is strongly associated with the probability of landslide occurrence. Gravelly-loamy, gravelly-loamy

to loamy-skeletal, and coarse-loamy soil texture classes, with WofE values of 23.44, 21.01 and 19.05,

respectively, indicate a higher risk of landslide occurrence compared to the other soil texture classes.

River proximity also increases the chances of landslide occurrence. Areas nearest to rivers have a

higher landslide risk compared to areas in further distance classes. Here, areas in the class of 0 to

1.66 km distance from rivers have a high probability of landslide occurrence with a WofE value of 14.78.

Similarly, areas closest roads and lineaments have a high probability of landslide occurrence based on

the WofE values. In recent times, land use has had a strong influence on the occurrence of landslides.

Our study area is categorized into five land use types; namely, water bodies, settlement, vegetation,

fallow land, and agricultural land. The outcome of the WofE model indicates that the fallow land has a

higher risk of landslides compared to vegetation and other land uses. High normalized differential

vegetation index areas are less prone to landslide occurrence and vise-versa. Here, the −0.07 to 0.12

NDVI sub-class with a WofE value of 33.27 is the most critical zone for landslide occurrence. The other

sub-layers of NDVI indicate lower probabilities of landslide occurrence. For the factors of TWI, STI, and

SPI, the maximum values have the highest probability of landslide occurrence. Geomorphologically,

the folded ridge and highly dissected mountain regions have the highest potentiality of landslide

occurrence, with WofE values of 15 and 33, respectively. Comparatively, the hilly and mountainous

regions are more prone to landslides than the plain and plateau regions. Seismologically, the high

seismic zone is more susceptible to landslide occurrence than the low seismic zone.

All sub-layers of the different landslide conditioning factors were assigned a weight by the WofE

model in the GIS environment. The weighted layers were then converted to a raster layer to prepare

the landslide susceptibility map. Before the landslide susceptibility mapping, the weighted (by WofE)

layers were reclassified as the input data layers of the support vector machine (SVM) for ensembling

with WofE.
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Table 5. Spatial relationship between landslide conditioning factors and landslide occurrence extracted by the Weight-of-evidence (WofE) model.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

1877.38–1991.97 322590 8.784 0 0.000 0.000 0.092 0.000 0.000 0.000 0.000 0.000

1991.97–2090.54 289906 7.894 0 0.000 0.000 0.082 0.000 0.000 0.000 0.000 0.000

2090.45–2167.44 944320 25.712 393 7.895 −1.182 0.215 −1.397 0.003 0.000 0.053 −26.580

2167.44–2239.06 1333493 36.309 3670 73.684 0.709 −0.885 1.594 0.000 0.001 0.032 49.504

2239.06–2333.96 782357 21.302 918 18.421 −0.145 0.036 −0.182 0.001 0.000 0.037 −4.963

Slope (Degree)

0–9.32 1175818 32.015 92 1.847 −2.854 0.368 −3.222 0.011 0.000 0.105 −30.614

9.32–18.64 665098 18.109 571 11.464 −0.458 0.078 −0.536 0.002 0.000 0.044 −12.044

18.44–27.34 813896 22.161 1172 23.529 0.060 −0.018 0.078 0.001 0.000 0.033 2.326

27.34–36.66 694449 18.909 1579 31.700 0.518 −0.172 0.690 0.001 0.000 0.030 22.622

36.66–79.23 323404 8.806 1567 31.460 1.277 −0.286 1.563 0.001 0.000 0.031 51.122

Altitude(m)

15–422 1351511 36.799 417 8.373 −1.482 0.372 −1.854 0.002 0.000 0.051 −36.226

422 – 985 837224 22.796 2491 50.000 0.787 −0.435 1.222 0.000 0.000 0.028 43.079

985 –1576 738499 20.108 1005 20.173 0.003 −0.001 0.004 0.001 0.000 0.035 0.115

1576 – 2279 518669 14.122 839 16.844 0.176 −0.032 0.209 0.001 0.000 0.038 5.509

2279 – 3602 226762 6.174 230 4.610 −0.293 0.017 −0.309 0.004 0.000 0.068 −4.572

Aspect

Flat(−1) 1905 0.052 0 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

north 236967 6.452 39 0.788 −2.104 0.059 −2.163 0.025 0.000 0.160 −13.495

northeast 462023 12.580 363 7.289 −0.546 0.059 −0.605 0.003 0.000 0.055 −11.098

east 454970 12.388 651 13.061 0.053 −0.008 0.061 0.002 0.000 0.042 1.443

southeast 522200 14.219 1098 22.045 0.439 −0.096 0.535 0.001 0.000 0.034 15.640

south 525807 14.317 1292 25.946 0.596 −0.146 0.742 0.001 0.000 0.032 22.922

southwest 457236 12.450 890 17.868 0.362 −0.064 0.426 0.001 0.000 0.037 11.505

west 378362 10.302 462 9.279 −0.105 0.011 −0.116 0.002 0.000 0.049 −2.376

northwest 419573 11.424 154 3.093 −1.308 0.090 −1.398 0.006 0.000 0.082 −17.074

north 213621 5.817 31 0.630 −2.223 0.054 −2.277 0.032 0.000 0.179 −12.718

254



Remote Sens. 2019, 11, 2866

Table 5. Cont.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

Geology

Swaliks 1936266 52.721 3182 63.889 0.192 −0.270 0.462 0.000 0.001 0.030 15.659

Darjeeling Gneiss 270526 7.366 692 13.889 0.635 −0.073 0.709 0.001 0.000 0.041 17.273

Daling series 131471 3.580 415 8.333 0.847 −0.051 0.897 0.002 0.000 0.051 17.480

Alluvium 678512 18.475 0 0.000 0.000 0.205 0.000 0.000 0.000 0.000 0.000

Damuda series 655890 17.859 692 13.889 −0.252 0.047 −0.299 0.001 0.000 0.041 −7.293

Soil

Gravelly-loamy 274651 7.478 830 16.667 0.803 −0.105 0.908 0.001 0.000 0.038 23.845

Fine loamy_Coarse
Loamy

1477848 40.239 1107 22.222 −0.594 0.264 −0.858 0.001 0.000 0.034 −25.171

Gravelly
loamy_LoamySkeletol

450035 12.254 1107 22.222 0.596 −0.121 0.717 0.001 0.000 0.034 21.019

Gravelly
Loamy_Coarse Loamy

1404794 38.250 1660 33.333 −0.138 0.077 −0.214 0.001 0.000 0.030 −7.131

Coarse Loamy 65336 1.779 277 5.556 1.142 −0.039 1.181 0.004 0.000 0.062 19.055

Distance from River (km)

0–0.42 1160959 31.611 1049 21.053 −0.407 0.144 −0.551 0.001 0.000 0.035 −15.837

0.42–1.10 1291696 35.171 1966 39.474 0.116 −0.069 0.184 0.001 0.000 0.029 6.356

1.10–1.66 750401 20.432 1442 28.947 0.349 −0.113 0.462 0.001 0.000 0.031 14.784

1.66–2.26 371677 10.120 393 7.895 −0.249 0.024 −0.273 0.003 0.000 0.053 −5.195

2.26–4.33 97931 2.666 131 2.632 −0.013 0.000 −0.014 0.008 0.000 0.089 −0.153

Distance from Lineament(km)

0–1.54 763490 20.788 906 18.182 −0.134 0.032 −0.167 0.001 0.000 0.037 −4.531

1.54–2.85 1093457 29.773 1019 20.455 −0.376 0.125 −0.501 0.001 0.000 0.035 −14.243

2.85–4.20 941314 25.630 1472 29.545 0.142 −0.054 0.197 0.001 0.000 0.031 6.323

4.20–5.75 633142 17.239 1245 25.000 0.372 −0.099 0.471 0.001 0.000 0.033 14.378

5.75–10.12 241263 6.569 340 6.818 0.037 −0.003 0.040 0.003 0.000 0.056 0.710
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Table 5. Cont.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

Distance from Road(km)

0–1.74 1636028 44.546 792 15.909 −1.031 0.417 −1.448 0.001 0.000 0.039 −37.353

1.74–3.94 988335 26.911 906 18.182 −0.393 0.113 −0.506 0.001 0.000 0.037 −13.754

3.94–6.72 589253 16.044 906 18.182 0.125 −0.026 0.151 0.001 0.000 0.037 4.109

6.72–10.22 316628 8.621 1472 29.545 1.235 −0.260 1.495 0.001 0.000 0.031 48.066

10.22–16.49 142420 3.878 906 18.182 1.550 −0.161 1.711 0.001 0.000 0.037 46.466

Land use/Land cover

Water bodies 40427 1.101 0 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000

Vegetation 2650294 72.163 1119 22.464 −1.168 1.027 −2.195 0.001 0.000 0.034 −64.607

Fallow land 168382 4.585 1624 32.609 1.970 −0.348 2.318 0.001 0.000 0.030 76.445

Agricultural land 763256 20.782 2238 44.928 0.773 −0.364 1.137 0.000 0.000 0.029 39.858

Settlement 50306 1.370 0 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000

Normalized differential vegetation index (NDVI)

−0.07–0.12 442450 12.047 1399 28.093 0.849 −0.202 1.050 0.001 0.000 0.032 33.271

0.12–0.17) 972514 26.480 1421 28.523 0.074 −0.028 0.103 0.001 0.000 0.031 3.270

0.17–0.23) 997257 27.154 1312 26.336 −0.031 0.011 −0.042 0.001 0.000 0.032 −1.297

0.23–0.29 816592 22.234 618 12.411 −0.584 0.119 −0.703 0.002 0.000 0.043 −16.346

0.29–0.49 443851 12.085 231 4.636 −0.959 0.081 −1.041 0.004 0.000 0.067 −15.436

Topographic wetness index (TWI)

1.95–7.37 582990 15.874 918 18.421 0.149 −0.031 0.180 0.001 0.000 0.037 4.916

7.37–8.53 1326854 36.128 2097 42.105 0.153 −0.098 0.252 0.000 0.000 0.029 8.765

8.53–9.76 1088701 29.643 1311 26.316 −0.119 0.046 −0.165 0.001 0.000 0.032 −5.140

9.76–11.70 547267 14.901 655 13.158 −0.125 0.020 −0.145 0.002 0.000 0.042 −3.454

11.70–18.91 126853 3.454 0 0.000 0.000 0.035 0.000 0.000 0.000 0.000 0.000
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Table 5. Cont.

Rainfall (mm) Pixels % of Pixels Landslide Pixels % of Pixels W+ W− C S2W+ S2W− S© W

Sediment transportation index (STI)

0–4.80 3576809 97.390 4850 97.368 0.000 0.008 −0.008 0.000 0.008 0.089 −0.096

4.80–20.81 78362 2.134 131 2.632 0.210 −0.005 0.215 0.008 0.000 0.089 2.429

20.81–56.85 13728 0.374 0 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

56.85–120.10 3037 0.083 0 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

120.10–203.38 729 0.020 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stream power index (SPI)

−11.16 – −6.84 457701 12.462 427 8.571 −0.375 0.044 −0.418 0.002 0.000 0.051 −8.260

−6.84 – −4.31 670452 18.255 1139 22.857 0.225 −0.058 0.283 0.001 0.000 0.034 8.385

−4.31 – −2.08 994622 27.082 1139 22.857 −0.170 0.056 −0.226 0.001 0.000 0.034 −6.700

−2.08 – −0.002 1003492 27.323 1423 28.571 0.045 −0.017 0.062 0.001 0.000 0.031 1.978

−0.002 – 7.81 546398 14.877 854 17.143 0.142 −0.027 0.169 0.001 0.000 0.038 4.491

Geomorphology

Alluvial plain 591694 16.111 0 0.000 0.000 0.176 0.000 0.000 0.000 0.000 0.000

Piedmont fan plain 453016 12.335 119 2.381 −1.646 0.108 −1.754 0.008 0.000 0.093 −18.867

Inter montane valley 383190 10.434 474 9.524 −0.091 0.010 −0.101 0.002 0.000 0.048 −2.101

Active flood plain 205950 5.608 0 0.000 0.000 0.058 0.000 0.000 0.000 0.000 0.000

Folded ridge 499607 13.603 1067 21.429 0.455 −0.095 0.550 0.001 0.000 0.035 15.919

Highly dissected hill
slope

1539208 41.910 3321 66.667 0.465 −0.556 1.021 0.000 0.001 0.030 33.948

Seismic zone map

High 1000641 27.246 2604 52.273 0.653 −0.422 1.075 0.000 0.000 0.028 37.859

Moderate 2672024 72.754 2377 47.727 −0.422 0.653 −1.075 0.000 0.000 0.028 −37.859

257



Remote Sens. 2019, 11, 2866

3.3. Landslide Susceptibility Models

The support vector machine is an important machine learning algorithm that is used to assess an

area’s susceptibility to landslides and other natural hazards. In the present study, the SVM classification

was used and ensembled with WofE. The landslide conditioning factors; namely, elevation, slope, aspect,

rainfall, geology, soil texture, land use land cover, normalized differential vegetation index (NDVI),

distance from river, distance from road, distance from lineament, topographic wetness index (TWI),

stream power index (SPI), sediment transportation index (STI), geomorphology, and seismic zone map

were used as the input of the SVM classification. The probability values of the SVM classification

ranges from 0 to 1. Pixels of images or conditioning factors indicate the landslide susceptibility index

with two values, i.e., 0 to 1 where 0 represents stable conditions and 1 value indicates a high chance

of landslides occurrence. The SVM classification has four kernel types; namely, radial basis function,

linear kernel, polynomial kernel, and sigmoid kernel. These functions were applied in the SVM

classification. The output file images created by the SVM classification were integrated and used to

prepare the landslide susceptibility maps (LSMs) in the GIS environment.

The four landslide susceptibility maps (LSMs) shown in Figure 5a–d were prepared using

the four ensemble models of WofE and SVM; namely, WofE & RBF-SVM, WofE & Linear-SVM,

WofE&Polynimial-SVM, and WofE& Sigmoid-SVM. These landslide susceptibility maps (LSMs) were

classified into four categories; namely, low, medium, high, and very high susceptibility to landslides,

using the natural breaks classification method in the GIS environment. In the WofE& RBF-SVM

ensemble map, the four landslide susceptibility classes of low, medium, high, and very high covered

1071 km2 (34%), 813 km2 (25.8%), 635 km2 (20.2%), and 630 km2(20%) area of the districts, respectively

(Table 6 and Figure 6). In the WofE and Linear-SVM model, the low, medium, high, and very high

landslide susceptibility classes covered an area of 1128 km2 (35.8%), 918 km2 (29.1%), 630 km2 (20%),

and 474 km2 (15%), respectively (Table 6). In the WofE& Polynomial-SVM model, the low, medium,

high, and very high susceptibility classes covered an area of 1095 km2 (34.8 %), 944 km2 (30%), 608 km2

(19.3%) and 501 km2 (15.9 %), respectively (Table 6). Meanwhile, in the WofE & Sigmoid-SVM ensemble

landslide map, the classes of low, medium, high, and very high landslide susceptibility covered

1153 km2 (36.6%), 893 km2 (28.3%), 605 km2 (19.2%) and 398 km2 (15.8%) of the area, respectively

(Table 6).

Table 6. Areal distribution of ensemble model landslide susceptibility maps (LSMs).

Landslide
Susceptibility

Classes

WofE& RBF-SVM WofE&Linear-SVM
WofE&

Polynomial-SVM
WofE&

Sigmoid-SVM

Area in
sq.km

% of
Area

Area in
sq.km

% of
Area

Area in
sq.km

% of
Area

Area in
sq.km

% of
Area

Low 1071 34.0 1128 35.8 1095 34.8 1153 36.6

Medium 813 25.8 918 29.1 944 30.0 893 28.3

High 635 20.2 630 20.0 608 19.3 605 19.2

Very High 630 20.0 474 15.0 501 15.9 498 15.8
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Figure 5. Landslide Susceptibility maps (LSMs) produced by different ensemble models - a.  
Figure 5. Landslide Susceptibility maps (LSMs) produced by different ensemble models – (a). WofE&

RBF-SVM, (b). WofE&Linear-SVM, (c). WofE& Polynomial-SVM, (d). WofE& Sigmoid-SVM models.

 

 

Figure 6. Areal distributions of LSMs by– (a). area distribution of LSMs, (b). percentage of area

distribution of LSMs.
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3.4. Validation and Comparison of Models

The landslide susceptibility maps of Darjeeling and Kalimpong districts were prepared by

the ensembles of WofE and SVM. These LSMs were then validated using the receiver operating

characteristics (ROC) curve, which justifies and evaluates the accuracy of the models [48–56]. The ROC

curve was prepared along the X and Y-axis. The X-axis indicates the false positive rate (1-specificity)

and the Y-axis indicates the true positive rate (sensitivity) [57]. ROC curves have been extensively used

for the assessment of susceptibility maps [8,12,15,58–66]. In the present study, of the 326 landslides, 98

(30%) landslides were used to validate the landslide susceptibility maps. The area under curve (AUC)

values of the ensemble models WofE& RBF-SVM, WofE& Linear-SVM, WofE& Polynomial-SVM, and

WofE& Sigmoid-SVM are 87%, 90%, 88%, and 85%, respectively, indicating that they are very good

models for the identification of landslide hazard zones (Figure 7a–d). Based on the results of the ROC

curves, the WofE& Linear-SVM model is considered more accurate (AUC = 90%) than the other three

ensemble models.
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Figure 7. Validation of LSMs using the ROC curve showing the area under curve (AUC) – (a). WofE&

RBF-SVM, (b). WofE&Linear-SVM, (c). WofE& Polynomial-SVM, (d). WofE& Sigmoid-SVM models.

It is not sufficient to validate the susceptibility models with only one validation method because

this can lead to erroneous results if the samples are randomly distributed across the basin. Therefore,

it is essential to cross check the validation result using another suitable validation method. In the

present study, the quality sum (Qs) index was used as a second method to assess the accuracy and

compare the landslide susceptibility models. Abedini and Tulabi [67] used the Qs method for landslide

hazard assessment. In the Qs method, greater values indicate a higher accuracy and correctness of
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the landslide susceptibility map, whereas lower values indicate lower accuracy [67]. To evaluate this

index, the density ratio (Dr) was first calculated using Equation (11).

Dr =

Si
Ai∑n
i Si∑n
i Ai

(11)

where Si is the sum of the area of the landslides in each risk class, Ai is the area in the class of risk, and

n is the number of risk classes in a zonation map. The Qs index is shown in Equation (12).

Qs =
n∑

i=1

(Dr−1)2×S (12)

where Qs is the quality sum index, Dr is the density ratio, and S is the areal ratio of each risk class

to the total area. The Qs method is a reliable validation technique which is calculated based on the

landslide distribution and landslide hazards map using Equation (20). The four ensemble models in

this study obtained the following Qs values: the WofE & RBF-SVM ensemble model scored 2.10; the

WofE& Linear-SVM ensemble model scored 2.24; the WofE&Polynominal-SVM ensemble model scored

2.10, and the WofE& Sigmoid-SVM ensemble model scored 2.18 (Table 7). In line with the ROC results,

the Qs validation results also indicate that the WofE and Linear-SVM model is more accurate than the

other ensemble models.

Table 7. Mathematical Calculation of Qs Method of Ensemble LSMs.

Ensemble Models Classes ai (sq.km) si (sq.km) DR s Qs

WofE& RBF-SVM

Low 1071.23 0.00 0.00 0.34

2.10
Medium 812.95 0.12 0.10 0.26

High 635.02 0.93 1.07 0.20

Very High 629.80 3.26 3.78 0.20

WofE& Linear-SVM

Low 1127.55 0.00 0.00 0.36

2.24
Medium 917.57 0.34 0.27 0.29

High 630.04 1.13 1.32 0.20

Very High 473.84 2.84 4.37 0.15

WofE&
Polynomial-SVM

Low 1095.14 0.00 0.00 0.35

2.10
Medium 944.15 0.34 0.26 0.30

High 608.44 1.13 1.36 0.19

Very High 501.27 2.84 4.13 0.16

WofE& Sigmoid-SVM

Low 1153.40 0.00 0.00 0.37

2.18
Medium 892.57 0.23 0.19 0.28

High 604.55 1.25 1.51 0.19

Very High 498.48 2.84 4.16 0.16

4. Discussion

Landslide susceptibility maps play a vital role in stakeholders making suitable decisions in

landslide-prone areas. Landslide events not only cost human lives, but also destroy residential areas,

roads, and agricultural fields. The assessment of landslide hazards using LSMs performed in this study

is an important tool to mitigate landslide hazards, sustain the environment, and help the residents of

high risk landslide susceptibility zones. In this study, ensemble models of weight-of-evidence (WofE)

and SVM were used to prepare the landslide susceptibility maps (LSMs). The different statistical,
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knowledge-driven, probabilistic, and machine learning models were used to recognize which areas are

at severe risk of landslide occurrence. Several past studies have produced landslide susceptibility maps

using different methods and models, such as landslide numerical risk factor (LNRF), frequency ratio

(FR), analytical hierarchical process (AHP), SVM, artificial neural network (ANN), logistic regression

(LR), conditional probability (CP), multi-criteria decision approach (MCDA), bivariate statistical,

bivariate and multivariate models [8,9,60–65]. These studies determined the critical zones of landslide

risk in their respective study regions. However, in the present study, a new ensemble technique

was used, which has shown better results than those of previous studies. An ensemble of the two

or three models may provide better results than any single model. In the present study, landslide

susceptibility maps were prepared using ensemble models of WofE& RBF-SVM, WofE& Linear-SVM,

WofE & Polynomial-SVM, and WofE & Sigmoid-SVM. These models are reliable and accurate in this

field. The landslide susceptibility maps were created using landslide inventory data (326 landslides)

and landslide conditioning factors (16 environmental factors). The landslide susceptibility maps

(LSMs) produced by the ensemble models were classified into four susceptibility classes; namely,

low, medium, high, and very high susceptibility to landslide occurrence. The high susceptibility

landslide probability zones of the WofE & RBF-SVM, WofE& Linear-SVM, WofE & Polynomial-SVM

and WofE& Sigmoid-SVM models cover areas of 630 km2 (20%), 474 km2 (15%), 501 km2 (15%), 497 km2

(15%), respectively.

The landslide susceptibility maps (LSMs) were validated and compared using the receiver

operating characteristic (ROC) and quality sum (Qs) validation methods. Based on these validation

methods, all models are considered very good to excellent. A high resolution DEM for this area is not

freely available, posing the main challenge for the researchers in this study. If high resolution images

were used for the extraction of landslide conditioning factors instead of a 30m DEM, these methods

could be used to model landslide susceptibility at a micro level and achieve better results [68,69]. Of the

four ensemble models, the landslide map produced by the WofE & Linear-SVM model is more suitable

and accurate than those produced by other models. The areal distribution of the landslide susceptibility

maps is shown in Figure 7. In the present study, these very high susceptibilities landslide probability

zones are found in the middle portion of the study area. The areas in these districts closer to roads,

such as NH-31 road, Rohini road, Rishi road, Darjeeling road, Sevoke road, and Sikkim-Kalimpong

roads, are highly affected by landslides. Teesta River is the major river in these districts. The areas

closer to the Teesta River are the most critical zone of landslide susceptibility. The Lish catchment,

Mahananda catchment, and Torsha catchment are major catchments which are highly affected by

landslides. The other critical landslide areas are Sukhia-Pokhari, Kurseong, Sevoke, Majua tea garden,

and Kalimpong. The main factors determining landslide risk in these regions are heavy rainfall, steep

slope, elevation, soil texture, geology, distance from road and LULC. During the monsoon season, these

areas are strongly affected by landslides due to heavy rainfall. These regions are also affected by high

seismic intensity, which is an important cause of landslides. However, the study carefully chalks out

the landslides risk zones of Darjeeling and Kalimpong districts. This study will help the government

to mitigate the landslides effect and strengthen the public conscious for sustainable development.

5. Conclusions

Landslides are very harmful natural hazards that cost human lives and cause widespread damage

to roads, residences, gardens, and agricultural land. In this study, the weight-of-evidence (WofE) and

SVM models were ensembled to produce landslide susceptibility maps (LSMs) for the Darjeeling and

Kalimpong districts. The ensemble approach is an appropriate method for landslide susceptibility

mapping that provides better results than using a single model. The four LSMs produced in this

study were classified into four categories; namely, low, medium, high, and very high susceptibility to

landslide occurrence. In the various models, the very high susceptibility class covered 20% (WofE&

RBF-SVM mode), 15% (WofE& Linear-SVM model), 15.9% (WofE& Polynomial-SVM model), and

15% (WofE& Sigmoid-SVM models) of the study area, respectively. The very high landslide-prone
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areas are mainly located in the southern and middle parts of Darjeeling and Kalimpong districts.

In particular, the Lish catchment area, Teesta catchment area, Sevoke road, and Majua tea garden areas

are highly susceptible to landslide occurrences. The results of the ensemble models were validated

using the QS index and ROC methods. Both validation methods confirmed the landslide susceptibility

maps produced by the WofE& RBF-SVM, WofE& Linear-SVM, WofE& Polynomial-SVM, and WofE&

Sigmoid-SVM ensemble methods as being excellent and appropriate. Of the four ensemble models,

the WofE & Linear-SVM model was found to be more accurate than other ensemble models. This work

helps to increase awareness of the public and government and aims to reduce the impact of landslides

by providing steps and suitable strategies of hazard mitigation. Some necessary steps and techniques

are essential in the very high landslide risk zones of the study area. Identification of faults, weak

geological regions, proper drainage management, and afforestation programs in landslide-prone areas

may reduce the landslide risks. The results obtained from this study can provide proper and significant

information to the decision-makers and policy planners in the landslide-prone areas of these districts.
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Abstract: Interferometric synthetic aperture radar (InSAR) time series deformation monitoring plays

an important role in revealing historical displacement of the Earth’s surface. Xi’an, China, has suffered

from severe land subsidence along with ground fissure development since the 1960s, which has

threatened and will continue to threaten the stability of urban artificial constructions. In addition,

some local areas in Xi’an suffered from uplifting for some specific period. Time series deformation

derived from multi-temporal InSAR techniques makes it possible to obtain the temporal evolution

of land subsidence and rebound in Xi’an. In this paper, we used the sequential InSAR time series

estimation method to map the ground subsidence and rebound in Xi’an with Sentinel-1A data during

2015 to 2019, allowing estimation of surface deformation dynamically and quickly. From 20 June 2015

to 17 July 2019, two areas subsided continuously (Sanyaocun-Fengqiyuan and Qujiang New District),

while Xi’an City Wall area uplifted with a maximum deformation rate of 12 mm/year. Furthermore,

Yuhuazhai subsided from 20 June 2015 to 14 October 2018, and rebound occurred from 14 October

2018 to 17 July 2019, which can be explained as the response to artificial water injection. In the process

of artificial water injection, the rebound pattern can be further divided into immediate elastic recovery

deformation and time-dependent visco-elastic recovery deformation.

Keywords: sequential estimation; InSAR time series; groundwater; land subsidence and rebound

1. Introduction

The interferometric synthetic aperture radar (InSAR) is a remote sensing technique, which has

been commonly used in the investigation of large-scale ground deformation. Land subsidence in

urban areas has been investigated by the InSAR technique in Las Vegas, USA [1], Houston–Galveston,

USA [2], Mexico City, Mexico [3], northeast Iran [4], West Thessaly Basin, Greece [5], Pisa urban area,

Italy [6], Rome metropolitan area, Italy [7], Beijing [8], Tianjin [9], Taiyuan [10] and Datong, China [11].

Xi’an, China, has suffered from severe land subsidence and ground fissure hazards since the

1960s [12–14]. During the progress of economic development and urbanization, groundwater was

over-exploited for more than 50 years [15]. Consequently, it caused the formation of fourteen ground

fissures accompanying land subsidence throughout the city [14,15]. The maximum land subsidence

rate reached 300 mm/year in 1996, and the maximum cumulative subsidence reached approximately

3 m over the past 60 years [16].

In order to alleviate the land subsidence and ground fissures caused by over-extraction of

groundwater, artificial water injection and limitation of pumpage are two effective measures. In 1996,

a policy of limiting the over-pumping of groundwater was issued, and the deformation rate began

to decrease [17]. When an aquifer water level rises during artificial water injection, the rebound can
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be divided into short-term elastic recovery and time-dependent visco-elastic recovery [18]. Previous

study revealed the uplift phenomena at Jixiangcun (point D in Figure 4) in Xi’an from 2012 to 2018 [19].

In this study, we used the sequential estimation method to map the surface deformation between

2015 and 2019 in Xi’an with 83 Sentinel-1A SAR images in terrain observation with progressive scans

(TOPS) mode. Results show that some areas, such as Sanyaocun-Fengqiyuan and Qujiang New District,

subsided continuously, areas such as Xi’an City Wall uplifted slowly, and areas such as Yuhuazhai

rebounded after long-term subsidence, during the analyzed period.

This paper is organized as follows: Section 2 describes the sequential InSAR time series estimation

method. Section 3 shows the study area and data. Section 4 shows three different surface deformation

phenomena, including continuous land subsidence, uplift and rebound after long-term subsidence.

Finally, a discussion on rebound deformation and conclusions are given in Sections 5 and 6, respectively.

2. Methodology

The flow chart of data processing is shown in Figure 1, which includes three core steps:

selection of coherent pixels, three-dimensional (3D) phase unwrapping and sequential estimation of

deformation parameters.
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2.1. Selection of Coherent Pixels

To mitigate the effects of decorrelation and retrieve large-gradient deformation, the small baseline

subset (SBAS) InSAR method was proposed based on the interferograms with short spatial and

temporal baselines [20]. In this paper, we use the temporal coherence to select coherent pixels [21,22],

which is defined in Equation (1) for one generic pixel x:
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(1)

where N is the number of interferograms, ψ represents the flattened and topographically corrected

interferogram, ψ̃ represents the spatially correlated phase component, and
⌢
φ

u

θ represents the spatially
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uncorrelated phase component (look-angle error phase). A more detailed introduction is provided

in [21,22].

Followed by the phase unwrapping, the 3D phase unwrapping method was employed to mitigate

the closed-loop discontinuities error in two-dimensional (2D) phase unwrapping [23]. It was used

to explore the spatial and temporal relationships within the multi-interferograms, i.e., involving the

computation of two Delaunay triangulations, which are usually referred to as “temporal” and “spatial”

triangulations, respectively [24,25].

2.2. Sequential InSAR Time Series Estimation

After the atmospheric phase, orbital and digital elevation model (DEM) errors were removed

from the interferograms, and we estimated the time series deformation phases by using the following

function model: 


−1 1 0
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(2)

where ϕi(i = 1, · · · , N) denotes the deformation phase at the different synthetic aperture radar (SAR)

acquisition date and N is the number of SAR images. Note the deformation at the first SAR acquisition

date is set to zero, i.e., ϕ0 = 0. To estimate the deformation time series, the archived SAR data are

modeled as:
V1 = A1X(1) − L1 , P1

X(1) = (A1
TP1A1)

−1
A1

TP1L1

QX(1) = (A1
TP1A1)

−1
(3)

where L1 is archived SAR data with design matrix A1 and weight matrix P1. X(1) indicates the

first estimation of parameter X, and QX(1) is its cofactor matrix. The superscript T stands for the

transposition of a matrix.

When we acquire a new SAR image, unlike conventional SBAS InSAR, to estimate deformation

time series for all SAR images again we use the sequential estimation to update dynamically the

deformation time series by only considering the unwrapped interferograms related to the new

SAR image. Assuming the new measurements L2 are the unwrapped interferograms related to the

(N + 2)−th new SAR acquisition, the weight matrix is P2, the design matrixes are A2 and B, and

parameters are X and Y, we can write its observational equation as follows:

V2 =
[

A2 B
][ X(2)

Y

]
− L2 , P2 (4)

According to the principle of least squares (LS) Bayesian estimation [26], it holds that:

VT
2 P2V2 + (X(2) −X(1))

T
Q−1

X(1)(X
(2) −X(1)) = min (5)
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Then, we can deduce Equation (6) through Equations (3), (4) and (5) [26,27] as follows:

[
X(2)

Y

]
=
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2 + A2QX(1)A2
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(6)

where [X(2); Y] is the updated deformation time series, in which Y is the cumulative deformation at

the new SAR acquisition date, and Q[X(2) ;Y] represents their cofactor matrixes. Jx is the gain matrix,

in which QJ is the updated cofactor matrix with the new SAR image. Therefore, we can update the

deformation parameters as quickly as possible, once a new SAR image is presented. For a more detailed

discussion of sequential estimation of SBAS-InSAR dynamic deformation parameter methods, readers

can refer to [28].

3. Study Area and Data

3.1. Study Area

Xi’an, the capital of Shaanxi province, China, is bounded by the Chan River and Ba River to the

east, the Feng River to the west, the Wei River to the north, and the Qinling mountains to the south.

The elevation of the study area varies from 360 to 750 m. Figure 2 shows the quaternary geology map

of the study area, where the Chang’an-Lintong fault (CAF hereinafter) and 14 ground fissures are

superimposed, and loess ridge areas are labeled with white blocks. The terrain of Xi’an gradually

inclines from the north-west to the south-east, and the landform gradually transforms from a flood

plain to loess tableland terraces. Loess ridges and depressions are interchangeably distributed in

central urban areas, where land subsidence and 14 ground fissures occurred [19]. CAF fault (mainly in

the ENE direction) is the most active fault to the south of Xi’an city, which controls the activities of the

14 ground fissures occurring on the hanging wall of CAF. On the other hand, the ground fissures have

impacts on the land subsidence area, constraining the subsidence areas to develop into elliptical shapes

with their long axes parallel to the fissure direction, i.e., in the north-east (NE) direction [14,16,17].

As to the hydrogeological conditions of Xi’an City, three main aquifers are present in Xi’an stratum:

the phreatic aquifer, the first artesian aquifer, and the second artesian aquifer. The bottom of the

phreatic aquifer varies from 30 to 80 m below the ground surface. The primary constituents for this

phreatic aquifer are fine sand and clay, and its water quality is poor. The bottom of the first artesian

aquifer ranges from 140 to 180 m below the ground surface. This aquifer consists of sand, loess, gravel,

and mudstone, and its water quality is good. The bottom of the second artesian aquifer varies from

170 to 300 m below the surface. This aquifer has good water quality, and mainly includes fine-medium

sand and medium-coarse sand [14,17]. Xi’an belongs to a temperate, semi-humid continental monsoon

climate, with an annual precipitation of about 585 mm, so it suffers from a shortage of water resources

with an urban population of 7 million. The volume of groundwater withdrawal from 1980 to 1994

increased annually, amounting to 1388 million m3/year in 1994 [17]. Owing to the restriction of

groundwater exploitation in Xi’an since 1996, Heihe water has become the main water supply, leading

to a decrease of groundwater withdrawal from 1996 to 2010 [17,29]. Moreover, a cumulative volume of

1,552,800 m3 had been recharged in Xi’an from 2009 to 2014.
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Figure 2. Quaternary geology map of Xi’an, where Chang’an-Lintong fault (CAF) and 14 ground

fissures are superimposed, and loess ridge areas are labeled with white blocks.

Yuhuazhai is one of the severest deformation areas in Xi’an after 1996. The localized

hydrogeological conditions belong to a loose multi-layer porous aquifer system, where the groundwater

is composed of porous phreatic water, shallow confined aquifer and deep confined aquifer. The deep

confined aquifer was mainly pumped at a depth of 100 to 300 m below the surface until 2018 [30]. With

the decline of the water level in pumping wells, a pressure difference between the aquifer pressure in

pumping wells and the surrounding aquifer occurred, which drove the water in the surrounding soil

to move toward pumping wells [31]. Under this situation, land subsidence accelerated and a subsided

funnel was formed in the aquifer system. Over-exploitation of groundwater leads to a decrease

of groundwater level. Although the confined aquifer is elastic, the continuous over-exploitation

of groundwater leads to irrecoverable confined aquifer deformation, which further leads to land

subsidence [18].

In order to study the spatiotemporal characteristics of subsidence and ground fissures, both global

positioning system (GPS) and InSAR observations between 2005 and 2007 were employed [32,33].

Then, Envisat, advanced land observation satellite (ALOS) and TerraSAR SAR datasets were also used

to investigate the two-dimensional deformation in Xi’an from 2005 to 2012 [34]. Furthermore, European

remote sensing satellite (ERS), Envisat and Sentinel SAR datasets were also used to investigate the

long-term deformation evolution and causative factors of land subsidence and ground fissures in

Xi’an from 2003 to 2017 [35]. Recently, multi-sensor SAR datasets (ALOS, TerraSAR and Sentinel)

were used to investigate spatiotemporal land deformation from 2012 to 2018 over Xi’an, where the

surface deformation along three Xi’an subway lines was first analyzed [19]. Previous studies show

that there has been a close spatiotemporal relationship between land subsidence and the formation of

earth fissures. The degradation of the aquifer system led to these typical deformations and threatened

urban infrastructure.
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3.2. Data

In total, 83 Sentinel-1A images from 20 June 2015 to 17 July 2019 in Xi’an, China were employed to

generate 365 differential interferograms by setting the spatial and temporal baseline thresholds. For the

sequential InSAR time series deformation processing, we divided SAR data into two groups. As shown

in Figure 3, the first group is archived SAR data to generate interferograms (indicated in blue lines) with

SBAS technology for parameter initialization, while the second group is newly received SAR images

(i.e., a new SAR acquisition) to connect older archived SAR images and generate new interferograms

(indicated with green lines) with SBAS technology to update new deformation parameters. Specifically,

we used estimated deformation parameters and their cofactor matrixes to update dynamically the

deformation parameters one by one, including time series, deformation rate and DEM error, by only

considering the newly generated interferograms. As estimated results from conventional SBAS and

sequential SBAS estimation inversion are exactly consistent in terms of deformation rate, DEM error

and deformation time series [17], without a loss of generality, we took the first 70 SAR images from

20 June 2015 to 18 January 2019 as the first group to initiate the parameters. For the first group data,

we used the conventional SBAS-InSAR method, including the selection of coherent pixels, phase

unwrapping, DEM error correction, and atmospheric and orbital error correction, followed by the

inversion of deformation parameters and their cofactor matrixes.
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Figure 3. The illustration of interferogram configuration between the first group of SAR data (i.e.,

archived SAR data) and the newly received SAR images (i.e., new observation data from SAR satellites).

(A) Single-link interferogram configuration; (B) network-link interferogram configuration. The blue

lines indicate interferograms generated between archived SAR images in the first group by SBAS

technology and the green lines show the new interferograms generated between newly received SAR

images and older archived SAR images by SBAS technology.

To update the time series deformation on the new SAR acquisition date, there are usually two

ways to generate interferograms among newly received SAR images and the archived SAR images:

single-link configuration to unwrap interferograms in the spatial domain, as shown in Figure 3A, and

network-link configuration, shown in Figure 3B, where interferograms can be unwrapped in both

spatial and time domains, i.e., 3D phase unwrapping [23–25]. We used the latter method to update the

deformation time series.

The selected coherent pixels in the first group of SAR data were used to extract the phase for the

interferograms and connect to the newly received SAR images. After 3D phase unwrapping, followed

by the correction of DEM, atmospheric and orbital errors, the deformation rate and time series were

updated by sequential estimation.
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4. Results

4.1. Deformation Rate Map

Figure 4 presents the annual deformation rate map in the vertical direction over the main Xi’an

region from 20 June 2015 to 17 July 2019. We chose the stable area indicated with a black pentagram as

the reference point, as has been verified by previous studies [19,34,35].
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Figure 5 shows the cumulative deformation time series for six typical points from 20 June 2015 to

17 July 2019, where the points A to C show continuous land subsidence with approximately linear

deformation, and points D and E show continuous uplift with linear deformation. However, point F

shows a fast rebound after long-term subsidence.

4.2. Land Subsidence

The Xi’an area has suffered from severe land subsidence and ground fissure hazards since the

1960s [12–14]. Historical leveling measurements indicate that the area of land subsidence reached about

300 km2 in Xi’an from 1959 to 2018 [29]. Multi-temporal SAR observations and GPS measurements

were used to study the spatiotemporal evolution and mechanism of land subsidence and ground

fissure activities from 1992 to 2006 [32,33]. InSAR results from 2005 to 2018 uncovered the three land

subsiding areas, namely, Yuhuazhai, Sanyaocun-Fengqiyuan and Qujiang New District [19,31–35].

As shown in Figures 4 and 5, two areas in Xi’an, namely, Sanyaocun-Fengqiyuan and Qujiang New

District, continuously subsided from 20 June 2015 to 17 July 2019.

273



Remote Sens. 2019, 11, 2854

Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 17 

 

 
Figure 5. Deformation time series at six typical points A, B, C, D, E and F, which are located in Figure 
4. The six points show different deformation magnitude.  

4.2. Land Subsidence 

The Xi’an area has suffered from severe land subsidence and ground fissure hazards since the 
1960s [12–14]. Historical leveling measurements indicate that the area of land subsidence reached 
about 300 km2 in Xi’an from 1959 to 2018 [29]. Multi-temporal SAR observations and GPS 
measurements were used to study the spatiotemporal evolution and mechanism of land subsidence 
and ground fissure activities from 1992 to 2006 [32,33]. InSAR results from 2005 to 2018 uncovered 
the three land subsiding areas, namely, Yuhuazhai, Sanyaocun-Fengqiyuan and Qujiang New 
District [19,31–35]. As shown in Figure 4 and Figure 5, two areas in Xi’an, namely, Sanyaocun-
Fengqiyuan and Qujiang New District, continuously subsided from 20 June 2015 to 17 July 2019. 

4.3. Uplift of Xi’an City Wall 

Xi’an City Wall (Figure 6), as long as 13.74 kilometers, is famous globally for its complete 
preservation over its long history since the Ming Dynasty. As shown in Figure 6, the deformation 
rate from 20 June 2015 to 17 July 2019 showed that the north-west section of Xi’an City Wall was 
basically stable, with the deformation rate as small as 1 mm/year. However, the uplift rate in the 
south-east section reached 12 mm/year. The average uplift rate was 7 mm/year. Further, as shown in 
Figure 7, the cumulative deformation time series for four points, i.e., A, B, C and D at the south-east 
section of downtown Xi’an, showed a continuous uplift with different rates from 20 June 2015 to 17 
July 2019. 

Figure 5. Deformation time series at six typical points (A–F), which are located in Figure 4. The six

points show different deformation magnitude.

4.3. Uplift of Xi’an City Wall

Xi’an City Wall (Figure 6), as long as 13.74 kilometers, is famous globally for its complete

preservation over its long history since the Ming Dynasty. As shown in Figure 6, the deformation rate

from 20 June 2015 to 17 July 2019 showed that the north-west section of Xi’an City Wall was basically

stable, with the deformation rate as small as 1 mm/year. However, the uplift rate in the south-east

section reached 12 mm/year. The average uplift rate was 7 mm/year. Further, as shown in Figure 7, the

cumulative deformation time series for four points, i.e., A–D at the south-east section of downtown

Xi’an, showed a continuous uplift with different rates from 20 June 2015 to 17 July 2019.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 17 
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Figure 6. The deformation and optical image of Xi’an City Wall; (A) deformation rate map from

20 June 2015 to 17 July 2019, which is an enlargement of L1 in Figure 4; (B) an optical image of Xi’an

City Wall; (C) a photo of Xi’an City Wall.
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4.4. Rebound of Yuhuazhai

Yuhuazhai is one of the severest land subsidence areas in Xi’an. Cumulative deformation time

series over L2 (Yuhuazhai) in Figure 4 are calculated in Figure 8 from 20 June 2015 to 17 July 2019, and

from 5 April 2018 to 17 July 2019 in Figure 9.

In Figure 9, the onset rebound date on 14 October 2018 can be visually detected, and the center of

the rebound can be determined. The maximum rebound area was located in the settlement center and

the rebound area diffused around the previous maximum land subsidence center, in particular, the area

towards the south. The maximum rebound magnitude was 130 mm from 14 October 2018 to 17 July

2019. Figure 10 shows the enlarged deformation map on 13 December 2018, where a ground fissure

(F4) is superimposed. We can see that the deformation, including subsidence and rebound, is restricted

on the hanging wall (i.e., the south side) of ground fissure F4. Four points localized at A–D show

different surface deformation processes. The deformation evolution can be divided into three stages,

i.e., (i) a sustained land subsidence from 20 June 2015 to 14 October 2018; (ii) a quick rebound from 14

October 2018 to 1 December 2018; and (iii) a slower rebound from 1 December 2018 to 17 July 2019.

275



Remote Sens. 2019, 11, 2854

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 17 

 

4.4. Rebound of Yuhuazhai 

Yuhuazhai is one of the severest land subsidence areas in Xi’an. Cumulative deformation time 
series over L2 (Yuhuazhai) in Figure 4 are calculated in Figure 8 from 20 June 2015 to 17 July 2019, 
and from 5 April 2018 to 17 July 2019 in Figure 9. 

 
Figure 8. Cumulative deformation time series of Yuhuazhai from 20 June 2015 to 17 July 2019. Figure 8. Cumulative deformation time series of Yuhuazhai from 20 June 2015 to 17 July 2019.

276



Remote Sens. 2019, 11, 2854
Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 17 

 

 
Figure 9. Cumulative rebound deformation time series of Yuhuazhai from 5 April 2018 to 17 July 2019. 
The black rectangular box is enlarged in Figure 10. 

In Figure 9, the onset rebound date on 14 October 2018 can be visually detected, and the center 
of the rebound can be determined. The maximum rebound area was located in the settlement center 
and the rebound area diffused around the previous maximum land subsidence center, in particular, 
the area towards the south. The maximum rebound magnitude was 130 mm from 14 October 2018 to 
17 July 2019. Figure 10 shows the enlarged deformation map on 13 December 2018, where a ground 
fissure (F4) is superimposed. We can see that the deformation, including subsidence and rebound, is 
restricted on the hanging wall (i.e., the south side) of ground fissure F4. Four points localized at A, B, 
C and D show different surface deformation processes. The deformation evolution can be divided 
into three stages, i.e., i) a sustained land subsidence from 20 June 2015 to 14 October 2018; ii) a quick 
rebound from 14 October 2018 to 1 December 2018; and iii) a slower rebound from 1 December 2018 
to 17 July 2019. 

Figure 9. Cumulative rebound deformation time series of Yuhuazhai from 5 April 2018 to 17 July 2019.

The black rectangular box is enlarged in Figure 10.

277



Remote Sens. 2019, 11, 2854
Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 17 

 

 

Figure 10. Enlarged deformation map of the area in the rectangle in Figure 9, with indication of the 
ground fissure F4. The time series deformation of four points localized at A, B, C and D are shown in 
Figure 11. The Yuhuazhai area indicated in the rectangle is shown in Figure 12. 

 

Figure 11. Deformation time series at four points A, B, C and D in Figure 10. Red lines divide time 
series deformation into three stages. 

5. Discussion 

The land subsidence in Xi’an can be divided into three stages; i) preliminary stage (1959 to 1971), 
ii) rapid development stage (1972 to 1990), and iii) slow development stage (1991 to present) [17]. As 

Figure 10. Enlarged deformation map of the area in the rectangle in Figure 9, with indication of the

ground fissure F4. The time series deformation of four points localized at A–D are shown in Figure 11.

The Yuhuazhai area indicated in the rectangle is shown in Figure 12.
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Figure 12. Optical image of Yuhuazhai (rectangular box in Figure 10). Seven pumping wells are

identified. This area experienced large rebound deformation after artificial water injection.

5. Discussion

The land subsidence in Xi’an can be divided into three stages; i) preliminary stage (1959 to 1971),

ii) rapid development stage (1972 to 1990), and iii) slow development stage (1991 to present) [17].

As investigated, the localized groundwater withdrawal was the main factor for the long-term land

subsidence [15,33–35]. The degradation of the aquifer system led to these typical deformations, and

threatened infrastructure assets. The land subsidence occurring in Sanyaocun-Fengqiyuan and Qujiang

New District areas shows the same deformation characteristics as in previous studies [19,34,35]. The

artificial water injection and restricted exploitation of groundwater are effective measures to alleviate

the imbalance of groundwater and land subsidence.

Geo-mechanisms of subsurface water withdrawal and injection were discussed in [36,37]. Artificial

recharge after long-term groundwater extraction causes land uplift, which consists of elastic, plastic,

visco-elastic, and visco-plastic components. In reality, the recoverable elastic and visco-elastic

deformation accounts for a very small proportion of total deformation [18]. When the water level of a

confined aquifer rises in the process of artificial water injection, the elastic deformation can recover

quickly, while the recovery of visco-elastic deformation is time-dependent. On the contrary, the plastic

and visco-plastic deformation is irrecoverable [18].

Due to the restriction of groundwater exploitation in Xi’an since 1996, the groundwater level

began to recover [29]. The Heihe water supply facility (a large-scale water conservancy project of water

diversion and comprehensive utilization across river basins), has become the main source of domestic

water, instead of groundwater, which has largely alleviated the imbalance of the water table in Xi’an.

The exploitation of deep groundwater significantly reduced, and the confined water level in many

areas increased from 2002 to 2017 [34], which led to the surface uplift as shown in Figure 4, including

at the Xi’an City Wall. Therefore, the uplift of Xi’an City Wall is an example of recovery of visco-elastic

deformation, which is time-dependent.

Yuhuazhai has experienced a severe surface deformation since 1996. The cumulative land

subsidence was up to 1.8–2 m from 1996 to 2016 [30]. In order to alleviate the land subsidence caused by

over-extraction of groundwater, the cessation of groundwater withdrawal and a water injection strategy

were adopted by Xi’an Municipal Government since October 2018 [38]. For the water injection strategy,

conventionally daily water was injected into the pumping well to avoid pollution of groundwater.

The result shows that Yuhuazhai continuously subsided from 20 June 2015 to 14 October 2018, then

rebounded from 14 October 2018 to 17 July 2019, owing to the artificial water injection operation.
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Owing to the high water quality of the deep confined aquifer, it was used as the main source of

residential water supply. However, long-term over-exploitation of groundwater led to the decline

of the groundwater level. The cumulative decline of the water level was nearly 70 m in Yuhuazhai

areas [29]. Approximately 85% of the pumping wells were located to the south of the ground fissure

F4 [30], where serious land subsidence occurred; the existence of ground fissure F4 hindered the flow

of groundwater and limited the expansion of the surface deformation. For the phreatic aquifer head,

the south of ground fissure F4 was 13.0–13.52 m in depth, while the north of ground fissure F4 was

14.15–16.48 m in depth [30]. For the confined aquifer head, the south of the ground fissure F4 was

103–106.4 m in depth, while the north of the ground fissure F4 was 49.57 m in depth [30]. Therefore,

during the water injection, the groundwater to the south of the ground fissure recovered rapidly. After

long-term land subsidence of Yuhuazhai (i.e., 1.8–2 m land subsidence from 1996 to 2016), a rapid

rebound with a magnitude of about 130 mm occurred from 14 October 2018 to 1 December 2018, as

a recoverable elastic deformation. Then, the time-dependent rebound of visco-elastic deformation

continued from 1 December 2018 to 17 July 2019, which will likely continue for some time.

Moreover, there are 45 deep wells in the whole Yuhuazhai area, i.e., approximately 1 well per

1.7 km2 [30]. We show the optical image of the largest rebound center in Figure 12, where we visually

identify seven pumping wells. Figure 13 shows three images and photos corresponding to pumping

wells 1, 2, and 3 of Figure 12.
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6. Conclusions

In the process of urbanization, over-exploitation of groundwater in the Xi’an area since 1960s has

led to land subsidence. Artificial water injection has alleviated the land subsidence effectively. We

employed the sequential estimation method to update the surface time series deformation dynamically,

which is an efficient InSAR tool to monitor surface deformation as quickly as possible, when SAR

images are acquired one by one.

Our contribution is to reveal the surface subsidence, uplift and rebound in the Xi’an area

with 83 Sentinel SAR images from 20 June 2015 to 17 July 2019. The land subsidence occurred in

Sanyaocun-Fengqiyuan and Qujiang New District areas. Meanwhile, the uplift and sudden rebound

deformation were revealed in Xi’an City Wall and Yuhuazhai, respectively.
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Owing to the restriction of groundwater exploitation in the Xi’an area since 1996, the declined

groundwater level began to recover, and the confined water level increased accordingly. In addition,

we find that the sudden rebound deformation located in Yuhuazhai was mainly due to artificial water

injection, which was carried out in the pumping well of Yuhuazhai around October 2018. The rebound

pattern comprises two stages: the elastic deformation and visco-elastic deformation. The former can

recover immediately, while the latter is time-dependent. The complex surface deformation in Xi’an

reflects the changes in the aquifer system. Therefore, the control of groundwater balance can alleviate

surface deformation.
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Abstract: We propose a new convolutional neural networks method in combination with ordinal

regression aiming at assessing the degree of building damage caused by earthquakes with aerial

imagery. The ordinal regression model and a deep learning algorithm are incorporated to make full

use of the information to improve the accuracy of the assessment. A new loss function was introduced

in this paper to combine convolutional neural networks and ordinal regression. Assessing the level of

damage to buildings can be considered as equivalent to predicting the ordered labels of buildings to

be assessed. In the existing research, the problem has usually been simplified as a problem of pure

classification to be further studied and discussed, which ignores the ordinal relationship between

different levels of damage, resulting in a waste of information. Data accumulated throughout history

are used to build network models for assessing the level of damage, and models for assessing levels

of damage to buildings based on deep learning are described in detail, including model construction,

implementation methods, and the selection of hyperparameters, and verification is conducted by

experiments. When categorizing the damage to buildings into four types, we apply the method

proposed in this paper to aerial images acquired from the 2014 Ludian earthquake and achieve

an overall accuracy of 77.39%; when categorizing damage to buildings into two types, the overall

accuracy of the model is 93.95%, exceeding such values in similar types of theories and methods.

Keywords: earthquake; rapid mapping; damage assessment; deep learning; convolutional neural

networks; ordinal regression; aerial image

1. Introduction

The rapid and accurate acquisition of disaster losses can provide great help for disaster emergency

response and decision-making. Remote sensing (RS) and Geographic Information System (GIS) can

help assess earthquake damage within a short period of time after the event.

Many studies have presented assessment techniques for earthquake building damage by using

aerial or satellite images [1–5]. Booth et al. [6] used vertical aerial images, Pictometry images, and

ground observations to assess building damage in the 2011 Haitian earthquake. Building by building

visual damage interpretation [7] based on the European Macroseismic Scale (EMS-98) [8] was carried

out in a case study of the Bam earthquake. Huyck et al. [9] used multisensor optical satellite imagery

to map citywide damage with neighborhood edge dissimilarities. Many different features have been

introduced to determine building damage from remote sensing images [10]. Anniballe et al. [11]

investigated the capability of earthquake damage mapping at the scale of individual buildings with
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a set of 13 change detention features and support vector machine (SVM). Simon Plank [12] reviewed

the methods of rapid damage assessment using multitemporal Synthetic Aperture Radar(SAR) data.

Gupta et al. [13] present a satellite imagery dataset for building damage assessment with over 700,000

labeled building instances covering over 5000 km2 of imagery.

Recent studies show that the machine learning algorithm performs well in earthquake damage

assessment. Li [14] assessed building damage with one-class SVM using pre- and post-earthquake

QuickBird imagery and assessed the discrimination power of different level (pixel-level, texture, and

object-based) features. Haiyang et al. [15] combined SVM and the image segmentation method to

detect building damage. Cooner et al. [16] evaluate the effectiveness of machine learning algorithms

in detecting earthquake damage. A series of textural and structural features were used in this study.

A SVM and feature selection approach was carried out for damage mapping with post-event very high

spatial resolution(VHR) image and obtained overall accuracy (OA) of 96.8% and Kappa of 0.5240 [11].

Convolutional neural networks (CNN) was utilized to identify collapsed buildings from post-event

satellite imagery and obtained an OA of 80.1% and Kappa of 0.46 [17]. Multiresolution feature maps

were derived and fused with CNN for the image classification of building damages in [18], and an OA

of 88.7% was obtained.

Most of the above-mentioned damage information extraction studies classified damaged buildings

into two classes: damaged and intact. However, these two classes are not enough to meet actual needs.

Recently, deep learning (DL) methods have provided new ideas for remote sensing image

recognition technology. An end-to-end framework with CNN for satellite image classification was

proposed in [19]. Scott et al. [20] used transfer learning and data augmentation to demonstrate the

performance of CNNs for remote sensing land-cover classification. Zou et al. [21] proposed a DL

method for remote sensing scene classification. A DL-based image classification framework was

introduced in [22]. Xie et al. [23] designed a deep CNN model that can achieve a multilevel detection of

clouds. Chen et al. [24] combined a pretrained CNN feature extractor and the k-Nearest Neighbor(KNN)

method to improve the performance of ship classification from remote sensing images.

In this paper, we propose a new approach based on CNNs and ordinal regression (OR) aiming

at assessing the degree of building damage caused by earthquakes with aerial imagery. CNNs

hierarchically extract useful high-level features from input building images, and then OR is used

to classify the features into four different damage grades. Then, we can get the degree of damaged

buildings. The manually labeled damaged building dataset in this paper was obtained from aerial

images after several historical earthquakes. The proposed mothed was evaluated with different

network architecture and classifiers. We also compared the method with several state-of-the-art

methods including hand-engineered features such as edge, texture, spectra, and morphology feature

and machine learning methods.

This is the first attempt to apply OR to assess the degree of building damage from aerial imagery.

OR (also called ”ordinal classification”) is used to predict an ordinal variable. In this paper, the building

damage degree, on a scale from “no observable damage” to “collapse”, is just an ordinal variable.

However, typical multiclass classification ignores the ordered information between the damage degree,

while damage degrees have a strong ordinal correlation. Thus, we cast the assessment problem of the

degree building damage as an OR problem and develop an ordinal classifier and corresponding loss

function to learn our network parameters. Information utilization was improved by OR, so we can

achieve a better accuracy with the same or a lesser amount of data. When categorizing the damage to

buildings into four types, we apply the method proposed in this paper to aerial images acquired from

the 2014 Ludian earthquake and achieve an overall accuracy of 77.49%; when categorizing the damage

to buildings into two types, the overall accuracy of the model is 93.95%, exceeding such values in

similar types of theories and methods.

Another contribution of this work is a dataset of labeled building damage including

13,780 individual buildings from aerial data by visual interpretation that is classified into four

damage degrees building by building.
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The main contributions of this paper are summarized as follows:

(1) A deep ordinal regression network for assessing the degree of building damage caused by

an earthquake. The proposed network uses a CNN for extracting features and an OR loss for optimizing

classification results. Different CNNs’ architecture has also been evaluated.

(2) A dataset with more than 13,000 optical aerial images of labeled damage buildings can be

download freely.

The rest of the paper is organized as follows: Section 2 presents an introduction to the dataset

used in this research. Section 3 has a brief introduction to CNN and OR. Section 4 describes the

proposed method and the different CNN architectures that we evaluated. We present the results of the

experiments in Section 5. Finally, conclusions are drawn in Section 6.

2. Data

2.1. Remote Sensing Data

Two datasets from different seismic events were used in this study, including the Yushu earthquake

in 2010 and Ludian earthquake in 2014, which are respectively described in the following text.

2.1.1. Images From Yushu Earthquake

On April 14 2010, Yushu County in Qinghai Province, China was hit by a 7.1-magnitude

earthquake [25]. In this study, the aerial images with 0.1-m resolution on 16 April 2010 in Jiegu Town,

the worst-hit area in the earthquake, was obtained. The data overview is shown in Figure 1, and the

relevant parameters of the data are shown in Table 1.

From the partial enlarged view corresponding to the red frame in Figure 1, a high building-collapse

rate could be seen in the image-covered area, which was left in ruins. The details are clear, as the

imaging quality is good.

 

 

Figure 1. Post-event aerial image of the Yushu earthquake, Qinghai Province, China.

Table 1. Remote sensing imagery specifications.

Earthquake Spatial Resolution (m) Bands Date

Ludian 0.2 R, G, B 7 and 14 August 2014
Yushu 0.1 R, G, B 16 April 16 2010
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2.1.2. Images From Ludian Earthquake

The 2014 Ludian earthquake was an Ms. 6.5 earthquake. The earthquake occurred on 3 August

2014 [26,27]. The earthquake caused major damage in Zhaotong City, Yunnan province. Aerial images

were acquired to map the damage caused by the earthquake. Images acquired on 4 August 2014

were post-event airborne images for the remainder of the study. The aerial images have three spectral

bands (R, G, and B) and a spatial resolution of 0.2 m. The images were georeferenced and mapped to

a cartographic projection. On 7 and 14 August, after the earthquake, aerial remote sensing image data

of the affected area was acquired. Figure 2 shows the range of the main aerial remote sensing image

data acquired after the Ludian earthquake.

The data obtained in this paper mainly comes from the area with level VIII seismic intensity,

Longtoushan Town and the northern bank of the Niulan River. The aerial remote sensing data of the

Ludian earthquake (Figure 2) obtained in this paper was shot 4–10 days after the earthquake and has

a spatial resolution of 0.2 m. With enough volume and good quality, it is suitable for damage degree

assessment and the relevant study of single buildings.

Dominated by mountains, the Ludian region has a wide distribution of low-rise masonry–timber

and soil–timber structures in villages. The spacing between buildings is large. The earthquake occurred

in the summer; green trees can be seen and parts of the roofs of some houses are blocked by vegetation.

 

VIII 

 

Figure 2. Post-event aerial image of Ludian earthquake, Yunnan Province, China.

2.2. Dataset of Labeled Damage Building

In the research of DL image classification, a well-labeled dataset is very important, as it is used

for training and evaluation benchmarks. Images of buildings at all levels of damage from the Ludian

earthquake were used to construct the dataset. Each image was downsampled to 88 × 88. The size of

the images is based on resolution and the length and width of local buildings.
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The standard that we used to classify the damage degree is similar to EMS-98 [8], but with fewer

levels. The damage degree D0 in this paper corresponds to G0-2 in EMS-98. D1 corresponds to G3 in

EMS-98, and the rest can be done in the same manner. The standard can be found in Table 2, and some

samples of each damage level can found in Figure 3. We got about 13,780 individual buildings from

remote sensing data of Ludian and 3501 buildings from Yushu by visual interpretation and classified

them into four damage degrees building by building. When we labeled these samples, a few ground

photos were used as a reference. These photos can help us better understand the actual damage to the

buildings and the damage grade.

Table 2. Classification of damage to buildings in the Ludian earthquake.

Damage Grade Description Interpretation

D0 No observable damage No cracking, breakage, etc.
D1 Light damage Little cracking, breakage

D2 Heavy damage
Cracking in load-bearing elements with significant

deformations across cracks
D3 Collapse Collapse of complete structure or less of a floor

Before training the model, we needed to build a building dataset of different damage degrees.

Thousands of building types were drawn by manual vectorization from the airborne images mentioned

in Section 2.1.

Then, we intercepted each building into an image with a width and height of 88 pixels and

placed the building in the center. Some samples can be found in Figure 3. In this paper, the damage

terms “level”, “grade”, and “class” are used interchangeably. Building damage was classified into

four classes.

 

Damage grade Eamples of Ludian dataset Eamples of Yushu dataset 

D0 

    

D1 

    

D2 

    

D3 

    

Figure 3. Eamples of building damage in the datasets.
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Samples in the two datasets, Ludian and Yushu, have different characteristic. Datasets are

named by their location where the data was obtained. Table 3 shows the sample distribution of each

damage grade.

Table 3. Distribution of the samples in the two datasets.

Damage Grade Number of Samples in the Ludian Dataset Number of Samples in the Yushu Dataset

D0 2680 778
D1 5013 918
D2 2807 665
D3 3280 1140

Total 13,780 3501

2.3. Data Augmentation

In this paper, we have applied data augmentation [28] in order to artificially enlarge the dataset

by using label-preserving transformations to the input data in order to generate new samples.

Data augmentation can effectively avoid overfitting during the training of complex models and

can significantly improve data quality. Several data augmentation techniques such as vertical and

horizontal flipping, rotating at a certain degree (less than 15◦), and increasing or reducing brightness

were used. Examples can be found in Table 4.

Table 4. Examples of data augmentation results.

Data Augmentation Examples

 

 

 
 

 

 

 
 

 

 

 

 

Original Rotating clockwise by 90◦ vertical flipping horizontal flipping

 

 

 
 

 

  

 

  

 

   

Rotating 15◦ clockwise Rotating 15◦ counterclockwise Increasing the brightness Reducing the brightness

3. Background Knowledge

3.1. Introduction to CNN

The convolution layer convolves the input image with a set of learnable filters, each producing

one feature map in the output image. After crossing a nonlinear activation layer, it can get the picture

feature of the next layer. The input feature map is compressed in the pooling layer. On the one hand,

the pooling layer shrinks the feature map and simplifies the network-computing complexity. On the

other hand, it compresses and extracts the main features. Generally, there are two kinds of operations

in the pooling layer: max pooling and average pooling. In this paper, max pooling is adopted. The fully

connected layer can connect all the features and convey results to the classifier.

Parameters of CNN can be obtained by training. The training includes two processes: forward

and back propagation [29]. Forward propagation calculates the classification results of samples by

current network weights. Back propagation compares the calculated classification results with true

values, and then updates the network weights backward, layer by layer.
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3.2. Ordinal Regression

In studies on machine learning and statistical models, classification is used to predict categories

where targets belong based on input data. In classification, the relationship between categories is equal

and independent, while the output is usually discrete. In typical classification, such as in the study

of remote sensing land use and cover, the land surface is usually classified into vegetation, bare soil,

water, buildings, and roads according to the spectrum, texture, and context of the surface features in

the images [30,31]. In the recognition of handwritten figures [32], the given target images are classified

into 0–9 classes. Although figures are used as class tags, there is no other relationship between any

two classes. There are many commonly used methods to solve classification problems [33], including

SVM [34], decision tree classifier [35], nearest neighbor algorithm [36], and CNN-based classification

algorithms. The accuracy rate is the most commonly used index to describe the classification quality.

Regression analysis is used to predict the value of some property of the target based on input data

and the output values are in a row within a value range. Guo et al. (2009) [37], based on images of

faces, used a support vector regression (SVR) algorithm to predict the actual ages of people whose

faces were shown. Human age is a continuous value with a limited value range, and is suitable for

prediction by a regression algorithm. In studies related to image depth estimation, the distance (depth)

between an object and a camera, as a continuous value, is usually estimated by a linear regression

method in a machine learning algorithm, as shown in [38]. The commonly used methods to solve

regression problems include the support vector regression algorithm and linear regression analysis.

Variance, mean squared error, and other indices are often used to describe the regression quality.

Ordinal regression (OR) [39] is a statistical analysis model to predict ordinal tag variables

corresponding to targets. OR is a statistical model between a classification and regression model.

In other words, the original regression model prediction results are transformed into ordered discrete

variables. For example, people’s ages are often expressed as positive integers, and they can also be

predicted by an OR-based statistical learning model. For instance, Niu and Zhou et al. (2016) [40]

used an OR model and CNNs to estimate age. In machine learning, OR can also be called ranked

learning [41]. Table 5 lists the differences between regression, classification, and OR.

Table 5. Differences between regression, classification, and ordinal regression.

Regression Classification Ordinal Regression

Type of output variables Continuous data Tag data or discrete data Ordinal discrete data

Evaluation method Mean squared error
Accuracy and confusion

matrix
Mean squared error, accuracy,

and confusion matrix
Example People’s height Categories of fruit People’s age

For OR problems, several original ordinal tag variables can be transformed into a set of binary

classification subproblems [42]. By integrating the prediction results of all binary classification

subproblems, the estimated results of an original OR problem can be obtained. Binary classifiers for

ordinal regression can be solved by mature machine learning algorithms. In this study, the method to

predict building damage degree is designed as a set of binary classification subproblems. For instance,

OR was combined with CNNs for monocular depth estimation [43].

For ordinal tags including n classes and expressed by n natural numbers from 1 to n, when the tag

corresponding to each target x is predicted, the original problem can be transformed to obtain n – 1

mapping relationships, each of which fi(x) means that the tag number y corresponding to the input x

is less than or equal to probability i.

Using the characteristic extraction model of the image input to obtain the extracted advanced

characteristic vector, the characteristic vector is imported into the classification model for classification.
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4. Proposed Method

This section presents the details of the proposed “CNN in combination with OR” method.

The proposed network is composed of two basic parts: a CNN feature extractor and classifier. These

parts are discussed separately.

The CNN feature extractor includes several convolution layers followed by max-pooling and

an activation function. The output of the CNN feature extractor is used as the feature vector of the

classifier. The classifier usually consists of fully connected layers. An illustration of the proposed

network is shown in Figure 4.
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Figure 4. Illustration of the proposed network. The network consists of a convolutional neural network

(CNN) feature extractor and a classifier. Solid arrows represent data flow. We adopt VGG-16, ResNet-50,

and a baseline network as our CNN feature extractors. The Softmax classifier and ordinal regression

(OR) classifier offer the choice of two classifiers. The OR classifier that is shown in this figure branches

out into three layers, where each layer contains two neurons. The prediction damage degree is decoded

from these layers. The supervised information of the network is the damage grade of buildings.

4.1. CNN Feature Extractor

CNN models are excellent in terms of representation learning. This feature makes them suitable

for transfer learning, which consists of applying a model trained for a particular task to a different task.

The transfer can be done by fine-tuning the existing weights of the network using the new dataset

in order to adjust the model for a new target problem or by using the network as a feature extractor,

which does not require retraining. In the latter case, an input sample is forwarded in order to obtain an

intermediate representation, a vector; the vectors can be fed into other classifiers such as a Softmax

classifier [44].

Two successful CNN models pretrained on ImageNet were evaluated as feature extractors in our

work: the Visual Geometry Group Network (VGG) [45] and residual learning network (ResNet-50) [46].

Their parameters were initialized via the pretrained classification model on ImageNet Large Scale

Visual Recognition Competition (ILSVRC) [47]. Fully connected layers in VGG-16 or ResNet-50 were

removed and replaced with a new custom one that had 128 neurons. When the model was trained,

all the convolutional layers were locked.

We design a baseline network to compare the performance. Every convolutional layer in this

network is followed by Batch Normalization (BN) [48], Rectified Linear Unit (ReLU) [49] activation,
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and the max-pooling layer. The baseline is simple enough for us to preform initial configurations

before using more complex topologies. A detailed description can be found in Table 6.

Table 6. Description of baseline network. Conv-BN-ReLU is a block, consisting of a convolutional layer,

BN layer, and RelU activation.

# Layer Kernel Size Output Size

1 Conv-BN-ReLU 3 16 × 88 × 88
2 Maxpooling 2 16 × 44 × 44
3 Conv-BN-ReLU 3 32 × 44 × 44
4 Maxpooling 2 32 × 22 × 22
5 Conv-BN-ReLU 3 64 × 11 × 11
6 Maxpooling 2 64 × 11 × 11
7 Conv-BN-ReLU 3 128 × 11 × 11
8 Maxpooling 2 128 × 6 × 6
9 Conv-BN-ReLU 3 128 × 6 × 6

10 GlobalPooling 128

4.2. Classifier

As described in Section 2, in this study, buildings damaged by earthquakes can be classified into

four damage degrees: D0, D1, D2, and D3. Based on this ordinal relationship, an OR-based building

damage degree classifier model is proposed. For verification and comparison, the building assessment

problem can be turned into a multiclass classification problem that adopts a Softmax classifier in

a straightforward manner.

The Softmax classifier is a common softmax function that is used to divide the input data into

four classes and give the probability of each class. The maximum probability is the prediction category

of the current sample. The loss function of the Softmax classifier is the cross-entropy loss function.

The architecture of the OR classifier is shown in Figure 4. The OR classifier branches out three

binary classification layers. Each binary classification layer corresponding to the probability of D > 0,

D > 1, and D > 2. After that, we concatenate the three outputs into a single vector D(d0, d1, · · · , d5).

The predicted damage degree is decoded from this vector.

It is assumed that D = ϕ(χ, Θ) means that the results vector D(d0, d1, · · · , d5) from the calculation

with data input χ and model parameters Θ. Y(y0, y1, · · · , y5) means the actual vector that is encoded

from the damage degree corresponding to data input χ.

It is known from softmax function characteristics that

d2i + d2i+1 = 1 (1)

where i ∈ {0, 1, 2}.
Based on the definition, the following characteristics exist:

yk ∈ {0, 1} (2)

y2i + y2i+1 = 1 (3)

where 0 ≤ k ≤ 5, i ∈ {0, 1, 2}.
The loss function L(Y, D) of the OR-based damage assessment model can be expressed as:

L(Y, D) = −1

3

∑3

i=1
[y2i log d2i + (1− y2i)log(1− d2i)]. (4)

The loss function can be derived. Therefore, based on the back propagation algorithm, the

minimum value of the loss function is obtained iteratively to result in the weight of the optimized model.
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During prediction, for any sample input χ, its dichotomous decomposition code D(d0, d1, · · · , d5)

can be decoded to the corresponding damage degree d̂ by the following method:

d̂ =
3∑

i=0

ψ(d2i ≥ 0.5) (5)

where the indicator function ψ can be expressed as

{
ψ(true) = 1

ψ( f alse) = 0
. (6)

4.3. Evaluated Networks

In this work, we evaluated six CNN topologies with different feature extractors and classifiers.

The name and composition of each network can be found in Table 7. The two classification methods

are the Softmax classifier (SC) and the ordinal regression classifier. All of these network topologies will

be evaluated.

Table 7. Network topologies to be evaluated. Each network consists of a feature extractor and a classifier.

ResNet: residual learning network.

Name Feature Extractor Classifier Para Num.

Baseline-SC Baseline Softmax classifier 57,254
Baseline-OR Baseline OR classifier 57,510

VGG-SC VGG Softmax classifier 7,833,670
VGG-OR VGG OR classifier 7,833,926

ResNet-SC ResNet-50 Softmax classifier 23,851,014
ResNet-OR ResNet-50 OR classifier 23,851,270

4.4. Model Realization

In this section, the DL model algorithm was programmed by Keras [50] and a TensorFlow [51]

open-source DL framework and the Python 3.6 programming language [52]. All experimental and

test codes were run on the same computer platform. The hardware configuration of the computer

consisted of an Intel i7 3.4 GHz CPU, 16.0 GB memory, GeForce RTX 2080 Ti graphics, and 8 G RAM

display. The operating system was Ubuntu 18.04. CUDA version 9.0 [53] was used for acceleration

computing. The GDAL2.2.2 geographic data processing software package [54] was used to read and

write image data, conduct vector operations, and transform geographic projections.

The pretrained weight based on the ImageNet dataset is widely used in transfer learning because

characteristics such as the edge, texture, and structure learned from the ImageNet dataset are universal

in computer vision tasks [55]. The weight initialization of the VGG and ResNet characteristic extraction

modules employs the pretrained weight based on the ImageNet dataset. In the baseline feature

extractor, the weight initialization is conducted by Glorot uniform distribution initialization [56].

All models use the same training dataset for training.

The stochastic gradient descent (SGD) method [57] is a common optimization algorithm in DL

model training [58]. In this paper, the SGD algorithm with momentum [59] is used for model training.

4.5. Model Evaluation Methods and Indicators

4.5.1. Confusion Matrix

A confusion matrix is used to judge the consistency between the classification results of models or

classifiers and the true category information, and is one of the basic evaluation methods for remote

sensing image classification. The specific procedure is to compare the classification result tags with the

true category information one by one, and C is used to represent the confusion matrix. It is assumed
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that there are K classes of samples, and that C is a row K and column K matrix. Any C (i, j) represents

the true category i and the total samples in the predicted category j.

4.5.2. Overall Accuracy and Kappa Coefficient

Overall accuracy (OA) refers to the consistency probability between classification results and true

classes. Its calculation formula is

OA =

∑K
i C(i, i)

∑K
i

∑K
j C(i, j)

. (7)

The kappa coefficient [60] is calculated based on the confusion matrix to measure the calculation

indicator of classification accuracy. The theoretical kappa coefficient falls between [–1, 1], but the actual

value is often between [0, 1]. Its calculation formula is

pe =

∑K
i

(∑K
j C(i, j) ∗

∑K
j C( j, i)

)

N2
(8)

Kappa =
OA− pe

1− pe
(9)

where N is the total number of samples.

4.5.3. Mean Squared Error

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator

measures the average of the squares of the errors—that is, the average squared difference between the

estimated values and the actual value. The mean squared error is the average of the quadratic sum of

the error between the predicted data and true values. Its calculation formula is

MSE =
1

N

N∑

i=1

(yi − ŷi)
2 (10)

where yi is the true value, ŷi is the predicted value, and N is the total number of samples.

In this study, MSE may be a more important indicator than overall accuracy. For example, Table 8

shows two confusion matrixes, which have same overall accuracy and different mean squared errors.

In this study, Confusion matrix 1 is better than Confusion matrix 2, but OA does not reflect this situation.

We need MSE to evaluate our model.

Table 8. Two confusion matrixes with the same overall accuracy (OA) and different mean squared

errors (MSEs).

Confusion Matrixes 1 Confusion Matrixes 2

A B C D A B C D
A 10 8 6 4 A 10 6 8 6
B 8 10 8 6 B 6 10 6 8
C 6 8 10 8 C 8 6 10 6
D 4 6 8 10 D 6 8 6 10

OA 0.3333 OA 0.3333
Kappa 0.1098 Kappa 0.1111
MSE 1.8 MSE 2.2667
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5. Results

5.1. Dataset Configuration

During the model training, each dataset prepared in Section 2 was divided into three parts at

a proportion of 8:1:1. Then, 80% of the sample data was randomly selected for the training set, 10%

was randomly selected for the Validation set, and 10% was randomly selected for the testing set.

The amount of building damage classification is guaranteed to be balanced in each set. Fivefold

cross-validation was applied to evaluate the model.

The two datasets mentioned in this paper, the Ludian dataset and Yushu dataset, have different

uses. Among them, the Ludian dataset with more data is used to train the model, while the Yushu

dataset with less data is used to verify the adaptability of the model.

During the training, the data of the training sets included four damage degrees, as shown in

Section 2: complete damage, severe damage, common, and nearly intact. The validation set and testing

set also included the four classes above. The training set was used to input models to make them

automatically adjust the weight parameters based on the back propagation algorithm. The verification

set was used for model seletion. The testing set was used to verify the actual model accuracy.

The following accuracy and kappa coefficient calculation results were obtained from the data of the

testing set.

As the buildings to be evaluated are classified as damaged or not damaged in most current studies,

in this paper, three sets were created by grouping samples of different damage degrees (Table 9).

In Set 1, D0, D1, and D2 were incorporated into an intact class and D3 was incorporated into a damaged

class to compare with other methods; in Set 2, D0 and D1 were incorporated into a nearly intact class,

D2 was incorporated into a severe damage class, and D3 was incorporated into a complete collapse

class. The prediction results of models will be recalculated again to compare the evaluation indicators.

Table 9. Distribution of three damage grade sets.

Set Subclass Damage Grade

1
Nearly intact D0, D1, D2

damaged D3

2

Nearly intact D0, D1
Severe damage D2

Complete collapse D3

3

No observable damage D0
Light damage D1

Heavy damaged D2
Collapse D3

5.2. Accuracy Results on Ludian Dataset

As shown in Table 10, for Set 3, the minimum overall accuracy of the six network models is

72.86% for Baseline-SC, and the average is 74.09%. The accuracy is 77.39% for VGG-OR, in which the

maximum value, with a kappa coefficient of 0.69, represents good model consistency. For Set 1, the

accuracy of all the models is about 92%–94% and the average is 93%, with a small fluctuation. The best

accuracy is 93.95% for VGG-OR. The kappa coefficient, ranging between 0.78 and 0.83, representing

very good model consistency.

In statistical modeling, the MSE can represent the difference between the actual observations and

the observation values predicted by the model. So, when the overall accuracy is equal to or lower than

the MSE, the better the model performance. It makes a lot of sense to minimize the MSE in the damage

degree assessment to buildings. Table 10 shows that the MSE results of the OR approach are always

better than the values of direct classification methods, which can be explained because more ordinal

information can avoid bias.
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Table 10. Accuracy indicators of deep learning (DL) models. The last rows show the average values.

The best result for each classifier and set is shown in bold type.

Model
Set 1 Set 2 Set 3

OA Kappa MSE OA Kappa MSE OA Kappa MSE

Baseline-SC 92.40% 0.78 0.08 82.73% 0.71 0.20 72.86% 0.62 0.30
VGG-SC 93.66% 0.82 0.06 85.05% 0.74 0.20 75.10% 0.66 0.28

ResNet-SC 92.99% 0.80 0.08 83.16% 0.71 0.22 74.31% 0.64 0.31

Average 93.02% 0.80 0.07 83.65% 0.72 0.21 74.09% 0.64 0.30

Baseline-OR 92.40% 0.79 0.08 82.81% 0.71 0.21 73.73% 0.64 0.32
VGG-OR 93.95% 0.83 0.06 85.46% 0.75 0.17 77.39% 0.69 0.25

ResNet-OR 93.81% 0.82 0.07 84.71% 0.72 0.19 75.05% 0.66 0.30

Average 93.39% 0.81 0.07 84.33% 0.73 0.19 75.39% 0.66 0.29

According to the results of the comparison shown in Table 10, it is possible to affirm that our OR

approach (VGG-OR) outperforms the direct classification methods.

We set the learning rate as 0.001, and the batch size was set to 32. Models with same CNN feature

extractor take the same amount of time, because the OR classifier does not consume more computing

resources. The baseline, VGG, and ResNet models require 6, 10, and 33 min, respectively, for 100 epochs

of iterations using the same training dataset. Models usually converge within 100 epochs. It can be

concluded that VGG-OR gains 3.66% increments over Baseline-OR with the cost of only a 4-minute

increment of model training time.

In order to check whether the results are stable, the standard deviation (SD) of OA, Kappa,

and MSE is shown in Table 11. Since the metrics of Set 1 and Set 2 are calculated from Set 3, only the

SD of the metrics of Set 3 is shown in Table 11. All the SD values are quite small, which means that the

results of models can be obtained relatively stably.

Table 11. The standard deviation (SD) of OA, Kappa, and MSE of deep learning (DL) models on Set 3.

Model
Set 3

SD for OA SD for Kappa SD for MSE

Baseline-SC 0.0122 0.0188 0.0154
VGG-SC 0.0064 0.0099 0.0081

ResNet-SC 0.0152 0.0234 0.0191

Baseline-OR 0.0086 0.0133 0.0108
VGG-OR 0.0056 0.0086 0.0070

ResNet-OR 0.0112 0.0173 0.0141

5.3. Accuracy Results on Yudian Dataset

Given that the amount of data in the Yushu dataset is much smaller than that of the Ludian dataset,

it is less effective in training the model. Therefore, we attempted to transfer the model trained by the

Ludian dataset to the Yushu dataset. Firstly, the effects of the model trained with the Ludian dataset

applied directly to the Yushu dataset were verified, as shown in Table 12.

Table 12. Accuracy indicators of the model trained with the Ludian dataset applied directly to the

Yushu dataset.

Set OA Kappa MSE

Set 1 90.14% 0.80 0.10
Set 2 74.43% 0.60 0.32
Set 3 64.28% 0.49 0.52
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It can be found that all the indicators demonstrate a significant decline, and the accuracy is only

64%, suggesting an invalid model. This indicates that there is a difference in the data distribution rules

between the two datasets, so the model trained by one dataset is not applicable to the other.

Then, we tried to transfer the model trained by the Ludian dataset to the Yushu dataset. Through

parameter fine-tuning, a learning rate of 0.0001 was adopted, and all the layers except for the full

connection layer were locked. As a contrast, the model was also directly trained by the Yushu dataset.

The actual number of training set samples was controlled to analyze the impact of the input data on

the model performance.

Figure 5 shows the impact of the number of training set samples on the overall accuracy, and the

error bar represents the SD value. The model that was transfered from the Ludian dataset is more

accurate and more stable.

 

Figure 5. The impact of the number of training set samples on overall accuracy.

6. Discussion

The proposed method is an "end-to-end" solution. The input to this method is the sample image

data, and the output is the damage level label. The method can directly obtain the available results

without worrying about intermediate products. Considering the damage level of a building as an

OR problem with ordered labels, it can make more effective use of model input information, which

can improve the accuracy of the model and reduce the MSE of the prediction results. The deep

learning-based algorithm model applied in this paper can also be regarded as a data-driven method.

This means that the larger the dataset, the better the model performance.

In this study, we try to transfer the model between datasets of labeled damage buildings acquired

from different earthquake locations. The datasets share the same damage levels but have different data

characteristics. They are similar but not the same, so a model trained with one cannot be used for the

other. The transfer learning experiment not only verified a method to solve the problem of a lack of

data, but also proved the stability of the model in different regions.
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In the study of machine learning, it is commonly accepted that the more samples for the training

model there are, the better, but it does not mean that increasing the data of one model will definitely

lead to an obvious performance improvement. When there are few samples, the performance of the

algorithm based on DL may not be good because the algorithm needs a large amount of parameters in

many data-training models. Correspondingly, if there is less data, the performance of the machine

learning algorithm based on manual characteristic selection may be better with customized rules and

the help of professionals. With a huge amount of data, the performance of the DL algorithm will

increase with the increasing data scale.

CNN models are developed by training the network to represent the relationships and processes

that are inherent within the datasets. They perform an input–output mapping using a set of

interconnected simple processing features. We should realize that such models typically do not really

represent the physics of a modeled process; they are just devices used to capture relationships between

the relevant input and output variables [61]. These models can also be considered as data-driven models.

So, the amount and quality of an input dataset may influence the upper limit of the model performance.

A critical factor for the use of proposed model is data availability. The amount of well-labeled

samples should be enough. In the case study of the Yushu dataset, 1500 or more images are needed in

the training set, and the validation and testing sets also need some data. This number can go down

significantly if a pretrained model is used.

In this study, four damage grades were adopted. However, the visual interpretation of aerial

images includes uncertainty or mis-classification especially for light and heavy damage levels [6]. The

damage degree will be underestimated by aerial images (Figure 6). A Bayesian updating process is

discussed in [6] to reduce uncertainties with ground truth data.

 

 

 

Figure 6. Example of underestimated building damage by visual interpretation of an aerial image.

Left: ground photo; Right: aerial image. The collapse of the building is not visible on the aerial image.

7. Conclusions

The study was carried out on the high-precision and automated assessment method of damage

to buildings; the entire process, including experimental data preparation, dataset construction,

detailed model implementation, verification by experiment, and assessment and verification, was

systematically conducted; and the performance of the model in practical applications was predicted

through independent and disparate datasets, applying and validating the strengths and potential of

the proposed assessment method.

We propose a new approach based on CNNs and OR aiming at assessing the degree of building

damage caused by earthquakes with aerial imagery. The network consists of a CNN feature extractor

and an OR classifier. This is the first attempt to apply OR to assess the degree of building damage from

aerial imagery. Information utilization was improved by OR, so we can achieve a better accuracy with

the same or a lesser amount of data. As the buildings to be evaluated are classified as damaged or not
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damaged in most current studies, we recalculate the evaluation indicators in the case of two classes

and three classes. The proposed method significantly outperforms previous approaches.

In this study, we produced a new dataset that consisted of labeled images of damaged buildings.

More than 13,000 optical aerial images were classified into four damage degrees based on the damage

scale in Table 3. The dataset and code are freely available online and can be found at [62].

In the future, we will attempt to expand the training data on more sensors and types of buildings.

A transfer learning algorithm will also be considered when lacking training data. Based on the

existing classification model, combined with the object detection algorithm, such as RetinaNet [63],

the end-to-end automatic extraction of damaged building locations and corresponding damage levels

within the image range can be achieved, further reducing the intermediate process. We would apply

our method to more extensive and diverse types of remote sensing data. OR method has great potential

to be widely used in other ordinal-scale signals, such as sea ice concentration.
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